Science.gov

Sample records for dendritic cell inhibition

  1. Quercetin protects against atherosclerosis by inhibiting dendritic cell activation.

    PubMed

    Lin, Weiqun; Wang, Wenting; Wang, Dongliang; Ling, Wenhua

    2017-09-01

    Quercetin is a typical flavonol with atheroprotective effects, but the effect of quercetin on dendritic cell (DC) maturation in relation to atherosclerosis has not yet been clearly defined. Thus, we investigated whether quercetin can inhibit DC maturation and evaluated its potential value in atherosclerosis progression in ApoE(-/-) mice. Quercetin consumption inhibited DC activation, inflammatory response and suppressed the progression of atherosclerosis in ApoE(-/-) mice. Subsequently, quercetin treatment inhibited the phenotypic and functional maturation of DCs, as evidenced not only by downregulation of CD80, CD86, MHC-II, IL-6 and IL-12 but also by a reduction in the ability to stimulate T cell allogeneic proliferation. Finally, an in vitro study demonstrated that quercetin inhibited DC maturation via upregulation of Dabs, which then downregulated the Src/PI3K/Akt-NF-κB-inflammatory pathways. Our data indicate that quercetin attenuates atherosclerosis progression by regulating DC activation via Dab2 protein expression. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Dendritic cell MST1 inhibits Th17 differentiation

    PubMed Central

    Li, Chunxiao; Bi, Yujing; Li, Yan; Yang, Hui; Yu, Qing; Wang, Jian; Wang, Yu; Su, Huilin; Jia, Anna; Hu, Ying; Han, Linian; Zhang, Jiangyuan; Li, Simin; Tao, Wufan; Liu, Guangwei

    2017-01-01

    Although the differentiation of CD4+T cells is widely studied, the mechanisms of antigen-presenting cell-dependent T-cell modulation are unclear. Here, we investigate the role of dendritic cell (DC)-dependent T-cell differentiation in autoimmune and antifungal inflammation and find that mammalian sterile 20-like kinase 1 (MST1) signalling from DCs negatively regulates IL-17 producing-CD4+T helper cell (Th17) differentiation. MST1 deficiency in DCs increases IL-17 production by CD4+T cells, whereas ectopic MST1 expression in DCs inhibits it. Notably, MST1-mediated DC-dependent Th17 differentiation regulates experimental autoimmune encephalomyelitis and antifungal immunity. Mechanistically, MST1-deficient DCs promote IL-6 secretion and regulate the activation of IL-6 receptor α/β and STAT3 in CD4+T cells in the course of inducing Th17 differentiation. Activation of the p38 MAPK signal is responsible for IL-6 production in MST1-deficient DCs. Thus, our results define the DC MST1–p38MAPK signalling pathway in directing Th17 differentiation. PMID:28145433

  3. Dendritic spikes veto inhibition.

    PubMed

    Stuart, Greg J

    2012-09-06

    How inhibition regulates dendritic excitability is critical to an understanding of the way neurons integrate the many thousands of synaptic inputs they receive. In this issue of Neuron, Müller et al. (2012) show that inhibition blocks the generation of weak dendritic spikes, leaving strong dendritic spikes intact. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Ceramide Inhibits Antigen Uptake and Presentation by Dendritic Cells

    PubMed Central

    Sallusto, Federica; Nicolò, Chiara; De Maria, Ruggero; Corinti, Silvia; Testi, Roberto

    1996-01-01

    Ceramides are intramembrane diffusible mediators involved in transducing signals originated from a variety of cell surface receptors. Different adaptive and differentiative cellular responses, including apoptotic cell death, use ceramide-mediated pathways as an essential part of the program. Here, we show that human dendritic cells respond to CD40 ligand, as well as to tumor necrosis factor-α and IL-1β, with intracellular ceramide accumulation, as they are induced to differentiate. Dendritic cells down-modulate their capacity to take up soluble antigens in response to exogenously added or endogenously produced ceramides. This is followed by an impairment in presenting soluble antigens to specific T cell clones, while cell viability and the capacity to stimulate allogeneic responses or to present immunogenic peptides is fully preserved. Thus, ceramide-mediated pathways initiated by different cytokines can actively modulate professional antigen-presenting cell function and antigen-specific immune responses. PMID:8976196

  5. Dendritic cell-derived nitric oxide inhibits the differentiation of effector dendritic cells

    PubMed Central

    Wu, Tianshu; Lu, Geming; Hu, Yuan; Zhang, Hui; Xu, Feihong; Wei, Peter; Chen, Kang; Tang, Hua; Yeretssian, Garabet; Xiong, Huabao

    2016-01-01

    Dendritic cells (DCs) play a pivotal role in the development of effective immune defense while avoiding detrimental inflammation and autoimmunity by regulating the balance of adaptive immunity and immune tolerance. However, the mechanisms that govern the effector and regulatory functions of DCs are incompletely understood. Here, we show that DC-derived nitric oxide (NO) controls the balance of effector and regulatory DC differentiation. Mice deficient in the NO-producing enzyme inducible nitric oxide synthase (iNOS) harbored increased effector DCs that produced interleukin-12, tumor necrosis factor (TNF) and IL-6 but normal numbers of regulatory DCs that expressed IL-10 and programmed cell death-1 (PD-1). Furthermore, an iNOS-specific inhibitor selectively enhanced effector DC differentiation, mimicking the effect of iNOS deficiency in mice. Conversely, an NO donor significantly suppressed effector DC development. Furthermore, iNOS−/− DCs supported enhanced T cell activation and proliferation. Finally iNOS−/− mice infected with the enteric pathogen Citrobacter rodentium suffered more severe intestinal inflammation with concomitant expansion of effector DCs in colon and spleen. Collectively, our results demonstrate that DC-derived iNOS restrains effector DC development, and offer the basis of therapeutic targeting of iNOS in DCs to treat autoimmune and inflammatory diseases. PMID:27556858

  6. Paeoniflorin Ameliorates Experimental Autoimmune Encephalomyelitis via Inhibition of Dendritic Cell Function and Th17 Cell Differentiation

    PubMed Central

    Zhang, Han; Qi, Yuanyuan; Yuan, Yuanyang; Cai, Li; Xu, Haiyan; Zhang, Lili; Su, Bing; Nie, Hong

    2017-01-01

    Paeoniflorin (PF) is a monoterpene glycoside and exhibits multiple effects, including anti-inflammation and immunoregulation. To date, the effect of PF on multiple sclerosis (MS) has not been investigated. In this study, we investigated the effect of PF in experimental autoimmune encephalomyelitis (EAE), an animal model for MS. After administered with PF, the onset and clinical symptoms of EAE mice were significantly ameliorated, and the number of Th17 cells infiltrated in central nervous system (CNS) and spleen was also dramatically decreased. Instead of inhibiting the differentiation of Th17 cells directly, PF influenced Th17 cells via suppressing the expression of costimulatory molecules and the production of interlukin-6 (IL-6) of dendritic cells (DCs) in vivo and in vitro, which may be attributable to the inhibition of IKK/NF-κB and JNK signaling pathway. When naïve CD4+ T cells were co-cultured with PF-treated dendritic cells under Th17-polarizing condition, the percentage of Th17 cells and the phosphorylation of STAT3 were decreased, as well as the mRNA levels of IL-17, RORα, and RORγt. Our study provided insights into the role of PF as a unique therapeutic agent for the treatment of multiple sclerosis and illustrated the underlying mechanism of PF from a new perspective. PMID:28165507

  7. Plasmacytoid dendritic cells sense hepatitis C virus-infected cells, produce interferon, and inhibit infection.

    PubMed

    Takahashi, Ken; Asabe, Shinichi; Wieland, Stefan; Garaigorta, Urtzi; Gastaminza, Pablo; Isogawa, Masanori; Chisari, Francis V

    2010-04-20

    Hepatitis C virus (HCV), a member of the Flaviviridae family, is a single-stranded positive-sense RNA virus that infects >170 million people worldwide and causes acute and chronic hepatitis, cirrhosis, and hepatocellular carcinoma. Despite its ability to block the innate host response in infected hepatocyte cell lines in vitro, HCV induces a strong type 1 interferon (IFN) response in the infected liver. The source of IFN in vivo and how it is induced are currently undefined. Here we report that HCV-infected cells trigger a robust IFN response in plasmacytoid dendritic cells (pDCs) by a mechanism that requires active viral replication, direct cell-cell contact, and Toll-like receptor 7 signaling, and we show that the activated pDC supernatant inhibits HCV infection in an IFN receptor-dependent manner. Importantly, the same events are triggered by HCV subgenomic replicon cells but not by free virus particles, suggesting the existence of a novel cell-cell RNA transfer process whereby HCV-infected cells can activate pDCs to produce IFN without infecting them. These results may explain how HCV induces IFN production in the liver, and they reveal a heretofore unsuspected aspect of the innate host response to viruses that can subvert the classical sensing machinery in the cells they infect, and do not infect or directly activate pDCs.

  8. The DC-SIGN-CD56 interaction inhibits the anti-dendritic cell cytotoxicity of CD56 expressing cells.

    PubMed

    Nabatov, Alexey A; Raginov, Ivan S

    2015-01-01

    This study aimed to clarify interactions of the pattern-recognition receptor DC-SIGN with cells from the HIV-infected peripheral blood lymphocyte cultures. Cells from control and HIV-infected peripheral blood lymphocyte cultures were tested for the surface expression of DC-SIGN ligands. The DC-SIGN ligand expressing cells were analyzed for the role of DC-SIGN-ligand interaction in their functionality. In the vast majority of experiments HIV-infected lymphocytes did not express detectable DC-SIGN ligands on their cell surfaces. In contrast, non-infected cells, carrying NK-specific marker CD56, expressed cell surface DC-SIGN ligands. The weakly polysialylated CD56 was identified as a novel DC-SIGN ligand. The treatment of DC-SIGN expressing dendritic cells with anti-DC-SIGN antibodies increased the anti-dendritic cell cytotoxicity of CD56(pos) cells. The treatment of CD56(pos) cells with a peptide, blocking the weakly polysialylated CD56-specifc trans-homophilic interactions, inhibited their anti-dendritic cells cytotoxicity. The interaction between DC-SIGN and CD56 inhibits homotypic intercellular interactions of CD56(pos) cells and protects DC-SIGN expressing dendritic cells against CD56(pos) cell-mediated cytotoxicity. This finding can have an impact on the development of approaches to HIV infection and cancer therapy as well as in transplantation medicine.

  9. Inhibition of phenotypic and functional maturation of dendritic cells by manassantin a.

    PubMed

    Kim, Jee Youn; Kang, Jong Soon; Kim, Hwan Mook; Kim, Young Kook; Lee, Hong Kyung; Song, Sukgil; Hong, Jin Tae; Kim, Youngsoo; Han, Sang-Bae

    2009-04-01

    Manassantin A (MSA) inhibits nitric oxide production by macrophages through the inhibition of NF-kappaB activation, but the effect of MSA on dendritic cells has not been elucidated yet. Here we investigated the inhibitory effects of MSA on immune functions of dendritic cells (DCs). MSA inhibited lipopolysaccharide (LPS)-induced phenotypic maturation of DCs, which was proved by the decreased expression of CD40, CD80, CD86, MHC-I, and MHC-II. MSA also inhibited functional maturation of DCs, that is, decreased the gene expression of IL-12, IL-1beta, TNF-alpha, and IFN-alpha/beta; enhanced antigen capture capacity of DCs; and impaired induction of allogenic T cell activation. As a mechanism of action, MSA inhibited LPS-induced activation of NF-kappaB, ERK, p38, and JNK, which played pivotal roles in toll-like receptor 4-mediated DC maturation. Collectively, these results suggested that MSA might be used for the treatment of DC-related immune diseases.

  10. Natural amines inhibit activation of human plasmacytoid dendritic cells through CXCR4 engagement

    PubMed Central

    Smith, Nikaïa; Pietrancosta, Nicolas; Davidson, Sophia; Dutrieux, Jacques; Chauveau, Lise; Cutolo, Pasquale; Dy, Michel; Scott-Algara, Daniel; Manoury, Bénédicte; Zirafi, Onofrio; McCort-Tranchepain, Isabelle; Durroux, Thierry; Bachelerie, Françoise; Schwartz, Olivier; Münch, Jan; Wack, Andreas; Nisole, Sébastien; Herbeuval, Jean-Philippe

    2017-01-01

    Plasmacytoid dendritic cells (pDC) are specialized in secretion of type I interferon in response to pathogens. Here we show that natural monoamines and synthetic amines inhibit pDC activation by RNA viruses. Furthermore, a synthetic analogue of histamine reduces type I interferon production in a mouse model of influenza infection. We identify CXC chemokine receptor 4 (CXCR4) as a receptor used by amines to inhibit pDC. Our study establishes a functional link between natural amines and the innate immune system and identifies CXCR4 as a potential ‘on-off' switch of pDC activity with therapeutic potential. PMID:28181493

  11. Modulation of Dendritic Cell Immunobiology via Inhibition of 3-Hydroxy-3-Methylglutaryl-CoA (HMG-CoA) Reductase

    PubMed Central

    Luessi, Felix; Bendix, Ivo; Paterka, Magdalena; Prozorovski, Timour; Treue, Denise; Luenstedt, Sarah; Herz, Josephine; Siffrin, Volker; Infante-Duarte, Carmen; Zipp, Frauke; Waiczies, Sonia

    2014-01-01

    The maturation status of dendritic cells determines whether interacting T cells are activated or if they become tolerant. Previously we could induce T cell tolerance by applying a 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase inhibitor (HMGCRI) atorvastatin, which also modulates MHC class II expression and has therapeutic potential in autoimmune disease. Here, we aimed at elucidating the impact of this therapeutic strategy on T cell differentiation as a consequence of alterations in dendritic cell function. We investigated the effect of HMGCRI during differentiation of peripheral human monocytes and murine bone marrow precursors to immature DC in vitro and assessed their phenotype. To examine the stimulatory and tolerogenic capacity of these modulated immature dendritic cells, we measured proliferation and suppressive function of CD4+ T cells after stimulation with the modulated immature dendritic cells. We found that an HMGCRI, atorvastatin, prevents dendrite formation during the generation of immature dendritic cells. The modulated immature dendritic cells had a diminished capacity to take up and present antigen as well as to induce an immune response. Of note, the consequence was an increased capacity to differentiate naïve T cells towards a suppressor phenotype that is less sensitive to proinflammatory stimuli and can effectively inhibit the proliferation of T effector cells in vitro. Thus, manipulation of antigen-presenting cells by HMGCRI contributes to an attenuated immune response as shown by promotion of T cells with suppressive capacities. PMID:25013913

  12. Cell-type-specific inhibition of the dendritic plateau potential in striatal spiny projection neurons.

    PubMed

    Du, Kai; Wu, Yu-Wei; Lindroos, Robert; Liu, Yu; Rózsa, Balázs; Katona, Gergely; Ding, Jun B; Kotaleski, Jeanette Hellgren

    2017-09-05

    Striatal spiny projection neurons (SPNs) receive convergent excitatory synaptic inputs from the cortex and thalamus. Activation of spatially clustered and temporally synchronized excitatory inputs at the distal dendrites could trigger plateau potentials in SPNs. Such supralinear synaptic integration is crucial for dendritic computation. However, how plateau potentials interact with subsequent excitatory and inhibitory synaptic inputs remains unknown. By combining computational simulation, two-photon imaging, optogenetics, and dual-color uncaging of glutamate and GABA, we demonstrate that plateau potentials can broaden the spatiotemporal window for integrating excitatory inputs and promote spiking. The temporal window of spiking can be delicately controlled by GABAergic inhibition in a cell-type-specific manner. This subtle inhibitory control of plateau potential depends on the location and kinetics of the GABAergic inputs and is achieved by the balance between relief and reestablishment of NMDA receptor Mg(2+) block. These findings represent a mechanism for controlling spatiotemporal synaptic integration in SPNs.

  13. Interleukin-4 Inhibits Regulatory T Cell Differentiation through Regulating CD103+ Dendritic Cells

    PubMed Central

    Tu, Lei; Chen, Jie; Zhang, Hongwei; Duan, Lihua

    2017-01-01

    CD103+ dendritic cells (DCs) have been shown to play a crucial role in the pathogenesis of inflammatory bowel diseases (IBDs) through educating regulatory T (Treg) cells differentiation. However, the mechanism of CD103+ DCs subsets differentiation remains elusive. Interleukin (IL)-4 is a pleiotropic cytokine that is upregulated in certain types of inflammation, including IBDs and especially ulcerative colitis. However, the precise role of IL-4 in the differentiation of CD103+ DCs subpopulation remains unknown. In this study, we observed a repressive role of IL-4 on the CD103+ DCs differentiation in both mouse and human. High-dose IL-4 inhibited the CD103+ DC differentiation. In comparison to CD103− DCs, CD103+ DCs expressed high levels of the co-stimulatory molecules and indoleamine 2,3-dioxygenase (IDO). Interestingly, IL-4 diminished IDO expression on DCs in a dose-dependent manner. Besides, high-dose IL-4-induced bone marrow-derived DCs, and monocyte-derived DCs revealed mature DCs profiles, characterized by increased co-stimulatory molecules and decreased pinocytotic function. Furthermore, DCs generated under low concentrations of IL-4 favored Treg cells differentiation, which depend on IDO produced by CD103+ DCs. Consistently, IL-4 also reduced the frequency of CD103+ DC in vivo. Thus, we here demonstrated that the cytokine IL-4 involved in certain types of inflammatory diseases by orchestrating the functional phenotype of CD103+ DCs subsets. PMID:28316599

  14. Saccharomyces boulardii inhibits lipopolysaccharide-induced activation of human dendritic cells and T cell proliferation

    PubMed Central

    Thomas, S; Przesdzing, I; Metzke, D; Schmitz, J; Radbruch, A; Baumgart, D C

    2009-01-01

    Saccharomyces boulardii (Sb) is a probiotic yeast preparation that has demonstrated efficacy in inflammatory and infectious disorders of the gastrointestinal tract in controlled clinical trials. Although patients clearly benefit from treatment with Sb, little is known on how Sb unfolds its anti-inflammatory properties in humans. Dendritic cells (DC) balance tolerance and immunity and are involved critically in the control of T cell activation. Thus, they are believed to have a pivotal role in the initiation and perpetuation of chronic inflammatory disorders, not only in the gut. We therefore decided to investigate if Sb modulates DC function. Culture of primary (native, non-monocyte-derived) human myeloid CD1c+CD11c+CD123– DC (mDC) in the presence of Sb culture supernatant (active component molecular weight < 3 kDa, as evaluated by membrane partition chromatography) reduced significantly expression of the co-stimulatory molecules CD40 and CD80 (P < 0·01) and the DC mobilization marker CC-chemokine receptor CCR7 (CD197) (P < 0·001) induced by the prototypical microbial antigen lipopolysaccharide (LPS). Moreover, secretion of key proinflammatory cytokines such as tumour necrosis factor-α and interleukin (IL)-6 were notably reduced, while the secretion of anti-inflammatory IL-10 increased. Finally, Sb supernatant inhibited the proliferation of naive T cells in a mixed lymphocyte reaction with mDC. In summary, our data suggest that Sb may exhibit part of its anti-inflammatory potential through modulation of DC phenotype, function and migration by inhibition of their immune response to bacterial microbial surrogate antigens such as LPS. PMID:19161443

  15. Paracoccidioides brasiliensis Interferes on Dendritic Cells Maturation by Inhibiting PGE2 Production

    PubMed Central

    2015-01-01

    Paracoccidioidomycosis (PCM) is a systemic mycosis, endemic in most Latin American countries, especially in Brazil, whose etiologic agent is the thermodimorphic fungus of the genus Paracoccidioides, comprising cryptic species of Paracoccidioides brasiliensis, S1, PS2, PS3 and Paracoccidioides lutzii. The mechanisms involved in the initial interaction of the fungus with cells of the innate immune response, as dendritic cells (DCs), deserve to be studied. Prostaglandins (PGs) are eicosanoids that play an important role in modulating functions of immune cells including DCs. Here we found that human immature DCs derived from the differentiation of monocytes cultured with GM-CSF and IL-4 release substantial concentrations of PGE2, which, however, were significantly inhibited after challenge with P. brasiliensis. In vitro blocking of pattern recognition receptors (PRRs) by monoclonal antibodies showed the involvement of mannose receptor (MR) in PGE2 inhibition by the fungus. In addition, phenotyping assays showed that after challenge with the fungus, DCs do not change their phenotype of immature cells to mature ones, as well as do not produce IL-12 p70 or adequate concentrations of TNF-α. Assays using exogenous PGE2 confirmed an association between PGE2 inhibition and failure of cells to phenotypically mature in response to P. brasiliensis. We conclude that a P. brasiliensis evasion mechanism exists associated to a dysregulation on DC maturation. These findings may provide novel information for the understanding of the complex interplay between the host and this fungus. PMID:25793979

  16. Tussilagone inhibits dendritic cell functions via induction of heme oxygenase-1.

    PubMed

    Park, Yunsoo; Ryu, Hwa Sun; Lee, Hong Kyung; Kim, Ji Sung; Yun, Jieun; Kang, Jong Soon; Hwang, Bang Yeon; Hong, Jin Tae; Kim, Youngsoo; Han, Sang-Bae

    2014-10-01

    Sesquiterpenoid tussilagone (TUS) has a variety of pharmacological activities, such as anti-oxidant, anti-cancer, and anti-inflammatory activities. In this study, we investigated the effects of TUS on dendritic cell (DC) functions and the underlying mechanisms. TUS inhibited lipopolysaccharide (LPS)-induced activation of DCs, as shown by decrease in surface molecule expression, cytokine production, cell migration, and allo-T cell activation. In addition, TUS inhibited LPS-induced activation of NF-κB, MAPKs, and IRF-3 signalings in DCs, although it did not directly affect kinase activities of IRAK1/4, TAK1, and IKK, which suggests that TUS might indirectly inhibit TLR signaling in DCs. As a critical mechanism, we showed that TUS activated heme oxygenase-1 (HO-1), which degrades heme to immunosuppressive products, such as carbon monoxide and bilirubin. HO-1 inhibitor reversed the inhibitory activity of TUS in DCs. In conclusion, this study suggests that TUS inhibits DC function through the induction of HO-1.

  17. p38 MAPK-inhibited dendritic cells induce superior antitumor immune responses and overcome regulatory T cell-mediated immunosuppression

    PubMed Central

    Lu, Yong; Zhang, Mingjun; Wang, Siqing; Hong, Bangxing; Wang, Zhiqiang; Li, Haiyan; Zheng, Yuhuan; Yang, Jing; Davis, Richard E.; Qian, Jianfei; Hou, Jian; Yi, Qing

    2014-01-01

    Dendritic cell (DC)-based cancer immunotherapy is a promising method but so far has demonstrated limited clinical benefits. Regulatory T cells (Treg) represent a major obstacle to cancer immunotherapy approaches. Here we show that inhibiting p38 MAPK during DC differentiation enables DCs to activate tumor-specific effector T cells (Teff), inhibiting the conversion of Treg and compromising Treg inhibitory effects on Teff. Inhibition of p38 MAPK in DCs lowers expression of PPARγ, activating p50 and upregulation of OX40L expression in DCs. OX40L/OX40 interactions between DCs and Teff and/or Treg are critical for priming effective and therapeutic antitumor responses. Similarly, p38 MAPK inhibition also augments the T cell-stimulatory capacity of human monocyte-derived DCs in the presence of Treg. These findings contribute to ongoing efforts to improve DC-based immunotherapy in human cancers. PMID:24957461

  18. Inhibition of Protease-Activated Receptor 1 Does not Affect Dendritic Homeostasis of Cultured Mouse Dentate Granule Cells

    PubMed Central

    Schuldt, Gerlind; Galanis, Christos; Strehl, Andreas; Hick, Meike; Schiener, Sabine; Lenz, Maximilian; Deller, Thomas; Maggio, Nicola; Vlachos, Andreas

    2016-01-01

    Protease-activated receptors (PARs) are widely expressed in the central nervous system (CNS). While a firm link between PAR1-activation and functional synaptic and intrinsic neuronal properties exists, studies on the role of PAR1 in neural structural plasticity are scarce. The physiological function of PAR1 in the brain remains not well understood. We here sought to determine whether prolonged pharmacologic PAR1-inhibition affects dendritic morphologies of hippocampal neurons. To address this question we employed live-cell microscopy of mouse dentate granule cell dendrites in 3-week old entorhino-hippocampal slice cultures prepared from Thy1-GFP mice. A subset of cultures were treated with the PAR1-inhibitor SCH79797 (1 μM; up to 3 weeks). No major effects of PAR1-inhibition on static and dynamic parameters of dentate granule cell dendrites were detected under control conditions. Granule cells of PAR1-deficient slice cultures showed unaltered dendritic morphologies, dendritic spine densities and excitatory synaptic strength. Furthermore, we report that PAR1-inhibition does not prevent dendritic retraction following partial deafferentation in vitro. Consistent with this finding, no major changes in PAR1-mRNA levels were detected in the denervated dentate gyrus (DG). We conclude that neural PAR1 is not involved in regulating the steady-state dynamics or deafferentation-induced adaptive changes of cultured dentate granule cell dendrites. These results indicate that drugs targeting neural PAR1-signals may not affect the stability and structural integrity of neuronal networks in healthy brain regions. PMID:27378862

  19. Inhibition of Human Dendritic Cell Activation by Hydroethanolic But Not Lipophilic Extracts of Turmeric (Curcuma longa)

    PubMed Central

    Krasovsky, Joseph; Chang, David H.; Deng, Gary; Yeung, Simon; Lee, Mavis; Leung, Ping Chung; Cunningham-Rundles, Susanna; Cassileth, Barrie; Dhodapkar, Madhav V.

    2015-01-01

    Turmeric has been extensively utilized in Indian and Chinese medicine for its immune-modulatory properties. Dendritic cells (DCs) are antigen-presenting cells specialized to initiate and regulate immunity. The ability of DCs to initiate immunity is linked to their activation status. The effects of turmeric on human DCs have not been studied. Here we show that hydroethanolic (HEE) but not lipophilic “supercritical” extraction (SCE) of turmeric inhibits the activation of human DCs in response to inflammatory cytokines. Treatment of DCs with HEE also inhibits the ability of DCs to stimulate the mixed lymphocyte reaction (MLR). Importantly, the lipophilic fraction does not synergize with the hydroethanolic fraction for the ability of inhibiting DC maturation. Rather, culturing of DCs with the combination of HEE and SCE leads to partial abrogation of the effects of HEE on the MLR initiated by DCs. These data provide a mechanism for the anti-inflammatory properties of turmeric. However, they suggest that these extracts are not synergistic and may contain components with mutually antagonistic effects on human DCs. Harnessing the immune effects of turmeric may benefit from specifically targeting the active fractions. PMID:19034830

  20. Inhibition of human dendritic cell activation by hydroethanolic but not lipophilic extracts of turmeric (Curcuma longa).

    PubMed

    Krasovsky, Joseph; Chang, David H; Deng, Gary; Yeung, Simon; Lee, Mavis; Leung, Ping Chung; Cunningham-Rundles, Susanna; Cassileth, Barrie; Dhodapkar, Madhav V

    2009-03-01

    Turmeric has been extensively utilized in Indian and Chinese medicine for its immune-modulatory properties. Dendritic cells (DCs) are antigen-presenting cells specialized to initiate and regulate immunity. The ability of DCs to initiate immunity is linked to their activation status. The effects of turmeric on human DCs have not been studied. Here we show that hydroethanolic (HEE) but not lipophilic "supercritical" extraction (SCE) of turmeric inhibits the activation of human DCs in response to inflammatory cytokines. Treatment of DCs with HEE also inhibits the ability of DCs to stimulate the mixed lymphocyte reaction (MLR). Importantly, the lipophilic fraction does not synergize with the hydroethanolic fraction for the ability of inhibiting DC maturation. Rather, culturing of DCs with the combination of HEE and SCE leads to partial abrogation of the effects of HEE on the MLR initiated by DCs. These data provide a mechanism for the anti-inflammatory properties of turmeric. However, they suggest that these extracts are not synergistic and may contain components with mutually antagonistic effects on human DCs. Harnessing the immune effects of turmeric may benefit from specifically targeting the active fractions.

  1. Encephalitozoon intestinalis Inhibits Dendritic Cell Differentiation through an IL-6-Dependent Mechanism.

    PubMed

    Bernal, Carmen E; Zorro, Maria M; Sierra, Jelver; Gilchrist, Katherine; Botero, Jorge H; Baena, Andres; Ramirez-Pineda, Jose R

    2016-01-01

    Microsporidia are a group of intracellular pathogens causing self-limited and severe diseases in immunocompetent and immunocompromised individuals, respectively. A cellular type 1 adaptive response, mediated by IL-12, IFNγ, CD4+, and CD8+ T cells has been shown to be essential for host resistance, and dendritic cells (DC) play a key role at eliciting anti-microsporidial immunity. We investigated the in vitro response of DC and DC precursors/progenitors to infection with Encephalitozoon intestinalis (Ei), a common agent of human microsporidosis. Ei-exposed DC cultures up-regulated the surface expression of MHC class II and the costimulatory molecules CD86 and CD40, only when high loads of spores were used. A vigorous secretion of IL-6 but not of IL-1β or IL-12p70 was also observed in these cultures. Ei-exposed DC cultures consisted of immature infected and mature bystander DC, as assessed by MHC class II and costimulatory molecules expression, suggesting that intracellular Ei spores deliver inhibitory signals in DC. Moreover, Ei selectively inhibited the secretion of IL-12p70 in LPS-stimulated DC. Whereas Ei-exposed DC promoted allogeneic naïve T cell proliferation and IL-2 and IFNγ secretion in DC-CD4+ T cell co-cultures, separated co-cultures with bystander or infected DCs showed stimulation or inhibition of IFNγ secretion, respectively. When DC precursors/progenitors were exposed to Ei spores, a significant inhibition of DC differentiation was observed without shifting the development toward cells phenotypically or functionally compatible with myeloid-derived suppressor cells. Neutralization experiments demonstrated that this inhibitory effect is IL-6-dependent. Altogether this investigation reveals a novel potential mechanism of immune escape of microsporidian parasites through the modulation of DC differentiation and maturation.

  2. Encephalitozoon intestinalis Inhibits Dendritic Cell Differentiation through an IL-6-Dependent Mechanism

    PubMed Central

    Bernal, Carmen E.; Zorro, Maria M.; Sierra, Jelver; Gilchrist, Katherine; Botero, Jorge H.; Baena, Andres; Ramirez-Pineda, Jose R.

    2016-01-01

    Microsporidia are a group of intracellular pathogens causing self-limited and severe diseases in immunocompetent and immunocompromised individuals, respectively. A cellular type 1 adaptive response, mediated by IL-12, IFNγ, CD4+, and CD8+ T cells has been shown to be essential for host resistance, and dendritic cells (DC) play a key role at eliciting anti-microsporidial immunity. We investigated the in vitro response of DC and DC precursors/progenitors to infection with Encephalitozoon intestinalis (Ei), a common agent of human microsporidosis. Ei-exposed DC cultures up-regulated the surface expression of MHC class II and the costimulatory molecules CD86 and CD40, only when high loads of spores were used. A vigorous secretion of IL-6 but not of IL-1β or IL-12p70 was also observed in these cultures. Ei-exposed DC cultures consisted of immature infected and mature bystander DC, as assessed by MHC class II and costimulatory molecules expression, suggesting that intracellular Ei spores deliver inhibitory signals in DC. Moreover, Ei selectively inhibited the secretion of IL-12p70 in LPS-stimulated DC. Whereas Ei-exposed DC promoted allogeneic naïve T cell proliferation and IL-2 and IFNγ secretion in DC-CD4+ T cell co-cultures, separated co-cultures with bystander or infected DCs showed stimulation or inhibition of IFNγ secretion, respectively. When DC precursors/progenitors were exposed to Ei spores, a significant inhibition of DC differentiation was observed without shifting the development toward cells phenotypically or functionally compatible with myeloid-derived suppressor cells. Neutralization experiments demonstrated that this inhibitory effect is IL-6-dependent. Altogether this investigation reveals a novel potential mechanism of immune escape of microsporidian parasites through the modulation of DC differentiation and maturation. PMID:26870700

  3. Plasmacytoid dendritic cells are crucial in Bifidobacterium adolescentis-mediated inhibition of Yersinia enterocolitica infection.

    PubMed

    Wittmann, Alexandra; Autenrieth, Ingo B; Frick, Julia-Stefanie

    2013-01-01

    In industrialized countries bacterial intestinal infections are commonly caused by enteropathogenic Enterobacteriaceae. The interaction of the microbiota with the host immune system determines the adequacy of an appropriate response against pathogens. In this study we addressed whether the probiotic Bifidobacterium adolescentis is protective during intestinal Yersinia enterocolitica infection. Female C57BL/6 mice were fed with B. adolescentis, infected with Yersinia enterocolitica, or B. adolescentis fed and subsequently infected with Yersinia enterocolitica. B. adolescentis fed and Yersinia infected mice were protected from Yersinia infection as indicated by a significantly reduced weight loss and splenic Yersinia load when compared to Yersinia infected mice. Moreover, protection from infection was associated with increased intestinal plasmacytoid dendritic cell and regulatory T-cell frequencies. Plasmacytoid dendritic cell function was investigated using depletion experiments by injecting B. adolescentis fed, Yersinia infected C57BL/6 mice with anti-mouse PDCA-1 antibody, to deplete plasmacytoid dendritic cells, or respective isotype control. The B. adolescentis-mediated protection from Yersinia dissemination to the spleen was abrogated after plasmacytoid dendritic cell depletion indicating a crucial function for pDC in control of intestinal Yersinia infection. We suggest that feeding of B. adolescentis modulates the intestinal immune system in terms of increased plasmacytoid dendritic cell and regulatory T-cell frequencies, which might account for the B. adolescentis-mediated protection from Yersinia enterocolitica infection.

  4. Plasmacytoid Dendritic Cells Are Crucial in Bifidobacterium adolescentis-Mediated Inhibition of Yersinia enterocolitica Infection

    PubMed Central

    Wittmann, Alexandra; Autenrieth, Ingo B.; Frick, Julia-Stefanie

    2013-01-01

    In industrialized countries bacterial intestinal infections are commonly caused by enteropathogenic Enterobacteriaceae. The interaction of the microbiota with the host immune system determines the adequacy of an appropriate response against pathogens. In this study we addressed whether the probiotic Bifidobacterium adolescentis is protective during intestinal Yersinia enterocolitica infection. Female C57BL/6 mice were fed with B. adolescentis, infected with Yersinia enterocolitica, or B. adolescentis fed and subsequently infected with Yersinia enterocolitica. B. adolescentis fed and Yersinia infected mice were protected from Yersinia infection as indicated by a significantly reduced weight loss and splenic Yersinia load when compared to Yersinia infected mice. Moreover, protection from infection was associated with increased intestinal plasmacytoid dendritic cell and regulatory T-cell frequencies. Plasmacytoid dendritic cell function was investigated using depletion experiments by injecting B. adolescentis fed, Yersinia infected C57BL/6 mice with anti-mouse PDCA-1 antibody, to deplete plasmacytoid dendritic cells, or respective isotype control. The B. adolescentis-mediated protection from Yersinia dissemination to the spleen was abrogated after plasmacytoid dendritic cell depletion indicating a crucial function for pDC in control of intestinal Yersinia infection. We suggest that feeding of B. adolescentis modulates the intestinal immune system in terms of increased plasmacytoid dendritic cell and regulatory T-cell frequencies, which might account for the B. adolescentis-mediated protection from Yersinia enterocolitica infection. PMID:23977019

  5. Aryl hydrocarbon receptor activation inhibits in vitro differentiation of human monocytes and Langerhans dendritic cells.

    PubMed

    Platzer, Barbara; Richter, Susanne; Kneidinger, Doris; Waltenberger, Darina; Woisetschläger, Maximilian; Strobl, Herbert

    2009-07-01

    The transcription factor aryl hydrocarbon receptor (AhR) represents a promising therapeutic target in allergy and autoimmunity. AhR signaling induced by the newly described ligand VAF347 inhibits allergic lung inflammation as well as suppresses pancreatic islet allograft rejection. These effects are likely mediated via alterations in dendritic cell (DC) function. Moreover, VAF347 induces tolerogenic DCs. Langerhans cells (LCs) are immediate targets of exogenous AhR ligands at epithelial surfaces; how they respond to AhR ligands remained undefined. We studied AhR expression and function in human LCs and myelopoietic cell subsets using a lineage differentiation and gene transduction model of human CD34(+) hematopoietic progenitors. We found that AhR is highly regulated during myeloid subset differentiation. LCs expressed highest AhR levels followed by monocytes. Conversely, neutrophil granulocytes lacked AhR expression. AhR ligands including VAF347 arrested the differentiation of monocytes and LCs at an early precursor cell stage, whereas progenitor cell expansion or granulopoiesis remained unimpaired. AhR expression was coregulated with the transcription factor PU.1 during myeloid subset differentiation. VAF347 inhibited PU.1 induction during initial monocytic differentiation, and ectopic PU.1 restored monocyte and LC generation in the presence of this compound. AhR ligands failed to interfere with cytokine receptor signaling during LC differentiation and failed to impair LC activation/maturation. VAF347-mediated antiproliferative effect on precursors undergoing LC lineage differentiation occurred in a clinically applicable serum-free culture model and was not accompanied by apoptosis induction. In conclusion, AhR agonist signaling interferes with transcriptional processes leading to monocyte/DC lineage commitment of human myeloid progenitor cells.

  6. Slit2N Inhibits Transmission of HIV-1 from Dendritic Cells to T-cells by Modulating Novel Cytoskeletal Elements

    PubMed Central

    Shrivastava, Ashutosh; Prasad, Anil; Kuzontkoski, Paula M.; Yu, Jinlong; Groopman, Jerome E.

    2015-01-01

    Dendritic cells are among the first cells to encounter sexually acquired human immunodeficiency virus (HIV-1), in the mucosa, and they can transmit HIV-1 to CD4+ T-cells via an infectious synapse. Recent studies reveal that actin-rich membrane extensions establish direct contact between cells at this synapse and facilitate virus transmission. Genesis of these contacts involves signaling through c-Src and Cdc42, which modulate actin polymerization and filopodia formation via the Arp2/3 complex and Diaphanous 2 (Diaph2). We found that Slit2N, a ligand for the Roundabout (Robo) receptors, blocked HIV-1-induced signaling through Arp2/3 and Diaph2, decreased filopodial extensions on dendritic cells, and inhibited cell-to-cell transmission of HIV-1 in a Robo1-dependent manner. Employing proteomic analysis, we identified Flightless-1 as a novel, Robo1-interacting protein. Treatment with shRNAs reduced levels of Flightless-1 and demonstrated its role in efficient cell-to-cell transfer of HIV-1. These results suggest a novel strategy to limit viral infection in the host by targeting the Slit/Robo pathway with modulation of cytoskeletal elements previously unrecognized in HIV-1 transmission. PMID:26582347

  7. Interleukin-4 inhibits cyclo-oxygenase-2 expression and prostaglandin E2 production by human mature dendritic cells

    PubMed Central

    Teloni, Raffaela; Giannoni, Federico; Rossi, Paolo; Nisini, Roberto; Gagliardi, Maria Cristina

    2007-01-01

    Interleukin-4 (IL-4) is considered the key cytokine for inducing T helper type 2 (Th2) cell differentiation, while interferon-γ and IL-12 are pivotal cytokines for Th1 immune responses. Paradoxically, IL-4 has also been demonstrated to enhance IL-12 production by dendritic cells, suggesting an IL-4-dependent regulatory feedback of the Th1/Th2 system. In addition, prostaglandin E2 (PGE2), a lipid mediator of inflammation, has been implicated in the enhancement of Th2-type responses acting directly on T and B lymphocytes. PGE2 synthesis is dependent on the serial engagement of various enzymes, among which the inducible cyclo-oxygenase-2 (COX-2) exerts a critical role in monocytes and dendritic cells. In this study we demonstrate that IL-4 inhibits COX-2 gene expression and consequently prevents secretion of PGE2 by mature human dendritic cells. We also show that PGE2 does not regulate IL-12 and IL-10 production by dendritic cells in an autocrine fashion. Hence, we suggest that IL-4 may exploit an IL-12-independent regulatory feedback of the Th1/Th2 system through PGE2 inhibition. PMID:17059508

  8. Resolvin E1 inhibits dendritic cell migration in the skin and attenuates contact hypersensitivity responses.

    PubMed

    Sawada, Yu; Honda, Tetsuya; Hanakawa, Sho; Nakamizo, Satoshi; Murata, Teruasa; Ueharaguchi-Tanada, Yuri; Ono, Sachiko; Amano, Wataru; Nakajima, Saeko; Egawa, Gyohei; Tanizaki, Hideaki; Otsuka, Atsushi; Kitoh, Akihiko; Dainichi, Teruki; Ogawa, Narihito; Kobayashi, Yuichi; Yokomizo, Takehiko; Arita, Makoto; Nakamura, Motonobu; Miyachi, Yoshiki; Kabashima, Kenji

    2015-10-19

    Resolvin E1 (RvE1) is a lipid mediator derived from ω3 polyunsaturated fatty acids that exerts potent antiinflammatory roles in several murine models. The antiinflammatory mechanism of RvE1 in acquired immune responses has been attributed to attenuation of cytokine production by dendritic cells (DCs). In this study, we newly investigated the effect of RvE1 on DC motility using two-photon microscopy in a contact hypersensitivity (CHS) model and found that RvE1 impaired DC motility in the skin. In addition, RvE1 attenuated T cell priming in the draining lymph nodes and effector T cell activation in the skin, which led to the reduced skin inflammation in CHS. In contrast, leukotriene B4 (LTB4) induced actin filament reorganization in DCs and increased DC motility by activating Cdc42 and Rac1 via BLT1, which was abrogated by RvE1. Collectively, our results suggest that RvE1 attenuates cutaneous acquired immune responses by inhibiting cutaneous DC motility, possibly through LTB4-BLT1 signaling blockade. © 2015 Sawada et al.

  9. Bromelain Inhibits Allergic Sensitization and Murine Asthma via Modulation of Dendritic Cells

    PubMed Central

    Secor, Eric R.; Szczepanek, Steven M.; Castater, Christine A.; Adami, Alexander J.; Matson, Adam P.; Rafti, Ektor T.; McNamara, Jeffrey T.; Schramm, Craig M.; Thrall, Roger S.; Silbart, Lawrence K.

    2013-01-01

    The incidence of atopic conditions has increased in industrialized countries. Persisting symptoms and concern for drug side-effects lead patients toward adjunctive treatments such as phytotherapy. Previously, we have shown that Bromelain (sBr), a mixture of cysteine proteases from pineapple, Ananas comosus, inhibits ovalbumin (OVA)-induced murine model of allergic airway disease (AAD). However, sBr's effect on development of AAD when treatment is administered throughout OVA-alum sensitization was unknown and is the aim of the present study. C57BL/6J mice were sensitized with OVA/alum and challenged with 7 days OVA aerosol. sBr 6 mg/kg/0.5 ml or PBS vehicle were administered throughout sensitization. Lung, bronchoalveolar lavage (BAL), spleen, and lymph nodes were processed for flow cytometry and OVA-specific IgE was determined via ELISA. sBr treatment throughout OVA-alum sensitization significantly reduced the development of AAD (BAL eosinophils and lymphocytes). OVA-specific IgE and OVA TET+ cells were decreased. sBr reduced CD11c+ dendritic cell subsets, and in vitro treatment of DCs significantly reduced CD44, a key receptor in both cell trafficking and activation. sBr was shown to reduce allergic sensitization and the generation of AAD upon antigen challenge. These results provide additional insight into sBr's anti-inflammatory and antiallergic properties and rationale for translation into the clinical arena. PMID:24381635

  10. C-Reactive Protein Inhibits Plasmacytoid Dendritic Cell Interferon Responses to Autoantibody Immune Complexes

    PubMed Central

    Mold, Carolyn; Du Clos, Terry W.

    2013-01-01

    Objective CRP is a serum pattern recognition molecule that binds to apoptotic cells and nucleoprotein autoantigens and FcγR. In SLE IC containing nucleoprotein autoantigens activate plasmacytoid dendritic cells (pDC) to produce type I IFN, which contributes to disease pathogenesis. Autoantibody IC are taken up by pDC through FcγRIIa into endosomes where the nucleic acid components activate TLR7 or TLR9. The objective of this study was to investigate the effect of CRP on pDC and monocyte responses to nucleoprotein autoantigens and IC. Methods Peripheral blood mononuclear cells (PBMC), purified monocytes and pDC were isolated from healthy volunteers and stimulated with autoantibody IC containing apoptotic cells, snRNPs, or DNA or direct TLR7 and TLR9 agonists. Supernatants were analyzed for IFN-α and cytokines by ELISA and multiplex assays. snRNPs were fluorescently labeled and the effect of CRP on binding, uptake and intracellular localization of autoantibody snRNP complexes was measured by flow cytometry and confocal microscopy. Results CRP bound to autoantigen did not induce IFN-α in PBMC or pDC, whereas complexes formed with autoantibody did. Significantly, CRP inhibited the IFN-α response to both α-U1 RNP-snRNPs and α-DNA-DNA, but not to other TLR7 and TLR9 agonists. CRP directly inhibited pDC IFN-α release, promoted pDC differentiation, and increased late endosome localization of autoantigen in pDC and monocytes. Conclusion CRP is a regulator of the type I IFN response to SLE IC. CRP increased the intracellular processing of IC in late endosomes, which is associated with decreased synthesis of type I IFN after intracellular TLR activation. PMID:23576062

  11. Rat bone marrow-derived dendritic cells, but not ex vivo dendritic cells, secrete nitric oxide and can inhibit T-cell proliferation

    PubMed Central

    Powell, Timothy J; Jenkins, Chris D; Hattori, Ryuichi; MacPherson, G Gordon

    2003-01-01

    The relationships between different dendritic cell (DC) populations are not clearly established. In particular, it is not known how DC generated in vitro relate to those identified in vivo. Here we have characterized rat bone marrow-derived DC (BMDC) and compared them with DC isolated from spleen (SDC) and pseudo-afferent lymph (LDC). BMDC express typical DC markers and are mostly OX41 positive and CD4 negative. In contrast to ex vivo DC, some BMDC express Fc receptors. FcR+ and FcR− BMDC express similar levels of major histocompatibility complex class II molecules (MHC) and are B7 positive, but some FcR− BMDC express high levels of B7. In contrast to freshly isolated or cultured ex vivo SDC and LDC, both BMDC subpopulations can express inducible nitric oxide synthase (iNOS) and can secrete nitric oxide (NO) in amounts similar to those secreted by peritoneal macrophages. Despite expressing MHC class II and B7, FcR+ BMDC stimulate only a very weak MLR and inhibit stimulation by FcR− BMDC and ex vivo DC. Inhibition is only partially NO dependent. FcR+ BMDC are not macrophages, as judged by adherence and phagocytosis. Both subpopulations are able to present antigen to primed T cells in vitro and are able to prime naïve CD4 T cells in vivo. However, unlike SDC, BMDC are unable to stimulate cytotoxic T-lymphocyte (CTL) responses to a minor histocompatibility antigen. Thus, BMDC show marked differences to ex vivo DC and their relationship to those of in vivo DC populations, to date, is unclear. PMID:12757614

  12. Uterine Epithelial Cell Regulation of DC-SIGN Expression Inhibits Transmitted/Founder HIV-1 Trans Infection by Immature Dendritic Cells

    PubMed Central

    Ochiel, Daniel O.; Ochsenbauer, Christina; Kappes, John C.; Ghosh, Mimi; Fahey, John V.; Wira, Charles R.

    2010-01-01

    Background Sexual transmission accounts for the majority of HIV-1 infections. In over 75% of cases, infection is initiated by a single variant (transmitted/founder virus). However, the determinants of virus selection during transmission are unknown. Host cell-cell interactions in the mucosa may be critical in regulating susceptibility to infection. We hypothesized in this study that specific immune modulators secreted by uterine epithelial cells modulate susceptibility of dendritic cells (DC) to infection with HIV-1. Methodology/Principal Findings Here we report that uterine epithelial cell secretions (i.e. conditioned medium, CM) decreased DC-SIGN expression on immature dendritic cells via a transforming growth factor beta (TGF-β) mechanism. Further, CM inhibited dendritic cell-mediated trans infection of HIV-1 expressing envelope proteins of prototypic reference. Similarly, CM inhibited trans infection of HIV-1 constructs expressing envelopes of transmitted/founder viruses, variants that are selected during sexual transmission. In contrast, whereas recombinant TGF- β1 inhibited trans infection of prototypic reference HIV-1 by dendritic cells, TGF-β1 had a minimal effect on trans infection of transmitted/founder variants irrespective of the reporter system used to measure trans infection. Conclusions/Significance Our results provide the first direct evidence for uterine epithelial cell regulation of dendritic cell transmission of infection with reference and transmitted/founder HIV-1 variants. These findings have immediate implications for designing strategies to prevent sexual transmission of HIV-1. PMID:21179465

  13. Measles virus hemagglutinin triggers intracellular signaling in CD150-expressing dendritic cells and inhibits immune response

    PubMed Central

    Romanets-Korbut, Olga; Kovalevska, Larysa M.; Seya, Tsukasa; Sidorenko, Svetlana P.; Horvat, Branka

    2016-01-01

    Measles virus (MV) is highly contagious pathogen, which causes a profound immunosuppression, resulting in high infant mortality. This virus infects dendritic cells (DCs) following the binding of MV hemagglutinin (MV-H) to CD150 receptor and alters DC functions by a mechanism that is not completely understood. We have analyzed the effect of MV-H interaction with CD150-expressing DCs on the DC signaling pathways and consequent phenotypic and functional changes in the absence of infectious context. We demonstrated that contact between CD150 on human DCs and MV-H expressed on membrane of transfected CHO cells was sufficient to modulate the activity of two major regulatory pathways of DC differentiation and function: to stimulate Akt and inhibit p38 MAPK phosphorylation, without concomitant ERK1/2 activation. Furthermore, interaction with MV-H decreased the expression level of DC activation markers CD80, CD83, CD86, and HLA-DR and strongly downregulated IL-12 production but did not modulate IL-10 secretion. Moreover, contact with MV-H suppressed DC-mediated T-cell alloproliferation, demonstrating profound alteration of DC maturation and functions. Finally, engagement of CD150 by MV-H in mice transgenic for human CD150 decreased inflammatory responses, showing the immunosuppressive effect of CD150–MV-H interaction in vivo. Altogether, these results uncover novel mechanism of MV-induced immunosuppression, implicating modulation of cell signaling pathways following MV-H interaction with CD150-expressing DCs and reveal anti-inflammatory effects of CD150 stimulation. PMID:26073466

  14. Apoptotic cell-treated dendritic cells induce immune tolerance by specifically inhibiting development of CD4⁺ effector memory T cells.

    PubMed

    Zhou, Fang; Zhang, Guang-Xian; Rostami, Abdolmohamad

    2016-02-01

    CD4(+) memory T cells play an important role in induction of autoimmunity and chronic inflammatory responses; however, regulatory mechanisms of CD4(+) memory T cell-mediated inflammatory responses are poorly understood. Here we show that apoptotic cell-treated dendritic cells inhibit development and differentiation of CD4(+) effector memory T cells in vitro and in vivo. Simultaneously, intravenous transfer of apoptotic T cell-induced tolerogenic dendritic cells can block development of experimental autoimmune encephalomyelitis (EAE), an inflammatory disease of the central nervous system in C57 BL/6J mouse. Our results imply that it is effector memory CD4(+) T cells, not central memory CD4(+) T cells, which play a major role in chronic inflammatory responses in mice with EAE. Intravenous transfer of tolerogenic dendritic cells induced by apoptotic T cells leads to immune tolerance by specifically blocking development of CD4(+) effector memory T cells compared with results of EAE control mice. These results reveal a new mechanism of apoptotic cell-treated dendritic cell-mediated immune tolerance in vivo.

  15. Interferon-alpha production by swine dendritic cells is inhibited during acute infection with foot-and-mouth disease virus.

    PubMed

    Nfon, Charles K; Ferman, Geoffrey S; Toka, Felix N; Gregg, Douglas A; Golde, William T

    2008-03-01

    Viruses have evolved multiple mechanisms to evade the innate immune response, particularly the actions of interferons (IFNs). We have previously reported that exposure of dendritic cells (DCs) to foot-and-mouth disease virus (FMDV) in vitro yields no infection and induces a strong type I IFN (IFN-alpha and IFN-beta) response, indicating that DCs may play a critical role in the innate response to the virus. In vivo, FMDV induces lymphopenia and reduced T-cell proliferative responses to mitogen, viral effects that may contribute to evasion of early immune responses. In this study we analyzed the in vivo effects of FMDV infection on the IFN-alpha response of two populations of dendritic cells. During the acute phase of infection of swine, production of IFN-alpha from monocyte-derived DCs (MoDCs) and skin-derived DCs (skin DCs) is inhibited. This effect occurs concurrently with rising viral titers in the blood; however, these cells are not productively infected. Interestingly, there are no changes in the capability of these DCs to take up particles and process antigens, indicating that antigen-presenting cell function is normal. These data indicate that inhibition of the IFN-alpha response of dendritic cell populations from blood and skin by FMDV enhances viral pathogenesis in infected animals.

  16. Captopril inhibits maturation of dendritic cells and maintains their tolerogenic property in atherosclerotic rats.

    PubMed

    Li, Hong-Qi; Zhang, Qi; Chen, Li; Yin, Chang-Sen; Chen, Ping; Tang, Jie; Rong, Rong; Li, Ting-Ting; Hu, Li-Qun

    2015-09-01

    Atherosclerosis (AS) is a systemic disease of the immune system featuring hyperactive dendritic cells (DCs) in atherosclerotic plaques and organs. Captopril, a representative medicine of angiotensin-converting enzyme inhibitors, has been demonstrated to be effective in treating AS. However, captopril's anti-atherosclerotic mechanism is still poorly understood. Therefore, this study was primarily performed to investigate the effects of captopril on the function of DCs in vivo. AS in rats was induced by feeding them with atherogenic diets, and it was evaluated by the levels of plasma lipids and aortic cholesterol. DCs' activity was appraised by endocytic activity, mixed lymphocyte reactions and cytokine secretion. The markers of DCs (CD103, CD80, CD86 and MHC-II) and Treg (CD4(+), CD25(+) and Foxp3(+)) were assayed by western blotting analysis and flow cytometry. Cytokine level was measured by an enzyme-linked immunosorbent assay. The results showed that captopril treatment (10, 20mg/kg/d) obviously improved dyslipidemia and reduced the levels of aortic cholesterol. Captopril significantly reduced CD103, CD80, CD86 and MHC-II protein expression while increasing that of Foxp3 in aortic tissue. Further study indicated oral administration of captopril up-regulated endocytic activity and reduced the immunostimulatory function of splenic DCs. Captopril treatment also promoted IL-10 & TGF-β production while decreasing that of IL-6 & IL-12 in splenic DCs. Finally, the results of flow cytometry indicated that captopril obviously inhibited DC maturation and promoted Treg polarization. Captopril treatment was able to inhibit DC maturation and maintain their tolerogenic property, which is closely associated with DC anti-atherosclerosis activity. Copyright © 2015. Published by Elsevier B.V.

  17. Sulforaphane protects from T cell-mediated autoimmune disease by inhibition of IL-23 and IL-12 in dendritic cells.

    PubMed

    Geisel, Julia; Brück, Jürgen; Glocova, Ivana; Dengler, Katja; Sinnberg, Tobias; Rothfuss, Oliver; Walter, Michael; Schulze-Osthoff, Klaus; Röcken, Martin; Ghoreschi, Kamran

    2014-04-15

    Sulforaphane (SFN), an isothiocyanate, is part of an important group of naturally occurring small molecules with anti-inflammatory properties. The published reports are best conceivable with an inhibition of T cell function, but the mode of action remains unknown. We therefore analyzed the effect of SFN on T cell-mediated autoimmune disease. Feeding mice with SFN protected from severe experimental autoimmune encephalomyelitis. Disease amelioration was associated with reduced IL-17 and IFN-γ expression in draining lymph nodes. In vitro, SFN treatment of T cells did not directly alter T cell cytokine secretion. In contrast, SFN treatment of dendritic cells (DCs) inhibited TLR4-induced IL-12 and IL-23 production, and severely suppressed Th1 and Th17 development of T cells primed by SFN-treated DCs. SFN regulated the activity of the TLR4-induced transcription factor NF-κB, without affecting the degradation of its inhibitor IκB-α. Instead, SFN treatment of DCs resulted in strong expression of the stress response protein heme oxygenase-1 (HO-1), which interacts with and thereby inhibits NF-κB p65. Consistent with these findings, HO-1 bound to p65 and subsequently inhibited the p65 activity at the IL23a and IL12b promoters. Importantly, SFN suppressed Il23a and Il12b expression in vivo and silenced Th17/Th1 responses within the CNS. Thus, our data show that SFN improves Th17/Th1-mediated autoimmune disease by inducing HO-1 and inhibiting NF-κB p65-regulated IL-23 and IL-12 expression.

  18. HIV infection of monocytes-derived dendritic cells inhibits Vγ9Vδ2 T cells functions.

    PubMed

    Sacchi, Alessandra; Rinaldi, Alessandra; Tumino, Nicola; Casetti, Rita; Agrati, Chiara; Turchi, Federica; Bordoni, Veronica; Cimini, Eleonora; Martini, Federico

    2014-01-01

    DCs act as sentinel cells against incoming pathogens and represent the most potent antigen presenting cells, having the unique capability to prime naïve T cells. In addition to their role in induction of adaptive immune responses, DC are also able to activate innate cells as γδ T cells; in particular, a reciprocal crosstalk between DC and γδ T cells was demonstrated. However, whether HIV infection may alter DC-Vγ9Vδ2 T cells cross-talk was not yet described. To clarify this issue, we cultured activated Vγ9Vδ2 T cells with HIV infected monocyte derived DC (MoDC). After 5 days we evaluated MoDC phenotype, and Vγ9Vδ2 T cells activation and proliferation. In our model, Vγ9Vδ2 T cells were not able to proliferate in response to HIV-infected MoDC, although an up-regulation of CD69 was observed. Upon phosphoantigens stimulation, Vγ9Vδ2 T cells proliferation and cytokine production were inhibited when cultured with HIV-infected MoDC in a cell-contact dependent way. Moreover, HIV-infected MoDC are not able to up-regulate CD86 molecules when cultured with activated Vγ9Vδ2 T cells, compared with uninfected MoDC. Further, activated Vγ9Vδ2 T cells are not able to induce HLA DR up-regulation and CCR5 down-regulation on HIV-infected MoDC. These data indicate that HIV-infected DC alter the capacity of Vγ9Vδ2 T cells to respond to their antigens, pointing out a new mechanisms of induction of Vγ9Vδ2 T cells anergy carried out by HIV, that could contribute to immune evasion.

  19. HIV Infection of Monocytes-Derived Dendritic Cells Inhibits Vγ9Vδ2 T Cells Functions

    PubMed Central

    Sacchi, Alessandra; Rinaldi, Alessandra; Tumino, Nicola; Casetti, Rita; Agrati, Chiara; Turchi, Federica; Bordoni, Veronica; Cimini, Eleonora; Martini, Federico

    2014-01-01

    DCs act as sentinel cells against incoming pathogens and represent the most potent antigen presenting cells, having the unique capability to prime naïve T cells. In addition to their role in induction of adaptive immune responses, DC are also able to activate innate cells as γδ T cells; in particular, a reciprocal crosstalk between DC and γδ T cells was demonstrated. However, whether HIV infection may alter DC-Vγ9Vδ2 T cells cross-talk was not yet described. To clarify this issue, we cultured activated Vγ9Vδ2 T cells with HIV infected monocyte derived DC (MoDC). After 5 days we evaluated MoDC phenotype, and Vγ9Vδ2 T cells activation and proliferation. In our model, Vγ9Vδ2 T cells were not able to proliferate in response to HIV-infected MoDC, although an up-regulation of CD69 was observed. Upon phosphoantigens stimulation, Vγ9Vδ2 T cells proliferation and cytokine production were inhibited when cultured with HIV-infected MoDC in a cell-contact dependent way. Moreover, HIV-infected MoDC are not able to up-regulate CD86 molecules when cultured with activated Vγ9Vδ2 T cells, compared with uninfected MoDC. Further, activated Vγ9Vδ2 T cells are not able to induce HLA DR up-regulation and CCR5 down-regulation on HIV-infected MoDC. These data indicate that HIV-infected DC alter the capacity of Vγ9Vδ2 T cells to respond to their antigens, pointing out a new mechanisms of induction of Vγ9Vδ2 T cells anergy carried out by HIV, that could contribute to immune evasion. PMID:25340508

  20. High Fat Diet Inhibits Dendritic Cell and T Cell Response to Allergens but Does Not Impair Inhalational Respiratory Tolerance

    PubMed Central

    Pizzolla, Angela; Oh, Ding Yuan; Luong, Suzanne; Prickett, Sara R.; Henstridge, Darren C.; Febbraio, Mark A.; O’Hehir, Robyn E.; Rolland, Jennifer M.; Hardy, Charles L.

    2016-01-01

    The incidence of obesity has risen to epidemic proportions in recent decades, most commonly attributed to an increasingly sedentary lifestyle, and a ‘western’ diet high in fat and low in fibre. Although non-allergic asthma is a well-established co-morbidity of obesity, the influence of obesity on allergic asthma is still under debate. Allergic asthma is thought to result from impaired tolerance to airborne antigens, so-called respiratory tolerance. We sought to investigate whether a diet high in fats affects the development of respiratory tolerance. Mice fed a high fat diet (HFD) for 8 weeks showed weight gain, metabolic disease, and alteration in gut microbiota, metabolites and glucose metabolism compared to age-matched mice fed normal chow diet (ND). Respiratory tolerance was induced by repeated intranasal (i.n.) administration of ovalbumin (OVA), prior to induction of allergic airway inflammation (AAI) by sensitization with OVA in alum i.p. and subsequent i.n. OVA challenge. Surprisingly, respiratory tolerance was induced equally well in HFD and ND mice, as evidenced by decreased lung eosinophilia and serum OVA-specific IgE production. However, in a pilot study, HFD mice showed a tendency for impaired activation of airway dendritic cells and regulatory T cells compared with ND mice after induction of respiratory tolerance. Moreover, the capacity of lymph node cells to produce IL-5 and IL-13 after AAI was drastically diminished in HFD mice compared to ND mice. These results indicate that HFD does not affect the inflammatory or B cell response to an allergen, but inhibits priming of Th2 cells and possibly dendritic cell and regulatory T cell activation. PMID:27483441

  1. C-type lectin Mermaid inhibits dendritic cell mediated HIV-1 transmission to CD4+ T cells.

    PubMed

    Nabatov, Alexey A; de Jong, Marein A W P; de Witte, Lot; Bulgheresi, Silvia; Geijtenbeek, Teunis B H

    2008-09-01

    Dendritic cells (DCs) are important in HIV-1 transmission; DCs capture invading HIV-1 through the interaction of the gp120 oligosaccharides with the C-type lectin DC-SIGN and migrate to the lymphoid tissues where HIV-1 is transmitted to T cells. Thus, the HIV-1 envelope glycoprotein gp120 is an attractive target to prevent interactions with DCs and subsequent viral transmission. Here, we have investigated whether the structural homologue of DC-SIGN, the nematode C-type lectin Mermaid can be used to prevent HIV-1 transmission by DCs. Our data demonstrate that Mermaid interacts with high mannose structures present on HIV-1 gp120 and thereby inhibits HIV-1 binding to DC-SIGN on DCs. Moreover, Mermaid inhibits DC-SIGN-mediated HIV-1 transmission from DC to T cells. We have identified Mermaid as a non-cytotoxic agent that shares the glycan specificity with DC-SIGN and inhibits DC-SIGN-gp120 interaction. The results are important for the anti-HIV-1 microbicide development directed at preventing DC-HIV-1 interactions.

  2. Morphine inhibits Purkinje cell survival and dendritic differentiation in organotypic cultures of the mouse cerebellum

    PubMed Central

    Hauser, Kurt F.; Gurwell, Julie A.; Turbek, Carol S.

    2015-01-01

    The effects of morphine on the morphogenesis and survival of calbindin-D28kimmunoreactive Purkinje cells was studied in organotypic explant cultures isolated from 1- or 7-day-old mouse cerebella. To reduce experimental variability, bilaterally matched pairs of organotypic cultures were used to compare the effects of opiate drug treatment. One explant within each pair was untreated, while the remaining explant was continuously treated for 7 to 10 days with morphine, morphine plus naloxone, or naloxone alone. In explants derived from 1-day-old mice, morphine treatment significantly reduced Purkinje cell dendritic length compared to symmetrically-matched untreated control explants. The concentration of morphine estimated to cause a half-maximal reduction (EC50) in dendritic length was 4.9 × 10−8 M. At higher concentrations (EC50 = 3.6 × 10−6 M), morphine also significantly decreased the number of Purkinje cells in explants from 1-day-old mice compared to untreated explants. Electron microscopy identified increased numbers of degenerating Purkinje cells in explants derived from 1-day-old mice. This showed that high concentrations (10−5 M) of morphine reduced Purkinje cell numbers by decreasing their rate of survival. In explants derived from 7-day-old mice, morphine (10−5 M) neither affected Purkinje cell dendritic length nor cell numbers compared to symmetrically-matched untreated (control) explants. Collectively, these findings suggest that morphine per se, through a direct action on the cerebellum, can affect Purkinje cell differentiation and survival. The results additionally suggest there is a critical period during development when Purkinje cells are especially vulnerable to the effects of morphine. PMID:7821399

  3. DlgR2 knockdown boosts dendritic cell activity and inhibits hepatocellular carcinoma tumor in-situ growth.

    PubMed

    Lu, Zhen; Xia, Yun-Hong; Zhao, Min; Zhang, Bing; Dai, Wen-Ting; Ding, Lu; Hu, Li-Xia; Bi, Jin-Ling; Jiang, Guo-Lin

    2017-08-15

    Tumor-specific hepatic stellate cells (tHSCs) positively participate in human hepatocellular carcinoma (HCC) tumorigenesis and progression. Our previous studies have shown that tHSCs co-culture with dendritic cells (DCs) induced DIgR2 (dendritic cell-derived immunoglobulin receptor 2) expression. The latter is a member of IgSF inhibitory receptor suppressing DCs-initiated antigen-specific T-cell responses. In the current study, we show that hepatic artery injection of DlgR2 siRNA significantly inhibited in-situ HCC xenograft growth in rat livers. Further, 5-FU-medied inhibition of in-situ HCC growth was dramatically sensitized with DlgR2 silence. DlgR2 siRNA injection indeed downregulated DlgR2 in ex-vivo cultured tumor-derived DCs (tDCs). More importantly, tDCs activity was boosted following DlgR2 siRNA. These cells presented with upregulated CD80, CD86 and MHC-II. Production of interleukin-12 and tumor necrosis factor-α was also increased in the DlgR2-silenced tDCs. We propose that DlgR2 knockdown likely boosts the activity of tumor-associated DCs, and inhibits growth of in-situ HCC xenografts.

  4. Curcumin inhibiting Th17 cell differentiation by regulating the metabotropic glutamate receptor-4 expression on dendritic cells.

    PubMed

    Zhao, Guangming; Liu, Ying; Yi, Xiaying; Wang, Yupeng; Qiao, Song; Li, Zhen; Ni, Jing; Song, Zhiqi

    2017-05-01

    Th17 cells have been categorized as a new lineage of CD4+ T cells, and played a crucial role in the pathogenesis of numerous autoimmune disorders. Type 4 metabotropic glutamate receptor (mGluR4), a member of group III mGluRs, recently has been found to be expressed in many types of immune cells and mediate adaptive immunity. Curcumin has been shown to exhibit potent anti-inflammatory, antimutagenic and anticarcinogenic properties. For the past few years, it has gradually been regarded as an pluripotent immunomodulatory agent that can regulate the activation of immune cells. In the present study, we investigated the efficacy and mechanism of curcumin on Th17 cells. Treatment with curcumin significantly reduced IL-6 and IL-23 production by dendritic cells (DC). Additionally, it had a dramatic reduction in the proliferation of CD4+ T cells co-cultured with DC. Furthermore, expression of the Th17 cells related cytokine profiles (IL-17A and RORγt) was dramatically decreased in curcumin-treated groups. These findings indicated that curcumin inhibited the differentiation and development of Th17 cells. Besides, we found that mGluR4 was constitutively expressed in mouse bone marrow derived DC (BMDC) for the first time. In addition, mGluR4 siRNA-transfected BMDC tipped the balance of T cell differentiation in favor of the Th17 phenotype. We first reported that curcumin increased the mGluR4 expression in mouse BMDC activated with LPS, which likely contributed to the mechanism of inhibiting the Th17 cell differentiation. Our findings suggest that curcumin might be a potential candidate for Th17 related autoimmune disorders. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Biomedical nanoparticles modulate specific CD4+ T cell stimulation by inhibition of antigen processing in dendritic cells.

    PubMed

    Blank, Fabian; Gerber, Peter; Rothen-Rutishauser, Barbara; Sakulkhu, Usawadee; Salaklang, Jatuporn; De Peyer, Karin; Gehr, Peter; Nicod, Laurent P; Hofmann, Heinrich; Geiser, Thomas; Petri-Fink, Alke; Von Garnier, Christophe

    2011-12-01

    Understanding how nanoparticles may affect immune responses is an essential prerequisite to developing novel clinical applications. To investigate nanoparticle-dependent outcomes on immune responses, dendritic cells (DCs) were treated with model biomedical poly(vinylalcohol)-coated super-paramagnetic iron oxide nanoparticles (PVA-SPIONs). PVA-SPIONs uptake by human monocyte-derived DCs (MDDCs) was analyzed by flow cytometry (FACS) and advanced imaging techniques. Viability, activation, function, and stimulatory capacity of MDDCs were assessed by FACS and an in vitro CD4+ T cell assay. PVA-SPION uptake was dose-dependent, decreased by lipopolysaccharide (LPS)-induced MDDC maturation at higher particle concentrations, and was inhibited by cytochalasin D pre-treatment. PVA-SPIONs did not alter surface marker expression (CD80, CD83, CD86, myeloid/plasmacytoid DC markers) or antigen-uptake, but decreased the capacity of MDDCs to process antigen, stimulate CD4+ T cells, and induce cytokines. The decreased antigen processing and CD4+ T cell stimulation capability of MDDCs following PVA-SPION treatment suggests that MDDCs may revert to a more functionally immature state following particle exposure.

  6. Yersinia outer proteins E, H, P, and T differentially target the cytoskeleton and inhibit phagocytic capacity of dendritic cells.

    PubMed

    Adkins, Irena; Köberle, Martin; Gröbner, Sabine; Bohn, Erwin; Autenrieth, Ingo B; Borgmann, Stefan

    2007-07-01

    Through Yersinia outer proteins (Yops) Yersinia disrupt the actin cytoskeleton of epithelial cells and macrophages, and this leads to a decreased capability of these cells to internalize bacteria. We examined the effects of different Yops of Y. enterocolitica serotype O8 on the cytoskeleton and phagocytic capacity of murine dendritic cells (DCs). DCs were infected with several Yersinia mutant strains deficient in one Yop or translocating only a single Yop. Analyses of infected DCs by microscopy showed that YopE, YopH and YopT cooperate to rapidly damage the actin cytoskeleton of DCs. Furthermore, microscopic analyses and gentamicin killing assays revealed that the maximum reduction of bacterial uptake was achieved by Yersinia mutant strains translocating only a single Yop (YopE or YopH) indicating that these Yops enable Yersinia to inhibit the phagocytic function of DCs.

  7. The renal microenvironment modifies dendritic cell phenotype.

    PubMed

    Chessa, Federica; Mathow, Daniel; Wang, Shijun; Hielscher, Thomas; Atzberger, Ann; Porubsky, Stefan; Gretz, Norbert; Burgdorf, Sven; Gröne, Hermann-Josef; Popovic, Zoran V

    2016-01-01

    Renal dendritic cells are a major component of the renal mononuclear phagocytic system. In the renal interstitium, these cells are exposed to an osmotic gradient, mainly sodium, whose concentration progressively increases towards inner medulla. Renal allograft rejection affects predominantly the cortex, suggesting a protective role of the renal medullary micromilieu. Whether osmolar variations can modulate the function of renal dendritic cells is currently undefined. Considering the central role of dendritic cells in promoting allorejection, we tested whether the biophysical micromilieu, particularly the interstitial osmotic gradient, influences their alloreactivity. There was a progressive depletion of leukocytes towards the medulla of homeostatic kidney. Only macrophages opposed this tendency. Flow cytometry of homeostatic and post-transplant medullary dendritic cells revealed a switch towards a macrophage-like phenotype. Similarly, bone marrow-derived dendritic cells developed ex vivo in sodium chloride-enriched medium acquired a M2-like signature. Microarray analysis of allotransplant dendritic cells posed a medullary downregulation of genes mainly involved in alloantigen recognition. Gene expression profiles of both medullary dendritic cells and bone marrow-derived dendritic cells matured in hyperosmolar medium had an overlap with the macrophage M2 signature. Thus, the medullary environment inhibits an alloimmune response by modulating the phenotype and function of dendritic cells.

  8. T Lymphocyte Inhibition by Tumor-Infiltrating Dendritic Cells Involves Ectonucleotidase CD39 but Not Arginase-1

    PubMed Central

    Trad, Malika; Gautheron, Alexandrine; Fraszczak, Jennifer; Larmonier, Claire; LaCasse, Collin J.; Centuori, Sara; Audia, Sylvain; Samson, Maxime; Ciudad, Marion; Bonnefoy, Francis; Lemaire-Ewing, Stéphanie; Katsanis, Emmanuel; Perruche, Sylvain; Saas, Philippe; Bonnotte, Bernard

    2015-01-01

    T lymphocytes activated by dendritic cells (DC) which present tumor antigens play a key role in the antitumor immune response. However, in patients suffering from active cancer, DC are not efficient at initiating and supporting immune responses as they participate to T lymphocyte inhibition. DC in the tumor environment are functionally defective and exhibit a characteristic of immature phenotype, different to that of DC present in nonpathological conditions. The mechanistic bases underlying DC dysfunction in cancer responsible for the modulation of T-cell responses and tumor immune escape are still being investigated. Using two different mouse tumor models, we showed that tumor-infiltrating DC (TIDC) are constitutively immunosuppressive, exhibit a semimature phenotype, and impair responder T lymphocyte proliferation and activation by a mechanism involving CD39 ectoenzyme. PMID:26491691

  9. T Lymphocyte Inhibition by Tumor-Infiltrating Dendritic Cells Involves Ectonucleotidase CD39 but Not Arginase-1.

    PubMed

    Trad, Malika; Gautheron, Alexandrine; Fraszczak, Jennifer; Alizadeh, Darya; Larmonier, Claire; LaCasse, Collin J; Centuori, Sara; Audia, Sylvain; Samson, Maxime; Ciudad, Marion; Bonnefoy, Francis; Lemaire-Ewing, Stéphanie; Katsanis, Emmanuel; Perruche, Sylvain; Saas, Philippe; Bonnotte, Bernard

    2015-01-01

    T lymphocytes activated by dendritic cells (DC) which present tumor antigens play a key role in the antitumor immune response. However, in patients suffering from active cancer, DC are not efficient at initiating and supporting immune responses as they participate to T lymphocyte inhibition. DC in the tumor environment are functionally defective and exhibit a characteristic of immature phenotype, different to that of DC present in nonpathological conditions. The mechanistic bases underlying DC dysfunction in cancer responsible for the modulation of T-cell responses and tumor immune escape are still being investigated. Using two different mouse tumor models, we showed that tumor-infiltrating DC (TIDC) are constitutively immunosuppressive, exhibit a semimature phenotype, and impair responder T lymphocyte proliferation and activation by a mechanism involving CD39 ectoenzyme.

  10. Prophylactic Dendritic Cell-Based Vaccines Efficiently Inhibit Metastases in Murine Metastatic Melanoma

    PubMed Central

    Sennikov, Sergey V.; Vlassov, Valentin V.; Zenkova, Marina A.

    2015-01-01

    Recent data on the application of dendritic cells (DCs) as anti-tumor vaccines has shown their great potential in therapy and prophylaxis of cancer. Here we report on a comparison of two treatment schemes with DCs that display the models of prophylactic and therapeutic vaccination using three different experimental tumor models: namely, Krebs-2 adenocarcinoma (primary tumor), melanoma (B16, metastatic tumor without a primary node) and Lewis lung carcinoma (LLC, metastatic tumor with a primary node). Dendritic cells generated from bone marrow-derived DC precursors and loaded with lysate of tumor cells or transfected with the complexes of total tumor RNA with cationic liposomes were used for vaccination. Lipofectamine 2000 and liposomes consisting of helper lipid DOPE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine) and cationic lipid 2D3 (1,26-Bis(1,2-de-O-tetradecyl-rac-glycerol)-7,11,16,20-tetraazahexacosan tetrahydrocloride) were used for RNA transfection. It was shown that DCs loaded with tumor lysate were ineffective in contrast to tumor-derived RNA. Therapeutic vaccination with DCs loaded by lipoplexes RNA/Lipofectamine 2000 was the most efficient for treatment of non-metastatic Krebs-2, where a 1.9-fold tumor growth retardation was observed. Single prophylactic vaccination with DCs loaded by lipoplexes RNA/2D3 was the most efficient to treat highly aggressive metastatic tumors LLC and B16, where 4.7- and 10-fold suppression of the number of lung metastases was observed, respectively. Antimetastatic effect of single prophylactic DC vaccination in metastatic melanoma model was accompanied by the reductions in the levels of Th2-specific cytokines however the change of the levels of Th1/Th2/Th17 master regulators was not found. Failure of double prophylactic vaccination is explained by Th17-response polarization associated with autoimmune and pro-inflammatory reactions. In the case of therapeutic DC vaccine the polarization of Th1-response was found nevertheless

  11. Prophylactic Dendritic Cell-Based Vaccines Efficiently Inhibit Metastases in Murine Metastatic Melanoma.

    PubMed

    Markov, Oleg V; Mironova, Nadezhda L; Sennikov, Sergey V; Vlassov, Valentin V; Zenkova, Marina A

    2015-01-01

    Recent data on the application of dendritic cells (DCs) as anti-tumor vaccines has shown their great potential in therapy and prophylaxis of cancer. Here we report on a comparison of two treatment schemes with DCs that display the models of prophylactic and therapeutic vaccination using three different experimental tumor models: namely, Krebs-2 adenocarcinoma (primary tumor), melanoma (B16, metastatic tumor without a primary node) and Lewis lung carcinoma (LLC, metastatic tumor with a primary node). Dendritic cells generated from bone marrow-derived DC precursors and loaded with lysate of tumor cells or transfected with the complexes of total tumor RNA with cationic liposomes were used for vaccination. Lipofectamine 2000 and liposomes consisting of helper lipid DOPE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine) and cationic lipid 2D3 (1,26-Bis(1,2-de-O-tetradecyl-rac-glycerol)-7,11,16,20-tetraazahexacosan tetrahydrocloride) were used for RNA transfection. It was shown that DCs loaded with tumor lysate were ineffective in contrast to tumor-derived RNA. Therapeutic vaccination with DCs loaded by lipoplexes RNA/Lipofectamine 2000 was the most efficient for treatment of non-metastatic Krebs-2, where a 1.9-fold tumor growth retardation was observed. Single prophylactic vaccination with DCs loaded by lipoplexes RNA/2D3 was the most efficient to treat highly aggressive metastatic tumors LLC and B16, where 4.7- and 10-fold suppression of the number of lung metastases was observed, respectively. Antimetastatic effect of single prophylactic DC vaccination in metastatic melanoma model was accompanied by the reductions in the levels of Th2-specific cytokines however the change of the levels of Th1/Th2/Th17 master regulators was not found. Failure of double prophylactic vaccination is explained by Th17-response polarization associated with autoimmune and pro-inflammatory reactions. In the case of therapeutic DC vaccine the polarization of Th1-response was found nevertheless

  12. Inhibition of Progenitor Dendritic Cell Maturation by Plasma from Patients with Peripartum Cardiomyopathy: Role in Pregnancy-associated Heart Disease

    PubMed Central

    Ellis, Jane E.; Ansari, Aftab A.; Fett, James D.; Carraway, Robert D.; Randall, Hugh W.; Mosunjac, Mario I.; Sundstrom, J. Bruce

    2005-01-01

    Dendritic cells (DCs) play dual roles in innate and adaptive immunity based on their functional maturity, and both innate and adaptive immune responses have been implicated in myocardial tissue remodeling associated with cardiomyopathies. Peripartum cardiomyopathy (PPCM) is a rare disorder which affects women within one month antepartum to five months postpartum. A high occurrence of PPCM in central Haiti (1 in 300 live births) provided the unique opportunity to study the relationship of immune activation and DC maturation to the etiology of this disorder. Plasma samples from two groups (n = 12) of age- and parity-matched Haitian women with or without evidence of PPCM were tested for levels of biomarkers of cardiac tissue remodeling and immune activation. Significantly elevated levels of GM-CSF, endothelin-1, proBNP and CRP and decreased levels of TGF- were measured in PPCM subjects relative to controls. Yet despite these findings, in vitro maturation of normal human cord blood derived progenitor dendritic cells (CBDCs) was significantly reduced (p < 0.001) in the presence of plasma from PPCM patients relative to plasma from post-partum control subjects as determined by expression of CD80, CD86, CD83, CCR7, MHC class II and the ability of these matured CBDCs to induce allo-responses in PBMCs. These results represent the first findings linking inhibition of DC maturation to the dysregulation of normal physiologic cardiac tissue remodeling during pregnancy and the pathogenesis of PPCM. PMID:16584112

  13. Olfactory Bulb Deep Short-Axon Cells Mediate Widespread Inhibition of Tufted Cell Apical Dendrites.

    PubMed

    Burton, Shawn D; LaRocca, Greg; Liu, Annie; Cheetham, Claire E J; Urban, Nathaniel N

    2017-02-01

    In the main olfactory bulb (MOB), the first station of sensory processing in the olfactory system, GABAergic interneuron signaling shapes principal neuron activity to regulate olfaction. However, a lack of known selective markers for MOB interneurons has strongly impeded cell-type-selective investigation of interneuron function. Here, we identify the first selective marker of glomerular layer-projecting deep short-axon cells (GL-dSACs) and investigate systematically the structure, abundance, intrinsic physiology, feedforward sensory input, neuromodulation, synaptic output, and functional role of GL-dSACs in the mouse MOB circuit. GL-dSACs are located in the internal plexiform layer, where they integrate centrifugal cholinergic input with highly convergent feedforward sensory input. GL-dSAC axons arborize extensively across the glomerular layer to provide highly divergent yet selective output onto interneurons and principal tufted cells. GL-dSACs are thus capable of shifting the balance of principal tufted versus mitral cell activity across large expanses of the MOB in response to diverse sensory and top-down neuromodulatory input. The identification of cell-type-selective molecular markers has fostered tremendous insight into how distinct interneurons shape sensory processing and behavior. In the main olfactory bulb (MOB), inhibitory circuits regulate the activity of principal cells precisely to drive olfactory-guided behavior. However, selective markers for MOB interneurons remain largely unknown, limiting mechanistic understanding of olfaction. Here, we identify the first selective marker of a novel population of deep short-axon cell interneurons with superficial axonal projections to the sensory input layer of the MOB. Using this marker, together with immunohistochemistry, acute slice electrophysiology, and optogenetic circuit mapping, we reveal that this novel interneuron population integrates centrifugal cholinergic input with broadly tuned feedforward sensory

  14. Inhibition of TNFα during maturation of dendritic cells results in the development of semi-mature cells: a potential mechanism for the beneficial effects of TNFα blockade in rheumatoid arthritis

    PubMed Central

    van Lieshout, A W T; Barrera, P; Smeets, R; Pesman, G; van Riel, P L C M; van den Berg, W B; Radstake, T

    2005-01-01

    Background: Dendritic cells orchestrate pivotal immunological processes mediated by the production of cytokines and chemokines. Objective: To assess whether neutralisation of tumour necrosis factor α (TNFα) during maturation of dendritic cells affects their phenotype and behaviour, which might explain the beneficial effects of TNFα neutralisation in rheumatoid arthritis. Methods: Immature and fully matured dendritic cells were cultured from blood monocytes from patients with rheumatoid arthritis and healthy controls following standardised protocols. TNFα was neutralised by addition of the p55 soluble TNFα receptor, PEGsTNFRI. The effect of TNFα neutralisation on the phenotype (CD14, CD16, CD32, CD64, CD80, CD83, CD86, and MHC) of dendritic cells was investigated by flow cytometry. Expression of chemokines (CCL17, CCL18, CCL19, CCL22, CCL3, and CXCL8) and production of IL1ß and IL6 during dendritic cell differentiation and maturation were examined. Results: Neutralisation of TNFα during the differentiation and maturation of dendritic cells did not result in an altered dendritic cell phenotype in the rheumatoid patients or the healthy controls. In contrast, the expression of CCL17, CCL18, CCL19, CCL22, CCL3, and CXCL8 by dendritic cells was significantly reduced when TNFα activity was inhibited during lipopolysaccharide triggered dendritic cell maturation. The production of IL1ß and IL6 by mature dendritic cells was inhibited by PEGsTNFRI. Conclusions: Inhibition of TNFα activity during dendritic cell maturation leads to the development of semi-mature cells. These data suggest a novel pathway by which the neutralisation of TNFα might exert its therapeutic effects. PMID:15256380

  15. Transcranial magnetic stimulation (TMS) inhibits cortical dendrites.

    PubMed

    Murphy, Sean C; Palmer, Lucy M; Nyffeler, Thomas; Müri, René M; Larkum, Matthew E

    2016-03-18

    One of the leading approaches to non-invasively treat a variety of brain disorders is transcranial magnetic stimulation (TMS). However, despite its clinical prevalence, very little is known about the action of TMS at the cellular level let alone what effect it might have at the subcellular level (e.g. dendrites). Here, we examine the effect of single-pulse TMS on dendritic activity in layer 5 pyramidal neurons of the somatosensory cortex using an optical fiber imaging approach. We find that TMS causes GABAB-mediated inhibition of sensory-evoked dendritic Ca(2+) activity. We conclude that TMS directly activates fibers within the upper cortical layers that leads to the activation of dendrite-targeting inhibitory neurons which in turn suppress dendritic Ca(2+) activity. This result implies a specificity of TMS at the dendritic level that could in principle be exploited for investigating these structures non-invasively.

  16. Direct contact between dendritic cells and bronchial epithelial cells inhibits T cell recall responses towards mite and pollen allergen extracts in vitro.

    PubMed

    Papazian, D; Wagtmann, V R; Hansen, S; Würtzen, P A

    2015-08-01

    Airway epithelial cells (AECs) form a polarized barrier along the respiratory tract. They are the first point of contact with airborne antigens and are able to instruct resident immune cells to mount appropriate immune responses by either soluble or contact-dependent mechanisms. We hypothesize that a healthy, polarized epithelial cell layer inhibits inflammatory responses towards allergens to uphold homeostasis. Using an in-vitro co-culture model of the airway epithelium, where a polarized cell layer of bronchial epithelial cells can interact with dendritic cells (DCs), we have investigated recall T cell responses in allergic patients sensitized to house dust mite, grass and birch pollen. Using allergen extract-loaded DCs to stimulate autologous allergen-specific T cell lines, we show that AEC-imprinted DCs inhibit T cell proliferation significantly of Bet v 1-specific T cell lines as well as decrease interleukin (IL)-5 and IL-13 production, whereas inhibition of Phl p 5-specific T cells varied between different donors. Stimulating autologous CD4(+) T cells from allergic patients with AEC-imprinted DCs also inhibited proliferation significantly and decreased production of both T helper type 1 (Th1) and Th2 cytokines upon rechallenge. The inhibitory effects of AECs' contact with DCs were absent when allergen extract-loaded DCs had been exposed only to AECs supernatants, but present after direct contact with AECs. We conclude that direct contact between DCs and AECs inhibits T cell recall responses towards birch, grass and house dust mite allergens in vitro, suggesting that AECs-DC contact in vivo constitute a key element in mucosal homeostasis in relation to allergic sensitisation.

  17. Laricitrin ameliorates lung cancer-mediated dendritic cell suppression by inhibiting signal transducer and activator of transcription 3.

    PubMed

    Chang, Wei-An; Hung, Jen-Yu; Jian, Shu-Fang; Lin, Yi-Shiuan; Wu, Cheng-Ying; Hsu, Ya-Ling; Kuo, Po-Lin

    2016-12-20

    Natural polyphenolic compounds of grapes and their seeds are thought to be therapeutic adjuvants in a variety of diseases, including cancer prevention. This study was carried out to investigate the effect of grape phenolic compounds on the regulation of cancer-mediated immune suppression. Laricitrin exhibits the greatest potential to ameliorate the suppressive effects of lung cancer on dendritic cells' (DCs') differentiation, maturation and function. Human lung cancer A549 and CL1-5 cells change the phenotype of DCs that express to high levels of IL-10 and prime T cells towards an immune suppression type-2 response (Th2). Laricitrin treatment stimulated DC differentiation and maturation in the condition media of cancer cells, a finding supported by monocyte marker CD14's disappearance and DC marker CD1a's upregulation. Laricitrin decreases expression of IL-10 in cancer-conditioned DCs, and subsequently switches CD4+ T cell response from Th2 to Th1 in vitro and in vivo. Reversal of laricitrin on lung cancer-induced DCs' paralysis was via inhibiting the phosphorylation of signal transducer and activator of transcription 3 (STAT3). Laricitrin also potentiated the anticancer activity of cisplatin in mouse models. Thus, laricitrin could be an efficacious immunoadjuvant and have a synergistic effect when combined with chemotherapy.

  18. Human metapneumovirus M2-2 protein inhibits innate immune response in monocyte-derived dendritic cells.

    PubMed

    Ren, Junping; Liu, Guangliang; Go, Jonathan; Kolli, Deepthi; Zhang, Guanping; Bao, Xiaoyong

    2014-01-01

    Human metapneumovirus (hMPV) is a leading cause of lower respiratory infection in young children, the elderly and immunocompromised patients. Repeated hMPV infections occur throughout life. However, immune evasion mechanisms of hMPV infection are largely unknown. Recently, our group has demonstrated that hMPV M2-2 protein, an important virulence factor, contributes to immune evasion in airway epithelial cells by targeting the mitochondrial antiviral-signaling protein (MAVS). Whether M2-2 regulates the innate immunity in human dendritic cells (DC), an important family of immune cells controlling antigen presenting, is currently unknown. We found that human DC infected with a virus lacking M2-2 protein expression (rhMPV-ΔM2-2) produced higher levels of cytokines, chemokines and IFNs, compared to cells infected with wild-type virus (rhMPV-WT), suggesting that M2-2 protein inhibits innate immunity in human DC. In parallel, we found that myeloid differentiation primary response gene 88 (MyD88), an essential adaptor for Toll-like receptors (TLRs), plays a critical role in inducing immune response of human DC, as downregulation of MyD88 by siRNA blocked the induction of immune regulatory molecules by hMPV. Since M2-2 is a cytoplasmic protein, we investigated whether M2-2 interferes with MyD88-mediated antiviral signaling. We found that indeed M2-2 protein associated with MyD88 and inhibited MyD88-dependent gene transcription. In this study, we also identified the domains of M2-2 responsible for its immune inhibitory function in human DC. In summary, our results demonstrate that M2-2 contributes to hMPV immune evasion by inhibiting MyD88-dependent cellular responses in human DC.

  19. Tumor-mediated inhibition of human dendritic cell differentiation and function is consistently counteracted by combined p38 MAPK and STAT3 inhibition

    PubMed Central

    Oosterhoff, Dinja; Lougheed, Sinéad; van de Ven, Rieneke; Lindenberg, Jelle; van Cruijsen, Hester; Hiddingh, Lotte; Kroon, Jan; van den Eertwegh, Alfons J.M.; Hangalapura, Basav; Scheper, Rik J.; de Gruijl, Tanja D.

    2012-01-01

    Targeting dendritic cells (DC) through the release of suppressive factors is an effective means for tumors to escape immune control. We assessed the involvement of downstream signaling through the JAK2/STAT3 and p38 MAPK pathways in tumor-induced suppression of human DC development. Whereas the JAK2/STAT3 pathway has been pinpointed in mouse studies as a key regulator of myeloid suppression, in human DC this is less well established. We studied the effects of STAT3 inhibition on the suppression of monocyte-derived DC differentiation mediated by a short-list of four predominant suppressive factors and found that pharmacological STAT3 inhibition could only counteract the effects of IL-6. Accordingly, in testing a panel of supernatants derived from 11 cell lines representing various types of solid tumors, STAT3 inhibition only modestly affected the suppressive effects of a minority of supernatants. Importantly, combined interference in the STAT3 and p38 pathways completely prevented inhibition of DC differentiation by all tested supernatants and effected superior DC function, evidenced by increased allogeneic T cell reactivity with elevated IL-12p70/IL-10 ratios and Th1 skewing. Combined STAT3 and p38 inhibition also afforded superior protection against the suppressive effects of primary glioma and melanoma supernatants and induced a shift from CD14+ cells to CD1a+ cells in metastatic melanoma single-cell suspensions, indicating a potential for improved DC differentiation in the tumor microenvironment. We conclude that combined interference in the STAT3 and p38 MAPK signaling pathways is a promising approach to overcome tumor-induced inhibitory signaling in DC precursors and will likely support clinical immunotherapeutic strategies. PMID:22934257

  20. Development of a dendritic cell-targeting lipopeptide as an immunoadjuvant that inhibits tumor growth without inducing local inflammation.

    PubMed

    Akazawa, Takashi; Ohashi, Toshimitsu; Nakajima, Hiroko; Nishizawa, Yasuko; Kodama, Ken; Sugiura, Kikuya; Inaba, Toshio; Inoue, Norimitsu

    2014-12-15

    Materials used for the past 30 years as immunoadjuvants induce suboptimal antitumor immune responses and often cause undesirable local inflammation. Some bacterial lipopeptides that act as Toll-like receptor (TLR) 2 ligands activate immune cells as immunoadjuvants and induce antitumor effects. Here, we developed a new dendritic cell (DC)-targeting lipopeptide, h11c (P2C-ATPEDNGRSFS), which uses the CD11c-binding sequence of intracellular adhesion molecule-1 to selectively and efficiently activate DCs but not other immune cells. Although the h11c lipopeptide activated DCs similarly to an artificial lipopeptide, P2C-SKKKK (P2CSK4), via TLR2 in vitro, h11c induced more effective tumor inhibition than P2CSK4 at low doses in vivo with tumor antigens. Even without tumor antigens, h11c lipopeptide significantly inhibited tumor growth and induced tumor-specific cytotoxic T cells. P2CSK4 was retained subcutaneously at the vaccination site and induced severe local inflammation in in vivo experiments. In contrast, h11c was not retained at the vaccination site and was transported into the tumor within 24 hr. The recruitment of DCs into the tumor was induced by h11c more effectively, while P2CSK4 induced the accumulation of neutrophils leading to severe inflammation at the vaccination site. Because CD11b+ cells, but not CD11c+ cells, produced neutrophil chemotactic factors such as macrophage inflammatory protein (MIP)-2 in response to stimulation with TLR2 ligands, the DC-targeting lipopeptide h11c induced less MIP-2 production by splenocytes than P2CSK4. In this study, we succeeded in developing a novel immunoadjuvant, h11c, which effectively induces antitumor activity without adverse effects such as local inflammation via the selective activation of DCs.

  1. Inhibition of vascular endothelial growth factor by small interfering RNA upregulates differentiation, maturation and function of dendritic cells

    PubMed Central

    WANG, HAIYAN; ZHANG, LUPING; ZHANG, SHAOYAN; LI, YANNIAN

    2015-01-01

    This study aimed to investigate the effects of vascular endothelial growth factor (VEGF) secreted by MCF-7 breast cancer cells on the differentiation, maturation and function of dendritic cells (DCs). Small interfering RNAs (siRNAs) directed against the VEGF gene were designed and transfected into MCF-7 breast cancer cells at an optimal concentration (100 nmol/l) using cationic liposome transfection reagent, whereas the control group was transfected with only transfection reagent. Western blot analysis and ELISA were used to determine VEGF protein expression and VEGF concentration, respectively. Mononuclear cells were cultured with the culture supernatants from primary MCF-7 cells (control group) and siRNA-treated MCF-7 cells (siRNA group). The DC phenotypes, including CD1a, CD80, CD83, CD86 and HLA-DR, were evaluated by flow cytometry. The MTT assay was used to assess the cytotoxicity of DC-mediated tumor-specific cytotoxic T lymphocytes (CTLs) against MCF-7 cells in the two different culture supernatants. The VEGF-targeted constructed siRNA inhibited VEGF expression in MCF-7 cells. Cultivation with the culture supernatants from MCF-7 cells treated with siRNA affected DC morphology. DCs in the siRNA group exhibited a significantly higher expression of CD86, CD80, CD83 and HLA-DR compared to the cells in the control group, whereas the expression of CD1a in the siRNA group was significantly lower compared to that in the control group. The cytotoxic activity of CTLs mediated by DCs was significantly altered by siRNA transfection. These results indicated that VEGF may play a significant role in tumor development, progression and immunosuppression. PMID:25452786

  2. Human dendritic cell subsets

    PubMed Central

    Collin, Matthew; McGovern, Naomi; Haniffa, Muzlifah

    2013-01-01

    Summary Dendritic cells are highly adapted to their role of presenting antigen and directing immune responses. Developmental studies indicate that DCs originate independently from monocytes and tissue macrophages. Emerging evidence also suggests that distinct subsets of DCs have intrinsic differences that lead to functional specialisation in the generation of immunity. Comparative studies are now allowing many of these properties to be more fully understood in the context of human immunology. PMID:23621371

  3. Inhaled iloprost suppresses the cardinal features of asthma via inhibition of airway dendritic cell function

    PubMed Central

    Idzko, Marco; Hammad, Hamida; van Nimwegen, Menno; Kool, Mirjam; Vos, Nanda; Hoogsteden, Henk C.; Lambrecht, Bart N.

    2007-01-01

    Inhalation of iloprost, a stable prostacyclin (PGI2) analog, is a well-accepted and safe treatment for pulmonary arterial hypertension. Although iloprost mainly acts as a vasodilator by binding to the I prostanoid (IP) receptor, recent evidence suggests that signaling via this receptor also has antiinflammatory effects through unclear mechanisms. Here we show in a murine model of asthma that iloprost inhalation suppressed the cardinal features of asthma when given during the priming or challenge phase. As a mechanism of action, iloprost interfered with the function of lung myeloid DCs, critical antigen-presenting cells of the airways. Iloprost treatment inhibited the maturation and migration of lung DCs to the mediastinal LNs, thereby abolishing the induction of an allergen-specific Th2 response in these nodes. The effect of iloprost was DC autonomous, as iloprost-treated DCs no longer induced Th2 differentiation from naive T cells or boosted effector cytokine production in primed Th2 cells. These data should pave the way for a clinical effectiveness study using inhaled iloprost for the treatment of asthma. PMID:17273558

  4. Downregulating galectin-3 inhibits proinflammatory cytokine production by human monocyte-derived dendritic cells via RNA interference.

    PubMed

    Chen, Swey-Shen; Sun, Liang-Wu; Brickner, Howard; Sun, Pei-Qing

    2015-03-01

    Galectin-3 (Gal-3), a β-galactoside-binding lectin, serves as a pattern-recognition receptor (PRR) of dendritic cells (DCs) in regulating proinflammatory cytokine production. Galectin-3 (Gal-3) siRNA downregulates expression of IL-6, IL-1β and IL-23 p19, while upregulates IL-10 and IL-12 p35 in TLR/NLR stimulated human MoDCs. Furthermore, Gal-3 siRNA-treated MoDCs enhanced IFN-γ production in SEB-stimulated CD45RO CD4 T-cells, but attenuated IL-17A and IL-5 production by CD4 T-cells. Addition of neutralizing antibodies against Gal-3, or recombinant Gal-3 did not differentially modulate IL-23 p19 versus IL-12 p35. The data indicate that intracellular Gal-3 acts as cytokine hub of human DCs in responding to innate immunity signals. Gal-3 downregulation reprograms proinflammatory cytokine production by MoDCs that inhibit Th2/Th17 development.

  5. Human Immunodeficiency Virus-1 Inhibition of Immunoamphisomes in Dendritic Cells Impairs Early Innate and Adaptive Immune Responses

    PubMed Central

    Blanchet, Fabien P.; Moris, Arnaud; Nikolic, Damjan S.; Lehmann, Martin; Cardinaud, Sylvain; Stalder, Romaine; Garcia, Eduardo; Dinkins, Christina; Leuba, Florence; Wu, Li; Schwartz, Olivier; Deretic, Vojo; Piguet, Vincent

    2010-01-01

    SUMMARY Dendritic cells (DCs) in mucosal surfaces are early targets for human immunodeficiency virus-1 (HIV-1). DCs mount rapid and robust immune responses upon pathogen encounter. However, immune response in the early events of HIV-1 transmission appears limited, suggesting that HIV-1 evade early immune control by DCs. We report that HIV-1 induces a rapid shutdown of autophagy and immunoamphisomes in DCs. HIV-1 envelope activated the mammalian target of rapamycin pathway in DCs, leading to autophagy exhaustion. HIV-1-induced inhibition of autophagy in DC increased cell-associated HIV-1 and transfer of HIV-1 infection to CD4+ T cells. HIV-1-mediated downregulation of autophagy in DCs impaired innate and adaptive immune responses. Immunoamphisomes in DCs engulf incoming pathogens and appear to amplify pathogen degradation as well as Toll-like receptor responses and antigen presentation. The findings that HIV-1 downregulates autophagy and impedes immune functions of DCs represent a pathogenesis mechanism that can be pharmacologically countered with therapeutic and prophylactic implications. PMID:20451412

  6. Blockade of dendritic cell development by bacterial fermentation products butyrate and propionate through a transporter (Slc5a8)-dependent inhibition of histone deacetylases.

    PubMed

    Singh, Nagendra; Thangaraju, Muthusamy; Prasad, Puttur D; Martin, Pamela M; Lambert, Nevin A; Boettger, Thomas; Offermanns, Stefan; Ganapathy, Vadivel

    2010-09-03

    Mammalian colon harbors trillions of bacteria, yet there is no undue inflammatory response by the host against these bacteria under normal conditions. The bacterial fermentation products acetate, propionate, and butyrate are believed, at least in part, to be responsible for these immunosuppressive effects. Dendritic cells play an essential role in presentation of antigens to T lymphocytes and initiation of adaptive immune responses. Here we report that butyrate and propionate block the generation of dendritic cells from bone marrow stem cells, without affecting the generation of granulocytes. This effect is dependent on the Na(+)-coupled monocarboxylate transporter Slc5a8, which transports butyrate and propionate into cells, and on the ability of these two bacterial metabolites to inhibit histone deacetylases. Acetate, which is also a substrate for Slc5a8 but not an inhibitor of histone deacetylases, does not affect dendritic cell development, indicating the essential role of histone deacetylase inhibition in the process. The blockade of dendritic cell development by butyrate and propionate is associated with decreased expression of the transcription factors PU.1 and RelB. Butyrate also elicits its biologic effects through its ability to activate the G-protein-coupled receptor Gpr109a, but this mechanism is not involved in butyrate-induced blockade of dendritic cell development. The participation of Slc5a8 and the non-involvement of Gpr109a in butyrate effects have been substantiated using bone marrow cells obtained from Slc5a8(-/-) and Gpr109a(-/-) mice. These findings uncover an important mechanism underlying the anti-inflammatory functions of the bacterial fermentation products butyrate and propionate.

  7. Blockade of Dendritic Cell Development by Bacterial Fermentation Products Butyrate and Propionate through a Transporter (Slc5a8)-dependent Inhibition of Histone Deacetylases

    PubMed Central

    Singh, Nagendra; Thangaraju, Muthusamy; Prasad, Puttur D.; Martin, Pamela M.; Lambert, Nevin A.; Boettger, Thomas; Offermanns, Stefan; Ganapathy, Vadivel

    2010-01-01

    Mammalian colon harbors trillions of bacteria, yet there is no undue inflammatory response by the host against these bacteria under normal conditions. The bacterial fermentation products acetate, propionate, and butyrate are believed, at least in part, to be responsible for these immunosuppressive effects. Dendritic cells play an essential role in presentation of antigens to T lymphocytes and initiation of adaptive immune responses. Here we report that butyrate and propionate block the generation of dendritic cells from bone marrow stem cells, without affecting the generation of granulocytes. This effect is dependent on the Na+-coupled monocarboxylate transporter Slc5a8, which transports butyrate and propionate into cells, and on the ability of these two bacterial metabolites to inhibit histone deacetylases. Acetate, which is also a substrate for Slc5a8 but not an inhibitor of histone deacetylases, does not affect dendritic cell development, indicating the essential role of histone deacetylase inhibition in the process. The blockade of dendritic cell development by butyrate and propionate is associated with decreased expression of the transcription factors PU.1 and RelB. Butyrate also elicits its biologic effects through its ability to activate the G-protein-coupled receptor Gpr109a, but this mechanism is not involved in butyrate-induced blockade of dendritic cell development. The participation of Slc5a8 and the non-involvement of Gpr109a in butyrate effects have been substantiated using bone marrow cells obtained from Slc5a8−/− and Gpr109a−/− mice. These findings uncover an important mechanism underlying the anti-inflammatory functions of the bacterial fermentation products butyrate and propionate. PMID:20601425

  8. Lentivirally engineered dendritic cells activate AFP-specific T cells which inhibit hepatocellular carcinoma growth in vitro and in vivo.

    PubMed

    Liu, Yang; Butterfield, Lisa H; Fu, Xiaohui; Song, Zhenshun; Zhang, Xiaoping; Lu, Chongde; Ding, Guanghui; Wu, Mengchao

    2011-07-01

    α-fetoprotein (AFP), a tumor-associated antigen for hepatocellular carcinoma (HCC), is an established biomarker for HCC. In this study, we created a lentivirus expressing the AFP antigen and investigated the anti-tumor activity of AFP-specific CD8+ T cells, with and without CD4+ T cells, which were activated by either AFP peptide-pulsed or Lenti-AFP-engineered Dendritic cells (DCs) in vitro and in vivo. AFP-specific T cells could efficiently kill HepG2 HCC cells, and produced IL-2, IFN-γ, TNF-α, perforin and granzyme B, with minimal production of IL-10 (a negative regulator of T cell activation). Both strategies activated AFP-specific T cells, but the lentiviral strategy was superior by several measures. Data also support an impact of CD4+ T cells in supporting anti-tumor activity. In vivo studies in a xenograft HCC tumor model also showed that AFP-specific T cells could markedly suppress HCC tumor formation and morbidity in tumor-bearing nude mice, as well as regulate serum levels of related cytokines and anti-tumor molecules. In parallel with human in vitro T cell cultures, the in vivo model demonstrated superior anti-tumor effects and Th1-skewing with Lenti-AFP-DCs. This study supports the superiority of a full-length antigen lentivirus-based DCs vaccine strategy over peptides, and provides new insight into the design of DCs-based vaccines.

  9. Tumor-associated mesenchymal stem cells inhibit naïve T cell expansion by blocking cysteine export from dendritic cells.

    PubMed

    Ghosh, Tithi; Barik, Subhasis; Bhuniya, Avishek; Dhar, Jesmita; Dasgupta, Shayani; Ghosh, Sarbari; Sarkar, Madhurima; Guha, Ipsita; Sarkar, Koustav; Chakrabarti, Pinak; Saha, Bhaskar; Storkus, Walter J; Baral, Rathindranath; Bose, Anamika

    2016-11-01

    Mesenchymal stem cells (MSCs) represent an important cellular constituent of the tumor microenvironment, which along with tumor cells themselves, serve to regulate protective immune responses in support of progressive disease. We report that tumor MSCs prevent the ability of dendritic cells (DC) to promote naïve CD4(+) and CD8(+) T cell expansion, interferon gamma secretion and cytotoxicity against tumor cells, which are critical to immune-mediated tumor eradication. Notably, tumor MSCs fail to prevent DC-mediated early T cell activation events or the ability of responder T cells to produce IL-2. The immunoregulatory activity of tumor MSCs is IL-10- and STAT3-dependent, with STAT3 repressing DC expression of cystathionase, a critical enzyme that converts methionine-to-cysteine. Under cysteine-deficient priming conditions, naïve T cells exhibit defective cellular metabolism and proliferation. Bioinformatics analyses as well as in vitro observations suggest that STAT3 may directly bind to a GAS-like motif within the cystathionase promoter (-269 to -261) leading to IL-10-STAT3 mediated repression of cystathionase gene transcription. Our collective results provide evidence for a novel mechanism of tumor MSC-mediated T cell inhibition within tumor microenvironment.

  10. Cholera toxin inhibits IL-12 production and CD8α+ dendritic cell differentiation by cAMP-mediated inhibition of IRF8 function

    PubMed Central

    la Sala, Andrea; He, Jianping; Laricchia-Robbio, Leopoldo; Gorini, Stefania; Iwasaki, Akiko; Braun, Michael; Yap, George S.; Sher, Alan; Ozato, Keiko

    2009-01-01

    Prior studies have demonstrated that cholera toxin (CT) and other cAMP-inducing factors inhibit interleukin (IL)-12 production from monocytes and dendritic cells (DCs). We show that CT inhibits Th1 responses in vivo in mice infected with Toxoplasma gondii. This correlated with low serum IL-12 levels and a selective reduction in the numbers of CD8α+ conventional DCs (cDCs) in lymphoid organs. CT inhibited the function of interferon (IFN) regulatory factor (IRF) 8, a transcription factor known to positively regulate IL-12p35 and p40 gene expression, and the differentiation of CD8α+ and plasmacytoid DCs (pDCs). Fluorescence recovery after photobleaching analysis showed that exposure to CT, forskolin, or dibutyryl (db) cAMP blocked LPS and IFN-γ–induced IRF8 binding to chromatin. Moreover, CT and dbcAMP inhibited the binding of IRF8 to the IFN-stimulated response element (ISRE)–like element in the mouse IL-12p40 promoter, likely by blocking the formation of ISRE-binding IRF1–IRF8 heterocomplexes. Furthermore, CT inhibited the differentiation of pDCs from fms-like tyrosine kinase 3 ligand–treated bone marrow cells in vitro. Therefore, because IRF8 is essential for IL-12 production and the differentiation of CD8α+ cDCs and pDCs, these data suggest that CT and other Gs-protein agonists can affect IL-12 production and DC differentiation via a common mechanism involving IRF8. PMID:19487420

  11. Bypassing STAT3-mediated inhibition of the transcriptional regulator ID2 improves the anti-tumor efficacy of dendritic cells*

    PubMed Central

    Li, Haiyan S.; Liu, Chengwen; Xiao, Yichuan; Chu, Fuliang; Liang, Xiaoxuan; Peng, Weiyi; Hu, Jianhua; Neelapu, Sattva S.; Sun, Shao-Cong; Hwu, Patrick; Watowich, Stephanie S.

    2016-01-01

    Despite the potent ability of dendritic cells (DCs) to stimulate lymphocyte responses and host immunity, granulocyte-macrophage colony-stimulating factor (GM-CSF)-derived DCs (GM-DCs) used as antitumor vaccines have demonstrated relatively modest success in cancer immunotherapy. We found that injecting GM-DCs into melanoma tumors in mice, or culturing GM-DCs with melanoma-secreted cytokines or melanoma-conditioned medium, rapidly suppressed DC-intrinsic expression of the gene encoding inhibitor of differentiation 2 (ID2), a transcriptional regulator. Melanoma-associated cytokines repressed Id2 transcription in murine DCs through the activation of signal transducer and activator of transcription 3 (STAT3). Enforced expression of ID2 in GM-DCs (ID2-GM-DCs) suppressed their production of the pro-inflammatory cytokine TNF-α. Vaccination with ID2-GM-DCs slowed the progression of melanoma tumors and enhanced animal survival, which was associated with an increased abundance of tumor-infiltrating interferon-γ-positive CD4+ effector and CD8+ cytotoxic T cells and a decreased number of tumor-infiltrating regulatory CD4+ T cells. The efficacy of the ID2-GM-DC vaccine was improved by combinatorial treatment with a blocking antibody to programmed cell death protein 1 (PD-1), a current immunotherapy that overcomes suppressive immune checkpoint signaling. Collectively, our data reveal a previously unrecognized STAT3-mediated immunosuppressive mechanism in DCs and indicate that DC-intrinsic ID2 promotes tumor immunity by modulating tumor-associated CD4+ T cell responses. Thus inhibiting STAT3 or overexpressing ID2 selectively in DCs may improve the efficiency of DC vaccines in cancer therapy. PMID:27678219

  12. Nuclear Erythroid 2 p45-Related Factor 2 Inhibits the Maturation of Murine Dendritic Cells by Ragweed Extract

    PubMed Central

    Rangasamy, Tirumalai; Williams, Marc A.; Bauer, Stephen; Trush, Michael A.; Emo, Jason; Georas, Steve N.; Biswal, Shyam

    2010-01-01

    Oxidative stress plays an important role in immune regulation and dendritic cell (DC) maturation. Recent studies indicate that allergens, including ragweed extract (RWE), possess prooxidant activities, but how RWE interacts with DCs is not well understood. Nuclear erythroid 2 p45-related factor 2 (Nrf2) is a key transcription factor that regulates constitutive and coordinated induction of a battery of antioxidant genes. We hypothesized that RWE would activate DCs and that this response would be augmented in the absence of Nrf2. We generated bone marrow–derived DCs (BM-DCs) and isolated lung DCs from Nrf2+/+ and Nrf2−/− mice and studied the effects of RWE on DCs in vitro. Under resting conditions, Nrf2−/− BM-DCs exhibited constitutively greater levels of inflammatory cytokines and costimulatory molecules than Nrf2+/+ BM-DCs. Exposure to RWE impaired endocytic activity, significantly induced oxidative stress, and enhanced the expression of CD80, CD86, and MHCII in Nrf2−/− BM-DCs when compared with Nrf2+/+ BM-DC, in association with reduced expression of Nrf2-regulated antioxidant genes. RWE significantly induced the secretion of inflammatory cytokines IL-6 and TNF-α in BM-DCs and lung DCs from Nrf2−/− mice than Nrf2+/+ mice and significantly inhibited the secretion of IL-12 in Nrf2+/+ BM-DCs and IL-18 in Nrf2+/+ and Nrf2−/− BM-DCs. The stimulatory effects of RWE on DC activation were inhibited to varying degrees by the antioxidant N-acetyl cysteine. Our findings indicate that a defect in Nrf2-mediated signaling mechanisms alters the response of DCs to a common environmental allergen, which may contribute to the susceptibility to allergic diseases. PMID:19805484

  13. Nuclear erythroid 2 p45-related factor 2 inhibits the maturation of murine dendritic cells by ragweed extract.

    PubMed

    Rangasamy, Tirumalai; Williams, Marc A; Bauer, Stephen; Trush, Michael A; Emo, Jason; Georas, Steve N; Biswal, Shyam

    2010-09-01

    Oxidative stress plays an important role in immune regulation and dendritic cell (DC) maturation. Recent studies indicate that allergens, including ragweed extract (RWE), possess prooxidant activities, but how RWE interacts with DCs is not well understood. Nuclear erythroid 2 p45-related factor 2 (Nrf2) is a key transcription factor that regulates constitutive and coordinated induction of a battery of antioxidant genes. We hypothesized that RWE would activate DCs and that this response would be augmented in the absence of Nrf2. We generated bone marrow-derived DCs (BM-DCs) and isolated lung DCs from Nrf2(+/+) and Nrf2(-/-) mice and studied the effects of RWE on DCs in vitro. Under resting conditions, Nrf2(-/-) BM-DCs exhibited constitutively greater levels of inflammatory cytokines and costimulatory molecules than Nrf2(+/+) BM-DCs. Exposure to RWE impaired endocytic activity, significantly induced oxidative stress, and enhanced the expression of CD80, CD86, and MHCII in Nrf2(-/-) BM-DCs when compared with Nrf2(+/+) BM-DC, in association with reduced expression of Nrf2-regulated antioxidant genes. RWE significantly induced the secretion of inflammatory cytokines IL-6 and TNF-alpha in BM-DCs and lung DCs from Nrf2(-/-) mice than Nrf2(+/+) mice and significantly inhibited the secretion of IL-12 in Nrf2(+/+) BM-DCs and IL-18 in Nrf2(+/+) and Nrf2(-/-) BM-DCs. The stimulatory effects of RWE on DC activation were inhibited to varying degrees by the antioxidant N-acetyl cysteine. Our findings indicate that a defect in Nrf2-mediated signaling mechanisms alters the response of DCs to a common environmental allergen, which may contribute to the susceptibility to allergic diseases.

  14. Transcranial magnetic stimulation (TMS) inhibits cortical dendrites

    PubMed Central

    Murphy, Sean C; Palmer, Lucy M; Nyffeler, Thomas; Müri, René M; Larkum, Matthew E

    2016-01-01

    One of the leading approaches to non-invasively treat a variety of brain disorders is transcranial magnetic stimulation (TMS). However, despite its clinical prevalence, very little is known about the action of TMS at the cellular level let alone what effect it might have at the subcellular level (e.g. dendrites). Here, we examine the effect of single-pulse TMS on dendritic activity in layer 5 pyramidal neurons of the somatosensory cortex using an optical fiber imaging approach. We find that TMS causes GABAB-mediated inhibition of sensory-evoked dendritic Ca2+ activity. We conclude that TMS directly activates fibers within the upper cortical layers that leads to the activation of dendrite-targeting inhibitory neurons which in turn suppress dendritic Ca2+ activity. This result implies a specificity of TMS at the dendritic level that could in principle be exploited for investigating these structures non-invasively. DOI: http://dx.doi.org/10.7554/eLife.13598.001 PMID:26988796

  15. Leishmania donovani Isolates with Antimony-Resistant but Not -Sensitive Phenotype Inhibit Sodium Antimony Gluconate-Induced Dendritic Cell Activation

    PubMed Central

    Singhal, Eshu; Bisht, Kamlesh Kumar; Singh, Alpana; Bhaumik, Suniti; Basu, Rajatava; Sen, Pradip; Roy, Syamal

    2010-01-01

    The inability of sodium antimony gluconate (SAG)-unresponsive kala-azar patients to clear Leishmania donovani (LD) infection despite SAG therapy is partly due to an ill-defined immune-dysfunction. Since dendritic cells (DCs) typically initiate anti-leishmanial immunity, a role for DCs in aberrant LD clearance was investigated. Accordingly, regulation of SAG-induced activation of murine DCs following infection with LD isolates exhibiting two distinct phenotypes such as antimony-resistant (SbRLD) and antimony-sensitive (SbSLD) was compared in vitro. Unlike SbSLD, infection of DCs with SbRLD induced more IL-10 production and inhibited SAG-induced secretion of proinflammatory cytokines, up-regulation of co-stimulatory molecules and leishmanicidal effects. SbRLD inhibited these effects of SAG by blocking activation of PI3K/AKT and NF-κB pathways. In contrast, SbSLD failed to block activation of SAG (20 µg/ml)-induced PI3K/AKT pathway; which continued to stimulate NF-κB signaling, induce leishmanicidal effects and promote DC activation. Notably, prolonged incubation of DCs with SbSLD also inhibited SAG (20 µg/ml)-induced activation of PI3K/AKT and NF-κB pathways and leishmanicidal effects, which was restored by increasing the dose of SAG to 40 µg/ml. In contrast, SbRLD inhibited these SAG-induced events regardless of duration of DC exposure to SbRLD or dose of SAG. Interestingly, the inhibitory effects of isogenic SbSLD expressing ATP-binding cassette (ABC) transporter MRPA on SAG-induced leishmanicidal effects mimicked that of SbRLD to some extent, although antimony resistance in clinical LD isolates is known to be multifactorial. Furthermore, NF-κB was found to transcriptionally regulate expression of murine γglutamylcysteine synthetase heavy-chain (mγGCShc) gene, presumably an important regulator of antimony resistance. Importantly, SbRLD but not SbSLD blocked SAG-induced mγGCS expression in DCs by preventing NF-κB binding to the mγGCShc promoter. Our

  16. HIV-1 Replication in Langerhans and Interstitial Dendritic Cells Is Inhibited by Neutralizing and Fc-Mediated Inhibitory Antibodies ▿ †

    PubMed Central

    Peressin, M.; Holl, V.; Schmidt, S.; Decoville, T.; Mirisky, D.; Lederle, A.; Delaporte, M.; Xu, K.; Aubertin, A. M.; Moog, C.

    2011-01-01

    Langerhans cells (LCs) and interstitial dendritic cells (IDCs) may be among the first human immunodeficiency virus type 1 (HIV-1) targets after sexual transmission. We generated cells of these types by differentiation of purified CD34+ cord blood cells. After in vitro infection with R5-tropic strains, we obtained similar percentages of infected cells for both dendritic cell (DC) subsets. Moreover, LC infection was not increased by blockage of langerin by antilangerin. These results indicate that, under our experimental conditions, there was no evidence of any preference of HIV replication in LCs versus IDCs. The inhibitory activity of HIV-1-specific IgAs and IgGs against HIV-1 replication in LCs and IDCs was analyzed. We found that neutralizing antibodies inhibit HIV-1 infection of both DC subsets. Interestingly, HIV-1 was inhibited more efficiently by the IgGs than the corresponding IgA, due to an Fcγ receptor-dependent mechanism. Moreover, nonneutralizing inhibitory IgGs were able to inhibit infection of both LCs and IDCs. These results underline the importance of HIV-1 inhibition by the binding of the Fc part of IgGs to Fcγ receptors and suggest that the induction of neutralizing and nonneutralizing inhibitory IgGs in addition to neutralizing IgAs at mucosal sites may contribute to protection against sexual transmission of HIV-1. PMID:21084491

  17. Pimecrolimus inhibits up-regulation of OX40 and synthesis of inflammatory cytokines upon secondary T cell activation by allogeneic dendritic cells

    PubMed Central

    KALTHOFF, F S; CHUNG, J; STUETZ, A

    2002-01-01

    Pimecrolimus is a new non-steroidal inhibitor of T cell and mast cell activation. In the present study, we compared the potency of pimecrolimus and cyclosporin A (CyA) to inhibit cytokine synthesis of alloantigen-primed T cells and the expression of CD134 (OX40), an inducible co-receptor molecule thought to be critical for the survival and expansion of inflammation-mediating T cells. To mimic the physiological situation of recurrent antigenic stimulation, we have used dendritic cells (DC) as stimulators of purified CD4+ T cells in the primary and secondary allogeneic mixed lymphocyte culture (allo-MLC). Pimecrolimus inhibited surface expression of OX40 and prevented the up-regulation of CD25 and CD54 with a 10-fold higher potency compared to CyA. Similarly, 50% inhibition of allo-DC-mediated T cell proliferation by pimecrolimus was obtained at 0·55 nm, compared to about 12 nm for CyA. Furthermore, pimecrolimus blocked the increase of OX40 on primed T cells restimulated on day 10 in secondary allo-MLC. Allo-DC-primed T cells showed a restricted cytokine profile characterized by the production of TNF-α, IFN-γ and IL-2 but low to undetectable levels of IL-4 and IL-10. The synthesis of TNF-α and IFN-γ and the up-regulation of OX40 on T cells after secondary allogeneic stimulation were almost entirely blocked by 10 nm pimecrolimus. Taken together, pimecrolimus inhibits T cell proliferation and Th1 cytokine synthesis and also prevents the up-regulation of the OX40 co-receptor on primed T cells indicating its potential in the therapy of chronic inflammation and autoimmunity. PMID:12296857

  18. [Exosomes derived from dendritic cells].

    PubMed

    Amigorena, S

    2001-01-01

    Dendritic cells (DC) are potent antigen presenting cells and the only ones capable of inducing primary cytotoxic immune responses both in vivo and vitro. DCs secrete a 60-80 nm membrane vesicle population of endocytic origin, called exosomes. The protein composition of exosomes was analyzed using a systematic proteomic approach. Besides MHC and costimulatory molecules, exosomes bear several adhesion proteins, probably involved in their specific targeting. Exosomes also accumulate several cytosolic factors, most likely involved in exoxome's biogenesis in late endosomes. Like DCs, exosomes induce potent anti tumor immune responses in vivo. Indeed, a single injection of DC-derived exosomes sensitized with tumor peptides induced the eradication of established mouse tumors. Tumor-specific cytotoxic T lymphocytes were found in the spleen of exosome treated mice, and depletion of CD8+ T cells in vivo inhibited the anti tumor effect of exosomes. These results strongly support the implementation of human DC-derived exosomes for cancer immunotherapy.

  19. MiR674 inhibits the neuraminidase-stimulated immune response on dendritic cells via down-regulated Mbnl3.

    PubMed

    Lin, Jian; Chen, Ya T; Xia, Jing; Yang, Qian

    2016-08-02

    Neuraminidase (NA), a structural protein of the H9N2 avian influenza virus (H9N2 AIV), can facilitate viral invasion of the upper airway by cleaving the sialic acid moieties on mucin. Dendritic cells (DCs) are major antigen-presenting cells whose immune functions, such as presenting antigens and activating lymphocytes, can be regulated by microRNAs. Here, we studied the molecular mechanism of miRNA-induced repression of immune responses in mouse DCs. First, we screened for and verified the miRNAs induced by NA. Then, we showed that, consistent with the H9N2 virus treatment, the viral NA up-regulated the expression of miR-155, miR-674, and miR-499 in DCs; however, unlike H9N2 virus treatment, the presence of NA was associated with reduced expression of miR-181b1. Our results suggest that NA significantly increased DC surface markers CD80 and MHCII and enhanced the ability of activating lymphocytes and secreting cytokines compared with HA, NP and M2. Meanwhile, we found that miR-674 and miR-155 over-expression increased all surface markers of DC. Nevertheless, by inhibiting the expression of miR-674 and miR-155, NA lost the ability to promote DC maturation. Furthermore, we predicted and demonstrated that Pgm2l1, Aldh18a1, Camk1d, and Mbnl3 were the target genes of miR-674. Among them, Mbnl3 interference strongly blocked the mature DCs. Collectively, our data shed new light on the roles of and mechanisms involved in the repression of DCs by miRNAs, which may contribute to efforts to develop a prophylaxis for the influenza virus.

  20. MiR674 inhibits the neuraminidase-stimulated immune response on dendritic cells via down-regulated Mbnl3

    PubMed Central

    Lin, Jian; Chen, Ya T.; Xia, Jing; Yang, Qian

    2016-01-01

    Neuraminidase (NA), a structural protein of the H9N2 avian influenza virus (H9N2 AIV), can facilitate viral invasion of the upper airway by cleaving the sialic acid moieties on mucin. Dendritic cells (DCs) are major antigen-presenting cells whose immune functions, such as presenting antigens and activating lymphocytes, can be regulated by microRNAs. Here, we studied the molecular mechanism of miRNA-induced repression of immune responses in mouse DCs. First, we screened for and verified the miRNAs induced by NA. Then, we showed that, consistent with the H9N2 virus treatment, the viral NA up-regulated the expression of miR-155, miR-674, and miR-499 in DCs; however, unlike H9N2 virus treatment, the presence of NA was associated with reduced expression of miR-181b1. Our results suggest that NA significantly increased DC surface markers CD80 and MHCII and enhanced the ability of activating lymphocytes and secreting cytokines compared with HA, NP and M2. Meanwhile, we found that miR-674 and miR-155 over-expression increased all surface markers of DC. Nevertheless, by inhibiting the expression of miR-674 and miR-155, NA lost the ability to promote DC maturation. Furthermore, we predicted and demonstrated that Pgm2l1, Aldh18a1, Camk1d, and Mbnl3 were the target genes of miR-674. Among them, Mbnl3 interference strongly blocked the mature DCs. Collectively, our data shed new light on the roles of and mechanisms involved in the repression of DCs by miRNAs, which may contribute to efforts to develop a prophylaxis for the influenza virus. PMID:27285980

  1. Antimicrobial Peptides from Amphibian Skin Potently Inhibit Human Immunodeficiency Virus Infection and Transfer of Virus from Dendritic Cells to T Cells

    PubMed Central

    VanCompernolle, Scott E.; Taylor, R. Jeffery; Oswald-Richter, Kyra; Jiang, Jiyang; Youree, Bryan E.; Bowie, John H.; Tyler, Michael J.; Conlon, J. Michael; Wade, David; Aiken, Christopher; Dermody, Terence S.; KewalRamani, Vineet N.; Rollins-Smith, Louise A.; Unutmaz, Derya

    2005-01-01

    Topical antimicrobicides hold great promise in reducing human immunodeficiency virus (HIV) transmission. Amphibian skin provides a rich source of broad-spectrum antimicrobial peptides including some that have antiviral activity. We tested 14 peptides derived from diverse amphibian species for the capacity to inhibit HIV infection. Three peptides (caerin 1.1, caerin 1.9, and maculatin 1.1) completely inhibited HIV infection of T cells within minutes of exposure to virus at concentrations that were not toxic to target cells. These peptides also suppressed infection by murine leukemia virus but not by reovirus, a structurally unrelated nonenveloped virus. Preincubation with peptides prevented viral fusion to target cells and disrupted the HIV envelope. Remarkably, these amphibian peptides also were highly effective in inhibiting the transfer of HIV by dendritic cells (DCs) to T cells, even when DCs were transiently exposed to peptides 8 h after virus capture. These data suggest that amphibian-derived peptides can access DC-sequestered HIV and destroy the virus before it can be transferred to T cells. Thus, amphibian-derived antimicrobial peptides show promise as topical inhibitors of mucosal HIV transmission and provide novel tools to understand the complex biology of HIV capture by DCs. PMID:16140737

  2. Inhibition of dopamine receptor D3 signaling in dendritic cells increases antigen cross-presentation to CD8(+) T-cells favoring anti-tumor immunity.

    PubMed

    Figueroa, Claudio; Gálvez-Cancino, Felipe; Oyarce, Cesar; Contreras, Francisco; Prado, Carolina; Valeria, Catalina; Cruz, Sebastián; Lladser, Alvaro; Pacheco, Rodrigo

    2017-02-15

    Dendritic cells (DCs) display the unique ability for cross-presenting antigens to CD8(+) T-cells, promoting their differentiation into cytotoxic T-lymphocytes (CTLs), which play a pivotal role in anti-tumor immunity. Emerging evidence points to dopamine receptor D3 (D3R) as a key regulator of immunity. Accordingly, we studied how D3R regulates DCs function in anti-tumor immunity. The results show that D3R-deficiency in DCs enhanced expansion of CTLs in vivo and induced stronger anti-tumor immunity. Co-culture experiments indicated that D3R-inhibition in DCs potentiated antigen cross-presentation and CTLs activation. Our findings suggest that D3R in DCs constitutes a new therapeutic target to strengthen anti-tumor immunity.

  3. Dendritic cell function and pathogen-specific T cell immunity are inhibited in mice administered levonorgestrel prior to intranasal Chlamydia trachomatis infection.

    PubMed

    Quispe Calla, Nirk E; Vicetti Miguel, Rodolfo D; Mei, Ao; Fan, Shumin; Gilmore, Jocelyn R; Cherpes, Thomas L

    2016-11-28

    The growing popularity of levonorgestrel (LNG)-releasing intra-uterine systems for long-acting reversible contraception provides strong impetus to define immunomodulatory properties of this exogenous progestin. In initial in vitro studies herein, we found LNG significantly impaired activation of human dendritic cell (DCs) and their capacity to promote allogeneic T cell proliferation. In follow-up studies in a murine model of intranasal Chlamydia trachomatis infection, we analogously found that LNG treatment prior to infection dramatically reduced CD40 expression in DCs isolated from draining lymph nodes at 2 days post infection (dpi). At 12 dpi, we also detected significantly fewer CD4(+) and CD8(+) T cells in the lungs of LNG-treated mice. This inhibition of DC activation and T cell expansion in LNG-treated mice also delayed chlamydial clearance and the resolution of pulmonary inflammation. Conversely, administering agonist anti-CD40 monoclonal antibody to LNG-treated mice at 1 dpi restored lung T cell numbers and chlamydial burden at 12 dpi to levels seen in infected controls. Together, these studies reveal that LNG suppresses DC activation and function, and inhibits formation of pathogen-specific T cell immunity. They also highlight the need for studies that define in vivo effects of LNG use on human host response to microbial pathogens.

  4. Dendritic cell function and pathogen-specific T cell immunity are inhibited in mice administered levonorgestrel prior to intranasal Chlamydia trachomatis infection

    PubMed Central

    Quispe Calla, Nirk E.; Vicetti Miguel, Rodolfo D.; Mei, Ao; Fan, Shumin; Gilmore, Jocelyn R.; Cherpes, Thomas L.

    2016-01-01

    The growing popularity of levonorgestrel (LNG)-releasing intra-uterine systems for long-acting reversible contraception provides strong impetus to define immunomodulatory properties of this exogenous progestin. In initial in vitro studies herein, we found LNG significantly impaired activation of human dendritic cell (DCs) and their capacity to promote allogeneic T cell proliferation. In follow-up studies in a murine model of intranasal Chlamydia trachomatis infection, we analogously found that LNG treatment prior to infection dramatically reduced CD40 expression in DCs isolated from draining lymph nodes at 2 days post infection (dpi). At 12 dpi, we also detected significantly fewer CD4+ and CD8+ T cells in the lungs of LNG-treated mice. This inhibition of DC activation and T cell expansion in LNG-treated mice also delayed chlamydial clearance and the resolution of pulmonary inflammation. Conversely, administering agonist anti-CD40 monoclonal antibody to LNG-treated mice at 1 dpi restored lung T cell numbers and chlamydial burden at 12 dpi to levels seen in infected controls. Together, these studies reveal that LNG suppresses DC activation and function, and inhibits formation of pathogen-specific T cell immunity. They also highlight the need for studies that define in vivo effects of LNG use on human host response to microbial pathogens. PMID:27892938

  5. A galactose-functionalized dendritic siRNA-nanovector to potentiate hepatitis C inhibition in liver cells.

    PubMed

    Lakshminarayanan, Abirami; Reddy, B Uma; Raghav, Nallani; Ravi, Vijay Kumar; Kumar, Anuj; Maiti, Prabal K; Sood, A K; Jayaraman, N; Das, Saumitra

    2015-10-28

    A RNAi based antiviral strategy holds the promise to impede hepatitis C viral (HCV) infection overcoming the problem of emergence of drug resistant variants, usually encountered in the interferon free direct-acting antiviral therapy. Targeted delivery of siRNA helps minimize adverse 'off-target' effects and maximize the efficacy of therapeutic response. Herein, we report the delivery of siRNA against the conserved 5'-untranslated region (UTR) of HCV RNA using a liver-targeted dendritic nano-vector functionalized with a galactopyranoside ligand (DG). Physico-chemical characterization revealed finer details of complexation of DG with siRNA, whereas molecular dynamic simulations demonstrated sugar moieties projecting "out" in the complex. Preferential delivery of siRNA to the liver was achieved through a highly specific ligand-receptor interaction between dendritic galactose and the asialoglycoprotein receptor. The siRNA-DG complex exhibited perinuclear localization in liver cells and co-localization with viral proteins. The histopathological studies showed the systemic tolerance and biocompatibility of DG. Further, whole body imaging and immunohistochemistry studies confirmed the preferential delivery of the nucleic acid to mice liver. Significant decrease in HCV RNA levels (up to 75%) was achieved in HCV subgenomic replicon and full length HCV-JFH1 infectious cell culture systems. The multidisciplinary approach provides the 'proof of concept' for restricted delivery of therapeutic siRNAs using a target oriented dendritic nano-vector.

  6. Cowpox virus inhibits human dendritic cell immune function by nonlethal, nonproductive infection

    SciTech Connect

    Hansen, Spencer J.; Rushton, John; Dekonenko, Alexander; Chand, Hitendra S.; Olson, Gwyneth K.; Hutt, Julie A.; Pickup, David; Lyons, C. Rick; Lipscomb, Mary F.

    2011-04-10

    Orthopoxviruses encode multiple proteins that modulate host immune responses. We determined whether cowpox virus (CPXV), a representative orthopoxvirus, modulated innate and acquired immune functions of human primary myeloid DCs and plasmacytoid DCs and monocyte-derived DCs (MDDCs). A CPXV infection of DCs at a multiplicity of infection of 10 was nonproductive, altered cellular morphology, and failed to reduce cell viability. A CPXV infection of DCs did not stimulate cytokine or chemokine secretion directly, but suppressed toll-like receptor (TLR) agonist-induced cytokine secretion and a DC-stimulated mixed leukocyte reaction (MLR). LPS-stimulated NF-{kappa}B nuclear translocation and host cytokine gene transcription were suppressed in CPXV-infected MDDCs. Early viral immunomodulatory genes were upregulated in MDDCs, consistent with early DC immunosuppression via synthesis of intracellular viral proteins. We conclude that a nonproductive CPXV infection suppressed DC immune function by synthesizing early intracellular viral proteins that suppressed DC signaling pathways.

  7. Can dendritic cells see light?

    NASA Astrophysics Data System (ADS)

    Chen, Aaron C.-H.; Huang, Ying-Ying; Sharma, Sulbha K.; Hamblin, Michael R.

    2010-02-01

    There are many reports showing that low-level light/laser therapy (LLLT) can enhance wound healing, upregulate cell proliferation and has anti-apoptotic effects by activating intracellular protective genes. In the field of immune response study, it is not known with any certainty whether light/laser is proinflammatory or anti-inflammatory. Increasingly in recent times dendritic cells have been found to play an important role in inflammation and the immunological response. In this study, we try to look at the impact of low level near infrared light (810-nm) on murine bone-marrow derived dendritic cells. Changes in surface markers, including MHC II, CD80 and CD11c and the secretion of interleukins induced by light may provide additional evidence to reveal the mystery of how light affects the maturation of dendritic cells as well how these light-induced mature dendritic cells would affect the activation of adaptive immune response.

  8. Inducible expression of endomorphins in murine dendritic cells.

    PubMed

    Yang, Xiaohuai; Xia, Hui; Chen, Yong; Liu, Xiaofen; Zhou, Cheng; Gao, Qin; Li, Zhenghong

    2012-12-15

    Bone marrow precursor cells were extracted from C57BL/6J mice aged 7-8 weeks, and dendritic cells were purified using anti-CD11c (a specific marker for dendritic cells) antibody-coated magnetic beads. Immunofluorescence staining revealed that the expression levels of endomorphin-1 and endomorphin-2 were upregulated in dendritic cells activated by lipopolysaccharide. An enzyme immunoassay showed that lipopolysaccharide and other Toll-like receptor ligands promoted the secretion of endomorphin-1 and endomorphin-2 from activated dendritic cells. [(3)H]-thymidine incorporation demonstrated that endomorphin-1 and endomorphin-2 both inhibited the proliferation of T lymphocyte induced by activated dendritic cells. Furthermore, this immunosuppressive effect was blocked by CTOP, a specific antagonist of µ-opioid receptors. Our experimental findings indicate that activated dendritic cells can induce the expression and secretion of endomorphins, and that endomorphins suppress T lymphocyte proliferation through activation of µ-opioid receptors.

  9. Helminth antigens enable CpG-activated dendritic cells to inhibit the symptoms of collagen-induced arthritis through Foxp3+ regulatory T cells.

    PubMed

    Carranza, Franco; Falcón, Cristian Roberto; Nuñez, Nicolás; Knubel, Carolina; Correa, Silvia Graciela; Bianco, Ismael; Maccioni, Mariana; Fretes, Ricardo; Triquell, María Fernanda; Motrán, Claudia Cristina; Cervi, Laura

    2012-01-01

    Dendritic cells (DC) have the potential to control the outcome of autoimmunity by modulating the immune response. In this study, we tested the ability of Fasciola hepatica total extract (TE) to induce tolerogenic properties in CpG-ODN (CpG) maturated DC, to then evaluate the therapeutic potential of these cells to diminish the inflammatory response in collagen induced arthritis (CIA). DBA/1J mice were injected with TE plus CpG treated DC (T/C-DC) pulsed with bovine collagen II (CII) between two immunizations with CII and clinical scores CIA were determined. The levels of CII-specific IgG2 and IgG1 in sera, the histological analyses in the joints, the cytokine profile in the draining lymph node (DLN) cells and in the joints, and the number, and functionality of CD4+CD25+Foxp3+ T cells (Treg) were evaluated. Vaccination of mice with CII pulsed T/C-DC diminished the severity and incidence of CIA symptoms and the production of the inflammatory cytokine, while induced the production of anti-inflammatory cytokines. The therapeutic effect was mediated by Treg cells, since the adoptive transfer of CD4+CD25+ T cells, inhibited the inflammatory symptoms in CIA. The in vitro blockage of TGF-β in cultures of DLN cells plus CII pulsed T/C-DC inhibited the expansion of Treg cells. Vaccination with CII pulsed T/C-DC seems to be a very efficient approach to diminish exacerbated immune response in CIA, by inducing the development of Treg cells, and it is therefore an interesting candidate for a cell-based therapy for rheumatoid arthritis (RA).

  10. Tick saliva inhibits the chemotactic function of MIP-1alpha and selectively impairs chemotaxis of immature dendritic cells by down-regulating cell-surface CCR5.

    PubMed

    Oliveira, Carlo José F; Cavassani, Karen A; Moré, Daniela D; Garlet, Gustavo P; Aliberti, Julio C; Silva, João S; Ferreira, Beatriz R

    2008-05-01

    Ticks are blood-feeding arthropods that secrete immunomodulatory molecules through their saliva to antagonize host inflammatory and immune responses. As dendritic cells (DCs) play a major role in host immune responses, we studied the effects of Rhipicephalus sanguineus tick saliva on DC migration and function. Bone marrow-derived immature DCs pre-exposed to tick saliva showed reduced migration towards macrophage inflammatory protein (MIP)-1alpha, MIP-1beta and regulated upon activation, normal T cell expressed and secreted (RANTES) chemokines in a Boyden microchamber assay. This inhibition was mediated by saliva which significantly reduced the percentage and the average cell-surface expression of CC chemokine receptor CCR5. In contrast, saliva did not alter migration of DCs towards MIP-3beta, not even if the cells were induced for maturation. Next, we evaluated the effect of tick saliva on the activity of chemokines related to DC migration and showed that tick saliva per se inhibits the chemotactic function of MIP-1alpha, while it did not affect RANTES, MIP-1beta and MIP-3beta. These data suggest that saliva possibly reduces immature DC migration, while mature DC chemotaxis remains unaffected. In support of this, we have analyzed the percentage of DCs on mice 48h after intradermal inoculation with saliva and found that the DC turnover in the skin was reduced compared with controls. Finally, to test the biological activity of the saliva-exposed DCs, we transferred DCs pre-cultured with saliva and loaded with the keyhole limpet haemocyanin (KLH) antigen to mice and measured their capacity to induce specific T cell cytokines. Data showed that saliva reduced the synthesis of both T helper (Th)1 and Th2 cytokines, suggesting the induction of a non-polarised T cell response. These findings propose that the inhibition of DCs migratory ability and function may be a relevant mechanism used by ticks to subvert the immune response of the host.

  11. Silymarin inhibits ultraviolet radiation-induced immune suppression through DNA repair-dependent activation of dendritic cells and stimulation of effector T cells

    PubMed Central

    Vaid, Mudit; Prasad, Ram; Singh, Tripti; Elmets, Craig A.; Xu, Hui; Katiyar, Santosh K.

    2013-01-01

    Silymarin inhibits UVB-induced immunosuppression in mouse skin. To identify the molecular mechanisms underlying this effect, we used an adoptive transfer approach in which dendritic cells (DCs) from the draining lymph nodes of donor mice that had been UVB-exposed and sensitized to 2,4,-dinitrofluorobenzene (DNFB) were transferred into naïve recipient mice. The contact hypersensitivity (CHS) response of the recipient mice to DNFB was then measured. When DCs were obtained from UVB-exposed donor mice that were not treated with silymarin, the CHS response was suppressed confirming the role of DCs in the UVB-induced immunosuppression. Silymarin treatment of UVB-exposed donor mice relieved this suppression of the CHS response in the recipients. Silymarin treatment was associated with rapid repair of UVB-induced cyclobutane pyrimidine dimers (CPDs) in DCs and silymarin treatment did not prevent UV-induced immunosuppression in XPA-deficient mice which are unable to repair UV-induced DNA damage. The CHS response in mice receiving DCs from silymarin-treated UV-exposed donor mice also was associated with enhanced secretion of Th1-type cytokines and stimulation of T cells. Adoptive transfer of T cells revealed that transfer of either CD8+ or CD4+ cells from silymarin-treated, UVB-exposed donors resulted in enhancement of the CHS response. Cell culture study showed enhanced secretion of IL-2 and IFNγ by CD8+ T cells, and reduced secretion of Th2 cytokines by CD4+ cells, obtained from silymarin-treated UVB-exposed mice. These data suggest that DNA repair-dependent functional activation of DCs, a reduction in CD4+ regulatory T-cell activity, and stimulation of CD8+ effector T cells contribute to silymarin-mediated inhibition of UVB-induced immunosuppression. PMID:23395695

  12. Reconsideration of macrophage and dendritic cell classification.

    PubMed

    Kadowaki, Takeshi; Shimada, Misato; Inagawa, Hiroyuki; Kohchi, Chie; Hirashima, Mitsuomi; Soma, Gen-Ichiro

    2012-06-01

    It is well known that the activation of innate immune cells, especially antigen-presenting cells such as macrophages and dendritic cells, can ameliorate or exacerbate various diseases, including cancer. Currently, the macrophages and dendritic cells are categorized into several groups by their cell surface and intracellular molecules. However, the detailed classification of the differences between macrophages and dendritic cells has still not been established. Here, we summarized and reviewed the previous studies on the classification of macrophages and dendritic cells. In addition, the previous classification of monocytes, macrophages and dendritic cells is discussed based on our findings of macrophage activation, which has both conventional and plasmacytoid dendritic cell phenotype.

  13. Human Bone Marrow-Derived Mesenchymal Stromal Cells Differentially Inhibit Cytokine Production by Peripheral Blood Monocytes Subpopulations and Myeloid Dendritic Cells

    PubMed Central

    Laranjeira, Paula; Gomes, Joana; Pedrosa, Monia; Martinho, Antonio; Antunes, Brigida; Ribeiro, Tania; Santos, Francisco; Domingues, Rosario; Abecasis, Manuel; Trindade, Helder; Paiva, Artur

    2015-01-01

    The immunosuppressive properties of mesenchymal stromal/stem cells (MSC) rendered them an attractive therapeutic approach for immune disorders and an increasing body of evidence demonstrated their clinical value. However, the influence of MSC on the function of specific immune cell populations, namely, monocyte subpopulations, is not well elucidated. Here, we investigated the influence of human bone marrow MSC on the cytokine and chemokine expression by peripheral blood classical, intermediate and nonclassical monocytes, and myeloid dendritic cells (mDC), stimulated with lipopolysaccharide plus interferon (IFN)γ. We found that MSC effectively inhibit tumor necrosis factor- (TNF-) α and macrophage inflammatory protein- (MIP-) 1β protein expression in monocytes and mDC, without suppressing CCR7 and CD83 protein expression. Interestingly, mDC exhibited the highest degree of inhibition, for both TNF-α and MIP-1β, whereas the reduction of TNF-α expression was less marked for nonclassical monocytes. Similarly, MSC decreased mRNA levels of interleukin- (IL-) 1β and IL-6 in classical monocytes, CCL3, CCL5, CXCL9, and CXCL10 in classical and nonclassical monocytes, and IL-1β and CXCL10 in mDC. MSC do not impair the expression of maturation markers in monocytes and mDC under our experimental conditions; nevertheless, they hamper the proinflammatory function of monocytes and mDC, which may impede the development of inflammatory immune responses. PMID:26060498

  14. Human Bone Marrow-Derived Mesenchymal Stromal Cells Differentially Inhibit Cytokine Production by Peripheral Blood Monocytes Subpopulations and Myeloid Dendritic Cells.

    PubMed

    Laranjeira, Paula; Gomes, Joana; Pedreiro, Susana; Pedrosa, Monia; Martinho, Antonio; Antunes, Brigida; Ribeiro, Tania; Santos, Francisco; Domingues, Rosario; Abecasis, Manuel; Trindade, Helder; Paiva, Artur

    2015-01-01

    The immunosuppressive properties of mesenchymal stromal/stem cells (MSC) rendered them an attractive therapeutic approach for immune disorders and an increasing body of evidence demonstrated their clinical value. However, the influence of MSC on the function of specific immune cell populations, namely, monocyte subpopulations, is not well elucidated. Here, we investigated the influence of human bone marrow MSC on the cytokine and chemokine expression by peripheral blood classical, intermediate and nonclassical monocytes, and myeloid dendritic cells (mDC), stimulated with lipopolysaccharide plus interferon (IFN)γ. We found that MSC effectively inhibit tumor necrosis factor- (TNF-) α and macrophage inflammatory protein- (MIP-) 1β protein expression in monocytes and mDC, without suppressing CCR7 and CD83 protein expression. Interestingly, mDC exhibited the highest degree of inhibition, for both TNF-α and MIP-1β, whereas the reduction of TNF-α expression was less marked for nonclassical monocytes. Similarly, MSC decreased mRNA levels of interleukin- (IL-) 1β and IL-6 in classical monocytes, CCL3, CCL5, CXCL9, and CXCL10 in classical and nonclassical monocytes, and IL-1β and CXCL10 in mDC. MSC do not impair the expression of maturation markers in monocytes and mDC under our experimental conditions; nevertheless, they hamper the proinflammatory function of monocytes and mDC, which may impede the development of inflammatory immune responses.

  15. Cutting Edge: Immature human dendritic cells express latency-associated peptide and inhibit T cell activation in a TGF-beta-dependent manner.

    PubMed

    Gandhi, Roopali; Anderson, David E; Weiner, Howard L

    2007-04-01

    Dendritic cells (DCs) play a critical role in both initiating immune responses and in maintaining peripheral tolerance. However, the exact mechanism by which DCs instruct/influence the generation of effector vs regulatory T cells is not clear. In this study, we present evidence that TGF-beta, an important immunoregulatory molecule, is present on the surface of ex vivo immature human DCs bound by latency-associated peptide (LAP). Maturation of DCs upon stimulation with LPS results in loss of membrane-bound LAP and up-regulation of HLA class II and costimulatory molecules. The presence of LAP on immature DCs selectively inhibits Th1 cell but not Th17 cell differentiation and is required for differentiation and/or survival of Foxp3-positive regulatory T cells. Taken together, our results indicate that surface expression of TGF-beta on DCs in association with LAP is one of the mechanisms by which immature DCs limit T cell activation and thus prevent autoimmune responses.

  16. A galactose-functionalized dendritic siRNA-nanovector to potentiate hepatitis C inhibition in liver cells

    NASA Astrophysics Data System (ADS)

    Lakshminarayanan, Abirami; Reddy, B. Uma; Raghav, Nallani; Ravi, Vijay Kumar; Kumar, Anuj; Maiti, Prabal K.; Sood, A. K.; Jayaraman, N.; Das, Saumitra

    2015-10-01

    A RNAi based antiviral strategy holds the promise to impede hepatitis C viral (HCV) infection overcoming the problem of emergence of drug resistant variants, usually encountered in the interferon free direct-acting antiviral therapy. Targeted delivery of siRNA helps minimize adverse `off-target' effects and maximize the efficacy of therapeutic response. Herein, we report the delivery of siRNA against the conserved 5'-untranslated region (UTR) of HCV RNA using a liver-targeted dendritic nano-vector functionalized with a galactopyranoside ligand (DG). Physico-chemical characterization revealed finer details of complexation of DG with siRNA, whereas molecular dynamic simulations demonstrated sugar moieties projecting ``out'' in the complex. Preferential delivery of siRNA to the liver was achieved through a highly specific ligand-receptor interaction between dendritic galactose and the asialoglycoprotein receptor. The siRNA-DG complex exhibited perinuclear localization in liver cells and co-localization with viral proteins. The histopathological studies showed the systemic tolerance and biocompatibility of DG. Further, whole body imaging and immunohistochemistry studies confirmed the preferential delivery of the nucleic acid to mice liver. Significant decrease in HCV RNA levels (up to 75%) was achieved in HCV subgenomic replicon and full length HCV-JFH1 infectious cell culture systems. The multidisciplinary approach provides the `proof of concept' for restricted delivery of therapeutic siRNAs using a target oriented dendritic nano-vector.A RNAi based antiviral strategy holds the promise to impede hepatitis C viral (HCV) infection overcoming the problem of emergence of drug resistant variants, usually encountered in the interferon free direct-acting antiviral therapy. Targeted delivery of siRNA helps minimize adverse `off-target' effects and maximize the efficacy of therapeutic response. Herein, we report the delivery of siRNA against the conserved 5'-untranslated

  17. Infection of chicken bone marrow mononuclear cells with subgroup J avian leukosis virus inhibits dendritic cell differentiation and alters cytokine expression.

    PubMed

    Liu, Di; Qiu, Qianqian; Zhang, Xu; Dai, Manman; Qin, Jianru; Hao, Jianjong; Liao, Ming; Cao, Weisheng

    2016-10-01

    Subgroup J avian leukosis virus (ALV-J) is an oncogenic retrovirus known to induce tumor formation and immunosuppression in infected chickens. One of the organs susceptible to ALV-J is the bone marrow, from which specialized antigen-presenting cells named dendritic cells (BM-DCs) are derived. Notably, these cells possess the unique ability to induce primary immune responses. In the present study, a method of cultivating and purifying DCs from chicken bone marrow in vitro was established to investigate the effects of ALV-J infection on BM-DC differentiation or generation. The results indicated that ALV-J not only infects the chicken bone marrow mononuclear cells but also appears to inhibit the differentiation and maturation of BM-DCs and to trigger apoptosis. Moreover, substantial reductions in the mRNA expression of TLR1, TLR2, TLR3, MHCI, and MHCII and in cytokine production were detected in the surviving BM-DCs following ALV-J infection. These findings indicate that ALV-J infection disrupts the process of bone marrow mononuclear cell differentiation into BM-DCs likely via altered antigen presentation, resulting in a downstream immune response in affected chickens.

  18. Norepinephrine Controls Effector T Cell Differentiation through β2-Adrenergic Receptor-Mediated Inhibition of NF-κB and AP-1 in Dendritic Cells.

    PubMed

    Takenaka, Maisa Carla; Araujo, Leandro Pires; Maricato, Juliana Terzi; Nascimento, Vanessa M; Guereschi, Marcia Grando; Rezende, Rafael Machado; Quintana, Francisco J; Basso, Alexandre S

    2016-01-15

    Despite accumulating evidence indicating that neurotransmitters released by the sympathetic nervous system can modulate the activity of innate immune cells, we still know very little about how norepinephrine impacts signaling pathways in dendritic cells (DC) and the consequence of that in DC-driven T cell differentiation. In this article, we demonstrate that β2-adrenergic receptor (β2AR) activation in LPS-stimulated DC does not impair their ability to promote T cell proliferation; however, it diminishes IL-12p70 secretion, leading to a shift in the IL-12p70/IL-23 ratio. Although β2AR stimulation in DC induces protein kinase A-dependent cAMP-responsive element-binding protein phosphorylation, the effect of changing the profile of cytokines produced upon LPS challenge occurs in a protein kinase A-independent manner and, rather, is associated with inhibition of the NF-κB and AP-1 signaling pathways. Moreover, as a consequence of the inverted IL-12p70/IL-23 ratio following β2AR stimulation, LPS-stimulated DC promoted the generation of CD4(+) T cells that, upon TCR engagement, produced lower amounts of IFN-γ and higher levels of IL-17. These findings provide new insights into molecular and cellular mechanisms by which β2AR stimulation in murine DC can influence the generation of adaptive immune responses and may explain some aspects of how sympathetic nervous system activity can modulate immune function.

  19. Lentivirus-mediated RNA interference of DC-SIGN expression inhibits human immunodeficiency virus transmission from dendritic cells to T cells.

    PubMed

    Arrighi, Jean-François; Pion, Marjorie; Wiznerowicz, Maciej; Geijtenbeek, Teunis B; Garcia, Eduardo; Abraham, Shahnaz; Leuba, Florence; Dutoit, Valérie; Ducrey-Rundquist, Odile; van Kooyk, Yvette; Trono, Didier; Piguet, Vincent

    2004-10-01

    In the early events of human immunodeficiency virus type 1 (HIV-1) infection, immature dendritic cells (DCs) expressing the DC-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN) receptor capture small amounts of HIV-1 on mucosal surfaces and spread viral infection to CD4(+) T cells in lymph nodes (22, 34, 45). RNA interference has emerged as a powerful tool to gain insight into gene function. For this purpose, lentiviral vectors that express short hairpin RNA (shRNA) for the delivery of small interfering RNA (siRNA) into mammalian cells represent a powerful tool to achieve stable gene silencing. In order to interfere with DC-SIGN function, we developed shRNA-expressing lentiviral vectors capable of conditionally suppressing DC-SIGN expression. Selectivity of inhibition of human DC-SIGN and L-SIGN and chimpanzee and rhesus macaque DC-SIGN was obtained by using distinct siRNAs. Suppression of DC-SIGN expression inhibited the attachment of the gp120 envelope glycoprotein of HIV-1 to DC-SIGN transfectants, as well as transfer of HIV-1 to target cells in trans. Furthermore, shRNA-expressing lentiviral vectors were capable of efficiently suppressing DC-SIGN expression in primary human DCs. DC-SIGN-negative DCs were unable to enhance transfer of HIV-1 infectivity to T cells in trans, demonstrating an essential role for the DC-SIGN receptor in transferring infectious viral particles from DCs to T cells. The present system should have broad applications for studying the function of DC-SIGN in the pathogenesis of HIV as well as other pathogens also recognized by this receptor.

  20. Generation of regulatory dendritic cells after treatment with paeoniflorin.

    PubMed

    Chen, Dan; Li, Yingxi; Wang, Xiaodong; Li, Keqiu; Jing, Yaqing; He, Jinghua; Qiang, Zhaoyan; Tong, Jingzhi; Sun, Ke; Ding, Wen; Kang, Yi; Li, Guang

    2016-08-01

    Regulatory dendritic cells are a potential therapeutic tool for assessing a variety of immune overreaction diseases. Paeoniflorin, a bioactive glucoside extracted from the Chinese herb white paeony root, has been shown to be effective at inhibiting the maturation and immunostimulatory function of murine bone marrow-derived dendritic cells. However, whether paeoniflorin can program conventional dendritic cells toward regulatory dendritic cells and the underlying mechanism remain unknown. Here, our study demonstrates that paeoniflorin can induce the production of regulatory dendritic cells from human peripheral blood monocyte-derived immature dendritic cells in the absence or presence of lipopolysaccharide (LPS) but not from mature dendritic cells, thereby demonstrating the potential of paeoniflorin as a specific immunosuppressive drug with fewer complications and side effects. These regulatory dendritic cells treated with paeoniflorin exhibited high CD11b/c and low CD80, CD86 and CD40 expression levels as well as enhanced abilities to capture antigen and promote the proliferation of CD4(+)CD25(+) T cells and reduced abilities to migrate and promote the proliferation of CD4(+) T cells, which is associated with the upregulation of endogenous transforming growth factor (TGF)-β-mediated indoleamine 2,3-dioxygenase (IDO) expression. Collectively, paeoniflorin could program immature dendritic cells (imDCs) and imDCs stimulated with LPS toward a regulatory DC fate by upregulating the endogenous TGF-β-mediated IDO expression level, thereby demonstrating its potential as a specific immunosuppressive drug.

  1. Inhibition of breast cancer resistance protein (ABCG2) in human myeloid dendritic cells induces potent tolerogenic functions during LPS stimulation.

    PubMed

    Jin, Jun-O; Zhang, Wei; Wong, Ka-Wing; Kwak, Minseok; van Driel, Ian R; Yu, Qing

    2014-01-01

    Breast cancer resistance protein (ABCG2), a member of the ATP-binding cassette transporters has been identified as a major determinant of multidrug resistance (MDR) in cancer cells, but ABC transporter inhibition has limited therapeutic value in vivo. In this research, we demonstrated that inhibition of efflux transporters ABCG2 induced the generation of tolerogenic DCs from human peripheral blood myeloid DCs (mDCs). ABCG2 expression was present in mDCs and was further increased by LPS stimulation. Treatment of CD1c+ mDCs with an ABCG2 inhibitor, Ko143, during LPS stimulation caused increased production of IL-10 and decreased production of pro-inflammatory cytokines and decreased expression of CD83 and CD86. Moreover, inhibition of ABCG2 in monocyte-derived DCs (MDDCs) abrogated the up-regulation of co-stimulatory molecules and production of pro-inflammatory cytokines in these cells in response to LPS. Furthermore, CD1c+ mDCs stimulated with LPS plus Ko143 inhibited the proliferation of allogeneic and superantigen-specific syngenic CD4+ T cells and promoted expansion of CD25+FOXP3+ regulatory T (Treg) cells in an IL-10-dependent fashion. These tolerogenic effects of ABCG2 inhibition could be abolished by ERK inhibition. Thus, we demonstrated that inhibition of ABCG2 in LPS-stimulated mDCs can potently induce tolerogenic potentials in these cells, providing crucial new information that could lead to development of better strategies to combat MDR cancer.

  2. Capacity of lung stroma to educate dendritic cells inhibiting mycobacteria-specific T-cell response depends upon genetic susceptibility to tuberculosis.

    PubMed

    Kapina, Marina A; Rubakova, Elvira I; Majorov, Konstantin B; Logunova, Nadezhda N; Apt, Alexander S

    2013-01-01

    The balance between activation and inhibition of local immune responses in affected tissues during prolonged chronic infections is important for host protection. There is ample evidence that regulatory, tolerogenic dendritic cells (DC) are developed and present in tissues and inhibit overwhelming inflammatory reactions. Also, it was firmly established that stromal microenvironment of many organs is able to induce development of immature regulatory DC (DCreg), an essential element of a general immune regulatory network. However, direct experimental data demonstrating inhibition of immune responses by stroma-instructed immature DCreg in infectious models are scarce, and virtually nothing is known about functioning of this axis of immunity during tuberculosis (TB) infection. In this study, we demonstrate that lung stromal cells are capable of supporting the development in culture of immature CD11b(+)CD11c(low)CD103(-) DCreg from lineage-negative (lin(-)) bone marrow precursors. DCreg developed on lung stroma isolated from mice of genetically TB-hyper-susceptible I/St and relatively resistant B6 inbred strains inhibited proliferative response of mycobacteria-specific CD4(+) T-cell lines a dose-dependent manner. Importantly, the inhibitory activity of B6 DCreg was substantially higher than that of I/St Dcreg. Moreover, when the donors of stromal cells were chronically infected with virulent mycobacteria, the capacity to instruct inhibitory DCreg was retained in B6, but further diminished in I/St stromal cells. DCreg-provided suppression was mediated by a few soluble mediators, including PGE2, NO and IL-10. The content of CD4(+)Foxp3(+) Treg cells in the mediastinal, lung-draining lymph nodes at the advanced stages of chronic infection did not change in I/St, but increased 2-fold in B6 mice, and lung pathology was much more pronounced in the former mice. Taken together, these data provide genetic evidence that the capacity to maintain populations of regulatory cells

  3. Short Communication: Inhibition of DC-SIGN-Mediated HIV-1 Infection by Complementary Actions of Dendritic Cell Receptor Antagonists and Env-Targeting Virus Inactivators.

    PubMed

    Pustylnikov, Sergey; Dave, Rajnish S; Khan, Zafar K; Porkolab, Vanessa; Rashad, Adel A; Hutchinson, Matthew; Fieschi, Frank; Chaiken, Irwin; Jain, Pooja

    2016-01-01

    The DC-SIGN receptor on human dendritic cells interacts with HIV gp120 to promote both infection of antigen-presenting cells and transinfection of T cells. We hypothesized that in DC-SIGN-expressing cells, both DC-SIGN ligands such as dextrans and gp120 antagonists such as peptide triazoles would inhibit HIV infection with potential complementary antagonist effects. To test this hypothesis, we evaluated the effects of dextran (D66), isomaltooligosaccharides (D06), and several peptide triazoles (HNG156, K13, and UM15) on HIV infection of B-THP-1/DC-SIGN cells. In surface plasmon resonance competition assays, D66 (IC50 = 35.4 μM) and D06 (IC50 = 3.4 mM) prevented binding of soluble DC-SIGN to immobilized mannosylated bovine serum albumin (BSA). An efficacious dose-dependent inhibition of DC-SIGN-mediated HIV infection in both pretreatment and posttreatment settings was observed, as indicated by inhibitory potentials (EC50) [D66 (8 μM), D06 (48 mM), HNG156 (40 μM), UM15 (100 nM), and K13 (25 nM)]. Importantly, both dextrans and peptide triazoles significantly decreased HIV gag RNA levels [D66 (7-fold), D06 (13-fold), HNG156 (7-fold), K-13 (3-fold), and UM15 (6-fold)]. Interestingly, D06 at the highest effective concentration showed a 14-fold decrease of infection, while its combination with 50 μM HNG156 showed a 26-fold decrease. Hence, these compounds can combine to inactivate the viruses and suppress DC-SIGN-mediated virus-cell interaction that as shown earlier leads to dendritic cell HIV infection and transinfection dependent on the DC-SIGN receptor.

  4. Tolerogenic dendritic cells that inhibit autoimmune arthritis can be induced by a combination of carvacrol and thermal stress.

    PubMed

    Spiering, Rachel; van der Zee, Ruurd; Wagenaar, Josée; Kapetis, Dimos; Zolezzi, Francesca; van Eden, Willem; Broere, Femke

    2012-01-01

    Tolerogenic dendritic cells (DCs) can induce regulatory T cells and dampen pathogenic T cell responses. Therefore, they are possible therapeutic targets in autoimmune diseases. In this study we investigated whether mouse tolerogenic DCs are induced by the phytonutrient carvacrol, a molecule with known anti-inflammatory properties, in combination with a physiological stress. We show that treatment of DCs with carvacrol and thermal stress led to the mRNA expression of both pro- and anti-inflammatory mediators. Interestingly, treated DCs with this mixed gene expression profile had a reduced ability to activate pro-inflammatory T cells. Furthermore, these DCs increased the proportion of FoxP3(+) regulatory T cells. In vivo, prophylactic injection of carvacrol-thermal stress treated DCs pulsed with the disease inducing antigen was able to suppress disease in a mouse model of arthritis. These findings suggest that treatment of mouse bone marrow derived DCs with carvacrol and thermal stress induce a functionally tolerogenic DC that can suppress autoimmune arthritis. Herewith carvacrol seems to offer novel opportunities for the development of a dietary based intervention in chronic inflammatory diseases.

  5. Tacrolimus treatment of plasmacytoid dendritic cells inhibits dinucleotide (CpG-)-induced tumour necrosis factor-alpha secretion.

    PubMed

    Naranjo-Gómez, Mar; Climent, Nuria; Cos, Joan; Oliva, Harold; Bofill, Margarita; Gatell, José M; Gallart, Teresa; Pujol-Borrell, Ricardo; Borràs, Francesc E

    2006-12-01

    Tacrolimus is a widely used immunosuppressive agent. Although T cells are the main targets of these pharmacological drugs, antigen presentation may also be affected. Among antigen-presenting cells, plasmacytoid dendritic cells (PDCs) are the main source of type I interferons upon microbial challenge, and are involved in several diseases and autoimmune disorders. The aim of this study was to evaluate whether tacrolimus can modulate the function of PDCs in vitro. Maturation and function of PDCs was determined using flow cytometry, enzyme-linked immunosorbent assay and cytometry bead arrays. The effect of tacrolimus on PDCs was observed mainly when the cells were pretreated with the immunosuppressive agent before activation. Upon dinucleotide-oligodeoxynucleotide (CpG-ODN) activation, tacrolimus pretreated PDCs showed a significant reduction in the surface expression of co-stimulatory molecules and human leucocyte antigen D-related (HLA-DR) and secreted reduced levels of tumour necrosis factor (TNF)-alpha. These results show that tacrolimus treatment of PDCs impairs CpG-induced activation, which could affect the outcome of the immune response.

  6. Bone marrow-derived dendritic cells.

    PubMed

    Roney, Kelly

    2013-01-01

    While much is understood about dendritic cells and their role in the immune system, the study of these cells is critical to gain a more complete understanding of their function. Dendritic cell isolation from mouse body tissues can be difficult and the number of cells isolated small. This protocol describes the growth of large number of dendritic cells from the culture of mouse bone marrow cells. The dendritic cells grown in culture facilitate experiments that may require large number of dendritic cells without great expense or use of large number of mice.

  7. GM-CSF Inhibits c-Kit and SCF Expression by Bone Marrow-Derived Dendritic Cells

    PubMed Central

    Barroeta Seijas, Amairelys Belen; Simonetti, Sonia; Vitale, Sara; Runci, Daniele; Quinci, Angela Caterina; Soriani, Alessandra; Criscuoli, Mattia; Filippi, Irene; Naldini, Antonella; Sacchetti, Federico Maria; Tarantino, Umberto; Oliva, Francesco; Piccirilli, Eleonora; Santoni, Angela; Di Rosa, Francesca

    2017-01-01

    Stem cell factor (SCF), the ligand of c-kit, is a key cytokine for hematopoiesis. Hematopoietic precursors express c-kit, whereas differentiated cells of hematopoietic lineage are negative for this receptor, with the exception of NK cells, mast cells, and a few others. While it has long been recognized that dendritic cells (DCs) can express c-kit, several questions remain concerning the SCF/c-kit axis in DCs. This is particularly relevant for DCs found in those organs wherein SCF is highly expressed, including the bone marrow (BM). We characterized c-kit expression by conventional DCs (cDCs) from BM and demonstrated a higher proportion of c-kit+ cells among type 1 cDC subsets (cDC1s) than type 2 cDC subsets (cDC2s) in both humans and mice, whereas similar levels of c-kit expression were observed in cDC1s and cDC2s from mouse spleen. To further study c-kit regulation, DCs were generated with granulocyte-macrophage colony-stimulating factor (GM-CSF) from mouse BM, a widely used protocol. CD11c+ cells were purified from pooled non-adherent and slightly adherent cells collected after 7 days of culture, thus obtaining highly purified BM-derived DCs (BMdDCs). BMdDCs contained a small fraction of c-kit+ cells, and by replating them for 2 days with GM-CSF, we obtained a homogeneous population of c-kit+ CD40hi MHCIIhi cells. Not only did BMdDCs express c-kit but they also produced SCF, and both were striking upregulated if GM-CSF was omitted after replating. Furthermore, a small but significant reduction in BMdDC survival was observed upon SCF silencing. Incubation of BMdDCs with SCF did not modulate antigen presentation ability of these cells, nor it did regulate their membrane expression of the chemokine receptor CXCR4. We conclude that the SCF/c-kit-mediated prosurvival circuit may have been overlooked because of the prominent use of GM-CSF in DC cultures in vitro, including those human DC cultures destined for the clinics. We speculate that DCs more prominently rely

  8. GM-CSF Inhibits c-Kit and SCF Expression by Bone Marrow-Derived Dendritic Cells.

    PubMed

    Barroeta Seijas, Amairelys Belen; Simonetti, Sonia; Vitale, Sara; Runci, Daniele; Quinci, Angela Caterina; Soriani, Alessandra; Criscuoli, Mattia; Filippi, Irene; Naldini, Antonella; Sacchetti, Federico Maria; Tarantino, Umberto; Oliva, Francesco; Piccirilli, Eleonora; Santoni, Angela; Di Rosa, Francesca

    2017-01-01

    Stem cell factor (SCF), the ligand of c-kit, is a key cytokine for hematopoiesis. Hematopoietic precursors express c-kit, whereas differentiated cells of hematopoietic lineage are negative for this receptor, with the exception of NK cells, mast cells, and a few others. While it has long been recognized that dendritic cells (DCs) can express c-kit, several questions remain concerning the SCF/c-kit axis in DCs. This is particularly relevant for DCs found in those organs wherein SCF is highly expressed, including the bone marrow (BM). We characterized c-kit expression by conventional DCs (cDCs) from BM and demonstrated a higher proportion of c-kit(+) cells among type 1 cDC subsets (cDC1s) than type 2 cDC subsets (cDC2s) in both humans and mice, whereas similar levels of c-kit expression were observed in cDC1s and cDC2s from mouse spleen. To further study c-kit regulation, DCs were generated with granulocyte-macrophage colony-stimulating factor (GM-CSF) from mouse BM, a widely used protocol. CD11c(+) cells were purified from pooled non-adherent and slightly adherent cells collected after 7 days of culture, thus obtaining highly purified BM-derived DCs (BMdDCs). BMdDCs contained a small fraction of c-kit(+) cells, and by replating them for 2 days with GM-CSF, we obtained a homogeneous population of c-kit(+) CD40(hi) MHCII(hi) cells. Not only did BMdDCs express c-kit but they also produced SCF, and both were striking upregulated if GM-CSF was omitted after replating. Furthermore, a small but significant reduction in BMdDC survival was observed upon SCF silencing. Incubation of BMdDCs with SCF did not modulate antigen presentation ability of these cells, nor it did regulate their membrane expression of the chemokine receptor CXCR4. We conclude that the SCF/c-kit-mediated prosurvival circuit may have been overlooked because of the prominent use of GM-CSF in DC cultures in vitro, including those human DC cultures destined for the clinics. We speculate that DCs more

  9. Dendritic cells in Graves' disease.

    PubMed

    Purnamasari, Dyah; Soewondo, Pradana; Djauzi, Samsuridjal

    2015-01-01

    Dendritic cells are major antigen-presenting cells (APC) that stimulate naive T cells, which induce adaptive immune responses. Graves' disease (GD) is an autoimmune disease characterized by the presence of autoantibodies against Thyroid Stimulating Hormone Receptor (TSHR). The autoantibodies bind with TSHR and stimulate thyroid hormone production. Dendritic cells are still the major APC in GD immune response although thyrocytes in GD can also express Major Histocompatibility Class (MHC) class II molecule. Studies about DC in GD have been conducted by isolating intra-thyroid DC or DC in peripheral circulation. Results of DC studies in GD are still controversial. Changes in number and profile of DC are found, which indicate altered immune response activity and defects of regulator T cell (Treg) in GD.

  10. Dendritic excitation–inhibition balance shapes cerebellar output during motor behaviour

    PubMed Central

    Jelitai, Marta; Puggioni, Paolo; Ishikawa, Taro; Rinaldi, Arianna; Duguid, Ian

    2016-01-01

    Feedforward excitatory and inhibitory circuits regulate cerebellar output, but how these circuits interact to shape the somatodendritic excitability of Purkinje cells during motor behaviour remains unresolved. Here we perform dendritic and somatic patch-clamp recordings in vivo combined with optogenetic silencing of interneurons to investigate how dendritic excitation and inhibition generates bidirectional (that is, increased or decreased) Purkinje cell output during self-paced locomotion. We find that granule cells generate a sustained depolarization of Purkinje cell dendrites during movement, which is counterbalanced by variable levels of feedforward inhibition from local interneurons. Subtle differences in the dendritic excitation–inhibition balance generate robust, bidirectional changes in simple spike (SSp) output. Disrupting this balance by selectively silencing molecular layer interneurons results in unidirectional firing rate changes, increased SSp regularity and disrupted locomotor behaviour. Our findings provide a mechanistic understanding of how feedforward excitatory and inhibitory circuits shape Purkinje cell output during motor behaviour. PMID:27976716

  11. Oral administration of paeoniflorin attenuates allergic contact dermatitis by inhibiting dendritic cell migration and Th1 and Th17 differentiation in a mouse model.

    PubMed

    Shi, Dongmei; Li, Xuefeng; Li, Dongmei; Zhao, Quanjing; Shen, Yongnian; Yan, Hongxia; Fu, Hongjun; Zheng, Hailin; Lu, Guixia; Qiu, Ying; Liu, Weida

    2015-04-01

    Allergic contact dermatitis (ACD) is a hapten-specific CD4(+) T-cells mediated inflammatory response of the skin. Its pathomechanism involves 2 phases, an induction phase and an elicitation phase. Langerhans cells (LCs) and dendritic cells (DCs) in the skin play key roles in presenting low molecular weight chemicals (haptens) to the lymph nodes. Therefore, inhibition of the migration of LCs or DCs and T-cell proliferation is each expected to control ACD disease. To explore the effectiveness of paeoniflorin (PF) on the migration of LCs and T-cell proliferation in vivo, we establish a murine model of ACD, promoted by repeated exposure to an allergen (specifically 1-Chloro-2,4-dinitrobenzene (DNCB)). Administration of PF inhibits DC migration in this DNCB-induced model in the induction phase. As a result, epidermal LC density in the elicitation phase increased in PF-treated mice when compared to PF-untreated mice. At the same time, PF reduced IFN-γ(+)CD4(+) and IL-17(+)CD4(+) T cells proliferation (but not IL-4(+)CD4(+) T cells proliferation), leading to an attenuated cutaneous inflammatory response. Consistent with this T-cell proliferation profile, secretions of IFN-γ and IL-17 were reduced and IL-10 secretion increased in PF-treated mice, but production of IL-4 and IL-5 remained unchanged in the skin and blood samples. These results suggest that oral administration of PF can treat and prevent ACD effectively through inhibition of DC migration, and thus decrease the capacity of DCs to stimulate Th1 and Th17 cell differentiation and cytokine production.

  12. The inclusion into PLGA nanoparticles enables α-bisabolol to efficiently inhibit the human dendritic cell pro-inflammatory activity

    NASA Astrophysics Data System (ADS)

    Marongiu, Laura; Donini, Marta; Bovi, Michele; Perduca, Massimiliano; Vivian, Federico; Romeo, Alessandro; Mariotto, Sofia; Monaco, Hugo L.; Dusi, Stefano

    2014-08-01

    α-bisabolol, a natural sesquiterpene alcohol, has generated considerable interest for its anti-inflammatory activity. Since the mechanisms of this anti-inflammatory action remain poorly understood, we investigated whether α-bisabolol affects the release of pro-inflammatory cytokines IL-12, IL-23, IL-6, and TNFα by human dendritic cells (DCs). We found that α-bisabolol did not induce the secretion of these cytokines and did not affect their release induced upon DC challenge with lipopolysaccharide (LPS), a well-known immune cell stimulator. As α-bisabolol is scarcely ingested by the cells, we wondered whether the inclusion of α-bisabolol into nanoparticles could favor its internalization by DCs and consequently its effects on cytokine secretion. We then prepared and characterized poly(lactic-co-glycolic acid) (PLGA) nanoparticles, with a dynamic light scattering peak centered at 154 nm and a half width at half maximum of about 48 nm. These particles were unable to affect per se cytokine secretion by both resting and LPS-stimulated DCs and were internalized by human DCs as demonstrated by confocal microscopy analysis. We then loaded PLGA nanoparticles with α-bisabolol and we observed that PLGA-associated α-bisabolol did not stimulate the cytokine release by resting DCs, but decreased IL-12, IL-23, IL-6, and TNFα secretion by LPS-stimulated DCs. Our results indicate that α-bisabolol inclusion into PLGA nanoparticles represents a very promising tool for designing new anti-inflammatory, anti-pyretic and, possibly, immunosuppressive therapeutic strategies.

  13. Inhibition of H9N2 Virus Invasion into Dendritic Cells by the S-Layer Protein from L. acidophilus ATCC 4356.

    PubMed

    Gao, Xue; Huang, Lulu; Zhu, Liqi; Mou, Chunxiao; Hou, Qihang; Yu, Qinghua

    2016-01-01

    Probiotics are essential for the prevention of virus invasion and the maintenance of the immune balance. However, the mechanism of competition between probiotics and virus are unknown. The objectives of this study were to isolate the surface layer (S-layer) protein from L. acidophilus ATCC 4356 as a new antiviral material, to evaluate the stimulatory effects of the S-layer protein on mouse dendritic cells (DCs) and to verify its ability to inhibit the invasion of H9N2 avian influenza virus (AIV) in DCs. We found that the S-layer protein induced DCs activation and up-regulated the IL-10 secretion. The invasion and replication of the H9N2 virus in mouse DCs was successfully demonstrated. However, the invasion of H9N2 virus into DCs could be inhibited by treatment with the S-layer protein prior to infection, which was verified by the reduced hemagglutinin (HA) and neuraminidase (NA) mRNA expression, and nucleoprotein (NP) protein expression in the DCs. Furthermore, treatment with the S-layer protein increases the Mx1, Isg15, and Ddx58 mRNA expressions, and remits the inflammatory process to inhibit H9N2 AIV infection. In conclusion, the S-layer protein stimulates the activation of mouse DCs, inhibits H9N2 virus invasion of DCs, and stimulates the IFN-I signaling pathway. Thus, the S-layer protein from Lactobacillus is a promising biological antiviral material for AIV prevention.

  14. Inhibition of H9N2 Virus Invasion into Dendritic Cells by the S-Layer Protein from L. acidophilus ATCC 4356

    PubMed Central

    Gao, Xue; Huang, Lulu; Zhu, Liqi; Mou, Chunxiao; Hou, Qihang; Yu, Qinghua

    2016-01-01

    Probiotics are essential for the prevention of virus invasion and the maintenance of the immune balance. However, the mechanism of competition between probiotics and virus are unknown. The objectives of this study were to isolate the surface layer (S-layer) protein from L. acidophilus ATCC 4356 as a new antiviral material, to evaluate the stimulatory effects of the S-layer protein on mouse dendritic cells (DCs) and to verify its ability to inhibit the invasion of H9N2 avian influenza virus (AIV) in DCs. We found that the S-layer protein induced DCs activation and up-regulated the IL-10 secretion. The invasion and replication of the H9N2 virus in mouse DCs was successfully demonstrated. However, the invasion of H9N2 virus into DCs could be inhibited by treatment with the S-layer protein prior to infection, which was verified by the reduced hemagglutinin (HA) and neuraminidase (NA) mRNA expression, and nucleoprotein (NP) protein expression in the DCs. Furthermore, treatment with the S-layer protein increases the Mx1, Isg15, and Ddx58 mRNA expressions, and remits the inflammatory process to inhibit H9N2 AIV infection. In conclusion, the S-layer protein stimulates the activation of mouse DCs, inhibits H9N2 virus invasion of DCs, and stimulates the IFN-I signaling pathway. Thus, the S-layer protein from Lactobacillus is a promising biological antiviral material for AIV prevention. PMID:27826541

  15. Rhamnogalacturonan II is a Toll-like receptor 4 agonist that inhibits tumor growth by activating dendritic cell-mediated CD8+ T cells.

    PubMed

    Park, Sung Nam; Noh, Kyung Tae; Jeong, Young-Il; Jung, In Duk; Kang, Hyun Kyu; Cha, Gil Sun; Lee, Su Jung; Seo, Jong Keun; Kang, Dae Hwan; Hwang, Tae-Ho; Lee, Eun Kyung; Kwon, Byungsuk; Park, Yeong-Min

    2013-02-08

    We evaluated the effectiveness of rhamnogalacturonan II (RG-II)-stimulated bone marrow-derived dendritic cells (BMDCs) vaccination on the induction of antitumor immunity in a mouse lymphoma model using EG7-lymphoma cells expressing ovalbumin (OVA). BMDCs treated with RG-II had an activated phenotype. RG-II induced interleukin (IL)-12, IL-1β, tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) production during dendritic cell (DC) maturation. BMDCs stimulated with RG-II facilitate the proliferation of CD8+ T cells. Using BMDCs from the mice deficient in Toll-like receptors (TLRs), we revealed that RG-II activity is dependent on TLR4. RG-II showed a preventive effect of immunization with OVA-pulsed BMDCs against EG7 lymphoma. These results suggested that RG-II expedites the DC-based immune response through the TLR4 signaling pathway.

  16. Dendritic cell analysis in primary immunodeficiency

    PubMed Central

    Bigley, Venetia; Barge, Dawn; Collin, Matthew

    2016-01-01

    Purpose of review Dendritic cells are specialized antigen-presenting cells which link innate and adaptive immunity, through recognition and presentation of antigen to T cells. Although the importance of dendritic cells has been demonstrated in many animal models, their contribution to human immunity remains relatively unexplored in vivo. Given their central role in infection, autoimmunity, and malignancy, dendritic cell deficiency or dysfunction would be expected to have clinical consequences. Recent findings Human dendritic cell deficiency disorders, related to GATA binding protein 2 (GATA2) and interferon regulatory factor 8 (IRF8) mutations, have highlighted the importance of dendritic cells and monocytes in primary immunodeficiency diseases and begun to shed light on their nonredundant roles in host defense and immune regulation in vivo. The contribution of dendritic cell and monocyte dysfunction to the pathogenesis of primary immunodeficiency disease phenotypes is becoming increasingly apparent. However, dendritic cell analysis is not yet a routine part of primary immunodeficiency disease workup. Summary Widespread uptake of dendritic cell/monocyte screening in clinical practice will facilitate the discovery of novel dendritic cell and monocyte disorders as well as advancing our understanding of human dendritic cell biology in health and disease. PMID:27755182

  17. Insulin-like growth factors inhibit dendritic cell-mediated anti-tumor immunity through regulating ERK1/2 phosphorylation and p38 dephosphorylation.

    PubMed

    Huang, Ching-Ting; Chang, Ming-Cheng; Chen, Yu-Li; Chen, Tsung-Ching; Chen, Chi-An; Cheng, Wen-Fang

    2015-04-01

    Insulin-like growth factors (IGFs) can promote tumorigenesis via inhibiting the apoptosis of cancer cells. The relationship between IGFs and dendritic cell (DC)-mediated immunity were investigated. Advanced-stage ovarian carcinoma patients were first evaluated to show higher IGF-1 and IGF-2 concentrations in their ascites than early-stage patients. IGFs could suppress DCs' maturation, antigen presenting abilities, and the ability to activate antigen-specific CD8(+) T cell. IGF-treated DCs also secreted higher concentrations of IL-10 and TNF-α. IGF-treated DCs showed decreased ERK1/2 phosphorylation and reduced p38 dephosphorylation. The percentages of matured DCs in the ascites were significantly lower in the IGF-1 or IGF-2 highly-expressing WF-3 tumor-bearing mice. The IGF1R inhibitor - NVP-AEW541, could block the effects of IGFs to rescue DCs' maturation and to restore DC-mediated antigen-specific immunity through enhancing ERK1/2 phosphorylation and p38 dephosphorylation. IGFs can inhibit DC-mediated anti-tumor immunity through suppressing maturation and function and the IGF1R inhibitor could restore the DC-mediated anti-tumor immunity. Blockade of IGFs could be a potential strategy for cancer immunotherapy.

  18. Expansion and Activation of CD103(+) Dendritic Cell Progenitors at the Tumor Site Enhances Tumor Responses to Therapeutic PD-L1 and BRAF Inhibition.

    PubMed

    Salmon, Hélène; Idoyaga, Juliana; Rahman, Adeeb; Leboeuf, Marylène; Remark, Romain; Jordan, Stefan; Casanova-Acebes, Maria; Khudoynazarova, Makhzuna; Agudo, Judith; Tung, Navpreet; Chakarov, Svetoslav; Rivera, Christina; Hogstad, Brandon; Bosenberg, Marcus; Hashimoto, Daigo; Gnjatic, Sacha; Bhardwaj, Nina; Palucka, Anna Karolina; Brown, Brian D; Brody, Joshua; Ginhoux, Florent; Merad, Miriam

    2016-04-19

    Large numbers of melanoma lesions develop resistance to targeted inhibition of mutant BRAF or fail to respond to checkpoint blockade. We explored whether modulation of intratumoral antigen-presenting cells (APCs) could increase responses to these therapies. Using mouse melanoma models, we found that CD103(+) dendritic cells (DCs) were the only APCs transporting intact antigens to the lymph nodes and priming tumor-specific CD8(+) T cells. CD103(+) DCs were required to promote anti-tumoral effects upon blockade of the checkpoint ligand PD-L1; however, PD-L1 inhibition only led to partial responses. Systemic administration of the growth factor FLT3L followed by intratumoral poly I:C injections expanded and activated CD103(+) DC progenitors in the tumor, enhancing responses to BRAF and PD-L1 blockade and protecting mice from tumor rechallenge. Thus, the paucity of activated CD103(+) DCs in tumors limits checkpoint-blockade efficacy and combined FLT3L and poly I:C therapy can enhance tumor responses to checkpoint and BRAF blockade.

  19. Green tea polyphenol epigallocatechin-3-gallate inhibits TLR4 signaling through the 67-kDa laminin receptor on lipopolysaccharide-stimulated dendritic cells

    SciTech Connect

    Byun, Eui-Baek; Choi, Han-Gyu; Sung, Nak-Yun; Byun, Eui-Hong

    2012-10-05

    Highlights: Black-Right-Pointing-Pointer Expressions of CD80, CD86, and MHC class I/II were inhibited by EGCG via 67LR. Black-Right-Pointing-Pointer EGCG-treated DCs inhibited LPS-induced pro-inflammatory cytokines via 67LR. Black-Right-Pointing-Pointer EGCG-treated DCs inhibited MAPKs activation and NF-{kappa}B p65 translocation via 67LR. Black-Right-Pointing-Pointer EGCG elevated the expression of the Tollip protein through 67LR in DCs. -- Abstract: Epigallocatechin-3-gallate (EGCG), a major active polyphenol of green tea, has been shown to down-regulate inflammatory responses in dendritic cells (DCs); however, the underlying mechanism has not been understood. Recently, we identified the 67-kDa laminin receptor (67LR) as a cell-surface EGCG receptor. In this study, we showed the molecular basis for the down-regulation of toll-like receptor 4 (TLR4) signal transduction by EGCG in DCs. The expressions of CD80, CD86, and MHC class I and II, which are molecules essential for antigen presentation by DCs, were inhibited by EGCG via 67LR. In addition, EGCG-treated DCs inhibited lipopolysaccharide (LPS)-induced production of pro-inflammatory cytokines (tumor necrosis factor [TNF]-{alpha}, interleukin [IL]-1{beta}, and IL-6) and activation of mitogen-activated protein kinases (MAPKs), e.g., extracellular signal-regulated kinase 1/2 (ERK1/2), p38, c-Jun N-terminal kinase (JNK), and nuclear factor {kappa}B (NF-{kappa}B) p65 translocation through 67LR. Interestingly, we also found that EGCG markedly elevated the expression of the Tollip protein, a negative regulator of TLR signaling, through 67LR. These novel findings provide new insight into the understanding of negative regulatory mechanisms of the TLR4 signaling pathway and consequent inflammatory responses that are implicated in the development and progression of many chronic diseases.

  20. A unique anti-CD115 monoclonal antibody which inhibits osteolysis and skews human monocyte differentiation from M2-polarized macrophages toward dendritic cells.

    PubMed

    Haegel, Hélène; Thioudellet, Christine; Hallet, Rémy; Geist, Michel; Menguy, Thierry; Le Pogam, Fabrice; Marchand, Jean-Baptiste; Toh, Myew-Ling; Duong, Vanessa; Calcei, Alexandre; Settelen, Nathalie; Preville, Xavier; Hennequi, Marie; Grellier, Benoit; Ancian, Philippe; Rissanen, Jukka; Clayette, Pascal; Guillen, Christine; Rooke, Ronald; Bonnefoy, Jean-Yves

    2013-01-01

    Cancer progression has been associated with the presence of tumor-associated M2-macrophages (M2-TAMs) able to inhibit anti-tumor immune responses. It is also often associated with metastasis-induced bone destruction mediated by osteoclasts. Both cell types are controlled by the CD115 (CSF-1R)/colony-stimulating factor-1 (CSF-1, M-CSF) pathway, making CD115 a promising target for cancer therapy. Anti-human CD115 monoclonal antibodies (mAbs) that inhibit the receptor function have been generated in a number of laboratories. These mAbs compete with CSF-1 binding to CD115, dramatically affecting monocyte survival and preventing osteoclast and macrophage differentiation, but they also block CD115/CSF-1 internalization and degradation, which could lead to potent rebound CSF-1 effects in patients after mAb treatment has ended. We thus generated and selected a non-ligand competitive anti-CD115 mAb that exerts only partial inhibitory effects on CD115 signaling without blocking the internalization or the degradation of the CD115/CSF-1 complex. This mAb, H27K15, affects monocyte survival only minimally, but downregulates osteoclast differentiation and activity. Importantly, it inhibits monocyte differentiation to CD163(+)CD64(+) M2-polarized suppressor macrophages, skewing their differentiation toward CD14(-)CD1a(+) dendritic cells (DCs). In line with this observation, H27K15 also drastically inhibits monocyte chemotactic protein-1 secretion and reduces interleukin-6 production; these two molecules are known to be involved in M2-macrophage recruitment. Thus, the non-depleting mAb H27K15 is a promising anti-tumor candidate, able to inhibit osteoclast differentiation, likely decreasing metastasis-induced osteolysis, and able to prevent M2 polarization of TAMs while inducing DCs, hence contributing to the creation of more efficient anti-tumor immune responses.

  1. Neutralizing antibodies inhibit HIV-1 infection of plasmacytoid dendritic cells by an FcγRIIa independent mechanism and do not diminish cytokines production.

    PubMed

    Lederle, Alexandre; Su, Bin; Holl, Vincent; Penichon, Julien; Schmidt, Sylvie; Decoville, Thomas; Laumond, Géraldine; Moog, Christiane

    2014-08-18

    Plasmacytoid dendritic cells (pDC) expressing FcγRIIa are antigen-presenting cells able to link innate and adaptive immunity and producing various cytokines and chemokines. Although highly restricted, they are able to replicate HIV-1. We determined the activity of anti-HIV-1 neutralizing antibodies (NAb) and non-neutralizing inhibitory antibodies (NNIAb) on the infection of primary pDC by HIV-1 primary isolates and analyzed cytokines and chemokines production. Neutralization assay was performed with primary pDC in the presence of serial antibodies (Ab) concentrations. In parallel, we measured the release of cytokines and chemokines by ELISA and CBA Flex assay. We found that NAb, but not NNIAb, inhibit HIV-1 replication in pDC. This inhibitory activity was lower than that detected for myeloid dendritic cells (mDC) infection and independent of FcγRIIa expressed on pDC. Despite the complete protection, IFN-α production was detected in the supernatant of pDC treated with NAb VRC01, 4E10, PGT121, 10-1074, 10E8, or polyclonal IgG44 but not with NAb b12. Production of MIP-1α, MIP-1β, IL-6, and TNF-α by pDC was also maintained in the presence of 4E10, b12 and VRC01. These findings suggest that pDC can be protected from HIV-1 infection by both NAb and IFN-α release triggered by the innate immune response during infection.

  2. Neutralizing Antibodies Inhibit HIV-1 Infection of Plasmacytoid Dendritic Cells by an FcγRIIa Independent Mechanism and Do Not Diminish Cytokines Production

    PubMed Central

    Lederle, Alexandre; Su, Bin; Holl, Vincent; Penichon, Julien; Schmidt, Sylvie; Decoville, Thomas; Laumond, Géraldine; Moog, Christiane

    2014-01-01

    Plasmacytoid dendritic cells (pDC) expressing FcγRIIa are antigen-presenting cells able to link innate and adaptive immunity and producing various cytokines and chemokines. Although highly restricted, they are able to replicate HIV-1. We determined the activity of anti-HIV-1 neutralizing antibodies (NAb) and non-neutralizing inhibitory antibodies (NNIAb) on the infection of primary pDC by HIV-1 primary isolates and analyzed cytokines and chemokines production. Neutralization assay was performed with primary pDC in the presence of serial antibodies (Ab) concentrations. In parallel, we measured the release of cytokines and chemokines by ELISA and CBA Flex assay. We found that NAb, but not NNIAb, inhibit HIV-1 replication in pDC. This inhibitory activity was lower than that detected for myeloid dendritic cells (mDC) infection and independent of FcγRIIa expressed on pDC. Despite the complete protection, IFN-α production was detected in the supernatant of pDC treated with NAb VRC01, 4E10, PGT121, 10-1074, 10E8, or polyclonal IgG44 but not with NAb b12. Production of MIP-1α, MIP-1β, IL-6, and TNF-α by pDC was also maintained in the presence of 4E10, b12 and VRC01. These findings suggest that pDC can be protected from HIV-1 infection by both NAb and IFN-α release triggered by the innate immune response during infection. PMID:25132382

  3. Pasteurella multocida toxin (PMT) activates RhoGTPases, induces actin polymerization and inhibits migration of human dendritic cells, but does not influence macropinocytosis.

    PubMed

    Blöcker, Dagmar; Berod, Luciana; Fluhr, Joachim W; Orth, Joachim; Idzko, Marco; Aktories, Klaus; Norgauer, Johannes

    2006-03-01

    Dendritic cells (DCs) are considered as one of the principal initiators of immune responses. In their immature state, they migrate into peripheral tissue in order to uptake antigen and to patrol for danger signals. Upon maturation, they acquire the ability to migrate to the lymph nodes and present the captured antigens to T cells in order to direct the development of specific immune responses. There is evidence that microbial compounds interfere with proper functions of DCs in order to block innate and specific immunity. Here we characterized the influence of Pasteurella multocida toxin (PMT) on monocyte-derived DCs. Using pull-down assays with recombinant rhotekin or p21-activated kinase, we demonstrated the activation of RhoGTPases by PMT in DCs. Moreover, PMT induced changes in DC morphology and actin polymerization, impaired chemotaxin-induced actin re-organization and inhibited their migration response. However, macropinocytosis was not influenced by PMT. In summary, these data indicate that PMT inhibits proper function of the motility machinery in DCs, which might limit the development of adaptive immune surveillance during infection with Pasteurella multocida.

  4. Cross-linking of CD81 by HCV-E2 protein inhibits human intrahepatic plasmacytoid dendritic cells response to CpG-ODN.

    PubMed

    Tu, Zhengkun; Zhang, Ping; Li, Haijun; Niu, Junqi; Jin, Xia; Su, Lishan

    2013-01-01

    Plasmacytoid dendritic cells (pDCs) are reported to be defective in HCV-infected patients, the mechanisms of which remain poorly understood. We isolated liver derived mononuclear cells (LMNCs) and pDCs from normal liver tissues of benign tumor dissections and liver transplant donors. Isolated pDCs and LMNCs were cultured with precoated HCV envelop protein E2 (HCV-E2) or anti-CD81 mAb in the presence of CpG-ODN. Our results show that cross-linking of CD81 by either HCV-E2 or anti-CD81 mAb inhibits IFN-α secretion in CpG-induced pDCs; down-regulates HLA-DR, CD80 and CD86 expression in pDCs; and suppresses CpG-ODN induced proliferation and survival of pDCs. The blockade of CD81 by soluble anti-CD81 antibody restores pDCs response to CpG-ODN. These results suggest that HCV E2 protein interacts with CD81 to inhibit pDC maturation, activation, and IFN-α production, and may thereby contribute to the impaired innate anti-viral immune response in HCV infection.

  5. Sublingual administration of Lactobacillus paracasei KW3110 inhibits Th2-dependent allergic responses via upregulation of PD-L2 on dendritic cells.

    PubMed

    Inamine, Ayako; Sakurai, Daijyu; Horiguchi, Shigetoshi; Yonekura, Syuji; Hanazawa, Toyoyuki; Hosokawa, Hiroyuki; Matuura-Suzuki, Asaka; Nakayama, Toshinori; Okamoto, Yoshitaka

    2012-05-01

    Lactic acid bacteria have potential in immunomodulation therapy, but their clinical efficacy and underlying mechanisms are unclear. We aimed to clarify the anti-allergic immune responses induced by intragastric and sublingual administration of heat-killed Lactobacillus paracasei KW3110 and Lactobacillus acidophilus L-92. The KW3110 strain (but not the L-92 strain) enhanced ovalbumin (OVA)-induced expression of CCR-7 and PD-L2 in murine dendritic cells (DCs), and strongly inhibited IL-5 and IL-13 production in vitro in co-cultures with Th2-skewed CD4(+) T cells from DO11.10 transgenic mice. Sublingual administration of low-dose KW3110 (but not L-92) to OVA-sensitized mice selectively suppressed serum IgE production and Th2 cytokine expression in cervical lymph nodes, and significantly improved symptoms after OVA provocation in vivo. KW3110 probably accelerates DC migration into the regional lymph nodes and inhibits Th2 cytokine production through enhanced CCR-7 and PD-L2 expression. Thus, sublingual KW3110 administration may be effective in reducing allergic inflammation.

  6. Shikonin inhibits maturation of bone marrow-derived dendritic cells and suppresses allergic airway inflammation in a murine model of asthma

    PubMed Central

    Lee, Chen-Chen; Wang, Chien-Neng; Lai, Yu-Ting; Kang, Jaw-Jou; Liao, Jiunn-Wang; Chiang, Bor-Luen; Chen, Hui-Chen; Cheng, Yu-Wen

    2010-01-01

    BACKGROUND AND PURPOSE Shikonin exhibits a wide range of anti-inflammatory actions. Here, we assessed its effects on maturation of murine bone marrow-derived dendritic cells (BM-DCs) and on allergic reactions in a murine model of asthma. EXPERIMENTAL APPROACH Cultured murine BM-DCs were used to investigate the effects of shikonin on expression of cell surface markers and their stimulation of T-cell proliferation and cytokine production. The therapeutic potential of shikonin was evaluated in a model of allergic airway disease. KEY RESULTS Shikonin dose-dependently inhibited expression of major histocompatibility complex class II, CD80, CD86, CCR7 and OX40L on BM-DCs, induced by a mixture of ovalbumin (OVA; 100 µg·mL−1) and thymic stromal lymphopoietin (TSLP; 20 ng·mL−1). Shikonin-treated BM-DCs were poor stimulators of CD4+ T lymphocyte and induced lower levels of interleukin (IL)-4, IL-5, IL-13 and tumour necrosis factor (TNF)-α release by responding T-cells. After intratracheal instillation of shikonin in OVA-immunized mice, OVA challenge induced lower IL-4, IL-5, IL-13, TNF-α and eotaxin release in bronchial alveolar lavage fluid, lower IL-4 and IL-5 production in lung cells and mediastinal lymph node cells and attenuated OVA-induced lung eosinophilia and airway hyperresponsiveness. CONCLUSION AND IMPLICATIONS Shikonin effectively suppressed OVA + TSLP-induced BM-DC maturation in vitro and inhibited allergic inflammation and airway hyperresponsiveness in a murine model of asthma, showing good potential as a treatment for allergic asthma. Also, our model provides a novel platform for screening drugs for allergic diseases. PMID:20735407

  7. Viral Semaphorin Inhibits Dendritic Cell Phagocytosis and Migration but Is Not Essential for Gammaherpesvirus-Induced Lymphoproliferation in Malignant Catarrhal Fever

    PubMed Central

    Myster, Françoise; Palmeira, Leonor; Sorel, Océane; Bouillenne, Fabrice; DePauw, Edwin; Schwartz-Cornil, Isabelle; Vanderplasschen, Alain

    2015-01-01

    ABSTRACT Viral semaphorins are semaphorin 7A (sema7A) mimics found in pox- and herpesviruses. Among herpesviruses, semaphorins are encoded by gammaherpesviruses of the Macavirus genus only. Alcelaphine herpesvirus 1 (AlHV-1) is a macavirus that persistently infects wildebeest asymptomatically but induces malignant catarrhal fever (MCF) when transmitted to several species of susceptible ruminants and the rabbit model. MCF is caused by the activation/proliferation of latently infected T lymphocytes. Viral semaphorins have been suggested to mediate immune evasion mechanisms and/or directly alter host T cell function. We studied AlHV-sema, the viral semaphorin encoded by the A3 gene of AlHV-1. Phylogenetic analyses revealed independent acquisition of pox- and herpesvirus semaphorins, suggesting that these proteins might have distinct functions. AlHV-sema showed a predicted three-dimensional structure very similar to sema7A and conserved key residues in sema7A-plexinC1 interaction. Expression analyses revealed that AlHV-sema is a secreted 93-kDa glycoprotein expressed during the early phase of virus replication. Purified AlHV-sema was able to bind to fibroblasts and dendritic cells and induce F-actin condensation and cell retraction through a plexinC1 and Rho/cofilin-dependent mechanism. Cytoskeleton rearrangement was further associated with inhibition of phagocytosis by dendritic cells and migration to the draining lymph node. Next, we generated recombinant viruses and demonstrated that the lack of A3 did not significantly affect virus growth in vitro and did not impair MCF induction and associated lymphoproliferative lesions. In conclusion, AlHV-sema has immune evasion functions through mechanisms similar to poxvirus semaphorin but is not directly involved in host T cell activation during MCF. IMPORTANCE Whereas most poxviruses encode viral semaphorins, semaphorin-like genes have only been identified in few gammaherpesviruses belonging to the Macavirus genus

  8. Isolation and generation of human dendritic cells.

    PubMed

    Nair, Smita; Archer, Gerald E; Tedder, Thomas F

    2012-11-01

    Dendritic cells are highly specialized antigen-presenting cells (APC), which may be isolated or generated from human blood mononuclear cells. Although mature blood dendritic cells normally represent ∼0.2% of human blood mononuclear cells, their frequency can be greatly increased using the cell enrichment methods described in this unit. More highly purified dendritic cell preparations can be obtained from these populations by sorting of fluorescence-labeled cells. Alternatively, dendritic cells can be generated from monocytes by culture with the appropriate cytokines, as described here. In addition, a negative selection approach is provided that may be employed to generate cell preparations that have been depleted of dendritic cells to be used for comparison in functional studies.

  9. Inhibition of HBV Replication in HepG2.2.15 Cells by Human Peripheral Blood Mononuclear Cell-Derived Dendritic Cells.

    PubMed

    Liu, Tao; Song, Hong-Li; Zheng, Wei-Ping; Shen, Zhong-Yang

    2015-01-01

    Anti-HBV therapy is essential for patients awaiting liver transplantation. This study aimed to explore the effects of dendritic cells (DCs) derived from the peripheral blood of hepatitis B patients on the replication of HBV in vivo and to evaluate the biosafety of DCs in clinical therapy. Peripheral blood mononuclear cells (PBMCs) were isolated from HBV-infected patients and maturation-promoting factors and both HBsAg and HBcAg were used to induce DC maturation. Mature DCs and lymphocytes were co-cultured with human hepatocyte cell HL-7702 or HBV-producing human hepatocellular carcinoma cell HepG2.2.15. We found that mature lymphocytes exposed to DCs in vitro did not influence morphology or activities of HL-7702 and HepG2.2.15 cells. Liver function indexes and endotoxin levels in the cell supernatants did not change in these co-cultures. Additionally, supernatant and intracellular HBV DNA levels were reduced when HepG2.2.15 cells were co-cultured with mature lymphocytes that had been cultured with DCs, and HBV covalently closed circular DNA (cccDNA) levels in HepG2.2.15 cells also decreased. Importantly, DC-mediated immunotherapy had no mutagenic effect on HBV genomic DNA by gene sequencing of the P, S, X, and C regions of HBV genomic DNA. We conclude that PBMC-derived DCs from HBV-infected patients act on autologous lymphocytes to suppress HBV replication and these DC clusters showed favorable biosafety.

  10. Targeted NF-kappaB inhibition of asthmatic serum-mediated human monocyte-derived dendritic cell differentiation in a transendothelial trafficking model.

    PubMed

    Gu, Xiao-Yan; Zhou, Lin-Fu; Zhang, Ming-Shun; Dai, Wen-Jing; Chen, Sai-Ying; He, Shao-Heng; Ji, Xiao-Hui; Yin, Kai-Sheng

    2009-01-01

    Transendothelial trafficking model mimics in vivo differentiation of monocytes into dendritic cells (DC). The serum from patients with systemic lupus erythematosus promotes the differentiation of monocytes into mature DC. We have shown that selective inhibition of NF-kappaB by adenoviral gene transfer of a novel mutated IkappaBalpha (AdIkappaBalphaM) in DC contributes to T cell tolerance. Here we demonstrated for the first time that asthmatic serum facilitated human monocyte-derived DC (MDDC) maturation associated with increased NF-kappaB activation in this model. Furthermore, selective blockade of NF-kappaB by AdIkappaBalphaM in MDDC led to increased apoptosis, and decreased levels of CD80, CD83, CD86, and IL-12 p70 but not IL-10 in asthmatic serum-stimulated MDDC, accompanied by reduced proliferation of T cells. These results suggest that AdIkappaBalphaM-transferred MDDC are at a more immature stage which is beneficial to augment the immune tolerance in asthma.

  11. High molecular weight components containing N-linked oligosaccharides of Ascaris suum extract inhibit the dendritic cells activation through DC-SIGN and MR.

    PubMed

    Favoretto, Bruna C; Casabuono, Adriana A C; Portes-Junior, José A; Jacysyn, Jacqueline F; Couto, Alicia S; Faquim-Mauro, Eliana L

    2017-04-09

    Helminths, as well as their secretory/excretory products, induce a tolerogenic immune microenvironment. High molecular weight components (PI) from Ascaris suum extract down-modulate the immune response against ovalbumin (OVA). The PI exerts direct effect on dendritic cells (DCs) independent of TLR 2, 4 and MyD88 molecule and, thus, decreases the T lymphocytes response. Here, we studied the glycoconjugates in PI and the role of C-type lectin receptors (CLRs), DC-SIGN and MR, in the modulation of DCs activity. Our data showed the presence of glycoconjugates with high mannose- and complex-type N-linked oligosaccharide chains and phosphorylcholine residues on PI. In addition, these N-linked glycoconjugates inhibited the DCs maturation induced by LPS. The binding and internalization of PI-Alexa were decreased on DCs previously incubated with mannan, anti-DC-SIGN and/or anti-MR antibodies. In agreement with this, the incubation of DCs with mannan, anti-DC-SIGN and/or anti-MR antibodies abolished the down-modulatory effect of PI on these cells. It was also observed that the blockage of CLRs, DC-SIGN and MR on DCs reverted the inhibitory effect of PI in in vitro T cells proliferation. Therefore, our data show the involvement of DC-SIGN and MR in the recognition and consequent modulatory effect of N-glycosylated components of PI on DCs.

  12. Cell-intrinsic drivers of dendrite morphogenesis.

    PubMed

    Puram, Sidharth V; Bonni, Azad

    2013-12-01

    The proper formation and morphogenesis of dendrites is fundamental to the establishment of neural circuits in the brain. Following cell cycle exit and migration, neurons undergo organized stages of dendrite morphogenesis, which include dendritic arbor growth and elaboration followed by retraction and pruning. Although these developmental stages were characterized over a century ago, molecular regulators of dendrite morphogenesis have only recently been defined. In particular, studies in Drosophila and mammalian neurons have identified numerous cell-intrinsic drivers of dendrite morphogenesis that include transcriptional regulators, cytoskeletal and motor proteins, secretory and endocytic pathways, cell cycle-regulated ubiquitin ligases, and components of other signaling cascades. Here, we review cell-intrinsic drivers of dendrite patterning and discuss how the characterization of such crucial regulators advances our understanding of normal brain development and pathogenesis of diverse cognitive disorders.

  13. Lung dendritic cells and the inflammatory response.

    PubMed

    Grayson, Mitchell H

    2006-05-01

    To discuss the role of conventional and plasmacytoid dendritic cells in inducing and modulating immune responses in the lung. The primary literature and selected review articles studying the role of dendritic cells in both rodent and human lungs as identified via a PubMed/MEDLINE search using the keywords dendritic cell, antigen-presenting cell, viral airway disease, asthma, allergy, and atopy. The author's knowledge of the field was used to identify studies that were relevant to the stated objective. Dendritic cells are well positioned in the respiratory tract and other mucosal surfaces to respond to any foreign protein. These cells are crucial to the initiation of the adaptive immune response through induction of antigen specific T-cell responses. These cells also play an important role in the regulation of developing and ongoing immune responses, an area that is currently under intense investigation. This review discusses the various subsets of human and rodent dendritic cells and the pathways involved in antigen processing and subsequent immune regulation by dendritic cells in the lung using both viral and nonviral allergenic protein exposure as examples. Conventional and plasmacytoid dendritic cells are uniquely situated in the immune cascade to not only initiate but also modulate immune responses. Therapeutic interventions in allergic and asthmatic diseases will likely be developed to take advantage of this exclusive position of the dendritic cell.

  14. [Disseminated interdigitating dendritic cell sarcoma].

    PubMed

    Santarelli, Ignacio M; Veltri, Mariano; Manzella, Diego J; Avagnina, María Alejandra; Pereyra, Pablo M; Chavín, Hernán C

    2017-01-01

    A 70 year-old woman was admitted to our hospital with a 3-month history of abdominal pain, weight loss and night sweats. On physical examination, she presented with a 5 cm diameter abdominal mass extended from epigastrium to the left flank, and at least three bilateral supraclavicular adenopathies. A disseminated interdigitating dendritic cell sarcoma was diagnosed through a biopsy of the abdominal mass. After that, a CHOP regime (cyclophosphamide, doxorubicin, vincristine and prednisone) was iniciated. She died after completion of the first cycle of treatment, six months after diagnosis.

  15. Dendritic Cell-Targeted Vaccines

    PubMed Central

    Cohn, Lillian; Delamarre, Lélia

    2014-01-01

    Despite significant effort, the development of effective vaccines inducing strong and durable T-cell responses against intracellular pathogens and cancer cells has remained a challenge. The initiation of effector CD8+ T-cell responses requires the presentation of peptides derived from internalized antigen on class I major histocompatibility complex molecules by dendritic cells (DCs) in a process called cross-presentation. A current strategy to enhance the effectiveness of vaccination is to deliver antigens directly to DCs. This is done via selective targeting of antigen using monoclonal antibodies directed against endocytic receptors on the surface of the DCs. In this review, we will discuss considerations relevant to the design of such vaccines: the existence of DC subsets with specialized functions, the impact of the antigen intracellular trafficking on cross-presentation, and the influence of maturation signals received by DCs on the outcome of the immune response. PMID:24910635

  16. Inhibition of nuclear factor-kappa B enhances the capacity of immature dendritic cells to induce antigen-specific tolerance in experimental autoimmune encephalomyelitis.

    PubMed

    Iruretagoyena, Mirentxu I; Sepúlveda, Sofía E; Lezana, J Pablo; Hermoso, Marcela; Bronfman, Miguel; Gutiérrez, Miguel A; Jacobelli, Sergio H; Kalergis, Alexis M

    2006-07-01

    Autoimmune disorders develop as a result of deregulated immune responses that target self-antigens and cause destruction of healthy host tissues. Because dendritic cells (DCs) play an important role in the maintenance of peripheral immune tolerance, we are interested in identifying means of enhancing their therapeutic potential in autoimmune diseases. It is thought that during steady state, DCs are able to anergize potentially harmful T cells bearing T cell receptors that recognize self-peptide-major histocompatibility complexes. The tolerogenic capacity of DCs requires an immature phenotype, which is characterized by a reduced expression of costimulatory molecules. On the contrary, activation of antigen-specific naive T cells is enhanced by DC maturation, a process that involves expression of genes controlled by the transcription factor nuclear factor (NF)-kappaB. We evaluated the capacity of drugs that inhibit NF-kappaB to enhance the tolerogenic properties of immature DCs in the experimental autoimmune encephalomyelitis (EAE) model. We show that andrographolide, a bicyclic diterpenoid lactone, and rosiglitazone, a peroxisome proliferator-activated receptor gamma agonist, were able to interfere with NF-kappaB activation in murine DCs. As a result, treated DCs showed impaired maturation and a reduced capacity to activate antigen-specific T cells. Furthermore, NF-kappaB-blocked DCs had an enhanced tolerogenic capacity and were able to prevent EAE development in mice. The tolerogenic feature was specific for myelin antigens and involved the expansion of regulatory T cells. These data suggest that NF-kappaB blockade is a potential pharmacological approach that can be used to enhance the tolerogenic ability of immature DCs to prevent detrimental autoimmune responses.

  17. Impaired dendritic inhibition leads to epileptic activity in a computer model of CA3.

    PubMed

    Sanjay, M; Neymotin, Samuel A; Krothapalli, Srinivasa B

    2015-11-01

    Temporal lobe epilepsy (TLE) is a common type of epilepsy with hippocampus as the usual site of origin. The CA3 subfield of hippocampus is reported to have a low epileptic threshold and hence initiates the disorder in patients with TLE. This study computationally investigates how impaired dendritic inhibition of pyramidal cells in the vulnerable CA3 subfield leads to generation of epileptic activity. A model of CA3 subfield consisting of 800 pyramidal cells, 200 basket cells (BC) and 200 Oriens-Lacunosum Moleculare (O-LM) interneurons was used. The dendritic inhibition provided by O-LM interneurons is reported to be selectively impaired in some TLEs. A step-wise approach is taken to investigate how alterations in network connectivity lead to generation of epileptic patterns. Initially, dendritic inhibition alone was reduced, followed by an increase in the external inputs received at the distal dendrites of pyramidal cells, and finally additional changes were made at the synapses between all neurons in the network. In the first case, when the dendritic inhibition of pyramidal cells alone was reduced, the local field potential activity changed from a theta-modulated gamma pattern to a prominently gamma frequency pattern. In the second case, in addition to this reduction of dendritic inhibition, with a simultaneous large increase in the external excitatory inputs received by pyramidal cells, the basket cells entered a state of depolarization block, causing the network to generate a typical ictal activity pattern. In the third case, when the dendritic inhibition onto the pyramidal cells was reduced and changes were simultaneously made in synaptic connectivity between all neurons in the network, the basket cells were again observed to enter depolarization block. In the third case, impairment of dendritic inhibition required to generate an ictal activity pattern was lesser than the two previous cases. Moreover, the ictal like activity began earlier in the third case

  18. Paeonol ameliorates imiquimod-induced psoriasis-like skin lesions in BALB/c mice by inhibiting the maturation and activation of dendritic cells.

    PubMed

    Meng, Yujiao; Wang, Mingxing; Xie, Xiangjiang; Di, Tingting; Zhao, Jingxia; Lin, Yan; Xu, Xiaolong; Li, Ningfei; Zhai, Yating; Wang, Yan; Li, Ping

    2017-05-01

    Paeonol, an active component derived from the traditional Chinese medicine Cortex Moutan, possesses anti-inflammatory, analgesic, antioxidant and anti-allergic properties. Psoriasis is a chronic, recurrent, inflammatory dermatosis accompanied by excessive activation of Toll‑like receptors (TLRs) in dendritic cells (DCs), which are primarily responsible for initiating an immune response. We investigated the effect of paeonol on inflammation in an imiquimod (IMQ)-induced psoriasis-like mouse model and murine bone marrow-derived dendritic cells (BMDCs) stimulated by R848. Mice were intragastrically administered 100 mg/kg (high), 50 mg/kg (medium) and 25 mg/kg (low) paeonol, respectively. We evaluated inflammation of psori-asis‑like lesions based on histological changes, protein levels of myeloid differentiation factor 88 (MyD88) and TLR8 in skin lesions by western blotting, and levels of CD11c+ DCs in skin by immunoassay and in spleens by flow cytometry. Inflammatory cytokines [interleukin (IL)-23, IL-12 and IL-1β] in skin lesions and BMDCs were also assessed by RT-PCR and ELISA. Application of paeonol decreased IMQ-induced keratinocyte proliferation, and infiltration of CD3+ cells, while the treatment ameliorated CD11c+ cells in the spleen and skin, and reduced MyD88 and TLR8 proteins in skin lesions. Paeonol inhibited IMQ-induced mRNA expression of IL-23, but not IL-12 and IL-1β in BMDCs, along with significantly lower levels of DCs expressing MHCⅡ, CD80 and CD86 in vitro. These results indicate that paeonol suppresses the maturation and activation of DCs by decreasing MyD88 and TLR8 proteins in the TLR7/8 signaling pathway which finally alleviates psoriasis‑like skin lesions. The TLR7/8 signaling pathway in DCs provides an important insight into the mechanism of psoriasis, and paeonol may be a potent therapeutic drug for psoriasis.

  19. Infection of macrophages and dendritic cells with primary R5-tropic human immunodeficiency virus type 1 inhibited by natural polyreactive anti-CCR5 antibodies purified from cervicovaginal secretions.

    PubMed

    Eslahpazir, Jobin; Jenabian, Mohammad-Ali; Bouhlal, Hicham; Hocini, Hakim; Carbonneil, Cédric; Grésenguet, Gérard; Mbopi Kéou, François-Xavier; LeGoff, Jérôme; Saïdi, Héla; Requena, Mary; Nasreddine, Nadine; de Dieu Longo, Jean; Kaveri, Srinivas V; Bélec, Laurent

    2008-05-01

    Heterosexual contact is the primary mode of human immunodeficiency virus (HIV) type 1 (HIV-1) transmission worldwide. The chemokine receptor CCR5 is the major coreceptor that is associated with the mucosal transmission of R5-tropic HIV-1 during sexual intercourse. The CCR5 molecule is thus a target for antibody-based therapeutic strategies aimed at blocking HIV-1 entry into cells. We have previously demonstrated that polyreactive natural antibodies (NAbs) from therapeutic preparations of immunoglobulin G and from human breast milk contain NAbs directed against CCR5. Such antibodies inhibit the infection of human macrophages and T lymphocytes by R5-tropic isolates of HIV in vitro. In the present study, we demonstrate that human immunoglobulins from the cervicovaginal secretions of HIV-seronegative or HIV-seropositive women contain NAbs directed against the HIV-1 coreceptor CCR5. Natural affinity-purified anti-CCR5 antibodies bound to CCR5 expressed on macrophages and dendritic cells and further inhibited the infection of macrophages and dendritic cells with primary and laboratory-adapted R5-tropic HIV but not with X4-tropic HIV. Natural anti-CCR5 antibodies moderately inhibited R5-tropic HIV transfer from monocyte-derived dendritic cells to autologous T cells. Our results suggest that mucosal anti-CCR5 antibodies from healthy immunocompetent donors may hamper the penetration of HIV and may be suitable for use in the development of novel passive immunotherapy regimens in specific clinical settings of HIV infection.

  20. Infection of Macrophages and Dendritic Cells with Primary R5-Tropic Human Immunodeficiency Virus Type 1 Inhibited by Natural Polyreactive Anti-CCR5 Antibodies Purified from Cervicovaginal Secretions▿

    PubMed Central

    Eslahpazir, Jobin; Jenabian, Mohammad-Ali; Bouhlal, Hicham; Hocini, Hakim; Carbonneil, Cédric; Grésenguet, Gérard; Kéou, François-Xavier Mbopi; LeGoff, Jérôme; Saïdi, Héla; Requena, Mary; Nasreddine, Nadine; de Dieu Longo, Jean; Kaveri, Srinivas V.; Bélec, Laurent

    2008-01-01

    Heterosexual contact is the primary mode of human immunodeficiency virus (HIV) type 1 (HIV-1) transmission worldwide. The chemokine receptor CCR5 is the major coreceptor that is associated with the mucosal transmission of R5-tropic HIV-1 during sexual intercourse. The CCR5 molecule is thus a target for antibody-based therapeutic strategies aimed at blocking HIV-1 entry into cells. We have previously demonstrated that polyreactive natural antibodies (NAbs) from therapeutic preparations of immunoglobulin G and from human breast milk contain NAbs directed against CCR5. Such antibodies inhibit the infection of human macrophages and T lymphocytes by R5-tropic isolates of HIV in vitro. In the present study, we demonstrate that human immunoglobulins from the cervicovaginal secretions of HIV-seronegative or HIV-seropositive women contain NAbs directed against the HIV-1 coreceptor CCR5. Natural affinity-purified anti-CCR5 antibodies bound to CCR5 expressed on macrophages and dendritic cells and further inhibited the infection of macrophages and dendritic cells with primary and laboratory-adapted R5-tropic HIV but not with X4-tropic HIV. Natural anti-CCR5 antibodies moderately inhibited R5-tropic HIV transfer from monocyte-derived dendritic cells to autologous T cells. Our results suggest that mucosal anti-CCR5 antibodies from healthy immunocompetent donors may hamper the penetration of HIV and may be suitable for use in the development of novel passive immunotherapy regimens in specific clinical settings of HIV infection. PMID:18353923

  1. Dendritic web silicon for solar cell application

    NASA Technical Reports Server (NTRS)

    Seidensticker, R. G.

    1977-01-01

    The dendritic web process for growing long thin ribbon crystals of silicon and other semiconductors is described. Growth is initiated from a thin wirelike dendrite seed which is brought into contact with the melt surface. Initially, the seed grows laterally to form a button at the melt surface; when the seed is withdrawn, needlelike dendrites propagate from each end of the button into the melt, and the web portion of the crystal is formed by the solidification of the liquid film supported by the button and the bounding dendrites. Apparatus used for dendritic web growth, material characteristics, and the two distinctly different mechanisms involved in the growth of a single crystal are examined. The performance of solar cells fabricated from dendritic web material is indistinguishable from the performance of cells fabricated from Czochralski grown material.

  2. Dendritic web silicon for solar cell application

    NASA Technical Reports Server (NTRS)

    Seidensticker, R. G.

    1977-01-01

    The dendritic web process for growing long thin ribbon crystals of silicon and other semiconductors is described. Growth is initiated from a thin wirelike dendrite seed which is brought into contact with the melt surface. Initially, the seed grows laterally to form a button at the melt surface; when the seed is withdrawn, needlelike dendrites propagate from each end of the button into the melt, and the web portion of the crystal is formed by the solidification of the liquid film supported by the button and the bounding dendrites. Apparatus used for dendritic web growth, material characteristics, and the two distinctly different mechanisms involved in the growth of a single crystal are examined. The performance of solar cells fabricated from dendritic web material is indistinguishable from the performance of cells fabricated from Czochralski grown material.

  3. A Polysaccharide from the Culinary-Medicinal Mushroom Pholiota nameko (Agaricomycetes) Inhibits the NF-κB Pathway in Dendritic Cells Through the TLR2 Receptor.

    PubMed

    Li, Haiping; Zhao, Pei; Wang, Fengling; Huai, Lihua; Zhu, Ruixuan; Li, Guoliang; Xu, Yufeng

    2016-01-01

    A polysaccharide purified from Pholiota nameko (PNPS-1) was found to have anticancer and anti-inflammatory activity. This study investigated the effect of PNPS-1 on the nuclear factor (NF)-κB signaling pathway of TLR2 small interfering RNA-silenced murine bone marrow-derived dendritic cells (BMDCs) and relevant mechanisms. The expression of messenger RNA of 4 NF-κB-related genes, including MyD88, IKBKB, RelA(p65), and CCL2, was determined by real-time polymerase chain reaction; the expression of the phenotype molecule intercellular adhesion molecule-1 (ICAM-1) by flow cytometry; the protein expression of IKKβ and p65 by Western blot; the production of p65 by enzyme-linked immunosorbent assay; and the expression of p65 by immunocytochemistry. The results showed that TLR2-specific small interfering RNA could effectively inhibit the decrease in the expression of MyD88, IKBKB, CCL2, p65, and ICAM-1 in BMDCs induced by PNPS-1, and thus the transcription inactivation of NF-κB, which obviously suggests that PNPS-1 could downregulate the NF-κB signaling pathway via the TLR2 receptor.

  4. Tempol, an Intracellular Antioxidant, Inhibits Tissue Factor Expression, Attenuates Dendritic Cell Function, and Is Partially Protective in a Murine Model of Cerebral Malaria

    PubMed Central

    Francischetti, Ivo M. B.; Gordon, Emile; Bizzarro, Bruna; Gera, Nidhi; Andrade, Bruno B.; Oliveira, Fabiano; Ma, Dongying; Assumpção, Teresa C. F.; Ribeiro, José M. C.; Pena, Mirna; Qi, Chen-Feng; Diouf, Ababacar; Moretz, Samuel E.; Long, Carole A.; Ackerman, Hans C.; Pierce, Susan K.; Sá-Nunes, Anderson; Waisberg, Michael

    2014-01-01

    Background The role of intracellular radical oxygen species (ROS) in pathogenesis of cerebral malaria (CM) remains incompletely understood. Methods and Findings We undertook testing Tempol—a superoxide dismutase (SOD) mimetic and pleiotropic intracellular antioxidant—in cells relevant to malaria pathogenesis in the context of coagulation and inflammation. Tempol was also tested in a murine model of CM induced by Plasmodium berghei Anka infection. Tempol was found to prevent transcription and functional expression of procoagulant tissue factor in endothelial cells (ECs) stimulated by lipopolysaccharide (LPS). This effect was accompanied by inhibition of IL-6, IL-8, and monocyte chemoattractant protein (MCP-1) production. Tempol also attenuated platelet aggregation and human promyelocytic leukemia HL60 cells oxidative burst. In dendritic cells, Tempol inhibited LPS-induced production of TNF-α, IL-6, and IL-12p70, downregulated expression of co-stimulatory molecules, and prevented antigen-dependent lymphocyte proliferation. Notably, Tempol (20 mg/kg) partially increased the survival of mice with CM. Mechanistically, treated mice had lowered plasma levels of MCP-1, suggesting that Tempol downmodulates EC function and vascular inflammation. Tempol also diminished blood brain barrier permeability associated with CM when started at day 4 post infection but not at day 1, suggesting that ROS production is tightly regulated. Other antioxidants—such as α-phenyl N-tertiary-butyl nitrone (PBN; a spin trap), MnTe-2-PyP and MnTBAP (Mn-phorphyrin), Mitoquinone (MitoQ) and Mitotempo (mitochondrial antioxidants), M30 (an iron chelator), and epigallocatechin gallate (EGCG; polyphenol from green tea) did not improve survival. By contrast, these compounds (except PBN) inhibited Plasmodium falciparum growth in culture with different IC50s. Knockout mice for SOD1 or phagocyte nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (gp91phox–/–) or mice treated with

  5. MCS-18, a natural product isolated from Helleborus purpurascens, inhibits maturation of dendritic cells in ApoE-deficient mice and prevents early atherosclerosis progression.

    PubMed

    Dietel, Barbara; Muench, Rabea; Kuehn, Constanze; Kerek, Franz; Steinkasserer, Alexander; Achenbach, Stephan; Garlichs, Christoph D; Zinser, Elisabeth

    2014-08-01

    Inflammation accelerates both plaque progression and instability in the pathogenesis of atherosclerosis. The inhibition of dendritic cell (DC) maturation is a promising approach to suppress excessive inflammatory immune responses and has been shown to be protective in several autoimmune models. The aim of this study was to investigate the immune modulatory effects of the natural substance MCS-18, an inhibitor of DC maturation, regarding the progression of atherosclerosis in ApoE-deficient mice. ApoE-deficient mice were fed for twelve weeks with a Western-type diet (n = 32) or normal chow (control group; n = 16). Animals receiving high-fat diet were treated with MCS-18 (500 μg/kg body weight, n = 16) or saline (n = 16) twice a week. After 12 weeks, animals were transcardially perfused and sacrificed. The percentage of mature DCs (CD3(-)/CD19(-)/CD14(-)/NK1.1(-)/CD11c(+)/MHCII(+)/CD83(+)/CD86(+)) and T cell subpopulations (CD4(+)/CD25(+)/Foxp3(+), CD3/CD4/CD8) was analyzed in peripheral blood and in the spleen using flow cytometry. Plaque size was determined in the aortic root and the thoracoabdominal aorta using en-face staining. Immunohistochemical stainings served to detect inflammatory cells in the aortic root. Several cytokines and chemokines were determined in serum using multiplex assays. In splenic cells derived from saline-treated atherosclerotic mice an increased DC maturation, reflected by the upregulation of CD83 and CD86 expression, was observed. The enhanced expression of both maturation markers was absent in MCS-18 treated atherosclerotic mice. While the percentage of splenic Foxp3 expressing Treg was increased in animals receiving MCS-18 compared to saline-treated atherosclerotic mice, cytotoxic T cells were reduced in the spleen and in atherosclerotic lesions of the aortic root. Furthermore, proatherogenic cytokines (e.g. IL-6 and IFN-γ) and chemokines (e.g. MIP-1β) were decreased in serum of MCS-18-treated animals when compared to saline

  6. Dendritic cells in hematological malignancies.

    PubMed

    Galati, Domenico; Corazzelli, Gaetano; De Filippi, Rosaria; Pinto, Antonio

    2016-12-01

    Dendritic cells (DCs) are bone-marrow-derived immune cells accounted for a crucial role in initiating and modulating the adaptive immune response and supporting the innate immune response independently from T cells. While functioning as the most effective antigen-presenting cells within the immune system, DCs can otherwise induce tolerance in central and peripheral lymphoid organs acting therefore as suppressors rather than stimulators of the immune response. Within mechanisms regulating antitumor immunity, DCs can capture antigens from viable or damaged tumor cells and present the processed peptides to T-cells to prompt the generation and maintenance of an effective tumor-specific T-cell response. Upon a complex cross-talk with other cellular components of the tumor microenvironment, DCs can, on the other hand, exert a potent antigen-dependent and -independent tolerogenic function by favoring the process of tumor immune evasion. Due to this dual-role in balancing antitumor immunity and tolerance, possibly linked to distinct developmental stages and functional subsets, several studies have addressed the regulatory significance of DCs in different types of malignancies. This review summarizes the most significant pieces of evidence highlighting the critical relevance of bone marrow-derived DCs within the immune pathways regulating pathogenesis and progression of hemopoietic tumors. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Combining Carbon Ion Radiotherapy and Local Injection of {alpha}-Galactosylceramide-Pulsed Dendritic Cells Inhibits Lung Metastases in an In Vivo Murine Model

    SciTech Connect

    Ohkubo, Yu; Iwakawa, Mayumi; Seino, Ken-Ichiro; Nakawatari, Miyako; Wada, Haruka; Kamijuku, Hajime; Nakamura, Etsuko; Nakano, Takashi; Imai, Takashi

    2010-12-01

    Purpose: Our previous report indicated that carbon ion beam irradiation upregulated membrane-associated immunogenic molecules, underlining the potential clinical application of radioimmunotherapy. The antimetastatic efficacy of local combination therapy of carbon ion radiotherapy and immunotherapy was examined by use of an in vivo murine model. Methods and Materials: Tumors of mouse squamous cell carcinoma (NR-S1) cells inoculated in the legs of C3H/HeSlc mice were locally irradiated with a single 6-Gy dose of carbon ions (290 MeV/nucleon, 6-cm spread-out Bragg peak). Thirty-six hours after irradiation, {alpha}-galactosylceramide-pulsed dendritic cells (DCs) were injected into the leg tumor. We investigated the effects on distant lung metastases by counting the numbers of lung tumor colonies, making pathologic observations, and assessing immunohistochemistry. Results: The mice with no treatment (control) presented with 168 {+-} 53.8 metastatic nodules in the lungs, whereas the mice that received the combination therapy of carbon ion irradiation and DCs presented with 2.6 {+-} 1.9 (P = 0.009) at 2 weeks after irradiation. Immunohistochemistry showed that intracellular adhesion molecule 1, which activates DCs, increased from 6 h to 36 h after irradiation in the local tumors of the carbon ion-irradiated group. The expression of S100A8 in lung tissue, a marker of the lung pre-metastatic phase, was decreased only in the group with a combination of carbon ions and DCs. Conclusions: The combination of carbon ion radiotherapy with the injection of {alpha}-galactosylceramide-pulsed DCs into the primary tumor effectively inhibited distant lung metastases.

  8. The role of dendritic inhibition in shaping the plasticity of excitatory synapses

    PubMed Central

    Bar-Ilan, Lital; Gidon, Albert; Segev, Idan

    2013-01-01

    Using computational tools we explored the impact of local synaptic inhibition on the plasticity of excitatory synapses in dendrites. The latter critically depends on the intracellular concentration of calcium, which in turn, depends on membrane potential and thus on inhibitory activity in particular dendritic compartments. We systematically characterized the dependence of excitatory synaptic plasticity on dendritic morphology, loci and strength, as well as on the spatial distribution of inhibitory synapses and on the level of excitatory activity. Plasticity of excitatory synapses may attain three states: “protected” (unchanged), potentiated (long-term potentiation; LTP), or depressed (long-term depression; LTD). The transition between these three plasticity states could be finely tuned by synaptic inhibition with high spatial resolution. Strategic placement of inhibition could give rise to the co-existence of all three states over short dendritic branches. We compared the plasticity effect of the innervation patterns typical of different inhibitory subclasses—Chandelier, Basket, Martinotti, and Double Bouquet—in a detailed model of a layer 5 pyramidal cell. Our study suggests that dendritic inhibition plays a key role in shaping and fine-tuning excitatory synaptic plasticity in dendrites. PMID:23565076

  9. Leukotrienes modulate cytokine release from dendritic cells.

    PubMed

    Jozefowski, Szczepan; Biedroń, Rafał; Bobek, Malgorzata; Marcinkiewicz, Janusz

    2005-12-01

    Leukotriene B(4) (LTB(4)) and cysteinyl leukotrienes (CysLTs) are known as potent mediators of inflammation, whereas their role in the regulation of adaptive immunity remains poorly characterized. Dendritic cells (DCs) are specialized antigen-presenting cells, uniquely capable to initiate primary immune responses. We have found that zymosan, but not lipopolysaccharide (LPS) stimulates murine bone marrow-derived dendritic cells (BM-DCs) to produce large amounts of CysLTs and LTB(4) from endogenous substrates. A selective inhibitor of leukotriene synthesis MK886 as well as an antagonist of the high affinity LTB(4) receptor (BLT(1)) U-75302 slightly inhibited zymosan-, but not LPS-stimulated interleukin (IL)-10 release from BM-DCs. In contrast, U-75302 increased zymosan-stimulated release of IL-12 p40 by approximately 23%. Pre-treatment with transforming growth factor-beta1 enhanced both stimulated leukotriene synthesis and the inhibitory effect of U-75302 and MK886 on IL-10 release from DCs. Consistent with the effects of leukotriene antagonists, exogenous LTB(4) enhanced LPS-stimulated IL-10 release by approximately 39% and inhibited IL-12 p40 release by approximately 22%. Both effects were mediated by the BLT(1) receptor. Ligands of the high affinity CysLTs receptor (CysLT(1)), MK-571 and LTD(4) had little or no effect on cytokine release. Agonists of the nuclear LTB(4) receptor peroxisome proliferator-activated receptor-alpha, 8(S)-hydroxyeicosatetraenoic acid and 5,8,11,14-eicosatetraynoic acid, inhibited release of both IL-12 p40 and IL-10. Our results indicate that both autocrine and paracrine leukotrienes may modulate cytokine release from DCs, in a manner that is consistent with previously reported T helper 2-polarizing effects of leukotrienes.

  10. Leukotrienes modulate cytokine release from dendritic cells

    PubMed Central

    Jozefowski, Szczepan; Biedroń, Rafał; Bobek, Malgorzata; Marcinkiewicz, Janusz

    2005-01-01

    Leukotriene B4 (LTB4) and cysteinyl leukotrienes (CysLTs) are known as potent mediators of inflammation, whereas their role in the regulation of adaptive immunity remains poorly characterized. Dendritic cells (DCs) are specialized antigen-presenting cells, uniquely capable to initiate primary immune responses. We have found that zymosan, but not lipopolysaccharide (LPS) stimulates murine bone marrow-derived dendritic cells (BM-DCs) to produce large amounts of CysLTs and LTB4 from endogenous substrates. A selective inhibitor of leukotriene synthesis MK886 as well as an antagonist of the high affinity LTB4 receptor (BLT1) U-75302 slightly inhibited zymosan-, but not LPS-stimulated interleukin (IL)-10 release from BM-DCs. In contrast, U-75302 increased zymosan-stimulated release of IL-12 p40 by ∼23%. Pre-treatment with transforming growth factor-β1 enhanced both stimulated leukotriene synthesis and the inhibitory effect of U-75302 and MK886 on IL-10 release from DCs. Consistent with the effects of leukotriene antagonists, exogenous LTB4 enhanced LPS-stimulated IL-10 release by ∼39% and inhibited IL-12 p40 release by ∼22%. Both effects were mediated by the BLT1 receptor. Ligands of the high affinity CysLTs receptor (CysLT1), MK-571 and LTD4 had little or no effect on cytokine release. Agonists of the nuclear LTB4 receptor peroxisome proliferator-activated receptor-α, 8(S)-hydroxyeicosatetraenoic acid and 5,8,11,14-eicosatetraynoic acid, inhibited release of both IL-12 p40 and IL-10. Our results indicate that both autocrine and paracrine leukotrienes may modulate cytokine release from DCs, in a manner that is consistent with previously reported T helper 2-polarizing effects of leukotrienes. PMID:16313356

  11. Protection against Paracoccidioides brasiliensis infection in mice treated with modulated dendritic cells relies on inhibition of interleukin-10 production by CD8+ T cells

    PubMed Central

    Alves da Costa, Thiago; Di Gangi, Rosária; Martins, Paula; Longhini, Ana Leda Figueiredo; Zanucoli, Fábio; de Oliveira, Alexandre Leite Rodrigues; Stach-Machado, Dagmar Ruth; Burger, Eva; Verinaud, Liana; Thomé, Rodolfo

    2015-01-01

    Paracoccidioidomycosis is a systemic infection prevalent in Latin American countries. Disease develops after inhalation of Paracoccidioides brasiliensis conidia followed by an improper immune activation by the host leucocytes. Dendritic cells (DCs) are antigen-presenting cells with the unique ability to direct the adaptive immune response by the time of activation of naive T cells. This study was conducted to test whether extracts of P. brasiliensis would induce maturation of DCs. We found that DCs treated with extracts acquired an inflammatory phenotype and upon adoptive transfer conferred protection to infection. Interestingly, interleukin-10 production by CD8+ T cells was ablated following DC transfer. Further analyses showed that lymphocytes from infected mice were high producers of interleukin-10, with CD8+ T cells being the main source. Blockage of cross-presentation to CD8+ T cells by modulated DCs abolished the protective effect of adoptive transfer. Collectively, our data show that adoptive transfer of P. brasiliensis-modulated DCs is an interesting approach for the control of infection in paracoccidioidomycosis. PMID:26302057

  12. Atypical protein kinase C regulates primary dendrite specification of cerebellar Purkinje cells by localizing Golgi apparatus.

    PubMed

    Tanabe, Koji; Kani, Shuichi; Shimizu, Takashi; Bae, Young-Ki; Abe, Takaya; Hibi, Masahiko

    2010-12-15

    Neurons have highly polarized structures that determine what parts of the soma elaborate the axon and dendrites. However, little is known about the mechanisms that establish neuronal polarity in vivo. Cerebellar Purkinje cells extend a single primary dendrite from the soma that ramifies into a highly branched dendritic arbor. We used the zebrafish cerebellum to investigate the mechanisms by which Purkinje cells acquire these characteristics. To examine dendritic morphogenesis in individual Purkinje cells, we marked the cell membrane using a Purkinje cell-specific promoter to drive membrane-targeted fluorescent proteins. We found that zebrafish Purkinje cells initially extend multiple neurites from the soma and subsequently retract all but one, which becomes the primary dendrite. In addition, the Golgi apparatus specifically locates to the root of the primary dendrite, and its localization is already established in immature Purkinje cells that have multiple neurites. Inhibiting secretory trafficking through the Golgi apparatus reduces dendritic growth, suggesting that the Golgi apparatus is involved in the dendritic morphogenesis. We also demonstrated that in a mutant of an atypical protein kinase C (aPKC), Prkci, Purkinje cells retain multiple primary dendrites and show disrupted localization of the Golgi apparatus. Furthermore, a mosaic inhibition of Prkci in Purkinje cells recapitulates the aPKC mutant phenotype. These results suggest that the aPKC cell autonomously controls the Golgi localization and thereby regulates the specification of the primary dendrite of Purkinje cells.

  13. Leishmania amazonensis-Induced cAMP Triggered by Adenosine A2B Receptor Is Important to Inhibit Dendritic Cell Activation and Evade Immune Response in Infected Mice.

    PubMed

    Figueiredo, Amanda Braga; Souza-Testasicca, Míriam Conceição; Mineo, Tiago Wilson Patriarca; Afonso, Luís Carlos Crocco

    2017-01-01

    Differently from others Leishmania species, infection by the protozoan parasite L. amazonensis is associated with a lack of antigen-specific T-cell responses. Dendritic cells (DC) are essential for the innate immune response and for directing the differentiation of T-helper lymphocytes. Previously, we showed that L. amazonensis infection impairs DC activation through the activation of adenosine A2B receptor, and here, we evaluated the intracellular events triggered by this receptor in infected cells. To this aim, bone marrow-derived DC from C57BL/6J mice were infected with metacyclic promastigotes of L. amazonensis. Our results show, for the first time, that L. amazonensis increases the production of cAMP and the phosphorylation of extracellular signal-regulated protein kinases 1/2 (ERK1/2) in infected DC by a mechanism dependent on the A2B receptor. Furthermore, L. amazonensis impairs CD40 expression and IL-12 production by DC, and the inhibition of adenylate cyclase, phosphoinositide 3-kinase (PI3K), and ERK1/2 prevent these effects. The increase of ERK1/2 phosphorylation and the inhibition of DC activation by L. amazonensis are independent of protein kinase A (PKA). In addition, C57BL/6J mice were inoculated in the ears with metacyclic promastigotes, in the presence of PSB1115, an A2B receptor antagonist. PSB1115 treatment increases the percentage of CD40(+) DC on ears and draining lymph nodes. Furthermore, this treatment reduces lesion size and tissue parasitism. Lymph node cells from treated mice produce higher levels of IFN-γ than control mice, without altering the production of IL-10. In conclusion, we suggest a new pathway used by the parasite (A2B receptor → cAMP → PI3K → ERK1/2) to suppress DC activation, which may contribute to the decrease of IFN-γ production following by the deficiency in immune response characteristic of L. amazonensis infection.

  14. Inhibition of JAK/STAT pathway restrains TSLP-activated dendritic cells mediated inflammatory T helper type 2 cell response in allergic rhinitis.

    PubMed

    Shi, Zhaohui; Jiang, Weihong; Wang, Min; Wang, Xiaocheng; Li, Xiaoyuan; Chen, Xiaodong; Qiao, Li

    2017-06-01

    Thymic stromal lymphopoietin (TSLP) has recently been implicated as a key molecule for initiating allergic rhinitis (AR) at the cell-dendritic cell (DC) interface. Previous studies demonstrated that TSLP activated DCs to express more OX40 ligand (OX40L), which is associated with the initiation of T helper type 2 (Th2) cell responses. STAT phosphorylation has been reported to be promoted by TSLP. Thus, we investigated if the JAK/STAT pathway inhibitor CYT387 could affect TSLP-DC-mediated Th2 cell response in naive T cell and AR mice model. Western blot showed that the levels of phosphorylated JAK1, JAK2, STAT1, STAT3, and STAT5 were increased in TSLP-DCs, which can be offset by CYT387. Flow cytometry indicated that CYT387 had obviously down-regulated the surface maturation co-stimulatory molecules (CD11c, CD80, CD86, and MHCII) in DCs, which were increased by TSLP. Moreover, CYT387 markedly reduced the ability of TSLP-DCs to promote the differentiation of naive CD4(+) T cells into IL-4-expressing Th2 cells. The histological examination showed that the CYT387-treated group showed less epithelial disruption, epithelial cell proliferation, and reduced eosinophil infiltration compared with AR group. Western blot and RT-PCR demonstrated that the expression of OX40L was increased in AR mice, but that it was decreased by CYT387. Furthermore, CYT387 treatment resulted in the reduction of IL-4 and IL-5 expression and increased IFN-γ level in AR mice, which was consistent with the levels of intracellular cytokine in Th2 cell. In conclusion, we suggest that blockading the JAK/STAT pathway restrains inflammatory Th2 cell response induced by TSLP-DCs in AR.

  15. [Glucocorticoids and their effect on dendritic cell function].

    PubMed

    Rozková, D; Horváth, R; Bartůnková, J; Spísek, R

    2005-01-01

    Dendritic cells represent the most effective antigen presenting cells and they are the only cell type capable of initiating the primary immune response. They use several sets of germ-line encoded receptors to differentiate between self and non-self and to detect the presence of danger signals. Danger signals are mainly represented by microbial pathogens but it can be also a necrotic or malignant cell. At various stages of their lifecycle dendritic cells play a key role in maintaining the peripheral tolerance towards self-antigens and in the initiation of an effective immune response. Glucocorticoids have been widely used in the treatment of autoimmune or inflammatory disorders and their immunosuppressive effect has been mainly attributed to the inhibition of lymphocytes functions. In this study, we discuss the effects of glucocorticoids on in vitro generated myeloid dendritic cells and on peripheral blood myeloid and plasmacytoid dendritic cells subsets. Experimental results point to the profound suppressive effect of glucocorticoids on the antigen presenting functions of dendritic cells and to contribute to better understanding of glucocorticoids-mediated immunosuppressive effect.

  16. Podosomes of dendritic cells facilitate antigen sampling

    PubMed Central

    Reinieren-Beeren, Inge; Cambi, Alessandra; Figdor, Carl G.; van den Bogaart, Geert

    2014-01-01

    Summary Dendritic cells sample the environment for antigens and play an important role in establishing the link between innate and acquired immunity. Dendritic cells contain mechanosensitive adhesive structures called podosomes that consist of an actin-rich core surrounded by integrins, adaptor proteins and actin network filaments. They facilitate cell migration via localized degradation of extracellular matrix. Here we show that podosomes of human dendritic cells locate to spots of low physical resistance in the substrate (soft spots) where they can evolve into protrusive structures. Pathogen recognition receptors locate to these protrusive structures where they can trigger localized antigen uptake, processing and presentation to activate T-cells. Our data demonstrate a novel role in antigen sampling for podosomes of dendritic cells. PMID:24424029

  17. Podosomes of dendritic cells facilitate antigen sampling.

    PubMed

    Baranov, Maksim V; Ter Beest, Martin; Reinieren-Beeren, Inge; Cambi, Alessandra; Figdor, Carl G; van den Bogaart, Geert

    2014-03-01

    Dendritic cells sample the environment for antigens and play an important role in establishing the link between innate and acquired immunity. Dendritic cells contain mechanosensitive adhesive structures called podosomes that consist of an actin-rich core surrounded by integrins, adaptor proteins and actin network filaments. They facilitate cell migration via localized degradation of extracellular matrix. Here, we show that podosomes of human dendritic cells locate to spots of low physical resistance in the substrate (soft spots) where they can evolve into protrusive structures. Pathogen recognition receptors locate to these protrusive structures where they can trigger localized antigen uptake, processing and presentation to activate T-cells. Our data demonstrate a novel role in antigen sampling for the podosomes of dendritic cells.

  18. Niacin inhibits skin dendritic cell mobilization in a GPR109A independent manner but has no impact on monocyte trafficking in atherosclerosis

    PubMed Central

    Ingersoll, Molly A.; Potteaux, Stephane; Alvarez, David; Hutchison, Susan B.; van Rooijen, Nico; Randolph, Gwendalyn J.

    2011-01-01

    High-dose niacin therapy in humans reduces mortality from cardiovascular disease and may also protect against death from other causes, with benefits apparent more than a decade beyond the therapeutic period. Niacin therapy modulates circulating lipids, raising HDL and lowering LDL, but has the unwanted side effect of inducing skin flushing in response to treatment. Skin flushing results from niacin-induced activation of GPR109A and subsequent release of prostaglandins that promote vasodilation. GPR109A may also mediate HDL elevation. Recent data suggest that high-dose niacin may have benefits beyond improved lipid profiles, such as quelling inflammation, suggesting a potential role in immune cell trafficking. To explore effects of niacin on immune cell trafficking independently of its effects on lipid profiles, we took advantage of the fact that niacin therapy does not raise HDL in wild-type or apoE−/− mouse strains. Wild-type and apoE−/− C57BL/6 mice were fed standard chow or high-fat diets supplemented or not with 1% niacin. Against our predictions, this treatment did not modulate monocyte recruitment to or retention within atherosclerotic plaques. By contrast, stimulating the skin of niacin-treated mice with a contact sensitizer revealed impaired dendritic cell accumulation in draining lymph nodes and associated impaired adaptive immunity. Surprisingly, niacin-mediated impaired dendritic cell mobilization could not be reversed by cyclooxygenase inhibitor treatment nor deletion of the niacin receptor GPR109A, suggesting that the effects of niacin on modulating the migration of dendritic cells are not directly linked to skin flushing. Overall, these data suggest the existence of novel pathways triggered by niacin that, through suppression of dendritic cell migration, might impact adaptive immune responses that participate in sustained therapeutic benefits independent of niacin’s cardioprotective capabilities. PMID:21798616

  19. Niacin inhibits skin dendritic cell mobilization in a GPR109A independent manner but has no impact on monocyte trafficking in atherosclerosis.

    PubMed

    Ingersoll, Molly A; Potteaux, Stephane; Alvarez, David; Hutchison, Susan B; van Rooijen, Nico; Randolph, Gwendalyn J

    2012-05-01

    High-dose niacin therapy in humans reduces mortality from cardiovascular disease and may also protect against death from other causes, with benefits apparent more than a decade beyond the therapeutic period. Niacin therapy modulates circulating lipids, raising HDL and lowering LDL, but has the unwanted side effect of inducing skin flushing in response to treatment. Skin flushing results from niacin-induced activation of GPR109A and subsequent release of prostaglandins that promote vasodilation. GPR109A may also mediate HDL elevation. Recent data suggest that high-dose niacin may have benefits beyond improved lipid profiles, such as quelling inflammation, suggesting a potential role in immune cell trafficking. To explore effects of niacin on immune cell trafficking independently of its effects on lipid profiles, we took advantage of the fact that niacin therapy does not raise HDL in wild-type or apoE⁻/⁻ mouse strains. Wild-type and apoE⁻/⁻ C57BL/6 mice were fed standard chow or high-fat diets supplemented or not with 1% niacin. Against our predictions, this treatment did not modulate monocyte recruitment to or retention within atherosclerotic plaques. By contrast, stimulating the skin of niacin-treated mice with a contact sensitizer revealed impaired dendritic cell accumulation in draining lymph nodes and associated impaired adaptive immunity. Surprisingly, niacin-mediated impaired dendritic cell mobilization could not be reversed by cyclooxygenase inhibitor treatment nor deletion of the niacin receptor GPR109A, suggesting that the effects of niacin on modulating the migration of dendritic cells are not directly linked to skin flushing. Overall, these data suggest the existence of novel pathways triggered by niacin that, through suppression of dendritic cell migration, might impact adaptive immune responses that participate in sustained therapeutic benefits independent of niacin's cardioprotective capabilities.

  20. Lymphatic Specific Disruption in the Fine Structure of Heparan Sulfate Inhibits Dendritic Cell Traffic and Functional T Cell Responses in the Lymph Node

    PubMed Central

    Yin, Xin; Johns, Scott C.; Kim, Daniel; Mikulski, Zbigniew; Salanga, Catherina L.; Handel, Tracy M.; Macal, Mónica; Zúñiga, Elina I.; Fuster, Mark M.

    2014-01-01

    Dendritic cells (DC) are potent antigen-presenting cells essential for initiating adaptive immunity. Following pathogen exposure, trafficking of DC to lymph nodes (LN) through afferent lymphatic vessels constitutes a crucial step in the execution of their functions. The mechanisms regulating this process, however, are poorly understood, although the involvement of certain chemokines in this process has recently been reported. Herein, we demonstrate that genetically altering the fine structure (N-sulfation) of heparan sulfate specifically in mouse lymphatic endothelium significantly reduces DC trafficking to regional lymph nodes in vivo. Moreover, this alteration had the unique functional consequence of reducing CD8+ T cell proliferative responses in draining lymph nodes in an ovalbumin immunization model. Mechanistic studies suggested that lymphatic endothelial heparan sulfate regulates multiple steps during DC trafficking, including optimal presentation of chemokines on the surface of DC, thus acting as a co-receptor that may function “in trans” to mediate chemokine-receptor binding. This study not only identifies novel glycan-mediated mechanisms that regulate lymphatic DC trafficking, but also validates the fine structure of lymphatic-vascular specific heparan sulfate as a novel molecular target for strategies aiming to modulate DC behavior and/or alter pathologic T cell responses in lymph nodes. PMID:24493818

  1. [Melanoma immunotherapy: dendritic cell vaccines].

    PubMed

    Lozada-Requena, Ivan; Núñez, César; Aguilar, José Luis

    2015-01-01

    This is a narrative review that shows accessible information to the scientific community about melanoma and immunotherapy. Dendritic cells have the ability to participate in innate and adaptive immunity, but are not unfamiliar to the immune evasion of tumors. Knowing the biology and role has led to generate in vitro several prospects of autologous cell vaccines against diverse types of cancer in humans and animal models. However, given the low efficiency they have shown, we must implement strategies to enhance their natural capacity either through the coexpression of key molecules to activate or reactivate the immune system, in combination with biosimilars or chemotherapeutic drugs. The action of natural products as alternative or adjuvant immunostimulant should not be ruled out. All types of immunotherapy should measure the impact of myeloid suppressor cells, which can attack the immune system and help tumor progression, respectively. This can reduce the activity of cellular vaccines and/or their combinations, that could be the difference between success or not of the immunotherapy. Although for melanoma there exist biosimilars approved by the Food and Drug Administration (FDA), not all have the expected success. Therefore it is necessary to evaluate other strategies including cellular vaccines loaded with tumor antigenic peptides expressed exclusively or antigens from tumor extracts and their respective adjuvants.

  2. α-Tocopherol supplementation of allergic female mice inhibits development of CD11c+CD11b+ dendritic cells in utero and allergic inflammation in neonates

    PubMed Central

    Abdala-Valencia, Hiam; Berdnikovs, Sergejs; Soveg, Frank W.

    2014-01-01

    α-Tocopherol blocks responses to allergen challenge in allergic adult mice, but it is not known whether α-tocopherol regulates the development of allergic disease. Development of allergic disease often occurs early in life. In clinical studies and animal models, offspring of allergic mothers have increased responsiveness to allergen challenge. Therefore, we determined whether α-tocopherol blocked development of allergic responses in offspring of allergic female mice. Allergic female mice were supplemented with α-tocopherol starting at mating. The pups from allergic mothers developed allergic lung responses, whereas pups from saline-treated mothers did not respond to the allergen challenge, and α-tocopherol supplementation of allergic female mice resulted in a dose-dependent reduction in eosinophils in the pup bronchoalveolar lavage and lungs after allergen challenge. There was also a reduction in pup lung CD11b+ dendritic cell subsets that are critical to development of allergic responses, but there was no change in several CD11b− dendritic cell subsets. Furthermore, maternal supplementation with α-tocopherol reduced the number of fetal liver CD11b+ dendritic cells in utero. In the pups, there was reduced allergen-induced lung mRNA expression of IL-4, IL-33, TSLP, CCL11, and CCL24. Cross-fostering pups at the time of birth demonstrated that α-tocopherol had a regulatory function in utero. In conclusion, maternal supplementation with α-tocopherol reduced fetal development of subsets of dendritic cells that are critical for allergic responses and reduced development of allergic responses in pups from allergic mothers. These results have implications for supplementation of allergic mothers with α-tocopherol. PMID:25015974

  3. Docosahexaenoic acid (DHA) promotes immunogenic apoptosis in human multiple myeloma cells, induces autophagy and inhibits STAT3 in both tumor and dendritic cells

    PubMed Central

    D’Eliseo, Donatella; Di Renzo, Livia; Santoni, Angela; Velotti, Francesca

    2017-01-01

    Docosahexaenoic acid (DHA), a ω-3 polyunsaturated fatty acid found in fish oil, is a multi-target agent and exerts anti-inflammatory and anticancer activities alone or in combination with chemotherapies. Combinatorial anticancer therapies, which induce immunogenic apoptosis, autophagy and STAT3 inhibition have been proposed for long-term therapeutic success. Here, we found that DHA promoted immunogenic apoptosis in multiple myeloma (MM) cells, with no toxicity on PBMCs and DCs. Immunogenic apoptosis was shown by the emission of specific DAMPs (CRT, HSP90, HMGB1) by apoptotic MM cells and the activation of their pro-apoptotic autophagy. Moreover, immunogenic apoptosis was directly shown by the activation of DCs by DHA-induced apoptotic MM cells. Furthermore, we provided the first evidence that DHA activated autophagy in PBMCs and DCs, thus potentially acting as immune stimulator and enhancing processing and presentation of tumor antigens by DCs. Finally, we found that DHA inhibited STAT3 in MM cells. STAT3 pathway, essential for MM survival, contributed to cancer cell apoptosis by DHA. We also found that DHA inhibited STAT3 in blood immune cells and counteracted STAT3 activation by tumor cell-released factors in PBMCs and DCs, suggesting the potential enhancement of the anti-tumor function of multiple immune cells and, in particular, that of DCs. PMID:28435516

  4. Docosahexaenoic acid (DHA) promotes immunogenic apoptosis in human multiple myeloma cells, induces autophagy and inhibits STAT3 in both tumor and dendritic cells.

    PubMed

    D'Eliseo, Donatella; Di Renzo, Livia; Santoni, Angela; Velotti, Francesca

    2017-01-01

    Docosahexaenoic acid (DHA), a ω-3 polyunsaturated fatty acid found in fish oil, is a multi-target agent and exerts anti-inflammatory and anticancer activities alone or in combination with chemotherapies. Combinatorial anticancer therapies, which induce immunogenic apoptosis, autophagy and STAT3 inhibition have been proposed for long-term therapeutic success. Here, we found that DHA promoted immunogenic apoptosis in multiple myeloma (MM) cells, with no toxicity on PBMCs and DCs. Immunogenic apoptosis was shown by the emission of specific DAMPs (CRT, HSP90, HMGB1) by apoptotic MM cells and the activation of their pro-apoptotic autophagy. Moreover, immunogenic apoptosis was directly shown by the activation of DCs by DHA-induced apoptotic MM cells. Furthermore, we provided the first evidence that DHA activated autophagy in PBMCs and DCs, thus potentially acting as immune stimulator and enhancing processing and presentation of tumor antigens by DCs. Finally, we found that DHA inhibited STAT3 in MM cells. STAT3 pathway, essential for MM survival, contributed to cancer cell apoptosis by DHA. We also found that DHA inhibited STAT3 in blood immune cells and counteracted STAT3 activation by tumor cell-released factors in PBMCs and DCs, suggesting the potential enhancement of the anti-tumor function of multiple immune cells and, in particular, that of DCs.

  5. The Herpes Simplex Virus Type 1 Latency-Associated Transcript Inhibits Phenotypic and Functional Maturation of Dendritic Cells

    PubMed Central

    Dervillez, Xavier; Dasgupta, Gargi; Nguyen, Chelsea; Kabbara, Khaled W.; Jiang, Xianzhi; Nesburn, Anthony B.; Wechsler, Steven L.

    2012-01-01

    Abstract We recently found that the herpes simplex virus-1 (HSV-1) latency-associated transcript (LAT) results in exhaustion of virus-specific CD8+ T cells in latently-infected trigeminal ganglia (TG). In this study we sought to determine if this impairment may involve LAT directly and/or indirectly interfering with DC maturation. We found that a small number of HSV-1 antigen-positive DCs are present in the TG of latently-infected CD11c/eYFP mice; however, this does not imply that these DCs are acutely or latently infected. Some CD8+ T cells are adjacent to DCs, suggesting possible interactions. It has previously been shown that wild-type HSV-1 interferes with DC maturation. Here we show for the first time that this is associated with LAT expression, since compared to LAT(−) virus: (1) LAT(+) virus interfered with expression of MHC class I and the co-stimulatory molecules CD80 and CD86 on the surface of DCs; (2) LAT(+) virus impaired DC production of the proinflammatory cytokines IL-6, IL-12, and TNF-α; and (3) DCs infected in vitro with LAT(+) virus had significantly reduced the ability to stimulate HSV-specific CD8+ T cells. While a similar number of DCs was found in LAT(+) and LAT(−) latently-infected TG of CD11c/eYFP transgenic mice, more HSV-1 Ag-positive DCs and more exhausted CD8 T cells were seen with LAT(+) virus. Consistent with these findings, HSV-specific cytotoxic CD8+ T cells in the TG of mice latently-infected with LAT(+) virus produced less IFN-γ and TNF-α than those from TG of LAT(−)-infected mice. Together, these results suggest a novel immune-evasion mechanism whereby the HSV-1 LAT increases the number of HSV-1 Ag-positive DCs in latently-infected TG, and interferes with DC phenotypic and functional maturation. The effect of LAT on TG-resident DCs may contribute to the reduced function of HSV-specific CD8+ T cells in the TG of mice latently infected with LAT(+) virus. PMID:22512280

  6. CD38 gene-modified dendritic cells inhibit murine asthma development by increasing IL-12 production and promoting Th1 cell differentiation.

    PubMed

    Wang, Jiaoli; Zhu, Weiguo; Chen, Yinghu; Lin, Zhendong; Ma, Shenglin

    2016-11-01

    Predominant T helper (Th)2 and impaired Th1 cell polarization has a crucial role in the development of asthma. Cluster of differentiation (CD)38 is associated with the increased release of interleukin (IL)‑12 from dendritic cells (DCs) and DC‑induced Th1 cell polarization. However, whether CD38 expression affects DC function in asthma development remains unknown. In the current study, adenoviruses were constructed containing the murine CD38 gene. Overexpression of CD38 protein level in DCs induced from bone‑marrow derived DCs (BMDCs) by recombinant mouse granulocyte macrophage colony‑stimulating factor and IL‑4 was achieved through 24 h adenovirus infection. The results demonstrated that BMDCs with CD38 overexpression exhibited no phenotypic change; however, following stimulation with lipopolysaccharide (LPS), maturation and IL‑12 secretion were increased. In addition, CD38‑overexpressing BMDCs stimulated with LPS exhibited more effective Th1 cell differentiation. Mice that were administered CD38‑overexpressing BMDCs exhibited milder symptoms of asthma. Furthermore, decreased IL‑4, IL‑5 and IL‑13 levels were detected in bronchoalveolar lavage fluid (BALF), reduced immunoglobulin E levels were measured in the sera, and increased interferon‑γ was detected in BALF from the recipients of CD38‑overexpressing BMDCs. Increased phosphorylated‑p38 expression was also detected in LPS-stimulated CD38-overexpressing BMDCs, whereas pretreatment with a p38‑specific inhibitor was able to abolish the effects of LPS stimulation and CD38 overexpression on IL‑12 release and Th1 cell differentiation in BMDCs. These results suggested that CD38 may be involved in the DC function of alleviating asthma via restoration of the Th1/Th2 balance, thus providing a novel strategy for asthma therapy.

  7. Characterization of chicken epidermal dendritic cells

    PubMed Central

    Igyártó, Botond-Zoltán; Lackó, Erzsébet; Oláh, Imre; Magyar, Attila

    2006-01-01

    It has been known for 15 years that the chicken epidermis contains ATPase+ and major histocompatibility complex class II-positive (MHCII+) dendritic cells. These cells were designated as Langerhans cells but neither their detailed phenotype nor their function was further investigated. In the present paper we demonstrate a complete overlapping of ATPase, CD45 and vimentin staining in all dendritic cells of the chicken epidermis. The CD45+ ATPase+ vimentin+ dendritic cells could be divided into three subpopulations: an MHCII+ CD3– KUL01+ and 68.1+ (monocyte-macrophage subpopulation markers) subpopulation, an MHCII– CD3– KUL01– and 68.1– subpopulation and an MHCII– CD3+ KUL01– and 68.1– subpopulation. The first population could be designated as chicken Langerhans cells. The last population represents CD4– CD8– T-cell receptor-αβ– and -γδ– natural killer cells with cytoplasmic CD3 positivity. The epidermal dendritic cells have a low proliferation rate as assessed by bromodeoxyuridine incorporation. Both in vivo and in vitro experiments showed that dendritic cells could be mobilized from the epidermis. Hapten treatment of epidermis resulted in the decrease of the frequency of epidermal dendritic cells and hapten-loaded dendritic cells appeared in the dermis or in in vitro culture of isolated epidermis. Hapten-positive cells were also found in the so-called dermal lymphoid nodules. We suggest that these dermal nodules are responsible for some regional immunological functions similar to the mammalian lymph nodes. PMID:16889640

  8. Identification and isolation of synovial dendritic cells.

    PubMed

    Pettit, Allison R; Cavanagh, Lois; Boyce, Amanda; Padmanabha, Jagadish; Peng, Judy; Thomas, Ranjeny

    2007-01-01

    In rheumatoid arthritis patients, three compartments need to be considered: peripheral blood, synovial fluid, and synovial tissue. Dendritic cells characterized from each compartment have different properties. The methods given are based on cell sorting for isolation of cells, and flow cytometry and immunohistochemical staining for analysis of cells in these compartments.

  9. Direct depolarization and antidromic action potentials transiently suppress dendritic IPSPs in hippocampal CA1 pyramidal cells.

    PubMed

    Morishita, W; Alger, B E

    2001-01-01

    Whole-cell current-clamp recordings were made from distal dendrites of rat hippocampal CA1 pyramidal cells. Following depolarization of the dendritic membrane by direct injection of current pulses or by back-propagating action potentials elicited by antidromic stimulation, evoked gamma-aminobutyric acid-A (GABA(A)) receptor-mediated inhibitory postsynaptic potentials (IPSPs) were transiently suppressed. This suppression had properties similar to depolarization-induced suppression of inhibition (DSI): it was enhanced by carbachol, blocked by dendritic hyperpolarization sufficient to prevent action potential invasion, and reduced by 4-aminopyridine (4-AP) application. Thus DSI or a DSI-like process can be recorded in CA1 distal dendrites. Moreover, localized application of TTX to stratum pyramidale blocked somatic action potentials and somatic IPSPs, but not dendritic IPSPs or DSI induced by direct dendritic depolarization, suggesting DSI is expressed in part in the dendrites. These data extend the potential physiological roles of DSI.

  10. Immune activation: death, danger and dendritic cells.

    PubMed

    Pulendran, Bali

    2004-01-06

    Dendritic cells are critical for host immunity, and sense microbes with pathogen recognition receptors. New evidence indicates that these cells also sense uric acid crystals in dead cells, suggesting that the immune system is conscious not only of pathogens, but also of death and danger.

  11. Dendritic differentiation of cerebellar Purkinje cells is promoted by ryanodine receptors expressed by Purkinje and granule cells.

    PubMed

    Ohashi, Ryo; Sakata, Shin-ichi; Naito, Asami; Hirashima, Naohide; Tanaka, Masahiko

    2014-04-01

    Cerebellar Purkinje cells have the most elaborate dendritic trees among neurons in the brain. We examined the roles of ryanodine receptor (RyR), an intracellular Ca(2+) release channel, in the dendrite formation of Purkinje cells using cerebellar cell cultures. In the cerebellum, Purkinje cells express RyR1 and RyR2, whereas granule cells express RyR2. When ryanodine (10 µM), a blocker of RyR, was added to the culture medium, the elongation and branching of Purkinje cell dendrites were markedly inhibited. When we transferred small interfering RNA (siRNA) against RyR1 into Purkinje cells using single-cell electroporation, dendritic branching but not elongation of the electroporated Purkinje cells was inhibited. On the other hand, transfection of RyR2 siRNA into granule cells also inhibited dendritic branching of Purkinje cells. Furthermore, ryanodine reduced the levels of brain-derived neurotrophic factor (BDNF) in the culture medium. The ryanodine-induced inhibition of dendritic differentiation was partially rescued when BDNF was exogenously added to the culture medium in addition to ryanodine. Overall, these results suggest that RyRs expressed by both Purkinje and granule cells play important roles in promoting the dendritic differentiation of Purkinje cells and that RyR2 expressed by granule cells is involved in the secretion of BDNF from granule cells.

  12. Molecular profiling of blastic plasmacytoid dendritic cell neoplasm reveals a unique pattern and suggests selective sensitivity to NF-kB pathway inhibition.

    PubMed

    Sapienza, M R; Fuligni, F; Agostinelli, C; Tripodo, C; Righi, S; Laginestra, M A; Pileri, A; Mancini, M; Rossi, M; Ricci, F; Gazzola, A; Melle, F; Mannu, C; Ulbar, F; Arpinati, M; Paulli, M; Maeda, T; Gibellini, D; Pagano, L; Pimpinelli, N; Santucci, M; Cerroni, L; Croce, C M; Facchetti, F; Piccaluga, P P; Pileri, S A

    2014-08-01

    Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare disease of controversial origin recently recognized as a neoplasm deriving from plasmacytoid dendritic cells (pDCs). Nevertheless, it remains an orphan tumor with obscure biology and dismal prognosis. To better understand the pathobiology of BPDCN and discover new targets for effective therapies, the gene expression profile (GEP) of 25 BPDCN samples was analyzed and compared with that of pDCs, their postulated normal counterpart. Validation was performed by immunohistochemistry (IHC), whereas functional experiments were carried out ex vivo. For the first time at the molecular level, we definitely recognized the cellular derivation of BPDCN that proved to originate from the myeloid lineage and in particular, from resting pDCs. Furthermore, thanks to an integrated bioinformatic approach we discovered aberrant activation of the NF-kB pathway and suggested it as a novel therapeutic target. We tested the efficacy of anti-NF-kB-treatment on the BPDCN cell line CAL-1, and successfully demonstrated by GEP and IHC the molecular shutoff of the NF-kB pathway. In conclusion, we identified a molecular signature representative of the transcriptional abnormalities of BPDCN and developed a cellular model proposing a novel therapeutic approach in the setting of this otherwise incurable disease.

  13. The serotonin receptor 5-HT₇R regulates the morphology and migratory properties of dendritic cells.

    PubMed

    Holst, Katrin; Guseva, Daria; Schindler, Susann; Sixt, Michael; Braun, Armin; Chopra, Himpriya; Pabst, Oliver; Ponimaskin, Evgeni

    2015-08-01

    Dendritic cells are potent antigen-presenting cells endowed with the unique ability to initiate adaptive immune responses upon inflammation. Inflammatory processes are often associated with an increased production of serotonin, which operates by activating specific receptors. However, the functional role of serotonin receptors in regulation of dendritic cell functions is poorly understood. Here, we demonstrate that expression of serotonin receptor 5-HT7 (5-HT7R) as well as its downstream effector Cdc42 is upregulated in dendritic cells upon maturation. Although dendritic cell maturation was independent of 5-HT7R, receptor stimulation affected dendritic cell morphology through Cdc42-mediated signaling. In addition, basal activity of 5-HT7R was required for the proper expression of the chemokine receptor CCR7, which is a key factor that controls dendritic cell migration. Consistent with this, we observed that 5-HT7R enhances chemotactic motility of dendritic cells in vitro by modulating their directionality and migration velocity. Accordingly, migration of dendritic cells in murine colon explants was abolished after pharmacological receptor inhibition. Our results indicate that there is a crucial role for 5-HT7R-Cdc42-mediated signaling in the regulation of dendritic cell morphology and motility, suggesting that 5-HT7R could be a new target for treatment of a variety of inflammatory and immune disorders.

  14. p100, a precursor of NF-κB2, inhibits c-Rel and reduces the expression of IL-23 in dendritic cells

    SciTech Connect

    Mise-Omata, Setsuko Obata, Yuichi; Doi, Takahiro S.

    2014-10-24

    Highlights: • The deficiency of p100 enhances c-Rel-, not RelA-, dependent cytokine expression. • p100 associates with c-Rel in the steady state but dissociates after LPS stimulation. • The deficiency of p100 enhances the nuclear translocation of c-Rel. • p100 negatively regulates the c-Rel function. - Abstract: Nuclear factor κB regulates various genes involved in the immune response, inflammation, cell survival, and development. NF-κB activation is controlled by proteins possessing ankyrin repeats, such as IκBs. A precursor of the NF-κB2 (p52) subunit, p100, contains ankyrin repeats in its C-terminal portion and has been found to act as a cytoplasmic inhibitor of RelA in the canonical pathway of NF-κB activation. Here, we demonstrate that p100 also suppresses c-Rel function in dendritic cells. Expression of the p19 and p40 subunits of IL-23, a c-Rel-dependent cytokine, was enhanced in p100-deficient cells, although expression of a RelA-dependent cytokine, TNF-α, was reduced. Nuclear translocation of c-Rel was enhanced in p100-deficient cells. p100, and not the processed p52 form, associated with c-Rel in the steady state and dissociated immediately after lipopolysaccharide stimulation in wild-type dendritic cells. Four hours after the stimulation, p100 was newly synthesized and associated with c-Rel again. In cells expressing both c-Rel and RelA, c-Rel is preferentially suppressed by p100.

  15. ISOLATION OF CHICKEN FOLLICULAR DENDRITIC CELLS

    USDA-ARS?s Scientific Manuscript database

    The aim of the present study was to isolate chicken follicular dendritic cells (FDC). A combination of methods involving panning, iodixanol density gradient centrifugation, and magnetic cell separation technology made it possible to obtain functional FDC from the cecal tonsils from chickens, which h...

  16. Cells with dendritic cell morphology and immunophenotype, binuclear morphology, and immunosuppressive function in dendritic cell cultures.

    PubMed

    Dong, Rong; Moulding, Dale; Himoudi, Nourredine; Adams, Stuart; Bouma, Gerben; Eddaoudi, Ayad; Basu, B Piku; Derniame, Sophie; Chana, Prabhjoat; Duncan, Andrew; Anderson, John

    2011-01-01

    Culturing of human peripheral blood CD14 positive monocytes is a method for generation of dendritic cells (DCs) for experimental purposes or for use in clinical grade vaccines. When culturing human DCs in this manner for clinical vaccine production, we noticed that 5-10% of cells within the bulk culture were binuclear or multiple nuclear, but had typical dendritic cell morphology and immunophenotype. We refer to the cells as binuclear cells in dendritic cell cultures (BNiDCs). By using single cell PCR analysis of mitochondrial DNA polymorphisms we demonstrated that approximately 20-25% of cells in DC culture undergo a fusion event. Flow sorted BNiDC express low HLA-DR and IL-12p70, but high levels of IL-10. In mixed lymphocyte reactions, purified BNiDC suppressed lymphocyte proliferation. Blockade of dendritic cell-specific transmembrane protein (DC-STAMP) decreased the number of binuclear cells in DC cultures. BNiDC represent a potentially tolerogenic population within DC preparations for clinical use.

  17. The survival and growth of ovine afferent lymph dendritic cells in culture depends on tumour necrosis factor-alpha and is enhanced by granulocyte-macrophage colony-stimulating factor but inhibited by interferon-gamma.

    PubMed

    Haig, D M; Percival, A; Mitchell, J; Green, I; Sargan, D

    1995-04-01

    An in vitro culture system is described which allows an analysis of the signals responsible for the survival, growth and functional maturation of afferent lymph dendritic cells (ALDC), a subpopulation of migrating dermal dendritic cells involved in antigen carriage and presentation to T-cells. Purified ALDC survived and grew for up to 30 days in lymph node conditioned medium and survived 14 days in recombinant ovine (rov) TNF-alpha whereas none were detected after 24 h in rov GM-CSF, rov IFN-gamma or rh M-CSF. However, when rov GM-CSF was added to cultures along with rov TNF-alpha, increased numbers of ALDC compared with input numbers (growth) were recorded on Days 14 and 21. In contrast, when 50-200 units ml-1 of rov IFN-gamma were added to cultures of ALDC along with TNF-alpha or rov TNF-alpha plus rov GM-CSF, cell survival and growth was inhibited. Antibody blocking studies confirmed the cytokine specificity of these effects. ALDC cultured in rov TNF-alpha or rov TNF-alpha plus rov GM-CSF retained MHC Class-II and ov CD-1 antigen expression and accessory function for autologous ov CD-4 T-cell proliferation, although at reduced levels compared with freshly isolated cells. Neither fresh nor cultured ALDC expressed coagulation factor XIIIa.

  18. Inhibition of dendrite formation in mouse melanocytes transiently transfected with antisense DNA to myosin Va

    PubMed Central

    EDGAR, ALASDAIR J.; BENNETT, JONATHAN P.

    1999-01-01

    In mice a molecular motor of the myosin V class (designated myosin Va) is known to be the product of the dilute locus, where a mutation prevents melanosome transport in melanocytes. There is conflicting evidence about whether it has a role in dendrite outgrowth. We investigated its role by transiently transfecting antisense oligonucleotides to inhibit its expression in a melanocyte cell line. We demonstrated mRNA and protein expression of myosin Va in 3 mouse melanocyte lines and 1 human melanoma cell line, using RT-PCR and immunoblotting. Two splice variants were found in human cells whilst only the longer transcript, containing an additional exon, was present in mouse melanocyte lines. The shorter variant was detected in other mouse tissues. Myosin Va protein levels were similar in 3 melanocyte lines with differing amounts of pigmentation, indicating that expression of myosin Va is not tightly coupled to expression of melanin. Immunocytochemistry showed 2 types of myosin Va localisation. A punctate pattern of staining concentrated in the perinuclear region was indicative of organelle association, and the observation of occasional linear punctate staining aligned with F-actin bundles supported the idea that myosin Va has a role in transporting melanosomes along actin filaments. Staining was also intense at tips of dendrites and at sites of dendrite-cell contact, consistent with a possible role in dendrite growth. Transient transfection of antisense phosphorothioate oligodeoxynucleotides targeted against myosin Va mRNA reduced expression of myosin Va protein in cultured mouse melan-a melanocytes by over 70% 20 h after transfection whereas a control (shuffled sequence) oligonucleotide did not. Upon trypsinisation and replating these cells the capacity of the transfected cells to extend new dendrites was reduced in the cells containing the specific antisense oligonucleotides but unaffected by the control oligonucleotide. Image analysis confirmed that the effect of

  19. Efficient generation of canine bone marrow-derived dendritic cells.

    PubMed

    Isotani, Mayu; Katsuma, Kensuke; Tamura, Kyoichi; Yamada, Misato; Yagihara, Hiroko; Azakami, Daigo; Ono, Kenichiro; Washizu, Tsukimi; Bonkobara, Makoto

    2006-08-01

    Because of their unsurpassed potency in presenting antigens to naive T cells, dendritic cells are considered to be an important candidate in the development of immunotherapeutic strategies. Despite the high potential of dendritic cell-based immunotherapy, as a so-called dendritic cell vaccination, few clinical approaches using dendritic cell vaccination have been performed in the dog because of very limited information regarding the generation of canine dendritic cells and their functional properties. We therefore established a protocol for the efficient generation of dendritic cells from canine bone marrow cells using recombinant feline granulocyte-macrophage colony-stimulating factor and canine interleukin-4. Dendritic cells were generated efficiently: a yield of 1-9 x 10(6) cells per approximately 0.5 ml of canine bone marrow aspiration was achieved. These dendritic cells showed features shared with mouse and human dendritic cells: dendrite morphology, expression of surface markers MHC class II and CD11c, and up-regulation of molecules related to antigen presentation (MHC class II, B7-1, and B7-2) by activation with lipopolysaccharide. Moreover, the dendritic cells demonstrated phagocytic activity, processing activity of pinocytosed proteins, and activation of allogeneic T cells far more potent than that by macrophages. Our findings suggest that the bone marrow-derived dendritic cells are functional for the capturing and processing of antigens and the initiation of T cell responses.

  20. The multifaceted biology of plasmacytoid dendritic cells

    PubMed Central

    Swiecki, Melissa; Colonna, Marco

    2015-01-01

    Plasmacytoid dendritic cells (pDCs) are a unique dendritic cell subset that specializes in the production of type I interferons (IFNs). pDCs promote antiviral immune responses and have been implicated in the pathogenesis of autoimmune diseases characterized by a type I IFN signature. However, pDCs can also induce tolerogenic immune responses. Here, we review recent progress from the field of pDC biology, focusing on: the molecular mechanisms that regulate pDC development and functions; the pathways involved in their sensing of pathogens and endogenous nucleic acids; the function of pDCs at mucosal sites; and their roles in infections, autoimmunity and cancer. PMID:26160613

  1. Suppression of zinc dendrites in zinc electrode power cells

    NASA Technical Reports Server (NTRS)

    Damjanovic, A.; Diggle, J. W.

    1970-01-01

    Addition of various tetraalkyl quarternary ammonium salts, to alkaline zincate electrolyte of cell, prevents formation of zinc dendrites during charging of zinc electrode. Electrode capacity is not impaired and elimination of dendrites prolongs cell life.

  2. Differentiation of apical and basal dendrites in pyramidal cells and granule cells in dissociated hippocampal cultures.

    PubMed

    Wu, You Kure; Fujishima, Kazuto; Kengaku, Mineko

    2015-01-01

    Hippocampal pyramidal cells and dentate granule cells develop morphologically distinct dendritic arbors, yet also share some common features. Both cell types form a long apical dendrite which extends from the apex of the cell soma, while short basal dendrites are developed only in pyramidal cells. Using quantitative morphometric analyses of mouse hippocampal cultures, we evaluated the differences in dendritic arborization patterns between pyramidal and granule cells. Furthermore, we observed and described the final apical dendrite determination during dendritic polarization by time-lapse imaging. Pyramidal and granule cells in culture exhibited similar dendritic patterns with a single principal dendrite and several minor dendrites so that the cell types were not readily distinguished by appearance. While basal dendrites in granule cells are normally degraded by adulthood in vivo, cultured granule cells retained their minor dendrites. Asymmetric growth of a single principal dendrite harboring the Golgi was observed in both cell types soon after the onset of dendritic growth. Time-lapse imaging revealed that up until the second week in culture, final principal dendrite designation was not stabilized, but was frequently replaced by other minor dendrites. Before dendritic polarity was stabilized, the Golgi moved dynamically within the soma and was repeatedly repositioned at newly emerging principal dendrites. Our results suggest that polarized growth of the apical dendrite is regulated by cell intrinsic programs, while regression of basal dendrites requires cue(s) from the extracellular environment in the dentate gyrus. The apical dendrite designation is determined from among multiple growing dendrites of young developing neurons.

  3. Dendritic cells and immunotherapy for cancer.

    PubMed

    Chang, David H; Dhodapkar, Madhav V

    2003-06-01

    Dendritic cells, nature's adjuvant, are antigen-presenting cells specialized to initiate and regulate immunity. Their potent antigen-presenting function has encouraged targeting of dendritic cells (DCs) for harnessing the immune system against cancer. DCs are efficient at activating not only CD4+ helper T-cells and CD8+ killer T-cells but also B-cells and innate effectors such as natural killer and natural killer T-cells. Early studies of adoptive transfer of tumor antigen-loaded DCs have shown promise. However, DC vaccination is at an early stage, and several parameters still need to be established. The complexity of the DC system brings about the necessity for its rational manipulation for achieving protective and therapeutic immunity in patients.

  4. Characterization of chicken dendritic cell markers

    USDA-ARS?s Scientific Manuscript database

    Animal and Natural Resources Institute, ARS-USDA, Beltsville, MD, USA. New mouse monoclonal antibodies which detect CD80 and CD83 were developed to characterize chicken dendritic cells (DCs). The characteristics of these molecules have been studied in human, swine, ovine, feline, and canine but not ...

  5. Aberrant Neuronal Differentiation and Inhibition of Dendrite Outgrowth Resulting from Endoplasmic Reticulum Stress

    PubMed Central

    Kawada, Koichi; Iekumo, Takaaki; Saito, Ryo; Kaneko, Masayuki; Mimori, Seisuke; Nomura, Yasuyuki; Okuma, Yasunobu

    2014-01-01

    Neural stem cells (NSCs) play an essential role in development of the central nervous system. Endoplasmic reticulum (ER) stress induces neuronal death. After neuronal death, neurogenesis is generally enhanced to repair the damaged regions. However, it is unclear whether ER stress directly affects neurogenesis-related processes such as neuronal differentiation and dendrite outgrowth. We evaluated whether neuronal differentiation and dendrite outgrowth were regulated by HRD1, a ubiquitin ligase that was induced under mild conditions of tunicamycin-induced ER stress. Neurons were differentiated from mouse embryonic carcinoma P19 cells by using retinoic acid. The differentiated cells were cultured for 8 days with or without tunicamycin and HRD1 knockdown. The ER stressor led to markedly increased levels of ER stress. ER stress increased the expression levels of neuronal marker βIII-tubulin in 8-day-differentiated cells. However, the neurites of dendrite marker microtubule-associated protein-2 (MAP-2)-positive cells appeared to retract in response to ER stress. Moreover, ER stress markedly reduced the dendrite length and MAP-2 expression levels, whereas it did not affect the number of surviving mature neurons. In contrast, HRD1 knockdown abolished the changes in expression of proteins such as βIII-tubulin and MAP-2. These results suggested that ER stress caused aberrant neuronal differentiation from NSCs followed by the inhibition of neurite outgrowth. These events may be mediated by increased HRD1 expression. PMID:24723324

  6. Method of inhibiting dislocation generation in silicon dendritic webs

    DOEpatents

    Spitznagel, John A.; Seidensticker, Raymond G.; McHugh, James P.

    1990-11-20

    A method of tailoring the heat balance of the outer edge of the dendrites adjacent the meniscus to produce thinner, smoother dendrites, which have substantially less dislocation sources contiguous with the dendrites, by changing the view factor to reduce radiation cooling or by irradiating the dendrites with light from a quartz lamp or a laser to raise the temperature of the dendrites.

  7. Influence of organophosphate poisoning on human dendritic cells.

    PubMed

    Schäfer, Marina; Koppe, Franziska; Stenger, Bernhard; Brochhausen, Christoph; Schmidt, Annette; Steinritz, Dirk; Thiermann, Horst; Kirkpatrick, Charles James; Pohl, Christine

    2013-12-05

    Organophosphourus compounds (OPC, including nerve agents and pesticides) exhibit acute toxicity by inhibition of acetylcholinesterase. Lung affections are frequent complications and a risk factor for death. In addition, epidemiological studies reported immunological alterations after OPC exposure. In our experiments we investigated the effects of organophosphourus pesticides dimethoate and chlorpyrifos on dendritic cells (DC) that are essential for the initial immune response, especially in the pulmonary system. DC, differentiated from the monocyte cell line THP-1 by using various cytokines (IL-4, GM-CSF, TNF-α, Ionomycin), were exposed to organophosphourus compounds at different concentrations for a 24h time period. DC were characterized by flow cytometry and immunofluorescence using typical dendritic cell markers (e.g., CD11c, CD209 and CD83). After OPC exposure we investigated cell death, the secretion profile of inflammatory mediators, changes of DC morphology, and the effect on protein kinase signalling pathways. Our results revealed a successful differentiation of THP-1 into DC. OPC exposure caused a significant concentration-dependent influence on DC: Dendrites of the DC were shortened and damaged, DC-specific cell surface markers (i.e., CD83and CD209) decreased dramatically after chlorpyrifos exposure. Interestingly, the effects caused by dimethoate were in general less pronounced. The organophosphourus compounds affected the release of inflammatory cytokines, such as IL-1ß and IL-8. The anti-inflammatory cytokine IL-10 was significantly down regulated. Protein kinases like the Akt family or ERK, which are essential for cell survival and proliferation, were inhibited by both OPC. These findings indicate that the tested organophosphourus compounds induced significant changes in cell morphology, inhibited anti-inflammatory cytokines and influenced important protein signalling pathways which are involved in regulation of apoptosis. Thus our results highlight

  8. The influences of somatic and dendritic inhibition on bursting patterns in a neuronal circuit model.

    PubMed

    Yang, Keun-Hang; Franaszczuk, Piotr J; Bergey, Gregory K

    2003-10-01

    The balance between inhibition and excitation plays a crucial role in the generation of synchronous bursting activity in neuronal circuits. In human and animal models of epilepsy, changes in both excitatory and inhibitory synaptic inputs are known to occur. Locations and distribution of these excitatory and inhibitory synaptic inputs on pyramidal cells play a role in the integrative properties of neuronal activity, e.g., epileptiform activity. Thus the location and distribution of the inputs onto pyramidal cells are important parameters that influence neuronal activity in epilepsy. However, the location and distribution of inhibitory synapses converging onto pyramidal cells have not been fully studied. The objectives of this study are to investigate the roles of the relative location of inhibitory synapses on the dendritic tree and soma in the generation of bursting activity. We investigate influences of somatic and dendritic inhibition on bursting activity patterns in several paradigms of potential connections using a simplified multicompartmental model. We also investigate the effects of distribution of fast and slow components of GABAergic inhibition in pyramidal cells. Interspike interval (ISI) analysis is used for examination of bursting patterns. Simulations show that the inhibitory interneuron regulates neuronal bursting activity. Bursting behavior patterns depend on the synaptic weight and delay of the inhibitory connection as well as the location of the synapse. When the inhibitory interneuron synapses on the pyramidal neuron, inhibitory action is stronger if the inhibitory synapse is close to the soma. Alterations of synaptic weight of the interneuron can be compensatory for changes in the location of synaptic input. The relative changes in these parameters exert a considerable influence on whether synchronous bursting activity is facilitated or reduced. Additional simulations show that the slow GABAergic inhibitory component is more effective than the

  9. Inhibition of the Protein Tyrosine Phosphatase, SHP-1, in Dendritic Cells to Enhance their Efficacy as Cell-Based Prostate Cancer Vaccines

    DTIC Science & Technology

    2009-05-01

    inhibitor of DC activation and that by blocking SHP-1in DC would induce stronger anti-tumor immunity. Our results demonstrate that inhibition of SHP...observations suggest that SHP-1 is a pleiotropic inhibitor ofDC function and that its inhibition in DCs enhances the strength of immune responses...approach is to inhibit inhibitors of DC function that normally serve to regulate the initiation of immune responses. We hypothesized that the Src

  10. How helminths use excretory secretory fractions to modulate dendritic cells

    PubMed Central

    White, Rhiannon R.; Artavanis-Tsakonas, Katerina

    2012-01-01

    It is well known that helminth parasites have immunomodulatory effects on their hosts. They characteristically cause a skew toward TH2 immunity, stimulate Treg cells while simultaneously inhibiting TH1 and TH17 responses. Additionally, they induce eosinophilia and extensive IgE release. The exact mechanism of how the worms achieve this effect have yet to be fully elucidated; however, parasite-derived secretions and their interaction with antigen presenting cells have been centrally implicated. Herein, we will review the effects of helminth excretory-secretory fractions on dendritic cells and discuss how this interaction is crucial in shaping the host response. PMID:23221477

  11. REDD2-mediated inhibition of mTOR promotes dendrite retraction induced by axonal injury

    PubMed Central

    Morquette, B; Morquette, P; Agostinone, J; Feinstein, E; McKinney, R A; Kolta, A; Di Polo, A

    2015-01-01

    Dendritic defects occur in neurodegenerative diseases accompanied by axonopathy, yet the mechanisms that regulate these pathologic changes are poorly understood. Using Thy1-YFPH mice subjected to optic nerve axotomy, we demonstrate early retraction of retinal ganglion cell (RGC) dendrites and selective loss of mammalian target of rapamycin (mTOR) activity, which precede soma loss. Axonal injury triggered rapid upregulation of the stress-induced protein REDD2 (regulated in development and DNA damage response 2), a potent inhibitor of mTOR. Short interfering RNA-mediated REDD2 knockdown restored mTOR activity and rescued dendritic length, area and branch complexity in a rapamycin-dependent manner. Whole-cell recordings demonstrated that REDD2 depletion leading to mTOR activation in RGCs restored their light response properties. Lastly, we show that REDD2-dependent mTOR activity extended RGC survival following axonal damage. These results indicate that injury-induced stress leads to REDD2 upregulation, mTOR inhibition and dendrite pathology causing neuronal dysfunction and subsequent cell death. PMID:25257176

  12. REDD2-mediated inhibition of mTOR promotes dendrite retraction induced by axonal injury.

    PubMed

    Morquette, B; Morquette, P; Agostinone, J; Feinstein, E; McKinney, R A; Kolta, A; Di Polo, A

    2015-04-01

    Dendritic defects occur in neurodegenerative diseases accompanied by axonopathy, yet the mechanisms that regulate these pathologic changes are poorly understood. Using Thy1-YFPH mice subjected to optic nerve axotomy, we demonstrate early retraction of retinal ganglion cell (RGC) dendrites and selective loss of mammalian target of rapamycin (mTOR) activity, which precede soma loss. Axonal injury triggered rapid upregulation of the stress-induced protein REDD2 (regulated in development and DNA damage response 2), a potent inhibitor of mTOR. Short interfering RNA-mediated REDD2 knockdown restored mTOR activity and rescued dendritic length, area and branch complexity in a rapamycin-dependent manner. Whole-cell recordings demonstrated that REDD2 depletion leading to mTOR activation in RGCs restored their light response properties. Lastly, we show that REDD2-dependent mTOR activity extended RGC survival following axonal damage. These results indicate that injury-induced stress leads to REDD2 upregulation, mTOR inhibition and dendrite pathology causing neuronal dysfunction and subsequent cell death.

  13. Inhibition of HIV-1 transmission in trans from dendritic cells to CD4+ T lymphocytes by natural antibodies to the CRD domain of DC-SIGN purified from breast milk and intravenous immunoglobulins

    PubMed Central

    Requena, Mary; Bouhlal, Hicham; Nasreddine, Nadine; Saidi, Hela; Gody, Jean-Chrysostome; Aubry, Sylvie; Grésenguet, Gérard; Kazatchkine, Michel D; Sekaly, Rafick-Pierre; Bélec, Laurent; Hocini, Hakim

    2008-01-01

    The present study demonstrates that human breast milk and normal human polyclonal immunoglobulins purified from plasma [intravenous immunoglobulins (IVIg)] contain functional natural immunoglobulin A (IgA) and IgG antibodies directed against the carbohydrate recognition domain (CRD) domain of the dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) molecule, which is involved in the binding of human immunodeficiency virus (HIV)-1 to dendritic cells (DCs). Antibodies to DC-SIGN CRD were affinity-purified on a matrix to which a synthetic peptide corresponding to the N-terminal CRD domain (amino-acid 342–amino-acid 371) had been coupled. The affinity-purified antibodies bound to the DC-SIGN peptide and to the native DC-SIGN molecule expressed by HeLa DC-SIGN+ cells and immature monocyte-derived dendritic cells (iMDDCs), in a specific and dose-dependent manner. At an optimal dose of 200 µg/ml, natural antibodies to DC-SIGN CRD peptide purified from breast milk and IVIg stained 25 and 20% of HeLa DC-SIGN+ cells and 32 and 12% of iMDDCs, respectively. Anti-DC-SIGN CRD peptide antibodies inhibited the attachment of virus to HeLa DC-SIGN by up to 78% and the attachment to iMDDCs by only 20%. Both breast milk- and IVIg-derived natural antibodies to the CRD peptide inhibited 60% of the transmission in trans of HIV-1JRCSF, an R5-tropic strain, from iMDDCs to CD4+ T lymphocytes. Taken together, these observations suggest that the attachment of HIV to DCs and transmission in trans to autologous CD4+ T lymphocytes occur through two independent mechanisms. Our data support a role of natural antibodies to DC-SIGN in the modulation of postnatal HIV transmission through breast-feeding and in the natural host defence against HIV-1 in infected individuals. PMID:17999675

  14. Inhibition of the Protein Tyrosine Phosphatase, SHP-1, in Dendritic Cells to Enhance their Efficacy as Cell-Based Prostate Cancer Vaccines

    DTIC Science & Technology

    2008-05-01

    hypothesis that the Src homology region 2 domain-containing phosphatase-1 (SHP-1), is a global inhibitor of DC activation and that by blocking SHP-1 in... inhibitor of DC function and that its inhibition in DCs enhances the strength of immune responses. Finally, using 2 ectopic mouse tumor models (B16 melanoma...enhance function and to overcome the limitations of the "first-generation vaccines". Our specific approach is to inhibit inhibitors of DC function

  15. Modulation of Dendritic Cell Activation and Subsequent Th1 Cell Polarization by Lidocaine

    PubMed Central

    Chung, Yeonseok

    2015-01-01

    Dendritic cells play an essential role in bridging innate and adaptive immunity by recognizing cellular stress including pathogen- and damage-associated molecular patterns and by shaping the types of antigen-specific T cell immunity. Although lidocaine is widely used in clinical settings that trigger cellular stress, it remains unclear whether such treatment impacts the activation of innate immune cells and subsequent differentiation of T cells. Here we showed that lidocaine inhibited the production of IL–6, TNFα and IL–12 from dendritic cells in response to toll-like receptor ligands including lipopolysaccharide, poly(I:C) and R837 in a dose-dependent manner. Notably, the differentiation of Th1 cells was significantly suppressed by the addition of lidocaine while the same treatment had little effect on the differentiation of Th17, Th2 and regulatory T cells in vitro. Moreover, lidocaine suppressed the ovalbumin-specific Th1 cell responses in vivo induced by the adoptive transfer of ovalbumin-pulsed dendritic cells. These results demonstrate that lidocaine inhibits the activation of dendritic cells in response to toll-like receptor signals and subsequently suppresses the differentiation of Th1 cell responses. PMID:26445366

  16. Dendritic cells in systemic lupus erythematosus.

    PubMed

    Seitz, Heather M; Matsushima, Glenn K

    2010-04-01

    Systemic lupus erythematosus (SLE) persists as a chronic inflammatory autoimmune disease and is characterized by the production of autoantibodies and immune complexes that affect multiple organs. The underlying mechanism that triggers and sustains disease are complex and involve certain susceptibility genes and environmental factors. There have been several immune mediators linked to SLE including cytokines and chemokines that have been reviewed elsewhere [ 1-3 ]. A number of articles have reviewed the role of B cells and T cells in SLE [ 4-10 ]. Here, we focus on the role of dendritic cells (DC) and innate immune factors that may regulate autoreactive B cells.

  17. TLR4 antagonist FP7 inhibits LPS-induced cytokine production and glycolytic reprogramming in dendritic cells, and protects mice from lethal influenza infection

    PubMed Central

    Perrin-Cocon, Laure; Aublin-Gex, Anne; Sestito, Stefania E.; Shirey, Kari Ann; Patel, Mira C.; André, Patrice; Blanco, Jorge C.; Vogel, Stefanie N.; Peri, Francesco; Lotteau, Vincent

    2017-01-01

    Dysregulated Toll-like receptor (TLR)-4 activation is involved in acute systemic sepsis, chronic inflammatory diseases, such as atherosclerosis and diabetes, and in viral infections, such as influenza infection. Thus, therapeutic control of the TLR4 signalling pathway is of major interest. Here we tested the activity of the small-molecule synthetic TLR4 antagonist, FP7, in vitro on human monocytes and monocyte-derived dendritic cells (DCs) and in vivo during influenza virus infection of mice. Our results indicate that FP7 antagonized the secretion of proinflammatory cytokines (IL-6, IL-8, and MIP-1β) by monocytes and DCs (IC50 < 1 μM) and prevented DC maturation upon TLR4 activation by ultrapure lipopolysaccharide (LPS). FP7 selectively blocked TLR4 stimulation, but not TLR1/2, TLR2/6, or TLR3 activation. TLR4 stimulation of human DCs resulted in increased glycolytic activity that was also antagonized by FP7. FP7 protected mice from influenza virus-induced lethality and reduced both proinflammatory cytokine gene expression in the lungs and acute lung injury (ALI). Therefore, FP7 can antagonize TLR4 activation in vitro and protect mice from severe influenza infection, most likely by reducing TLR4-dependent cytokine storm mediated by damage-associated molecular patterns (DAMPs) like HMGB1. PMID:28106157

  18. Metastasis to sentinel lymph nodes in breast cancer is associated with maturation arrest of dendritic cells and poor co-localization of dendritic cells and CD8+ T cells.

    PubMed

    Mansfield, Aaron Scott; Heikkila, Paivi; von Smitten, Karl; Vakkila, Jukka; Leidenius, Marjut

    2011-10-01

    The regional immune systems of patients with breast cancer are immunosuppressed. Dendritic cells are professional antigen-presenting cells and present cancer-associated antigens to the adaptive immune system in sentinel lymph nodes. Dendritic cells may promote, or inhibit, an adaptive immune response to specific antigens. Our aim was to assess whether dendritic cells were associated with nodal metastasis in patients with breast cancer. Sentinel lymph nodes of 47 patients with breast cancer with varying degrees of nodal disease and ten controls were evaluated using immunohistochemistry for the accumulation of dendritic cells in general (CD1a(+)), mature dendritic cells (CD208(+)), and plasmacytoid dendritic cells (CD123(+)). Cytotoxic T cell and regulatory T cell accumulation were also evaluated. Sentinel lymph nodes with macrometastases demonstrated fewer mature dendritic cells than sentinel lymph nodes without metastasis (p = 0.028), but not controls. There were fewer mature dendritic cells to cytotoxic T cells in sentinel lymph nodes with metastasis than those without (p = 0.033). Also, there were more regulatory T cells to mature dendritic cells in sentinel lymph nodes with metastasis than those without (p = 0.02). In conclusion, our study suggests that sentinel lymph nodes with metastasis have arrest of maturation of dendritic cells, fewer mature dendritic cell interactions with cytotoxic T cells, and more regulatory T cells than sentinel lymph nodes without metastasis in patients with breast cancer. These findings extend our understanding of regional immunosuppression and suggest that most regional immunosuppressive changes are associated with nodal metastasis in breast cancer.

  19. Role of Dendritic Cells in Immune Dysfunction

    NASA Technical Reports Server (NTRS)

    Savary, Cherylyn A.

    1997-01-01

    Specific aims include: (1) Application of the bioreactor to enhance cytokine-regulated proliferation and maturation of dendritic cells (DC); (2) Based on clues from spaceflight: compare the frequency and function of DC in normal donors and immunocompromised cancer patients; and (3) Initiate studies on the efficiency of cytokine therapy and DC-assisted immunotherapy (using bioreactor-expanded DC) in animal models of experimental fungal infections.

  20. Human dendritic cells - stars in the skin.

    PubMed

    Klechevsky, Eynav

    2013-12-01

    "A properly functioning adaptive immune system signifies the best features of life. It is diverse beyond compare, tolerant without fail, and capable of behaving appropriately with a myriad of infections and other challenges. Dendritic cells (DCs) are required to explain how this remarkable system is energized and directed." This is a quote by one of the greatest immunologists our community has ever known, and the father of dendritic cells, Ralph Steinman. Steinman's discovery of DCs in 1973 and his subsequent research opened a new field of study within immunology: DC biology and in particular the role of DCs in immune regulation in health and disease. Here, I review themes from our work and others on the complex network of dendritic cells in the skin and discuss the significance of skin DCs in understanding aspects of host defense against infections, the pathology of inflammatory skin diseases, and speculate on the future effective immune-based therapies. © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Dendritic cell therapy for oncology roundtable conference

    PubMed Central

    2011-01-01

    2-3 September 2010, Brussels, Belgium The Dendritic Cell Therapy for Oncology Roundtable Conference was organized by Reliable Cancer Therapies and moderated by Prof. Dr. Steven De Vleeschouwer. The organizer, Reliable Cancer Therapies, is a Swiss non-profit organization that provides information on evidence-based cancer treatments and funding for the development of a selection of promising cancer therapies. In order to be able to give valuable information about dendritic cell (DC) therapy to patients and physicians, the organizing committee felt it necessary to organize this conference to get an up-to-date status of the academic DC therapy field, collect ideas to guide patients towards clinical trials and to induce cross-fertilization for protocol optimization. In total, 31 experts participated to an in-depth discussion about the status and the future development path for dendritic cell vaccines. The conference started with general presentations about cancer immunotherapy, followed by comprehensive overview presentations about the progress in DC vaccine development achieved by each speaker. At the end of the meeting, a thorough general discussion focused on key questions about what is needed to improve DC vaccines. This report does not cover all presentations, but aims to highlight selected points of interest, particularly relating to possible limitations and potential approaches to improvement of DC therapies specifically, and also immunotherapeutic interventions in general terms. PMID:21226916

  2. Adherent cells in granulocyte-macrophage colony-stimulating factor-induced bone marrow-derived dendritic cell culture system are qualified dendritic cells.

    PubMed

    Li, Gong-Bo; Lu, Guang-Xiu

    2010-01-01

    A widely-used method for generating dendritic cell (DC) is to culture bone marrow cells in granulocyte-macrophage colony-stimulating factor (GM-CSF)-containing medium for 6-10 days. Usually, non-adherent cells are used as qualified dendritic cells while the adherent ones are discarded as "non-dendritic cells" or macrophages. In this study, we show that the adherent cells are nearly identical to the non-adherent cells in both dendritic cell surface markers expression and main dendritic cell-related functions, hence to prove that these "junk cells" are actually qualified dendritic cells.

  3. Altered heme-mediated modulation of dendritic cell function in sickle cell alloimmunization

    PubMed Central

    Godefroy, Emmanuelle; Liu, Yunfeng; Shi, Patricia; Mitchell, W. Beau; Cohen, Devin; Chou, Stella T.; Manwani, Deepa; Yazdanbakhsh, Karina

    2016-01-01

    Transfusions are the main treatment for patients with sickle cell disease. However, alloimmunization remains a major life-threatening complication for these patients, but the mechanism underlying pathogenesis of alloimmunization is not known. Given the chronic hemolytic state characteristic of sickle cell disease, resulting in release of free heme and activation of inflammatory cascades, we tested the hypothesis that anti-inflammatory response to heme is compromised in alloimmunized sickle patients, increasing their risk of alloimmunization. Heme-exposed monocyte-derived dendritic cells from both non-alloimmunized sickle patients and healthy donors inhibited priming of pro-inflammatory CD4+ type 1 T cells, and exhibited significantly reduced levels of the maturation marker CD83. In contrast, in alloimmunized patients, heme did not reverse priming of pro-inflammatory CD4+ cells by monocyte-derived dendritic cells or their maturation. Furthermore, heme dampened NF-κB activation in non-alloimmunized, but not in alloimmunized monocyte-derived dendritic cells. Heme-mediated CD83 inhibition depended on Toll-like receptor 4 but not heme oxygenase 1. These data suggest that extracellular heme limits CD83 expression on dendritic cells in non-alloimmunized sickle patients through a Toll-like receptor 4-mediated pathway, involving NF-κB, resulting in dampening of pro-inflammatory responses, but that in alloimmunized patients this pathway is defective. This opens up the possibility of developing new therapeutic strategies to prevent sickle cell alloimmunization. PMID:27229712

  4. Altered heme-mediated modulation of dendritic cell function in sickle cell alloimmunization.

    PubMed

    Godefroy, Emmanuelle; Liu, Yunfeng; Shi, Patricia; Mitchell, W Beau; Cohen, Devin; Chou, Stella T; Manwani, Deepa; Yazdanbakhsh, Karina

    2016-09-01

    Transfusions are the main treatment for patients with sickle cell disease. However, alloimmunization remains a major life-threatening complication for these patients, but the mechanism underlying pathogenesis of alloimmunization is not known. Given the chronic hemolytic state characteristic of sickle cell disease, resulting in release of free heme and activation of inflammatory cascades, we tested the hypothesis that anti-inflammatory response to heme is compromised in alloimmunized sickle patients, increasing their risk of alloimmunization. Heme-exposed monocyte-derived dendritic cells from both non-alloimmunized sickle patients and healthy donors inhibited priming of pro-inflammatory CD4(+) type 1 T cells, and exhibited significantly reduced levels of the maturation marker CD83. In contrast, in alloimmunized patients, heme did not reverse priming of pro-inflammatory CD4(+) cells by monocyte-derived dendritic cells or their maturation. Furthermore, heme dampened NF-κB activation in non-alloimmunized, but not in alloimmunized monocyte-derived dendritic cells. Heme-mediated CD83 inhibition depended on Toll-like receptor 4 but not heme oxygenase 1. These data suggest that extracellular heme limits CD83 expression on dendritic cells in non-alloimmunized sickle patients through a Toll-like receptor 4-mediated pathway, involving NF-κB, resulting in dampening of pro-inflammatory responses, but that in alloimmunized patients this pathway is defective. This opens up the possibility of developing new therapeutic strategies to prevent sickle cell alloimmunization. Copyright© Ferrata Storti Foundation.

  5. Dendritic cells inhibit the progression of Listeria monocytogenes intracellular infection by retaining bacteria in major histocompatibility complex class II-rich phagosomes and by limiting cytosolic growth.

    PubMed

    Westcott, Marlena M; Henry, Curtis J; Amis, Jacqueline E; Hiltbold, Elizabeth M

    2010-07-01

    Dendritic cells (DC) provide a suboptimal niche for the growth of Listeria monocytogenes, a facultative intracellular bacterial pathogen of immunocompromised and pregnant hosts. This is due in part to a failure of large numbers of bacteria to escape to the cytosol, an essential step in the intracellular life cycle that is mediated by listeriolysin O (LLO). Here, we demonstrate that wild-type bacteria that failed to enter the cytosol of bone marrow-derived DC were retained in a LAMP2+ compartment. An isogenic L. monocytogenes strain that produces an LLO protein with reduced pore-forming activity had a severe escape and growth phenotype in DC. Few mutant bacteria entered the cytosol in the first 2 h and were instead found in LAMP2+, major histocompatibility complex class II+ (MHC-II+) H2-DM vesicles characteristic of MHC-II antigen loading compartments (MIIC). In contrast, the mutant had a minor phenotype in bone marrow-derived macrophages (BMM) despite the reduced LLO activity. In the first hour, DC phagosomes acidified to a pH that was, on average, half a point higher than that of BMM phagosomes. Unlike BMM, L. monocytogenes growth in DC was minimal after 5 h, and consequently, DC remained viable and matured late in infection. Taken together, the data are consistent with a model in which phagosomal maturation events associated with the acquisition of MHC-II molecules present a suboptimal environment for L. monocytogenes escape to the DC cytosol, possibly by limiting the activity of LLO. This, in combination with an undefined mechanism that controls bacterial growth late in infection, promotes DC survival during the critical maturation response.

  6. Dendritic Cells Inhibit the Progression of Listeria monocytogenes Intracellular Infection by Retaining Bacteria in Major Histocompatibility Complex Class II-Rich Phagosomes and by Limiting Cytosolic Growth▿ †

    PubMed Central

    Westcott, Marlena M.; Henry, Curtis J.; Amis, Jacqueline E.; Hiltbold, Elizabeth M.

    2010-01-01

    Dendritic cells (DC) provide a suboptimal niche for the growth of Listeria monocytogenes, a facultative intracellular bacterial pathogen of immunocompromised and pregnant hosts. This is due in part to a failure of large numbers of bacteria to escape to the cytosol, an essential step in the intracellular life cycle that is mediated by listeriolysin O (LLO). Here, we demonstrate that wild-type bacteria that failed to enter the cytosol of bone marrow-derived DC were retained in a LAMP2+ compartment. An isogenic L. monocytogenes strain that produces an LLO protein with reduced pore-forming activity had a severe escape and growth phenotype in DC. Few mutant bacteria entered the cytosol in the first 2 h and were instead found in LAMP2+, major histocompatibility complex class II+ (MHC-II+) H2-DM vesicles characteristic of MHC-II antigen loading compartments (MIIC). In contrast, the mutant had a minor phenotype in bone marrow-derived macrophages (BMM) despite the reduced LLO activity. In the first hour, DC phagosomes acidified to a pH that was, on average, half a point higher than that of BMM phagosomes. Unlike BMM, L. monocytogenes growth in DC was minimal after 5 h, and consequently, DC remained viable and matured late in infection. Taken together, the data are consistent with a model in which phagosomal maturation events associated with the acquisition of MHC-II molecules present a suboptimal environment for L. monocytogenes escape to the DC cytosol, possibly by limiting the activity of LLO. This, in combination with an undefined mechanism that controls bacterial growth late in infection, promotes DC survival during the critical maturation response. PMID:20404078

  7. Immunometabolism governs dendritic cell and macrophage function

    PubMed Central

    2016-01-01

    Recent studies on intracellular metabolism in dendritic cells (DCs) and macrophages provide new insights on the functioning of these critical controllers of innate and adaptive immunity. Both cell types undergo profound metabolic reprogramming in response to environmental cues, such as hypoxia or nutrient alterations, but importantly also in response to danger signals and cytokines. Metabolites such as succinate and citrate have a direct impact on the functioning of macrophages. Immunogenicity and tolerogenicity of DCs is also determined by anabolic and catabolic processes, respectively. These findings provide new prospects for therapeutic manipulation in inflammatory diseases and cancer. PMID:26694970

  8. Dendritic cells during Epstein Barr virus infection

    PubMed Central

    Christian, Münz

    2014-01-01

    Epstein Barr virus (EBV) causes persistent infection in more than 90% of the human adult population and is associated with 2% of all tumors in humans. This γ-herpes virus infects primarily human B and epithelial cells, but it has been reported to be sensed by dendritic cells (DCs) during primary infection. These activated DCs are thought to contribute to innate restriction of EBV infection and initiate EBV-specific adaptive immune responses via cross-priming. The respective evidence and their potential importance for EBV-specific vaccine development will be discussed in this review. PMID:24999343

  9. The Role of Plasmacytoid and Myeloid Dendritic Cells in Induction of Asthma in a Mouse Model and the Effect of a TLR9 Agonist on Dendritic Cells.

    PubMed

    Mo, Ji-Hun; Chung, Young-Jun; Hayashi, Tomoko; Lee, Jongdae; Raz, Eyal

    2011-07-01

    To determine the role of plasmacytoid dendritic cells (pDC) and myeloid dendritic cells (mDC) in priming effector T cells to induce allergy, and to evaluate the effect of immunostimulatory sequences (ISS, TLR9 agonist) on dendritic cells. Cultured mDC and pDC with/without ISS were injected intratracheally into sensitized Balb/C mice. Mice were sacrificed, and then pulmonary function tests, bronchoalveolar lavage (BAL), cell counts, and cytokine levels were evaluated. Migration of dendritic cells was also evaluated after ISS administration. In mice injected with mDC, airway hyperresponsiveness, eosinophil counts, and Th2 cytokine levels in BAL increased with increasing numbers of mDC injected. However, in mice injected with pDC, none of these changed, suggesting poor priming of T cells by pDC. In addition, mDC pulsed with ISS inhibited asthmatic reactions, and ISS administration inhibited migration of DC to the lung. We suggest that pDC played a limited role in priming T cells in this asthma model and that mDC played a major role in inducing asthma. In addition, ISS inhibited migration of DC to the lung.

  10. [Dendritic cells in cancer immunotherapy].

    PubMed

    Gato, M; Liechtenstein, T; Blanco-Luquín, I; Zudaire, M I; Kochan, G; Escors, D

    2015-01-01

    Since the beginning of the 20th century, biomedical scientists have tried to take advantage of the natural anti-cancer activities of the immune system. However, all the scientific and medical efforts dedicated to this have not resulted in the expected success. In fact, classical antineoplastic treatments such as surgery, radio and chemotherapy are still first line treatments. Even so, there is a quantity of experimental evidence demonstrating that cancer cells are immunogenic. However, the effective activation of anti-cancer T cell responses closely depends on an efficient antigen presentation carried out by professional antigen presenting cells such as DC. Although there are a number of strategies to strengthen antigen presentation by DC, anti-cancer immunotherapy is not as effective as we would expect according to preclinical data accumulated in recent decades. We do not aim to make an exhaustive review of DC immunotherapy here, which is an extensive research subject already dealt with in many specialised reviews. Instead, we present the experimental approaches undertaken by our group over the last decade, by modifying DC to improve their anti-tumour capacities.

  11. Bortezomib as a new therapeutic approach for blastic plasmacytoid dendritic cell neoplasm.

    PubMed

    Philippe, Laure; Ceroi, Adam; Bôle-Richard, Elodie; Jenvrin, Alizée; Biichle, Sabeha; Perrin, Sophie; Limat, Samuel; Bonnefoy, Francis; Deconinck, Eric; Saas, Philippe; Garnache-Ottou, Francine; Angelot-Delettre, Fanny

    2017-08-10

    Blastic plasmacytoid dendritic cell neoplasm is an aggressive hematological malignancy with a poor prognosis. No consensus for optimal treatment modalities is available today. Targeting the NF-κB pathway is considered as a promising approach since blastic plasmacytoid dendritic cell neoplasm have been reported to exhibit a constitutive activation of the NF-κB pathway. Moreover, NF-κB inhibition in blastic plasmacytoid dendritic cell neoplasm cell lines using either an experimental specific inhibitor JSH23 or the clinical drug bortezomib interferes in vitro with leukemic cell proliferation and survival. We extended here these data by showing that primary blastic plasmacytoid dendritic cell neoplasm cells from 7 patients were sensitive to bortezomib-induced cell death. We confirmed that bortezomib inhibits efficiently the phosphorylation of the RelA NF-κB subunit in blastic plasmacytoid dendritic cell neoplasm cell lines and primary cells from patients in vitro and in vivo in a mouse model. Then, we demonstrated that bortezomib can be associated with other drugs used in different chemotherapy regimens to improve its impact on leukemic cell death. Indeed, when primary blastic plasmacytoid dendritic cell neoplasm cells from a patient were grafted, bortezomib treatment significantly increased mouse survival, and was associated with a significant decrease of circulating leukemic cells and RelA NF-κB subunit expression. Overall, our results provide a rationale for the use of bortezomib in combination with other chemotherapy for the treatment of blastic plasmacytoid dendritic cell neoplasm patients. Based on our data, a prospective clinical trial combining proteasome inhibitor with classical drugs could be envisaged. Copyright © 2017, Ferrata Storti Foundation.

  12. Glycogen Synthase Kinase-3β (GSK-3β) Inhibition Enhances Dendritic Cell-based Cancer Vaccine Potency via Suppression of Interferon-γ-induced Indoleamine 2,3-Dioxygenase Expression.

    PubMed

    Noh, Kyung Tae; Son, Kwang Hee; Jung, In Duk; Kang, Tae Heung; Choi, Chang Hun; Park, Yeong-Min

    2015-05-08

    Indoleamine 2,3-dioxygenase (IDO) functions as a crucial mediator of tumor-mediated immune tolerance by causing T-cell suppression via tryptophan starvation in a tumor environment. Glycogen synthase kinase-3β (GSK-3β) is also involved in immune and anti-tumor responses. However, the relativity of these proteins has not been as well defined. Here, we found that GSK-3β-dependent IDO expression in the dendritic cell (DC) plays a role in anti-tumor activity via the regulation of CD8(+) T-cell polarization and cytotoxic T lymphocyte activity. By the inhibition of GSK-3β, attenuated IDO expression and impaired JAK1/2-Stat signaling crucial for IDO expression were observed. Protein kinase Cδ (PKCδ) activity and the interaction between JAK1/2 and Stat3, which are important for IDO expression, were also reduced by GSK-3β inhibition. CD8(+) T-cell proliferation mediated by OVA-pulsed DC was blocked by interferon (IFN)-γ-induced IDO expression via GSK-3β activity. Specific cytotoxic T lymphocyte activity mediated by OVA-pulsed DC against OVA-expressing EG7 thymoma cells but not OVA-nonexpressing EL4 thymoma cells was also attenuated by the expressed IDO via IFN-γ-induced activation of GSK-3β. Furthermore, tumor growth that was suppressed with OVA-pulsed DC vaccination was restored by IDO-expressing DC via IFN-γ-induced activation of GSK-3β in an OVA-expressing murine EG7 thymoma model. Taken together, DC-based immune response mediated by interferon-γ-induced IDO expression via GSK-3β activity not only regulates CD8(+) T-cell proliferation and cytotoxic T lymphocyte activity but also modulates OVA-pulsed DC vaccination against EG7 thymoma.

  13. Reduced Purkinje cell dendritic arborization and loss of dendritic spines in essential tremor.

    PubMed

    Louis, Elan D; Lee, Michelle; Babij, Rachel; Ma, Karen; Cortés, Etty; Vonsattel, Jean-Paul G; Faust, Phyllis L

    2014-12-01

    Based on accumulating post-mortem evidence of abnormalities in Purkinje cell biology in essential tremor, we hypothesized that regressive changes in dendritic morphology would be apparent in the Purkinje cell population in essential tremor cases versus age-matched controls. Cerebellar cortical tissue from 27 cases with essential tremor and 27 age-matched control subjects was processed by the Golgi-Kopsch method. Purkinje cell dendritic anatomy was quantified using a Neurolucida microscopic system interfaced with a motorized stage. In all measures, essential tremor cases demonstrated significant reductions in dendritic complexity compared with controls. Median values in essential tremor cases versus controls were: 5712.1 versus 10 403.2 µm (total dendrite length, P=0.01), 465.9 versus 592.5 µm (branch length, P=0.01), 22.5 versus 29.0 (maximum branch order, P=0.001), and 165.3 versus 311.7 (number of terminations, P=0.008). Furthermore, the dendritic spine density was reduced in essential tremor cases (medians=0.82 versus 1.02 µm(-1), P=0.03). Our demonstration of regressive changes in Purkinje cell dendritic architecture and spines in essential tremor relative to control brains provides additional evidence of a pervasive abnormality of Purkinje cell biology in this disease, which affects multiple neuronal cellular compartments including their axon, cell body, dendrites and spines.

  14. Dendritic but not somatic GABAergic inhibition is decreased in experimental epilepsy.

    PubMed

    Cossart, R; Dinocourt, C; Hirsch, J C; Merchan-Perez, A; De Felipe, J; Ben-Ari, Y; Esclapez, M; Bernard, C

    2001-01-01

    Impaired inhibition is thought to be important in temporal lobe epilepsy (TLE), the most common form of epilepsy in adult patients. We report that, in experimental TLE, spontaneous GABAergic inhibition was increased in the soma but reduced in the dendrites of pyramidal neurons. The former resulted from the hyperactivity of somatic projecting interneurons, whereas the latter was probably due to the degeneration of a subpopulation of dendritic projecting interneurons. A deficit in dendritic inhibition could reduce seizure threshold, whereas enhanced somatic inhibition would prevent the continuous occurrence of epileptiform activity.

  15. A novel cancer therapeutic using thrombospondin 1 in dendritic cells.

    PubMed

    Weng, Tzu-Yang; Huang, Shih-Shien; Yen, Meng-Chi; Lin, Chi-Chen; Chen, Yi-Ling; Lin, Chiu-Mei; Chen, Wei-Ching; Wang, Chih-Yang; Chang, Jang-Yang; Lai, Ming-Derg

    2014-02-01

    Induction of thrombospondin 1 (TSP-1) is generally assumed to suppress tumor growth through inhibiting angiogenesis; however, it is less clear how TSP-1 in dendritic cells (DCs) influences tumor progression. We investigated tumor growth and immune mechanism by downregulation of TSP-1 in dendritic cells. Administration of TSP-1 small hairpin RNA (shRNA) through the skin produced anticancer therapeutic effects. Tumor-infiltrating CD4(+) and CD8(+) T cells were increased after the administration of TSP-1 shRNA. The expression of interleukin-12 and interferon-γ in the lymph nodes was enhanced by injection of TSP-1 shRNA. Lymphocytes from the mice injected with TSP-1 shRNA selectively killed the tumor cells, and the cytotoxicity of lymphocytes was abolished by depletion of CD8(+) T cells. Injection of CD11c(+) TSP-1-knockout (TSP-1-KO) bone marrow-derived DCs (BMDCs) delayed tumor growth in tumor-bearing mice. Similarly, antitumor activity induced by TSP-1-KO BMDCs was abrogated by depletion of CD8(+) T cells. In contrast, the administration of shRNAs targeting TSP-2, another TSP family member, did not extend the survival of tumor-bearing mice. Finally, TSP-1 shRNA functioned as an immunotherapeutic adjuvant to augment the therapeutic efficacy of Neu DNA vaccination. Collectively, the downregulation of TSP-1 in DCs produces an effective antitumor response that is opposite to the protumor effects by silencing of TSP-1 within tumor cells.

  16. Dendritic planarity of Purkinje cells is independent of Reelin signaling.

    PubMed

    Kim, Jinkyung; Park, Tae-Ju; Kwon, Namseop; Lee, Dongmyeong; Kim, Seunghwan; Kohmura, Yoshiki; Ishikawa, Tetsuya; Kim, Kyong-Tai; Curran, Tom; Je, Jung Ho

    2015-07-01

    The dendritic planarity of Purkinje cells is critical for cerebellar circuit formation. In the absence of Crk and CrkL, the Reelin pathway does not function resulting in partial Purkinje cell migration and defective dendritogenesis. However, the relationships among Purkinje cell migration, dendritic development and Reelin signaling have not been clearly delineated. Here, we use synchrotron X-ray microscopy to obtain 3-D images of Golgi-stained Purkinje cell dendrites. Purkinje cells that failed to migrate completely exhibited conical dendrites with abnormal 3-D arborization and reduced dendritic complexity. Furthermore, their spines were fewer in number with a distorted morphology. In contrast, Purkinje cells that migrated successfully displayed planar dendritic and spine morphologies similar to normal cells, despite reduced dendritic complexity. These results indicate that, during cerebellar formation, Purkinje cells migrate into an environment that supports development of dendritic planarity and spine formation. While Reelin signaling is important for the migration process, it does not make a direct major contribution to dendrite formation.

  17. Targeting dendritic cells--why bother?

    PubMed

    Kreutz, Martin; Tacken, Paul J; Figdor, Carl G

    2013-04-11

    Vaccination is among the most efficient forms of immunotherapy. Although sometimes inducing lifelong protective B-cell responses, T-cell-mediated immunity remains challenging. Targeting antigen to dendritic cells (DCs) is an extensively explored concept aimed at improving cellular immunity. The identification of various DC subsets with distinct functional characteristics now allows for the fine-tuning of targeting strategies. Although some of these DC subsets are regarded as superior for (cross-) priming of naive T cells, controversies still remain about which subset represents the best target for immunotherapy. Because targeting the antigen alone may not be sufficient to obtain effective T-cell responses, delivery systems have been developed to target multiple vaccine components to DCs. In this Perspective, we discuss the pros and cons of targeting DCs: if targeting is beneficial at all and which vaccine vehicles and immunization routes represent promising strategies to reach and activate DCs.

  18. Macrophages, dendritic cells, and regression of atherosclerosis

    PubMed Central

    Feig, Jonathan E.; Feig, Jessica L.

    2012-01-01

    Atherosclerosis is the number one cause of death in the Western world. It results from the interaction between modified lipoproteins and cells such as macrophages, dendritic cells (DCs), T cells, and other cellular elements present in the arterial wall. This inflammatory process can ultimately lead to the development of complex lesions, or plaques, that protrude into the arterial lumen. Ultimately, plaque rupture and thrombosis can occur leading to the clinical complications of myocardial infarction or stroke. Although each of the cell types plays roles in the pathogenesis of atherosclerosis, the focus of this review will be primarily on the macrophages and DCs. The role of these two cell types in atherosclerosis is discussed, with a particular emphasis on their involvement in atherosclerosis regression. PMID:22934038

  19. Homophilic Protocadherin Cell-Cell Interactions Promote Dendrite Complexity.

    PubMed

    Molumby, Michael J; Keeler, Austin B; Weiner, Joshua A

    2016-05-03

    Growth of a properly complex dendrite arbor is a key step in neuronal differentiation and a prerequisite for neural circuit formation. Diverse cell surface molecules, such as the clustered protocadherins (Pcdhs), have long been proposed to regulate circuit formation through specific cell-cell interactions. Here, using transgenic and conditional knockout mice to manipulate γ-Pcdh repertoire in the cerebral cortex, we show that the complexity of a neuron's dendritic arbor is determined by homophilic interactions with other cells. Neurons expressing only one of the 22 γ-Pcdhs can exhibit either exuberant or minimal dendrite complexity, depending only on whether surrounding cells express the same isoform. Furthermore, loss of astrocytic γ-Pcdhs, or disruption of astrocyte-neuron homophilic matching, reduces dendrite complexity cell non-autonomously. Our data indicate that γ-Pcdhs act locally to promote dendrite arborization via homophilic matching, and they confirm that connectivity in vivo depends on molecular interactions between neurons and between neurons and astrocytes.

  20. Targeting antigens through blood dendritic cell antigen 2 (BDCA2) on plasmacytoid dendritic cells promotes immunologic tolerance1

    PubMed Central

    Draves, Kevin E.; Chen, ChangHung; Hayden-Ledbetter, Martha S.; Shlomchik, Mark J.; Kaplan, Daniel H.; Clark, Edward A.

    2014-01-01

    The C-type lectin receptor blood dendritic cell antigen 2 (BDCA2) is expressed exclusively on human plasmacytoid dendritic cells (pDCs) and plays a role in Ag capture, internalization and presentation to T cells. We used transgenic mice that express human BDCA2 and anti-BDCA2 mAbs to deliver Ags directly to BDCA2 on pDCs in vivo. Targeting Ag to pDCs in this manner resulted in significant suppression of Ag-specific CD4+ T cell and Ab responses upon secondary exposure to Ag in the presence of adjuvant. Suppression of Ab responses required both a decrease in effector CD4+ T cells and preservation of Foxp3+ regulatory T cells (Tregs). Reduction in Treg cell numbers following Ag delivery to BDCA2 restored both CD4+ T cell activation and Ab responses, demonstrating that Tregs were required for the observed tolerance. Our results demonstrate that Ag delivery to pDCs through BDCA2 is an effective method to induce immunological tolerance, which may be useful for treating autoimmune diseases or to inhibit unwanted Ab responses. PMID:24829416

  1. Characterization of murine lung dendritic cells: similarities to Langerhans cells and thymic dendritic cells

    PubMed Central

    1990-01-01

    Dendritic cells (DC) are potent accessory cells (AC) for the initiation of primary immune responses. Although murine lymphoid DC and Langerhans cells have been extensively characterized, DC from murine lung have been incompletely described. We isolated cells from enzyme-digested murine lungs and bronchoalveolar lavages that were potent stimulators of a primary mixed lymphocyte response (MLR). The AC had a low buoyant density, were loosely adherent and nonphagocytic. AC function was unaffected by depletion of cells expressing the splenic DC marker, 33D1. In addition, antibody and complement depletion of cells bearing the macrophage marker F4/80, or removal of phagocytic cells with silica also failed to decrease AC activity. In contrast, AC function was decreased by depletion of cells expressing the markers J11d and the low affinity interleukin 2 receptor (IL-2R), both present on thymic and skin DC. AC function was approximately equal in FcR+ and FcR- subpopulations, indicating there was heterogeneity within the AC population. Consistent with the functional data, a combined two-color immunofluorescence and latex bead uptake technique revealed that lung cells high in AC activity were enriched in brightly Ia+ dendritic- shaped cells that (a) were nonphagocytic, (b) lacked specific T and B lymphocyte markers and the macrophage marker F4/80, but (c) frequently expressed C3biR, low affinity IL-2R, FcRII, and the markers NLDC-145 and J11d. Taken together, the functional and phenotypic data suggest the lung cells that stimulate resting T cells in an MLR and that might be important in local pulmonary immune responses are DC that bear functional and phenotypic similarity to other tissues DC, such as Langerhans cells and thymic DC. PMID:2162904

  2. Probiotics, dendritic cells and bladder cancer.

    PubMed

    Feyisetan, Oladapo; Tracey, Christopher; Hellawell, Giles O

    2012-06-01

    What's known on the subject? and What does the study add? The suppressor effect of probiotics on superficial bladder cancer is an observed phenomenon but the specific mechanism is poorly understood. The evidence strongly suggests natural killer (NK) cells are the anti-tumour effector cells involved and NK cell activity correlates with the observed anti-tumour effect in mice. It is also known that dendritic cells (DC) cells are responsible for the recruitment and mobilization of NK cells so therefore it may be inferred that DC cells are most likely to be the interphase point at which probiotics act. In support of this, purification of NK cells was associated with a decrease in NK cells activity. The current use of intravesical bacille Calmette-Guérin in the management of superficial bladder cancer is based on the effect of a localised immune response. In the same way, understanding the mechanism of action of probiotics and the role of DC may potentially offer another avenue via which the immune system may be manipulated to resist bladder cancer. Probiotic foods have been available in the UK since 1996 with the arrival of the fermented milk drink (Yakult) from Japan. The presence of live bacterial ingredients (usually lactobacilli species) may confer health benefits when present in sufficient numbers. The role of probiotics in colo-rectal cancer may be related in part to the suppression of harmful colonic bacteria but other immune mechanisms are involved. Anti-cancer effects outside the colon were suggested by a Japanese report of altered rates of bladder tumour recurrence after ingestion of a particular probiotic. Dendritic cells play a central role to the general regulation of the immune response that may be modified by probiotics. The addition of probiotics to the diet may confer benefit by altering rates of bladder tumour recurrence and also alter the response to immune mechanisms involved with the application of intravesical treatments (bacille Calmette-Guérin).

  3. Metamaterial absorber with random dendritic cells

    NASA Astrophysics Data System (ADS)

    Zhu, Weiren; Zhao, Xiaopeng

    2010-05-01

    The metamaterial absorber composed of random dendritic cells has been investigated at microwave frequencies. It is found that the absorptivities come to be weaker and the resonant frequency get red shift as the disordered states increasing, however, the random metamaterial absorber still presents high absorptivity more than 95%. The disordered structures can help understanding of the metamaterial absorber and may be employed for practical design of infrared metamaterial absorber, which may play important roles in collection of radiative heat energy and directional transfer enhancement.

  4. Anomalous diffusion in Purkinje cell dendrites caused by spines

    PubMed Central

    Santamaria, Fidel; Wils, Stefan; De Schutter, Erik; Augustine, George J.

    2007-01-01

    We combined local photolysis of caged compounds with fluorescence imaging to visualize molecular diffusion within dendrites of cerebellar Purkinje cells. Diffusion of a volume marker, fluorescein dextran, within spiny dendrites was remarkably slow in comparison to its diffusion in smooth dendrites. Computer simulations indicate that this retardation is due to a transient trapping of molecules within dendritic spines, yielding anomalous diffusion. We considered the influence of spine trapping on the diffusion of calcium ions (Ca2+) and inositol-1,4,5-triphospate (IP3), two synaptic second messengers. Diffusion of IP3 was strongly influenced by the presence of dendritic spines while Ca2+ was removed so rapidly that it could not diffuse far enough to be trapped. We conclude that an important function of dendritic spines may be to trap chemical signals and thereby create slowed anomalous diffusion within dendrites. PMID:17114048

  5. Maturation-Resistant Dendritic Cells Ameliorate Experimental Autoimmune Uveoretinitis

    PubMed Central

    Oh, Keunhee; Kim, Yon Su

    2011-01-01

    Background Endogenous uveitis is a chronic inflammatory eye disease of human, which frequently leads to blindness. Experimental autoimmune uveoretinitis (EAU) is an animal disease model of human endogenous uveitis and can be induced in susceptible animals by immunization with retinal antigens. EAU resembles the key immunological characteristics of human disease in that both are CD4+ T-cell mediated diseases. Dendritic cells (DCs) are specialized antigen-presenting cells that are uniquely capable of activating naïve T cells. Regulation of immune responses through modulation of DCs has thus been tried extensively. Recently our group reported that donor strain-derived immature DC pretreatment successfully controlled the adverse immune response during allogeneic transplantation. Methods EAU was induced by immunization with human interphotoreceptor retinoid-binding protein (IRBP) peptide1-20. Dendritic cells were differentiated from bone marrow in the presence of recombinant GM-CSF. Results In this study, we used paraformaldehyde-fixed bone marrow-derived DCs to maintain them in an immature state. Pretreatment with fixed immature DCs, but not fixed mature DCs, ameliorated the disease progression of EAU by inhibiting uveitogenic CD4+ T cell activation and differentiation. Conclusion Application of iBMDC prepared according to the protocol of this study would provide an important treatment modality for the autoimmune diseases and transplantation rejection. PMID:22346781

  6. Stromal fibroblasts support dendritic cells to maintain IL-23/Th17 responses after exposure to ionizing radiation

    PubMed Central

    Malecka, Anna; Wang, Qunwei; Shah, Sabaria; Sutavani, Ruhcha V.; Spendlove, Ian; Ramage, Judith M.; Greensmith, Julie; Franks, Hester A.; Gough, Michael J.; Saalbach, Anja; Patel, Poulam M.; Jackson, Andrew M.

    2016-01-01

    Dendritic cell function is modulated by stromal cells, including fibroblasts. Although poorly understood, the signals delivered through this crosstalk substantially alter dendritic cell biology. This is well illustrated with release of TNF-α/IL-1β from activated dendritic cells, promoting PGE2 secretion from stromal fibroblasts. This instructs dendritic cells to up-regulate IL-23, a key Th17-polarizing cytokine. We previously showed that ionizing radiation inhibited IL-23 production by human dendritic cells in vitro. In the present study, we investigated the hypothesis that dendritic cell-fibroblast crosstalk overcomes the suppressive effect of ionizing radiation to support appropriately polarized Th17 responses. Radiation (1–6 Gy) markedly suppressed IL-23 secretion by activated dendritic cells (P < 0.0001) without adversely impacting their viability and consequently, inhibited the generation of Th17 responses. Cytokine suppression by ionizing radiation was selective, as there was no effect on IL-1β, -6, -10, and -27 or TNF-α and only a modest (11%) decrease in IL-12p70 secretion. Coculture with fibroblasts augmented IL-23 secretion by irradiated dendritic cells and increased Th17 responses. Importantly, in contrast to dendritic cells, irradiated fibroblasts maintained their capacity to respond to TNF-α/IL-1β and produce PGE2, thus providing the key intermediary signals for successful dendritic cell-fibroblasts crosstalk. In summary, stromal fibroblasts support Th17-polarizing cytokine production by dendritic cells that would otherwise be suppressed in an irradiated microenvironment. This has potential ramifications for understanding the immune response to local radiotherapy. These findings underscore the need to account for the impact of microenvironmental factors, including stromal cells, in understanding the control of immunity. PMID:27049023

  7. Hematologic neoplasms: Dendritic cells vaccines in motion.

    PubMed

    Galati, Domenico; Zanotta, Serena

    2017-09-11

    Dendritic cells (DCs) are bone-marrow-derived immune cells accounted for a key role in cancer vaccination as potent antigen-presenting cells within the immune system. Cancer microenvironment can modulate DCs maturation resulting in their accumulation into functional states associated with a reduced antitumor immune response. In this regard, a successful cancer vaccine needs to mount a potent antitumor immune response able to overcome the immunosuppressive tumor milieu. As a consequence, DCs-based approaches are a safe and promising strategy for improving the therapeutic efficacy in hematological malignancies, particularly in combinations with additional treatments. This review summarizes the most significant evidence about the immunotherapeutic strategies performed to target hematologic neoplasms including the tumoral associated antigens (TAA) pulsed on DCs, whole tumor cell vaccines or leukemia-derived DCs. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Dendrite

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Researchers have found that as melted metals and alloys (combinations of metals) solidify, they can form with different arrangements of atoms, called microstructures. These microstructures depend on the shape of the interface (boundary) between the melted metal and the solid crystal it is forming. There are generally three shapes that the interface can take: planar, or flat; cellular, which looks like the cells of a beehive; and dendritic, which resembles tiny fir trees. Convection at this interface can affect the interface shape and hide the other phenomena (physical events). To reduce the effects of convection, researchers conduct experiments that examine and control conditions at the interface in microgravity. Microgravity also helps in the study of alloys composed of two metals that do not mix. On Earth, the liquid mixtures of these alloys settle into different layers due to gravity. In microgravity, the liquid metals do not settle, and a solid more uniform mixture of both metals can be formed.

  9. Dendritic inhibition mediated by O-LM and bistratified interneurons in the hippocampus

    PubMed Central

    Müller, Christina; Remy, Stefan

    2014-01-01

    In the CA1 region of the hippocampus pyramidal neurons and GABAergic interneurons form local microcircuits. CA1 interneurons are a diverse group consisting of many subtypes, some of which provide compartment-specific inhibition specifically onto pyramidal neuron dendrites. In fact, the majority of inhibitory synapses on pyramidal neurons is found on their dendrites. The specific role of a dendrite-innervating interneuron subtype is primarily determined by its innervation pattern on the distinct dendritic domains of pyramidal neurons. The efficacy of dendritic inhibition in reducing dendritic excitation depends on the relative timing and location of the activated excitatory and inhibitory synapses. In vivo, synaptic properties such as short-term plasticity and neuro-modulation by the basal forebrain, govern the degree of inhibition in distinct dendritic domains in a dynamic, behavior dependent manner, specifically during network oscillation such as the theta rhythm. In this review we focus on two subtypes of dendrite-innervating interneurons: the oriens-lacunosum moleculare (O-LM) interneuron and the bistratified interneuron. Their molecular marker profile, morphology, and function in vivo and in vitro are well studied. We strive to integrate this diverse information from the cellular to the network level, and to provide insight into how the different characteristics of O-LM and bistratified interneurons affect dendritic excitability, network activity, and behavior. PMID:25324774

  10. Mitochondrial fission protein Drp1 regulates mitochondrial transport and dendritic arborization in cerebellar Purkinje cells.

    PubMed

    Fukumitsu, Kansai; Hatsukano, Tetsu; Yoshimura, Azumi; Heuser, John; Fujishima, Kazuto; Kengaku, Mineko

    2016-03-01

    Mitochondria dynamically change their shape by repeated fission and fusion in response to physiological and pathological conditions. Recent studies have uncovered significant roles of mitochondrial fission and fusion in neuronal functions, such as neurotransmission and spine formation. However, the contribution of mitochondrial fission to the development of dendrites remains controversial. We analyzed the function of the mitochondrial fission GTPase Drp1 in dendritic arborization in cerebellar Purkinje cells. Overexpression of a dominant-negative mutant of Drp1 in postmitotic Purkinje cells enlarged and clustered mitochondria, which failed to exit from the soma into the dendrites. The emerging dendrites lacking mitochondrial transport remained short and unstable in culture and in vivo. The dominant-negative Drp1 affected neither the basal respiratory function of mitochondria nor the survival of Purkinje cells. Enhanced ATP supply by creatine treatment, but not reduced ROS production by antioxidant treatment, restored the hypomorphic dendrites caused by inhibition of Drp1 function. Collectively, our results suggest that Drp1 is required for dendritic distribution of mitochondria and thereby regulates energy supply in growing dendritic branches in developing Purkinje cells.

  11. Psoriasis in humans is associated with down-regulation of galectins in dendritic cells.

    PubMed

    de la Fuente, H; Perez-Gala, Silvia; Bonay, Pedro; Cruz-Adalia, Aranzazu; Cibrian, Danay; Sanchez-Cuellar, Silvia; Dauden, Esteban; Fresno, Manuel; García-Diez, Amaro; Sanchez-Madrid, Francisco

    2012-10-01

    We have investigated the expression and role of galectin-1 and other galectins in psoriasis and in the Th1/Th17 effector and dendritic cell responses associated with this chronic inflammatory skin condition. To determine differences between psoriasis patients and healthy donors, expression of galectins was analysed by RT-PCR in skin samples and on epidermal and peripheral blood dendritic cells by immunofluorescence and flow cytometry. In the skin of healthy donors, galectin-1, -3 and -9 were expressed in a high proportion of Langerhans cells. Also, galectins were differentially expressed in peripheral blood dendritic cell subsets; galectin-1 and galectin-9 were highly expressed in peripheral myeloid dendritic cells compared with plasmacytoid dendritic cells. We found that non-lesional as well as lesional skin samples from psoriasis patients had low levels of galectin-1 at the mRNA and protein levels, in parallel with low levels of IL-10 mRNA compared with skin from healthy patients. However, only lesional skin samples expressed high levels of Th1/Th17 cytokines. The analysis of galectin-1 expression showed that this protein was down-regulated in Langerhans cells and dermal dendritic cells as well as in peripheral blood CD11c(+) DCs from psoriasis patients. Expression of galectin-1 correlated with IL-17 and IL-10 expression and with the psoriasis area and index activity. Addition of galectin-1 to co-cultures of human monocyte-derived dendritic cells with autologous T lymphocytes from psoriasis patients attenuated the Th1 response. Conversely, blockade of galectin binding increased IFNγ production and inhibited IL-10 secretion in co-cultures of monocyte-derived dendritic cells with CD4(+) T cells. Our results suggest a model in which galectin-1 down-regulation contributes to the exacerbation of the Th1/Th17 effector response in psoriasis patients. Copyright © 2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  12. Harnessing Human Dendritic Cell Subsets for Medicine

    PubMed Central

    Ueno, Hideki; Schmitt, Nathalie; Klechevsky, Eynav; Pedroza-Gonzales, Alexander; Matsui, Toshimichi; Zurawski, Gerard; Oh, SangKon; Fay, Joseph; Pascual, Virginia; Banchereau, Jacques; Palucka, Karolina

    2010-01-01

    Summary Immunity results from a complex interplay between the antigen-nonspecific innate immune system and the antigen-specific adaptive immune system. The cells and molecules of the innate system employ non-clonal recognition receptors including lectins, Toll-like receptors, NOD-like receptors and helicases. B and T lymphocytes of the adaptive immune system employ clonal receptors recognizing antigens or their derived peptides in a highly specific manner. An essential link between innate and adaptive immunity is provided by dendritic cells (DCs). DCs can induce such contrasting states as immunity and tolerance. The recent years have brought a wealth of information on the biology of DCs revealing the complexity of this cell system. Indeed, DC plasticity and subsets are prominent determinants of the type and quality of elicited immune responses. Here we summarize our recent studies aimed at a better understanding of the DC system to unravel the pathophysiology of human diseases and design novel human vaccines. PMID:20193020

  13. [Experimental study on activating antileukemic T cells by vaccination with dendritic cells pulsed with survivin].

    PubMed

    Zhang, Xiao-Hui; Xia, Ling-Hui; Liu, Zhong-Ping; Wei, Wen-Ning; Hu, Yu; Song, Shan-Jun

    2003-02-01

    The objective of this study is to investigate the effect of vaccination with dendritic cells pulsed with survivin antigen on activation of antileukemic T cells, and inhibiting proliferation of leukemic cells. The expression of survivin on acute leukemic cells were detected by cofocal microscopy and immunoprecipitation-Western blot. DCs collected from peripheral blood mononuclear cells were pulsed with survivin purified proteins. Stimulation index (SI) and antileukemia CTL induction were analyzed with (3)H-TdR incorporation and (51)Cr releasing assay, respectively. The phenotype of T cells and DCs were identified by flow cytometry. By immunofluorescence of bone marrow and peripheral blood mononuclear cells, survivin expression was detected in 16 out of 19 AML cases (84.2%). The results showed that survivin fluorescence distribution was in cytoplasm. DCs from peripheral blood mononuclear cells were successfully induced, with typical DC morphologic characteristic. The vaccination with dendritic cells pulsed with survivin antigen dramatically stimulated the proliferation of T cells. The DCs loading survivin activated T cells with higher CD4(+) T(H) ratio as compared with DCs group, T cells activated with DCs expressed CD8 and CD56. Survivin DCs significantly inhibited the growth of leukemic cells in vitro. In conclusion, survivin antigen expressed in the cytoplasm of leukemic cells, leukemic vaccination with DCs pulsed with survivin antigen in vitro inhibited the proliferation of leukemic cells, that may be a pathway for therapy of leukemia.

  14. Dendritic cell control of tolerogenic responses

    PubMed Central

    Manicassamy, Santhakumar; Pulendran, Bali

    2011-01-01

    Summary One of the most fundamental problems in immunology is the seemingly schizophrenic ability of the immune system to launch robust immunity against pathogens, while acquiring and maintaining a state of tolerance to the body’s own tissues and the trillions of commensal microorganisms and food antigens that confront it every day. A fundamental role for the innate immune system, particularly dendritic cells (DCs), in orchestrating immunological tolerance has been appreciated, but emerging studies have highlighted the nature of the innate receptors and the signaling pathways that program DCs to a tolerogenic state. Furthermore, several studies have emphasized the major role played by cellular interactions, and the microenvironment in programming tolerogenic DCs. Here we review these studies and suggest that the innate control of tolerogenic responses can be viewed as different hierarchies of organization, in which DCs, their innate receptors and signaling networks, and their interactions with other cells and local microenvironments represent different levels of the hierarchy. PMID:21488899

  15. Dendritic cell vaccination in acute myeloid leukemia.

    PubMed

    Anguille, Sébastien; Willemen, Yannick; Lion, Eva; Smits, Evelien L; Berneman, Zwi N

    2012-07-01

    The prognosis of patients with acute myeloid leukemia (AML) remains dismal, with a 5-year overall survival rate of only 5.2% for the continuously growing subgroup of AML patients older than 65 years. These patients are generally not considered eligible for intensive chemotherapy and/or allogeneic hematopoietic stem cell transplantation because of high treatment-related morbidity and mortality, emphasizing the need for novel, less toxic, treatment alternatives. It is within this context that immunotherapy has gained attention in recent years. In this review, we focus on the use of dendritic cell (DC) vaccines for immunotherapy of AML. DC are central orchestrators of the immune system, bridging innate and adaptive immunity and critical to the induction of anti-leukemic immunity. We discuss the rationale and basic principles of DC-based therapy for AML and review the clinical experience that has been obtained so far with this form of immunotherapy for patients with AML.

  16. Alarmins Link Neutrophils and Dendritic Cells

    PubMed Central

    Yang, De; de la Rosa, Gonzalo; Tewary, Poonam; Oppenheim, Joost J.

    2009-01-01

    Neutrophils are the first major population of leukocyte to infiltrate infected or injured tissues and are crucial for initiating host innate defense and adaptive immunity. Although the contribution of neutrophils to innate immune defense is mediated predominantly by phagocytosis and killing of microorganisms, neutrophils also participate in the induction of adaptive immune responses. At sites of infection and/or injury, neutrophils release numerous mediators upon degranulation or death, among these are alarmins which have a characteristic dual capacity to mobilize and activate antigen-presenting cells. We describe here how alarmins released by neutrophil degranulation and/or death can link neutrophils to dendritic cells by promoting their recruitment and activation, resulting in the augmentation of innate and adaptive immune responses. PMID:19699678

  17. Transcriptional Control of Dendritic Cell Development

    PubMed Central

    Murphy, Theresa L.; Grajales-Reyes, Gary E.; Wu, Xiaodi; Tussiwand, Roxane; Briseño, Carlos G.; Iwata, Arifumi; Kretzer, Nicole M.; Durai, Vivek; Murphy, Kenneth M.

    2016-01-01

    The dendritic cells (DCs) of the immune system function in innate and adaptive responses by directing activity of various effector cells rather than serving as effectors themselves. DCs and closely related myeloid lineages share expression of many surface receptors, presenting a challenge in distinguishing their unique in vivo functions. Recent work has taken advantage of unique transcriptional programs to identify and manipulate murine DCs in vivo. This work has assigned several nonredundant in vivo functions to distinct DC lineages, consisting of plasmacytoid DCs and several subsets of classical DCs that promote different immune effector modules in response to pathogens. In parallel, a correspondence between human and murine DC subsets has emerged, underlying structural similarities for the DC lineages between these species. Recent work has begun to unravel the transcriptional circuitry that controls the development and diversification of DCs from common progenitors in the bone marrow. PMID:26735697

  18. Dendritic cells: sentinels of immunity and tolerance.

    PubMed

    Kubach, Jan; Becker, Christian; Schmitt, Edgar; Steinbrink, Kerstin; Huter, Eva; Tuettenberg, Andrea; Jonuleit, Helmut

    2005-04-01

    The induction of effective antigen-specific T-cell immunity to pathogens without the initiation of autoimmunity has evolved as a sophisticated and highly balanced immunoregulatory mechanism. This mechanism assures the generation of antigen-specific effector cells as well as the induction and maintenance of antigen-specific tolerance to self-structures of the body. As professional antigen-presenting cells of the immune system, dendritic cells (DC) are ideally positioned throughout the entire body and equipped with a unique capability to transport antigens from the periphery to lymphoid tissues. There is growing evidence that DC, besides their well-known immunostimulatory properties, also induce and regulate T-cell tolerance in the periphery. This regulatory function of DC is strictly dependent on their different stages of maturation and activation. Additionally, immunosuppressive agents and cytokines further influence the functions of maturing DC. The regulatory properties of DC include induction of T-cell anergy, apoptosis, and the generation of T-cells with regulatory capacities. This brief review summarizes the current knowledge about the immunoregulatory role of DC as guardians for the induction of T-cell immunity and tolerance.

  19. Dendritic cells and immunity against cancer

    PubMed Central

    Palucka, Karolina; Ueno, Hideki; Fay, Joseph; Banchereau, Jacques

    2010-01-01

    SUMMARY T cells can reject established tumors when adoptively transferred into patients, thereby demonstrating the power of the immune system for cancer therapy. However, it has proven difficult to maintain adoptively transferred T cells in the long term. Vaccines have the potential to induce tumor-specific effector and memory T cells. However, clinical efficacy of current vaccines is limited, possibly because tumors skew the immune system by means of myeloid-derived suppressor cells, inflammatory type 2 T cells and regulatory T cells (Tregs), all of which prevent the generation of effector cells. To improve the clinical efficacy of cancer vaccines in patients with metastatic disease, we need to design novel and improved strategies that can boost adaptive immunity to cancer, help overcome Tregs and allow the breakdown of the immunosuppressive tumor microenvironment. This can be achieved by exploiting the fast increasing knowledge about the dendritic cell (DC) system, including the existence of distinct DC subsets which respond differentially to distinct activation signals, (functional plasticity), both contributing to the generation of unique adaptive immune responses. We foresee that these novel cancer vaccines will be used as monotherapy in patients with resected disease, and in combination with drugs targeting regulatory/suppressor pathways in patients with metastatic disease. PMID:21158979

  20. Follicular dendritic cells in health and disease

    PubMed Central

    El Shikh, Mohey Eldin M.; Pitzalis, Costantino

    2012-01-01

    Follicular dendritic cells (FDCs) are unique immune cells that contribute to the regulation of humoral immune responses. These cells are located in the B-cell follicles of secondary lymphoid tissues where they trap and retain antigens (Ags) in the form of highly immunogenic immune complexes (ICs) consisting of Ag plus specific antibody (Ab) and/or complement proteins. FDCs multimerize Ags and present them polyvalently to B-cells in periodically arranged arrays that extensively crosslink the B-cell receptors for Ag (BCRs). FDC-FcγRIIB mediates IC periodicity, and FDC-Ag presentation combined with other soluble and membrane bound signals contributed by FDCs, like FDC-BAFF, -IL-6, and -C4bBP, are essential for the induction of the germinal center (GC) reaction, the maintenance of serological memory, and the remarkable ability of FDC-Ags to induce specific Ab responses in the absence of cognate T-cell help. On the other hand, FDCs play a negative role in several disease conditions including chronic inflammatory diseases, autoimmune diseases, HIV/AIDS, prion diseases, and follicular lymphomas. Compared to other accessory immune cells, FDCs have received little attention, and their functions have not been fully elucidated. This review gives an overview of FDC structure, and recapitulates our current knowledge on the immunoregulatory functions of FDCs in health and disease. A better understanding of FDCs should permit better regulation of Ab responses to suit the therapeutic manipulation of regulated and dysregulated immune responses. PMID:23049531

  1. GATA2 regulates dendritic cell differentiation

    PubMed Central

    Onodera, Koichi; Fujiwara, Tohru; Onishi, Yasushi; Itoh-Nakadai, Ari; Okitsu, Yoko; Fukuhara, Noriko; Ishizawa, Kenichi; Shimizu, Ritsuko; Yamamoto, Masayuki

    2016-01-01

    Dendritic cells (DCs) are critical immune response regulators; however, the mechanism of DC differentiation is not fully understood. Heterozygous germ line GATA2 mutations induce GATA2-deficiency syndrome, characterized by monocytopenia, a predisposition to myelodysplasia/acute myeloid leukemia, and a profoundly reduced DC population, which is associated with increased susceptibility to viral infections, impaired phagocytosis, and decreased cytokine production. To define the role of GATA2 in DC differentiation and function, we studied Gata2 conditional knockout and haploinsufficient mice. Gata2 conditional deficiency significantly reduced the DC count, whereas Gata2 haploinsufficiency did not affect this population. GATA2 was required for the in vitro generation of DCs from Lin−Sca-1+Kit+ cells, common myeloid-restricted progenitors, and common dendritic cell precursors, but not common lymphoid-restricted progenitors or granulocyte-macrophage progenitors, suggesting that GATA2 functions in the myeloid pathway of DC differentiation. Moreover, expression profiling demonstrated reduced expression of myeloid-related genes, including mafb, and increased expression of T-lymphocyte–related genes, including Gata3 and Tcf7, in Gata2-deficient DC progenitors. In addition, GATA2 was found to bind an enhancer element 190-kb downstream region of Gata3, and a reporter assay exhibited significantly reduced luciferase activity after adding this enhancer region to the Gata3 promoter, which was recovered by GATA sequence deletion within Gata3 +190. These results suggest that GATA2 plays an important role in cell-fate specification toward the myeloid vs T-lymphocyte lineage by regulating lineage-specific transcription factors in DC progenitors, thereby contributing to DC differentiation. PMID:27259979

  2. GATA2 regulates dendritic cell differentiation.

    PubMed

    Onodera, Koichi; Fujiwara, Tohru; Onishi, Yasushi; Itoh-Nakadai, Ari; Okitsu, Yoko; Fukuhara, Noriko; Ishizawa, Kenichi; Shimizu, Ritsuko; Yamamoto, Masayuki; Harigae, Hideo

    2016-07-28

    Dendritic cells (DCs) are critical immune response regulators; however, the mechanism of DC differentiation is not fully understood. Heterozygous germ line GATA2 mutations induce GATA2-deficiency syndrome, characterized by monocytopenia, a predisposition to myelodysplasia/acute myeloid leukemia, and a profoundly reduced DC population, which is associated with increased susceptibility to viral infections, impaired phagocytosis, and decreased cytokine production. To define the role of GATA2 in DC differentiation and function, we studied Gata2 conditional knockout and haploinsufficient mice. Gata2 conditional deficiency significantly reduced the DC count, whereas Gata2 haploinsufficiency did not affect this population. GATA2 was required for the in vitro generation of DCs from Lin(-)Sca-1(+)Kit(+) cells, common myeloid-restricted progenitors, and common dendritic cell precursors, but not common lymphoid-restricted progenitors or granulocyte-macrophage progenitors, suggesting that GATA2 functions in the myeloid pathway of DC differentiation. Moreover, expression profiling demonstrated reduced expression of myeloid-related genes, including mafb, and increased expression of T-lymphocyte-related genes, including Gata3 and Tcf7, in Gata2-deficient DC progenitors. In addition, GATA2 was found to bind an enhancer element 190-kb downstream region of Gata3, and a reporter assay exhibited significantly reduced luciferase activity after adding this enhancer region to the Gata3 promoter, which was recovered by GATA sequence deletion within Gata3 +190. These results suggest that GATA2 plays an important role in cell-fate specification toward the myeloid vs T-lymphocyte lineage by regulating lineage-specific transcription factors in DC progenitors, thereby contributing to DC differentiation.

  3. Triggering of dendritic cell apoptosis by xanthohumol.

    PubMed

    Xuan, Nguyen Thi; Shumilina, Ekaterina; Gulbins, Erich; Gu, Shuchen; Götz, Friedrich; Lang, Florian

    2010-07-01

    Xanthohumol, a flavonoid from beer with anticancer activity is known to trigger apoptosis in a variety of tumor cells. Xanthohumol further has anti-inflammatory activity. However, little is known about the effect of xanthohumol on survival and function of immune cells. The present study thus addressed the effect of xanthohumol on dendritic cells (DCs), key players in the regulation of innate and adaptive immunity. To this end, mouse bone marrow-derived DCs were treated with xanthohumol with subsequent assessment of enzymatic activity of acid sphingomyelinase (Asm), ceramide formation determined with anti-ceramide antibodies in FACS and immunohistochemical analysis, caspase activity utilizing FITC conjugated anti-active caspase 8 or caspase 3 antibodies in FACS and by Western blotting, DNA fragmentation by determining the percentage of cells in the sub-G1 phase and cell membrane scrambling by annexin V binding in FACS analysis. As a result, xanthohumol stimulated Asm, enhanced ceramide formation, activated caspases 8 and 3, triggered DNA fragmentation and led to cell membrane scrambling, all effects virtually absent in DCs from gene targeted mice lacking functional Asm or in wild-type cells treated with sphingomyelinase inhibitor amitriptyline. In conclusion, xanthohumol stimulated Asm leading to caspase activation and apoptosis of bone marrow-derived DCs.

  4. Harnessing Dendritic Cells to Generate Cancer Vaccines

    PubMed Central

    Palucka, Karolina; Ueno, Hideki; Fay, Joseph; Banchereau, Jacques

    2009-01-01

    Passive immunotherapy of cancer, i.e., transfer of T cells or antibodies, can lead to some objective clinical responses, thus demonstrating that the immune system can reject tumors. However, passive immunotherapy is not expected to yield memory T cells that might control tumor outgrowth. Active immunotherapy with dendritic cell (DCs) vaccines has the potential to induce tumor-specific effector and memory T cells. Clinical trials testing first generation DC vaccines pulsed with tumor antigens provided a proof-of-principle that therapeutic immunity can be elicited. Newer generation DC vaccines are build on the increased knowledge of the DC system including the existence of distinct DC subsets and their plasticity all leading to generation of distinct types of immunity. Rather than the quantity of IFN-γ secreting CD8+ T cells, we should aim at generating high quality high avidity poly-functional effector CD8+ T cells able to reject tumors and long-lived memory CD8+ T cells able to prevent relapse. PMID:19769741

  5. Dendritic morphogenesis of cerebellar Purkinje cells through extension and retraction revealed by long-term tracking of living cells in vitro.

    PubMed

    Tanaka, M; Yanagawa, Y; Obata, K; Marunouchi, T

    2006-08-25

    Cerebellar Purkinje cells have the most elaborate dendritic trees among the neurons in the CNS. To investigate the dynamic aspects of dendritic morphogenesis of Purkinje cells, we performed a long-term analysis of living cells in cerebellar cell cultures derived from glutamate decarboxylase 67-green fluorescent protein mice. Most Purkinje cells had several primary dendrites during the 25-day culture period. Repeated observation of green fluorescent protein-expressing Purkinje cells over a period of 10-25 days in vitro demonstrated that not only extension, but also retraction of primary dendrites occurred during this culture period. Interestingly, both extension and retraction of primary dendrites were active between 10 and 15 days in vitro, and retraction of a primary dendrite occurred concomitantly with elongation of other primary dendrites in the same cell. Analysis of the morphological characteristics of the retracted primary dendrites demonstrated that shorter and less branched primary dendrites tended to retract. Furthermore, treatment with an inhibitor of calcium/calmodulin-dependent protein kinase II reduced the number of primary dendrites specifically during 5-15 days in vitro, the culture period when the extension and retraction of primary dendrites occurred actively. Blockade of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/kainate-type glutamate receptors also reduced the number of primary dendrites during the same culture period, while inhibition of glutamate transporters increased the number. These findings suggest that the final morphology of Purkinje cells is achieved not only through extension, but also through retraction of their dendrites, and that calcium/calmodulin-dependent protein kinase II and neuronal activity are involved in this dendritic morphogenesis.

  6. Cell-surface marker analysis of rat thymic dendritic cells.

    PubMed Central

    Bañuls, M P; Alvarez, A; Ferrero, I; Zapata, A; Ardavin, C

    1993-01-01

    Rat thymic dendritic cells have been isolated by collagenase digestion, separation of the low-density cell fraction by centrifugation on metrizamide, and differential adherence. The resulting dendritic cell preparation had a purity of > 90%, and has been analysed by flow cytometry (FCM) using a large panel of monoclonal antibodies (mAb). Dendritic cells expressed major histocompatibility (MHC) class I and class II molecules, the leucocyte common antigen CD45, the rat leucocyte antigen OX44, the rat macrophage marker ED1, and the adhesion molecules Mac-1, LFA-1 and ICAM-1. They were negative for the T- and B-cell-specific forms of CD45, CD45R and B220, and the B-cell marker OX12. Concerning T-cell marker expression, they were negative for T-cell receptor (TcR) and OX40, but they expressed CD2, CD4 and CD8, and interestingly, 50% of DC were CD5+, 50% expressed the alpha-chain of interleukin-2 receptor (IL-2R), and 80% were positive for the T-cell activation antigen recognized by the mAb OX48. Moreover, 60% of DC expressed high levels of Thy-1, whereas 40% displayed intermediate levels of this T-cell marker. PMID:8102122

  7. Dendritic cell-based immunotherapy in mesothelioma.

    PubMed

    Cornelissen, Robin; Lievense, Lysanne A; Heuvers, Marlies E; Maat, Alexander P; Hendriks, Rudi W; Hoogsteden, Henk C; Hegmans, Joost P; Aerts, Joachim G

    2012-10-01

    Mesothelioma is a rare thoracic malignancy with a dismal prognosis. Current treatment options are scarce and clinical outcomes are rather disappointing. Due to the immunogenic nature of mesothelioma, several studies have investigated immunotherapeutic strategies to improve the prognosis of patients with mesothelioma. In the last decade, progress in knowledge of the modulation of the immune system to attack the tumor has been remarkable, but the optimal strategy for immunotherapy has yet to be unraveled. Because of their potent antigen-presenting capacity, dendritic cells are acknowledged as a promising agent in immunotherapeutic approaches in a number of malignancies. This review gives an update and provides a future perspective in which immunotherapy may improve the outcome of mesothelioma therapy.

  8. Role of Dendritic Cells in Immune Dysfunction

    NASA Technical Reports Server (NTRS)

    Savary, Cherylyn A.

    1998-01-01

    The specific aims of the project were: (1) Application of the NASA bioreactor to enhance cytokine-regulated proliferation and maturation of dendritic cells (DC). (2) Compare the frequency and function of DC in normal donors and immunocompromised cancer patients. (3) Analyze the effectiveness of cytokine therapy and DC-assisted immunotherapy (using bioreactor-expanded DC) in a murine model of experimental fungal disease. Our investigations have provided new insight into DC immunobiology and have led to the development of methodology to evaluate DC in blood of normal donors and patients. Information gained from these studies has broadened our understanding of possible mechanisms involved in the immune dysfunction of space travelers and earth-bound cancer patients, and could contribute to the design of novel therapies to restore/preserve immunity in these individuals. Several new avenues of investigation were also revealed. The results of studies completed during Round 2 are summarized.

  9. Inhibitory effect of cepharanthine on dendritic cell activation and function.

    PubMed

    Uto, Tomofumi; Nishi, Yosuke; Toyama, Masaaki; Yoshinaga, Keisuke; Baba, Masanori

    2011-11-01

    Dendritic cells (DCs) are specialized antigen presenting cells that connect innate and adaptive immunity. DCs are considered as a major target for controlling excessive immune responses. In this study, the effect of cepharanthine (CEP), a biscoclaurine alkaloid isolated from Stephania cepharantha Hayata, on murine DCs was examined in vitro. CEP inhibited antigen uptake by DCs at a concentration between 1 and 5 μg/ml. Although CEP did not inhibit the expression of costimulatory molecules and major histocompatibility complex (MHC) class I in DCs, the compound inhibited lipopolysaccharide (LPS)-induced DC maturation determined by the expression of costimulatory molecules and MHC class I. In addition, CEP could reduce the production of interleukin-6 and tumor necrosis factor-α in LPS-stimulated DCs. DCs treated with CEP were found to be a poor stimulator of allogeneic T cell proliferation and interferon-γ production from the cells. These results suggest that CEP may have great potential as an immunoregulatory agent against various autoimmune diseases and allergy.

  10. Mechanisms of Dendritic Cell Lysosomal Killing of Cryptococcus

    NASA Astrophysics Data System (ADS)

    Hole, Camaron R.; Bui, Hoang; Wormley, Floyd L.; Wozniak, Karen L.

    2012-10-01

    Cryptococcus neoformans is an opportunistic pulmonary fungal pathogen that disseminates to the CNS causing fatal meningitis in immunocompromised patients. Dendritic cells (DCs) phagocytose C. neoformans following inhalation. Following uptake, cryptococci translocate to the DC lysosomal compartment and are killed by oxidative and non-oxidative mechanisms. DC lysosomal extracts kill cryptococci in vitro; however, the means of antifungal activity remain unknown. Our studies determined non-oxidative antifungal activity by DC lysosomal extract. We examined DC lysosomal killing of cryptococcal strains, anti-fungal activity of purified lysosomal enzymes, and mechanisms of killing against C. neoformans. Results confirmed DC lysosome fungicidal activity against all cryptococcal serotypes. Purified lysosomal enzymes, specifically cathepsin B, inhibited cryptococcal growth. Interestingly, cathepsin B combined with its enzymatic inhibitors led to enhanced cryptococcal killing. Electron microscopy revealed structural changes and ruptured cryptococcal cell walls following treatment. Finally, additional studies demonstrated that osmotic lysis was responsible for cryptococcal death.

  11. Macrophages and Dendritic Cells: Partners in Atherogenesis.

    PubMed

    Cybulsky, Myron I; Cheong, Cheolho; Robbins, Clinton S

    2016-02-19

    Atherosclerosis is a complex chronic disease. The accumulation of myeloid cells in the arterial intima, including macrophages and dendritic cells (DCs), is a feature of early stages of disease. For decades, it has been known that monocyte recruitment to the intima contributes to the burden of lesion macrophages. Yet, this paradigm may require reevaluation in light of recent advances in understanding of tissue macrophage ontogeny, their capacity for self-renewal, as well as observations that macrophages proliferate throughout atherogenesis and that self-renewal is critical for maintenance of macrophages in advanced lesions. The rate of atherosclerotic lesion formation is profoundly influenced by innate and adaptive immunity, which can be regulated locally within atherosclerotic lesions, as well as in secondary lymphoid organs, the bone marrow and the blood. DCs are important modulators of immunity. Advances in the past decade have cemented our understanding of DC subsets, functions, hematopoietic origin, gene expression patterns, transcription factors critical for differentiation, and provided new tools for study of DC biology. The functions of macrophages and DCs overlap to some extent, thus it is important to reassess the contributions of each of these myeloid cells taking into account strict criteria of cell identification, ontogeny, and determine whether their key roles are within atherosclerotic lesions or secondary lymphoid organs. This review will highlight key aspect of macrophage and DC biology, summarize how these cells participate in different stages of atherogenesis and comment on complexities, controversies, and gaps in knowledge in the field.

  12. DENDRITIC CELLS: ARE THEY CLINICALLY RELEVANT?

    PubMed Central

    Palucka, Karolina; Ueno, Hideki; Roberts, Lee; Fay, Joseph; Banchereau, Jacques

    2010-01-01

    Cancer vaccines have undergone a renaissance due to recent clinical trials showing promising immunological data and some clinical benefit to patients. Current trials exploiting dendritic cells (DCs) as vaccines have shown durable tumor regressions in a fraction of patients. Clinical efficacy of current vaccines is hampered by myeloid-derived suppressor cells, inflammatory type 2 T cells and regulatory T cells (Tregs), all of which prevent the generation of effector cells. To improve the clinical efficacy of DC vaccines, we need to design novel and improved strategies that can boost adaptive immunity to cancer, help overcome Tregs and allow the breakdown of the immunosuppressive tumor microenvironment. This can be achieved by exploiting the fast increasing knowledge about the DC system, including the existence of distinct DC subsets. Critical to the design of better vaccines is the concept of distinct DC subsets and distinct DC activation pathways, all contributing to the generation of unique adaptive immune responses. Such novel DC vaccines will be used as monotherapy in patients with resected disease and in combination with antibodies and/or drugs targeting suppressor pathways and modulation of the tumor environment in patients with metastatic disease. PMID:20693842

  13. Engineering Dendritic Cells to Enhance Cancer Immunotherapy

    PubMed Central

    Boudreau, Jeanette E; Bonehill, Aude; Thielemans, Kris; Wan, Yonghong

    2011-01-01

    Cancer immunotherapy aims to establish immune-mediated control of tumor growth by priming T-cell responses to target tumor-associated antigens. Three signals are required for T-cell activation: (i) presentation of cognate antigen in self MHC molecules; (ii) costimulation by membrane-bound receptor-ligand pairs; and (iii) soluble factors to direct polarization of the ensuing immune response. The ability of dendritic cells (DCs) to provide all three signals required for T-cell activation makes them an ideal cancer vaccine platform. Several strategies have been developed to enhance and control antigen presentation, costimulation, and cytokine production. In this review, we discuss progress toward developing DC-based cancer vaccines by genetic modification using RNA, DNA, and recombinant viruses. Furthermore, the ability of DC-based vaccines to activate natural killer (NK) and B-cells, and the impact of gene modification strategies on these populations is described. Clinical trials using gene-modified DCs have shown modest results, therefore, further considerations for DC manipulation to enhance their clinical efficacy are also discussed. PMID:21468005

  14. Borrelia burgdorferi-pulsed dendritic cells induce a protective immune response against tick-transmitted spirochetes.

    PubMed Central

    Mbow, M L; Zeidner, N; Panella, N; Titus, R G; Piesman, J

    1997-01-01

    Borrelia burgdorferi-pulsed dendritic cells and epidermal cells were able to initiate the production of anti-outer surface protein A (OspA) antibody in vitro with normal T and B cells from either BALB/c or C3H/HeJ mice. Inhibition of anti-B. burgdorferi antibody production was observed after 3 days, but not after 2 days, of exposure of the antigen-presenting cells to tumor necrosis factor alpha +/- granulocyte-macrophage colony-stimulating factor. Furthermore, splenic dendritic cells pulsed in vitro with live B. burgdorferi spirochetes and then adoptively transferred into naive syngeneic mice mediated a protective immune response against tick-transmitted spirochetes. This protection appeared not to be due to killing of spirochetes in the feeding ticks, since ticks fed to repletion on B. burgdorferi-pulsed dendritic cell-sensitized mice still harbored live spirochetes. Western blot analysis of the sera collected from dendritic cell-sensitized mice demonstrated that the mice responded to a limited set of B. burgdorferi antigens, including OspA, -B, and -C compared to control groups that either had received unpulsed dendritic cells or were not treated. Finally, mice in the early stage of B. burgdorferi infection were able to develop anti-OspA antibody following injection with B. burgdorferi-pulsed dendritic cells. Our results demonstrate for the first time that adoptive transfer of B. burgdorferi-pulsed dendritic cells induces a protective immune response against tick-transmitted B. burgdorferi and stimulates the production of antibodies specific for a limited set of B. burgdorferi antigens in vivo. PMID:9234802

  15. Role of dendritic cells in cardiovascular diseases

    PubMed Central

    Zhang, Yi; Zhang, Cuihua

    2010-01-01

    Dendritic cells (DCs) are potent antigen-presenting cells that bridge innate and adaptive immune responses. Recent work has elucidated the DC life cycle, including several important stages such as maturation, migration and homeostasis, as well as DC classification and subsets/locations, which provided etiological insights on the role of DCs in disease processes. DCs have a close relationship to endothelial cells and they interact with each other to maintain immunity. DCs are deposited in the atherosclerotic plaque and contribute to the pathogenesis of atherosclerosis. In addition, the necrotic cardiac cells induced by ischemia activate DCs by Toll-like receptors, which initiate innate and adaptive immune responses to renal, hepatic and cardiac ischemia reperfusion injury (IRI). Furthermore, DCs are involved in the acute/chronic rejection of solid organ transplantation and mediate transplant tolerance as well. Advancing our knowledge of the biology of DCs will aid development of new approaches to treat many cardiovascular diseases, including atherosclerosis, cardiac IRI and transplantation. PMID:21179302

  16. [Dendritic cell-based therapeutic cancer vaccines].

    PubMed

    Rizzo, Manglio; Alaniz, Laura; Mazzolini, Guillermo D

    In recent years immunotherapy has revolutionized the treatment of patients with advanced cancer. The increased knowledge in the tumor immune-biology has allowed developing rational treatments by manipulation of the immune system with significant clinical impact. This rapid development has significantly changed the prognosis of many tumors without treatment options up to date. Other strategies have explored the use of therapeutic vaccines based on dendritic cells (DC) by inducing antitumor immunity. DC are cells of hematopoietic origin, constitutively expressing molecules capable to present antigens, that are functionally the most potent inducers of the activation and proliferation of antigen specific T lymphocytes. The CD8+ T cells proliferate and acquire cytotoxic capacity after recognizing their specific antigen presented on the surface of DC, although only some types of DC can present antigens internalized from outside the cell to precursors of cytotoxic T lymphocytes (this function is called cross-presentation) requiring translocation mechanisms of complex antigens. The induction of an effective adaptive immune response is considered a good option given its specificity, and prolonged duration of response. The DC, thanks to its particular ability of antigen presentation and lymphocyte stimulation, are able to reverse the poor antitumor immune response experienced by patients with cancer. The DC can be obtained from various sources, using different protocols to generate differentiation and maturation, and are administered by various routes such as subcutaneous, intravenous or intranodal. The wide variety of protocols resulted in heterogeneous clinical responses.

  17. Ethanol inhibits development of dendrites and synapses in rat hippocampal pyramidal neuron cultures.

    PubMed

    Yanni, P A; Lindsley, T A

    2000-04-14

    Evidence suggests that some neuropathologic manifestations of Fetal Alcohol Syndrome (FAS) result from the disruption of neuromorphogenesis and synapse formation in the hippocampus. Prior research in this laboratory has shown that ethanol in the medium during the first 24 h in culture increases the number of minor processes (the precursors of axons and dendrites) and accelerates the rate at which axons are formed in low-density cultures of embryonic rat hippocampal neurons. The current study examined the effects of ethanol on the subsequent development of dendrites and synapses in these cultures. Quantitative morphometric analysis utilized double-immunofluorescent staining for MAP2 and synapsin I to visualize dendrites and synaptic specializations, respectively. Six days of ethanol (200, 400 or 600 mg/dl) in the medium, beginning at the time of plating, resulted in decreases in total dendritic length per cell, dendrite number per cell, length of individual dendrites and synapse number per innervated dendrite but had no effect on cell survival. The decrease in synapse number was correlated with dendrite length, suggesting that ethanol's effects on synapse number are secondary to its effects on dendritogenesis. Taken together with our previous findings, these results are the first to demonstrate that ethanol has differential effects on axonal and dendritic growth in a culture model of neurons that are vulnerable to ethanol-induced cytoarchitectural abnormalities during development in vivo.

  18. Metabolism Is Central to Tolerogenic Dendritic Cell Function

    PubMed Central

    Sim, Wen Jing; Ahl, Patricia Jennifer; Connolly, John Edward

    2016-01-01

    Immunological tolerance is a fundamental tenant of immune homeostasis and overall health. Self-tolerance is a critical component of the immune system that allows for the recognition of self, resulting in hyporeactivity instead of immunogenicity. Dendritic cells are central to the establishment of dominant immune tolerance through the secretion of immunosuppressive cytokines and regulatory polarization of T cells. Cellular metabolism holds the key to determining DC immunogenic or tolerogenic cell fate. Recent studies have demonstrated that dendritic cell maturation leads to a shift toward a glycolytic metabolic state and preferred use of glucose as a carbon source. In contrast, tolerogenic dendritic cells favor oxidative phosphorylation and fatty acid oxidation. This dichotomous metabolic reprogramming of dendritic cells drives differential cellular function and plays a role in pathologies, such as autoimmune disease. Pharmacological alterations in metabolism have promising therapeutic potential. PMID:26980944

  19. Transcriptional profiling of dendritic cells matured in different osmolarities.

    PubMed

    Chessa, Federica; Hielscher, Thomas; Mathow, Daniel; Gröne, Hermann-Josef; Popovic, Zoran V

    2016-03-01

    Tissue-specific microenvironments shape the fate of mononuclear phagocytes [1-3]. Interstitial osmolarity is a tissue biophysical parameter which considerably modulates the phenotype and function of dendritic cells [4]. In the present report we provide a detailed description of our experimental workflow and bioinformatic analysis applied to our gene expression dataset (GSE72174), aiming to investigate the influence of different osmolarity conditions on the gene expression signature of bone marrow-derived dendritic cells. We established a cell culture system involving murine bone marrow cells, cultured under different NaCl-induced osmolarity conditions in the presence of the dendritic cell growth factor GM-CSF. Gene expression analysis was applied to mature dendritic cells (day 7) developed in different osmolarities, with and without prior stimulation with the TLR2/4 ligand LPS.

  20. Follicular dendritic cell sarcoma of the abdomen: the imaging findings.

    PubMed

    Kang, Tae Wook; Lee, Soon Jin; Song, Hye Jong

    2010-01-01

    Follicular dendritic cell sarcoma is a rare neoplasm that originates from follicular dendritic cells in lymphoid follicles. This disease usually involves the lymph nodes, and especially the head and neck area. Rarely, extranodal sites may be affected, including tonsil, the oral cavity, liver, spleen and the gastrointestinal tract. We report here on the imaging findings of follicular dendritic cell sarcoma of the abdomen that involved the retroperitoneal lymph nodes and colon. It shows as a well-defined, enhancing homogenous mass with internal necrosis and regional lymphadenopathy.

  1. Impulse encoding across the dendritic morphologies of retinal ganglion cells.

    PubMed

    Sheasby, B W; Fohlmeister, J F

    1999-04-01

    Nerve impulse entrainment and other excitation and passive phenomena are analyzed for a morphologically diverse and exhaustive data set (n = 57) of realistic (3-dimensional computer traced) soma-dendritic tree structures of ganglion cells in the tiger salamander (Ambystoma tigrinum) retina. The neurons, including axon and an anatomically specialized thin axonal segment that is observed in every ganglion cell, were supplied with five voltage- or ligand-gated ion channels (plus leakage), which were distributed in accordance with those found in a recent study that employed an equivalent dendritic cylinder. A wide variety of impulse-entrainment responses was observed, including regular low-frequency firing, impulse doublets, and more complex patterns involving impulse propagation failures (or aborted spikes) within the encoder region, all of which have been observed experimentally. The impulse-frequency response curves of the cells fell into three groups called FAST, MEDIUM, and SLOW in approximate proportion as seen experimentally. In addition to these, a new group was found among the traced cells that exhibited an impulse-frequency response twice that of the FAST category. The total amount of soma-dendritic surface area exhibited by a given cell is decisive in determining its electrophysiological classification. On the other hand, we found only a weak correlation between the electrophysiological group and the morphological classification of a given cell, which is based on the complexity of dendritic branching and the physical reach or "receptive field" area of the cell. Dendritic morphology determines discharge patterns to dendritic (synaptic) stimulation. Orthodromic impulses can be initiated on the axon hillock, the thin axonal segment, the soma, or even the proximal axon beyond the thin segment, depending on stimulus magnitude, soma-dendritic membrane area, channel distribution, and state within the repetitive impulse cycle. Although a sufficiently high dendritic

  2. Reovirus activates human dendritic cells to promote innate antitumor immunity.

    PubMed

    Errington, Fiona; Steele, Lynette; Prestwich, Robin; Harrington, Kevin J; Pandha, Hardev S; Vidal, Laura; de Bono, Johann; Selby, Peter; Coffey, Matt; Vile, Richard; Melcher, Alan

    2008-05-01

    Oncolytic viruses can exert their antitumor activity via direct oncolysis or activation of antitumor immunity. Although reovirus is currently under clinical investigation for the treatment of localized or disseminated cancer, any potential immune contribution to its efficacy has not been addressed. This is the first study to investigate the ability of reovirus to activate human dendritic cells (DC), key regulators of both innate and adaptive immune responses. Reovirus induced DC maturation and stimulated the production of the proinflammatory cytokines IFN-alpha, TNF-alpha, IL-12p70, and IL-6. Activation of DC by reovirus was not dependent on viral replication, while cytokine production (but not phenotypic maturation) was inhibited by blockade of PKR and NF-kappaB signaling. Upon coculture with autologous NK cells, reovirus-activated DC up-regulated IFN-gamma production and increased NK cytolytic activity. Moreover, short-term coculture of reovirus-activated DC with autologous T cells also enhanced T cell cytokine secretion (IL-2 and IFN-gamma) and induced non-Ag restricted tumor cell killing. These data demonstrate for the first time that reovirus directly activates human DC and that reovirus-activated DC stimulate innate killing by not only NK cells, but also T cells, suggesting a novel potential role for T cells in oncolytic virus-induced local tumor cell death. Hence reovirus recognition by DC may trigger innate effector mechanisms to complement the virus's direct cytotoxicity, potentially enhancing the efficacy of reovirus as a therapeutic agent.

  3. Dendritic Cell Interactions with Lymphatic Endothelium

    PubMed Central

    Russo, Erica; Nitschké, Maximilian

    2013-01-01

    Abstract Afferent lymphatic vessels fulfill essential immune functions by transporting leukocytes and lymph-borne antigen to draining lymph nodes (dLNs). An important cell type migrating through lymphatic vessels are dendritic cells (DCs). DCs reside in peripheral tissues like the skin, where they take up antigen and transport it via the lymphatic vascular network to dLNs for subsequent presentation to T cells. As such, DCs play a key role in the induction of adaptive immune responses during infection and vaccination, but also for the maintenance of tolerance. Although the migratory pattern of DCs has been known for long time, interactions between DCs and lymphatic vessels are only now starting to be unraveled at the cellular level. In particular, new tools for visualizing lymphatic vessels in combination with time-lapse microscopy have recently generated valuable insights into the process of DC migration to dLNs. In this review we summarize and discuss current approaches for visualizing DCs and lymphatic vessels in tissues for imaging applications. Furthermore, we review the current state of knowledge about DC migration towards, into and within lymphatic vessels, particularly focusing on the cellular interactions that take place between DCs and the lymphatic endothelium. PMID:24044757

  4. Tumor's other immune targets: dendritic cells.

    PubMed

    Esche, C; Lokshin, A; Shurin, G V; Gastman, B R; Rabinowich, H; Watkins, S C; Lotze, M T; Shurin, M R

    1999-08-01

    The induction of apoptosis in T cells is one of several mechanisms by which tumors escape immune recognition. We have investigated whether tumors induce apoptosis in dendritic cells (DC) by co-culture of murine or human DC with different tumor cell lines for 4-48 h. Analysis of DC morphological features, JAM assay, TUNEL, caspase-3-like and transglutaminase activity, Annexin V binding, and DNA fragmentation assays revealed a time- and dose-dependent induction of apoptosis in DC by tumor-derived factors. This finding is both effector and target specific. The mechanism of tumor-induced DC apoptosis involved regulation of Bcl-2 and Bax expression. Double staining of both murine and human tumor tissues confirmed that tumor-associated DC undergo apoptotic death in vivo. DC isolated from tumor tissue showed significantly higher levels of apoptosis as determined by TUNEL assay when compared with DC isolated from spleen. These findings demonstrate that tumors induce apoptosis in DC and suggest a new mechanism of tumor escape from immune recognition. DC protection from apoptosis will lead to improvement of DC-based immunotherapies for cancer and other immune diseases.

  5. Active Dendrites and Differential Distribution of Calcium Channels Enable Functional Compartmentalization of Golgi Cells

    PubMed Central

    Rudolph, Stephanie; Hull, Court

    2015-01-01

    Interneurons are essential to controlling excitability, timing, and synaptic integration in neuronal networks. Golgi cells (GoCs) serve these roles at the input layer of the cerebellar cortex by releasing GABA to inhibit granule cells (grcs). GoCs are excited by mossy fibers (MFs) and grcs and provide feedforward and feedback inhibition to grcs. Here we investigate two important aspects of GoC physiology: the properties of GoC dendrites and the role of calcium signaling in regulating GoC spontaneous activity. Although GoC dendrites are extensive, previous studies concluded they are devoid of voltage-gated ion channels. Hence, the current view holds that somatic voltage signals decay passively within GoC dendrites, and grc synapses onto distal dendrites are not amplified and are therefore ineffective at firing GoCs because of strong passive attenuation. Using whole-cell recording and calcium imaging in rat slices, we find that dendritic voltage-gated sodium channels allow somatic action potentials to activate voltage-gated calcium channels (VGCCs) along the entire dendritic length, with R-type and T-type VGCCs preferentially located distally. We show that R- and T-type VGCCs located in the dendrites can boost distal synaptic inputs and promote burst firing. Active dendrites are thus critical to the regulation of GoC activity, and consequently, to the processing of input to the cerebellar cortex. In contrast, we find that N-type channels are preferentially located near the soma, and control the frequency and pattern of spontaneous firing through their close association with calcium-activated potassium (KCa) channels. Thus, VGCC types are differentially distributed and serve specialized functions within GoCs. SIGNIFICANCE STATEMENT Interneurons are essential to neural processing because they modulate excitability, timing, and synaptic integration within circuits. At the input layer of the cerebellar cortex, a single type of interneuron, the Golgi cell (GoC), carries

  6. Neuroimmune interactions: dendritic cell modulation by the sympathetic nervous system.

    PubMed

    Takenaka, Maisa C; Guereschi, Marcia G; Basso, Alexandre S

    2017-02-01

    Dendritic cells are of paramount importance bridging innate and adaptive immune responses. Depending on the context, after sensing environmental antigens, commensal microorganisms, pathogenic agents, or antigens from the diet, dendritic cells may drive either different effector adaptive immune responses or tolerance, avoiding tissue damage. Although the plasticity of the immune response and the capacity to regulate itself are considered essential to orchestrate appropriate physiological responses, it is known that the nervous system plays a relevant role controlling immune cell function. Dendritic cells present in the skin, the intestine, and lymphoid organs, besides expressing adrenergic receptors, can be reached by neurotransmitters released by sympathetic fibers innervating these tissues. These review focus on how neurotransmitters from the sympathetic nervous system can modulate dendritic cell function and how this may impact the immune response and immune-mediated disorders.

  7. Use and abuse of dendritic cells by Toxoplasma gondii

    PubMed Central

    Sanecka, Anna; Frickel, Eva-Maria

    2012-01-01

    The ubiquitous apicomplexan parasite Toxoplasma gondii stimulates its host’s immune response to achieve quiescent chronic infection. Central to this goal are host dendritic cells. The parasite exploits dendritic cells to disseminate through the body, produce pro-inflammatory cytokines, present its antigens to the immune system and yet at the same time subvert their signaling pathways in order to evade detection. This carefully struck balance by Toxoplasma makes it the most successful parasite on this planet. Recent progress has highlighted specific parasite and host molecules that mediate some of these processes particularly in dendritic cells and in other cells of the innate immune system. Critically, there are several important factors that need to be taken into consideration when concluding how the dendritic cells and the immune system deal with a Toxoplasma infection, including the route of administration, parasite strain and host genotype. PMID:23221473

  8. Functional polarity of dendrites and axons of primate A1 amacrine cells

    PubMed Central

    Davenport, Christopher M.; Detwiler, Peter B.; Dacey, Dennis M.

    2011-01-01

    The A1 cell is an axon-bearing amacrine cell of the primate retina with a diffusely stratified, moderately branched dendritic tree (~400 µm diameter). Axons arise from proximal dendrites forming a second concentric, larger arborization (>4 mm diameter) of thin processes with bouton-like swellings along their length. A1 cells are ON-OFF transient cells that fire a brief high frequency burst of action potentials in response to light (Stafford & Dacey, 1997). It has been hypothesized that A1 cells receive local input to their dendrites, with action potentials propagating output via the axons across the retina, serving a global inhibitory function. To explore this hypothesis we recorded intracellularly from A1 cells in an in vitro macaque monkey retina preparation. A1 cells have an antagonistic center-surround receptive field structure for the ON and OFF components of the light response. Blocking the ON pathway with L-AP4 eliminated ON center responses but not OFF center responses or ON or OFF surround responses. Blocking GABAergic inhibition with picrotoxin increased response amplitudes without affecting receptive field structure. TTX abolished action potentials, with little effect on the sub-threshold light response or basic receptive field structure. We also used multi-photon laser scanning microscopy to record light-induced calcium transients in morphologically identified dendrites and axons of A1 cells. TTX completely abolished such calcium transients in the axons but not in the dendrites. Together these results support the current model of A1 function, whereby the dendritic tree receives synaptic input that determines the center-surround receptive field; and action potentials arise in the axons, which propagate away from the dendritic field across the retina. PMID:17550636

  9. Human Liver Stem Cells Suppress T-Cell Proliferation, NK Activity, and Dendritic Cell Differentiation

    PubMed Central

    Bruno, Stefania; Grange, Cristina; Tapparo, Marta; Pasquino, Chiara; Romagnoli, Renato; Dametto, Ennia; Amoroso, Antonio; Tetta, Ciro; Camussi, Giovanni

    2016-01-01

    Human liver stem cells (HLSCs) are a mesenchymal stromal cell-like population resident in the adult liver. Preclinical studies indicate that HLSCs could be a good candidate for cell therapy. The aim of the present study was to evaluate the immunogenicity and the immunomodulatory properties of HLSCs on T-lymphocytes, natural killer cells (NKs), and dendritic cells (DCs) in allogeneic experimental settings. We found that HLSCs inhibited T-cell proliferation by a mechanism independent of cell contact and dependent on the release of prostaglandin E2 (PGE2) and on indoleamine 2,3-dioxygenase activity. When compared with mesenchymal stromal cells (MSCs), HLSCs were more efficient in inhibiting T-cell proliferation. At variance with MSCs, HLSCs did not elicit NK degranulation. Moreover, HLSCs inhibited NK degranulation against K562, a NK-sensitive target, by a mechanism dependent on HLA-G release. When tested on DC generation from monocytes, HLSCs were found to impair DC differentiation and DCs ability to induce T-cell proliferation through PGE2. This study shows that HLSCs have immunomodulatory properties similar to MSCs, but, at variance with MSCs, they do not elicit a NK response. PMID:27127520

  10. Echinacea purpurea extracts modulate murine dendritic cell fate and function.

    PubMed

    Benson, Jenna M; Pokorny, Amanda J; Rhule, Ava; Wenner, Cynthia A; Kandhi, Vamsikrishna; Cech, Nadja B; Shepherd, David M

    2010-05-01

    Echinacea is a top-selling herbal remedy that purportedly acts as an immunostimulant. However, the specific immunomodulatory effects of Echinacea remain to be elucidated. We focused on defining the effects of Echinacea purpurea extracts in dendritic cells (DCs), which generate innate and adaptive immune responses. We hypothesized that E. purpurea extracts would enhance murine bone marrow-derived DC (BMDC) activation leading to increased immune responses. The fate and function of DCs from C57Bl/6 mice was evaluated following 48h exposure to E. purpurea root and leaf extracts. Flow cytometry revealed that the polysaccharide-rich root extract increased the expression of MHC class II, CD86, and CD54 surface biomarkers whereas the alkylamide-rich leaf extract inhibited expression of these molecules. Production of IL-6 and TNF-alpha increased in a concentration-dependent manner with exposure to the root, but not leaf, extract. In contrast, the leaf but not root extract inhibited the enzymatic activity of cyclooxygenase-2. While both extracts decreased the uptake of ovalbumin by BMDCs, the leaf but not root extract inhibited the antigen-specific activation of naïve CD4(+) T cells from OT II/Thy1.1 mice. Collectively, these results suggest that E. purpurea can be immunostimulatory, immunosuppressive, and/or anti-inflammatory depending on the portion of the plant and extraction method. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  11. Echinacea pupurea extracts modulate murine dendritic cell fate and function

    PubMed Central

    Benson, Jenna M.; Pokorny, Amanda J.; Rhule, Ava; Wenner, Cynthia A.; Kandhi, Vamsikrishna; Cech, Nadja B.; Shepherd, David M.

    2010-01-01

    Echinacea is a top-selling herbal remedy that purportedly acts as an immunostimulant. However, the specific immunomodulatory effects of Echinacea remain to be elucidated. We focused on defining the effects of Echinacea purpurea extracts in dendritic cells (DCs), which generate innate and adaptive immune responses. We hypothesized that E. purpurea extracts would enhance murine bone marrow-derived DC (BMDC) activation leading to increased immune responses. The fate and function of DCs from C57Bl/6 mice was evaluated following 48 h exposure to E. purpurea root and leaf extracts. Flow cytometry revealed that the polysaccharide-rich root extract increased the expression of MHC class II, CD86, and CD54 surface biomarkers whereas the alkylamide-rich leaf extract inhibited expression of these molecules. Production of IL-6 and TNF-α increased in a concentration-dependent manner with exposure to the root, but not leaf, extract. In contrast, the leaf but not root extract inhibited the enzymatic activity of cyclooxygenase-2. While both extracts decreased the uptake of ovalbumin by BMDCs, the leaf but not root extract inhibited the antigen-specific activation of naïve CD4+ T cells from OT II/Thy1.1 mice. Collectively, these results suggest that E. purpurea can be immunostimulatory, immunosuppressive, and/or anti-inflammatory depending on the portion of the plant and extraction method. PMID:20149833

  12. Dendritic cell interactions with Histoplasma and Paracoccidioides

    PubMed Central

    Thind, Sharanjeet K; Taborda, Carlos P; Nosanchuk, Joshua D

    2015-01-01

    Fungi are among the most common microbes encountered by humans. More than 100, 000 fungal species have been described in the environment to date, however only a few species cause disease in humans. Fungal infections are of particular importance to immunocompromised hosts in whom disease is often more severe, especially in those with impaired cell-mediated immunity such as individuals with HIV infection, hematologic malignancies, or those receiving TNF-α inhibitors. Nevertheless, environmental disturbances through natural processes or as a consequence of deforestation or construction can expose immunologically competent people to a large number of fungal spores resulting in asymptomatic acquisition to life-threatening disease. In recent decades, the significance of the innate immune system and more importantly the role of dendritic cells (DC) have been found to play a fundamental role in the resolution of fungal infections, such as in dimorphic fungi like Histoplasma and Paracoccidioides. In this review article the general role of DCs will be illustrated as the bridge between the innate and adaptive immune systems, as well as their specific interactions with these 2 dimorphic fungi. PMID:25933034

  13. Phenotype and function of nasal dendritic cells

    PubMed Central

    Lee, Haekyung; Ruane, Darren; Law, Kenneth; Ho, Yan; Garg, Aakash; Rahman, Adeeb; Esterházy, Daria; Cheong, Cheolho; Goljo, Erden; Sikora, Andrew G.; Mucida, Daniel; Chen, Benjamin; Govindraj, Satish; Breton, Gaëlle; Mehandru, Saurabh

    2015-01-01

    Intranasal vaccination generates immunity across local, regional and distant sites. However, nasal dendritic cells (DC), pivotal for the induction of intranasal vaccine- induced immune responses, have not been studied in detail. Here, using a variety of parameters, we define nasal DCs in mice and humans. Distinct subsets of “classical” DCs, dependent on the transcription factor zbtb46 were identified in the murine nose. The murine nasal DCs were FLT3 ligand-responsive and displayed unique phenotypic and functional characteristics including the ability to present antigen, induce an allogeneic T cell response and migrate in response to LPS or live bacterial pathogens. Importantly, in a cohort of human volunteers, BDCA-1+ DCs were observed to be the dominant nasal DC population at steady state. During chronic inflammation, the frequency of both BDCA-1+ and BDCA-3hi DCs was reduced in the nasal tissue, associating the loss of these immune sentinels with chronic nasal inflammation. The present study is the first detailed description of the phenotypic, ontogenetic and functional properties of nasal DCs and will inform the design of preventative immunization strategies as well as therapeutic modalities against chronic rhinosinusitis. PMID:25669151

  14. Mycobacterium avium subspecies impair dendritic cell maturation.

    PubMed

    Basler, Tina; Brumshagen, Christina; Beineke, Andreas; Goethe, Ralph; Bäumer, Wolfgang

    2013-10-01

    Mycobacterium avium ssp. paratuberculosis (MAP) causes Johne's disease, a chronic, granulomatous enteritis of ruminants. Dendritic cells (DC) of the gut are ideally placed to combat invading mycobacteria; however, little is known about their interaction with MAP. Here, we investigated the interaction of MAP and the closely related M. avium ssp. avium (MAA) with murine DC and the effect of infected macrophages on DC maturation. The infection of DC with MAP or MAA induced DC maturation, which differed to that of LPS as maturation was accompanied by higher production of IL-10 and lower production of IL-12. Treatment of maturing DC with supernatants from mycobacteria-infected macrophages resulted in impaired DC maturation, leading to a semi-mature, tolerogenic DC phenotype expressing low levels of MHCII, CD86 and TNF-α after LPS stimulation. Though the cells were not completely differentiated they responded with an increased IL-10 and a decreased IL-12 production. Using recombinant cytokines we provide evidence that the semi-mature DC phenotype results from a combination of secreted cytokines and released antigenic mycobacterial components of the infected macrophage. Our results indicate that MAP and MAA are able to subvert DC function directly by infecting and indirectly via the milieu created by infected macrophages.

  15. Dendritic cell interactions with Histoplasma and Paracoccidioides.

    PubMed

    Thind, Sharanjeet K; Taborda, Carlos P; Nosanchuk, Joshua D

    2015-01-01

    Fungi are among the most common microbes encountered by humans. More than 100, 000 fungal species have been described in the environment to date, however only a few species cause disease in humans. Fungal infections are of particular importance to immunocompromised hosts in whom disease is often more severe, especially in those with impaired cell-mediated immunity such as individuals with HIV infection, hematologic malignancies, or those receiving TNF-α inhibitors. Nevertheless, environmental disturbances through natural processes or as a consequence of deforestation or construction can expose immunologically competent people to a large number of fungal spores resulting in asymptomatic acquisition to life-threatening disease. In recent decades, the significance of the innate immune system and more importantly the role of dendritic cells (DC) have been found to play a fundamental role in the resolution of fungal infections, such as in dimorphic fungi like Histoplasma and Paracoccidioides. In this review article the general role of DCs will be illustrated as the bridge between the innate and adaptive immune systems, as well as their specific interactions with these 2 dimorphic fungi.

  16. Kidney dendritic cells in acute and chronic renal disease.

    PubMed

    Hochheiser, Katharina; Tittel, André; Kurts, Christian

    2011-06-01

    Dendritic cells are not only the master regulators of adaptive immunity, but also participate profoundly in innate immune responses. Much has been learned about their basic immunological functions and their roles in various diseases. Comparatively little is still known about their role in renal disease, despite their obvious potential to affect immune responses in the kidney, and immune responses that are directed against renal components. Kidney dendritic cells form an abundant network in the renal tubulointerstitium and constantly survey the environment for signs of injury or infection, in order to alert the immune system to the need to initiate defensive action. Recent studies have identified a role for dendritic cells in several murine models of acute renal injury and chronic nephritis. Here we summarize the current knowledge on the role of kidney dendritic cells that has been obtained from the study of murine models of renal disease. © 2010 The Authors. Journal compilation © 2010 Blackwell Publishing Ltd.

  17. [Dendritic cells and gliomas: a hope in immunotherapy?].

    PubMed

    Jouanneau, E; Poujol, D; Caux, C; Belin, M-F; Blay, J-Y; Puisieux, I

    2006-12-01

    Immunotherapy has been explored for several decades to try to improve the prognosis of gliomas, but until recently no therapeutic benefit has been achieved. The discovery of dendritic cells, the most potent professional antigen presenting cells to initiate specific immune response, and the possibility of producing them ex vivo gave rise to new protocols of active immunotherapy. In oncology, promising experimental and clinical therapeutic results were obtained using these dendritic cells loaded with tumor antigen. Patients bearing gliomas have deficit antigen presentation making this approach rational. In several experimental glioma models, independent research teams have showed specific antitumor responses using these dendritic cells. Phase I/II clinical trials have demonstrated the feasibility and the tolerance of this immunotherapeutic approach. In neuro-oncology, the efficiency of such an approach remains to be established, similarly in oncology where positive phase III studies are missing. Nevertheless, dendritic cells comprise a complex network which is only partially understood and capable of generating either immunotolerance or immune response. Numerous parameters remain to be explored before any definitive conclusion about their utility as an anticancer weapon can be drawn. It seems however logical that immunotherapy with dendritic cells could prevent or delay tumor recurrence in patients with minor active disease. A review on glioma and dendritic cells is presented.

  18. Hyperactivation of STAT3 is involved in abnormal differentiation of dendritic cells in cancer.

    PubMed

    Nefedova, Yulia; Huang, Mei; Kusmartsev, Sergei; Bhattacharya, Raka; Cheng, Pingyan; Salup, Raoul; Jove, Richard; Gabrilovich, Dmitry

    2004-01-01

    Abnormal differentiation of myeloid cells is one of the hallmarks of cancer. However, the molecular mechanisms of this process remain elusive. In this study, we investigated the effect of tumor-derived factors on Janus kinase (Jak)/STAT signaling in myeloid cells during their differentiation into dendritic cells. Tumor cell conditioned medium induced activation of Jak2 and STAT3, which was associated with an accumulation of immature myeloid cells. Jak2/STAT3 activity was localized primarily in these myeloid cells, which prevented the differentiation of immature myeloid cells into mature dendritic cells. This differentiation was restored after removal of tumor-derived factors. Inhibition of STAT3 abrogated the negative effects of these factors on myeloid cell differentiation, and overexpression of STAT3 reproduced the effects of tumor-derived factors. Thus, this is a first demonstration that tumor-derived factors may affect myeloid cell differentiation in cancer via constitutive activation of Jak2/STAT3.

  19. Production of interferons by dendritic cells, plasmacytoid cells, natural killer cells, and interferon-producing killer dendritic cells.

    PubMed

    Vremec, David; O'Keeffe, Meredith; Hochrein, Hubertus; Fuchsberger, Martina; Caminschi, Irina; Lahoud, Mireille; Shortman, Ken

    2007-02-01

    The capacity of mouse spleen conventional dendritic cells (cDCs) and plasmacytoid dendritic cells (pDCs) to produce interferon-gamma (IFN-gamma) or IFN-alpha was assessed, and compared with that of natural killer (NK) cells and the recently identified interferon-producing killer dendritic cells (IKDCs), both of which are frequent contaminants in DC preparations. Fully developed cDCs or pDCs, if free of NK cells or IKDCs, showed little capacity for IFN-gamma production. However, an early developmental form of the CD4-8+ cDC subtype, and the Ly6C- Ly49Q- pDC subtype, both were able to produce moderate amounts of IFN-gamma, although less than IKDCs. In response to toll-like receptor 9 stimuli, both the Ly6C+ Ly49Q+ and the Ly6C- Ly49Q- pDC subtypes were effective producers of IFN-alpha. However, IKDCs, which efficiently produced IFN-gamma and showed immediate cytotoxicity on NK target cells, did not produce IFN-alpha under these conditions.

  20. New generation of dendritic cell vaccines.

    PubMed

    Radford, Kristen J; Caminschi, Irina

    2013-02-01

    Dendritic cells (DC) play a pivotal role in the induction and regulation of immune responses, including the induction of cytotoxic T lymphocytes (CTL) responses. These are essential for the eradication of cancers and pathogens including HIV and malaria, for which there are currently no effective vaccines. New developments in our understanding of DC biology have identified the key DC subset responsible for CTL induction, which is now an attractive candidate to target for vaccination. These DC are characterized by expression of novel markers Clec9A and XCR1, and a specialized capacity to cross-present antigen (Ag) from tumors and pathogens that do not directly infect DC. New generation DC vaccines that specifically target the cross-presenting DC in vivo have already demonstrated potential in preclinical animal models but the challenge remains to translate these findings into clinically efficacous vaccines in man. This has been greatly facilitated by the recent identification of the equivalent Clec9A(+) XCR1(+) cross-presenting DC in human lymphoid tissues and peripheral tissues that are key sites for vaccination administration. These findings combined with further studies on DC subset biology have important implications for the design of new CTL-mediated vaccines.

  1. Dendritic Cells and Macrophages: Sentinels in the Kidney

    PubMed Central

    Weisheit, Christina K.; Engel, Daniel R.

    2015-01-01

    The mononuclear phagocytes (dendritic cells and macrophages) are closely related immune cells with central roles in anti-infectious defense and maintenance of organ integrity. The canonical function of dendritic cells is the activation of T cells, whereas macrophages remove apoptotic cells and microbes by phagocytosis. In the kidney, these cell types form an intricate system of mononuclear phagocytes that surveys against injury and infection and contributes to organ homeostasis and tissue repair but may also promote progression of CKD. This review summarizes the general functions and classification of dendritic cells and macrophages in the immune system and recapitulates why overlapping definitions and historically separate research have created controversy about their tasks. Their roles in acute kidney disease, CKD, and renal transplantation are described, and therapeutic strategy to modify these cells for therapeutic purposes is discussed. PMID:25568218

  2. Minocycline promotes the generation of dendritic cells with regulatory properties

    PubMed Central

    Im, Sun-A; Kim, Ji-Wan; Lee, Jae-Hee; Park, Young-Jun; Song, Sukgil; Lee, Chong-Kil

    2016-01-01

    Minocycline, which has long been used as a broad-spectrum antibiotic, also exhibits non-antibiotic properties such as inhibition of inflammation and angiogenesis. In this study, we show that minocycline significantly enhances the generation of dendritic cells (DCs) from mouse bone marrow (BM) cells when used together with GM-CSF and IL-4. DCs generated from BM cells in the presence of minocycline (Mino-DCs) demonstrate the characteristics of regulatory DCs. Compared with control DCs, Mino-DCs are resistant to subsequent maturation stimuli, impaired in MHC class II-restricted exogenous Ag presentation, and show decreased cytokine secretion. Mino-DCs also show decreased ability to prime allogeneic-specific T cells, while increasing the expansion of CD4+CD25+Foxp3+ T regulatory cells both in vitro and in vivo. In addition, pretreatment with MOG35-55 peptide-pulsed Mino-DCs ameliorates clinical signs of experimental autoimmune encephalitis induced by MOG peptide injection. Our study identifies minocycline as a new pharmacological agent that could be potentially used to increase the production of regulatory DCs for cell therapy to treat autoimmune disorders, allergy, and transplant rejection. PMID:27463004

  3. The effect of dendritic cells on the retinal cell transplantation

    SciTech Connect

    Oishi, Akio; Nagai, Takayuki; Mandai, Michiko Takahashi, Masayo; Yoshimura, Nagahisa

    2007-11-16

    The potential of bone marrow cell-derived immature dendritic cells (myeloid iDCs) in modulating the efficacy of retinal cell transplantation therapy was investigated. (1) In vitro, myeloid iDCs but not BMCs enhanced the survival and proliferation of embryonic retinal cells, and the expression of various neurotrophic factors by myeloid iDCs was confirmed with RT-PCR. (2) In subretinal transplantation, neonatal retinal cells co-transplanted with myeloid iDCs showed higher survival rate compared to those transplanted without myeloid iDCs. (3) CD8 T-cells reactive against donor retinal cells were significantly increased in the mice with transplantation of retinal cells alone. These results suggested the beneficial effects of the use of myeloid iDCs in retinal cell transplantation therapy.

  4. Dendritic cell-nerve clusters are sites of T cell proliferation in allergic airway inflammation.

    PubMed

    Veres, Tibor Z; Shevchenko, Marina; Krasteva, Gabriela; Spies, Emma; Prenzler, Frauke; Rochlitzer, Sabine; Tschernig, Thomas; Krug, Norbert; Kummer, Wolfgang; Braun, Armin

    2009-03-01

    Interactions between T cells and dendritic cells in the airway mucosa precede secondary immune responses to inhaled antigen. The purpose of this study was to identify the anatomical locations where dendritic cell-T cell interactions occur, resulting in T cells activation by dendritic cells. In a mouse model of allergic airway inflammation, we applied whole-mount immunohistology and confocal microscopy to visualize dendritic cells and T cells together with nerves, epithelium, and smooth muscle in three dimensions. Proliferating T cells were identified by the detection of the incorporation of the nucleotide analogue 5-ethynyl-2'-deoxyuridine into the DNA. We developed a novel quantification method that enabled the accurate determination of cell-cell contacts in a semi-automated fashion. Dendritic cell-T cell interactions occurred beneath the smooth muscle layer, but not in the epithelium. Approximately 10% of the dendritic cells were contacted by nerves, and up to 4% of T cells formed clusters with these dendritic cells. T cells that were clustered with nerve-contacting dendritic cells proliferated only in the airways of mice with allergic inflammation but not in the airways of negative controls. Taken together, these results suggest that during the secondary immune response, sensory nerves influence dendritic cell-driven T cell activation in the airway mucosa.

  5. Organization of pyramidal cell apical dendrites and composition of dendritic clusters in the mouse: emphasis on primary motor cortex.

    PubMed

    Lev, D L; White, E L

    1997-02-01

    It has been proposed that neurons in sensory cortices are organized into modules that centre on clusters of apical dendrites belonging to layer V pyramidal neurons. In the present study, sections reacted for microtubule-associated protein (MAP2) were examined in order to determine the three-dimensional inter-relationships of pyramidal cell dendrites in mouse primary motor cortex (MsI) cortex. Results indicate that pyramidal cell dendrites in MsI cortex can be interpreted to be arranged in a modular fashion, and that these modules are organized similarly to those in the sensory areas of the cortex. Also included in the present study are experiments designed to determine if the clusters of apical dendrites, around which the modules are centred, are composed of dendrites belonging to one or to more than one type of projection cell. Callosal neurons in MsI cortex were labelled by the retrograde transport of horseradish peroxidase deposited onto severed callosal fibres in the contralateral hemisphere. Examination of tangential thin sections through layer IV of MsI cortex shows clusters of apical dendrites in which every dendrite is labelled with horseradish peroxidase. Adjacent clusters are composed of unlabelled dendrites, suggesting that the apical dendrites of callosal neurons aggregate to form clusters that are composed exclusively of dendrites belonging to this type of projection cell. These findings suggest a hitherto unsuspected degree of specificity in the cellular composition of cortical modules.

  6. Dendrites of rod bipolar cells sprout in normal aging retina.

    PubMed

    Liets, Lauren C; Eliasieh, Kasra; van der List, Deborah A; Chalupa, Leo M

    2006-08-08

    The aging nervous system is known to manifest a variety of degenerative and regressive events. Here we report the unexpected growth of dendrites in the retinas of normal old mice. The dendrites of many rod bipolar cells in aging mice were observed to extend well beyond their normal strata within the outer plexiform layer to innervate the outer nuclear layer where they appeared to form contacts with the spherules of rod photoreceptors. Such dendritic sprouting increased with age and was evident at all retinal eccentricities. These results provide evidence of retinal plasticity associated with normal aging.

  7. Inhibition of antigen-presenting activity of dendritic cells resulting from UV irradiation of murine skin is restored by in vitro photorepair of cyclobutane pyrimidine dimers

    SciTech Connect

    Vink, A.A.; Roza, L.; Moodycliffe, A.M.; Shreedhar, V.

    1997-05-13

    Exposing skin to UVB (280-320 nm) radiation suppresses contact hypersensitivity by a mechanism that involves an alteration in the activity of cutaneous antigen-presenting cells (APC). UV-induced DNA damage appears to be an important molecular trigger for this effect. The specific target cells in the skin that sustain DNA damage relevant to the immunosuppressive effect have yet to be identified. We tested the hypothesis that UV-induced DNA damage in the cutaneous APC was responsible for their impaired ability to present antigen after in vivo UV irradiation. Cutaneous APC were collected from the draining lymph nodes of UVB-irradiated, hapten-sensitized mice and incubated in vitro with liposomes containing a photolyase, which, upon absorption of photoreactivating light, splits UV-induced cyclobutane pyrimidine dimers. Photosome treatment followed by photoreactivating light reduced the number of dimer-containing APC, restored the in vivo antigen-presenting activity of the draining lymph node cells, and blocked the induction of suppressor T cells. Neither Photosomes nor photoreactivating light alone, nor photoreactivating light given before Photosomes, restored APC activity, and Photosomes treatment did not reverse the impairment of APC function when isopsoralen plus UVA (320-400 nm) radiation was used instead of UVB. These controls indicate that the restoration of APC function matched the requirements of Photosome-mediated DNA repair for dimers and post-treatment photoreactivating light. These results provide compelling evidence that it is UV-induced DNA damage in cutaneous APC that leads to reduced immune function.

  8. Protective dendritic cell responses against listeriosis induced by the short form of the deubiquitinating enzyme CYLD are inhibited by full-length CYLD.

    PubMed

    Wurm, Rebecca; Just, Sissy; Wang, Xu; Wex, Katharina; Schmid, Ursula; Blanchard, Nicolas; Waisman, Ari; Schild, Hans-Jörg; Deckert, Martina; Naumann, Michael; Schlüter, Dirk; Nishanth, Gopala

    2015-05-01

    The deubiquitinating enzyme CYLD is an important tumor suppressor and inhibitor of immune responses. In contrast to full-length CYLD, the immunological function of the naturally occurring short splice variant of CYLD (sCYLD) is insufficiently described. Previously, we showed that DCs, which lack full-length CYLD but express sCYLD, exhibit augmented NF-κB and DC activation. To explore the function of sCYLD in infection, we investigated whether DC-specific sCYLD regulates the pathogenesis of listeriosis. Upon Listeria monocytogenes infection of CD11c-Cre Cyld(ex7/8 fl/fl) mice, infection of CD8α(+) DCs, which are crucial for the establishment of listeriosis in the spleen, was not affected. However, NF-κB activity of CD11c-Cre Cyld(ex7/8 fl/fl) DCs was increased, while activation of ERK and p38 was normal. In addition, CD11c-Cre Cyld(ex7/8 fl/fl) DCs produced more TNF, IL-10, and IL-12 upon infection, which led to enhanced stimulation of IFN-γ-producing NK cells. In addition CD11c-Cre Cyld(ex7/8 fl/fl) DCs presented Listeria Ag more efficiently to CD8(+) T cells resulting in a stronger pathogen-specific CD8(+) T-cell proliferation and more IFN-γ production. Collectively, the improved innate and adaptive immunity and survival during listeriosis identify the DC-specific FL-CYLD/sCYLD balance as a potential target to modulate NK-cell and Ag-specific CD8(+) T-cell responses.

  9. Endothelial cell-derived microparticles induce plasmacytoid dendritic cell maturation: potential implications in inflammatory diseases

    PubMed Central

    Angelot, Fanny; Seillès, Estelle; Biichlé, Sabeha; Berda, Yael; Gaugler, Béatrice; Plumas, Joel; Chaperot, Laurence; Dignat-George, Françoise; Tiberghien, Pierre; Saas, Philippe; Garnache-Ottou, Francine

    2009-01-01

    Background Increased circulating endothelial microparticles, resulting from vascular endothelium dysfunction, and plasmacytoid dendritic cell activation are both encountered in common inflammatory disorders. The aim of our study was to determine whether interactions between endothelial microparticles and plasmacytoid dendritic cells could contribute to such pathologies. Design and Methods Microparticles generated from endothelial cell lines, platelets or activated T cells were incubated with human plasmacytoid dendritic cells sorted from healthy donor blood or with monocyte-derived dendritic cells. Dendritic cell maturation was evaluated by flow cytometry, cytokine secretion as well as naive T-cell activation and polarization. Labeled microparticles were also used to study cellular interactions. Results Endothelial microparticles induced plasmacytoid dendritic cell maturation. In contrast, conventional dendritic cells were resistant to endothelial microparticle-induced maturation. In addition to upregulation of co-stimulatory molecules, endothelial microparticle-matured plasmacytoid dendritic cells secreted inflammatory cytokines (interleukins 6 and 8, but no interferon-α) and also induced allogeneic naive CD4+ T cells to proliferate and to produce type 1 cytokines such as interferon-γ and tumor necrosis factor-α. Endothelial microparticle endocytosis by plasmacytoid dendritic cells appeared to be required for plasmacytoid dendritic cell maturation. Importantly, the ability of endothelial microparticles to induce plasmacytoid dendritic cells to mature was specific as microparticles derived from activated T cells or platelets (the major source of circulating microparticules in healthy subjects) did not induce such plasmacytoid dendritic cell maturation. Conclusions Our data show that endothelial microparticles specifically induce plasmacytoid dendritic cell maturation and production of inflammatory cytokines. This novel activation pathway may be implicated in

  10. [ILT3+/ILT4+ tolerogenic dendritic cells and their influence on allograft survival].

    PubMed

    Arboleda, John F; García, Luis F; Alvarez, Cristiam M

    2011-06-01

    Dendritic cells, the most powerful antigen-presenting cells, are important for triggering of the immune responses to allo-antigens. However, they also play a fundamental role in the peripheral tolerance maintenance. Tolerance is enhanced by the presence on the dendritic cell surface of the inhibitor receptors ILT3 and ILT4. They recruit protein tyrosine-phosphatases to their ITIM domains and inhibit antigen-presenting cell activation, leading T cell hypo-responsivensess. Moreover, these receptors favor a bidirectional interaction with T-suppressor and T-regulator cells, generating an antigen-specific immunoregulator cascade, in which the dendritic cell behaves as a tolerogenic cell. In the current review, analysis is centered on the biology and behavior of the tolerogenic dendritic cells that express high levels of ILT3 and ILT4. Some molecular and genetics aspects of these receptors are discussed as well as their importance in the modulation of the allo-specific antigen immune response to transplants.

  11. Modelling plasticity in dendrites: from single cells to networks.

    PubMed

    Bono, Jacopo; Wilmes, Katharina A; Clopath, Claudia

    2017-09-07

    One of the key questions in neuroscience is how our brain self-organises to efficiently process information. To answer this question, we need to understand the underlying mechanisms of plasticity and their role in shaping synaptic connectivity. Theoretical neuroscience typically investigates plasticity on the level of neural networks. Neural network models often consist of point neurons, completely neglecting neuronal morphology for reasons of simplicity. However, during the past decades it became increasingly clear that inputs are locally processed in the dendrites before they reach the cell body. Dendritic properties enable local interactions between synapses and location-dependent modulations of inputs, rendering the position of synapses on dendrites highly important. These insights changed our view of neurons, such that we now think of them as small networks of nearly independent subunits instead of a simple point. Here, we propose that understanding how the brain processes information strongly requires that we consider the following properties: which plasticity mechanisms are present in the dendrites and how do they enable the self-organisation of synapses across the dendritic tree for efficient information processing? Ultimately, dendritic plasticity mechanisms can be studied in networks of neurons with dendrites, possibly uncovering unknown mechanisms that shape the connectivity in our brains. Copyright © 2017. Published by Elsevier Ltd.

  12. Spines slow down dendritic chloride diffusion and affect short-term ionic plasticity of GABAergic inhibition

    NASA Astrophysics Data System (ADS)

    Mohapatra, Namrata; Tønnesen, Jan; Vlachos, Andreas; Kuner, Thomas; Deller, Thomas; Nägerl, U. Valentin; Santamaria, Fidel; Jedlicka, Peter

    2016-03-01

    Cl‑ plays a crucial role in neuronal function and synaptic inhibition. However, the impact of neuronal morphology on the diffusion and redistribution of intracellular Cl‑ is not well understood. The role of spines in Cl‑ diffusion along dendritic trees has not been addressed so far. Because measuring fast and spatially restricted Cl‑ changes within dendrites is not yet technically possible, we used computational approaches to predict the effects of spines on Cl‑ dynamics in morphologically complex dendrites. In all morphologies tested, including dendrites imaged by super-resolution STED microscopy in live brain tissue, spines slowed down longitudinal Cl‑ diffusion along dendrites. This effect was robust and could be observed in both deterministic as well as stochastic simulations. Cl‑ extrusion altered Cl‑ diffusion to a much lesser extent than the presence of spines. The spine-dependent slowing of Cl‑ diffusion affected the amount and spatial spread of changes in the GABA reversal potential thereby altering homosynaptic as well as heterosynaptic short-term ionic plasticity at GABAergic synapses in dendrites. Altogether, our results suggest a fundamental role of dendritic spines in shaping Cl‑ diffusion, which could be of relevance in the context of pathological conditions where spine densities and neural excitability are perturbed.

  13. Spines slow down dendritic chloride diffusion and affect short-term ionic plasticity of GABAergic inhibition

    PubMed Central

    Mohapatra, Namrata; Tønnesen, Jan; Vlachos, Andreas; Kuner, Thomas; Deller, Thomas; Nägerl, U. Valentin; Santamaria, Fidel; Jedlicka, Peter

    2016-01-01

    Cl− plays a crucial role in neuronal function and synaptic inhibition. However, the impact of neuronal morphology on the diffusion and redistribution of intracellular Cl− is not well understood. The role of spines in Cl− diffusion along dendritic trees has not been addressed so far. Because measuring fast and spatially restricted Cl− changes within dendrites is not yet technically possible, we used computational approaches to predict the effects of spines on Cl− dynamics in morphologically complex dendrites. In all morphologies tested, including dendrites imaged by super-resolution STED microscopy in live brain tissue, spines slowed down longitudinal Cl− diffusion along dendrites. This effect was robust and could be observed in both deterministic as well as stochastic simulations. Cl− extrusion altered Cl− diffusion to a much lesser extent than the presence of spines. The spine-dependent slowing of Cl− diffusion affected the amount and spatial spread of changes in the GABA reversal potential thereby altering homosynaptic as well as heterosynaptic short-term ionic plasticity at GABAergic synapses in dendrites. Altogether, our results suggest a fundamental role of dendritic spines in shaping Cl− diffusion, which could be of relevance in the context of pathological conditions where spine densities and neural excitability are perturbed. PMID:26987404

  14. Spines slow down dendritic chloride diffusion and affect short-term ionic plasticity of GABAergic inhibition.

    PubMed

    Mohapatra, Namrata; Tønnesen, Jan; Vlachos, Andreas; Kuner, Thomas; Deller, Thomas; Nägerl, U Valentin; Santamaria, Fidel; Jedlicka, Peter

    2016-03-18

    Cl(-) plays a crucial role in neuronal function and synaptic inhibition. However, the impact of neuronal morphology on the diffusion and redistribution of intracellular Cl(-) is not well understood. The role of spines in Cl(-) diffusion along dendritic trees has not been addressed so far. Because measuring fast and spatially restricted Cl(-) changes within dendrites is not yet technically possible, we used computational approaches to predict the effects of spines on Cl(-) dynamics in morphologically complex dendrites. In all morphologies tested, including dendrites imaged by super-resolution STED microscopy in live brain tissue, spines slowed down longitudinal Cl(-) diffusion along dendrites. This effect was robust and could be observed in both deterministic as well as stochastic simulations. Cl(-) extrusion altered Cl(-) diffusion to a much lesser extent than the presence of spines. The spine-dependent slowing of Cl(-) diffusion affected the amount and spatial spread of changes in the GABA reversal potential thereby altering homosynaptic as well as heterosynaptic short-term ionic plasticity at GABAergic synapses in dendrites. Altogether, our results suggest a fundamental role of dendritic spines in shaping Cl(-) diffusion, which could be of relevance in the context of pathological conditions where spine densities and neural excitability are perturbed.

  15. Insights into dendritic cell function using advanced imaging modalities.

    PubMed

    Vyas, Jatin M

    2012-11-15

    The application of advanced imaging techniques to fundamental questions in immunology has provided insight into dendritic cell function and has challenged dogma created using static imaging of lymphoid tissue. The history of dendritic cell biology has a storied past and is tightly linked to imaging. The development of imaging techniques that emphasize live cell imaging in situ has provided not only breath-taking movies, but also novel insights into the importance of spatiotemporal relationships between antigen presenting cells and T cells. This review serves to provide a primer on two-photon microscopy, TIRF microscopy, spinning disk confocal microscopy and optical trapping and provides selective examples of insights gained from these tools on dendritic cell biology.

  16. S100-positive dendritic cells in squamous cell laryngeal cancer.

    PubMed

    Diaconescu, Daniela Eugenia; Dima, Lorena; Marinescu, Daniela Maria; Ţânţu, Marilena Monica; Rogozea, Liliana Marcela

    2014-01-01

    Dendritic cells (DC) are the most potent antigen-presenting cells, and induce antigen-specific immune responses. DC are believed to evolve into tumor-antigen pulsed cells and then to migrate to local lymph nodes, where they activate anti-tumor immune responses. This theory is supported by studies showing that high DC densities are associated with favorable prognosis in some tumor types. In the present study, we evaluated 40 primary and metastatic laryngeal carcinomas for the presence of DC, using immunohistochemistry with the anti-S100 protein antibody. We analyzed the relationship between the degree of infiltration by S100-positive (S100+) DC and prognostic factors, including histological subtype, histological grade, peritumor inflammatory infiltration, and stromal desmoplasia. The results show that in all evaluated laryngeal cancers S100-positive cells were significantly more frequent in the tumor stroma. Primary tumors with nodal metastases showed more significant differences in intraepithelial and stromal DC distribution than tumors without nodal metastases. A significant higher S100+ DC was also noticed in the desmoplasic stroma of lymph nodes. The subtype with keratinization had a significant higher S100-positive cells infiltration than the adenoid÷transitional subtype. The infiltration rate of intraepithelial S100+ DC was much higher in well-differentiated (G1) tumors. No significant correlation between S100-positive cells and peritumoral inflammatory infiltration and stromal desmoplasia was found. In conclusion, dendritic cells need multiple, much more complex investigations. This work should be regarded as a preliminary investigation.

  17. How Follicular Dendritic Cells Shape the B-Cell Antigenome

    PubMed Central

    Kranich, Jan; Krautler, Nike Julia

    2016-01-01

    Follicular dendritic cells (FDCs) are stromal cells residing in primary follicles and in germinal centers of secondary and tertiary lymphoid organs (SLOs and TLOs). There, they play a crucial role in B-cell activation and affinity maturation of antibodies. FDCs have the unique capacity to bind and retain native antigen in B-cell follicles for long periods of time. Therefore, FDCs shape the B-cell antigenome (the sum of all B-cell antigens) in SLOs and TLOs. In this review, we discuss recent findings that explain how this stromal cell type can arise in almost any tissue during TLO formation and, furthermore, focus on the mechanisms of antigen capture and retention involved in the generation of long-lasting antigen depots displayed on FDCs. PMID:27446069

  18. Retrospection to discovery of bursal function and recognition of avian dendritic cells; past and present.

    PubMed

    Oláh, Imre; Nagy, Nándor

    2013-11-01

    In 1954 the discovery of bursal function was one of the major contributions to the formation of the T and B cell concept of immunology. In 1978 the avian dendritic cells; bursal secretory dendritic cell (BSDC) and follicular dendritic cell (FDC) in the cecal tonsil were recognized. In 1982 the interdigitating dendritic cell was described in the periarteriolar lymphatic sheath (PALS) of the spleen. This paper is a retrospection of the stories of the discovery of bursal function and recognition of avian dendritic cells and includes the markers which can be used for monitoring and characterizing avian dendritic cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Dendritic cells--why can they help and hurt us.

    PubMed

    Schäkel, Knut

    2009-03-01

    Dendritic cells (DCs) show a Janus-like functional behavior. They help us by their orchestration of numerous immune responses to defend our body against invading pathogenic micro-organisms and also induce regulatory T cells to inhibit immune reactions against autoantigens as well as diverse harmless environmental antigens. However, DCs can also be of harm to us when misguided by their microenvironment as in allergic and autoimmune diseases or when DCs are targeted and exploited by microbes and cancer cells to evade the immune defense. This huge and diverse functional repertoire of DCs requires complex decision-making processes and the integration of multiple stimulatory and inhibitory signals. Although a given DC type has an extensive functionally plasticity, DCs are heterogeneous and individual DC subtypes are differentially distributed in tissues, express distinct sets of pattern recognition receptors and differ in their capacity to program naive T cells. With the help of transgenic mouse models and selective ablation of individual DC subtypes, we are just at the beginning of understanding the DC system in its complexity. Obtaining a more detailed knowledge of the DC system in mice and men holds strong promise for the successful induction of immunity and tolerance in therapeutic trials. This review presents the recent advances in the understanding of DC biology and discusses why and how DC can help and hurt us.

  20. Human cytomegalovirus alters localization of MHC class II and dendrite morphology in mature Langerhans cells.

    PubMed

    Lee, Andrew W; Hertel, Laura; Louie, Ryan K; Burster, Timo; Lacaille, Vashti; Pashine, Achal; Abate, Davide A; Mocarski, Edward S; Mellins, Elizabeth D

    2006-09-15

    Hemopoietic stem cell-derived mature Langerhans-type dendritic cells (LC) are susceptible to productive infection by human CMV (HCMV). To investigate the impact of infection on this cell type, we examined HLA-DR biosynthesis and trafficking in mature LC cultures exposed to HCMV. We found decreased surface HLA-DR levels in viral Ag-positive as well as in Ag-negative mature LC. Inhibition of HLA-DR was independent of expression of unique short US2-US11 region gene products by HCMV. Indeed, exposure to UV-inactivated virus, but not to conditioned medium from infected cells, was sufficient to reduce HLA-DR on mature LC, implicating particle binding/penetration in this effect. Reduced surface levels reflected an altered distribution of HLA-DR because total cellular HLA-DR was not diminished. Accumulation of HLA-DR was not explained by altered cathepsin S activity. Mature, peptide-loaded HLA-DR molecules were retained within cells, as assessed by the proportion of SDS-stable HLA-DR dimers. A block in egress was implicated, as endocytosis of surface HLA-DR was not increased. Immunofluorescence microscopy corroborated the intracellular retention of HLA-DR and revealed markedly fewer HLA-DR-positive dendritic projections in infected mature LC. Unexpectedly, light microscopic analyses showed a dramatic loss of the dendrites themselves and immunofluorescence revealed that cytoskeletal elements crucial for the formation and maintenance of dendrites are disrupted in viral Ag-positive cells. Consistent with these dendrite effects, HCMV-infected mature LC exhibit markedly reduced chemotaxis in response to lymphoid chemokines. Thus, HCMV impedes MHC class II molecule trafficking, dendritic projections, and migration of mature LC. These changes likely contribute to the reduced activation of CD4+ T cells by HCMV-infected mature LC.

  1. Macrophages as APC and the dendritic cell myth.

    PubMed

    Hume, David A

    2008-11-01

    Dendritic cells have been considered an immune cell type that is specialized for the presentation of Ag to naive T cells. Considerable effort has been applied to separate their lineage, pathways of differentiation, and effectiveness in Ag presentation from those of macrophages. This review summarizes evidence that dendritic cells are a part of the mononuclear phagocyte system and are derived from a common precursor, responsive to the same growth factors (including CSF-1), express the same surface markers (including CD11c), and have no unique adaptation for Ag presentation that is not shared by other macrophages.

  2. Drinking a lot is good for dendritic cells

    PubMed Central

    Norbury, Christopher C

    2006-01-01

    Macropinocytosis is the actin-dependent formation of large vesicles, which allow the internalization of large quantities of fluid-phase solute. In the majority of cells examined, an exogenous stimulus is required to induce the initiation of this endocytic pathway. However, dendritic cells are thought to constitutively macropinocytose large quantities of exogenous solute as part of their sentinel function. In this review we discuss the evidence that dendritic cells macropinocytose exogenous solute and subsequently present antigenic peptides derived from internalized material to T cells. In addition, we put these data into the context of immune surveillance in vivo. PMID:16556257

  3. Sodium action potentials in the dendrites of cerebellar Purkinje cells.

    PubMed

    Regehr, W G; Konnerth, A; Armstrong, C M

    1992-06-15

    We report here that in cerebellar Purkinje cells from which the axon has been removed, positive voltage steps applied to the voltage-clamped soma produce spikes of active current. The spikes are inward, are all-or-none, have a duration of approximately 1 ms, and are reversibly eliminated by tetrodotoxin, a Na channel poison. From cell to cell, the amplitude of the spikes ranges from 4 to 20 nA. Spike latency decreases as the depolarizing step is made larger. These spikes clearly arise at a site where the voltage is not controlled, remote from the soma. From these facts we conclude that Purkinje cell dendrites contain a sufficient density of Na channels to generate action potentials. Activation by either parallel fiber or climbing fiber synapses produces similar spikes, suggesting that normal input elicits Na action potentials in the dendrites. These findings greatly alter current views of how dendrites in these cells respond to synaptic input.

  4. Murid Herpesvirus-4 Exploits Dendritic Cells to Infect B Cells

    PubMed Central

    Frederico, Bruno; Gill, Michael B.; Smith, Christopher M.; Belz, Gabrielle T.; Stevenson, Philip G.

    2011-01-01

    Dendritic cells (DCs) play a central role in initiating immune responses. Some persistent viruses infect DCs and can disrupt their functions in vitro. However, these viruses remain strongly immunogenic in vivo. Thus what role DC infection plays in the pathogenesis of persistent infections is unclear. Here we show that a persistent, B cell-tropic gamma-herpesvirus, Murid Herpesvirus-4 (MuHV-4), infects DCs early after host entry, before it establishes a substantial infection of B cells. DC-specific virus marking by cre-lox recombination revealed that a significant fraction of the virus latent in B cells had passed through a DC, and a virus attenuated for replication in DCs was impaired in B cell colonization. In vitro MuHV-4 dramatically altered the DC cytoskeleton, suggesting that it manipulates DC migration and shape in order to spread. MuHV-4 therefore uses DCs to colonize B cells. PMID:22102809

  5. Human Dendritic Cells Mitigate NK-Cell Dysfunction Mediated by Nonselective JAK1/2 Blockade.

    PubMed

    Curran, Shane A; Shyer, Justin A; St Angelo, Erin T; Talbot, Lillian R; Sharma, Sneh; Chung, David J; Heller, Glenn; Hsu, Katharine C; Betts, Brian C; Young, James W

    2017-01-01

    Janus kinase (JAK) inhibitors have achieved positive responses in myeloproliferative neoplasms, but at the expense of decreased natural killer (NK) cell numbers and compromised function. Selective JAK2 inhibition may also have a role in preventing and treating graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. Although JAK inhibitors can impair monocyte-derived dendritic cell (moDC) activation and function and suppress effector T-cell responses, the effects on NK cells and the relevant mechanisms remain undefined. Using common γc cytokines and distinct human dendritic cell (DC) subtypes, we compared the effects of a JAK2-specific (TG101348) with a less selective JAK1/2 (ruxolitinib) inhibitor on NK-cell activation and function. Ruxolitinib treatment completely blocked IL2, IL15, and DC-mediated STAT5 phosphorylation, along with the capacity of NK cells to secrete IFNγ or lyse NK cell-sensitive targets. Only NK-cell proliferation stimulated by moDCs resisted ruxolitinib treatment. In contrast, TG101348 treatment of stimulated NK cells resulted in far less functional compromise. TG101348 completely inhibited only soluble IL15-mediated STAT5 phosphorylation, which Langerhans-type DCs (LCs), presenting membrane-bound IL15 in trans, could salvage. These results demonstrate that ruxolitinib's nonselective inhibition of JAK1/2 results in profound NK-cell dysfunction by blocking downstream pSTAT5, hence providing a persuasive rationale for the development of selective JAK2 inhibitors for immunotherapeutic applications. Cancer Immunol Res; 5(1); 52-60. ©2016 AACR.

  6. Tenascin-C aggravates autoimmune myocarditis via dendritic cell activation and Th17 cell differentiation.

    PubMed

    Machino-Ohtsuka, Tomoko; Tajiri, Kazuko; Kimura, Taizo; Sakai, Satoshi; Sato, Akira; Yoshida, Toshimichi; Hiroe, Michiaki; Yasutomi, Yasuhiro; Aonuma, Kazutaka; Imanaka-Yoshida, Kyoko

    2014-11-05

    Tenascin-C (TN-C), an extracellular matrix glycoprotein, appears at several important steps of cardiac development in the embryo, but is sparse in the normal adult heart. TN-C re-expresses under pathological conditions including myocarditis, and is closely associated with tissue injury and inflammation in both experimental and clinical settings. However, the pathophysiological role of TN-C in the development of myocarditis is not clear. We examined how TN-C affects the initiation of experimental autoimmune myocarditis, immunologically. A model of experimental autoimmune myocarditis was established in BALB/c mice by immunization with murine α-myosin heavy chains. We found that TN-C knockout mice were protected from severe myocarditis compared to wild-type mice. TN-C induced synthesis of proinflammatory cytokines, including interleukin (IL)-6, in dendritic cells via activation of a Toll-like receptor 4, which led to T-helper (Th)17 cell differentiation and exacerbated the myocardial inflammation. In the transfer experiment, dendritic cells loaded with cardiac myosin peptide acquired the functional capacity to induce myocarditis when stimulated with TN-C; however, TN-C-stimulated dendritic cells generated from Toll-like receptor 4 knockout mice did not induce myocarditis in recipients. Our results demonstrated that TN-C aggravates autoimmune myocarditis by driving the dendritic cell activation and Th17 differentiation via Toll-like receptor 4. The blockade of Toll-like receptor 4-mediated signaling to inhibit the proinflammatory effects of TN-C could be a promising therapeutic strategy against autoimmune myocarditis. © 2014 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  7. Novel immunomodulatory effects of adiponectin on dendritic cell functions.

    PubMed

    Tsang, Julia Yuen Shan; Li, Daxu; Ho, Derek; Peng, Jiao; Xu, Aimin; Lamb, Jonathan; Chen, Yan; Tam, Paul Kwong Hang

    2011-05-01

    Adiponectin (ADN) is an adipocytokine with anti-inflammatory properties. Although it has been reported that ADN can inhibit the immunostimulatory function of monocytes and macrophages, little is known of its effect on dendritic cells (DC). Recent data suggest that ADN can regulate immune responses. DCs are uniquely specialised antigen presenting cells that play a central role in the initiation of immunity and tolerance. In this study, we have investigated the immuno- modulatory effects of ADN on DC functions. We found that ADN has only moderate effect on the differentiation of murine bone marrow (BM) derived DCs but altered the phenotype of DCs. The expression of major histocompatibilty complex class II (MHCII), CD80 and CD86 on ADN conditioned DCs (ADN-DCs) was lower than that on untreated cells. The production of IL-12p40 was also suppressed in ADN-DCs. Interestingly, ADN treated DCs showed an increase in the expression of the inhibitory molecule, programmed death-1 ligand (PDL-1) compared to untreated cells. In vitro co-culture of ADN-DCs with allogeneic T cells led to a decrease in T cell proliferation and reduction of IL-2 production. Concomitant with that, a higher percentage of CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs) was detected in co-cultures of T cells and ADN-DCs. Blocking PD-1/PDL-1 pathway could partially restore T cell function. These findings suggest that the immunomodulatory effect of ADN on immune responses could be at least partially be mediated by its ability to alter DC function. The PD-1/PDL-1 pathway and the enhancement of Treg expansion are implicated in the immunomodulatory mechanisms.

  8. ROCK1 and ROCK2 inhibition alters dendritic spine morphology in hippocampal neurons.

    PubMed

    Swanger, Sharon A; Mattheyses, Alexa L; Gentry, Erik G; Herskowitz, Jeremy H

    2015-01-01

    Communication among neurons is mediated through synaptic connections between axons and dendrites, and most excitatory synapses occur on actin-rich protrusions along dendrites called dendritic spines. Dendritic spines are structurally dynamic, and synapse strength is closely correlated with spine morphology. Abnormalities in the size, shape, and number of dendritic spines are prevalent in neurologic diseases, including autism spectrum disorders, schizophrenia, and Alzheimer disease. However, therapeutic targets that influence spine morphology are lacking. Rho-associated coiled-coil containing protein kinases (ROCK) 1 and ROCK2 are potent regulators of the actin cytoskeleton and highly promising drug targets for central nervous system disorders. In this report, we addressed how pharmacologic inhibition of ROCK1 and ROCK2 affects dendritic spine morphology. Hippocampal neurons were transfected with plasmids expressing fluorescently labeled Lifeact, a small actin binding peptide, and then incubated with or without Y-27632, an established pan-ROCK small molecule inhibitor. Using an automated 3D spine morphometry analysis method, we showed that inhibition of ROCK1 and ROCK2 significantly increased the mean protrusion density and significantly reduced the mean protrusion width. A trending increase in mean protrusion length was observed following Y-27632 treatment, and novel effects were observed among spine classes. Exposure to Y-27632 significantly increased the number of filopodia and thin spines, while the numbers of stubby and mushroom spines were similar to mock-treated samples. These findings support the hypothesis that pharmacologic inhibition of ROCK1 and ROCK2 may convey therapeutic benefit for neurologic disorders that feature dendritic spine loss or aberrant structural plasticity.

  9. Dendritic Cell-Lymphocyte Cross Talk Downregulates Host Restriction Factor SAMHD1 and Stimulates HIV-1 Replication in Dendritic Cells

    PubMed Central

    Biedma, Marina Elizabeth; Lederle, Alexandre; Peressin, Maryse; Lambotin, Mélanie; Proust, Alizé; Decoville, Thomas; Schmidt, Sylvie; Laumond, Géraldine

    2014-01-01

    ABSTRACT Human immunodeficiency virus type 1 (HIV-1) replication in dendritic cells (DCs) is restricted by SAMHD1. This factor is counteracted by the viral protein Vpx; Vpx is found in HIV-2 and simian immunodeficiency virus (SIV) from sooty mangabeys (SIVsm) or from macaques (SIVmac) but is absent from HIV-1. We previously observed that HIV-1 replication in immature DCs is stimulated by cocultivation with primary T and B lymphocytes, suggesting that HIV-1 restriction in DCs may be overcome under coculture conditions. Here, we aimed to decipher the mechanism of SAMHD1-mediated restriction in DC-lymphocyte coculture. We found that coculture with lymphocytes downregulated SAMHD1 expression and was associated with increased HIV-1 replication in DCs. Moreover, in infected DC-T lymphocyte cocultures, DCs acquired maturation status and secreted type 1 interferon (alpha interferon [IFN-α]). The blockade of DC-lymphocyte cross talk by anti-ICAM-1 antibody markedly inhibited the stimulation of HIV-1 replication and prevented the downregulation of SAMHD1 expression in cocultured DCs. These results demonstrate that, in contrast to purified DCs, cross talk with lymphocytes downregulates SAMHD1 expression in DCs, triggering HIV-1 replication and an antiviral immune response. Therefore, HIV-1 replication and immune sensing by DCs should be investigated in more physiologically relevant models of DC/lymphocyte coculture. IMPORTANCE SAMHD1 restricts HIV-1 replication in dendritic cells (DCs). Here, we demonstrate that, in a coculture model of DCs and lymphocytes mimicking early mucosal HIV-1 infection, stimulation of HIV-1 replication in DCs is associated with downregulation of SAMHD1 expression and activation of innate immune sensing by DCs. We propose that DC-lymphocyte cross talk occurring in vivo modulates host restriction factor SAMHD1, promoting HIV-1 replication in cellular reservoirs and stimulating immune sensing. PMID:24574390

  10. Glycyrrhiza uralensis water extract enhances dendritic cell maturation and antitumor efficacy of HPV dendritic cell-based vaccine.

    PubMed

    Aipire, Adila; Li, Jinyu; Yuan, Pengfei; He, Jiang; Hu, Yelang; Liu, Lu; Feng, Xiaoli; Li, Yijie; Zhang, Fuchun; Yang, Jianhua; Li, Jinyao

    2017-03-08

    Licorice has been used as herbal medicine and natural sweetener. Here, we prepared Glycyrrhiza uralensis water extract (GUWE) and investigated the effect of GUWE on the maturation and function of dendritic cells (DCs) and its adjuvant effect on DC-based vaccine. We observed that GUWE dose-dependently promoted DC maturation and cytokine secretion through TLR4 signaling pathway. The capacity of DC to stimulate allogenic splenocyte proliferation was also enhanced by GUWE treatment. Compared with control group, GUWE treated DCs pulsed with human papillomavirus (HPV)-16 E6/E7 peptides significantly inhibited the tumor growth in both early and late therapeutic groups. In early therapeutic group, the frequencies of induced regulatory T cells (iTregs: CD4(+)CD25(-)Fopx3(+)) and CD4(+) and CD8(+) T cells were significantly decreased and increased, respectively. HPV-16-specific CD8(+) T cell responses were significantly induced and negatively correlated with iTreg frequencies and tumor weight. These results indicated the immunoregulatory activities of licorice.

  11. Glycyrrhiza uralensis water extract enhances dendritic cell maturation and antitumor efficacy of HPV dendritic cell-based vaccine

    PubMed Central

    Aipire, Adila; Li, Jinyu; Yuan, Pengfei; He, Jiang; Hu, Yelang; Liu, Lu; Feng, Xiaoli; Li, Yijie; Zhang, Fuchun; Yang, Jianhua; Li, Jinyao

    2017-01-01

    Licorice has been used as herbal medicine and natural sweetener. Here, we prepared Glycyrrhiza uralensis water extract (GUWE) and investigated the effect of GUWE on the maturation and function of dendritic cells (DCs) and its adjuvant effect on DC-based vaccine. We observed that GUWE dose-dependently promoted DC maturation and cytokine secretion through TLR4 signaling pathway. The capacity of DC to stimulate allogenic splenocyte proliferation was also enhanced by GUWE treatment. Compared with control group, GUWE treated DCs pulsed with human papillomavirus (HPV)-16 E6/E7 peptides significantly inhibited the tumor growth in both early and late therapeutic groups. In early therapeutic group, the frequencies of induced regulatory T cells (iTregs: CD4+CD25−Fopx3+) and CD4+ and CD8+ T cells were significantly decreased and increased, respectively. HPV-16-specific CD8+ T cell responses were significantly induced and negatively correlated with iTreg frequencies and tumor weight. These results indicated the immunoregulatory activities of licorice. PMID:28272545

  12. Loss of Gadkin Affects Dendritic Cell Migration In Vitro

    PubMed Central

    Stache, Vanessa; Plewa, Natalia; Legler, Daniel F.; Höpken, Uta E.; Maritzen, Tanja

    2015-01-01

    Migration is crucial for the function of dendritic cells (DCs), which act as outposts of the immune system. Upon detection of pathogens, skin- and mucosa-resident DCs migrate to secondary lymphoid organs where they activate T cells. DC motility relies critically on the actin cytoskeleton, which is regulated by the actin-related protein 2/3 (ARP2/3) complex, a nucleator of branched actin networks. Consequently, loss of ARP2/3 stimulators and upstream Rho family GTPases dramatically impairs DC migration. However, nothing is known yet about the relevance of ARP2/3 inhibitors for DC migration. We previously demonstrated that the AP-1-associated adaptor protein Gadkin inhibits ARP2/3 by sequestering it on intracellular vesicles. Consistent with a role of Gadkin in DC physiology, we here report Gadkin expression in bone marrow-derived DCs and show that its protein level and posttranslational modification are regulated upon LPS-induced DC maturation. DCs derived from Gadkin-deficient mice were normal with regards to differentiation and maturation, but displayed increased actin polymerization. While the actin-dependent processes of macropinocytosis and cell spreading were not affected, loss of Gadkin significantly impaired DC migration in vitro, however, in vivo DC migration was unperturbed suggesting the presence of compensatory mechanisms. PMID:26624014

  13. Plasmacytoid dendritic cells in autoimmune diabetes - potential tools for immunotherapy.

    PubMed

    Nikolic, Tatjana; Welzen-Coppens, Jojanneke M C; Leenen, Pieter J M; Drexhage, Hemmo A; Versnel, Marjan A

    2009-01-01

    Type 1 diabetes (T1D) is an autoimmune disease in which a T-cell-mediated attack destroys the insulin-producing cells of the pancreatic islets. Despite insulin supplementation severe complications ask for novel treatments that aim at cure or delay of the onset of the disease. In spontaneous animal models for diabetes like the nonobese diabetic (NOD) mouse, distinct steps in the pathogenesis of the disease can be distinguished. In the past 10 years it became evident that DC and macrophages play an important role in all three phases of the pathogenesis of T1D. In phase 1, dendritic cells (DC) and macrophages accumulate at the islet edges. In phase 2, DC and macrophages are involved in the activation of autoreactive T cells that accumulate in the pancreas. In the third phase the islets are invaded by macrophages, DC and NK cells followed by the destruction of the beta-cells. Recent data suggest a role for a new member of the DC family: the plasmacytoid DC (pDC). pDC have been found to induce tolerance in experimental models of asthma. Several studies in humans and the NOD mouse support a similar role for pDC in diabetes. Mechanisms found to be involved in tolerance induction by pDC are inhibition of effector T cells, induction of regulatory T cells, production of cytokines and indoleamine 2,3-dioxygenase (IDO). The exact mechanism of tolerance induction by pDC in diabetes remains to be established but the intrinsic tolerogenic properties of pDC provide a promising, yet underestimated target for therapeutic intervention.

  14. Bone marrow plasmacytoid dendritic cells can differentiate into myeloid dendritic cells upon virus infection

    PubMed Central

    Zuniga, Elina I; McGavern, Dorian B; Pruneda-Paz, Jose L; Teng, Chao; Oldstone, Michael B A

    2017-01-01

    Two subsets of dendritic cell (DCs), plasmacytoid (p) and myeloid (m) DCs, have been described in humans and mice. These subsets are known to have divergent roles during an immune response, but their developmental course is unclear. Here we report that virus infection induces bone marrow pDCs to differentiate into mDCs, thereby undergoing profound phenotypic and functional changes including the acquisition of enhanced antigen-presenting capacity and the ability to recognize different microbial structures through Toll-like receptor 4. The conversion of pDCs into mDCs is also induced by the injection of double-stranded RNA and requires type I interferons. Our results establish a precursor-product developmental relationship between these two DC subsets and highlight unexpected plasticity of bone marrow pDCs. PMID:15531885

  15. Functions of TGF-β-exposed plasmacytoid dendritic cells.

    PubMed

    Saas, Philippe; Perruche, Sylvain

    2012-01-01

    Plasmacytoid dendritic cells (pDCs) belong to the family of dendritic cells and possess specific features that distinguish them from conventional dendritic cells. For instance, pDC are the main interferon-alpha-secreting cells. Plasmacytoid dendritic cells exert both proinflammatory and regulatory functions. This is attested by the involvement of pDC through interferon-alpha secretion in several autoimmune diseases, and by the implication of pDC in tolerance. The same is true for TGF-β that plays a dual role in inflammation. In this review, we discuss recent data on pDC and TGF-β interactions. As with many cell types, pDCs are able to respond to TGF-β using the classic Smad signaling pathway. In addition, pDCs are capable to secrete TGF-β, in particular in response to TGF-β exposure. Exposure of pDCs to TGF-β prevents type I interferon secretion in response to TLR7/9 ligands. In contrast, the consequences of TGF-β on the antigen-presenting cell capacities of pDC are less clear, since TGF-β-exposed pDCs may lead to both regulatory T-cell and interleukin-17-secreting cell polarization. Here, we discuss the factors that may influence this polarization. We also discuss how pDCs exposed to TGF-β may participate in tolerance induction and maintenance, or, on the contrary, in autoimmune diseases.

  16. Angioimmunoblastic T-Cell Lymphoma: A Questionable Association with Follicular Dendritic Cell Sarcoma

    PubMed Central

    Zekzer, Miriam; Nalbandyan, Karen

    2017-01-01

    An elderly woman presented with generalized lymphadenopathy, several systemic symptoms, and splenomegaly. An inguinal lymph node excision revealed a compound picture. One aspect of the lymph node morphology, including cells with follicular T-helper cell phenotype, was most consistent with angioimmunoblastic T-cell lymphoma. The other component, revealing spindle cells forming whorls with immunostaining for CD21, CD23, and fascin, might be an integral part of this T-cell lymphoma. However, due to the often massive involvement of the nodal tissue by these follicular dendritic cells, these areas were questionably suggestive of involvement by follicular dendritic cell sarcoma. We raise herein the issue of the borderline area between advanced follicular dendritic cell expansion in angioimmunoblastic T-cell lymphoma and a massive follicular dendritic cell proliferation consistent with follicular dendritic cells sarcoma, in the absence of a genomic analysis. PMID:28197348

  17. Plumbagin suppresses dendritic cell functions and alleviates experimental autoimmune encephalomyelitis.

    PubMed

    Zhang, Kai; Ge, Zhenzhen; Da, Yurong; Wang, Dong; Liu, Ying; Xue, Zhenyi; Li, Yan; Li, Wen; Zhang, Lijuan; Wang, Huafeng; Zhang, Huan; Peng, Meiyu; Hao, Junwei; Yao, Zhi; Zhang, Rongxin

    2014-08-15

    Plumbagin (PL, 5-hydroxy-2-methyl-1,4-naphthoquinone) is a herbal compound derived from medicinal plants of the Droseraceae, Plumbaginaceae, Dioncophyllaceae, and Ancistrocladaceae families. Reports have shown that PL exerts immunomodulatory activity and may be a novel drug candidate for immune-related disease therapy. However, its effects on dendritic cells (DCs), the most potent antigen-presenting cells (APCs), remain unclear. In this study, we demonstrate that PL inhibits the differentiation, maturation, and function of human monocyte-derived DCs. PL can also restrict the expression of Th1- and Th17-polarizing cytokines in mDC. In addition, PL suppresses DCs both in vitro and in vivo, as demonstrated by its effects on the mouse DC line DC2.4 and mice with experimental autoimmune encephalomyelitis (EAE), respectively. Notably, PL ameliorated the clinical symptoms of EAE, including central nervous system (CNS) inflammation and demyelination. Our results demonstrate the immune suppressive and anti-inflammatory properties of PL via its effects on DCs and suggest that PL could be a potential treatment for DC-related autoimmune and inflammatory diseases.

  18. Mannoproteins from Cryptococcus neoformans promote dendritic cell maturation and activation.

    PubMed

    Pietrella, Donatella; Corbucci, Cristina; Perito, Stefano; Bistoni, Giovanni; Vecchiarelli, Anna

    2005-02-01

    Our previous data show that mannoproteins (MPs) from Cryptococcus neoformans are able to induce protective responses against both C. neoformans and Candida albicans. Here we provide evidence that MPs foster maturation and activation of human dendritic cells (DCs). Maturation was evaluated by the ability of MPs to facilitate expression of costimulatory molecules such as CD40, CD86, CD83, and major histocompatibility complex classes I and II and to inhibit receptors such as CD14, CD16, and CD32. Activation of DCs was measured by the capacity of MPs to promote interleukin-12 and tumor necrosis factor alpha secretion. DC-induced maturation and interleukin-12 induction are largely mediated by engagement of mannose receptors and presume MP internalization and degradation. DC activation leads to IkappaBalpha phosphorylation, which is necessary for nuclear factor kappaB transmigration into the nucleus. MP-loaded DCs are efficient stimulators of T cells and show a remarkable capacity to promote CD4 and CD8 proliferation. In conclusion, we have evidenced a novel regulatory role of MPs that promotes their candidacy as a vaccine against fungi.

  19. Mannoproteins from Cryptococcus neoformans Promote Dendritic Cell Maturation and Activation

    PubMed Central

    Pietrella, Donatella; Corbucci, Cristina; Perito, Stefano; Bistoni, Giovanni; Vecchiarelli, Anna

    2005-01-01

    Our previous data show that mannoproteins (MPs) from Cryptococcus neoformans are able to induce protective responses against both C. neoformans and Candida albicans. Here we provide evidence that MPs foster maturation and activation of human dendritic cells (DCs). Maturation was evaluated by the ability of MPs to facilitate expression of costimulatory molecules such as CD40, CD86, CD83, and major histocompatibility complex classes I and II and to inhibit receptors such as CD14, CD16, and CD32. Activation of DCs was measured by the capacity of MPs to promote interleukin-12 and tumor necrosis factor alpha secretion. DC-induced maturation and interleukin-12 induction are largely mediated by engagement of mannose receptors and presume MP internalization and degradation. DC activation leads to IκBα phosphorylation, which is necessary for nuclear factor κB transmigration into the nucleus. MP-loaded DCs are efficient stimulators of T cells and show a remarkable capacity to promote CD4 and CD8 proliferation. In conclusion, we have evidenced a novel regulatory role of MPs that promotes their candidacy as a vaccine against fungi. PMID:15664921

  20. Haemophilus ducreyi partially activates human myeloid dendritic cells.

    PubMed

    Banks, Keith E; Humphreys, Tricia L; Li, Wei; Katz, Barry P; Wilkes, David S; Spinola, Stanley M

    2007-12-01

    Dendritic cells (DC) orchestrate innate and adaptive immune responses to bacteria. How Haemophilus ducreyi, which causes genital ulcers and regional lymphadenitis, interacts with DC is unknown. H. ducreyi evades uptake by polymorphonuclear leukocyte and macrophage-like cell lines by secreting LspA1 and LspA2. Many H. ducreyi strains express cytolethal distending toxin (CDT), and recombinant CDT causes apoptosis of DC in vitro. Here, we examined interactions between DC and H. ducreyi 35000HP, which produces LspA1, LspA2, and CDT. In human volunteers infected with 35000HP, the ratio of myeloid DC to plasmacytoid DC was 2.8:1 in lesions, compared to a ratio of 1:1 in peripheral blood. Using myeloid DC derived from monocytes as surrogates for lesional DC, we found that DC infected with 35000HP remained as viable as uninfected DC for up to 48 h. Gentamicin protection and confocal microscopy assays demonstrated that DC ingested and killed 35000HP, but killing was incomplete at 48 h. The expression of LspA1 and LspA2 did not inhibit the uptake of H. ducreyi, despite inactivating Src kinases. Infection of DC with live 35000HP caused less cell surface marker activation than infection with heat-killed 35000HP and lipopolysaccharide (LPS) and inhibited maturation by LPS. However, infection of DC with live bacteria caused the secretion of significantly higher levels of interleukin-6 and tumor necrosis factor alpha than infection with heat-killed bacteria and LPS. The survival of H. ducreyi in DC may provide a mechanism by which the organism traffics to lymph nodes. Partial activation of DC may abrogate the establishment of a full Th1 response and an environment that promotes phagocytosis.

  1. Revving Up Dendritic Cells while Braking PD-L1 to Jump-Start the Cancer-Immunity Cycle Motor.

    PubMed

    Coffelt, Seth B; de Visser, Karin E

    2016-04-19

    Although it is successful for some, most melanoma patients are refractory to T cell checkpoint inhibition. In this issue of Immunity, Merad and colleagues (2016) describe a dendritic-cell-based strategy to heighten the efficacy of therapeutic anti-PD-L1 and BRAF inhibitors in mouse melanoma models.

  2. Development of Retinal Amacrine Cells and Their Dendritic Stratification

    PubMed Central

    Balasubramanian, Revathi

    2014-01-01

    Themammalian retina containsmultiple neurons, each of which contributes differentially to visual processing. Of these retinal neurons, amacrine cells have recently come to prime light since they facilitate majority of visual processing that takes place in the retina. Amacrine cells are also the most diverse group of neurons in the retina, classified majorly based on the neurotransmitter type they express and morphology of their dendritic arbors. Currently, little is known about the molecular basis contributing to this diversity during development. Amacrine cells also contribute to most of the synapses in the inner plexiform layer and mediate visual information input from bipolar cells onto retinal ganglion cells. In this review, we will describe the current understanding of amacrine cell and cell subtype development. Furthermore, we will address the molecular basis of retinal lamination at the inner plexiform layer. Overall, our review will provide a developmental perspective of amacrine cell subtype classification and their dendritic stratification. PMID:25170430

  3. Protein Kinase C Phosphorylation of a γ-Protocadherin C-terminal Lipid Binding Domain Regulates Focal Adhesion Kinase Inhibition and Dendrite Arborization.

    PubMed

    Keeler, Austin B; Schreiner, Dietmar; Weiner, Joshua A

    2015-08-21

    The γ-protocadherins (γ-Pcdhs) are a family of 22 adhesion molecules with multiple critical developmental functions, including the proper formation of dendritic arbors by forebrain neurons. The γ-Pcdhs bind to and inhibit focal adhesion kinase (FAK) via a constant C-terminal cytoplasmic domain shared by all 22 proteins. In cortical neurons lacking the γ-Pcdhs, aberrantly high activity of FAK and of PKC disrupts dendrite arborization. Little is known, however, about how γ-Pcdh function is regulated by other factors. Here we show that PKC phosphorylates a serine residue situated within a phospholipid binding motif at the shared γ-Pcdh C terminus. Western blots using a novel phospho-specific antibody against this site suggest that a portion of γ-Pcdh proteins is phosphorylated in the cortex in vivo. We find that PKC phosphorylation disrupts both phospholipid binding and the γ-Pcdh inhibition of (but not binding to) FAK. Introduction of a non-phosphorylatable (S922A) γ-Pcdh construct into wild-type cortical neurons significantly increases dendrite arborization. This same S922A construct can also rescue dendrite arborization defects in γ-Pcdh null neurons cell autonomously. Consistent with these data, introduction of a phosphomimetic (S/D) γ-Pcdh construct or treatment with a PKC activator reduces dendrite arborization in wild-type cortical neurons. Together, these data identify a novel mechanism through which γ-Pcdh control of a signaling pathway important for dendrite arborization is regulated.

  4. Programmed Cell Death of Dendritic Cells in Immune Regulation

    PubMed Central

    Chen, Min; Wang, Jin

    2010-01-01

    Summary Programmed cell death is essential for the maintenance of lymphocyte homeostasis and immune tolerance. Dendritic cells (DCs), the most efficient antigen presenting cells, represent a small cell population in the immune system. However, DCs play major roles in the regulation of both innate and adaptive immune responses. Programmed cell death in DCs is essential for regulating DC homeostasis and consequently, the scope of immune responses. Interestingly, different DC subsets show varied turnover rates in vivo. The conventional DCs are relatively short-lived in most lymphoid organs, while plasmacytoid DCs are long-lived cells. Mitochondrion-dependent programmed cell death plays an important role in regulating spontaneous DC turnover. Antigen-specific T cells are also capable of killing DCs, thereby providing a mechanism for negative feedback regulation of immune responses. It has been shown that a surplus of DCs due to defects in programmed cell death leads to overactivation of lymphocytes and the onset of autoimmunity. Studying programmed cell death in DCs will shed light on the roles for DC turnover in the regulation of the duration and magnitude of immune responses in vivo, and in the maintenance of immune tolerance. PMID:20636805

  5. T lymphocytes and dendritic cells are activated by the deletion of peroxiredoxin II (Prx II) gene.

    PubMed

    Moon, Eun-Yi; Noh, Young-Wook; Han, Ying-Hao; Kim, Sun-Uk; Kim, Jin-Man; Yu, Dae-Yeul; Lim, Jong-Seok

    2006-02-15

    Peroxiredoxin II (Prx II) is a member of antioxidant enzyme family and it plays a protective role against oxidative damage. Constitutive production of endogenous reactive oxygen species was detected in spleen and bone marrow cells lacking Prx II. Here, we investigated the role of Prx II in immune responses. The total number of splenocytes (especially, the population of S-phase cells and CD3(+) T cells) was significantly higher in Prx II(-/-) mice than in wild type. Number of peripheral blood mononuclear cells (PBMCs) in Prx II(-/-) mice was also higher than wild type. Differentiation of Prx II(-/-) mouse bone marrow cells into CD11c-positive dendritic cells was greater than that of wild type. Transplantation of Prx II(-/-) bone marrow cells into wild type mice increased PBMCs in blood and bone marrow-derived dendritic cells. Prx II deletion enhances concanavalin A (ConA)-induced splenocyte proliferation and mixed lymphocyte reaction (MLR) activity of bone marrow-derived CD11c-positive dendritic cells to stimulate recipient splenocytes. Collectively, these data suggest that Prx II inhibits the immune cell responsiveness, which may be regulated by scavenging the low amount of reactive oxygen species (ROS).

  6. Francisella tularensis SchuS4 and SchuS4 lipids inhibit IL-12p40 in primary human dendritic cells by inhibition of IRF1 and IRF8*

    PubMed Central

    Ireland, Robin; Wang, Rong; Alinger, Joshua B.; Small, Pamela; Bosio, Catharine M.

    2013-01-01

    Induction of innate immunity is essential for host survival of infection. Evasion and inhibition of innate immunity is a strategy used by pathogens, such as the highly virulent bacterium Francisella tularensis, to ensure their replication and transmission. The mechanism and bacterial components responsible for this suppression of innate immunity by F. tularensis are not defined. Here, we demonstrate that lipids enriched from virulent F. tularensis strain SchuS4, but not attenuated Live Vaccine Strain (LVS), inhibit inflammatory responses in vitro and in vivo. Suppression of inflammatory responses is associated with IκBα independent inhibition of NF-κBp65 activation and selective inhibition of activation of Interferon Regulatory Factors (IRFs). Interference with NF-κBp65 and IRFs is also observed following infection with viable SchuS4. Together these data provide novel insight as to how highly virulent bacteria selectively modulate the host to interfere innate immune responses required for survival of infection. PMID:23817430

  7. Dissecting thyroid hormone transport and metabolism in dendritic cells.

    PubMed

    Gigena, Nicolás; Alamino, Vanina A; Montesinos, María Del Mar; Nazar, Magalí; Louzada, Ruy A; Wajner, Simone M; Maia, Ana L; Masini-Repiso, Ana M; Carvalho, Denise P; Cremaschi, Graciela A; Pellizas, Claudia G

    2017-02-01

    We reported thyroid hormone (TH) receptor expression in murine dendritic cells (DCs) and 3,5,3'-triiodothyronine (T3)-dependent stimulation of DC maturation and ability to develop a Th1-type adaptive response. Moreover, an increased DC capacity to promote antigen-specific cytotoxic T-cell activity, exploited in a DC-based antitumor vaccination protocol, was revealed. However, putative effects of the main circulating TH, l-thyroxine (T4) and the mechanisms of TH transport and metabolism at DC level, crucial events for TH action at target cell level, were not known. Herein, we show that T4 did not reproduce those registered T3-dependent effects, finding that may reflect a homoeostatic control to prevent unspecific systemic activation of DCs. Besides, DCs express MCT10 and LAT2 TH transporters, and these cells mainly transport T3 with a favored involvement of MCT10 as its inhibition almost prevented T3 saturable uptake mechanism and reduced T3-induced IL-12 production. In turn, DCs express iodothyronine deiodonases type 2 and 3 (D2, D3) and exhibit both enzymatic activities with a prevalence towards TH inactivation. Moreover, T3 increased MCT10 and LAT2 expression and T3 efflux from DCs but not T3 uptake, whereas it induced a robust induction of D3 with a parallel slight reduction in D2. These findings disclose pivotal events involved in the mechanism of action of THs on DCs, providing valuable tools for manipulating the immunogenic potential of these cells. Furthermore, they broaden the knowledge of the TH mechanism of action at the immune system network.

  8. Fasciola hepatica tegumental coat antigen suppresses MAPK signalling in dendritic cells and up-regulates the expression of SOCS3.

    PubMed

    Vukman, K V; Adams, P N; O'Neill, S M

    2013-07-01

    Fasciola hepatica tegumental coat antigen (FhTeg) suppresses dendritic cell maturation and function by inhibiting IL-6, tumour necrosis factor (TNF)-α, IL-10 and IL-12 production and CD80, CD86 and CD40 cell surface marker expression in TLR4-stimulated dendritic cells. Fasciola hepatica also impairs dendritic cell function by inhibiting its phagocytic capacity and its ability to prime T cells. We have shown previously that activation of mast cells with bacterial ligands is also inhibited by FhTeg. Fasciola hepatica suppresses LPS-induced NF-κB and MAPK pathway (ERK) activation in these cells. Previously, we demonstrated that FhTeg induces expression of suppressor of cytokine signalling (SOCS)3, a negative regulator of the TLR pathway in mast cells. In this study, we show the same inhibitory effect of FhTeg on the activation of the other members of the MAPKs pathway (ERK, p38, JNK) in dendritic cells and demonstrate an enhanced expression of SOCS3, but not SOCS1, SOCS5 or PIAS3 in this process. These studies enhance our understanding of the immunomodulatory effect of helminth molecules on the TLR pathway.

  9. Epidermal Viral Immunity Induced by CD8α+ Dendritic Cells But Not by Langerhans Cells

    NASA Astrophysics Data System (ADS)

    Allan, Rhys S.; Smith, Chris M.; Belz, Gabrielle T.; van Lint, Allison L.; Wakim, Linda M.; Heath, William R.; Carbone, Francis R.

    2003-09-01

    The classical paradigm for dendritic cell function derives from the study of Langerhans cells, which predominate within skin epidermis. After an encounter with foreign agents, Langerhans cells are thought to migrate to draining lymph nodes, where they initiate T cell priming. Contrary to this, we show here that infection of murine epidermis by herpes simplex virus did not result in the priming of virus-specific cytotoxic T lymphocytes by Langerhans cells. Rather, the priming response required a distinct CD8α+ dendritic cell subset. Thus, the traditional view of Langerhans cells in epidermal immunity needs to be revisited to accommodate a requirement for other dendritic cells in this response.

  10. Exopolysaccharide from Trichoderma pseudokoningii promotes maturation of murine dendritic cells.

    PubMed

    Xu, Yanghui; Li, Jing; Ju, Jing; Shen, Bingxiang; Chen, Guochuang; Qian, Wen; Zhu, Lei; Lu, Jingbo; Liu, Chunyan; Qin, Guozheng; Wang, Guodong; Chen, Kaoshan

    2016-11-01

    Dendritic cells (DCs) are the key regulators of immune responses. In this study, the effect of an exopolysaccharide (EPS) from the culture broth of Trichoderma pseudokoningii on the phenotypic and functional maturation of murine DCs and its underlying molecular mechanisms were investigated. It showed that EPS induced the morphological changes of DCs and the enhanced expression of DCs featured surface molecules CD11c, CD86, CD80 and major histocompatibility complex II (MHC-II). Flow cytometry analysis showed that the treatment with EPS could reduce FITC-dextran uptake by DCs. Sequentially, the results of ELISA indicated that EPS could increase the production of interleukin-12p70 (IL-12p70) in culture supernatant of DCs. Immunofluorescence staining and western blot analysis further revealed that EPS significantly prompted nuclear factor (NF)-κB subunit p65 translocation, IκB-α protein degradation, and p38 mitogen-activated protein kinase (MAPK) phosphorylation. And the production of IL-12p70 was significantly decreased in condition of the inhibition of p38 or NF-κB signaling pathway. These findings suggested that EPS could induce DCs maturation through both p38 MAPK and NF-κB signaling pathways.

  11. An Engineered Herpesvirus Activates Dendritic Cells and Induces Protective Immunity

    PubMed Central

    Ma, Yijie; Chen, Min; Jin, Huali; Prabhakar, Bellur S.; Valyi-Nagy, Tibor; He, Bin

    2017-01-01

    Herpes simplex viruses (HSV) are human pathogens that switch between lytic and latent infection. While attenuated HSV is explored for vaccine, the underlying event remains poorly defined. Here we report that recombinant HSV-1 with a mutation in the γ134.5 protein, a virulence factor, stimulates dendritic cell (DC) maturation which is dependent on TANK-binding kinase 1 (TBK1). When exposed to CD11+ DCs, the mutant virus that lacks the amino terminus of γ134.5 undergoes temporal replication without production of infectious virus. Mechanistically, this leads to sequential phosphorylation of interferon regulatory factor 3 (IRF3) and p65/RelA. In correlation, DCs up-regulate the expression of co-stimulatory molecules and cytokines. However, selective inhibition of TBK1 precludes phosphorylation of IRF3 and subsequent DC activation by the γ134.5 mutant. Herein, the γ134.5 mutant is immune-stimulatory and non-destructive to DCs. Remarkably, upon immunization the γ134.5 mutant induces protection against lethal challenge by the wild type virus, indicative of its vaccine potential. Furthermore, CD11+ DCs primed by the γ134.5 mutant in vivo mediate protection upon adoptive transfer. These results suggest that activation of TBK1 by engineered HSV is crucial for DC maturation, which may contribute to protective immunity. PMID:28150813

  12. Slowing down light using a dendritic cell cluster metasurface waveguide

    NASA Astrophysics Data System (ADS)

    Fang, Z. H.; Chen, H.; Yang, F. S.; Luo, C. R.; Zhao, X. P.

    2016-11-01

    Slowing down or even stopping light is the first task to realising optical information transmission and storage. Theoretical studies have revealed that metamaterials can slow down or even stop light; however, the difficulty of preparing metamaterials that operate in visible light hinders progress in the research of slowing or stopping light. Metasurfaces provide a new opportunity to make progress in such research. In this paper, we propose a dendritic cell cluster metasurface consisting of dendritic structures. The simulation results show that dendritic structure can realise abnormal reflection and refraction effects. Single- and double-layer dendritic metasurfaces that respond in visible light were prepared by electrochemical deposition. Abnormal Goos-Hänchen (GH) shifts were experimentally obtained. The rainbow trapping effect was observed in a waveguide constructed using the dendritic metasurface sample. The incident white light was separated into seven colours ranging from blue to red light. The measured transmission energy in the waveguide showed that the energy escaping from the waveguide was zero at the resonant frequency of the sample under a certain amount of incident light. The proposed metasurface has a simple preparation process, functions in visible light, and can be readily extended to the infrared band and communication wavelengths.

  13. Slowing down light using a dendritic cell cluster metasurface waveguide

    PubMed Central

    Fang, Z. H.; Chen, H.; Yang, F. S.; Luo, C. R.; Zhao, X. P.

    2016-01-01

    Slowing down or even stopping light is the first task to realising optical information transmission and storage. Theoretical studies have revealed that metamaterials can slow down or even stop light; however, the difficulty of preparing metamaterials that operate in visible light hinders progress in the research of slowing or stopping light. Metasurfaces provide a new opportunity to make progress in such research. In this paper, we propose a dendritic cell cluster metasurface consisting of dendritic structures. The simulation results show that dendritic structure can realise abnormal reflection and refraction effects. Single- and double-layer dendritic metasurfaces that respond in visible light were prepared by electrochemical deposition. Abnormal Goos-Hänchen (GH) shifts were experimentally obtained. The rainbow trapping effect was observed in a waveguide constructed using the dendritic metasurface sample. The incident white light was separated into seven colours ranging from blue to red light. The measured transmission energy in the waveguide showed that the energy escaping from the waveguide was zero at the resonant frequency of the sample under a certain amount of incident light. The proposed metasurface has a simple preparation process, functions in visible light, and can be readily extended to the infrared band and communication wavelengths. PMID:27886279

  14. Slowing down light using a dendritic cell cluster metasurface waveguide.

    PubMed

    Fang, Z H; Chen, H; Yang, F S; Luo, C R; Zhao, X P

    2016-11-25

    Slowing down or even stopping light is the first task to realising optical information transmission and storage. Theoretical studies have revealed that metamaterials can slow down or even stop light; however, the difficulty of preparing metamaterials that operate in visible light hinders progress in the research of slowing or stopping light. Metasurfaces provide a new opportunity to make progress in such research. In this paper, we propose a dendritic cell cluster metasurface consisting of dendritic structures. The simulation results show that dendritic structure can realise abnormal reflection and refraction effects. Single- and double-layer dendritic metasurfaces that respond in visible light were prepared by electrochemical deposition. Abnormal Goos-Hänchen (GH) shifts were experimentally obtained. The rainbow trapping effect was observed in a waveguide constructed using the dendritic metasurface sample. The incident white light was separated into seven colours ranging from blue to red light. The measured transmission energy in the waveguide showed that the energy escaping from the waveguide was zero at the resonant frequency of the sample under a certain amount of incident light. The proposed metasurface has a simple preparation process, functions in visible light, and can be readily extended to the infrared band and communication wavelengths.

  15. Dendritic cell subsets digested: RNA sensing makes the difference!

    PubMed

    Buschow, Sonja I; Figdor, Carl G

    2010-02-26

    In this issue of Immunity, Luber et al. (2010) report a comprehensive quantitative proteome of in vivo mouse spleen dendritic cell (DC) subsets: a data set of encyclopedic value already revealing that DC subsets exploit different RNA sensors for virus recognition. Copyright 2010 Elsevier Inc. All rights reserved.

  16. Organ-derived dendritic cells have differential effects on alloreactive T cells.

    PubMed

    Kim, Theo D; Terwey, Theis H; Zakrzewski, Johannes L; Suh, David; Kochman, Adam A; Chen, Megan E; King, Chris G; Borsotti, Chiara; Grubin, Jeremy; Smith, Odette M; Heller, Glenn; Liu, Chen; Murphy, George F; Alpdogan, Onder; van den Brink, Marcel R M

    2008-03-01

    Dendritic cells (DCs) are considered critical for the induction of graft-versus-host disease (GVHD) after bone marrow transplantation (BMT). In addition to their priming function, dendritic cells have been shown to induce organ-tropism through induction of specific homing molecules on T cells. Using adoptive transfer of CFSE-labeled cells, we first demonstrated that alloreactive T cells differentially up-regulate specific homing molecules in vivo. Host-type dendritic cells from the GVHD target organs liver and spleen or skin- and gut-draining lymph nodes effectively primed naive allogeneic T cells in vitro with the exception of liver-derived dendritic cells, which showed less stimulatory capacity. Gut-derived dendritic cells induced alloreactive donor T cells with a gut-homing phenotype that caused increased GVHD mortality and morbidity compared with T cells stimulated with dendritic cells from spleen, liver, and peripheral lymph nodes in an MHC-mismatched murine BMT model. However, in vivo analysis demonstrated that the in vitro imprinting of homing molecules on alloreactive T cells was only transient. In conclusion, organ-derived dendritic cells can efficiently induce specific homing molecules on alloreactive T cells. A gut-homing phenotype correlates with increased GVHD mortality and morbidity after murine BMT, underlining the importance of the gut in the pathophysiology of GVHD.

  17. Dendritic web - A viable material for silicon solar cells

    NASA Technical Reports Server (NTRS)

    Seidensticker, R. G.; Scudder, L.; Brandhorst, H. W., Jr.

    1975-01-01

    The dendritic web process is a technique for growing thin silicon ribbon from liquid silicon. The material is suitable for solar cell fabrication and, in fact, cells fabricated on web material are equivalent in performance to cells fabricated on Czochralski-grown material. A recently concluded study has delineated the thermal requirements for silicon web crucibles, and a detailed conceptual design has been developed for a laboratory growth apparatus.

  18. Lenalidomide increases human dendritic cell maturation in multiple myeloma patients targeting monocyte differentiation and modulating mesenchymal stromal cell inhibitory properties.

    PubMed

    Costa, Federica; Vescovini, Rosanna; Bolzoni, Marina; Marchica, Valentina; Storti, Paola; Toscani, Denise; Accardi, Fabrizio; Notarfranchi, Laura; Dalla Palma, Benedetta; Manferdini, Cristina; Manni, Sabrina; Todaro, Giannalisa; Lisignoli, Gina; Piazza, Francesco; Aversa, Franco; Giuliani, Nicola

    2017-08-08

    The use of Lenalidomide (LEN), to reverse tumor-mediated immune suppression and amplify multiple myeloma-specific immunity is currently being explored. Particularly, LEN effects on dendritic cells (DCs) are still unclear. In this study, we investigated the potential effect of LEN on DC differentiation and activity. DCs were differentiated either from CD14(+) cells obtained from patients with multiple myeloma or from a human monocytic cell line. LEN, at the concentration range reached in vivo, significantly increased the median intensity expression of HLA-DR, CD86 and CD209 by DCs derived from both bone marrow and peripheral myeloma monocytes and enhanced the production of Interleukin-8, C-C motif chemokine ligand (CCL) 2, CCL5 and tumor necrosis factor-α. Consistently, LEN pre-treated DCs showed an increased ability to stimulate autologous CD3(+) cell proliferation. LEN effect on dendritic differentiation was associated with the degradation of the Cereblon-related factors Ikaros and Aiolos. Moreover, we showed that LEN also blunted mesenchymal stromal cell inhibitory effect on dendritic differentiation, inhibiting Casein Kinase-1α levels. Finally, in vitro data were confirmed in ex vivo cultures obtained from relapsed myeloma patients treated with LEN, showing a significant increase of DC differentiation from peripheral blood monocytes. In conclusion, LEN increased the expression of mature dendritic markers both directly and indirectly and enhanced DC ability to stimulate T cell proliferation and to release chemokines. This suggests a new possible mechanism by which LEN could exert its anti-myeloma activity.

  19. Isolation and characterization of dendritic cells from adenoids of children with otitis media with effusion.

    PubMed Central

    van Nieuwkerk, E B; van der Baan, S; Richters, C D; Kamperdijk, E W

    1992-01-01

    Dendritic cells were enriched from adenoids of children with otitis media with effusion (OME) by density gradient centrifugation and culture techniques. An enrichment of 40-140-fold was obtained for dendritic cells. These cells were identified using morphology, enzyme cytochemistry, immunocytochemistry and functional criteria. Dendritic cells could be easily distinguished from macrophages. It appeared that the MoAb EBM11 (CD68) discriminated between dendritic cells and macrophages; in dendritic cells this activity was localized in a spot, whereas in macrophages it was found throughout the whole cytoplasm. The fractions enriched with dendritic cells showed a strong stimulatory effect on allogeneic T cells. These responses were MHC class II dependent since they could be blocked by anti-HLA-DR/DQ MoAbs. The data clearly show that dendritic cells from adenoids of children with OME still have functional capacities. Images Fig. 1 Fig. 2 Fig. 3 PMID:1572100

  20. Dendritic Cells and HIV-1 Trans-Infection

    PubMed Central

    McDonald, David

    2010-01-01

    Dendritic cells initiate and sustain immune responses by migrating to sites of pathogenic insult, transporting antigens to lymphoid tissues and signaling immune specific activation of T cells through the formation of the immunological synapse. Dendritic cells can also transfer intact, infectious HIV-1 to CD4 T cells through an analogous structure, the infectious synapse. This replication independent mode of HIV-1 transmission, known as trans-infection, greatly increases T cell infection in vitro and is thought to contribute to viral dissemination in vivo. This review outlines the recent data defining the mechanisms of trans-infection and provides a context for the potential contribution of trans-infection in HIV-1 disease. PMID:21994702

  1. Immune heterogeneity in neuroinflammation: dendritic cells in the brain.

    PubMed

    Colton, Carol A

    2013-03-01

    Dendritic cells (DC) are critical to an integrated immune response and serve as the key link between the innate and adaptive arms of the immune system. Under steady state conditions, brain DC's act as sentinels, continually sampling their local environment. They share this function with macrophages derived from the same basic hemopoietic (bone marrow-derived) precursor and with parenchymal microglia that arise from a unique non-hemopoietic origin. While multiple cells may serve as antigen presenting cells (APCs), dendritic cells present both foreign and self-proteins to naïve T cells that, in turn, carry out effector functions that serve to protect or destroy. The resulting activation of the adaptive response is a critical step to resolution of injury or infection and is key to survival. In this review we will explore the critical roles that DCs play in the brain's response to neuroinflammatory disease with emphasis on how the brain's microenvironment impacts these actions.

  2. How tolerogenic dendritic cells induce regulatory T cells

    PubMed Central

    Maldonado, Roberto A.; von Andrian, Ulrich H.

    2010-01-01

    Since their discovery by Steinman and Cohn in 1973, dendritic cells (DCs) have become increasingly recognized for their crucial role as regulators of innate and adaptive immunity. DCs are exquisitely adept at acquiring, processing and presenting antigens to T cells. They also adjust the context (and hence the outcome) of antigen presentation in response to a plethora of environmental inputs that signal the occurence of pathogens or tissue damage. Such signals generally boost DC maturation, which promotes their migration from peripheral tissues into and within secondary lymphoid organs and their capacity to induce and regulate effector T cell responses. Conversely, more recent observations indicate that DCs are also crucial to ensure immunological peace. Indeed, DCs constantly present innocuous self and non-self antigens in a fashion that promotes tolerance, at least in part, through the control of regulatory T cells (Tregs). Tregs are specialized T cells that exert their immuno-suppressive function through a variety of mechanisms affecting both DCs and effector cells. Here, we review recent advances in our understanding of the relationship between tolerogenic DCs and Tregs. PMID:21056730

  3. A Comparison between Growth Morphology of "Eutectic" Cells/Dendrites and Single-Phase Cells/Dendrites

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Raj, S. V.; Locci, I. E.

    2003-01-01

    Directionally solidified (DS) intermetallic and ceramic-based eutectic alloys with an in-situ composite microstructure containing finely distributed, long aspect ratio, fiber, or plate reinforcements are being seriously examined for several advanced aero-propulsion applications. In designing these alloys, additional solutes need to be added to the base eutectic composition in order to improve heir high-temperature strength, and provide for adequate toughness and resistance to environmental degradation. Solute addition, however, promotes instability at the planar liquid-solid interface resulting in the formation of two-phase eutectic "colonies." Because morphology of eutectic colonies is very similar to the single-phase cells and dendrites, the stability analysis of Mullins and Sekerka has been extended to describe their formation. Onset of their formation shows a good agreement with this approach; however, unlike the single-phase cells and dendrites, there is limited examination of their growth speed dependence of spacing, morphology, and spatial distribution. The purpose of this study is to compare the growth speed dependence of the morphology, spacing, and spatial distribution of eutectic cells and dendrites with that for the single-phase cells and dendrites.

  4. Phenotype and function of CD209+ bovine blood dendritic cells, monocyte-derived-dendritic cells and monocyte-derived macrophages

    USDA-ARS?s Scientific Manuscript database

    Phylogenic comparisons of the mononuclear phagocyte system (MPS) of humans and mice demonstrate phenotypic divergence of dendritic cell (DC) subsets that play similar roles in innate and adaptive immunity. Although differing in phenotype, DC can be classified into four groups according to ontogeny a...

  5. Kv1 channels selectively prevent dendritic hyperexcitability in rat Purkinje cells

    PubMed Central

    Khavandgar, Simin; Walter, Joy T; Sageser, Kristin; Khodakhah, Kamran

    2005-01-01

    Purkinje cells, the sole output of the cerebellar cortex, encode the timing signals required for motor coordination in their firing rate and activity pattern. Dendrites of Purkinje cells express a high density of P/Q-type voltage-gated calcium channels and fire dendritic calcium spikes. Here we show that dendritic subthreshold Kv1.2 subunit-containing Kv1 potassium channels prevent generation of random spontaneous calcium spikes. With Kv1 channels blocked, dendritic calcium spikes drive bursts of somatic sodium spikes and prevent the cell from faithfully encoding motor timing signals. The selective dendritic function of Kv1 channels in Purkinje cells allows them to effectively suppress dendritic hyperexcitability without hindering the generation of somatic action potentials. Further, we show that Kv1 channels also contribute to dendritic integration of parallel fibre synaptic input. Kv1 channels are often targeted to soma and axon and the data presented support a major dendritic function for these channels. PMID:16210348

  6. Interstitial dendritic cell guidance by haptotactic chemokine gradients.

    PubMed

    Weber, Michele; Hauschild, Robert; Schwarz, Jan; Moussion, Christine; de Vries, Ingrid; Legler, Daniel F; Luther, Sanjiv A; Bollenbach, Tobias; Sixt, Michael

    2013-01-18

    Directional guidance of cells via gradients of chemokines is considered crucial for embryonic development, cancer dissemination, and immune responses. Nevertheless, the concept still lacks direct experimental confirmation in vivo. Here, we identify endogenous gradients of the chemokine CCL21 within mouse skin and show that they guide dendritic cells toward lymphatic vessels. Quantitative imaging reveals depots of CCL21 within lymphatic endothelial cells and steeply decaying gradients within the perilymphatic interstitium. These gradients match the migratory patterns of the dendritic cells, which directionally approach vessels from a distance of up to 90-micrometers. Interstitial CCL21 is immobilized to heparan sulfates, and its experimental delocalization or swamping the endogenous gradients abolishes directed migration. These findings functionally establish the concept of haptotaxis, directed migration along immobilized gradients, in tissues.

  7. Dendritic Kv3.3 potassium channels in cerebellar purkinje cells regulate generation and spatial dynamics of dendritic Ca2+ spikes.

    PubMed

    Zagha, Edward; Manita, Satoshi; Ross, William N; Rudy, Bernardo

    2010-06-01

    Purkinje cell dendrites are excitable structures with intrinsic and synaptic conductances contributing to the generation and propagation of electrical activity. Voltage-gated potassium channel subunit Kv3.3 is expressed in the distal dendrites of Purkinje cells. However, the functional relevance of this dendritic distribution is not understood. Moreover, mutations in Kv3.3 cause movement disorders in mice and cerebellar atrophy and ataxia in humans, emphasizing the importance of understanding the role of these channels. In this study, we explore functional implications of this dendritic channel expression and compare Purkinje cell dendritic excitability in wild-type and Kv3.3 knockout mice. We demonstrate enhanced excitability of Purkinje cell dendrites in Kv3.3 knockout mice, despite normal resting membrane properties. Combined data from local application pharmacology, voltage clamp analysis of ionic currents, and assessment of dendritic Ca(2+) spike threshold in Purkinje cells suggest a role for Kv3.3 channels in opposing Ca(2+) spike initiation. To study the physiological relevance of altered dendritic excitability, we measured [Ca(2+)](i) changes throughout the dendritic tree in response to climbing fiber activation. Ca(2+) signals were specifically enhanced in distal dendrites of Kv3.3 knockout Purkinje cells, suggesting a role for dendritic Kv3.3 channels in regulating propagation of electrical activity and Ca(2+) influx in distal dendrites. These findings characterize unique roles of Kv3.3 channels in dendrites, with implications for synaptic integration, plasticity, and human disease.

  8. β-glucan restores tumor-educated dendritic cell maturation to enhance antitumor immune responses.

    PubMed

    Ning, Yongling; Xu, Dongqin; Zhang, Xiaohang; Bai, Yu; Ding, Jun; Feng, Tongbao; Wang, Shizhong; Xu, Ning; Qian, Keqing; Wang, Yong; Qi, Chunjian

    2016-06-01

    Tumors can induce the generation and accumulation of immunosuppressive cells such as myeloid-derived suppressor cells (MDSCs) in a tumor microenvironment, contributing to tumor escape from immunological attack. Although dendritic cell-based cancer vaccines can initiate antitumor immune responses, tumor-educated dendritic cells (TEDCs) involved in the tolerance induction have attracted much attention recently. In this study, we investigated the effect of β-glucan on TEDCs and found that β-glucan treatment could promote the maturation and migration of TEDCs and that the suppressive function of TEDCs was significantly decreased. Treatment with β-glucan drastically decreased the levels of regulatory T (Treg) cells but increased the infiltration of macrophages, granulocytes and DCs in tumor masses, thus elicited Th1 differentiation and cytotoxic T-lymphocyte responses and led to a delay in tumor progression. These findings reveal that β-glucan can inhibit the regulatory function of TEDCs, therefore revealing a novel function for β-glucan in immunotherapy and suggesting its potential clinical benefit. β-Glucan directly abrogated tumor-educated dendritic cells-associated immune suppression, promoted Th1 differentiation and cytotoxic T-lymphocyte priming and improved antitumor responses. © 2016 UICC.

  9. Self-Antigen Presentation by Dendritic Cells in Autoimmunity

    PubMed Central

    Hopp, Ann-Katrin; Rupp, Anne; Lukacs-Kornek, Veronika

    2014-01-01

    The operation of both central and peripheral tolerance ensures the prevention of autoimmune diseases. The maintenance of peripheral tolerance requires self-antigen presentation by professional antigen presenting cells (APCs). Dendritic cells (DCs) are considered as major APCs involved in this process. The current review discusses the role of DCs in autoimmune diseases, the various factors involved in the induction and maintenance of tolerogenic DC phenotype, and pinpoints their therapeutic capacity as well as potential novel targets for future clinical studies. PMID:24592266

  10. Monocyte-derived dendritic cells from horses differ from dendritic cells of humans and mice

    PubMed Central

    Mauel, Susanne; Steinbach, Falko; Ludwig, Hanns

    2006-01-01

    Dendritic cells (DC) are the initiators of immune responses and are present in most tissues in vivo. To generate myeloid DC from monocytes (MoDC) in vitro the necessary cytokines are granulocyte–macrophage colony-stimulating factor (GM-CSF) and interleukin-4 (IL-4). Using degenerated primers delineated from other species and rapid amplification of cDNA ends reverse transcription–polymerase chain reaction (RACE RT-PCR), the cDNA of equine (eq.) GM-CSF was cloned and found to have a point deletion at the 3′-end of eq.GM-CSF, resulting in a 24-nucleotide extended open reading frame not described in any species thus far. For differentiating eq.MoDC, monocytes were stimulated with eq.GM-CSF and eq.IL-4. The eq.MoDC was analysed by both light and electron microscopy and by flow cytometry and mixed lymphocyte reaction. The eq.MoDC obtained had the typical morphology and function of DC, including the ability to stimulate allogeneic T cells in a mixed lymphocyte reaction. In contrast to the human system, however, monocytes had to be differentiated for 6–7 days before immature DC were obtained. Our data also indicate that lipopolysaccharide or poly(I:C) alone are not sufficient to confer the full phenotypic transition into mature DC. Thus our study contributes to understanding the heterogeneity of immunity and adds important information on the equine immune system, which is clearly distinct from those of mice or man. PMID:16556260

  11. CD1c+ blood dendritic cells have Langerhans cell potential.

    PubMed

    Milne, Paul; Bigley, Venetia; Gunawan, Merry; Haniffa, Muzlifah; Collin, Matthew

    2015-01-15

    Langerhans cells (LCs) are self-renewing in the steady state but repopulated by myeloid precursors after injury. Human monocytes give rise to langerin-positive cells in vitro, suggesting a potential precursor role. However, differentiation experiments with human lineage-negative cells and CD34(+) progenitors suggest that there is an alternative monocyte-independent pathway of LC differentiation. Recent data in mice also show long-term repopulation of the LC compartment with alternative myeloid precursors. Here we show that, although monocytes are able to express langerin, when cultured with soluble ligands granulocyte macrophage colony-stimulating factor (GM-CSF), transforming growth factor β (TGFβ), and bone morphogenetic protein 7 (BMP7), CD1c(+) dendritic cells (DCs) become much more LC-like with high langerin, Birbeck granules, EpCAM, and E-cadherin expression under the same conditions. These data highlight a new potential precursor function of CD1c(+) DCs and demonstrate an alternative pathway of LC differentiation that may have relevance in vivo.

  12. Splenic Inflammatory Pseudotumor-Like Follicular Dendritic Cell Tumor

    PubMed Central

    Vardas, Konstantinos; Manganas, Dimitrios; Papadimitriou, Georgios; Kalatzis, Vasileios; Kyriakopoulos, Georgios; Chantziara, Maria; Exarhos, Dimitrios; Drakopoulos, Spiros

    2014-01-01

    Inflammatory pseudotumor of the spleen with expression of follicular dendritic cell markers is an extremely rare lesion with only a few cases reported previously. The present study reports on an inflammatory pseudotumor of the spleen 10 × 8 × 7 cm in size that was incidentally found in a 61-year-old man and increased gradually in size during a period of 3 months. Abdominal ultrasonography revealed a well-circumscribed splenic mass, and abdominal computed tomography confirmed the presence of a well-circumscribed isodense lesion in the splenic hilum with inhomogenous enhancement in the early-phase images and no enhancement on delayed-phase contrast-enhanced images. Magnetic resonance imaging of the abdomen showed a well-defined isodense tumor on T1-weighted images with mildly increased signal intensity on T2-weighted images, and this is only the second study that provides MRI findings of this entity. The patient underwent an uncomplicated open splenectomy for definitive histologic diagnosis. Under microscopic examination, the lesion was an admixture of lymphocytes, plasma cells and spindle cells. In situ hybridization analysis for Epstein-Barr virus (EBV) revealed that most of the spindle cells were positive for EBV, and immunochemistry showed the expression of the follicular dendritic cell markers CD21, CD35 and CD23 within the tumor. The diagnosis of inflammatory pseudotumor-like follicular dendritic cell tumor was established. PMID:25076893

  13. Aire-Overexpressing Dendritic Cells Induce Peripheral CD4+ T Cell Tolerance

    PubMed Central

    Li, Dongbei; Li, Haijun; Fu, Haiying; Niu, Kunwei; Guo, Yantong; Guo, Chuan; Sun, Jitong; Li, Yi; Yang, Wei

    2015-01-01

    Autoimmune regulator (Aire) can promote the ectopic expression of peripheral tissue-restricted antigens (TRAs) in thymic medullary epithelial cells (mTECs), which leads to the deletion of autoreactive T cells and consequently prevents autoimmune diseases. However, the functions of Aire in the periphery, such as in dendritic cells (DCs), remain unclear. This study’s aim was to investigate the effect of Aire-overexpressing DCs (Aire cells) on the functions of CD4+ T cells and the treatment of type 1 diabetes (T1D). We demonstrated that Aire cells upregulated the mRNA levels of the tolerance-related molecules CD73, Lag3, and FR4 and the apoptosis of CD4+ T cells in STZ-T1D mouse-derived splenocytes. Furthermore, following insulin stimulation, Aire cells decreased the number of CD4+ IFN-γ+ T cells in both STZ-T1D and WT mouse-derived splenocytes and reduced the expression levels of TCR signaling molecules (Ca2+ and p-ERK) in CD4+ T cells. We observed that Aire cells-induced CD4+ T cells could delay the development of T1D. In summary, Aire-expressing DCs inhibited TCR signaling pathways and decreased the quantity of CD4+IFN-γ+ autoreactive T cells. These data suggest a mechanism for Aire in the maintenance of peripheral immune tolerance and provide a potential method to control autoimmunity by targeting Aire. PMID:26729097

  14. Hepatitis C virus core protein inhibits interferon production by a human plasmacytoid dendritic cell line and dysregulates interferon regulatory factor-7 and signal transducer and activator of transcription (STAT) 1 protein expression.

    PubMed

    Stone, Amy E L; Mitchell, Angela; Brownell, Jessica; Miklin, Daniel J; Golden-Mason, Lucy; Polyak, Stephen J; Gale, Michael J; Rosen, Hugo R

    2014-01-01

    Plasmacytoid Dendritic Cells (pDCs) represent a key immune cell population in the defense against viruses. pDCs detect viral pathogen associated molecular patterns (PAMPs) through pattern recognition receptors (PRR). PRR/PAMP interactions trigger signaling events that induce interferon (IFN) production to initiate local and systemic responses. pDCs produce Type I and Type III (IFNL) IFNs in response to HCV RNA. Extracellular HCV core protein (Core) is found in the circulation in chronic infection. This study defined how Core modulates PRR signaling in pDCs. Type I and III IFN expression and production following exposure to recombinant Core or β-galactosiade was assessed in human GEN2.2 cells, a pDC cell line. Core suppressed type I and III IFN production in response to TLR agonists and the HCV PAMP agonist of RIG-I. Core suppression of IFN induction was linked with decreased IRF-7 protein levels and increased non-phosphorylated STAT1 protein. Circulating Core protein interferes with PRR signaling by pDCs to suppress IFN production. Strategies to define and target Core effects on pDCs may serve to enhance IFN production and antiviral actions against HCV.

  15. Dendritic cell fate is determined by BCL11A

    PubMed Central

    Ippolito, Gregory C.; Dekker, Joseph D.; Wang, Yui-Hsi; Lee, Bum-Kyu; Shaffer, Arthur L.; Lin, Jian; Wall, Jason K.; Lee, Baeck-Seung; Staudt, Louis M.; Liu, Yong-Jun; Iyer, Vishwanath R.; Tucker, Haley O.

    2014-01-01

    The plasmacytoid dendritic cell (pDC) is vital to the coordinated action of innate and adaptive immunity. pDC development has not been unequivocally traced, nor has its transcriptional regulatory network been fully clarified. Here we confirm an essential requirement for the BCL11A transcription factor in fetal pDC development, and demonstrate this lineage-specific requirement in the adult organism. Furthermore, we identify BCL11A gene targets and provide a molecular mechanism for its action in pDC commitment. Embryonic germ-line deletion of Bcl11a revealed an absolute cellular, molecular, and functional absence of pDCs in fetal mice. In adults, deletion of Bcl11a in hematopoietic stem cells resulted in perturbed yet continued generation of progenitors, loss of downstream pDC and B-cell lineages, and persisting myeloid, conventional dendritic, and T-cell lineages. Challenge with virus resulted in a marked reduction of antiviral response in conditionally deleted adults. Genome-wide analyses of BCL11A DNA binding and expression revealed that BCL11A regulates transcription of E2-2 and other pDC differentiation modulators, including ID2 and MTG16. Our results identify BCL11A as an essential, lineage-specific factor that regulates pDC development, supporting a model wherein differentiation into pDCs represents a primed “default” pathway for common dendritic cell progenitors. PMID:24591644

  16. Nanostructured lipid carriers loaded with resveratrol modulate human dendritic cells

    PubMed Central

    Barbosa, João P; Neves, Ana R; Silva, Andreia M; Barbosa, Mário A; Reis, M Salette; Santos, Susana G

    2016-01-01

    Dendritic cells (DCs) are promising targets for drug delivery, as they can induce immunity or tolerance. The current study aims to examine the potential of using nanostructured lipid carriers (NLC) as delivery systems for human DC by evaluating nanoparticle internalization, cell labeling, and drug activity. NLC were formulated incorporating the fluorochrome fluorescein isothiocyanate (FITC-NLC) or the natural anti-inflammatory molecule resveratrol (rsv-NLC). Primary human DCs were differentiated from peripheral blood monocytes, and the innovative imaging flow cytometry technique was used to examine FITC-NLC internalization. The capacity of rsv-NLC to inhibit DC activation in response to proinflammatory cytokine tumor necrosis factor-α (TNF- α) was investigated by conventional flow cytometry. A combination of imaging and conventional flow cytometry was used to assess NLC cytotoxicity. The results obtained indicate that both NLC formulations were stable over time, with mean diameter <200 nm and highly negative zeta potential (about −30 mV). When DCs were placed in contact with NLC, imaging flow cytometry clearly showed that DCs efficiently internalized FITC-NLC, with nearly 100% of cells internalizing nanoparticles upon 1 hour of incubation. Both immature and mature DCs internalized NLC to high and comparable levels, and without cytotoxicity. Stimulating DC with TNF-α in the presence of rsv-NLC revealed that, using these nanoparticles, very small concentrations of rsv were sufficient to significantly decrease surface expression of activation marker CD83 (5 µM) and major histocompatibility complex-class II molecule human leukocyte antigen – antigen D related (10 µM), both upregulated in response to TNF-α stimulation. Rsv-NLC were compared with free rsv; at 5 µM, rsv-NLC were able to inhibit nuclear factor κ beta phosphorylation and significantly decrease the level of interleukin-12/23, both upregulated in response to TNF-α, while 10 µM free rsv were

  17. Continuous single cell imaging reveals sequential steps of plasmacytoid dendritic cell development from common dendritic cell progenitors

    PubMed Central

    Dursun, Ezgi; Endele, Max; Musumeci, Andrea; Failmezger, Henrik; Wang, Shu-Hung; Tresch, Achim; Schroeder, Timm; Krug, Anne B.

    2016-01-01

    Functionally distinct plasmacytoid and conventional dendritic cells (pDC and cDC) shape innate and adaptive immunity. They are derived from common dendritic cell progenitors (CDPs) in the murine bone marrow, which give rise to CD11c+ MHCII− precursors with early commitment to DC subpopulations. In this study, we dissect pDC development from CDP into an ordered sequence of differentiation events by monitoring the expression of CD11c, MHC class II, Siglec H and CCR9 in CDP cultures by continuous single cell imaging and tracking. Analysis of CDP genealogies revealed a stepwise differentiation of CDPs into pDCs in a part of the CDP colonies. This developmental pathway involved an early CD11c+ SiglecH− pre-DC stage and a Siglec H+ CCR9low precursor stage, which was followed rapidly by upregulation of CCR9 indicating final pDC differentiation. In the majority of the remaining CDP pedigrees however the Siglec H+ CCR9low precursor state was maintained for several generations. Thus, although a fraction of CDPs transits through precursor stages rapidly to give rise to a first wave of pDCs, the majority of CDP progeny differentiate more slowly and give rise to longer lived precursor cells which are poised to differentiate on demand. PMID:27892478

  18. A general principle governs vision-dependent dendritic patterning of retinal ganglion cells.

    PubMed

    Xu, Hong-Ping; Sun, Jin Hao; Tian, Ning

    2014-10-15

    Dendritic arbors of retinal ganglion cells (RGCs) collect information over a certain area of the visual scene. The coverage territory and the arbor density of dendrites determine what fraction of the visual field is sampled by a single cell and at what resolution. However, it is not clear whether visual stimulation is required for the establishment of branching patterns of RGCs, and whether a general principle directs the dendritic patterning of diverse RGCs. By analyzing the geometric structures of RGC dendrites, we found that dendritic arbors of RGCs underwent a substantial spatial rearrangement after eye-opening. Light deprivation blocked both the dendritic growth and the branch patterning, suggesting that visual stimulation is required for the acquisition of specific branching patterns of RGCs. We further showed that vision-dependent dendritic growth and arbor refinement occurred mainly in the middle portion of the dendritic tree. This nonproportional growth and selective refinement suggest that the late-stage dendritic development of RGCs is not a passive stretching with the growth of eyes, but rather an active process of selective growth/elimination of dendritic arbors of RGCs driven by visual activity. Finally, our data showed that there was a power law relationship between the coverage territory and dendritic arbor density of RGCs on a cell-by-cell basis. RGCs were systematically less dense when they cover larger territories regardless of their cell type, retinal location, or developmental stage. These results suggest that a general structural design principle directs the vision-dependent patterning of RGC dendrites.

  19. Immunosurveillance profile of oral squamous cell carcinoma and oral epithelial dysplasia through dendritic and T-cell analysis.

    PubMed

    Pellicioli, Ana Carolina Amorim; Bingle, Lynne; Farthing, Paula; Lopes, Márcio Ajudarte; Martins, Manoela Domingues; Vargas, Pablo Agustin

    2017-06-05

    Oral squamous cell carcinomas (OSCCs) can arise from potentially malignant disorders, such as leukoplakia. The immune system plays an important role recognizing tumour precursor cells. However, due to immuno-editing mechanisms cancer cells are able to escape immune system surveillance. To evaluate the profile of dendritic (Langerhans and plasmacytoid) and T cells in OSCC and oral epithelial dysplasia (OED) and correlate these findings with clinical data. Fifty cases of OSCC and 48 of OED were immunostained for CD1a and CD83 dendritic Langerhans cells (DLC), CD303 plasmacytoid dendritic cells (pDC) and CD8 followed by quantitative analysis. Analysis revealed a significant decrease in the number of mature CD83 DLC in OSCC compared with OED. CD303 positivity was significantly increased in the OSCC group when compared to OED. CD8-positive lymphocytes were significantly decreased in OSCC compared with OED lesions. No statistical correlation was found with clinical data. The number of mature dendritic cells (DC) was decreased in OSCC compared with OED lesions suggesting that either these cells might have migrated to lymph nodes to present the tumour antigens and activate the immune system or cytokines secreted by the tumour microenvironment are inhibiting the adequate maturation of DLC. The numbers of pDC were significantly increased in the OSCC group compared with the OED group. This suggests they may play an important role in the defence against tumours although it is not clear whether this is promoting or inhibiting malignant progression. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Emitter formation in dendritic web silicon solar cells

    NASA Technical Reports Server (NTRS)

    Meier, D. L.; Rohatgi, A.; Campbell, R. B.; Alexander, P.; Fonash, S. J.; Singh, R.

    1984-01-01

    The use of liquid dopants and liquid masks for p-n junction formation in dendritic web solar cells was investigated and found to be equivalent to the use of gaseous dopants and CVD SiO2 masks previously used. This results in a projected cost reduction of 0.02 1980$/Watt for a 25 MW/year production line, and makes possible junction formation processes having a higher throughput than more conventional processes. The effect of a low-energy (0.4 keV) hydrogen ion implant on dendritic web solar cells was also investigated. Such an implant was observed to improve Voc and Jsc substantially. Measurements of internal quantum efficiency suggest that it is the base of the cell, rather than the emitter, which benefits from the hydrogen implant. The diffusion length for electrons in the p-type base increased from 53 microns to 150 microns in one case, with dendritic web cell efficiency being boosted to 15.2 percent. The mechanism by which low-energy hydrogen ions can penetrate deeply into the silicon to effect the observed improvement is not known at this time.

  1. Dendritic Guanidines as Efficient Analogues of Cell Penetrating Peptides

    PubMed Central

    Bonduelle, Colin V.; Gillies, Elizabeth R.

    2010-01-01

    The widespread application of cell penetrating agents to clinical therapeutics and imaging agents relies on the ability to prepare them on a large scale and to readily conjugate them to their cargos. Dendritic analogues of cell penetrating peptides, with multiple guanidine groups on their peripheries offer advantages as their high symmetry allows them to be efficiently synthesized, while orthogonal functionalities at their focal points allow them to be conjugated to cargo using simple synthetic methods. Their chemical structures and properties are also highly tunable as their flexibility and the number of guanidine groups can be tuned by altering the dendritic backbone or the linkages to the guanidine groups. This review describes the development of cell-penetrating dendrimers based on several different backbones, their structure-property relationships, and comparisons of their efficacies with those of known cell penetrating peptides. The toxicities of these dendritic guanidines are also reported as well as their application towards the intracellular delivery of biologically significant cargos including proteins and nanoparticles. PMID:27713272

  2. Epidermal cells are the primary phagocytes in the fragmentation and clearance of degenerating dendrites in Drosophila

    PubMed Central

    Xiao, Hui; Wang, Denan; Franc, Nathalie C.; Jan, Lily Yeh; Jan, Yuh-Nung

    2014-01-01

    SUMMARY During developmental remodeling, neurites destined for pruning often degenerate on-site. Physical injury also induces degeneration of neurites distal to the injury site. Prompt clearance of degenerating neurites is important for maintaining tissue homeostasis and preventing inflammatory responses. Here we show that in both dendrite pruning and dendrite injury of Drosophila sensory neurons, epidermal cells rather than hemocytes are the primary phagocytes in clearing degenerating dendrites. Epidermal cells act via Draper-mediated recognition to facilitate dendrite degeneration and to engulf and degrade degenerating dendrites. Using multiple dendritic membrane markers to trace phagocytosis, we show that two members of the CD36 family, croquemort (crq) and debris buster (dsb), act at distinct stages of phagosome maturation for dendrite clearance. Our finding reveals the physiological importance of coordination between neurons and their surrounding epidermis, for both dendrite fragmentation and clearance. PMID:24412417

  3. Targeting Dendritic Cells in vivo for Cancer Therapy

    PubMed Central

    Caminschi, Irina; Maraskovsky, Eugene; Heath, William Ross

    2012-01-01

    Monoclonal antibodies that recognize cell surface molecules have been used deliver antigenic cargo to dendritic cells (DC) for induction of immune responses. The encouraging anti-tumor immunity elicited using this immunization strategy suggests its suitability for clinical trials. This review discusses the complex network of DC, the functional specialization of DC subsets, the immunological outcomes of targeting different DC subsets and their cell surface receptors, and the requirements for the induction of effective anti-tumor CD4 and CD8 T cell responses that can recognize tumor-specific antigens. Finally, we review preclinical experiments and the progress toward targeting human DC in vivo. PMID:22566899

  4. Viral piracy: HIV-1 targets dendritic cells for transmission.

    PubMed

    Lekkerkerker, Annemarie N; van Kooyk, Yvette; Geijtenbeek, Teunis B H

    2006-04-01

    Dendritic cells (DCs), the professional antigen presenting cells, are critical for host immunity by inducing specific immune responses against a broad variety of pathogens. Remarkably the human immunodeficiency virus-1 (HIV-1) subverts DC function leading to spread of the virus. At an early phase of HIV-1 transmission, DCs capture HIV-1 at mucosal surfaces and transmit the virus to T cells in secondary lymphoid tissues. Capture of the virus on DCs takes place via C-type lectins of which the dendritic cell-specific intercellular adhesion molecule-3 (ICAM-3) grabbing nonintegrin (DC-SIGN) is the best studied. DC-SIGN-captured HIV-1 particles accumulate in CD81(+) multivesicular bodies (MVBs) in DCs and are subsequently transmitted to CD4+ T cells resulting in infection of T cells. The viral cell-to-cell transmission takes place at the DC-T cell interface termed the infectious synapse. Recent studies demonstrate that direct infection of DCs contributes to the transmission to T cells at a later phase. Moreover, the infected DCs may function as cellular reservoirs for HIV-1. This review discusses the different processes that govern viral piracy of DCs by HIV-1, emphasizing the intracellular routing of the virus from capture on the cell surface to egress in the infectious synapse.

  5. Computer Tomography Imaging Findings of Abdominal Follicular Dendritic Cell Sarcoma

    PubMed Central

    Li, Jing; Geng, Zhi-Jun; Xie, Chuan-Miao; Zhang, Xin-Ke; Chen, Rui-Ying; Cai, Pei-Qiang; Lv, Xiao-Fei

    2016-01-01

    Abstract Follicular dendritic cell sarcoma (FDCS) is a neoplasm that arises from follicular dendritic cells. FDCSs originating in the abdomen are extremely rare. Clinically, they often mimic a wide variety of other abdominal tumors, and correct preoperative diagnosis is often a challenging task. To date, only scattered cases of abdominal FDCS have been reported and few data are available on their radiological features. Here we present the computer tomography imaging findings of 5 patients with surgically and pathologically demonstrated abdominal FDCS. An abdominal FDCS should be included in the differential diagnosis when single or multiple masses with relatively large size, well- or ill-defined borders, complex internal architecture with marked internal necrosis and/or focal calcification, and heterogeneous enhancement with “rapid wash-in and slow wash-out” or “progressive enhancement” enhancement patterns in the solid component are seen. PMID:26735543

  6. Targeting human dendritic cells in situ to improve vaccines.

    PubMed

    Sehgal, Kartik; Dhodapkar, Kavita M; Dhodapkar, Madhav V

    2014-11-01

    Dendritic cells (DCs) provide a critical link between innate and adaptive immunity. The potent antigen presenting properties of DCs makes them a valuable target for the delivery of immunogenic cargo. Recent clinical studies describing in situ DC targeting with antibody-mediated targeting of DC receptor through DEC-205 provide new opportunities for the clinical application of DC-targeted vaccines. Further advances with nanoparticle vectors which can encapsulate antigens and adjuvants within the same compartment and be targeted against diverse DC subsets also represent an attractive strategy for targeting DCs. This review provides a brief summary of the rationale behind targeting dendritic cells in situ, the existing pre-clinical and clinical data on these vaccines and challenges faced by the next generation DC-targeted vaccines. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Semen promotes the differentiation of tolerogenic dendritic cells.

    PubMed

    Remes Lenicov, Federico; Rodriguez Rodrigues, Christian; Sabatté, Juan; Cabrini, Mercedes; Jancic, Carolina; Ostrowski, Matías; Merlotti, Antonela; Gonzalez, Heidi; Alonso, Andrea; Pasqualini, Rodolfo A; Davio, Carlos; Geffner, Jorge; Ceballos, Ana

    2012-11-15

    Seminal plasma is not just a carrier for spermatozoa. It contains high concentrations of cytokines, chemokines, and other biological compounds that are able to exert potent effects on the immune system of the receptive partner. Previous studies have shown that semen induces an acute inflammatory response at the female genital mucosa after coitus. Moreover, it induces regulatory mechanisms that allow the fetus (a semiallograft) to grow and develop in the uterus. The mechanisms underlying these regulatory mechanisms, however, are poorly understood. In this study, we show that seminal plasma redirects the differentiation of human dendritic cells (DCs) toward a regulatory profile. DCs differentiated from human monocytes in the presence of high dilutions of seminal plasma did not express CD1a but showed high levels of CD14. They were unable to develop a fully mature phenotype in response to LPS, TNF-α, CD40L, Pam2CSK4 (TLR2/6 agonist), or Pam3CSK4 (TLR1/2 agonist). Upon activation, they produced low amounts of the inflammatory cytokines IL-12p70, IL-1β, TNF-α, and IL-6, but expressed a high ability to produce IL-10 and TGF-β. Inhibition of the PG receptors E-prostanoid receptors 2 and 4 prevented the tolerogenic effect induced by seminal plasma on the phenotype and function of DCs, suggesting that E-series PGs play a major role. By promoting a tolerogenic profile in DCs, seminal plasma might favor fertility, but might also compromise the capacity of the receptive partner to mount an effective immune response against sexually transmitted pathogens.

  8. Sorafenib induces autophagy in human myeloid dendritic cells and prolongs survival of skin allografts.

    PubMed

    Lin, Jiunn-Chang; Huang, Wei-Pang; Liu, Chien-Liang; Lee, Jie-Jen; Liu, Tsang-Pai; Ko, Wen-Chin; Huang, Yu-Chuen; Hsu, Ming-Ling; Wu, Chih-Hsiung; Chen, Yu-Jen

    2013-03-27

    Sorafenib, a multikinase inhibitor approved for the treatment of advanced renal cell carcinoma and hepatocellular carcinoma, has been reported inhibitory on the function of dendritic cells. This study was aimed to determine the effects of sorafenib on inducing autophagy and immunomodulatory activity and its implication on graft rejection. Cell viability and surface antigens were examined by 7-amino-actinomycin D and flow cytometric analysis. Autophagy was characterized using light microscopy and transmission electron microscopy for morphology, Western blotting for LC3B-I lipidation and mammalian target of rapamycin signaling molecules, and immunofluorescence staining for endogenous LC3B, GFP-LC3 transfection, and acidic component vacuoles. Skin allograft in mice was used as an experimental transplantation rejection model. Soluble factors contained in culture medium and serum were measured by enzyme-linked immunosorbent assay. We found that sorafenib inhibited the viability of dendritic cells accompanied by morphologic changes characteristic of autophagy and immature differentiation. This autophagic effect induced by sorafenib was validated by LC3B-I lipidation and autophagosome accumulation. Sorafenib treatment was associated with the down-regulation of phosphorylated mammalian target of rapamycin and its downstream substrate p70S6K. We next performed skin graft model to testify the role of sorafenib-induced immature and autophagic dendritic cells. Intriguingly, sorafenib prolonged the survival of skin allograft without major toxicity. Blockade of autophagic flux by chloroquine partially diminished the protective effect of sorafenib, indicating an autophagy-related mechanism in vivo. This study suggests that sorafenib, in addition to being an anticancer agent, may have potential to be developed as a new category of immunosuppressant drugs acting via autophagy induction of dendritic cells.

  9. Dendritic Cells Endocytose Bacillus Anthracis Spores: Implications for Anthrax Pathogenesis

    DTIC Science & Technology

    2007-11-02

    significance of coiling phagocy- tosis for disease pathogenesis has yet to be elucidated, it is a sub- ject that surely warrants further investigation. B...Schmaljohn. 2003. Ebola and marburg viruses replicate in monocyte-derived dendritic cells without inducing the pro- duction of cytokines and full maturation...Journal of Immunology, 2005, 174: 5545–5552. I nhalational anthrax, a disease that was exploited for bioter-rorism (1), is most often fatal and causes

  10. Dendritic web-type solar cell mini-modules

    NASA Technical Reports Server (NTRS)

    Campbell, R. B.

    1985-01-01

    Twenty-five minimodules composed of dendritic web solar cells with nominal glass size of 12 by 40 cm were provided for study. The modules were identical with respect to design, materials, and manufacturing and assembly processes to full scale modules. The modules were also electrically functional. These minimodules were fabricated to provide test vehicle for environmental testing and to assess reliability of process and design procedures. The module design and performance are outlined.

  11. Modulatory effects on dendritic cells by human herpesvirus 6

    PubMed Central

    Gustafsson, Rasmus; Svensson, Mattias; Fogdell-Hahn, Anna

    2015-01-01

    Human herpesvirus 6A and 6B are β-herpesviruses approaching 100% seroprevalance worldwide. These viruses are involved in several clinical syndromes and have important immunomodulatory effects. Dendritic cells (DC) are key players in innate and adaptive immunity. Accordingly, DC are implicated in the pathogenesis of many human diseases, including infections. In this review the effects of HHV-6 infection on DC will be discussed. PMID:25983728

  12. Induction and identification of rabbit peripheral blood derived dendritic cells

    NASA Astrophysics Data System (ADS)

    Zhou, Jing; Yang, FuYuan; Chen, WenLi

    2012-03-01

    Purpose: To study a method of the induction of dendritic cells (DCs) from rabbit peripheral blood. Methods: Peripheral blood cells were removed from rabbit, filtered through nylon mesh. Peripheral blood mononuclear cells (PBMC) were isolated from the blood cells by Ficoll-Hypaque centrifugation (density of 1.077g/cm3).To obtain DCs, PBMC were cultured in RPMI1640 medium containing 10% fetal calf serum, 50U/mL penicillin and streptomycin, referred to subsequently as complete medium, at 37°C in 5% CO2 atmosphere for 4 hours. Nonadherent cells were aspirated, adherent cells were continued incubated in complete medium, supplemented with granulocyte/macrophage colony-stimulating factor (GM-CSF, 50ng/ml),and interleukin 4 (IL-4, 50ng/ml) for 9 days. Fluorescein labeled antibodies(anti-CD14, anti-HLA-DR, anti-CD86) were used to sign cells cultured for 3,6,9 days respectively, Then flow cytometry was performed. Results: Ratio of anti-HLA-DR and anti-CD86 labeled cells increased with induction time extension, in contrast with anti-CD14. Conclusion: Dendritic cells can be effectively induced by the method of this experiment, cell maturation status increased with induction time extension.

  13. Longitudinal Tracking of Human Dendritic Cells in Murine Models Using Magnetic Resonance Imaging

    PubMed Central

    Briley-Saebo, Karen C.; Leboeuf, Marylene; Dickson, Stephen; Mani, Venkatesh; Fayad, Zahi A.; Palucka, A. Karolina; Banchereau, Jacques; Merad, Miriam

    2011-01-01

    Ex vivo generated dendritic cells are currently used to induce therapeutic immunity in solid tumors. Effective immune response requires dendritic cells to home and remain in lymphoid organs to allow for adequate interaction with T lymphocytes. The aim of the current study was to detect and track Feridex labeled human dendritic cells in murine models using magnetic resonance imaging. Human dendritic cells were incubated with Feridex and the effect of labeling on dendritic cells immune function was evaluated. Ex vivo dendritic cell phantoms were used to estimate sensitivity of the magnetic resonance methods and in vivo homing was evaluated after intravenous or subcutaneous injection. R2*-maps of liver, spleen, and draining lymph nodes were obtained and inductively coupled plasma mass spectrometry or relaxometry methods were used to quantify the Feridex tissue concentrations. Correlations between in vivo R2* values and iron content were then determined. Feridex labeling did not affect dendritic cell maturation or function. Phantom results indicated that it was possible to detect 125 dendritic cells within a given slice. Strong correlation between in vivo R2* values and iron deposition was observed. Importantly, Feridex-labeled dendritic cells were detected in the spleen for up to 2 weeks postintravenous injection. This study suggests that magnetic resonance imaging may be used to longitudinally track Feridex-labeled human dendritic cells for up to 2 weeks after injection. PMID:20593373

  14. Jet exhaust particles alter human dendritic cell maturation.

    PubMed

    Ferry, D; Rolland, C; Delhaye, D; Barlesi, F; Robert, P; Bongrand, P; Vitte, Joana

    2011-03-01

    Among combustion-derived air pollutants, little is known about jet kerosene characteristics and effects. Particles yielded by experimental kerosene combustion in a jet engine were characterized with electron microscopy and X-ray energy dispersive spectroscopy. Immature human monocyte-derived dendritic cells were exposed for 18 h to 10, 25 or 100 μg/mL jet exhaust particles and/or Escherichia coli-derived endotoxin. Antigen-presenting and costimulation molecules (HLA DR, CD40, CD80, CD86, CD11c), tumor necrosis factor-α and interleukin-10 production were measured. The primary particles of jet exhaust are spherical (9.9 nm), carbonaceous and exert an adjuvant effect on human monocyte-derived dendritic cell maturation in vitro. Concomitant particle and endotoxin stimulation induced a high cytokine production with low antigen-presenting molecules; particle contact prior to endotoxin contact led to an opposite phenotype. Finally, low cytokine production and high costimulation molecules were present when particle adjunction followed endotoxin contact. Jet exhaust particles act as adjuvants to endotoxin-induced dendritic cell maturation, suggesting possible implications for human health and a role for the time pattern of infectious and pollutant interplay.

  15. 3D visualization of HIV transfer at the virological synapse between dendritic cells and T cells

    PubMed Central

    Felts, Richard L.; Narayan, Kedar; Estes, Jacob D.; Shi, Dan; Trubey, Charles M.; Fu, Jing; Hartnell, Lisa M.; Ruthel, Gordon T.; Schneider, Douglas K.; Nagashima, Kunio; Bess, Julian W.; Bavari, Sina; Lowekamp, Bradley C.; Bliss, Donald; Lifson, Jeffrey D.; Subramaniam, Sriram

    2010-01-01

    The efficiency of HIV infection is greatly enhanced when the virus is delivered at conjugates between CD4+ T cells and virus-bearing antigen-presenting cells such as macrophages or dendritic cells via specialized structures known as virological synapses. Using ion abrasion SEM, electron tomography, and superresolution light microscopy, we have analyzed the spatial architecture of cell-cell contacts and distribution of HIV virions at virological synapses formed between mature dendritic cells and T cells. We demonstrate the striking envelopment of T cells by sheet-like membrane extensions derived from mature dendritic cells, resulting in a shielded region for formation of virological synapses. Within the synapse, filopodial extensions emanating from CD4+ T cells make contact with HIV virions sequestered deep within a 3D network of surface-accessible compartments in the dendritic cell. Viruses are detected at the membrane surfaces of both dendritic cells and T cells, but virions are not released passively at the synapse; instead, virus transfer requires the engagement of T-cell CD4 receptors. The relative seclusion of T cells from the extracellular milieu, the burial of the site of HIV transfer, and the receptor-dependent initiation of virion transfer by T cells highlight unique aspects of cell-cell HIV transmission. PMID:20624966

  16. Immunomodulatory effects of human umbilical cord Wharton's jelly-derived mesenchymal stem cells on differentiation, maturation and endocytosis of monocyte-derived dendritic cells.

    PubMed

    Saeidi, Mohsen; Masoud, Ahmad; Shakiba, Yadollah; Hadjati, Jamshid; Mohyeddin Bonab, Mandana; Nicknam, Mohammad Hossein; Latifpour, Mostafa; Nikbin, Behrooz

    2013-03-01

    The Wharton's jelly of the umbilical cord is believed to be a source of mesenchymal stem cells (MSCs) which can be therapeutically applied in degenerative diseases.In this study, we investigated the immunomodulatory effect of umbilical cord derived-mesenchymal stem cells (UC-MSCs) and bone marrow-derived-mesenchymal stem cells (BM-MSCs) on differentiation, maturation, and endocytosis of monocyte-derived dendritic cells in a transwell culture system under laboratory conditions. Monocytes were differentiated into immature dendritic cells (iDCs) in the presence of GM-CSF and IL-4 for 6 days and then differentiated into mature dendritic cells (mDCs) in the presence of TNF-α for 2 days. In every stage of differentiation, immature and mature dendritic cells were separately co-cultured with UC-MSCs and BM-MSCs. The findings showed that UC-MSCs and BM-MSCs inhibited strongly differentiation and maturation of dendritic cells at higher dilution ratios (1:1). The BM-MSCs and UC-MSCs showed more inhibitory effect on CD1a, CD83, CD86 expression, and dendritic cell endocytic activity, respectively. On the other hand, these cells severely up-regulated CD14 marker expression. We concluded that UC-MSCs and BM-MSCs could inhibit differentiation, maturation and endocytosis in monocyte-derived DCs through the secreted factors and free of any cell-cell contacts under laboratory conditions. As DCs are believed to be the main antigen presenting cells for naïve T cells in triggering immune responses, it would be logical that their inhibitory effect on differentiation, maturation and function can decrease or modulate immune and inflammatory responses.

  17. Suppressing The Growth Of Dendrites In Secondary Li Cells

    NASA Technical Reports Server (NTRS)

    Davies, Evan D.; Perrone, David E.; Shen, David H.

    1996-01-01

    Proposed technique for suppressing growth of lithium dendrites in rechargeable lithium electrochemical power cells involves periodic interruption of steady charging current with short, high-current discharge pulses. Technique applicable to lithium cells of several different types, including Li/TiS(2), Li/NbSe(3), Li/CoO(2), Li/MoS(2), Li/Vo(x), and Li/MnO(2). Cells candidates for use in spacecraft, military, communications, automotive, and other applications in which high-energy-density rechargeable batteries needed.

  18. Kaposi's sarcoma-associated herpesvirus infection of bone marrow dendritic cells from multiple myeloma patients.

    PubMed

    Rettig, M B; Ma, H J; Vescio, R A; Põld, M; Schiller, G; Belson, D; Savage, A; Nishikubo, C; Wu, C; Fraser, J; Said, J W; Berenson, J R

    1997-06-20

    Kaposi's sarcoma-associated herpesvirus (KSHV) was found in the bone marrow dendritic cells of multiple myeloma patients but not in malignant plasma cells or bone marrow dendritic cells from normal individuals or patients with other malignancies. In addition the virus was detected in the bone marrow dendritic cells from two out of eight patients with monoclonal gammopathy of undetermined significance (MGUS), a precursor to myeloma. Viral interleukin-6, the human homolog of which is a growth factor for myeloma, was found to be transcribed in the myeloma bone marrow dendritic cells. KSHV may be required for transformation from MGUS to myeloma and perpetuate the growth of malignant plasma cells.

  19. Mycobacterium-Infected Dendritic Cells Disseminate Granulomatous Inflammation.

    PubMed

    Harding, Jeffrey S; Rayasam, Aditya; Schreiber, Heidi A; Fabry, Zsuzsanna; Sandor, Matyas

    2015-10-30

    The disappearance and reformation of granulomas during tuberculosis has been described using PET/CT/X-ray in both human clinical settings and animal models, but the mechanisms of granuloma reformation during active disease remains unclear. Granulomas can recruit inflammatory dendritic cells (iDCs) that can regulate local T-cell responses and can carry bacteria into the lymph nodes, which is crucial for generating systemic T-cell responses against mycobacteria. Here, we report that a subset of mycobacterium-infected iDCs are associated with bacteria-specific T-cells in infected tissue, outside the granuloma, and that this results in the formation of new and/or larger multi-focal lesions. Mycobacterium-infected iDCs express less CCR7 and migrate less efficiently compared to the non-infected iDCs, which may support T-cell capture in granulomatous tissue. Capture may reduce antigen availability in the lymph node, thereby decreasing systemic priming, resulting in a possible regulatory loop between systemic T-cell responses and granuloma reformation. T-cell/infected iDCs clusters outside the granuloma can be detected during the acute and chronic phase of BCG and Mtb infection. Our studies suggest a direct role for inflammatory dendritic cells in the dissemination of granulomatous inflammation.

  20. Mycobacterium-Infected Dendritic Cells Disseminate Granulomatous Inflammation

    PubMed Central

    Harding, Jeffrey S.; Rayasam, Aditya; Schreiber, Heidi A.; Fabry, Zsuzsanna; Sandor, Matyas

    2015-01-01

    The disappearance and reformation of granulomas during tuberculosis has been described using PET/CT/X-ray in both human clinical settings and animal models, but the mechanisms of granuloma reformation during active disease remains unclear. Granulomas can recruit inflammatory dendritic cells (iDCs) that can regulate local T-cell responses and can carry bacteria into the lymph nodes, which is crucial for generating systemic T-cell responses against mycobacteria. Here, we report that a subset of mycobacterium-infected iDCs are associated with bacteria-specific T-cells in infected tissue, outside the granuloma, and that this results in the formation of new and/or larger multi-focal lesions. Mycobacterium-infected iDCs express less CCR7 and migrate less efficiently compared to the non-infected iDCs, which may support T-cell capture in granulomatous tissue. Capture may reduce antigen availability in the lymph node, thereby decreasing systemic priming, resulting in a possible regulatory loop between systemic T-cell responses and granuloma reformation. T-cell/infected iDCs clusters outside the granuloma can be detected during the acute and chronic phase of BCG and Mtb infection. Our studies suggest a direct role for inflammatory dendritic cells in the dissemination of granulomatous inflammation. PMID:26515292

  1. Functional Properties of Dendritic Gap Junctions in Cerebellar Golgi Cells.

    PubMed

    Szoboszlay, Miklos; Lőrincz, Andrea; Lanore, Frederic; Vervaeke, Koen; Silver, R Angus; Nusser, Zoltan

    2016-06-01

    The strength and variability of electrical synaptic connections between GABAergic interneurons are key determinants of spike synchrony within neuronal networks. However, little is known about how electrical coupling strength is determined due to the inaccessibility of gap junctions on the dendritic tree. We investigated the properties of gap junctions in cerebellar interneurons by combining paired somato-somatic and somato-dendritic recordings, anatomical reconstructions, immunohistochemistry, electron microscopy, and modeling. By fitting detailed compartmental models of Golgi cells to their somato-dendritic voltage responses, we determined their passive electrical properties and the mean gap junction conductance (0.9 nS). Connexin36 immunofluorescence and freeze-fracture replica immunogold labeling revealed a large variability in gap junction size and that only 18% of the 340 channels are open in each plaque. Our results establish that the number of gap junctions per connection is the main determinant of both the strength and variability in electrical coupling between Golgi cells. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Medroxyprogesterone acetate impairs human dendritic cell activation and function.

    PubMed

    Quispe Calla, N E; Ghonime, M G; Cherpes, T L; Vicetti Miguel, R D

    2015-05-01

    Does medroxyprogesterone acetate (MPA) impair human dendritic cell (DC) activation and function? In vitro MPA treatment suppressed expression of CD40 and CD80 by human primary DCs responding to Toll-like receptor 3 (TLR3) agonist stimulation (i.e. DC activation). Moreover, this MPA-mediated decrease in CD40 expression impaired DC capacity to stimulate T cell proliferation (i.e. DC function). MPA is the active molecule in Depo-Provera(®) (DMPA), a commonly used injectable hormonal contraceptive (HC). Although DMPA treatment of mice prior to viral mucosal tissue infection impaired the capacity of DCs to up-regulate CD40 and CD80 and prime virus-specific T cell proliferation, neither DC activation marker expression nor the ability of DCs to promote T cell proliferation were affected by in vitro progesterone treatment of human DCs generated from peripheral blood monocytes. This cross-sectional study examined MPA-mediated effects on the activation and function of human primary untouched peripheral blood DCs. Human DCs isolated from peripheral blood mononuclear cells by negative immunomagnetic selection were incubated for 24 h with various concentrations of MPA. After an additional 24 h incubation with the TLR3 agonist polyinosinic:polycytidylic acid (poly I:C), flow cytometry was used to evaluate DC phenotype (i.e. expression of CD40, CD80, CD86, and HLA-DR). In separate experiments, primary untouched human DCs were sequentially MPA-treated, poly I:C-activated, and incubated for 7 days with fluorescently labeled naïve allogeneic T cells. Flow cytometry was then used to quantify allogeneic T cell proliferation. Several pharmacologically relevant concentrations of MPA dramatically reduced CD40 and CD80 expression in human primary DCs responding to the immunostimulant poly I:C. In addition, MPA-treated DCs displayed a reduced capacity to promote allogeneic CD4(+) and CD8(+) T cell proliferation. In other DC: T cell co-cultures, the addition of antibody blocking the CD40

  3. Relation of apical dendritic spikes to output decision in CA1 pyramidal cells during synchronous activation: a computational study.

    PubMed

    Ibarz, José M; Makarova, Ioulia; Herreras, Oscar

    2006-03-01

    Recent studies on the initiation and propagation of dendritic spikes have modified the classical view of postsynaptic integration. Earlier we reported that subthreshold currents and spikes recruited by synaptic currents play a critical role in defining outputs following synchronous activation. Experimental factors strongly condition these currents due to their nonlinear behaviour. Hence, we have performed a detailed parametric study in a CA1 pyramidal cell model to explore how different variables interact and initiate dendritic spiking, and how they influence cell output. The input pattern, the relative excitability of axon and dendrites, the presence/modulation of voltage-dependent channels, and inhibition were cross analysed. Subthreshold currents and spikes on synaptically excited branches fired spikes in other branches to jointly produce different modalities of apical shaft spiking with a variable impact on cell output. Synchronous activation initiated a varying number and temporal scatter of firing branches that produced in the apical shaft-soma axis nonpropagating spikes, pseudosaltatory or continuous forward conduction, or backpropagation. As few as 6-10 local spikes within a time window of 2 ms ensure cell output. However, the activation mode varied extremely when two or more variables were cross-analysed, becoming rather unpredictable when all the variables were considered. Spatially clustered inputs and upper modulation of dendritic Na(+) or Ca(2+) electrogenesis favour apical decision. In contrast, inhibition biased the output decision toward the axon and switched between dendritic firing modes. We propose that dendrites can discriminate input patterns and decide immediate cell output depending on the particular state of a variety of endogenous parameters.

  4. Generation of Th17 cells in response to intranasal infection requires TGF-β1 from dendritic cells and IL-6 from CD301b+ dendritic cells.

    PubMed

    Linehan, Jonathan L; Dileepan, Thamotharampillai; Kashem, Sakeen W; Kaplan, Daniel H; Cleary, Patrick; Jenkins, Marc K

    2015-10-13

    Intranasal (i.n.) infections preferentially generate Th17 cells. We explored the basis for this anatomic preference by tracking polyclonal CD4(+) T cells specific for an MHC class II-bound peptide from the mucosal pathogen Streptococcus pyogenes. S. pyogenes MHC class II-bound peptide-specific CD4(+) T cells were first activated in the cervical lymph nodes following i.n. inoculation and then differentiated into Th17 cells. S. pyogenes-induced Th17 formation depended on TGF-β1 from dendritic cells and IL-6 from a CD301b(+) dendritic cell subset located in the cervical lymph nodes but not the spleen. Thus, the tendency of i.n. infection to induce Th17 cells is related to cytokine production by specialized dendritic cells that drain this site.

  5. Postnatal dendritic morphogenesis of cerebellar basket and stellate cells in vitro.

    PubMed

    Spatkowski, Gabriele; Schilling, Karl

    2003-05-01

    Inhibitory interneurons in the molecular layer of the cerebellar cortex play an essential role in cerebellar physiology by providing feed-forward inhibition to efferent Purkinje cells. Morphologic characteristics have been utilized to classify these cells as either basket cells or stellate cells. Conflicting evidence exists as to whether these cells are of distinct lineage and develop by employing discrete genetic programs, or whether their characteristic morphologic differences result from external cues that they encounter only after they have settled in their final territory in the molecular layer. We used primary dissociated cerebellar cultures established from early postnatal mice to study dendritogenesis of basket/stellate cells, identified by immunostaining for parvalbumin, under experimentally controlled conditions. We find that the radial axonal orientation of stem dendrites is non-random, suggesting a cell-intrinsic component defining this morphologic trait. In contrast, the expanse and complexity of basket/stellate cell dendrites is modulated by the granule cell derived neurotrophin, BDNF. BDNF-induced morphogenetic effects decline with ongoing development. Overall, our data do not provide evidence for a distinct lineage or genetic makeup of cerebellar molecular layer inhibitory interneurons.

  6. Directing dendritic cell immunotherapy towards successful cancer treatment

    PubMed Central

    Sabado, Rachel Lubong; Bhardwaj, Nina

    2010-01-01

    The use of dendritic cells (DCs) for tumor immunotherapy represents a powerful approach for harnessing the patient's own immune system to eliminate tumor cells. However, suboptimal conditions for generating potent immunostimulatory DCs, as well as the induction of tolerance and suppression mediated by the tumors and its microenvironment have contributed to limited success. Combining DC vaccines with new approaches that enhance immunogenicity and overcome the regulatory mechanisms underlying peripheral tolerance may be the key to achieving effective and durable anti-tumor immune responses that translate to better clinical outcomes. PMID:20473346

  7. Classification of dendritic cell phenotypes from gene expression data

    PubMed Central

    2011-01-01

    Background The selection of relevant genes for sample classification is a common task in many gene expression studies. Although a number of tools have been developed to identify optimal gene expression signatures, they often generate gene lists that are too long to be exploited clinically. Consequently, researchers in the field try to identify the smallest set of genes that provide good sample classification. We investigated the genome-wide expression of the inflammatory phenotype in dendritic cells. Dendritic cells are a complex group of cells that play a critical role in vertebrate immunity. Therefore, the prediction of the inflammatory phenotype in these cells may help with the selection of immune-modulating compounds. Results A data mining protocol was applied to microarray data for murine cell lines treated with various inflammatory stimuli. The learning and validation data sets consisted of 155 and 49 samples, respectively. The data mining protocol reduced the number of probe sets from 5,802 to 10, then from 10 to 6 and finally from 6 to 3. The performances of a set of supervised classification models were compared. The best accuracy, when using the six following genes --Il12b, Cd40, Socs3, Irgm1, Plin2 and Lgals3bp-- was obtained by Tree Augmented Naïve Bayes and Nearest Neighbour (91.8%). Using the smallest set of three genes --Il12b, Cd40 and Socs3-- the performance remained satisfactory and the best accuracy was with Support Vector Machine (95.9%). These data mining models, using data for the genes Il12b, Cd40 and Socs3, were validated with a human data set consisting of 27 samples. Support Vector Machines (71.4%) and Nearest Neighbour (92.6%) gave the worst performances, but the remaining models correctly classified all the 27 samples. Conclusions The genes selected by the data mining protocol proposed were shown to be informative for discriminating between inflammatory and steady-state phenotypes in dendritic cells. The robustness of the data mining

  8. Cross-Presentation in Mouse and Human Dendritic Cells.

    PubMed

    Segura, Elodie; Amigorena, Sebastian

    2015-01-01

    Cross-presentation designates the presentation of exogenous antigens on major histocompatibility complex class I molecules and is essential for the initiation of cytotoxic immune responses. It is now well established that dendritic cells (DCs) are the best cross-presenting cells. In this chapter, we will discuss recent advances in our understanding of the molecular mechanisms of cross-presentation. We will also describe the different DC subsets identified in mouse and human, and their functional specialization for cross-presentation. Finally, we will summarize the current knowledge of the role of cross-presentation in pathological situations.

  9. Cross-talk between myeloid-derived suppressor cells (MDSC), macrophages, and dendritic cells enhances tumor-induced immune suppression.

    PubMed

    Ostrand-Rosenberg, Suzanne; Sinha, Pratima; Beury, Daniel W; Clements, Virginia K

    2012-08-01

    The tumor microenvironment is a complex milieu of tumor and host cells. Host cells can include tumor-reactive T cells capable of killing tumor cells. However, more frequently the tumor and host components interact to generate a highly immune suppressive environment that frustrates T cell cytotoxicity and promotes tumor progression through a variety of immune and non-immune mechanisms. Myeloid-derived suppressor cells (MDSC) are a major host component contributing to the immune suppressive environment. In addition to their inherent immune suppressive function, MDSC amplify the immune suppressive activity of macrophages and dendritic cells via cross-talk. This article will review the cell-cell interactions used by MDSC to inhibit anti-tumor immunity and promote progression, and the role of inflammation in promoting cross-talk between MDSC and other cells in the tumor microenvironment.

  10. Leukemia-derived immature dendritic cells differentiate into functionally competent mature dendritic cells that efficiently stimulate T cell responses.

    PubMed

    Cignetti, Alessandro; Vallario, Antonella; Roato, Ilaria; Circosta, Paola; Allione, Bernardino; Casorzo, Laura; Ghia, Paolo; Caligaris-Cappio, Federico

    2004-08-15

    Primary acute myeloid leukemia cells can be induced to differentiate into dendritic cells (DC). In the presence of GM-CSF, TNF-alpha, and/or IL-4, leukemia-derived DC are obtained that display features of immature DC (i-DC). The aim of this study was to determine whether i-DC of leukemic origin could be further differentiated into mature DC (m-DC) and to evaluate the possibility that leukemic m-DC could be effective in vivo as a tumor vaccine. Using CD40L as maturating agent, we show that leukemic i-DC can differentiate into cells that fulfill the phenotypic criteria of m-DC and, compared with normal counterparts, are functionally competent in vitro in terms of: 1) production of cytokines that support T cell activation and proliferation and drive Th1 polarization; 2) generation of autologous CD8(+) CTLs and CD4(+) T cells that are MHC-restricted and leukemia-specific; 3) migration from tissues to lymph nodes; 4) amplification of Ag presentation by monocyte attraction; 5) attraction of naive/resting and activated T cells. Irradiation of leukemic i-DC after CD40L stimulation did not affect their differentiating and functional capacity. Our data indicate that acute myeloid leukemia cells can fully differentiate into functionally competent m-DC and lay the ground for testing their efficacy as a tumor vaccine.

  11. Cytotoxic activity of interferon alpha induced dendritic cells as a biomarker of glioblastoma

    NASA Astrophysics Data System (ADS)

    Mishinov, S. V.; Stupak, V. V.; Tyrinova, T. V.; Leplina, O. Yu.; Ostanin, A. A.; Chernykh, E. R.

    2016-08-01

    Dendritic cells (DCs) are the most potent antigen presenting cells that can play direct role in anti-tumor immune response as killer cells. DC tumoricidal activity can be stimulated greatly by type I IFN (IFNα and IFNβ). In the present study, we examined cytostatic and cytotoxic activity of monocyte-derived IFNα-induced DCs generated from patients with brain glioma and evaluated the potential use of these parameters in diagnostics of high-grade gliomas. Herein, we demonstrated that patient DCs do not possess the ability to inhibit the growth of tumor HEp-2 cell line but low-grade and high-grade glioma patients do not differ significantly in DC cytostatic activity. However, glioma patient DCs are characterized by reduced cytotoxic activity against HEp-2 cells. The impairment of DC cytotoxic function is observed mainly in glioblastoma patients. The cytotoxic activity of DCs against HEp-2 cells below 9% is an informative marker for glioblastomas.

  12. Dendritic cells respond to nasopharygeal carcinoma cells through annexin A2-recognizing DC-SIGN.

    PubMed

    Chao, Pin-Zhir; Hsieh, Ming-Shium; Cheng, Chao-Wen; Hsu, Tin-Jui; Lin, Yun-Tien; Lai, Chang-Hao; Liao, Chen-Chung; Chen, Wei-Yu; Leung, Ting-Kai; Lee, Fei-Peng; Lin, Yung-Feng; Chen, Chien-Ho

    2015-01-01

    Dendritic cells (DCs) play an essential role in immunity and are used in cancer immunotherapy. However, these cells can be tuned by tumors with immunosuppressive responses. DC-specific intercellular adhesion molecule 3-Grabbing Nonintegrin (DC-SIGN), a C-type lectin expressed on DCs, recognizes certain carbohydrate structures which can be found on cancer cells. Nasopharyngeal carcinoma (NPC) is an epithelial cell-derived malignant tumor, in which immune response remains unclear. This research is to reveal the molecular link on NPC cells that induces the immunosuppressive responses in DCs. In this article, we report identification of annexin A2 (ANXA2) on NPC cells as a ligand for DC-SIGN on DCs. N-linked mannose-rich glycan on ANXA2 may mediate the interaction. ANXA2 was abundantly expressed in NPC, and knockdown of ANXA2 suppressed NPC xenograft in mice, suggesting a crucial role of ANXA2 in NPC growth. Interaction with NPC cells caused DC-SIGN activation in DCs. Consequently DC maturation and the proinflammatory interleukin (IL)-12 production were inhibited, and the immunosuppressive IL-10 production was promoted. Blockage of either DC-SIGN or ANXA2 eliminated the production of IL-10 from DCs. This report suggests that suppression of ANXA2 at its expression or glycosylation on NPC may improve DC-mediated immunotherapy for the tumor.

  13. Dendritic cells respond to nasopharygeal carcinoma cells through annexin A2-recognizing DC-SIGN

    PubMed Central

    Cheng, Chao-Wen; Hsu, Tin-Jui; Lin, Yun-Tien; Lai, Chang-Hao; Liao, Chen-Chung; Chen, Wei-Yu; Leung, Ting-Kai; Lee, Fei-Peng; Lin, Yung-Feng; Chen, Chien-Ho

    2015-01-01

    Dendritic cells (DCs) play an essential role in immunity and are used in cancer immunotherapy. However, these cells can be tuned by tumors with immunosuppressive responses. DC-specific intercellular adhesion molecule 3-Grabbing Nonintegrin (DC-SIGN), a C-type lectin expressed on DCs, recognizes certain carbohydrate structures which can be found on cancer cells. Nasopharyngeal carcinoma (NPC) is an epithelial cell-derived malignant tumor, in which immune response remains unclear. This research is to reveal the molecular link on NPC cells that induces the immunosuppressive responses in DCs. In this article, we report identification of annexin A2 (ANXA2) on NPC cells as a ligand for DC-SIGN on DCs. N-linked mannose-rich glycan on ANXA2 may mediate the interaction. ANXA2 was abundantly expressed in NPC, and knockdown of ANXA2 suppressed NPC xenograft in mice, suggesting a crucial role of ANXA2 in NPC growth. Interaction with NPC cells caused DC-SIGN activation in DCs. Consequently DC maturation and the proinflammatory interleukin (IL)-12 production were inhibited, and the immunosuppressive IL-10 production was promoted. Blockage of either DC-SIGN or ANXA2 eliminated the production of IL-10 from DCs. This report suggests that suppression of ANXA2 at its expression or glycosylation on NPC may improve DC-mediated immunotherapy for the tumor. PMID:25402728

  14. Betamethasone, but Not Tacrolimus, Suppresses the Development of Th2 Cells Mediated by Langerhans Cell-Like Dendritic Cells.

    PubMed

    Matsui, Katsuhiko; Tamai, Saki; Ikeda, Reiko

    2016-01-01

    It is well known that Langerhans cells (LCs) work as the primary orchestrators in the polarization of the immune milieu towards a T helper type 1 (Th1) or T helper type 2 (Th2) response. In this study, we investigated the effects of tacrolimus and betamethasone, each used as topical applications in atopic dermatitis (AD), on Th2 cell development mediated by LCs. LC-like dendritic cells (LDCs) were generated from mouse bone marrow cells and used as substitutes for LCs. Mice were primed with ovalbumin (OVA) peptide-pulsed LDCs, which had been treated with tacrolimus or betamethasone, via the hind footpad. After 5 d, the cytokine response in the popliteal lymph nodes was investigated by enzyme-linked immunosorbent assay. The expression of cell surface molecules on LDCs was investigated via reverse transcriptase polymerase chain reaction. Administration of OVA peptide-pulsed LDCs, which had been treated with betamethasone, inhibited Th2 cell development, as represented by the down-regulation of interleukin-4 production, and also inhibited Th1 cell development, represented by the down-regulation of interferon-γ production. However, tacrolimus-treated LDCs did not induce such inhibition of the development of Th1 and Th2 cells. The inhibition of Th1 and Th2 cell development was associated with the suppression of CD40 and T-cell immunoglobulin, and mucin domain-containing protein (TIM)-4 expression, respectively, in LDCs. These results suggest that the topical application of betamethasone to skin lesions of patients with AD acts on epidermal LCs, and may inhibit the development of Th2 cells, thus being of benefit for the control of AD.

  15. Desirable cytolytic immune effector cell recruitment by interleukin-15 dendritic cells.

    PubMed

    Van Acker, Heleen H; Beretta, Ottavio; Anguille, Sébastien; Caluwé, Lien De; Papagna, Angela; Van den Bergh, Johan M; Willemen, Yannick; Goossens, Herman; Berneman, Zwi N; Van Tendeloo, Viggo F; Smits, Evelien L; Foti, Maria; Lion, Eva

    2017-01-13

    Success of dendritic cell (DC) therapy in treating malignancies is depending on the DC capacity to attract immune effector cells, considering their reciprocal crosstalk is partially regulated by cell-contact-dependent mechanisms. Although critical for therapeutic efficacy, immune cell recruitment is a largely overlooked aspect regarding optimization of DC vaccination. In this paper we have made a head-to-head comparison of interleukin (IL)-15-cultured DCs and conventional IL-4-cultured DCs with regard to their proficiency in the recruitment of (innate) immune effector cells. Here, we demonstrate that IL-4 DCs are suboptimal in attracting effector lymphocytes, while IL15 DCs provide a favorable chemokine milieu for recruiting CD8+ T cells, natural killer (NK) cells and gamma delta (γδ) T cells. Gene expression analysis revealed that IL-15 DCs exhibit a high expression of chemokines involved in antitumor immune effector cell attraction, while IL-4 DCs display a more immunoregulatory profile characterized by the expression of Th2 and regulatory T cell-attracting chemokines. This is confirmed by functional data indicating an enhanced recruitment of granzyme B+ effector lymphocytes by IL-15 DCs, as compared to IL-4 DCs, and subsequent superior killing of tumor cells by the migrated lymphocytes. Elevated CCL4 gene expression in IL-15 DCs and lowered CCR5 expression on both migrated γδ T cells and NK cells, led to validation of increased CCL4 secretion by IL15 DCs. Moreover, neutralization of CCR5 prior to migration resulted in an important inhibition of γδ T cell and NK cell recruitment by IL-15 DCs. These findings further underscore the strong immunotherapeutic potential of IL-15 DCs.

  16. Histone deacetylase inhibitor valproic acid affects plasmacytoid dendritic cells phenotype and function.

    PubMed

    Arbez, Jessy; Lamarthée, Baptiste; Gaugler, Béatrice; Saas, Philippe

    2014-08-01

    Plasmacytoid dendritic cells (PDC) represent a rare subset of dendritic cells specialized in the production of type I IFN in response to microbial pathogens. Recent data suggested that histone deacetylase (HDAC) inhibitors possess potent immunomodulatory properties both in vitro and in vivo. In this study, we assayed the ability of the HDAC inhibitor, valproic acid (VPA), to influence the phenotype and functional properties of human PDC isolated from peripheral blood. We showed that VPA inhibited the production of IFN-α and the proinflammatory cytokines TNF-α and IL-6 by CpG-activated PDC. VPA also affected the phenotype of PDC by reducing the expression of costimulatory molecules induced by CpG activation. Moreover, VPA reduced the capacity of CpG-stimulated PDC to promote CD4(+) T cell proliferation and IFN-γ production, while enhancing the proportion of IL-10 positive T cells. These results suggest that HDAC inhibition by VPA alters essential human PDC functions, highlighting the need for monitoring immune functions in cancer patients receiving HDAC inhibitors, but also making these drugs attractive therapies in inflammatory, and autoimmune diseases implicating PDC. Copyright © 2014 Elsevier GmbH. All rights reserved.

  17. Redefining the role of dendritic cells in periodontics.

    PubMed

    Venkatesan, Gomathinayagam; Uppoor, Ashita; Naik, Dilip G

    2013-11-01

    A properly functioning adaptive immune system signifies the best features of life. It is diverse beyond compare, tolerant without fail, and capable of behaving appropriately with a myriad of infections and other challenges. Dendritic cells (DCs) are required to explain how this remarkable system is energized and directed. DCs consist of a family of antigen presenting cells, which are bone-marrow-derived cells that patrol all tissues of the body with the possible exceptions of the brain and testes. DCs function to capture bacteria and other pathogens for processing and presentation to T cells in the secondary lymphoid organs. They serve as an essential link between innate and adaptive immune systems and induce both primary and secondary immune responses. As a result of progress worldwide, there is now evidence of a central role for dendritic cells in initiating antigen-specific immunity and tolerance. This review addresses the origins and migration of DCs to target sites, their basic biology and plasticity in playing a key role in periodontal diseases, and finally, selected strategies being pursued to harness its ability to prevent periodontal diseases.

  18. Investigating Evolutionary Conservation of Dendritic Cell Subset Identity and Functions

    PubMed Central

    Vu Manh, Thien-Phong; Bertho, Nicolas; Hosmalin, Anne; Schwartz-Cornil, Isabelle; Dalod, Marc

    2015-01-01

    Dendritic cells (DCs) were initially defined as mononuclear phagocytes with a dendritic morphology and an exquisite efficiency for naïve T-cell activation. DC encompass several subsets initially identified by their expression of specific cell surface molecules and later shown to excel in distinct functions and to develop under the instruction of different transcription factors or cytokines. Very few cell surface molecules are expressed in a specific manner on any immune cell type. Hence, to identify cell types, the sole use of a small number of cell surface markers in classical flow cytometry can be deceiving. Moreover, the markers currently used to define mononuclear phagocyte subsets vary depending on the tissue and animal species studied and even between laboratories. This has led to confusion in the definition of DC subset identity and in their attribution of specific functions. There is a strong need to identify a rigorous and consensus way to define mononuclear phagocyte subsets, with precise guidelines potentially applicable throughout tissues and species. We will discuss the advantages, drawbacks, and complementarities of different methodologies: cell surface phenotyping, ontogeny, functional characterization, and molecular profiling. We will advocate that gene expression profiling is a very rigorous, largely unbiased and accessible method to define the identity of mononuclear phagocyte subsets, which strengthens and refines surface phenotyping. It is uniquely powerful to yield new, experimentally testable, hypotheses on the ontogeny or functions of mononuclear phagocyte subsets, their molecular regulation, and their evolutionary conservation. We propose defining cell populations based on a combination of cell surface phenotyping, expression analysis of hallmark genes, and robust functional assays, in order to reach a consensus and integrate faster the huge but scattered knowledge accumulated by different laboratories on different cell types, organs, and

  19. Suppression of Dendritic Cell Activation by Diabetes Autoantigens Linked to the Cholera Toxin B Subunit

    PubMed Central

    Odumosu, Oludare; Payne, Kimberly; Baez, Mavely; Jutzy, Jessica; Wall, Nathan; Langridge, William

    2010-01-01

    lymphocytes. Taken together, the experimental data suggests Toll like receptor 2 (TLR-2) plays a dominant role in CTB mediated INS inhibition of DC induced type 1 diabetes onset in human Type 1 diabetes autoimmunity. Further, fusion of CTB to the autoantigen was found to be essential for enhancement of immune suppression as co-delivery of CTB and insulin did not significantly inhibit DC costimulatory factor biosynthesis. The experimental data presented supports the hypotheses that adjuvant enhancement of autoantigen mediated suppression of islet beta cell inflammation is dependent on CTB stimulation of dendritic cell TLR2 receptor activation and co-processing of both CTB and the autoantigen in the same dendritic cell. PMID:20956025

  20. Human Plasmacytoid Dendritic Cells Display and Shed B Cell Maturation Antigen upon TLR Engagement.

    PubMed

    Schuh, Elisabeth; Musumeci, Andrea; Thaler, Franziska S; Laurent, Sarah; Ellwart, Joachim W; Hohlfeld, Reinhard; Krug, Anne; Meinl, Edgar

    2017-04-15

    The BAFF-APRIL system is best known for its control of B cell homeostasis, and it is a target of therapeutic intervention in autoimmune diseases and lymphoma. By analyzing the expression of the three receptors of this system, B cell maturation Ag (BCMA), transmembrane activator and CAML interactor, and BAFF receptor, in sorted human immune cell subsets, we found that BCMA was transcribed in plasmacytoid dendritic cells (pDCs) in both blood and lymphoid tissue. Circulating human pDCs contained BCMA protein without displaying it on the cell surface. After engagement of TLR7/8 or TLR9, BCMA was detected also on the cell surface of pDCs. The display of BCMA on the surface of human pDCs was accompanied by release of soluble BCMA (sBCMA); inhibition of γ-secretase enhanced surface expression of BCMA and reduced the release of sBCMA by pDCs. In contrast with human pDCs, murine pDCs did not express BCMA, not even after TLR9 activation. In this study, we extend the spectrum of BCMA expression to human pDCs. sBCMA derived from pDCs might determine local availability of its high-affinity ligand APRIL, because sBCMA has been shown to function as an APRIL-specific decoy. Further, therapeutic trials targeting BCMA in patients with multiple myeloma should consider possible effects on pDCs. Copyright © 2017 by The American Association of Immunologists, Inc.

  1. Antitumor efficacy of radiation plus immunotherapy depends upon dendritic cell activation of effector CDS+ T cells

    PubMed Central

    Dovedi, Simon J.; Lipowska-Bhalla, Grazyna; Beers, Stephen A.; Cheadle, Eleanor J.; Mu, Lijun; Glennie, Martin J.

    2017-01-01

    Tumor cells dying after cytotoxic therapy are a potential source of antigen for T-cell priming. Antigen-presenting cells (APCs) can cross-present MHC I–restricted peptides after the uptake of dying cells. Depending on the nature of the surrounding environmental signals, APCs then orchestrate a spectrum of responses ranging from immune activation to inhibition. Previously, we had demonstrated that combining radiation with either agonistic monoclonal antibody (mAb) to CD40 or a systemically administered TLR7 agonist could enhance CD8 T-cell–dependent protection against syngeneic murine lymphoma models. However, it remains unknown how individual APC populations impact on this antitumor immune response. Using APC depletion models, we now show that dendritic cells (DCs), but not macrophages or B cells, were responsible for the generation of long-term immunological protection following combination therapy with radiotherapy and either agonistic CD40 mAb or systemic TLR7 agonist therapy. Novel immunotherapeutic approaches that augment antigen uptake and presentation by DCs may further enhance the generation of therapeutic antitumor immune responses, leading to improved outcomes after radiotherapy. PMID:27241845

  2. Distinct mechanisms of neonatal tolerance induced by dendritic cells and thymic B cells

    PubMed Central

    1991-01-01

    To assess the role of different types of antigen-presenting cells (APC) in the induction of tolerance, we isolated B cells, macrophages, and dendritic cells from thymus and spleen, and injected these into neonatal BALB/c mice across an Mls-1 antigenic barrier. One week after injection of APC from Mls-1-incompatible mice or from control syngeneic mice, we measured the number of thymic, Mls-1a-reactive, V beta 6+ T cells and the capacity of thymocytes to induce a graft-vs.-host (GVH) reaction in popliteal lymph nodes of Mls-1a mice. Injection of thymic but not spleen B cells deleted thymic, Mls-1a-reactive V beta 6+ T cells and induced tolerance in the GVH assay. The thymic B cells were primarily of the CD5+ type, and fluorescence-activated cell sorter- purified CD5+ thymic B cells were active. Injection of dendritic cells from spleen or thymus also induced tolerance, but the V beta 6 cells were anergized rather than deleted. Macrophages from thymus did not induce tolerance. Dendritic cells and thymic B cells were also effective in inducing tolerance even when injected into Mls-, major histocompatibility complex-incompatible, I-E- mice, but only thymic B cells depleted V beta 6-expressing T cells. Therefore, different types of bone marrow-derived APC have different capacities for inducing tolerance, and the active cell types (dendritic cells and CD5+ thymic B cells) can act by distinct mechanisms. PMID:1900075

  3. Radiation tolerance of boron doped dendritic web silicon solar cells

    NASA Technical Reports Server (NTRS)

    Rohatgi, A.

    1980-01-01

    The potential of dendritic web silicon for giving radiation hard solar cells is compared with the float zone silicon material. Solar cells with n(+)-p-P(+) structure and approximately 15% (AMl) efficiency were subjected to 1 MeV electron irradiation. Radiation tolerance of web cell efficiency was found to be at least as good as that of the float zone silicon cell. A study of the annealing behavior of radiation-induced defects via deep level transient spectroscopy revealed that E sub v + 0.31 eV defect, attributed to boron-oxygen-vacancy complex, is responsible for the reverse annealing of the irradiated cells in the temperature range of 150 to 350 C.

  4. Building on Dendritic Cell Subsets to Improve Cancer Vaccines

    PubMed Central

    Palucka, Karolina; Ueno, Hideki; Zurawski, Gerard; Fay, Joseph; Banchereau, Jacques

    2010-01-01

    SUMMARY T cells can reject established tumors when adoptively transferred into patients, thereby demonstrating that the immune system can be harnessed for cancer therapy. However, such passive immunotherapy is unlikely to maintain memory T cells that might control tumor outgrowth on the long term. Active immunotherapy with vaccines has the potential to induce tumor-specific effector and memory T cells. Vaccines act through dendritic cells (DCs) which induce, regulate and maintain T cell immunity. Clinical trials testing first generation DC vaccines pulsed with tumor antigens provided a proof-of-principle that therapeutic immunity can be elicited. The increased knowledge of the DC system, including the existence of distinct DC subsets is leading to new trials which aim at improved immune and clinical outcomes. PMID:20226644

  5. Polyelectrolyte coating of ferumoxytol nanoparticles for labeling of dendritic cells

    NASA Astrophysics Data System (ADS)

    Celikkin, Nehar; Jakubcová, Lucie; Zenke, Martin; Hoss, Mareike; Wong, John Erik; Hieronymus, Thomas

    2015-04-01

    Engineered magnetic nanoparticles (MNPs) are emerging to be used as cell tracers, drug delivery vehicles, and contrast agents for magnetic resonance imaging (MRI) for enhanced theragnostic applications in biomedicine. In vitro labeling of target cell populations with MNPs and their implantation into animal models and patients shows promising outcomes in monitoring successful cell engraftment, differentiation and migration by using MRI. Dendritic cells (DCs) are professional antigen-presenting cells that initiate adaptive immune responses. Thus, DCs have been the focus of cellular immunotherapy and are increasingly applied in clinical trials. Here, we addressed the coating of different polyelectrolytes (PE) around ferumoxytol particles using the layer-by-layer technique. The impact of PE-coated ferumoxytol particles for labeling of DCs and Flt3+ DC progenitors was then investigated. The results from our studies revealed that PE-coated ferumoxytol particles can be readily employed for labeling of DC and DC progenitors and thus are potentially suitable as contrast agents for MRI tracking.

  6. Immune modulation by dendritic-cell-based cancer vaccines.

    PubMed

    Kumar, Chaitanya; Kohli, Sakshi; Bapsy, Poonamalle Parthasarathy; Vaid, Ashok Kumar; Jain, Minish; Attili, Venkata Sathya Suresh; Sharan, Bandana

    2017-03-01

    The interplay between host immunity and tumour cells has opened the possibility of targeting tumour cells by modulation of the human immune system. Cancer immunotherapy involves the treatment of a tumour by utilizing the recombinant human immune system components to target the pro-tumour microenvironment or by revitalizing the immune system with the ability to kill tumour cells by priming the immune cells with tumour antigens. In this review, current immunotherapy approaches to cancer with special focus on dendritic cell (DC)-based cancer vaccines are discussed. Some of the DC-based vaccines under clinical trials for various cancer types are highlighted. Establishing tumour immunity involves a plethora of immune components and pathways; hence, combining chemotherapy, radiation therapy and various arms of immunotherapy, after analysing the benefits of individual therapeutic agents, might be beneficial to the patient.

  7. Regulation of intestinal immune system by dendritic cells.

    PubMed

    Ko, Hyun-Jeong; Chang, Sun-Young

    2015-02-01

    Innate immune cells survey antigenic materials beneath our body surfaces and provide a front-line response to internal and external danger signals. Dendritic cells (DCs), a subset of innate immune cells, are critical sentinels that perform multiple roles in immune responses, from acting as principal modulators to priming an adaptive immune response through antigen-specific signaling. In the gut, DCs meet exogenous, non-harmful food antigens as well as vast commensal microbes under steady-state conditions. In other instances, they must combat pathogenic microbes to prevent infections. In this review, we focus on the function of intestinal DCs in maintaining intestinal immune homeostasis. Specifically, we describe how intestinal DCs affect IgA production from B cells and influence the generation of unique subsets of T cell.

  8. Lenalidomide increases human dendritic cell maturation in multiple myeloma patients targeting monocyte differentiation and modulating mesenchymal stromal cell inhibitory properties

    PubMed Central

    Costa, Federica; Vescovini, Rosanna; Bolzoni, Marina; Marchica, Valentina; Storti, Paola; Toscani, Denise; Accardi, Fabrizio; Notarfranchi, Laura; Dalla Palma, Benedetta; Manferdini, Cristina; Manni, Sabrina; Todaro, Giannalisa; Lisignoli, Gina; Piazza, Francesco; Aversa, Franco; Giuliani, Nicola

    2017-01-01

    The use of Lenalidomide (LEN), to reverse tumor-mediated immune suppression and amplify multiple myeloma-specific immunity is currently being explored. Particularly, LEN effects on dendritic cells (DCs) are still unclear. In this study, we investigated the potential effect of LEN on DC differentiation and activity. DCs were differentiated either from CD14+ cells obtained from patients with multiple myeloma or from a human monocytic cell line. LEN, at the concentration range reached in vivo, significantly increased the median intensity expression of HLA-DR, CD86 and CD209 by DCs derived from both bone marrow and peripheral myeloma monocytes and enhanced the production of Interleukin-8, C-C motif chemokine ligand (CCL) 2, CCL5 and tumor necrosis factor-α. Consistently, LEN pre-treated DCs showed an increased ability to stimulate autologous CD3+ cell proliferation. LEN effect on dendritic differentiation was associated with the degradation of the Cereblon-related factors Ikaros and Aiolos. Moreover, we showed that LEN also blunted mesenchymal stromal cell inhibitory effect on dendritic differentiation, inhibiting Casein Kinase-1α levels. Finally, in vitro data were confirmed in ex vivo cultures obtained from relapsed myeloma patients treated with LEN, showing a significant increase of DC differentiation from peripheral blood monocytes. In conclusion, LEN increased the expression of mature dendritic markers both directly and indirectly and enhanced DC ability to stimulate T cell proliferation and to release chemokines. This suggests a new possible mechanism by which LEN could exert its anti-myeloma activity. PMID:28881793

  9. Dendritic Cell Regulation by Cannabinoid-Based Drugs

    PubMed Central

    Svensson, Mattias; Chen, Puran; Hammarfjord, Oscar

    2010-01-01

    Cannabinoid pharmacology has made important advances in recent years after the cannabinoid system was discovered. Studies in experimental models and in humans have produced promising results using cannabinoid-based drugs for the treatment of obesity and cancer, as well as neuroinflammatory and chronic inflammatory diseases. Moreover, as we discuss here, additional studies also indicates that these drugs have immunosuppressive and anti-inflammatory properties including modulation of immune cell function. Thus, manipulation of the endocannabinoid system in vivo may provide novel therapeutic strategies against inflammatory disorders. At least two types of cannabinoid receptors, cannabinoid 1 and cannabinoid 2 receptors are expressed on immune cells such as dendritic cells (DC). Dendritic cells are recognized for their critical role in initiating and maintaining immune responses. Therefore, DC are potential targets for cannabinoid-mediated modulation. Here, we review the effects of cannabinoids on DC and provide some perspective concerning the therapeutic potential of cannabinoids for the treatment of human diseases involving aberrant inflammatory processes. PMID:27713374

  10. Resistivity and thickness effects in dendritic web silicon solar cells

    NASA Technical Reports Server (NTRS)

    Meier, D. L.; Hwang, J. M.; Greggi, J.; Campbell, R. B.

    1987-01-01

    The decrease of minority carrier lifetime as resistivity decreases in dendritic-web silicon solar cells is addressed. This variation is shown to be consistent with the presence of defect levels in the bandgap which arise from extended defects in the web material. The extended defects are oxide precipitates (SiOx) and the dislocation cores they decorate. Sensitivity to this background distribution of defect levels increases with doping because the Fermi level moves closer to the majority carrier band edge. For high-resistivity dendritic-web silicon, which has a low concentration of these extended defects, cell efficiencies as high as 16.6 percent (4 sq cm, 40 ohm-cm boron-doped base, AM1.5 global, 100 mW/sq cm, 25 C JPL LAPSS1 measurement) and a corresponding electron lifetime of 38 microsec have been obtained. Thickness effects occur in bifacial cell designs and in designs which use light trapping. In some cases, the dislocation/precipitate defect can be passivated through the full thickness of web cells by hydrogen ion implantation.

  11. Aire-Overexpressing Dendritic Cells Induce Peripheral CD4⁺ T Cell Tolerance.

    PubMed

    Li, Dongbei; Li, Haijun; Fu, Haiying; Niu, Kunwei; Guo, Yantong; Guo, Chuan; Sun, Jitong; Li, Yi; Yang, Wei

    2015-12-29

    Autoimmune regulator (Aire) can promote the ectopic expression of peripheral tissue-restricted antigens (TRAs) in thymic medullary epithelial cells (mTECs), which leads to the deletion of autoreactive T cells and consequently prevents autoimmune diseases. However, the functions of Aire in the periphery, such as in dendritic cells (DCs), remain unclear. This study's aim was to investigate the effect of Aire-overexpressing DCs (Aire cells) on the functions of CD4⁺ T cells and the treatment of type 1 diabetes (T1D). We demonstrated that Aire cells upregulated the mRNA levels of the tolerance-related molecules CD73, Lag3, and FR4 and the apoptosis of CD4⁺ T cells in STZ-T1D mouse-derived splenocytes. Furthermore, following insulin stimulation, Aire cells decreased the number of CD4⁺ IFN-γ⁺ T cells in both STZ-T1D and WT mouse-derived splenocytes and reduced the expression levels of TCR signaling molecules (Ca(2+) and p-ERK) in CD4⁺ T cells. We observed that Aire cells-induced CD4⁺ T cells could delay the development of T1D. In summary, Aire-expressing DCs inhibited TCR signaling pathways and decreased the quantity of CD4⁺IFN-γ⁺ autoreactive T cells. These data suggest a mechanism for Aire in the maintenance of peripheral immune tolerance and provide a potential method to control autoimmunity by targeting Aire.

  12. p15Ink4b is Key in Dendritic Cell Development | Center for Cancer Research

    Cancer.gov

    An important step in the initiation of leukemia is the ability of pre-leukemic and leukemic cells to evade the immune system. Dendritic cells are instrumental in maintaining the body’s immunity, and CCR scientists have shown for the first time that the tumor suppressor protein p15Ink4b regulates the differentiation and maturation of conventional dendritic cells.

  13. Genome wide transcriptome analysis of dendritic cells identifies genes with altered expression in psoriasis.

    PubMed

    Filkor, Kata; Hegedűs, Zoltán; Szász, András; Tubak, Vilmos; Kemény, Lajos; Kondorosi, Éva; Nagy, István

    2013-01-01

    Activation of dendritic cells by different pathogens induces the secretion of proinflammatory mediators resulting in local inflammation. Importantly, innate immunity must be properly controlled, as its continuous activation leads to the development of chronic inflammatory diseases such as psoriasis. Lipopolysaccharide (LPS) or peptidoglycan (PGN) induced tolerance, a phenomenon of transient unresponsiveness of cells to repeated or prolonged stimulation, proved valuable model for the study of chronic inflammation. Thus, the aim of this study was the identification of the transcriptional diversity of primary human immature dendritic cells (iDCs) upon PGN induced tolerance. Using SAGE-Seq approach, a tag-based transcriptome sequencing method, we investigated gene expression changes of primary human iDCs upon stimulation or restimulation with Staphylococcus aureus derived PGN, a widely used TLR2 ligand. Based on the expression pattern of the altered genes, we identified non-tolerizeable and tolerizeable genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (Kegg) analysis showed marked enrichment of immune-, cell cycle- and apoptosis related genes. In parallel to the marked induction of proinflammatory mediators, negative feedback regulators of innate immunity, such as TNFAIP3, TNFAIP8, Tyro3 and Mer are markedly downregulated in tolerant cells. We also demonstrate, that the expression pattern of TNFAIP3 and TNFAIP8 is altered in both lesional, and non-lesional skin of psoriatic patients. Finally, we show that pretreatment of immature dendritic cells with anti-TNF-α inhibits the expression of IL-6 and CCL1 in tolerant iDCs and partially releases the suppression of TNFAIP8. Our findings suggest that after PGN stimulation/restimulation the host cell utilizes different mechanisms in order to maintain critical balance between inflammation and tolerance. Importantly, the transcriptome sequencing of stimulated/restimulated iDCs identified numerous genes with

  14. Nectin-1 spots as a novel adhesion apparatus that tethers mitral cell lateral dendrites in a dendritic meshwork structure of the developing mouse olfactory bulb.

    PubMed

    Inoue, Takahito; Fujiwara, Takeshi; Rikitake, Yoshiyuki; Maruo, Tomohiko; Mandai, Kenji; Kimura, Kazushi; Kayahara, Tetsuro; Wang, Shujie; Itoh, Yu; Sai, Kousyoku; Mori, Masahiro; Mori, Kensaku; Mizoguchi, Akira; Takai, Yoshimi

    2015-08-15

    Mitral cells project lateral dendrites that contact the lateral and primary dendrites of other mitral cells and granule cell dendrites in the external plexiform layer (EPL) of the olfactory bulb. These dendritic structures are critical for odor information processing, but it remains unknown how they are formed. In immunofluorescence microscopy, the immunofluorescence signal for the cell adhesion molecule nectin-1 was concentrated on mitral cell lateral dendrites in the EPL of the developing mouse olfactory bulb. In electron microscopy, the immunogold particles for nectin-1 were symmetrically localized on the plasma membranes at the contacts between mitral cell lateral dendrites, which showed bilateral darkening without dense cytoskeletal undercoats characteristic of puncta adherentia junctions. We named the contacts where the immunogold particles for nectin-1 were symmetrically accumulated "nectin-1 spots." The nectin-1 spots were 0.21 μm in length on average and the distance between the plasma membranes was 20.8 nm on average. In 3D reconstruction of serial sections, clusters of the nectin-1 spots formed a disc-like structure. In the mitral cell lateral dendrites of nectin-1-knockout mice, the immunogold particles for nectin-1 were undetectable and the plasma membrane darkening was electron-microscopically normalized, but the plasma membranes were partly separated from each other. The nectin-1 spots were further identified between mitral cell lateral and primary dendrites and between mitral cell lateral dendrites and granule cell dendritic spine necks. These results indicate that the nectin-1 spots constitute a novel adhesion apparatus that tethers mitral cell dendrites in a dendritic meshwork structure of the developing mouse olfactory bulb.

  15. Aggressive Indeterminate Dendritic Cell Tumor Mimicking Scalp Angiosarcoma.

    PubMed

    Li, Yun; Wang, Ting-Ting; Zhang, Zi-Hui; Wang, Lin

    2017-10-01

    Indeterminate dendritic cell tumor (IDCT) is a proliferation of CD1a+, S100+ and langerin- histiocytes with a generally benign course. Here, we describe a case of a 90-year-old male who developed skin lesions on his scalp mimicking angiosarcoma and lymphadenopathy. He died six months after the onset of skin lesions despite of months' radiotherapy. Pathological examination ruled out scalp angiosarcoma and showed a high Ki-67 index. The appearance of skin lesions and lymphadenopathy led to challenges in diagnosis and the development of a treatment plan.

  16. Generation of mouse and human dendritic cells in vitro.

    PubMed

    Guo, Xueheng; Zhou, Yifan; Wu, Tao; Zhu, Xinyi; Lai, Wenlong; Wu, Li

    2016-05-01

    Dendritic cells (DC) that can orchestrate immune responses and maintain host homeostasis, are indispensable components of the immune system. Although distributed widely in many lymphoid and non-lymphoid tissues, their rarity in number has become a limiting factor for DC related research and therapies. Therefore, methods for efficiently generating large numbers of DC resembling their in vivo counterparts are urgently needed for DC related research and therapies. Herein we summarize the current methods for generating mouse and human DC in vitro and hope that these will facilitate both studies of DC biology and their clinical applications.

  17. Salivary Tick Cystatin OmC2 Targets Lysosomal Cathepsins S and C in Human Dendritic Cells.

    PubMed

    Zavašnik-Bergant, Tina; Vidmar, Robert; Sekirnik, Andreja; Fonović, Marko; Salát, Jiří; Grunclová, Lenka; Kopáček, Petr; Turk, Boris

    2017-01-01

    To ensure successful feeding tick saliva contains a number of inhibitory proteins that interfere with the host immune response and help to create a permissive environment for pathogen transmission. Among the potential targets of the salivary cystatins are two host cysteine proteases, cathepsin S, which is essential for antigen- and invariant chain-processing, and cathepsin C (dipeptidyl peptidase 1, DPP1), which plays a critical role in processing and activation of the granule serine proteases. Here, the effect of salivary cystatin OmC2 from Ornithodoros moubata was studied using differentiated MUTZ-3 cells as a model of immature dendritic cells of the host skin. Following internalization, cystatin OmC2 was initially found to inhibit the activity of several cysteine cathepsins, as indicated by the decreased rates of degradation of fluorogenic peptide substrates. To identify targets, affinity chromatography was used to isolate His-tagged cystatin OmC2 together with the bound proteins from MUTZ-3 cells. Cathepsins S and C were identified in these complexes by mass spectrometry and confirmed by immunoblotting. Furthermore, reduced increase in the surface expression of MHC II and CD86, which are associated with the maturation of dendritic cells, was observed. In contrast, human inhibitor cystatin C, which is normally expressed and secreted by dendritic cells, did not affect the expression of CD86. It is proposed that internalization of salivary cystatin OmC2 by the host dendritic cells targets cathepsins S and C, thereby affecting their maturation.

  18. Differential distribution of NCX1 contributes to spine–dendrite compartmentalization in CA1 pyramidal cells

    PubMed Central

    Lőrincz, Andrea; Rózsa, Balázs; Katona, Gergely; Vizi, E. Sylvester; Tamás, Gábor

    2007-01-01

    Compartmentalization of Ca2+ between dendritic spines and shafts is governed by diffusion barriers and a range of Ca2+ extrusion mechanisms. The distinct contribution of different Ca2+ clearance systems to Ca2+ compartmentalization in dendritic spines versus shafts remains elusive. We applied a combination of ultrastructural and functional imaging methods to assess the subcellular distribution and role of NCX1 in rat CA1 pyramidal cells. Quantitative electron microscopic analysis of preembedding immunogold reactions revealed uniform densities of NCX1 along the shafts of apical and basal dendrites, but densities in dendritic shafts were approximately seven times higher than in dendritic spines. In line with these results, two-photon imaging of synaptically activated Ca2+ transients during NCX blockade showed preferential action localized to the dendritic shafts for NCXs in regulating spine–dendrite coupling. PMID:17215351

  19. Replication of human immunodeficiency virus type 1 in primary dendritic cell cultures.

    PubMed Central

    Langhoff, E; Terwilliger, E F; Bos, H J; Kalland, K H; Poznansky, M C; Bacon, O M; Haseltine, W A

    1991-01-01

    The ability of the human immunodeficiency virus type 1 (HIV-1) to replicate in primary blood dendritic cells was investigated. Dendritic cells compose less than 1% of the circulating leukocytes and are nondividing cells. Highly purified preparations of dendritic cells were obtained using recent advances in cell fractionation. The results of these experiments show that dendritic cells, in contrast to monocytes and T cells, support the active replication of all strains of HIV-1 tested, including T-cell tropic and monocyte/macrophage tropic isolates. The dendritic cell cultures supported much more virus production than did cultures of primary unseparated T cells, CD4+ T cells, and adherent as well as nonadherent monocytes. Replication of HIV-1 in dendritic cells produces no noticeable cytopathic effect nor does it decrease total cell number. The ability of the nonreplicating dendritic cells to support high levels of replication of HIV-1 suggests that this antigen-presenting cell population, which is also capable of supporting clonal T-cell growth, may play a central role in HIV pathogenesis, serving as a source of continued infection of CD4+ T cells and as a reservoir of virus infection. Images PMID:1910172

  20. Dendritic cells are accessory cells for the development of anti- trinitrophenyl cytotoxic T lymphocytes

    PubMed Central

    1980-01-01

    This study establishes that dendritic cells (DC) are the critical accessory cells for the development of anti-trinitrophenol (TNP) cytotoxic T lymphocytes (CTL) in vitro. We developed a model in which nylon wool-nonadherent spleen cells were used both as the responding and stimulating cells, the latter having been TNP-modified and x- irradiated. Thy-1-bearing CTL developed in C57BL/6, B6D2F1, and CBA mice only when small numbers of DC were added. Maximal responses in 5-d cultures were achieved with 0.5-1 DC/100 responding T cells. The DC did not have to be TNP modified directly. Anti-Ia and complement inactivated accessory cells, whereas similar treatment of the responders had no effect. DC exposed to ultraviolet radiation were ineffective, but x-irradiated DC were fully active. Culture media from DC, or from DC-nylon wool-passed spleen T cell cocultures that contained abundant CTL, would not substitute for viable DC. Enriched preparations of macrophages (M phi) were obtained from blood, peritoneal cavity, and spleens of BCG-immune and unprimed mice. M phi added at doses of 0.2-4% were weak or inactive as accessory cells. The level of Ia antigens on test M phi populations was quantitated and visualized by binding of a radioiodinated monoclonal anti-I-Ab,d antibody, clone B-21. M phi that bore substantial amounts of Ia from all organs were weak accessory cells. Addition of M phi to DC-T cell cocultures produced inhibitory effects, usually at a dose of 2% M phi. In contrast, 0.5% Ia-bearing M phi from BCG-immune boosted mice inhibited > 80% of the DC-mediated CTL response. Addition of indomethacin reversed M phi inhibition, and 10(-9) M prostaglandin E2 in turn blocked the indomethacin effect. Indomethacin also restored a low level of accessory cell function in immune-boosted adherent peritoneal cells, but not in preparations of monocytes and spleen M phi. Small numbers of DC were identified in preparations of immune- boosted peritoneal cells and may have accounted

  1. Topical vaccination with functionalized particles targeting dendritic cells.

    PubMed

    Baleeiro, Renato B; Wiesmüller, Karl-Heinz; Reiter, Yoran; Baude, Barbara; Dähne, Lars; Patzelt, Alexa; Lademann, Jürgen; Barbuto, José A; Walden, Peter

    2013-08-01

    Needle-free vaccination, for reasons of safety, economy, and convenience, is a central goal in vaccine development, but it also needs to meet the immunological requirements for efficient induction of prophylactic and therapeutic immune responses. Combining the principles of noninvasive delivery to dendritic cells (DCs) through skin and the immunological principles of cell-mediated immunity, we developed microparticle-based topical vaccines. We show here that the microparticles are efficient carriers for coordinated delivery of the essential vaccine constituents to DCs for cross-presentation of the antigens and stimulation of T-cell responses. When applied to the skin, the microparticles penetrate into hair follicles and target the resident DCs, the immunologically most potent cells and site for induction of efficient immune responses. The microparticle vaccine principle can be applied to different antigen formats such as peptides and proteins, or nucleic acids coding for the antigens.

  2. Innate immune sensing of HIV-1 by dendritic cells.

    PubMed

    Luban, Jeremy

    2012-10-18

    HIV-1-specific antibodies and CD8(+) cytotoxic T cells are detected in most HIV-1-infected people, yet HIV-1 infection is not eradicated. Contributing to the failure to mount a sterilizing immune response may be the inability of antigen-presenting dendritic cells (DCs) to sense HIV-1 during acute infection, and thus the inability to effectively prime naive, HIV-1-specific T cells. Recent findings related to DC-expressed innate immune factors including SAMHD1, TREX1, and TRIM5 provide a molecular basis for understanding why DCs fail to adequately sense invasion by this deadly pathogen and suggest experimental approaches to improve T cell priming to HIV-1 in prophylactic vaccination protocols. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. [Features of functional activity of dendritic cells in tumor growth].

    PubMed

    Sennikov, S V; Obleukhova, I A; Kurilin, V V; Kulikova, E V; Khristin, A A

    2015-01-01

    During recent years much data, accumulated on biology, function and role of dendritic cells (DC) in cancer development, in a new way allow assessing their role in disease process. Identification of features of DC functional state as well as their interaction and influence on the immune cells in tumor growth can be used as a basis for a new approach to cancer therapy enhancing standard therapy efficacy. The review analyzes different mechanisms of escaping of tumor cell from immune surveillance involving DC as one of the main participants of antitumor immune response. Also the prospects of using DC for vaccination are discussed. DC can be promising target for therapeutic strategies and also can be used for formation of antitumor response and cell therapy.

  4. Monocyte cell surface glycosaminoglycans positively modulate IL-4-induced differentiation toward dendritic cells.

    PubMed

    den Dekker, Els; Grefte, Sander; Huijs, Tonnie; ten Dam, Gerdy B; Versteeg, Elly M M; van den Berk, Lieke C J; Bladergroen, Bellinda A; van Kuppevelt, Toin H; Figdor, Carl G; Torensma, Ruurd

    2008-03-15

    IL-4 induces the differentiation of monocytes toward dendritic cells (DCs). The activity of many cytokines is modulated by glycosaminoglycans (GAGs). In this study, we explored the effect of GAGs on the IL-4-induced differentiation of monocytes toward DCs. IL-4 dose-dependently up-regulated the expression of DC-specific ICAM-3-grabbing nonintegrin (DC-SIGN), CD80, CD206, and CD1a. Monocytes stained positive with Abs against heparan sulfate (HS) and chondroitin sulfate (CS) B (CSB; dermatan sulfate), but not with Abs that recognize CSA, CSC, and CSE. Inhibition of sulfation of monocyte/DC cell surface GAGs by sodium chlorate reduced the reactivity of sulfate-recognizing single-chain Abs. This correlated with hampered IL-4-induced DC differentiation as evidenced by lower expression of DC-SIGN and CD1a and a decreased DC-induced PBL proliferation, suggesting that sulfated monocyte cell surface GAGs support IL-4 activity. Furthermore, removal of cell surface chondroitin sulfates by chondroitinase ABC strongly impaired IL-4-induced STAT6 phosphorylation, whereas removal of HS by heparinase III had only a weak inhibitory effect. IL-4 bound to heparin and CSB, but not to HS, CSA, CSC, CSD, and CSE. Binding of IL-4 required iduronic acid, an N-sulfate group (heparin) and specific O sulfates (CSB and heparin). Together, these data demonstrate that monocyte cell surface chondroitin sulfates play an important role in the IL-4-driven differentiation of monocytes into DCs.

  5. Ebola virus infection induces irregular dendritic cell gene expression.

    PubMed

    Melanson, Vanessa R; Kalina, Warren V; Williams, Priscilla

    2015-02-01

    Filoviruses subvert the human immune system in part by infecting and replicating in dendritic cells (DCs). Using gene arrays, a phenotypic profile of filovirus infection in human monocyte-derived DCs was assessed. Monocytes from human donors were cultured in GM-CSF and IL-4 and were infected with Ebola virus Kikwit variant for up to 48 h. Extracted DC RNA was analyzed on SuperArray's Dendritic and Antigen Presenting Cell Oligo GEArray and compared to uninfected controls. Infected DCs exhibited increased expression of cytokine, chemokine, antiviral, and anti-apoptotic genes not seen in uninfected controls. Significant increases of intracellular antiviral and MHC I and II genes were also noted in EBOV-infected DCs. However, infected DCs failed to show any significant difference in co-stimulatory T-cell gene expression from uninfected DCs. Moreover, several chemokine genes were activated, but there was sparse expression of chemokine receptors that enabled activated DCs to home to lymph nodes. Overall, statistically significant expression of several intracellular antiviral genes was noted, which may limit viral load but fails to stop replication. EBOV gene expression profiling is of vital importance in understanding pathogenesis and devising novel therapeutic treatments such as small-molecule inhibitors.

  6. An Essential Role for CD44 Variant Isoforms in Epidermal Langerhans Cell and Blood Dendritic Cell Function

    PubMed Central

    Weiss, Johannes M.; Sleeman, Jonathan; Renkl, Andreas C.; Dittmar, Henning; Termeer, Christian C.; Taxis, Sabine; Howells, Norma; Hofmann, Martin; Köhler, Gabriele; Schöpf, Erwin; Ponta, Helmut; Herrlich, Peter; Simon, Jan C.

    1997-01-01

    Upon antigen contact, epidermal Langerhans cells (LC) and dendritic cells (DC) leave peripheral organs and home to lymph nodes via the afferent lymphatic vessels and then assemble in the paracortical T cell zone and present antigen to T lymphocytes. Since splice variants of CD44 promote metastasis of certain tumors to lymph nodes, we explored the expression of CD44 proteins on migrating LC and DC. We show that upon antigen contact, LC and DC upregulate pan CD44 epitopes and epitopes encoded by variant exons v4, v5, v6, and v9. Antibodies against CD44 epitopes inhibit the emigration of LC from the epidermis, prevent binding of activated LC and DC to the T cell zones of lymph nodes, and severely inhibit their capacity to induce a delayed type hypersensitivity reaction to a skin hapten in vivo. Our results demonstrate that CD44 splice variant expression is obligatory for the migration and function of LC and DC. PMID:9166413

  7. NGF induces neonatal rat sensory neurons to extend dendrites in culture after removal of satellite cells.

    PubMed

    De Koninck, P; Carbonetto, S; Cooper, E

    1993-02-01

    Vertebrate sensory neurons have a pseudo-unipolar morphology; their somata are covered by satellite cells and lack dendrites or synaptic contacts. However, when neonatal rat sensory neurons from the nodose ganglia develop in culture in absence of satellite cells and with NGF, they form synapses among themselves. In this study, we investigated whether neonatal rat nodose neurons express dendrites under the same culture conditions. We show by Lucifer yellow injection that nodose neurons remain typically unipolar when cocultured with their ganglionic satellite cells. However, when these neurons are cultured without satellite cells, virtually all neurons acquire a multipolar morphology. Moreover, when NGF is added to satellite cell-free cultures, several neurons extend dendrites; these processes stain positively for microtubule-associated protein-2. NGF induces a 17-fold increase in dendritic outgrowth after 3 weeks but has little effect on axon number. In addition, we find that the ability of nodose neurons to extend dendrites is developmentally regulated. Furthermore, in a combined morphological and electrophysiological study, using whole-cell voltage-clamp technique with Lucifer yellow in the recording solution, we demonstrate a positive correlation between the extent of dendritic outgrowth and the density of ACh currents, suggesting that these dendrites have ACh receptors. Our results indicate that neonatal rat nodose neurons are capable of extending dendrites and that extrinsic factors can induce or suppress their extension. In addition, the results suggest that these dendrites may act as principal post-synaptic structures for synapse formation that occurs in these cultures.

  8. Stimulation of dendritic cells enhances immune response after photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Mroz, Pawel; Castano, Ana P.; Hamblin, Michael R.

    2009-02-01

    Photodynamic therapy (PDT) involves the administration of photosensitizers followed by illumination of the primary tumor with red light producing reactive oxygen species that cause vascular shutdown and tumor cell necrosis and apoptosis. Anti-tumor immunity is stimulated after PDT due to the acute inflammatory response, priming of the immune system to recognize tumor-associated antigens (TAA). The induction of specific CD8+ Tlymphocyte cells that recognize major histocompatibility complex class I (MHC-I) restricted epitopes of TAAs is a highly desirable goal in cancer therapy. The PDT killed tumor cells may be phagocytosed by dendritic cells (DC) that then migrate to draining lymph nodes and prime naÃve T-cells that recognize TAA epitopes. This process is however, often sub-optimal, in part due to tumor-induced DC dysfunction. Instead of DC that can become mature and activated and have a potent antigen-presenting and immune stimulating phenotype, immature dendritic cells (iDC) are often found in tumors and are part of an immunosuppressive milieu including regulatory T-cells and immunosuppressive cytokines such as TGF-beta and IL10. We here report on the use of a potent DC activating agent, an oligonucleotide (ODN) that contains a non-methylated CpG motif and acts as an agonist of toll like receptor (TLR) 9. TLR activation is a danger signal to notify the immune system of the presence of invading pathogens. CpG-ODN (but not scrambled non-CpG ODN) increased bone-marrow DC activation after exposure to PDT-killed tumor cells, and significantly increased tumor response to PDT and mouse survival after peri-tumoral administration. CpG may be a valuable immunoadjuvant to PDT especially for tumors that produce DC dysfunction.

  9. A multifunctional core-shell nanoparticle for dendritic cell-based cancer immunotherapy

    NASA Astrophysics Data System (ADS)

    Cho, Nam-Hyuk; Cheong, Taek-Chin; Min, Ji Hyun; Wu, Jun Hua; Lee, Sang Jin; Kim, Daehong; Yang, Jae-Seong; Kim, Sanguk; Kim, Young Keun; Seong, Seung-Yong

    2011-10-01

    Dendritic cell-based cancer immunotherapy requires tumour antigens to be delivered efficiently into dendritic cells and their migration to be monitored in vivo. Nanoparticles have been explored as carriers for antigen delivery, but applications have been limited by the toxicity of the solvents used to make nanoparticles, and by the need to use transfection agents to deliver nanoparticles into cells. Here we show that an iron oxide-zinc oxide core-shell nanoparticle can deliver carcinoembryonic antigen into dendritic cells while simultaneously acting as an imaging agent. The nanoparticle-antigen complex is efficiently taken up by dendritic cells within one hour and can be detected in vitro by confocal microscopy and in vivo by magnetic resonance imaging. Mice immunized with dendritic cells containing the nanoparticle-antigen complex showed enhanced tumour antigen specific T-cell responses, delayed tumour growth and better survival than controls.

  10. [In vitro culture of human dendritic cells by using a HydroCell™].

    PubMed

    Aruga, Atsushi; Kogen, Yumi; Sakai, Mayuko; Kotera, Yoshihito; Yamamoto, Masakazu

    2011-11-01

    Cancer Immunotherapy using dendritic cells would be a feasible and useful tool for cancer treatment. However, no immunotherapy has been approved in Japan because of a lack of any randomized clinical studies. We are now trying to develop an automatic dendritic cell culture system in order to perform a large-scale randomized clinical trial. In this study, we investigated the utility of a HydroCell™ for in vitro culture of human dendritic cells induced from peripheral blood monocytes. The dendritic cells grew one and a half times when they were cultured in a HydroCell™. All the cells were floating and harvested easily without any enzymes. The cells expressed the CD80 and CD83 molecules on their surface and still had strong phagocytosis. This results demonstrated that a HydroCell™ was a useful tool for in vitro culture of dendritic cells.

  11. Dendritic Cell Immunotherapy Combined with Cytokine-Induced Killer Cells Effectively Suppresses Established Hepatocellular Carcinomas in Mice.

    PubMed

    Jung, Nam-Chul; Lee, Jun-Ho; Choi, Hyun-Ji; Hwang, Sung-Uk; Song, Jie-Young; Seo, Han Geuk; Choi, Jinjung; Jung, Sang Youn; Han, Sung Gu; Lim, Dae-Seog

    2016-08-01

    The response of hepatocellular carcinoma (HCC) to immunotherapy is often disappointing and new strategies are clearly needed. The aim of the present study was to investigate whether cytokine-induced killer (CIK) cells combined with a dendritic cell vaccination enhanced cytotoxicity against hepatocarcinoma tumor cells in an in vivo animal model. CIKs and DCs were prepared from C3H/HeJ mice by conventional methods, the dendritic cell (DC) pulsed with a MH134 cell lysate, DC or CIK alone were used as controls. Cell phenotypes were analyzed by flow cytometry, cytokine secretion levels were determined by enzyme-linked immunosorbent assay (ELISA), and cytotoxicity was assessed by means of an in vitro lactate dehydrogenase (LDH) release assay. A mouse hepatocarcinoma cell MH134-bearing mice model was established to test the in vivo anti-tumor efficacy of the system. CIK cells combined with DC therapy resulted in significant inhibition of tumor growth compared with the control group, whereas the decrease in tumor growth in mice that had been treated with CIK or DC alone did not reach the level of statistical significance. The combination therapy led to a further increase in the population of cytotoxic T cells (CTLs) in vivo, compared to the CIK or DC alone therapy. In addition, the combination therapy significantly enhanced cytotoxic activity against MH134 cells. Taken together, these results show that a DC + CIK vaccination is more effective than DC or CIK alone therapy for the treatment of hepatocarcinoma cancer.

  12. Tolerogenic and Activatory Plasmacytoid Dendritic Cells in Autoimmunity

    PubMed Central

    Guéry, Leslie; Hugues, Stéphanie

    2013-01-01

    Plasmacytoid dendritic cells (pDCs) are a particular subset of DCs that link innate and adaptive immunity. They are responsible for the substantial production of type 1 interferon (IFN-I) in response to viral RNA or DNA through activation of TLR7 and 9. Furthermore, pDCs present antigens (Ag) and induce naïve T cell differentiation. It has been demonstrated that pDCs can induce immunogenic T cell responses through differentiation of cytotoxic CD8+ T cells and effector CD4+ T cells. Conversely, pDCs exhibit strong tolerogenic functions by inducing CD8+ T cell deletion, CD4+ T cell anergy, and Treg differentiation. However, since IFN-I produced by pDCs efficiently activates and recruits conventional DCs, B cells, T cells, and NK cells, pDCs also indirectly affect the nature and the amplitude of adaptive immune responses. As a consequence, the precise role of Ag-presenting functions of pDCs in adaptive immunity has been difficult to dissect in vivo. Additionally, different experimental procedures led to conflicting results regarding the outcome of T cell responses induced by pDCs. During the development of autoimmunity, pDCs have been shown to play both immunogenic and tolerogenic functions depending on disease, disease progression, and the experimental conditions. In this review, we will discuss the relative contribution of innate and adaptive pDC functions in modulating T cell responses, particularly during the development of autoimmunity. PMID:23508732

  13. 3-bromopyruvate ameliorate autoimmune arthritis by modulating Th17/Treg cell differentiation and suppressing dendritic cell activation

    PubMed Central

    Okano, Takaichi; Saegusa, Jun; Nishimura, Keisuke; Takahashi, Soshi; Sendo, Sho; Ueda, Yo; Morinobu, Akio

    2017-01-01

    Recent studies have shown that cellular metabolism plays an important role in regulating immune cell functions. In immune cell differentiation, both interleukin-17-producing T (Th17) cells and dendritic cells (DCs) exhibit increased glycolysis through the upregulation of glycolytic enzymes, such as hexokinase-2 (HK2). Blocking glycolysis with 2-deoxyglucose was recently shown to inhibit Th17 cell differentiation while promoting regulatory T (Treg) cell generation. However, 2-DG inhibits all isoforms of HK. Thus, it is unclear which isoform has a critical role in Th17 cell differentiation and in rheumatoid arthritis (RA) pathogenesis. Here we demonstrated that 3-bromopyruvate (BrPA), a specific HK2 inhibitor, significantly decreased the arthritis scores and the histological scores in SKG mice, with a significant increase in Treg cells, decrease in Th17 cells, and decrease in activated DCs in the spleen. In vitro, BrPA facilitated the differentiation of Treg cells, suppressed Th17 cells, and inhibited the activation of DCs. These results suggested that BrPA may be a therapeutic target of murine arthritis. Although the role of IL-17 is not clarified in the treatment of RA, targeting cell metabolism to alter the immune cell functions might lead to a new therapeutic strategy for RA. PMID:28186160

  14. 3-bromopyruvate ameliorate autoimmune arthritis by modulating Th17/Treg cell differentiation and suppressing dendritic cell activation.

    PubMed

    Okano, Takaichi; Saegusa, Jun; Nishimura, Keisuke; Takahashi, Soshi; Sendo, Sho; Ueda, Yo; Morinobu, Akio

    2017-02-10

    Recent studies have shown that cellular metabolism plays an important role in regulating immune cell functions. In immune cell differentiation, both interleukin-17-producing T (Th17) cells and dendritic cells (DCs) exhibit increased glycolysis through the upregulation of glycolytic enzymes, such as hexokinase-2 (HK2). Blocking glycolysis with 2-deoxyglucose was recently shown to inhibit Th17 cell differentiation while promoting regulatory T (Treg) cell generation. However, 2-DG inhibits all isoforms of HK. Thus, it is unclear which isoform has a critical role in Th17 cell differentiation and in rheumatoid arthritis (RA) pathogenesis. Here we demonstrated that 3-bromopyruvate (BrPA), a specific HK2 inhibitor, significantly decreased the arthritis scores and the histological scores in SKG mice, with a significant increase in Treg cells, decrease in Th17 cells, and decrease in activated DCs in the spleen. In vitro, BrPA facilitated the differentiation of Treg cells, suppressed Th17 cells, and inhibited the activation of DCs. These results suggested that BrPA may be a therapeutic target of murine arthritis. Although the role of IL-17 is not clarified in the treatment of RA, targeting cell metabolism to alter the immune cell functions might lead to a new therapeutic strategy for RA.

  15. Early immunisation with dendritic cells after allogeneic bone marrow transplantation elicits graft vs tumour reactivity

    PubMed Central

    Gigi, V; Stein, J; Askenasy, N; Yaniv, I; Ash, S

    2013-01-01

    Background: Perspectives of immunotherapy to cancer mediated by bone marrow transplantation (BMT) in conjunction with dendritic cell (DC)-mediated immune sensitisation have yielded modest success so far. In this study, we assessed the impact of DC on graft vs tumour (GvT) reactions triggered by allogeneic BMT. Methods: H2Ka mice implanted with congenic subcutaneous Neuro-2a neuroblastoma (NB, H2Ka) tumours were irradiated and grafted with allogeneic H2Kb bone marrow cells (BMC) followed by immunisation with tumour-inexperienced or tumour-pulsed DC. Results: Immunisation with tumour-pulsed donor DC after allogeneic BMT suppressed tumour growth through induction of T cell-mediated NB cell lysis. Early post-transplant administration of DC was more effective than delayed immunisation, with similar efficacy of DC inoculated into the tumour and intravenously. In addition, tumour inexperienced DC were equally effective as tumour-pulsed DC in suppression of tumour growth. Immunisation of DC did not impact quantitative immune reconstitution, however, it enhanced T-cell maturation as evident from interferon-γ (IFN-γ) secretion, proliferation in response to mitogenic stimulation and tumour cell lysis in vitro. Dendritic cells potentiate GvT reactivity both through activation of T cells and specific sensitisation against tumour antigens. We found that during pulsing with tumour lysate DC also elaborate a factor that selectively inhibits lymphocyte proliferation, which is however abolished by humoral and DC-mediated lymphocyte activation. Conclusion: These data reveal complex involvement of antigen-presenting cells in GvT reactions, suggesting that the limited success in clinical application is not a result of limited efficacy but suboptimal implementation. Although DC can amplify soluble signals from NB lysates that inhibit lymphocyte proliferation, early administration of DC is a dominant factor in suppression of tumour growth. PMID:23511628

  16. CD4+ CD25+ regulatory T cells prevent type 1 diabetes preceded by dendritic cell-dominant invasive insulitis by affecting chemotaxis and local invasiveness of dendritic cells.

    PubMed

    Lee, Mi-Heon; Lee, Wen-Hui; Todorov, Ivan; Liu, Chih-Pin

    2010-08-15

    Development of type 1 diabetes (T1D) is preceded by invasive insulitis. Although CD4(+)CD25(+) regulatory T cells (nTregs) induce tolerance that inhibits insulitis and T1D, the in vivo cellular mechanisms underlying this process remain largely unclear. Using an adoptive transfer model and noninvasive imaging-guided longitudinal analyses, we found nTreg depletion did not affect systemic trafficking and tissue localization of diabetogenic CD4(+) BDC2.5 T (BDC) cells in recipient mice prior to development of T1D. In addition, neither the initial expansion/activation of BDC cells nor the number of CD11c(+) or NK cells in islets and pancreatic lymph nodes were altered. Unexpectedly, our results showed nTreg depletion led to accelerated invasive insulitis dominated by CD11c(+) dendritic cells (ISL-DCs), not BDC cells, which stayed in the islet periphery. Compared with control mice, the phenotype of ISL-DCs and their ability to stimulate BDC cells did not change during invasive insulitis development. However, ISL-DCs from nTreg-deficient recipient mice showed increased in vitro migration toward CCL19 and CCL21. These results demonstrated invasive insulitis dominated by DCs, not CD4(+) T cells, preceded T1D onset in the absence of nTregs, and suggested a novel in vivo function of nTregs in T1D prevention by regulating local invasiveness of DCs into islets, at least partly, through