Sample records for denaturing high performance

  1. Detection of AGXT bgene mutations by denaturing high-performance liquid chromatography for diagnosis of hyperoxaluria type 1.

    PubMed

    Pirulli, D; Giordano, M; Lessi, M; Spanò, A; Puzzer, D; Zezlina, S; Boniotto, M; Crovella, S; Florian, F; Marangella, M; Momigliano-Richiardi, P; Savoldi, S; Amoroso, A

    2001-06-01

    Primary hyperoxaluria type 1 is an autosomal recessive disorder of glyoxylate metabolism, caused by a deficiency of alanine:glyoxylate aminotransferase, which is encoded by a single copy gene (AGXT. The aim of this research was to standardize denaturing high-performance liquid chromatography, a new, sensitive, relatively inexpensive, and automated technique, for the detection of AGXT mutation. Denaturing high-performance liquid chromatography was used to analyze in blind the AGXT gene in 20 unrelated Italian patients with primary hyperoxaluria type I previously studied by other standard methods (single-strand conformation polymorphism analysis and direct sequencing) and 50 controls. Denaturing high-performance liquid chromatography allowed us to identify 13 mutations and the polymorphism at position 154 in exon I of the AGXT gene. Hence the method is more sensitive and less time consuming than single-strand conformation polymorphism analysis for the detection of AGXT mutations, thus representing a useful and reliable tool for detecting the mutations responsible for primary hyperoxaluria type 1. The new technology could also be helpful in the search for healthy carriers of AGXT mutations amongst family members and their partners, and for screening of AGXT polymorphisms in patients with nephrolithiasis and healthy populations.

  2. Random coil negative control reproduces the discrepancy between scattering and FRET measurements of denatured protein dimensions

    PubMed Central

    Watkins, Herschel M.; Simon, Anna J.; Sosnick, Tobin R.; Lipman, Everett A.; Hjelm, Rex P.; Plaxco, Kevin W.

    2015-01-01

    Small-angle scattering studies generally indicate that the dimensions of unfolded single-domain proteins are independent (to within experimental uncertainty of a few percent) of denaturant concentration. In contrast, single-molecule FRET (smFRET) studies invariably suggest that protein unfolded states contract significantly as the denaturant concentration falls from high (∼6 M) to low (∼1 M). Here, we explore this discrepancy by using PEG to perform a hitherto absent negative control. This uncharged, highly hydrophilic polymer has been shown by multiple independent techniques to behave as a random coil in water, suggesting that it is unlikely to expand further on the addition of denaturant. Consistent with this observation, small-angle neutron scattering indicates that the dimensions of PEG are not significantly altered by the presence of either guanidine hydrochloride or urea. smFRET measurements on a PEG construct modified with the most commonly used FRET dye pair, however, produce denaturant-dependent changes in transfer efficiency similar to those seen for a number of unfolded proteins. Given the vastly different chemistries of PEG and unfolded proteins and the significant evidence that dye-free PEG is well-described as a denaturant-independent random coil, this similarity raises questions regarding the interpretation of smFRET data in terms of the hydrogen bond- or hydrophobically driven contraction of the unfolded state at low denaturant. PMID:25964362

  3. Denaturing high-performance liquid chromatography for mutation detection and genotyping.

    PubMed

    Fackenthal, Donna Lee; Chen, Pei Xian; Howe, Ted; Das, Soma

    2013-01-01

    Denaturing high-performance liquid chromatography (DHPLC) is an accurate and efficient screening technique used for detecting DNA sequence changes by heteroduplex analysis. It can also be used for genotyping of single nucleotide polymorphisms (SNPs). The high sensitivity of DHPLC has made this technique one of the most reliable approaches to mutation analysis and, therefore, used in various areas of genetics, both in the research and clinical arena. This chapter describes the methods used for mutation detection analysis and the genotyping of SNPs by DHPLC on the WAVE™ system from Transgenomic Inc. ("WAVE" and "DNASep" are registered trademarks, and "Navigator" is a trademark, of Transgenomic, used with permission. All other trademarks are property of the respective owners).

  4. High Intensity Focused Ultrasound Monitoring using Harmonic Motion Imaging for Focused Ultrasound (HMIFU) under boiling or slow denaturation conditions

    PubMed Central

    Hou, Gary Y.; Marquet, Fabrice; Wang, Shutao; Apostolakis, Iason-Zacharias; Konofagou, Elisa E.

    2015-01-01

    Harmonic Motion Imaging for Focused Ultrasound (HMIFU) is a recently developed High-Intensity Focused Ultrasound (HIFU) treatment monitoring method that utilizes an amplitude-modulated therapeutic ultrasound beam to induce an oscillatory radiation force at the HIFU focus and estimates the focal tissue displacement to monitor the HIFU thermal treatment. In this study, the performance of HMIFU under acoustic, thermal and mechanical effects were investigated. The performance of HMIFU was assessed in ex vivo canine liver specimens (n=13) under slow denaturation or boiling regimes. Passive Cavitation Detector (PCD) was used to assess the acoustic cavitation activity while a bare-wire thermocouple was used to monitor the focal temperature change. During lesioning with slow denaturation, high quality displacements (correlation coefficient above 0.97) were observed under minimum cavitation noise, indicating tissue the initial-softening-then-stiffening property change. During HIFU with boiling, HMIFU monitored a consistent change in lesion-to-background displacement contrast (0.46±0.37) despite the presence of strong cavitation noise due to boiling during lesion formation. Therefore, HMIFU effectively monitored softening-then-stiffening during lesioning under slow denaturation, and detected lesioning under boiling with a distinct change in displacement contrast under boiling in the presence of cavitation. In conclusion, HMIFU was shown effective in HIFU monitoring and lesioning identification without being significantly affected by cavitation noise. PMID:26168177

  5. Estimation of thermodynamic stability of human carbonic anhydrase IX from urea-induced denaturation and MD simulation studies.

    PubMed

    Idrees, Danish; Rahman, Safikur; Shahbaaz, Mohd; Haque, Md Anzarul; Islam, Asimul; Ahmad, Faizan; Hassan, Md Imtaiyaz

    2017-12-01

    Carbonic anhydrase IX (CAIX) is a transmembrane glycoprotein, overexpressed in cancer cells under hypoxia condition. In cancerous cells, CAIX plays an important role to combat the deleterious effects of a high rate of glycolytic metabolism. In order to favor tumor survival, CAIX maintains intracellular pH neutral or slightly alkaline and extracellular acidic pH. The equilibrium unfolding and conformational stability of CAIX were measured in the presence of increasing urea concentrations to understand it's structural features under stressed conditions. Two different spectroscopic techniques were used to follow urea-induced denaturation and observed that urea induces a reversible denaturation of CAIX. Coincidence of the normalized transition curves of both optical properties suggesting that denaturation of CAIX is a two-state process, i.e., native state ↔ denatured state. Each denaturation curve was analyzed to estimate thermodynamic parameters, ΔG D 0 ,value of Gibbs free energy change (ΔG D ) associated with the urea-induced denaturation, C m (midpoint of denaturation) and m (=δΔG D /δ[urea]). We further performed molecular dynamics simulation of CAIX for 50ns to see the dynamics of protein structure in the presence of different urea concentrations. An excellent agreement was observed between in silico and in vitro studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Observation of Solvent Penetration during Cold Denaturation of E. coli Phosphofructokinase-2

    PubMed Central

    Ramírez-Sarmiento, César A.; Baez, Mauricio; Wilson, Christian A.M.; Babul, Jorge; Komives, Elizabeth A.; Guixé, Victoria

    2013-01-01

    Phosphofructokinase-2 is a dimeric enzyme that undergoes cold denaturation following a highly cooperative N2 2I mechanism with dimer dissociation and formation of an expanded monomeric intermediate. Here, we use intrinsic fluorescence of a tryptophan located at the dimer interface to show that dimer dissociation occurs slowly, over several hours. We then use hydrogen-deuterium exchange mass spectrometry experiments, performed by taking time points over the cold denaturation process, to measure amide exchange throughout the protein during approach to the cold denatured state. As expected, a peptide corresponding to the dimer interface became more solvent exposed over time at 3°C; unexpectedly, amide exchange increased throughout the protein over time at 3°C. The rate of increase in amide exchange over time at 3°C was the same for each region and equaled the rate of dimer dissociation measured by tryptophan fluorescence, suggesting that dimer dissociation and formation of the cold denatured intermediate occur without appreciable buildup of folded monomer. The observation that throughout the protein amide exchange increases as phosphofructokinase-2 cold denatures provides experimental evidence for theoretical predictions that cold denaturation primarily occurs by solvent penetration into the hydrophobic core of proteins in a sequence-independent manner. PMID:23708365

  7. Observation of solvent penetration during cold denaturation of E. coli phosphofructokinase-2.

    PubMed

    Ramírez-Sarmiento, César A; Baez, Mauricio; Wilson, Christian A M; Babul, Jorge; Komives, Elizabeth A; Guixé, Victoria

    2013-05-21

    Phosphofructokinase-2 is a dimeric enzyme that undergoes cold denaturation following a highly cooperative N2 2I mechanism with dimer dissociation and formation of an expanded monomeric intermediate. Here, we use intrinsic fluorescence of a tryptophan located at the dimer interface to show that dimer dissociation occurs slowly, over several hours. We then use hydrogen-deuterium exchange mass spectrometry experiments, performed by taking time points over the cold denaturation process, to measure amide exchange throughout the protein during approach to the cold denatured state. As expected, a peptide corresponding to the dimer interface became more solvent exposed over time at 3°C; unexpectedly, amide exchange increased throughout the protein over time at 3°C. The rate of increase in amide exchange over time at 3°C was the same for each region and equaled the rate of dimer dissociation measured by tryptophan fluorescence, suggesting that dimer dissociation and formation of the cold denatured intermediate occur without appreciable buildup of folded monomer. The observation that throughout the protein amide exchange increases as phosphofructokinase-2 cold denatures provides experimental evidence for theoretical predictions that cold denaturation primarily occurs by solvent penetration into the hydrophobic core of proteins in a sequence-independent manner. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. Ion-ion interactions in the denatured state contribute to the stabilization of CutA1 proteins.

    PubMed

    Yutani, Katsuhide; Matsuura, Yoshinori; Naitow, Hisashi; Joti, Yasumasa

    2018-05-16

    In order to elucidate features of the denatured state ensembles that exist in equilibrium with the native state under physiological conditions, we performed 1.4-μs molecular dynamics (MD) simulations at 400 K and 450 K using the monomer subunits of three CutA1 mutants from Escherichia coli: an SH-free mutant (Ec0SH) with denaturation temperature (T d ) = 85.6 °C, a hydrophobic mutant (Ec0VV) with T d  = 113.3 °C, and an ionic mutant (Ec0VV_6) with T d  = 136.8 °C. The occupancy of salt bridges by the six substituted charged residues in Ec0VV_6 was 140.1% at 300 K and 89.5% at 450 K, indicating that even in the denatured state, salt bridge occupancy was high, approximately 60% of that at 300 K. From these results, we can infer that proteins from hyperthermophiles with a high ratio of charged residues are stabilized by a decrease in conformational entropy due to ion-ion interactions in the denatured state. The mechanism must be comparable to the stabilization conferred by disulfide bonds within a protein. This suggests that introduction of charged residues, to promote formation of salt bridges in the denatured state, would be a simple way to rationally design stability-enhanced mutants.

  9. Toward an Accurate Theoretical Framework for Describing Ensembles for Proteins under Strongly Denaturing Conditions

    PubMed Central

    Tran, Hoang T.; Pappu, Rohit V.

    2006-01-01

    Our focus is on an appropriate theoretical framework for describing highly denatured proteins. In high concentrations of denaturants, proteins behave like polymers in a good solvent and ensembles for denatured proteins can be modeled by ignoring all interactions except excluded volume (EV) effects. To assay conformational preferences of highly denatured proteins, we quantify a variety of properties for EV-limit ensembles of 23 two-state proteins. We find that modeled denatured proteins can be best described as follows. Average shapes are consistent with prolate ellipsoids. Ensembles are characterized by large correlated fluctuations. Sequence-specific conformational preferences are restricted to local length scales that span five to nine residues. Beyond local length scales, chain properties follow well-defined power laws that are expected for generic polymers in the EV limit. The average available volume is filled inefficiently, and cavities of all sizes are found within the interiors of denatured proteins. All properties characterized from simulated ensembles match predictions from rigorous field theories. We use our results to resolve between conflicting proposals for structure in ensembles for highly denatured states. PMID:16766618

  10. On-chip isothermal, chemical cycling polymerase chain reaction (ccPCR)

    NASA Astrophysics Data System (ADS)

    Persat, Alexandre; Santiago, Juan

    2008-11-01

    We demonstrate a novel ccPCR technique for microfluidic DNA amplification where temperature is held constant in space and time. The polymerase chain reaction is a platform of choice for biological assays and typically based on a three-step thermal cycling: DNA denaturation, primers annealing and extension by an enzyme. We here demonstrate a novel technique where high concentration chemical denaturants (solvents) denature DNA. We leverage the high electrophoretic mobility of DNA and the electrical neutrality of denaturants to achieve chemical cycling. We focus DNA with isotachophoresis (ITP); a robust electrophoretic preconcentration technique which generates strong electric field gradients and protects the sample from dispersion. We apply a pressure-driven flow to balance electromigration velocity and keep the DNA sample stationary in a microchannel. We drive the DNA through a series of high denaturant concentration zones. DNA denatures at high denaturant concentration. At low denaturant concentration, the enzyme creates complementary strands. DNA reaction kinetics are slower than buffer reactions involved in ITP. We demonstrate successful ccPCR amplification for detection of E. Coli. The ccPCR has the potential for simpler chemistry than traditional PCR.

  11. Elimination of cannibalistic denaturation by enzyme immobilization or inhibition

    PubMed Central

    Wu, Hua-Lin; Lace, Daniel A.; Bender, Myron L.

    1981-01-01

    The cannibalistic denaturation of α-chymotrypsin (EC 3.4.21.1) around neutral pH can be eliminated by immobilization (insolubilization) of the enzyme or by inhibition by specific reversible inhibitors, but the high-pH denaturation cannot be. The denaturation of the immobilized enzyme at high pH follows first-order kinetics, just as the denaturation of the soluble enzyme does. These results lend credence to the description of the denaturation of chymotrypsin as cannibalistic around neutrality and due to a hydroxide ion reaction at high pH; this interpretation followed from kinetic arguments given in the previous article [Wu, H.-L., Wastell, A. & Bender, M. L. (1981) Proc. Natl. Acad. Sci. USA 78, 4116-4117]. Elimination of denaturation around neutrality by immobilization may be the reason why membrane-bound enzymes are so common in vivo. PMID:16593052

  12. Novel microscale approaches for easy, rapid determination of protein stability in academic and commercial settings

    PubMed Central

    Alexander, Crispin G.; Wanner, Randy; Johnson, Christopher M.; Breitsprecher, Dennis; Winter, Gerhard; Duhr, Stefan; Baaske, Philipp; Ferguson, Neil

    2014-01-01

    Chemical denaturant titrations can be used to accurately determine protein stability. However, data acquisition is typically labour intensive, has low throughput and is difficult to automate. These factors, combined with high protein consumption, have limited the adoption of chemical denaturant titrations in commercial settings. Thermal denaturation assays can be automated, sometimes with very high throughput. However, thermal denaturation assays are incompatible with proteins that aggregate at high temperatures and large extrapolation of stability parameters to physiological temperatures can introduce significant uncertainties. We used capillary-based instruments to measure chemical denaturant titrations by intrinsic fluorescence and microscale thermophoresis. This allowed higher throughput, consumed several hundred-fold less protein than conventional, cuvette-based methods yet maintained the high quality of the conventional approaches. We also established efficient strategies for automated, direct determination of protein stability at a range of temperatures via chemical denaturation, which has utility for characterising stability for proteins that are difficult to purify in high yield. This approach may also have merit for proteins that irreversibly denature or aggregate in classical thermal denaturation assays. We also developed procedures for affinity ranking of protein–ligand interactions from ligand-induced changes in chemical denaturation data, and proved the principle for this by correctly ranking the affinity of previously unreported peptide–PDZ domain interactions. The increased throughput, automation and low protein consumption of protein stability determinations afforded by using capillary-based methods to measure denaturant titrations, can help to revolutionise protein research. We believe that the strategies reported are likely to find wide applications in academia, biotherapeutic formulation and drug discovery programmes. PMID:25262836

  13. Bacterial examination of endodontic infections by clonal analysis in concert with denaturing high-performance liquid chromatography.

    PubMed

    Jacinto, R C; Gomes, B P F A; Desai, M; Rajendram, D; Shah, H N

    2007-12-01

    The aim of this study was to examine the diversity of bacterial species in the infected root canals of teeth associated with endodontic abscesses by cloning and sequencing techniques in concert with denaturing high-performance liquid chromatography. Samples collected from five infected root canals were subjected to polymerase chain reaction (PCR) with universal 16S ribosomal DNA primers. Products of these PCRs were cloned and sequenced. Denaturing high-performance liquid chromatography (DHPLC) was used as a screening method to reduce the number of clones necessary for DNA sequencing. All samples were positive for the presence of bacteria and a range of 7-13 different bacteria were found per root canal sample. In total, 48 different oral clones were detected among the five root canal samples. Olsenella profusa was the only species present in all samples. Porphyromonas gingivalis, Dialister pneumosintes, Dialister invisus, Lachnospiraceae oral clone, Staphylococcus aureus, Pseudoramibacter alactolyticus, Peptostreptococcus micros and Enterococcus faecalis were found in two of the five samples. The majority of the taxa were present in only one sample, for example Tannerella forsythia, Shuttleworthia satelles and Filifactor alocis. Some facultative anaerobes that are frequently isolated from endodontic infections such as E. faecalis, Streptococcus anginosus and Lactobacillus spp. were also found in this study. Clonal analysis of the microflora associated with endodontic infections revealed a wide diversity of oral species.

  14. The effect of denaturant on protein stability: a Monte Carlo lattice simulation

    NASA Astrophysics Data System (ADS)

    Choi, Ho Sup; Huh, June; Jo, Won Ho

    2003-03-01

    Denaturants are the reagents that decrease protein stability by interacting with both nonpolar and polar surfaces of protein when added to the aqueous solvent. However, the physical nature of these interactions has not been clearly understood. It is not easy to elucidate the nature of denaturant theoretically or experimentally. Even in computer simulation, the denaturant atoms are unable to be dealt explicitly due to computationally enormous costs. We have used a lattice model of protein and denaturant. By varying concentration of denaturant and interaction energy between protein and denaturant, we have measured the change of stability of the protein. This simple model reflects the experimental observation that the free energy of unfolding is a linear function of denaturant concentration in the transition range. We have also performed a simulation under isotropic perturbation. In this case, denaturant molecules are not included and a biasing potential is introduced in order to increase the radius of gyration of protein, which incorporates the effect of denaturant implicitly. The calculated free energy landscape and conformational ensembles sampled under this condition is very close to those of simulation using denaturant molecules interacting with protein. We have applied this simple approach for simulating the effect of denaturant to real proteins.

  15. Highly Anomalous Energetics of Protein Cold Denaturation Linked to Folding-Unfolding Kinetics

    PubMed Central

    Romero-Romero, M. Luisa; Inglés-Prieto, Alvaro; Ibarra-Molero, Beatriz; Sanchez-Ruiz, Jose M.

    2011-01-01

    Despite several careful experimental analyses, it is not yet clear whether protein cold-denaturation is just a “mirror image” of heat denaturation or whether it shows unique structural and energetic features. Here we report that, for a well-characterized small protein, heat denaturation and cold denaturation show dramatically different experimental energetic patterns. Specifically, while heat denaturation is endothermic, the cold transition (studied in the folding direction) occurs with negligible heat effect, in a manner seemingly akin to a gradual, second-order-like transition. We show that this highly anomalous energetics is actually an apparent effect associated to a large folding/unfolding free energy barrier and that it ultimately reflects kinetic stability, a naturally-selected trait in many protein systems. Kinetics thus emerges as an important factor linked to differential features of cold denaturation. We speculate that kinetic stabilization against cold denaturation may play a role in cold adaptation of psychrophilic organisms. Furthermore, we suggest that folding-unfolding kinetics should be taken into account when analyzing in vitro cold-denaturation experiments, in particular those carried out in the absence of destabilizing conditions. PMID:21829584

  16. High-pressure NMR reveals close similarity between cold and alcohol protein denaturation in ubiquitin.

    PubMed

    Vajpai, Navratna; Nisius, Lydia; Wiktor, Maciej; Grzesiek, Stephan

    2013-01-29

    Proteins denature not only at high, but also at low temperature as well as high pressure. These denatured states are not easily accessible for experiment, because usually heat denaturation causes aggregation, whereas cold or pressure denaturation occurs at temperatures well below the freezing point of water or pressures above 5 kbar, respectively. Here we have obtained atomic details of the pressure-assisted, cold-denatured state of ubiquitin at 2,500 bar and 258 K by high-resolution NMR techniques. Under these conditions, a folded, native-like and a disordered state exist in slow exchange. Secondary chemical shifts show that the disordered state has structural propensities for a native-like N-terminal β-hairpin and α-helix and a nonnative C-terminal α-helix. These propensities are very similar to the previously described alcohol-denatured (A-)state. Similar to the A-state, (15)N relaxation data indicate that the secondary structure elements move as independent segments. The close similarity of pressure-assisted, cold-denatured, and alcohol-denatured states with native and nonnative secondary elements supports a hierarchical mechanism of folding and supports the notion that similar to alcohol, pressure and cold reduce the hydrophobic effect. Indeed, at nondenaturing concentrations of methanol, a complete transition from the native to the A-state can be achieved at ambient temperature by varying the pressure from 1 to 2,500 bar. The methanol-assisted pressure transition is completely reversible and can also be induced in protein G. This method should allow highly detailed studies of protein-folding transitions in a continuous and reversible manner.

  17. Quantitative assessments of the distinct contributions of polypeptide backbone amides versus sidechain groups to chain expansion via chemical denaturation

    PubMed Central

    Holehouse, Alex S.; Garai, Kanchan; Lyle, Nicholas; Vitalis, Andreas; Pappu, Rohit V.

    2015-01-01

    In aqueous solutions with high concentrations of chemical denaturants such as urea and guanidinium chloride (GdmCl) proteins expand to populate heterogeneous conformational ensembles. These denaturing environments are thought to be good solvents for generic protein sequences because properties of conformational distributions align with those of canonical random coils. Previous studies showed that water is a poor solvent for polypeptide backbones and therefore backbones form collapsed globular structures in aqueous solvents. Here, we ask if polypeptide backbones can intrinsically undergo the requisite chain expansion in aqueous solutions with high concentrations of urea and GdmCl. We answer this question using a combination of molecular dynamics simulations and fluorescence correlation spectroscopy. We find that the degree of backbone expansion is minimal in aqueous solutions with high concentrations denaturants. Instead, polypeptide backbones sample conformations that are denaturant-specific mixtures of coils and globules, with a persistent preference for globules. Therefore, typical denaturing environments cannot be classified as good solvents for polypeptide backbones. How then do generic protein sequences expand in denaturing environments? To answer this question, we investigated the effects of sidechains using simulations of two archetypal sequences with amino acid compositions that are mixtures of charged, hydrophobic, and polar groups. We find that sidechains lower the effective concentration of backbone amides in water leading to an intrinsic expansion of polypeptide backbones in the absence of denaturants. Additional dilution of the effective concentration of backbone amides is achieved through preferential interactions with denaturants. These effects lead to conformational statistics in denaturing environments that are congruent with those of canonical random coils. Our results highlight the role of sidechain-mediated interactions as determinants of the conformational properties of unfolded states in water and in influencing chain expansion upon denaturation. PMID:25664638

  18. Exact method for numerically analyzing a model of local denaturation in superhelically stressed DNA

    NASA Astrophysics Data System (ADS)

    Fye, Richard M.; Benham, Craig J.

    1999-03-01

    Local denaturation, the separation at specific sites of the two strands comprising the DNA double helix, is one of the most fundamental processes in biology, required to allow the base sequence to be read both in DNA transcription and in replication. In living organisms this process can be mediated by enzymes which regulate the amount of superhelical stress imposed on the DNA. We present a numerically exact technique for analyzing a model of denaturation in superhelically stressed DNA. This approach is capable of predicting the locations and extents of transition in circular superhelical DNA molecules of kilobase lengths and specified base pair sequences. It can also be used for closed loops of DNA which are typically found in vivo to be kilobases long. The analytic method consists of an integration over the DNA twist degrees of freedom followed by the introduction of auxiliary variables to decouple the remaining degrees of freedom, which allows the use of the transfer matrix method. The algorithm implementing our technique requires O(N2) operations and O(N) memory to analyze a DNA domain containing N base pairs. However, to analyze kilobase length DNA molecules it must be implemented in high precision floating point arithmetic. An accelerated algorithm is constructed by imposing an upper bound M on the number of base pairs that can simultaneously denature in a state. This accelerated algorithm requires O(MN) operations, and has an analytically bounded error. Sample calculations show that it achieves high accuracy (greater than 15 decimal digits) with relatively small values of M (M<0.05N) for kilobase length molecules under physiologically relevant conditions. Calculations are performed on the superhelical pBR322 DNA sequence to test the accuracy of the method. With no free parameters in the model, the locations and extents of local denaturation predicted by this analysis are in quantitatively precise agreement with in vitro experimental measurements. Calculations performed on the fructose-1,6-bisphosphatase gene sequence from yeast show that this approach can also accurately treat in vivo denaturation.

  19. Dodine as a Protein Denaturant: The Best of Two Worlds?

    PubMed Central

    Gelman, Hannah; Perlova, Tatyana; Gruebele, Martin

    2013-01-01

    Traditional denaturants such as urea and guanidinium ion unfold proteins in a cooperative “all-or-none” fashion. However, their high working concentration in combination with their strong absorption in the far ultraviolet region make it impossible to measure high quality circular dichroism or infrared spectra, which are commonly used to detect changes in protein secondary structure. On the other hand, detergents such as dodecyl sulfate destabilize native protein conformation at low millimolar concentrations and are UV transparent, but they do denature proteins more gradually than guanidinium or urea. In this work we studied the denaturation properties of the fungicide dodecylguanidinium acetate (dodine), which combines both denaturants into one. We show that dodine unfolds some small proteins at millimolar concentrations, facilitates temperature denaturation, and is transparent enough at its working concentration, unlike guanidinium, to measure full range circular dichroism spectra. Our results also suggest that dodine allows fine-tuning of the protein’s unfolded state, unlike traditional “all-or-none” denaturants. PMID:23906507

  20. Transurethral radiofrequency collagen denaturation for the treatment of women with urinary incontinence.

    PubMed

    Kang, Diana; Han, Julia; Neuberger, Molly M; Moy, M Louis; Wallace, Sheila A; Alonso-Coello, Pablo; Dahm, Philipp

    2015-03-18

    Transurethral radiofrequency collagen denaturation is a relatively novel, minimally invasive device-based intervention used to treat individuals with urinary incontinence (UI). No systematic review of the evidence supporting its use has been published to date. To evaluate the efficacy of transurethral radiofrequency collagen denaturation, compared with other interventions, in the treatment of women with UI.Review authors sought to compare the following.• Transurethral radiofrequency collagen denaturation versus no treatment/sham treatment.• Transurethral radiofrequency collagen denaturation versus conservative physical treatment.• Transurethral radiofrequency collagen denaturation versus mechanical devices (pessaries for UI).• Transurethral radiofrequency collagen denaturation versus drug treatment.• Transurethral radiofrequency collagen denaturation versus injectable treatment for UI.• Transurethral radiofrequency collagen denaturation versus other surgery for UI. We conducted a systematic search of the Cochrane Incontinence Group Specialised Register (searched 19 December 2014), EMBASE and EMBASE Classic (January 1947 to 2014 Week 50), Google Scholar and three trials registries in December 2014, along with reference checking. We sought to identify unpublished studies by handsearching abstracts of major gynaecology and urology meetings, and by contacting experts in the field and the device manufacturer. Randomised and quasi-randomised trials of transurethral radiofrequency collagen denaturation versus no treatment/sham treatment, conservative physical treatment, mechanical devices, drug treatment, injectable treatment for UI or other surgery for UI in women were eligible. We screened search results and selected eligible studies for inclusion. We assessed risk of bias and analysed dichotomous variables as risk ratios (RRs) with 95% confidence intervals (CIs) and continuous variables as mean differences (MDs) with 95% CIs. We rated the quality of evidence using the GRADE (Grading of Recommendations Assessment, Development and Evaluation) approach. We included in the analysis one small sham-controlled randomised trial of 173 women performed in the United States. Participants enrolled in this study had been diagnosed with stress UI and were randomly assigned to transurethral radiofrequency collagen denaturation (treatment) or a sham surgery using a non-functioning catheter (no treatment). Mean age of participants in the 12-month multi-centre trial was 50 years (range 22 to 76 years).Of three patient-important primary outcomes selected for this systematic review, the number of women reporting UI symptoms after intervention was not reported. No serious adverse events were reported for the transurethral radiofrequency collagen denaturation arm or the sham treatment arm during the 12-month trial. Owing to high risk of bias and imprecision, we downgraded the quality of evidence for this outcome to low. The effect of transurethral radiofrequency collagen denaturation on the number of women with an incontinence quality of life (I-QOL) score improvement ≥ 10 points at 12 months was as follows: RR 1.11, 95% CI 0.77 to 1.62; participants = 142, but the confidence interval was wide. For this outcome, the quality of evidence was also low as the result of high risk of bias and imprecision.We found no evidence on the number of women undergoing repeat continence surgery. The risk of other adverse events (pain/dysuria (RR 5.73, 95% CI 0.75 to 43.70; participants = 173); new detrusor overactivity (RR 1.36, 95% CI 0.63 to 2.93; participants = 173); and urinary tract infection (RR 0.95, 95% CI 0.24 to 3.86; participants = 173) could not be established reliably as the trial was small. Evidence was insufficient for assessment of whether use of transurethral radiofrequency collagen denaturation was associated with an increased rate of urinary retention, haematuria and hesitancy compared with sham treatment in 173 participants. The GRADE quality of evidence for all other adverse events with available evidence was low as the result of high risk of bias and imprecision.We found no evidence to inform comparisons of transurethral radiofrequency collagen denaturation with conservative physical treatment, mechanical devices, drug treatment, injectable treatment for UI or other surgery for UI. It is not known whether transurethral radiofrequency collagen denaturation, as compared with sham treatment, improves patient-reported symptoms of UI. Evidence is insufficient to show whether the procedure improves disease-specific quality of life. Evidence is also insufficient to show whether the procedure causes serious adverse events or other adverse events in comparison with sham treatment, and no evidence was found for comparison with any other method of treatment for UI.

  1. Strandboard made from soy-based adhesive with high soy content

    Treesearch

    Zhiyong Cai; James M. Wescott; Jerrold E. Winandy

    2005-01-01

    A novel green adhesive with high soy content has recently been developed (13) with a process that denatures soy flour, modifies resulting protein with formaldehyde, and uses suitable phenolic crosslinking agents for copolymerization. Compared with mechanical and physical performances of oriented strandboard, the new adhesive showed promise for improving panel...

  2. Prenatal diagnosis of cystic fibrosis: 10-years experience.

    PubMed

    Hadj Fredj, S; Ouali, F; Siala, H; Bibi, A; Othmani, R; Dakhlaoui, B; Zouari, F; Messaoud, T

    2015-06-01

    We present in this study our 10years experience in prenatal diagnosis of cystic fibrosis performed in the Tunisian population. Based on family history, 40 Tunisian couples were selected for prenatal diagnosis. Fetal DNA was isolated from amniotic fluid collected by transabdominal amniocentesis or from chronic villi by transcervical chorionic villus sampling. The genetic analysis for cystic fibrosis mutations was performed by denaturant gradient gel electrophoresis and denaturing high-pressure liquid phase chromatography. We performed microsatellites analysis by capillary electrophoresis in order to verify the absence of maternal cell contamination. Thirteen fetuses were affected, 21 were heterozygous carriers and 15 were healthy with two normal alleles of CFTR gene. Ten couples opted for therapeutic abortion. The microsatellites genotyping showed the absence of contamination of the fetal DNA by maternal DNA in 93.75%. Our diagnostic strategy provides rapid and reliable prenatal diagnosis at risk families of cystic fibrosis. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  3. Effect of mechanical denaturation on surface free energy of protein powders.

    PubMed

    Mohammad, Mohammad Amin; Grimsey, Ian M; Forbes, Robert T; Blagbrough, Ian S; Conway, Barbara R

    2016-10-01

    Globular proteins are important both as therapeutic agents and excipients. However, their fragile native conformations can be denatured during pharmaceutical processing, which leads to modification of the surface energy of their powders and hence their performance. Lyophilized powders of hen egg-white lysozyme and β-galactosidase from Aspergillus oryzae were used as models to study the effects of mechanical denaturation on the surface energies of basic and acidic protein powders, respectively. Their mechanical denaturation upon milling was confirmed by the absence of their thermal unfolding transition phases and by the changes in their secondary and tertiary structures. Inverse gas chromatography detected differences between both unprocessed protein powders and the changes induced by their mechanical denaturation. The surfaces of the acidic and basic protein powders were relatively basic, however the surface acidity of β-galactosidase was higher than that of lysozyme. Also, the surface of β-galactosidase powder had a higher dispersive energy compared to lysozyme. The mechanical denaturation decreased the dispersive energy and the basicity of the surfaces of both protein powders. The amino acid composition and molecular conformation of the proteins explained the surface energy data measured by inverse gas chromatography. The biological activity of mechanically denatured protein powders can either be reversible (lysozyme) or irreversible (β-galactosidase) upon hydration. Our surface data can be exploited to understand and predict the performance of protein powders within pharmaceutical dosage forms. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Application of denaturing high-performance liquid chromatography (DHPLC) for the identification of fish: a new way to determine the composition of processed food containing multiple species.

    PubMed

    Le Fresne, Sophie; Popova, Milena; Le Vacon, Françoise; Carton, Thomas

    2011-12-14

    The identification of fish species in transformed food products is difficult because the existing methods are not adapted to heat-processed products containing more than one species. Using a common to all vertebrates region of the cytochrome b gene, we have developed a denaturing high-performance liquid chromatography (DHPLC) fingerprinting method, which allowed us to identify most of the species in commercial crab sticks. Whole fish and fillets were used for the creation of a library of referent DHPLC profiles. Crab sticks generated complex DHPLC profiles in which the number of contained fish species can be estimated by the number of major fluorescence peaks. The identity of some of the species was predicted by comparison of the peaks with the referent profiles, and others were identified after collection of the peak fractions, reamplification, and sequencing. DHPLC appears to be a quick and efficient method to analyze the species composition of complex heat-processed fish products.

  5. Plasma protein denaturation with graded heat exposure.

    PubMed

    Vazquez, R; Larson, D F

    2013-11-01

    During cardiopulmonary bypass (CPB), perfusion at tepid temperatures (33-35 °C) is recommended to avoid high temperature cerebral hyperthermia during and after the operation. However, the ideal temperature for uncomplicated adult cardiac surgery is an unsettled question. Typically, the heat exchanger maximum temperature is monitored between 40-42 °C to prevent denaturation of plasma proteins, but studies have not been performed to make these conclusions. Therefore, our hypothesis was to determine the temperature in which blood plasma protein degradation occurs after 2 hours of heat exposure. As a result, blood plasma proteins were exposed to heat in the 37-50 °C range for 2 hours. Plasma protein samples were loaded onto an 8-12% gradient gel for SDS-PAGE and low molecular weight plasma protein degradation was detected with graded heat exposure. Protein degradation was first detected between 43-45 °C of heat exposure. This study supports the practice of monitoring the heat exchanger between 40-42 °C to prevent denaturation of plasma proteins.

  6. T1ρ is superior to T2 mapping for the evaluation of articular cartilage denaturalization with osteoarthritis: radiological-pathological correlation after total knee arthroplasty.

    PubMed

    Takayama, Yukihisa; Hatakenaka, Masamitsu; Tsushima, Hidetoshi; Okazaki, Ken; Yoshiura, Takashi; Yonezawa, Masato; Nishikawa, Kei; Iwamoto, Yukihide; Honda, Hiroshi

    2013-04-01

    We compared the diagnostic performance of T1ρ and T2 mappings in the evaluation of denatured articular cartilage with osteoarthritis of the knee. 2D-Sagittal T1ρ and T2 mappings of the knee were obtained from 16 patients before total knee arthroplasty. After surgery, specimens of the femur and tibia were regionally segmented according to a 5-point scale of the severity of denaturalization. The T1ρ and T2 values in the full thickness of the articular cartilage in each region were measured by two observers. The two mappings were compared for their ability to differentiate between normal and denatured articular cartilage and also for their usefulness in grading the severity of the denaturalization using the area under receiver operating characteristic curves (Az). A p<0.05 was considered significant for each analysis. The T1ρ mapping showed a significantly higher Az value than the T2 mapping for the differentiation between normal and denatured articular cartilage (p<0.05). Regarding the assessment of the severity of denaturalization, T1ρ mapping could differentiate between normal and mild denaturalization (p<0.05), but T2 mapping could not. However, there were no significant differences between the two mappings in the discrimination of mild versus moderate denaturalization or of moderate versus severe denaturalization. The two observers showed good agreement in the results (intraclass correlation coefficient=0.81 for T1ρ and 0.92 for T2). T1ρ mapping is superior to T2 mapping for the evaluation of denatured articular cartilage with osteoarthritis of the knee. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  7. Salt dependent resistance against chemical denaturation of alkaline protease from a newly isolated haloalkaliphilic Bacillus sp.

    PubMed

    Dodia, M S; Bhimani, H G; Rawal, C M; Joshi, R H; Singh, S P

    2008-09-01

    Only few enzymes from haloalkaliphiles are biochemically characterized for their kinetic behaviour and stability. In view of this realization, an alkaline protease from Bacillus sp. AH-6, displaying salt-dependent resistance against chemical denaturation by Urea and Guanidium hydrochloride was investigated for denaturation and in vitro protein folding. The crude enzyme was highly resistant against urea (8 M) denaturation up to 72 h; however, on purification, it turned sensitive and got denatured within 2 h. Interestingly, the purified enzyme regained the resistance in the presence of NaCl. Effective refolding of the purified enzyme was achieved with glycerol; however, other approaches such as lower protein concentrations, rapid dilution and slow removal of the denaturant did not further add to refolding. The results are important from the viewpoint that only few enzymes from haloalkaliphilic bacteria are characterized. Since the resistance against chemical denaturation is a rare phenomenon, the findings would enrich the knowledge on protein stability and denaturation. Besides, such biocatalysts would definitely have novel applications under harsh chemical environments.

  8. Effect of heat, pH, ultrasonication and ethanol on the denaturation of whey protein isolate using a newly developed approach in the analysis of difference-UV spectra.

    PubMed

    Nikolaidis, Athanasios; Andreadis, Marios; Moschakis, Thomas

    2017-10-01

    A newly developed method of analysis of difference-UV spectra was successfully implemented in the study of the effect of heat, pH, ultrasonication and ethanol on the denaturation of whey protein isolate. It was found that whey proteins exhibit their highest stability against heat denaturation at pH 3.75. At very low pH values, i.e. 2.5, they exhibited considerable cold denaturation, while after heating at this pH value, the supplementary heat denaturation rate was lower compared to that at neutral pH. The highest heat denaturation rates were observed at pH values higher than neutral. High power sonication on whey proteins, previously heated at 90°C for 30min, resulted in a rather small reduction of the fraction of the heat denatured protein aggregates. Finally, when ethanol was used as a cosolvent in the concentration range 20-50%, a sharp increase in the degree of denaturation, compared to the native protein solution, was observed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Multiplexed microfluidic approach for nucleic acid enrichment

    DOEpatents

    VanderNoot, Victoria A.; Langevin, Stanley Alan; Bent, Zachary; Renzi, Ronald F.; Ferko, Scott M.; Van De Vreugde, James L.; Lane, Todd; Patel, Kamlesh; Branda, Steven

    2016-04-26

    A system for enhancing a nucleic acid sample may include a one pump, a denaturing chamber; a microfluidic hydroxyapatite chromatography device configured for performing hydroxyapatite chromatography on the nucleic acid sample, a sample collector, and tubing connecting the pump with the denaturing chamber, the hydroxyapatite chromatography device and the sample collector such that the pump may be used to move the nucleic acid sample from the denaturing chamber to the hydroxyapatite chromatography device and then to the sample collector.

  10. NF2 tumor suppressor gene: a comprehensive and efficient detection of somatic mutations by denaturing HPLC and microarray-CGH.

    PubMed

    Szijan, Irene; Rochefort, Daniel; Bruder, Carl; Surace, Ezequiel; Machiavelli, Gloria; Dalamon, Viviana; Cotignola, Javier; Ferreiro, Veronica; Campero, Alvaro; Basso, Armando; Dumanski, Jan P; Rouleau, Guy A

    2003-01-01

    The NF2 tumor suppressor gene, located in chromosome 22q12, is involved in the development of multiple tumors of the nervous system, either associated with neurofibromatosis 2 or sporadic ones, mainly schwannomas and meningiomas. In order to evaluate the role of the NF2 gene in sporadic central nervous system (CNS) tumors, we analyzed NF2 mutations in 26 specimens: 14 meningiomas, 4 schwannomas, 4 metastases, and 4 other histopathological types of neoplasms. Denaturing high performance liquid chromatography (denaturing HPLC) and comparative genomic hybridization on a DNA microarray (microarray- CGH) were used as scanning methods for small mutations and gross rearrangements respectively. Small mutations were identified in six out of seventeen meningiomas and schwannomas, one mutation was novel. Large deletions were detected in six meningiomas. All mutations were predicted to result in truncated protein or in the absence of a large protein domain. No NF2 mutations were found in other histopathological types of CNS tumors. These results provide additional evidence that mutations in the NF2 gene play an important role in the development of sporadic meningiomas and schwannomas. Denaturing HPLC analysis of small mutations and microarray-CGH of large deletions are complementary, fast, and efficient methods for the detection of mutations in tumor tissues.

  11. Temperature stability of proteins: Analysis of irreversible denaturation using isothermal calorimetry

    PubMed Central

    Schön, Arne; Clarkson, Benjamin R; Jaime, Maria; Freire, Ernesto

    2017-01-01

    The structural stability of proteins has been traditionally studied under conditions in which the folding/unfolding reaction is reversible, since thermodynamic parameters can only be determined under these conditions. Achieving reversibility conditions in temperature stability experiments has often required performing the experiments at acidic pH or other nonphysiological solvent conditions. With the rapid development of protein drugs, the fastest growing segment in the pharmaceutical industry, the need to evaluate protein stability under formulation conditions has acquired renewed urgency. Under formulation conditions and the required high protein concentration (~100 mg/mL), protein denaturation is irreversible and frequently coupled to aggregation and precipitation. In this article, we examine the thermal denaturation of hen egg white lysozyme (HEWL) under irreversible conditions and concentrations up to 100 mg/mL using several techniques, especially isothermal calorimetry which has been used to measure the enthalpy and kinetics of the unfolding and aggregation/precipitation at 12°C below the transition temperature measured by DSC. At those temperatures the rate of irreversible protein denaturation and aggregation of HEWL is measured to be on the order of 1 day−1. Isothermal calorimetry appears a suitable technique to identify buffer formulation conditions that maximize the long term stability of protein drugs. PMID:28722205

  12. Temperature stability of proteins: Analysis of irreversible denaturation using isothermal calorimetry.

    PubMed

    Schön, Arne; Clarkson, Benjamin R; Jaime, Maria; Freire, Ernesto

    2017-11-01

    The structural stability of proteins has been traditionally studied under conditions in which the folding/unfolding reaction is reversible, since thermodynamic parameters can only be determined under these conditions. Achieving reversibility conditions in temperature stability experiments has often required performing the experiments at acidic pH or other nonphysiological solvent conditions. With the rapid development of protein drugs, the fastest growing segment in the pharmaceutical industry, the need to evaluate protein stability under formulation conditions has acquired renewed urgency. Under formulation conditions and the required high protein concentration (∼100 mg/mL), protein denaturation is irreversible and frequently coupled to aggregation and precipitation. In this article, we examine the thermal denaturation of hen egg white lysozyme (HEWL) under irreversible conditions and concentrations up to 100 mg/mL using several techniques, especially isothermal calorimetry which has been used to measure the enthalpy and kinetics of the unfolding and aggregation/precipitation at 12°C below the transition temperature measured by DSC. At those temperatures the rate of irreversible protein denaturation and aggregation of HEWL is measured to be on the order of 1 day -1 . Isothermal calorimetry appears a suitable technique to identify buffer formulation conditions that maximize the long term stability of protein drugs. © 2017 Wiley Periodicals, Inc.

  13. Imaging Prostate Cancer Microenvironment by Collagen Hybridization

    DTIC Science & Technology

    2016-10-01

    affinity to denatured collagens and collagens undergoing remodeling which simulate the microenvironment of metastatic tumors. We will focus on previously...specifically target digested collagens with unfolded and partially denatured collagen triple helices. 2. Demonstration of ex vivo and in vivo targeting...invasive prostate cancer due to the absence of non-specific affinity and high propensity to hybridize with denatured collagen strand (Aim 1). We

  14. Heat-induced Irreversible Denaturation of the Camelid Single Domain VHH Antibody Is Governed by Chemical Modifications

    PubMed Central

    Akazawa-Ogawa, Yoko; Takashima, Mizuki; Lee, Young-Ho; Ikegami, Takahisa; Goto, Yuji; Uegaki, Koichi; Hagihara, Yoshihisa

    2014-01-01

    The variable domain of camelid heavy chain antibody (VHH) is highly heat-resistant and is therefore ideal for many applications. Although understanding the process of heat-induced irreversible denaturation is essential to improve the efficacy of VHH, its inactivation mechanism remains unclear. Here, we showed that chemical modifications predominantly governed the irreversible denaturation of VHH at high temperatures. After heat treatment, the activity of VHH was dependent only on the incubation time at 90 °C and was insensitive to the number of heating (90 °C)-cooling (20 °C) cycles, indicating a negligible role for folding/unfolding intermediates on permanent denaturation. The residual activity was independent of concentration; therefore, VHH lost its activity in a unimolecular manner, not by aggregation. A VHH mutant lacking Asn, which is susceptible to chemical modifications, had significantly higher heat resistance than did the wild-type protein, indicating the importance of chemical modifications to VHH denaturation. PMID:24739391

  15. Irreversible Denaturation of Maltodextrin Glucosidase Studied by Differential Scanning Calorimetry, Circular Dichroism, and Turbidity Measurements

    PubMed Central

    Goyal, Megha; Chaudhuri, Tapan K.; Kuwajima, Kunihiro

    2014-01-01

    Thermal denaturation of Escherichia coli maltodextrin glucosidase was studied by differential scanning calorimetry, circular dichroism (230 nm), and UV-absorption measurements (340 nm), which were respectively used to monitor heat absorption, conformational unfolding, and the production of solution turbidity. The denaturation was irreversible, and the thermal transition recorded at scan rates of 0.5–1.5 K/min was significantly scan-rate dependent, indicating that the thermal denaturation was kinetically controlled. The absence of a protein-concentration effect on the thermal transition indicated that the denaturation was rate-limited by a mono-molecular process. From the analysis of the calorimetric thermograms, a one-step irreversible model well represented the thermal denaturation of the protein. The calorimetrically observed thermal transitions showed excellent coincidence with the turbidity transitions monitored by UV-absorption as well as with the unfolding transitions monitored by circular dichroism. The thermal denaturation of the protein was thus rate-limited by conformational unfolding, which was followed by a rapid irreversible formation of aggregates that produced the solution turbidity. It is thus important to note that the absence of the protein-concentration effect on the irreversible thermal denaturation does not necessarily means the absence of protein aggregation itself. The turbidity measurements together with differential scanning calorimetry in the irreversible thermal denaturation of the protein provided a very effective approach for understanding the mechanisms of the irreversible denaturation. The Arrhenius-equation parameters obtained from analysis of the thermal denaturation were compared with those of other proteins that have been reported to show the one-step irreversible thermal denaturation. Maltodextrin glucosidase had sufficiently high kinetic stability with a half-life of 68 days at a physiological temperature (37°C). PMID:25548918

  16. Irreversible denaturation of maltodextrin glucosidase studied by differential scanning calorimetry, circular dichroism, and turbidity measurements.

    PubMed

    Goyal, Megha; Chaudhuri, Tapan K; Kuwajima, Kunihiro

    2014-01-01

    Thermal denaturation of Escherichia coli maltodextrin glucosidase was studied by differential scanning calorimetry, circular dichroism (230 nm), and UV-absorption measurements (340 nm), which were respectively used to monitor heat absorption, conformational unfolding, and the production of solution turbidity. The denaturation was irreversible, and the thermal transition recorded at scan rates of 0.5-1.5 K/min was significantly scan-rate dependent, indicating that the thermal denaturation was kinetically controlled. The absence of a protein-concentration effect on the thermal transition indicated that the denaturation was rate-limited by a mono-molecular process. From the analysis of the calorimetric thermograms, a one-step irreversible model well represented the thermal denaturation of the protein. The calorimetrically observed thermal transitions showed excellent coincidence with the turbidity transitions monitored by UV-absorption as well as with the unfolding transitions monitored by circular dichroism. The thermal denaturation of the protein was thus rate-limited by conformational unfolding, which was followed by a rapid irreversible formation of aggregates that produced the solution turbidity. It is thus important to note that the absence of the protein-concentration effect on the irreversible thermal denaturation does not necessarily means the absence of protein aggregation itself. The turbidity measurements together with differential scanning calorimetry in the irreversible thermal denaturation of the protein provided a very effective approach for understanding the mechanisms of the irreversible denaturation. The Arrhenius-equation parameters obtained from analysis of the thermal denaturation were compared with those of other proteins that have been reported to show the one-step irreversible thermal denaturation. Maltodextrin glucosidase had sufficiently high kinetic stability with a half-life of 68 days at a physiological temperature (37°C).

  17. Heat-Denatured Lysozyme Inactivates Murine Norovirus as a Surrogate Human Norovirus.

    PubMed

    Takahashi, Hajime; Nakazawa, Moemi; Ohshima, Chihiro; Sato, Miki; Tsuchiya, Tomoki; Takeuchi, Akira; Kunou, Masaaki; Kuda, Takashi; Kimura, Bon

    2015-07-02

    Human norovirus infects humans through the consumption of contaminated food, contact with the excrement or vomit of an infected person, and through airborne droplets that scatter the virus through the air. Being highly infectious and highly viable in the environment, inactivation of the norovirus requires a highly effective inactivating agent. In this study, we have discovered the thermal denaturing capacity of a lysozyme with known antimicrobial activity against gram-positive bacteria, as well as its inactivating effect on murine norovirus. This study is the first report on the norovirus-inactivating effects of a thermally denatured lysozyme. We observed that lysozymes heat-treated for 40 min at 100 °C caused a 4.5 log reduction in infectivity of norovirus. Transmission electron microscope analysis showed that virus particles exposed to thermally denatured lysozymes were expanded, compared to the virus before exposure. The amino acid sequence of the lysozyme was divided into three sections and the peptides of each artificially synthesised, in order to determine the region responsible for the inactivating effect. These results suggest that thermal denaturation of the lysozyme changes the protein structure, activating the region responsible for imparting an inactivating effect against the virus.

  18. [Determination of serum or plasma alpha-tocopherol by high performance liquid chromatography: optimization of operative models].

    PubMed

    Jezequel-Cuer, M; Le Moël, G; Mounié, J; Peynet, J; Le Bizec, C; Vernet, M H; Artur, Y; Laschi-Loquerie, A; Troupel, S

    1995-01-01

    A previous multicentric study set up by the Société française de biologie clinique has emphasized the usefulness of a standardized procedure for the determination by high performance liquid chromatography of alpha-tocopherol in serum or plasma. In our study, we have tested every step of the different published procedures: internal standard adduct, lipoprotein denaturation and vitamin extraction. Reproducibility of results was improved by the use of tocol as an internal standard when compared to retinol or alpha-tocopherol acetates. Lipoprotein denaturation was more efficient with ethanol addition than with methanol and when the ethanol/water ratio was > or = 0.7. Use of n-hexane or n-heptane gave the same recovery of alpha-tocopherol. When organic solvent/water ratio was > or = 1, n-hexane enabled to efficiently extract, in a one-step procedure, the alpha-tocopherol from both normo and hyperlipidemic sera. Performances of the selected procedure were: detection limit: 0.5 microM--linear range: 750 microM--within run coefficient of variation: 2.03%--day to day: 4.76%. Finally, this pluricentric study allows us to propose an optimised procedure for the determination of alpha-tocopherol in serum or plasma.

  19. Interplay of secondary structures and side-chain contacts in the denatured state of BBA1

    NASA Astrophysics Data System (ADS)

    Wen, Edward Z.; Luo, Ray

    2004-08-01

    The denatured state of a miniprotein BBA1 is studied under the native condition with the AMBER/Poisson-Boltzmann energy model and with the self-guided enhanced sampling technique. Forty independent trajectories are collected to sample the highly diversified denatured structures. Our simulation data show that the denatured BBA1 contains high percentage of native helix and native turn, but low percentage of native hairpin. Conditional population analysis indicates that the native helix formation and the native hairpin formation are not cooperative in the denatured state. Side-chain analysis shows that the native hydrophobic contacts are more preferred than the non-native hydrophobic contacts in the denatured BBA1. In contrast, the salt-bridge contacts are more or less nonspecific even if their populations are higher than those of hydrophobic contacts. Analysis of the trajectories shows that the native helix mostly initiates near the N terminus and propagates to the C terminus, and mostly forms from 310-helix/turn to α helix. The same analysis shows that the native turn is important but not necessary in its formation in the denatured BBA1. In addition, the formations of the two strands in the native hairpin are rather asymmetric, demonstrating the likely influence of the protein environment. Energetic analysis shows that the native helix formation is largely driven by electrostatic interactions in denatured BBA1. Further, the native helix formation is associated with the breakup of non-native salt-bridge contacts and the accumulation of native salt-bridge contacts. However, the native hydrophobic contacts only show a small increase upon the native helix formation while the non-native hydrophobic contacts stay essentially the same, different from the evolution of hydrophobic contacts observed in an isolated helix folding.

  20. Functionality screen of streptavidin mutants by non-denaturing SDS-PAGE using biotin-4-fluorescein.

    PubMed

    Humbert, Nicolas; Ward, Thomas R

    2008-01-01

    Site-directed mutagenesis or directed evolution of proteins often leads to the production of inactive mutants. For streptavidin and related proteins, mutations may lead to the loss of their biotin-binding properties. With high-throughput screening methodologies in mind, it is imperative to detect, prior to the high-density protein production, the bacteria that produce non-functional streptavidin isoforms. Based on the incorporation of biotin-4-fluorescein in streptavidin mutants present in Escherichia coli bacterial extracts, we detail a functional screen that allows the identification of biotin-binding streptavidin variants. Bacteria are cultivated in a small volume, followed by a rapid treatment of the cells; biotin-4-fluorescein is added to the bacterial extract and loaded on an Sodium Dodecyl Sulfate Poly-Acrylamide Gel Electrophoresis (SDS-PAGE) under non-denaturing conditions. Revealing is performed using a UV transilluminator. This screen is thus easy to implement, cheap and requires only readily available equipment.

  1. [Comparison of the sensibility and specificity between single-stranded conformation polymorphism and denaturing high-performance liquid chromatography in screening hMSH2 and hMLH1 gene mutations in hereditary non-polyposis colorectal cancer].

    PubMed

    Wei, Guang-hui; Zhao, Bo; Wang, Zhen-jun

    2008-09-01

    To compare the sensibility and specificity between single-stranded conformation polymorphism (SSCP) and denaturing high-performance liquid chromatography (DHPLC) in screening hMSH2 and hMLH1 gene mutations for the diagnosis of hereditary non-polyposis colorectal cancer (HNPCC). Seven Chinese HNPCC kindreds were collected. PCR-SSCP and DHPLC were used to screen the coding regions of hMSH2 and hMLH1 genes and the abnormal profiles were sequenced by a 377 DNA sequencer. Seven gene sequence variations of hMSH2 or hMLH1 were found. Among them, 4 variations were not found by SSCP, but by DHPLC. The sensibility of SSCP and DHPLC were 51.6% and 100% respectively, and the specificity were 66.6% and 93.3% respectively. DHPLC has better sensibility and specificity in screening hMSH2 and hMLH1 gene mutation as compared to SSCP. DHPLC is an ideal method in the diagnosis of HNPCC.

  2. Urea-temperature phase diagrams capture the thermodynamics of denatured state expansion that accompany protein unfolding

    PubMed Central

    Tischer, Alexander; Auton, Matthew

    2013-01-01

    We have analyzed the thermodynamic properties of the von Willebrand factor (VWF) A3 domain using urea-induced unfolding at variable temperature and thermal unfolding at variable urea concentrations to generate a phase diagram that quantitatively describes the equilibrium between native and denatured states. From this analysis, we were able to determine consistent thermodynamic parameters with various spectroscopic and calorimetric methods that define the urea–temperature parameter plane from cold denaturation to heat denaturation. Urea and thermal denaturation are experimentally reversible and independent of the thermal scan rate indicating that all transitions are at equilibrium and the van't Hoff and calorimetric enthalpies obtained from analysis of individual thermal transitions are equivalent demonstrating two-state character. Global analysis of the urea–temperature phase diagram results in a significantly higher enthalpy of unfolding than obtained from analysis of individual thermal transitions and significant cross correlations describing the urea dependence of and that define a complex temperature dependence of the m-value. Circular dichroism (CD) spectroscopy illustrates a large increase in secondary structure content of the urea-denatured state as temperature increases and a loss of secondary structure in the thermally denatured state upon addition of urea. These structural changes in the denatured ensemble make up ∼40% of the total ellipticity change indicating a highly compact thermally denatured state. The difference between the thermodynamic parameters obtained from phase diagram analysis and those obtained from analysis of individual thermal transitions illustrates that phase diagrams capture both contributions to unfolding and denatured state expansion and by comparison are able to decipher these contributions. PMID:23813497

  3. Stability, denaturation and refolding of Mycobacterium tuberculosis MfpA, a DNA mimicking protein that confers antibiotic resistance

    PubMed Central

    Khrapunov, Sergei; Brenowitz, Michael

    2011-01-01

    MfpA from Mycobacterium tuberculosis is a founding member of the pentapeptide repeat class of proteins (PRP) that is believed to confer bacterial resistance to the drug fluoroquinolone by mimicking the size, shape and surface charge of duplex DNA. We show that phenylalanine side chain stacking stabilizes the N-terminus of MfpA’s pentapeptide thus extending the DNA mimicry analogy. The Lumry-Eyring model was applied to multiple spectral measures of MfpA denaturation revealing that the MfpA dimer dissociates to monomers which undergo a structural transition that leads to aggregation. MfpA retains high secondary and tertiary structure content under denaturing conditions. Dimerization stabilizes MfpA’s pentapeptide repeat fold. The high Arrhenius activation energy of the barrier to aggregate formation rationalizes its stability. The mechanism of MfpA denaturation and refolding is a ‘double funnel’ energy landscape where the ‘native’ and ‘aggregate’ funnels are separated by the high barrier that is not overcome during in vitro refolding. PMID:21605934

  4. Coherent microscopic picture for urea-induced denaturation of proteins.

    PubMed

    Yang, Zaixing; Xiu, Peng; Shi, Biyun; Hua, Lan; Zhou, Ruhong

    2012-08-02

    In a previous study, we explored the mechanism of urea-induced denaturation of proteins by performing molecular dynamics (MD) simulations of hen lysozyme in 8 M urea and supported the "direct interaction mechanism" whereby urea denatures protein via dispersion interaction (Hua, L.; Zhou, R. H.; Thirumalai, D.; Berne, B. J. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 16928). Here we perform large scale MD simulations of five representative protein/peptide systems in aqueous urea to investigate if the above mechanism is common to other proteins. In all cases, accumulations of urea around proteins/peptide are observed, suggesting that urea denatures proteins by directly attacking protein backbones and side chains rather than indirectly disrupting water structure as a "water breaker". Consistent with our previous case study of lysozyme, the current energetic analyses with five protein/peptide systems reveal that urea's preferential binding to proteins mainly comes from urea's stronger dispersion interactions with proteins than with bulk solution, whereas the electrostatic (hydrogen-bonded) interactions only play a relatively minor (even negative) role during this denaturation process. Furthermore, the simulations of the peptide system at different urea concentrations (8 and 4.5 M), and with different force fields (CHARMM and OPLSAA) suggest that the above mechanism is robust, independent of the urea concentration and force field used. Last, we emphasize the importance of periodic boundary conditions in pairwise energetic analyses. This article provides a comprehensive study on the physical mechanism of urea-induced protein denaturation and suggests that the "dispersion-interaction-driven" mechanism should be general.

  5. The effects of disulfide bonds on the denatured state of barnase.

    PubMed Central

    Clarke, J.; Hounslow, A. M.; Bond, C. J.; Fersht, A. R.; Daggett, V.

    2000-01-01

    The effects of engineered disulfide bonds on protein stability are poorly understood because they can influence the structure, dynamics, and energetics of both the native and denatured states. To explore the effects of two engineered disulfide bonds on the stability of barnase, we have conducted a combined molecular dynamics and NMR study of the denatured state of the two mutants. As expected, the disulfide bonds constrain the denatured state. However, specific extended beta-sheet structure can also be detected in one of the mutant proteins. This mutant is also more stable than would be predicted. Our study suggests a possible cause of the very high stability conferred by this disulfide bond: the wild-type denatured ensemble is stabilized by a nonnative hydrophobic cluster, which is constrained from occurring in the mutant due to the formation of secondary structure. PMID:11206061

  6. Application of denaturing high-performance liquid chromatography for monitoring sulfate-reducing bacteria in oil fields.

    PubMed

    Priha, Outi; Nyyssönen, Mari; Bomberg, Malin; Laitila, Arja; Simell, Jaakko; Kapanen, Anu; Juvonen, Riikka

    2013-09-01

    Sulfate-reducing bacteria (SRB) participate in microbially induced corrosion (MIC) of equipment and H2S-driven reservoir souring in oil field sites. Successful management of industrial processes requires methods that allow robust monitoring of microbial communities. This study investigated the applicability of denaturing high-performance liquid chromatography (DHPLC) targeting the dissimilatory sulfite reductase ß-subunit (dsrB) gene for monitoring SRB communities in oil field samples from the North Sea, the United States, and Brazil. Fifteen of the 28 screened samples gave a positive result in real-time PCR assays, containing 9 × 10(1) to 6 × 10(5) dsrB gene copies ml(-1). DHPLC and denaturing gradient gel electrophoresis (DGGE) community profiles of the PCR-positive samples shared an overall similarity; both methods revealed the same samples to have the lowest and highest diversity. The SRB communities were diverse, and different dsrB compositions were detected at different geographical locations. The identified dsrB gene sequences belonged to several phylogenetic groups, such as Desulfovibrio, Desulfococcus, Desulfomicrobium, Desulfobulbus, Desulfotignum, Desulfonatronovibrio, and Desulfonauticus. DHPLC showed an advantage over DGGE in that the community profiles were very reproducible from run to run, and the resolved gene fragments could be collected using an automated fraction collector and sequenced without a further purification step. DGGE, on the other hand, included casting of gradient gels, and several rounds of rerunning, excising, and reamplification of bands were needed for successful sequencing. In summary, DHPLC proved to be a suitable tool for routine monitoring of the diversity of SRB communities in oil field samples.

  7. Raman spectral markers of collagen denaturation and hydration in human cortical bone tissue are affected by radiation sterilization and high cycle fatigue damage.

    PubMed

    Flanagan, Christopher D; Unal, Mustafa; Akkus, Ozan; Rimnac, Clare M

    2017-11-01

    Thermal denaturation and monotonic mechanical damage alter the organic and water-related compartments of cortical bone. These changes can be detected using Raman spectroscopy. However, less is known regarding Raman sensitivity to detect the effects of cyclic fatigue damage and allograft sterilization doses of gamma radiation. To determine if Raman spectroscopic biomarkers of collagen denaturation and hydration are sensitive to the effects of (a) high cycle fatigue damage and (b) 25kGy irradiation. Unirradiated and gamma-radiation sterilized human cortical bone specimens previously tested in vitro under high-cycle (> 100,000 cycles) fatigue conditions at 15MPa, 25MPa, 35MPa, 45MPa, and 55MPa cyclic stress levels were studied. Cortical bone Raman spectral profiles from wavenumber ranges of 800-1750cm -1 and 2700-3800cm -1 were obtained and compared from: a) non-fatigue vs fatigue fracture sites and b) radiated vs. unirradiated states. Raman biomarker ratios 1670/1640 and 3220/2949, which reflect collagen denaturation and organic matrix (mainly collagen)-bound water, respectively, were assessed. One- and two-way ANOVA analyses were utilized to identify differences between groups along with interaction effects between cyclic fatigue and radiation-induced damage. Cyclic fatigue damage resulted in increases in collagen denaturation (1670/1640: 1.517 ± 0.043 vs 1.579 ± 0.021, p < 0.001) and organic matrix-bound water (3220/2949: 0.109 ± 0.012 vs 0.131 ± 0.008, p < 0.001). Organic matrix-bound water increased secondary to 25kGy irradiation (3220/2949: 0.105 ± 0.010 vs 0.1161 ± 0.009, p = 0.003). Organic matrix-bound water was correlated positively with collagen denaturation (r = 0.514, p < 0.001). Raman spectroscopy can detect the effects of cyclic fatigue damage and 25kGy irradiation via increases in organic matrix (mainly collagen)-bound water. A Raman measure of collagen denaturation was sensitive to cyclic fatigue damage but not 25kGy irradiation. Collagen denaturation was correlated with organic matrix-bound water, suggesting that denaturation of collagen to gelatinous form may expose more binding sites to water by unwinding the triple alpha chains. This research may eventually be useful to help identify allograft quality and more appropriately match donors to recipients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Urea-temperature phase diagrams capture the thermodynamics of denatured state expansion that accompany protein unfolding.

    PubMed

    Tischer, Alexander; Auton, Matthew

    2013-09-01

    We have analyzed the thermodynamic properties of the von Willebrand factor (VWF) A3 domain using urea-induced unfolding at variable temperature and thermal unfolding at variable urea concentrations to generate a phase diagram that quantitatively describes the equilibrium between native and denatured states. From this analysis, we were able to determine consistent thermodynamic parameters with various spectroscopic and calorimetric methods that define the urea-temperature parameter plane from cold denaturation to heat denaturation. Urea and thermal denaturation are experimentally reversible and independent of the thermal scan rate indicating that all transitions are at equilibrium and the van't Hoff and calorimetric enthalpies obtained from analysis of individual thermal transitions are equivalent demonstrating two-state character. Global analysis of the urea-temperature phase diagram results in a significantly higher enthalpy of unfolding than obtained from analysis of individual thermal transitions and significant cross correlations describing the urea dependence of ΔH0 and ΔCP0 that define a complex temperature dependence of the m-value. Circular dichroism (CD) spectroscopy illustrates a large increase in secondary structure content of the urea-denatured state as temperature increases and a loss of secondary structure in the thermally denatured state upon addition of urea. These structural changes in the denatured ensemble make up ∼40% of the total ellipticity change indicating a highly compact thermally denatured state. The difference between the thermodynamic parameters obtained from phase diagram analysis and those obtained from analysis of individual thermal transitions illustrates that phase diagrams capture both contributions to unfolding and denatured state expansion and by comparison are able to decipher these contributions. © 2013 The Protein Society.

  9. Improvement of the solubilization of proteins in two-dimensional electrophoresis with immobilized pH gradients

    PubMed Central

    Rabilloud, Thierry; Adessi, C.; Giraudel, A.; Lunardi, J.

    2007-01-01

    Summary We have carried out the separation of sparingly-soluble (membrane and nuclear) proteins by high resolution two-dimensional electrophoresis. IEF with immobilized pH gradients leads to severe quantitative losses of proteins in the resulting 2-D map, although the resolution is usually kept high. We therefore tried to improve the solubility of proteins in this technique, by using denaturing cocktails containing various detergents and chaotropes. Best results were obtained by using a denaturing solution containing urea, thiourea, and detergents (both nonionic and zwitterionic). The usefulness of thiourea-containing denaturing mixtures are shown in this article on several models including microsomal and nuclear proteins and on tubulin, a protein highly prone to aggregation. PMID:9150907

  10. Relationship between water-holding capacity and protein denaturation in broiler breast meat.

    PubMed

    Bowker, B; Zhuang, H

    2015-07-01

    The objective of this study was to determine the relationship between water-holding capacity (WHC) attributes and protein denaturation in broiler breast meat. Boneless skinless breast fillets (n = 72) were collected from a commercial processing plant at 2 h postmortem and segregated into low-WHC and high-WHC groups based on muscle pH and color (L*a*b*). At 6 and 24 h postmortem, brine uptake (%), cooking loss (%), and protein solubility (sarcoplasmic and myofibrillar) were measured and protein fractions were analyzed using SDS-PAGE. Drip loss accumulation (%) was measured after storage for 2 and 7 days postmortem. High-WHC fillets exhibited lower L*-lightness values and greater pH values at 2 and 24 h postmortem than low-WHC fillets. High-WHC fillets had greater brine uptake and less cooking loss at both 6 and 24 h postmortem compared to low-WHC fillets. Aging from 6 to 24 h postmortem increased brine uptake in high-WHC fillets, but did not affect cooking loss in either low-WHC or high-WHC fillets. Drip loss accumulation was greater in low-WHC fillets at both 2 and 7 days postmortem. Myofibrillar protein solubility decreased with postmortem time but was not different between low-WHC and high-WHC fillets. Sarcoplasmic protein solubility increased with postmortem time and was greater in high-WHC fillets. SDS-PAGE analysis indicated that low-WHC fillets exhibited more glycogen phosphorylase denaturation than high-WHC fillets as evidenced by a more extensive shift of the protein from the sarcoplasmic to the myofibrillar protein fraction. Correlation analysis revealed that overall protein solubility measurements were not related to WHC attributes but that the degree of glycogen phosphorylase denaturation was significantly correlated (|r| = 0.52 to 0.80) to measures of WHC. Data indicated that WHC differences in broiler breast fillets were not due to differences in myofibrillar protein denaturation and suggested that the denaturation of sarcoplasmic proteins onto myofibrils may influence WHC in breast meat. © 2015 Poultry Science Association Inc.

  11. Functional screening of pharmacological chaperones via restoration of enzyme activity upon denaturation.

    PubMed

    Shanmuganathan, Meera; Britz-McKibbin, Philip

    2012-10-02

    Pharmacological chaperones (PCs) are small molecules that stabilize and promote protein folding. Enzyme inhibition is widely used for PC selection; however, it does not accurately reflect chaperone activity. We introduce a functional assay for characterization of PCs based on their capacity to restore enzyme activity that is abolished upon chemical denaturation. Dose-dependent activity curves were performed as a function of urea to assess the chaperone potency of various ligands to β-glucocerebrosidase as a model system. Restoration of enzyme activity upon denaturation allows direct screening of PCs for treatment of genetic disorders associated with protein deficiency, such as Gaucher disease.

  12. Structural changes in cartilage and collagen studied by high temperature Raman spectroscopy.

    PubMed

    Fields, Mark; Spencer, Nicholas; Dudhia, Jayesh; McMillan, Paul F

    2017-06-01

    Understanding the high temperature behavior of collagen and collagenous tissue is important for surgical procedures and biomaterials processing for the food, pharmaceutical, and cosmetics industries. One primary event for proteins is thermal denaturation that involves unfolding the polypeptide chains while maintaining the primary structure intact. Collagen in the extracellular matrix of cartilage and other connective tissue is a hierarchical material containing bundles of triple-helical fibers associated with water and proteoglycan components. Thermal analysis of dehydrated collagen indicates irreversible denaturation at high temperature between 135°C and 200°C, with another reversible event at ∼60-80°C for hydrated samples. We report high temperature Raman spectra for freeze-dried cartilage samples that show an increase in laser-excited fluorescence interpreted as conformational changes associated with denaturation above 140°C. Spectra for separated collagen and proteoglycan fractions extracted from cartilage indicate the changes are associated with collagen. The Raman data also show appearance of new features indicating peptide bond hydrolysis at high temperature implying that molecular H 2 O is retained within the freeze-dried tissue. This is confirmed by thermogravimetric analysis that show 5-7 wt% H 2 O remaining within freeze-dried cartilage that is released progressively upon heating up to 200°C. Spectra obtained after exposure to high temperature and re-hydration following recovery indicate that the capacity of the denatured collagen to re-absorb water is reduced. Our results are important for revealing the presence of bound H 2 O within the collagen component of connective tissue even after freeze-drying and its role in denaturation that is accompanied by or perhaps preceded by breakdown of the primary polypeptide structure. © 2017 Wiley Periodicals, Inc.

  13. AFM visualization at a single-molecule level of denaturated states of proteins on graphite.

    PubMed

    Barinov, Nikolay A; Prokhorov, Valery V; Dubrovin, Evgeniy V; Klinov, Dmitry V

    2016-10-01

    Different graphitic materials are either already used or believed to be advantageous in biomedical and biotechnological applications, e.g., as biomaterials or substrates for sensors. Most of these applications or associated important issues, such as biocompatibility, address the problem of adsorption of protein molecules and, in particular the conformational state of the adsorbed protein molecule on graphite. High-resolution AFM demonstrates highly oriented pyrolytic graphite (HOPG) induced denaturation of four proteins of blood plasma, such as ferritin, fibrinogen, human serum albumin (HSA) and immunoglobulin G (IgG), at a single molecule level. Protein denaturation is accompanied by the decrease of the heights of protein globules and spreading of the denatured protein fraction on the surface. In contrast, the modification of HOPG with the amphiphilic oligoglycine-hydrocarbon derivative monolayer preserves the native-like conformation and provides even more mild conditions for the protein adsorption than typically used mica. Protein unfolding on HOPG may have universal character for "soft" globular proteins. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. A Multiplex PCR for Detection of Mycoplasma pneumoniae, Chlamydophila pneumoniae, Legionella pneumophila, and Bordetella pertussis in Clinical Specimens

    DTIC Science & Technology

    2005-01-24

    detection of S . pneumoniae from throat swab or sputum samples may indicate colonization rather than illness, as it is often found in nonsterile sites...pertussis were considered in this paper. 1.2. Mycoplasma pneumoniae M. pneumoniae may be second only to S . pneumoniae as a causative agent of CAP, with...performed using an iCycler Thermal Cycler (Bio-Rad). Denaturation was performed for 15 min at 95°C followed by 35 cycles of denaturation at 94°C for 30 s

  15. Using a second‐order differential model to fit data without baselines in protein isothermal chemical denaturation

    PubMed Central

    Tang, Chuanning; Lew, Scott

    2016-01-01

    Abstract In vitro protein stability studies are commonly conducted via thermal or chemical denaturation/renaturation of protein. Conventional data analyses on the protein unfolding/(re)folding require well‐defined pre‐ and post‐transition baselines to evaluate Gibbs free‐energy change associated with the protein unfolding/(re)folding. This evaluation becomes problematic when there is insufficient data for determining the pre‐ or post‐transition baselines. In this study, fitting on such partial data obtained in protein chemical denaturation is established by introducing second‐order differential (SOD) analysis to overcome the limitations that the conventional fitting method has. By reducing numbers of the baseline‐related fitting parameters, the SOD analysis can successfully fit incomplete chemical denaturation data sets with high agreement to the conventional evaluation on the equivalent completed data, where the conventional fitting fails in analyzing them. This SOD fitting for the abbreviated isothermal chemical denaturation further fulfills data analysis methods on the insufficient data sets conducted in the two prevalent protein stability studies. PMID:26757366

  16. l-Proline and RNA Duplex m-Value Temperature Dependence.

    PubMed

    Schwinefus, Jeffrey J; Baka, Nadia L; Modi, Kalpit; Billmeyer, Kaylyn N; Lu, Shutian; Haase, Lucas R; Menssen, Ryan J

    2017-08-03

    The temperature dependence of l-proline interactions with the RNA dodecamer duplex surface exposed after unfolding was quantified using thermal and isothermal titration denaturation monitored by uv-absorbance. The m-value quantifying proline interactions with the RNA duplex surface area exposed after unfolding was measured using RNA duplexes with GC content ranging between 17 and 83%. The m-values from thermal denaturation decreased with increasing GC content signifying increasingly favorable proline interactions with the exposed RNA surface area. However, m-values from isothermal titration denaturation at 25.0 °C were independent of GC content and less negative than those from thermal denaturation. The m-value from isothermal titration denaturation for a 50% GC RNA duplex decreased (became more negative) as the temperature increased and was in nearly exact agreement with the m-value from thermal denaturation. Since RNA duplex transition temperatures increased with GC content, the more favorable proline interactions with the high GC content duplex surface area observed from thermal denaturation resulted from the temperature dependence of proline interactions rather than the RNA surface chemical composition. The enthalpy contribution to the m-value was positive and small (indicating a slight increase in duplex unfolding enthalpy with proline) while the entropic contribution to the m-value was positive and increased with temperature. Our results will facilitate proline's use as a probe of solvent accessible surface area changes during biochemical reactions at different reaction temperatures.

  17. Electrophoretic mobility patterns of collagen following laser welding

    NASA Astrophysics Data System (ADS)

    Bass, Lawrence S.; Moazami, Nader; Pocsidio, Joanne O.; Oz, Mehmet C.; LoGerfo, Paul; Treat, Michael R.

    1991-06-01

    Clinical application of laser vascular anastomosis in inhibited by a lack of understanding of its mechanism. Whether tissue fusion results from covalent or non-covalent bonding of collagen and other structural proteins is unknown. We compared electrophoretic mobility of collagen in laser treated and untreated specimens of rat tail tendon (>90% type I collagen) and rabbit aorta. Welding was performed, using tissue shrinkage as the clinical endpoint, using the 808 nm diode laser (power density 14 watts/cm2) and topical indocyanine green dye (max absorption 805 nm). Collagen was extracted with 8 M urea (denaturing), 0.5 M acetic acid (non-denaturing) and acetic acid/pepsin (cleaves non- helical protein). Mobility patterns on gel electrophoresis (SDS-PAGE) after urea or acetic acid extraction were identical in the lasered and control tendon and vessel (confirmed by optical densitometry), revealing no evidence of formation of novel covalent bonds. Alpha and beta band intensity was diminished in pepsin incubated lasered specimens compared with controls (optical density ratio 0.00 +/- 9 tendon, 0.65 +/- 0.12 aorta), indicating the presence of denatured collagen. With the laser parameters used, collagen is denatured without formation of covalent bonds, suggesting that non-covalent interaction between denatured collagen molecules may be responsible for the weld. Based on this mechanism, welding parameters can be chosen which produce collagen denaturation without cell death.

  18. Differential Denaturation of Serum Proteome Reveals a Significant Amount of Hidden Information in Complex Mixtures of Proteins

    PubMed Central

    Polci, Maria Letizia; Rossi, Stefania; Cordella, Martina; Carlucci, Giuseppe; Marchetti, Paolo; Antonini-Cappellini, Giancarlo; Facchiano, Antonio; D'Arcangelo, Daniela; Facchiano, Francesco

    2013-01-01

    Recently developed proteomic technologies allow to profile thousands of proteins within a high-throughput approach towards biomarker discovery, although results are not as satisfactory as expected. In the present study we demonstrate that serum proteome denaturation is a key underestimated feature; in fact, a new differential denaturation protocol better discriminates serum proteins according to their electrophoretic mobility as compared to single-denaturation protocols. Sixty nine different denaturation treatments were tested and the 3 most discriminating ones were selected (TRIDENT analysis) and applied to human sera, showing a significant improvement of serum protein discrimination as confirmed by MALDI-TOF/MS and LC-MS/MS identification, depending on the type of denaturation applied. Thereafter sera from mice and patients carrying cutaneous melanoma were analyzed through TRIDENT. Nine and 8 protein bands were found differentially expressed in mice and human melanoma sera, compared to healthy controls (p<0.05); three of them were found, for the first time, significantly modulated: α2macroglobulin (down-regulated in melanoma, p<0.001), Apolipoprotein-E and Apolipoprotein-A1 (both up-regulated in melanoma, p<0.04), both in mice and humans. The modulation was confirmed by immunological methods. Other less abundant proteins (e.g. gelsolin) were found significantly modulated (p<0.05). Conclusions: i) serum proteome contains a large amount of information, still neglected, related to proteins folding; ii) a careful serum denaturation may significantly improve analytical procedures involving complex protein mixtures; iii) serum differential denaturation protocol highlights interesting proteomic differences between cancer and healthy sera. PMID:23533572

  19. Pressure-assisted cold denaturation of hen egg white lysozyme: the influence of co-solvents probed by hydrogen exchange nuclear magnetic resonance.

    PubMed

    Vogtt, K; Winter, R

    2005-08-01

    COSY proton nuclear magnetic resonance was used to measure the exchange rates of amide protons of hen egg white lysozyme (HEWL) in the pressure-assisted cold-denatured state and in the heat-denatured state. After dissolving lysozyme in deuterium oxide buffer, labile protons exchange for deuterons in such a way that exposed protons are substituted rapidly, whereas "protected" protons within structured parts of the protein are substituted slowly. The exchange rates k obs were determined for HEWL under heat treatment (80 degrees C) and under high pressure conditions at low temperature (3.75 kbar, -13 degrees C). Moreover, the influence of co-solvents (sorbitol, urea) on the exchange rate was examined under pressure-assisted cold denaturation conditions, and the corresponding protection factors, P, were determined. The exchange kinetics upon heat treatment was found to be a two-step process with initial slow exchange followed by a fast one, showing residual protection in the slow-exchange state and P-factors in the random-coil-like range for the final temperature-denatured state. Addition of sorbitol (500 mM) led to an increase of P-factors for the pressure-assisted cold denatured state, but not for the heat-denatured state. The presence of 2 M urea resulted in a drastic decrease of the P-factors of the pressure-assisted cold denatured state. For both types of co-solvents, the effect they exert appears to be cooperative, i.e., no particular regions within the protein can be identified with significantly diverse changes of P-factors.

  20. 27 CFR 19.456 - Adding denaturants.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... methods of mixing denaturants and spirits if he deems such denaturation will not hinder effective... Denaturation § 19.456 Adding denaturants. Denaturants and spirits shall be mixed in packages, tanks, or bulk... proprietor shall submit a flow diagram of the intended process or method of adding denaturants. (Sec. 201...

  1. Glucose oxidase from Penicillium amagasakiense: characterization of the transition state of its denaturation from molecular dynamics simulations.

    PubMed

    Todde, Guido; Hovmöller, Sven; Laaksonen, Aatto; Mocci, Francesca

    2014-10-01

    Glucose oxidase (GOx) is a flavoenzyme having applications in food and medical industries. However, GOx, as many other enzymes when extracted from the cells, has relatively short operational lifetimes. Several recent studies (both experimental and theoretical), carried out on small proteins (or small fractions of large proteins), show that a detailed knowledge of how the breakdown process starts and proceeds on molecular level could be of significant help to artificially improve the stability of fragile proteins. We have performed extended molecular dynamics (MD) simulations to study the denaturation of GOx (a protein dimer containing nearly 1200 amino acids) to identify weak points in its structure and in this way gather information to later make it more stable, for example, by mutations. A denaturation of a protein can be simulated by increasing the temperature far above physiological temperature. We have performed a series of MD simulations at different temperatures (300, 400, 500, and 600 K). The exit from the protein's native state has been successfully identified with the clustering method and supported by other methods used to analyze the simulation data. A common set of amino acids is regularly found to initiate the denaturation, suggesting a moiety where the enzyme could be strengthened by a suitable amino acid based modification. © 2014 Wiley Periodicals, Inc.

  2. Setup of a Protocol of Molecular Diagnosis of β-Thalassemia Mutations in Tunisia using Denaturing High-Performance Liquid Chromatography (DHPLC).

    PubMed

    Sahli, Chaima Abdelhafidh; Ben Salem, Ikbel; Jouini, Latifa; Laouini, Naouel; Dabboubi, Rym; Hadj Fredj, Sondes; Siala, Hajer; Othmeni, Rym; Dakhlaoui, Boutheina; Fattoum, Slaheddine; Bibi, Amina; Messaoud, Taieb

    2016-09-01

    β-Thalassemia is one of the most prevalent worldwide autosomal recessive disorders. It presents a great molecular heterogeneity resulting from more than 200 causative mutations in the β-globin gene. In Tunisia, β-thalassemia represents the most prevalent monogenic hemoglobin disorder with 2.21% of carriers. Efficient and reliable mutation-screening methods are essential in order to establish appropriate prevention programs for at risk couples. The aim of the present study is to develop an efficient method based on the denaturing high-performance liquid chromatography (DHPLC) in which the whole β-globin gene (HBB) is screened for mutations covering about 90% of the spectrum. We have performed the validation of a DHPLC assay for direct genotyping of 11 known β-thalassemia mutations in the Tunisian population. DHPLC assay was established based on the analysis of 62 archival β-thalassemia samples previously genotyped then validated with full concordance on 50 tests with blind randomized samples previously genotyped with DNA sequencing and with 96% of consistency on 40 samples as a prospective study. Compared to other genotyping techniques, the DHPLC method can meet the requirements of direct genotyping of known β-thalassemia mutations in Tunisia and to be applied as a powerful tool for the genetic screening of prenatal and postnatal individuals. © 2016 Wiley Periodicals, Inc.

  3. Using fluorescence correlation spectroscopy to study conformational changes in denatured proteins.

    PubMed

    Sherman, Eilon; Itkin, Anna; Kuttner, Yosef Yehuda; Rhoades, Elizabeth; Amir, Dan; Haas, Elisha; Haran, Gilad

    2008-06-01

    Fluorescence correlation spectroscopy (FCS) is a sensitive analytical tool that allows dynamics and hydrodynamics of biomolecules to be studied under a broad range of experimental conditions. One application of FCS of current interest is the determination of the size of protein molecules in the various states they sample along their folding reaction coordinate, which can be accessed through the measurement of diffusion coefficients. It has been pointed out that the analysis of FCS curves is prone to artifacts that may lead to erroneous size determination. To set the stage for FCS studies of unfolded proteins, we first show that the diffusion coefficients of small molecules as well as proteins can be determined accurately even in the presence of high concentrations of co-solutes that change the solution refractive index significantly. Indeed, it is found that the Stokes-Einstein relation between the measured diffusion coefficient and solution viscosity holds even in highly concentrated glycerol or guanidinium hydrochloride (GuHCl) solutions. These measurements form the basis for an investigation of the structure of the denatured state of two proteins, the small protein L and the larger, three-domain protein adenylate kinase (AK). FCS is found useful for probing expansion in the denatured state beyond the unfolding transition. It is shown that the denatured state of protein L expands as the denaturant concentration increases, in a process akin to the transition from a globule to a coil in polymers. This process continues at least up to 5 M GuHCl. On the other hand, the denatured state of AK does not seem to expand much beyond 2 M GuHCl, a result that is in qualitative accord with single-molecule fluorescence histograms. Because both the unfolding transition and the coil-globule transition of AK occur at a much lower denaturant concentration than those of protein L, a possible correlation between the two phenomena is suggested.

  4. The efficacy of denaturing actinide elements as a means of decreasing materials attractiveness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hase, K.R.; Bathke, C.G.; Ebbinghaus, B.B.

    2013-07-01

    This study considers the concept of denaturing as applied to the actinide elements present in spent fuel as a means to reduce materials attractiveness. Highly attractive materials generally have low values of bare critical mass, heat content, and dose. To denature an attractive element, its spent-fuel isotopic composition (isotopic vector) is intentionally modified by introducing sufficient quantities of a significantly less attractive isotope to dilute the concentration of a highly attractive isotope so that the overall attractiveness of the element is reduced. The authors used FOM (Figure of Merit) formula as the material attractiveness metric for their parametric determination ofmore » the attractiveness of the Pu and U. Materials attractiveness needs to be considered in three distinct phases in the process to construct a nuclear explosive device (NED): the acquisition phase, processing phase, and utilization phase. The results show that denaturing uranium with {sup 238}U is actually an effective means of reducing the attractiveness. For uranium with a large minority of {sup 235}U, a mixture of 80% {sup 238}U to 20% {sup 235}U is required to reduce the attractiveness to low. For uranium with a large concentration of {sup 233}U, a mixture of 88% {sup 238}U to 12% {sup 233}U is required to reduce the attractiveness to low. The results also show that denaturing plutonium with {sup 238}Pu is less effective than denaturing uranium with {sup 238}U. Using {sup 238}Pu as the denaturing agent would require 80% or more by mass in order to reduce the attractiveness to low. No amount of {sup 240}Pu is enough to reduce the plutonium attractiveness below medium. The combination of {sup 238}Pu and {sup 240}Pu would require approximately 70% {sup 238}Pu and 25% {sup 240}Pu by mass to reduce the plutonium attractiveness to low.« less

  5. Denaturant-Dependent Conformational Changes in a [beta]-Trefoil Protein: Global and Residue-Specific Aspects of an Equilibrium Denaturation Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latypov, Ramil F.; Liu, Dingjiang; Jacob, Jaby

    2010-01-12

    Conformational properties of the folded and unfolded ensembles of human interleukin-1 receptor antagonist (IL-1ra) are strongly denaturant-dependent as evidenced by high-resolution two-dimensional nuclear magnetic resonance (NMR), limited proteolysis, and small-angle X-ray scattering (SAXS). The folded ensemble was characterized in detail in the presence of different urea concentrations by 1H-15N HSQC NMR. The {beta}-trefoil fold characteristic of native IL-1ra was preserved until the unfolding transition region beginning at 4 M urea. At the same time, a subset of native resonances disappeared gradually starting at low denaturant concentrations, indicating noncooperative changes in the folded state. Additional evidence of structural perturbations came frommore » the chemical shift analysis, nonuniform and bell-shaped peak intensity profiles, and limited proteolysis. In particular, the following nearby regions of the tertiary structure became progressively destabilized with increasing urea concentrations: the {beta}-hairpin interface of trefoils 1 and 2 and the H2a-H2 helical region. These regions underwent small-scale perturbations within the native baseline region in the absence of populated molten globule-like states. Similar regions were affected by elevated temperatures known to induce irreversible aggregation of IL-1ra. Further evidence of structural transitions invoking near-native conformations came from an optical spectroscopy analysis of its single-tryptophan variant W17A. The increase in the radius of gyration was associated with a single equilibrium unfolding transition in the case of two different denaturants, urea and guanidine hydrochloride (GuHCl). However, the compactness of urea- and GuHCl-unfolded molecules was comparable only at high denaturant concentrations and deviated under less denaturing conditions. Our results identified the role of conformational flexibility in IL-1ra aggregation and shed light on the nature of structural transitions within the folded ensembles of other {beta}-trefoil proteins, such as IL-1{beta} and hFGF-1.« less

  6. Weakening Pin Bone Attachment in Fish Fillets Using High-Intensity Focused Ultrasound.

    PubMed

    Skjelvareid, Martin H; Stormo, Svein Kristian; Þórarinsdóttir, Kristín Anna; Heia, Karsten

    2017-09-18

    High Intensity Focused Ultrasound (HIFU) can be used for the localized heating of biological tissue through the conversion of sound waves into heat. Although originally developed for human medicine, HIFU may also be used to weaken the attachment of pin bones in fish fillets to enable easier removal of such bones. This was shown in the present study, where a series of experiments were performed on HIFU phantoms and fillets of cod and salmon. In thin objects such as fish fillets, the heat is mainly dissipated at the surfaces. However, bones inside the fillet absorb ultrasound energy more efficiently than the surrounding tissue, resulting in a "self-focusing" heating of the bones. Salmon skin was found to effectively block the ultrasound, resulting in a significantly lower heating effect in fillets with skin. Cod skin partly blocked the ultrasound, but only to a small degree, enabling HIFU treatment through the skin. The treatment of fillets to reduce the pin bone attachment yielded an average reduction in the required pulling force by 50% in cod fillets with skin, with little muscle denaturation, and 72% in skinned fillets, with significant muscle denaturation. Salmon fillets were treated from the muscle side of the fillet to circumvent the need for penetration through skin. The treatment resulted in a 30% reduction in the peak pulling force and 10% reduction in the total pulling work, with a slight denaturation of the fillet surface.

  7. Weakening Pin Bone Attachment in Fish Fillets Using High-Intensity Focused Ultrasound

    PubMed Central

    Stormo, Svein Kristian; Þórarinsdóttir, Kristín Anna; Heia, Karsten

    2017-01-01

    High Intensity Focused Ultrasound (HIFU) can be used for the localized heating of biological tissue through the conversion of sound waves into heat. Although originally developed for human medicine, HIFU may also be used to weaken the attachment of pin bones in fish fillets to enable easier removal of such bones. This was shown in the present study, where a series of experiments were performed on HIFU phantoms and fillets of cod and salmon. In thin objects such as fish fillets, the heat is mainly dissipated at the surfaces. However, bones inside the fillet absorb ultrasound energy more efficiently than the surrounding tissue, resulting in a “self-focusing” heating of the bones. Salmon skin was found to effectively block the ultrasound, resulting in a significantly lower heating effect in fillets with skin. Cod skin partly blocked the ultrasound, but only to a small degree, enabling HIFU treatment through the skin. The treatment of fillets to reduce the pin bone attachment yielded an average reduction in the required pulling force by 50% in cod fillets with skin, with little muscle denaturation, and 72% in skinned fillets, with significant muscle denaturation. Salmon fillets were treated from the muscle side of the fillet to circumvent the need for penetration through skin. The treatment resulted in a 30% reduction in the peak pulling force and 10% reduction in the total pulling work, with a slight denaturation of the fillet surface. PMID:28926968

  8. Expression, purification and characterization of two truncated peste des petits ruminants virus matrix proteins in Escherichia coli, and production of polyclonal antibodies against this protein.

    PubMed

    Liu, Fuxiao; Wu, Xiaodong; Li, Lin; Liu, Zengshan; Wang, Zhiliang

    2013-09-01

    Peste des petits ruminants virus (PPRV), the etiological agent of peste des petits ruminants, is classified into the genus Morbillivirus in the family Paramyxoviridae. The PPRV matrix (M) gene is composed of 1483 base pairs, encoding a 335 amino acids M protein with a molecular weight of approximately 38kD. We have demonstrated previously that the full-length M protein was expressed at an extremely low level or not even expressed in Escherichia coli BL21 (DE3). In this study, the M protein was split into two truncated forms to be successfully expressed in E. coli at a high level using the pET30a (+) vector, respectively, by analysis of SDS-PAGE, western blot and MALDI-TOF-MS. The optimization of culture conditions led us to perform the recombinant protein induction with 0.2mM IPTG at 28°C for 12h, whereby both proteins nevertheless were expressed in the insoluble form. Therefore, both His-tagged proteins were purified under the denaturing condition using a commercially available kit. Balb/c mice were immunized with the complex of purified proteins and then effectively produced polyclonal antibodies, which reached to a relatively high titer by the analysis of ELISA. The specificity of the prepared polyclonal antibodies was checked by western blot and immunofluorescence, revealing them with the desirable specificity against both non-denatured and denatured M proteins. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Effects of high pressure freezing (HPF) on denaturation of natural actomyosin extracted from prawn (Metapenaeus ensis).

    PubMed

    Cheng, Lina; Sun, Da-Wen; Zhu, Zhiwei; Zhang, Zhihang

    2017-08-15

    Effects of protein denaturation caused by high pressure freezing, involving Pressure-Factors (pressure, time) and Freezing-Factors (temperature, phase transition, recrystallization, ice crystal types), are complicated. In the current study, the conformation and functional changes of natural actomyosin (NAM) under pressure assisted freezing (PAF, 100,150,300,400,500MPa P -20°C/25min ), pressure shift freezing (PSF, 200MPa P -20°C/25min ), and immersion freezing ( 0.1MPa P -20°C/5min ) after pressure was released to 0.1MPa, as compared to normal immersion freezing process (IF, 0.1MPa P -20°C/30min ). Results indicated that PSF ( 200MPa P -20°C/30min ) could reduce the denaturation of frozen NAM and a pressure of 300MPa was the critical point to induce such a denaturation. During the periods of B→D in PSF or B→C→D in PAF, the generation and growth of ice crystals played an important role on changing the secondary and tertiary structure of the treated NAM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Modified denatured lysozyme effectively solubilizes fullerene c60 nanoparticles in water

    NASA Astrophysics Data System (ADS)

    Siepi, Marialuisa; Politi, Jane; Dardano, Principia; Amoresano, Angela; De Stefano, Luca; Monti, Daria Maria; Notomista, Eugenio

    2017-08-01

    Fullerenes, allotropic forms of carbon, have very interesting pharmacological effects and engineering applications. However, a very low solubility both in organic solvents and water hinders their use. Fullerene C60, the most studied among fullerenes, can be dissolved in water only in the form of nanoparticles of variable dimensions and limited stability. Here the effect on the production of C60 nanoparticles by a native and denatured hen egg white lysozyme, a highly basic protein, has been systematically studied. In order to obtain a denatured, yet soluble, lysozyme derivative, the four disulfides of the native protein were reduced and exposed cysteines were alkylated by 3-bromopropylamine, thus introducing eight additional positive charges. The C60 solubilizing properties of the modified denatured lysozyme proved to be superior to those of the native protein, allowing the preparation of biocompatible highly homogeneous and stable C60 nanoparticles using lower amounts of protein, as demonstrated by dynamic light scattering, transmission electron microscopy and atomic force microscopy studies. This lysozyme derivative could represent an effective tool for the solubilization of other carbon allotropes.

  11. Computer programs to assist in high resolution thermal denaturation and circular dichroism studies on nucleic acids

    PubMed Central

    Goodman, Thomas C.; Hardies, Stephen C.; Cortez, Carlos; Hillen, Wolfgang

    1981-01-01

    Computer programs are described that direct the collection, processing, and graphical display of numerical data obtained from high resolution thermal denaturation (1-3) and circular dichroism (4) studies. Besides these specific applications, the programs may also be useful, either directly or as programming models, in other types of spectrophotometric studies employing computers, programming languages, or instruments similar to those described here (see Materials and Methods). PMID:7335498

  12. Refolding of denatured/reduced lysozyme at high concentration with diafiltration.

    PubMed

    Yoshii, H; Furuta, T; Yonehara, T; Ito, D; Linko, Y Y; Linko, P

    2000-06-01

    Refolding of reduced and denatured protein in vitro has been an important issue for both basic research and applied biotechnology. Refolding at low protein concentration requires large volumes of refolding buffer. Among various refolding methods, diafiltration is very useful to control the denaturant and red/ox reagents in a refolding solution. We constructed a refolding procedure of high lysozyme concentration (0.5-10 mg/ml) based on the linear reduction of the urea concentration during diafiltration under oxygen pressure. When the urea concentration in the refolding vessel was decreased from 4 M with a rate of 0.167 M/h, the refolding yields were 85% and 63% at protein concentrations, 5 mg/ml and 10 mg/ml, respectively, after 11 h. This method gave a high productivity of 40.1,microM/h of the refolding lysozyme. The change in refolding yields during the diafiltration could be simulated using the model of Hevehan and Clark.

  13. Urea-mediated protein denaturation: a consensus view.

    PubMed

    Das, Atanu; Mukhopadhyay, Chaitali

    2009-09-24

    We have performed all-atom molecular dynamics simulations of three structurally similar small globular proteins in 8 M urea and compared the results with pure aqueous simulations. Protein denaturation is preceded by an initial loss of water from the first solvation shell and consequent in-flow of urea toward the protein. Urea reaches the first solvation shell of the protein mainly due to electrostatic interaction with a considerable contribution coming from the dispersion interaction. Urea shifts the equilibrium from the native to denatured ensemble by making the protein-protein contact less stable than protein-urea contact, which is just the reverse of the condition in pure water, where protein-protein contact is more stable than protein-water contact. We have also seen that water follows urea and reaches the protein interior at later stages of denaturation, while urea preferentially and efficiently solvates different parts of the protein. Solvation of the protein backbone via hydrogen bonding, favorable electrostatic interaction with hydrophilic residues, and dispersion interaction with hydrophobic residues are the key steps through which urea intrudes the core of the protein and denatures it. Why urea is preferred over water for binding to the protein backbone and how urea orients itself toward the protein backbone have been identified comprehensively. All the key components of intermolecular forces are found to play a significant part in urea-induced protein denaturation and also toward the stability of the denatured state ensemble. Changes in water network/structure and dynamical properties and higher degree of solvation of the hydrophobic residues validate the presence of "indirect mechanism" along with the "direct mechanism" and reinforce the effect of urea on protein.

  14. Protein denaturants at aqueous-hydrophobic interfaces: self-consistent correlation between induced interfacial fluctuations and denaturant stability at the interface.

    PubMed

    Cui, Di; Ou, Shu-Ching; Patel, Sandeep

    2015-01-08

    The notion of direct interaction between denaturing cosolvent and protein residues has been proposed in dialogue relevant to molecular mechanisms of protein denaturation. Here we consider the correlation between free energetic stability and induced fluctuations of an aqueous-hydrophobic interface between a model hydrophobically associating protein, HFBII, and two common protein denaturants, guanidinium cation (Gdm(+)) and urea. We compute potentials of mean force along an order parameter that brings the solute molecule close to the known hydrophobic region of the protein. We assess potentials of mean force for different relative orientations between the protein and denaturant molecule. We find that in both cases of guanidinium cation and urea relative orientations of the denaturant molecule that are parallel to the local protein-water interface exhibit greater stability compared to edge-on or perpendicular orientations. This behavior has been observed for guanidinium/methylguanidinium cations at the liquid-vapor interface of water, and thus the present results further corroborate earlier findings. Further analysis of the induced fluctuations of the aqueous-hydrophobic interface upon approach of the denaturant molecule indicates that the parallel orientation, displaying a greater stability at the interface, also induces larger fluctuations of the interface compared to the perpendicular orientations. The correlation of interfacial stability and induced interface fluctuation is a recurring theme for interface-stable solutes at hydrophobic interfaces. Moreover, observed correlations between interface stability and induced fluctuations recapitulate connections to local hydration structure and patterns around solutes as evidenced by experiment (Cooper et al., J. Phys. Chem. A 2014, 118, 5657.) and high-level ab initio/DFT calculations (Baer et al., Faraday Discuss 2013, 160, 89).

  15. Protein Denaturants at Aqueous–Hydrophobic Interfaces: Self-Consistent Correlation between Induced Interfacial Fluctuations and Denaturant Stability at the Interface

    PubMed Central

    2015-01-01

    The notion of direct interaction between denaturing cosolvent and protein residues has been proposed in dialogue relevant to molecular mechanisms of protein denaturation. Here we consider the correlation between free energetic stability and induced fluctuations of an aqueous–hydrophobic interface between a model hydrophobically associating protein, HFBII, and two common protein denaturants, guanidinium cation (Gdm+) and urea. We compute potentials of mean force along an order parameter that brings the solute molecule close to the known hydrophobic region of the protein. We assess potentials of mean force for different relative orientations between the protein and denaturant molecule. We find that in both cases of guanidinium cation and urea relative orientations of the denaturant molecule that are parallel to the local protein–water interface exhibit greater stability compared to edge-on or perpendicular orientations. This behavior has been observed for guanidinium/methylguanidinium cations at the liquid–vapor interface of water, and thus the present results further corroborate earlier findings. Further analysis of the induced fluctuations of the aqueous–hydrophobic interface upon approach of the denaturant molecule indicates that the parallel orientation, displaying a greater stability at the interface, also induces larger fluctuations of the interface compared to the perpendicular orientations. The correlation of interfacial stability and induced interface fluctuation is a recurring theme for interface-stable solutes at hydrophobic interfaces. Moreover, observed correlations between interface stability and induced fluctuations recapitulate connections to local hydration structure and patterns around solutes as evidenced by experiment (Cooper et al., J. Phys. Chem. A2014, 118, 5657.) and high-level ab initio/DFT calculations (Baer et al., Faraday Discuss2013, 160, 89). PMID:25536388

  16. Effect of heating strategies on whey protein denaturation--Revisited by liquid chromatography quadrupole time-of-flight mass spectrometry.

    PubMed

    Akkerman, M; Rauh, V M; Christensen, M; Johansen, L B; Hammershøj, M; Larsen, L B

    2016-01-01

    Previous standards in the area of effect of heat treatment processes on milk protein denaturation were based primarily on laboratory-scale analysis and determination of denaturation degrees by, for example, electrophoresis. In this study, whey protein denaturation was revisited by pilot-scale heating strategies and liquid chromatography quadrupole time-of-flight mass spectrometer (LC/MC Q-TOF) analysis. Skim milk was heat treated by the use of 3 heating strategies, namely plate heat exchanger (PHE), tubular heat exchanger (THE), and direct steam injection (DSI), under various heating temperatures (T) and holding times. The effect of heating strategy on the degree of denaturation of β-lactoglobulin and α-lactalbumin was determined using LC/MC Q-TOF of pH 4.5-soluble whey proteins. Furthermore, effect of heating strategy on the rennet-induced coagulation properties was studied by oscillatory rheometry. In addition, rennet-induced coagulation of heat-treated micellar casein concentrate subjected to PHE was studied. For skim milk, the whey protein denaturation increased significantly as T and holding time increased, regardless of heating method. High denaturation degrees were obtained for T >100°C using PHE and THE, whereas DSI resulted in significantly lower denaturation degrees, compared with PHE and THE. Rennet coagulation properties were impaired by increased T and holding time regardless of heating method, although DSI resulted in less impairment compared with PHE and THE. No significant difference was found between THE and PHE for effect on rennet coagulation time, whereas the curd firming rate was significantly larger for THE compared with PHE. Micellar casein concentrate possessed improved rennet coagulation properties compared with skim milk receiving equal heat treatment. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Salicylic Acid and Ethylene Pathways Are Differentially Activated in Melon Cotyledons by Active or Heat-Denatured Cellulase from Trichoderma longibrachiatum

    PubMed Central

    Martinez, Christelle; Blanc, Frédéric; Le Claire, Emilie; Besnard, Olivier; Nicole, Michel; Baccou, Jean-Claude

    2001-01-01

    Infiltration of cellulase (EC 3.2.1.4) from Trichoderma longibrachiatum into melon (Cucumis melo) cotyledons induced several key defense mechanisms and hypersensitive reaction-like symptoms. An oxidative burst was observed 3 hours after treatment and was followed by activation of ethylene and salicylic acid (SA) signaling pathways leading to marked induction of peroxidase and chitinase activities. The treatment of cotyledons by heat-denatured cellulase also led to some induction of peroxidase and chitinase activities, but the oxidative burst and SA production were not observed. Co-infiltration of aminoethoxyvinil-glycine (an ethylene inhibitor) with the active cellulase did not affect the high increase of peroxidase and chitinase activities. In contrast, co-infiltration of aminoethoxyvinil-glycine with the denatured enzyme blocked peroxidase and chitinase activities. Our data suggest that the SA pathway (induced by the cellulase activity) and ethylene pathway (induced by heat-denatured and active protein) together coordinate the activation of defense mechanisms. We found a partial interaction between both signaling pathways since SA caused an inhibition of the ethylene production and a decrease in peroxidase activity when co-infiltrated with denatured cellulase. Treatments with active or denatured cellulase caused a reduction in powdery mildew (Sphaerotheca fuliginea) disease. PMID:11553761

  18. Protective role of salt in catalysis and maintaining structure of halophilic proteins against denaturation.

    PubMed

    Sinha, Rajeshwari; Khare, Sunil K

    2014-01-01

    Search for new industrial enzymes having novel properties continues to be a desirable pursuit in enzyme research. The halophilic organisms inhabiting under saline/ hypersaline conditions are considered as promising source of useful enzymes. Their enzymes are structurally adapted to perform efficient catalysis under saline environment wherein n0n-halophilic enzymes often lose their structure and activity. Haloenzymes have been documented to be polyextremophilic and withstand high temperature, pH, organic solvents, and chaotropic agents. However, this stability is modulated by salt. Although vast amount of information have been generated on salt mediated protection and structure function relationship in halophilic proteins, their clear understanding and correct perspective still remain incoherent. Furthermore, understanding their protein architecture may give better clue for engineering stable enzymes which can withstand harsh industrial conditions. The article encompasses the current level of understanding about haloadaptations and analyzes structural basis of their enzyme stability against classical denaturants.

  19. Protective role of salt in catalysis and maintaining structure of halophilic proteins against denaturation

    PubMed Central

    Sinha, Rajeshwari; Khare, Sunil K.

    2014-01-01

    Search for new industrial enzymes having novel properties continues to be a desirable pursuit in enzyme research. The halophilic organisms inhabiting under saline/ hypersaline conditions are considered as promising source of useful enzymes. Their enzymes are structurally adapted to perform efficient catalysis under saline environment wherein n0n-halophilic enzymes often lose their structure and activity. Haloenzymes have been documented to be polyextremophilic and withstand high temperature, pH, organic solvents, and chaotropic agents. However, this stability is modulated by salt. Although vast amount of information have been generated on salt mediated protection and structure function relationship in halophilic proteins, their clear understanding and correct perspective still remain incoherent. Furthermore, understanding their protein architecture may give better clue for engineering stable enzymes which can withstand harsh industrial conditions. The article encompasses the current level of understanding about haloadaptations and analyzes structural basis of their enzyme stability against classical denaturants. PMID:24782853

  20. 27 CFR 19.386 - Adjusting pH of denatured spirits.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... will counteract or reduce the effect of the denaturants. A proprietor who adjusts the pH of denatured... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Adjusting pH of denatured... of Articles Rules for Denaturing Spirits and Testing Denaturants § 19.386 Adjusting pH of denatured...

  1. 27 CFR 19.386 - Adjusting pH of denatured spirits.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... will counteract or reduce the effect of the denaturants. A proprietor who adjusts the pH of denatured... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Adjusting pH of denatured... of Articles Rules for Denaturing Spirits and Testing Denaturants § 19.386 Adjusting pH of denatured...

  2. 27 CFR 19.386 - Adjusting pH of denatured spirits.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... will counteract or reduce the effect of the denaturants. A proprietor who adjusts the pH of denatured... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Adjusting pH of denatured... of Articles Rules for Denaturing Spirits and Testing Denaturants § 19.386 Adjusting pH of denatured...

  3. 27 CFR 19.386 - Adjusting pH of denatured spirits.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... will counteract or reduce the effect of the denaturants. A proprietor who adjusts the pH of denatured... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Adjusting pH of denatured... of Articles Rules for Denaturing Spirits and Testing Denaturants § 19.386 Adjusting pH of denatured...

  4. Unfolding energetics and stability of banana lectin.

    PubMed

    Gupta, Garima; Sinha, Sharmistha; Surolia, Avadhesha

    2008-08-01

    The unfolding pathway of banana lectin from Musa paradisiaca was determined by isothermal denaturation induced by the chaotrope GdnCl. The unfolding was found to be a reversible process. The data obtained by isothermal denaturation provided information on conformational stability of banana lectin. The high values of DeltaG of unfolding at various temperatures indicated the strength of intersubunit interactions. It was found that banana lectin is a very stable and denatures at high chaotrope concentrations only. The basis of the stability may be attributed to strong hydrogen bonds of the order 2.5-3.1 A at the dimeric interface along with the presence of water bridges. This is perhaps very unique example in proteins where subunit association is not a consequence of the predominance of hydrophobic interactions. (c) 2008 Wiley-Liss, Inc.

  5. "Cooperative collapse" of the denatured state revealed through Clausius-Clapeyron analysis of protein denaturation phase diagrams.

    PubMed

    Tischer, Alexander; Machha, Venkata R; Rösgen, Jörg; Auton, Matthew

    2018-02-19

    Protein phase diagrams have a unique potential to identify the presence of additional thermodynamic states even when non-2-state character is not readily apparent from the experimental observables used to follow protein unfolding transitions. Two-state analysis of the von Willebrand factor A3 domain has previously revealed a discrepancy in the calorimetric enthalpy obtained from thermal unfolding transitions as compared with Gibbs-Helmholtz analysis of free energies obtained from the Linear Extrapolation Method (Tischer and Auton, Prot Sci 2013; 22(9):1147-60). We resolve this thermodynamic conundrum using a Clausius-Clapeyron analysis of the urea-temperature phase diagram that defines how ΔH and the urea m-value interconvert through the slope of c m versus T, (∂cm/∂T)=ΔH/(mT). This relationship permits the calculation of ΔH at low temperature from m-values obtained through iso-thermal urea denaturation and high temperature m-values from ΔH obtained through iso-urea thermal denaturation. Application of this equation uncovers sigmoid transitions in both cooperativity parameters as temperature is increased. Such residual thermal cooperativity of ΔH and the m-value confirms the presence of an additional state which is verified to result from a cooperative phase transition between urea-expanded and thermally-compact denatured states. Comparison of the equilibria between expanded and compact denatured ensembles of disulfide-intact and carboxyamidated A3 domains reveals that introducing a single disulfide crosslink does not affect the presence of the additional denatured state. It does, however, make a small thermodynamically favorable free energy (∼-13 ± 1 kJ/mol) contribution to the cooperative denatured state collapse transition as temperature is raised and urea concentration is lowered. The thermodynamics of this "cooperative collapse" of the denatured state retain significant compensations between the enthalpy and entropy contributions to the overall free energy. © 2018 Wiley Periodicals, Inc.

  6. Hyperthermophile Protein Behavior: Partially-Structured Conformations of Pyrococcus furiosus Rubredoxin Monomers Generated through Forced Cold-Denaturation and Refolding

    PubMed Central

    Ahmed, Shubbir; Guptasarma, Purnananda

    2014-01-01

    Some years ago, we showed that thermo-chemically denatured, partially-unfolded forms of Pyrococcus furiosus triosephosphateisomerase (PfuTIM) display cold-denaturation upon cooling, and heat-renaturation upon reheating, in proportion with the extent of initial partial unfolding achieved. This was the first time that cold-denaturation was demonstrated for a hyperthermophile protein, following unlocking of surface salt bridges. Here, we describe the behavior of another hyperthermophile protein, the small, monomeric, 53 residues-long rubredoxin from Pyrococcus furiosus (PfRd), which is one of the most thermostable proteins known to man. Like PfuTIM, PfRd too displays cold-denaturation after initial thermo-chemical perturbation, however, with two differences: (i) PfRd requires considerably higher temperatures as well as higher concentrations of guanidium hydrochloride (Gdm.HCl) than PfuTIM; (ii) PfRd's cold-denaturation behavior during cooling after thermo-chemical perturbation is incompletely reversible, unlike PfuTIM's, which was clearly reversible (from each different conformation generated). Differential cold-denaturation treatments allow PfRd to access multiple partially-unfolded states, each of which is clearly highly kinetically-stable. We refer to these as ‘Trishanku’ unfolding intermediates (or TUIs). Fascinatingly, refolding of TUIs through removal of Gdm.HCl generates multiple partially-refolded, monomeric, kinetically-trapped, non-native ‘Trishanku’ refolding intermediates (or TRIs), which differ from each other and from native PfRd and TUIs, in structural content and susceptibility to proteolysis. We find that the occurrence of cold denaturation and observations of TUI and TRI states is contingent on the oxidation status of iron, with redox agents managing to modulate the molecule's behavior upon gaining access to PfRd's iron atom. Mass spectrometric examination provides no evidence of the formation of disulfide bonds, but other experiments suggest that the oxidation status of iron (and its extent of burial) together determine whether or not PfRd shows cold denaturation, and also whether redox agents are able to modulate its behavior. PMID:24603413

  7. Structural stability of E. coli transketolase to temperature and pH denaturation.

    PubMed

    Jahromi, Raha R F; Morris, Phattaraporn; Martinez-Torres, Ruben J; Dalby, Paul A

    2011-09-10

    We have previously shown that the denaturation of TK with urea follows a non-aggregating though irreversible denaturation pathway in which the cofactor binding appears to become altered but without dissociating, then followed at higher urea by partial denaturation of the homodimer prior to any further unfolding or dissociation of the two monomers. Urea is not typically present during biocatalysis, whereas access to TK enzymes that retain activity at increased temperature and extreme pH would be useful for operation under conditions that increase substrate and product stability or solubility. To provide further insight into the underlying causes of its deactivation in process conditions, we have characterised the effects of temperature and pH on the structure, stability, aggregation and activity of Escherichia coli transketolase. The activity of TK was initially found to progressively improve after pre-incubation at increasing temperatures. Loss of activity at higher temperature and low pH resulted primarily from protein denaturation and subsequent irreversible aggregation. By contrast, high pH resulted in the formation of a native-like state that was only partially inactive. The apo-TK enzyme structure content also increased at pH 9 to converge on that of the holo-TK. While cofactor dissociation was previously proposed for high pH deactivation, the observed structural changes in apo-TK but not holo-TK indicate a more complex mechanism. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Variable Temperature Nuclear Magnetic Resonance and Magnetic Resonance Imaging System as a Novel Technique for In Situ Monitoring of Food Phase Transition.

    PubMed

    Song, Yukun; Cheng, Shasha; Wang, Huihui; Zhu, Bei-Wei; Zhou, Dayong; Yang, Peiqiang; Tan, Mingqian

    2018-01-24

    A nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) system with a 45 mm variable temperature (VT) sample probe (VT-NMR-MRI) was developed as an innovative technique for in situ monitoring of food phase transition. The system was designed to allow for dual deployment in either a freezing (-37 °C) or high temperature (150 °C) environment. The major breakthrough of the developed VT-NMR-MRI system is that it is able to measure the water states simultaneously in situ during food processing. The performance of the VT-NMR-MRI system was evaluated by measuring the phase transition for salmon flesh and hen egg samples. The NMR relaxometry results demonstrated that the freezing point of salmon flesh was -8.08 °C, and the salmon flesh denaturation temperature was 42.16 °C. The protein denaturation of egg was 70.61 °C, and the protein denaturation occurred at 24.12 min. Meanwhile, the use of MRI in phase transition of food was also investigated to gain internal structural information. All these results showed that the VT-NMR-MRI system provided an effective means for in situ monitoring of phase transition in food processing.

  9. Thermodynamics of protein denaturation at temperatures over 100 °C: CutA1 mutant proteins substituted with hydrophobic and charged residues

    PubMed Central

    Matsuura, Yoshinori; Takehira, Michiyo; Joti, Yasumasa; Ogasahara, Kyoko; Tanaka, Tomoyuki; Ono, Naoko; Kunishima, Naoki; Yutani, Katsuhide

    2015-01-01

    Although the thermodynamics of protein denaturation at temperatures over 100 °C is essential for the rational design of highly stable proteins, it is not understood well because of the associated technical difficulties. We designed certain hydrophobic mutant proteins of CutA1 from Escherichia coli, which have denaturation temperatures (Td) ranging from 101 to 113 °C and show a reversible heat denaturation. Using a hydrophobic mutant as a template, we successfully designed a hyperthermostable mutant protein (Td = 137 °C) by substituting six residues with charged ones. Thermodynamic analyses of these mutant proteins indicated that the hydrophobic mutants were stabilized by the accumulation of denaturation enthalpy (ΔH) with no entropic gain from hydrophobic solvation around 100 °C, and that the stabilization due to salt bridges resulted from both the increase in ΔH from ion-ion interactions and the entropic effect of the electrostatic solvation over 113 °C. This is the first experimental evidence that has successfully overcome the typical technical difficulties. PMID:26497062

  10. The role of intra-domain disulfide bonds in heat-induced irreversible denaturation of camelid single domain VHH antibodies

    PubMed Central

    Akazawa-Ogawa, Yoko; Uegaki, Koichi; Hagihara, Yoshihisa

    2016-01-01

    Camelid-derived single domain VHH antibodies are highly heat resistant, and the mechanism of heat-induced VHH denaturation predominantly relies on the chemical modification of amino acids. Although chemical modification of disulfide bonds has been recognized as a cause for heat-induced denaturation of many proteins, there have been no mutagenesis studies, in which the number of disulfide bonds was controlled. In this article, we examined a series of mutants of two different VHHs with single, double or no disulfide bonds, and scrutinized the effects of these disulfide bond modifications on VHH denaturation. With the exception of one mutant, the heat resistance of VHHs decreased when the number of disulfide bonds increased. The effect of disulfide bonds on heat denaturation was more striking if the VHH had a second disulfide bond, suggesting that the contribution of disulfide shuffling is significant in proteins with multiple disulfide bonds. Furthermore, our results directly indicate that removal of a disulfide bond can indeed increase the heat resistance of a protein, irrespective of the negative impact on equilibrium thermodynamic stability. PMID:26289739

  11. Thermal denaturation of β-glucosidase B from Paenibacillus polymyxa proceeds through a Lumry-Eyring mechanism.

    PubMed

    Camarillo-Cadena, Menandro; Garza-Ramos, Georgina; Peimbert, Mariana; Pérez-Hernández, Gerardo; Zubillaga, Rafael A

    2011-06-01

    β-glucosidase B (BglB), 1,4-β-D: -glucanohydrolase, is an enzyme with various technological applications for which some thermostable mutants have been obtained. Because BglB denatures irreversibly with heating, the stabilities of these mutants are assessed kinetically. It, therefore, becomes relevant to determine whether the measured rate constants reflect one or several elementary kinetic steps. We have analyzed the kinetics of heat denaturation of BglB from Paenibacillus polymyxa under various conditions by following the loss of secondary structure and enzymatic activity. The denaturation is accompanied by aggregation and an initial reversible step at low temperatures. At T ≥ T ( m ), the process follows a two-state irreversible mechanism for which the kinetics does not depend on the enzyme concentration. This behavior can be explained by a Lumry-Eyring model in which the difference between the rates of the irreversible and the renaturation steps increases with temperature. Accordingly, at high scan rates (≥1 °C min(-1)) or temperatures (T ≥ T ( m )), the measurable activation energy involves only the elementary step of denaturation.

  12. Two-dimensional cross correlation analysis of protein unfolding: Portrayal of the thermal denaturation of CMP kinases in the absence and presence of substrates

    NASA Astrophysics Data System (ADS)

    Schultz, Christian P.; Bârzu, Octavian; Mantsch, Henry H.

    2000-03-01

    The functional role of CMP kinases is to regenerate mono-phosphate nucleotides in cells by transferring phosphate residues from tri-phosphorylated nucleotides to monophosphorylated nucleotides. These enzymes possess two binding sites and maintain a highly conserved secondary structure. They are essential for cell survival. Herein we compare the infrared spectra of two similar, but not identical enzymes, the CMP kinases from Escherichia coli and Bacillus subtilis. A two-dimensional cross correlation analysis of the infrared spectra reveals differences in the denaturation behavior of the two proteins. Different secondary structure elements show different time-delayed or advanced unfolding events in the two enzymes. When bound to the active sites, the two nucleotide-substrates CMP and ATP exert a stabilizing effect on the structure of both proteins. The changes observed upon thermal denaturation are different for the two enzymes. Model 2D correlations are used to simulate the different denaturation of the two enzymes. Thermal denaturation and aggregation can be distinguished as two processes separated in time.

  13. Identification of Type A, B, E, and F Botulinum Neurotoxin Genes and of Botulinum Neurotoxigenic Clostridia by Denaturing High-Performance Liquid Chromatography

    PubMed Central

    Franciosa, Giovanna; Pourshaban, Manoocheher; De Luca, Alessandro; Buccino, Anna; Dallapiccola, Bruno; Aureli, Paolo

    2004-01-01

    Denaturing high-performance liquid chromatography (DHPLC) is a recently developed technique for rapid screening of nucleotide polymorphisms in PCR products. We used this technique for the identification of type A, B, E, and F botulinum neurotoxin genes. PCR products amplified from a conserved region of the type A, B, E, and F botulinum toxin genes from Clostridium botulinum, neurotoxigenic C. butyricum type E, and C. baratii type F strains were subjected to both DHPLC analysis and sequencing. Unique DHPLC peak profiles were obtained with each different type of botulinum toxin gene fragment, consistent with nucleotide differences observed in the related sequences. We then evaluated the ability of this technique to identify botulinal neurotoxigenic organisms at the genus and species level. A specific short region of the 16S rRNA gene which contains genus-specific and in some cases species-specific heterogeneity was amplified from botulinum neurotoxigenic clostridia and from different food-borne pathogens and subjected to DHPLC analysis. Different peak profiles were obtained for each genus and species, demonstrating that the technique could be a reliable alternative to sequencing for the rapid identification of food-borne pathogens, specifically of botulinal neurotoxigenic clostridia most frequently implicated in human botulism. PMID:15240298

  14. Fluorinated alcohol, the third group of cosolvents that stabilize the molten-globule state relative to a highly denatured state of cytochrome c.

    PubMed Central

    Konno, T.; Iwashita, J.; Nagayama, K.

    2000-01-01

    The effects of 1,1,1,3,3,3-hexafluoro-isopropanol (HFIP) on the conformation of cytochrome c (cyt c) at pH 1.9 were studied using a combination of spectroscopic and physical methods. Analysis varying the HFIP concentration showed that a compact denatured conformation (M(HF)) accumulates in a low concentration range of HFIP in the middle of structural transition from the highly unstructured acid-denatured state to the highly helical alcohol-denatured state of cyt c. This contrasts clearly with the effect of isopropanol (IP), in which no compact conformation accompanied with the transition. Analysis varying concentrations of HFIP and NaCl concurrently showed that the M(HF) state of cyt c is essentially identical to the salt-induced molten-globule (M(G)) state, and the M(G) state in the presence of salt was also stabilized by a low concentration of HFIP. Furthermore, 2,2,2-trifluoroethanol stabilized M(HF) similarly to HFIP, supporting the proposition that the specific effect observed for HFIP is caused by fluorination of alcohol. The mechanism stabilizing compact conformation by HFIP remains unclear, but is probably distinct from that of salts and polyols, which are also known to stabilize the M(G)-like state. PMID:10752618

  15. Natural hidden autoantibodies to tissue transglutaminase cross-react with fibrinogen.

    PubMed

    Zöller-Utz, Ingrid M; Esslinger, Birgit; Schulze-Krebs, Anja; Dieterich, Walburga

    2010-03-01

    Patients with celiac disease display autoantibodies against tissue transglutaminase (TG2), and the high sensitivity and specificity of these autoantibodies render them a reliable tool for diagnosis. However, we found that denatured sera from healthy persons also showed reactivity against TG2. To further examine the specificity of this phenomenon, sera of healthy individuals and celiac patients were denatured by heat or pH shift. Denatured sera of all individuals showed autoantibodies against TG2 in ELISA that could be specifically inhibited by TG2, but the biological role of these autoantibodies remains unknown. The alpha fibrinogen precursor could be isolated as serum protein that reacts with TG2 antibodies and treated sera reacted with fibrinogen in Western blotting. Cross-reactivity of TG2 antibodies with fibrinogen and vice versa was observed. We hypothesise that denaturation of sera reveals hidden autoantibodies against TG2, which might be normally masked by fibrinogen.

  16. In vitro and in silico studies of urea-induced denaturation of yeast iso-1-cytochrome c and its deletants at pH 6.0 and 25 °C.

    PubMed

    Haque, Md Anzarul; Zaidi, Sobia; Ubaid-Ullah, Shah; Prakash, Amresh; Hassan, Md Imtaiyaz; Islam, Asimul; Batra, Janendra K; Ahmad, Faizan

    2015-01-01

    Yeast iso-1-cytochrome c (y-cyt-c) has five extra residues at N-terminus in comparison to the horse cytochrome c. These residues are numbered as -5 to -1. Here, these extra residues are sequentially removed from y-cyt-c to establish their role in folding and stability of the protein. We performed urea-induced denaturation of wild-type (WT) y-cyt-c and its deletants. Denaturation was followed by observing change in Δε405 (probe for measuring change in the heme environment within the protein), [θ]405 (probe for measuring the change in Phe82 and Met80 axial bonding), [θ]222 (probe for measuring change in secondary structure) and [θ]416 (probe for measuring change in the heme-methionine environment). The urea-induced reversible denaturation curves were used to estimate Δ[Formula: see text], the value of Gibbs free energy change (ΔGD) in the absence of urea; Cm, the midpoint of the denaturation curve, i.e. molar urea concentration ([urea]) at which ΔGD = 0; and m, the slope (=∂ΔGD/∂[urea]). Our in vitro results clearly show that except Δ(-5/-4) all deletants are less stable than WT protein. Coincidence of normalized transition curves of all physical properties suggests that unfolding/refolding of WT protein and its deletants is a two-state process. To confirm our in vitro observations, we performed 40 ns MD simulation of both WT y-cyt-c and its deletants. MD simulation results clearly show that extra N-terminal residues play a role in stability but not in folding of the protein.

  17. Molecular assessment of collagen denaturation in decellularized tissues using a collagen hybridizing peptide.

    PubMed

    Hwang, Jeongmin; San, Boi Hoa; Turner, Neill J; White, Lisa J; Faulk, Denver M; Badylak, Stephen F; Li, Yang; Yu, S Michael

    2017-04-15

    Decellularized extracellular matrix (ECM) derived from tissues and organs are emerging as important scaffold materials for regenerative medicine. Many believe that preservation of the native ECM structure during decellularization is highly desirable. However, because effective techniques to assess the structural damage in ECM are lacking, the disruptive effects of a decellularization method and the impact of the associated structural damage upon the scaffold's regenerative capacity are often debated. Using a novel collagen hybridizing peptide (CHP) that specifically binds to unfolded collagen chains, we investigated the molecular denaturation of collagen in the ECM decellularized by four commonly used cell-removing detergents: sodium dodecyl sulfate (SDS), 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS), sodium deoxycholate (SD), and Triton X-100. Staining of the detergent-treated porcine ligament and urinary bladder matrix with carboxyfluorescein-labeled CHP demonstrated that SDS and Triton X-100 denature the triple helical collagen molecule while CHAPS and SD do not, although second harmonic generation imaging and transmission electron microscopy (TEM) revealed that all four detergents disrupt collagen fibrils. Our findings from the CHP staining were further confirmed by the circular dichroism spectra of intact triple helical collagen molecules in CHAPS and SD solutions, and the TEM images of CHP-conjugated gold nanoparticles binding only to the SDS and Triton X-100 treated collagen fibrils. CHP is a powerful new tool for direct and reliable measurement of denatured collagen molecules in decellularized tissues. It is expected to have wide applications in the development and standardization of the tissue/organ decellularization technology. Preservation of the native ECM structure in decellularized tissues is highly desirable, since denaturation of ECM molecules (e.g., collagen) during decellularization can strongly influence the cellular response. Unfortunately, conventional techniques (SEM, SHG) are not conducive to identifying denatured collagen molecules in tissues. We demonstrate the first investigation into the molecular denaturation of collagen in decellularized ECM enabled by a novel Collagen Hybridizing Peptide (CHP) that specifically binds to unfolded collagen chains. We show that SDS and Triton X-100 denature collagen molecules while CHAPS and SD cannot. Such detection has been nearly impossible with other existing techniques. The CHP technique will advance our understanding about the effect of the cell-removing process on ECM, and lead to development of the decellularization technology. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. Molecular assessment of collagen denaturation in decellularized tissues using a collagen hybridizing peptide

    PubMed Central

    Hwang, Jeongmin; San, Boi Hoa; Turner, Neill J.; White, Lisa J.; Faulk, Denver M.; Badylak, Stephen F.; Li, Yang; Yu, S. Michael

    2017-01-01

    Decellularized extracellular matrix (ECM) derived from tissues and organs are emerging as important scaffold materials for regenerative medicine. Many believe that preservation of the native ECM structure during decellularization is highly desirable. However, because effective techniques to assess the structural damage in ECM are lacking, the disruptive effects of a decellularization method and the impact of the associated structural damage upon the scaffold’s regenerative capacity are often debated. Using a novel collagen hybridizing peptide (CHP) that specifically binds to unfolded collagen chains, we investigated the molecular denaturation of collagen in the ECM decellularized by four commonly used cellremoving detergents: sodium dodecyl sulfate (SDS), 3-[(3-cholamidopropyl)dimethylammonio]-1-propa nesulfonate (CHAPS), sodium deoxycholate (SD), and Triton X-100. Staining of the detergent-treated porcine ligament and urinary bladder matrix with carboxyfluorescein-labeled CHP demonstrated that SDS and Triton X-100 denature the triple helical collagen molecule while CHAPS and SD do not, although second harmonic generation imaging and transmission electron microscopy (TEM) revealed that all four detergents disrupt collagen fibrils. Our findings from the CHP staining were further confirmed by the circular dichroism spectra of intact triple helical collagen molecules in CHAPS and SD solutions, and the TEM images of CHP-conjugated gold nanoparticles binding only to the SDS and Triton X-100 treated collagen fibrils. CHP is a powerful new tool for direct and reliable measurement of denatured collagen molecules in decellularized tissues. It is expected to have wide applications in the development and standardization of the tissue/organ decellularization technology. Statement of Significance Preservation of the native ECM structure in decellularized tissues is highly desirable, since denaturation of ECM molecules (e.g., collagen) during decellularization can strongly influence the cellular response. Unfortunately, conventional techniques (SEM, SHG) are not conducive to identifying denatured collagen molecules in tissues. We demonstrate the first investigation into the molecular denaturation of collagen in decellularized ECM enabled by a novel Collagen Hybridizing Peptide (CHP) that specifically binds to unfolded collagen chains. We show that SDS and Triton X-100 denature collagen molecules while CHAPS and SD cannot. Such detection has been nearly impossible with other existing techniques. The CHP technique will advance our understanding about the effect of the cell-removing process on ECM, and lead to development of the decellularization technology. PMID:28161576

  19. Highly Efficient Production of Soluble Proteins from Insoluble Inclusion Bodies by a Two-Step-Denaturing and Refolding Method

    PubMed Central

    Zhang, Yan; Zhang, Ting; Feng, Yanye; Lu, Xiuxiu; Lan, Wenxian; Wang, Jufang; Wu, Houming; Cao, Chunyang; Wang, Xiaoning

    2011-01-01

    The production of recombinant proteins in a large scale is important for protein functional and structural studies, particularly by using Escherichia coli over-expression systems; however, approximate 70% of recombinant proteins are over-expressed as insoluble inclusion bodies. Here we presented an efficient method for generating soluble proteins from inclusion bodies by using two steps of denaturation and one step of refolding. We first demonstrated the advantages of this method over a conventional procedure with one denaturation step and one refolding step using three proteins with different folding properties. The refolded proteins were found to be active using in vitro tests and a bioassay. We then tested the general applicability of this method by analyzing 88 proteins from human and other organisms, all of which were expressed as inclusion bodies. We found that about 76% of these proteins were refolded with an average of >75% yield of soluble proteins. This “two-step-denaturing and refolding” (2DR) method is simple, highly efficient and generally applicable; it can be utilized to obtain active recombinant proteins for both basic research and industrial purposes. PMID:21829569

  20. Mechanistic insights into osmolyte action in protein stabilization under harsh conditions: N-methylacetamide in glycine betaine-urea mixture

    NASA Astrophysics Data System (ADS)

    Kumar, Narendra; Kishore, Nand

    2014-10-01

    Glycine betaine (GB), a small naturally occurring osmolyte, stabilizes proteins and counteracts harsh denaturing conditions such as extremes of temperature, cellular dehydration, and presence of high concentration of urea. In spite of several studies on understanding mechanism of protein stabilization and counteraction of these harsh conditions by osmolytes, studies centred on GB, one of the most important osmolyte, are scarce, hence, there is need for more investigations. To explore mechanism of protein stabilization and counteraction of denaturing property of urea by GB, molecular dynamics studies of N-methylacetamide (NMA), a model peptide representing denatured state of a protein, in the presence of GB, urea, and GB-urea mixture were carried out. The results show that GB and urea work such that the strength of GB as a protecting osmolyte is increased and the denaturing ability of urea is decreased in the GB-urea mixture. It can be inferred that GB counteracts urea by decreasing its hydrophobic interactions with proteins. The mutual interactions between GB and urea also play an important role in protein stabilization. This study provides insights on osmolyte induced counteraction of denaturing property of urea.

  1. Conformational stability and thermodynamic characterization of homotetrameric Plasmodium falciparum beta-ketoacyl-ACP reductase.

    PubMed

    Karmodiya, Krishanpal; Sajad, Syed; Sinha, Sharmistha; Maity, Koustav; Suguna, Kaza; Surolia, Namita

    2007-07-01

    The conformational stability of the homotetrameric Plasmodium falciparum beta-ketoacyl-ACP reductase (FabG) was determined by guanidinium chloride-induced isothermal and thermal denaturation. The reversible unfolding transitions were monitored by intrinsic fluorescence, circular dichroism (CD) spectroscopy and by measuring the enzyme activity of FabG. The denaturation profiles were analyzed to obtain the thermodynamic parameters associated with unfolding of the protein. The data confirm the simple A(4) <--> 4A model of unfolding, based on the corroboration of CD data by fluorescence transition and similar Delta G estimation for denaturation curves obtained at four different concentration of the FabG. Denaturation is well described by the linear extrapolation model for denaturant-protein interactions. In addition, the conformational stability (Delta G(s)) as well as the Delta C(p) for the protein unfolding is quite high, 22.68 kcal/mole and 5.83 kcal/(mole K), respectively, which may be a reflection of the relatively large size of the tetrameric molecule (Mr 120, 000) and a large buried hydrophobic core in the folded protein. This study provides a prototype for determining conformational stability of other members of the short-chain alcohol dehydrogenase/reductase superfamily of proteins to which PfFabG belongs.

  2. The structural basis of urea-induced protein unfolding in β-catenin

    PubMed Central

    Wang, Chao; Chen, Zhongzhou; Hong, Xia; Ning, Fangkun; Liu, Haolin; Zang, Jianye; Yan, Xiaoxue; Kemp, Jennifer; Musselman, Catherine A.; Kutateladze, Tatinna G.; Zhao, Rui; Jiang, Chengyu; Zhang, Gongyi

    2014-01-01

    Although urea and guanidine hydrochloride are commonly used to denature proteins, the molecular underpinnings of this process have remained unclear for a century. To address this question, crystal structures of β-catenin were determined at various urea concentrations. These structures contained at least 105 unique positions that were occupied by urea molecules, each of which interacted with the protein primarily via hydrogen bonds. Hydrogen-bond competition experiments showed that the denaturing effects of urea were neutralized when polyethylene glycol was added to the solution. These data suggest that urea primarily causes proteins to unfold by competing and disrupting hydrogen bonds in proteins. Moreover, circular-dichroism spectra and nuclear magnetic resonance (NMR) analysis revealed that a similar mechanism caused protein denaturation in the absence of urea at pH levels greater than 12. Taken together, the results led to the conclusion that the disruption of hydrogen bonds is a general mechanism of unfolding induced by urea, high pH and potentially other denaturing agents such as guanidine hydrochloride. Traditionally, the disruption of hydrophobic inter­actions instead of hydrogen bonds has been thought to be the most important cause of protein denaturation. PMID:25372676

  3. The structural basis of urea-induced protein unfolding in β-catenin.

    PubMed

    Wang, Chao; Chen, Zhongzhou; Hong, Xia; Ning, Fangkun; Liu, Haolin; Zang, Jianye; Yan, Xiaoxue; Kemp, Jennifer; Musselman, Catherine A; Kutateladze, Tatinna G; Zhao, Rui; Jiang, Chengyu; Zhang, Gongyi

    2014-11-01

    Although urea and guanidine hydrochloride are commonly used to denature proteins, the molecular underpinnings of this process have remained unclear for a century. To address this question, crystal structures of β-catenin were determined at various urea concentrations. These structures contained at least 105 unique positions that were occupied by urea molecules, each of which interacted with the protein primarily via hydrogen bonds. Hydrogen-bond competition experiments showed that the denaturing effects of urea were neutralized when polyethylene glycol was added to the solution. These data suggest that urea primarily causes proteins to unfold by competing and disrupting hydrogen bonds in proteins. Moreover, circular-dichroism spectra and nuclear magnetic resonance (NMR) analysis revealed that a similar mechanism caused protein denaturation in the absence of urea at pH levels greater than 12. Taken together, the results led to the conclusion that the disruption of hydrogen bonds is a general mechanism of unfolding induced by urea, high pH and potentially other denaturing agents such as guanidine hydrochloride. Traditionally, the disruption of hydrophobic interactions instead of hydrogen bonds has been thought to be the most important cause of protein denaturation.

  4. Sequential events in the irreversible thermal denaturation of human brain-type creatine kinase by spectroscopic methods.

    PubMed

    Gao, Yan-Song; Su, Jing-Tan; Yan, Yong-Bin

    2010-06-25

    The non-cooperative or sequential events which occur during protein thermal denaturation are closely correlated with protein folding, stability, and physiological functions. In this research, the sequential events of human brain-type creatine kinase (hBBCK) thermal denaturation were studied by differential scanning calorimetry (DSC), CD, and intrinsic fluorescence spectroscopy. DSC experiments revealed that the thermal denaturation of hBBCK was calorimetrically irreversible. The existence of several endothermic peaks suggested that the denaturation involved stepwise conformational changes, which were further verified by the discrepancy in the transition curves obtained from various spectroscopic probes. During heating, the disruption of the active site structure occurred prior to the secondary and tertiary structural changes. The thermal unfolding and aggregation of hBBCK was found to occur through sequential events. This is quite different from that of muscle-type CK (MMCK). The results herein suggest that BBCK and MMCK undergo quite dissimilar thermal unfolding pathways, although they are highly conserved in the primary and tertiary structures. A minor difference in structure might endow the isoenzymes dissimilar local stabilities in structure, which further contribute to isoenzyme-specific thermal stabilities.

  5. The role of intra-domain disulfide bonds in heat-induced irreversible denaturation of camelid single domain VHH antibodies.

    PubMed

    Akazawa-Ogawa, Yoko; Uegaki, Koichi; Hagihara, Yoshihisa

    2016-01-01

    Camelid-derived single domain VHH antibodies are highly heat resistant, and the mechanism of heat-induced VHH denaturation predominantly relies on the chemical modification of amino acids. Although chemical modification of disulfide bonds has been recognized as a cause for heat-induced denaturation of many proteins, there have been no mutagenesis studies, in which the number of disulfide bonds was controlled. In this article, we examined a series of mutants of two different VHHs with single, double or no disulfide bonds, and scrutinized the effects of these disulfide bond modifications on VHH denaturation. With the exception of one mutant, the heat resistance of VHHs decreased when the number of disulfide bonds increased. The effect of disulfide bonds on heat denaturation was more striking if the VHH had a second disulfide bond, suggesting that the contribution of disulfide shuffling is significant in proteins with multiple disulfide bonds. Furthermore, our results directly indicate that removal of a disulfide bond can indeed increase the heat resistance of a protein, irrespective of the negative impact on equilibrium thermodynamic stability. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  6. Cooperative folding near the downhill limit determined with amino acid resolution by hydrogen exchange

    PubMed Central

    Yu, Wookyung; Baxa, Michael C.; Gagnon, Isabelle; Freed, Karl F.; Sosnick, Tobin R.

    2016-01-01

    The relationship between folding cooperativity and downhill, or barrier-free, folding of proteins under highly stabilizing conditions remains an unresolved topic, especially for proteins such as λ-repressor that fold on the microsecond timescale. Under aqueous conditions where downhill folding is most likely to occur, we measure the stability of multiple H bonds, using hydrogen exchange (HX) in a λYA variant that is suggested to be an incipient downhill folder having an extrapolated folding rate constant of 2 × 105 s−1 and a stability of 7.4 kcal·mol−1 at 298 K. At least one H bond on each of the three largest helices (α1, α3, and α4) breaks during a common unfolding event that reflects global denaturation. The use of HX enables us to both examine folding under highly stabilizing, native-like conditions and probe the pretransition state region for stable species without the need to initiate the folding reaction. The equivalence of the stability determined at zero and high denaturant indicates that any residual denatured state structure minimally affects the stability even under native conditions. Using our ψ analysis method along with mutational ϕ analysis, we find that the three aforementioned helices are all present in the folding transition state. Hence, the free energy surface has a sufficiently high barrier separating the denatured and native states that folding appears cooperative even under extremely stable and fast folding conditions. PMID:27078098

  7. Alpha casein micelles show not only molecular chaperone-like aggregation inhibition properties but also protein refolding activity from the denatured state.

    PubMed

    Sakono, Masafumi; Motomura, Konomi; Maruyama, Tatsuo; Kamiya, Noriho; Goto, Masahiro

    2011-01-07

    Casein micelles are a major component of milk proteins. It is well known that casein micelles show chaperone-like activity such as inhibition of protein aggregation and stabilization of proteins. In this study, it was revealed that casein micelles also possess a high refolding activity for denatured proteins. A buffer containing caseins exhibited higher refolding activity for denatured bovine carbonic anhydrase than buffers including other proteins. In particular, a buffer containing α-casein showed about a twofold higher refolding activity compared with absence of α-casein. Casein properties of surface hydrophobicity, a flexible structure and assembly formation are thought to contribute to this high refolding activity. Our results indicate that casein micelles stabilize milk proteins by both chaperone-like activity and refolding properties. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Relevance of Internal Friction and Structural Constraints for the Dynamics of Denatured Bovine Serum Albumin.

    PubMed

    Ameseder, Felix; Radulescu, Aurel; Holderer, Olaf; Falus, Peter; Richter, Dieter; Stadler, Andreas M

    2018-05-17

    A general property of disordered proteins is their structural expansion that results in a high molecular flexibility. The structure and dynamics of bovine serum albumin (BSA) denatured by guanidinium hydrochloride (GndCl) were investigated using small-angle neutron scattering (SANS) and neutron spin-echo spectroscopy (NSE). SANS experiments demonstrated the relevance of intrachain interactions for structural expansion. Using NSE experiments, we observed a high internal flexibility of denatured BSA in addition to center-of-mass diffusion detected by dynamic light scattering. Internal motions measured by NSE were described using concepts based on polymer theory. The contribution of residue-solvent friction was accounted for using the Zimm model including internal friction (ZIF). Disulfide bonds forming loops of amino acids of the peptide backbone have a major impact on internal dynamics that can be interpreted with a reduced set of Zimm modes.

  9. 40 CFR 80.1611 - Standards and requirements for certified ethanol denaturant.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... certified ethanol denaturant. 80.1611 Section 80.1611 Protection of Environment ENVIRONMENTAL PROTECTION....1611 Standards and requirements for certified ethanol denaturant. Producers and importers of ethanol denaturant that is suitable for the manufacture of denatured fuel ethanol (DFE) meeting federal quality...

  10. Structure and properties of native and unfolded lysing enzyme from T. harzianum: Chemical and pH denaturation.

    PubMed

    Bey, Houda; Gtari, Wala; Aschi, Adel; Othman, Tahar

    2016-11-01

    The effect of chemical denaturants and pH on the change of the conformation of the protein Lysing Enzyme from Trichoderma Harzianum has been investigated by dynamic light scattering (DLS) and turbidimetry. Chemical denaturants are frequently used to describe the mechanisms of folding and transition states. We have analyzed the pH effect on the properties and particle size of the protein. The compaction factor CI has shown that the protein is weakly disordered. The molecular dynamics simulations confirm, at neutral pH, that the protein has a low net charge and high hydrophobicity. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. A Comprehensive Quality Evaluation System for Complex Herbal Medicine Using PacBio Sequencing, PCR-Denaturing Gradient Gel Electrophoresis, and Several Chemical Approaches

    PubMed Central

    Zheng, Xiasheng; Zhang, Peng; Liao, Baosheng; Li, Jing; Liu, Xingyun; Shi, Yuhua; Cheng, Jinle; Lai, Zhitian; Xu, Jiang; Chen, Shilin

    2017-01-01

    Herbal medicine is a major component of complementary and alternative medicine, contributing significantly to the health of many people and communities. Quality control of herbal medicine is crucial to ensure that it is safe and sound for use. Here, we investigated a comprehensive quality evaluation system for a classic herbal medicine, Danggui Buxue Formula, by applying genetic-based and analytical chemistry approaches to authenticate and evaluate the quality of its samples. For authenticity, we successfully applied two novel technologies, third-generation sequencing and PCR-DGGE (denaturing gradient gel electrophoresis), to analyze the ingredient composition of the tested samples. For quality evaluation, we used high performance liquid chromatography assays to determine the content of chemical markers to help estimate the dosage relationship between its two raw materials, plant roots of Huangqi and Danggui. A series of surveys were then conducted against several exogenous contaminations, aiming to further access the efficacy and safety of the samples. In conclusion, the quality evaluation system demonstrated here can potentially address the authenticity, quality, and safety of herbal medicines, thus providing novel insight for enhancing their overall quality control. Highlight: We established a comprehensive quality evaluation system for herbal medicine, by combining two genetic-based approaches third-generation sequencing and DGGE (denaturing gradient gel electrophoresis) with analytical chemistry approaches to achieve the authentication and quality connotation of the samples. PMID:28955365

  12. A Comprehensive Quality Evaluation System for Complex Herbal Medicine Using PacBio Sequencing, PCR-Denaturing Gradient Gel Electrophoresis, and Several Chemical Approaches.

    PubMed

    Zheng, Xiasheng; Zhang, Peng; Liao, Baosheng; Li, Jing; Liu, Xingyun; Shi, Yuhua; Cheng, Jinle; Lai, Zhitian; Xu, Jiang; Chen, Shilin

    2017-01-01

    Herbal medicine is a major component of complementary and alternative medicine, contributing significantly to the health of many people and communities. Quality control of herbal medicine is crucial to ensure that it is safe and sound for use. Here, we investigated a comprehensive quality evaluation system for a classic herbal medicine, Danggui Buxue Formula, by applying genetic-based and analytical chemistry approaches to authenticate and evaluate the quality of its samples. For authenticity, we successfully applied two novel technologies, third-generation sequencing and PCR-DGGE (denaturing gradient gel electrophoresis), to analyze the ingredient composition of the tested samples. For quality evaluation, we used high performance liquid chromatography assays to determine the content of chemical markers to help estimate the dosage relationship between its two raw materials, plant roots of Huangqi and Danggui. A series of surveys were then conducted against several exogenous contaminations, aiming to further access the efficacy and safety of the samples. In conclusion, the quality evaluation system demonstrated here can potentially address the authenticity, quality, and safety of herbal medicines, thus providing novel insight for enhancing their overall quality control. Highlight : We established a comprehensive quality evaluation system for herbal medicine, by combining two genetic-based approaches third-generation sequencing and DGGE (denaturing gradient gel electrophoresis) with analytical chemistry approaches to achieve the authentication and quality connotation of the samples.

  13. A functional dual-coated (FDC) microtiter plate method to replace the botulinum toxin LD50 test.

    PubMed

    Liu, Yvonne Y B; Rigsby, Peter; Sesardic, Dorothea; Marks, James D; Jones, Russell G A

    2012-06-01

    Conventional capture ("Sandwich") ELISAs equally detect denatured inactive and native active botulinum type A toxin. Light chain endoprotease activity assays also fail to distinguish between various inactive molecules including partially denatured and fragmented material still retaining this protease activity. By co-coating microtiter plates with SNAP25 substrate and a monoclonal antibody specific for a conformational epitope of the toxin's Hc domain, it was possible to develop a highly sensitive (130 aM LoD), precise (1.4% GCV) new assay specific for the biologically active toxin molecule. Capture was performed in phosphate buffer with a fixed optimal concentration of chaotropic agent (e.g., 1.2 M urea) to differentially isolate functional toxin molecules. Addition of enzymatically favorable buffer containing zinc and DTT reduced the interchain disulfide bond releasing and activating the captured L-chain with subsequent specific cleavage of the SNAP25(1-206) substrate. A neoepitope antibody specific for the newly exposed Q(197) epitope was used to quantify the cleaved SNAP25(1-197). The assay's requirement for the intact toxin molecule was demonstrated with pre-reduced toxin (heavy and light chains), recombinant LHn fragments, and stressed samples containing partially or fully denatured material. This is the first known immunobiochemical assay that correlates with in vivo potency and provides a realistic alternative. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. 27 CFR 19.459 - Mixing of denatured spirits.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Mixing of denatured spirits. 19.459 Section 19.459 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE... of Articles Denaturation § 19.459 Mixing of denatured spirits. (a) Denatured spirits produced under...

  15. High-performance liquid chromatography purification of homogenous-length RNA produced by trans cleavage with a hammerhead ribozyme.

    PubMed Central

    Shields, T P; Mollova, E; Ste Marie, L; Hansen, M R; Pardi, A

    1999-01-01

    An improved method is presented for the preparation of milligram quantities of homogenous-length RNAs suitable for nuclear magnetic resonance or X-ray crystallographic structural studies. Heterogeneous-length RNA transcripts are processed with a hammerhead ribozyme to yield homogenous-length products that are then readily purified by anion exchange high-performance liquid chromatography. This procedure eliminates the need for denaturing polyacrylamide gel electrophoresis, which is the most laborious step in the standard procedure for large-scale production of RNA by in vitro transcription. The hammerhead processing of the heterogeneous-length RNA transcripts also substantially improves the overall yield and purity of the desired RNA product. PMID:10496226

  16. Chemically crosslinked protein dimers: stability and denaturation effects.

    PubMed Central

    Byrne, M. P.; Stites, W. E.

    1995-01-01

    Nine single substitution cysteine mutants of staphylococcal nuclease (nuclease) were preferentially crosslinked at the introduced cysteine residues using three different bifunctional crosslinking reagents; 1,6-bismaleimidohexane (BMH), 1,3-dibromo-2-propanol (DBP), and the chemical warfare agent, mustard gas (bis(2-chloroethyl)sulfide; mustard). BMH and mustard gas are highly specific reagents for cysteine residues, whereas DBP is not as specific. Guanidine hydrochloride (GuHCl) denaturations of the resulting dimeric proteins exhibited biphasic unfolding behavior that did not fit the two-state model of unfolding. The monofunctional reagent, epsilon-maleimidocaproic acid (MCA), was used as a control for the effects of alkylation. Proteins modified with MCA unfolded normally, showing that this unusual unfolding behavior is due to crosslinking. The data obtained from these crosslinked dimers was fitted to a three-state thermodynamic model of two successive transitions in which the individual subunits cooperatively unfold. These two unfolding transitions were very different from the unfolding of the monomeric protein. These differences in unfolding behavior can be attributed in large part to changes in the denatured state. In addition to GuHCl titrations, the crosslinked dimers were also thermally unfolded. In contrast to the GuHCl denaturations, analysis of this data fit a two-state model well, but with greatly elevated van't Hoff enthalpies in many cases. However, clear correlations between the thermal and GuHCl denaturations exist, and the differences in thermal unfolding can be rationalized by postulating interactions of the denatured crosslinked proteins. PMID:8580845

  17. Small-Angle X-ray Scattering and Single-Molecule FRET Spectroscopy Produce Highly Divergent Views of the Low-Denaturant Unfolded State

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Tae Yeon; Meisburger, Steve P.; Hinshaw, James

    2012-10-10

    The results of more than a dozen single-molecule Foerster resonance energy transfer (smFRET) experiments suggest that chemically unfolded polypeptides invariably collapse from an expanded random coil to more compact dimensions as the denaturant concentration is reduced. In sharp contrast, small-angle X-ray scattering (SAXS) studies suggest that, at least for single-domain proteins at non-zero denaturant concentrations, such compaction may be rare. Here, we explore this discrepancy by studying protein L, a protein previously studied by SAXS (at 5 C), which suggested fixed unfolded-state dimensions from 1.4 to 5 M guanidine hydrochloride (GuHCl), and by smFRET (at 25 C), which suggested that,more » in contrast, the chain contracts by 15-30% over this same denaturant range. Repeating the earlier SAXS study under the same conditions employed in the smFRET studies, we observe little, if any, evidence that the unfolded state of protein L contracts as the concentration of GuHCl is reduced. For example, scattering profiles (and thus the shape and dimensions) collected within {approx} 4 ms after dilution to as low as 0.67 M GuHCl are effectively indistinguishable from those observed at equilibrium at higher denaturant. Our results thus argue that the disagreement between SAXS and smFRET is statistically significant and that the experimental evidence in favor of obligate polypeptide collapse at low denaturant cannot be considered conclusive yet.« less

  18. Effect of pH on the stability of hemochromatosis factor E: a combined spectroscopic and molecular dynamics simulation-based study.

    PubMed

    Khan, Parvez; Shandilya, Ashutosh; Jayaram, B; Islam, Asimul; Ahmad, Faizan; Hassan, Md Imtaiyaz

    2017-05-01

    Hereditary hemochromatosis is an iron overburden condition, which is mainly governed by hereditary hemochromatosis factor E (HFE), a member of major histocompatibility complex class I. To understand the effect of pH on the structure and stability of HFE, we have cloned, expressed, and purified the HFE in the bacterial system and performed circular dichroism, fluorescence, and absorbance measurements at a wide pH range (pH 3.0-11.0). We found that HFE remains stable in the pH range 7.5-11.0 and gets completely acid denatured at low pH values. In this work, we also analyzed the contribution of salt bridges to the stability of HFE. We further performed molecular dynamics simulations for 80 ns at different pH values. An excellent agreement was observed between results from biophysical and MD simulation studies. At lower pH, HFE undergoes denaturation and may be driven toward a degradation pathway, such as ubiquitination. Hence, HFE is not available to bind again with transferrin receptor1 to negatively regulate iron homeostasis. Further we postulated that, might be low pH of cancerous cells helps them to meet their high iron requirement.

  19. Conformational changes in human Hsp70 induced by high hydrostatic pressure produce oligomers with ATPase activity but without chaperone activity.

    PubMed

    Araujo, Thaís L S; Borges, Julio Cesar; Ramos, Carlos H; Meyer-Fernandes, José Roberto; Oliveira Júnior, Reinaldo S; Pascutti, Pedro G; Foguel, Debora; Palhano, Fernando L

    2014-05-13

    We investigated the folding of the 70 kDa human cytosolic inducible protein (Hsp70) in vitro using high hydrostatic pressure as a denaturing agent. We followed the structural changes in Hsp70 induced by high hydrostatic pressure using tryptophan fluorescence, molecular dynamics, circular dichroism, high-performance liquid chromatography gel filtration, dynamic light scattering, ATPase activity, and chaperone activity. Although monomeric, Hsp70 is very sensitive to hydrostatic pressure; after pressure had been removed, the protein did not return to its native sate but instead formed oligomeric species that lost chaperone activity but retained ATPase activity.

  20. Thermal denaturation: is solid-state fermentation really a good technology for the production of enzymes?

    PubMed

    Muller dos Santos, Marcelo; Souza da Rosa, Alexandre; Dal'Boit, Silvia; Mitchell, David A; Krieger, Nadia

    2004-07-01

    The potential for thermal denaturation to cause enzyme losses during solid-state fermentation processes for the production of enzymes was examined, using the protease of Penicillium fellutanum as a model system. The frequency factor and activation energies for the first-order denaturation of this enzyme were determined as 3.447 x 10(59) h(-1) and 364,070 Jmol(-1), respectively. These values were incorporated into a mathematical model of enzyme deactivation, which was used to investigate the consequences of subjecting this protease to temporal temperature profiles reported in the literature for mid-height in a 34 cm high packed-bed bioreactor of 150 mm diameter. In this literature source, temperature profiles were measured for 5, 15 and 25 liters per minute of air and enzyme activities were measured as a function of time. The enzyme activity profiles predicted by the model were distributed similarly, one relative to the other, as had been found in the experimental study, with substantial amounts of denaturation being predicted when the substrate temperature exceeded 40 degrees C, which occurred at the lower two airflow rates. A mathematical model of a well-mixed bioreactor was used to explore the difficulties that would be faced at large scale. It suggests that even with airflows as high as one volume per volume per minute, up to 85% of the enzyme produced by the microorganism can be denatured by the end of the fermentation. This work highlights the extra care that must be taken in scaling up solid-state fermentation processes for the production of thermolabile products. Copyright 2003 Elsevier Ltd.

  1. 40 CFR 80.1644 - Sampling and testing requirements for producers and importers of certified ethanol denaturant.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... producers and importers of certified ethanol denaturant. 80.1644 Section 80.1644 Protection of Environment... ethanol denaturant. (a) Sample and test each batch of certified ethanol denaturant. (1) Producers and importers of certified ethanol denaturant shall collect a representative sample from each batch of certified...

  2. 40 CFR 80.1645 - Sample retention requirements for producers and importers of denaturant designated as suitable...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... producers and importers of denaturant designated as suitable for the manufacture of denatured fuel ethanol... suitable for the manufacture of denatured fuel ethanol meeting federal quality requirements. Beginning January 1, 2017, or on the first day that any producer or importer of ethanol denaturant designates a...

  3. 27 CFR 19.455 - Dissolving of denaturants.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Dissolving of denaturants... Denaturation § 19.455 Dissolving of denaturants. Denaturants which are difficult to dissolve in spirits at... may be liquefied or dissolved in a small quantity of spirits or water in advance of their use in the...

  4. Single-molecule protein unfolding and translocation by an ATP-fueled proteolytic machine

    PubMed Central

    Aubin-Tam, Marie-Eve; Olivares, Adrian O.; Sauer, Robert T.; Baker, Tania A.; Lang, Matthew J.

    2011-01-01

    All cells employ ATP-powered proteases for protein-quality control and regulation. In the ClpXP protease, ClpX is a AAA+ machine that recognizes specific protein substrates, unfolds these molecules, and then translocates the denatured polypeptide through a central pore and into ClpP for degradation. Here, we use optical-trapping nanometry to probe the mechanics of enzymatic unfolding and translocation of single molecules of a multidomain substrate. Our experiments demonstrate the capacity of ClpXP and ClpX to perform mechanical work under load, reveal very fast and highly cooperative unfolding of individual substrate domains, suggest a translocation step size of 5–8 amino acids, and support a power-stroke model of denaturation in which successful enzyme-mediated unfolding of stable domains requires coincidence between mechanical pulling by the enzyme and a transient stochastic reduction in protein stability. We anticipate that single-molecule studies of the mechanical properties of other AAA+ proteolytic machines will reveal many shared features with ClpXP. PMID:21496645

  5. Urea-Induced Unfolding of the Immunity Protein Im9 Monitored by spFRET

    PubMed Central

    Tezuka-Kawakami, Tomoko; Gell, Chris; Brockwell, David J.; Radford, Sheena E.; Smith, D. Alastair

    2006-01-01

    We have studied the urea-induced unfolding of the E colicin immunity protein Im9 using diffusion single-pair fluorescence resonance energy transfer. Detailed examination of the proximity ratio of the native and denatured molecules over a wide range of urea concentrations suggests that the conformational properties of both species are denaturant-dependent. Whereas native molecules become gradually more expanded as urea concentration increases, denatured molecules show a dramatic dependence of the relationship between proximity ratio and denaturant concentration, consistent with substantial compaction of the denatured ensemble at low denaturant concentrations. Analysis of the widths of the proximity ratio distributions for each state suggests that whereas the native state ensemble is relatively narrow and homogeneous, the denatured state may possess heterogeneity in mildly denaturing conditions. PMID:16798813

  6. Bone embrittlement and collagen modifications due to high-dose gamma-irradiation sterilization.

    PubMed

    Burton, Brianne; Gaspar, Anne; Josey, David; Tupy, Jindra; Grynpas, Marc D; Willett, Thomas L

    2014-04-01

    Bone allografts are often used in orthopedic reconstruction of skeletal defects resulting from trauma, bone cancer or revision of joint arthroplasty. γ-Irradiation sterilization is a widely-used biological safety measure; however it is known to embrittle bone. Irradiation has been shown to affect the post-yield properties, which are attributed to the collagen component of bone. In order to find a solution to the loss of toughness in irradiated bone allografts, it is important to fully understand the effects of irradiation on bone collagen. The objective of this study was to evaluate changes in the structure and integrity of bone collagen as a result of γ-irradiation, with the hypothesis that irradiation fragments collagen molecules leading to a loss of collagen network connectivity and therefore loss of toughness. Using cortical bone from bovine tibiae, sample beams irradiated at 33kGy on dry ice were compared to native bone beams (paired controls). All beams were subjected to three-point bend testing to failure followed by characterization of the decalcified bone collagen, using differential scanning calorimetry (DSC), hydrothermal isometric tension testing (HIT), high performance liquid chromatography (HPLC) and gel electrophoresis (SDS-PAGE). The carbonyl content of demineralized bone collagen was also measured chemically to assess oxidative damage. Barium sulfate staining after single edge notch bending (SEN(B)) fracture testing was also performed on bovine tibia bone beams with a machined and sharpened notch to evaluate the fracture toughness and ability of irradiated bone to form micro-damage during fracture. Irradiation resulted in a 62% loss of work-to-fracture (p≤0.001). There was significantly less micro-damage formed during fracture propagation in the irradiated bone. HPLC showed no significant effect on pentosidine, pyridinoline, or hydroxypyridinoline levels suggesting that the loss of toughness is not due to changes in these stable crosslinks. For DSC, there was a 20% decrease in thermal stability (p<0.001) with a 100% increase (p<0.001) in enthalpy of denaturation (melting). HIT testing also showed a decrease in thermal stability (20% lower denaturation temperature, p<0.001) and greatly reduced measures of collagen network connectivity (p<0.001). Interestingly, the increase in enthalpy of denaturation suggests that irradiated collagen requires more energy to denature (melt), perhaps a result of alterations in the hydrogen bonding sites (increased carbonyl content detected in the insoluble collagen) on the irradiated bone collagen. Altogether, this new data strongly indicates that a large loss of overall collagen connectivity due to collagen fragmentation resulting from γ-irradiation sterilization leads to inferior cortical bone toughness. In addition, notable changes in the thermal denaturation of the bone collagen along with chemical indicators of oxidative modification of the bone collagen indicate that the embrittlement may be a function not only of collagen fragmentation but also of changes in bonding. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. 27 CFR 20.216 - Record of shipment.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... OF THE TREASURY LIQUORS DISTRIBUTION AND USE OF DENATURED ALCOHOL AND RUM Recovery of Denatured... denatured alcohol, recovered specially denatured rum, or recovered articles to a distilled spirits plant or...

  8. The Efficacy of Denaturing Actinide Elements as a Means of Decreasing Materials Attractiveness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hase, Kevin R.; Ebbinghaus, Bartley B.; Sleaford, Brad W.

    2013-07-01

    This paper is an extension to earlier studies that examined the attractiveness of materials mixtures containing special nuclear materials (SNM) and alternate nuclear materials (ANM). This study considers the concept of denaturing as applied to the actinide elements present in spent fuel as a means to reduce materials attractiveness. Highly attractive materials generally have low values of bare critical mass, heat content, and dose.

  9. Purification of a crystallin domain of Yersinia crystallin from inclusion bodies and its comparison to native protein from the soluble fraction.

    PubMed

    Jobby, M K; Sharma, Yogendra

    2006-09-01

    It has been established that many heterologously produced proteins in E. coli accumulate as insoluble inclusion bodies. Methods for protein recovery from inclusion bodies involve solubilization using chemical denaturants such as urea and guanidine hydrochloride, followed by removal of denaturant from the solution to allow the protein to refold. In this work, we applied on-column refolding and purification to the second crystallin domain D2 of Yersinia crystallin isolated from inclusion bodies. We also purified the protein from the soluble fraction (without using any denaturant) to compare the biophysical properties and conformation, although the yield was poor. On-column refolding method allows rapid removal of denaturant and refolding at high protein concentration, which is a limitation in traditionally used methods of dialysis or dilution. We were also able to develop methods to remove the co-eluting nucleic acids during chromatography from the protein preparation. Using this protocol, we were able to rapidly refold and purify the crystallin domain using a two-step process with high yield. We used biophysical techniques to compare the conformation and calcium-binding properties of the protein isolated from the soluble fraction and inclusion bodies. Copyright 2006 John Wiley & Sons, Ltd.

  10. Single domain antibodies are specially suited for quantitative determination of gliadins under denaturing conditions.

    PubMed

    Doña, Vanina; Urrutia, Mariela; Bayardo, Mariela; Alzogaray, Vanina; Goldbaum, Fernando Alberto; Chirdo, Fernando G

    2010-01-27

    Food intended for celiac patients' consumption must be analyzed for the presence of toxic prolamins using high detectability tests. Though 60% ethanol is the most commonly used solvent for prolamins extraction, 2-mercaptoethanol (2-ME) and guanidinium chloride (GuHCl) can be added to increase protein recovery. However, ethanol and denaturing agents interfere with antigen recognition when conventional antibodies are used. In the present work, a new method for gliadins quantification is shown. The method is based on the selection of llama single domain antibody fragments able to operate under denaturing conditions. Six out of 28 VHH-phages obtained retained their binding capacity in 15% ethanol. Selected clones presented a long CDR3 region containing two additional cysteines that could be responsible for the higher stability. One of the clones (named VHH26) was fully operative in the presence of 15% ethanol, 0.5% 2-ME, and 0.5 M GuHCl. Capture ELISA using VHH26 was able to detect gliadins in samples shown as negatives by conventional ELISA. Therefore, this new strategy appears as an excellent platform for quantitative determination of proteins or any other immunogenic compound, in the presence of denaturing agents, when specific recognition units with high stability are required.

  11. Ligand Binding Analysis and Screening by Chemical Denaturation Shift

    PubMed Central

    Sch n, Arne; Brown, Richard K.; Hutchins, Burleigh M.; Freire, Ernesto

    2013-01-01

    The identification of small molecule ligands is an important first step in drug development, especially drugs that target proteins with no intrinsic activity. Towards this goal, it is important to have access to technologies that are able to measure binding affinities for a large number of potential ligands in a fast and accurate way. Since ligand binding stabilizes the protein structure in a manner dependent on concentration and binding affinity, the magnitude of the protein stabilization effect elicited by binding can be used to identify and characterize ligands. For example, the shift in protein denaturation temperature (Tm shift) has become a popular approach to identify potential ligands. However, Tm shifts cannot be readily transformed into binding affinities and the ligand rank order obtained at denaturation temperatures (60°C or higher) does not necessarily coincide with the rank order at physiological temperature. An alternative approach is the use of chemical denaturation, which can be implemented at any temperature. Chemical denaturation shifts allow accurate determination of binding affinities with a surprisingly wide dynamic range (high micromolar to sub nanomolar) and in situations in which binding changes the cooperativity of the unfolding transition. In this paper we develop the basic analytical equations and provide several experimental examples. PMID:23994566

  12. Ligand binding analysis and screening by chemical denaturation shift.

    PubMed

    Schön, Arne; Brown, Richard K; Hutchins, Burleigh M; Freire, Ernesto

    2013-12-01

    The identification of small molecule ligands is an important first step in drug development, especially drugs that target proteins with no intrinsic activity. Toward this goal, it is important to have access to technologies that are able to measure binding affinities for a large number of potential ligands in a fast and accurate way. Because ligand binding stabilizes the protein structure in a manner dependent on concentration and binding affinity, the magnitude of the protein stabilization effect elicited by binding can be used to identify and characterize ligands. For example, the shift in protein denaturation temperature (Tm shift) has become a popular approach to identify potential ligands. However, Tm shifts cannot be readily transformed into binding affinities, and the ligand rank order obtained at denaturation temperatures (≥60°C) does not necessarily coincide with the rank order at physiological temperature. An alternative approach is the use of chemical denaturation, which can be implemented at any temperature. Chemical denaturation shifts allow accurate determination of binding affinities with a surprisingly wide dynamic range (high micromolar to sub nanomolar) and in situations where binding changes the cooperativity of the unfolding transition. In this article, we develop the basic analytical equations and provide several experimental examples. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. GdnHCl-induced unfolding intermediate in the mitochondrial carbonic anhydrase VA.

    PubMed

    Idrees, Danish; Prakash, Amresh; Haque, Md Anzarul; Islam, Asimul; Hassan, Md Imtaiyaz; Ahmad, Faizan

    2016-10-01

    Carbonic anhydrase VA (CAVA) is a mitochondrial enzyme belonging to the α-family of CAs, which is involved in several physiological processes including ureagenesis, lipogenesis, gluconeogenesis and neuronal transmission. Here, we have tried to understand the folding mechanism of CAVA using guanidine hydrochloride (GdnHCl)-induced denaturation at pH 8.0 and 25°C. The conformational stability was measured from the GdnHCl-induced denaturation study of CAVA monitored by circular dichroism (CD) and fluorescence measurements. On increasing the concentration of GdnHCl up to 5.0, a stable intermediate was observed between the concentrations 3.25M to 3.40M of the denaturant. However, CAVA gets completely denatured at 4.0M GdnHCl. The existence of a stable intermediate state was validated by 1-anilinonaphthalene-8-sulfonic acid (ANS binding) fluorescence and near-UV CD measurements. In silico studies were also performed to analyse the effect of GdnHCl on the structure and stability of CAVA under explicit conditions. Molecular dynamics simulations for 40ns were carried out and a well-defined correlation was established for both in vitro and in silico studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Evaluation of gasoline-denatured ethanol as a carbon source for denitrification.

    PubMed

    Kazasi, Anna; Boardman, Gregory D; Bott, Charles B

    2013-06-01

    In this study concerning denitrification, the performance of three carbon sources, methanol (MeOH), ethanol (EtOH) and gasoline-denatured ethanol (dEtOH), was compared and evaluated on the basis of treatment efficiency, inhibition potential and cost. The gasoline denaturant considered here contained mostly aliphatic compounds and little of the components that typically boost the octane rating, such as benzene, toluene, ethylbenzene and xylenes. Results were obtained using three lab-scale SBRs operated at SRT of 12.0 +/- 0.9 days. After biomass was acclimated, denitrification rates with dEtOH were similar to those of EtOH (201 +/- 50 and 197 +/- 28 NO3-N/g MLVSS x d, respectively), and higher than those of MeOH (165 +/- 49 mg NO3-N/g MLVSS x d). The denaturant did not affect biomass production, nitrification or denitrification. Effluent soluble COD concentrations were always less than the analytical detection limit. Although the cost of dEtOH ($2.00/kg nitrate removed) was somewhat higher than that of methanol ($1.63/kg nitrate removed), the use of dEtOH is very promising and utilities will have to decide if it is worth paying a little extra to take advantage of its benefits.

  15. Validation of dye-binding/high-resolution thermal denaturation for the identification of mutations in the SLC22A5 gene.

    PubMed

    Dobrowolski, Steven F; McKinney, Jason T; Amat di San Filippo, Cristina; Giak Sim, Keow; Wilcken, Bridget; Longo, Nicola

    2005-03-01

    Primary carnitine deficiency is an autosomal recessive disorder of fatty acid oxidation resulting from defective carnitine transport. This disease is caused by mutations in the OCTN2 carnitine transporter encoded by the SLC22A5 gene. Here we validate dye-binding/high-resolution thermal denaturation as a screening procedure to identify novel mutations in this gene. This procedure is based on the amplification of DNA by PCR in capillaries with the dsDNA binding dye LCGreen I. The PCR reaction is then analyzed in the same capillary by high-resolution thermal denaturation. Samples with abnormal melting profiles are sequenced. This technique correctly identified all known patients who were compound heterozygotes for different mutations in the carnitine transporter gene and about 30% of homozygous patients. The remaining 70% of homozygous patients were identified by a second amplification, in which the patient's DNA was mixed with the DNA of a normal control. This screening system correctly identified eight novel mutations and both abnormal alleles in six new families with primary carnitine deficiency. The causative role of the missense mutations identified (c.3G>T/p.M1I, c.695C>T/p.T232M, and c.1403 C>G/p.T468R) was confirmed by expression in Chinese hamster ovary (CHO) cells. These results expand the mutational spectrum in primary carnitine deficiency and indicate dye-binding/high-resolution thermal denaturation as an ideal system to screen for mutations in diseases with no prevalent molecular alteration. (c) 2005 Wiley-Liss, Inc.

  16. [Utility of denaturing high performance liquid chromatography (DHPLC) for the diagnosis of mevalonate kinase deficiency in periodic disease].

    PubMed

    Gava, A; Furlan, A; Navaglia, F; Miorin, M; Razetti, M; Basso, D; Plebani, M; Punzi, L

    2009-01-01

    We developed a genetic investigation using denaturing high performance liquid chromatography (DHPLC), in order to identify polymorphisms of the gene MVK in patients with autoinflammatory syndrome suspicion. We evaluated 19 patients affected by recurrent fevers and other clinical manifestations usually found in autoinflammatory syndromes and not correlated with infections or autoimmune disease and 10 healthy controls. IgD level was measured in all patients. Molecular testing was performed in DNA extracted from PBMC and MVK gene was analysed either with DHPLC or with automatic sequencer. Primers for PCR amplifications, amplicon lengths and PCR conditions were designed in our laboratory. IgD level was normal in 14 patients. Healthy controls did not show any alteration of the DHPLC-profiles and of the DNA sequences. Twelve patients had at least one altered DHPLC-profile and these data have been confirmed by sequencing. In particular we detected the polymorphisms c.78+61A>G, S52N, S135S, D170D, c.632-18A>G, c.885+24G>A already described in the database INFEVERS. With DHPLC we got the results in shorter time (10 hours/patient) and with lower cost (40 euro/patient) in comparison to direct sequencing (25 hours and 150 euro/patient). High IgD levels do not represent an essential marker for diagnosis of MKD, as already reported in literature. DHPLC is a rapid low cost technique in order to screen mutations in patients with MKD suspicion. Twelve patients carried at the same time D170D and c.632-18A>G: such event suggests that these SNPs could be in linkage disequilibrium and that such polymorphisms could predispose to MKD.

  17. Oxidatively denatured proteins are degraded by an ATP-independent proteolytic pathway in Escherichia coli.

    PubMed

    Davies, K J; Lin, S W

    1988-01-01

    E. coli contains a soluble proteolytic pathway which can recognize and degrade oxidatively denatured proteins and protein fragments, and which may act as a "secondary antioxidant defense." We now provide evidence that this proteolytic pathway is distinct from the previously described ATP-dependent, and protease "La"-dependent, pathway which may degrade other abnormal proteins. Cells (K12) which were depleted of ATP, by arsenate treatment or anaerobic incubation (after growth on succinate), exhibited proteolytic responses to oxidative stress which were indistinguishable from those observed in cells with normal ATP levels. Furthermore, the proteolytic responses to oxidative damage by menadione or H2O2 were almost identical in the isogenic strains RM312 (a K12 derivative) and RM1385 (a lon deletion mutant of RM312). Since the lon (or capR) gene codes for the ATP-dependent protease "La," these results indicate that neither ATP nor protease "La" are required for the degradation of oxidatively denatured proteins. We next prepared cell-free extracts of K12, RM312, and RM1385 and tested the activity of their soluble proteases against proteins (albumin, hemoglobin, superoxide dismutase, catalase) which had been oxidatively denatured (in vitro) by exposure to .OH, .OH + O2- (+O2), H2O2, or ascorbate plus iron. The breakdown of oxidatively denatured proteins was several-fold higher than that of untreated proteins in extracts from all three strains, and ATP did not stimulate degradation. Incubation of extracts at 45 degrees C, which inactivates protease "La," actually stimulated the degradation of oxidatively denatured proteins. Although Ca2+ had little effect on proteolysis, serine reagents, transition metal chelators, and hemin effectively inhibited the degradation of oxidatively denatured proteins in both intact cells and cell-free extracts. Degradation of oxidatively denatured proteins in cell-free extracts was maximal at pH 7.8, and was unaffected by dialysis of the extracts against membranes with molecular weight cutoffs as high as 50,000. Our results indicate the presence of a neutral, ATP- and calcium- independent proteolytic pathway in the E. coli cytosol, which contains serine- and metallo- proteases (with molecular weights greater than 50,000), and which preferentially degrades oxidatively denatured proteins.

  18. Direct characterization of hydrophobic hydration during cold and pressure denaturation.

    PubMed

    Das, Payel; Matysiak, Silvina

    2012-05-10

    Cold and pressure denaturation are believed to have their molecular origin in hydrophobic interactions between nonpolar groups and water. However, the direct characterization of the temperature- and pressure-dependent variations of those interactions with atomistic simulations remains challenging. We investigated the role of solvent in the cold and pressure denaturation of a model hydrophobic 32-mer polymer by performing extensive coarse-grained molecular dynamics simulations including explicit solvation. Our simulations showed that the water-excluded folded state of this polymer is marginally stable and can be unfolded by heating or cooling, as well as by applying pressure, similar to globular proteins. We further detected essential population of a hairpin-like configuration prior to the collapse, which is consistently accompanied by a vapor bubble at the elbow of the kink. Increasing pressure suppresses formation of this vapor bubble by reducing water fluctuations in the hydration shell of the polymer, thus promoting unfolding. Further analysis revealed a slight reduction of water tetrahedrality in the polymer hydration shell compared to the bulk. Cold denaturation is driven by an enhanced tetrahedral ordering of hydration shell water than bulk water. At elevated pressures, the strikingly reduced fluctuations combined with the increase in interstitial water molecules in the polymer hydration shell contribute to weakening of hydrophobic interactions, thereby promoting pressure unfolding. These findings provide critical molecular insights into the changes in hydrophobic hydration during cold and pressure unfolding of a hydrophobic polymer, which is strongly related to the cold and pressure denaturation of globular proteins.

  19. Aqueous ionic liquids and their influence on peptide conformations: denaturation and dehydration mechanisms.

    PubMed

    Diddens, Diddo; Lesch, Volker; Heuer, Andreas; Smiatek, Jens

    2017-08-09

    Low concentrated aqueous ionic liquids (ILs) and their influence on protein structures have attracted a lot of interest over the last few years. This can be mostly attributed to the fact that aqueous ILs, depending on the ion species involved, can be used as protein protectants or protein denaturants. Atomistic molecular dynamics (MD) simulations are performed in order to study the influence of different aprotic ILs on the properties of a short hairpin peptide. Our results reveal distinct binding and denaturation effects for 1-ethyl-3-methylimidazolium (EMIM) in combination with different anions, namely, chloride (CL), tetrafluoroborate (BF4) and acetate (ACE). The simulation outcomes demonstrate that the studied ILs with larger anions reveal a more pronounced accumulation behavior of the individual ion species around the peptide, which is accomplished by a stronger dehydration effect. We can relate these findings to the implications of the Kirkwood-Buff theory, which provides a thermodynamic explanation for the denaturation strength in terms of the IL accumulation behavior. The results for the spatial distribution functions, the binding energies and the local/bulk partition coefficients are in good agreement with metadynamics simulations in order to determine the energetically most stable peptide conformations. The free energy landscapes indicate a decrease of the denaturation strength in the order EMIM/ACE, EMIM/BF4 and EMIM/CL, which coincides with a decreasing size of the anion species. An analysis of the potential binding energies reveals that this effect is mainly of enthalpic nature.

  20. Mechanistic insights into the urea-induced denaturation of kinase domain of human integrin linked kinase.

    PubMed

    Syed, Sunayana Begum; Khan, Faez Iqbal; Khan, Sabab Hasan; Srivastava, Saurabha; Hasan, Gulam Mustafa; Lobb, Kevin A; Islam, Asimul; Ahmad, Faizan; Hassan, Md Imtaiyaz

    2018-05-01

    Integrin-linked kinase (ILK), a ubiquitously expressed intracellular Ser/Thr protein kinase, plays a major role in the oncogenesis and tumour progression. The conformational stability and unfolding of kinase domain of ILK (ILK 193-446 ) was examined in the presence of increasing concentrations of urea. The stability parameters of the urea-induced denaturation were measured by monitoring changes in [θ] 222 (mean residue ellipticity at 222nm), difference absorption coefficient at 292nm (Δε 292 ) and intrinsic fluorescence emission intensity at pH7.5 and 25±0.1°C. The urea-induced denaturation was found to be reversible. The protein unfolding transition occurred in the urea concentration range 3.0-7.0M. A coincidence of normalized denaturation curves of optical properties ([θ] 222 , Δε 292 and λ max , the wavelength of maximum emission intensity) suggested that urea-induced denaturation of kinase domain of ILK is a two-state process. We further performed molecular dynamics simulation for 100ns to see the effect of urea on structural stability of kinase domain of ILK at atomic level. Structural changes with increasing concentrations of urea were analysed, and we observed a significant increase in the root mean square deviation, root mean square fluctuations, solvent accessible surface area and radius of gyration. A correlation was observed between in vitro and in silico studies. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. 27 CFR 19.385 - Making alcohol or water solutions of denaturants.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... alcohol or water solutions of denaturants. If a proprietor uses a denaturant that is difficult to dissolve... working temperature, the proprietor may liquefy or dissolve the denaturant in a small amount of spirits or...

  2. 27 CFR 19.385 - Making alcohol or water solutions of denaturants.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... alcohol or water solutions of denaturants. If a proprietor uses a denaturant that is difficult to dissolve... working temperature, the proprietor may liquefy or dissolve the denaturant in a small amount of spirits or...

  3. Role of Solvation Effects in Protein Denaturation: From Thermodynamics to Single Molecules and Back

    PubMed Central

    England, Jeremy L.; Haran, Gilad

    2011-01-01

    Protein stability often is studied in vitro through the use of urea and guanidinium chloride, chemical cosolvents that disrupt protein native structure. Much controversy still surrounds the underlying mechanism by which these molecules denature proteins. Here we review current thinking on various aspects of chemical denaturation. We begin by discussing classic models of protein folding and how the effects of denaturants may fit into this picture through their modulation of the collapse, or coil-globule transition, which typically precedes folding. Subsequently, we examine recent molecular dynamics simulations that have shed new light on the possible microscopic origins of the solvation effects brought on by denaturants. It seems likely that both denaturants operate by facilitating solvation of hydrophobic regions of proteins. Finally, we present recent single-molecule fluorescence studies of denatured proteins, the analysis of which corroborates the role of denaturants in shifting the equilibrium of the coil-globule transition. PMID:21219136

  4. High Throughput Screen to Identify Novel Drugs that Inhibit Prostate Cancer Metastasis

    DTIC Science & Technology

    2007-10-01

    determined by electrophoresis on 8% denaturing polyacryl - amide gel containing 7 M urea. A 10-bp 32P-labeled ladder and sequencing reaction performed with...isolated from nuclear lysates from P69 and C4-2 cells. The bands shown as rectangles were excised after staining of the proteins in the gel and then...the same primer on a genomic clone was used as a reference. The gel was dried, and the radioactive signals were identified by phos- phorimaging (Storm

  5. Detection and Identification of Ciprofloxacin-Resistant Yersinia pestis Denaturing High-Performance Liquid Chromatography

    DTIC Science & Technology

    2003-07-01

    analysis in hereditary breast and ovarian cancers . Hum. Mutat. 14:333– 339. 2. Bauer, A. W., W. M. Kirby, J. C. Sherris, and M. Turck. 1966. Antibiotic...Listeria monocytogenes lineage group classification by MAMA -PCR of the listeriolysin gene. Curr. Microbiol. 43:129–133. 17. Klein, B., G. Weirich...Germline and somatic mutation anal- yses in the DNA mismatch repair gene MLH3: evidence for somatic muta- tion in colorectal cancers . Hum. Mutat. 17:389–396

  6. Analysis of Ethnic Admixture in Prostate Cancer

    DTIC Science & Technology

    2006-12-01

    low penetrant genes have been identified as potential PCA suscept- ibility genes. These candidate genes include SRD5A2 (MIM 607306), CYP3A4 (MIM 124010...progression [13]. The CDH1gene is located at 16q22.1 and consists of 16 exons spanning approximately 100 kb of genomic DNA. Several polymorphisms, germline and...upstreamof theATGstart site and all 16 exons of CDH1 were screened for DNA sequence variation by denaturing high-performance liquid chro- matography

  7. Sensitizing and Eliciting Capacity of Egg White Proteins in BALB/c Mice As Affected by Processing.

    PubMed

    Pablos-Tanarro, Alba; Lozano-Ojalvo, Daniel; Martínez-Blanco, Mónica; López-Fandiño, Rosina; Molina, Elena

    2017-06-07

    This study assesses to what extent technological processes that lead to different degrees of denaturation of egg white proteins affect their allergenicity. We focused on heat (80 °C, 10 min) and high-pressure (400 MPa and 37 °C, 10 min) treatments and used a BALB/c mouse model of food allergy. Oral sensitization to egg white using cholera toxin as adjuvant induced the production of IgE and IgG1 isotypes and led to severe clinical signs following challenge with the allergen. Extensive protein denaturation caused by heat treatment increased its ability to induce Th1 responses and reduced both its sensitizing and eliciting capacity. Heated egg white stimulated the production of IgE over IgG1 antibodies directed, at least in part, toward new epitopes exposed as a result of heat treatment. Conversely, partial denaturation caused by high-pressure treatment increased the ability of egg white to stimulate Th2 responses and its allergenic potential.

  8. Urea denatured state ensembles contain extensive secondary structure that is increased in hydrophobic proteins.

    PubMed

    Nick Pace, C; Huyghues-Despointes, Beatrice M P; Fu, Hailong; Takano, Kazufumi; Scholtz, J Martin; Grimsley, Gerald R

    2010-05-01

    The goal of this article is to gain a better understanding of the denatured state ensemble (DSE) of proteins through an experimental and computational study of their denaturation by urea. Proteins unfold to different extents in urea and the most hydrophobic proteins have the most compact DSE and contain almost as much secondary structure as folded proteins. Proteins that unfold to the greatest extent near pH 7 still contain substantial amounts of secondary structure. At low pH, the DSE expands due to charge-charge interactions and when the net charge per residue is high, most of the secondary structure is disrupted. The proteins in the DSE appear to contain substantial amounts of polyproline II conformation at high urea concentrations. In all cases considered, including staph nuclease, the extent of unfolding by urea can be accounted for using the data and approach developed in the laboratory of Wayne Bolen (Auton et al., Proc Natl Acad Sci 2007; 104:15317-15323).

  9. Molecular chaperone properties of the high molecular weight aggregate from aged lens

    NASA Technical Reports Server (NTRS)

    Takemoto, L.; Boyle, D.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    The high molecular weight aggregate (HMWA) fraction was isolated from the water soluble proteins of aged bovine lenses. Its composition and ability to inhibit heat-induced denaturation and aggregation were compared with the lower molecular weight, oligomeric fraction of alpha isolated from the same lens. Although the major components of both fractions were the alpha-A and alpha-B chains, the HMWA fraction possessed a decreased ability to protect other proteins against heat-induced denaturation and aggregation. Immunoelectron microscopy of both fractions demonstrated that alpha particles from the HMWA fraction contained increased amounts of beta and gamma crystallins, bound to a central region of the supramolecular complex. Together, these results demonstrate that alpha crystallins found in the HMWA fraction possess a decreased ability to protect against heat-induced denaturation and aggregation, and suggest that at least part of this decrease could be due to the increased presence of beta and gamma crystallins complexed to the putative chaperone receptor site of the alpha particles.

  10. THE KINETICS AND THERMODYNAMICS OF REVERSIBLE DENATURATION OF CRYSTALLINE SOYBEAN TRYPSIN INHIBITOR

    PubMed Central

    Kunitz, M.

    1948-01-01

    Crystalline soybean trypsin inhibitor protein undergoes denaturation on heating which is reversed on cooling. In the range of temperature of 35 to 50°C. a solution of the protein consists of a mixture of native and denatured forms in equilibrium with each other. The equilibrium is only slowly established and its final value at any temperature is the same whether a heated, denatured solution of the protein is cooled to the given temperature or whether a fresh solution is raised to that temperature. The kinetics of reversible denaturation of the soybean protein as well as the reversal of denaturation is that of a reversible unimolecular reaction, each process consisting at a given temperature of the same two simultaneous reactions acting in opposite directions. The experimental data on the effect of temperature on the velocity and the equilibrium constants of the opposing reaction were utilized in evaluating the reaction energies and activation energies. The reaction energies for denaturation were found to be as follows:— Change in total heat of reaction ΔH = 57,000 calories per mole Change in entropy of reaction ΔS = 180 calories per degree per mole The heat of activation ΔH 1 ‡ for denaturation = 55,000 The heat of activation ΔH 2 ‡ for the reversal of denaturation = –1900 The entropy ΔS 1 ‡ for denaturation = 95 The entropy ΔS 2 ‡ for reversal of denaturation = –84 PMID:18891149

  11. Culture-Independent Analysis of Probiotic Products by Denaturing Gradient Gel Electrophoresis

    PubMed Central

    Temmerman, R.; Scheirlinck, I.; Huys, G.; Swings, J.

    2003-01-01

    In order to obtain functional and safe probiotic products for human consumption, fast and reliable quality control of these products is crucial. Currently, analysis of most probiotics is still based on culture-dependent methods involving the use of specific isolation media and identification of a limited number of isolates, which makes this approach relatively insensitive, laborious, and time-consuming. In this study, a collection of 10 probiotic products, including four dairy products, one fruit drink, and five freeze-dried products, were subjected to microbial analysis by using a culture-independent approach, and the results were compared with the results of a conventional culture-dependent analysis. The culture-independent approach involved extraction of total bacterial DNA directly from the product, PCR amplification of the V3 region of the 16S ribosomal DNA, and separation of the amplicons on a denaturing gradient gel. Digital capturing and processing of denaturing gradient gel electrophoresis (DGGE) band patterns allowed direct identification of the amplicons at the species level. This whole culture-independent approach can be performed in less than 30 h. Compared with culture-dependent analysis, the DGGE approach was found to have a much higher sensitivity for detection of microbial strains in probiotic products in a fast, reliable, and reproducible manner. Unfortunately, as reported in previous studies in which the culture-dependent approach was used, a rather high percentage of probiotic products suffered from incorrect labeling and yielded low bacterial counts, which may decrease their probiotic potential. PMID:12513998

  12. Intensified process for the purification of an enzyme from inclusion bodies using integrated expanded bed adsorption and refolding.

    PubMed

    Hutchinson, Matthew H; Chase, Howard A

    2006-01-01

    This work describes the integration of expanded bed adsorption (EBA) and adsorptive protein refolding operations in an intensified process used to recover purified and biologically active proteins from inclusion bodies expressed in E. coli. Delta(5)-3-Ketosteroid isomerase with a C-terminal hexahistidine tag was expressed as inclusion bodies in the cytoplasm of E. coli. Chemical extraction was used to disrupt the host cells and simultaneously solubilize the inclusion bodies, after which EBA utilizing immobilized metal affinity interactions was used to purify the polyhistidine-tagged protein. Adsorptive refolding was then initiated in the column by changing the denaturant concentration in the feed stream from 8 to 0 M urea. Three strategies were tested for performing the refolding step in the EBA column: (i) the denaturant was removed using a step change in feed-buffer composition, (ii) the denaturant was gradually removed using a gradient change in feed-buffer composition, and (iii) the liquid flow direction through the column was reversed and adsorptive refolding performed in the packed bed. Buoyancy-induced mixing disrupted the operation of the expanded bed when adsorptive refolding was performed using either a step change or a rapid gradient change in feed-buffer composition. A shallow gradient reduction in denaturant concentration of the feed stream over 30 min maintained the stability of the expanded bed during adsorptive refolding. In a separate experiment, buoyancy-induced mixing was completely avoided by performing refolding in a settled bed, which achieved comparable yields to refolding in an expanded bed but required a slightly more complex process. A total of 10% of the available KSI-(His(6)) was recovered as biologically active and purified protein using the described purification and refolding process, and the yield was further increased to 19% by performing a second iteration of the on-column refolding operation. This process should be applicable for other polyhistidine tagged proteins and is likely to have the greatest benefit for proteins that tend to aggregate when refolded by dilution.

  13. Cooperative Unfolding of Residual Structure in Heat Denatured Proteins by Urea and Guanidinium Chloride.

    PubMed

    Singh, Ritu; Hassan, Md Imtaiyaz; Islam, Asimul; Ahmad, Faizan

    2015-01-01

    The denatured states of proteins have always attracted our attention due to the fact that the denatured state is the only experimentally achievable state of a protein, which can be taken as initial reference state for considering the in vitro folding and defining the native protein stability. It is known that heat and guanidinium chloride (GdmCl) give structurally different states of RNase-A, lysozyme, α-chymotrypsinogen A and α-lactalbumin. On the contrary, differential scanning calorimetric (DSC) and isothermal titration calorimetric measurements, reported in the literature, led to the conclusion that heat denatured and GdmCl denatured states are thermodynamically and structurally identical. In order to resolve this controversy, we have measured changes in the far-UV CD (circular dichroism) of these heat-denatured proteins on the addition of different concentrations of GdmCl. The observed sigmoidal curve of each protein was analyzed for Gibbs free energy change in the absence of the denaturant (ΔG0X→D) associated with the process heat denatured (X) state ↔ GdmCl denatured (D) state. To confirm that this thermodynamic property represents the property of the protein alone and is not a manifestation of salvation effect, we measured urea-induced denaturation curves of these heat denatured proteins under the same experimental condition in which GdmCl-induced denaturation was carried out. In this paper we report that (a) heat denatured proteins contain secondary structure, and GdmCl (or urea) induces a cooperative transition between X and D states, (b) for each protein at a given pH and temperature, thermodynamic cycle connects quantities, ΔG0N→X (native (N) state ↔ X state), ΔG0X→D and ΔG0N→D (N state ↔ D state), and (c) there is not a good enthalpy difference between X and D states, which is the reason for the absence of endothermic peak in DSC scan for the transition, X state ↔ D state.

  14. Cooperative Unfolding of Residual Structure in Heat Denatured Proteins by Urea and Guanidinium Chloride

    PubMed Central

    Singh, Ritu; Hassan, Md. Imtaiyaz; Islam, Asimul; Ahmad, Faizan

    2015-01-01

    The denatured states of proteins have always attracted our attention due to the fact that the denatured state is the only experimentally achievable state of a protein, which can be taken as initial reference state for considering the in vitro folding and defining the native protein stability. It is known that heat and guanidinium chloride (GdmCl) give structurally different states of RNase-A, lysozyme, α-chymotrypsinogen A and α-lactalbumin. On the contrary, differential scanning calorimetric (DSC) and isothermal titration calorimetric measurements, reported in the literature, led to the conclusion that heat denatured and GdmCl denatured states are thermodynamically and structurally identical. In order to resolve this controversy, we have measured changes in the far-UV CD (circular dichroism) of these heat-denatured proteins on the addition of different concentrations of GdmCl. The observed sigmoidal curve of each protein was analyzed for Gibbs free energy change in the absence of the denaturant (ΔG 0 X→D) associated with the process heat denatured (X) state ↔ GdmCl denatured (D) state. To confirm that this thermodynamic property represents the property of the protein alone and is not a manifestation of salvation effect, we measured urea-induced denaturation curves of these heat denatured proteins under the same experimental condition in which GdmCl-induced denaturation was carried out. In this paper we report that (a) heat denatured proteins contain secondary structure, and GdmCl (or urea) induces a cooperative transition between X and D states, (b) for each protein at a given pH and temperature, thermodynamic cycle connects quantities, ΔG 0 N→X (native (N) state ↔ X state), ΔG 0 X→D and ΔG 0 N→D (N state ↔ D state), and (c) there is not a good enthalpy difference between X and D states, which is the reason for the absence of endothermic peak in DSC scan for the transition, X state ↔ D state. PMID:26046628

  15. Counteraction of the deleterious effects of urea on structure and stability of mammalian kidney proteins by osmolytes.

    PubMed

    Dar, Mohammad Aasif; Wahiduzzaman; Islam, Asimul; Hassan, Md Imtaiyaz; Ahmad, Faizan

    2018-02-01

    Owing to the urine concentrating mechanism of kidney cells, urea concentration is very high (3.0-5.0M) in mammalian kidneys which may denature many kidney proteins. Methylamines are known to counteract the deleterious effects of urea on structure, stability and function of proteins at 2:1 molar ratio of urea to methylamines. It is known that mammalian kidney cells also contain stabilizing osmolytes, non-methylamines (myo-inositol and sorbitol). A question arises: Do these non-methylmine osmolytes have ability to counteract the deleterious effects of urea on kidney proteins? To answer this question, we took two kidney proteins, namely, sheep serum albumin and Human carbonic anhydrase II. We measured their thermodynamic stability (ΔG 0 N↔D , the Gibbs free energy change in absence of GdmCl (guanidinium chloride) associated with the equilibrium, native (N) state↔denatured (D) state) from the GdmCl-induced denaturation curves in the presence of different concentrations of urea and each kidney osmolyte individually and in combination. For both proteins, we observed that (i) glycine betaine and myo-inositol provide perfect counteraction at 2:1 molar ratio of urea to osmolyte, i.e., denaturing effect of 2M urea is 100% neutralized by 1M of glycine betaine (or myo-inositol), and (ii) sorbitol fails to refold urea denatured proteins. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Protein denaturation improves enzymatic digestion efficiency for direct tissue analysis using mass spectrometry

    NASA Astrophysics Data System (ADS)

    Setou, M.; Hayasaka, T.; Shimma, S.; Sugiura, Y.; Matsumoto, M.

    2008-12-01

    Molecular identification using high-sensitivity tandem mass spectrometry is essential for protein analysis on the tissue surface. Here we report an improved digestion protocol for protein identification directly on the tissue surface using mass spectrometry. By denaturation process and the use of detergent-supplemented trypsin solution, we could successfully detect and identify many molecules such as tubulin, neurofilament, and synaptosomal-associated 25 kDa protein directly from a mouse cerebellum section.

  17. Exploring the molecular mechanism of trimethylamine-N-oxide's ability to counteract the protein denaturing effects of urea.

    PubMed

    Sarma, Rahul; Paul, Sandip

    2013-05-09

    Protein denaturation in highly concentrated urea solution is a well-known phenomenon. The counteracting effect of a naturally occurring osmolyte, trimethylamine-N-oxide (TMAO), against urea-conferred protein denaturation is also well-established. However, what is largely unknown is the mechanism by which TMAO counteracts this denaturation. To provide a molecular level understanding of how TMAO protects proteins in highly concentrated urea solution, we report here the structural, energetic, and dynamical properties of N-methylacetamide (NMA) solutions that also contain urea and/or TMAO. The solute NMA is of interest mainly because it contains the peptide linkage in addition to hydrophobic sites and represents the typical solvent-exposed state of proteins. Molecular dynamics computer simulation technique is employed in this study. Analysis of solvation characteristics reveals dehydration of NMA and reduction in hydrogen bond number between NMA oxygen and water upon addition of TMAO. The effect of TMAO on NMA-urea interaction is found to be insignificant. Because TMAO cannot donate its hydrogen to NMA oxygen, the total number of hydrogen bonds formed by NMA oxygen with solution species decreases in the presence of TMAO. In solution, TMAO is found to interact strongly with water and urea. Solvation of TMAO makes the water hydrogen bonding network relatively stronger and reduces relaxation of urea-water hydrogen bonds. Implications of these results for counteracting mechanism of TMAO are discussed.

  18. Thermal denaturing of mutant lysozyme with both the OPLSAA and the CHARMM force fields.

    PubMed

    Eleftheriou, Maria; Germain, Robert S; Royyuru, Ajay K; Zhou, Ruhong

    2006-10-18

    Biomolecular simulations enabled by massively parallel supercomputers such as BlueGene/L promise to bridge the gap between the currently accessible simulation time scale and the experimental time scale for many important protein folding processes. In this study, molecular dynamics simulations were carried out for both the wild-type and the mutant hen lysozyme (TRP62GLY) to study the single mutation effect on lysozyme stability and misfolding. Our thermal denaturing simulations at 400-500 K with both the OPLSAA and the CHARMM force fields show that the mutant structure is indeed much less stable than the wild-type, which is consistent with the recent urea denaturing experiment (Dobson et al. Science 2002, 295, 1719-1722; Nature 2003, 424, 783-788). Detailed results also reveal that the single mutation TRP62GLY first induces the loss of native contacts in the beta-domain region of the lysozyme protein at high temperatures, and then the unfolding process spreads into the alpha-domain region through Helix C. Even though the OPLSAA force field in general shows a more stable protein structure than does the CHARMM force field at high temperatures, the two force fields examined here display qualitatively similar results for the misfolding process, indicating that the thermal denaturing of the single mutation is robust and reproducible with various modern force fields.

  19. Probing the Action of Chemical Denaturant on an Intrinsically Disordered Protein by Simulation and Experiment.

    PubMed

    Zheng, Wenwei; Borgia, Alessandro; Buholzer, Karin; Grishaev, Alexander; Schuler, Benjamin; Best, Robert B

    2016-09-14

    Chemical denaturants are the most commonly used agents for unfolding proteins and are thought to act by better solvating the unfolded state. Improved solvation is expected to lead to an expansion of unfolded chains with increasing denaturant concentration, providing a sensitive probe of the denaturant action. However, experiments have so far yielded qualitatively different results concerning the effects of chemical denaturation. Studies using Förster resonance energy transfer (FRET) and other methods found an increase in radius of gyration with denaturant concentration, but most small-angle X-ray scattering (SAXS) studies found no change. This discrepancy therefore challenges our understanding of denaturation mechanism and more generally the accuracy of these experiments as applied to unfolded or disordered proteins. Here, we use all-atom molecular simulations to investigate the effect of urea and guanidinium chloride on the structure of the intrinsically disordered protein ACTR, which can be studied by experiment over a wide range of denaturant concentration. Using unbiased molecular simulations with a carefully calibrated denaturant model, we find that the protein chain indeed swells with increasing denaturant concentration. This is due to the favorable association of urea or guanidinium chloride with the backbone of all residues and with the side-chains of almost all residues, with denaturant-water transfer free energies inferred from this association in reasonable accord with experimental estimates. Interactions of the denaturants with the backbone are dominated by hydrogen bonding, while interactions with side-chains include other contributions. By computing FRET efficiencies and SAXS intensities at each denaturant concentration, we show that the simulation trajectories are in accord with both experiments on this protein, demonstrating that there is no fundamental inconsistency between the two types of experiment. Agreement with experiment also supports the picture of chemical denaturation described in our simulations, driven by weak association of denaturant with the protein. Our simulations support some assumptions needed for each experiment to accurately reflect changes in protein size, namely, that the commonly used FRET chromophores do not qualitatively alter the results and that possible effects such as preferential solvent partitioning into the interior of the chain do not interfere with the determination of radius of gyration from the SAXS experiments.

  20. 40 CFR 80.1600 - Additional definitions for subpart O.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... California. Certified ethanol denaturant means ethanol denaturant that meets the requirements of § 80.1611. Certified Sulfur-FRGAS has the meaning given in § 80.1666(a)(5). Denatured fuel ethanol (DFE) means an.... Ethanol denaturant means previously certified gasoline (including previously certified blendstocks for...

  1. Use of anionic denaturing detergents to purify insoluble proteins after overexpression

    PubMed Central

    2012-01-01

    Background Many proteins form insoluble protein aggregates, called “inclusion bodies”, when overexpressed in E. coli. This is the biggest obstacle in biotechnology. Ever since the reversible denaturation of proteins by chaotropic agents such as urea or guanidinium hydrochloride had been shown, these compounds were predominantly used to dissolve inclusion bodies. Other denaturants exist but have received much less attention in protein purification. While the anionic, denaturing detergent sodiumdodecylsulphate (SDS) is used extensively in analytical SDS-PAGE, it has rarely been used in preparative purification. Results Here we present a simple and versatile method to purify insoluble, hexahistidine-tagged proteins under denaturing conditions. It is based on dissolution of overexpressing bacterial cells in a buffer containing sodiumdodecylsulfate (SDS) and whole-lysate denaturation of proteins. The excess of detergent is removed by cooling and centrifugation prior to affinity purification. Host- and overexpressed proteins do not co-precipitate with SDS and the residual concentration of detergent is compatible with affinity purification on Ni/NTA resin. We show that SDS can be replaced with another ionic detergent, Sarkosyl, during purification. Key advantages over denaturing purification in urea or guanidinium are speed, ease of use, low cost of denaturant and the compatibility of buffers with automated FPLC. Conclusion Ionic, denaturing detergents are useful in breaking the solubility barrier, a major obstacle in biotechnology. The method we present yields detergent-denatured protein. Methods to refold proteins from a detergent denatured state are known and therefore we propose that the procedure presented herein will be of general application in biotechnology. PMID:23231964

  2. Sperm chromatin stability in frozen-thawed semen is maintained over age in AI bulls.

    PubMed

    Hallap, Triin; Nagy, Szabolcs; Håård, Margareta; Jaakma, Ulle; Johannisson, Anders; Rodriguez-Martinez, Heriberto

    2005-04-01

    The aim of the present study was to investigate the effect of age of the sire on the in vitro quality of frozen-thawed (FT) bull spermatozoa, both when tested immediately postthaw (PT) and when assessed after cleansing and selection through a swim-up (SU) procedure. Semen samples from six Swedish Red and White Breed (SRB) artificial insemination (AI) bulls at age 1 and again, at 4 years were collected and frozen in 0.25 ml plastic straws. Also, semen was collected from six Estonian Holstein (EHF) bulls at the ages of 3, 5, and 7 years and likewise processed. The FT semen was tested for the susceptibility of sperm nuclear deoxyribonucleic acid (DNA) to undergo acid-induced denaturation in situ, as quantified by flow cytometry (FCM). The DNA denaturability was expressed as function alpha t, i.e., as the ratio of red (denaturated DNA) to red + green (total cellular DNA) fluorescence intensity. The results were expressed as the percentage of cells with high alpha t values, i.e., cells outside the main population (% COMP alpha t). Morphological evaluation of the same samples was performed to detect general and sperm head abnormalities and differences between ages. Fertility results were available as non-return rates (NRRs) for the semen of the sires when they were 1 year (SRB) and 3 years (EHF) old, varying from 62.2 to 70.7% in SRB and from 52.2 to 76.0% in EHF animals. The COMP alpha t values ranged from 0.5-3.6% (PT) to 0.2-1.7% (SU) for SRB bulls and from 0.4-1.8% (PT) to 0.2-1.5% (SU) for EHF bulls. Both breeds lacked differences between ages, either PT or after SU. However, the SU procedure yielded a significantly higher population of spermatozoa with stable DNA following acid-induced denaturation, than PT samples (p < 0.001). No correlation was detected between field fertility and chromatin stability. The results indicate that for these bull populations, the SU procedure was able to select spermatozoa with stable chromatin from the bulk samples. However, the use of DNA denaturation as a challenge to assess sperm chromatin stability did not offer a more accurate tool to evaluate sperm quality than the conventional, light microscopical evaluation of morphology.

  3. 27 CFR 19.391 - Mixing denatured spirits.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Mixing denatured spirits... Rules for Mixing and Converting Denatured Spirits § 19.391 Mixing denatured spirits. (a) Spirits of the... same formula, the proprietor may mix them on bonded premises. (b) Spirits of different formulas. A...

  4. 27 CFR 19.391 - Mixing denatured spirits.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Mixing denatured spirits... Rules for Mixing and Converting Denatured Spirits § 19.391 Mixing denatured spirits. (a) Spirits of the... same formula, the proprietor may mix them on bonded premises. (b) Spirits of different formulas. A...

  5. 27 CFR 19.391 - Mixing denatured spirits.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Mixing denatured spirits... Rules for Mixing and Converting Denatured Spirits § 19.391 Mixing denatured spirits. (a) Spirits of the... same formula, the proprietor may mix them on bonded premises. (b) Spirits of different formulas. A...

  6. 27 CFR 19.391 - Mixing denatured spirits.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Mixing denatured spirits... Rules for Mixing and Converting Denatured Spirits § 19.391 Mixing denatured spirits. (a) Spirits of the... same formula, the proprietor may mix them on bonded premises. (b) Spirits of different formulas. A...

  7. 27 CFR 19.392 - Converting denatured alcohol to a different formula.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Converting denatured alcohol to a different formula. 19.392 Section 19.392 Alcohol, Tobacco Products and Firearms ALCOHOL AND... denatured alcohol to a different formula. (a) General. A proprietor may convert specially denatured alcohol...

  8. 27 CFR 21.161 - Weights and specific gravities of specially denatured alcohol.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... gravities of specially denatured alcohol. 21.161 Section 21.161 Alcohol, Tobacco Products and Firearms... ALCOHOL AND RUM Weights and Specific Gravities of Specially Denatured Alcohol § 21.161 Weights and specific gravities of specially denatured alcohol. The weight of one gallon of each formula of specially...

  9. 27 CFR 21.161 - Weights and specific gravities of specially denatured alcohol.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... gravities of specially denatured alcohol. 21.161 Section 21.161 Alcohol, Tobacco Products and Firearms... ALCOHOL AND RUM Weights and Specific Gravities of Specially Denatured Alcohol § 21.161 Weights and specific gravities of specially denatured alcohol. The weight of one gallon of each formula of specially...

  10. 27 CFR 21.161 - Weights and specific gravities of specially denatured alcohol.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... gravities of specially denatured alcohol. 21.161 Section 21.161 Alcohol, Tobacco Products and Firearms... ALCOHOL AND RUM Weights and Specific Gravities of Specially Denatured Alcohol § 21.161 Weights and specific gravities of specially denatured alcohol. The weight of one gallon of each formula of specially...

  11. 27 CFR 21.161 - Weights and specific gravities of specially denatured alcohol.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... gravities of specially denatured alcohol. 21.161 Section 21.161 Alcohol, Tobacco Products and Firearms... ALCOHOL AND RUM Weights and Specific Gravities of Specially Denatured Alcohol § 21.161 Weights and specific gravities of specially denatured alcohol. The weight of one gallon of each formula of specially...

  12. 27 CFR 21.161 - Weights and specific gravities of specially denatured alcohol.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... gravities of specially denatured alcohol. 21.161 Section 21.161 Alcohol, Tobacco Products and Firearms... ALCOHOL AND RUM Weights and Specific Gravities of Specially Denatured Alcohol § 21.161 Weights and specific gravities of specially denatured alcohol. The weight of one gallon of each formula of specially...

  13. 27 CFR 19.453 - Testing of denaturants.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Denaturation § 19.453 Testing of denaturants. (a) Testing. Proprietors shall ensure that the materials they... shall be taken in such manner as to represent a true composite of the total lot being sampled. When... part 21, the proprietor shall not use the material unless he treats or manipulates the denaturant to...

  14. Structural and denaturation studies of two mutants of a cold adapted superoxide dismutase point to the importance of electrostatic interactions in protein stability.

    PubMed

    Merlino, Antonello; Russo Krauss, Irene; Castellano, Immacolata; Ruocco, Maria Rosaria; Capasso, Alessandra; De Vendittis, Emmanuele; Rossi, Bianca; Sica, Filomena

    2014-03-01

    A peculiar feature of the psychrophilic iron superoxide dismutase from Pseudoalteromonas haloplanktis (PhSOD) is the presence in its amino acid sequence of a reactive cysteine (Cys57). To define the role of this residue, a structural characterization of the effect of two PhSOD mutations, C57S and C57R, was performed. Thermal and denaturant-induced unfolding of wild type and mutant PhSOD followed by circular dichroism and fluorescence studies revealed that C→R substitution alters the thermal stability and the resistance against denaturants of the enzyme, whereas C57S only alters the stability of the protein against urea. The crystallographic data on the C57R mutation suggest an involvement of the Arg side chain in the formation of salt bridges on protein surface. These findings support the hypothesis that the thermal resistance of PhSOD relies on optimization of charge-charge interactions on its surface. Our study contributes to a deeper understanding of the denaturation mechanism of superoxide dismutases, suggesting the presence of a structural dimeric intermediate between the native state and the unfolded state. This hypothesis is supported by the crystalline and solution data on the reduced form of the enzyme. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Isothermal chemical denaturation of large proteins: Path-dependence and irreversibility.

    PubMed

    Wafer, Lucas; Kloczewiak, Marek; Polleck, Sharon M; Luo, Yin

    2017-12-15

    State functions (e.g., ΔG) are path independent and quantitatively describe the equilibrium states of a thermodynamic system. Isothermal chemical denaturation (ICD) is often used to extrapolate state function parameters for protein unfolding in native buffer conditions. The approach is prudent when the unfolding/refolding processes are path independent and reversible, but may lead to erroneous results if the processes are not reversible. The reversibility was demonstrated in several early studies for smaller proteins, but was assumed in some reports for large proteins with complex structures. In this work, the unfolding/refolding of several proteins were systematically studied using an automated ICD instrument. It is shown that: (i) the apparent unfolding mechanism and conformational stability of large proteins can be denaturant-dependent, (ii) equilibration times for large proteins are non-trivial and may introduce significant error into calculations of ΔG, (iii) fluorescence emission spectroscopy may not correspond to other methods, such as circular dichroism, when used to measure protein unfolding, and (iv) irreversible unfolding and hysteresis can occur in the absence of aggregation. These results suggest that thorough confirmation of the state functions by, for example, performing refolding experiments or using additional denaturants, is needed when quantitatively studying the thermodynamics of protein unfolding using ICD. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. 27 CFR 19.385 - Making alcohol or water solutions of denaturants.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Making alcohol or water solutions of denaturants. 19.385 Section 19.385 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO... alcohol or water solutions of denaturants. If a proprietor uses a denaturant that is difficult to dissolve...

  17. Influence of Ficoll on urea induced denaturation of fibrinogen

    NASA Astrophysics Data System (ADS)

    Sankaranarayanan, Kamatchi; Meenakshisundaram, N.

    2016-03-01

    Ficoll is a neutral, highly branched polymer used as a molecular crowder in the study of proteins. Ficoll is also part of Ficoll-Paque used in biology laboratories to separate blood to its components (erythrocytes, leukocytes etc.,). Role of Ficoll in the urea induced denaturation of protein Fibrinogen (Fg) has been analyzed using fluorescence, circular dichroism, molecular docking and interfacial studies. Fluorescence studies show that Ficoll prevents quenching of Fg in the presence of urea. From the circular dichroism spectra, Fg shows conformational transition to random coil with urea of 6 M concentration. Ficoll helps to shift this denaturation concentration to 8 M and thus constraints by shielding Fg during the process. Molecular docking studies indicate that Ficoll interacts favorably with the protein than urea. The surface tension and shear viscosity analysis shows clearly that the protein is shielded by Ficoll.

  18. How Osmolytes Counteract Pressure Denaturation on a Molecular Scale.

    PubMed

    Shimizu, Seishi; Smith, Paul E

    2017-08-18

    Life in the deep sea exposes enzymes to high hydrostatic pressure, which decreases their stability. For survival, deep sea organisms tend to accumulate various osmolytes, most notably trimethylamine N-oxide used by fish, to counteract pressure denaturation. However, exactly how these osmolytes work remains unclear. Here, a rigorous statistical thermodynamics approach is used to clarify the mechanism of osmoprotection. It is shown that the weak, nonspecific, and dynamic interactions of water and osmolytes with proteins can be characterized only statistically, and that the competition between protein-osmolyte and protein-water interactions is crucial in determining conformational stability. Osmoprotection is driven by a stronger exclusion of osmolytes from the denatured protein than from the native conformation, and water distribution has no significant effect on these changes at low osmolyte concentrations. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Structural Characteristic of the Initial Unfolded State on Refolding Determines Catalytic Efficiency of the Folded Protein in Presence of Osmolytes

    PubMed Central

    Warepam, Marina; Sharma, Gurumayum Suraj; Dar, Tanveer Ali; Khan, Md. Khurshid Alam; Singh, Laishram Rajendrakumar

    2014-01-01

    Osmolytes are low molecular weight organic molecules accumulated by organisms to assist proper protein folding, and to provide protection to the structural integrity of proteins under denaturing stress conditions. It is known that osmolyte-induced protein folding is brought by unfavorable interaction of osmolytes with the denatured/unfolded states. The interaction of osmolyte with the native state does not significantly contribute to the osmolyte-induced protein folding. We have therefore investigated if different denatured states of a protein (generated by different denaturing agents) interact differently with the osmolytes to induce protein folding. We observed that osmolyte-assisted refolding of protein obtained from heat-induced denatured state produces native molecules with higher enzyme activity than those initiated from GdmCl- or urea-induced denatured state indicating that the structural property of the initial denatured state during refolding by osmolytes determines the catalytic efficiency of the folded protein molecule. These conclusions have been reached from the systematic measurements of enzymatic kinetic parameters (K m and k cat), thermodynamic stability (T m and ΔH m) and secondary and tertiary structures of the folded native proteins obtained from refolding of various denatured states (due to heat-, urea- and GdmCl-induced denaturation) of RNase-A in the presence of various osmolytes. PMID:25313668

  20. Visualization of early events in acetic acid denaturation of HIV-1 protease: a molecular dynamics study.

    PubMed

    Borkar, Aditi Narendra; Rout, Manoj Kumar; Hosur, Ramakrishna V

    2011-01-01

    Protein denaturation plays a crucial role in cellular processes. In this study, denaturation of HIV-1 Protease (PR) was investigated by all-atom MD simulations in explicit solvent. The PR dimer and monomer were simulated separately in 9 M acetic acid (9 M AcOH) solution and water to study the denaturation process of PR in acetic acid environment. Direct visualization of the denaturation dynamics that is readily available from such simulations has been presented. Our simulations in 9 M AcOH reveal that the PR denaturation begins by separation of dimer into intact monomers and it is only after this separation that the monomer units start denaturing. The denaturation of the monomers is flagged off by the loss of crucial interactions between the α-helix at C-terminal and surrounding β-strands. This causes the structure to transit from the equilibrium dynamics to random non-equilibrating dynamics. Residence time calculations indicate that denaturation occurs via direct interaction of the acetic acid molecules with certain regions of the protein in 9 M AcOH. All these observations have helped to decipher a picture of the early events in acetic acid denaturation of PR and have illustrated that the α-helix and the β-sheet at the C-terminus of a native and functional PR dimer should maintain both the stability and the function of the enzyme and thus present newer targets for blocking PR function.

  1. Chaperonin-based biolayer interferometry to assess the kinetic stability of metastable, aggregation-prone proteins

    PubMed Central

    Lea, Wendy A.; Naik, Subhashchandra; Chaudhri, Tapan; Machen, Alexandra J.; O’Neil, Pierce T.; McGinn-Straub, Wesley; Tischer, Alexander; Auton, Matthew T.; Burns, Joshua R.; Baldwin, Michael R.; Khar, Karen R.; Karanicolas, John; Fisher, Mark T.

    2017-01-01

    Stabilizing the folded state of metastable and/or aggregation-prone proteins through exogenous ligand binding is an appealing strategy to decrease disease pathologies brought on by protein folding defects or deleterious kinetic transitions. Current methods of examining ligand binding to these marginally stable native states are limited, because protein aggregation typically interferes with analysis. Here, we describe a rapid method for assessing the kinetic stability of folded proteins and monitoring the effects of ligand stabilization for both intrinsically stable proteins (monomers, oligomers, multi-domain) and metastable proteins (e.g. low Tm) that uses a new GroEL chaperonin-based biolayer interferometry (BLI) denaturant-pulse platform. A kinetically controlled denaturation isotherm is generated by exposing a target protein immobilized on a BLI biosensor to increasing denaturant concentrations (urea or GnHCl) in a pulsatile manner to induce partial or complete unfolding of the attached protein population. Following the rapid removal of the denaturant, the extent of hydrophobic unfolded/partially folded species that remain is detected by increased GroEL binding. Since this kinetic denaturant pulse is brief, the amplitude of the GroEL binding to the immobilized protein depends on the duration of exposure to denaturant, the concentration of denaturant, wash times, and the underlying protein unfolding/refolding kinetics; fixing all other parameters and plotting GroEL binding amplitude versus denaturant pulse concentration results in a kinetically controlled denaturation isotherm. When folding osmolytes or stabilizing ligands are added to the immobilized target proteins before and during the denaturant pulse, the diminished population of unfolded/partially folded protein is manifested by a decreased GroEL binding and/or a marked shift in these kinetically controlled denaturation profiles to higher denaturant concentrations. This particular platform approach can be used to identify small molecules/solution conditions that can stabilize or destabilize thermally stable proteins, multi-domain proteins, oligomeric proteins, and most importantly, aggregation prone metastable proteins. PMID:27505032

  2. Quantification of the Thermodynamically Linked Quaternary and Tertiary Structural Stabilities of Transthyretin and its Disease-Associated Variants–the Relationship between Stability and Amyloidosis†

    PubMed Central

    Hurshman Babbes, Amy R.; Powers, Evan T.; Kelly, Jeffery W.

    2009-01-01

    Urea denaturation studies were carried out as a function of transthyretin (TTR) concentration to quantify the thermodynamically linked quaternary and tertiary structural stability and to better understand the relationship between mutant folding energetics and amyloid disease phenotype. Urea denaturation of TTR involves at least two equilibria—dissociation of tetramers into folded monomers, and monomer unfolding. To deal with the thermodynamic linkage of these equilibria, we analyzed concentration-dependent denaturation data by global fitting to an equation that simultaneously accounts for the two-step denaturation process. Using this method, the quaternary and tertiary structural stabilities of well-behaved TTR sequences, wild type (WT) TTR and the disease-associated variant V122I, were scrutinized. The V122I variant is linked to late onset familial amyloid cardiomyopathy, the most common familial TTR amyloid disease. V122I TTR exhibits a destabilized quaternary structure and a stable tertiary structure relative to WT TTR. Three other variants of TTR were also examined, L55P, V30M, and A25T TTR. The L55P mutation is associated with the most aggressive familial TTR amyloid disease. L55P TTR has a complicated denaturation pathway that includes dimers and trimers, and so globally fitting its concentration-dependent urea denaturation data yielded error-laden estimates of stability parameters. Nevertheless, it is clear that L55P TTR is substantially less stable than WT TTR, primarily because its tertiary structure is unstable, although its quaternary structure is destabilized as well. V30M is the most common mutation associated with neuropathic forms of TTR amyloid disease. V30M TTR is certainly destabilized relative to WT TTR, but like L55P TTR it has a complex denaturation pathway that cannot be fit to the aforementioned two-step denaturation model. Literature data suggest that V30M TTR has stable quaternary structure but unstable tertiary structure. The A25T mutant, associated with central nervous system amyloidosis, is highly aggregation-prone and exhibits drastically reduced quaternary and tertiary structural stability. The observed differences in stability amongst the disease-associated TTR variants highlight the complexity and the heterogeneity of TTR amyloid disease, an observation having important implications for the treatment of these diseases. PMID:18537267

  3. In situ demonstration of tissue proliferative activity using anti-bromo-deoxyuridine monoclonal antibody.

    PubMed Central

    Veronese, S; Gambacorta, M; Falini, B

    1989-01-01

    Immunohistochemical staining with anti-bromo-deoxyuridine (BrdU) monoclonal antibody was performed on a variety of human tissues following in vitro incubation with BrdU. The effect of different fixatives and DNA denaturation techniques on the reactivity with anti-BrdU was investigated. Optimal preservation of the antigenicity of BrdU incorporated into the DNA of proliferating cells was seen in tissues fixed in Bouin's fluid, while samples which had been fixed with cross-linking reagents, such as formalin, were usually unreactive. Positivity for BrdU was restored in formalin fixed tissues after digestion with pepsin, but this was usually associated with loss of morphological details. Acid and thermal DNA denaturation techniques gave similar results. It is concluded that Bouin fixation followed by acid or thermal denaturation of DNA is the method of choice for the in situ detection of cells in S-phase using anti-BrdU monoclonal antibody. Images Fig 1 Fig 1 PMID:2475528

  4. Honey-Induced Protein Stabilization as Studied by Fluorescein Isothiocyanate Fluorescence

    PubMed Central

    Abdul Kadir, Habsah; Tayyab, Saad

    2013-01-01

    Protein stabilizing potential of honey was studied on a model protein, bovine serum albumin (BSA), using extrinsic fluorescence of fluorescein isothiocyanate (FITC) as the probe. BSA was labelled with FITC using chemical coupling, and urea and thermal denaturation studies were performed on FITC-labelled BSA (FITC-BSA) both in the absence and presence of 10% and 20% (w/v) honey using FITC fluorescence at 522 nm upon excitation at 495 nm. There was an increase in the FITC fluorescence intensity upon increasing urea concentration or temperature, suggesting protein denaturation. The results from urea and thermal denaturation studies showed increased stability of protein in the presence of honey as reflected from the shift in the transition curve along with the start point and the midpoint of the transition towards higher urea concentration/temperature. Furthermore, the increase in ΔG D H2O and ΔG D 25°C in presence of honey also suggested protein stabilization. PMID:24222758

  5. 40 CFR 80.1642 - Sampling and testing requirements for producers and importers of denatured fuel ethanol and other...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... producers and importers of denatured fuel ethanol and other oxygenates for use by oxygenate blenders. 80... requirements for producers and importers of denatured fuel ethanol and other oxygenates for use by oxygenate blenders. Beginning January 1, 2017, producers and importers of denatured fuel ethanol (DFE) and other...

  6. 40 CFR 80.1610 - Standards and requirements for producers and importers of denatured fuel ethanol and other...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... producers and importers of denatured fuel ethanol and other oxygenates designated for use in transportation... requirements for producers and importers of denatured fuel ethanol and other oxygenates designated for use in transportation fuel. Beginning January 1, 2017, producers and importers of denatured fuel ethanol (DFE) or other...

  7. Guanidinium-Induced Denaturation by Breaking of Salt Bridges.

    PubMed

    Meuzelaar, Heleen; Panman, Matthijs R; Woutersen, Sander

    2015-12-07

    Despite its wide use as a denaturant, the mechanism by which guanidinium (Gdm(+) ) induces protein unfolding remains largely unclear. Herein, we show evidence that Gdm(+) can induce denaturation by disrupting salt bridges that stabilize the folded conformation. We study the Gdm(+) -induced denaturation of a series of peptides containing Arg/Glu and Lys/Glu salt bridges that either stabilize or destabilize the folded conformation. The peptides containing stabilizing salt bridges are found to be denatured much more efficiently by Gdm(+) than the peptides containing destabilizing salt bridges. Complementary 2D-infrared measurements suggest a denaturation mechanism in which Gdm(+) binds to side-chain carboxylate groups involved in salt bridges. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Expression and purification of recombinant apolipoprotein A-I Zaragoza (L144R) and formation of reconstituted HDL particles.

    PubMed

    Fiddyment, Sarah; Barceló-Batllori, Sílvia; Pocoví, Miguel; García-Otín, Angel-Luis

    2011-11-01

    Apolipoprotein A-I Zaragoza (L144R) (apo A-I Z), has been associated with severe hypoalphalipoproteinemia and an enhanced effect of high density lipoprotein (HDL) reverse cholesterol transport. In order to perform further studies with this protein we have optimized an expression and purification method of recombinant wild-type apo A-I and apo A-I Z and produced mimetic HDL particles with each protein. An pET-45 expression system was used to produce N-terminal His-tagged apo A-I, wild-type or mutant, in Escherichia coli BL21 (DE3) which was subsequently purified by affinity chromatography in non-denaturing conditions. HDL particles were generated via a modified sodium cholate method. Expression and purification of both proteins was verified by SDS-PAGE, MALDI-TOF MS and immunochemical procedures. Yield was 30mg of purified protein (94% purity) per liter of culture. The reconstituted HDL particles checked via non-denaturing PAGE showed high homogeneity in their size when reconstituted both with wild-type apo A-I and apo A-I Z. An optimized system for the expression and purification of wild-type apo A-I and apo A-I Z with high yield and purity grade has been achieved, in addition to their use in reconstituted HDL particles, as a basis for further studies. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Unravelling the hydrophobicity of urea in water using thermodiffusion: implications for protein denaturation.

    PubMed

    Niether, Doreen; Di Lecce, Silvia; Bresme, Fernando; Wiegand, Simone

    2018-01-03

    Urea is widely used as a protein denaturant in aqueous solutions. Experimental and computer simulation studies have shown that it dissolves in water almost ideally at high concentrations, introducing little disruption in the water hydrogen bonded structure. However, at concentrations of the order of 5 M or higher, urea induces denaturation in a wide range of proteins. The origin of this behaviour is not completely understood, but it is believed to stem from a balance between urea-protein and urea-water interactions, with urea becoming possibly hydrophobic at a specific concentration range. The small changes observed in the water structure make it difficult to connect the denaturation effects to the solvation properties. Here we show that the exquisite sensitivity of thermodiffusion to solute-water interactions allows the identification of the onset of hydrophobicity of urea-water mixtures. The hydrophobic behaviour is reflected in a sign reversal of the temperature dependent slope of the Soret coefficient, which is observed, both in experiments and non-equilibrium computer simulations at ∼5 M concentration of urea in water. This concentration regime corresponds to the one where abrupt changes in the denaturation of proteins are commonly observed. We show that the onset of hydrophobicity is intrinsically connected to the urea-water interactions. Our results allow us to identify correlations between the Soret coefficient and the partition coefficient, log P, hence establishing the thermodiffusion technique as a powerful approach to study hydrophobicity.

  10. Using Denatured Egg White as a Macroscopic Model for Teaching Protein Structure and Introducing Protein Synthesis for High School Students

    NASA Astrophysics Data System (ADS)

    Correia, Paulo R. M.; Torres, Bayardo B.

    2007-12-01

    The success of teaching molecular and atomic phenomena depends on the didactical strategy and the media selection adopted, in consideration of the level of abstraction of the subject to be taught and the students' capability to deal with abstract operations. Dale's cone of experience was employed to plan three 50-minute classes to discuss protein denaturation from a chemical point of view. Only low abstraction level activities were selected: (i) two demonstrations showing the denaturation of albumin by heating and by changing the solvent, (ii) the assembly of a macroscopic model representing the protein molecule, and (iii) a role-play for simulating glucagon synthesis. A student-centered approach and collaborative learning were used throughout the classes. The use of macroscopic models is a powerful didactical strategy to represent molecular and atomic events. They can convert microscopic entities into touchable objects, reducing the abstraction level required to discuss chemistry with high school students. Thus, interesting topics involving molecules and their behavior can take place efficiently when mediated by concrete experiences.

  11. Effects of nucleotides on the denaturation of F actin: a differential scanning calorimetry and FTIR spectroscopy study.

    PubMed

    Bombardier, H; Wong, P; Gicquaud, C

    1997-07-30

    We have utilized DSC and high pressure FTIR spectroscopy to study the specificity and mechanism by which ATP protects actin against heat and pressure denaturation. Analysis of the thermograms shows that ATP raises the transition temperature Tm for actin from 69.6 to 75.8 degrees C, and the calorimetric enthalpy, deltaH, from 680 to 990 kJ/mole. Moreover, the peak becomes sharper indicating a more cooperative process. Among the other nucleotide triphosphates, only UTP increases the Tm by 2.5 degrees C, whereas GTP and CTP have negligable effects; ADP and AMP are less active, increasing the Tm by 2.1 and 1.6 degrees C, respectively. Therefore, gamma phosphate plays a key role in this protection, but its hydrolysis is not implicated since the nonhydrolysable analogue of ATP, ATP-PNP have the same activity as ATP. FTIR spectroscopy demonstrates that ATP also protects actin against high pressure denaturation. Analysis of the amide I band during the increase in pressure clearly illustrates that ATP protects particularly a region rich in beta-sheets of the actin molecule.

  12. Comparative analysis of nitrifying bacteria in full-scale oxidation ditch and aerated nitrification biofilter by using fluorescent in situ hybridization (FISH) and denaturing gradient gel electrophoresis (DGGE).

    PubMed

    Mertoglu, Bulent; Calli, Baris; Girgin, Emine; Inanc, Bulent; Ozturk, Izzet

    2005-01-01

    In this study, nitrification performances and composition of nitrifying populations in a full-scale oxidation ditch and a high-rate submerged media nitrification biofilter were comparatively analyzed. In addition to different reactor configurations, effects of differing operational conditions on the nitrification efficiency and bacterial diversity were also explored and evaluated thoroughly. In microbial analysis of sludge samples fluorescent in situ hybridization (FISH) and denaturing gradient gel electrophoresis (DGGE) techniques were used complementary to each other. The extended aeration oxidation ditch subjected to the study is operated as a nitrogen and phosphorus removal system consisting of anaerobic, anoxic, and aerobic zones. The high-rate submerged media aerated filter is operated as nitrification step following the conventional activated sludge unit and the nitrified wastewater is discharged to the sea without complete nitrogen removal. In situ hybridization results have indicated that Nitrosomonas-like ammonia oxidizing and Nitrospira-related nitrite oxidizing bacteria were intensively present in vigorous flocs in nitrification biofilter while carbonaceous bacteria belong to beta subclass of Proteobacteria were considerably dominant in oxidation ditch. Low quantities of nitrifiers in oxidation ditch were also confirmed by the dissimilarity in intensive bands between two systems obtained with DGGE analysis.

  13. Controlled tissue emulsification produced by high intensity focused ultrasound shock waves and millisecond boiling

    PubMed Central

    Khokhlova, Tatiana D.; Canney, Michael S.; Khokhlova, Vera A.; Sapozhnikov, Oleg A.; Crum, Lawrence A.; Bailey, Michael R.

    2011-01-01

    In high intensity focused ultrasound (HIFU) applications, tissue may be thermally necrosed by heating, emulsified by cavitation, or, as was recently discovered, emulsified using repetitive millisecond boiling caused by shock wave heating. Here, this last approach was further investigated. Experiments were performed in transparent gels and ex vivo bovine heart tissue using 1, 2, and 3 MHz focused transducers and different pulsing schemes in which the pressure, duty factor, and pulse duration were varied. A previously developed derating procedure to determine in situ shock amplitudes and the time-to-boil was refined. Treatments were monitored using B-mode ultrasound. Both inertial cavitation and boiling were observed during exposures, but emulsification occurred only when shocks and boiling were present. Emulsified lesions without thermal denaturation were produced with shock amplitudes sufficient to induce boiling in less than 20 ms, duty factors of less than 0.02, and pulse lengths shorter than 30 ms. Higher duty factors or longer pulses produced varying degrees of thermal denaturation combined with mechanical emulsification. Larger lesions were obtained using lower ultrasound frequencies. The results show that shock wave heating and millisecond boiling is an effective and reliable way to emulsify tissue while monitoring the treatment with ultrasound. PMID:22088025

  14. 27 CFR 19.41 - Claims on spirits, denatured spirits, articles, or wines lost or destroyed in bond.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., denatured spirits, articles, or wines lost or destroyed in bond. 19.41 Section 19.41 Alcohol, Tobacco... DISTILLED SPIRITS PLANTS Taxes Claims § 19.41 Claims on spirits, denatured spirits, articles, or wines lost..., relating to the destruction or loss of spirits, denatured spirits, articles, or wines in bond, shall be...

  15. Different urea stoichiometries between the dissociation and denaturation of tobacco mosaic virus as probed by hydrostatic pressure.

    PubMed

    Santos, Jose L R; Aparicio, Ricardo; Joekes, Inés; Silva, Jerson L; Bispo, Jose A C; Bonafe, Carlos F S

    2008-05-01

    Viruses are very efficient self-assembly structures, but little is understood about the thermodynamics governing their directed assembly. At higher levels of pressure or when pressure is combined with urea, denaturation occurs. For a better understanding of such processes, we investigated the apparent thermodynamic parameters of dissociation and denaturation by assuming a steady-state condition. These processes can be measured considering the decrease of light scattering of a viral solution due to the dissociation process, and the red shift of the fluorescence emission spectra, that occurs with the denaturation process. We determined the apparent urea stoichiometry considering the equilibrium reaction of TMV dissociation and subunit denaturation, which furnished, respectively, 1.53 and 11.1 mol of urea/mol of TMV subunit. The denaturation and dissociation conditions were arrived in a near reversible pathway, allowing the determination of thermodynamic parameters. Gel filtration HPLC, electron microscopy and circular dichroism confirmed the dissociation and denaturation processes. Based on spectroscopic results from earlier papers, the calculation of the apparent urea stoichiometry of dissociation and denaturation of several other viruses resulted in similar values, suggesting a similar virus-urea interaction among these systems.

  16. Pseudomonas aeruginosa cytochrome c551 denaturation by five systematic urea derivatives that differ in the alkyl chain length.

    PubMed

    Kobayashi, Shinya; Fujii, Sotaro; Koga, Aya; Wakai, Satoshi; Matubayasi, Nobuyuki; Sambongi, Yoshihiro

    2017-07-01

    Reversible denaturation of Pseudomonas aeruginosa cytochrome c 551 (PAc 551 ) could be followed using five systematic urea derivatives that differ in the alkyl chain length, i.e. urea, N-methylurea (MU), N-ethylurea (EU), N-propylurea (PU), and N-butylurea (BU). The BU concentration was the lowest required for the PAc 551 denaturation, those of PU, EU, MU, and urea being gradually higher. Furthermore, the accessible surface area difference upon PAc 551 denaturation caused by BU was found to be the highest, those by PU, EU, MU, and urea being gradually lower. These findings indicate that urea derivatives with longer alkyl chains are stronger denaturants. In this study, as many as five systematic urea derivatives could be applied for the reversible denaturation of a single protein, PAc 551 , for the first time, and the effects of the alkyl chain length on protein denaturation were systematically verified by means of thermodynamic parameters.

  17. Cold denaturation of α-synuclein amyloid fibrils.

    PubMed

    Ikenoue, Tatsuya; Lee, Young-Ho; Kardos, József; Saiki, Miyu; Yagi, Hisashi; Kawata, Yasushi; Goto, Yuji

    2014-07-21

    Although amyloid fibrils are associated with numerous pathologies, their conformational stability remains largely unclear. Herein, we probe the thermal stability of various amyloid fibrils. α-Synuclein fibrils cold-denatured to monomers at 0-20 °C and heat-denatured at 60-110 °C. Meanwhile, the fibrils of β2-microglobulin, Alzheimer's Aβ1-40/Aβ1-42 peptides, and insulin exhibited only heat denaturation, although they showed a decrease in stability at low temperature. A comparison of structural parameters with positive enthalpy and heat capacity changes which showed opposite signs to protein folding suggested that the burial of charged residues in fibril cores contributed to the cold denaturation of α-synuclein fibrils. We propose that although cold-denaturation is common to both native proteins and misfolded fibrillar states, the main-chain dominated amyloid structures may explain amyloid-specific cold denaturation arising from the unfavorable burial of charged side-chains in fibril cores. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. pH-dependent relationship between thermodynamic and kinetic stability in the denaturation of human phosphoglycerate kinase 1.

    PubMed

    Pey, Angel L

    2014-08-01

    Human phosphoglycerate kinase 1 (hPGK1) is a glycolytic enzyme essential for ATP synthesis, and it is implicated in different pathological conditions such as inherited diseases, oncogenesis and activation of drugs for cancer and viral treatments. Particularly, mutations in hPGK1 cause human PGK1 deficiency, a rate metabolic conformational disease. We have recently found that most of these mutations cause protein kinetic destabilization by significant changes in the structure/energetics of the transition state for irreversible denaturation. In this work, we explore the relationships between protein conformation, thermodynamic and kinetic stability in hPGK1 by performing comprehensive analyses in a wide pH range (2.5-8). hPGK1 remains in a native conformation at pH 5-8, but undergoes a conformational transition to a molten globule-like state at acidic pH. Interestingly, hPGK1 kinetic stability remains essentially constant at pH 6-8, but is significantly reduced when pH is decreased from 6 to 5. We found that this decrease in kinetic stability is caused by significant changes in the energetic/structural balance of the denaturation transition state, which diverge from those found for disease-causing mutations. We also show that protein kinetic destabilization by acidic pH is strongly linked to lower thermodynamic stability, while in disease-causing mutations seems to be linked to lower unfolding cooperativity. These results highlight the plasticity of the hPGK1 denaturation mechanism that responds differently to changes in pH and in disease-causing mutations. New insight is presented into the different factors contributing to hPGK1 thermodynamic and kinetic stability and the role of denaturation mechanisms in hPGK1 deficiency. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  19. Micro-CT Imaging of Denatured Chitin by Silver to Explore Honey Bee and Insect Pathologies

    PubMed Central

    Butzloff, Peter R.

    2011-01-01

    Background Chitin and cuticle coatings are important to the environmental and immune defense of honey bees and insect pollinators. Pesticides or environmental effects may target the biochemistry of insect chitin and cuticle coating. Denaturing of chitin involves a combination of deacetylation, intercalation, oxidation, Schweiger-peeling, and the formation of amine hydrochloride salt. The term “denatured chitin” calls attention to structural and property changes to the internal membranes and external carapace of organisms so that some properties affecting biological activities are diminished. Methodology/Principal Findings A case study was performed on honey bees using silver staining and microscopic computer-tomographic x-ray radiography (micro-CT). Silver nitrate formed counter-ion complexes with labile ammonium cations and reacted with amine hydrochloride. Silver was concentrated in the peritrophic membrane, on the abdomen, in the glossa, at intersegmental joints (tarsi), at wing attachments, and in tracheal air sacs. Imaged mono-esters and fatty acids from cuticle coating on external surfaces were apparently reduced by an alcohol pretreatment. Conclusions/Significance The technique provides 3-dimensional and sectional images of individual honey bees consistent with the chemistries of silver reaction and complex formation with denatured chitin. Environmental exposures and influences such as gaseous nitric oxide intercalant, trace oxidants such as ozone gas, oligosachharide salt conversion, exposure to acid rain, and chemical or biochemical denaturing by pesticides may be studied using this technique. Peritrophic membranes, which protect against food abrasion, microorganisms, and permit efficient digestion, were imaged. Apparent surface damage to the corneal lenses of compound eyes by dilute acid exposure consistent with chitin amine hydrochloride formation was imaged. The technique can contribute to existing insect pathology research, and may provide an additional tool for research on CCD. PMID:22110654

  20. Optimization of non-denaturing protein extraction conditions for plant PPR proteins.

    PubMed

    Andrés-Colás, Nuria; Van Der Straeten, Dominique

    2017-01-01

    Pentatricopeptide repeat proteins are one of the major protein families in flowering plants, containing around 450 members. They participate in RNA editing and are related to plant growth, development and reproduction, as well as to responses to ABA and abiotic stresses. Their characteristics have been described in silico; however, relatively little is known about their biochemical properties. Different types of PPR proteins, with different tasks in RNA editing, have been suggested to interact in an editosome to complete RNA editing. Other non-PPR editing factors, such as the multiple organellar RNA editing factors and the organelle RNA recognition motif-containing protein family, for example, have also been described in plants. However, while evidence on protein interactions between non-PPR RNA editing proteins is accumulating, very few PPR protein interactions have been reported; possibly due to their high instability. In this manuscript, we aimed to optimize the conditions for non-denaturing protein extraction of PPR proteins allowing in vivo protein analyses, such as interaction assays by co-immunoprecipitation. The unusually high protein degradation rate, the aggregation properties and the high pI, as well as the ATP-dependence of some PPR proteins, are key aspects to be considered when extracting PPR proteins in a non-denatured state. During extraction of PPR proteins, the use of proteasome and phosphatase inhibitors is critical. The use of the ATP-cofactor reduces considerably the degradation of PPR proteins. A short centrifugation step to discard cell debris is essential to avoid PPR precipitation; while in some cases, addition of a reductant is needed, probably caused by the pI/pH context. This work provides an easy and rapid optimized non-denaturing total protein extraction protocol from plant tissue, suitable for polypeptides of the PPR family.

  1. An optimized strategy to measure protein stability highlights differences between cold and hot unfolded states

    NASA Astrophysics Data System (ADS)

    Alfano, Caterina; Sanfelice, Domenico; Martin, Stephen R.; Pastore, Annalisa; Temussi, Piero Andrea

    2017-05-01

    Macromolecular crowding ought to stabilize folded forms of proteins, through an excluded volume effect. This explanation has been questioned and observed effects attributed to weak interactions with other cell components. Here we show conclusively that protein stability is affected by volume exclusion and that the effect is more pronounced when the crowder's size is closer to that of the protein under study. Accurate evaluation of the volume exclusion effect is made possible by the choice of yeast frataxin, a protein that undergoes cold denaturation above zero degrees, because the unfolded form at low temperature is more expanded than the corresponding one at high temperature. To achieve optimum sensitivity to changes in stability we introduce an empirical parameter derived from the stability curve. The large effect of PEG 20 on cold denaturation can be explained by a change in water activity, according to Privalov's interpretation of cold denaturation.

  2. High-pressure studies of aggregation of recombinant human interleukin-1 receptor antagonist: Thermodynamics, kinetics, and application to accelerated formulation studies

    PubMed Central

    Seefeldt, Matthew B.; Kim, Yong-Sung; Tolley, Kevin P.; Seely, Jim; Carpenter, John F.; Randolph, Theodore W.

    2005-01-01

    Recombinant human interleukin-1 receptor antagonist (IL-1ra) in aqueous solutions unfolds and aggregates when subjected to hydrostatic pressures greater than about 180 MPa. This study examined the mechanism and thermodynamics of pressure-induced unfolding and aggregation of IL-1ra. The activation free energy for growth of aggregates (ΔG∓aggregation) was found to be 37 ± 3 kJ/mol, whereas the activation volume (ΔV∓aggregation) was −120 ± 20 mL/mol. These values compare closely with equilibrium values for denaturation: The free energy for denaturation, ΔGdenaturation, was 20 ± 5 kJ/mol, whereas the partial specific volume change for denaturation, ΔVdenaturation, was −110 ± 30 mL/mol. When IL-1ra begins to denature at pressures near 140 MPa, cysteines that are normally buried in the native state become exposed. Under oxidizing conditions, this results in the formation of covalently cross-linked aggregates containing nonnative, intermolecular disulfide bonds. The apparent activation free energy for nucleation of aggregates, ΔG∓nuc, was 42 ± 4 kJ/mol, and the activation volume for nucleation, ΔV∓nuc,was −175 ± 37 mL/mol, suggesting that a highly solvent-exposed conformation is needed for nucleation. We hypothesize that the large specific volume of IL-1ra, 0.752 ± 0.004 mL/g, coupled with its relatively low conformational stability, leads to its susceptibility to denaturation at relatively low pressures. The positive partial specific adiabatic compressibility of IL-1ra, 4.5 ± 0.7 ± 10−12 cm2/dyn, suggests that a significant component of the ΔVdenaturation is attributable to the elimination of solvent-free cavities. Lastly, we propose that hydrostatic pressure is a useful variable to conduct accelerated formulation studies of therapeutic proteins. PMID:16081653

  3. 27 CFR 21.92 - Denaturants listed as U.S.P. or N.F.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ....P. or N.F. 21.92 Section 21.92 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... for Denaturants § 21.92 Denaturants listed as U.S.P. or N.F. Denaturing materials and products listed in this part as “U.S.P.” or “N.F.” shall meet the specifications set forth in the current United...

  4. 27 CFR 21.92 - Denaturants listed as U.S.P. or N.F.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ....P. or N.F. 21.92 Section 21.92 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... for Denaturants § 21.92 Denaturants listed as U.S.P. or N.F. Denaturing materials and products listed in this part as “U.S.P.” or “N.F.” shall meet the specifications set forth in the current United...

  5. 27 CFR 21.92 - Denaturants listed as U.S.P. or N.F.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ....P. or N.F. 21.92 Section 21.92 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... for Denaturants § 21.92 Denaturants listed as U.S.P. or N.F. Denaturing materials and products listed in this part as “U.S.P.” or “N.F.” shall meet the specifications set forth in the current United...

  6. 27 CFR 21.92 - Denaturants listed as U.S.P. or N.F.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ....P. or N.F. 21.92 Section 21.92 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... for Denaturants § 21.92 Denaturants listed as U.S.P. or N.F. Denaturing materials and products listed in this part as “U.S.P.” or “N.F.” shall meet the specifications set forth in the current United...

  7. 27 CFR 21.92 - Denaturants listed as U.S.P. or N.F.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ....P. or N.F. 21.92 Section 21.92 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... for Denaturants § 21.92 Denaturants listed as U.S.P. or N.F. Denaturing materials and products listed in this part as “U.S.P.” or “N.F.” shall meet the specifications set forth in the current United...

  8. Molecular insight into the counteraction of trehalose on urea-induced protein denaturation using molecular dynamics simulation.

    PubMed

    Zhang, Na; Liu, Fu-Feng; Dong, Xiao-Yan; Sun, Yan

    2012-06-21

    Considerable experimental evidence indicates that trehalose can counteract the denaturing effects of urea on proteins. However, its molecular mechanism remains unknown due to the limitations of current experimental techniques. Herein, molecular dynamics simulations were performed to investigate the counteracting effects of trehalose against urea-induced denaturation of chymotrypsin inhibitor 2. The simulations indicate that the protein unfolds in 8 mol/L urea, but at the same condition the protein retains its native structure in the ternary solution of 8 mol/L urea and 1 mol/L trehalose. It is confirmed that the preferential exclusion of trehalose from the protein surface is the origin of its counteracting effects. It is found that trehalose binds urea via hydrogen bonds, so urea molecules are also expelled from the protein surface along with the preferential exclusion of trehalose. The exclusion of urea from the protein surface leads to the alleviation of the Lennard-Jones interactions between urea and the hydrophobic side chains of the protein in the ternary solution. In contrast, the electrostatic interactions between urea and the protein change little in the presence of trehalose because the decrease in the electrostatic interactions between urea and the protein backbone is canceled by the increase in the electrostatic interactions between urea and the charged side chains of the protein. The results have provided molecular explanations for the counteraction of urea-induced protein denaturation by trehalose.

  9. Effect of urea and alkylureas on the stability and structural fluctuation of the M80-containing Ω-loop of horse cytochrome c.

    PubMed

    Kumar, Sandeep; Sharma, Deepak; Kumar, Rajesh

    2014-03-01

    The effect of denaturants on the structural fluctuation of M80-containing Ω-loop of ferrocytochrome c was determined by measuring the rate coefficient of CO-association with ferrocytochrome c under varying concentrations of urea and alkylureas (methylurea (MU), N,N'-dimethylurea (DMU), ethylurea (EU), tetramethylurea (TMU)) at pH7.0, 25°C. As denaturant concentration is increased within the subdenaturing limit, the CO-association reaction is decelerated indicating that subdenaturing concentrations of denaturant reduce the structural fluctuation of the Ω-loop. Structural fluctuation of the Ω-loop is reduced more for urea and least for TMU. Intermolecular docking between horse cytochrome c and denaturant molecule (urea, MU, DMU, EU and TMU) reveals that polyfunctional interactions between the denaturant and different groups of Ω-loop and other part of protein decrease with an increase of alkyl group on urea molecule, which suggests that the decrease in the extent of restricted dynamics of Ω-loop with a corresponding increase of alkyl groups on urea molecule is due to the decrease of denaturant-mediated cross-linking interactions. These denaturant-mediated interactions are expected to reduce the conformational entropy of protein. Analysis of rate-temperature data shows a progressive decrease in conformational entropy of protein in the native to subdenaturing region. Thermodynamic analysis of denaturant (urea, MU, DMU, EU, TMU) effects on the thermal unfolding of ferrocytochrome c reveals that (i) thermodynamic stability of protein decreases with increasing concentration of denaturant or hydrophobicity of urea derivatives, (ii) water activity plays an important role in stabilization of ferrocytochrome c, and (iii) destabilization of ferrocytochrome c by denaturant occurs through the disturbance of hydrophobic interactions and hydrogen-bonding. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. High-performance liquid chromatographic separation of human haemoglobins. Simultaneous quantitation of foetal and glycated haemoglobins.

    PubMed

    Bisse, E; Wieland, H

    1988-12-29

    A high-performance liquid chromatographic system, which uses a weak cation exchanger (PolyCATA) together with Bis-Tris buffer (pH 6.47-7.0) and sodium acetate gradients, is described. Samples from adults and newborns were analysed and a clean separation of many minor and major normal and abnormal haemoglobin (Hb) variants was greatly improved. The method allows the separation of minor foetal haemoglobin (HbF) variants and the simultaneous quantitation of HbF and glycated HbA. HbF values correlated well with those obtained by the alkali denaturation method (r = 0.997). The glycated haemoglobin (HbAIc) levels measured in patients with high HbF concentrations correlated with the total glycated haemoglobin determined by bioaffinity chromatography (r = 0.973). The procedure is useful for diagnostic applications and affords an effective and sensitive way of examining blood samples for haemoglobin abnormalities.

  11. 40 CFR 80.1662 - Liability for violations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., retailer, wholesale purchaser-consumer, oxygenate blender, ethanol denaturant producer, or ethanol..., retailer, wholesale purchaser-consumer, oxygenate producer, oxygenate importer, oxygenate blender, ethanol denaturant producer, ethanol denaturant importer, additive manufacturer, or additive blender who owned...

  12. Ovalbumin labeling with p-hydroxymercurybenzoate: The effect of different denaturing agents and the kinetics of reaction.

    PubMed

    Campanella, Beatrice; Onor, Massimo; Biancalana, Lorenzo; D'Ulivo, Alessandro; Bramanti, Emilia

    2015-08-15

    The aim of our study was to investigate how denaturing agents commonly used in protein analysis influence the labeling between a reactive molecule and proteins. For this reason, we investigated the labeling of ovalbumin (OVA) as a globular model protein with p-hydroxymercurybenzoate (pHMB) in its native state (phosphate buffer solution) and in different denaturing conditions (8 molL(-1) urea, 3 molL(-1) guanidinium thiocyanate, 6 molL(-1) guanidinium chloride, 0.2% sodium dodecyl sulfate, and 20% methanol). In addition to chemical denaturation, thermal denaturation was also tested. The protein was pre-column simultaneously denatured and derivatized, and the pHMB-labeled denatured OVA complexes were analyzed by size exclusion chromatography (SEC) coupled online with chemical vapor generation-atomic fluorescence spectrometry (CVG-AFS). The number of -SH groups titrated greatly depends on the protein structure in solution. Indeed, we found that, depending on the adopted denaturing conditions, OVA gave different aggregate species that influence the complexation process. The results were compared with those obtained by a common alternative procedure for the titration of -SH groups that employs monobromobimane (mBBr) as tagging molecule and molecular fluorescence spectroscopy as detection technique. We also investigated the labeling kinetics for denatured OVA and pHMB, finding that the 4 thiolic groups of OVA have a very different reactivity toward mercury labeling, in agreement with previous studies. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Effects of osmolytes on Pelodiscus sinensis creatine kinase: a study on thermal denaturation and aggregation.

    PubMed

    Wang, Wei; Lee, Jinhyuk; Jin, Qin-Xin; Fang, Nai-Yun; Si, Yue-Xiu; Yin, Shang-Jun; Qian, Guo-Ying; Park, Yong-Doo

    2013-09-01

    The protective effect of osmolytes on the thermal denaturation and aggregation of Pelodiscus sinensis muscle creatine kinase (PSCK) was investigated by a combination of spectroscopic methods and thermodynamic analysis. Our results demonstrated that the addition of osmolytes, such as glycine and proline, could prevent thermal denaturation and aggregation of PSCK in a concentration-dependent manner. When the concentration of glycine and proline increased in the denatured system, the relative activation was significantly enhanced; meanwhile, the aggregation of PSCK during thermal denaturation was decreased. Spectrofluorometer results showed that glycine and proline significantly decreased the tertiary structural changes of PSCK and that thermal denaturation directly induced PSCK aggregation. In addition, we also built the 3D structure of PSCK and osmolytes by homology models. The results of computational docking simulations showed that the docking energy was relatively low and that the clustering groups were spread to the surface of PSCK, indicating that osmolytes directly protect the surface of the protein. P. sinensis are poikilothermic and quite sensitive to the change of ambient temperature; however, there were few studies on the thermal denaturation of reptile CK. Our study provides important insight into the protective effects of osmolytes on thermal denaturation and aggregation of PSCK. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Photodynamic Action on Native and Denatured Transforming Deoxyribonucleic Acid from Haemophilus influenzae

    PubMed Central

    León, Manuel Ponce-De; Cabrera-Juárez, Emiliano

    1970-01-01

    The photodynamic inactivation of native or denatured transforming deoxyribonucleic acid (DNA) from Haemophilus influenzae is described. The inactivation at the same pH was higher for denatured than native DNA. At acidic pH, the inactivation both for native and denatured DNA was faster than at alkaline pH. The guanine content of photoinactivated native DNA at neutral pH was less than untreated DNA. The inactivation of biological activity was more extensive than the alteration of guanine. The absorption spectrum of photoinactivated native or denatured DNA was only slightly different than the control DNA at the different experimental conditions. PMID:5309576

  15. Effects of protein and phosphate buffer concentrations on thermal denaturation of lysozyme analyzed by isoconversional method.

    PubMed

    Cao, X M; Tian, Y; Wang, Z Y; Liu, Y W; Wang, C X

    2016-07-03

    Thermal denaturation of lysozymes was studied as a function of protein concentration, phosphate buffer concentration, and scan rate using differential scanning calorimetry (DSC), which was then analyzed by the isoconversional method. The results showed that lysozyme thermal denaturation was only slightly affected by the protein concentration and scan rate. When the protein concentration and scan rate increased, the denaturation temperature (Tm) also increased accordingly. On the contrary, the Tm decreased with the increase of phosphate buffer concentration. The denaturation process of lysozymes was accelatated and the thermal stability was reduced with the increase of phosphate concentration. One part of degeneration process was not reversible where the aggregation occurred. The other part was reversible. The apparent activation energy (Ea) was computed by the isoconversional method. It decreased with the increase of the conversion ratio (α). The observed denaturation process could not be described by a simple reaction mechanism. It was not a process involving 2 standard reversible states, but a multi-step process. The new opportunities for investigating the kinetics process of protein denaturation can be supplied by this novel isoconversional method.

  16. Optimum Thermal Processing for Extended Shelf-Life (ESL) Milk.

    PubMed

    Deeth, Hilton

    2017-11-20

    Extended shelf-life (ESL) or ultra-pasteurized milk is produced by thermal processing using conditions between those used for traditional high-temperature, short-time (HTST) pasteurization and those used for ultra-high-temperature (UHT) sterilization. It should have a refrigerated shelf-life of more than 30 days. To achieve this, the thermal processing has to be quite intense. The challenge is to produce a product that has high bacteriological quality and safety but also very good organoleptic characteristics. Hence the two major aims in producing ESL milk are to inactivate all vegetative bacteria and spores of psychrotrophic bacteria, and to cause minimal chemical change that can result in cooked flavor development. The first aim is focused on inactivation of spores of psychrotrophic bacteria, especially Bacillus cereus because some strains of this organism are pathogenic, some can grow at ≤7 °C and cause spoilage of milk, and the spores of some strains are very heat-resistant. The second aim is minimizing denaturation of β-lactoglobulin (β-Lg) as the extent of denaturation is strongly correlated with the production of volatile sulfur compounds that cause cooked flavor. It is proposed that the heating should have a bactericidal effect, B * (inactivation of thermophilic spores), of >0.3 and cause ≤50% denaturation of β-Lg. This can be best achieved by heating at high temperature for a short holding time using direct heating, and aseptically packaging the product.

  17. The Regulatory Subunit of PKA-I Remains Partially Structured and Undergoes β-Aggregation upon Thermal Denaturation

    PubMed Central

    Dao, Khanh K.; Pey, Angel L.; Gjerde, Anja Underhaug; Teigen, Knut; Byeon, In-Ja L.; Døskeland, Stein O.; Gronenborn, Angela M.; Martinez, Aurora

    2011-01-01

    Background The regulatory subunit (R) of cAMP-dependent protein kinase (PKA) is a modular flexible protein that responds with large conformational changes to the binding of the effector cAMP. Considering its highly dynamic nature, the protein is rather stable. We studied the thermal denaturation of full-length RIα and a truncated RIα(92-381) that contains the tandem cyclic nucleotide binding (CNB) domains A and B. Methodology/Principal Findings As revealed by circular dichroism (CD) and differential scanning calorimetry, both RIα proteins contain significant residual structure in the heat-denatured state. As evidenced by CD, the predominantly α-helical spectrum at 25°C with double negative peaks at 209 and 222 nm changes to a spectrum with a single negative peak at 212–216 nm, characteristic of β-structure. A similar α→β transition occurs at higher temperature in the presence of cAMP. Thioflavin T fluorescence and atomic force microscopy studies support the notion that the structural transition is associated with cross-β-intermolecular aggregation and formation of non-fibrillar oligomers. Conclusions/Significance Thermal denaturation of RIα leads to partial loss of native packing with exposure of aggregation-prone motifs, such as the B' helices in the phosphate-binding cassettes of both CNB domains. The topology of the β-sandwiches in these domains favors inter-molecular β-aggregation, which is suppressed in the ligand-bound states of RIα under physiological conditions. Moreover, our results reveal that the CNB domains persist as structural cores through heat-denaturation. PMID:21394209

  18. Imaging denatured collagen strands in vivo and ex vivo via photo-triggered hybridization of caged collagen mimetic peptides.

    PubMed

    Li, Yang; Foss, Catherine A; Pomper, Martin G; Yu, S Michael

    2014-01-31

    Collagen is a major structural component of the extracellular matrix that supports tissue formation and maintenance. Although collagen remodeling is an integral part of normal tissue renewal, excessive amount of remodeling activity is involved in tumors, arthritis, and many other pathological conditions. During collagen remodeling, the triple helical structure of collagen molecules is disrupted by proteases in the extracellular environment. In addition, collagens present in many histological tissue samples are partially denatured by the fixation and preservation processes. Therefore, these denatured collagen strands can serve as effective targets for biological imaging. We previously developed a caged collagen mimetic peptide (CMP) that can be photo-triggered to hybridize with denatured collagen strands by forming triple helical structure, which is unique to collagens. The overall goals of this procedure are i) to image denatured collagen strands resulting from normal remodeling activities in vivo, and ii) to visualize collagens in ex vivo tissue sections using the photo-triggered caged CMPs. To achieve effective hybridization and successful in vivo and ex vivo imaging, fluorescently labeled caged CMPs are either photo-activated immediately before intravenous injection, or are directly activated on tissue sections. Normal skeletal collagen remolding in nude mice and collagens in prefixed mouse cornea tissue sections are imaged in this procedure. The imaging method based on the CMP-collagen hybridization technology presented here could lead to deeper understanding of the tissue remodeling process, as well as allow development of new diagnostics for diseases associated with high collagen remodeling activity.

  19. Cation-Induced Stabilization and Denaturation of DNA Origami Nanostructures in Urea and Guanidinium Chloride.

    PubMed

    Ramakrishnan, Saminathan; Krainer, Georg; Grundmeier, Guido; Schlierf, Michael; Keller, Adrian

    2017-11-01

    The stability of DNA origami nanostructures under various environmental conditions constitutes an important issue in numerous applications, including drug delivery, molecular sensing, and single-molecule biophysics. Here, the effect of Na + and Mg 2+ concentrations on DNA origami stability is investigated in the presence of urea and guanidinium chloride (GdmCl), two strong denaturants commonly employed in protein folding studies. While increasing concentrations of both cations stabilize the DNA origami nanostructures against urea denaturation, they are found to promote DNA origami denaturation by GdmCl. These inverse behaviors are rationalized by a salting-out of Gdm + to the hydrophobic DNA base stack. The effect of cation-induced DNA origami denaturation by GdmCl deserves consideration in the design of single-molecule studies and may potentially be exploited in future applications such as selective denaturation for purification purposes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Chemical denaturation as a tool in the formulation optimization of biologics

    PubMed Central

    Freire, Ernesto; Schön, Arne; Hutchins, Burleigh M.; Brown, Richard K.

    2013-01-01

    Biologics have become the fastest growing segment in the pharmaceutical industry. As is the case with all proteins, biologics are susceptible to denature or to aggregate; conditions that, if present, preclude their use as pharmaceuticals. Identifying the solvent conditions that maximize their structural stability is crucial during development. Since the structural stability of a protein is susceptible to different chemical and physical conditions, the use of several complementary techniques can be expected to provide the best answers. Stability measurements that rely on temperature or chemical [urea or guanidine hydrochloride (GuHCl)] denaturation have been the preferred ones in research laboratories and together provide a thorough evaluation of protein stability. In this review, we will discuss chemical denaturation as a tool in the optimization of formulation conditions for biologics, and how chemical denaturation complements the role of thermal denaturation for this purpose. PMID:23796912

  1. Estimating conformation content of a protein using citrate-stabilized Au nanoparticles

    NASA Astrophysics Data System (ADS)

    Deka, Jashmini; Paul, Anumita; Chattopadhyay, Arun

    2010-08-01

    Herein we report the use of the optical properties of citrate-stabilized gold nanoparticles (Au NPs) for estimation of native or denatured conformation content in a mixture of a protein in solution. The UV-vis extinction spectrum of citrate-stabilized Au NPs is known to broaden differently in the presence of native and denatured states of α-amylase, bovine serum albumin (BSA) or amyloglucosidase (AMG). On the other hand, herein we show that when a mixture of native and denatured protein was present in the medium, the broadening of the spectrum differed for different fractional content of the conformations. Also, the total area under the extinction spectrum varied linearly with the change in the mole fraction content of a state and for a constant total protein concentration. Transmission electron microscopy (TEM) measurements revealed different levels of agglomeration for different fractional contents of the native or denatured state of a protein. In addition, time-dependent denaturation of a protein could be followed using the present method. The rate constants calculated for denaturation indicated a possible fast change in conformation of a protein before complete thermal denaturation. The observations have been explained based on the changes in extinction coefficient (thereby oscillator strength) upon interaction of citrate-stabilized NPs with proteins being in different states and levels of agglomeration.Herein we report the use of the optical properties of citrate-stabilized gold nanoparticles (Au NPs) for estimation of native or denatured conformation content in a mixture of a protein in solution. The UV-vis extinction spectrum of citrate-stabilized Au NPs is known to broaden differently in the presence of native and denatured states of α-amylase, bovine serum albumin (BSA) or amyloglucosidase (AMG). On the other hand, herein we show that when a mixture of native and denatured protein was present in the medium, the broadening of the spectrum differed for different fractional content of the conformations. Also, the total area under the extinction spectrum varied linearly with the change in the mole fraction content of a state and for a constant total protein concentration. Transmission electron microscopy (TEM) measurements revealed different levels of agglomeration for different fractional contents of the native or denatured state of a protein. In addition, time-dependent denaturation of a protein could be followed using the present method. The rate constants calculated for denaturation indicated a possible fast change in conformation of a protein before complete thermal denaturation. The observations have been explained based on the changes in extinction coefficient (thereby oscillator strength) upon interaction of citrate-stabilized NPs with proteins being in different states and levels of agglomeration. Electronic supplementary information (ESI) available: Additional UV-vis and fluorescence spectra and graphs based on UV-vis studies. See DOI: 10.1039/c0nr00154f

  2. Structural changes in halophilic and non-halophilic proteases in response to chaotropic reagents.

    PubMed

    Sinha, Rajeshwari; Khare, S K

    2014-08-01

    Halophilic enzymes have been established for their stability and catalytic abilities under harsh operational conditions. These have been documented to withstand denaturation at high temperature, pH, organic solvents, and chaotropic agents. However, this stability is modulated by salt. The present study targets an important aspect in understanding protein-urea/GdmCl interactions using proteases from halophilic Bacillus sp. EMB9 and non-halophilic subtilisin (Carlsberg) from Bacillus licheniformis as model systems. While, halophilic protease containing 1 % (w/v) NaCl (0.17 M) retained full activity towards urea (8 M), non-halophilic protease lost about 90 % activity under similar conditions. The secondary and tertiary structure were lost in non-halophilic but preserved for halophilic protein. This effect could be due to the possible charge screening and shielding of the protein surface by Ca(2+) and Na(+) ions rendering it stable against denaturation. The dialyzed halophilic protease almost behaved like the non-halophilic counterpart. Incorporation of NaCl (up to 5 %, w/v or 0.85 M) in dialyzed EMB9 protease containing urea/GdmCl, not only helped regain of proteolytic activity but also evaded denaturing action. Deciphering the basis of this salt modulated stability amidst a denaturing milieu will provide guidelines and templates for engineering stable proteins/enzymes for biotechnological applications.

  3. Simulated pressure denaturation thermodynamics of ubiquitin.

    PubMed

    Ploetz, Elizabeth A; Smith, Paul E

    2017-12-01

    Simulations of protein thermodynamics are generally difficult to perform and provide limited information. It is desirable to increase the degree of detail provided by simulation and thereby the potential insight into the thermodynamic properties of proteins. In this study, we outline how to analyze simulation trajectories to decompose conformation-specific, parameter free, thermodynamically defined protein volumes into residue-based contributions. The total volumes are obtained using established methods from Fluctuation Solution Theory, while the volume decomposition is new and is performed using a simple proximity method. Native and fully extended ubiquitin are used as the test conformations. Changes in the protein volumes are then followed as a function of pressure, allowing for conformation-specific protein compressibility values to also be obtained. Residue volume and compressibility values indicate significant contributions to protein denaturation thermodynamics from nonpolar and coil residues, together with a general negative compressibility exhibited by acidic residues. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Exploring luminescence-based temperature sensing using protein-passivated gold nanoclusters

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Essner, Jeremy B.; Baker, Gary A.

    2014-07-01

    We explore the analytical performance and limitations of optically monitoring aqueous-phase temperature using protein-protected gold nanoclusters (AuNCs). Although not reported elsewhere, we find that these bio-passivated AuNCs show pronounced hysteresis upon thermal cycling. This unwanted behaviour can be eliminated by several strategies, including sol-gel coating and thermal denaturation of the biomolecular template, introducing protein-templated AuNC probes as viable nanothermometers.We explore the analytical performance and limitations of optically monitoring aqueous-phase temperature using protein-protected gold nanoclusters (AuNCs). Although not reported elsewhere, we find that these bio-passivated AuNCs show pronounced hysteresis upon thermal cycling. This unwanted behaviour can be eliminated by several strategies, including sol-gel coating and thermal denaturation of the biomolecular template, introducing protein-templated AuNC probes as viable nanothermometers. Electronic supplementary information (ESI) available: Supplemental figures and experimental details. See DOI: 10.1039/c4nr02069c

  5. Adsorption induced enzyme denaturation: the role of protein surface in adsorption induced protein denaturation on allyl glycidyl ether (AGE)-ethylene glycol dimethacrylate (EGDM) copolymers.

    PubMed

    Thudi, Lahari; Jasti, Lakshmi S; Swarnalatha, Y; Fadnavis, Nitin W; Mulani, Khudbudin; Deokar, Sarika; Ponrathnam, Surendra

    2012-02-01

    The effects of protein size on adsorption and adsorption-induced denaturation of proteins on copolymers of allyl glycidyl ether (AGE)-ethylene glycol dimethacrylate (EGDM) have been studied. Different responses were observed for the amount of protein adsorbed and denatured on the polymer surface for different proteins (trypsin, alchol dehydrogenase from baker's yeast (YADH), glucose dehydrogenase (GDH) from Gluconobacter cerinus, and alkaline phosphates from calf intestinal mucosa (CIAP). Protein adsorption on the copolymer with 25% crosslink density (AGE-25) was dependent not only on the size of the protein but also on the presence of glycoside residues on the protein surface. Adsorption and denaturation of proteins follows the order YADH>trypsin>GDH>CIAP although the molecular weights of the proteins follow the order YADH>CIAP>GDH>trypsin. The lack of correlation between amount of adsorbed protein and its molecular weight was due to the presence of glycoside residues on CIAP and GDH which protect the enzyme surface from denaturation. Enzyme stabilities in aqueous solutions of 1-cyclohexyl-2-pyrrolidinone (CHP) correlate well with the trend in denaturation by the copolymer, strongly suggesting that hydrophobic interactions play a major role in protein binding and the mechanism of protein denaturation is similar to that for water-miscible organic solvents. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. A microplate assay for DNA damage determination (fast micromethod).

    PubMed

    Batel, R; Jaksić, Z; Bihari, N; Hamer, B; Fafandel, M; Chauvin, C; Schröder, H C; Müller, W E; Zahn, R K

    1999-06-01

    A rapid and convenient procedure for DNA damage determination in cell suspensions and solid tissues on single microplates was developed. The procedure is based on the ability of commercially available fluorochromes to interact preferentially with dsDNA in the presence of ssDNA, RNA, and proteins at high pH (>12.0), thus allowing direct measurements of DNA denaturation without sample handling or stepwise DNA separations. The method includes a simple and rapid 40-min sample lysis in the presence of EDTA, SDS, and high urea concentration at pH 10, followed by time-dependent DNA denaturation at pH 12.4 after NaOH addition. The time course and the extent of DNA denaturation is followed in a microplate fluorescence reader at room temperature for less than 1 h. The method requires only 30 ng DNA per single well and could conveniently be used whenever fast analysis of DNA integrity in small samples has to be done, e.g., in patients' lymphocytes after irradiation or chemotherapy (about 3000 cells per sample), in solid tissues or biopsies after homogenization (about 25 microg tissue per well), or in environmental samples for genotoxicity assessment. Copyright 1999 Academic Press.

  7. Denatured protein-coated docetaxel nanoparticles: Alterable drug state and cytosolic delivery.

    PubMed

    Zhang, Li; Xiao, Qingqing; Wang, Yiran; Zhang, Chenshuang; He, Wei; Yin, Lifang

    2017-05-15

    Many lead compounds have a low solubility in water, which substantially hinders their clinical application. Nanosuspensions have been considered a promising strategy for the delivery of water-insoluble drugs. Here, denatured soy protein isolate (SPI)-coated docetaxel nanosuspensions (DTX-NS) were developed using an anti-solvent precipitation-ultrasonication method to improve the water-solubility of DTX, thus improving its intracellular delivery. DTX-NS, with a diameter of 150-250nm and drug-loading up to 18.18%, were successfully prepared by coating drug particles with SPI. Interestingly, the drug state of DTX-NS was alterable. Amorphous drug nanoparticles were obtained at low drug-loading, whereas at a high drug-loading, the DTX-NS drug was mainly present in the crystalline state. Moreover, DTX-NS could be internalized at high levels by cancer cells and enter the cytosol by lysosomal escape, enhancing cell cytotoxicity and apoptosis compared with free DTX. Taken together, denatured SPI has a strong stabilization effect on nanosuspensions, and the drug state in SPI-coated nanosuspensions is alterable by changing the drug-loading. Moreover, DTX-NS could achieve cytosolic delivery, generating enhanced cell cytotoxicity against cancer cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Study of cellulase enzymes self-assembly in aqueous-acetonitrile solvent: Viscosity measurements

    NASA Astrophysics Data System (ADS)

    Ghaouar, N.; Aschi, A.; Belbahri, L.; Trabelsi, S.; Gharbi, A.

    2009-11-01

    The present study extends the viscosity measurements performed by Ghaouar et al. [Physica B, submitted for publication.] to study the conformational change of the cellulase enzymes in aqueous-acetonitrile mixture. We aim to investigate: (i) the denaturation process by measuring the specific viscosity for temperatures varying between 25 and 65 °C and acetonitrile concentrations between 0% and 50%, (ii) the enzyme-enzyme interaction by calculating the Huggins coefficient and (iii) the enzyme sizes by following the hydrodynamic radius for various temperatures. The precipitation of cellulases versus acetonitrile concentration is also considered. We show from all physical quantities measured in this work that the precipitation and the denaturation processes of cellulase enzymes exist together.

  9. High-refractive index of acrylate embedding resin clarifies mouse brain tissue

    NASA Astrophysics Data System (ADS)

    Zhou, Hongfu; Xiong, Yumiao; Wang, Yu; Wang, Xiaojun; Li, Pei; Gang, Yadong; Liu, Xiuli; Zeng, Shaoqun

    2017-11-01

    Biological tissue transparency combined with light-sheet fluorescence microscopy is a useful method for studying the neural structure of biological tissues. The development of light-sheet fluorescence microscopy also promotes progress in biological tissue clearing methods. The current clarifying methods mostly use liquid reagent to denature protein or remove lipids first, to eliminate or reduce the scattering index or refractive index of the biological tissue. However, denaturing protein and removing lipids require complex procedures or an extended time period. Therefore, here we have developed acrylate resin with a high refractive index, which causes clearing of biological tissue directly after polymerization. This method can improve endogenous fluorescence retention by adjusting the pH value of the resin monomer.

  10. Numerical model study of radio frequency vessel sealing thermodynamics

    NASA Astrophysics Data System (ADS)

    Pearce, John

    2015-03-01

    Several clinically successful clinical radio frequency vessel-sealing devices are currently available. The dominant thermodynamic principles at work involve tissue water vaporization processes. It is necessary to thermally denature vessel collagen, elastin and their adherent proteins to achieve a successful fusion. Collagens denature at middle temperatures, between about 60 and 90 C depending on heating time and rate. Elastin, and its adherent proteins, are more thermally robust, and require temperatures in excess of the boiling point of water at atmospheric pressure to thermally fuse. Rapid boiling at low apposition pressures leads to steam vacuole formation, brittle tissue remnants and frequently to substantial disruption in the vessel wall, particularly in high elastin-content arteries. High apposition pressures substantially increase the equilibrium boiling point of tissue water and are necessary to ensure a high probability of a successful seal. The FDM numerical models illustrate the beneficial effects of high apposition pressures.

  11. Effects of protein and phosphate buffer concentrations on thermal denaturation of lysozyme analyzed by isoconversional method

    PubMed Central

    Cao, X.M.; Tian, Y.; Wang, Z.Y.; Liu, Y.W.; Wang, C.X.

    2016-01-01

    ABSTRACT Thermal denaturation of lysozymes was studied as a function of protein concentration, phosphate buffer concentration, and scan rate using differential scanning calorimetry (DSC), which was then analyzed by the isoconversional method. The results showed that lysozyme thermal denaturation was only slightly affected by the protein concentration and scan rate. When the protein concentration and scan rate increased, the denaturation temperature (Tm) also increased accordingly. On the contrary, the Tm decreased with the increase of phosphate buffer concentration. The denaturation process of lysozymes was accelatated and the thermal stability was reduced with the increase of phosphate concentration. One part of degeneration process was not reversible where the aggregation occurred. The other part was reversible. The apparent activation energy (Ea) was computed by the isoconversional method. It decreased with the increase of the conversion ratio (α). The observed denaturation process could not be described by a simple reaction mechanism. It was not a process involving 2 standard reversible states, but a multi-step process. The new opportunities for investigating the kinetics process of protein denaturation can be supplied by this novel isoconversional method. PMID:27459596

  12. Polymerization kinetics of wheat gluten upon thermosetting. A mechanistic model.

    PubMed

    Domenek, Sandra; Morel, Marie-Hélène; Bonicel, Joëlle; Guilbert, Stéphane

    2002-10-09

    Size exclusion high-performance liquid chromatography analysis was carried out on wheat gluten-glycerol blends subjected to different heat treatments. The elution profiles were analyzed in order to follow the solubility loss of protein fractions with specific molecular size. Owing to the known biochemical changes involved during the heat denaturation of gluten, a mechanistic mathematical model was developed, which divided the protein denaturation into two distinct reaction steps: (i) reversible change in protein conformation and (ii) protein precipitation through disulfide bonding between initially SDS-soluble and SDS-insoluble reaction partners. Activation energies of gluten unfolding, refolding, and precipitation were calculated with the Arrhenius law to 53.9 kJ x mol(-1), 29.5 kJ x mol(-1), and 172 kJ x mol(-1), respectively. The rate of protein solubility loss decreased as the cross-linking reaction proceeded, which may be attributed to the formation of a three-dimensional network progressively hindering the reaction. The enhanced susceptibility to aggregation of large molecules was assigned to a risen reaction probability due to their higher number of cysteine residues and to the increased percentage of unfolded and thereby activated proteins as complete protein refolding seemed to be an anticooperative process.

  13. No GIST-type c-kit gain of function mutations in neuroblastic tumours

    PubMed Central

    Korja, M; Finne, J; Salmi, T T; Haapasalo, H; Tanner, M; Isola, J

    2005-01-01

    Aims: Neuroblastic tumours (NTs) have been shown to respond to imatinib treatment in vivo and in vitro, possibly via inactivating the c-kit receptor. The purpose of this study was to identify gastrointestinal stromal tumour (GIST)-type c-kit gene associated mutations in exons 9, 11, 13, and 17 in NTs to recognise a subset of tumours that would probably respond to imatinib treatment. Methods: Expression of the c-kit protein was detected immunohistochemically in a total of 37 archival paraffin wax embedded NTs using polyclonal rabbit antihuman c-kit antibody. After immunohistochemistry, c-kit gene associated chromosomal mutations in all cases of NT were detected with denaturing high performance liquid chromatography (HPLC). Results: Denaturing HLPC analysis did not reveal GIST-type mutations in four immunohistochemically detected c-kit positive or in 33 c-kit negative NTs. Conclusions: c-kit receptor expression and GIST-type c-kit gene mutations are rare events in NTs. Oncogenic activation of c-kit in NTs presumably differs from that of GISTs, which may influence their responsiveness to imatinib treatment. Whether c-kit has an essential role in the pathogenesis of NTs remains to be investigated. PMID:15976348

  14. Defining Gas-Phase Fragmentation Propensities of Intact Proteins During Native Top-Down Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Haverland, Nicole A.; Skinner, Owen S.; Fellers, Ryan T.; Tariq, Areeba A.; Early, Bryan P.; LeDuc, Richard D.; Fornelli, Luca; Compton, Philip D.; Kelleher, Neil L.

    2017-06-01

    Fragmentation of intact proteins in the gas phase is influenced by amino acid composition, the mass and charge of precursor ions, higher order structure, and the dissociation technique used. The likelihood of fragmentation occurring between a pair of residues is referred to as the fragmentation propensity and is calculated by dividing the total number of assigned fragmentation events by the total number of possible fragmentation events for each residue pair. Here, we describe general fragmentation propensities when performing top-down mass spectrometry (TDMS) using denaturing or native electrospray ionization. A total of 5311 matched fragmentation sites were collected for 131 proteoforms that were analyzed over 165 experiments using native top-down mass spectrometry (nTDMS). These data were used to determine the fragmentation propensities for 399 residue pairs. In comparison to denatured top-down mass spectrometry (dTDMS), the fragmentation pathways occurring either N-terminal to proline or C-terminal to aspartic acid were even more enhanced in nTDMS compared with other residues. More generally, 257/399 (64%) of the fragmentation propensities were significantly altered ( P ≤ 0.05) when using nTDMS compared with dTDMS, and of these, 123 were altered by 2-fold or greater. The most notable enhancements of fragmentation propensities for TDMS in native versus denatured mode occurred (1) C-terminal to aspartic acid, (2) between phenylalanine and tryptophan (F|W), and (3) between tryptophan and alanine (W|A). The fragmentation propensities presented here will be of high value in the development of tailored scoring systems used in nTDMS of both intact proteins and protein complexes. [Figure not available: see fulltext.

  15. Theory of the Protein Equilibrium Population Snapshot by H/D Exchange Electrospray Ionization Mass Spectrometry (PEPS-HDX-ESI-MS) Method used to obtain Protein Folding Energies/Rates and Selected Supporting Experimental Evidence.

    PubMed

    Liyanage, Rohana; Devarapalli, Nagarjuna; Pyland, Derek B; Puckett, Latisha M; Phan, N H; Starch, Joel A; Okimoto, Mark R; Gidden, Jennifer; Stites, Wesley E; Lay, Jackson O

    2012-12-15

    Protein equilibrium snapshot by hydrogen/deuterium exchange electrospray ionization mass spectrometry (PEPS-HDX-ESI-MS or PEPS) is a method recently introduced for estimating protein folding energies and rates. Herein we describe the basis for this method using both theory and new experiments. Benchmark experiments were conducted using ubiquitin because of the availability of reference data for folding and unfolding rates from NMR studies. A second set of experiments was also conducted to illustrate the surprising resilience of the PEPS to changes in HDX time, using staphylococcal nuclease and time frames ranging from a few seconds to several minutes. Theory suggests that PEPS experiments should be conducted at relatively high denaturant concentrations, where the protein folding/unfolding rates are slow with respect to HDX and the life times of both the closed and open states are long enough to be sampled experimentally. Upon deliberate denaturation, changes in folding/unfolding are correlated with associated changes in the ESI-MS signal upon fast HDX. When experiments are done quickly, typically within a few seconds, ESI-MS signals, corresponding to the equilibrium population of the native (closed) and denatured (open) states can both be detected. The interior of folded proteins remains largely un-exchanged. Amongst MS methods, the simultaneous detection of both states in the spectrum is unique to PEPS and provides a "snapshot" of these populations. The associated ion intensities are used to estimate the protein folding equilibrium constant (or the free energy change, ΔG). Linear extrapolation method (LEM) plots of derived ΔG values for each denaturant concentration can then be used to calculate ΔG in the absence of denaturant, ΔG(H(2)O). In accordance with the requirement for detection of signals for both the folded and unfolded states, this theoretical framework predicts that PEPS experiments work best at the middle of the denaturation curve where natured and denatured protein molecules are equilibrated at easily detectable ratios, namely 1:1. It also requires that closed and open states have lifetimes measurable in the time frame of the HDX experiment. Because both conditions are met by PEPS, these measurements can provide an accurate assessment of closed/open state populations and thus protein folding energies/rates.

  16. Uncovering Specific Electrostatic Interactions in the Denatured States of Proteins

    PubMed Central

    Shen, Jana K.

    2010-01-01

    The stability and folding of proteins are modulated by energetically significant interactions in the denatured state that is in equilibrium with the native state. These interactions remain largely invisible to current experimental techniques, however, due to the sparse population and conformational heterogeneity of the denatured-state ensemble under folding conditions. Molecular dynamics simulations using physics-based force fields can in principle offer atomistic details of the denatured state. However, practical applications are plagued with the lack of rigorous means to validate microscopic information and deficiencies in force fields and solvent models. This study presents a method based on coupled titration and molecular dynamics sampling of the denatured state starting from the extended sequence under native conditions. The resulting denatured-state pKas allow for the prediction of experimental observables such as pH- and mutation-induced stability changes. I show the capability and use of the method by investigating the electrostatic interactions in the denatured states of wild-type and K12M mutant of NTL9 protein. This study shows that the major errors in electrostatics can be identified by validating the titration properties of the fragment peptides derived from the sequence of the intact protein. Consistent with experimental evidence, our simulations show a significantly depressed pKa for Asp8 in the denatured state of wild-type, which is due to a nonnative interaction between Asp8 and Lys12. Interestingly, the simulation also shows a nonnative interaction between Asp8 and Glu48 in the denatured state of the mutant. I believe the presented method is general and can be applied to extract and validate microscopic electrostatics of the entire folding energy landscape. PMID:20682271

  17. The expression and proangiogenic effect of nucleolin during the recovery of heat-denatured HUVECs.

    PubMed

    Liang, Pengfei; Jiang, Bimei; Lv, Chunliu; Huang, Xu; Sun, Li; Zhang, Pihong; Huang, Xiaoyuan

    2013-10-01

    The present study aims to examine the expression patterns and roles of nucleolin during the recovery of heat-denatured human umbilical vein endothelial cells (HUVECs). Deep partial thickness burn model in Sprague-Dawley rats and the heat denatured cell model (52°C, 35s) were used. The expression of nucleolin was measured using Western blot analysis and real-time PCR. Angiogenesis was assessed using in vitro parameters including endothelial cell proliferation, transwell migration assay, and scratched wound healing. Gene transfection and RNA interference approaches were employed to investigate the roles of nucleolin. Nucleolin mRNA and protein expression showed a time-dependent increase during the recovery of heat-denatured dermis and HUVECs. Heat-denaturation time-dependently promoted cell growth, adhesion, migration, scratched wound healing and formation of tube-like structures in HUVECs. These effects of heat denaturation on endothelial wound healing and formation of tube-like structures were prevented by knockdown of nucleolin, whereas over-expression of nucleolin increased cell growth, migration, and formation of tube-like structures in cultured HUVEC endothelial cells. In addition, we found that the expression of vascular endothelial growth factor (VEGF) increased during the recovery of heat-denatured dermis and HUVECs, and nucleolin up-regulated VEGF in HUVECs. The present study reveals that the expression of nucleolin is up-regulated, and plays a pro-angiogenic role during the recovery of heat-denatured dermis and its mechanism is probably dependent on production of VEGF. We find a novel and important pro-angiogenic role of nucleolin during the recovery of heat-denatured dermis. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Effect of structural modification on second harmonic generation in collagen

    NASA Astrophysics Data System (ADS)

    Stoller, Patrick C.; Reiser, Karen M.; Celliers, Peter M.; Rubenchik, Alexander M.

    2003-07-01

    The effects of structural perturbation on second harmonic generation in collagen were investigated. Type I collagen fascicles obtained from rat tails were structurally modified by increasing nonenzymatic cross-linking, by thermal denaturation, by collagenase digestion, or by dehydration. Changes in polarization dependence were observed in the dehydrated samples. Surprisingly, no changes in polarization dependence were observed in highly crosslinked samples, despite significant alterations in packing structure. Complete thermal denaturation and collagenase digestion produced samples with no detectable second harmonic signal. Prior to loss of signal, no change in polarization dependence was observed in partially heated or digested collagen.

  19. 40 CFR 80.1660 - Prohibited acts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., supply, offer for supply, store or transport gasoline, oxygenate, or ethanol denaturant that does not...) Causing violating gasoline, oxygenate, or ethanol denaturant to be in the distribution system. Cause gasoline, oxygenate, or ethanol denaturant to be in the distribution system which does not comply with an...

  20. Stability of HAMLET--a kinetically trapped alpha-lactalbumin oleic acid complex.

    PubMed

    Fast, Jonas; Mossberg, Ann-Kristin; Svanborg, Catharina; Linse, Sara

    2005-02-01

    The stability toward thermal and urea denaturation was measured for HAMLET (human alpha-lactalbumin made lethal to tumor cells) and alpha-lactalbumin, using circular dichroism and fluorescence spectroscopy as well as differential scanning calorimetry. Under all conditions examined, HAMLET appears to have the same or lower stability than alpha-lactalbumin. The largest difference is seen for thermal denaturation of the calcium free (apo) forms, where the temperature at the transition midpoint is 15 degrees C lower for apo HAMLET than for apo alpha-lactalbumin. The difference becomes progressively smaller as the calcium concentration increases. Denaturation of HAMLET was found to be irreversible. Samples of HAMLET that have been renatured after denaturation have lost the specific biological activity toward tumor cells. Three lines of evidence indicate that HAMLET is a kinetic trap: (1) It has lower stability than alpha-lactalbumin, although it is a complex of alpha-lactalbumin and oleic acid; (2) its denaturation is irreversible and HAMLET is lost after denaturation; (3) formation of HAMLET requires a specific conversion protocol.

  1. Gel electrophoresis of partially denatured DNA. Retardation effect: its analysis and application.

    PubMed Central

    Lyamichev, V I; Panyutin, I G; Lyubchenko YuL

    1982-01-01

    The hypothesis about the role of partial denaturation in DNA retardation during its electrophoresis in denaturing gel /1,2/ was tested. We used partially melted DNA molecules in which the size of the melted regions and their location were known. They were obtained through glyoxal treatment of the melted regions by a procedure allowing the denatured state to be fixed at any point within the melting range. The approach and the availability of the melting maps of DNAs made it possible to investigate DNA molecules differing in length and in the size of the melted regions. The presence of a denatured region at the end of the molecule or inside of it was shown to decrease its electrophoretic mobility, the effect depending on the size of the melted region and on the DNA length. On the basis of the experimental results an explanation is proposed for the cause of retardation in the case of partially denatured DNA. Images PMID:7133999

  2. Hyperthermophilic archaeal prefoldin shows refolding activity at low temperature.

    PubMed

    Zako, Tamotsu; Banba, Shinya; Sahlan, Muhamad; Sakono, Masafumi; Terada, Naofumi; Yohda, Masafumi; Maeda, Mizuo

    2010-01-01

    Prefoldin is a molecular chaperone that captures a protein-folding intermediate and transfers it to a group II chaperonin for correct folding. Previous studies of archaeal prefoldins have shown that prefoldin only possesses holdase activity and is unable to fold unfolded proteins by itself. In this study, we have demonstrated for the first time that a prefoldin from hyperthermophilic archaeon, Pyrococcus horikoshii OT3 (PhPFD), exhibits refolding activity for denatured lysozyme at temperatures relatively lower than physiologically active temperatures. The interaction between PhPFD and denatured lysozyme was investigated by use of a surface plasmon resonance sensor at various temperatures. Although PhPFD showed strong affinity for denatured lysozyme at high temperature, it exhibited relatively weak interactions at lower temperature. The protein-folding seems to occur through binding and release from PhPFD by virtue of the weak affinity. Our results also imply that prefoldin might be able to contribute to the folding of some cellular proteins whose affinity with prefoldin is weak. Copyright 2009 Elsevier Inc. All rights reserved.

  3. Effects of local nasal immunotherapy in allergic airway inflammation: Using urea denatured Dermatophagoides pteronyssinus

    PubMed Central

    Yu, Sheng-Jie; Liao, En-Chih; Tsai, Jaw-Ji

    2015-01-01

    Despite improvements in anti-allergy medication, the prevalence of allergic airway inflammation remains high, affecting up to 40% of the population worldwide. Allergen immunotherapy is effective for inducing tolerance but has the adverse effect of severe allergic reaction. This can be avoided by denaturing with urea. In this study, we demonstrated that the serum level of allergen-specific IgE in mice sensitized with native Dermatophagoides pteronyssinus (Der p) crude extract after receiving local nasal immunotherapy (LNIT) with urea-denatured Der p crude extract (DN-Dp) significantly decreased compared to that in the normal saline (NS) treatment group. Expressions of IL-4 were significantly reduced in lung tissues after treatment. Inflammation around the bronchial epithelium improved and airway hypersensitivity was down-regulated. LNIT with DN-Dp can down-regulate IL-1b, IL-6 and TNF-a expression and then decrease Der p-induced allergic airway inflammation. This therapeutic modality may be used as an alternative treatment for airway allergic diseases. PMID:25933184

  4. Thermal denaturation of the BRCT tandem repeat region of human tumour suppressor gene product BRCA1.

    PubMed

    Pyrpassopoulos, Serapion; Ladopoulou, Angela; Vlassi, Metaxia; Papanikolau, Yannis; Vorgias, Constantinos E; Yannoukakos, Drakoulis; Nounesis, George

    2005-04-01

    Reduced stability of the tandem BRCT domains of human BReast CAncer 1 (BRCA1) due to missense mutations may be critical for loss of function in DNA repair and damage-induced checkpoint control. In the present thermal denaturation study of the BRCA1 BRCT region, high-precision differential scanning calorimetry (DSC) and circular dichroism (CD) spectroscopy provide evidence for the existence of a denatured state that is structurally very similar to the native. Consistency between theoretical structure-based estimates of the enthalpy (DeltaH) and heat capacity change (DeltaCp) and the calorimetric results is obtained when considering partial thermal unfolding contained in the region of the conserved hydrophobic pocket formed at the interface of the two BRCT repeats. The structural integrity of this region has been shown to be crucial for the interaction of BRCA1 with phosphorylated peptides. In addition, cancer-causing missense mutations located at the inter-BRCT-repeat interface have been linked to the destabilization of the tandem BRCT structure.

  5. Enzyme kinetics above denaturation temperature: a temperature-jump/stopped-flow apparatus.

    PubMed

    Kintses, Bálint; Simon, Zoltán; Gyimesi, Máté; Tóth, Júlia; Jelinek, Balázs; Niedetzky, Csaba; Kovács, Mihály; Málnási-Csizmadia, András

    2006-12-15

    We constructed a "temperature-jump/stopped-flow" apparatus that allows us to study fast enzyme reactions at extremely high temperatures. This apparatus is a redesigned stopped-flow which is capable of mixing the reactants on a submillisecond timescale concomitant with a temperature-jump even as large as 60 degrees C. We show that enzyme reactions that are faster than the denaturation process can be investigated above denaturation temperatures. In addition, the temperature-jump/stopped-flow enables us to investigate at physiological temperature the mechanisms of many human enzymes, which was impossible until now because of their heat instability. Furthermore, this technique is extremely useful in studying the progress of heat-induced protein unfolding. The temperature-jump/stopped-flow method combined with the application of structure-specific fluorescence signals provides novel opportunities to study the stability of certain regions of enzymes and identify the unfolding-initiating regions of proteins. The temperature-jump/stopped-flow technique may become a breakthrough in exploring new features of enzymes and the mechanism of unfolding processes.

  6. β-structure of the coat protein subunits in spherical particles generated by tobacco mosaic virus thermal denaturation.

    PubMed

    Dobrov, Evgeny N; Nikitin, Nikolai A; Trifonova, Ekaterina A; Parshina, Evgenia Yu; Makarov, Valentin V; Maksimov, George V; Karpova, Olga V; Atabekov, Joseph G

    2014-01-01

    Conversion of the rod-like tobacco mosaic virus (TMV) virions into "ball-like particles" by thermal denaturation at 90-98 °C had been described by R.G. Hart in 1956. We have reported recently that spherical particles (SPs) generated by thermal denaturation of TMV at 94-98 °C were highly stable, RNA-free, and water-insoluble. The SPs were uniform in shape but varied widely in size (53-800 nm), which depended on the virus concentration. Here, we describe some structural characteristics of SPs using circular dichroism, fluorescence spectroscopy, and Raman spectroscopy. It was found that the structure of SPs protein differs strongly from that of the native TMV and is characterized by coat protein subunits transition from mainly (about 50%) α-helical structure to a structure with low content of α-helices and a significant fraction of β-sheets. The SPs demonstrate strong reaction with thioflavin T suggesting the formation of amyloid-like structures.

  7. Isolation and identification of antioxidant peptides from enzymatically hydrolyzed rice bran protein.

    PubMed

    Wattanasiritham, Ladda; Theerakulkait, Chockchai; Wickramasekara, Samanthi; Maier, Claudia S; Stevens, Jan F

    2016-02-01

    Khao Dawk Mali 105 rice bran protein (RBP) was fractionated into albumin (12.5%), globulin (13.9%), glutelin (70.8%) and prolamine (2.9%). The native and denatured RBP fractions were hydrolyzed with papain and trypsin for 3h at optimum conditions. The RBP fractions and their hydrolysates were evaluated for their antioxidant activity by the Oxygen Radical Absorbance Capacity (ORAC) assay. The trypsin-hydrolyzed denatured albumin exhibited the highest antioxidant activity with an ORAC value of 4.07 μmol of Trolox equivalent (TE)/mg protein. This hydrolysate was separated by using RP-HPLC and three fractions with high antioxidant activity were examined by LTQ-FTICR ESI mass spectrometry. The MW of the peptides from these fractions were 800-2100 Da. and consisted of 6-21 amino acid residues. Most of the peptides from the fractions demonstrated typical characteristics of well-known antioxidant peptides. The results suggest that trypsin-hydrolyzed denatured rice bran albumin might be useful as a natural food antioxidant. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. The expression of miR-125b regulates angiogenesis during the recovery of heat-denatured HUVECs.

    PubMed

    Zhou, Situo; Zhang, Pihong; Liang, Pengfei; Huang, Xiaoyuan

    2015-06-01

    In previous studies we found that miR-125b was down-regulated in denatured dermis of deep partial thickness burn patients. Moreover, miR-125b inhibited tumor-angiogenesis associated with the decrease of ERBB2 and VEGF expression in ovarian cancer cells and breast cancer cells, etc. In this study, we investigated the expression patterns and roles of miR-125b during the recovery of denatured dermis and heat-denatured human umbilical vein endothelial cells (HUVECs). Deep partial thickness burns in Sprague-Dawley rats and the heat-denatured cells (52°C, 35 s) were used for analysis. Western blot analysis and real-time PCR were applied to evaluate the expression of miR-125b and ERBB2 and VEGF. The ability of angiogenesis in heat-denatured HUVECs was analyzed by scratch wound healing and tube formation assay after pri-miR-125b or anti-miR-125b transfection. miR-125b expression was time-dependent during the recovery of heat-denatured dermis and HUVECs. Moreover, miR-125b regulated ERBB2 mRNA and Protein Expression and regulated angiogenesis association with regulating the expression of VEGF in heat-denatured HUVECs. Taken together our results show that the expression of miR-125b is time-dependent and miR-125b plays a regulatory role of angiogenesis during wound healing after burns. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  9. Kinetic and thermodynamic parameters for thermal denaturation of ovine milk lactoferrin determined by its loss of immunoreactivity.

    PubMed

    Navarro, F; Harouna, S; Calvo, M; Pérez, M D; Sánchez, L

    2015-07-01

    Lactoferrin is a protein with important biological functions that can be obtained from milk and by-products derived from the dairy industry, such as whey. Although bovine lactoferrin has been extensively studied, ovine lactoferrin is not quite as well known. In the present study, the effect of several heat treatments in 3 different media, over a temperature range from 66 to 75°C, has been studied on lactoferrin isolated from sheep milk. Denaturation of lactoferrin was determined by measuring its immunoreactivity with specific polyclonal antibodies. Kinetic and thermodynamic parameters obtained indicate that lactoferrin denatures by heat more rapidly in whey than in phosphate buffer or milk. The value of activation energy found for the denaturation process of lactoferrin when treated in whey is higher (390kJ/mol) than that obtained in milk (194kJ/mol) or phosphate buffer (179kJ/mol). This indicates that a great amount of energy is necessary to start denaturation of ovine lactoferrin, probably due to the interaction of this protein with other whey proteins. The changes in the hydrophobicity of lactoferrin after heat treatments were determined by fluorescence measurement using acrylamide. The decrease in the hydrophobicity constant was very small for the treatments from 66 to 75°C, up to 20min, which indicates that lactoferrin conformation did not experienced a great change. The results obtained in this study permit the prediction of behavior of ovine lactoferrin under several heat treatments and show that high-temperature, short-time pasteurization (72°C, 15 s) does not cause loss of its immunoreactivity and, consequently, would not affect its conformation and biological activity. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. 27 CFR 19.457 - Neutralizing denatured spirits.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... BUREAU, DEPARTMENT OF THE TREASURY LIQUORS DISTILLED SPIRITS PLANTS Denaturing Operations and Manufacture... quantities of compounds such as caustics or acids to certain formulas of denatured spirits to neutralize such... spirits must record, for each formula the kinds and quantities of compounds used, and the formula number...

  11. Less is More: Membrane Protein Digestion Beyond Urea–Trypsin Solution for Next-level Proteomics*

    PubMed Central

    Zhang, Xi

    2015-01-01

    The goal of next-level bottom-up membrane proteomics is protein function investigation, via high-coverage high-throughput peptide-centric quantitation of expression, modifications and dynamic structures at systems scale. Yet efficient digestion of mammalian membrane proteins presents a daunting barrier, and prevalent day-long urea–trypsin in-solution digestion proved insufficient to reach this goal. Many efforts contributed incremental advances over past years, but involved protein denaturation that disconnected measurement from functional states. Beyond denaturation, the recent discovery of structure/proteomics omni-compatible detergent n-dodecyl-β-d-maltopyranoside, combined with pepsin and PNGase F columns, enabled breakthroughs in membrane protein digestion: a 2010 DDM-low-TCEP (DLT) method for H/D-exchange (HDX) using human G protein-coupled receptor, and a 2015 flow/detergent-facilitated protease and de-PTM digestions (FDD) for integrative deep sequencing and quantitation using full-length human ion channel complex. Distinguishing protein solubilization from denaturation, protease digestion reliability from theoretical specificity, and reduction from alkylation, these methods shifted day(s)-long paradigms into minutes, and afforded fully automatable (HDX)-protein-peptide-(tandem mass tag)-HPLC pipelines to instantly measure functional proteins at deep coverage, high peptide reproducibility, low artifacts and minimal leakage. Promoting—not destroying—structures and activities harnessed membrane proteins for the next-level streamlined functional proteomics. This review analyzes recent advances in membrane protein digestion methods and highlights critical discoveries for future proteomics. PMID:26081834

  12. Optimum Thermal Processing for Extended Shelf-Life (ESL) Milk

    PubMed Central

    Deeth, Hilton

    2017-01-01

    Extended shelf-life (ESL) or ultra-pasteurized milk is produced by thermal processing using conditions between those used for traditional high-temperature, short-time (HTST) pasteurization and those used for ultra-high-temperature (UHT) sterilization. It should have a refrigerated shelf-life of more than 30 days. To achieve this, the thermal processing has to be quite intense. The challenge is to produce a product that has high bacteriological quality and safety but also very good organoleptic characteristics. Hence the two major aims in producing ESL milk are to inactivate all vegetative bacteria and spores of psychrotrophic bacteria, and to cause minimal chemical change that can result in cooked flavor development. The first aim is focused on inactivation of spores of psychrotrophic bacteria, especially Bacillus cereus because some strains of this organism are pathogenic, some can grow at ≤7 °C and cause spoilage of milk, and the spores of some strains are very heat-resistant. The second aim is minimizing denaturation of β-lactoglobulin (β-Lg) as the extent of denaturation is strongly correlated with the production of volatile sulfur compounds that cause cooked flavor. It is proposed that the heating should have a bactericidal effect, B* (inactivation of thermophilic spores), of >0.3 and cause ≤50% denaturation of β-Lg. This can be best achieved by heating at high temperature for a short holding time using direct heating, and aseptically packaging the product. PMID:29156617

  13. 27 CFR 19.464 - Denatured spirits inventories.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... of Articles Inventories § 19.464 Denatured spirits inventories. Each proprietor shall take a physical inventory of all denatured spirits in the processing account at the close of each calendar quarter and at... inventories. 19.464 Section 19.464 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE...

  14. 27 CFR 20.144 - Packages of completely denatured alcohol.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Packages of completely denatured alcohol. 20.144 Section 20.144 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS DISTRIBUTION AND USE OF DENATURED ALCOHOL AND RUM Sale...

  15. 27 CFR 20.144 - Packages of completely denatured alcohol.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Packages of completely denatured alcohol. 20.144 Section 20.144 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS DISTRIBUTION AND USE OF DENATURED ALCOHOL AND RUM Sale...

  16. 27 CFR 19.493 - Caution label for completely denatured alcohol.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Caution label for completely denatured alcohol. 19.493 Section 19.493 Alcohol, Tobacco Products and Firearms ALCOHOL AND... Marks Marking Requirements for Spirits § 19.493 Caution label for completely denatured alcohol. A...

  17. 27 CFR 20.261 - Records of completely denatured alcohol.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Records of completely denatured alcohol. 20.261 Section 20.261 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS DISTRIBUTION AND USE OF DENATURED ALCOHOL AND RUM...

  18. 27 CFR 19.492 - Marks on containers of completely denatured alcohol.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Marks on containers of completely denatured alcohol. 19.492 Section 19.492 Alcohol, Tobacco Products and Firearms ALCOHOL AND... Marks Marking Requirements for Spirits § 19.492 Marks on containers of completely denatured alcohol...

  19. 27 CFR 20.261 - Records of completely denatured alcohol.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Records of completely denatured alcohol. 20.261 Section 20.261 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS DISTRIBUTION AND USE OF DENATURED ALCOHOL AND RUM...

  20. Mechanical Insight into Resistance of Betaine to Urea-Induced Protein Denaturation.

    PubMed

    Chen, Jiantao; Gong, Xiangjun; Zeng, Chaoxi; Wang, Yonghua; Zhang, Guangzhao

    2016-12-08

    It is known that urea can induce protein denaturation that can be inhibited by osmolytes. Yet, experimental explorations on this mechanism at the molecular level are still lacking. We have investigated the resistance of betaine to the urea-induced denaturation of lysozyme in aqueous solutions using low-field NMR. Our study demonstrates that urea molecules directly interact with lysozyme, leading to denaturation. However, betaine molecules interacting with urea more strongly than lysozyme can pull the bound urea molecules from lysozyme so that the protein is protected from denaturation. The number of urea molecules bound to a betaine molecule is given under different conditions. Proton NMR spectroscopy ( 1 H-NMR) and Fourier transform infrared spectroscopy reveal that the interaction between betaine and urea is through hydrogen bonding.

  1. Calcium Binding and Disulfide Bonds Regulate the Stability of Secretagogin towards Thermal and Urea Denaturation

    PubMed Central

    Weiffert, Tanja; Ní Mhurchú, Niamh; O’Connell, David; Linse, Sara

    2016-01-01

    Secretagogin is a calcium-sensor protein with six EF-hands. It is widely expressed in neurons and neuro-endocrine cells of a broad range of vertebrates including mammals, fishes and amphibia. The protein plays a role in secretion and interacts with several vesicle-associated proteins. In this work, we have studied the contribution of calcium binding and disulfide-bond formation to the stability of the secretagogin structure towards thermal and urea denaturation. SDS-PAGE analysis of secretagogin in reducing and non-reducing conditions identified a tendency of the protein to form dimers in a redox-dependent manner. The denaturation of apo and Calcium-loaded secretagogin was studied by circular dichroism and fluorescence spectroscopy under conditions favoring monomer or dimer or a 1:1 monomer: dimer ratio. This analysis reveals significantly higher stability towards urea denaturation of Calcium-loaded secretagogin compared to the apo protein. The secondary and tertiary structure of the Calcium-loaded form is not completely denatured in the presence of 10 M urea. Reduced and Calcium-loaded secretagogin is found to refold reversibly after heating to 95°C, while both oxidized and reduced apo secretagogin is irreversibly denatured at this temperature. Thus, calcium binding greatly stabilizes the structure of secretagogin towards chemical and heat denaturation. PMID:27812162

  2. Mutation of charged residues to neutral ones accelerates urea denaturation of HP-35.

    PubMed

    Wei, Haiyan; Yang, Lijiang; Gao, Yi Qin

    2010-09-16

    Following the studies of urea denaturation of β-hairpins using molecular dynamics, in this paper, molecular dynamics simulations of two peptides, a 35 residue three helix bundle villin headpiece protein HP-35 and its doubly norleucine-substituent mutant (Lys24Nle/Lys29Nle) HP-35 NleNle, were undertaken in urea solutions to understand the molecular mechanism of urea denaturation of α-helices. The mutant HP-35 NleNle was found to denature more easily than the wild type. During the expansion of the small hydrophobic core, water penetration occurs first, followed by that of urea molecules. It was also found that the initial hydration of the peptide backbone is achieved through water hydrogen bonding with the backbone CO groups during the denaturation of both polypeptides. The mutation of the two charged lysine residues to apolar norleucine enhances the accumulation of urea near the hydrophobic core and facilitates the denaturation process. Urea also interacts directly with the peptide backbone as well as side chains, thereby stabilizing nonnative conformations. The mechanism revealed here is consistent with the previous study on secondary structure of β-hairpin polypeptide, GB1, PEPTIDE 1, and TRPZIP4, suggesting that there is a general mechanism in the denaturation of protein backbone hydrogen bonds by urea.

  3. Effect of pressure on secondary structure of proteins under ultra high pressure liquid chromatographic conditions.

    PubMed

    Makarov, Alexey; LoBrutto, Rosario; Karpinski, Paul

    2013-11-29

    There are several spectroscopic techniques such as IR and CD, that allow for analyzing protein secondary structure in solution. However, a majority of these techniques require using purified protein, concentrated enough in the solution, to produce a relevant spectrum. Fundamental principles for the usage of reversed-phase ultra high pressure liquid chromatography (UHPLC) as an alternative technique to study protein secondary structures in solution were investigated. Several "model" proteins, as well as several small ionizable and neutral molecules, were used for these studies. The studies were conducted with UHPLC in isocratic mode, using premixed mobile phases at constant flow rate and temperature. The pressure was modified by a backpressure regulator from about 6000psi to about 12,000psi. It was found that when using a mobile phase composition at which proteins were fully denatured (loss of alpha-helix secondary structure), the retention factors of the proteins increased upon pressure increase in the same manner as non-proteins. When using a mobile phase composition in which proteins were not fully denatured, it was observed that the retention factors of the proteins displayed a much steeper (by one order of magnitude) increase in retention upon pressure increase. It was concluded that in a mobile phase in which the protein is not initially fully denatured, the increase of pressure may facilitate the folding back of the protein to its native state (alpha-helix secondary structure). The impact of different mobile phase compositions on the denaturation of the proteins was studied using CD (Circular Dichroism). Moreover, the effect of flow rate on retention of proteins and small molecules was studied at constant pressure on the different pore size silicas and the impact of internal frictional heating was evaluated. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Fourier transform infrared spectroscopic studies of the secondary structure and thermal denaturation of CaATPase from rabbit skeletal muscle

    NASA Astrophysics Data System (ADS)

    Jaworsky, Mark; Brauner, Joseph W.; Mendelsohn, Richard

    Fourier transform i.r. spectroscopy has been used to monitor structural alterations induced by thermal denaturation of the intrinsic membrane protein CaATPase in aqueous media. The protein has been isolated, purified and studied in five forms: (i) In its native lipid environment after isolation from rabbit sarcoplasmic reticulum, both in H 2O and D 2O suspensions. (ii) After both mild and extensive tryptic digestion has cleaved those residues external to the membrane bilayer. (iii) Reconstituted in vesicle form with bovine brain sphingomyelin. Fourier deconvolution techniques have been used to enhance the resolution of the intrinsically overlapped Amide I and Amide II spectral regions. Large spectral alterations apparent in the deconvoluted spectra occur in these regions upon thermal denaturation of the protein which are consistent with the formation of a large proportion of β-antiparallel sheet form. The alteration parallels the loss in ATPase activity. A mild tryptic digestion increases slightly the proportion of α-helix and/or random coil secondary structure. A thermal transition to a form containing a high proportion of β structure is still evident. Extensive tryptic digestion nearly abolishes the alpha helical plus random coil secondary structure, while producing a high proportion of β form which is resistant to further thermally induced structural alterations. Studies of CaATPase reconstituted into vesicles with bovine brain sphingomyelin reveal a higher proportion of β structure than the native enzyme, with further introduction of β structure on thermal denaturation. Both the utility of deconvolution techniques and the necessity for caution in their application are apparent from the current experiments.

  5. A general method for the purification of synthetic oligodeoxyribonucleotides containing strong secondary structure by reversed-phase high-performance liquid chromatography on PRP-1 resin.

    PubMed

    Germann, M W; Pon, R T; van de Sande, J H

    1987-09-01

    Synthetic 5'-dimethoxytritylated oligodeoxyribonucleotides, which contained strong secondary structure, were satisfactorily denatured and purified by reversed-phase HPLC on PRP-1 columns when strongly alkaline conditions (0.05 M NaOH) were employed. This procedure was suitable for the purification of hairpin structures, e.g., d(CG)nT4(CG)n (n = 4, 5, 6), and oligo(dG) sequences, e.g., d(G)24, as well as oligodeoxyribonucleotide probes which contained degenerate base sites. Oligodeoxyribonucleotides as long as 50 bases in length were purified. Recovery of injected oligonucleotides was typically 90% or better. The high capacity of the PRP-1 resin also allowed purification to be performed on a preparative scale (2-8 mg per injection). Enzymatic degradation and HPLC analysis indicated that no modification of the heterocyclic bases occurred under the alkaline conditions described.

  6. Effect of the length of the cycle on biodegradable polymer production and microbial community selection in a sequencing batch reactor.

    PubMed

    Dionisi, Davide; Majone, Mauro; Vallini, Giovanni; Gregorio, Simona Di; Beccari, Mario

    2007-01-01

    The effect of the length of the cycle on the enrichment and selection of mixed cultures in sequencing batch reactors (SBRs) has been studied, with the aim of biodegradable polymers (namely, polyhydroxyalkanoates (PHAs)) production from organic wastes. At a fixed feed concentration (20 gCOD/L) and organic loading rate (20 gCOD/L/day), the SBR was operated at different lengths of the cycle, in the range 1-8 h. Process performance was measured by considering the rates and yields of polymer storage and of the competing phenomenon of growth. The selected biomass was enriched with microorganisms that were able to store PHAs at high rates and yields only when the length of the cycle was 2 or 4 h, even though in these conditions the process was unstable. On the other hand, when the length of the cycle was 1 or 8 h, the dynamic response of the selected microorganisms was dominated by growth. The best process performance was characterized by storage rates in the range 500-600 mgCOD/gCOD/h and storage yields of 0.45-0.55 COD/COD. The corresponding productivity of the process was in the range 0.25-0.30 gPHA/L/h, the highest values obtained until now for mixed cultures. The microbial composition of the selected biomasses was analyzed through denaturing gradient gel electrophoresis (DGGE) and reverse-transcriptase denaturing gradient gel electrophoresis (RT-DGGE). The instability of the runs characterized by high storage rate was associated with a higher microbial heterogeneity compared to the runs with a stable growth response.

  7. Mutations in the NDP gene: contribution to Norrie disease, familial exudative vitreoretinopathy and retinopathy of prematurity.

    PubMed

    Dickinson, Joanne L; Sale, Michèle M; Passmore, Abraham; FitzGerald, Liesel M; Wheatley, Catherine M; Burdon, Kathryn P; Craig, Jamie E; Tengtrisorn, Supaporn; Carden, Susan M; Maclean, Hector; Mackey, David A

    2006-01-01

    To examine the contribution of mutations within the Norrie disease (NDP) gene to the clinically similar retinal diseases Norrie disease, X-linked familial exudative vitreoretinopathy (FEVR), Coat's disease and retinopathy of prematurity (ROP). A dataset comprising 13 Norrie-FEVR, one Coat's disease, 31 ROP patients and 90 ex-premature babies of <32 weeks' gestation underwent an ophthalmologic examination and were screened for mutations within the NDP gene by direct DNA sequencing, denaturing high-performance liquid chromatography or gel electrophoresis. Controls were only screened using denaturing high-performance liquid chromatography and gel electrophoresis. Confirmation of mutations identified was obtained by DNA sequencing. Evidence for two novel mutations in the NDP gene was presented: Leu103Val in one FEVR patient and His43Arg in monozygotic twin Norrie disease patients. Furthermore, a previously described 14-bp deletion located in the 5' unstranslated region of the NDP gene was detected in three cases of regressed ROP. A second heterozygotic 14-bp deletion was detected in an unaffected ex-premature girl. Only two of the 13 Norrie-FEVR index cases had the full features of Norrie disease with deafness and mental retardation. Two novel mutations within the coding region of the NDP gene were found, one associated with a severe disease phenotypes of Norrie disease and the other with FEVR. A deletion within the non-coding region was associated with only mild-regressed ROP, despite the presence of low birthweight, prematurity and exposure to oxygen. In full-term children with retinal detachment only 15% appear to have the full features of Norrie disease and this is important for counselling parents on the possible long-term outcome.

  8. Identification and characterization of single nucleotide polymorphisms in 6 growth-correlated genes in porcine by denaturing high performance liquid chromatography.

    PubMed

    Liu, Dewu; Zhang, Yushan; Du, Yinjun; Yang, Guanfu; Zhang, Xiquan

    2007-06-01

    The growth-correlated genes that are part of the neuroendocrine growth axis play crucial roles in the regulation of growth and development of pig. The identification of genetic polymorphisms in these genes will enable the scientist to evaluate the biological relevance of such polymorphisms and to gain a better understanding of quantitative traits like growth. In the present study, seven pairs of primers were designed to obtain unknown sequences of growth-correlated genes, and other 25 pairs of primers were designed to identify single nucleotide polymorphisms (SNP) using the denaturing high-performance liquid chromatography (DHPLC) technology in four pig breeds (Duroc, Landrace, Lantang and Wuzhishan), significantly differing in growth and development characteristics. A total of 101 polymorphisms were discovered in 10,707 base pairs (bp) from six genes of the ghrelin (GHRL), leptin (LEP), insulin-like growth factor II (IGF-II), insulin-like growth factor binding protein 2 (IGFBP-2), insulin-like growth factor binding protein 3 (IGFBP-3), and somatostatin (SS). The observed average distances between the SNP in the 5'UTR, coding regions, introns and 3'UTR were 134, 521, 81 and 92 bp, respectively. Four SNPs were found in the coding regions of IGF-II, IGFBP-2 and LEP, respectively. Two synonymous mutations were obtained in IGF-II and LEP genes respectively, and two non-synonymous were found in IGFBP-2 and LEP genes, respectively. Seven other mutations were also observed. Thirty-two PCR-RFLP markers were found among 101 polymorphisms of the six genes. The SNP discovered in this study would provide suitable markers for association studies of candidate genes with growth related traits in pig.

  9. HHP treatment of liquid egg at 200-350 MPa

    NASA Astrophysics Data System (ADS)

    Tóth, A.; Németh, Cs; Palotás, P.; Surányi, J.; Zeke, I.; Csehi, B.; Castillo, L. A.; Friedrich, L.; Balla, Cs

    2017-10-01

    High hydrostatic pressure (HHP) treatment of egg proteins partially limits their sensitivity to pressure. According to the literature, at the 450 MPa level, denaturation of some proteins sets in to the extent that sensory and functional characteristics are impacted. This study involved treating liquid egg (egg white, yolk, and melange) at less than the above-mentioned value, after which the microbiological effect was examined. For the study, pressure pouches were filled with 100ml of raw liquid egg per pouch. Then the samples were treated at 200, 250, 300 and 350 MPa. In each case, the level was reached by increasing pressure at a rate of 100 MPa/min. Measurements were taken at the Corvinus University of Budapest, Faculty of Food Science, Dept. of Refrigeration and Livestock Products Technology RESATO FPU 100-2000 equipment. Denaturation was determined with calorimetric (DSC) tests. From our results, it appears that even at 250 MPa pressure treatment, the viable cell count decreases. Further, it can be said that microbe count went down in the egg white samples at 300-350 MPa, below the impact level. Significant denaturation was not detected during our examinations. In summary, we state that the most HHP-sensitive liquid egg type, egg white, can be pressure treated to reduce microbe count at a level less than that which causes denaturation. Microbe reduction was smaller in yolk and melange, so higher pressure values are appropriate for these products.

  10. High-refractive index of acrylate embedding resin clarifies mouse brain tissue.

    PubMed

    Zhou, Hongfu; Xiong, Yumiao; Wang, Yu; Wang, Xiaojun; Li, Pei; Gang, Yadong; Liu, Xiuli; Zeng, Shaoqun

    2017-11-01

    Biological tissue transparency combined with light-sheet fluorescence microscopy is a useful method for studying the neural structure of biological tissues. The development of light-sheet fluorescence microscopy also promotes progress in biological tissue clearing methods. The current clarifying methods mostly use liquid reagent to denature protein or remove lipids first, to eliminate or reduce the scattering index or refractive index of the biological tissue. However, denaturing protein and removing lipids require complex procedures or an extended time period. Therefore, here we have developed acrylate resin with a high refractive index, which causes clearing of biological tissue directly after polymerization. This method can improve endogenous fluorescence retention by adjusting the pH value of the resin monomer. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  11. Mössbauer study of the time evolution of the biochemical composition of the hematomas. Relationship with magnetic resonance imaging (MRI)

    NASA Astrophysics Data System (ADS)

    Rimbert, J. N.; Lafargue, C.; Pachot, M.; Dumas, F.; Eugene, M.; Brunelle, F.; Lallemand, D.

    1990-07-01

    Biochemical constitution of the hematoma is depending of its evolution. In order to obtain a reliable diagnostic of the NMR images in case of vascular accidents, a systematic study of the time-evolution of hematomas has been performed, using Mössbauer spectrometry and complementary technics (ESR and visible absorption spectrophotometry). The change, in the course of time, of HbO2 in deoxyhemoglobin Hb and other denaturation products (MHb, hemi- and hemochromes,…) are well-recognized on the different spectra. T 1 and T 2 NMR relaxation times are measured in the same time and their shortening is related to the appearance of the paramagnetic denaturation blood compounds.

  12. Correlated parameter fit of arrhenius model for thermal denaturation of proteins and cells.

    PubMed

    Qin, Zhenpeng; Balasubramanian, Saravana Kumar; Wolkers, Willem F; Pearce, John A; Bischof, John C

    2014-12-01

    Thermal denaturation of proteins is critical to cell injury, food science and other biomaterial processing. For example protein denaturation correlates strongly with cell death by heating, and is increasingly of interest in focal thermal therapies of cancer and other diseases at temperatures which often exceed 50 °C. The Arrhenius model is a simple yet widely used model for both protein denaturation and cell injury. To establish the utility of the Arrhenius model for protein denaturation at 50 °C and above its sensitivities to the kinetic parameters (activation energy E a and frequency factor A) were carefully examined. We propose a simplified correlated parameter fit to the Arrhenius model by treating E a, as an independent fitting parameter and allowing A to follow dependently. The utility of the correlated parameter fit is demonstrated on thermal denaturation of proteins and cells from the literature as a validation, and new experimental measurements in our lab using FTIR spectroscopy to demonstrate broad applicability of this method. Finally, we demonstrate that the end-temperature within which the denaturation is measured is important and changes the kinetics. Specifically, higher E a and A parameters were found at low end-temperature (50 °C) and reduce as end-temperatures increase to 70 °C. This trend is consistent with Arrhenius parameters for cell injury in the literature that are significantly higher for clonogenics (45-50 °C) vs. membrane dye assays (60-70 °C). Future opportunities to monitor cell injury by spectroscopic measurement of protein denaturation are discussed.

  13. Correlated Parameter Fit of Arrhenius Model for Thermal Denaturation of Proteins and Cells

    PubMed Central

    Qin, Zhenpeng; Balasubramanian, Saravana Kumar; Wolkers, Willem F.; Pearce, John A.; Bischof, John C.

    2014-01-01

    Thermal denaturation of proteins is critical to cell injury, food science and other biomaterial processing. For example protein denaturation correlates strongly with cell death by heating, and is increasingly of interest in focal thermal therapies of cancer and other diseases at temperatures which often exceed 50 °C. The Arrhenius model is a simple yet widely used model for both protein denaturation and cell injury. To establish the utility of the Arrhenius model for protein denaturation at 50 °C and above its sensitivities to the kinetic parameters (activation energy Ea and frequency factor A) were carefully examined. We propose a simplified correlated parameter fit to the Arrhenius model by treating Ea, as an independent fitting parameter and allowing A to follow dependently. The utility of the correlated parameter fit is demonstrated on thermal denaturation of proteins and cells from the literature as a validation, and new experimental measurements in our lab using FTIR spectroscopy to demonstrate broad applicability of this method. Finally, we demonstrate that the end-temperature within which the denaturation is measured is important and changes the kinetics. Specifically, higher Ea and A parameters were found at low end-temperature (50°C) and reduce as end-temperatures increase to 70 °C. This trend is consistent with Arrhenius parameters for cell injury in the literature that are significantly higher for clonogenics (45 – 50 °C) vs. membrane dye assays (60 –70 °C). Future opportunities to monitor cell injury by spectroscopic measurement of protein denaturation are discussed. PMID:25205396

  14. Energetic rationale for an unexpected and abrupt reversal of guanidinium chloride-induced unfolding of peptide deformylase.

    PubMed

    Berg, Alexander K; Manokaran, Sumathra; Eiler, Daniel; Kooren, Joel; Mallik, Sanku; Srivastava, D K

    2008-01-01

    Peptide deformylase (PDF) catalyzes the removal of formyl group from the N-terminal methionine residues of nascent proteins in prokaryotes, and this enzyme is a high priority target for antibiotic design. In pursuit of delineating the structural-functional features of Escherichia coli PDF (EcPDF), we investigated the mechanistic pathway for the guanidinium chloride (GdmCl)-induced unfolding of the enzyme by monitoring the secondary structural changes via CD spectroscopy. The experimental data revealed that EcPDF is a highly stable enzyme, and it undergoes slow denaturation in the presence of varying concentrations of GdmCl. The most interesting aspect of these studies has been the abrupt reversal of the unfolding pathway at low to moderate concentrations of the denaturant, but not at high concentration. An energetic rationale for such an unprecedented feature in protein chemistry is offered.

  15. Association of denatured whey proteins with casein micelles in heated reconstituted skim milk and its effect on casein micelle size.

    PubMed

    Anema, Skelte G; Li, Yuming

    2003-02-01

    When skim milk at pH 6.55 was heated (75 to 100 degrees C for up to 60 min), the casein micelle size, as monitored by photon correlation spectroscopy, was found to increase during the initial stages of heating and tended to plateau on prolonged heating. At any particular temperature, the casein micelle size increased with longer holding times, and, at any particular holding time, the casein micelle size increased with increasing temperature. The maximum increase in casein micelle size was about 30-35 nm. The changes in casein micelle size were poorly correlated with the level of whey protein denaturation. However, the changes in casein micelle size were highly correlated with the levels of denatured whey proteins that were associated with the casein micelles. The rate of association of the denatured whey proteins with the casein micelles was considerably slower than the rate of denaturation of the whey proteins. Removal of the whey proteins from the skim milk resulted in only small changes in casein micelle size during heating. Re-addition of beta-lactoglobulin to the whey-protein-depleted milk caused the casein micelle size to increase markedly on heat treatment. The changes in casein micelle size induced by the heat treatment of skim milk may be a consequence of the whey proteins associating with the casein micelles. However, these associated whey proteins would need to occlude a large amount of serum to account for the particle size changes. Separate experiments showed that the viscosity changes of heated milk and the estimated volume fraction changes were consistent with the particle size changes observed. Further studies are needed to determine whether the changes in size are due to the specific association of whey proteins with the micelles or whether a low level of aggregation of the casein micelles accompanies this association behaviour. Preliminary studies indicated lower levels of denatured whey proteins associated with the casein micelles and smaller changes in casein micelle size occurred as the pH of the milk was increased from pH 6.5 to pH 6.7.

  16. 27 CFR 20.148 - Manufacture of articles with completely denatured alcohol.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Manufacture of articles with completely denatured alcohol. 20.148 Section 20.148 Alcohol, Tobacco Products and Firearms ALCOHOL... ALCOHOL AND RUM Sale and Use of Completely Denatured Alcohol § 20.148 Manufacture of articles with...

  17. 19 CFR 10.56 - Vegetable oils, denaturing; release.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Vegetable oils, denaturing; release. 10.56 Section... Vegetable Oils § 10.56 Vegetable oils, denaturing; release. (a) Olive, palm-kernel, rapeseed, sunflower, and sesame oil shall be classifiable under subheadings 1509.10.20, 1509.10.40, 1509.90.20, 1509.90.40, 1510...

  18. 19 CFR 10.56 - Vegetable oils, denaturing; release.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Vegetable oils, denaturing; release. 10.56 Section... Vegetable Oils § 10.56 Vegetable oils, denaturing; release. (a) Olive, palm-kernel, rapeseed, sunflower, and sesame oil shall be classifiable under subheadings 1509.10.20, 1509.10.40, 1509.90.20, 1509.90.40, 1510...

  19. 19 CFR 10.56 - Vegetable oils, denaturing; release.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Vegetable oils, denaturing; release. 10.56 Section... Vegetable Oils § 10.56 Vegetable oils, denaturing; release. (a) Olive, palm-kernel, rapeseed, sunflower, and sesame oil shall be classifiable under subheadings 1509.10.20, 1509.10.40, 1509.90.20, 1509.90.40, 1510...

  20. 19 CFR 10.56 - Vegetable oils, denaturing; release.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Vegetable oils, denaturing; release. 10.56 Section... Vegetable Oils § 10.56 Vegetable oils, denaturing; release. (a) Olive, palm-kernel, rapeseed, sunflower, and sesame oil shall be classifiable under subheadings 1509.10.20, 1509.10.40, 1509.90.20, 1509.90.40, 1510...

  1. 19 CFR 10.56 - Vegetable oils, denaturing; release.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Vegetable oils, denaturing; release. 10.56 Section... Vegetable Oils § 10.56 Vegetable oils, denaturing; release. (a) Olive, palm-kernel, rapeseed, sunflower, and sesame oil shall be classifiable under subheadings 1509.10.20, 1509.10.40, 1509.90.20, 1509.90.40, 1510...

  2. In vitro anti-denaturation and anti-hyaluronidase activities of extracts and galactolipids from leaves of Impatiens parviflora DC.

    PubMed

    Grabowska, Karolina; Podolak, Irma; Galanty, Agnieszka; Załuski, Daniel; Makowska-Wąs, Justyna; Sobolewska, Danuta; Janeczko, Zbigniew; Żmudzki, Paweł

    2016-01-01

    The in vitro anti-denaturation and anti-hyaluronidase activities of Impatiens parviflora extracts and isolated galactolipids (MGDG-1, DGDG-1) were investigated. This is the first report on these compounds in I. parviflora. All extracts showed anti-hyaluronidase activity, but only methanolic extract from fresh leaves exhibited significant activity against heat-induced denaturation of BSA in a dose-dependent manner. At 500 μg/mL, the extract and the reference drug showed 79.05% and 99.81% inhibition of protein denaturation, respectively. These results indicate that fresh leaves of I. parviflora may be beneficial in inflammatory conditions, especially those associated with protein denaturation, such as rheumatoid arthritis. The study revealed that only MGDG-1 showed weak activity in anti-denaturation assay but both galactolipids were potent inhibitors of hyaluronidase. MGDG-1 completely inhibited the enzyme activity at the concentration of 127.9 μg/mL. These results indicate the potential of galactolipids in the treatment of diseases associated with the loss of hyaluronic acid.

  3. Native denaturation differential scanning fluorimetry: Determining the effect of urea using a quantitative real-time thermocycler.

    PubMed

    Childers, Christine L; Green, Stuart R; Dawson, Neal J; Storey, Kenneth B

    2016-09-01

    The effect of protein stability on kinetic function is monitored with many techniques that often require large amounts of expensive substrates and specialized equipment not universally available. We present differential scanning fluorimetry (DSF), a simple high-throughput assay performed in real-time thermocyclers, as a technique for analysis of protein unfolding. Furthermore, we demonstrate a correlation between the half-maximal rate of protein unfolding (Knd), and protein unfolding by urea (I50). This demonstrates that DSF methods can determine the structural stability of an enzyme's active site and can compare the relative structural stability of homologous enzymes with a high degree of sequence similarity. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Single-molecule study of the DNA denaturation phase transition in the force-torsion space.

    PubMed

    Salerno, D; Tempestini, A; Mai, I; Brogioli, D; Ziano, R; Cassina, V; Mantegazza, F

    2012-09-14

    We use the "magnetic tweezers" technique to show the structural transitions that the DNA undergoes in the force-torsion space. In particular, we focus on the regions corresponding to negative supercoiling. These regions are characterized by the formation of the so-called denaturation bubbles, which play an essential role in the replication and transcription of DNA. We experimentally map the region of the force-torsion space where the denaturation takes place. We observe that large fluctuations in DNA extension occur at one of the boundaries of this region, i.e., when the formation of denaturation bubbles and of plectonemes compete. To describe the experiments, we introduce a suitable extension of the classical model. The model correctly describes the position of the denaturation regions, the transition boundaries, and the measured values of the DNA extension fluctuations.

  5. Single-Molecule Study of the DNA Denaturation Phase Transition in the Force-Torsion Space

    NASA Astrophysics Data System (ADS)

    Salerno, D.; Tempestini, A.; Mai, I.; Brogioli, D.; Ziano, R.; Cassina, V.; Mantegazza, F.

    2012-09-01

    We use the “magnetic tweezers” technique to show the structural transitions that the DNA undergoes in the force-torsion space. In particular, we focus on the regions corresponding to negative supercoiling. These regions are characterized by the formation of the so-called denaturation bubbles, which play an essential role in the replication and transcription of DNA. We experimentally map the region of the force-torsion space where the denaturation takes place. We observe that large fluctuations in DNA extension occur at one of the boundaries of this region, i.e., when the formation of denaturation bubbles and of plectonemes compete. To describe the experiments, we introduce a suitable extension of the classical model. The model correctly describes the position of the denaturation regions, the transition boundaries, and the measured values of the DNA extension fluctuations.

  6. Radioprotective Thiolamines WR-1065 and WR-33278 Selectively Denature Nonhistone Nuclear Proteins

    NASA Technical Reports Server (NTRS)

    Booth, Valerie K.; Roberts, Jeanette C.; Warters, Raymond L.; Wilmore, Britta H.; Lepock, James R.

    2000-01-01

    Differential scanning calorimetry was used to study the interactions of nuclei isolated from Chinese hamster V79 cells with the radioprotector WR-1065, other thiol compounds, and polyamines. Differential scanning calorimetry monitors denaturation of macromolecules and resolves the major nuclear components (e.g. constrained and relaxed DNA, nucleosome core, and nuclear matrix) of intact nuclei on the basis of thermal stability. WR-1065 treatment (0.5-10 mM) of isolated nuclei led to the irreversible denaturation of nuclear proteins, a fraction of which are nuclear matrix proteins. Denaturation of 50% of the total nonhistone nuclear protein content of isolated nuclei occurred after exposure to 4.7 mM WR-1065 for 20 min at 23 C. In addition, a 22% increase in the insoluble protein content of nuclei isolated from V79 cells that had been treated with 4 mM WR-1065 for 30 min at 37 C was observed, indicating that WR-1065-induced protein denaturation occurs not only in isolated nuclei but also in the nuclei of intact cells. From the extent of the increase in insoluble protein in the nucleus, protein denaturation by WR-1065 is expected to contribute to drug toxicity at concentrations greater than approximately 4 mM. WR-33278, the disulfide form of WR1065, was approximately twice as effective as the free thiol at denaturing nuclear proteins. The proposed mechanism for nucleoprotein denaturation is through direct interactions with protein cysteine groups with the formation of destabilizing protein-WR-1065 disulfides. In comparison to its effect on nuclear proteins in isolated nuclei, WR-1065 had only a very small effect on non-nuclear proteins of whole cells, isolated nuclear matrix, or the thiol-rich Ca (2+) ATPase of sarcoplasmic reticulum, indicating that WR-1065 can effectively denature protein only inside an intact nucleus, probably due to the increased concentration of the positively charged drug in the vicinity of DNA.

  7. The Influence of Fluorocarbon and Hydrocarbon Acyl Groups at the Surface of Bovine Carbonic Anhydrase II on the Kinetics of Denaturation by Sodium Dodecyl Sulfate

    PubMed Central

    Lee, Andrew; Mirica, Katherine A.; Whitesides, George M.

    2011-01-01

    This paper examines the influence of acylation of the Lys-ε-NH3+ groups of bovine carbonic anhydrase (BCA, E.C. 4.2.1.1) to Lys-ε-NHCOR (R = -CH3, -CH2CH3, and -CH(CH3)2, -CF3) on the rate of denaturation of this protein in buffer containing sodium dodecyl sulfate (SDS). Analysis of the rates suggested separate effects due to electrostatic charge and hydrophobic interactions. Rates of denaturation (kAc,n) of each series of acylated derivatives depended on the number of acylations (n). Plots of log kAc,n vs. n followed U-shaped curves. Within each series of derivatives, rates of denaturation decreased as n increased to ~7; this decrease was compatible with increasingly unfavorable electrostatic interactions between SDS and protein. In this range of n, rates of denaturation also depended on the choice of the acyl group as n increased to ~7, in a manner compatible with favorable hydrophobic interactions between SDS and the -NHCOR groups. As n increased in the range 7 < n < 14 however, rates of denaturation stayed approximately constant; analysis suggested these rates were compatible with an increasingly important contribution to denaturation that depended both on the net negative charge of the protein and on the hydrophobicity of the R group. The mechanism of denaturation thus seems to change with the extent of acylation of the protein. For derivatives with the same net electrostatic charge, rates of denaturation increased with the acyl group (by a factor of ~3 for n ~ 14) in the order CH3CONH- < CH3CH2CONH- < (CH3)2CHCONH- < CF3CONH-. These results suggested that the hydrophobicity of CF3CONH- is slightly greater (by a factor of < 2) than that of RHCONH- similar in surface area. PMID:21182314

  8. Influence of fluorocarbon and hydrocarbon acyl groups at the surface of bovine carbonic anhydrase II on the kinetics of denaturation by sodium dodecyl sulfate.

    PubMed

    Lee, Andrew; Mirica, Katherine A; Whitesides, George M

    2011-02-10

    This paper examines the influence of acylation of the Lys-ε-NH(3)(+) groups of bovine carbonic anhydrase (BCA, EC 4.2.1.1) to Lys-ε-NHCOR (R = -CH(3), -CH(2)CH(3), and -CH(CH(3))(2), -CF(3)) on the rate of denaturation of this protein in buffer containing sodium dodecyl sulfate (SDS). Analysis of the rates suggested separate effects due to electrostatic charge and hydrophobic interactions. Rates of denaturation (k(Ac,n)) of each series of acylated derivatives depended on the number of acylations (n). Plots of log k(Ac,n) vs n followed U-shaped curves. Within each series of derivatives, rates of denaturation decreased as n increased to ∼7; this decrease was compatible with increasingly unfavorable electrostatic interactions between SDS and protein. In this range of n, rates of denaturation also depended on the choice of the acyl group as n increased to ∼7, in a manner compatible with favorable hydrophobic interactions between SDS and the -NHCOR groups. As n increased in the range 7 < n < 14, however, rates of denaturation stayed approximately constant; analysis suggested that these rates were compatible with an increasingly important contribution to denaturation that depended both on the net negative charge of the protein and on the hydrophobicity of the R group. The mechanism of denaturation thus seems to change with the extent of acylation of the protein. For derivatives with the same net electrostatic charge, rates of denaturation increased with the acyl group (by a factor of ∼3 for n ∼ 14) in the order CH(3)CONH- < CH(3)CH(2)CONH- < (CH(3))(2)CHCONH- < CF(3)CONH-. These results suggested that the hydrophobicity of CF(3)CONH- is slightly greater (by a factor of <2) than that of RHCONH- with similar surface area.

  9. Complement-fixing antibodies against denatured HLA and MICA antigens are associated with antibody mediated rejection.

    PubMed

    Cai, Junchao; Terasaki, Paul I; Zhu, Dong; Lachmann, Nils; Schönemann, Constanze; Everly, Matthew J; Qing, Xin

    2016-02-01

    We have found antibodies against denatured HLA class I antigens in the serum of allograft recipients which were not significantly associated with graft failure. It is unknown whether transplant recipients also have denatured HLA class II and MICA antibodies. The effects of denatured HLA class I, class II, and MICA antibodies on long-term graft outcome were further investigated based on their ability to fix complement c1q. In this 4-year retrospective cohort study, post-transplant sera from 975 kidney transplant recipients were tested for antibodies against denatured HLA/MICA antigens and these antibodies were further classified based on their ability to fix c1q. Thirty percent of patients had antibodies against denatured HLA class I, II, or MICA antigens. Among them, 8.5% and 21.5% of all patients had c1q-fixing and non c1q-fixing antibodies respectively. There was no significant difference on graft survival between patients with or without antibodies against denatured HLA/MICA. However, when these antibodies were further classified according to their ability to fix c1q, patients with c1q-fixing antibodies had a significantly lower graft survival rate than patients without antibodies or patients with non c1q-fixing antibodies (p=0.008). In 169 patients who lost renal grafts, 44% of them had c1q-fixing antibodies against denatured HLA/MICA antigens, which was significantly higher than that in patients with functioning renal transplants (25%, p<0.0001). C1q-fixing antibodies were more significantly associated with graft failure caused by AMR (72.73%) or mixed AMR/CMR (61.9%) as compared to failure due to CMR (35.3%) or other causes (39.2%) (p=0.026). Transplant recipients had antibodies against denatured HLA class I, II, and MICA antigens. However, only c1q-fixing antibodies were associated with graft failure which was related to antibody mediated rejection. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Heat-denatured lysozyme could be a novel disinfectant for reducing hepatitis A virus and murine norovirus on berry fruit.

    PubMed

    Takahashi, Michiko; Okakura, Yumiko; Takahashi, Hajime; Imamura, Minami; Takeuchi, Akira; Shidara, Hiroyuki; Kuda, Takashi; Kimura, Bon

    2018-02-02

    Hepatitis A virus (HAV) is well known worldwide as a causative virus of acute hepatitis. In recent years, numerous cases of HAV infection caused by HAV-contaminated berries have occurred around the world. Because berries are often consumed without prior heating, reliable disinfection of the raw fruit is important in order to prevent HAV outbreaks. Previous studies have found that murine norovirus strain 1 (MNV-1) and human norovirus GII.4 were inactivated in heat-denatured lysozyme solution. In this study, we investigated whether or not heat-denatured lysozyme is effective in inactivating HAV and whether it could be an effective disinfectant for berries contaminated with HAV or MNV-1. We examined the inactivating effect of heat-denatured lysozyme on three strains of HAV and found that it reduced the infectivity of all three strains. We then immersed blueberries and mixed berries into solutions of HAV or MNV-1, and disinfected them by soaking them in 1% heat-denatured lysozyme for 1min. Consequently, the infectious HAV and MNV-1 contaminating the berries were decreased by >3.1 log units in all samples. Our results demonstrate that heat-denatured lysozyme effectively inactivates HAV and suggest that heat-denatured lysozyme may be an effective disinfectant for berry fruit, which is a potential source of HAV food poisoning. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. 9 CFR 325.13 - Denaturing procedures.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) Tripe may be denatured by dipping it in a 6 percent solution of tannic acid for 1 minute followed by... coloring; (4) Meat may be denatured by dipping it in a solution of 0.0625 percent tannic acid, followed by... carbolic acid; cresylic disinfectant; a formula consisting of 1 part FD&C green No. 3 coloring, 40 parts...

  12. 9 CFR 325.13 - Denaturing procedures.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) Tripe may be denatured by dipping it in a 6 percent solution of tannic acid for 1 minute followed by... coloring; (4) Meat may be denatured by dipping it in a solution of 0.0625 percent tannic acid, followed by... carbolic acid; cresylic disinfectant; a formula consisting of 1 part FD&C green No. 3 coloring, 40 parts...

  13. 27 CFR 19.385 - Making alcohol or water solutions of denaturants.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Making alcohol or water solutions of denaturants. 19.385 Section 19.385 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL DISTILLED SPIRITS PLANTS Denaturing Operations and Manufacture of Articles Rules for...

  14. Structural stability of DNA origami nanostructures in the presence of chaotropic agents

    NASA Astrophysics Data System (ADS)

    Ramakrishnan, Saminathan; Krainer, Georg; Grundmeier, Guido; Schlierf, Michael; Keller, Adrian

    2016-05-01

    DNA origami represent powerful platforms for single-molecule investigations of biomolecular processes. The required structural integrity of the DNA origami may, however, pose significant limitations regarding their applicability, for instance in protein folding studies that require strongly denaturing conditions. Here, we therefore report a detailed study on the stability of 2D DNA origami triangles in the presence of the strong chaotropic denaturing agents urea and guanidinium chloride (GdmCl) and its dependence on concentration and temperature. At room temperature, the DNA origami triangles are stable up to at least 24 h in both denaturants at concentrations as high as 6 M. At elevated temperatures, however, structural stability is governed by variations in the melting temperature of the individual staple strands. Therefore, the global melting temperature of the DNA origami does not represent an accurate measure of their structural stability. Although GdmCl has a stronger effect on the global melting temperature, its attack results in less structural damage than observed for urea under equivalent conditions. This enhanced structural stability most likely originates from the ionic nature of GdmCl. By rational design of the arrangement and lengths of the individual staple strands used for the folding of a particular shape, however, the structural stability of DNA origami may be enhanced even further to meet individual experimental requirements. Overall, their high stability renders DNA origami promising platforms for biomolecular studies in the presence of chaotropic agents, including single-molecule protein folding or structural switching.DNA origami represent powerful platforms for single-molecule investigations of biomolecular processes. The required structural integrity of the DNA origami may, however, pose significant limitations regarding their applicability, for instance in protein folding studies that require strongly denaturing conditions. Here, we therefore report a detailed study on the stability of 2D DNA origami triangles in the presence of the strong chaotropic denaturing agents urea and guanidinium chloride (GdmCl) and its dependence on concentration and temperature. At room temperature, the DNA origami triangles are stable up to at least 24 h in both denaturants at concentrations as high as 6 M. At elevated temperatures, however, structural stability is governed by variations in the melting temperature of the individual staple strands. Therefore, the global melting temperature of the DNA origami does not represent an accurate measure of their structural stability. Although GdmCl has a stronger effect on the global melting temperature, its attack results in less structural damage than observed for urea under equivalent conditions. This enhanced structural stability most likely originates from the ionic nature of GdmCl. By rational design of the arrangement and lengths of the individual staple strands used for the folding of a particular shape, however, the structural stability of DNA origami may be enhanced even further to meet individual experimental requirements. Overall, their high stability renders DNA origami promising platforms for biomolecular studies in the presence of chaotropic agents, including single-molecule protein folding or structural switching. Electronic supplementary information (ESI) available: Melting curves without baseline subtraction, AFM images of DNA origami after 24 h incubation, calculated melting temperatures of all staple strands. See DOI: 10.1039/c6nr00835f

  15. Purification and characterization of a hygromycin B phosphotransferase from Streptomyces hygroscopicus.

    PubMed

    Zalacain, M; Pardo, J M; Jiménez, A

    1987-01-15

    A hygromycin B phosphotransferase activity from Streptomyces hygroscopicus has been highly purified by ammonium sulphate fractionation followed by affinity column chromatography through Sepharose-6B-hygromycin-B. The combined active fractions showed a single protein band (41 kDa) when subjected to polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate. When gel electrophoresis was performed under non-denaturing conditions, the single protein band promoted in situ phosphorylation of hygromycin B, indicating that this protein corresponded to the purified hygromycin B phosphotransferase. The enzyme has been purified 236-fold and approximate Km values of 0.56 microM for hygromycin B and ATP, respectively, were deduced.

  16. Thermal denaturation of egg protein under nanosecond pulsed laser heating of gold nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meshalkin, Yu P; Lapin, I N; Svetlichnyi, Valery A

    Thermal denaturation of egg protein in the presence of gold nanoparticles via their heating at the plasmon resonance wavelength by the pulsed radiation of the second harmonic of an Nd:YAG laser (532 nm) is investigated. The experimental dependence of the protein denaturation time on the mean laser power is obtained. The heating temperature of the medium with gold nanoparticles is calculated. The numerical estimates of the temperature of the heated medium containing protein and gold nanoparticles (45.3 deg. C at the moment of protein denaturation) are in good agreement with the literature data on its thermal denaturation and with themore » data of pyrometric measurements (42.0 {+-} 1.5 deg. C). The egg protein may be successfully used to investigate the specific features of laser heating of proteins in the presence of metal nanoparticles under their excitation at the plasmon resonance wavelength. (laser methods in biology)« less

  17. Role of the Acidic Tail of High Mobility Group Protein B1 (HMGB1) in Protein Stability and DNA Bending

    PubMed Central

    Belgrano, Fabricio S.; de Abreu da Silva, Isabel C.; Bastos de Oliveira, Francisco M.; Fantappié, Marcelo R.; Mohana-Borges, Ronaldo

    2013-01-01

    High mobility group box (HMGB) proteins are abundant nonhistone proteins found in all eukaryotic nuclei and are capable of binding/bending DNA. The human HMGB1 is composed of two binding motifs, known as Boxes A and B, are L-shaped alpha-helix structures, followed by a random-coil acidic tail that consists of 30 Asp and Glu residues. This work aimed at evaluating the role of the acidic tail of human HMGB1 in protein stability and DNA interactions. For this purpose, we cloned, expressed and purified HMGB1 and its tailless form, HMGB1ΔC, in E. coli strain. Tryptophan fluorescence spectroscopy and circular dichroism (CD) experiments clearly showed an increase in protein stability promoted by the acidic tail under different conditions, such as the presence of the chemical denaturant guanidine hydrochloride (Gdn.HCl), high temperature and low pH. Folding intermediates found at low pH for both proteins were denatured only in the presence of chemical denaturant, thus showing a relatively high stability. The acidic tail did not alter the DNA-binding properties of the protein, although it enhanced the DNA bending capability from 76° (HMGB1ΔC) to 91° (HMGB1), as measured using the fluorescence resonance energy transfer technique. A model of DNA bending in vivo was proposed, which might help to explain the interaction of HMGB1 with DNA and other proteins, i.e., histones, and the role of that protein in chromatin remodeling. PMID:24255708

  18. Effects of thermally induced denaturation on technological-functional properties of whey protein isolate-based films.

    PubMed

    Schmid, M; Krimmel, B; Grupa, U; Noller, K

    2014-09-01

    This study examined how and to what extent the degree of denaturation affected the technological-functional properties of whey protein isolate (WPI)-based coatings. It was observed that denaturation affected the material properties of WPI-coated films significantly. Surface energy decreased by approximately 20% compared with native coatings. Because the surface energy of a coating should be lower than that of the substrate, this might result in enhanced wettability characteristics between WPI-based solution and substrate surface. Water vapor barrier properties increased by about 35% and oxygen barrier properties increased by approximately 33%. However, significant differences were mainly observed between coatings made of fully native WPI and ones with a degree of denaturation of 25%. Higher degrees of denaturation did not lead to further improvement of material properties. This observation offers cost-saving potential: a major share of denatured whey proteins may be replaced by fully native ones that are not exposed to energy-intensive heat treatment. Furthermore, native WPI solutions can be produced with higher dry matter content without gelatinizing. Hence, less moisture has to be removed through drying, resulting in reduced energy consumption. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Cold denaturation and 2H2O stabilization of a staphylococcal nuclease mutant.

    PubMed Central

    Antonino, L C; Kautz, R A; Nakano, T; Fox, R O; Fink, A L

    1991-01-01

    Cold denaturation is now recognized as a general property of proteins but has been observed only under destabilizing conditions, such as moderate denaturant concentration or low pH. By destabilizing the protein using site-directed mutagenesis, we have observed cold denaturation at pH 7.0 in the absence of denaturants in a mutant of staphylococcal nuclease, which we call NCA S28G for a hybrid protein between staphylococcal nuclease and concanavalin A in which there is the point mutation Ser-28----Gly. The temperature of maximum stability (tmax) as determined by circular dichroism (CD) was 18.1 degrees C, and the midpoints of the thermal unfolding transitions (tm) were 0.6 degrees C and 30.0 degrees C. These values may be compared with the tm of 52.5 degrees C for wild-type staphylococcal nuclease, for which no cold denaturation was observed under these conditions. When the stability of the mutant was examined in 2H2O by NMR, CD, or fluorescence, a substantial increase in the amount of folded protein at the tmax was noted as well as a decrease in tmax, reflecting increased stability. PMID:1652762

  20. Anti-myeloperoxidase autoantibodies react with native but not denatured myeloperoxidase.

    PubMed Central

    Falk, R J; Becker, M; Terrell, R; Jennette, J C

    1992-01-01

    We wondered whether anti-myeloperoxidase (MPO) autoantibodies (MPO-ANCA) found in patients with systemic vasculitis react with a conformational epitope or epitopes on the MPO molecule. Sera from 15 human MPO-ANCA, and a polyclonal and a monoclonal anti-MPO antibodies were reacted with MPO in native and denatured states. Human MPO-ANCA and mouse monoclonal anti-MPO reacted with native MPO, and a 120-kD band representing the MPO hologenzyme, but not with denatured MPO fragments; however, MPO-ANCA and mouse anti-MPO did not demonstrate competitive inhibition of binding to MPO. Polyclonal rabbit anti-MPO reacted with both native and denatured MPO. All MPO-ANCA tested showed the same patterns of reactivity with native and denatured MPO in dot blot and Western blot analyses. Both polyclonal and monoclonal anti-MPO antibodies inhibited MPO's protein iodination by over 90%, whereas MPO-ANCA IgGs, normal IgGs and disease control IgGs did not. These data suggest that (i) MPO-ANCA interact with a conformational epitope on the MPO molecule; and (ii) MPO-ANCA from different patients have similar reactivity with native versus denatured MPO. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:1379133

  1. Effects of two solvent conditions on the free energy landscape of the BBL peripheral subunit binding domain.

    PubMed

    Liu, Hanzhong; Huo, Shuanghong

    2012-01-12

    BBL is a small independently folding domain with two main parallel helices. The experiment of C(α) secondary shifts has shown that changing the pH from ~7 to ~5 results in the reduced helicity at the C-terminus of helix 2. Combining constant pH molecular dynamics with replica exchange, we sampled the protein conformation space and protonation states extensively under a neutral pH condition and an acidic condition. Our results reveal that the solvent conditions influence the free energy landscape. Under the neutral pH condition, the denatured state and the native state are well separated. The condition of the acidic pH reshapes the free energy surface, leading to a broadly populated denatured-state basin and a low free energy barrier between the denatured state and the native state. The acidic pH shifts the equilibrium between the denatured state and the native state in favor of the denatured state. Caution must be used to interpret experimental data under the acidic condition because the contribution of the denatured state is significant. Our simulation results are supported by the fact that the calculated chemical shifts are in good agreement with the experiment data.

  2. Less is More: Membrane Protein Digestion Beyond Urea-Trypsin Solution for Next-level Proteomics.

    PubMed

    Zhang, Xi

    2015-09-01

    The goal of next-level bottom-up membrane proteomics is protein function investigation, via high-coverage high-throughput peptide-centric quantitation of expression, modifications and dynamic structures at systems scale. Yet efficient digestion of mammalian membrane proteins presents a daunting barrier, and prevalent day-long urea-trypsin in-solution digestion proved insufficient to reach this goal. Many efforts contributed incremental advances over past years, but involved protein denaturation that disconnected measurement from functional states. Beyond denaturation, the recent discovery of structure/proteomics omni-compatible detergent n-dodecyl-β-d-maltopyranoside, combined with pepsin and PNGase F columns, enabled breakthroughs in membrane protein digestion: a 2010 DDM-low-TCEP (DLT) method for H/D-exchange (HDX) using human G protein-coupled receptor, and a 2015 flow/detergent-facilitated protease and de-PTM digestions (FDD) for integrative deep sequencing and quantitation using full-length human ion channel complex. Distinguishing protein solubilization from denaturation, protease digestion reliability from theoretical specificity, and reduction from alkylation, these methods shifted day(s)-long paradigms into minutes, and afforded fully automatable (HDX)-protein-peptide-(tandem mass tag)-HPLC pipelines to instantly measure functional proteins at deep coverage, high peptide reproducibility, low artifacts and minimal leakage. Promoting-not destroying-structures and activities harnessed membrane proteins for the next-level streamlined functional proteomics. This review analyzes recent advances in membrane protein digestion methods and highlights critical discoveries for future proteomics. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Employment of colorimetric enzyme assay for monitoring expression and solubility of GST fusion proteins targeted to inclusion bodies.

    PubMed

    Mačinković, Igor S; Abughren, Mohamed; Mrkic, Ivan; Grozdanović, Milica M; Prodanović, Radivoje; Gavrović-Jankulović, Marija

    2013-12-01

    High levels of recombinant protein expression can lead to the formation of insoluble inclusion bodies. These complex aggregates are commonly solubilized in strong denaturants, such as 6-8M urea, although, if possible, solubilization under milder conditions could facilitate subsequent refolding and purification of bioactive proteins. Commercially available GST-tag assays are designed for quantitative measurement of GST activity under native conditions. GST fusion proteins accumulated in inclusion bodies are considered to be undetectable by such assays. In this work, solubilization of recombinantly produced proteins was performed in 4M urea. The activity of rGST was assayed in 2M urea and it was shown that rGST preserves 85% of its activity under such denaturing conditions. A colorimetric GST activity assay with 1-chloro-2, 4-dinitrobenzene (CDNB) was examined for use in rapid detection of expression targeted to inclusion bodies and for the identification of inclusion body proteins which can be solubilized in low concentrations of chaotropic agents. Applicability of the assay was evaluated by tracking protein expression of two GST-fused allergens of biopharmaceutical value in E. coli, GST-Der p 2 and GST-Mus a 5, both targeted to inclusion bodies. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Reversible and non-reversible thermal denaturation of lysozyme with varying pH at low ionic strength.

    PubMed

    Blumlein, Alice; McManus, Jennifer J

    2013-10-01

    DSC analysis has been used to quantify the reversibility of unfolding following thermal denaturation of lysozyme. Since the temperature at which protein unfolding occurs, Tm, varies with different solution conditions, the effect on the melting temperature and the degree of refolding after thermal denaturation in low ionic strength sodium phosphate buffers (5-1000mM) over a range of pH (5-9) in the presence/absence of disaccharides is examined. This study compares the enthalpies of unfolding during successive heating cycles to quantify reversibility following thermal denaturation. The disaccharides, trehalose and maltose were used to assess if the disaccharide induced increase in Tm is reflected in the reversibility of thermally induced denaturation. There was extensive overlap between the Tm values where non-reversible and reversible thermal denaturation occurred. Indeed, for pH6, at the highest and lowest Tm, no refolding was observed whereas refolding was observed for intermediate values, but with similar Tm values having different proportions of refolded protein. We established a method to measure the degree of reversible unfolding following thermal denaturation and hence indirectly, the degree to which protein is lost to irreversible aggregation, and show that solution conditions which increase melt transition temperatures do not automatically confer an increase in reversibility. This type of analysis may prove useful in assessing the stability of proteins in both the biopharmaceutical and food industries. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Selection for Protein Kinetic Stability Connects Denaturation Temperatures to Organismal Temperatures and Provides Clues to Archaean Life

    PubMed Central

    Romero-Romero, M. Luisa; Risso, Valeria A.; Martinez-Rodriguez, Sergio; Gaucher, Eric A.; Ibarra-Molero, Beatriz; Sanchez-Ruiz, Jose M.

    2016-01-01

    The relationship between the denaturation temperatures of proteins (Tm values) and the living temperatures of their host organisms (environmental temperatures: TENV values) is poorly understood. Since different proteins in the same organism may show widely different Tm’s, no simple universal relationship between Tm and TENV should hold, other than Tm≥TENV. Yet, when analyzing a set of homologous proteins from different hosts, Tm’s are oftentimes found to correlate with TENV’s but this correlation is shifted upward on the Tm axis. Supporting this trend, we recently reported Tm’s for resurrected Precambrian thioredoxins that mirror a proposed environmental cooling over long geological time, while remaining a shocking ~50°C above the proposed ancestral ocean temperatures. Here, we show that natural selection for protein kinetic stability (denaturation rate) can produce a Tm↔TENV correlation with a large upward shift in Tm. A model for protein stability evolution suggests a link between the Tm shift and the in vivo lifetime of a protein and, more specifically, allows us to estimate ancestral environmental temperatures from experimental denaturation rates for resurrected Precambrian thioredoxins. The TENV values thus obtained match the proposed ancestral ocean cooling, support comparatively high Archaean temperatures, and are consistent with a recent proposal for the environmental temperature (above 75°C) that hosted the last universal common ancestor. More generally, this work provides a framework for understanding how features of protein stability reflect the environmental temperatures of the host organisms. PMID:27253436

  6. A Distinct Proof on Interplay between Trehalose and Guanidinium Chloride for the Stability of Stem Bromelain.

    PubMed

    Rani, Anjeeta; Venkatesu, Pannuru

    2016-09-01

    Guanidinium chloride (GdnHCl), a potential denaturant, is well-known to denature a number of proteins in vitro as well as in vivo studies. Its deleterious action on stem bromelain (BM) is quite prominent resulting decrease in protein structure and stability. The counteraction of this adverse effect of GdnHCl by the use of osmolytes is scarcely studied and the mechanism is still illusive and not exclusive. For the first time, to test elegant and simple counteraction hypothesis as a general mechanism we utilized fluorescence, circular dichroism, Fourier transform infrared spectroscopy, and dynamic light scattering to study the counteraction of GdnHCl-induced denaturation of BM by the trehalose. It is revealed from the investigation of the results that trehalose is efficiently counteracting GdnHCl undesirable impacts on BM stability at molar ratio 1:1 of trehalose and GdnHCl. On the contrary, proteolytic activity of BM is increased only for the counteraction study of BM at very high concentrations of GdnHCl although still less than BM in buffer. The mutual exclusion of both trehalose and GdnHCl may stand for the counteraction of denaturation of BM resulting in a compact conformation with less solvent exposed surface area and increased secondary and tertiary structures. In addition, a decrease in BM-solvent interactions may also be contributing to some extent as there is little binding of trehalose replacing some water molecules and reducing binding of GdnHCl.

  7. Deciphering allogeneic antibody response against native and denatured HLA epitopes in organ transplantation.

    PubMed

    Visentin, Jonathan; Guidicelli, Gwendaline; Moreau, Jean-François; Lee, Jar-How; Taupin, Jean-Luc

    2015-07-01

    Anti-HLA donor-specific antibodies are deleterious for organ transplant survival. Class I HLA donor-specific antibodies are identified by using the Luminex single antigen beads (LSAB) assay, which also detects anti-denatured HLA antibodies (anti-dHLAs). Anti-dHLAs are thought to be unable to recognize native HLA (nHLA) on the cell surface and therefore to be clinically irrelevant. Acid denaturation of nHLA on LSAB allows anti-dHLAs to be discriminated from anti-nHLAs. We previously defined a threshold for the ratio between mean fluorescence intensity against acid-treated (D for denaturation) and nontreated (N) LSAB, D ≥ 1.2 N identifying the anti-dHLAs. However, some anti-dHLAs remained able to bind nHLA on lymphocytes in flow cytometry crossmatches, and some anti-nHLAs conserved significant reactivity toward acid-treated LSAB. After depleting serum anti-nHLA reactivity with HLA-typed cells, we analyzed the residual LSAB reactivity toward nontreated and acid-treated LSABs, and then evaluated the ability of antibodies to recognize nHLA alleles individually. We observed that sera can contain mixtures of anti-nHLAs and anti-dHLAs, or anti-nHLAs recognizing acid-resistant epitopes, all possibly targeting the same allele(s). Therefore, the anti-HLA antibody response can be highly complex and subtle, as is the accurate identification of pathogenic anti-HLA antibodies in human serum. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Dynamics of Ionic Liquid-Assisted Refolding of Denatured Cytochrome c: A Study of Preferential Interactions toward Renaturation.

    PubMed

    Singh, Upendra Kumar; Patel, Rajan

    2018-05-25

    In vitro refolding of denatured protein and the influence of the alkyl chain on the refolding of a protein were tested using long chain imidazolium chloride salts, 1-methyl-3-octylimidazolium chloride [C 8 mim][Cl], and 1-decyl-3-methylimidazolium chloride [C 10 mim][Cl]. The horse heart cytochrome c (h-cyt c) was denatured by urea and guanidinium hydrochloride (GdnHCl), as well as by base-induced denaturation at pH 13, to provide a broad overview of the overall refolding behavior. The variation in the alkyl chain of the ionic liquids (ILs) showed a profound effect on the refolding of denatured h-cyt c. The ligand-induced refolding was correlated to understand the mechanism of the conformational stability of proteins in aqueous solutions of ILs. The results showed that the long chain ILs having the [C 8 mim] + and [C 10 mim] + cations promote the refolding of alkali-denatured h-cyt c. The IL having the [C 10 mim] + cation efficiently refolded the alkali-denatured h-cyt c with the formation of the MG state, whereas the IL having the [C 8 mim] + cation, which is known to be compatible for protein stability, shows slight refolding and forms a different transition state. The lifetime results show successful refolding of alkaline-denatured h-cyt c by both of the ILs, however, more refolding was observed in the case of [C 10 mim][Cl], and this was correlated with the fast and medium lifetimes (τ 1 and τ 2 ) obtained, which show an increase accompanied by an increase in secondary structure. The hydrophobic interactions plays an important role in the refolding of chemically and alkali-denatured h-cyt c by long chain imidazolium ILs. The formation of the MG state by [C 10 mim][Cl] was also confirmed, as some regular structure exists far below the CMC of IL. The overall results suggested that the [C 10 mim] + cation bound to the unfolded h-cyt c triggers its refolding by electrostatic and hydrophobic interactions that stabilize the MG state.

  9. Metallothionein quantification in clams by reversed-phase high-performance liquid chromatography coupled to fluorescence detection after monobromobimane derivatization.

    PubMed

    Alhama, José; Romero-Ruiz, Antonio; López-Barea, Juan

    2006-02-24

    In this paper, we describe a highly specific, sensitive and reliable method for total metallothionein (MT) quantification by RP-HPLC coupled to fluorescence detection following reaction with monobromobimane of thiols from metal-depleted MT after heat-denaturation of extracts in the presence of sodium dodecyl sulphate (SDS). SDS-polyacrylamide gel electrophoresis (SDS-PAGE) confirmed the identity of the peak resolved (t(R)=16.44) with MT: a highly fluorescent protein of approximately 8.3 kDa, in agreement with the high thiol content and low MT size. Other heat-resistant and Cys-containing proteins of 35 kDa were efficiently separated. The new method was successfully used to quantify MT content in digestive gland of clams from southern Spanish coastal sites with different metal levels, and is proposed as a tool for using MTs as biomarker in monitoring programmes.

  10. An alternative explanation for the collapse of unfolded proteins in an aqueous mixture of urea and guanidinium chloride

    NASA Astrophysics Data System (ADS)

    Graziano, Giuseppe

    2014-09-01

    Molecular dynamics simulations have shown that a totally unfolded protein in aqueous 8 M urea undergoes a collapse transition on replacing urea molecules by guanidinium chloride, GdmCl, assuming a compact conformation in 4 M urea + 4 M GdmCl [J. Am. Chem. Soc. 134 (2012) 18266]. This is unexpected because GdmCl is a denaturant stronger than urea. It is shown that such collapse can originate from an increase in the magnitude of the solvent-excluded volume effect due the high density of urea + GdmCl mixtures, coupled to their low water number density that pushes denaturant molecules toward the protein surface.

  11. Heterogeneity of Equilibrium Molten Globule State of Cytochrome c Induced by Weak Salt Denaturants under Physiological Condition

    PubMed Central

    Rahaman, Hamidur; Alam Khan, Md. Khurshid; Hassan, Md. Imtaiyaz; Islam, Asimul; Moosavi-Movahedi, Ali Akbar; Ahmad, Faizan

    2015-01-01

    While many proteins are recognized to undergo folding via intermediate(s), the heterogeneity of equilibrium folding intermediate(s) along the folding pathway is less understood. In our present study, FTIR spectroscopy, far- and near-UV circular dichroism (CD), ANS and tryptophan fluorescence, near IR absorbance spectroscopy and dynamic light scattering (DLS) were used to study the structural and thermodynamic characteristics of the native (N), denatured (D) and intermediate state (X) of goat cytochorme c (cyt-c) induced by weak salt denaturants (LiBr, LiCl and LiClO4) at pH 6.0 and 25°C. The LiBr-induced denaturation of cyt-c measured by Soret absorption (Δε 400) and CD ([θ]409), is a three-step process, N ↔ X ↔ D. It is observed that the X state obtained along the denaturation pathway of cyt-c possesses common structural and thermodynamic characteristics of the molten globule (MG) state. The MG state of cyt-c induced by LiBr is compared for its structural and thermodynamic parameters with those found in other solvent conditions such as LiCl, LiClO4 and acidic pH. Our observations suggest: (1) that the LiBr-induced MG state of cyt-c retains the native Met80-Fe(III) axial bond and Trp59-propionate interactions; (2) that LiBr-induced MG state of cyt-c is more compact retaining the hydrophobic interactions in comparison to the MG states induced by LiCl, LiClO4 and 0.5 M NaCl at pH 2.0; and (3) that there exists heterogeneity of equilibrium intermediates along the unfolding pathway of cyt-c as highly ordered (X1), classical (X2) and disordered (X3), i.e., D ↔ X3 ↔ X2 ↔ X1 ↔ N. PMID:25849212

  12. Heterogeneity of equilibrium molten globule state of cytochrome c induced by weak salt denaturants under physiological condition.

    PubMed

    Rahaman, Hamidur; Alam Khan, Md Khurshid; Hassan, Md Imtaiyaz; Islam, Asimul; Moosavi-Movahedi, Ali Akbar; Ahmad, Faizan

    2015-01-01

    While many proteins are recognized to undergo folding via intermediate(s), the heterogeneity of equilibrium folding intermediate(s) along the folding pathway is less understood. In our present study, FTIR spectroscopy, far- and near-UV circular dichroism (CD), ANS and tryptophan fluorescence, near IR absorbance spectroscopy and dynamic light scattering (DLS) were used to study the structural and thermodynamic characteristics of the native (N), denatured (D) and intermediate state (X) of goat cytochorme c (cyt-c) induced by weak salt denaturants (LiBr, LiCl and LiClO4) at pH 6.0 and 25°C. The LiBr-induced denaturation of cyt-c measured by Soret absorption (Δε400) and CD ([θ]409), is a three-step process, N ↔ X ↔ D. It is observed that the X state obtained along the denaturation pathway of cyt-c possesses common structural and thermodynamic characteristics of the molten globule (MG) state. The MG state of cyt-c induced by LiBr is compared for its structural and thermodynamic parameters with those found in other solvent conditions such as LiCl, LiClO4 and acidic pH. Our observations suggest: (1) that the LiBr-induced MG state of cyt-c retains the native Met80-Fe(III) axial bond and Trp59-propionate interactions; (2) that LiBr-induced MG state of cyt-c is more compact retaining the hydrophobic interactions in comparison to the MG states induced by LiCl, LiClO4 and 0.5 M NaCl at pH 2.0; and (3) that there exists heterogeneity of equilibrium intermediates along the unfolding pathway of cyt-c as highly ordered (X1), classical (X2) and disordered (X3), i.e., D ↔ X3 ↔ X2 ↔ X1 ↔ N.

  13. On the Effect of Sodium Chloride and Sodium Sulfate on Cold Denaturation

    PubMed Central

    Pica, Andrea; Graziano, Giuseppe

    2015-01-01

    Both sodium chloride and sodium sulfate are able to stabilize yeast frataxin, causing an overall increase of its thermodynamic stability curve, with a decrease in the cold denaturation temperature and an increase in the hot denaturation one. The influence of low concentrations of these two salts on yeast frataxin stability can be assessed by the application of a theoretical model based on scaled particle theory. First developed to figure out the mechanism underlying cold denaturation in water, this model is able to predict the stabilization of globular proteins provided by these two salts. The densities of the salt solutions and their temperature dependence play a fundamental role. PMID:26197394

  14. Substrate-permeable encapsulation of enzymes maintains effective activity, stabilizes against denaturation, and protects against proteolytic degradation.

    PubMed

    Nasseau, M; Boublik, Y; Meier, W; Winterhalter, M; Fournier, D

    2001-12-05

    How can enzymes be protected against denaturation and proteolysis while keeping them in a fully functional state? One solution is to encapsulate the enzymes into liposomes, which enhances their stability against denaturation and proteases. However, the permeability barrier of the lipid membrane drastically reduces the activity of enzyme entrapped in the liposome by reducing the internal concentration of the substrate. To overcome this problem, we permeabilized the wall of the liposome by reconstitution of a porin from Escherichia coli. In this way, we recovered the full functionality of the enzyme while retaining the protection against denaturation and proteolytic enzymes. Copyright 2001 John Wiley & Sons, Inc.

  15. Measuring Variable Refractive Indices Using Digital Photos

    ERIC Educational Resources Information Center

    Lombardi, S.; Monroy, G.; Testa, I.; Sassi, E.

    2010-01-01

    A new procedure for performing quantitative measurements in teaching optics is presented. Application of the procedure to accurately measure the rate of change of the variable refractive index of a water-denatured alcohol mixture is described. The procedure can also be usefully exploited for measuring the constant refractive index of distilled…

  16. Accelerated Bone Repair After Plasma Laser Corticotomies

    PubMed Central

    Leucht, Philipp; Lam, Kentson; Kim, Jae-Beom; Mackanos, Mark A.; Simanovskii, Dmitrii M.; Longaker, Michael T.; Contag, Christopher H.; Schwettman, H Alan; Helms, Jill A.

    2007-01-01

    Objective: To reveal, on a cellular and molecular level, how skeletal regeneration of a corticotomy is enhanced when using laser-plasma mediated ablation compared with conventional mechanical tissue removal. Summary Background Data: Osteotomies are well-known for their most detrimental side effect: thermal damage. This thermal and mechanical trauma to adjacent bone tissue can result in the untoward consequences of cell death and eventually in a delay in healing. Methods: Murine tibial corticotomies were performed using a conventional saw and a Ti:Sapphire plasma-generated laser that removes tissue with minimal thermal damage. Our analyses began 24 hours after injury and proceeded to postsurgical day 6. We investigated aspects of wound repair ranging from vascularization, inflammation, cell proliferation, differentiation, and bone remodeling. Results: Histology of mouse corticotomy sites uncovered a significant difference in the onset of bone healing; whereas laser corticotomies showed abundant bone matrix deposition at postsurgical day 6, saw corticotomies only exhibited undifferentiated tissue. Our analyses uncovered that cutting bone with a saw caused denaturation of the collagen matrix due to thermal effects. This denatured collagen represented an unfavorable scaffold for subsequent osteoblast attachment, which in turn impeded deposition of a new bony matrix. The matrix degradation induced a prolonged inflammatory reaction at the cut edge to create a surface favorable for osteochondroprogenitor cell attachment. Laser corticotomies were absent of collagen denaturation, therefore osteochondroprogenitor cell attachment was enabled shortly after surgery. Conclusion: In summary, these data demonstrate that corticotomies performed with Ti:Sapphire lasers are associated with a reduced initial inflammatory response at the injury site leading to accelerated osteochondroprogenitor cell migration, attachment, differentiation, and eventually matrix deposition. PMID:17592303

  17. Purification of inclusion bodies using PEG precipitation under denaturing conditions to produce recombinant therapeutic proteins from Escherichia coli.

    PubMed

    Chen, Huanhuan; Li, Ninghuan; Xie, Yueqing; Jiang, Hua; Yang, Xiaoyi; Cagliero, Cedric; Shi, Siwei; Zhu, Chencen; Luo, Han; Chen, Junsheng; Zhang, Lei; Zhao, Menglin; Feng, Lei; Lu, Huili; Zhu, Jianwei

    2017-07-01

    It has been documented that the purification of inclusion bodies from Escherichia coli by size exclusion chromatography (SEC) may benefit subsequent refolding and recovery of recombinant proteins. However, loading volume and the high cost of the column limits its application in large-scale manufacturing of biopharmaceutical proteins. We report a novel process using polyethylene glycol (PEG) precipitation under denaturing conditions to replace SEC for rapid purification of inclusion bodies containing recombinant therapeutic proteins. Using recombinant human interleukin 15 (rhIL-15) as an example, inclusion bodies of rhIL-15 were solubilized in 7 M guanidine hydrochloride, and rhIL-15 was precipitated by the addition of PEG 6000. A final concentration of 5% (w/v) PEG 6000 was found to be optimal to precipitate target proteins and enhance recovery and purity. Compared to the previously reported S-200 size exclusion purification method, PEG precipitation was easier to scale up and achieved the same protein yields and quality of the product. PEG precipitation also reduced manufacturing time by about 50 and 95% of material costs. After refolding and further purification, the rhIL-15 product was highly pure and demonstrated a comparable bioactivity with a rhIL-15 reference standard. Our studies demonstrated that PEG precipitation of inclusion bodies under denaturing conditions holds significant potential as a manufacturing process for biopharmaceuticals from E. coli protein expression systems.

  18. A differential scanning calorimetric study of the effects of metal ions, substrate/product, substrate analogues and chaotropic anions on the thermal denaturation of yeast enolase 1.

    PubMed

    Brewer, J M; Wampler, J E

    2001-03-14

    The thermal denaturation of yeast enolase 1 was studied by differential scanning calorimetry (DSC) under conditions of subunit association/dissociation, enzymatic activity or substrate binding without turnover and substrate analogue binding. Subunit association stabilizes the enzyme, that is, the enzyme dissociates before denaturing. The conformational change produced by conformational metal ion binding increases thermal stability by reducing subunit dissociation. 'Substrate' or analogue binding additionally stabilizes the enzyme, irrespective of whether turnover is occurring, perhaps in part by the same mechanism. More strongly bound metal ions also stabilize the enzyme more, which we interpret as consistent with metal ion loss before denaturation, though possibly the denaturation pathway is different in the absence of metal ion. We suggest that some of the stabilization by 'substrate' and analogue binding is owing to the closure of moveable polypeptide loops about the active site, producing a more 'closed' and hence thermostable conformation.

  19. Imaging Prostate Cancer Microenvironment by Collagen Hybridization

    DTIC Science & Technology

    2015-10-01

    expected to exhibit selective affinity to metastatic PCa tumors known to contain processed and denatured collagens. The motivating hypothesis is that the...CMP’s ability to bind to collagen/ denatured collagen can be used to image PCa in vivo as well as to determine the level of PCa malignancy. 15...targeted by antibodies (monoclonal antibody raised against denatured collagen); however antibodies have poor pharmacokinetics for in vivo imaging2. Recently

  20. Experimental and Modelling Study of the Denaturation of Milk Protein by Heat Treatment

    PubMed Central

    Qian, Fang; Sun, Jiayue; Cao, Di; Tuo, Yanfeng; Jiang, Shujuan; Mu, Guangqing

    2017-01-01

    Heat treatment of milk aims to inhibit the growth of microbes, extend the shelf-life of products and improve the quality of the products. Heat treatment also leads to denaturation of whey protein and the formation of whey protein-casein polymer, which has negative effects on milk product. Hence the milk heat treatment conditions should be controlled in milk processing. In this study, the denaturation degree of whey protein and the combination degree of whey protein and casein when undergoing heat treatment were also determined by using the Native-PAGE and SDS-PAGE analysis. The results showed that the denaturation degree of whey protein and the combination degree of whey protein with casein extended with the increase of the heat-treated temperature and time. The effects of the heat-treated temperature and heat-treated time on the denaturation degree of whey protein and on the combination degree of whey protein and casein were well described using the quadratic regression equation. The analysis strategy used in this study reveals an intuitive and effective measure of the denaturation degree of whey protein, and the changes of milk protein under different heat treatment conditions efficiently and accurately in the dairy industry. It can be of great significance for dairy product proteins following processing treatments applied for dairy product manufacturing. PMID:28316470

  1. Urea-induced denaturation of human calcium/calmodulin-dependent protein kinase IV: a combined spectroscopic and MD simulation studies.

    PubMed

    Naz, Huma; Shahbaaz, Mohd; Haque, Md Anzarul; Bisetty, Krishna; Islam, Asimul; Ahmad, Faizan; Hassan, Md Imtaiyaz

    2017-02-01

    Calcium/calmodulin-dependent protein kinase IV (CaMKIV) is a multifunctional enzyme which belongs to the Ser/Thr kinase family. CaMKIV plays important role in varieties of biological processes such as gene expression regulation, memory consolidation, bone growth, T-cell maturation, sperm motility, regulation of microtubule dynamics, cell-cycle progression, and apoptosis. To measure stability parameters, urea-induced denaturation of CaMKIV was carried out at pH 7.4 and 25°C, using three different probes, namely far-UV CD, near-UV absorption, and tryptophan fluorescence. A coincidence of normalized denaturation curves of these optical properties suggests that urea-induced denaturation is a two-state process. Analysis of these denaturation curves gave values of 4.20 ± 0.12 kcal mol -1 , 2.95 ± 0.15 M, and 1.42 ± 0.06 kcal mol -1  M -1 for [Formula: see text] (Gibbs free energy change (ΔG D ) in the absence of urea), C m (molar urea concentration ([urea]) at the midpoint of the denaturation curve), and m (=∂ΔG D /∂[urea]), respectively. All these experimental observations have been fully supported by 30 ns molecular dynamics simulation studies.

  2. Kinetic and thermodynamic parameters for heat denaturation of human recombinant lactoferrin from rice.

    PubMed

    Castillo, Eduardo; Pérez, María Dolores; Franco, Indira; Calvo, Miguel; Sánchez, Lourdes

    2012-06-01

    Heat denaturation of recombinant human lactoferrin (rhLf) from rice with 3 different iron-saturation degrees, holo rhLf (iron-saturated), AsIs rhLf (60% iron saturation), and apo rhLf (iron-depleted), was studied. The 3 forms of rhLf were subjected to heat treatment, and the kinetic and thermodynamic parameters of the denaturation process were determined. Thermal denaturation of rhLf was assessed by measuring the loss of reactivity against specific antibodies. D(t) values (time to reduce 90% of immunoreactivity) decreased with increasing temperature of treatment for apo and holo rhLf, those values being higher for the iron-saturated form, which indicates that iron confers thermal stability to rhLf. However, AsIs rhLf showed a different behaviour with an increase in resistance to heat between 79 °C and 84 °C, so that the kinetic parameters could not be calculated. The heat denaturation process for apo and holo rhLf was best described assuming a reaction order of 1.5. The activation energy of the denaturation process was 648.20 kJ/mol for holo rhLf and 406.94 kJ/mol for apo rhLf, confirming that iron-depleted rhLf is more sensitive to heat treatment than iron-saturated rhLf.

  3. High pressure inactivation of relevant target microorganisms in poultry meat products and the evaluation of pressure-induced protein denaturation of marinated poultry under different high pressure treatments

    NASA Astrophysics Data System (ADS)

    Schmidgall, Johanna; Hertel, Christian; Bindrich, Ute; Heinz, Volker; Toepfl, Stefan

    2011-03-01

    In this study, the possibility of extending shelf life of marinated poultry meat products by high pressure processing was evaluated. Relevant spoilage and pathogenic strains were selected and used as target microorganisms (MOs) for challenge experiments. Meat and brine were inoculated with MOs and treated at 450 MPa, 4 °C for 3 min. The results of inactivation show a decreasing pressure tolerance in the series Lactobacillus > Arcobacter > Carnobacterium > Bacillus cereus > Brochothrix thermosphacta > Listeria monocytogenes. Leuconostoc gelidum exhibited the highest pressure tolerance in meat. A protective effect of poultry meat was found for L. sakei and L. gelidum. In parallel, the influence of different marinade formulations (pH, carbonates, citrates) on protein structure changes during a pressure treatment was investigated. Addition of sodium carbonate shows a protection against denaturation of myofibrillar proteins and provides a maximum water-holding capacity. Caustic marinades allowed a higher retention of product characteristics than low-pH marinades.

  4. Determination of gas phase protein ion densities via ion mobility analysis with charge reduction.

    PubMed

    Maisser, Anne; Premnath, Vinay; Ghosh, Abhimanyu; Nguyen, Tuan Anh; Attoui, Michel; Hogan, Christopher J

    2011-12-28

    We use a charge reduction electrospray (ESI) source and subsequent ion mobility analysis with a differential mobility analyzer (DMA, with detection via both a Faraday cage electrometer and a condensation particle counter) to infer the densities of single and multiprotein ions of cytochrome C, lysozyme, myoglobin, ovalbumin, and bovine serum albumin produced from non-denaturing (20 mM aqueous ammonium acetate) and denaturing (1 : 49.5 : 49.5, formic acid : methanol : water) ESI. Charge reduction is achieved through use of a Po-210 radioactive source, which generates roughly equal concentrations of positive and negative ions. Ions produced by the source collide with and reduce the charge on ESI generated drops, preventing Coulombic fissions, and unlike typical protein ESI, leading to gas-phase protein ions with +1 to +3 excess charges. Therefore, charge reduction serves to effectively mitigate any role that Coulombic stretching may play on the structure of the gas phase ions. Density inference is made via determination of the mobility diameter, and correspondingly the spherical equivalent protein volume. Through this approach it is found that for both non-denaturing and denaturing ESI-generated ions, gas-phase protein ions are relatively compact, with average densities of 0.97 g cm(-3) and 0.86 g cm(-3), respectively. Ions from non-denaturing ESI are found to be slightly more compact than predicted from the protein crystal structures, suggesting that low charge state protein ions in the gas phase are slightly denser than their solution conformations. While a slight difference is detected between the ions produced with non-denaturing and denaturing ESI, the denatured ions are found to be much more dense than those examined previously by drift tube mobility analysis, in which charge reduction was not employed. This indicates that Coulombic stretching is typically what leads to non-compact ions in the gas-phase, and suggests that for gas phase measurements to be correlated to biomolecular structures in solution, low charge state ions should be analyzed. Further, to determine if different solution conditions give rise to ions of different structure, ions of similar charge state should be compared. Non-denatured protein ion densities are found to be in excellent agreement with non-denatured protein ion densities inferred from prior DMA and drift tube measurements made without charge reduction (all ions with densities in the 0.85-1.10 g cm(-3) range), showing that these ions are not strongly influenced by Coulombic stretching nor by analysis method.

  5. A rapid and sensitive dot-blot hybridization assay for the detection of citrus exocortis viroid in Citrus medica with digoxigenin-labelled RNA probes.

    PubMed

    Fonseca, M E; Marcellino, L H; Gander, E

    1996-04-05

    A rapid and sensitive dot-blot hybridization assay using in vitro-transcribed digoxigenin-labelled RNA probes (riboprobes) was developed aiming at detection of citrus exocortis viroid (CEVd) in crude sap of infected Citrus medica plants. The protocol includes a very quick and simple preparation of RNA extracts from samples using a denaturation step with formaldehyde. From our results, the employment of this step is highly recommended because the hybridization signals in formaldehyde-denatured samples were significantly stronger when compared with that of extracts without formaldehyde treatment. The assay was found to be sensitive enough to detect 0.1 ng of purified CEVd RNA and was able to detect viroid in 0.2 mg of symptomatic Citrus medica leaves. The use of riboprobes also allowed hybridization under high temperature conditions, avoiding non-specific background.

  6. Thermal Characterization of Purified Glucose Oxidase from A Newly Isolated Aspergillus Niger UAF-1

    PubMed Central

    Anjum Zia, Muhammad; Khalil-ur-Rahman; K. Saeed, Muhammad; Andaleeb, Fozia; I. Rajoka, Muhammad; A. Sheikh, Munir; A. Khan, Iftikhar; I. Khan, Azeem

    2007-01-01

    An intracellular glucose oxidase was isolated from the mycelium extract of a locally isolated strain of Aspergillus niger UAF-1. The enzyme was purified to a yield of 28.43% and specific activity of 135 U mg−1 through ammonium sulfate precipitation, anion exchange and gel filtration chromatography. The enzyme showed high affinity for D-glucose with a Km value of 2.56 mM. The enzyme exhibited optimum catalytic activity at pH 5.5. Temperature optimum for glucose oxidase, catalyzed D-glucose oxidation was 40°C. The enzyme showed a high thermostability having a half-life 30 min, enthalpy of denaturation 99.66 kJ mol−1 and free energy of denaturation 103.63 kJ mol−1. These characteristics suggest the use of glucose oxidase from Aspergillus niger UAF-1 as an analytical reagent and in the design of biosensors for clinical, biochemical and diagnostic assays. PMID:18193107

  7. Western blotting revisited: critical perusal of underappreciated technical issues.

    PubMed

    Gorr, Thomas A; Vogel, Johannes

    2015-04-01

    The most commonly used semiquantitative analysis of protein expression still employs protein separation by denaturing SDS-PAGE with subsequent Western blotting and quantification of the resulting ODs of bands visualized with specific antibodies. However, many questions regarding this procedure are usually ignored, although still in need of answering: Does isolation or separation procedure harm the integrity or affect modifications (e.g., phosphorylation) of the protein of interest? Does denaturation reduce binding of antibodies used for detection? Should denaturation be performed or should a native gel be run? How can artificial degradations or aggregations be distinguished from biological relevant ones? If the antibody detects multiple bands (which is not uncommon), which one(s) should be taken into account for quantification and why? Which loading control protein should be chosen and is it really "housekeeping" and how can this be verified? Is the image acquisition system linear and does it come with a sufficient dynamic range? How to account and control for background staining? This article is intended to address these questions and raise the readers awareness to possible Western blot alternatives in the attempt of minimizing possible pitfalls that might loom anywhere from protein isolation to acquisition of final quantitative data. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Exploring the Counteracting Mechanism of Trehalose on Urea Conferred Protein Denaturation: A Molecular Dynamics Simulation Study.

    PubMed

    Paul, Subrata; Paul, Sandip

    2015-07-30

    To provide the underlying mechanism of the inhibiting effect of trehalose on the urea denatured protein, we perform classical molecular dynamics simulations of N-methylacetamide (NMA) in aqueous urea and/or trehalose solution. The site-site radial distribution functions and hydrogen bond properties indicate in binary urea solution the replacement of NMA-water hydrogen bonds by NMA-urea hydrogen bonds. On the other hand, in ternary urea and trehalose solution, trehalose does not replace the NMA-urea hydrogen bonds significantly; rather, it forms hydrogen bonds with the NMA molecule. The calculation of a preferential interaction parameter shows that, at the NMA surface, trehalose molecules are preferred and the preference for urea decreases slightly in ternary solution with respect to the binary solution. The exclusion of urea molecules in the ternary urea-NMA-trehalose system causes alleviation in van der Waals interaction energy between urea and NMA molecules. Our findings also reveal the following: (a) trehalose and urea induced second shell collapse of water structure, (b) a reduction in the mean trehalose cluster size in ternary solution, and (c) slowing down of translational motion of solution species in the presence of osmolytes. Implications of these results for the molecular explanations of the counteracting mechanism of trehalose on urea induced protein denaturation are discussed.

  9. Spectroscopic and MD simulation studies on unfolding processes of mitochondrial carbonic anhydrase VA induced by urea.

    PubMed

    Idrees, Danish; Prakash, Amresh; Haque, Md Anzarul; Islam, Asimul; Ahmad, Faizan; Hassan, Md Imtaiyaz

    2016-09-01

    Carbonic anhydrase VA (CAVA) is primarily expressed in the mitochondria and involved in numerous physiological processes including lipogenesis, insulin secretion from pancreatic cells, ureagenesis, gluconeogenesis and neuronal transmission. To understand the biophysical properties of CAVA, we carried out a reversible urea-induced isothermal denaturation at pH 7.0 and 25°C. Spectroscopic probes, [θ]222 (mean residue ellipticity at 222 nm), F344 (Trp-fluorescence emission intensity at 344 nm) and Δε280 (difference absorption at 280 nm) were used to monitor the effect of urea on the structure and stability of CAVA. The urea-induced reversible denaturation curves were used to estimate [Formula: see text], Gibbs free energy in the absence of urea; Cm, the mid-point of the denaturation curve, i.e. molar urea concentration ([urea]) at which ΔGD = 0; and m, the slope (=∂ΔGD/∂[urea]). Coincidence of normalized transition curves of all optical properties suggests that unfolding/refolding of CAVA is a two-state process. We further performed 40 ns molecular dynamics simulation of CAVA to see the dynamics at different urea concentrations. An excellent agreement was observed between in silico and in vitro studies.

  10. Fast and Non-Toxic In Situ Hybridization without Blocking of Repetitive Sequences

    PubMed Central

    Matthiesen, Steen H.; Hansen, Charles M.

    2012-01-01

    Formamide is the preferred solvent to lower the melting point and annealing temperature of nucleic acid strands in in situ hybridization (ISH). A key benefit of formamide is better preservation of morphology due to a lower incubation temperature. However, in fluorescence in situ hybridization (FISH), against unique DNA targets in tissue sections, an overnight hybridization is required to obtain sufficient signal intensity. Here, we identified alternative solvents and developed a new hybridization buffer that reduces the required hybridization time to one hour (IQFISH method). Remarkably, denaturation and blocking against repetitive DNA sequences to prevent non-specific binding is not required. Furthermore, the new hybridization buffer is less hazardous than formamide containing buffers. The results demonstrate a significant increased hybridization rate at a lowered denaturation and hybridization temperature for both DNA and PNA (peptide nucleic acid) probes. We anticipate that these formamide substituting solvents will become the foundation for changes in the understanding and performance of denaturation and hybridization of nucleic acids. For example, the process time for tissue-based ISH for gene aberration tests in cancer diagnostics can be reduced from days to a few hours. Furthermore, the understanding of the interactions and duplex formation of nucleic acid strands may benefit from the properties of these solvents. PMID:22911704

  11. Anti-arthritic activity of aqueous-methanolic extract and various fractions of Berberis orthobotrys Bien ex Aitch.

    PubMed

    Alamgeer; Uttra, Ambreen Malik; Hasan, Umme Habiba

    2017-07-18

    The roots and stem bark of Berberis orthobotrys (Berberidaceae) have long been used traditionally to treat joint pain. Though, it has not been pharmacologically assessed for rheumatoid arthritis. The current study explores anti-arthritic activity and phytochemical analysis of aqueous-methanolic extract (30:70) and fractions (ethyl acetate, n-butanol, and aqueous) of Berberis orthobotrys roots. Anti-arthritic potential was evaluated in vitro using protein denaturation (bovine serum albumin and egg albumin) and membrane stabilization methods at 12.5-800 μg/ml concentration and in vivo via turpentine oil, formaldehyde and Complete Freund Adjuvant (CFA) models at 50, 100 and 150 mg/kg doses. Also, in vitro antioxidant ability was appraised by reducing power assay. Moreover, total flavonoid content, Fourier transform infrared spectroscopy and High performance liquid chromatography of n-butanol fraction were performed. The results revealed concentration dependent inhibition of albumin denaturation and notable RBC membrane stabilization, with maximum results obtained at 800 μg/ml. Similarly, plant exhibited dose dependent anti-arthritic effect in turpentine oil and formaldehyde models, with maximum activity observed at 150 mg/kg. The results of CFA model depicted better protection against arthritic lesions and body weight alterations. Also, B.orthobotrys remarkably ameliorated altered hematological parameters, rheumatoid factor and positively modified radiographic and histopathological changes. Additionally, plant exhibited remarkable anti-oxidant activity. Moreover, phytochemical analysis revealed polyphenols and flavonoids. Taken together, these results support traditional use of B.orthobotrys as potent anti-arthritic agent that may be proposed for rheumatoid arthritis treatment.

  12. How a protein can remain stable in a solvent with high content of urea: insights from molecular dynamics simulation of Candida antarctica lipase B in urea : choline chloride deep eutectic solvent.

    PubMed

    Monhemi, Hassan; Housaindokht, Mohammad Reza; Moosavi-Movahedi, Ali Akbar; Bozorgmehr, Mohammad Reza

    2014-07-28

    Deep eutectic solvents (DESs) are utilized as green and inexpensive alternatives to classical ionic liquids. It has been known that some of DESs can be used as solvent in the enzymatic reactions to obtain very green chemical processes. DESs are quite poorly understood at the molecular level. Moreover, we do not know much about the enzyme microstructure in such systems. For example, how some hydrolase can remain active and stable in a deep eutectic solvent including 9 M of urea? In this study, the molecular dynamics of DESs as a liquid was simulated at the molecular level. Urea : choline chloride as a well-known eutectic mixture was chosen as a model DES. The behavior of the lipase as a biocatalyst was studied in this system. For comparison, the enzyme structure was also simulated in 8M urea. The thermal stability of the enzyme was also evaluated in DESs, water, and 8M urea. The enzyme showed very good conformational stability in the urea : choline chloride mixture with about 66% urea (9 M) even at high temperatures. The results are in good agreement with recent experimental observations. In contrast, complete enzyme denaturation occurred in 8M urea with only 12% urea in water. It was found that urea molecules denature the enzyme by interrupting the intra-chain hydrogen bonds in a "direct denaturation mechanism". However, in a urea : choline chloride deep eutectic solvent, as a result of hydrogen bonding with choline and chloride ions, urea molecules have a low diffusion coefficient and cannot reach the protein domains. Interestingly, urea, choline, and chloride ions form hydrogen bonds with the surface residues of the enzyme which, instead of lipase denaturation, leads to greater enzyme stability. To the best of our knowledge, this is the first study in which the microstructural properties of a macromolecule are examined in a deep eutectic solvent.

  13. Characterization of Structure, Dynamics, and Detergent Interactions of the Anti-HIV Chemokine Variant 5P12-RANTES

    PubMed Central

    Wiktor, Maciej; Hartley, Oliver; Grzesiek, Stephan

    2013-01-01

    RANTES (CCL5) is a chemokine that recruits immune cells to inflammatory sites by interacting with the G-protein coupled receptor CCR5, which is also the primary coreceptor used together with CD4 by HIV to enter and infect target cells. Ligands of CCR5, including chemokines and chemokine analogs, are capable of blocking HIV entry, and studies of their structures and interactions with CCR5 will be key to understanding and optimizing HIV inhibition. The RANTES derivative 5P12-RANTES is a highly potent HIV entry inhibitor that is being developed as a topical HIV prevention agent (microbicide). We have characterized the structure and dynamics of 5P12-RANTES by solution NMR. With the exception of the nine flexible N-terminal residues, 5P12-RANTES has the same structure as wild-type RANTES but unlike the wild-type, does not dimerize via its N-terminus. To prepare the ground for interaction studies with detergent-solubilized CCR5, we have also investigated the interaction of RANTES and 5P12-RANTES with various commonly used detergents. Both RANTES variants are stable in Cymal-5, DHPC, Anzergent-3-12, dodecyltrimethylammonium chloride, and a DDM/CHAPS/CHS mixture. Fos-Cholines, dodecyldimethylglycine, and sodium dodecyl-sulfate denature both RANTES variants at low pH, whereas at neutral pH the stability is considerably higher. The onset of Fos-Choline-12-induced denaturation and the denatured state were characterized by circular dichroism and NMR. The detergent interaction starts below the critical micelle concentration at a well-defined mixed hydrophobic/positive surface region of the chemokine, which overlaps with the dimer interface. An increase of Fos-Choline-12 concentration above the critical micelle concentration causes a transition to a denatured state with a high α-helical content. PMID:24314089

  14. Comparative study of urea and betaine solutions by dielectric spectroscopy: liquid structures of a protein denaturant and stabilizer.

    PubMed

    Hayashi, Yoshihito; Katsumoto, Yoichi; Oshige, Ikuya; Omori, Shinji; Yasuda, Akio

    2007-10-11

    We performed dielectric spectroscopy measurements on aqueous solutions of glycine betaine (N,N,N-trimethylglycine), which is known to be a strong stabilizer of globular proteins, over a wide concentration range (3-62 wt %) and compared the results with our previously published data for aqueous solutions of urea, a representative protein denaturant. The hydration number of betaine (9), calculated on the basis of the reduction in the dielectric relaxation strength of bulk water with addition of betaine, is significantly larger than that of urea (2). Furthermore, the dielectric relaxation time increased with betaine concentration, while that remained nearly constant for the urea-water system over a wide concentration range. This difference between urea and betaine is probably related to their opposite effects on the protein stabilization.

  15. Reprogramming of the Ovarian Tumor Stroma by Activation of a Biomechanical ECM Switch

    DTIC Science & Technology

    2016-09-01

    Denatured collagen was detec- ted with anticollagen antibody (1:1000). For integrin-blocking enzyme -linked immunosorbent assay, wells were coated with...migration on denatured collagen; it failed to reduce cell adhesion. Moreover a peptide antagonist of alpha 10 beta 1 may inhibit ovarian tumor growth in...stromal cell adhesion, migration and proliferation on distinct ECM substrates including native and denatured collagen. 4   D). As outlined in aim 2

  16. Performance and bacterial community structure of a 10-years old constructed mangrove wetland.

    PubMed

    Tian, Tingting; Tam, Nora F Y; Zan, Qijie; Cheung, S G; Shin, Paul K S; Wong, Y S; Zhang, Li; Chen, Zhanghe

    2017-11-30

    Constructed mangrove wetland has been used for wastewater treatment but its long-term performance has not been reported. One-year monitoring of a 10-years old horizontal subsurface-flow constructed mangrove wetland consisting of three belts, two with mangrove plants and one without, revealed that the system maintained high and stable removal percentages of organic matter and nutrients, and planted belts performed better than unplanted control. Substrates in belts planted with Aegiceras corniculatum or Kandelia obovata had higher abundance of ammonifiers, nitrifiers and denitrifiers but lower total heterotrophic bacteria than unplanted substrate. Denaturing gradient gel electrophoresis showed that microbial diversity in planted substrate was significantly lower than that in unplanted one. The bacteria in substrates, irrespective to belts, were phylogenetically related to Proteobacteria (most dominant), Acidobacteria, Firmicutes, Nitrospirae, Gemmatimonadetes, Chloroflexi and Cyanobacteria. The steady performance of this 10-year old constructed mangrove wetland was affected by the abundance and diversity of bacterial community in substrate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Nature of autofluorescence in human serum albumin under its native, unfolding and digested forms

    NASA Astrophysics Data System (ADS)

    Manjunath, S.; Rao, Bola Sadashiva Satish; Satyamoorthy, Kapaettu; Mahato, Krishna Kishore

    2014-02-01

    Autofluorescence characteristics of human serum albumin (HSA) are highly sensitive to its local environment. Identification and characterization of the proteins in normal and disease conditions may have great clinical implications. Aim of the present study was to understand how autofluorescence properties of HSA varies with denaturation under urea (3.0M, 6.0M, 9.0M) and guanidine hydrochloride (GnHCl) (2.0M, 4.0M, 6.0M) as well as digestion with trypsin. Towards this, we have recorded the corresponding autofluorescence spectra of HSA at 281nm laser excitation and compared the outcomes. Although, HSA contains 1 tryptophan and 17 tyrosine residues, it has shown intense autofluorescence due to tryptophan as compared to the tyrosine in native form, which may be due to the fluorescence resonance energy transfer (FRET) from tyrosine to tryptophan. As the unfolding progresses in denatured and digested forms of the protein, a clear increase in tyrosine fluorescence as compared to tryptophan was observed, which may be due to the increase of tryptophan - tyrosine separation disturbing the FRET between them resulting in differences in the overall autofluorescence properties. The decrease in tryptophan fluorescence of around 17% in urea denatured, 32% in GnHCl denatured and 96% in tryptic digested HSA was observed as compared to its native form. The obtained results show a clear decrease in FRET between tyrosine and tryptophan residues with the progression of unfolding and urea seems to be less efficient than GnHCl in unfolding of HSA. These results demonstrate the potential of autofluorescence in characterizing proteins in general and HSA in particular.

  18. COLD-PCR enriches low-level variant DNA sequences and increases the sensitivity of genetic testing.

    PubMed

    Castellanos-Rizaldos, Elena; Milbury, Coren A; Guha, Minakshi; Makrigiorgos, G Mike

    2014-01-01

    Detection of low-level mutations is important for cancer biomarker and therapy targets discovery, but reliable detection remains a technical challenge. The newly developed method of CO-amplification at Lower Denaturation temperature PCR (COLD-PCR) helps to circumvent this issue. This PCR-based technology preferentially enriches minor known or unknown variants present in samples with a high background of wild type DNA which often hampers the accurate identification of these minority alleles. This is a simple process that consists of lowering the temperature at the denaturation step during the PCR-cycling protocol (critical denaturation temperature, T c) and inducing DNA heteroduplexing during an intermediate step. COLD-PCR in its simplest forms does not need additional reagents or specific instrumentation and thus, can easily replace conventional PCR and at the same time improve the mutation detection sensitivity limit of downstream technologies. COLD-PCR can be applied in two basic formats: fast-COLD-PCR that can enrich T m-reducing mutations and full-COLD-PCR that can enrich all mutations, though it requires an intermediate cross-hybridization step that lengthens the thermocycling program. An improved version of full-COLD-PCR (improved and complete enrichment, ice-COLD-PCR) has also been described. Finally, most recently, we developed yet another form of COLD-PCR, temperature-tolerant-COLD-PCR, which gradually increases the denaturation temperature during the COLD-PCR reaction, enriching diverse targets using a single cycling program. This report describes practical considerations for application of fast-, full-, ice-, and temperature-tolerant-COLD-PCR for enrichment of mutations prior to downstream screening.

  19. A study of the thermal denaturation of the S-layer protein from Lactobacillus salivarius

    NASA Astrophysics Data System (ADS)

    Lighezan, Liliana; Georgieva, Ralitsa; Neagu, Adrian

    2012-09-01

    Surface layer (S-layer) proteins display an intrinsic self-assembly property, forming monomolecular crystalline arrays, identified in outermost structures of the cell envelope in many organisms, such as bacteria and archaea. Isolated S-layer proteins also possess the ability to recrystallize into regular lattices, being used in biotechnological applications, such as controlling the architecture of biomimetic surfaces. To this end, the stability of the S-layer proteins under high-temperature conditions is very important. In this study, the S-layer protein has been isolated from Lactobacillus salivarius 16 strain of human origin, and purified by cation-exchange chromatography. Using circular dichroism (CD) spectroscopy, we have investigated the thermal denaturation of the S-layer protein. The far- and near-UV CD spectra have been collected, and the temperature dependence of the CD signal in these spectral domains has been analyzed. The variable temperature results show that the secondary and tertiary structures of the S-layer protein change irreversibly due to the heating of the sample. After the cooling of the heated protein, the secondary and tertiary structures are partially recovered. The denaturation curves show that the protein unfolding depends on the sample concentration and on the heating rate. The secondary and tertiary structures of the protein suffer changes in the same temperature range. We have also detected an intermediate state in the protein denaturation pathway. Our results on the thermal behavior of the S-layer protein may be important for the use of S-layer proteins in biotechnological applications, as well as for a better understanding of the structure and function of S-layer proteins.

  20. Kinetic Aspects of Surfactant-Induced Structural Changes of Proteins - Unsolved Problems of Two-State Model for Protein Denaturation -.

    PubMed

    Takeda, Kunio; Moriyama, Yoshiko

    2015-01-01

    The kinetic mechanism of surfactant-induced protein denaturation is discussed on the basis of not only stopped-flow kinetic data but also the changes of protein helicities caused by the surfactants and the discontinuous mobility changes of surfactant-protein complexes. For example, the α-helical structures of bovine serum albumin (BSA) are partially disrupted due to the addition of sodium dodecyl sulfate (SDS). Formation of SDS-BSA complex can lead to only four complex types with specific mobilities depending on the surfactant concentration. On the other hand, the apparent rate constant of the structural change of BSA increases with an increase of SDS concentration, indicating that the rate of the structural change becomes fast as the degree of the change increases. When a certain amount of surfactant ions bind to proteins, their native structures transform directly to particular structures without passing through intermediate stages that might be induced due to the binding of fewer amounts of the surfactant ions. Furthermore, this review brings up a question about two-state and three-state models, N⇌D and N⇌D'⇌D (N: native state, D: denatured sate, D': intermediate between N and D), which have been often adopted without hesitation in discussion on general denaturations of proteins. First of all, doubtful is whether any equilibrium relationship exists in such denaturation reactions. It cannot be disregarded that the D states in these models differ depending on the changes of intensities of the denaturing factors. The authors emphasize that the denaturations or the structural changes of proteins should be discussed assuming one-way reaction models with no backward processes rather than assuming the reversible two-state reaction models or similar modified reaction models.

  1. Distribution, transition and thermodynamic stability of protein conformations in the denaturant-induced unfolding of proteins.

    PubMed

    Bian, Liujiao; Ji, Xu

    2014-01-01

    Extensive and intensive studies on the unfolding of proteins require appropriate theoretical model and parameter to clearly illustrate the feature and characteristic of the unfolding system. Over the past several decades, four approaches have been proposed to describe the interaction between proteins and denaturants, but some ambiguity and deviations usually occur in the explanation of the experimental data. In this work, a theoretical model was presented to show the dependency of the residual activity ratio of the proteins on the molar denaturant concentration. Through the characteristic unfolding parameters ki and Δmi in this model, the distribution, transition and thermodynamic stability of protein conformations during the unfolding process can be quantitatively described. This model was tested with the two-state unfolding of bovine heart cytochrome c and the three-state unfolding of hen egg white lysozyme induced by both guanidine hydrochloride and urea, the four-state unfolding of bovine carbonic anhydrase b induced by guanidine hydrochloride and the unfolding of some other proteins induced by denaturants. The results illustrated that this model could be used accurately to reveal the distribution and transition of protein conformations in the presence of different concentrations of denaturants and to evaluate the unfolding tendency and thermodynamic stability of different conformations. In most denaturant-induced unfolding of proteins, the unfolding became increasingly hard in next transition step and the proteins became more unstable as they attained next successive stable conformation. This work presents a useful method for people to study the unfolding of proteins and may be used to describe the unfolding and refolding of other biopolymers induced by denaturants, inducers, etc.

  2. Identification of intracellular degradation intermediates of aldolase B by antiserum to the denatured enzyme.

    PubMed Central

    Reznick, A Z; Rosenfelder, L; Shpund, S; Gershon, D

    1985-01-01

    A method has been developed that enables us to identify intracellular degradation intermediates of fructose-bisphosphate aldolase B (D-fructose-1,6-bisphosphate D-glyceraldehyde-3-phosphate-lyase, EC 4.1.2.13). This method is based on the use of antibody against thoroughly denatured purified aldolase. This antibody has been shown to recognize only denatured molecules, and it did not interact with "native" enzyme. supernatants (24,000 X g for 30 min) of liver and kidney homogenates were incubated with antiserum to denatured enzyme. The antigen-antibody precipitates thus formed were subjected to NaDodSO4/PAGE, followed by electrotransfer to nitrocellulose paper and immunodecoration with antiserum to denatured enzyme and 125I-labeled protein A. Seven peptides with molecular weights ranging from 38,000 (that of the intact subunit) to 18,000, which cross-reacted antigenically with denatured fructose-bisphosphate aldolase, could be identified in liver. The longest three peptides were also present in kidney. The possibility that these peptides were artifacts of homogenization was ruled out as follows: 125I-labeled tagged purified native aldolase was added to the buffer prior to liver homogenization. The homogenates were than subjected to NaDodSO4/PAGE followed by autoradiography, and the labeled enzyme was shown to remain intact. This method is suggested for general use in the search for degradation products of other cellular proteins. Images PMID:3898080

  3. Cloning, sequencing, and expression of the gene encoding amylopullulanase from Pyrococcus furiosus and biochemical characterization of the recombinant enzyme.

    PubMed Central

    Dong, G; Vieille, C; Zeikus, J G

    1997-01-01

    The gene encoding the Pyrococcus furiosus hyperthermophilic amylopullulanase (APU) was cloned, sequenced, and expressed in Escherichia coli. The gene encoded a single 827-residue polypeptide with a 26-residue signal peptide. The protein sequence had very low homology (17 to 21% identity) with other APUs and enzymes of the alpha-amylase family. In particular, none of the consensus regions present in the alpha-amylase family could be identified. P. furiosus APU showed similarity to three proteins, including the P. furiosus intracellular alpha-amylase and Dictyoglomus thermophilum alpha-amylase A. The mature protein had a molecular weight of 89,000. The recombinant P. furiosus APU remained folded after denaturation at temperatures of < or = 70 degrees C and showed an apparent molecular weight of 50,000 in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Denaturating temperatures of above 100 degrees C were required for complete unfolding. The enzyme was extremely thermostable, with an optimal activity at 105 degrees C and pH 5.5. Ca2+ increased the enzyme activity, thermostability, and substrate affinity. The enzyme was highly resistant to chemical denaturing reagents, and its activity increased up to twofold in the presence of surfactants. PMID:9293009

  4. [Characterization of structural change of ascorbate peroxidase from Chinese kale during denaturation by circular dichroism].

    PubMed

    Xi, Jia-Fu; Tang, Lei; Zhang, Jian-Hua; Zhang, Hong-Jian; Chen, Xu-Sheng; Mao, Zhong-Gui

    2014-11-01

    Circular dichroism (CD) is a special absorption spectrum. The secondary structure of protein such as α-helix, β-sheet and β-turn in the far ultraviolet region (190-250 nm) has a characteristic CD spectrum. In order to understand the activity and structural changes of ascorbate peroxidase from Chinese kale (BaAPX) during denaturation, specific activity and percentage of secondary structure of BaAPX under different time, temperature and concentration were analyzed by CD dynamically. In addition, the percentage of four secondary structures in BaAPX was calculated by CD analysis software Dichroweb. The results show that BaAPX is a full α-type enzyme whose specific activity is positively related to the percentage of α-helix. During denaturation of BaAPX, three kinds of structural changes were proposed: the one-step structural change from initial state (N state) to minimum state of α-helix (R state) under low concentration and low temperature; the one-step structural change from N state to equilibrium state (T state) under high concentration and low temperature; the two-step structural changes from N state through R state to final T state under heat treatment and low temperature renaturation.

  5. Sorbitol counteracts temperature- and chemical-induced denaturation of a recombinant α-amylase from alkaliphilic Bacillus sp. TS-23.

    PubMed

    Chi, Meng-Chun; Wu, Tai-Jung; Chen, Hsing-Ling; Lo, Huei-Fen; Lin, Long-Liu

    2012-12-01

    Enzymes are highly complex systems with a substantial degree of structural variability in their folded state. In the presence of cosolvents, fluctuations among vast numbers of folded and unfolded conformations occur via many different pathways; alternatively, certain conformations can be stabilized or destabilized. To understand the contribution of osmolytes to the stabilization of structural changes and enzymatic activity of a truncated Bacillus sp. TS-23 α-amylase (BACΔNC), we monitored amylolytic activity, circular dichroism, and fluorescence as a function of osmolytes. In the presence of trimethylamine N-oxide (TMAO) and sorbitol, BACΔNC activity was retained significantly at elevated temperatures. As compared to the control, the secondary structures of this enzyme were essentially conserved upon the addition of these two kinds of osmolytes. Fluorescence results revealed that the temperature-induced conformational change of BACΔNC was prevented by TMAO and sorbitol. However, glycerol did not provide profound protection against thermal denaturation of the enzyme. Sorbitol was further found to counteract guanidine hydrochloride- and SDS-induced denaturation of BACΔNC. Thus, some well-known naturally occurring osmolytes make a dominant contribution to the stabilization of BACΔNC.

  6. Heat-transfer resistance at solid-liquid interfaces: a tool for the detection of single-nucleotide polymorphisms in DNA.

    PubMed

    van Grinsven, Bart; Vanden Bon, Natalie; Strauven, Hannelore; Grieten, Lars; Murib, Mohammed; Monroy, Kathia L Jiménez; Janssens, Stoffel D; Haenen, Ken; Schöning, Michael J; Vermeeren, Veronique; Ameloot, Marcel; Michiels, Luc; Thoelen, Ronald; De Ceuninck, Ward; Wagner, Patrick

    2012-03-27

    In this article, we report on the heat-transfer resistance at interfaces as a novel, denaturation-based method to detect single-nucleotide polymorphisms in DNA. We observed that a molecular brush of double-stranded DNA grafted onto synthetic diamond surfaces does not notably affect the heat-transfer resistance at the solid-to-liquid interface. In contrast to this, molecular brushes of single-stranded DNA cause, surprisingly, a substantially higher heat-transfer resistance and behave like a thermally insulating layer. This effect can be utilized to identify ds-DNA melting temperatures via the switching from low- to high heat-transfer resistance. The melting temperatures identified with this method for different DNA duplexes (29 base pairs without and with built-in mutations) correlate nicely with data calculated by modeling. The method is fast, label-free (without the need for fluorescent or radioactive markers), allows for repetitive measurements, and can also be extended toward array formats. Reference measurements by confocal fluorescence microscopy and impedance spectroscopy confirm that the switching of heat-transfer resistance upon denaturation is indeed related to the thermal on-chip denaturation of DNA. © 2012 American Chemical Society

  7. Joule Heating and Thermal Denaturation of Proteins in Nano-ESI Theta Tips

    NASA Astrophysics Data System (ADS)

    Zhao, Feifei; Matt, Sarah M.; Bu, Jiexun; Rehrauer, Owen G.; Ben-Amotz, Dor; McLuckey, Scott A.

    2017-10-01

    Electro-osmotically induced Joule heating in theta tips and its effect on protein denaturation were investigated. Myoglobin, equine cytochrome c, bovine cytochrome c, and carbonic anhydrase II solutions were subjected to electro-osmosis in a theta tip and all of the proteins were denatured during the process. The extent of protein denaturation was found to increase with the applied square wave voltage and electrolyte concentration. The solution temperature at the end of a theta tip was measured directly by Raman spectroscopy and shown to increase with the square wave voltage, thereby demonstrating the effect of Joule heating through an independent method. The electro-osmosis of a solution comprised of myoglobin, bovine cytochrome c, and ubiquitin demonstrated that the magnitude of Joule heating that causes protein denaturation is positively correlated with protein melting temperature. This allows for a quick determination of a protein's relative thermal stability. This work establishes a fast, novel method for protein conformation manipulation prior to MS analysis and provides a temperature-controllable platform for the study of processes that take place in solution with direct coupling to mass spectrometry. [Figure not available: see fulltext.

  8. Mesoscopic modeling of DNA denaturation rates: Sequence dependence and experimental comparison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahlen, Oda, E-mail: oda.dahlen@ntnu.no; Erp, Titus S. van, E-mail: titus.van.erp@ntnu.no

    Using rare event simulation techniques, we calculated DNA denaturation rate constants for a range of sequences and temperatures for the Peyrard-Bishop-Dauxois (PBD) model with two different parameter sets. We studied a larger variety of sequences compared to previous studies that only consider DNA homopolymers and DNA sequences containing an equal amount of weak AT- and strong GC-base pairs. Our results show that, contrary to previous findings, an even distribution of the strong GC-base pairs does not always result in the fastest possible denaturation. In addition, we applied an adaptation of the PBD model to study hairpin denaturation for which experimentalmore » data are available. This is the first quantitative study in which dynamical results from the mesoscopic PBD model have been compared with experiments. Our results show that present parameterized models, although giving good results regarding thermodynamic properties, overestimate denaturation rates by orders of magnitude. We believe that our dynamical approach is, therefore, an important tool for verifying DNA models and for developing next generation models that have higher predictive power than present ones.« less

  9. [Inactivating Effect of Heat-Denatured Lysozyme on Murine Norovirus in Bread Fillings].

    PubMed

    Takahashi, Michiko; Yasuda, Yuka; Takahashi, Hajime; Takeuchi, Akira; Kuda, Takashi; Kimura, Bon

    2018-01-01

    In this study, we investigated the viability of murine norovirus strain 1 (MNV-1), a surrogate for human norovirus, in bread fillings used for making stuffed buns and pastries. The inactivating effect of heat-denatured lysozyme, which was recently reported to have an antiviral effect, on MNV-1 contaminating the bread fillings was also examined. MNV-1 was inoculated into two types of fillings (chocolate cream, marmalade jam) at 4.5 log PFU/g, and the bread fillings were stored at 4℃ for 5 days. MNV-1 remained viable in the bread fillings during storage. However, addition of 1% heat-denatured lysozyme to the fillings resulted in a decrease of MNV-1 infectivity immediately after inoculation, in both fillings. On the fifth day of storage, MNV-1 infectivity was decreased by 1.2 log PFU/g in chocolate cream and by 0.9 log PFU/g in marmalade jam. Although the mechanism underlying the anti-norovirus effect of heat-denatured lysozyme has not been clarified, our results suggest that heat-denatured lysozyme can be used as an inactivating agent against norovirus in bread fillings.

  10. Functional and rheological properties of proteins in frozen turkey breast meat with different ultimate pH.

    PubMed

    Chan, J T Y; Omana, D A; Betti, M

    2011-05-01

    Functional and rheological properties of proteins from frozen turkey breast meat with different ultimate pH at 24 h postmortem (pH(24)) have been studied. Sixteen breast fillets from Hybrid Tom turkeys were initially selected based on lightness (L*) values for each color group (pale, normal, and dark), with a total of 48 breast fillets. Further selection of 8 breast samples was made within each class of meat according to the pH(24). The average L* and pH values of the samples were within the following range: pale (L* >52; pH ≤5.7), normal (46 < L* < 52; 5.9 < pH <6.1), and dark (L* <46; pH ≥6.3), referred to as low, normal, and high pH meat, respectively. Ultimate pH did not cause major changes in the emulsifying and foaming properties of the extracted sarcoplasmic and myofibrillar proteins. An SDS-PAGE profile of proteins from low and normal pH meat was similar, which revealed that the extent of protein denaturation was the same. Low pH meat had the lowest water-holding capacity compared with normal and high pH meat as shown by the increase in cooking loss, which can be explained by factors other than protein denaturation. Gel strength analysis and folding test revealed that gel-forming ability was better for high pH meat compared with low and normal pH meat.Dynamic viscoelastic behavior showed that myosin denaturation temperature was independent of pH(24). Normal and high pH meat had similar hardness, springiness, and chewiness values as revealed by texture profile analysis. The results from this study indicate that high pH meat had similar or better functional properties than normal pH meat. Therefore, high pH meat is suitable for further processed products, whereas low pH meat may need additional treatment or ingredient formulations to improve its functionality.

  11. Hierarchically mesostructured porous TiO2 hollow nanofibers for high performance glucose biosensing.

    PubMed

    Guo, Qiaohui; Liu, Lijuan; Zhang, Man; Hou, Haoqing; Song, Yonghai; Wang, Huadong; Zhong, Baoying; Wang, Li

    2017-06-15

    Effective immobilization of enzymes on an electrode surface is of great importance for biosensor development, but it still remains challenging because enzymes tend to denaturation and/or form close-packed structures. In this work, a free-standing TiO 2 hollow nanofibers (HNF-TiO 2 ) was successfully prepared by a simple and scalable electrospun nanofiber film template-assisted sol-gel method, and was further explored for glucose oxidase (GOD) immobilization and biosensing. This porous and nanotubular HNF-TiO 2 provides a well-defined hierarchical nanostructure for GOD loading, and the fine TiO 2 nanocrystals facilitate direct electron transfer from GOD to the electrode, also the strong interaction between GOD and HNF-TiO 2 greatly enhances the stability of the biosensor. The as-prepared glucose biosensors show good sensing performances both in O 2 -free and O 2 -containing conditions with good sensitivity, satisfactory selectivity, long-term stability and sound reliability. The novel textile formation, porous and hierarchically mesostructured nature of HNF-TiO 2 with excellent analytical performances make it a superior platform for the construction of high-performance glucose biosensors. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. PARAMETERS OF TEXTURE CHANGE IN PROCESSED FISH: MYOSIN DENATURATION.

    PubMed

    Chu, George Hao; Sterling, Clarence

    1970-03-01

    The white muscle of the Sacramento blackfish (Orthodon microlepidotus) was processed by freezing, dehydration, and cooking. Myosin was extracted immediately afterwards or following a period of storage in order to examine evidence for denaturation. The tests used were the solubility of whole muscle protein and the intrinsic viscosity, isoelectric point, ATPase activity, ultra-violet absorption spectrum, and optical rotatory dispersion of purified myosin extract. Almost all measures used showed that denaturation increased in the order: fresh < frozen < frozen-stored < dehydrated < dehydrated-stored < cooked.

  13. Probing the free energy landscape of the FBP28WW domain using multiple techniques.

    PubMed

    Periole, Xavier; Allen, Lucy R; Tamiola, Kamil; Mark, Alan E; Paci, Emanuele

    2009-05-01

    The free-energy landscape of a small protein, the FBP 28 WW domain, has been explored using molecular dynamics (MD) simulations with alternative descriptions of the molecule. The molecular models used range from coarse-grained to all-atom with either an implicit or explicit treatment of the solvent. Sampling of conformation space was performed using both conventional and temperature-replica exchange MD simulations. Experimental chemical shifts and NOEs were used to validate the simulations, and experimental phi values both for validation and as restraints. This combination of different approaches has provided insight into the free energy landscape and barriers encountered by the protein during folding and enabled the characterization of native, denatured and transition states which are compatible with the available experimental data. All the molecular models used stabilize well defined native and denatured basins; however, the degree of agreement with the available experimental data varies. While the most detailed, explicit solvent model predicts the data reasonably accurately, it does not fold despite a simulation time 10 times that of the experimental folding time. The less detailed models performed poorly relative to the explicit solvent model: an implicit solvent model stabilizes a ground state which differs from the experimental native state, and a structure-based model underestimates the size of the barrier between the two states. The use of experimental phi values both as restraints, and to extract structures from unfolding simulations, result in conformations which, although not necessarily true transition states, appear to share the geometrical characteristics of transition state structures. In addition to characterizing the native, transition and denatured states of this particular system in this work, the advantages and limitations of using varying levels of representation are discussed. 2008 Wiley Periodicals, Inc.

  14. Collagen extraction from mussel byssus: a new marine collagen source with physicochemical properties of industrial interest.

    PubMed

    Rodríguez, F; Morán, L; González, G; Troncoso, E; Zúñiga, R N

    2017-04-01

    Mussel byssus is a by-product of mussel production and is a potential source of collagen. The goal of this study was to extract collagen from the byssus of Chilean mussel using an enzymatic method and characterize it. A pepsin-aided extraction method was employed where first an enzymatic hydrolysis at two pepsin/substrate ratios (1:50 or 4:50) and times (4 or 24 h) was done. Extraction was conducted at 80 °C for 24 h, in a 0.5 N acetic acid solution. All samples were analyzed for collagen content, amino acid profile, turbidity, viscosity, solubility, denaturation temperature and surface tension. Hydrolysis time had significant effect on collagen content, hydroxyproline content and extraction yield. Hydrolysis with a pepsin/byssus ratio of 4:50 for 24 h gave the better extraction performance with values of 69 mg/g protein, 1.8 mg/g protein and 30%, for collagen content, hydroxyproline content and extraction yield, respectively. No differences were found for the viscosity and surface tension of collagen dispersions, suggesting that the enzymatic hydrolysis did not affect the integrity of the collagen molecule. Denaturation temperature of freeze-dried byssus collagen presented a high value (83-91 °C), making this kind of collagen a very interesting material for encapsulation of bioactive molecules and for biomedical applications.

  15. Characterization of a mixture of lobster digestive cysteine proteinases by ionspray mass spectrometry and tryptic mapping with LC--MS and LC--MS--MS

    NASA Astrophysics Data System (ADS)

    Thibault, P.; Pleasance, S.; Laycock, M. V.; Mackay, R. M.; Boyd, R. K.

    1991-12-01

    An inseparable mixture of two cysteine proteinases, isolated from the digestive tract of the American lobster, was investigated by ionspray mass spectrometry (ISP-MS), using a combination of infusion of intact proteins with on-line liquid chromatography--mass spectrometry (LC--MS) and LC--MS--MS analyses of tryptic digests. These data were interpreted by comparisons with predictions from results of molecular cloning of cysteine-proteinase-encoding messenger RNA sequences previously isolated from the lobster hepatopancreas. Investigations of the numbers of free thiol groups and of disulfide bonds were made by measuring the molecular weights of the alkylated proteins with and without prior reduction of disulfide bonds, and comparison with the corresponding data for the native proteins. Identification of tyrptic fragment peptides containing cysteine residues was facilitated by comparing LC--MS analyses of tryptic digests of denatured and of denatured and alkylated proteins, since such tryptic peptides are subject to shifts in both mass and retention time upon reduction and alkylation. Confirmation of amino acid sequences was obtained from fragment ion spectra of each tryptic peptide (alkylated or not) as it eluted from the column. Acquisition of such on-line LC--MS data was possible through use of the entire effluent from a standard 1 mm high performance liquid chromatography (HPLC) column by an IonsSpray® LC--MS interface (pneumatically assisted electrospray).

  16. 27 CFR 20.54 - Photocopying of permits.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., DEPARTMENT OF THE TREASURY LIQUORS DISTRIBUTION AND USE OF DENATURED ALCOHOL AND RUM Qualification of Dealers... withdraw specially denatured spirits from a distilled spirits plant and other persons authorized under this...

  17. 27 CFR 19.770 - Transfer record.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... unsecured conveyances or denatured spirits); (iii) Gauge of spirits, denatured spirits, or wine showing the tank number, proof (percent of alcohol by volume for wine) and elements of the weight or volumetric...

  18. Monte Carlo Simulations of the Kinetics of Protein Adsorption

    NASA Astrophysics Data System (ADS)

    Zhdanov, V. P.; Kasemo, B.

    The past decade has been characterized by rapid progress in Monte Carlo simulations of protein folding in a solution. This review summarizes the main results obtained in the field, as a background to the major topic, namely corresponding advances in simulations of protein adsorption kinetics at solid-liquid interfaces. The latter occur via diffusion in the liquid towards the interface followed by actual adsorption, and subsequent irreversible conformational changes, resulting in more or less pronounced denaturation of the native protein structure. The conventional kinetic models describing these steps are based on the assumption that the denaturation transitions obey the first-order law with a single value of the denaturation rate constant kr. The validity of this assumption has been studied in recent lattice Monte Carlo simulations of denaturation of model protein-like molecules with different types of the monomer-monomer interactions. The results obtained indicate that, due to trapping in metastable states, (i) the transition of a molecule to the denatured state is usually nonexponential in time, i.e. it does not obey the first-order law, and (ii) the denaturation transitions of an ensemble of different molecules are characterized by different time scales, i.e. the denaturation process cannot be described by a single rate constant kr. One should, rather, introduce a distribution of values of this rate constant (physically, different values of kr reflect the fact that the transitions to the altered state occurs via different metastable states). The phenomenological kinetics of irreversible adsorption of proteins with and without a distribution of the denaturation rate constant values have been calculated in the limits where protein diffusion in the solution is, respectively, rapid or slow. In both cases, the adsorption kinetics with a distribution of kr are found to be close to those with a single-valued rate constant kr, provided that the average value of kr in the former case is equal to kr in the latter case. This conclusion holds even for wide distributions of kr. The consequences of this finding for the fitting of global experimental kinetics on the basis of phenomenological equations are briefly discussed.

  19. Rational and Computational Design of Stabilized Variants of Cyanovirin-N which Retain Affinity and Specificity for Glycan Ligands

    PubMed Central

    Patsalo, Vadim; Raleigh, Daniel P.; Green, David F.

    2011-01-01

    Cyanovirin-N (CVN) is an 11-kDa pseudo-symmetric cyanobacterial lectin that has been shown to inhibit infection by the Human Immunodeficiency Virus (HIV) by binding to high-mannose oligosaccharides on the surface of the viral envelope glycoprotein gp120. In this work we describe rationally-designed CVN variants that stabilize the protein fold while maintaining high affinity and selectivity for their glycan targets. Poisson–Boltzmann calculations and protein repacking algorithms were used to select stabilizing mutations in the protein core. By substituting the buried polar side chains of Ser11, Ser20, and Thr61 with aliphatic groups, we stabilized CVN by nearly 12 °C against thermal denaturation, and by 1 m of GuaHCl against chemical denaturation, relative to a previously-characterized stabilized mutant. Glycan microarray binding experiments confirmed that the specificity profile of carbohydrate binding is unperturbed by the mutations, and is identical for all variants. In particular, the variants selectively bound glycans containing the Manα(1→2)Man linkage, which is the known minimal binding unit of CVN. We also report the slow denaturation kinetics of CVN and show that they can complicate thermodynamic analysis; in particular, the unfolding of CVN cannot be described as a fixed two-state transition. Accurate thermodynamic parameters are needed to describe the complicated free energy landscape of CVN, and we provide updated values for CVN unfolding. PMID:22032696

  20. Structural stability of DNA origami nanostructures in the presence of chaotropic agents.

    PubMed

    Ramakrishnan, Saminathan; Krainer, Georg; Grundmeier, Guido; Schlierf, Michael; Keller, Adrian

    2016-05-21

    DNA origami represent powerful platforms for single-molecule investigations of biomolecular processes. The required structural integrity of the DNA origami may, however, pose significant limitations regarding their applicability, for instance in protein folding studies that require strongly denaturing conditions. Here, we therefore report a detailed study on the stability of 2D DNA origami triangles in the presence of the strong chaotropic denaturing agents urea and guanidinium chloride (GdmCl) and its dependence on concentration and temperature. At room temperature, the DNA origami triangles are stable up to at least 24 h in both denaturants at concentrations as high as 6 M. At elevated temperatures, however, structural stability is governed by variations in the melting temperature of the individual staple strands. Therefore, the global melting temperature of the DNA origami does not represent an accurate measure of their structural stability. Although GdmCl has a stronger effect on the global melting temperature, its attack results in less structural damage than observed for urea under equivalent conditions. This enhanced structural stability most likely originates from the ionic nature of GdmCl. By rational design of the arrangement and lengths of the individual staple strands used for the folding of a particular shape, however, the structural stability of DNA origami may be enhanced even further to meet individual experimental requirements. Overall, their high stability renders DNA origami promising platforms for biomolecular studies in the presence of chaotropic agents, including single-molecule protein folding or structural switching.

  1. Escherichia coli FtsH (HflB) degrades a membrane-associated TolAI-II-beta-lactamase fusion protein under highly denaturing conditions.

    PubMed

    Cooper, K W; Baneyx, F

    2001-03-01

    TolAI--II--beta-lactamase, a fusion protein consisting of the inner membrane and transperiplasmic domains of TolA followed by TEM--beta-lactamase associated with the inner membrane but remained confined to the cytoplasm when expressed at high level in Escherichia coli. Although the fusion protein was resistant to proteolysis in vivo, it was hydrolyzed during preparative SDS-polyacrylamide electrophoresis and when insoluble cellular fractions unfolded with 5 M urea were subjected to microdialysis. Inhibitor profiling studies revealed that both a metallo- and serine protease were involved in TolAI--II--beta-lactamase degradation under denaturing conditions. The in vitro degradation rates of the fusion protein were not affected when insoluble fractions were harvested from a strain lacking protease IV, but were significantly reduced when microdialysis experiments were conducted with material isolated from an isogenic ftsH1 mutant. Adenine nucleotides were not required for degradation, and ATP supplementation did not accelerate the apparent rate of TolAI--II--beta-lactamase hydrolysis under denaturing conditions. Our results indicate that the metalloprotease active site of FtsH remains functional in the presence of 3--5 M urea and suggest that the ATPase and proteolytic activities of FtsH can be uncoupled if the substrate is sufficiently unstructured. Thus, a key role of the FtsH AAA module appears to be the net unfolding of bound substrates so that they can be efficiently engaged by the protease active site. Copyright 2001 Academic Press.

  2. CN-GELFrEE - Clear Native Gel-eluted Liquid Fraction Entrapment Electrophoresis

    PubMed Central

    Skinner, Owen S.; Do Vale, Luis H. F.; Catherman, Adam D.; Havugimana, Pierre C.; Valle de Sousa, Marcelo; Domont, Gilberto B.; Kelleher, Neil L.; Compton, Philip D.

    2016-01-01

    Protein complexes perform an array of crucial cellular functions. Elucidating their non-covalent interactions and dynamics is paramount for understanding the role of complexes in biological systems. While the direct characterization of biomolecular assemblies has become increasingly important in recent years, native fractionation techniques that are compatible with downstream analysis techniques, including mass spectrometry, are necessary to further expand these studies. Nevertheless, the field lacks a high-throughput, wide-range, high-recovery separation method for native protein assemblies. Here, we present clear native gel-eluted liquid fraction entrapment electrophoresis (CN-GELFrEE), which is a novel separation modality for non-covalent protein assemblies. CN-GELFrEE separation performance was demonstrated by fractionating complexes extracted from mouse heart. Fractions were collected over 2 hr and displayed discrete bands ranging from ~30 to 500 kDa. A consistent pattern of increasing molecular weight bandwidths was observed, each ranging ~100 kDa. Further, subsequent reanalysis of native fractions via SDS-PAGE showed molecular-weight shifts consistent with the denaturation of protein complexes. Therefore, CN-GELFrEE was proved to offer the ability to perform high-resolution and high-recovery native separations on protein complexes from a large molecular weight range, providing fractions that are compatible with downstream protein analyses. PMID:26967310

  3. Investigating Freshwater Periphyton Community Response to Uranium with Phospholipid Fatty Acid and Denaturing Gradient Gel Electrophoresis Analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Small, Jack A.; Bunn, Amoret L.; McKinstry, Craig A.

    2008-04-01

    Periphyton communities can be used as monitors of ecosystem health and as indicators of contamination in lotic systems. Measures of biomass, community structure and genetic diversity were used to investigate impacts of uranium exposure on periphyton. Laboratory exposures of periphyton in river water amended with uranium were performed for 5 days, followed by 2 days of uranium depuration in unamended river water. Productivity as measured by biomass was not affected by concentrations up to 100 µg L-1 uranium. Phospholipid fatty acid (PLFA) profiles and denaturing gradient gel electrophoresis (DGGE) banding patterns found no changes in community or genetic structure relatedmore » to uranium exposure. We suggest that the periphyton community as a whole is not impacted by exposures of uranium up to a dose of 100 µg L-1. These findings have significance for the assessment and prediction of uranium impacts on aquatic ecosystems.« less

  4. The removal of pyroglutamic acid from monoclonal antibodies without denaturation of the protein chains.

    PubMed

    Werner, William E; Wu, Sylvia; Mulkerrin, Michael

    2005-07-01

    Typically, the removal of pyroglutamate from the protein chains of immunoglobulins with the enzyme pyroglutamate aminopeptidase requires the use of chaotropic and reducing agents, quite often with limited success. This article describes a series of optimization experiments using elevated temperatures and detergents to denature and stabilize the heavy chains of immunoglobulins such that the pyroglutamate at the amino terminal was accessible to enzymatic removal using the thermostable protease isolated from Pyrococcus furiosus. The detergent polysorbate 20 (Tween 20) was used successfully to facilitate the removal of pyroglutamate residues. A one-step digestion was developed using elevated temperatures and polysorbate 20, rather than chaotropic and reducing agents, with sample cleanup and preparation for Edman sequencing performed using a commercial cartridge containing the PVDF membrane. All of the immunoglobulins digested with this method yielded heavy chain sequence, but the extent of deblocking was immunglobulin dependent (typically>50%).

  5. Comparative study of the interactions between bisphenol-A and its endocrine disrupting analogues with bovine serum albumin using multi-spectroscopic and molecular docking studies.

    PubMed

    Ikhlas, Shoeb; Usman, Afia; Ahmad, Masood

    2018-04-24

    Interaction studies of bisphenol analogues; biphenol-A (BPA), bisphenol-B (BPB), and bisphenol-F (BPF) with bovine serum albumin (BSA) were performed using multi-spectroscopic and molecular docking studies at the protein level. The mechanism of binding of bisphenols with BSA was dynamic in nature. SDS refolding experiments demonstrated no stabilization of BSA structure denatured by BPB, however, BSA denatured by BPA and BPF was found to get stabilized. Also, CD spectra and molecular docking studies revealed that BPB bound more strongly and induced more conformational changes in BSA in comparison to BPA. Hence, this study throws light on the replacement of BPA by its analogues and whether the replacement is associated with a possible risk, raising a doubt that perhaps BPB is not a good substitute of BPA.

  6. 27 CFR 20.171 - Record of shipment.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... OF THE TREASURY LIQUORS DISTRIBUTION AND USE OF DENATURED ALCOHOL AND RUM Operations by Dealers and Users of Specially Denatured Spirits Inventory and Records § 20.171 Record of shipment. (a) Dealer. When...

  7. Secondary Structural Changes of Intact and Disulfide Bridges-Cleaved Human Serum Albumins in Thermal Denaturation up to 130°C - Additive Effects of Sodium Dodecyl Sulfate on the Changes.

    PubMed

    Moriyama, Yoshiko; Takeda, Kunio

    2017-05-01

    The secondary structural changes of human serum albumin with the intact 17 disulfide bridges (HSA) and the disulfide bridges-cleaved human serum albumin (RCM-HSA) in thermal denaturation were examined. Most of the helical structures of HSA, whose original helicity was 66%, were sharply disrupted between 50 and 100°C. However, 14% helicity remained even at 130°C. The temperature dependence of the degree of disrupted helical structures of HSA was discussed in connection with questions about a general protein denaturation model. When HSA lost the disulfide bridges, about two-thirds of the original helices were disrupted. Although the helices of RCM-HSA remaining after the cleavage of the disulfide bridges were relatively resistant against the heat treatment, the helicity changed from 22% at 25°C to 14% at 130℃. The helicity of RCM-HSA at 130°C agreed with the helicity of HSA at the same temperature, indicating that the same helical moieties of the polypeptides remained unaffected at this high temperature. The additive effects of sodium dodecyl sulfate (SDS) on the structural changes of HSA and RCM-HSA in thermal denaturation were also examined. A slight amount of SDS protected the helical structures of HSA from thermal denaturation below 80°C. Upon cooling to 25°C after heat treatment at temperatures below 70°C with the coexistence of SDS of low concentrations, the helical structures of HSA were reformed to the original level at 25°C before heating. A similar tendency was also observed after heat treatment at 80°C. In contrast, the helical structures of the RCM-HSA complexes with SDS are completely recovered upon cooling to 25°C even after heat treatment up to 100°C. Similar investigations were also carried out on bovine serum albumins which had the intact 17 disulfide bridges and lost all of the bridges.

  8. Enzyme Technology for Shipboard Waste Management

    DTIC Science & Technology

    1976-12-01

    converting corn starch to high fructose corn syrups , a product equivalent in sweetness to the conventional cane and beet sugars. Semisynthetic penicillins...catalysts that accelerate virtually all of the known chemical reactions occurring in living cells. These reactions, due to the relatively high energies...affect proteins. Con- sequently, high temperatures, generally in excess of the 400-500 C range, will cause the destruction or denaturation of most

  9. Refolding of urea-denatured α-chymotrypsin by protein-folding liquid chromatography.

    PubMed

    Congyu, Ke; Wujuan, Sun; Qunzheng, Zhang; Xindu, Geng

    2013-04-01

    An approach for re-folding denatured proteins during proteome research by protein folding liquid chromatography (PFLC) is presented. Standard protein, α-chymotrypsin (α-Chy), was selected as a model protein and hydrophobic interaction chromatography was performed as a typical PFLC; the three different α-Chy states - urea-denatured (U state), its folded intermediates (M state) and nature state (N state) - were studied during protein folding. Based on the test by matrix-assisted laser desorption/ionization time of flight mass spectrometry and bioactivity, only one stable M state of the α-Chy was identified and then it was prepared for further investigation. The specific bioactivity of the refolded α-Chy was found to be higher than that of commercial α-Chy as the urea concentration in the sample solution ranged from 1.0 to 3.0 m; the highest specific bioactivity at urea concentration was 1.0 m, indicating the possibility for re-folding some proteins that have partially or completely lost their bioactivity, as a dilute urea solution was employed for dissolving the sample. The experiment showed that the peak height of its M state increased with increasing urea concentration, and correspondingly decreased in the amount of the refolded α-Chy. When the urea concentration reached 6.0 m, the unfolded α-Chy could not be refolded at all. Copyright © 2012 John Wiley & Sons, Ltd.

  10. Structural basis of urea-induced unfolding: Unraveling the folding pathway of hemochromatosis factor E.

    PubMed

    Khan, Parvez; Prakash, Amresh; Haque, Md Anzarul; Islam, Asimul; Hassan, Md Imtaiyaz; Ahmad, Faizan

    2016-10-01

    Hereditary hemochromatosis factor E (HFE) is a type 1 transmembrane protein, and acts as a negative regulator of iron-uptake. The equilibrium unfolding and conformational stability of the HFE protein was examined in the presence of urea. The folding and unfolding transitions were monitored with the help of circular dichroism (CD), intrinsic fluorescence and absorption spectroscopy. Analysis of transition curves revealed that the folding of HFE is not a two-state process. However, it involved stable intermediates. Transition curves (plot of fluorescence (F346) and CD signal at 222nm (θ222) versus [Urea], the molar urea concentration) revealed a biphasic transition with midpoint (Cm) values at 2.88M and 4.95M urea. Whereas, absorption analysis shows one two-state transition centered at 2.96M. To estimate the protein stability, denaturation curves were analyzed for Gibbs free energy change in the absence of urea (ΔGD(0)) associated with the equilibrium of denaturation exist between native state↔denatured state. The intermediate state was further characterized by hydrophobic probe, 1-anilinonaphthalene-8-sulfonic acid (ANS-binding). For seeing the effect of urea on the structure and dynamics of HFE, molecular dynamics simulation for 60ns was also performed. A clear correspondence was established between the in vitro and in silico studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Size is a major determinant of dissociation and denaturation behaviour of reconstituted high-density lipoproteins.

    PubMed Central

    Gianazza, Elisabetta; Eberini, Ivano; Sirtori, Cesare R; Franceschini, Guido; Calabresi, Laura

    2002-01-01

    Lipid-free apolipoprotein A-I (apoA-I) and A-I(Milano) (A-I(M)) were compared for their denaturation behaviour by running across transverse gradients of a chaotrope, urea, and of a ionic detergent, SDS. For both apo A-I and monomeric apoA-I(M) in the presence of increasing concentrations of urea the transition from high to low mobility had a sigmoidal course, whereas for dimeric A-I(M)/A-I(M) a non-sigmoidal shape was observed. The co-operativity of the unfolding process was lower for dimeric A-I(M)/A-I(M) than for apoA-I or for monomeric apoA-I(M). A slightly higher susceptibility to denaturation was observed for dimeric A-I(M)/A-I(M) than for monomeric apoA-I(M). A similar behaviour of A-I(M)/A-IM versus apoA-I(M) was observed in CD experiments. Large- (12.7/12.5 nm) and small- (7.8 nm) sized reconstituted high-density lipoproteins (rHDL) containing either apoA-I or A-I(M)/A-I(M) were compared with respect to their protein-lipid dissociation behaviour by subjecting them to electrophoresis in the presence of urea, of SDS and of a non-ionic detergent, Nonidet P40. A higher susceptibility to dissociation of small-sized versus large-sized rHDL, regardless of the apolipoprotein component, was observed in all three instances. Our data demonstrate that the differential plasticity of the various classes of rHDL is a function of their size; the higher stability of 12.5/12.7 nm rHDL is likely connected to the higher number of protein-lipid and lipid-lipid interactions in larger as compared with smaller rHDL. PMID:11996671

  12. Denaturation of RNA secondary and tertiary structure by urea: simple unfolded state models and free energy parameters account for measured m-values

    PubMed Central

    Lambert, Dominic; Draper, David E.

    2012-01-01

    To investigate the mechanism by which urea destabilizes RNA structure, urea-induced unfolding of four different RNA secondary and tertiary structures was quantified in terms of an m-value, the rate at which the free energy of unfolding changes with urea molality. From literature data and our osmometric study of a backbone analog, we derived average interaction potentials (per Å2 of solvent accessible surface) between urea and three kinds of RNA surfaces: phosphate, ribose, and base. Estimates of the increases in solvent accessible surface areas upon RNA denaturation were based on a simple model of unfolded RNA as a combination of helical and single strand segments. These estimates, combined with the three interaction potentials and a term to account for urea interactions with released ions, yield calculated m-values in good agreement with experimental values (200 mm monovalent salt). Agreement was obtained only if single-stranded RNAs were modeled in a highly stacked, A form conformation. The primary driving force for urea induced denaturation is the strong interaction of urea with the large surface areas of bases that become exposed upon denaturation of either RNA secondary or tertiary structure, though urea interactions with backbone and released ions may account for up to a third of the m-value. Urea m-values for all four RNA are salt-dependent, which we attribute to an increased extension (or decreased charge density) of unfolded RNAs with increased urea concentration. The sensitivity of the urea m-value to base surface exposure makes it a potentially useful probe of the conformations of RNA unfolded states. PMID:23088364

  13. Chemical probes of the conformation of DNA modified by cis-diamminedichloroplatinum(II)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marrot, L.; Leng, M.

    The purpose of this work was to analyze at the nucleotide level the distortions induced by the binding of cis-diamminedichloroplatinum(II) (cis-DDP) to DNA by means of chemical probes. In order to test the chemical probes, experiments were first carried out on two platinated oligonucleotides. It has been verified by circular dichroism and gel electrophoresis that the binding of cis-DDP to an AG or to a GTG site within a double-stranded oligonucleotide distorts the double helix. The reactivity of the oligonucleotide platinated at the GTG site with chloroacetaldehyde, diethyl pyrocarbonate, and osmium tetraoxide, respectively, suggests a local denaturation of the doublemore » helix. The 5'G residue and the T residue within the adduct are no longer paired, while the 3'G residue is paired. The double helix is more distorted (but not denatured) at the 5' side of the adduct than at the 3' side. The reactivities of the chemical probes with six platinated DNA restriction fragments show that even at a relatively high level of platination only a few base pairs are unpaired but the double helix is largely distorted. No local denaturation has been detected at the GG sites separated from the nearest GG or AG sites by at least three base pairs. The AG sites separated from the nearest AG or GG sites by at least three base pairs do not denature the double helix locally when they are in the sequences puAG/pyTC. It is suggested that the distortion within these sequences is induced by adducts located further away along the DNA fragments, these sequences not being the major sites for the binding of cis-DDP.« less

  14. Corneal collagen denaturation in laser thermokeratoplasty

    NASA Astrophysics Data System (ADS)

    Brinkmann, Ralf; Kampmeier, Juergen; Grotehusmann, Ulf; Vogel, Alfred; Koop, Norbert; Asiyo-Vogel, Mary; Birngruber, Reginald

    1996-05-01

    In laserthermokeratoplasty (LTK) thermal denaturation and shrinkage of corneal collagen is used to correct hyperopia and astigmatism. In order to optimize dosimetry, the temperature at which maximal shrinkage of collagen fibrils occurs is of major interest. Since the exposure time in clinical LTK-treatment is limited to a few seconds, the kinetics of collagen denaturation as a rate process has to be considered, thus the time of exposure is of critical importance for threshold and shrinkage temperatures. We investigated the time-temperature correlation for corneal collagen denaturation within different time domains by turbidimetry of scattered HeNe laser probe light using a temperature controlled water bath and pulsed IR laser irradiation. In the temperature range of 60 degree(s)C to 95 degree(s)C we found an exponential relation between the denaturation time and temperature. For the typical LTK-treatment time of 2 s, a temperature of 95 degree(s)C is needed to induce thermal damage. Use of pulsed Holmium laser radiation gave significant scattering of HeNe laser probe light at calculated temperatures of around 100 degree(s)DC. Rate parameters according to the formalism of Arrhenius were fitted to these results. Force measurements showed the simultaneous onset of light scattering and collagen shrinkage.

  15. Thermal denaturation of protein studied by terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Fu, Xiuhua; Li, Xiangjun; Liu, Jianjun; Du, Yong; Hong, Zhi

    2012-12-01

    In this study, the absorption spectra of native or thermal protein were measured in 0.2-1.4THz using terahertz time-domain spectroscopy (THz-TDS) system at room temperature, their absorption spectra and the refractive spectra were obtained. Experimental results indicate that protein both has strong absorption but their characteristics were not distinct in the THz region, and the absorption decreased during thermal denatured state. In order to prove protein had been denatured, we used Differential scanning calorimeter (DSC) measured their denatured temperature, from their DSC heating traces, collagen Td=101℃, Bovine serum albumin Td=97℃. While we also combined the Fourier transform infrared spectrometer (FTIR) to investigate their secondary and tertiary structure before and after denatuation, but the results did not have the distinct changes. We turned the absorption spectra and the refractive spectra to the dielectric spectra, and used the one-stage Debye model simulated the terahertz dielectric spectra of protein before and after denaturation. This research proved that the terahertz spectrum technology is feasible in testing protein that were affected by temperature or other factors which can provide theoretical foundation in the further study about the THz spectrum of protein and peptide temperature stability.

  16. Structural perturbation of proteins in low denaturant concentrations.

    PubMed

    Basak, S; Debnath, D; Haque, E; Ray, S; Chakrabarti, A

    2001-01-01

    The presence of very low concentrations of the widely used chemical denaturants, guanidinium chloride and urea, induce changes in the tertiary structure of proteins. We have presented results on such changes in four structurally unrelated proteins to show that such structural perturbations are common irrespective of their origin. Data representative of such structural changes are shown for the monomeric globular proteins such as horseradish peroxidase (HRP) from a plant, human serum albumin (HSA) and prothrombin from ovine blood serum, and for the membrane-associated, worm-like elongated protein, spectrin, from ovine erythrocytes. Structural alterations in these proteins were reflected in quenching studies of tryptophan fluorescence using the widely used quencher acrylamide. Stern-Volmer quenching constants measured in presence of the denaturants, even at concentrations below 100 mM, were higher than those measured in absence of the denaturants. Both steady-state and time-resolved fluorescence emission properties of tryptophan and of the extrinsic probe PRODAN were used for monitoring conformational changes in the proteins in presence of different low concentrations of the denaturants. These results are consistent with earlier studies from our laboratory indicating structural perturbations in proteins at the tertiary level, keeping their native-like secondary structure and their biological activity more or less intact.

  17. Lipid Membrane Encapsulation of a 3D DNA Nano Octahedron.

    PubMed

    Perrault, Steven D; Shih, William M

    2017-01-01

    Structural DNA nanotechnology methods such as DNA origami allow for the synthesis of highly precise nanometer-scale materials (Rothemund, Nature 440:297-302, 2006; Douglas et al., Nature 459:414-418, 2009). These offer compelling advantages for biomedical applications. Such materials can suffer from structural instability in biological environments due to denaturation and nuclease digestion (Hahn et al., ACS Nano 2014; Perrault and Shih, ACS Nano 8:5132-5140, 2014). Encapsulation of DNA nanostructures in a lipid membrane compartmentalizes them from their environment and prevents denaturation and nuclease digestion (Perrault and Shih, ACS Nano 8:5132-5140, 2014). Here, we describe the encapsulation of a 50 nm DNA nanostructure having the geometry of a wireframe octahedron in a phospholipid membrane containing poly-(ethylene glycol), resulting in biocompatible DNA nanostructures.

  18. 27 CFR 19.460 - Conversion of denatured alcohol formulas.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (a), (b), and (c) of this section shall obtain approval from the appropriate TTB officer prior to... containing methanol or wood alcohol may be converted to any one of the completely denatured alcohol formulas...

  19. High pressure effects on allergen food proteins.

    PubMed

    Somkuti, Judit; Smeller, László

    2013-12-15

    There are several proteins, which can cause allergic reaction if they are inhaled or ingested. Our everyday food can also contain such proteins. Food allergy is an IgE-mediated immune disorder, a growing health problem of great public concern. High pressure is known to affect the structure of proteins; typically few hundred MPa pressure can lead to denaturation. That is why several trials have been performed to alter the structure of the allergen proteins by high pressure, in order to reduce its allergenicity. Studies have been performed both on simple protein solutions and on complex food systems. Here we review those allergens which have been investigated under or after high pressure treatment by methods capable of detecting changes in the secondary and tertiary structure of the proteins. We focus on those allergenic proteins, whose structural changes were investigated by spectroscopic methods under pressure in correlation with the observed allergenicity (IgE binding) changes. According to this criterion we selected the following allergen proteins: Mal d 1 and Mal d 3 (apple), Bos d 5 (milk), Dau c 1 (carrot), Gal d 2 (egg), Ara h 2 and Ara h 6 (peanut), and Gad m 1 (cod). Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Glucose-6-phosphate dehydrogenase deficiency in Tunisia: molecular data and phenotype-genotype association.

    PubMed

    Laouini, N; Bibi, A; Ammar, H; Kazdaghli, K; Ouali, F; Othmani, R; Amdouni, S; Haloui, S; Sahli, C A; Jouini, L; Hadj Fredj, S; Siala, H; Ben Romdhane, N; Toumi, N E; Fattoum, S; Messsaoud, T

    2013-02-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common human enzyme defect. In this study, we aimed to perform a molecular investigation of G6PD deficiency in Tunisia and to associate clinical manifestations and the degree of deficiency with the genotype. A total of 161 Tunisian subjects of both sexes were screened by spectrophotometric assay for enzyme activity. Out of these, 54 unrelated subjects were selected for screening of the most frequent mutations in Tunisia by PCR/RFLP, followed by size-based separation of double-stranded fragments under non-denaturing conditions on a denaturing high performance liquid chromatography system. Of the 56 altered chromosomes examined, 75 % had the GdA(-) mutation, 14.28 % showed the GdB(-) mutation and no mutations were identified in 10.72 % of cases. Hemizygous males with GdA(-) mutation were mostly of class III, while those with GdB(-) mutation were mainly of class II. The principal clinical manifestation encountered was favism. Acute hemolytic crises induced by drugs or infections and neonatal jaundice were also noted. Less severe clinical features such as low back pain were present in heterozygous females and in one homozygous female. Asymptomatic individuals were in majority heterozygote females and strangely one hemizygous male. The spectrum of mutations seems to be homogeneous and similar to that of Mediterranean countries; nevertheless 10.72 % of cases remain with undetermined mutation thus suggesting a potential heterogeneity of the deficiency at the molecular level. On the other hand, we note a better association of the molecular defects with the severity of the deficiency than with clinical manifestations.

  1. Native multimer analysis of plasma and platelet von Willebrand factor compared to denaturing separation: implication for the interpretation of satellite bands.

    PubMed

    Hohenstein, Kurt; Griesmacher, Andrea; Weigel, Günter; Golderer, Georg; Ott, Helmut Werner

    2011-06-01

    Blue native electrophoresis (BNE) was applied to analyze the von Willebrand factor (vWF) multimers in their native state and to present a methodology to perform blue native electrophoresis on human plasma proteins, which has not been done before. The major difference between this method and the commonly used SDS-agarose gel electrophoresis is the lack of satellite bands in the high-resolution native gel. To further analyze this phenomenon, a second dimension was performed under denaturing conditions. Thereby, we obtained a pattern in which each protein sub-unit from the first dimension dissociates into three distinct sub-bands. These bands confirm the triplet structure, which consists of an intermediate band and two satellite bands. By introducing the second dimension, our novel method separates the triplet structure into a higher resolution than the commonly used SDS-agarose gel electrophoresis does. This helps considerably in the classification of ambiguous von Willebrand's disease subtypes. In addition, our method has the additional advantage of being able to resolve the triplet structure of platelet vWF multimers, which has not been identified previously through conventional SDS-agarose electrophoresis multimer analysis. This potential enables us to compare the triplet structure from platelet and plasmatic vWF, and may help to find out whether structural abnormalities concern the vWF molecule in the platelet itself, or whether they are due to the physiological processing of vWF shed into circulation. Owing to its resolution and sensitivity, this native separation technique offers a promising tool for the analysis and detection of von Willebrand disorder, and for the classification of von Willebrand's disease subtypes. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Schisandra chinensis fruit modulates the gut microbiota composition in association with metabolic markers in obese women: a randomized, double-blind placebo-controlled study.

    PubMed

    Song, Mi-young; Wang, Jing-hua; Eom, Taewoong; Kim, Hojun

    2015-08-01

    Schisandra chinensis fruit (SCF) is known to have beneficial effects on metabolic diseases, including obesity, and to affect gut microbiota in in vivo studies. However, in human research, there have been a few studies in terms of its clinical roles in lipid metabolism and modulation of gut microbiota. A double-blind, placebo-controlled study with 28 obese women with SCF or placebo was conducted for 12 weeks. Anthropometry and blood and fecal sampling were performed before and after treatment. Analysis of the gut microbiota in feces was performed using denaturing gradient gel electrophoresis and quantitative polymerase chain reaction. Although the values did not differ significantly between the 2 groups, the SCF group tended to show a greater decrease in waist circumference, fat mass, fasting blood glucose, triglycerides, aspartate aminotransferase, and alanine aminotransferase than the placebo group. Clustering of the denaturing gradient gel electrophoresis fingerprints for total bacteria before and after treatment indicated more separate clustering in SCF group than placebo. In correlation analysis, Bacteroides and Bacteroidetes (both increased by SCF) showed significant negative correlation with fat mass, aspartate aminotransferase, and/or alanine aminotransferase, respectively. Ruminococcus (decreased by SCF) showed negative correlation with high-density lipoprotein cholesterol and fasting blood glucose. In conclusion, administration of SCF for 12 weeks resulted in modulation of the gut microbiota composition in Korean obese women, and significant correlations with some bacterial genera and metabolic parameters were noted. However, in general, SCF was not sufficient to induce significant changes in obesity-related parameters compared with placebo. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. On the cold denaturation of globular proteins

    NASA Astrophysics Data System (ADS)

    Ascolese, Eduardo; Graziano, Giuseppe

    2008-12-01

    The recent finding that yeast frataxin shows, at pH 7.0, cold denaturation at 274 K and hot denaturation at 303 K [A. Pastore, S.R. Martin, A. Politou, K.C. Kondapalli, T. Stemmler, P.A. Temussi, J. Am. Chem. Soc. 129 (2007) 5374] calls for a deeper rationalization of the molecular mechanisms stabilizing-destabilizing the native state of globular proteins. It is shown that the statistical thermodynamic model originally developed by Ikegami can reproduce in a more-than-qualitative manner the two conformational transitions of yeast frataxin, providing important clues on their molecular origin.

  4. 27 CFR 21.151 - List of denaturants authorized for denatured spirits.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Denatured Rum (S.D.R.) Acetaldehyde S.D.A. 29. Acetone, U.S.P S.D.A. 23-A, 23-H. Acetaldol C.D.A. 18. Almond... alcohol S.D.A. 39, 39-A, 39-B, 40, 40-A, 40-B, 40-C. Camphor, U.S.P S.D.A. 27, 27-A, 38-B. Caustic soda.... Formaldehyde solution, U.S.P S.D.A. 22, 38-C, 38-D. Gasoline C.D.A. 18, 19; S.D.A. 28-A. Gasoline, unleaded C.D...

  5. 27 CFR 21.151 - List of denaturants authorized for denatured spirits.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Denatured Rum (S.D.R.) Acetaldehyde S.D.A. 29. Acetone, U.S.P S.D.A. 23-A, 23-H. Acetaldol C.D.A. 18. Almond... alcohol S.D.A. 39, 39-A, 39-B, 40, 40-A, 40-B, 40-C. Camphor, U.S.P S.D.A. 27, 27-A, 38-B. Caustic soda.... Formaldehyde solution, U.S.P S.D.A. 22, 38-C, 38-D. Gasoline C.D.A. 18, 19; S.D.A. 28-A. Gasoline, unleaded C.D...

  6. Catalytic performance of subtilisin immobilized without covalently attachment on surface-functionalized mesoporous silica materials

    NASA Astrophysics Data System (ADS)

    Murai, K.; Nonoyama, T.; Ando, F.; Kato, K.

    2011-10-01

    Mesoporous silica (MPS) materials were synthesized using cetyltrimethylammonium bromide or amphiphilic pluronic polymer P123 (EO20PO70EO20) as structure-directing agent. MPS samples were characterized by FE-SEM and N2 adsorption-desorption isotherms, respectively. Subtilisin from Bacillus licheiformis (4.1 × 7.8 × 3.7 nm) was easily immobilized by a direct one-step immobilization process onto MPS with different organo-functinalized surfaces. However, enzyme immobilized on MPS modified with 3-mercaptopropyl group strongly reduced its enantioselectivity. Denaturation temperature of immobilized subtilisin shifted to a high temperature compared to free-enzyme. These biocatalysts on MPS particles retained about 30% of original activity even after 5 cycles of recycle use.

  7. Analysis of mutational spectra by denaturant capillary electrophoresis

    PubMed Central

    Ekstrøm, Per O.; Khrapko, Konstantin; Li-Sucholeiki, Xiao-Cheng; Hunter, Ian W.; Thilly, William G.

    2009-01-01

    Numbers and kinds of point mutant within DNA from cells, tissues and human population may be discovered for nearly any 75–250bp DNA sequence. High fidelity DNA amplification incorporating a thermally stable DNA “clamp” is followed by separation by denaturing capillary electrophoresis (DCE). DCE allows for peak collection and verification sequencing. DCE in a mode of cycling temperature, e.g.+/− 5°C, CyDCE, permits high resolution of mutant sequences using computer defined analytes without preliminary optimization experiments. DNA sequencers have been modified to permit higher throughput CyDCE and a massively parallel,~25,000 capillary system, has been designed for pangenomic scans in large human populations. DCE has been used to define quantitative point mutational spectra for study a wide variety of genetic phenomena: errors of DNA polymerases, mutations induced in human cells by chemicals and irradiation, testing of human gene-common disease associations and the discovery of origins of point mutations in human development and carcinogenesis. PMID:18600220

  8. 27 CFR 19.601 - Marks on containers of specially denatured spirits.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (alcohol or rum); (5) Formula number; and (6) Proof of spirits which were denatured at other than 190... in paragraph (a) (1), (3), (4), (5), and (6) of this section. (c) Alternate formulations. When...

  9. Efficient renaturation of inclusion body proteins denatured by SDS.

    PubMed

    He, Chuan; Ohnishi, Kouhei

    2017-09-02

    Inclusion bodies are often formed when the foreign protein is over expressed in Escherichia coli. Since proteins in inclusion bodies are inactive, denaturing and refolding of inclusion body proteins are necessary to obtain the active form. Instead of the conventional denaturants, urea and guanidine hydrochloride, a strong anionic detergent SDS was used to solubilize C-terminal His-tag form of ulvan lyase in the inclusion bodies. Solution containing SDS-solubilized enzyme were kept on ice to precipitate SDS, followed by SDS-KCl insoluble crystal formation to remove SDS completely. After removing the precipitate by centrifugation, the supernatant was applied to Ni-NTA column to purify His-tagged ulvan lyase. The purified protein showed a dimeric form and ulvan lyase activity, demonstrating that SDS-denatured protein was renatured and recovered enzyme activity. This simple method could be useful for refolding other inclusion body proteins. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Conformational stability and thermodynamic characterization of the lipoic acid bearing domain of human mitochondrial branched chain α-ketoacid dehydrogenase

    PubMed Central

    Naik, Mandar T.; Huang, Tai-Huang

    2004-01-01

    The lipoic acid bearing domain (hbLBD) of human mitochondrial branched chain α-ketoacid dehydrogenase (BCKD) plays important role of substrate channeling in oxidative decarboxylation of the branched chain α-ketoacids. Recently hbLBD has been found to follow two-step folding mechanism without detectable presence of stable or kinetic intermediates. The present study describes the conformational stability underlying the folding of this small β-barrel domain. Thermal denaturation in presence of urea and isothermal urea denaturation titrations are used to evaluate various thermodynamic parameters defining the equilibrium unfolding. The linear extrapolation model successfully describes the two-step; native state ↔denatured state unfolding transition of hbLBD. The average temperature of maximum stability of hbLBD is estimated as 295.6 ± 0.9 K. Cold denaturation of hbLBD is also predicted and discussed. PMID:15322287

  11. Effective non-denaturing purification method for improving the solubility of recombinant actin-binding proteins produced by bacterial expression.

    PubMed

    Chung, Jeong Min; Lee, Sangmin; Jung, Hyun Suk

    2017-05-01

    Bacterial expression is commonly used to produce recombinant and truncated mutant eukaryotic proteins. However, heterologous protein expression may render synthesized proteins insoluble. The conventional method used to express a poorly soluble protein, which involves denaturation and refolding, is time-consuming and inefficient. There are several non-denaturing approaches that can increase the solubility of recombinant proteins that include using different bacterial cell strains, altering the time of induction, lowering the incubation temperature, and employing different detergents for purification. In this study, we compared several non-denaturing protocols to express and purify two insoluble 34 kDa actin-bundling protein mutants. The solubility of the mutant proteins was not affected by any of the approaches except for treatment with the detergent sarkosyl. These results indicate that sarkosyl can effectively improve the solubility of insoluble proteins during bacterial expression. Copyright © 2016. Published by Elsevier Inc.

  12. The Unfolding and Refolding Reactions of Triosephosphate Isomerase from Trypanosoma Cruzi Follow Similar Pathways. Guanidinium Hydrochloride Studies

    NASA Astrophysics Data System (ADS)

    Vázquez-Contreras, Edgar; Pérez Hernández, Gerardo; Sánchez-Rebollar, Brenda Guadalupe; Chánez-Cárdenas, María Elena

    2005-04-01

    The unfolding and refolding reactions of Trypanosoma cruzi triosephosphate isomerase (TcTIM) was studied under equilibrium conditions at increasing guanidinium hydrochloride concentrations. The changes in activity intrinsic fluorescence and far-ultraviolet circular dichroism as a function of denaturant were used as a quaternary, tertiary and secondary structural probes respectively. The change in extrinsic ANS fluorescence intensity was also investigated. The results show that the transition between the homodimeric native enzyme to the unfolded monomers (unfolding), and its inverse reaction (refolding) are described by similar pathways and two equilibrium intermediates were detected in both reactions. The mild denaturant concentrations intermediate is active and contains significant amount of secondary and tertiary structures. The medium denaturant concentrations intermediate is inactive and able to bind the fluorescent dye. This intermediates are maybe related with those observed in the denaturation pattern of TIMs from other species; the results are discussed in this context.

  13. Denatured ethanol release into gasoline residuals, Part 1: source behaviour.

    PubMed

    Freitas, Juliana G; Barker, James F

    2013-05-01

    With the increasing use of ethanol in fuels, it is important to evaluate its fate when released into the environment. While ethanol is less toxic than other organic compounds present in fuels, one of the concerns is the impact ethanol might have on the fate of gasoline hydrocarbons in groundwater. One possible concern is the spill of denatured ethanol (E95: ethanol containing 5% denaturants, usually hydrocarbons) in sites with pre-existing gasoline contamination. In that scenario, ethanol is expected to increase the mobility of the NAPL phase by acting as a cosolvent and decreasing interfacial tension. To evaluate the E95 behaviour and its impacts on pre-existing gasoline, a field test was performed at the CFB-Borden aquifer. Initially gasoline contamination was created releasing 200 L of E10 (gasoline with 10% ethanol) into the unsaturated zone. One year later, 184 L of E95 was released on top of the gasoline contamination. The site was monitored using soil cores, multilevel wells and one glass access tube. At the end of the test, the source zone was excavated and the compounds remaining were quantified. E95 ethanol accumulated and remained within the capillary fringe and unsaturated zone for more than 200 days, despite ~1m oscillations in the water table. The gasoline mobility increased and it was redistributed in the source zone. Gasoline NAPL saturations in the soil increased two fold in the source zone. However, water table oscillations caused a separation between the NAPL and ethanol: NAPL was smeared and remained in deeper positions while ethanol moved upwards following the water table rise. Similarly, the E95 denaturants that initially were within the ethanol-rich phase became separated from ethanol after the water table oscillation, remaining below the ethanol rich zone. The separation between ethanol and hydrocarbons in the source after water table oscillation indicates that ethanol's impact on hydrocarbon residuals is likely limited to early times. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. General unknown screening, antioxidant and anti-inflammatory potential of Dendrobium macrostachyum Lindl.

    PubMed

    Sukumaran, Nimisha Pulikkal; Yadav, R Hiranmai

    2016-01-01

    D. macrostachyum is an epiphytic orchid abundant in Southern India and is reported for pain relief in folklore. The objective of the present study was to determine in vitro free radical scavenging and anti-inflammatory activity of D. macrostachyum and to perform LCMS based metabolic profiling of the plant. Sequential stem and leaf extracts were assessed for its antioxidant and anti-inflammatory activity by in vitro methods. The antioxidant activity determined by assays based on the decolourization of the radical monocation of DPPH, ABTS and reducing power. Total amount of phenolics for quantitative analysis of antioxidative components was estimated. In vitro anti-inflammatory activity was evaluated using protein denaturation assay, membrane stabilization assay and proteinase inhibitory activity. Methanolic extract of plant was subjected to LCMS. The stem ethanolic extracts exhibited significant IC50 value of 10.21, 31.54 and 142.97 μg/ml respectively for DPPH, ABTS radical scavenging and reducing power activity. The ethanol and water extract was highly effective as albumin denaturation inhibitors (IC50 = 114.13 and 135.818 μg/ml respectively) and proteinase inhibitors (IC50 = 72.49 and 129.681 μg/ml respectively). Membrane stabilization was also noticeably inhibited by the stem ethanolic extract among other extracts (IC50 = 89.33 μg/ml) but comparatively lower to aspirin standard (IC50 = 83.926 μg/ml). The highest total phenol content was exhibited by ethanolic stem and leaf extracts respectively at 20 and 16 mg of gallic acid equivalents of dry extract. On LCMS analysis 20 constituents were identified and it included chemotaxonomic marker for Dendrobium species. The results showed a relatively high concentration of phenolics, high scavenger activity and high anti-inflammatory activity of the stem extract compared to the leaf extract. The results indicate that the plant can be a potential source of bioactive compounds.

  15. General unknown screening, antioxidant and anti-inflammatory potential of Dendrobium macrostachyum Lindl.

    PubMed Central

    Sukumaran, Nimisha Pulikkal; Yadav, R. Hiranmai

    2016-01-01

    Context: D. macrostachyum is an epiphytic orchid abundant in Southern India and is reported for pain relief in folklore. Aims: The objective of the present study was to determine in vitro free radical scavenging and anti-inflammatory activity of D. macrostachyum and to perform LCMS based metabolic profiling of the plant. Settings and Design: Sequential stem and leaf extracts were assessed for its antioxidant and anti-inflammatory activity by in vitro methods. Materials and Methods: The antioxidant activity determined by assays based on the decolourization of the radical monocation of DPPH, ABTS and reducing power. Total amount of phenolics for quantitative analysis of antioxidative components was estimated. In vitro anti-inflammatory activity was evaluated using protein denaturation assay, membrane stabilization assay and proteinase inhibitory activity. Methanolic extract of plant was subjected to LCMS. Results: The stem ethanolic extracts exhibited significant IC50 value of 10.21, 31.54 and 142.97 μg/ml respectively for DPPH, ABTS radical scavenging and reducing power activity. The ethanol and water extract was highly effective as albumin denaturation inhibitors (IC50 = 114.13 and 135.818 μg/ml respectively) and proteinase inhibitors (IC50 = 72.49 and 129.681 μg/ml respectively). Membrane stabilization was also noticeably inhibited by the stem ethanolic extract among other extracts (IC50 = 89.33 μg/ml) but comparatively lower to aspirin standard (IC50 = 83.926 μg/ml). The highest total phenol content was exhibited by ethanolic stem and leaf extracts respectively at 20 and 16 mg of gallic acid equivalents of dry extract. On LCMS analysis 20 constituents were identified and it included chemotaxonomic marker for Dendrobium species. Conclusions: The results showed a relatively high concentration of phenolics, high scavenger activity and high anti-inflammatory activity of the stem extract compared to the leaf extract. The results indicate that the plant can be a potential source of bioactive compounds. PMID:27621524

  16. Thermal Unfolding Simulations of Bacterial Flagellin: Insight into its Refolding Before Assembly

    PubMed Central

    Chng, Choon-Peng; Kitao, Akio

    2008-01-01

    Flagellin is the subunit of the bacterial filament, the micrometer-long propeller of a bacterial flagellum. The protein is believed to undergo unfolding for transport through the channel of the filament and to refold in a chamber at the end of the channel before being assembled into the growing filament. We report a thermal unfolding simulation study of S. typhimurium flagellin in aqueous solution as an attempt to gain atomic-level insight into the refolding process. Each molecule comprises two filament-core domains {D0, D1} and two hypervariable-region domains {D2, D3}. D2 can be separated into subdomains D2a and D2b. We observed a similar unfolding order of the domains as reported in experimental thermal denaturation. D2a and D3 exhibited high thermal stability and contained persistent three-stranded β-sheets in the denatured state which could serve as folding cores to guide refolding. A recent mutagenesis study on flagellin stability seems to suggest the importance of the folding cores. Using crude size estimates, our data suggests that the chamber might be large enough for either denatured hypervariable-region domains or filament-core domains, but not whole flagellin; this implicates a two-staged refolding process. PMID:18263660

  17. Genetic utility of natural history museum specimens: endangered fairy shrimp (Branchiopoda, Anostraca)

    PubMed Central

    Wall, Adam R.; Campo, Daniel; Wetzer, Regina

    2014-01-01

    Abstract We examined the potential utility of museum specimens as a source for genetic analysis of fairy shrimp. Because of loss of their vernal pool habitat, some fairy shrimp (including Branchinecta sandiegonensis and Branchinecta lynchi) are listed as threatened or endangered in Southern California by the United States Fish and Wildlife Service. Management of those species requires extensive population genetics studies and the resolution of important genetic complexity (e.g. possible hybridization between endangered and non-endangered species). Regulations mandating deposition of specimens of listed species have resulted in thousands of specimens accessioned into the Natural History Museum of Los Angeles County that have been preserved in a variety of solutions. We subsampled those specimens, as well as other Anostraca with known collection and preservation histories, to test their potential for genetic analysis by attempting DNA extraction and amplification for mt16SrDNA. Fixation and preservation in not denatured ethanol had a far greater sequencing success rate than other (and unknown) fixatives and preservatives. To maximize scientific value we recommend field preservation in 95% not denatured ethanol (or, if pure ethanol is unavailable, high-proof drinking spirits, e.g. Everclear™, or 151 proof white rum), followed by storage in 95% not denatured ethanol. PMID:25561827

  18. Effects of Natural Osmolytes on the Protein Structure in Supercritical CO2: Molecular Level Evidence.

    PubMed

    Monhemi, Hassan; Housaindokht, Mohammad Reza; Nakhaei Pour, Ali

    2015-08-20

    Protein instability in supercritical CO2 limits the application of this green solvent in enzyme-catalyzed reactions. CO2 molecules act as a protein denaturant at high pressure under supercritical conditions. Here, for the first time, we show that natural osmolytes could stabilize protein conformation in supercritical CO2. Molecular dynamics simulation is used to monitor the effects of adding different natural osmolytes on the conformation and dynamics of chymotrypsin inhibitor 2 (CI2) in supercritical CO2. Simulations showed that CI2 is denatured at 200 bar in supercritical CO2, which is in agreement with experimental observations. Interestingly, the protein conformation remains native after addition of ∼1 M amino acid- and sugar-based osmolyte models. These molecules stabilize protein through the formation of supramolecular self-assemblies resulting from macromolecule-osmolyte hydrogen bonds. Nevertheless, trimethylamine N-oxide, which is known as a potent osmolyte for protein stabilization in aqueous solutions, amplifies protein denaturation in supercritical CO2. On the basis of our structural analysis, we introduce a new mechanism for the osmolyte effect in supercritical CO2, an "inclusion mechanism". To the best of our knowledge, this is the first study that introduces the application of natural osmolytes in a supercritical fluid and describes mechanistic insights into osmolyte action in nonaqueous media.

  19. Laser spot size and beam profile studies for tissue welding applications

    NASA Astrophysics Data System (ADS)

    Fried, Nathaniel M.; Hung, Vincent C.; Walsh, Joseph T., Jr.

    1999-06-01

    We evaluated the effect of changes in laser spot size and beam profile on the thermal denaturation zone produced during laser skin welding. Our objective was to limit heating of the tissue surface, while creating enough thermal denaturation in the deeper layers of the dermis to produce full-thickness welds. Two-cm-long, full-thickness incisions were made on the backs of guinea pigs, in vivo. India ink was used as an absorber. Continuous-wave, 1.06-μm, Nd:YAG laser radiation was scanned over the incisions, producing approximately 100 ms pulses. Cooling times of 10.0 s between scans were used. Laser spot diameters of 1, 2, 4, and 6 mm were studied, with powers of 1, 4, 16, and 36 W, respectively. The irradiance remained constant at 127 W/cm2. 1, 2, and 4 mm diameter spots produced thermal denaturation to a depth of 570 +/- 100 μm, 970 +/- 210 μm, and 1470 +/- 190 μm, respectively. The 6-mm- diameter spot produced full-thickness welds (1900 μm), but also burns due to the high incident power. Monte Carlo simulations were also conducted, varying the laser spot diameter and beam profile. The simulations verified that an increase in laser spot diameter result in an increase in the penetration depth of radiation into the tissue.

  20. MECHANISMS INVOLVED IN FIBRIN FORMATION

    PubMed Central

    Boyles, Paul W.; Ferguson, John H.; Muehlke, Paul H.

    1951-01-01

    That the role of thrombin in the conversion of fibrinogen to fibrin is essentially enzymatic, is established not only by the minute amounts of thrombin which are effective but also by the complete independence of fibrin yields and thrombin concentrations over a very wide range of thrombin dilutions and clotting times. The thrombin-fibrinogen reaction, in the phase beyond the "latent period" at least, seems fundamentally "first order." Technical requirements of the experiments leading to these conclusions include: (1) a highly purified (e.g. 97 per cent "clottable") fibrinogen, (2) absence of traces of thrombic impurities in the fibrinogen, (3) absence of fibrinolytic protease contaminant of the thrombin and the fibrinogen, and (4) sufficient stability of the thrombin even at very high dilutions. Four conditions affecting thrombin stability have been investigated. Fibrin yields are not significantly modified by numerous experimental circumstances that influence the clotting time, such as (1) temperature, (2) pH, (3) non-specific salt action due to electrical (ionic) charges, which alter the Coulomb forces involved in the fibrillar aggregation, (4) specific ion effects, whether clot-accelerating (e.g. Ca++) or clot-inhibitory (e.g. Fe(CN)6''''), (5) occluding (adsorptive) colloids, which have a "fibrinoplastic" action, e.g. (a) acacia and probably (b) fibrinogen which has been mildly "denatured" by salt-heating, acidification, etc. The data with which several European workers have attempted to substantiate the idea of a two-stage thrombin-fibrinogen reaction with an intermediary "profibrin" (allegedly partly "denatured") have been reanalyzed with controls which lead us to very different conclusions, viz. (1) denaturation and fibrin formation are independent; (2) partial denaturation is "fibrinoplastic" (see above); and (3) conditions of strong salinity and acid pH (5.1) usually do not completely prevent the thrombin-fibrinogen reaction but merely prolong the "latent" phase and lessen the time required for completion of essentially the same reaction (fibrin polymerization) when more favorable clotting conditions are restored. Thus, our experiments advance the modern concepts concerning the coagulation mechanisms along lines that, for the most part, agree with those of the Harvard physical chemists, and we oppose the European views concerning a two-stage reaction, "profibrin," and "the denaturase theory" of clotting. PMID:14832433

  1. Denatured venous homograft as an arterial substitute in civilian vascular injuries. Thirty months' experience.

    PubMed

    La Barbera, G; Pumilia, G; La Marca, G; Martino, A

    1998-06-01

    Autologous saphenous vein (ASV) for arterial reconstruction, in vascular limb injuries is the graft material of choice. Denatured saphenous vein homograft (DSVH), thanks to its characteristics of readily available autologous biological prosthesis, has been proposed as alternative. We report our prospective experience with DSVH employed for arterial reconstruction in civilian limb vascular injuries. From January 1994 to June 1996, DSVH was implanted in 16 male patients (pts.) treated for arterial civilian injuries of eight upper limbs and eight lower limbs. In 14 cases it was performed as an interposition graft and in two cases a bypass. We performed a 30-month follow-up and a 20-month mean follow-up. Four patients had graft thrombosis at the first postoperative week and were submitted to the replacement of the graft with reappearance of distal arterial pulse; one of them had graft failure at the fifth postoperative week and because the necrosis due to extensive soft tissue damage, he was submitted to limb amputation. After 30-months' follow-up we obtained 75% primary patency rate and 93% secondary patency rate. In the absence of suitable ASV, DSVH appears to be an interesting alternative for arterial repair in limbs in civilian vascular injuries.

  2. Stable metal-organic frameworks containing single-molecule traps for enzyme encapsulation.

    PubMed

    Feng, Dawei; Liu, Tian-Fu; Su, Jie; Bosch, Mathieu; Wei, Zhangwen; Wan, Wei; Yuan, Daqiang; Chen, Ying-Pin; Wang, Xuan; Wang, Kecheng; Lian, Xizhen; Gu, Zhi-Yuan; Park, Jihye; Zou, Xiaodong; Zhou, Hong-Cai

    2015-01-19

    Enzymatic catalytic processes possess great potential in chemical manufacturing, including pharmaceuticals, fuel production and food processing. However, the engineering of enzymes is severely hampered due to their low operational stability and difficulty of reuse. Here, we develop a series of stable metal-organic frameworks with rationally designed ultra-large mesoporous cages as single-molecule traps (SMTs) for enzyme encapsulation. With a high concentration of mesoporous cages as SMTs, PCN-333(Al) encapsulates three enzymes with record-high loadings and recyclability. Immobilized enzymes that most likely undergo single-enzyme encapsulation (SEE) show smaller Km than free enzymes while maintaining comparable catalytic efficiency. Under harsh conditions, the enzyme in SEE exhibits better performance than free enzyme, showing the effectiveness of SEE in preventing enzyme aggregation or denaturation. With extraordinarily large pore size and excellent chemical stability, PCN-333 may be of interest not only for enzyme encapsulation, but also for entrapment of other nanoscaled functional moieties.

  3. Stable metal-organic frameworks containing single-molecule traps for enzyme encapsulation

    NASA Astrophysics Data System (ADS)

    Feng, Dawei; Liu, Tian-Fu; Su, Jie; Bosch, Mathieu; Wei, Zhangwen; Wan, Wei; Yuan, Daqiang; Chen, Ying-Pin; Wang, Xuan; Wang, Kecheng; Lian, Xizhen; Gu, Zhi-Yuan; Park, Jihye; Zou, Xiaodong; Zhou, Hong-Cai

    2015-01-01

    Enzymatic catalytic processes possess great potential in chemical manufacturing, including pharmaceuticals, fuel production and food processing. However, the engineering of enzymes is severely hampered due to their low operational stability and difficulty of reuse. Here, we develop a series of stable metal-organic frameworks with rationally designed ultra-large mesoporous cages as single-molecule traps (SMTs) for enzyme encapsulation. With a high concentration of mesoporous cages as SMTs, PCN-333(Al) encapsulates three enzymes with record-high loadings and recyclability. Immobilized enzymes that most likely undergo single-enzyme encapsulation (SEE) show smaller Km than free enzymes while maintaining comparable catalytic efficiency. Under harsh conditions, the enzyme in SEE exhibits better performance than free enzyme, showing the effectiveness of SEE in preventing enzyme aggregation or denaturation. With extraordinarily large pore size and excellent chemical stability, PCN-333 may be of interest not only for enzyme encapsulation, but also for entrapment of other nanoscaled functional moieties.

  4. Temperature-Modulated Array High-Performance Liquid Chromatography

    PubMed Central

    Premstaller, Andreas; Xiao, Wenzhong; Oberacher, Herbert; O'Keefe, Matthew; Stern, David; Willis, Thomas; Huber, Christian G.; Oefner, Peter J.

    2001-01-01

    Using novel monolithic poly(styrene-divinylbenzene) capillary columns with an internal diameter of 0.2 mm, we demonstrate for the first time the feasibility of constructing high-performance liquid chromatography arrays for the detection of mutations by heteroduplex analysis under partially denaturing conditions. In one embodiment, such an array can be used to analyze one sample simultaneously at different temperatures to maximize the detection of mutations in DNA fragments containing multiple discrete melting domains. Alternatively, one may inject different samples onto columns kept at the same effective temperature. Further improvements in throughput can be obtained by means of laser-induced fluorescence detection and the differential labeling of samples with up to four different fluorophores. Major advantages of monolithic capillary high-performance liquid chromatographic arrays over their capillary electrophoretic analogs are the chemical inertness of the poly(styrene-divinylbenzene) stationary phase, the physical robustness of the column bed due to its covalent linkage to the inner surface of the fused silica capillary, and the feasibility to modify the stationary phase thereby allowing the separation of compounds not only on the principle of size exclusion, but also adsorption, distribution, and ion exchange. Analyses times are on the order of a few minutes and turnaround time is extremely short as there is no need for the replenishment of the separation matrix between runs. PMID:11691859

  5. Investigation of thermal denaturation of solid oxytocin by terahertz dielectric spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Xiangjun; Yang, Xiaojie; Liu, Jianjun; Du, Yong; Hong, Zhi

    2014-07-01

    We investigate the thermal denaturation of solid oxytocin using terahertz time domain spectroscopy(THz-TDS). When the peptide is heated up from 25°C to 107°C and cooled down to 25°C again, an irreversible decrease in its THz absorption coefficient and refractive index is observed. The corresponding frequency-dependent permittivity during heating is fitted by the Debye model with single relaxation time. The relaxation times during temperature rising agree very well with Arrhenius equation with the activation energy of 3.12kJ/(K•mol) as an indicator for its thermal denaturation difficulty.

  6. Isothermal assembly of DNA origami structures using denaturing agents.

    PubMed

    Jungmann, Ralf; Liedl, Tim; Sobey, Thomas L; Shih, William; Simmel, Friedrich C

    2008-08-06

    DNA origami is one of the most promising recent developments in DNA self-assembly. It allows for the construction of arbitrary nanoscale patterns and objects by folding a long viral scaffold strand using a large number of short "staple" strands. Assembly is usually accomplished by thermal annealing of the DNA molecules in buffer solution. We here demonstrate that both 2D and 3D origami structures can be assembled isothermally by annealing the DNA strands in denaturing buffer, followed by a controlled reduction of denaturant concentration. This opens up origami assembly for the integration of temperature-sensitive components.

  7. Degradation of insulin by human fibroblasts: effects of inhibitors of pinocytosis and lysosomal activity.

    PubMed

    Kooistra, T; Lloyd, J B

    1985-01-01

    The role of the pinosome-lysosome pathway in the degradation of 125I-labelled bovine insulin by cultured human fibroblasts was examined by comparing the effects of various known inhibitors of pinocytosis and lysosomal degradation on the uptake and degradation of 125I-labelled polyvinylpyrrolidone, formaldehyde-denatured bovine serum albumin and bovine insulin by these cells. Fibroblasts incubated with polyvinylpyrrolidone steadily accumulate this substrate, whereas incubations with insulin or denatured albumin led to the progressive appearance in the culture medium of [125I]iodotyrosine. Inhibitors of pinocytosis (bacitracin, colchicine and monensin), metabolic inhibitors (2,4-dinitrophenol and NaF), lysosomotropic agents (chloroquine and NH4Cl) and an inhibitor of cysteine-proteinases (leupeptin) decreased the rate of uptake of polyvinylpyrrolidone and denatured albumin very similarly, but only bacitracin had an effect on the processing of insulin. Chloroquine, NH4Cl and leupeptin strongly inhibited the digestion of denatured albumin, but not of insulin. The different responses to the modifiers, with polyvinylpyrrolidone and denatured albumin on the one hand and insulin on the other, suggest that insulin degradation can occur by a non-lysosomal pathway. The very strong inhibitory effect of bacitracin on insulin processing by fibroblasts may point to an important role of plasma membrane proteinases in insulin degradation.

  8. Structural stability of Amandin, a major allergen from almond (Prunus dulcis), and its acidic and basic polypeptides.

    PubMed

    Albillos, Silvia M; Menhart, Nicholas; Fu, Tong-Jen

    2009-06-10

    Information relating to the resistance of food allergens to thermal and/or chemical denaturation is critical if a reduction in protein allergenicity is to be achieved through food-processing means. This study examined the changes in the secondary structure of an almond allergen, amandin, and its acidic and basic polypeptides as a result of thermal and chemical denaturation. Amandin ( approximately 370 kDa) was purified by cryoprecipitation followed by gel filtration chromatography and subjected to thermal (13-96 degrees C) and chemical (urea and dithiothreitol) treatments. Changes in the secondary structure of the protein were followed using circular dichroism spectroscopy. The secondary structure of the hexameric amandin did not undergo remarkable changes at temperatures up to 90 degrees C, although protein aggregation was observed. In the presence of a reducing agent, irreversible denaturation occurred with the following experimental values: T(m) = 72.53 degrees C (transition temperature), DeltaH = 87.40 kcal/mol (unfolding enthalpy), and C(p) = 2.48 kcal/(mol degrees C) (heat capacity). The concentration of urea needed to achieve 50% denaturation was 2.59 M, and the Gibbs free energy of chemical denaturation was calculated to be DeltaG = 3.82 kcal/mol. The basic and acidic polypeptides of amandin had lower thermal stabilities than the multimeric protein.

  9. Towards a Model of Cold Denaturation of Proteins

    NASA Astrophysics Data System (ADS)

    Sanchez, Isaac

    2010-10-01

    Proteins/enzymes can undergo cold denaturation or cold deactivation. In the active or natured state, a protein exists in a unique folded/ordered state. In the deactivated (denatured) state, a protein unfolds and exists in a disordered expanded state. This protein folding/unfolding or order/disorder transition can be triggered by a temperature change. What seems paradoxical is that the active (ordered) state can be induced by heating, or equivalently, the disordered inactive state can be induced by cooling. This is equivalent to an Ising spin model passing from a disordered array of spins to an ordered array by increasing temperature! Hydrogels and their corresponding polyelectrolyte chains behave similarly, i.e., the swollen disordered state can be induced by cooling while the more ordered collapsed or globular state is induced by heating (an entropically driven phase transition). In a living cell at the physiological temperature of 37 C, activation and deactivation of proteins is triggered by local environmental changes in pH, salinity, etc. The important physics is that the denaturation temperature can be moved up or down relative to 37 C by these stimuli. Moving the transition temperature up can destabilize the active protein while moving it down leads to stabilization. An analytical polymer model will be described that exhibits cold denaturation behavior.

  10. A strategy for high-level expression of a single-chain variable fragment against TNFα by subcloning antibody variable regions from the phage display vector pCANTAB 5E into pBV220.

    PubMed

    Yang, Tao; Yang, Lijun; Chai, Weiran; Li, Renke; Xie, Jun; Niu, Bo

    2011-03-01

    A phage display single-chain variable fragment (scFv) library against TNFα was constructed using a recombinant phage antibody system (RPAS). The cloned scFv gene was introduced into the phage display vector pCANTAB 5E and expressed in Escherichia coli (E. coli) with a yield of up to 0.15 mg/l of total protein. With the attempt to improve the expression level of TNF-scFv, a strategy was established for subcloning the scFv gene from pCANTAB 5E into the plasmid pBV220. Under the control of a highly efficient tandem P(R)P(L) promoter system, scFv production was increased to 30% of total protein as inclusion bodies. After extraction from the cell pellet by sonication, the inclusion bodies were solubilized and denatured in the presence of 8M urea. Purification of denatured scFv was performed using nickel column chromatography followed by renaturation. The purity and activity of the refolded scFv were confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), Western blotting and by an enzyme-linked immunoabsorbent assay (ELISA). The results reveal that the overall yield of bioactive TNF-scFv from E. coli flask cultures was more than 45 mg/l culture medium and 15 mg/g wet weight cells. The renatured scFv exhibited binding activity similarly to soluble scFv. In conclusion we developed a method to over-express TNF-scFv, which have biological function after purification and renaturation. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Current Protocols in Protein Science

    PubMed Central

    Huynh, Kathy

    2015-01-01

    The purification of recombinant proteins for biochemical assays and structural studies is time-consuming and presents inherent difficulties that depend on the optimization of protein stability. The use of dyes to monitor thermal denaturation of proteins with sensitive fluorescence detection enables the rapid and inexpensive determination of protein stability using real-time PCR instruments. By screening a wide range of solution conditions and additives in 96-well format, the thermal shift assay easily identifies conditions that significantly enhance the stability of recombinant proteins. The same approach can be used as a low cost, initial screen to discover new protein:ligand interactions by capitalizing on increases in protein stability that typically occur upon ligand binding. This unit presents a methodological workflow for the small-scale, high-throughout thermal denaturation of recombinant proteins in the presence of SYPRO Orange dye. PMID:25640896

  12. 27 CFR 26.51 - Formulas for articles, eligible articles and products manufactured with denatured spirits.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... in the United States. (1) Products may be made with completely denatured alcohol for sale under brand... such a formula is not required to submit a new formula. (Approved by the Office of Management and...

  13. 27 CFR 20.172 - Records.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... TREASURY LIQUORS DISTRIBUTION AND USE OF DENATURED ALCOHOL AND RUM Operations by Dealers and Users of Specially Denatured Spirits Inventory and Records § 20.172 Records. In addition to the records required by... Office of Management and Budget under control number 1512-0337) Operations by Dealers ...

  14. Stabilizing effect of biochar on soil extracellular enzymes after a denaturing stress

    USDA-ARS?s Scientific Manuscript database

    Stabilization of extracellular enzymes may maintain enzymatic activity for ecosystem services such as carbon sequestration, nutrient cycling, and bioremediation, while protecting enzymes from proteolysis and denaturation. A laboratory incubation study was conducted to determine whether a fast pyroly...

  15. Evaluation of the flow properties of xanthan gum solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duda, J.L.; Klaus, E.E.; Leung, W.C.

    1981-02-01

    In this study, the solution properties of two forms of xanthan gum, a powder and a broth, which are commercially available were evaluated. As previous studies have shown, the solutions prepared from the broth do exhibit better injectivity properties. However, this investigation also shows that other properties of these solutions are not equivalent. In its natural state, xanthane gum exists as a multistranded helix. This ordered confirmation can be destroyed and in a denatured state, the xanthan gum exhibits a more random configuration and consequently higher viscosity. One of the major conclusions of this study is that the xanthan powdermore » is partially denatured when compared to the xanthan molecules which exist in the broth. This denaturing may occur during the drying process in which the xanthan solids are removed from the broth. Solutions prepared from the broth in the absence of the added salt show a transition in the viscosity-temperature relationship at approximately 40 to 50/sup 0/C. This is consistent with the behavior of native xanthan gum solutions. At approximately 50/sup 0/C, the molecules in solution go into a more random state and consequently, an abrupt rise in the viscosity is observed. However, solutions prepared from the polymer powder do not show any evidence of such a transition. The solutions prepared from the broth can be thermally denatured, and this denaturing results in viscosities which are equivalent to the viscosities realized with the powdered polymer. Before denaturing, the broth solution showed a lower viscosity. Further, intrinsic viscosity measurements indicate that the hydrodynamic volume of the polymer solutions prepared from the borth are smaller than the hydrodynamic volumes of solutions prepared from the powder.« less

  16. Reshaping the folding energy landscape by chloride salt: impact on molten-globule formation and aggregation behavior of carbonic anhydrase.

    PubMed

    Borén, Kristina; Grankvist, Hannah; Hammarström, Per; Carlsson, Uno

    2004-05-21

    During chemical denaturation different intermediate states are populated or suppressed due to the nature of the denaturant used. Chemical denaturation by guanidine-HCl (GuHCl) of human carbonic anhydrase II (HCA II) leads to a three-state unfolding process (Cm,NI=1.0 and Cm,IU=1.9 M GuHCl) with formation of an equilibrium molten-globule intermediate that is stable at moderate concentrations of the denaturant (1-2 M) with a maximum at 1.5 M GuHCl. On the contrary, urea denaturation gives rise to an apparent two-state unfolding transition (Cm=4.4 M urea). However, 8-anilino-1-naphthalene sulfonate (ANS) binding and decreased refolding capacity revealed the presence of the molten globule in the middle of the unfolding transition zone, although to a lesser extent than in GuHCl. Cross-linking studies showed the formation of moderate oligomer sized (300 kDa) and large soluble aggregates (>1000 kDa). Inclusion of 1.5 M NaCl to the urea denaturant to mimic the ionic character of GuHCl leads to a three-state unfolding behavior (Cm,NI=3.0 and Cm,IU=6.4 M urea) with a significantly stabilized molten-globule intermediate by the chloride salt. Comparisons between NaCl and LiCl of the impact on the stability of the various states of HCA II in urea showed that the effects followed what could be expected from the Hofmeister series, where Li+ is a chaotropic ion leading to decreased stability of the native state. Salt addition to the completely urea unfolded HCA II also led to an aggregation prone unfolded state, that has not been observed before for carbonic anhydrase. Refolding from this state only provided low recoveries of native enzyme.

  17. The effects of hyaluronic acid incorporated as a wetting agent on lysozyme denaturation in model contact lens materials.

    PubMed

    Weeks, Andrea; Boone, Adrienne; Luensmann, Doerte; Jones, Lyndon; Sheardown, Heather

    2013-09-01

    Conventional and silicone hydrogels as models for contact lenses were prepared to determine the effect of the presence of hyaluronic acid on lysozyme sorption and denaturation. Hyaluronic acid was loaded into poly(2-hydroxyethyl methacrylate) and poly(2-hydroxyethyl methacrylate)/TRIS--methacryloxypropyltris (trimethylsiloxy silane) hydrogels, which served as models for conventional and silicone hydrogel contact lens materials. The hyaluronic acid was cross-linked using 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide in the presence of dendrimers. Active lysozyme was quantified using a Micrococcus lysodeikticus assay while total lysozyme was determined using 125-I radiolabeled protein. To examine the location of hyaluronic acid in the gels, 6-aminofluorescein labeled hyaluronic acid was incorporated into the gels using 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide chemistry and the gels were examined using confocal laser scanning microscopy. Hyaluronic acid incorporation significantly reduced lysozyme sorption in poly(2-hydroxyethyl methacrylate) (p < 0.00001) and poly(2-hydroxyethyl methacrylate)/TRIS--methacryloxypropyltris (trimethylsiloxy silane) (p < 0.001) hydrogels, with the modified materials sorbing only 20% and 16% that of the control, respectively. More importantly, hyaluronic acid also decreased lysozyme denaturation in poly(2-hydroxyethyl methacrylate) (p < 0.005) and poly(2-hydroxyethyl methacrylate)/TRIS--methacryloxypropyltris (trimethylsiloxy silane) (p < 0.02) hydrogels. The confocal laser scanning microscopy results showed that the hyaluronic acid distribution was dependent on both the material type and the molecular weight of hyaluronic acid. This study demonstrates that hyaluronic acid incorporated as a wetting agent has the potential to reduce lysozyme sorption and denaturation in contact lens applications. The distribution of hyaluronic acid within hydrogels appears to affect denaturation, with more surface mobile, lower molecular weight hyaluronic acid being more effective in preventing denaturation.

  18. Physical interaction between bacterial heat shock protein (Hsp) 90 and Hsp70 chaperones mediates their cooperative action to refold denatured proteins.

    PubMed

    Nakamoto, Hitoshi; Fujita, Kensaku; Ohtaki, Aguru; Watanabe, Satoru; Narumi, Shoichi; Maruyama, Takahiro; Suenaga, Emi; Misono, Tomoko S; Kumar, Penmetcha K R; Goloubinoff, Pierre; Yoshikawa, Hirofumi

    2014-02-28

    In eukaryotes, heat shock protein 90 (Hsp90) is an essential ATP-dependent molecular chaperone that associates with numerous client proteins. HtpG, a prokaryotic homolog of Hsp90, is essential for thermotolerance in cyanobacteria, and in vitro it suppresses the aggregation of denatured proteins efficiently. Understanding how the non-native client proteins bound to HtpG refold is of central importance to comprehend the essential role of HtpG under stress. Here, we demonstrate by yeast two-hybrid method, immunoprecipitation assays, and surface plasmon resonance techniques that HtpG physically interacts with DnaJ2 and DnaK2. DnaJ2, which belongs to the type II J-protein family, bound DnaK2 or HtpG with submicromolar affinity, and HtpG bound DnaK2 with micromolar affinity. Not only DnaJ2 but also HtpG enhanced the ATP hydrolysis by DnaK2. Although assisted by the DnaK2 chaperone system, HtpG enhanced native refolding of urea-denatured lactate dehydrogenase and heat-denatured glucose-6-phosphate dehydrogenase. HtpG did not substitute for DnaJ2 or GrpE in the DnaK2-assisted refolding of the denatured substrates. The heat-denatured malate dehydrogenase that did not refold by the assistance of the DnaK2 chaperone system alone was trapped by HtpG first and then transferred to DnaK2 where it refolded. Dissociation of substrates from HtpG was either ATP-dependent or -independent depending on the substrate, indicating the presence of two mechanisms of cooperative action between the HtpG and the DnaK2 chaperone system.

  19. Preparation and evaluation of a hydrophilic interaction and cation-exchange chromatography stationary phase modified with 2-methacryloyloxyethyl phosphorylcholine.

    PubMed

    Xiong, Caifeng; Yuan, Jie; Wang, Zhiying; Wang, Siyao; Yuan, Chenchen; Wang, Lili

    2018-04-20

    In this work, 2-methacryloyloxyethyl phosphorylcholine (MPC) was used as a ligand to prepare a novel mixed-mode chromatography (MMC) stationary phase by the thiol-ene click reaction onto silica (MPC-silica). It was found that this MPC-silica showed the retention characteristics of hydrophilic interaction chromatography (HILIC) and weak cation exchange chromatography (WCX) under suitable mobile phase conditions. In detail, acidic and basic hydrophilic compounds and puerarin from pueraria were separated quickly with HILIC mode. Meanwhile, six standard proteins were allowed to reach baseline separation in WCX mode, and protein separation from egg white was also achieved with this mode. In addition, reduced/denatured lysozyme could be refolded with the MPC-silica column. In the meantime, the MPC-silica has been applied for refolding with simultaneous purification of recombinant human Delta-like1-RGD (rhDll1-RGD) expressed in Escherichia coli. The results show that the mass recovery and purity of rhDll1-RGD could reach 63.4% and 97% by one step, respectively. Furthermore, the reporter assay results demonstrated that refolded with simultaneously purified rhDll1-RGD could efficiently activate the signalling pathway in a dose-dependent manner. In general, this MPC-silica has good resolution and selectivity in the separation of polar compounds and protein samples in different high-performance liquid chromatography (HPLC) modes, and it successfully achieved refolding with simultaneous purification of denatured protein. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Association of Streptomyces community composition determined by PCR-denaturing gradient gel electrophoresis with indoor mold status

    PubMed Central

    Johansson, Elisabet; Reponen, Tiina; Meller, Jarek; Vesper, Stephen; Yadav, Jagjit

    2014-01-01

    Both Streptomyces species and mold species have previously been isolated from moisture-damaged building materials; however, an association between these two groups of microorganisms in indoor environments is not clear. In this study we used a culture-independent method, PCR denaturing gradient gel electrophoresis (PCR-DGGE) to investigate the composition of the Streptomyces community in house dust. Twenty-three dust samples each from two sets of homes categorized as high-mold and low-mold based on mold specific quantitative PCR-analysis were used in the study. Taxonomic identification of prominent bands was performed by cloning and sequencing. Associations between DGGE amplicon band intensities and home mold status were assessed using univariate analyses, as well as multivariate recursive partitioning (decision trees) to test the predictive value of combinations of bands intensities. In the final classification tree, a combination of two bands was significantly associated with mold status of the home (p = 0.001). The sequence corresponding to one of the bands in the final decision tree matched a group of Streptomyces species that included S. coelicolor and S. sampsonii, both of which have been isolated from moisture-damaged buildings previously. The closest match for the majority of sequences corresponding to a second band consisted of a group of Streptomyces species that included S. hygroscopicus, an important producer of antibiotics and immunosuppressors. Taken together, the study showed that DGGE can be a useful tool for identifying bacterial species that may be more prevalent in mold-damaged buildings. PMID:25331035

  1. GdmCl-induced unfolding studies of human carbonic anhydrase IX: a combined spectroscopic and MD simulation approach.

    PubMed

    Prakash, Amresh; Idrees, Danish; Haque, Md Anzarul; Islam, Asimul; Ahmad, Faizan; Hassan, Md Imtaiyaz

    2017-05-01

    Carbonic anhydrase IX (CAIX) is a transmembrane glycoprotein, associated with tumor, acidification which leads to the cancer, and is considered as a potential biomarker for hypoxia-induced cancers. The overexpression of CAIX is linked with hypoxia condition which is mediated by the transcription of hypoxia-induced factor (HIF-1). To understand the biophysical properties of CAIX, we have carried out a reversible isothermal denaturation of CAIX-induced by GdmCl at pH 8.0 and 25°C. Three different spectroscopic probes, the far-UV CD at 222 nm ([θ] 222 ), Trp fluorescence emission at 342 nm (F 342 ) and difference molar absorption coefficient at 287 nm (Δε 287 ) were used to estimate stability parameters, [Formula: see text] (Gibbs free energy change in the absence of GdmCl; C m (midpoint of the denaturation curve), i.e. molar GdmCl concentration ([GdmCl]) at which ΔG D  = 0; and m, the slope (=∂ΔG D /∂[GdmCl])). GdmCl induces a reversible denaturation of CAIX. Coincidence of the normalized transition curves of all optical properties suggests that unfolding/refolding of CAIX is a two-state process. We further performed molecular dynamics simulation of CAIX for 40 ns to see the dynamics of protein structure in different GdmCl concentrations. An excellent agreement was observed between in silico and in vitro studies.

  2. Fuzzy method of recognition of high molecular substances in evidence-based biology

    NASA Astrophysics Data System (ADS)

    Olevskyi, V. I.; Smetanin, V. T.; Olevska, Yu. B.

    2017-10-01

    Nowadays modern requirements to achieving reliable results along with high quality of researches put mathematical analysis methods of results at the forefront. Because of this, evidence-based methods of processing experimental data have become increasingly popular in the biological sciences and medicine. Their basis is meta-analysis, a method of quantitative generalization of a large number of randomized trails contributing to a same special problem, which are often contradictory and performed by different authors. It allows identifying the most important trends and quantitative indicators of the data, verification of advanced hypotheses and discovering new effects in the population genotype. The existing methods of recognizing high molecular substances by gel electrophoresis of proteins under denaturing conditions are based on approximate methods for comparing the contrast of electrophoregrams with a standard solution of known substances. We propose a fuzzy method for modeling experimental data to increase the accuracy and validity of the findings of the detection of new proteins.

  3. Effects of organic loading rates on reactor performance and microbial community changes during thermophilic aerobic digestion process of high-strength food wastewater.

    PubMed

    Jang, Hyun Min; Lee, Jae Won; Ha, Jeong Hyub; Park, Jong Moon

    2013-11-01

    To evaluate the applicability of single-stage thermophilic aerobic digestion (TAD) process treating high-strength food wastewater (FWW), TAD process was operated at four organic loading rates (OLRs) from 9.2 to 37.2 kg COD/m(3)d. The effects of OLRs on microbial community changes were also examined. The highest volumetric removal rate (13.3 kg COD/m(3)d) and the highest thermo-stable protease activity (0.95 unit/mL) were detected at OLR=18.6 kg COD/m(3)d. Denaturing gradient gel electrophoresis (DGGE) profiles and quantitative PCR (qPCR) results showed significant microbial community shifts in response to changes in OLR. In particular, DGGE and phylogenetic analysis demonstrate that the presence of Bacillus sp. (phylum of Firmicutes) was strongly correlated with efficient removal of organic particulates from high-strength food wastewater. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. 40 CFR 80.1650 - Registration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the first date that such person will blend oxygenate into RBOB, whichever is earlier. (4) Any ethanol... advance of the first date that such person will produce or import ethanol denaturant, whichever is earlier... inaccurate. (h) Certified ethanol denaturant producer registration. (1) Registration shall be on forms and...

  5. 40 CFR 80.1665 - Penalties.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... system. (2) Any person liable under § 80.1662(a)(6) for causing gasoline, oxygenate, or ethanol... the non-complying gasoline, oxygenate, or ethanol denaturant remains any place in the gasoline, oxygenate, or ethanol denaturant distribution system. (3) For purposes of this paragraph (c), the length of...

  6. Protein sterilization method of firefly luciferase using reduced pressure and molecular sieves

    NASA Technical Reports Server (NTRS)

    Chappelle, E. W.; Rich, E., Jr. (Inventor)

    1973-01-01

    The sterilization of the protein fruitfly luciferase under conditions that prevent denaturation is examined. Denaturation is prevented by heating the protein in contact with molecular seives and under a reduced pressure of the order of 0.00005 millimeters of mercury.

  7. Model for calculation of electrostatic contribution into protein stability

    NASA Astrophysics Data System (ADS)

    Kundrotas, Petras; Karshikoff, Andrey

    2003-03-01

    Existing models of the denatured state of proteins consider only one possible spatial distribution of protein charges and therefore are applicable to a limited number of cases. In this presentation a more general framework for the modeling of the denatured state is proposed. It is based on the assumption that the titratable groups of an unfolded protein can adopt a quasi-random distribution, restricted by the protein sequence. The model was tested on two proteins, barnase and N-terminal domain of the ribosomal protein L9. The calculated free energy of denaturation, Δ G( pH), reproduces the experimental data essentially better than the commonly used null approximation (NA). It was demonstrated that the seemingly good agreement with experimental data obtained by NA originates from the compensatory effect between the pair-wise electrostatic interactions and the desolvation energy of the individual sites. It was also found that the ionization properties of denatured proteins are influenced by the protein sequence.

  8. Collective hydration dynamics of guanidinium chloride solutions and its possible role in protein denaturation: a terahertz spectroscopic study.

    PubMed

    Samanta, Nirnay; Mahanta, Debasish Das; Mitra, Rajib Kumar

    2014-11-14

    The remarkable ability of guanidinium chloride (GdmCl) to denature proteins is a well studied yet controversial phenomenon; the exact molecular mechanism is still debatable, especially the role of hydration dynamics, which has been paid less attention. In the present contribution, we have addressed the issue of whether the collective hydrogen bond dynamics of water gets perturbed in the presence of GdmCl and its possible impact on the denaturation of a globular protein human serum albumin (HSA), using terahertz (THz) time domain spectroscopy (TTDS) in the frequency range of 0.3-2.0 THz. The collective hydrogen bond dynamics is determined by fitting the obtained complex dielectric response in a multiple Debye relaxation model. To compare the results, the studies were extended to two more salts: tetramethylguanidinium chloride (TMGdmCl) and sodium chloride (NaCl). It was concluded that the change in hydration dynamics plays a definite role in the protein denaturation process.

  9. Intrinsic alterations in the partial molar volume on the protein denaturation: surficial Kirkwood-Buff approach.

    PubMed

    Yu, Isseki; Takayanagi, Masayoshi; Nagaoka, Masataka

    2009-03-19

    The partial molar volume (PMV) of the protein chymotrypsin inhibitor 2 (CI2) was calculated by all-atom MD simulation. Denatured CI2 showed almost the same average PMV value as that of native CI2. This is consistent with the phenomenological question of the protein volume paradox. Furthermore, using the surficial Kirkwood-Buff approach, spatial distributions of PMV were analyzed as a function of the distance from the CI2 surface. The profiles of the new R-dependent PMV indicate that, in denatured CI2, the reduction in the solvent electrostatic interaction volume is canceled out mainly by an increment in thermal volume in the vicinity of its surface. In addition, the PMV of the denatured CI2 was found to increase in the region in which the number density of water atoms is minimum. These results provide a direct and detailed picture of the mechanism of the protein volume paradox suggested by Chalikian et al.

  10. Interchange reaction of disulfides and denaturation of oxytocin by copper(II)/ascorbic acid/O2 system.

    PubMed

    Inoue, H; Hirobe, M

    1987-05-29

    The interchange reaction of disulfides was caused by the copper(II)/ascorbic acid/O2 system. The incubation of two symmetric disulfides, L-cystinyl-bis-L-phenylalanine (PP) and L-cystinyl-bis-L-tyrosine (TT), with L-ascorbic acid and CuSO4 in potassium phosphate buffer (pH 7.2, 50 mM) resulted in the formation of an asymmetric disulfide, L-cystinyl-L-phenylalanine-L-tyrosine (PT), and the final ratio of PP:PT:TT was 1:2:1. As the reaction was inhibited by catalase and DMSO only at the initial time, hydroxyl radical generated by the copper(II)/ascorbic acid/O2 system seemed to be responsible for the initiation of the reaction. Oxytocin and insulin were denatured by this system, and catalase and DMSO similarly inhibited these denaturations. As the composition of amino acids was unchanged after the reaction, hydroxyl radical was thought to cause the cleavage and/or interchange reaction of disulfides to denature the peptides.

  11. COLD-PCR: improving the sensitivity of molecular diagnostics assays

    PubMed Central

    Milbury, Coren A; Li, Jin; Liu, Pingfang; Makrigiorgos, G Mike

    2011-01-01

    The detection of low-abundance DNA variants or mutations is of particular interest to medical diagnostics, individualized patient treatment and cancer prognosis; however, detection sensitivity for low-abundance variants is a pronounced limitation of most currently available molecular assays. We have recently developed coamplification at lower denaturation temperature-PCR (COLD-PCR) to resolve this limitation. This novel form of PCR selectively amplifies low-abundance DNA variants from mixtures of wild-type and mutant-containing (or variant-containing) sequences, irrespective of the mutation type or position on the amplicon, by using a critical denaturation temperature. The use of a lower denaturation temperature in COLD-PCR results in selective denaturation of amplicons with mutation-containing molecules within wild-type mutant heteroduplexes or with a lower melting temperature. COLD-PCR can be used in lieu of conventional PCR in several molecular applications, thus enriching the mutant fraction and improving the sensitivity of downstream mutation detection by up to 100-fold. PMID:21405967

  12. Signal Peptide and Denaturing Temperature are Critical Factors for Efficient Mammalian Expression and Immunoblotting of Cannabinoid Receptors*

    PubMed Central

    WANG, Chenyun; WANG, Yingying; WANG, Miao; CHEN, Jiankui; YU, Nong; SONG, Shiping; KAMINSKI, Norbert E.; ZHANG, Wei

    2013-01-01

    Summary Many researchers employed mammalian expression system to artificially express cannabinoid receptors, but immunoblot data that directly prove efficient protein expression can hardly be seen in related research reports. In present study, we demonstrated cannabinoid receptor protein was not able to be properly expressed with routine mammalian expression system. This inefficient expression was rescued by endowing an exogenous signal peptide ahead of cannabinoid receptor peptide. In addition, the artificially synthesized cannabinoid receptor was found to aggregate under routine sample denaturing temperatures (i.e., ≥95°C), forming a large molecular weight band when analyzed by immunoblotting. Only denaturing temperatures ≤75°C yielded a clear band at the predicted molecular weight. Collectively, we showed that efficient mammalian expression of cannabinoid receptors need a signal peptide sequence, and described the requirement for a low sample denaturing temperature in immunoblot analysis. These findings provide very useful information for efficient mammalian expression and immunoblotting of membrane receptors. PMID:22528237

  13. Kinetic study of the thermal denaturation of a hyperthermostable extracellular α-amylase from Pyrococcus furiosus.

    PubMed

    Brown, I; Dafforn, T R; Fryer, P J; Cox, P W

    2013-12-01

    Hyperthermophilic enzymes are of industrial importance and interest, especially due to their denaturation kinetics at commercial sterilisation temperatures inside safety indicating time-temperature integrators (TTIs). The thermal stability and irreversible thermal inactivation of native extracellular Pyrococcus furiosus α-amylase were investigated using differential scanning calorimetry, circular dichroism and Fourier transform infrared spectroscopy. Denaturation of the amylase was irreversible above a Tm of approximately 106°C and could be described by a one-step irreversible model. The activation energy at 121°C was found to be 316kJ/mol. Using CD and FT-IR spectroscopy it was shown that folding and stability greatly increase with temperature. Under an isothermal holding temperature of 121°C, the structure of the PFA changes during denaturation from an α-helical structure, through a β-sheet structure to an aggregated protein. Such data reinforces the use of P. furiosus α-amylase as a labile species in TTIs. © 2013.

  14. Protein renaturation by the liquid organic salt ethylammonium nitrate.

    PubMed Central

    Summers, C. A.; Flowers, R. A.

    2000-01-01

    The room-temperature liquid salt, ethylammonium nitrate (EAN), has been used to enhance the recovery of denatured-reduced hen egg white lysozyme (HEWL). Our results show that EAN has the ability to prevent aggregation of the denatured protein. The use of EAN as a refolding additive is advantageous because the renaturation is a one-step process. When HEWL was denatured reduced using routine procedures and renatured using EAN as an additive, HEWL was found to regain 75% of its activity. When HEWL was denatured and reduced in neat EAN, dilution resulted in over 90% recovery of active protein. An important aspect of this process is that renaturation of HEWL occurs at concentrations of 1.6 mg/mL, whereas other renaturation processes occur at significantly lower protein concentrations. Additionally, the refolded-active protein can be separated from the molten salt by simple desalting methods. Although the use of a low-temperature molten salt in protein renaturation is unconventional, the power of this approach lies in its simplicity and utility. PMID:11106174

  15. Effect of osmolytes on the thermal stability of proteins: replica exchange simulations of Trp-cage in urea and betaine solutions.

    PubMed

    Adamczak, Beata; Kogut, Mateusz; Czub, Jacek

    2018-04-25

    Although osmolytes are known to modulate the folding equilibrium, the molecular mechanism of their effect on thermal denaturation of proteins is still poorly understood. Here, we simulated the thermal denaturation of a small model protein (Trp-cage) in the presence of denaturing (urea) and stabilizing (betaine) osmolytes, using the all-atom replica exchange molecular dynamics simulations. We found that urea destabilizes Trp-cage by enthalpically-driven association with the protein, acting synergistically with temperature to induce unfolding. In contrast, betaine is sterically excluded from the protein surface thereby exerting entropic depletion forces that contribute to the stabilization of the native state. In fact, we find that while at low temperatures betaine slightly increases the folding free energy of Trp-cage by promoting another near-native conformation, it protects the protein against temperature-induced denaturation. This, in turn, can be attributed to enhanced exclusion of betaine at higher temperatures that arises from less attractive interactions with the protein surface.

  16. Isothermal DNA origami folding: avoiding denaturing conditions for one-pot, hybrid-component annealing

    NASA Astrophysics Data System (ADS)

    Kopielski, Andreas; Schneider, Anne; Csáki, Andrea; Fritzsche, Wolfgang

    2015-01-01

    The DNA origami technique offers great potential for nanotechnology. Using biomolecular self-assembly, defined 2D and 3D nanoscale DNA structures can be realized. DNA origami allows the positioning of proteins, fluorophores or nanoparticles with an accuracy of a few nanometers and enables thereby novel nanoscale devices. Origami assembly usually includes a thermal denaturation step at 90 °C. Additional components used for nanoscale assembly (such as proteins) are often thermosensitive, and possibly damaged by such harsh conditions. They have therefore to be attached in an extra second step to avoid defects. To enable a streamlined one-step nanoscale synthesis - a so called one-pot folding - an adaptation of the folding procedures is required. Here we present a thermal optimization of this process for a 2D DNA rectangle-shaped origami resulting in an isothermal assembly protocol below 60 °C without thermal denaturation. Moreover, a room temperature protocol is presented using the chemical additive betaine, which is biocompatible in contrast to chemical denaturing approaches reported previously.The DNA origami technique offers great potential for nanotechnology. Using biomolecular self-assembly, defined 2D and 3D nanoscale DNA structures can be realized. DNA origami allows the positioning of proteins, fluorophores or nanoparticles with an accuracy of a few nanometers and enables thereby novel nanoscale devices. Origami assembly usually includes a thermal denaturation step at 90 °C. Additional components used for nanoscale assembly (such as proteins) are often thermosensitive, and possibly damaged by such harsh conditions. They have therefore to be attached in an extra second step to avoid defects. To enable a streamlined one-step nanoscale synthesis - a so called one-pot folding - an adaptation of the folding procedures is required. Here we present a thermal optimization of this process for a 2D DNA rectangle-shaped origami resulting in an isothermal assembly protocol below 60 °C without thermal denaturation. Moreover, a room temperature protocol is presented using the chemical additive betaine, which is biocompatible in contrast to chemical denaturing approaches reported previously. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr04176c

  17. Thermal and Denaturation Studies of the Time-Resolved Fluorescence Decay of Human Superoxide Dismutase

    NASA Astrophysics Data System (ADS)

    Silva, Norberto De Jesus

    Previous studies have shown that time-resolved fluorescence decay of various single tryptophan proteins is best described by a distribution of fluorescence lifetimes rather than one or two lifetimes. The thermal dependence of the lifetime distributions is consistent with the hypothesis that proteins fluctuate between a hierarchy of many conformational substates. With this scenario as a theoretical framework, the correlations between protein dynamic and structure are investigated by studying the time-resolved fluorescence and anisotropy decay of the single tryptophan (Trp) residue of human superoxide dismutase (HSOD) over a wide range of temperatures and at different denaturant concentrations. First, it is demonstrated that the center of the lifetime distribution can characterize the average deactivation environment of the excited Trp-protein system. A qualitative model is introduced to explain the time-resolved fluorescence decay of HSOD in 80% glycerol over a wide range of temperatures. The dynamical model features isoenergetic conformational substates separated by a hierarchy of energy barriers. The HSOD system is also investigated as a function of denaturant concentration in aqueous solution. As a function of guanidine hydrochloride (GdHCl), the width of the fluorescence lifetime distribution of HSOD displays a maximum which is not coincident with the fully denatured form of HSOD at 6.5M GdHCl. Furthermore, the width for the fully denatured form of HSOD is greater than that of the native form. This is consistent with the scenario that more conformational substates are being created upon denaturation of HSOD. HSOD is a dimeric protein and it was observed that the width of the lifetime distribution of HSOD at intermediate GdHCl concentrations increased with decreasing protein concentration. In addition, the secondary structure of HSOD at intermediate GdHCl concentration does not change with protein concentration. These results suggest that HSOD display structural microheterogeneity which is consistent with the hypothesis of conformational substates. Further analysis show that, during denaturation, the monomeric form of HSOD is an intermediate which displays native-like secondary structure and fluctuating tertiary structure; i.e., the monomeric form of HSOD is a molten globule.

  18. Denaturation of Proteins by SDS and by Tetra-alkylammonium Dodecyl Sulfates

    PubMed Central

    Lee, Andrew; Tang, Sindy K. Y.; Mace, Charles R.

    2011-01-01

    This paper describes the use of capillary electrophoresis (CE) to examine the influence of different cations (C+; C+ = Na+ and tetra-n-alkylammonium, NR4 +, where R = Me, Et, Pr, Bu) on the rates of denaturation of bovine carbonic anhydrase II (BCA) in the presence of the anionic surfactant dodecylsulfate (DS−). Analysis of the denaturation of BCA in solutions of Na+DS− and NR4 +DS− (in Tris-Gly buffer) indicated that the rates of formation of complexes of denatured BCA with DS− (BCAD-DS−n,sat) are indistinguishable and independent of the cation below the critical micellar concentration (cmc), and independent of the total concentration of DS− above the cmc. At concentrations of C+DS− above the cmc, BCA denatured with rates that depended on the cation; the rates decreased by a factor > 104, in the order Na+ ~ NMe4 + > NEt4 + > NPr4 + > NBu4 + – the same order as the values of cmc (which decrease from 4.0 mM for Na+DS− to 0.9 mM for NBu4 +DS− in Tris-Gly buffer). The relationship between values of cmc and rates of formation of BCAD-DS−n,sat suggested that the kinetics of denaturation of BCA involve the association of this protein with monomeric DS−, rather than with micelles of (C+DS−)n. A less-detailed survey of seven other proteins (α-lactalbumin, β-lactoglobulin A, β-lactoglobulin B, carboxypeptidase B, creatine phosphokinase, myoglobin, and ubiquitin) showed that the difference between Na+DS− and NR4 +DS− observed with BCA was not general. Instead, the influence of NR4 + on the association of DS− with these proteins depended on the protein. The selection of cation contributed to the properties (including composition, electrophoretic mobility, and partitioning behavior in aqueous two-phase systems) of aggregates of denatured protein and DS−. These results suggest that variation in the behavior of NR4 +DS− with changes in R may be exploited in methods for analyzing and separating mixtures of proteins. PMID:21834533

  19. Hemoglobin stability: observations on the denaturation of normal and abnormal hemoglobins by oxidant dyes, heat, and alkali

    PubMed Central

    Rieder, Ronald F.

    1970-01-01

    Several unstable mutant hemoglobins have alterations which affect areas of the molecule involved in the attachment of heme to globin. Loss of heme from globin has been demonstrated during the denaturation of some of these unstable mutants. The importance of heme ligands for the stability of hemoglobin was illustrated in the present experiments on the denaturation of several hemoglobins and hemoglobin derivatives by heat, oxidative dyes, and alkali. Heating of normal hemolysates diluted to 4 g of hemoglobin per 100 ml at 50°C for 20 hr in 0.05 M sodium phosphate, pH 7.4, caused precipitation of 23-54% of the hemoglobin. Dialysis against water or dilution of the sample decreased denaturation to 12-20%. Precipitation was decreased to less than 3.5% by the presence of 0.015 M potassium cyanide. Increasing the ionic strength of the medium increased precipitation. Cyanide prevented the formation of inclusion bodies when red cells containing unstable hemoglobin Philly, β35 tyr → phe, were incubated with the redox dye new methylene blue. Conversion to methemoglobin increased the rate of alkali denaturation of hemoglobin but the presence of potassium cyanide returned the denaturation rate to that of ferrohemoglobin. The ability of cyanide to decrease heat precipitation of hemoglobin may depend on a dimeric or tetrameric state of the hemoglobin molecule. Purified β-chains, which exist as tetramers, were stabilized but purified monomeric α-chains were not rendered more heat resistant by the ligand. Stabilization of hemoglobin by cyanide required binding of the ligand to only one heme of an αβ-dimer. Hemoglobin Gun Hill, an unstable molecule with heme groups present only on the α-chains was quite heat stable in the presence of cyanide. The binding of cyanide to the iron atom in methemoglobin is thought to be associated with increased planarity of the heme group and increased stability of the heme-globin complex. The stabilizing effect of cyanide in the above experiments suggests that Heinz body formation, heat precipitation of hemoglobin, and the increased alkali denaturation of methemoglobin depend on changes of heme-globin binding. Images PMID:5480860

  20. Denaturation of proteins by SDS and tetraalkylammonium dodecyl sulfates.

    PubMed

    Lee, Andrew; Tang, Sindy K Y; Mace, Charles R; Whitesides, George M

    2011-09-20

    This article describes the use of capillary electrophoresis (CE) to examine the influence of different cations (C(+); C(+) = Na(+) and tetra-n-alkylammonium, NR(4)(+), where R = Me, Et, Pr, and Bu) on the rates of denaturation of bovine carbonic anhydrase II (BCA) in the presence of anionic surfactant dodecylsulfate (DS(-)). An analysis of the denaturation of BCA in solutions of Na(+)DS(-) and NR(4)(+)DS(-) (in Tris-Gly buffer) indicated that the rates of formation of complexes of denatured BCA with DS(-) (BCA(D)-DS(-)(n,sat)) are indistinguishable and independent of the cation below the critical micellar concentration (cmc) and independent of the total concentration of DS(-) above the cmc. At concentrations of C(+)DS(-) above the cmc, BCA denatured at rates that depended on the cation; the rates decreased by a factor >10(4) in the order of Na(+) ≈ NMe(4)(+) > NEt(4)(+) > NPr(4)(+) > NBu(4)(+), which is the same order as the values of the cmc (which decrease from 4.0 mM for Na(+)DS(-) to 0.9 mM for NBu(4)(+)DS(-) in Tris-Gly buffer). The relationship between the cmc values and the rates of formation of BCA(D)-DS(-)(n,sat()) suggested that the kinetics of denaturation of BCA involve the association of this protein with monomeric DS(-) rather than with micelles of (C(+)DS(-))(n). A less-detailed survey of seven other proteins (α-lactalbumin, β-lactoglobulin A, β-lactoglobulin B, carboxypeptidase B, creatine phosphokinase, myoglobin, and ubiquitin) showed that the difference between Na(+)DS(-) and NR(4)(+)DS(-) observed with BCA was not general. Instead, the influence of NR(4)(+) on the association of DS(-) with these proteins depended on the protein. The selection of the cation contributed to the properties (including the composition, electrophoretic mobility, and partitioning behavior in aqueous two-phase systems) of aggregates of denatured protein and DS(-). These results suggest that the variation in the behavior of NR(4)(+)DS(-) with changes in R may be exploited in methods used to analyze and separate mixtures of proteins. © 2011 American Chemical Society

  1. A Study of Alternate Approaches to Utilization Review of Laboratory Services within an Army Medical Center

    DTIC Science & Technology

    1983-06-06

    solubility Hgb F quantitation, alkali denaturation Clot retraction Unstable Ggb studies Cryofibrinogen Methemoglobin Parasitology Blood , Occult and Gross...Performance Standards ........ .................... ... 24 4 Types of Information to be Recorded Under Course of Treatment . 25 5 Factors Contributing to...examine external environmental factors implicating the need for utilization review of ancillary services within an Army Medical Center. (Hereinafter the

  2. Intrinsic Fluorescence as a Spectral Probe for Protein Denaturation Studies in the Presence of Honey

    NASA Astrophysics Data System (ADS)

    Wong, Y. H.; Kadir, H. A.; Tayyab, S.

    2015-11-01

    Honey was found to quench the intrinsic fluorescence of bovine serum albumin (BSA) in a concentration dependent manner, showing complete quenching in the presence of 5% (w/v) honey. Increasing the protein concentration up to 5.0 μM did not lead to the recovery of the protein fluorescence. Urea denaturation of BSA, which otherwise shows a two-step, three-state transition, using intrinsic fluorescence of the protein as the probe failed to produce any result in the presence of 5% (w/v) honey. Thus, intrinsic fluorescence cannot be used as a spectral probe for protein denaturation studies in the presence of honey.

  3. Interaction of native and apo-carbonic anhydrase with hydrophobic adsorbents: A comparative structure-function study.

    PubMed

    Salemi, Zahra; Hosseinkhani, Saman; Ranjbar, Bijan; Nemat-Gorgani, Mohsen

    2006-09-30

    Our previous studies indicated that native carbonic anhydrase does not interact with hydrophobic adsorbents and that it acquires this ability upon denaturation. In the present study, an apo form of the enzyme was prepared by removal of zinc and a comparative study was performed on some characteristic features of the apo and native forms by far- and near-UV circular dichroism (CD), intrinsic fluorescent spectroscopy, 1-anilino naphthalene-8-sulfonate (ANS) binding, fluorescence quenching by acrylamide, and Tm measurement. Results indicate that protein flexibility is enhanced and the hydrophobic sites become more exposed upon conversion to the apo form. Accordingly, the apo structure showed a greater affinity for interaction with hydrophobic adsorbents as compared with the native structure. As observed for the native enzyme, heat denaturation of the apo form promoted interaction with alkyl residues present on the adsorbents and, by cooling followed by addition of zinc, catalytically-active immobilized preparations were obtained.

  4. Characterization of the NADH:ubiquinone oxidoreductase (complex I) in the trypanosomatid Phytomonas serpens (Kinetoplastida).

    PubMed

    Cermáková, Petra; Verner, Zdenek; Man, Petr; Lukes, Julius; Horváth, Anton

    2007-06-01

    NADH dehydrogenase activity was characterized in the mitochondrial lysates of Phytomonas serpens, a trypanosomatid flagellate parasitizing plants. Two different high molecular weight NADH dehydrogenases were characterized by native PAGE and detected by direct in-gel activity staining. The association of NADH dehydrogenase activities with two distinct multisubunit complexes was revealed in the second dimension performed under denaturing conditions. One subunit present in both complexes cross-reacted with the antibody against the 39 kDa subunit of bovine complex I. Out of several subunits analyzed by MS, one contained a domain characteristic for the LYR family subunit of the NADH:ubiquinone oxidoreductases. Spectrophotometric measurement of the NADH:ubiquinone 10 and NADH:ferricyanide dehydrogenase activities revealed their different sensitivities to rotenone, piericidin, and diphenyl iodonium.

  5. 76 FR 60601 - Proposed Information Collections; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-29

    ... capital or start-up costs and costs of operation, maintenance, and purchase of services to provide the... of Spirits, Specially Denatured Spirits, or Wines for Exportation. OMB Number: 1513-0037. TTB Form..., denatured spirits, and wines from internal revenue bonded premises, without payment of tax for direct...

  6. 27 CFR 20.177 - Encased containers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Encased containers. 20.177... Users of Specially Denatured Spirits Operations by Dealers § 20.177 Encased containers. (a) A dealer may package specially denatured spirits in unlabeled containers which are completely encased in wood...

  7. 27 CFR 20.145 - Encased containers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Encased containers. 20.145... Denatured Alcohol § 20.145 Encased containers. Completely denatured alcohol may be packaged by distributors in unlabeled containers which are completely encased in wood, fiberboard, or similar material so that...

  8. 27 CFR 21.116 - Methyl alcohol.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Methyl alcohol. 21.116 Section 21.116 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants § 21...

  9. 27 CFR 21.113 - Isopropyl alcohol.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Isopropyl alcohol. 21.113 Section 21.113 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants § 21...

  10. 27 CFR 21.116 - Methyl alcohol.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Methyl alcohol. 21.116 Section 21.116 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants § 21...

  11. 27 CFR 21.113 - Isopropyl alcohol.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Isopropyl alcohol. 21.113 Section 21.113 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants § 21...

  12. 27 CFR 20.170 - Physical inventory.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Physical inventory. 20.170... Users of Specially Denatured Spirits Inventory and Records § 20.170 Physical inventory. Once in each... physical inventory of each formula of new and recovered specially denatured spirits. (Approved by the...

  13. 27 CFR 20.170 - Physical inventory.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Physical inventory. 20.170... Users of Specially Denatured Spirits Inventory and Records § 20.170 Physical inventory. Once in each... physical inventory of each formula of new and recovered specially denatured spirits. (Approved by the...

  14. 27 CFR 20.170 - Physical inventory.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Physical inventory. 20.170... Users of Specially Denatured Spirits Inventory and Records § 20.170 Physical inventory. Once in each... physical inventory of each formula of new and recovered specially denatured spirits. (Approved by the...

  15. 27 CFR 20.170 - Physical inventory.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Physical inventory. 20.170... Users of Specially Denatured Spirits Inventory and Records § 20.170 Physical inventory. Once in each... physical inventory of each formula of new and recovered specially denatured spirits. (Approved by the...

  16. 27 CFR 20.170 - Physical inventory.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Physical inventory. 20.170... Users of Specially Denatured Spirits Inventory and Records § 20.170 Physical inventory. Once in each... physical inventory of each formula of new and recovered specially denatured spirits. (Approved by the...

  17. 27 CFR 20.165 - Storage facilities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Storage facilities. 20.165... Users of Specially Denatured Spirits Premises and Equipment § 20.165 Storage facilities. (a) Storerooms... for locking. (b) Each stationary tank used for the storage of specially denatured spirits shall be...

  18. 27 CFR 20.165 - Storage facilities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Storage facilities. 20.165... Users of Specially Denatured Spirits Premises and Equipment § 20.165 Storage facilities. (a) Storerooms... for locking. (b) Each stationary tank used for the storage of specially denatured spirits shall be...

  19. 27 CFR 20.165 - Storage facilities.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Storage facilities. 20.165... Users of Specially Denatured Spirits Premises and Equipment § 20.165 Storage facilities. (a) Storerooms... for locking. (b) Each stationary tank used for the storage of specially denatured spirits shall be...

  20. 27 CFR 20.165 - Storage facilities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Storage facilities. 20.165... Users of Specially Denatured Spirits Premises and Equipment § 20.165 Storage facilities. (a) Storerooms... for locking. (b) Each stationary tank used for the storage of specially denatured spirits shall be...

  1. 27 CFR 20.165 - Storage facilities.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Storage facilities. 20.165... Users of Specially Denatured Spirits Premises and Equipment § 20.165 Storage facilities. (a) Storerooms... for locking. (b) Each stationary tank used for the storage of specially denatured spirits shall be...

  2. Lactoferrin denaturation induced by anionic surfactants: The role of the ferric ion in the protein stabilization.

    PubMed

    Ferreira, Gabriel Max Dias; Ferreira, Guilherme Max Dias; Agudelo, Álvaro Javier Patiño; Hudson, Eliara Acipreste; Dos Santos Pires, Ana Clarissa; da Silva, Luis Henrique Mendes

    2018-05-11

    Here, investigation was made of the interaction between Lactoferrin (Lf) and the anionic surfactants sodium dodecyl sulfate (SDS), sodium dodecylbenzene sulfonate (SDBS), and sodium decyl sulfate (DSS), using isothermal titration calorimetry, Nano differential scanning calorimetry (NanoDSC), and fluorescence spectroscopy. The Lf-surfactant interaction was enthalpically favorable (the integral enthalpy change ranged from -5.99 kJ mol -1 , for SDS at pH 3.0, to -0.61 kJ mol -1 , for DSS at pH 12.0) and promoted denaturation of the protein. The Lf denaturation efficiency followed the order DSS < SDS < SDBS. The extent of binding of the surfactants to Lf strongly depended on pH and the surfactant structure, reaching a maximum value of 505 SDBS molecules per gram of Lf at pH 3.0. The different efficiencies of the surfactants in denaturing Lf were attributed to the balance of hydrophobic and electrostatic interactions, which also depended on pH and the surfactant structure, highlighting the SDBS-tryptophan residue specific interaction, where SDBS acted as a quencher of fluorescence. Interestingly, the NanoDSC and fluorescence measurements showed that the ferric ion bound to Lf increased its stability against denaturation induced by the surfactants. The results have important implications for understanding the influence of surfactants on structural changes in metalloproteins. Copyright © 2017. Published by Elsevier B.V.

  3. Designed to Fail: A Novel Mode of Collagen Fibril Disruption and Its Relevance to Tissue Toughness

    PubMed Central

    Veres, Samuel P.; Lee, J. Michael

    2012-01-01

    Collagen fibrils are nanostructured biological cables essential to the structural integrity of many of our tissues. Consequently, understanding the structural basis of their robust mechanical properties is of great interest. Here we present what to our knowledge is a novel mode of collagen fibril disruption that provides new insights into both the structure and mechanics of native collagen fibrils. Using enzyme probes for denatured collagen and scanning electron microscopy, we show that mechanically overloading collagen fibrils from bovine tail tendons causes them to undergo a sequential, two-stage, selective molecular failure process. Denatured collagen molecules—meaning molecules with a reduced degree of time-averaged helicity compared to those packed in undamaged fibrils—were first created within kinks that developed at discrete, repeating locations along the length of fibrils. There, collagen denaturation within the kinks was concentrated within certain subfibrils. Additional denatured molecules were then created along the surface of some disrupted fibrils. The heterogeneity of the disruption within fibrils suggests that either mechanical load is not carried equally by a fibril's subcomponents or that the subcomponents do not possess homogenous mechanical properties. Meanwhile, the creation of denatured collagen molecules, which necessarily involves the energy intensive breaking of intramolecular hydrogen bonds, provides a physical basis for the toughness of collagen fibrils. PMID:22735538

  4. Guanidine hydrochloride-induced alkali molten globule model of horse ferrocytochrome c.

    PubMed

    Jain, Rishu; Kaur, Sandeep; Kumar, Rajesh

    2013-02-01

    This article compares structural, kinetic and thermodynamic properties of previously unknown guanidine hydrochloride (GdnHCl)-induced alkali molten globule (MG) state of horse 'ferrocytochrome c' (ferrocyt c) with the known NaCl-induced alkali-MG state of ferrocyt c. It is well known that Cl(-) arising from GdnHCl refolds and stabilizes the acid-denatured protein to MG state. We demonstrate that the GdnH(+) arising from GdnHCl (≤0.2 M) also transforms the base-denatured CO-liganded ferrocyt c (carbonmonoxycyt c) to MG state by making the electrostatic interactions to the negative charges of the protein. Structural and molecular properties extracted from the basic spectroscopic (circular dichroism (CD), fluorescence, FTIR and NMR) experiments suggest that the GdnH(+)- and Na(+)-induced MG states of base-denatured carbonmonoxycyt c are molecular compact states containing native-like secondary structures and disordered tertiary structures. Kinetic experiments involving the measurement of the CO association to the alkaline ferrocyt c in the presence of different GdnHCl and NaCl concentrations indicate that the Na(+)-induced MG state is more constrained relative to that of GdnH(+)-induced MG state. Analyses of thermal (near UV-CD) denaturation curves of the base-denatured protein in the presence of different GdnHCl and NaCl concentration also indicate that the Na(+)-induced MG state is thermally more stable than the GdnH(+)-induced MG state.

  5. Effects of arginine on rabbit muscle creatine kinase and salt-induced molten globule-like state.

    PubMed

    Ou, Wen-bin; Wang, Ri-Sheng; Lu, Jie; Zhou, Hai-Meng

    2003-11-03

    The arginine (Arg)-induced unfolding and the salt-induced folding of creatine kinase (CK) have been studied by measuring enzyme activity, fluorescence emission spectra, native polyacrylamide gel electrophoresis and size exclusion chromatography (SEC). The results showed that Arg caused inactivation and unfolding of CK, but there was no aggregation during CK denaturation. The kinetics of CK unfolding followed a one-phase process. At higher concentrations of Arg (>160 mM), the CK dimers were fully dissociated, the alkali characteristic of Arg mainly led to the dissociation of dimers, but not denaturation effect of Arg's guanidine groups on CK. The inactivation of CK occurred before noticeable conformational changes of the whole molecules. KCl induced monomeric and dimeric molten globule-like states of CK denatured by Arg. These results suggest that as a protein denaturant, the effect of Arg on CK differed from that of guanidine and alkali, its denaturation for protein contains the double effects, which acts not only as guanidine hydrochloride but also as alkali. The active sites of CK have more flexibility than the whole enzyme conformation. Monomeric and dimeric molten globule-like states of CK were formed by the salt inducing in 160 and 500 mM Arg H(2)O solutions, respectively. The molten globule-like states indicate that monomeric and dimeric intermediates exist during CK folding. Furthermore, these results also proved the orderly folding model of CK.

  6. Multiplexed Elimination of Wild-Type DNA and High-Resolution Melting Prior to Targeted Resequencing of Liquid Biopsies.

    PubMed

    Ladas, Ioannis; Fitarelli-Kiehl, Mariana; Song, Chen; Adalsteinsson, Viktor A; Parsons, Heather A; Lin, Nancy U; Wagle, Nikhil; Makrigiorgos, G Mike

    2017-10-01

    The use of clinical samples and circulating cell-free DNA (cfDNA) collected from liquid biopsies for diagnostic and prognostic applications in cancer is burgeoning, and improved methods that reduce the influence of excess wild-type (WT) portion of the sample are desirable. Here we present enrichment of mutation-containing sequences using enzymatic degradation of WT DNA. Mutation enrichment is combined with high-resolution melting (HRM) performed in multiplexed closed-tube reactions as a rapid, cost-effective screening tool before targeted resequencing. We developed a homogeneous, closed-tube approach to use a double-stranded DNA-specific nuclease for degradation of WT DNA at multiple targets simultaneously. The No Denaturation Nuclease-assisted Minor Allele Enrichment with Probe Overlap (ND-NaME-PrO) uses WT oligonucleotides overlapping both strands on putative DNA targets. Under conditions of partial denaturation (DNA breathing), the oligonucleotide probes enhance double-stranded DNA-specific nuclease digestion at the selected targets, with high preference toward WT over mutant DNA. To validate ND-NaME-PrO, we used multiplexed HRM, digital PCR, and MiSeq targeted resequencing of mutated genomic DNA and cfDNA. Serial dilution of KRAS mutation-containing DNA shows mutation enrichment by 10- to 120-fold and detection of allelic fractions down to 0.01%. Multiplexed ND-NaME-PrO combined with multiplexed PCR-HRM showed mutation scanning of 10-20 DNA amplicons simultaneously. ND-NaME-PrO applied on cfDNA from clinical samples enables mutation enrichment and HRM scanning over 10 DNA targets. cfDNA mutations were enriched up to approximately 100-fold (average approximately 25-fold) and identified via targeted resequencing. Closed-tube homogeneous ND-NaME-PrO combined with multiplexed HRM is a convenient approach to efficiently enrich for mutations on multiple DNA targets and to enable prescreening before targeted resequencing. © 2017 American Association for Clinical Chemistry.

  7. Electrostatic Unfolding and Interactions of Albumin Driven by pH Changes: A Molecular Dynamics Study

    PubMed Central

    2015-01-01

    A better understanding of protein aggregation is bound to translate into critical advances in several areas, including the treatment of misfolded protein disorders and the development of self-assembling biomaterials for novel commercial applications. Because of its ubiquity and clinical potential, albumin is one of the best-characterized models in protein aggregation research; but its properties in different conditions are not completely understood. Here, we carried out all-atom molecular dynamics simulations of albumin to understand how electrostatics can affect the conformation of a single albumin molecule just prior to self-assembly. We then analyzed the tertiary structure and solvent accessible surface area of albumin after electrostatically triggered partial denaturation. The data obtained from these single protein simulations allowed us to investigate the effect of electrostatic interactions between two proteins. The results of these simulations suggested that hydrophobic attractions and counterion binding may be strong enough to effectively overcome the electrostatic repulsions between the highly charged monomers. This work contributes to our general understanding of protein aggregation mechanisms, the importance of explicit consideration of free ions in protein solutions, provides critical new insights about the equilibrium conformation of albumin in its partially denatured state at low pH, and may spur significant progress in our efforts to develop biocompatible protein hydrogels driven by electrostatic partial denaturation. PMID:24393011

  8. Two conformational states in D-shaped DNA: Effects of local denaturation

    NASA Astrophysics Data System (ADS)

    Lee, O.-Chul; Kim, Cheolhee; Kim, Jae-Yeol; Lee, Nam Ki; Sung, Wokyung

    2016-06-01

    The bending of double-stranded(ds) DNA on the nano-meter scale plays a key role in many cellular processes such as nucleosome packing, transcription-control, and viral-genome packing. In our recent study, a nanometer-sized dsDNA bent into a D shape was formed by hybridizing a circular single-stranded(ss) DNA and a complementary linear ssDNA. Our fluorescence resonance energy transfer (FRET) measurement of D-DNA revealed two types of conformational states: a less-bent state and a kinked state, which can transform into each other. To understand the origin of the two deformed states of D-DNA, here we study the presence of open base-pairs in the ds portion by using the breathing-DNA model to simulate the system. We provide strong evidence that the two states are due to the emergence of local denaturation, i.e., a bubble in the middle and two forks at ends of the dsDNA portion. We also study the system analytically and find that the free-energy landscape is bistable with two minima representative of the two states. The kink and fork sizes estimated by the analytical calculation are also in excellent agreement with the results of the simulation. Thus, this combined experimental-simulation-analytical study corroborates that highly bent D-DNA reduces bending stress via local denaturation.

  9. Kinetic analysis of thermal stability of human low density lipoproteins: a model for LDL fusion in atherogenesis[S

    PubMed Central

    Lu, Mengxiao; Gantz, Donald L.; Herscovitz, Haya; Gursky, Olga

    2012-01-01

    Fusion of modified LDL in the arterial wall promotes atherogenesis. Earlier we showed that thermal denaturation mimics LDL remodeling and fusion, and revealed kinetic origin of LDL stability. Here we report the first quantitative analysis of LDL thermal stability. Turbidity data show sigmoidal kinetics of LDL heat denaturation, which is unique among lipoproteins, suggesting that fusion is preceded by other structural changes. High activation energy of denaturation, Ea = 100 ± 8 kcal/mol, indicates disruption of extensive packing interactions in LDL. Size-exclusion chromatography, nondenaturing gel electrophoresis, and negative-stain electron microscopy suggest that LDL dimerization is an early step in thermally induced fusion. Monoclonal antibody binding suggests possible involvement of apoB N-terminal domain in early stages of LDL fusion. LDL fusion accelerates at pH < 7, which may contribute to LDL retention in acidic atherosclerotic lesions. Fusion also accelerates upon increasing LDL concentration in near-physiologic range, which likely contributes to atherogenesis. Thermal stability of LDL decreases with increasing particle size, indicating that the pro-atherogenic properties of small dense LDL do not result from their enhanced fusion. Our work provides the first kinetic approach to measuring LDL stability and suggests that lipid-lowering therapies that reduce LDL concentration but increase the particle size may have opposite effects on LDL fusion. PMID:22855737

  10. The local pathology of interstitial edema: surface tension increases hydration potential in heat-damaged skin.

    PubMed

    McGee, Maria P; Morykwas, Michael J; Argenta, Louis C

    2011-01-01

    The local pathogenesis of interstitial edema in burns is incompletely understood. This ex vivo study investigates the forces mediating water-transfer in and out of heat-denatured interstitial matrix. Experimentally, full-thickness dermal samples are heated progressively to disrupt glycosaminoglycans, kill cells, and denature collagen under conditions that prevent water loss/gain; subsequently, a battery of complementary techniques including among others, high-resolution magnetic resonance imaging, equilibrium vapor pressure and osmotic stress are used to compare water-potential parameters of nonheated and heated dermis. The hydration potential (HP) determined by osmotic stress is a measure of the total water-potential defined empirically as the pressure at which no net water influx/efflux into/from the dermis is detected. Results show that after heat denaturation, the HP, the intensity of T2-weighed magnetic resonance images, and the vapor pressure increase indicating higher water activity and necessarily, smaller contributions from colloidosmotic forces to fluid influx in burned relative to healthy dermis. Concomitant increases in HP and in water activity implicate local changes in interfacial and metabolic energy as the source of excess fluid-transfer potential. These ex vivo findings also show that these additional forces contributing to abnormal fluid-transfer in burned skin develop independently of inflammatory and systemic hydrodynamic responses. © 2011 by the Wound Healing Society.

  11. Biochemical and pharmacological characterizations of ESI-09 based EPAC inhibitors: defining the ESI-09 "therapeutic window".

    PubMed

    Zhu, Yingmin; Chen, Haijun; Boulton, Stephen; Mei, Fang; Ye, Na; Melacini, Giuseppe; Zhou, Jia; Cheng, Xiaodong

    2015-03-20

    The cAMP signaling cascade is one of the most frequently targeted pathways for the development of pharmaceutics. A plethora of recent genetic and pharmacological studies suggest that exchange proteins directly activated by cAMP (EPACs) are implicated in multiple pathologies. Selective EPAC inhibitors have been recently developed. One specific inhibitor, ESI-09, has been shown to block EPAC activity and functions, as well as to recapitulate genetic phenotypes of EPAC knockout mice when applied in vivo. However, a recent study raised concern that ESI-09 might act as a non-specific protein denaturant. Herein, we present a detailed biochemical and pharmacological characterization, as well as a structure-activity relationship (SAR) analysis of ESI-09. Our studies show that ESI-09 dose-dependently inhibits activity of both EPAC1 and EPAC2 with apparent IC50 values well below the concentrations shown to induce "protein denaturation". Moreover, the ESI-09's action towards EPAC proteins is highly sensitive to minor modifications of the 3-chlorophenyl moiety. Taken together, these results demonstrate that ESI-09 indeed acts as an EPAC specific antagonist and does not significantly destabilize/denature proteins at pharmacological effective concentrations. This conclusion is further supported by NMR data showing that ESI-09 induces residue-dependent chemical shift changes at low concentrations, while preserving well dispersed peaks.

  12. Kinetic analysis of thermal stability of human low density lipoproteins: a model for LDL fusion in atherogenesis.

    PubMed

    Lu, Mengxiao; Gantz, Donald L; Herscovitz, Haya; Gursky, Olga

    2012-10-01

    Fusion of modified LDL in the arterial wall promotes atherogenesis. Earlier we showed that thermal denaturation mimics LDL remodeling and fusion, and revealed kinetic origin of LDL stability. Here we report the first quantitative analysis of LDL thermal stability. Turbidity data show sigmoidal kinetics of LDL heat denaturation, which is unique among lipoproteins, suggesting that fusion is preceded by other structural changes. High activation energy of denaturation, E(a) = 100 ± 8 kcal/mol, indicates disruption of extensive packing interactions in LDL. Size-exclusion chromatography, nondenaturing gel electrophoresis, and negative-stain electron microscopy suggest that LDL dimerization is an early step in thermally induced fusion. Monoclonal antibody binding suggests possible involvement of apoB N-terminal domain in early stages of LDL fusion. LDL fusion accelerates at pH < 7, which may contribute to LDL retention in acidic atherosclerotic lesions. Fusion also accelerates upon increasing LDL concentration in near-physiologic range, which likely contributes to atherogenesis. Thermal stability of LDL decreases with increasing particle size, indicating that the pro-atherogenic properties of small dense LDL do not result from their enhanced fusion. Our work provides the first kinetic approach to measuring LDL stability and suggests that lipid-lowering therapies that reduce LDL concentration but increase the particle size may have opposite effects on LDL fusion.

  13. Rousseau's Philosophy of Transformative, "Denaturing" Education

    ERIC Educational Resources Information Center

    Riley, Patrick

    2011-01-01

    Rousseau's political philosophy presents the great legislator as a civic educator who must over time transform naturally self-loving egoists into citizens animated by a general will without destroying freedom. This is an educational process which is "denaturing" but which aims to produce autonomous adults who can ultimately say to their teacher…

  14. 27 CFR 26.36 - Products exempt from tax.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., DEPARTMENT OF THE TREASURY LIQUORS LIQUORS AND ARTICLES FROM PUERTO RICO AND THE VIRGIN ISLANDS Products Coming Into the United States From Puerto Rico § 26.36 Products exempt from tax. (a) General. Industrial spirits, denatured spirits, and products made with denatured spirits in Puerto Rico may be brought into...

  15. Step-wise refolding of recombinant proteins.

    PubMed

    Tsumoto, Kouhei; Arakawa, Tsutomu; Chen, Linda

    2010-04-01

    Protein refolding is still on trial-and-error basis. Here we describe step-wise dialysis refolding, in which denaturant concentration is altered in step-wise fashion. This technology controls the folding pathway by adjusting the concentrations of the denaturant and other solvent additives to induce sequential folding or disulfide formation.

  16. 40 CFR 80.40 - Fuel certification procedures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... volume percent ethanol, or RBOB intended for blending with 10 to 15 volume percent ethanol, that is... contain denatured, anhydrous ethanol. The concentration of the ethanol, excluding the required denaturing agent, must be at least 9 percent and no more than 15 percent (by volume) of the gasoline. The ethanol...

  17. 40 CFR 80.40 - Fuel certification procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... volume percent ethanol, or RBOB intended for blending with 10 volume percent ethanol, that is intended... contain denatured, anhydrous ethanol. The concentration of the ethanol, excluding the required denaturing agent, must be at least 9% and no more than 10% (by volume) of the gasoline. The ethanol content of the...

  18. 40 CFR 80.40 - Fuel certification procedures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... volume percent ethanol, or RBOB intended for blending with 10 to 15 volume percent ethanol, that is... contain denatured, anhydrous ethanol. The concentration of the ethanol, excluding the required denaturing agent, must be at least 9 percent and no more than 15 percent (by volume) of the gasoline. The ethanol...

  19. 40 CFR 80.40 - Fuel certification procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... volume percent ethanol, or RBOB intended for blending with 10 volume percent ethanol, that is intended... contain denatured, anhydrous ethanol. The concentration of the ethanol, excluding the required denaturing agent, must be at least 9% and no more than 10% (by volume) of the gasoline. The ethanol content of the...

  20. 40 CFR 80.40 - Fuel certification procedures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... volume percent ethanol, or RBOB intended for blending with 10 to 15 volume percent ethanol, that is... contain denatured, anhydrous ethanol. The concentration of the ethanol, excluding the required denaturing agent, must be at least 9 percent and no more than 15 percent (by volume) of the gasoline. The ethanol...

  1. 27 CFR 19.726 - Authorized abbreviations to identify spirits.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... records: Kinds of spirits Abbreviations Alcohol A Brandy BR Bourbon Whisky BW Canadian Whisky CNW Completely Denatured Alcohol CDA Corn Whisky CW Grain Spirits GS Irish Whisky IW Light Whisky LW Malt Whisky MW Neutral Spirits NS Neutral Spirits Grain NSG Rye Whisky RW Scotch Whisky SW Specially Denatured...

  2. 48 CFR 829.202-70 - Tax exemptions for alcohol products.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...). The use of tax-free alcohol, whiskey, beer, wine, and denatured spirits for non-beverage purposes... authority may not be delegated. (b) Whiskey, alcohol, and denatured alcohol. (1) The contracting officer may... whiskey and alcohol only from qualified distillery plants or bonded dealers. The accountable officer must...

  3. 48 CFR 829.202-70 - Tax exemptions for alcohol products.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...). The use of tax-free alcohol, whiskey, beer, wine, and denatured spirits for non-beverage purposes... authority may not be delegated. (b) Whiskey, alcohol, and denatured alcohol. (1) The contracting officer may... whiskey and alcohol only from qualified distillery plants or bonded dealers. The accountable officer must...

  4. 76 FR 75836 - Revisions to Distilled Spirits Plant Operations Reports and Regulations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-05

    ... relate to production, storage, denaturation, and processing activities, and may include other information..., Monthly Report of Production Operations; TTB F 5110.11, Monthly Report of Storage Operations; TTB F 5110.... These include a production report, up to four storage reports, a processing report, and a denaturing...

  5. 27 CFR 21.133 - Vinegar.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Vinegar. 21.133 Section 21.133 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants § 21.133 Vinegar. (a...

  6. 27 CFR 21.43 - Formula No. 18.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Formula No. 18. 21.43 Section 21.43 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS FORMULAS FOR DENATURED ALCOHOL AND RUM Specially Denatured Spirits Formulas...

  7. 27 CFR 21.62 - Formula No. 35-A.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Formula No. 35-A. 21.62 Section 21.62 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS FORMULAS FOR DENATURED ALCOHOL AND RUM Specially Denatured Spirits Formulas...

  8. 27 CFR 21.41 - Formula No. 13-A.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Formula No. 13-A. 21.41 Section 21.41 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS FORMULAS FOR DENATURED ALCOHOL AND RUM Specially Denatured Spirits Formulas...

  9. 27 CFR 21.133 - Vinegar.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Vinegar. 21.133 Section 21.133 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants § 21.133 Vinegar. (a...

  10. Using Myoglobin Denaturation to Help Biochemistry Students Understand Protein Structure

    ERIC Educational Resources Information Center

    Miao, Yilan; Thomas, Courtney L.

    2017-01-01

    Analyzing and understanding data directly from primary literature can be a daunting task for undergraduates. However, if information is put into context, students will be more successful when developing data analysis skills. A classroom activity is presented using protein denaturation to help undergraduate biochemistry students examine myoglobin…

  11. 27 CFR 21.21 - General.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ....21 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE... subpart (or in accordance with § 21.5). (b) Denaturers may be authorized to add a small quantity of an... TTB officer. (c) Odorants or perfume materials may be added to denaturants authorized for completely...

  12. 27 CFR 21.21 - General.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ....21 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE... subpart (or in accordance with § 21.5). (b) Denaturers may be authorized to add a small quantity of an... TTB officer. (c) Odorants or perfume materials may be added to denaturants authorized for completely...

  13. 27 CFR 21.21 - General.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ....21 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE... subpart (or in accordance with § 21.5). (b) Denaturers may be authorized to add a small quantity of an... TTB officer. (c) Odorants or perfume materials may be added to denaturants authorized for completely...

  14. 27 CFR 21.21 - General.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ....21 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE... subpart (or in accordance with § 21.5). (b) Denaturers may be authorized to add a small quantity of an... TTB officer. (c) Odorants or perfume materials may be added to denaturants authorized for completely...

  15. 27 CFR 21.21 - General.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ....21 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE... subpart (or in accordance with § 21.5). (b) Denaturers may be authorized to add a small quantity of an... TTB officer. (c) Odorants or perfume materials may be added to denaturants authorized for completely...

  16. 27 CFR 21.44 - Formula No. 19.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... OF THE TREASURY ALCOHOL FORMULAS FOR DENATURED ALCOHOL AND RUM Specially Denatured Spirits Formulas and Authorized Uses § 21.44 Formula No. 19. (a) Formula. To every 100 gallons of alcohol add: One... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Formula No. 19. 21.44...

  17. 27 CFR 21.56 - Formula No. 29.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... OF THE TREASURY ALCOHOL FORMULAS FOR DENATURED ALCOHOL AND RUM Specially Denatured Spirits Formulas and Authorized Uses § 21.56 Formula No. 29. (a) Formula. To every 100 gallons of alcohol add: One... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Formula No. 29. 21.56...

  18. 27 CFR 21.44 - Formula No. 19.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... OF THE TREASURY LIQUORS FORMULAS FOR DENATURED ALCOHOL AND RUM Specially Denatured Spirits Formulas and Authorized Uses § 21.44 Formula No. 19. (a) Formula. To every 100 gallons of alcohol add: One... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Formula No. 19. 21.44...

  19. 27 CFR 21.52 - Formula No. 27.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... OF THE TREASURY ALCOHOL FORMULAS FOR DENATURED ALCOHOL AND RUM Specially Denatured Spirits Formulas and Authorized Uses § 21.52 Formula No. 27. (a) Formula. To every 100 gallons of alcohol add: One... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Formula No. 27. 21.52...

  20. 27 CFR 21.56 - Formula No. 29.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... OF THE TREASURY ALCOHOL FORMULAS FOR DENATURED ALCOHOL AND RUM Specially Denatured Spirits Formulas and Authorized Uses § 21.56 Formula No. 29. (a) Formula. To every 100 gallons of alcohol add: One... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Formula No. 29. 21.56...

Top