The morphology and classification of α ganglion cells in the rat retinae: a fractal analysis study.
Jelinek, Herbert F; Ristanović, Dušan; Milošević, Nebojša T
2011-09-30
Rat retinal ganglion cells have been proposed to consist of a varying number of subtypes. Dendritic morphology is an essential aspect of classification and a necessary step toward understanding structure-function relationships of retinal ganglion cells. This study aimed at using a heuristic classification procedure in combination with the box-counting analysis to classify the alpha ganglion cells in the rat retinae based on the dendritic branching pattern and to investigate morphological changes with retinal eccentricity. The cells could be divided into two groups: cells with simple dendritic pattern (box dimension lower than 1.390) and cells with complex dendritic pattern (box dimension higher than 1.390) according to their dendritic branching pattern complexity. Both were further divided into two subtypes due to the stratification within the inner plexiform layer. In the present study we have shown that the alpha rat RCGs can be classified further by their dendritic branching complexity and thus extend those of previous reports that fractal analysis can be successfully used in neuronal classification, particularly that the fractal dimension represents a robust and sensitive tool for the classification of retinal ganglion cells. A hypothesis of possible functional significance of our classification scheme is also discussed. Copyright © 2011 Elsevier B.V. All rights reserved.
Segregated Excitatory–Inhibitory Recurrent Subnetworks in Layer 5 of the Rat Frontal Cortex
Morishima, Mieko; Kobayashi, Kenta; Kato, Shigeki; Kobayashi, Kazuto; Kawaguchi, Yasuo
2017-01-01
Abstract A prominent feature of neocortical pyramidal cells (PCs) is their numerous projections to diverse brain areas. In layer 5 (L5) of the rat frontal cortex, there are 2 major subtypes of PCs that differ in their long-range axonal projections, corticopontine (CPn) cells and crossed corticostriatal (CCS) cells. The outputs of these L5 PCs can be regulated by feedback inhibition from neighboring cortical GABAergic cells. Two major subtypes of GABAergic cells are parvalbumin (PV)-positive and somatostatin (SOM)-positive cells. PV cells have a fast-spiking (FS) firing pattern, while SOM cells have a low threshold spike (LTS) and regular spiking. In this study, we found that the 2 PC subtypes in L5 selectively make recurrent connections with LTS cells. The connection patterns correlated with the morphological and physiological diversity of LTS cells. LTS cells with high input resistance (Ri) exhibited more compact dendrites and more rebound spikes than LTS cells with low Ri, which had vertically elongated dendrites. LTS subgroups differently inhibited the PC subtypes, although FS cells made nonselective connections with both projection subtypes. These results demonstrate a novel recurrent network of inhibitory and projection-specific excitatory neurons within the neocortex. PMID:29045559
Pros and Cons of Antigen-Presenting Cell Targeted Tumor Vaccines.
Goyvaerts, Cleo; Breckpot, Karine
2015-01-01
In therapeutic antitumor vaccination, dendritic cells play the leading role since they decide if, how, when, and where a potent antitumor immune response will take place. Since the disentanglement of the complexity and merit of different antigen-presenting cell subtypes, antitumor immunotherapeutic research started to investigate the potential benefit of targeting these subtypes in situ. This review will discuss which antigen-presenting cell subtypes are at play and how they have been targeted and finally question the true meaning of targeting antitumor-based vaccines.
Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes and progenitors
Villani, Alexandra-Chloé; Satija, Rahul; Reynolds, Gary; Sarkizova, Siranush; Shekhar, Karthik; Fletcher, James; Griesbeck, Morgane; Butler, Andrew; Zheng, Shiwei; Lazo, Suzan; Jardine, Laura; Dixon, David; Stephenson, Emily; Nilsson, Emil; Grundberg, Ida; McDonald, David; Filby, Andrew; Li, Weibo; De Jager, Philip L.; Rozenblatt-Rosen, Orit; Lane, Andrew A.; Haniffa, Muzlifah; Regev, Aviv; Hacohen, Nir
2017-01-01
Dendritic cells (DCs) and monocytes play a central role in pathogen sensing, phagocytosis and antigen presentation and consist of multiple specialized subtypes. However, their identities and interrelationships are not fully understood. Using unbiased single-cell RNA sequencing (RNA-seq) of ~2400 cells, we identified six human DCs and four monocyte subtypes in human blood. Our study reveals: a new DC subset that shares properties with plasmacytoid DCs (pDCs) but potently activates T cells, thus redefining pDCs; a new subdivision within the CD1C+ subset of DCs; the relationship between blastic plasmacytoid DC neoplasia cells and healthy DCs; and circulating progenitor of conventional DCs (cDCs). Our revised taxonomy will enable more accurate functional and developmental analyses as well as immune monitoring in health and disease. PMID:28428369
Bipolar Cell-Photoreceptor Connectivity in the Zebrafish (Danio rerio) Retina
Li, Yong N.; Tsujimura, Taro; Kawamura, Shoji; Dowling, John E.
2013-01-01
Bipolar cells convey luminance, spatial and color information from photoreceptors to amacrine and ganglion cells. We studied the photoreceptor connectivity of 321 bipolar cells in the adult zebrafish retina. 1,1'-Dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI) was inserted into whole-mounted transgenic zebrafish retinas to label bipolar cells. The photoreceptors that connect to these DiI-labeled cells were identified by transgenic fluorescence or their positions relative to the fluorescent cones, as cones are arranged in a highly-ordered mosaic: rows of alternating blue- (B) and ultraviolet-sensitive (UV) single cones alternate with rows of red- (R) and green-sensitive (G) double cones. Rod terminals intersperse among cone terminals. As many as 18 connectivity subtypes were observed, 9 of which – G, GBUV, RG, RGB, RGBUV, RGRod, RGBRod, RGBUVRod and RRod bipolar cells – accounted for 96% of the population. Based on their axon terminal stratification, these bipolar cells could be further sub-divided into ON, OFF, and ON-OFF cells. The dendritic spread size, soma depth and size, and photoreceptor connections of the 308 bipolar cells within the 9 common connectivity subtypes were determined, and their dendritic tree morphologies and axonal stratification patterns compared. We found that bipolar cells with the same axonal stratification patterns could have heterogeneous photoreceptor connectivity whereas bipolar cells with the same dendritic tree morphology usually had the same photoreceptor connectivity, although their axons might stratify on different levels. PMID:22907678
Blastic plasmacytoid dendritic cell neoplasm: report of two pediatric cases.
Dharmani, Preeti Ashok; Mittal, Neha Manish; Subramanian, P G; Galani, Komal; Badrinath, Yajamanam; Amare, Pratibha; Gujral, Sumeet
2015-01-01
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare subtype of acute leukemia that typically follows a highly aggressive clinical course in adults, whereas experience in children with this disease is very limited. We report cases of two children in whom bone marrow showed infiltration by large atypical monocytoid 'blast-like' cells which on immunophenotyping expressed CD4, CD56, HLA-DR and CD33 while were negative for CD34 other T-cell, B-cell and myeloid markers. The differential diagnoses considered were AML, T/NK-cell leukemia and acute undifferentiated leukemia. Additional markers CD303/BDCA-2 and CD123 which are recently validated plasmacytoid dendritic cell markers were done which helped us clinch the diagnosis of this rare neoplasm. An accurate diagnosis of BPDCN is essential in order to provide prompt treatment. Due to its rarity and only recent recognition as a distinct clinicopathological entity, no standardized therapeutic approach has been established for BPDCN.
Classifying GABAergic interneurons with semi-supervised projected model-based clustering.
Mihaljević, Bojan; Benavides-Piccione, Ruth; Guerra, Luis; DeFelipe, Javier; Larrañaga, Pedro; Bielza, Concha
2015-09-01
A recently introduced pragmatic scheme promises to be a useful catalog of interneuron names. We sought to automatically classify digitally reconstructed interneuronal morphologies according to this scheme. Simultaneously, we sought to discover possible subtypes of these types that might emerge during automatic classification (clustering). We also investigated which morphometric properties were most relevant for this classification. A set of 118 digitally reconstructed interneuronal morphologies classified into the common basket (CB), horse-tail (HT), large basket (LB), and Martinotti (MA) interneuron types by 42 of the world's leading neuroscientists, quantified by five simple morphometric properties of the axon and four of the dendrites. We labeled each neuron with the type most commonly assigned to it by the experts. We then removed this class information for each type separately, and applied semi-supervised clustering to those cells (keeping the others' cluster membership fixed), to assess separation from other types and look for the formation of new groups (subtypes). We performed this same experiment unlabeling the cells of two types at a time, and of half the cells of a single type at a time. The clustering model is a finite mixture of Gaussians which we adapted for the estimation of local (per-cluster) feature relevance. We performed the described experiments on three different subsets of the data, formed according to how many experts agreed on type membership: at least 18 experts (the full data set), at least 21 (73 neurons), and at least 26 (47 neurons). Interneurons with more reliable type labels were classified more accurately. We classified HT cells with 100% accuracy, MA cells with 73% accuracy, and CB and LB cells with 56% and 58% accuracy, respectively. We identified three subtypes of the MA type, one subtype of CB and LB types each, and no subtypes of HT (it was a single, homogeneous type). We got maximum (adapted) Silhouette width and ARI values of 1, 0.83, 0.79, and 0.42, when unlabeling the HT, CB, LB, and MA types, respectively, confirming the quality of the formed cluster solutions. The subtypes identified when unlabeling a single type also emerged when unlabeling two types at a time, confirming their validity. Axonal morphometric properties were more relevant that dendritic ones, with the axonal polar histogram length in the [π, 2π) angle interval being particularly useful. The applied semi-supervised clustering method can accurately discriminate among CB, HT, LB, and MA interneuron types while discovering potential subtypes, and is therefore useful for neuronal classification. The discovery of potential subtypes suggests that some of these types are more heterogeneous that previously thought. Finally, axonal variables seem to be more relevant than dendritic ones for distinguishing among the CB, HT, LB, and MA interneuron types. Copyright © 2015 Elsevier B.V. All rights reserved.
Effect of sex steroid hormones on replication and transmission of major HIV subtypes.
Ragupathy, Viswanath; Devadas, Krishnakumar; Tang, Shixing; Wood, Owen; Lee, Sherwin; Dastyer, Armeta; Wang, Xue; Dayton, Andrew; Hewlett, Indira
2013-11-01
The HIV epidemic is expanding worldwide with an increasing number of distinct viral subtypes and circulating recombinant forms (CRFs). Out of 34 million adults living with HIV and AIDS, women account for one half of all HIV-1 infections worldwide. These gender differences in HIV pathogenesis may be attributed to sex hormones. Little is known about the role of sex hormone effects on HIV Subtypes pathogenesis. The aim of our study was to determine sex hormone effects on replication and transmissibility of HIV subtypes. Peripheral blood mononuclear cells (PBMC) and monocyte derived dendritic cells (MDDC) from male and female donors were infected with HIV subtypes A-D and CRF02_AG, CRF01_AE, MN (lab adapted), Group-O, Group-N and HIV-2 at a concentration of 5ng/ml of p24 or p27. Virus production was evaluated by measuring p24 and p27 levels in culture supernatants. Similar experiments were carried out in the presence of physiological concentrations of sex steroid hormones. R5/X4 expressions measured by flow cytometry and transmissibility was evaluated by transfer of HIV from primary dendritic cells (DC) to autologous donor PBMC. Our results from primary PBMC and MDDC from male and female donors indicate in the absence of physiological concentrations of hormone treatment virus production was observed in three clusters; high replicating virus (subtype B and C), moderate replicative virus (subtype A, D, CRF01_AE, Group_N) and least replicative virus (strain MN). However, dose of sex steroid hormone treatment influenced HIV replication and transmission kinetics in PBMC, DCs and cell lines. Such effects were inconsistent between donors and HIV subtypes. Sex hormone effects on HIV entry receptors (CCR5/CXCR4) did not correlate with virus production. Subtypes B and C showed higher replication in PBMC from males and females and were transmitted more efficiently through DC to male and female PBMC compared with other HIV-1 subtypes, HIV-1 Group O and HIV-2. These findings are consistent with increased worldwide prevalence of subtype B and C compared to other subtypes. Sex steroid hormones had variable effect on replication or transmission of different subtypes. These findings suggest that subtype, gender and sex hormones may play a crucial role in the replication and transmission of HIV. Published by Elsevier Ltd.
Jacobs, S; Cheng, C; Doering, L C
2016-06-02
Astrocytes are now recognized as key players in the neurobiology of neurodevelopmental disorders such as Fragile X syndrome. However, the nature of Fragile X astrocyte-mediated control of dendrite development in subtypes of hippocampal neurons is not yet known. We used a co-culture procedure in which wildtype primary hippocampal neurons were cultured with astrocytes from either a wildtype or Fragile X mouse, for either 7, 14 or 21 days. The neurons were processed for immunocytochemistry with the dendritic marker MAP2, classified by morphological criteria into one of five neuronal subtypes, and subjected to Sholl analyses. Both linear and semi-log methods of Sholl analyses were applied to the neurons in order to provide an in depth analysis of the dendritic arborizations. We found that Fragile X astrocytes affect the development of dendritic arborization of all subtypes of wildtype hippocampal neurons. Furthermore, we show that hippocampal neurons with spiny stellate neuron morphology exhibit the most pervasive developmental delays, with significant dendritic arbor alterations persisting at 21 days in culture. The results further dictate the critical role astrocytes play in governing neuronal morphology including altered dendrite development in Fragile X. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Tabarkiewicz, Jacek; Postępski, Jacek; Olesińska, Edyta; Roliński, Jacek; Tuszkiewicz-Misztal, Ewa
2011-01-01
Childhood chronic arthritis of unknown etiology is known collectively as juvenile idiopathic arthritis (JIA) and consists of heterogeneous subtypes with unique clinical patterns of disease. JIA is the commonest rheumatic disease in children and may still result in significant disability, with joint deformity, growth impairment, and persistence of active arthritis into adulthood. Basic research is rather focused on rheumatoid arthritis, and this lead to small number of publications considering JIA. In this study we examine, by flow cytometry, the expression of dendritic cells (DCs) in the peripheral blood and synovial fluid of children with active JIA in a group of 220 patients. We reveal a significant decrease in the percentage of immature DCs in the blood of patients compared to control children. Surprisingly, we found higher percentages of mature circulating dendritic cells. Both populations of DCs, immature and mature, were accumulated in patients' synovial fluid. We also confirmed the presence of CD206+/CD209+ in JIA samples, which can represent a population of macrophages with dendritic cells morphology. Our results support the thesis that dendritic cells are crucial in the induction and maintenance of autoimmune response and local inflammation during juvenile idiopathic arthritis.
"Subpial Fan Cell" - A Class of Calretinin Neuron in Layer 1 of Adult Monkey Prefrontal Cortex.
Gabbott, Paul L A
2016-01-01
Layer 1 of the cortex contains populations of neurochemically distinct neurons and afferent fibers which markedly affect neural activity in the apical dendritic tufts of pyramidal cells. Understanding the causal mechanisms requires knowledge of the cellular architecture and synaptic organization of layer 1. This study has identified eight morphological classes of calretinin immunopositive (CRet+) neurons (including Cajal-Retzius cells) in layer 1 of the prefrontal cortex (PFC) in adult monkey (Macaca fasicularis), with a distinct class - termed "subpial fan (SPF) cell" - described in detail. SPF cells were rare horizontal unipolar CRet+ cells located directly beneath the pia with a single thick primary dendrite that branched into a characteristic fan-like dendritic tree tangential to the pial surface. Dendrites had spines, filamentous processes and thorny branchlets. SPF cells lay millimeters apart with intralaminar axons that ramified widely in upper layer 1. Such cells were GABA immunonegative (-) and occurred in areas beyond PFC. Interspersed amidst SPF cells displaying normal structural integrity were degenerating CRet+ neurons (including SPF cells) and clumps of lipofuscin-rich cellular debris. The number of degenerating SPF cells increased during adulthood. Ultrastructural analyses indicated SPF cell somata received asymmetric (A - presumed excitatory) and symmetric (S - presumed inhibitory) synaptic contacts. Proximal dendritic shafts received mainly S-type and distal shafts mostly A-type input. All dendritic thorns and most dendritic spines received both synapse types. The tangential areal density of SPF cell axonal varicosities varied radially from parent somata - with dense clusters in more distal zones. All boutons formed A-type contacts with CRet- structures. The main post-synaptic targets were dendritic shafts (67%; mostly spine-bearing) and dendritic spines (24%). SPF-SPF cell innervation was not observed. Morphometry of SPF cells indicated a unique class of CRet+/GABA- neuron in adult monkey PFC - possibly a subtype of persisting Cajal-Retzius cell. The distribution and connectivity of SPF cells suggest they act as integrative hubs in upper layer 1 during postnatal maturation. The main synaptic output of SPF cells likely provides a transminicolumnar excitatory influence across swathes of apical dendritic tufts - thus affecting information processing in discrete patches of layer 1 in adult monkey PFC.
2012-01-01
Background Dendritic cells (DCs) play a major role as regulators of inflammatory events associated with thyroid pathology. The immunoregulatory function of DCs depends strongly on their subtype, as well as maturation and activation status. Numerous hormonal factors modulate the immune properties of DCs, however, little is known about effects exerted by the hypothalamus-pituitary-thyroid-axis. Recently, we have shown a direct regulatory influence of thyroid hormones (TH) on human DCs function. The aim of the present study was to analyze the effect of systemically administered thyrotropin (TSH) on human blood DCs ex vivo. Methods Blood samples for the cytometric analysis of peripheral blood plasmacytoid and myeloid DCs subtypes were collected from patients subjected to total thyroidectomy because of differentiated thyroid carcinoma at 2 time points: (i) directly before the commencement of TSH administration and (ii) 5 days after first TSH injection. The whole blood quantitative and phenotypic analysis of plasmacytoid and myeloid DCs subtypes was performed by flow cytometry. Results Administration of TSH did not influence the percentage of plasmacytoid DCs in peripheral blood of study participants. Also the percentage of the two main myeloid DCs subpopulations – CD1c/BDCA1+ DCs and CD141/BDCA3+ DCs did not change significantly. TSH administration had no effect on the surface expression of CD86 – one of the major costimulatory molecules – neither in the whole peripheral blood mononuclear cell (PBMC) fraction nor in particular DCs subtypes. Conclusions In the present study, we demonstrated no influence of systemic TSH administration on human peripheral blood DCs subtypes. These results are in accordance with our previous work suggesting the direct effect of TH on human DCs ex vivo. PMID:23199104
Stasiołek, Mariusz; Adamczewski, Zbigniew; Puła, Bartosz; Krawczyk-Rusiecka, Kinga; Zygmunt, Arkadiusz; Borowiecka, Magdalena; Dzięgiel, Piotr; Lewiński, Andrzej
2012-11-30
Dendritic cells (DCs) play a major role as regulators of inflammatory events associated with thyroid pathology. The immunoregulatory function of DCs depends strongly on their subtype, as well as maturation and activation status. Numerous hormonal factors modulate the immune properties of DCs, however, little is known about effects exerted by the hypothalamus-pituitary-thyroid-axis. Recently, we have shown a direct regulatory influence of thyroid hormones (TH) on human DCs function. The aim of the present study was to analyze the effect of systemically administered thyrotropin (TSH) on human blood DCs ex vivo. Blood samples for the cytometric analysis of peripheral blood plasmacytoid and myeloid DCs subtypes were collected from patients subjected to total thyroidectomy because of differentiated thyroid carcinoma at 2 time points: (i) directly before the commencement of TSH administration and (ii) 5 days after first TSH injection. The whole blood quantitative and phenotypic analysis of plasmacytoid and myeloid DCs subtypes was performed by flow cytometry. Administration of TSH did not influence the percentage of plasmacytoid DCs in peripheral blood of study participants. Also the percentage of the two main myeloid DCs subpopulations - CD1c/BDCA1+ DCs and CD141/BDCA3+ DCs did not change significantly. TSH administration had no effect on the surface expression of CD86 - one of the major costimulatory molecules - neither in the whole peripheral blood mononuclear cell (PBMC) fraction nor in particular DCs subtypes. In the present study, we demonstrated no influence of systemic TSH administration on human peripheral blood DCs subtypes. These results are in accordance with our previous work suggesting the direct effect of TH on human DCs ex vivo.
Regulation of Dendritic Cell Function in Inflammation.
Said, André; Weindl, Günther
2015-01-01
Dendritic cells (DC) are professional antigen presenting cells and link the innate and adaptive immune system. During steady state immune surveillance in skin, DC act as sentinels against commensals and invading pathogens. Under pathological skin conditions, inflammatory cytokines, secreted by surrounding keratinocytes, dermal fibroblasts, and immune cells, influence the activation and maturation of different DC populations including Langerhans cells (LC) and dermal DC. In this review we address critical differences in human DC subtypes during inflammatory settings compared to steady state. We also highlight the functional characteristics of human DC subsets in inflammatory skin environments and skin diseases including psoriasis and atopic dermatitis. Understanding the complex immunoregulatory role of distinct DC subsets in inflamed human skin will be a key element in developing novel strategies in anti-inflammatory therapy.
“Subpial Fan Cell” — A Class of Calretinin Neuron in Layer 1 of Adult Monkey Prefrontal Cortex
Gabbott, Paul L. A.
2016-01-01
Layer 1 of the cortex contains populations of neurochemically distinct neurons and afferent fibers which markedly affect neural activity in the apical dendritic tufts of pyramidal cells. Understanding the causal mechanisms requires knowledge of the cellular architecture and synaptic organization of layer 1. This study has identified eight morphological classes of calretinin immunopositive (CRet+) neurons (including Cajal-Retzius cells) in layer 1 of the prefrontal cortex (PFC) in adult monkey (Macaca fasicularis), with a distinct class — termed “subpial fan (SPF) cell” — described in detail. SPF cells were rare horizontal unipolar CRet+ cells located directly beneath the pia with a single thick primary dendrite that branched into a characteristic fan-like dendritic tree tangential to the pial surface. Dendrites had spines, filamentous processes and thorny branchlets. SPF cells lay millimeters apart with intralaminar axons that ramified widely in upper layer 1. Such cells were GABA immunonegative (-) and occurred in areas beyond PFC. Interspersed amidst SPF cells displaying normal structural integrity were degenerating CRet+ neurons (including SPF cells) and clumps of lipofuscin-rich cellular debris. The number of degenerating SPF cells increased during adulthood. Ultrastructural analyses indicated SPF cell somata received asymmetric (A — presumed excitatory) and symmetric (S — presumed inhibitory) synaptic contacts. Proximal dendritic shafts received mainly S-type and distal shafts mostly A-type input. All dendritic thorns and most dendritic spines received both synapse types. The tangential areal density of SPF cell axonal varicosities varied radially from parent somata — with dense clusters in more distal zones. All boutons formed A-type contacts with CRet- structures. The main post-synaptic targets were dendritic shafts (67%; mostly spine-bearing) and dendritic spines (24%). SPF-SPF cell innervation was not observed. Morphometry of SPF cells indicated a unique class of CRet+/GABA- neuron in adult monkey PFC — possibly a subtype of persisting Cajal-Retzius cell. The distribution and connectivity of SPF cells suggest they act as integrative hubs in upper layer 1 during postnatal maturation. The main synaptic output of SPF cells likely provides a transminicolumnar excitatory influence across swathes of apical dendritic tufts — thus affecting information processing in discrete patches of layer 1 in adult monkey PFC. PMID:27147978
Mechanisms underlying subunit independence in pyramidal neuron dendrites
Behabadi, Bardia F.; Mel, Bartlett W.
2014-01-01
Pyramidal neuron (PN) dendrites compartmentalize voltage signals and can generate local spikes, which has led to the proposal that their dendrites act as independent computational subunits within a multilayered processing scheme. However, when a PN is strongly activated, back-propagating action potentials (bAPs) sweeping outward from the soma synchronize dendritic membrane potentials many times per second. How PN dendrites maintain the independence of their voltage-dependent computations, despite these repeated voltage resets, remains unknown. Using a detailed compartmental model of a layer 5 PN, and an improved method for quantifying subunit independence that incorporates a more accurate model of dendritic integration, we first established that the output of each dendrite can be almost perfectly predicted by the intensity and spatial configuration of its own synaptic inputs, and is nearly invariant to the rate of bAP-mediated “cross-talk” from other dendrites over a 100-fold range. Then, through an analysis of conductance, voltage, and current waveforms within the model cell, we identify three biophysical mechanisms that together help make independent dendritic computation possible in a firing neuron, suggesting that a major subtype of neocortical neuron has been optimized for layered, compartmentalized processing under in-vivo–like spiking conditions. PMID:24357611
Bagley, Joshua A.; Yan, Zhiqiang; Zhang, Wei; Wildonger, Jill
2014-01-01
A complex array of genetic factors regulates neuronal dendrite morphology. Epigenetic regulation of gene expression represents a plausible mechanism to control pathways responsible for specific dendritic arbor shapes. By studying the Drosophila dendritic arborization (da) neurons, we discovered a role of the double-bromodomain and extraterminal (BET) family proteins in regulating dendrite arbor complexity. A loss-of-function mutation in the single Drosophila BET protein encoded by female sterile 1 homeotic [fs(1)h] causes loss of fine, terminal dendritic branches. Moreover, fs(1)h is necessary for the induction of branching caused by a previously identified transcription factor, Cut (Ct), which regulates subtype-specific dendrite morphology. Finally, disrupting fs(1)h function impairs the mechanosensory response of class III da sensory neurons without compromising the expression of the ion channel NompC, which mediates the mechanosensitive response. Thus, our results identify a novel role for BET family proteins in regulating dendrite morphology and a possible separation of developmental pathways specifying neural cell morphology and ion channel expression. Since the BET proteins are known to bind acetylated histone tails, these results also suggest a role of epigenetic histone modifications and the “histone code,” in regulating dendrite morphology. PMID:25184680
Dendritic cells in transplantation and immune-based therapies.
Young, James W; Merad, Miriam; Hart, Derek N J
2007-01-01
Dendritic cells (DCs) are specialized, bone marrow-derived leukocytes critical to the onset of both innate and adaptive immunity. The divisions of labor among distinct human DC subtypes achieve the most effective balance between steady-state tolerance and the induction of innate and adaptive immunity against pathogens, tumors, and other insults. Maintenance of tolerance in the steady state is an active process involving resting or semimature DCs. Breakdowns in this homeostasis can result in autoimmunity. Perturbation of the steady state should first lead to the onset of innate immunity mediated by rapid responders in the form of plasmacytoid and monocyte-derived DC stimulators and natural killer (NK) and NK T-cell responders. These innate effectors then provide additional inflammatory cytokines, including interferon-gamma, which support the activation and maturation of resident and circulating populations of DCs. These are critical to the onset and expansion of adaptive immunity, including Th1, Th2, and cytotoxic T-lymphocyte responses. Rodent models are now revealing important data about distinct DC precursors, homeostasis of tissue-resident DCs, and DC turnover in response to inflammation and pathological conditions like graft-versus-host disease. The use of defined DC subtypes to stimulate both innate and adaptive immunity, either in combination or in a prime-boost vaccine sequence, may prove most useful clinically by harnessing both effector cell compartments.
Wu, An-hua; Xiao, Jing; Anker, Lars; Hall, Walter A; Gregerson, Dale S; Cavenee, Webster K; Chen, Wei; Low, Walter C
2006-01-01
The type III variant of the epidermal growth factor receptor (EGFRvIII) mutation is present in 20-25% of patients with glioblastoma multiforme (GBM). EGFRvIII is not expressed in normal tissue and is therefore a suitable candidate antigen for dendritic cell (DC) based immunotherapy of GBM. To identify the antigenic epitope(s) that may serve as targets for EGFRvIII-specific cytotoxic T lymphocytes (CTLs), the peptide sequence of EGFRvIII was screened with two software programs to predict candidate epitopes restricted by the major histocompatibility complex class I subtype HLA-A0201, which is the predominant subtype in most ethnic groups. Three predicted peptides were constructed and loaded to mature human DCs generated from peripheral blood monocytes. Autologous CD8+ T cells were stimulated in vitro with the EGFRvIII peptide-pulsed DCs. One of the three peptides was found to induce EGFRvIII-specific CTLs as demonstrated by IFN-gamma production and cytotoxicity against HLA-A0201+ EGFRvIII transfected U87 glioma cells. These results suggest that vaccination with EGFRvIII peptide-pulsed DCs or adoptive transfer of in vitro elicited EGFRvIII-specific CTLs by EGFRvIII peptide-pulsed DCs are potential approaches to the treatment of glioma patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye Ling; Lin Jianguo; Sun Yuliang
2006-08-01
Recombinant baculoviruses (rBV) expressing Ebola virus VP40 (rBV-VP40) or GP (rBV-GP) proteins were generated. Infection of Sf9 insect cells by rBV-VP40 led to assembly and budding of filamentous particles from the cell surface as shown by electron microscopy. Ebola virus-like particles (VLPs) were produced by coinfection of Sf9 cells with rBV-VP40 and rBV-GP, and incorporation of Ebola GP into VLPs was demonstrated by SDS-PAGE and Western blot analysis. Recombinant baculovirus infection of insect cells yielded high levels of VLPs, which were shown to stimulate cytokine secretion from human dendritic cells similar to VLPs produced in mammalian cells. The immunogenicity ofmore » Ebola VLPs produced in insect cells was evaluated by immunization of mice. Analysis of antibody responses showed that most of the GP-specific antibodies were of the IgG2a subtype, while no significant level of IgG1 subtype antibodies specific for GP was induced, indicating the induction of a Th1-biased immune response. Furthermore, sera from Ebola VLP immunized mice were able to block infection by Ebola GP pseudotyped HIV virus in a single round infection assay, indicating that a neutralizing antibody against the Ebola GP protein was induced. These results show that production of Ebola VLPs in insect cells using recombinant baculoviruses represents a promising approach for vaccine development against Ebola virus infection.« less
Prostaglandin E2 modulates dendritic cell function via EP2 and EP4 receptor subtypes.
Harizi, Hedi; Grosset, Christophe; Gualde, Norbert
2003-06-01
We have reported previously that PGE(2) inhibits dendritic cells (DC) functions. Because E prostanoid receptor (EPR) subtypes involved in this action are unknown, expression and functions of these receptors were examined in DC. Western blot and flow cytometry analyses showed that all EPRs were coexpressed in DC. In a dose-dependent manner, lipopolysaccharide (LPS) enhanced EP(2)R/EP(4)R but not EP(1)R/EP(3)R expressions. NS-398, a cyclooxygenase (COX)-2-selective inhibitor, suppressed LPS-enhanced EP(2)R/EP(4)R expression, suggesting that COX-2-issued prostaglandin E(2) (PGE(2)) modulates DC function through stimulation of specific EPR subtypes. Using selective agonists, we found that butaprost, an EP(2)R agonist, and PGE(1) alcohol, an EP(2)R and EP(2)R/EP(4)R agonist, inhibited major histocompatibility complex class II expression and enhanced interleukin-10 production from DC. However, no effect was observed with sulprostone and 17-phenyl-omega-trinor-PGE(2), selective agonists for EP(1)R and EP(1)R/EP(3)R, respectively. Treatment of DC with dibutyryl cyclic adenosine monophosphate (cAMP), an analog of cAMP, mimics PGE(2)-induced, inhibitory effects. Taken together, our data demonstrate that EP(2)R/EP(4)R are efficient for mediating PGE(2)-induced modulation of DC functions.
Morphology of retinal ganglion cells in the ferret (Mustela putorius furo).
Isayama, Tomoki; O'Brien, Brendan J; Ugalde, Irma; Muller, Jay F; Frenz, Aaron; Aurora, Vikas; Tsiaras, William; Berson, David M
2009-12-01
The ferret is the premiere mammalian model of retinal and visual system development, but the spectrum and properties of its retinal ganglion cells are less well understood than in another member of the Carnivora, the domestic cat. Here, we have extensively surveyed the dendritic architecture of ferret ganglion cells and report that the classification scheme previously developed for cat ganglion cells can be applied with few modifications to the ferret retina. We confirm the presence of alpha and beta cells in ferret retina, which are very similar to those in cat retina. Both cell types exhibited an increase in dendritic field size with distance from the area centralis (eccentricity) and with distance from the visual streak. Both alpha and beta cell populations existed as two subtypes whose dendrites stratified mainly in sublamina a or b of the inner plexiform layer. Six additional morphological types of ganglion cells were identified: four monostratified cell types (delta, epsilon, zeta, and eta) and two bistratified types (theta and iota). These types closely resembled their counterparts in the cat in terms of form, relative field size, and stratification. Our data indicate that, among carnivore species, the retinal ganglion cells resemble one another closely and that the ferret is a useful model for studies of the ontogenetic differentiation of ganglion cell types.
Bagley, Joshua A; Yan, Zhiqiang; Zhang, Wei; Wildonger, Jill; Jan, Lily Yeh; Jan, Yuh Nung
2014-09-01
A complex array of genetic factors regulates neuronal dendrite morphology. Epigenetic regulation of gene expression represents a plausible mechanism to control pathways responsible for specific dendritic arbor shapes. By studying the Drosophila dendritic arborization (da) neurons, we discovered a role of the double-bromodomain and extraterminal (BET) family proteins in regulating dendrite arbor complexity. A loss-of-function mutation in the single Drosophila BET protein encoded by female sterile 1 homeotic [fs(1)h] causes loss of fine, terminal dendritic branches. Moreover, fs(1)h is necessary for the induction of branching caused by a previously identified transcription factor, Cut (Ct), which regulates subtype-specific dendrite morphology. Finally, disrupting fs(1)h function impairs the mechanosensory response of class III da sensory neurons without compromising the expression of the ion channel NompC, which mediates the mechanosensitive response. Thus, our results identify a novel role for BET family proteins in regulating dendrite morphology and a possible separation of developmental pathways specifying neural cell morphology and ion channel expression. Since the BET proteins are known to bind acetylated histone tails, these results also suggest a role of epigenetic histone modifications and the "histone code," in regulating dendrite morphology. © 2014 Bagley et al.; Published by Cold Spring Harbor Laboratory Press.
Bourne, Jennifer N; Schoppa, Nathan E
2017-02-15
Recent studies have suggested that the two excitatory cell classes of the mammalian olfactory bulb, the mitral cells (MCs) and tufted cells (TCs), differ markedly in physiological responses. For example, TCs are more sensitive and broadly tuned to odors than MCs and also are much more sensitive to stimulation of olfactory sensory neurons (OSNs) in bulb slices. To examine the morphological bases for these differences, we performed quantitative ultrastructural analyses of glomeruli in rat olfactory bulb under conditions in which specific cells were labeled with biocytin and 3,3'-diaminobenzidine. Comparisons were made between MCs and external TCs (eTCs), which are a TC subtype in the glomerular layer with large, direct OSN signals and capable of mediating feedforward excitation of MCs. Three-dimensional analysis of labeled apical dendrites under an electron microscope revealed that MCs and eTCs in fact have similar densities of several chemical synapse types, including OSN inputs. OSN synapses also were distributed similarly, favoring a distal localization on both cells. Analysis of unlabeled putative MC dendrites further revealed gap junctions distributed uniformly along the apical dendrite and, on average, proximally with respect to OSN synapses. Our results suggest that the greater sensitivity of eTCs vs. MCs is due not to OSN synapse number or absolute location but rather to a conductance in the MC dendrite that is well positioned to attenuate excitatory signals passing to the cell soma. Functionally, such a mechanism could allow rapid and dynamic control of OSN-driven action potential firing in MCs through changes in gap junction properties. J. Comp. Neurol. 525:592-609, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Schaheen, Basil; Downs, Emily A; Serbulea, Vlad; Almenara, Camila C P; Spinosa, Michael; Su, Gang; Zhao, Yunge; Srikakulapu, Prasad; Butts, Cherié; McNamara, Coleen A; Leitinger, Norbert; Upchurch, Gilbert R; Meher, Akshaya K; Ailawadi, Gorav
2016-11-01
B-cell depletion therapy is widely used for treatment of cancers and autoimmune diseases. B cells are abundant in abdominal aortic aneurysms (AAA); however, it is unknown whether B-cell depletion therapy affects AAA growth. Using experimental models of murine AAA, we aim to examine the effect of B-cell depletion on AAA formation. Wild-type or apolipoprotein E-knockout mice were treated with mouse monoclonal anti-CD20 or control antibodies and subjected to an elastase perfusion or angiotensin II infusion model to induce AAA, respectively. Anti-CD20 antibody treatment significantly depleted B1 and B2 cells, and strikingly suppressed AAA growth in both models. B-cell depletion resulted in lower circulating IgM levels, but did not affect the levels of IgG or cytokine/chemokine levels. Although the total number of leukocyte remained unchanged in elastase-perfused aortas after anti-CD20 antibody treatment, the number of B-cell subtypes was significantly lower. Interestingly, plasmacytoid dendritic cells expressing the immunomodulatory enzyme indole 2,3-dioxygenase were detected in the aortas of B-cell-depleted mice. In accordance with an increase in indole 2,3-dioxygenase+ plasmacytoid dendritic cells, the number of regulatory T cells was higher, whereas the expression of proinflammatory genes was lower in aortas of B-cell-depleted mice. In a coculture model, the presence of B cells significantly lowered the number of indole 2,3-dioxygenase+ plasmacytoid dendritic cells without affecting total plasmacytoid dendritic cell number. The present results demonstrate that B-cell depletion protects mice from experimental AAA formation and promotes emergence of an immunosuppressive environment in aorta. © 2016 American Heart Association, Inc.
Martín-Martín, Lourdes; López, Antonio; Vidriales, Belén; Caballero, María Dolores; Rodrigues, António Silva; Ferreira, Silvia Inês; Lima, Margarida; Almeida, Sérgio; Valverde, Berta; Martínez, Pilar; Ferrer, Ana; Candeias, Jorge; Ruíz-Cabello, Francisco; Buadesa, Josefa Marco; Sempere, Amparo; Villamor, Neus
2015-01-01
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare subtype of leukemia/lymphoma, whose diagnosis can be difficult to achieve due to its clinical and biological heterogeneity, as well as its overlapping features with other hematologic malignancies. In this study we investigated whether the association between the maturational stage of tumor cells and the clinico-biological and prognostic features of the disease, based on the analysis of 46 BPDCN cases classified into three maturation-associated subgroups on immunophenotypic grounds. Our results show that blasts from cases with an immature plasmacytoid dendritic cell (pDC) phenotype exhibit an uncommon CD56− phenotype, coexisting with CD34+ non-pDC tumor cells, typically in the absence of extramedullary (e.g. skin) disease at presentation. Conversely, patients with a more mature blast cell phenotype more frequently displayed skin/extramedullary involvement and spread into secondary lymphoid tissues. Despite the dismal outcome, acute lymphoblastic leukemia-type therapy (with central nervous system prophylaxis) and/or allogeneic stem cell transplantation appeared to be the only effective therapies. Overall, our findings indicate that the maturational profile of pDC blasts in BPDCN is highly heterogeneous and translates into a wide clinical spectrum -from acute leukemia to mature lymphoma-like behavior-, which may also lead to variable diagnosis and treatment. PMID:26056082
Strings on a Violin: Location Dependence of Frequency Tuning in Active Dendrites.
Das, Anindita; Rathour, Rahul K; Narayanan, Rishikesh
2017-01-01
Strings on a violin are tuned to generate distinct sound frequencies in a manner that is firmly dependent on finger location along the fingerboard. Sound frequencies emerging from different violins could be very different based on their architecture, the nature of strings and their tuning. Analogously, active neuronal dendrites, dendrites endowed with active channel conductances, are tuned to distinct input frequencies in a manner that is dependent on the dendritic location of the synaptic inputs. Further, disparate channel expression profiles and differences in morphological characteristics could result in dendrites on different neurons of the same subtype tuned to distinct frequency ranges. Alternately, similar location-dependence along dendritic structures could be achieved through disparate combinations of channel profiles and morphological characteristics, leading to degeneracy in active dendritic spectral tuning. Akin to strings on a violin being tuned to different frequencies than those on a viola or a cello, different neuronal subtypes exhibit distinct channel profiles and disparate morphological characteristics endowing each neuronal subtype with unique location-dependent frequency selectivity. Finally, similar to the tunability of musical instruments to elicit distinct location-dependent sounds, neuronal frequency selectivity and its location-dependence are tunable through activity-dependent plasticity of ion channels and morphology. In this morceau, we explore the origins of neuronal frequency selectivity, and survey the literature on the mechanisms behind the emergence of location-dependence in distinct forms of frequency tuning. As a coda to this composition, we present some future directions for this exciting convergence of biophysical mechanisms that endow a neuron with frequency multiplexing capabilities.
Vremec, David
2016-01-01
Dendritic cells (DCs) form a complex network of cells that initiate and orchestrate immune responses against a vast array of pathogenic challenges. Developmentally and functionally distinct DC subtypes differentially regulate T-cell function. Importantly it is the ability of DC to capture and process antigen, whether from pathogens, vaccines, or self-components, and present it to naive T cells that is the key to their ability to initiate an immune response. Our typical isolation procedure for DC from murine spleen was designed to efficiently extract all DC subtypes, without bias and without alteration to their in vivo phenotype, and involves a short collagenase digestion of the tissue, followed by selection for cells of light density and finally negative selection for DC. The isolation procedure can accommodate DC numbers that have been artificially increased via administration of fms-like tyrosine kinase 3 ligand (Flt3L), either directly through a series of subcutaneous injections or by seeding with an Flt3L secreting murine melanoma. Flt3L may also be added to bone marrow cultures to produce large numbers of in vitro equivalents of the spleen DC subsets. Total DC, or their subsets, may be further purified using immunofluorescent labeling and flow cytometric cell sorting. Cell sorting may be completely bypassed by separating DC subsets using a combination of fluorescent antibody labeling and anti-fluorochrome magnetic beads. Our procedure enables efficient separation of the distinct DC subsets, even in cases where mouse numbers or flow cytometric cell sorting time is limiting.
Ross, John R.; Porter, Brenda E.; Buckley, Peter T.; Eberwine, James H.; Robinson, Michael B.
2011-01-01
The neuronal Na+-dependent glutamate transporter, excitatory amino acid carrier 1 (EAAC1, also called EAAT3), has been implicated in the control of synaptic spillover of glutamate, synaptic plasticity, and the import of cysteine for neuronal synthesis of glutathione. EAAC1 protein is observed in both perisynaptic regions of the synapse and in neuronal cell bodies. Although amino acid residues in the carboxyl terminal tail have been implicated in the dendritic targeting of EAAC1 protein, it is not known if mRNA for EAAC1 may also be targeted to dendrites. Sorting of mRNA to specific cellular domains provides a mechanism by which signals can rapidly increase translation in a local environment; this form of regulated translation has been linked to diverse biological phenomena ranging from establishment of polarity during embryogenesis to synapse development and synaptic plasticity. In the present study, EAAC1 mRNA sequences were amplified from dendritic samples that were mechanically harvested from low-density hippocampal neuronal cultures. In parallel analyses, mRNA for histone deacetylase 2 (HDAC-2) and glial fibrillary acidic protein (GFAP) was not detected, suggesting that these samples are not contaminated with cell body or glial mRNAs. EAAC1 mRNA also co-localized with Map2a (a marker of dendrites) but not Tau1 (a marker of axons) in hippocampal neuronal cultures by in situ hybridization. In control rats, EAAC1 mRNA was observed in soma and proximal dendrites of hippocampal pyramidal neurons. Following pilocarpine- or kainate-induced seizures, EAAC1 mRNA was present in CA1 pyramidal cell dendrites up to 200 μm from the soma. These studies provide the first evidence that EAAC1 mRNA localizes to dendrites and suggest that dendritic targeting of EAAC1 mRNA is increased by seizure activity and may be regulated by neuronal activity/depolarization. PMID:21185901
Complexity of gap junctions between horizontal cells of the carp retina.
Greb, H; Hermann, S; Dirks, P; Ommen, G; Kretschmer, V; Schultz, K; Zoidl, G; Weiler, R; Janssen-Bienhold, U
2017-01-06
In the vertebrate retina, horizontal cells (HCs) reveal homologous coupling by gap junctions (gj), which are thought to consist of different connexins (Cx). However, recent studies in mouse, rabbit and zebrafish retina indicate that individual HCs express more than one connexin. To provide further insights into the composition of gj connecting HCs and to determine whether HCs express multiple connexins, we examined the molecular identity and distribution of gj between HCs of the carp retina. We have cloned four carp connexins designated Cx49.5, Cx55.5, Cx52.6 and Cx53.8 with a close relationship to connexins previously reported in HCs of mouse, rabbit and zebrafish, respectively. Using in situ hybridization, Cx49.5 expression was detected in different subpopulations of retinal neurons including HCs, whereas the Cx52.6 transcript was localized exclusively in HCs. Using specific antibodies, Cx55.5 and Cx53.8 were detected on dendrites of all four HC subtypes and axon terminals. Immunoelectron microscopy confirmed the presence of Cx55.5 and Cx53.8 in gap junctions between these processes and Cx55.5 was additionally observed in HC dendrites invaginating cone pedicles, suggesting its participation in the modulation of photoreceptor output in the carp retina. Furthermore, using single-cell RT-PCR, all four connexins were detected in different subtypes of HCs, suggesting overlapping expression patterns. Thus, the composition of gj mediating homologous coupling between subtypes of carp HCs appears to be more complex than expected. Moreover, BLAST searches of the preliminary carp genome, using novel sequences as query, suggest that most of the analyzed connexin genes are duplicated in carp. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Kim, Jaehwan; Oh, Chil-Hwan; Jeon, Jiehyun; Baek, Yoosang; Ahn, Jaewoo; Kim, Dong Joo; Lee, Hyun-Soo; da Rosa, Joel Correa; Suárez-Fariñas, Mayte; Lowes, Michelle A.; Krueger, James G.
2015-01-01
Psoriasis is present in all racial groups, but in varying frequencies and severity. Considering that small plaque psoriasis is specific to the Asian population and severe psoriasis is more predominant in the Western population, we defined Asian small and intermediate plaque psoriasis as psoriasis subtypes, and compared their molecular signatures with classic subtype of Western large plaque psoriasis. Two different characteristics of psoriatic spreading—vertical growth and radial expansion—were contrasted between subtypes, and genomic data were correlated to histologic and clinical measurements. Compared to Western large plaque psoriasis, Asian small plaque psoriasis revealed limited psoriasis spreading, but IL-17A and IL-17-regulated pro-inflammatory cytokines were highly expressed. Paradoxically, IL-17A and IL-17-regulated pro-inflammatory cytokines were lower in Western large plaque psoriasis, while T cells and dendritic cells in total psoriatic skin area were exponentially increased. Negative immune regulators, such as CD69 and FAS, were decreased in both Western large plaque psoriasis and psoriasis with accompanying arthritis or obesity, and their expression was correlated with psoriasis severity index. Based on the disease subtype comparisons, we propose that dysregulation of T cell expansion enabled by downregulation of immune negative regulators is the main mechanism for development of large plaque psoriasis subtypes. PMID:26763436
Medullary neurons in the core white matter of the olfactory bulb: a new cell type.
Paredes, Raúl G; Larriva-Sahd, Jorge
2010-02-01
The structure of a new cell type, termed the medullary neuron (MN) because of its intimate association with the rostral migratory stream (RMS) in the bulbar core, is described in the adult rat olfactory bulb. The MN is a triangular or polygonal interneuron whose soma lies between the cellular clusters of the RMS or, less frequently, among the neuron progenitors therein. MNs are easily distinguished from adjacent cells by their large size and differentiated structure. Two MN subtypes have been categorized by the Golgi technique: spiny pyramidal neurons and aspiny neurons. Both MN subtypes bear a large dendritic field impinged upon by axons in the core bulbar white matter. A set of collaterals from the adjacent axons appears to terminate on the MN dendrites. The MN axon passes in close apposition to adjacent neuron progenitors in the RMS. MNs are immunoreactive with antisera raised against gamma-aminobutyric acid and glutamate decarboxylase 65/67. Electron-microscopic observations confirm that MNs correspond to fully differentiated, mature neurons. MNs seem to be highly conserved among macrosmatic species as they occur in Nissl-stained brain sections from mouse, guinea pig, and hedgehog. Although the functional role of MNs remains to be determined, we suggest that MNs represent a cellular interface between endogenous olfactory activity and the differentiation of new neurons generated during adulthood.
Murine CD103+ dendritic cells protect against steatosis progression towards steatohepatitis.
Heier, Eva-Carina; Meier, Anna; Julich-Haertel, Henrike; Djudjaj, Sonja; Rau, Monica; Tschernig, Thomas; Geier, Andreas; Boor, Peter; Lammert, Frank; Lukacs-Kornek, Veronika
2017-06-01
Non-alcoholic fatty liver (NAFL) is the hepatic consequence of metabolic syndrome and can progress to non-alcoholic steatohepatitis (NASH). The identification of molecular and cellular factors that determine the progression of NASH and lead to irreversible hepatocellular damage are crucial. Dendritic cells (DCs) represent a heterogeneous cell population among which CD103 + DCs play a significant role in immunity and tolerance. We aimed to clarify the role of this DC subset in the pathomechanism of NASH. Steatosis progression towards steatohepatitis was analysed using multicolor FACS analyses, cytokine and qPCR array in high sucrose diet (HSD) and methionine and choline deficient diet (MCD) fed wild-type and basic leucine zipper transcription factor, ATF-Like-3 (Batf3) deficient animals, which lack CD103 + DCs (classical type-1 DC, cDC1s). Metabolic challenge of Batf3 -/- animals resulted in the progression of steatosis towards steatohepatitis, manifesting by an increased influx of inflammatory cells into the liver and elevated inflammatory cytokine production of myeloid cells upon innate stimuli. However, the lack of cDC1s did not affect cellular apoptosis and fibrosis progression but altered genes involved in lipid metabolism. The adoptive transfer of CD103 + cDC1s to Batf3 deficient animals reversed these observed changes and more importantly could attenuate cellular damage and inflammation in established murine steatohepatitis. Here, we have identified the murine CD103 + cDC1s as a protective DC subtype that influences the pro-anti-inflammatory balance and protects the liver from metabolic damage. As guardians of liver integrity, they play a key role in the inflammatory process during the development of steatohepatitis in mice. Non-alcoholic fatty liver (NAFL) is the hepatic consequence of metabolic syndrome and can lead to non-alcoholic steatohepatitis (NASH). The current study demonstrated that a specific murine dendritic cell subtype possesses a potent regulatory role to influence the inflammatory milieu of the liver in this process. Copyright © 2017 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Topographical distribution and morphology of NADPH-diaphorase-stained neurons in the human claustrum
Hinova-Palova, Dimka V.; Edelstein, Lawrence; Landzhov, Boycho; Minkov, Minko; Malinova, Lina; Hristov, Stanislav; Denaro, Frank J.; Alexandrov, Alexandar; Kiriakova, Teodora; Brainova, Ilina; Paloff, Adrian; Ovtscharoff, Wladimir
2014-01-01
We studied the topographical distribution and morphological characteristics of NADPH-diaphorase-positive neurons and fibers in the human claustrum. These neurons were seen to be heterogeneously distributed throughout the claustrum. Taking into account the size and shape of stained perikarya as well as dendritic and axonal characteristics, Nicotinamide adenine dinucleotide phosphate-diaphorase (NADPHd)-positive neurons were categorized by diameter into three types: large, medium and small. Large neurons ranged from 25 to 35 μm in diameter and typically displayed elliptical or multipolar cell bodies. Medium neurons ranged from 20 to 25 μm in diameter and displayed multipolar, bipolar and irregular cell bodies. Small neurons ranged from 14 to 20 μm in diameter and most often displayed oval or elliptical cell bodies. Based on dendritic characteristics, these neurons were divided into spiny and aspiny subtypes. Our findings reveal two populations of NADPHd-positive neurons in the human claustrum—one comprised of large and medium cells consistent with a projection neuron phenotype, the other represented by small cells resembling the interneuron phenotype as defined by previous Golgi impregnation studies. PMID:24904317
Klein, Rebecca C; Yakel, Jerrel L
2006-01-01
Multiple subtypes of nicotinic acetylcholine receptors (nAChRs) are expressed in the CNS. The amygdala complex, the limbic structure important for emotional memory formation, receives cholinergic innervation from the basal forebrain. Although cholinergic drugs have been shown to regulate passive avoidance performance via the amygdala, the neuronal subtypes and circuits involved in this regulation are unknown. In the present study, whole-cell patch-clamp electrophysiological techniques were used to identify and characterize the presence of functional somato-dendritic nAChRs within the basolateral complex of the amygdala. Pressure-application of acetylcholine (ACh; 2 mm) evoked inward current responses in a subset of neurons from both the lateral (49%) and basolateral nuclei (72%). All responses displayed rapid activation kinetics, and were blocked by the α7-selective antagonist methyllycaconitine. In addition, the α7-selective agonist choline induced inward current responses that were similar to ACh-evoked responses. Spiking patterns were consistent with pyramidal class I neurons (the major neuronal type in the basolateral complex); however, there was no correlation between firing frequency and the response to ACh. The local photolysis of caged carbachol demonstrated that the functional expression of nAChRs is located both on the soma and dendrites. This is the first report demonstrating the presence of functional nAChR-mediated current responses from rat amygdala slices, where they may be playing a significant role in fear and aversively motivated memory. PMID:16931547
Cavarelli, Mariangela; Foglieni, Chiara; Rescigno, Maria; Scarlatti, Gabriella
2013-01-01
The gastrointestinal tract is a principal route of entry and site of persistence of human immunodeficiency virus type 1 (HIV-1). The intestinal mucosa, being rich of cells that are the main target of the virus, represents a primary site of viral replication and CD4+ T-cell depletion. Here, we show both in vitro and ex vivo that HIV-1 of R5 but not X4 phenotype is capable of selectively triggering dendritic cells (DCs) to migrate within 30 min between intestinal epithelial cells to sample virions and transfer infection to target cells. The engagement of the chemokine receptor 5 on DCs and the viral envelope, regardless of the genetic subtype, drive DC migration. Viruses penetrating through transient opening of the tight junctions likely create a paracellular gradient to attract DCs. The formation of junctions with epithelial cells may initiate a haptotactic process of DCs and at the same time favour cell-to-cell viral transmission. Our findings indicate that HIV-1 translocation across the intestinal mucosa occurs through the selective engagement of DCs by R5 viruses, and may guide the design of new prevention strategies. PMID:23606583
Cavarelli, Mariangela; Foglieni, Chiara; Rescigno, Maria; Scarlatti, Gabriella
2013-05-01
The gastrointestinal tract is a principal route of entry and site of persistence of human immunodeficiency virus type 1 (HIV-1). The intestinal mucosa, being rich of cells that are the main target of the virus, represents a primary site of viral replication and CD4(+) T-cell depletion. Here, we show both in vitro and ex vivo that HIV-1 of R5 but not X4 phenotype is capable of selectively triggering dendritic cells (DCs) to migrate within 30 min between intestinal epithelial cells to sample virions and transfer infection to target cells. The engagement of the chemokine receptor 5 on DCs and the viral envelope, regardless of the genetic subtype, drive DC migration. Viruses penetrating through transient opening of the tight junctions likely create a paracellular gradient to attract DCs. The formation of junctions with epithelial cells may initiate a haptotactic process of DCs and at the same time favour cell-to-cell viral transmission. Our findings indicate that HIV-1 translocation across the intestinal mucosa occurs through the selective engagement of DCs by R5 viruses, and may guide the design of new prevention strategies. Copyright © 2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.
Cortical Interneuron Subtypes Vary in Their Axonal Action Potential Properties
Casale, Amanda E.; Foust, Amanda J.; Bal, Thierry
2015-01-01
The role of interneurons in cortical microcircuits is strongly influenced by their passive and active electrical properties. Although different types of interneurons exhibit unique electrophysiological properties recorded at the soma, it is not yet clear whether these differences are also manifested in other neuronal compartments. To address this question, we have used voltage-sensitive dye to image the propagation of action potentials into the fine collaterals of axons and dendrites in two of the largest cortical interneuron subtypes in the mouse: fast-spiking interneurons, which are typically basket or chandelier neurons; and somatostatin containing interneurons, which are typically regular spiking Martinotti cells. We found that fast-spiking and somatostatin-expressing interneurons differed in their electrophysiological characteristics along their entire dendrosomatoaxonal extent. The action potentials generated in the somata and axons, including axon collaterals, of somatostatin-expressing interneurons are significantly broader than those generated in the same compartments of fast-spiking inhibitory interneurons. In addition, action potentials back-propagated into the dendrites of somatostatin-expressing interneurons much more readily than fast-spiking interneurons. Pharmacological investigations suggested that axonal action potential repolarization in both cell types depends critically upon Kv1 channels, whereas the axonal and somatic action potentials of somatostatin-expressing interneurons also depend on BK Ca2+-activated K+ channels. These results indicate that the two broad classes of interneurons studied here have expressly different subcellular physiological properties, allowing them to perform unique computational roles in cortical circuit operations. SIGNIFICANCE STATEMENT Neurons in the cerebral cortex are of two major types: excitatory and inhibitory. The proper balance of excitation and inhibition in the brain is critical for its operation. Neurons contain three main compartments: dendritic, somatic, and axonal. How the neurons receive information, process it, and pass on new information depends upon how these three compartments operate. While it has long been assumed that axons are simply for conducting information from the cell body to the synapses, here we demonstrate that the axons of different types of interneurons, the inhibitory cells, possess differing electrophysiological properties. This result implies that differing types of interneurons perform different tasks in the cortex, not only through their anatomical connections, but also through how their axons operate. PMID:26609152
Stasiolek, Mariusz; Dedecjus, Marek; Adamczewski, Zbigniew; Sliwka, Przemyslaw Wiktor; Brzezinski, Jan; Lewinski, Andrzej
2014-01-01
Recent reports suggested dendritic cells (DCs) to be important players in the pathogenesis of autoimmune thyroid processes in humans. However, there are virtually no data addressing the influence of thyroid autoaggression-associated disturbances of thyrometabolic conditions on DCs biology. The aim of the study was to evaluate the influence of L-thyroxine supplementation on conventional and plasmacytoid peripheral blood DCs subtypes in patients with hypothyroidism due to Hashimoto's thyroiditis (HT). Eighteen patients with newly diagnosed hypothyroidism due to HT were included into the study. All patients received L-thyroxine treatment with doses adjusted to reach euthyroidism. Peripheral blood DC subtypes structure and immunoregulatory phenotype were analyzed by flow cytometry in the same patient prospectively at two time points: (i) before and (ii) 3 months after beginning of L-thyroxine treatment (hypothyroidism vs. euthyroidism, respectively). Percentage of plasmacytoid DCs in peripheral blood mononuclear cells fraction was significantly decreased in the course of L-thyroxine treatment (0.27 ± 0.19 vs. 0.11 ± 0.08; p < 0.05), whereas we did not observe any changes in the number of conventional DCs. However, the phenotypic analysis showed a significant increase of conventional DCs expressing CD86 and CD91 (64.25 ± 21.6% vs. 86.3 ± 11%; p < 0.05 and 30.75 ± 11.66% vs. 44.5 ± 13.3%; p < 0.05; respectively) in euthyroid patients. Standard L-thyroxine supplementation in HT patients exerted significant immunoregulatory effects, associated with quantitative and phenotypic changes of peripheral blood DC subpopulations.
Das, Ravi; Bhattacharjee, Shatabdi; Patel, Atit A; Harris, Jenna M; Bhattacharya, Surajit; Letcher, Jamin M; Clark, Sarah G; Nanda, Sumit; Iyer, Eswar Prasad R; Ascoli, Giorgio A; Cox, Daniel N
2017-12-01
Transcription factors (TFs) have emerged as essential cell autonomous mediators of subtype specific dendritogenesis; however, the downstream effectors of these TFs remain largely unknown, as are the cellular events that TFs control to direct morphological change. As dendritic morphology is largely dictated by the organization of the actin and microtubule (MT) cytoskeletons, elucidating TF-mediated cytoskeletal regulatory programs is key to understanding molecular control of diverse dendritic morphologies. Previous studies in Drosophila melanogaster have demonstrated that the conserved TFs Cut and Knot exert combinatorial control over aspects of dendritic cytoskeleton development, promoting actin and MT-based arbor morphology, respectively. To investigate transcriptional targets of Cut and/or Knot regulation, we conducted systematic neurogenomic studies, coupled with in vivo genetic screens utilizing multi-fluor cytoskeletal and membrane marker reporters. These analyses identified a host of putative Cut and/or Knot effector molecules, and a subset of these putative TF targets converge on modulating dendritic cytoskeletal architecture, which are grouped into three major phenotypic categories, based upon neuromorphometric analyses: complexity enhancer, complexity shifter, and complexity suppressor. Complexity enhancer genes normally function to promote higher order dendritic growth and branching with variable effects on MT stabilization and F-actin organization, whereas complexity shifter and complexity suppressor genes normally function in regulating proximal-distal branching distribution or in restricting higher order branching complexity, respectively, with spatially restricted impacts on the dendritic cytoskeleton. Collectively, we implicate novel genes and cellular programs by which TFs distinctly and combinatorially govern dendritogenesis via cytoskeletal modulation. Copyright © 2017 by the Genetics Society of America.
Cacciotti, Giulia; Caputo, Beniamino; Selvaggi, Carla; la Sala, Andrea; Vitiello, Laura; Diallo, Diawo; Ceianu, Cornelia; Antonelli, Guido; Nowotny, Norbert; Scagnolari, Carolina
2015-11-01
Given the pivotal role of monocyte-derived dendritic cells (DCs) in determining the magnitude of the antiviral innate immune response, we sought to determine whether Usutu virus (USUV) and West Nile virus (WNV) lineages (L)1 and L2 can infect DCs and affect the rate of type I interferon (IFN) activation. The sensitivity of these viruses to types I and III IFNs was also compared. We found that USUV can infect DCs, induce higher antiviral activities, IFN alpha subtypes and the IFN stimulated gene (ISG)15 pathway, and is more sensitive to types I and III IFNs than WNVs. In contrast, we confirmed that IFN alpha/beta subtypes were more effective against WNV L2 than WNV L1. However, the replication kinetics, induction of IFN alpha subtypes and ISGs in DCs and the sensitivity to IFN lambda 1-3 did not differ between WNV L1 and L2. Copyright © 2015 Elsevier Inc. All rights reserved.
Active dendrites regulate the impact of gliotransmission on rat hippocampal pyramidal neurons
Ashhad, Sufyan
2016-01-01
An important consequence of gliotransmission, a signaling mechanism that involves glial release of active transmitter molecules, is its manifestation as N-methyl-d-aspartate receptor (NMDAR)-dependent slow inward currents in neurons. However, the intraneuronal spatial dynamics of these events or the role of active dendrites in regulating their amplitude and spatial spread have remained unexplored. Here, we used somatic and/or dendritic recordings from rat hippocampal pyramidal neurons and demonstrate that a majority of NMDAR-dependent spontaneous slow excitatory potentials (SEP) originate at dendritic locations and are significantly attenuated through their propagation across the neuronal arbor. We substantiated the astrocytic origin of SEPs through paired neuron–astrocyte recordings, where we found that specific infusion of inositol trisphosphate (InsP3) into either distal or proximal astrocytes enhanced the amplitude and frequency of neuronal SEPs. Importantly, SEPs recorded after InsP3 infusion into distal astrocytes exhibited significantly slower kinetics compared with those recorded after proximal infusion. Furthermore, using neuron-specific infusion of pharmacological agents and morphologically realistic conductance-based computational models, we demonstrate that dendritically expressed hyperpolarization-activated cyclic-nucleotide–gated (HCN) and transient potassium channels play critical roles in regulating the strength, kinetics, and compartmentalization of neuronal SEPs. Finally, through the application of subtype-specific receptor blockers during paired neuron–astrocyte recordings, we provide evidence that GluN2B- and GluN2D-containing NMDARs predominantly mediate perisomatic and dendritic SEPs, respectively. Our results unveil an important role for active dendrites in regulating the impact of gliotransmission on neurons and suggest astrocytes as a source of dendritic plateau potentials that have been implicated in localized plasticity and place cell formation. PMID:27217559
The type I interferon response during viral infections: a "SWOT" analysis.
Gaajetaan, Giel R; Bruggeman, Cathrien A; Stassen, Frank R
2012-03-01
The type I interferon (IFN) response is a strong and crucial moderator for the control of viral infections. The strength of this system is illustrated by the fact that, despite some temporary discomfort like a common cold or diarrhea, most viral infections will not cause major harm to the healthy immunocompetent host. To achieve this, the immune system is equipped with a wide array of pattern recognition receptors and the subsequent coordinated type I IFN response orchestrated by plasmacytoid dendritic cells (pDCs) and conventional dendritic cells (cDCs). The production of type I IFN subtypes by dendritic cells (DCs), but also other cells is crucial for the execution of many antiviral processes. Despite this coordinated response, morbidity and mortality are still common in viral disease due to the ability of viruses to exploit the weaknesses of the immune system. Viruses successfully evade immunity and infection can result in aberrant immune responses. However, these weaknesses also open opportunities for improvement via clinical interventions as can be seen in current vaccination and antiviral treatment programs. The application of IFNs, Toll-like receptor ligands, DCs, and antiviral proteins is now being investigated to further limit viral infections. Unfortunately, a common threat during stimulation of immunity is the possible initiation or aggravation of autoimmunity. Also the translation from animal models to the human situation remains difficult. With a Strengths-Weaknesses-Opportunities-Threats ("SWOT") analysis, we discuss the interaction between host and virus as well as (future) therapeutic options, related to the type I IFN system. Copyright © 2011 John Wiley & Sons, Ltd.
Cortical Interneuron Subtypes Vary in Their Axonal Action Potential Properties.
Casale, Amanda E; Foust, Amanda J; Bal, Thierry; McCormick, David A
2015-11-25
The role of interneurons in cortical microcircuits is strongly influenced by their passive and active electrical properties. Although different types of interneurons exhibit unique electrophysiological properties recorded at the soma, it is not yet clear whether these differences are also manifested in other neuronal compartments. To address this question, we have used voltage-sensitive dye to image the propagation of action potentials into the fine collaterals of axons and dendrites in two of the largest cortical interneuron subtypes in the mouse: fast-spiking interneurons, which are typically basket or chandelier neurons; and somatostatin containing interneurons, which are typically regular spiking Martinotti cells. We found that fast-spiking and somatostatin-expressing interneurons differed in their electrophysiological characteristics along their entire dendrosomatoaxonal extent. The action potentials generated in the somata and axons, including axon collaterals, of somatostatin-expressing interneurons are significantly broader than those generated in the same compartments of fast-spiking inhibitory interneurons. In addition, action potentials back-propagated into the dendrites of somatostatin-expressing interneurons much more readily than fast-spiking interneurons. Pharmacological investigations suggested that axonal action potential repolarization in both cell types depends critically upon Kv1 channels, whereas the axonal and somatic action potentials of somatostatin-expressing interneurons also depend on BK Ca(2+)-activated K(+) channels. These results indicate that the two broad classes of interneurons studied here have expressly different subcellular physiological properties, allowing them to perform unique computational roles in cortical circuit operations. Neurons in the cerebral cortex are of two major types: excitatory and inhibitory. The proper balance of excitation and inhibition in the brain is critical for its operation. Neurons contain three main compartments: dendritic, somatic, and axonal. How the neurons receive information, process it, and pass on new information depends upon how these three compartments operate. While it has long been assumed that axons are simply for conducting information from the cell body to the synapses, here we demonstrate that the axons of different types of interneurons, the inhibitory cells, possess differing electrophysiological properties. This result implies that differing types of interneurons perform different tasks in the cortex, not only through their anatomical connections, but also through how their axons operate. Copyright © 2015 the authors 0270-6474/15/3515555-13$15.00/0.
Chatterjee, Saurabh; Lardinois, Olivier; Bhattacharjee, Suchandra; Tucker, Jeff; Corbett, Jean; Deterding, Leesa; Ehrenshaft, Marilyn; Bonini, Marcelo; Mason, Ronald P.
2011-01-01
Profound depletion of follicular dendritic cells (FDCs) is a hallmark of sepsis-like syndrome, but the exact causes for the ensuing cell death are unknown. The cell death-driven depletion contributes to immunoparalysis and is responsible for most of the morbidity and mortality in sepsis. Here we have utilized immuno-spin trapping, a method for detection of free radical formation, to detect oxidative stress-induced protein and DNA radical adducts in FDCs isolated from the spleen of septic mice and human tonsil-derived HK cells, a subtype of germinal center FDCs, to study their role in FDC depletion. At 24 h post-LPS administration, protein radical formation and oxidation was significantly elevated in vivo and in HK cells as shown by ELISA and confocal microscopy. The xanthine oxidase inhibitor allopurinol and the iron chelator desferrioxamine significantly decreased the formation of protein radicals, suggesting the role of xanthine oxidase and Fenton-like chemistry in radical formation. Protein and DNA radical formation correlated mostly with apoptotic features at 24 h and necrotic morphology of all the cell types studied at 48 h with concomitant inhibition of caspase-3. The cytotoxity of FDCs resulted in decreased CD45R/CD138+ve plasma cell numbers, indicating a possible defect in B cell differentiation. In one such mechanism, radical formation initiated by xanthine oxidase formed protein and DNA radicals which may lead to cell death of germinal center FDCs. PMID:21215311
The glia of the adult Drosophila nervous system
Kremer, Malte C.; Jung, Christophe; Batelli, Sara; Rubin, Gerald M.
2017-01-01
Glia play crucial roles in the development and homeostasis of the nervous system. While the GLIA in the Drosophila embryo have been well characterized, their study in the adult nervous system has been limited. Here, we present a detailed description of the glia in the adult nervous system, based on the analysis of some 500 glial drivers we identified within a collection of synthetic GAL4 lines. We find that glia make up ∼10% of the cells in the nervous system and envelop all compartments of neurons (soma, dendrites, axons) as well as the nervous system as a whole. Our morphological analysis suggests a set of simple rules governing the morphogenesis of glia and their interactions with other cells. All glial subtypes minimize contact with their glial neighbors but maximize their contact with neurons and adapt their macromorphology and micromorphology to the neuronal entities they envelop. Finally, glial cells show no obvious spatial organization or registration with neuronal entities. Our detailed description of all glial subtypes and their regional specializations, together with the powerful genetic toolkit we provide, will facilitate the functional analysis of glia in the mature nervous system. GLIA 2017 GLIA 2017;65:606–638 PMID:28133822
Wierenga, Corette J; Müllner, Fiona E; Rinke, Ilka; Keck, Tara; Stein, Valentin; Bonhoeffer, Tobias
2010-12-31
The use of transgenic mice in which subtypes of neurons are labeled with a fluorescent protein has greatly facilitated modern neuroscience research. GAD65-GFP mice, which have GABAergic interneurons labeled with GFP, are widely used in many research laboratories, although the properties of the labeled cells have not been studied in detail. Here we investigate these cells in the hippocampal area CA1 and show that they constitute ∼20% of interneurons in this area. The majority of them expresses either reelin (70±2%) or vasoactive intestinal peptide (VIP; 15±2%), while expression of parvalbumin and somatostatin is virtually absent. This strongly suggests they originate from the caudal, and not the medial, ganglionic eminence. GFP-labeled interneurons can be subdivided according to the (partially overlapping) expression of neuropeptide Y (42±3%), cholecystokinin (25±3%), calbindin (20±2%) or calretinin (20±2%). Most of these subtypes (with the exception of calretinin-expressing interneurons) target the dendrites of CA1 pyramidal cells. GFP-labeled interneurons mostly show delayed onset of firing around threshold, and regular firing with moderate frequency adaptation at more depolarized potentials.
Zhou, Fang-Fang; Xu, Zhao-Xia; Adila, Aipire; Li, Jin-Yao
2017-10-01
Asthma is a kind of chronic respiratory inflammation, commonly with breathlessness, chest tightness, coughing, recurrent episodes of wheezing and airflow obstruction, severely affecting human health. A variety of immunocytes are involved in this chronic disease. Chinese herbal medicine(CHM) has a long history in the treatment of asthma. A large number of studies have shown that CHM could ameliorate asthma symptoms through regulating cellular immune responses. This paper reviewed the studies of CHM on the regulation of immunocytes and their mechanisms in recent years, including the count of inflammatory cells, maturation of dendritic cells, balance of helper T cell subtypes, induction of regulatory T cells and intracellular signaling pathways. We also proposed the future research directions about the effects of CHM on asthma treatment. Copyright© by the Chinese Pharmaceutical Association.
Pham, Christina D; Flores, Catherine; Yang, Changlin; Pinheiro, Elaine M; Yearley, Jennifer H; Sayour, Elias J; Pei, Yanxin; Moore, Colin; McLendon, Roger E; Huang, Jianping; Sampson, John H; Wechsler-Reya, Robert; Mitchell, Duane A
2016-02-01
Despite significant strides in the identification and characterization of potential therapeutic targets for medulloblastoma, the role of the immune system and its interplay with the tumor microenvironment within these tumors are poorly understood. To address this, we adapted two syngeneic animal models of human Sonic Hedgehog (SHH)-driven and group 3 medulloblastoma for preclinical evaluation in immunocompetent C57BL/6 mice. Multicolor flow cytometric analyses were used to phenotype and characterize immune infiltrating cells within established cerebellar tumors. We observed significantly higher percentages of dendritic cells, infiltrating lymphocytes, myeloid-derived suppressor cells, and tumor-associated macrophages in murine SHH model tumors compared with group 3 tumors. However, murine group 3 tumors had higher percentages of CD8(+) PD-1(+) T cells within the CD3 population. PD-1 blockade conferred superior antitumor efficacy in animals bearing intracranial group 3 tumors compared with SHH group tumors, indicating that immunologic differences within the tumor microenvironment can be leveraged as potential targets to mediate antitumor efficacy. Further analysis of anti-PD-1 monoclonal antibody localization revealed binding to PD-1(+) peripheral T cells, but not tumor infiltrating lymphocytes within the brain tumor microenvironment. Peripheral PD-1 blockade additionally resulted in a marked increase in CD3(+) T cells within the tumor microenvironment. This is the first immunologic characterization of preclinical models of molecular subtypes of medulloblastoma and demonstration that response to immune checkpoint blockade differs across subtype classification. Our findings also suggest that effective anti-PD-1 blockade does not require that systemically administered antibodies penetrate the brain tumor microenvironment. ©2015 American Association for Cancer Research.
Pham, Christina D.; Flores, Catherine; Yang, Changlin; Pinheiro, Elaine M.; Yearley, Jennifer H.; Sayour, Elias J.; Pei, Yanxin; Moore, Colin; McLendon, Roger E.; Huang, Jianping; Sampson, John H.; Wechsler-Reya, Robert; Mitchell, Duane A.
2016-01-01
PURPOSE Despite significant strides in the identification and characterization of potential therapeutic targets for medulloblastoma (MB), the role of the immune system and its interplay with the tumor microenvironment within these tumors are poorly understood. To address this, we adapted two syngeneic animal models of human Sonic Hedgehog (SHH)-driven and Group 3 MB for preclinical evaluation in immunocompetent C57BL/6 mice. METHODS AND RESULTS Multicolor flow cytometric analyses were used to phenotype and characterize immune infiltrating cells within established cerebellar tumors. We observed significantly higher percentages of dendritic cells, infiltrating lymphocytes, myeloid derived suppressor cells and tumor-associated macrophages in murine SHH model tumors compared with Group 3 tumors. However, murine Group 3 tumors had higher percentages of CD8+ PD-1+ T cells within the CD3 population. PD-1 blockade conferred superior antitumor efficacy in animals bearing intracranial Group 3 tumors compared to SHH group tumors, indicating that immunologic differences within the tumor microenvironment can be leveraged as potential targets to mediate antitumor efficacy. Further analysis of anti-PD-1 monoclonal antibody localization revealed binding to PD-1+ peripheral T cells, but not tumor infiltrating lymphocytes within the brain tumor microenvironment. Peripheral PD-1 blockade additionally resulted in a marked increase in CD3+ T cells within the tumor microenvironment. CONCLUSIONS This is the first immunologic characterization of preclinical models of molecular subtypes of MB and demonstration that response to immune checkpoint blockade differs across subtype classification. Our findings also suggest that effective anti-PD-1 blockade does not require that systemically administered antibodies penetrate the brain tumor microenvironment. PMID:26405194
De Serres, Sacha A.; Safa, Kassem; Bijol, Vanesa; Ueno, Takuya; Onozato, Maristela L.; Iafrate, A. John; Herter, Jan M.; Lichtman, Andrew H.; Mayadas, Tanya N.; Guleria, Indira; Rennke, Helmut G.; Najafian, Nader; Chandraker, Anil
2015-01-01
Progress in long-term renal allograft survival continues to lag behind the progress in short-term transplant outcomes. Dendritic cells are the most efficient antigen-presenting cells, but surprisingly little attention has been paid to their presence in transplanted kidneys. We used dendritic cell–specific intercellular adhesion molecule-3–grabbing nonintegrin as a marker of dendritic cells in 105 allograft biopsy samples from 105 kidney transplant recipients. High dendritic cell density was associated with poor allograft survival independent of clinical variables. Moreover, high dendritic cell density correlated with greater T cell proliferation and poor outcomes in patients with high total inflammation scores, including inflammation in areas of tubular atrophy. We then explored the association between dendritic cells and histologic variables associated with poor prognosis. Multivariate analysis revealed an independent association between the densities of dendritic cells and T cells. In biopsy samples with high dendritic cell density, electron microscopy showed direct physical contact between infiltrating lymphocytes and cells that have the ultrastructural morphologic characteristics of dendritic cells. The origin of graft dendritic cells was sought in nine sex-mismatched recipients using XY fluorescence in situ hybridization. Whereas donor dendritic cells predominated initially, the majority of dendritic cells in late allograft biopsy samples were of recipient origin. Our data highlight the prognostic value of dendritic cell density in allograft biopsy samples, suggest a new role for these cells in shaping graft inflammation, and provide a rationale for targeting dendritic cell recruitment to promote long-term allograft survival. PMID:25855773
Smeltzer, Jacob P; Jones, Jason M; Ziesmer, Steven C; Grote, Deanna M; Xiu, Bing; Ristow, Kay M; Yang, Zhi Zhang; Nowakowski, Grzegorz S; Feldman, Andrew L; Cerhan, James R; Novak, Anne J; Ansell, Stephen M
2014-06-01
Transformation of follicular lymphoma is a critical event associated with a poor prognosis. The role of the tumor microenvironment in previous transformation studies has yielded conflicting results. To define cell subtypes associated with transformation, we examined tissue specimens at diagnosis from patients with follicular lymphoma that later transformed and, using immunohistochemistry (IHC), stained for CD68, CD11c, CD21, CXCL13, FOXP3, PD1, and CD14. Cell content and the pattern of expression were evaluated. Those identified as significantly associated with time to transformation (TTT) and overall survival (OS) were further characterized by flow cytometry and multicolor IHC. Of note, 58 patients were analyzed with median TTT of 4.7 years. The pattern of PD1(+) and CD14(+) cells rather than the quantity of cells was predictive of clinical outcomes. On multivariate analysis, including the follicular lymphoma international prognostic index score, CD14(+) cells localized in the follicle were associated with a shorter TTT (HR, 3.0; P = 0.004). PD1(+) cells with diffuse staining were associated with a shorter TTT (HR, 1.9; P = 0.045) and inferior OS (HR, 2.5; P = 0.012). Multicolor IHC and flow cytometry identified CD14(+) cells as follicular dendritic cells (FDC), whereas PD1(+) cells represented two separate populations, TFH and exhausted T cells. These results identify the presence of PD1(+) T cells and CD14(+) FDC as independent predictors of transformation in follicular lymphoma. Clin Cancer Res; 20(11); 2862-72. ©2014 AACR. ©2014 American Association for Cancer Research.
Angelot, Fanny; Seillès, Estelle; Biichlé, Sabeha; Berda, Yael; Gaugler, Béatrice; Plumas, Joel; Chaperot, Laurence; Dignat-George, Françoise; Tiberghien, Pierre; Saas, Philippe; Garnache-Ottou, Francine
2009-11-01
Increased circulating endothelial microparticles, resulting from vascular endothelium dysfunction, and plasmacytoid dendritic cell activation are both encountered in common inflammatory disorders. The aim of our study was to determine whether interactions between endothelial microparticles and plasmacytoid dendritic cells could contribute to such pathologies. Microparticles generated from endothelial cell lines, platelets or activated T cells were incubated with human plasmacytoid dendritic cells sorted from healthy donor blood or with monocyte-derived dendritic cells. Dendritic cell maturation was evaluated by flow cytometry, cytokine secretion as well as naive T-cell activation and polarization. Labeled microparticles were also used to study cellular interactions. Endothelial microparticles induced plasmacytoid dendritic cell maturation. In contrast, conventional dendritic cells were resistant to endothelial microparticle-induced maturation. In addition to upregulation of co-stimulatory molecules, endothelial microparticle-matured plasmacytoid dendritic cells secreted inflammatory cytokines (interleukins 6 and 8, but no interferon-alpha) and also induced allogeneic naive CD4(+) T cells to proliferate and to produce type 1 cytokines such as interferon-gamma and tumor necrosis factor-alpha. Endothelial microparticle endocytosis by plasmacytoid dendritic cells appeared to be required for plasmacytoid dendritic cell maturation. Importantly, the ability of endothelial microparticles to induce plasmacytoid dendritic cells to mature was specific as microparticles derived from activated T cells or platelets (the major source of circulating microparticules in healthy subjects) did not induce such plasmacytoid dendritic cell maturation. Our data show that endothelial microparticles specifically induce plasmacytoid dendritic cell maturation and production of inflammatory cytokines. This novel activation pathway may be implicated in various inflammatory disorders and endothelial microparticles could be an important immunmodulatory therapeutic target.
Diurnal rhythms in peripheral blood immune cell numbers of domestic pigs.
Engert, Larissa C; Weiler, Ulrike; Pfaffinger, Birgit; Stefanski, Volker; Schmucker, Sonja S
2018-02-01
Diurnal rhythms within the immune system are considered important for immune competence. Until now, they were mostly studied in humans and rodents. However, as the domestic pig is regarded as suitable animal model and due to its importance in agriculture, this study aimed to characterize diurnal rhythmicity in porcine circulating leukocyte numbers. Eighteen pigs were studied over periods of up to 50 h. Cosinor analyses revealed diurnal rhythms in cell numbers of most investigated immune cell populations in blood. Whereas T cell, dendritic cell, and eosinophil counts peaked during nighttime, NK cell and neutrophil counts peaked during daytime. Relative amplitudes of cell numbers in blood differed in T helper cell subtypes with distinctive differentiation states. Mixed model analyses revealed that plasma cortisol concentration was negatively associated with cell numbers of most leukocyte types, except for NK cells and neutrophils. The observed rhythms mainly resemble those found in humans and rodents. Copyright © 2017 Elsevier Ltd. All rights reserved.
Takahashi, Hiroo; Ogawa, Yoichi; Yoshihara, Sei-Ichi; Asahina, Ryo; Kinoshita, Masahito; Kitano, Tatsuro; Kitsuki, Michiko; Tatsumi, Kana; Okuda, Mamiko; Tatsumi, Kouko; Wanaka, Akio; Hirai, Hirokazu; Stern, Peter L; Tsuboi, Akio
2016-08-03
Neural circuits that undergo reorganization by newborn interneurons in the olfactory bulb (OB) are necessary for odor detection and discrimination, olfactory memory, and innate olfactory responses, including predator avoidance and sexual behaviors. The OB possesses many interneurons, including various types of granule cells (GCs); however, the contribution that each type of interneuron makes to olfactory behavioral control remains unknown. Here, we investigated the in vivo functional role of oncofetal trophoblast glycoprotein 5T4, a regulator for dendritic arborization of 5T4-expressing GCs (5T4 GCs), the level of which is reduced in the OB of 5T4 knock-out (KO) mice. Electrophysiological recordings with acute OB slices indicated that external tufted cells (ETCs) can be divided into two types, bursting and nonbursting. Optogenetic stimulation of 5T4 GCs revealed their connection to both bursting and nonbursting ETCs, as well as to mitral cells (MCs). Interestingly, nonbursting ETCs received fewer inhibitory inputs from GCs in 5T4 KO mice than from those in wild-type (WT) mice, whereas bursting ETCs and MCs received similar inputs in both mice. Furthermore, 5T4 GCs received significantly fewer excitatory inputs in 5T4 KO mice. Remarkably, in olfactory behavior tests, 5T4 KO mice had higher odor detection thresholds than the WT, as well as defects in odor discrimination learning. Therefore, the loss of 5T4 attenuates inhibitory inputs from 5T4 GCs to nonbursting ETCs and excitatory inputs to 5T4 GCs, contributing to disturbances in olfactory behavior. Our novel findings suggest that, among the various types of OB interneurons, the 5T4 GC subtype is required for odor detection and discrimination behaviors. Neuronal circuits in the brain include glutamatergic principal neurons and GABAergic interneurons. Although the latter is a minority cell type, they are vital for normal brain function because they regulate the activity of principal neurons. If interneuron function is impaired, brain function may be damaged, leading to behavior disorder. The olfactory bulb (OB) possesses various types of interneurons, including granule cells (GCs); however, the contribution that each type of interneuron makes to the control of olfactory behavior remains unknown. Here, we analyzed electrophysiologically and behaviorally the function of oncofetal trophoblast glycoprotein 5T4, a regulator for dendritic branching in OB GCs. We found that, among the various types of OB interneuron, the 5T4 GC subtype is required for odor detection and odor discrimination behaviors. Copyright © 2016 the authors 0270-6474/16/368211-18$15.00/0.
Neurons from the adult human dentate nucleus: neural networks in the neuron classification.
Grbatinić, Ivan; Marić, Dušica L; Milošević, Nebojša T
2015-04-07
Topological (central vs. border neuron type) and morphological classification of adult human dentate nucleus neurons according to their quantified histomorphological properties using neural networks on real and virtual neuron samples. In the real sample 53.1% and 14.1% of central and border neurons, respectively, are classified correctly with total of 32.8% of misclassified neurons. The most important result present 62.2% of misclassified neurons in border neurons group which is even greater than number of correctly classified neurons (37.8%) in that group, showing obvious failure of network to classify neurons correctly based on computational parameters used in our study. On the virtual sample 97.3% of misclassified neurons in border neurons group which is much greater than number of correctly classified neurons (2.7%) in that group, again confirms obvious failure of network to classify neurons correctly. Statistical analysis shows that there is no statistically significant difference in between central and border neurons for each measured parameter (p>0.05). Total of 96.74% neurons are morphologically classified correctly by neural networks and each one belongs to one of the four histomorphological types: (a) neurons with small soma and short dendrites, (b) neurons with small soma and long dendrites, (c) neuron with large soma and short dendrites, (d) neurons with large soma and long dendrites. Statistical analysis supports these results (p<0.05). Human dentate nucleus neurons can be classified in four neuron types according to their quantitative histomorphological properties. These neuron types consist of two neuron sets, small and large ones with respect to their perykarions with subtypes differing in dendrite length i.e. neurons with short vs. long dendrites. Besides confirmation of neuron classification on small and large ones, already shown in literature, we found two new subtypes i.e. neurons with small soma and long dendrites and with large soma and short dendrites. These neurons are most probably equally distributed throughout the dentate nucleus as no significant difference in their topological distribution is observed. Copyright © 2015 Elsevier Ltd. All rights reserved.
Angelot, Fanny; Seillès, Estelle; Biichlé, Sabeha; Berda, Yael; Gaugler, Béatrice; Plumas, Joel; Chaperot, Laurence; Dignat-George, Françoise; Tiberghien, Pierre; Saas, Philippe; Garnache-Ottou, Francine
2009-01-01
Background Increased circulating endothelial microparticles, resulting from vascular endothelium dysfunction, and plasmacytoid dendritic cell activation are both encountered in common inflammatory disorders. The aim of our study was to determine whether interactions between endothelial microparticles and plasmacytoid dendritic cells could contribute to such pathologies. Design and Methods Microparticles generated from endothelial cell lines, platelets or activated T cells were incubated with human plasmacytoid dendritic cells sorted from healthy donor blood or with monocyte-derived dendritic cells. Dendritic cell maturation was evaluated by flow cytometry, cytokine secretion as well as naive T-cell activation and polarization. Labeled microparticles were also used to study cellular interactions. Results Endothelial microparticles induced plasmacytoid dendritic cell maturation. In contrast, conventional dendritic cells were resistant to endothelial microparticle-induced maturation. In addition to upregulation of co-stimulatory molecules, endothelial microparticle-matured plasmacytoid dendritic cells secreted inflammatory cytokines (interleukins 6 and 8, but no interferon-α) and also induced allogeneic naive CD4+ T cells to proliferate and to produce type 1 cytokines such as interferon-γ and tumor necrosis factor-α. Endothelial microparticle endocytosis by plasmacytoid dendritic cells appeared to be required for plasmacytoid dendritic cell maturation. Importantly, the ability of endothelial microparticles to induce plasmacytoid dendritic cells to mature was specific as microparticles derived from activated T cells or platelets (the major source of circulating microparticules in healthy subjects) did not induce such plasmacytoid dendritic cell maturation. Conclusions Our data show that endothelial microparticles specifically induce plasmacytoid dendritic cell maturation and production of inflammatory cytokines. This novel activation pathway may be implicated in various inflammatory disorders and endothelial microparticles could be an important immunmodulatory therapeutic target. PMID:19648164
Neumann, Frank; Wagner, Claudia; Preuss, Klaus-Dieter; Kubuschok, Boris; Schormann, Claudia; Stevanovic, Stefan; Pfreundschuh, Michael
2005-11-01
Because of their frequent expression in a wide spectrum of malignant tumors but not in normal tissue except testis, cancer testis antigens are promising targets. However, except for HOM-TES-14/SCP1, their expression in malignant lymphomas is rare. SCP1 (synaptonemal complex protein 1) has been shown to elicit antibody responses in the autologous host, but no T-cell responses against HOM-TES-14/SCP1 have been reported. Using the SYFPEITHI algorithm, we selected peptides with a high binding affinity to major histocompatibility complex class 2 (MHC 2) molecules. The pentadecamer epitope p635-649 induced specific CD4+ T-cell responses that were shown to be restricted by HLA-DRB1*1401. The responses could be blocked by preincubation of T cells with anti-CD4 and antigen-presenting cells with anti-HLA-DR, respectively, proving the HLA-DR-restricted presentation of p635-649 and a CD4+ T-cell-mediated effector response. Responding CD4+ cells did not secrete interleukin-5 (IL-5), indicating that they belong to the T(H)1 subtype. The natural processing and presentation of p635-649 were demonstrated by pulsing autologous and allogeneic dendritic cells with a protein fragment covering p635-649. Thus, p635-649 is the first HOM-TES-14/SCP1-derived epitope to fulfill all prerequisites for use as a peptide vaccine in patients with HOM-TES-14/SCP1-expressing tumors, which is the case in two thirds of peripheral T-cell lymphomas.
Characterization of Dendritic Cells Subpopulations in Skin and Afferent Lymph in the Swine Model
Marquet, Florian; Bonneau, Michel; Pascale, Florentina; Urien, Celine; Kang, Chantal; Schwartz-Cornil, Isabelle; Bertho, Nicolas
2011-01-01
Transcutaneous delivery of vaccines to specific skin dendritic cells (DC) subsets is foreseen as a promising strategy to induce strong and specific types of immune responses such as tolerance, cytotoxicity or humoral immunity. Because of striking histological similarities between human and pig skin, pig is recognized as the most suitable model to study the cutaneous delivery of medicine. Therefore improving the knowledge on swine skin DC subsets would be highly valuable to the skin vaccine field. In this study, we showed that pig skin DC comprise the classical epidermal langerhans cells (LC) and dermal DC (DDC) that could be divided in 3 subsets according to their phenotypes: (1) the CD163neg/CD172aneg, (2) the CD163highCD172apos and (3) the CD163lowCD172apos DDC. These subtypes have the capacity to migrate from skin to lymph node since we detected them in pseudo-afferent lymph. Extensive phenotyping with a set of markers suggested that the CD163high DDC resemble the antibody response-inducing human skin DC/macrophages whereas the CD163negCD172low DDC share properties with the CD8+ T cell response-inducing murine skin CD103pos DC. This work, by showing similarities between human, mouse and swine skin DC, establishes pig as a model of choice for the development of transcutaneous immunisation strategies targeting DC. PMID:21298011
Lother, Jasmin; Breitschopf, Tanja; Krappmann, Sven; Morton, C Oliver; Bouzani, Maria; Kurzai, Oliver; Gunzer, Matthias; Hasenberg, Mike; Einsele, Hermann; Loeffler, Juergen
2014-11-01
The mould Aspergillus fumigatus is primarily an opportunistic pathogen of immunocompromised patients. Once fungal spores have been inhaled they encounter cells of the innate immune system, which include dendritic cells (DCs). DCs are the key antigen-presenting cells of the immune system and distinct subtypes, which differ in terms of origin, morphology and function. This study has systematically compared the interactions between A. fumigatus and myeloid DCs (mDCs), plasmacytoid DCs (pDCs) and monocyte-derived DCs (moDCs). Analyses were performed by time-lapse video microscopy, scanning electron microscopy, plating assays, flow cytometry, 25-plex ELISA and transwell assays. The three subsets of DCs displayed distinct responses to the fungus with mDCs and moDCs showing the greatest similarities. mDCs and moDCs both produced rough convolutions and occasionally phagocytic cups upon exposure to A. fumigatus whereas pDCs maintained a smooth appearance. Both mDCs and moDCs phagocytosed conidia and germ tubes, while pDCs did not phagocytose any fungi. Analysis of cytokine release and maturation markers revealed specific differences in pro- and anti-inflammatory patterns between the different DC subsets. These distinct characteristics between the DC subsets highlight their differences and suggest specific roles of moDCs, mDCs and pDCs during their interaction with A. fumigatus in vivo. Copyright © 2014 Elsevier GmbH. All rights reserved.
Guo, Mei; Krieger, Jürgen; Große-Wilde, Ewald; Mißbach, Christine; Zhang, Long; Breer, Heinz
2013-01-01
The behaviour of the desert locust, Schistocera gregaria, is largely directed by volatile olfactory cues. The relevant odorants are detected by specialized antennal sensory neurons which project their sensory dendrites into hair-like structures, the sensilla. Generally, the responsiveness of the antennal chemosensory cells is determined by specific receptors which may be either odorant receptors (ORs) or variant ionotropic receptors (IRs). Previously, we demonstrated that in locust the co-receptor for ORs (ORco) is only expressed in cells of sensilla basiconica and sensilla trichodea, suggesting that cells in sensilla coeloconica may express different types of chemosensory receptors. In this study, we have identified the genes of S. gregaria which encode homologues of co-receptors for the variant ionotropic receptors, the subtypes IR8a and IR25a. It was found that both subtypes, SgreIR8a and SgreIR25a, are expressed in the antennae of all five nymphal stages and in adults. Attempts to assign the relevant cell types by means of in situ hybridization revealed that SgreIR8a and SgreIR25a are expressed in cells of sensilla coeloconica. Double fluorescence in situ hybridization experiments disclosed that the two IR-subtypes are co-expressed in some cells of this sensillum type. Expression of SgreIR25a was also found in some of the sensilla chaetica, however, neither SgreIR25a nor SgreIR8a was found to be expressed in sensilla basiconica and sensilla trichodea. This observation was substantiated by the results of double FISH experiments demonstrating that cells expressing SgreIR8a or SgreIR25a do not express ORco. These results support the notion that the antenna of the desert locust employs two different populations of OSNs to sense odors; cells which express IRs in sensilla coeloconica and cells which express ORs in sensilla basiconica and sensilla trichodea.
Klenowski, Paul M; Wright, Sophie E; Mu, Erica W H; Noakes, Peter G; Lavidis, Nickolas A; Bartlett, Selena E; Bellingham, Mark C; Fogarty, Matthew J
2017-12-19
Quantitative assessments of neuronal subtypes in numerous brain regions show large variations in dendritic arbor size. A critical experimental factor is the method used to visualize neurons. We chose to investigate quantitative differences in basolateral amygdala (BLA) principal neuron morphology using two of the most common visualization methods: Golgi-Cox staining and neurobiotin (NB) filling. We show in 8-week-old Wistar rats that NB-filling reveals significantly larger dendritic arbors and different spine densities, compared to Golgi-Cox-stained BLA neurons. Our results demonstrate important differences and provide methodological insights into quantitative disparities of BLA principal neuron morphology reported in the literature.
Ultrastructure of Dendritic Spines: Correlation Between Synaptic and Spine Morphologies
Arellano, Jon I.; Benavides-Piccione, Ruth; DeFelipe, Javier; Yuste, Rafael
2007-01-01
Dendritic spines are critical elements of cortical circuits, since they establish most excitatory synapses. Recent studies have reported correlations between morphological and functional parameters of spines. Specifically, the spine head volume is correlated with the area of the postsynaptic density (PSD), the number of postsynaptic receptors and the ready-releasable pool of transmitter, whereas the length of the spine neck is proportional to the degree of biochemical and electrical isolation of the spine from its parent dendrite. Therefore, the morphology of a spine could determine its synaptic strength and learning rules. To better understand the natural variability of neocortical spine morphologies, we used a combination of gold-toned Golgi impregnations and serial thin-section electron microscopy and performed three-dimensional reconstructions of spines from layer 2/3 pyramidal cells from mouse visual cortex. We characterized the structure and synaptic features of 144 completed reconstructed spines, and analyzed their morphologies according to their positions. For all morphological parameters analyzed, spines exhibited a continuum of variability, without clearly distinguishable subtypes of spines or clear dependence of their morphologies on their distance to the soma. On average, the spine head volume was correlated strongly with PSD area and weakly with neck diameter, but not with neck length. The large morphological diversity suggests an equally large variability of synaptic strength and learning rules. PMID:18982124
Cell type-specific expression of FoxP2 in the ferret and mouse retina.
Sato, Chihiro; Iwai-Takekoshi, Lena; Ichikawa, Yoshie; Kawasaki, Hiroshi
2017-04-01
Although the anatomical and physiological properties of subtypes of retinal ganglion cells (RGCs) have been extensively investigated, their molecular properties are still unclear. Here, we examined the expression patterns of FoxP2 in the retina of ferrets and mice. We found that FoxP2 was expressed in small subsets of neurons in the adult ferret retina. FoxP2-positive neurons in the ganglion cell layer were divided into two groups. Large FoxP2-positive neurons expressed Brn3a and were retrogradely labeled with cholera toxin subunit B injected into the optic nerve, indicating that they are RGCs. The soma size and the projection pattern of FoxP2-positive RGCs were consistent with those of X cells. Because we previously reported that FoxP2 was selectively expressed in X cells in the ferret lateral geniculate nucleus (LGN), our findings indicate that FoxP2 is specifically expressed in the parvocellular pathway from the retina to the LGN. Small FoxP2-positive neurons were positive for GAD65/67, suggesting that they are GABAergic amacrine cells. Most Foxp2-positive cells were RGCs in the adult mouse retina. Dendritic morphological analyses suggested that Foxp2-positive RGCs included direction-selective RGCs in mice. Thus, our findings suggest that FoxP2 is expressed in specific subtypes of RGCs in the retina of ferrets and mice. Copyright © 2016 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.
2018-01-01
Abstract The neocortex is composed of many distinct subtypes of neurons that must form precise subtype-specific connections to enable the cortex to perform complex functions. Callosal projection neurons (CPN) are the broad population of commissural neurons that connect the cerebral hemispheres via the corpus callosum (CC). Currently, how the remarkable diversity of CPN subtypes and connectivity is specified, and how they differentiate to form highly precise and specific circuits, are largely unknown. We identify in mouse that the lipid-bound scaffolding domain protein Caveolin 1 (CAV1) is specifically expressed by a unique subpopulation of Layer V CPN that maintain dual ipsilateral frontal projections to premotor cortex. CAV1 is expressed by over 80% of these dual projecting callosal/frontal projection neurons (CPN/FPN), with expression peaking early postnatally as axonal and dendritic targets are being reached and refined. CAV1 is localized to the soma and dendrites of CPN/FPN, a unique population of neurons that shares information both between hemispheres and with premotor cortex, suggesting function during postmitotic development and refinement of these neurons, rather than in their specification. Consistent with this, we find that Cav1 function is not necessary for the early specification of CPN/FPN, or for projecting to their dual axonal targets. CPN subtype-specific expression of Cav1 identifies and characterizes a first molecular component that distinguishes this functionally unique projection neuron population, a population that expands in primates, and is prototypical of additional dual and higher-order projection neuron subtypes. PMID:29379878
Moeller, Ines; Spagnoli, Giulio C; Finke, Jürgen; Veelken, Hendrik; Houet, Leonora
2012-11-01
Induction of tumor-antigen-specific T cells in active cancer immunotherapy is generally difficult due to the very low anti-tumoral precursor cytotoxic T cells. By improving tumor-antigen uptake and presentation by dendritic cells (DCs), this problem can be overcome. Focusing on MAGE-A3 protein, frequently expressed in many types of tumors, we analyzed different DC-uptake routes after additional coating the recombinant MAGE-A3 protein with either a specific monoclonal antibody or an immune complex formulation. Opsonization of the protein with antibody resulted in increased DC-uptake compared to the uncoated rhMAGE-A3 protein. This was partly due to Fcγ receptor-dependent internalization. However, unspecific antigen internalization via macropinocytosis also played a role. When analyzing DC-uptake of MAGE-A3 antigen expressed in multiple myeloma cell line U266, pretreatment with proteasome inhibitor bortezomib resulted in increased apoptosis compared to γ-irradiation. Bortezomib-mediated immunogenic apoptosis, characterized by elevated surface expression of hsp90, triggered higher phagocytosis of U266 cells by DCs involving specific DC-derived receptors. We further investigated the impact of antigen delivery on T-cell priming. Induction of CD8(+) T-cell response was favored by stimulating naïve T cells with either antibody-opsonized MAGE-A3 protein or with the bortezomib-pretreated U266 cells, indicating that receptor-mediated uptake favors cross-presentation of antigens. In contrast, CD4(+) T cells were preferentially induced after stimulation with the uncoated protein or protein in the immune complex, both antigen formulations were preferentially internalized by DCs via macropinocytosis. In summary, receptor-mediated DC-uptake mechanisms favored the induction of CD8(+) T cells, relevant for clinical anti-tumor response.
Dong, Rong; Long, Jinhua; Xu, Xiaoli; Zhang, Chunlin; Wen, Zongyao; Li, Long; Yao, Weijuan; Zeng, Zhu
2014-01-10
Dendritic cells are potent and specialized antigen presenting cells, which play a crucial role in initiating and amplifying both the innate and adaptive immune responses. The dendritic cell-based vaccination against cancer has been clinically achieved promising successes. But there are still many challenges in its clinical application, especially for how to identify the functional states. The CD14+ monocytes were isolated from human peripheral blood after plastic adherence and purified to approximately 98% with cocktail immunomagnetic beads. The immature dendritic cells and mature dendritic cells were induced by traditional protocols. The resulting dendritic cells were cocultured with normal cells and cancer cells. The functional state of dendritic cells including immature dendritic cells (imDCs) and mature dendritic cells (mDCs) under different conditioned microenvironments were investigated by Fourier transformed infrared spectroscopy (FTIR) and molecular biological methods. The results of Fourier transformed infrared spectroscopy showed that the gene transcription activity and energy states of dendritic cells were specifically suppressed by tumor cells (P < 0.05 or 0.01). The expression levels of NF-kappa B (NF-κB) in dendritic cells were also specifically inhibited by tumor-derived factors (P < 0.05 or 0.01). Moreover, the ratios of absorption intensities of Fourier transformed infrared spectroscopy at given wave numbers were closely correlated with the expression levels of NF-κB (R2:0.69 and R2:0.81, respectively). Our results confirmed that the ratios of absorption intensities of Fourier transformed infrared spectroscopy at given wave numbers were positively correlated with the expression levels of NF-κB, suggesting that Fourier transformed infrared spectroscopy technology could be clinically applied to identify the functional states of dendritic cell when performing dendritic cell-based vaccination. It's significant for the simplification and standardization of dendritic cell-based vaccination clinical preparation protocols.
Broer, Johanna; Behnke, Bert
2002-04-01
Dendritic cells are important antigen presenting cells that play a role in the initiation of rheumatoid arthritis (RA). The stinging nettle leaf extract IDS 30 (Hox alpha) has been recommended for adjuvant therapy of rheumatic diseases. We investigated the immunomodulating effect of IDS 30 extract on the maturation of hematopoietic dendritic cells. Human dendritic cells were generated from peripheral blood mononuclear cells cultured in granulocyte macrophage-colony stimulating factor and interleukin 4 (IL-4). Dendritic cell maturation was induced by keyhole limped hemocyanin (KLH). Dendritic cell phenotype was characterized by flow cytometric analysis; dendritic cell cytokine production was measured by ELISA. The ability of dendritic cells to activate naive autologous T cells was evaluated by mixed leukocyte reaction. IDS 30 prevented the maturation of dendritic cells, but did not affect their viability. IDS 30 reduced the expression of CD83 and CD86. It increased the expression of chemokine receptor 5 and CD36 in a dose dependent manner. The secretion of tumor necrosis factor-alpha was reduced. Application of IDS 30 to dendritic cells in culture caused a high endocytosis of dextran and a low capacity to stimulate T cell proliferation. Our in vitro results showed the suppressive effect of IDS 30 on the maturation of human myeloid dendritic cells, leading to reduced induction of primary T cell responses. This may contribute to the therapeutic effect of IDS 30 on T cell mediated inflammatory diseases like RA.
Vitalis, Tania; Ansorge, Mark S.; Dayer, Alexandre G.
2013-01-01
Cortical circuits control higher-order cognitive processes and their function is highly dependent on their structure that emerges during development. The construction of cortical circuits involves the coordinated interplay between different types of cellular processes such as proliferation, migration, and differentiation of neural and glial cell subtypes. Among the multiple factors that regulate the assembly of cortical circuits, 5-HT is an important developmental signal that impacts on a broad diversity of cellular processes. 5-HT is detected at the onset of embryonic telencephalic formation and a variety of serotonergic receptors are dynamically expressed in the embryonic developing cortex in a region and cell-type specific manner. Among these receptors, the ionotropic 5-HT3A receptor and the metabotropic 5-HT6 receptor have recently been identified as novel serotonergic targets regulating different aspects of cortical construction including neuronal migration and dendritic differentiation. In this review, we focus on the developmental impact of serotonergic systems on the construction of cortical circuits and discuss their potential role in programming risk for human psychiatric disorders. PMID:23801939
Divergent Effects of Dendritic Cells on Pancreatitis
2015-09-01
role of dendritic cells in pancreatitis. Dendritic cells are professional antigen presenting cells which initiate innate and adaptive immune... Lymphoid -tissue-specific homing of bone- marrow-derived dendritic cells . Blood. 113:6638–6647. http://dx.doi .org/10.1182/blood-2009-02-204321 Dapito...Award Number: W81XWH-12-1-0313 TITLE: Divergent Effects of Dendritic Cells on Pancreatitis PRINCIPAL INVESTIGATOR: Dr. George Miller
Raffray, Loic; Douchet, Isabelle; Augusto, Jean-Francois; Youssef, Jihad; Contin-Bordes, Cecile; Richez, Christophe; Duffau, Pierre; Truchetet, Marie-Elise; Moreau, Jean-Francois; Cazanave, Charles; Leroux, Lionel; Mourrissoux, Gaelle; Camou, Fabrice; Clouzeau, Benjamin; Jeannin, Pascale; Delneste, Yves; Gabinski, Claude; Guisset, Olivier; Lazaro, Estibaliz; Blanco, Patrick
2015-04-01
Innate immune system alterations, including dendritic cell loss, have been reproducibly observed in patients with septic shock and correlated to adverse outcomes or nosocomial infections. The goal of this study is to better understand the mechanisms behind this observation in order to better assess septic shock pathogenesis. Prospective, controlled experimental study. Research laboratory at an academic medical center. The study enrolled 71 patients, 49 with septic shock and 22 with cardiogenic shock. Seventeen healthy controls served as reference. In vitro monocyte-derived dendritic cells were generated from healthy volunteers. Sera were assessed for their ability to promote in vitro dendritic cell death through flow cytometry detection in each group of patients. The percentage of apoptotic or necrotic dendritic cells was evaluated by annexin-V and propidium iodide staining. We observed that only patients with septic shock and not patients with pure cardiogenic shock were characterized by a rapid and profound loss of circulating dendritic cells. In vitro analysis revealed that sera from patients with septic shock induced higher dendritic cell death compared to normal sera or cardiogenic shock (p<0.005). Sera from surviving patients induced dendritic cell death through a caspase-dependent apoptotic pathway, whereas sera from nonsurviving patients induced dendritic cell-regulated necrosis. Dendritic cell necrosis was not due to necroptosis but was dependent of the presence of circulating histone. The toxicity of histones toward dendritic cell could be prevented by recombinant human activated protein C. Finally, we observed a direct correlation between the levels of circulating histones in patients and the ability of the sera to promote dendritic cell-regulated necrosis. The study demonstrates a differential mechanism of dendritic cell death in patients with septic shock that is dependent on the severity of the disease.
Angelot-Delettre, Fanny; Roggy, Anne; Frankel, Arthur E; Lamarthee, Baptiste; Seilles, Estelle; Biichle, Sabeha; Royer, Bernard; Deconinck, Eric; Rowinsky, Eric K; Brooks, Christopher; Bardet, Valerie; Benet, Blandine; Bennani, Hind; Benseddik, Zehaira; Debliquis, Agathe; Lusina, Daniel; Roussel, Mikael; Solly, Françoise; Ticchioni, Michel; Saas, Philippe; Garnache-Ottou, Francine
2015-02-01
Blastic plasmacytoid dendritic cell neoplasm is an aggressive malignancy derived from plasmacytoid dendritic cells. There is currently no accepted standard of care for treating this neoplasm, and therapeutic strategies have never been prospectively evaluated. Since blastic plasmacytoid dendritic cell neoplasm cells express high levels of interleukin-3 receptor α chain (IL3-Rα or CD123), antitumor effects of the interleukin-3 receptor-targeted drug SL-401 against blastic plasmacytoid dendritic cell neoplasm were evaluated in vitro and in vivo. The cytotoxicity of SL-401 was assessed in patient-derived blastic plasmacytoid dendritic cell neoplasm cell lines (CAL-1 and GEN2.2) and in primary blastic plasmacytoid dendritic cell neoplasm cells isolated from 12 patients using flow cytometry and an in vitro cytotoxicity assay. The cytotoxic effects of SL-401 were compared to those of several relevant cytotoxic agents. SL-401 exhibited a robust cytotoxicity against blastic plasmacytoid dendritic cell neoplasm cells in a dose-dependent manner. Additionally, the cytotoxic effects of SL-401 were observed at substantially lower concentrations than those achieved in clinical trials to date. Survival of mice inoculated with a blastic plasmacytoid dendritic cell neoplasm cell line and treated with a single cycle of SL-401 was significantly longer than that of untreated controls (median survival, 58 versus 17 days, P<0.001). These findings indicate that blastic plasmacytoid dendritic cell neoplasm cells are highly sensitive to SL-401, and support further evaluation of SL-401 in patients suffering from blastic plasmacytoid dendritic cell neoplasm. Copyright© Ferrata Storti Foundation.
Angelot-Delettre, Fanny; Roggy, Anne; Frankel, Arthur E.; Lamarthee, Baptiste; Seilles, Estelle; Biichle, Sabeha; Royer, Bernard; Deconinck, Eric; Rowinsky, Eric K.; Brooks, Christopher; Bardet, Valerie; Benet, Blandine; Bennani, Hind; Benseddik, Zehaira; Debliquis, Agathe; Lusina, Daniel; Roussel, Mikael; Solly, Françoise; Ticchioni, Michel; Saas, Philippe; Garnache-Ottou, Francine
2015-01-01
Blastic plasmacytoid dendritic cell neoplasm is an aggressive malignancy derived from plasmacytoid dendritic cells. There is currently no accepted standard of care for treating this neoplasm, and therapeutic strategies have never been prospectively evaluated. Since blastic plasmacytoid dendritic cell neoplasm cells express high levels of interleukin-3 receptor α chain (IL3-Rα or CD123), antitumor effects of the interleukin-3 receptor-targeted drug SL-401 against blastic plasmacytoid dendritic cell neoplasm were evaluated in vitro and in vivo. The cytotoxicity of SL-401 was assessed in patient-derived blastic plasmacytoid dendritic cell neoplasm cell lines (CAL-1 and GEN2.2) and in primary blastic plasmacytoid dendritic cell neoplasm cells isolated from 12 patients using flow cytometry and an in vitro cytotoxicity assay. The cytotoxic effects of SL-401 were compared to those of several relevant cytotoxic agents. SL-401 exhibited a robust cytotoxicity against blastic plasmacytoid dendritic cell neoplasm cells in a dose-dependent manner. Additionally, the cytotoxic effects of SL-401 were observed at substantially lower concentrations than those achieved in clinical trials to date. Survival of mice inoculated with a blastic plasmacytoid dendritic cell neoplasm cell line and treated with a single cycle of SL-401 was significantly longer than that of untreated controls (median survival, 58 versus 17 days, P<0.001). These findings indicate that blastic plasmacytoid dendritic cell neoplasm cells are highly sensitive to SL-401, and support further evaluation of SL-401 in patients suffering from blastic plasmacytoid dendritic cell neoplasm. PMID:25381130
Zagha, Edward; Manita, Satoshi; Ross, William N; Rudy, Bernardo
2010-06-01
Purkinje cell dendrites are excitable structures with intrinsic and synaptic conductances contributing to the generation and propagation of electrical activity. Voltage-gated potassium channel subunit Kv3.3 is expressed in the distal dendrites of Purkinje cells. However, the functional relevance of this dendritic distribution is not understood. Moreover, mutations in Kv3.3 cause movement disorders in mice and cerebellar atrophy and ataxia in humans, emphasizing the importance of understanding the role of these channels. In this study, we explore functional implications of this dendritic channel expression and compare Purkinje cell dendritic excitability in wild-type and Kv3.3 knockout mice. We demonstrate enhanced excitability of Purkinje cell dendrites in Kv3.3 knockout mice, despite normal resting membrane properties. Combined data from local application pharmacology, voltage clamp analysis of ionic currents, and assessment of dendritic Ca(2+) spike threshold in Purkinje cells suggest a role for Kv3.3 channels in opposing Ca(2+) spike initiation. To study the physiological relevance of altered dendritic excitability, we measured [Ca(2+)](i) changes throughout the dendritic tree in response to climbing fiber activation. Ca(2+) signals were specifically enhanced in distal dendrites of Kv3.3 knockout Purkinje cells, suggesting a role for dendritic Kv3.3 channels in regulating propagation of electrical activity and Ca(2+) influx in distal dendrites. These findings characterize unique roles of Kv3.3 channels in dendrites, with implications for synaptic integration, plasticity, and human disease.
Bassity, Elizabeth; Clark, Theodore G.
2012-01-01
Dendritic cells are specialized antigen presenting cells that bridge innate and adaptive immunity in mammals. This link between the ancient innate immune system and the more evolutionarily recent adaptive immune system is of particular interest in fish, the oldest vertebrates to have both innate and adaptive immunity. It is unknown whether dendritic cells co-evolved with the adaptive response, or if the connection between innate and adaptive immunity relied on a fundamentally different cell type early in evolution. We approached this question using the teleost model organism, rainbow trout (Oncorhynchus mykiss), with the aim of identifying dendritic cells based on their ability to stimulate naïve T cells. Adapting mammalian protocols for the generation of dendritic cells, we established a method of culturing highly motile, non-adherent cells from trout hematopoietic tissue that had irregular membrane processes and expressed surface MHCII. When side-by-side mixed leukocyte reactions were performed, these cells stimulated greater proliferation than B cells or macrophages, demonstrating their specialized ability to present antigen and therefore their functional homology to mammalian dendritic cells. Trout dendritic cells were then further analyzed to determine if they exhibited other features of mammalian dendritic cells. Trout dendritic cells were found to have many of the hallmarks of mammalian DCs including tree-like morphology, the expression of dendritic cell markers, the ability to phagocytose small particles, activation by toll-like receptor-ligands, and the ability to migrate in vivo. As in mammals, trout dendritic cells could be isolated directly from the spleen, or larger numbers could be derived from hematopoietic tissue and peripheral blood mononuclear cells in vitro. PMID:22427987
Pajak, B.; De Smedt, T.; Moulin, V.; De Trez, C.; Maldonado-Lopez, R.; Vansanten, G.; Briend, E.; Urbain, J.; Leo, O.; Moser, M.
2000-01-01
Aims—To describe a new fixation and embedding method for tissue samples, immunohistowax processing, which preserves both morphology and antigen immunoreactivity, and to use this technique to investigate the role of dendritic cells in the immune response in peripheral tissues. Methods—This technique was used to stain a population of specialised antigen presenting cells (dendritic cells) that have the unique capacity to sensitise naive T cells, and therefore to induce primary immune responses. The numbers of dendritic cells in peripheral organs of mice either untreated or injected with live Escherichia coli were compared. Results—Numbers of dendritic cells were greatly decreased in heart, kidney, and intestine after the inoculation of bacteria. The numbers of dendritic cells in the lung did not seem to be affected by the injection of E coli. However, staining of lung sections revealed that some monocyte like cells acquired morphological and phenotypic features of dendritic cells, and migrated into blood vessels. Conclusions—These observations suggest that the injection of bacteria induces the activation of dendritic cells in peripheral organs, where they play the role of sentinels, and/or their movement into lymphoid organs, where T cell priming is likely to occur. Key Words: dendritic cell • Escherichia coli • immunohistochemistry PMID:10961175
Magariños, A.M.; Li, C.J.; Toth, J. Gal; Bath, K.G.; Jing, D.; Lee, F.S.; McEwen, B.S.
2010-01-01
Chronic restraint stress (CRS) induces the remodeling (i.e., retraction and simplification) of the apical dendrites of hippocampal CA3 pyramidal neurons in rats, suggesting that intrahippocampal connectivity can be affected by a prolonged stressful challenge. Since the structural maintenance of neuronal dendritic arborizations and synaptic connectivity requires neurotrophic support, we investigated the potential role of brain derived neurotrophic factor (BDNF), a neurotrophin enriched in the hippocampus and released from neurons in an activity-dependent manner, as a mediator of the stress-induced dendritic remodeling. The analysis of Golgi-impregnated hippocampal sections revealed that wild type (WT) C57BL/6 male mice showed a similar CA3 apical dendritic remodeling in response to three weeks of CRS to that previously described for rats. Haploinsufficient BDNF mice (BDNF±) did not show such remodeling, but, even without CRS, they presented shorter and simplified CA3 apical dendritic arbors, like those observed in stressed WT mice. Furthermore, unstressed BDNF± mice showed a significant decrease in total hippocampal volume. The dendritic arborization of CA1 pyramidal neurons was not affected by CRS or genotype. However, only in WT mice, CRS induced changes in the density of dendritic spine shape subtypes in both CA1 and CA3 apical dendrites. These results suggest a complex role of BDNF in maintaining the dendritic and spine morphology of hippocampal neurons and the associated volume of the hippocampal formation. The inability of CRS to modify the dendritic structure of CA3 pyramidal neurons in BDNF± mice suggests an indirect, perhaps permissive, role of BDNF in mediating hippocampal dendritic remodeling. PMID:20095008
Zhang, Lingxin; Yang, Chen; Lewis, James S; El-Mofty, Samir K; Chernock, Rebecca D
2017-08-01
Follicular dendritic cell sarcoma is a rare mesenchymal neoplasm that most commonly occurs in cervical lymph nodes. It has histologic and clinical overlap with the much more common p16-positive human papillomavirus (HPV)-related squamous cell carcinoma of the oropharynx, which characteristically has nonkeratinizing morphology and often presents as an isolated neck mass. Not surprisingly, follicular dendritic cell sarcomas are commonly misdiagnosed as squamous cell carcinoma. Immunohistochemistry is helpful in separating the 2 entities. Follicular dendritic cell sarcoma expresses dendritic markers such as CD21 and CD23 and is almost always cytokeratin negative. However, in many cases of HPV-related oropharyngeal carcinoma, only p16 immunohistochemistry as a prognostic and surrogate marker for HPV is performed. p16 expression in follicular dendritic cell sarcoma has not been characterized. Here, we investigate the expression of p16 in follicular dendritic cell sarcoma and correlate it with retinoblastoma protein expression. A pilot study of dendritic marker expression in HPV-related oropharyngeal squamous cell carcinoma was also performed. We found that 4 of 8 sarcomas expressed p16 with strong and diffuse staining in 2 cases. In 2 of the 4 cases, p16 expression corresponded to loss of retinoblastoma protein expression. Dendritic marker expression (CD21 and CD23) was not found in HPV-related oropharyngeal squamous cell carcinomas. As such, positive p16 immunohistochemistry cannot be used as supportive evidence for the diagnosis of squamous cell carcinoma as strong and diffuse p16 expression may also occur in follicular dendritic cell sarcoma. Cytokeratins and dendritic markers are critical in separating the two tumor types. Copyright © 2017 Elsevier Inc. All rights reserved.
Junking, Mutita; Grainok, Janya; Thepmalee, Chutamas; Wongkham, Sopit; Yenchitsomanus, Pa-Thai
2017-10-01
Cholangiocarcinoma is a malignancy of bile duct epithelia with an increasing in incidence rate worldwide. Surgery is the only curative treatment, while adjuvant chemotherapy and radiotherapy render poor responses. Cell-based immunotherapy is a potential strategy for cholangiocarcinoma treatment. However, variation of tumor antigens in cholangiocarcinoma leads to the ineffectiveness of cell-based immunotherapy. In this study, we examined the activation of effector T-cells by dendritic cells pulsed with protein lysate or total RNA from cholangiocarcinoma cell lines for their cytolytic activity against cholangiocarcinoma. Broad-spectrum antigen types with respect to RNA antigen sources were obtained from combination of three cholangiocarcinoma cell lines (KKU-213, KKU-100, and KKU-055). Compared with protein lysate-pulsed dendritic cells, total RNA-pulsed dendritic cells induced anti-tumor effector T-cell response with higher killing ability to KKU-100 and KKU-213 cells compared with protein lysate-pulsed dendritic cells. Moreover, pooled messenger RNA from three cholangiocarcinoma cell lines significantly increased the specific killing capacity of activated lymphocytes against KKU-213 cells. These results suggest that activation of anti-tumor effector T-cells against cholangiocarcinoma by RNA-pulsed dendritic cells is more effective than that by protein lysate-pulsed dendritic cells. In addition, pulsing dendritic cells with pooled messenger RNA from multiple cell lines enhanced the efficacy of a cellular immune response against cholangiocarcinoma.
Gating of Long-Term Potentiation by Nicotinic Acetylcholine Receptors at the Cerebellum Input Stage
Prestori, Francesca; Bonardi, Claudia; Mapelli, Lisa; Lombardo, Paola; Goselink, Rianne; De Stefano, Maria Egle; Gandolfi, Daniela; Mapelli, Jonathan; Bertrand, Daniel; Schonewille, Martijn; De Zeeuw, Chris; D’Angelo, Egidio
2013-01-01
The brain needs mechanisms able to correlate plastic changes with local circuit activity and internal functional states. At the cerebellum input stage, uncontrolled induction of long-term potentiation or depression (LTP or LTD) between mossy fibres and granule cells can saturate synaptic capacity and impair cerebellar functioning, which suggests that neuromodulators are required to gate plasticity processes. Cholinergic systems innervating the cerebellum are thought to enhance procedural learning and memory. Here we show that a specific subtype of acetylcholine receptors, the α7-nAChRs, are distributed both in cerebellar mossy fibre terminals and granule cell dendrites and contribute substantially to synaptic regulation. Selective α7-nAChR activation enhances the postsynaptic calcium increase, allowing weak mossy fibre bursts, which would otherwise cause LTD, to generate robust LTP. The local microperfusion of α7-nAChR agonists could also lead to in vivo switching of LTD to LTP following sensory stimulation of the whisker pad. In the cerebellar flocculus, α7-nAChR pharmacological activation impaired vestibulo-ocular-reflex adaptation, probably because LTP was saturated, preventing the fine adjustment of synaptic weights. These results show that gating mechanisms mediated by specific subtypes of nicotinic receptors are required to control the LTD/LTP balance at the mossy fibre-granule cell relay in order to regulate cerebellar plasticity and behavioural adaptation. PMID:23741401
Bradford, Barry M.; Reizis, Boris
2017-01-01
ABSTRACT After oral exposure, the early replication of certain prion strains upon stromal cell-derived follicular dendritic cells (FDC) in the Peyer's patches in the small intestine is essential for the efficient spread of disease to the brain. However, little is known of how prions are initially conveyed from the gut lumen to establish infection on FDC. Our previous data suggest that mononuclear phagocytes such as CD11c+ conventional dendritic cells play an important role in the initial propagation of prions from the gut lumen into Peyer's patches. However, whether these cells conveyed orally acquired prions toward FDC within Peyer's patches was not known. The chemokine CXCL13 is expressed by FDC and follicular stromal cells and modulates the homing of CXCR5-expressing cells toward the FDC-containing B cell follicles. Here, novel compound transgenic mice were created in which a CXCR5 deficiency was specifically restricted to CD11c+ cells. These mice were used to determine whether CXCR5-expressing conventional dendritic cells propagate prions toward FDC after oral exposure. Our data show that in the specific absence of CXCR5-expressing conventional dendritic cells the early accumulation of prions upon FDC in Peyer's patches and the spleen was impaired, and disease susceptibility significantly reduced. These data suggest that CXCR5-expressing conventional dendritic cells play an important role in the efficient propagation of orally administered prions toward FDC within Peyer's patches in order to establish host infection. IMPORTANCE Many natural prion diseases are acquired by oral consumption of contaminated food or pasture. Once the prions reach the brain they cause extensive neurodegeneration, which ultimately leads to death. In order for the prions to efficiently spread from the gut to the brain, they first replicate upon follicular dendritic cells within intestinal Peyer's patches. How the prions are first delivered to follicular dendritic cells to establish infection was unknown. Understanding this process is important since treatments which prevent prions from infecting follicular dendritic cells can block their spread to the brain. We created mice in which mobile conventional dendritic cells were unable to migrate toward follicular dendritic cells. In these mice the early accumulation of prions on follicular dendritic cells was impaired and oral prion disease susceptibility was reduced. This suggests that prions exploit conventional dendritic cells to facilitate their initial delivery toward follicular dendritic cells to establish host infection. PMID:28275192
CD40 engagement on dendritic cells induces cyclooxygenase-2 and EP2 receptor via p38 and ERK MAPKs.
Harizi, Hedi; Limem, Ilef; Gualde, Norbert
2011-02-01
We have previously reported that cyclooxygenase (COX)-2-derived prostaglandin (PG)E2 critically regulates dendritic cell (DC) inflammatory phenotype and function through EP2/EP4 receptor subtypes. As genes activated by CD40 engagement are directly relevant to inflammation, we examined the effects of CD40 activation on inflammatory PGs in murine bone marrow-derived DC (mBM-DC). We showed for the first time that activation of mBM-DC with agonist anti-CD40 monoclonal antibody (anti-CD40 mAb) dose dependently induces the synthesis of significant amounts of PGE2 via inducible expression of COX-2 enzyme, as NS-398, a COX-2-selective inhibitor reduces this upregulation. In contrast to lipopolysaccharide, which upregulates mBM-DC surface levels of EP2 and EP4 receptors, CD40 crosslinking on mBM-DC increases EP2, but not EP4, receptor expression. Flow cytometry analysis and radioligand-binding assay showed that EP2 was the major EP receptor subtype, which binds to PGE2 at the surface of anti-CD40-activated mBM-DC. Upregulation of COX-2 and EP2 levels by CD40 engagement was accompanied by dose-dependent phosphorylation of p38 and ERK1/2 mitogen-activated protein kinase (MAPK) and was abrogated by inhibitors of both pathways. Collectively, we demonstrated that CD40 engagement on mBM-DC upregulates COX-2 and EP2 receptor expression through activation of p38 and ERK1/2 MAPK signaling. Triggering the PGE2/EP2 pathway by anti-CD40 mAb resulted on the induction of Th2 immune response. Thus, CD40-induced production of PGE2 by mBM-DC could represent a negative feedback mechanism involving EP2 receptor and limiting the propagation of Th1 responses. Blocking CD40 pathway may represent a novel therapeutic pathway of inhibiting COX-2-derived prostanoids in chronically inflamed tissues (that is, arthritis).
Delsol, G.; Meggetto, F.; Brousset, P.; Cohen-Knafo, E.; al Saati, T.; Rochaix, P.; Gorguet, B.; Rubin, B.; Voigt, J. J.; Chittal, S.
1993-01-01
Based on observations of 66 cases, in which tissues were specially processed to optimize the simultaneous preservation of cell membrane antigens and morphology, we provide evidence in favor of a relationship between follicular dendritic reticulum cells (FDRC) and Reed-Sternberg (RS) cells of Hodgkin's disease (HD) other than the lymphocyte predominance subtype. RS cells were intimately related to the FDRC network (75% of cases), and the expression of CD21 antigen was frequent (41% of cases). Exclusive expression of CD21 antigen was found in 11 cases of HD, while the expression of other B-cell-associated markers (CD19, CD20, CD22) was both variable and inconsistent. The expression of T-cell antigens (CD3, CD4, CD8) was rare. Null phenotype of RS cells was observed in 27 of 66 cases (41%). Epstein-Barr virus (EBV) nucleic acids were found in 34 of 66 (51.5%) cases. Double labeling techniques showed the presence of EBV-positive RS cells within the FDRC network. A non-B-cell origin of RS cells was supported by the differential expression of EBV latent antigens in HD (latent membrane protein+, EB nuclear antigen 2-), which is unusual in EBV-driven lymphoblastoid cell lines and EBV-positive B-cell lymphomas. FDRC and RS cells are known to share morphological traits (binucleated cells), and both cell types possess Fc receptor for IgG. The hypothesis is further backed by the findings of CD15 antigen expression by occasional RS-like dysplastic FDRC in Castleman's disease (five cases), which is characterized by hyperplasia of FDRC. Whether FDRC might be the only cells involved in the conversion to RS cells by the loss or gain of antigens remains to be determined. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:7685151
Jung, Tae-Young; Pham, Thanh Nhan Nguyen; Umeyama, Akemi; Shoji, Noboru; Hashimoto, Toshihiro; Lee, Je-Jung; Takei, Masao
2010-09-25
Ursolic acid is triterpene isolated from Uncaria rhynchophylla and is a pharmacologically active substance. The induction of dendritic cell maturation is critical for the induction of Ag-specific T-lymphocyte response and may be essential for the development of human vaccine relying on T cell immunity. In this study, we investigated that the effect of Ursolic acid on the phenotypic and functional maturation of human monocyte-derived dendritic cells in vitro. Dendritic cells harvested on day 8 were examined using functional assay. The expression levels of CD1a, CD80, CD83, CD86, HLA-DR and CCR7 on Ursolic acid-primed dendritic cells was slightly enhanced. Ursolic acid dose-dependently enhanced the T cell stimulatory capacity in an allogeneic mixed lymphocyte reaction, as measured by T cell proliferation. The production of IL-12p70 induced by Ursolic acid-primed dendritic cells was inhibited by the anti-Toll-like receptor-2 (TLR2) mAb and anti-TLR4 mAb. Moreover, Ursolic acid-primed dendritic cells expressed levels of mRNA coding for both TLR2 and TLR4. The majority of cells produced considerable interferon-gamma (IFN-gamma), but also small amounts of interleukin (IL-4)-4. Ursolic acid-primed dendritic cells have an intermediate migratory capacity towards CCL19 and CCL21. These results suggest that Ursolic acid modulates human dendritic cells function in a fashion that favors Th1 polarization via the activation of IL-12p70 dependent on TLR2 and/or TLR4, and may be used on dendritic cells-based vaccines for cancer immunotherapy. 2010 Elsevier B.V. All rights reserved.
1992-01-01
Antigen-presenting, major histocompatibility complex (MHC) class II- rich dendritic cells are known to arise from bone marrow. However, marrow lacks mature dendritic cells, and substantial numbers of proliferating less-mature cells have yet to be identified. The methodology for inducing dendritic cell growth that was recently described for mouse blood now has been modified to MHC class II- negative precursors in marrow. A key step is to remove the majority of nonadherent, newly formed granulocytes by gentle washes during the first 2-4 d of culture. This leaves behind proliferating clusters that are loosely attached to a more firmly adherent "stroma." At days 4-6 the clusters can be dislodged, isolated by 1-g sedimentation, and upon reculture, large numbers of dendritic cells are released. The latter are readily identified on the basis of their distinct cell shape, ultrastructure, and repertoire of antigens, as detected with a panel of monoclonal antibodies. The dendritic cells express high levels of MHC class II products and act as powerful accessory cells for initiating the mixed leukocyte reaction. Neither the clusters nor mature dendritic cells are generated if macrophage colony-stimulating factor rather than granulocyte/macrophage colony-stimulating factor (GM-CSF) is applied. Therefore, GM-CSF generates all three lineages of myeloid cells (granulocytes, macrophages, and dendritic cells). Since > 5 x 10(6) dendritic cells develop in 1 wk from precursors within the large hind limb bones of a single animal, marrow progenitors can act as a major source of dendritic cells. This feature should prove useful for future molecular and clinical studies of this otherwise trace cell type. PMID:1460426
Kopitar, A N; Ihan Hren, N; Ihan, A
2006-02-01
In various immunopathologic conditions, bacterial flora induce an immune response which results in inflammatory manifestations, e.g. periapical granuloma. Dendritic cells provide the main orchestration of specific immune responses. The aim of our study was to test the capacity of distinct oral bacterial antigens (prepared from Streptococcus mitis, Propionibacterium acnes, and Bacteroides spp.) to prime human dendritic cells for stimulation of the T-lymphocyte response. To assess the T-lymphocyte response, the expression of CD25, CD69, intracellular interferon gamma (cIFN-gamma), and intracellular interleukin 4 (cIL-4) was determined. Dendritic cells were prepared from leukocyte buffy coat from healthy blood donors. Monocytes were stimulated with IL-4 and GM-CSF and dendritic cells activated with bacterial lysates. Cell suspensions contained up to 90% dendritic cells, which represented 2-12% of the initial number of mononuclear cells. Lymphocyte subsets that developed in lymphocyte cultures after 1 week of stimulation were analyzed by flow cytometry. Dendritic cells, primed with antigens of Bacteroides fragilis have shown significantly higher activation and expression of intercellular IFN-gamma by T lymphocytes compared to negative controls. The dendritic cells primed with antigens of P. acnes had no effect on T-lymphocyte activation or cytokine production; instead they induced differentiation of T lymphocytes into CD25bright cells (regulatory T cells) with a potentially inhibitory effect on immune response. Dendritic cells primed with antigens of S. mitis induced increased expression of cIL-4. We conclude that commensal oral bacteria antigens prepared from B. fragilis, S. mitis, and P. acnes prime human dendritic cells to induce Th1, Th2, and T(reg) differentiation, respectively. This may advance our understanding of immunopathologic manifestations in the oral cavity and offer new possibilities for redirecting immune responses in mucosal vaccination.
Li, Dan; Li, Feng; Guttipatti, Pavithran; Song, Yuanquan
2018-05-05
The regrowth capacity of damaged neurons governs neuroregeneration and functional recovery after nervous system trauma. Over the past few decades, various intrinsic and extrinsic inhibitory factors involved in the restriction of axon regeneration have been identified. However, simply removing these inhibitory cues is insufficient for successful regeneration, indicating the existence of additional regulatory machinery. Drosophila melanogaster, the fruit fly, shares evolutionarily conserved genes and signaling pathways with vertebrates, including humans. Combining the powerful genetic toolbox of flies with two-photon laser axotomy/dendriotomy, we describe here the Drosophila sensory neuron - dendritic arborization (da) neuron injury model as a platform for systematically screening for novel regeneration regulators. Briefly, this paradigm includes a) the preparation of larvae, b) lesion induction to dendrite(s) or axon(s) using a two-photon laser, c) live confocal imaging post-injury and d) data analysis. Our model enables highly reproducible injury of single labeled neurons, axons, and dendrites of well-defined neuronal subtypes, in both the peripheral and central nervous system.
Smith, R E; Reyes, N J; Khandelwal, P; Schlereth, S L; Lee, H S; Masli, S; Saban, D R
2016-08-01
Allergic eye disease, as in most forms of atopy, ranges in severity among individuals from immediate hypersensitivity to a severe and debilitating chronic disease. Dendritic cells play a key role in stimulating pathogenic T cells in allergen re-exposure, or secondary responses. However, molecular cues by dendritic cells underpinning allergic T cell response levels and the impact that this control has on consequent severity of allergic disease are poorly understood. Here, we show that a deficiency in thrombospondin-1, a matricellular protein known to affect immune function, has subsequent effects on downstream T cell responses during allergy, as revealed in an established mouse model of allergic eye disease. More specifically, we demonstrate that a thrombospondin-1 deficiency specific to dendritic cells leads to heightened secondary T cell responses and consequent clinical disease. Interestingly, whereas thrombospondin-1-deficient dendritic cells augmented activity of allergen-primed T cells, this increase was not recapitulated with naïve T cells in vitro. The role of dendritic cell-derived thrombospondin-1 in regulating secondary allergic T cell responses was confirmed in vivo, as local transfer of thrombospondin-1-sufficient dendritic cells to the ocular mucosa of thrombospondin-1 null hosts prevented the development of augmented secondary T cell responses and heightened allergic eye disease clinical responses. Finally, we demonstrate that topical instillation of thrombospondin-1-derived peptide reduces T cell activity and clinical progression of allergic eye disease. Taken together, this study reveals an important modulatory role of dendritic cell-derived thrombospondin-1 on secondary allergic T cell responses and suggests the possible dysregulation of dendritic cell-derived thrombospondin-1 expression as a factor in allergic eye disease severity. © Society for Leukocyte Biology.
Smith, R. E.; Reyes, N. J.; Khandelwal, P.; Schlereth, S. L.; Lee, H. S.; Masli, S.; Saban, D. R.
2016-01-01
Allergic eye disease, as in most forms of atopy, ranges in severity among individuals from immediate hypersensitivity to a severe and debilitating chronic disease. Dendritic cells play a key role in stimulating pathogenic T cells in allergen re-exposure, or secondary responses. However, molecular cues by dendritic cells underpinning allergic T cell response levels and the impact that this control has on consequent severity of allergic disease are poorly understood. Here, we show that a deficiency in thrombospondin-1, a matricellular protein known to affect immune function, has subsequent effects on downstream T cell responses during allergy, as revealed in an established mouse model of allergic eye disease. More specifically, we demonstrate that a thrombospondin-1 deficiency specific to dendritic cells leads to heightened secondary T cell responses and consequent clinical disease. Interestingly, whereas thrombospondin-1-deficient dendritic cells augmented activity of allergen-primed T cells, this increase was not recapitulated with naïve T cells in vitro. The role of dendritic cell-derived thrombospondin-1 in regulating secondary allergic T cell responses was confirmed in vivo, as local transfer of thrombospondin-1-sufficient dendritic cells to the ocular mucosa of thrombospondin-1 null hosts prevented the development of augmented secondary T cell responses and heightened allergic eye disease clinical responses. Finally, we demonstrate that topical instillation of thrombospondin-1-derived peptide reduces T cell activity and clinical progression of allergic eye disease. Taken together, this study reveals an important modulatory role of dendritic cell-derived thrombospondin-1 on secondary allergic T cell responses and suggests the possible dysregulation of dendritic cell-derived thrombospondin-1 expression as a factor in allergic eye disease severity. PMID:26856994
Fenton-May, Angharad E.; Dilernia, Dario A.; Kilembe, William; Allen, Susan A.; Borrow, Persephone; Hunter, Eric
2015-01-01
Heterosexual transmission of HIV-1 is characterized by a genetic bottleneck that selects a single viral variant, the transmitted/founder (TF), during most transmission events. To assess viral characteristics influencing HIV-1 transmission, we sequenced 167 near full-length viral genomes and generated 40 infectious molecular clones (IMC) including TF variants and multiple non-transmitted (NT) HIV-1 subtype C variants from six linked heterosexual transmission pairs near the time of transmission. Consensus-like genomes sensitive to donor antibodies were selected for during transmission in these six transmission pairs. However, TF variants did not demonstrate increased viral fitness in terms of particle infectivity or viral replicative capacity in activated peripheral blood mononuclear cells (PBMC) and monocyte-derived dendritic cells (MDDC). In addition, resistance of the TF variant to the antiviral effects of interferon-α (IFN-α) was not significantly different from that of non-transmitted variants from the same transmission pair. Thus neither in vitro viral replicative capacity nor IFN-α resistance discriminated the transmission potential of viruses in the quasispecies of these chronically infected individuals. However, our findings support the hypothesis that within-host evolution of HIV-1 in response to adaptive immune responses reduces viral transmission potential. PMID:26378795
Zhou, Fang; Zhang, Guang-Xian; Rostami, Abdolmohamad
2017-06-01
Intravenous transfer of LPS-treated bone marrow-derived dendritic cells blocks development of autoimmunity induced by CD4 + T cells in vivo. However, cellular mechanisms of dendritic cell-mediated immune tolerance have not yet been fully elucidated. Here, we report that there are two new subpopulations of CD4 + CD25 + FoxP3 + GITR + regulatory T cells (CD127 + 3G11 + and CD127 + 3G11 - cells). LPS-treated dendritic cells facilitate development of CD4 + CD127 + 3G11 - regulatory T cells but inhibit that of CD4 + CD127 + 3G11 + regulatory T cells. LPS-induced tolerogenic dendritic cells may cause immune tolerance through modulating balance of different subsets of CD4 + regulatory T cells mediated by CD127 and 3G11. Our results imply a new potential cellular mechanism of dendritic cell-mediated immune tolerance.
Zhang, Heng; Wang, Yan; Wong, Jack Jing Lin; Lim, Kah-Leong; Liou, Yih-Cherng; Wang, Hongyan; Yu, Fengwei
2014-08-25
Pruning of unnecessary axons and/or dendrites is crucial for maturation of the nervous system. However, little is known about cell adhesion molecules (CAMs) that control neuronal pruning. In Drosophila, dendritic arborization neurons, ddaCs, selectively prune their larval dendrites. Here, we report that Rab5/ESCRT-mediated endocytic pathways are critical for dendrite pruning. Loss of Rab5 or ESCRT function leads to robust accumulation of the L1-type CAM Neuroglian (Nrg) on enlarged endosomes in ddaC neurons. Nrg is localized on endosomes in wild-type ddaC neurons and downregulated prior to dendrite pruning. Overexpression of Nrg alone is sufficient to inhibit dendrite pruning, whereas removal of Nrg causes precocious dendrite pruning. Epistasis experiments indicate that Rab5 and ESCRT restrain the inhibitory role of Nrg during dendrite pruning. Thus, this study demonstrates the cell-surface molecule that controls dendrite pruning and defines an important mechanism whereby sensory neurons, via endolysosomal pathway, downregulate the cell-surface molecule to trigger dendrite pruning. Copyright © 2014 Elsevier Inc. All rights reserved.
Sadtler, Kaitlyn; Allen, Brian W; Estrellas, Kenneth; Housseau, Franck; Pardoll, Drew M; Elisseeff, Jennifer H
2017-10-01
The immune system mediates tissue growth and homeostasis and is the first responder to injury or biomaterial implantation. Recently, it has been appreciated that immune cells play a critical role in wound healing and tissue repair and should thus be considered potentially beneficial, particularly in the context of scaffolds for regenerative medicine. In this study, we present a flow cytometric analysis of cellular recruitment to tissue-derived extracellular matrix scaffolds, where we quantitatively describe the infiltration and polarization of several immune subtypes, including macrophages, dendritic cells, neutrophils, monocytes, T cells, and B cells. We define a specific scaffold-associated macrophage (SAM) that expresses CD11b + F4/80 + CD11c +/- CD206 hi CD86 + MHCII + that are characteristic of an M2-like cell (CD206 hi ) with high antigen presentation capabilities (MHCII + ). Adaptive immune cells tightly regulate the phenotype of a mature SAM. These studies provide a foundation for detailed characterization of the scaffold immune microenvironment of a given biomaterial scaffold to determine the effect of scaffold changes on immune response and subsequent therapeutic outcome of that material.
2014-07-01
and J.W. Young, Human dendritic cells : potent antigen-presenting cells at the crossroads of innate and adaptive immunity. J Immunol, 2005. 175(3): p...by Listeria-Stimulated Human Dendritic Cells : Implications for Cancer Vaccine Therapy PRINCIPAL INVESTIGATOR: David J. Chung, MD, PhD...5a. CONTRACT NUMBER Evaluation of Immune Responses Mediated by Listeria-Stimulated Human Dendritic Cells : Implications for Cancer Vaccine
Chlamydia trachomatis Cellular Exit Alters Interactions with Host Dendritic Cells
Sherrid, Ashley M.
2017-01-01
ABSTRACT The strategies utilized by pathogens to exit host cells are an area of pathogenesis which has received surprisingly little attention, considering the necessity of this step for infections to propagate. Even less is known about how exit through these pathways affects downstream host-pathogen interactions and the generation of an immune response. Chlamydia trachomatis exits host epithelial cells through two equally active mechanisms: lysis and extrusion. Studies have characterized the outcome of interactions between host innate immune cells, such as dendritic cells and macrophages, and free, extracellular Chlamydia bacteria, such as those resulting from lysis. Exit via extrusion generates a distinct, host-membrane-bound compartment of Chlamydia separate from the original infected cell. In this study, we assessed the effect of containment within extrusions upon the interaction between Chlamydia and host dendritic cells. Extrusion dramatically affected the outcome of Chlamydia-dendritic cell interactions for both the bacterium and the host cell. Dendritic cells rapidly underwent apoptosis in response to engulfment of an extrusion, while uptake of an equivalent dose of free Chlamydia had no such effect. Containment within an extrusion also prolonged bacterial survival within dendritic cells and altered the initial innate immune signaling by the dendritic cell. PMID:28223346
Zoccola, Emmanuelle; Delamare-Deboutteville, Jérôme; Barnes, Andrew C.
2015-01-01
Antigen presentation is a critical step bridging innate immune recognition and specific immune memory. In mammals, the process is orchestrated by dendritic cells (DCs) in the lymphatic system, which initiate clonal proliferation of antigen-specific lymphocytes. However, fish lack a classical lymphatic system and there are currently no cellular markers for DCs in fish, thus antigen-presentation in fish is poorly understood. Recently, antigen-presenting cells similar in structure and function to mammalian DCs were identified in various fish, including rainbow trout (Oncorhynchus mykiss) and zebrafish (Danio rerio). The present study aimed to identify a potential molecular marker for DCs in fish and therefore targeted DC-SCRIPT, a well-conserved zinc finger protein that is preferentially expressed in all sub-types of human DCs. Putative dendritic cells were obtained in culture by maturation of spleen and pronephros-derived monocytes. DC-SCRIPT was identified in barramundi by homology using RACE PCR and genome walking. Specific expression of DC-SCRIPT was detected in barramundi cells by Stellaris mRNA FISH, in combination with MHCII expression when exposed to bacterial derived peptidoglycan, suggesting the presence of DCs in L. calcarifer. Moreover, morphological identification was achieved by light microscopy of cytospins prepared from these cultures. The cultured cells were morphologically similar to mammalian and trout DCs. Migration assays determined that these cells have the ability to move towards pathogens and pathogen associated molecular patterns, with a preference for peptidoglycans over lipopolysaccharides. The cells were also strongly phagocytic, engulfing bacteria and rapidly breaking them down. Barramundi DCs induced significant proliferation of responder populations of T-lymphocytes, supporting their role as antigen presenting cells. DC-SCRIPT expression in head kidney was higher 6 and 24 h following intraperitoneal challenge with peptidoglycan and lipopolysaccharide and declined after 3 days relative to PBS-injected controls. Relative expression was also lower in the spleen at 3 days post challenge but increased again at 7 days. As DC-SCRIPT is a constitutively expressed nuclear receptor, independent of immune activation, this may indicate initial migration of immature DCs from head kidney and spleen to the injection site, followed by return to the spleen for maturation and antigen presentation. DC-SCRIPT may be a valuable tool in the investigation of antigen presentation in fish and facilitate optimisation of vaccines and adjuvants for aquaculture. PMID:26173015
Ottobrini, Luisa; Biasin, Mara; Borelli, Manuela; Lucignani, Giovanni; Trabattoni, Daria; Clerici, Mario
2016-01-01
Introduction Dendritic cells play a key role as initiators of T-cell responses, and even if tumour antigen-loaded dendritic cells can induce anti-tumour responses, their efficacy has been questioned, suggesting a need to enhance immunization strategies. Matherials & Methods We focused on the characterization of bone marrow-derived dendritic cells pulsed with whole tumour lysate (TAA-DC), as a source of known and unknown antigens, in a mouse model of breast cancer (MMTV-Ras). Dendritic cells were evaluated for antigen uptake and for the expression of MHC class I/II and costimulatory molecules and markers associated with maturation. Results Results showed that antigen-loaded dendritic cells are characterized by a phenotypically semi-mature/mature profile and by the upregulation of genes involved in antigen presentation and T-cell priming. Activated dendritic cells stimulated T-cell proliferation and induced the production of high concentrations of IL-12p70 and IFN-γ but only low levels of IL-10, indicating their ability to elicit a TH1-immune response. Furthermore, administration of Antigen loaded-Dendritic Cells in MMTV-Ras mice evoked a strong anti-tumour response in vivo as demonstrated by a general activation of immunocompetent cells and the release of TH1 cytokines. Conclusion Data herein could be useful in the design of antitumoral DC-based therapies, showing a specific activation of immune system against breast cancer. PMID:26795765
Pro-inflammatory Cytokine Expression of Spleen Dendritic Cells in Mouse Toxoplasmosis
Nam, Ho-Woo; Ahn, Hye-Jin
2011-01-01
Dendritic cells have been known as a member of strong innate immune cells against infectious organelles. In this study, we evaluated the cytokine expression of splenic dendritic cells in chronic mouse toxoplasmosis by tissue cyst-forming Me49 strain and demonstrated the distribution of lymphoid dendritic cells by fluorescence-activated cell sorter (FACS). Pro-inflammatory cytokines, such as IL-1α, IL-1β, IL-6, and IL-10 increased rapidly at week 1 post-infection (PI) and peaked at week 3 PI. Serum IL-10 level followed the similar patterns. FACS analysis showed that the number of CD8α+/CD11c+ splenic dendritic cells increased at week 1 and peaked at week 3 PI. In conclusion, mouse splenic dendritic cells showed early and rapid cytokine changes and may have important protective roles in early phases of murine toxoplasmosis. PMID:21738265
Chicha, Laurie; Jarrossay, David; Manz, Markus G
2004-12-06
Because of different cytokine responsiveness, surface receptor, and transcription factor expression, human CD11c(-) natural type I interferon-producing cells (IPCs) and CD11c(+) dendritic cells were thought to derive through lymphoid and myeloid hematopoietic developmental pathways, respectively. To directly test this hypothesis, we used an in vitro assay allowing simultaneous IPC, dendritic cell, and B cell development and we tested lymphoid and myeloid committed hematopoietic progenitor cells for their developmental capacity. Lymphoid and common myeloid and granulocyte/macrophage progenitors were capable of developing into both functional IPCs, expressing gene transcripts thought to be associated with lymphoid lineage development, and into dendritic cells. However, clonal progenitors for both populations were about fivefold more frequent within myeloid committed progenitor cells. Thus, in humans as in mice, natural IPC and dendritic cell development robustly segregates with myeloid differentiation. This would fit with natural interferon type I-producing cell and dendritic cell activity in innate immunity, the evolutionary older arm of the cellular immune system.
Dendritic Cells and Innate Immunity in Kidney Transplantation
Zhuang, Quan; Lakkis, Fadi G.
2015-01-01
Summary This review summarizes emerging concepts related to the roles of dendritic cells and innate immunity in organ transplant rejection. First, it highlights the primary role that recipient, rather than donor, dendritic cells have in rejection and reviews their origin and function in the transplanted kidney. Second, it introduces the novel concept that recognition of allogeneic non-self by host monocytes (referred to here as innate allorecognition) is necessary for initiating rejection by inducing monocyte differentiation into mature, antigen-presenting dendritic cells. Both concepts provide opportunities for preventing rejection by targeting monocytes or dendritic cells. PMID:25629552
Dendritic Cells Promote Pancreatic Viability in Mice with Acute Pancreatitis
Bedrosian, Andrea S.; Nguyen, Andrew H.; Hackman, Michael; Connolly, Michael K.; Malhotra, Ashim; Ibrahim, Junaid; Cieza-Rubio, Napoleon E.; Henning, Justin R.; Barilla, Rocky; Rehman, Adeel; Pachter, H. Leon; Medina-Zea, Marco V.; Cohen, Steven M.; Frey, Alan B.; Acehan, Devrim; Miller, George
2011-01-01
Background & Aims Acute pancreatitis increases morbidity and mortality from organ necrosis by mechanisms that are incompletely understood. Dendritic cells (DCs) can promote or suppress inflammation, depending on their subtype and context. We investigated the roles of DC in development of acute pancreatitis. Methods Acute pancreatitis was induced in CD11c.DTR mice using caerulein or L-arginine; DCs were depleted by administration of diphtheria toxin. Survival was analyzed using Kaplan-Meier analysis. Results Numbers of MHC II+CD11c+DC increased 100-fold in pancreas of mice with acute pancreatitis, to account for nearly 15% of intra-pancreatic leukocytes. Intra-pancreatic DC acquired an immune phenotype in mice with acute pancreatitis; they expressed higher levels of MHC II and CD86 and increased production of interleukin-6, membrane cofactor protein (MCP)-1, and tumor necrosis factor (TNF)-α. However, rather than inducing an organ-destructive inflammatory process, DC were required for pancreatic viability; the exocrine pancreas died in mice that were depleted of DC and challenged with caerulein or L-arginine. All mice with pancreatitis that were depleted of DC died from acinar cell death within 4 days. Depletion of DC from mice with pancreatitis resulted in neutrophil infiltration and increased levels of systemic markers of inflammation. However, the organ necrosis associated with depletion of DC did not require infiltrating neutrophils, activation of NF-κB, or signaling by mitogen-activated protein kinase or TNF-α. Conclusions DC are required for pancreatic viability in mice with acute pancreatitis and might protect organs against cell stress. PMID:21801698
Cigarette smoke-induced accumulation of lung dendritic cells is interleukin-1α-dependent in mice
2012-01-01
Background Evidence suggests that dendritic cells accumulate in the lungs of COPD patients and correlate with disease severity. We investigated the importance of IL-1R1 and its ligands IL-1α and β to dendritic cell accumulation and maturation in response to cigarette smoke exposure. Methods Mice were exposed to cigarette smoke using a whole body smoke exposure system. IL-1R1-, TLR4-, and IL-1α-deficient mice, as well as anti-IL-1α and anti-IL-1β blocking antibodies were used to study the importance of IL-1R1 and TLR4 to dendritic cell accumulation and activation. Results Acute and chronic cigarette smoke exposure led to increased frequency of lung dendritic cells. Accumulation and activation of dendritic cells was IL-1R1/IL-1α dependent, but TLR4- and IL-1β-independent. Corroborating the cellular data, expression of CCL20, a potent dendritic cells chemoattractant, was IL-1R1/IL-1α-dependent. Studies using IL-1R1 bone marrow-chimeric mice revealed the importance of IL-1R1 signaling on lung structural cells for CCL20 expression. Consistent with the importance of dendritic cells in T cell activation, we observed decreased CD4+ and CD8+ T cell activation in cigarette smoke-exposed IL-1R1-deficient mice. Conclusion Our findings convey the importance of IL-1R1/IL-1α to the recruitment and activation of dendritic cells in response to cigarette smoke exposure. PMID:22992200
Phase I (Safety) Study of Autologous Tolerogenic Dendritic Cells in Type 1 Diabetic Patients
Giannoukakis, Nick; Phillips, Brett; Finegold, David; Harnaha, Jo; Trucco, Massimo
2011-01-01
OBJECTIVE The safety of dendritic cells to selectively suppress autoimmunity, especially in type 1 diabetes, has never been ascertained. We investigated the safety of autologous dendritic cells, stabilized into an immunosuppressive state, in established adult type 1 diabetic patients. RESEARCH DESIGN AND METHODS A randomized, double-blind, phase I study was conducted. A total of 10, otherwise generally healthy, insulin-requiring type 1 diabetic patients between 18 and 60 years of age, without any other known or suspected health conditions, received autologous dendritic cells, unmanipulated or engineered ex vivo toward an immunosuppressive state. Ten million cells were administered intradermally in the abdomen once every 2 weeks for a total of four administrations. The primary end point determined the proportion of patients with adverse events on the basis of the physician’s global assessment, hematology, biochemistry, and immune monitoring for a period of 12 months. RESULTS The dendritic cells were safely tolerated. There were no discernible adverse events in any patient throughout the study. Other than a significant increase in the frequency of peripheral B220+ CD11c− B cells, mainly seen in the recipients of engineered dendritic cells during the dendritic cell administration period, there were no statistically relevant differences in other immune populations or biochemical, hematological, and immune biomarkers compared with baseline. CONCLUSIONS Treatment with autologous dendritic cells, in a native state or directed ex vivo toward a tolerogenic immunosuppressive state, is safe and well tolerated. Dendritic cells upregulated the frequency of a potentially beneficial B220+ CD11c− B-cell population, at least in type 1 diabetes autoimmunity. PMID:21680720
Malinova, Dessislava; Fritzsche, Marco; Nowosad, Carla R; Armer, Hannah; Munro, Peter M G; Blundell, Michael P; Charras, Guillaume; Tolar, Pavel; Bouma, Gerben; Thrasher, Adrian J
2016-05-01
The immunological synapse is a highly structured and molecularly dynamic interface between communicating immune cells. Although the immunological synapse promotes T cell activation by dendritic cells, the specific organization of the immunological synapse on the dendritic cell side in response to T cell engagement is largely unknown. In this study, confocal and electron microscopy techniques were used to investigate the role of dendritic cell actin regulation in immunological synapse formation, stabilization, and function. In the dendritic cell-restricted absence of the Wiskott-Aldrich syndrome protein, an important regulator of the actin cytoskeleton in hematopoietic cells, the immunological synapse contact with T cells occupied a significantly reduced surface area. At a molecular level, the actin network localized to the immunological synapse exhibited reduced stability, in particular, of the actin-related protein-2/3-dependent, short-filament network. This was associated with decreased polarization of dendritic cell-associated ICAM-1 and MHC class II, which was partially dependent on Wiskott-Aldrich syndrome protein phosphorylation. With the use of supported planar lipid bilayers incorporating anti-ICAM-1 and anti-MHC class II antibodies, the dendritic cell actin cytoskeleton organized into recognizable synaptic structures but interestingly, formed Wiskott-Aldrich syndrome protein-dependent podosomes within this area. These findings demonstrate that intrinsic dendritic cell cytoskeletal remodeling is a key regulatory component of normal immunological synapse formation, likely through consolidation of adhesive interaction and modulation of immunological synapse stability. © The Author(s).
Dendritic cells in Barrett's esophagus and esophageal adenocarcinoma.
Bobryshev, Yuri V; Tran, Dinh; Killingsworth, Murray C; Buckland, Michael; Lord, Reginald V N
2009-01-01
Like other premalignant conditions that develop in the presence of chronic inflammation, the development and progression of Barrett's esophagus is associated with the development of an immune response, but how this immune response is regulated is poorly understood. A comprehensive literature search failed to find any report of the presence of dendritic cells in Barrett's intestinal metaplasia and esophageal adenocarcinoma and this prompted our study. We used immunohistochemical staining and electron microscopy to examine whether dendritic cells are present in Barrett's esophagus and esophageal adenocarcinoma. Immunohistochemical staining with CD83, a specific marker for dendritic cells, was performed on paraffin-embedded sections of Barrett's intestinal metaplasia (IM, n = 12), dysplasia (n = 11) and adenocarcinoma (n = 14). CD83+ cells were identified in the lamina propria surrounding intestinal type glands in Barrett's IM, dysplasia, and cancer tissues. Computerized quantitative analysis showed that the numbers of dendritic cells were significantly higher in cancer tissues. Double immunostaining with CD83, CD20, and CD3, and electron microscopy demonstrated that dendritic cells are present in Barrett's esophagus and form clusters with T cells and B cells directly within the lamina propria. These findings demonstrate that dendritic cells are present in Barrett's tissues, with a significant increase in density in adenocarcinoma compared to benign Barrett's esophagus. Dendritic cells may have a role in the pathogenesis and immunotherapy treatment of Barrett's esophagus and adenocarcinoma.
Ling, Changying; Hendrickson, Michael L; Kalil, Ronald E
2012-01-01
The morphology of confirmed projection neurons in the dorsal lateral geniculate nucleus (dLGN) of the rat was examined by filling these cells retrogradely with biotinylated dextran amine (BDA) injected into the visual cortex. BDA-labeled projection neurons varied widely in the shape and size of their cell somas, with mean cross-sectional areas ranging from 60-340 µm(2). Labeled projection neurons supported 7-55 dendrites that spanned up to 300 µm in length and formed dendritic arbors with cross-sectional areas of up to 7.0 × 10(4) µm(2). Primary dendrites emerged from cell somas in three broad patterns. In some dLGN projection neurons, primary dendrites arise from the cell soma at two poles spaced approximately 180° apart. In other projection neurons, dendrites emerge principally from one side of the cell soma, while in a third group of projection neurons primary dendrites emerge from the entire perimeter of the cell soma. Based on these three distinct patterns in the distribution of primary dendrites from cell somas, we have grouped dLGN projection neurons into three classes: bipolar cells, basket cells and radial cells, respectively. The appendages seen on dendrites also can be grouped into three classes according to differences in their structure. Short "tufted" appendages arise mainly from the distal branches of dendrites; "spine-like" appendages, fine stalks with ovoid heads, typically are seen along the middle segments of dendrites; and "grape-like" appendages, short stalks that terminate in a cluster of ovoid bulbs, appear most often along the proximal segments of secondary dendrites of neurons with medium or large cell somas. While morphologically diverse dLGN projection neurons are intermingled uniformly throughout the nucleus, the caudal pole of the dLGN contains more small projection neurons of all classes than the rostral pole.
Bortezomib as a new therapeutic approach for blastic plasmacytoid dendritic cell neoplasm
Philippe, Laure; Ceroi, Adam; Bôle-Richard, Elodie; Jenvrin, Alizée; Biichle, Sabeha; Perrin, Sophie; Limat, Samuel; Bonnefoy, Francis; Deconinck, Eric; Saas, Philippe; Garnache-Ottou, Francine; Angelot-Delettre, Fanny
2017-01-01
Blastic plasmacytoid dendritic cell neoplasm is an aggressive hematologic malignancy with a poor prognosis. No consensus regarding optimal treatment modalities is currently available. Targeting the nuclear factor-kappa B pathway is considered a promising approach since blastic plasmacytoid dendritic cell neoplasm has been reported to exhibit constitutive activation of this pathway. Moreover, nuclear factor-kappa B inhibition in blastic plasmacytoid dendritic cell neoplasm cell lines, achieved using either an experimental specific inhibitor JSH23 or the clinical drug bortezomib, interferes in vitro with leukemic cell proliferation and survival. Here we extended these data by showing that primary blastic plasmacytoid dendritic cell neoplasm cells from seven patients were sensitive to bortezomib-induced cell death. We confirmed that bortezomib efficiently inhibits the phosphorylation of the RelA nuclear factor-kappa B subunit in blastic plasmacytoid dendritic cell neoplasm cell lines and primary cells from patients in vitro and in vivo in a mouse model. We then demonstrated that bortezomib can be associated with other drugs used in different chemotherapy regimens to improve its impact on leukemic cell death. Indeed, when primary blastic plasmacytoid dendritic cell neoplasm cells from a patient were grafted into mice, bortezomib treatment significantly increased the animals’ survival, and was associated with a significant decrease of circulating leukemic cells and RelA nuclear factor-kappa B subunit expression. Overall, our results provide a rationale for the use of bortezomib in combination with other chemotherapy for the treatment of patients with blastic plasmacytoid dendritic cell neoplasm. Based on our data, a prospective clinical trial combining proteasome inhibitor with classical drugs could be envisaged. PMID:28798071
Baptista, Marisa A. P.; Keszei, Marton; Oliveira, Mariana; Sunahara, Karen K. S.; Andersson, John; Dahlberg, Carin I. M.; Worth, Austen J.; Liedén, Agne; Kuo, I-Chun; Wallin, Robert P. A.; Snapper, Scott B.; Eidsmo, Liv; Scheynius, Annika; Karlsson, Mikael C. I.; Bouma, Gerben; Burns, Siobhan O.; Forsell, Mattias N. E.; Thrasher, Adrian J.; Nylén, Susanne; Westerberg, Lisa S.
2016-01-01
Wiskott–Aldrich syndrome (WAS) is caused by loss-of-function mutations in the WASp gene. Decreased cellular responses in WASp-deficient cells have been interpreted to mean that WASp directly regulates these responses in WASp-sufficient cells. Here, we identify an exception to this concept and show that WASp-deficient dendritic cells have increased activation of Rac2 that support cross-presentation to CD8+ T cells. Using two different skin pathology models, WASp-deficient mice show an accumulation of dendritic cells in the skin and increased expansion of IFNγ-producing CD8+ T cells in the draining lymph node and spleen. Specific deletion of WASp in dendritic cells leads to marked expansion of CD8+ T cells at the expense of CD4+ T cells. WASp-deficient dendritic cells induce increased cross-presentation to CD8+ T cells by activating Rac2 that maintains a near neutral pH of phagosomes. Our data reveals an intricate balance between activation of WASp and Rac2 signalling pathways in dendritic cells. PMID:27425374
Hormonal Regulation of Dendritic Cell Differentiation in the Thymus.
Shirshev, S V; Orlova, E G; Loginova, O A; Nekrasova, I V; Gorbunova, O L; Maslennikova, I L
2018-06-19
We studied the effect of hormones estriol, ghrelin, kisspeptin, and chorionic gonadotropin in concentrations corresponding to their content in the peripheral blood in each trimester of pregnancy on the expression of membrane molecules on myeloid and plasmacytoid dendritic cells of the thymus. It was found that thymic myeloid dendritic cells are sensitive to the action of estriol and kisspeptin. Estriol in a concentration of the first trimester of pregnancy reduces the number of myeloid dendritic cells expressing receptor for thymic stromal lymphopoietin (CD11c+TSLP-R + ) and inhibitory molecule B7-H3 (CD11c + CD276 + ). In contrast to estriol, kisspeptin regulates the processes of differentiation of thymic myeloid dendritic cells in concentrations typical of the second-third trimesters and reduced their total number (CD11c + ) and the number of cells expressing TSLP-R (CD11c + TSLP-R + ). Estriol and kisspeptin do not affect the total number of plasmacytoid dendritic cells (CD303 + ) and expression of TSLP-R and CD276 by these cells. Ghrelin and chorionic gonadotropin in the studied concentrations had no significant effect on the total number of thymic myeloid and plasmacytoid dendritic cells and on the expression of membrane molecules of TSLP-R and CD276.
Muscarinic regulation of Kenyon cell dendritic arborizations in adult worker honey bees
Dobrin, Scott E.; Herlihy, J. Daniel; Robinson, Gene E.; Fahrbach, Susan E.
2011-01-01
The experience of foraging under natural conditions increases the volume of mushroom body neuropil in worker honey bees. A comparable increase in neuropil volume results from treatment of worker honey bees with pilocarpine, an agonist for muscarinic-type cholinergic receptors. A component of the neuropil growth induced by foraging experience is growth of dendrites in the collar region of the calyces. We show here, via analysis of Golgi-impregnated collar Kenyon cells with wedge arborizations, that significant increases in standard measures of dendritic complexity were also found in worker honey bees treated with pilocarpine. This result suggests that signaling via muscarinic-type receptors promotes the increase in Kenyon cell dendritic complexity associated with foraging. Treatment of worker honey bees with scopolamine, a muscarinic inhibitor, inhibited some aspects of dendritic growth. Spine density on the Kenyon cell dendrites varied with sampling location, with the distal portion of the dendritic field having greater total spine density than either the proximal or medial section. This observation may be functionally significant because of the stratified organization of projections from visual centers to the dendritic arborizations of the collar Kenyon cells. Pilocarpine treatment had no effect on the distribution of spines on dendrites of the collar Kenyon cells. PMID:21262388
Chicha, Laurie; Jarrossay, David; Manz, Markus G.
2004-01-01
Because of different cytokine responsiveness, surface receptor, and transcription factor expression, human CD11c− natural type I interferon–producing cells (IPCs) and CD11c+ dendritic cells were thought to derive through lymphoid and myeloid hematopoietic developmental pathways, respectively. To directly test this hypothesis, we used an in vitro assay allowing simultaneous IPC, dendritic cell, and B cell development and we tested lymphoid and myeloid committed hematopoietic progenitor cells for their developmental capacity. Lymphoid and common myeloid and granulocyte/macrophage progenitors were capable of developing into both functional IPCs, expressing gene transcripts thought to be associated with lymphoid lineage development, and into dendritic cells. However, clonal progenitors for both populations were about fivefold more frequent within myeloid committed progenitor cells. Thus, in humans as in mice, natural IPC and dendritic cell development robustly segregates with myeloid differentiation. This would fit with natural interferon type I–producing cell and dendritic cell activity in innate immunity, the evolutionary older arm of the cellular immune system. PMID:15557348
Immunotherapy with myeloid cells for tolerance induction
Rodriguez-García, Mercedes; Boros, Peter; Bromberg, Jonathan S.; Ochando, Jordi C.
2013-01-01
Purpose of review Understanding the interplay between myeloid dendritic cells and T cells under tolerogenic conditions, and whether their interactions induce the development of antigen-specific regulatory T cells (Tregs) is critical to uncover the mechanisms involved in the induction of indefinite allograft survival. Recent findings Myeloid dendritic cell–T-cell interactions are seminal events that determine the outcome of the immune response, and multiple in-vitro protocols suggest the generation of tolerogenic myeloid dendritic cells that modulate T-cell responses, and determine the outcome of the immune response to an allograft following adoptive transfer. We believe that identifying specific conditions that lead to the generation of tolerogenic myeloid dendritic cells and Tregs are critical for the manipulation the immune response towards the development of transplantation tolerance. Summary We summarize recent findings regarding specific culture conditions that generate tolerogenic myeloid dendritic cells that induce T-cell hyporesponsiveness and Treg development, and represents a novel immunotherapeutic approach to promote the induction of indefinite graft survival prolongation. The interpretations presented here illustrate that different mechanisms govern the generation tolerogenic myeloid dendritic cells, and we discuss the concomitant therapeutic implications. PMID:20616727
Cameron, Michael C.; Zhan, Ren-Zhi; Nadler, J. Victor
2014-01-01
After pilocarpine-induced status epilepticus, many granule cells born into the postseizure environment migrate aberrantly into the dentate hilus. Hilar ectopic granule cells (HEGCs) are hyperexcitable and may therefore increase circuit excitability. This study determined the distribution of their axons and dendrites. HEGCs and normotopic granule cells were filled with biocytin during whole-cell patch clamp recording in hippocampal slices from pilocarpine-treated rats. The apical dendrite of 86% of the biocytin-labeled HEGCs extended to the outer edge of the dentate molecular layer. The total length and branching of HEGC apical dendrites that penetrated the molecular layer were significantly reduced compared with apical dendrites of normotopic granule cells. HEGCs were much more likely to have a hilar basal dendrite than normotopic granule cells. They were about as likely as normotopic granule cells to project to CA3 pyramidal cells within the slice, but were much more likely to send at least one recurrent mossy fiber into the molecular layer. HEGCs with burst capability had less well-branched apical dendrites than nonbursting HEGCs, their dendrites were more likely to be confined to the hilus, and some exhibited dendritic features similar to those of immature granule cells. HEGCs thus have many paths along which to receive synchronized activity from normotopic granule cells and to transmit their own hyperactivity to both normotopic granule cells and CA3 pyramidal cells. They may therefore contribute to the highly interconnected granule cell hubs that have been proposed as crucial to development of a hyperexcitable, potentially seizure-prone circuit. PMID:21455997
Suppression of zinc dendrites in zinc electrode power cells
NASA Technical Reports Server (NTRS)
Damjanovic, A.; Diggle, J. W.
1970-01-01
Addition of various tetraalkyl quarternary ammonium salts, to alkaline zincate electrolyte of cell, prevents formation of zinc dendrites during charging of zinc electrode. Electrode capacity is not impaired and elimination of dendrites prolongs cell life.
Bortezomib as a new therapeutic approach for blastic plasmacytoid dendritic cell neoplasm.
Philippe, Laure; Ceroi, Adam; Bôle-Richard, Elodie; Jenvrin, Alizée; Biichle, Sabeha; Perrin, Sophie; Limat, Samuel; Bonnefoy, Francis; Deconinck, Eric; Saas, Philippe; Garnache-Ottou, Francine; Angelot-Delettre, Fanny
2017-11-01
Blastic plasmacytoid dendritic cell neoplasm is an aggressive hematologic malignancy with a poor prognosis. No consensus regarding optimal treatment modalities is currently available. Targeting the nuclear factor-kappa B pathway is considered a promising approach since blastic plasmacytoid dendritic cell neoplasm has been reported to exhibit constitutive activation of this pathway. Moreover, nuclear factor-kappa B inhibition in blastic plasmacytoid dendritic cell neoplasm cell lines, achieved using either an experimental specific inhibitor JSH23 or the clinical drug bortezomib, interferes in vitro with leukemic cell proliferation and survival. Here we extended these data by showing that primary blastic plasmacytoid dendritic cell neoplasm cells from seven patients were sensitive to bortezomib-induced cell death. We confirmed that bortezomib efficiently inhibits the phosphorylation of the RelA nuclear factor-kappa B subunit in blastic plasmacytoid dendritic cell neoplasm cell lines and primary cells from patients in vitro and in vivo in a mouse model. We then demonstrated that bortezomib can be associated with other drugs used in different chemotherapy regimens to improve its impact on leukemic cell death. Indeed, when primary blastic plasmacytoid dendritic cell neoplasm cells from a patient were grafted into mice, bortezomib treatment significantly increased the animals' survival, and was associated with a significant decrease of circulating leukemic cells and RelA nuclear factor-kappa B subunit expression. Overall, our results provide a rationale for the use of bortezomib in combination with other chemotherapy for the treatment of patients with blastic plasmacytoid dendritic cell neoplasm. Based on our data, a prospective clinical trial combining proteasome inhibitor with classical drugs could be envisaged. Copyright© Ferrata Storti Foundation.
Mannan-MUC1-pulsed dendritic cell immunotherapy: a phase I trial in patients with adenocarcinoma.
Loveland, Bruce E; Zhao, Anne; White, Shane; Gan, Hui; Hamilton, Kate; Xing, Pei-Xiang; Pietersz, Geoffrey A; Apostolopoulos, Vasso; Vaughan, Hilary; Karanikas, Vaios; Kyriakou, Peter; McKenzie, Ian F C; Mitchell, Paul L R
2006-02-01
Tumor antigen-loaded dendritic cells show promise for cancer immunotherapy. This phase I study evaluated immunization with autologous dendritic cells pulsed with mannan-MUC1 fusion protein (MFP) to treat patients with advanced malignancy. Eligible patients had adenocarcinoma expressing MUC1, were of performance status 0 to 1, with no autoimmune disease. Patients underwent leukapheresis to generate dendritic cells by culture ex vivo with granulocyte macrophage colony-stimulating factor and interleukin 4 for 5 days. Dendritic cells were then pulsed overnight with MFP and harvested for reinjection. Patients underwent three cycles of leukapheresis and reinjection at monthly intervals. Patients with clinical benefit were able to continue with dendritic cell-MFP immunotherapy. Ten patients with a range of tumor types were enrolled, with median age of 60 years (range, 33-70 years); eight patients were of performance status 0 and two of performance status 1. Dendritic cell-MFP therapy led to strong T-cell IFNgamma Elispot responses to the vaccine and delayed-type hypersensitivity responses at injection sites in nine patients who completed treatments. Immune responses were sustained at 1 year in monitored patients. Antibody responses were seen in three patients only and were of low titer. Side effects were grade 1 only. Two patients with clearly progressive disease (ovarian and renal carcinoma) at entry were stable after initial therapy and went on to further leukapheresis and dendritic cell-MFP immunotherapy. These two patients have now each completed over 3 years of treatment. Immunization produced T-cell responses in all patients with evidence of tumor stabilization in 2 of the 10 advanced cancer patients treated. These data support further clinical evaluation of this dendritic cell-MFP immunotherapy.
Morelli, Adrian E; Thomson, Angus W
2014-08-01
Extensive research in murine transplant models over the past two decades has convincingly demonstrated the ability of regulatory dendritic cells (DCregs) to promote long-term allograft survival. We review important considerations regarding the source of therapeutic DCregs (donor or recipient) and their mode of action, in-situ targeting of DCregs, and optimal therapeutic regimens to promote DCreg function. Recent studies have defined protocols and mechanisms whereby ex-vivo-generated DCregs of donor or recipient origin subvert allogeneic T-cell responses and promote long-term organ transplant survival. Particular interest has focused on how donor antigen is acquired, processed and presented by autologous dendritic cells, on the stability of DCregs, and on in-situ targeting of dendritic cells to promote their tolerogenic function. New evidence of the therapeutic efficacy of DCregs in a clinically relevant nonhuman primate organ transplant model and production of clinical grade DCregs support early evaluation of DCreg therapy in human graft recipients. We discuss strategies currently used to promote dendritic cell tolerogenicity, including DCreg therapy and in-situ targeting of dendritic cells, with a view to improved understanding of underlying mechanisms and identification of the most promising strategies for therapeutic application.
Bobryshev, Yuri V; Tran, Dinh; Killingsworth, Murray C; Buckland, Michael; Lord, Reginald V N
2009-03-01
The development of Barrett's esophagus is poorly understood, but it has been suggested that cardiac mucosa is a precursor of intestinal type metaplasia and that inflammation of cardiac mucosa may play a role in the formation of Barrett's esophagus. The present study was undertaken to examine the presence and distribution of immune-inflammatory cells in cardiac mucosa, specifically focusing on dendritic cells because of their importance as regulators of immune reactions. Endoscopic biopsy specimens were obtained from 12 patients with cardiac mucosa without Barrett's esophagus or adenocarcinoma and from 21 patients with Barrett's esophagus without dysplasia (intestinal metaplasia). According to histology, in nine of the 21 specimens with Barrett's esophagus, areas of mucosa composed of cardiac type epithelium-lined glands were present as well. Immunohistochemical staining and electron microscopy were used to examine immune-inflammatory cells in paraffin-embedded sections. Immune-inflammatory cells, including T cells, B cells, dendritic cells, macrophages, and mast cells, were present in the connective tissue matrix that surrounded cardiac type epithelium-lined glands in all patients with cardiac mucosa. Clustering of dendritic cells with each other and with lymphocytes and the intrusion of dendritic cells between glandular mucus cells were observed. In the Barrett's esophagus specimens that contained cardiac type glands, computerized CD83 expression quantitation revealed that there were more dendritic cells in cardiac mucosa than in intestinal metaplasia. Immune-inflammatory infiltrates containing dendritic cells are consistently present in cardiac mucosa. The finding of a larger number of dendritic cells in areas of cardiac mucosa in Barrett's esophagus biopsies suggests that the immune inflammation of cardiac mucosa might play a role in modifying the local tissue environment to promote the development of specialized intestinal type metaplasia.
2015-09-01
Award Number: W81XWH-11-1-0384 TITLE: Evaluation of Immune Responses Mediated by Listeria-Stimulated Human Dendritic Cells : Implications for...Immune Responses Mediated by Listeria-Stimulated Human Dendritic Cells : Implications for Cancer Vaccine Therapy 5b. GRANT NUMBER CA100463 5c...Listeria monocytogenes (Lm) on human dendritic cells (DCs) to optimize Lm-based DC cancer vaccines. The project aims are: 1) Compare the activation and
Yokogawa, Hideaki; Kobayashi, Akira; Mori, Natsuko; Sugiyama, Kazuhisa
2015-01-01
Purpose To produce a two-dimensional reconstruction map of dendritic lesions in patients with herpes simplex keratitis (HSK) using in vivo confocal microscopy. Methods Four eyes of four patients (mean 65.8 years) with HSK presenting with a dendritic lesion were enrolled. Slit-lamp biomicroscopy and in vivo laser confocal microscopy were performed. Acquired confocal images at the level of the epithelium were arranged and mapped into subconfluent montages. Changes in the shape and degree of light reflection of abnormal cells and deposits around dendritic lesions as well as other corneal layers were qualitatively evaluated. Results Mapping of dendritic lesion was successful in all cases, and the subconfluent montages clearly showed the larger image of dendritic lesion. In all cases, the dendritic lesion consisted of hyperreflective irregular epithelial cells, and was surrounded by distorted and elongated epithelial cells. In three cases, hyperreflective deposits were noted at the midline of the lesion. The corneal stroma showed a hyperreflective honeycomb pattern. In two cases, inflammatory cells were observed at the level of endothelial cell layer. Conclusion Mapping of dendritic lesions in patients with HSK was successful in all patients using in vivo confocal microscopy. Cellular level observation of dendritic lesion at a relatively larger magnification may help understand the in vivo morphological change of HSK. Further study in more patients with HSK and nonherpetic dendritic lesion is needed to utilize confocal microscopy images in differential diagnosis and follow-up of the epithelial lesions with dendrite. PMID:26445524
Yokogawa, Hideaki; Kobayashi, Akira; Mori, Natsuko; Sugiyama, Kazuhisa
2015-01-01
To produce a two-dimensional reconstruction map of dendritic lesions in patients with herpes simplex keratitis (HSK) using in vivo confocal microscopy. Four eyes of four patients (mean 65.8 years) with HSK presenting with a dendritic lesion were enrolled. Slit-lamp biomicroscopy and in vivo laser confocal microscopy were performed. Acquired confocal images at the level of the epithelium were arranged and mapped into subconfluent montages. Changes in the shape and degree of light reflection of abnormal cells and deposits around dendritic lesions as well as other corneal layers were qualitatively evaluated. Mapping of dendritic lesion was successful in all cases, and the subconfluent montages clearly showed the larger image of dendritic lesion. In all cases, the dendritic lesion consisted of hyperreflective irregular epithelial cells, and was surrounded by distorted and elongated epithelial cells. In three cases, hyperreflective deposits were noted at the midline of the lesion. The corneal stroma showed a hyperreflective honeycomb pattern. In two cases, inflammatory cells were observed at the level of endothelial cell layer. Mapping of dendritic lesions in patients with HSK was successful in all patients using in vivo confocal microscopy. Cellular level observation of dendritic lesion at a relatively larger magnification may help understand the in vivo morphological change of HSK. Further study in more patients with HSK and nonherpetic dendritic lesion is needed to utilize confocal microscopy images in differential diagnosis and follow-up of the epithelial lesions with dendrite.
Erb, P; Ramila, G; Sklenar, I; Kennedy, M; Sunshine, G H
1985-05-01
Dendritic cells and macrophages obtained from spleen and peritoneal exudate were tested as accessory cells for the activation of lymphokine production by T cells, for supporting T-B cooperation and for the induction of antigen-specific T helper cells. Dendritic cells as well as macrophages were able to activate T cells for interleukin-2 secretion and functioned as accessory cells in T-B cooperation, but only macrophages induced T helper cells, which cooperate with B cells by a linked recognition interaction, to soluble antigens. Dendritic cell- and antigen-activated T cells also did not help B cells in the presence of Con A supernatants which contained various T cell- and B cell-stimulatory factors. The failure of dendritic cells to differentiate memory into functional T helper cells, but their efficient accessory cell function in T-B cooperation, where functional T helper cells are already present, can be best explained by a differential accessory cell requirement for T helper cell activation dependent on the differentiation stage of the T helper cell.
Functional properties of granule cells with hilar basal dendrites in the epileptic dentate gyrus.
Kelly, Tony; Beck, Heinz
2017-01-01
The maturation of adult-born granule cells and their functional integration into the network is thought to play a key role in the proper functioning of the dentate gyrus. In temporal lobe epilepsy, adult-born granule cells in the dentate gyrus develop abnormally and possess a hilar basal dendrite (HBD). Although morphological studies have shown that these HBDs have synapses, little is known about the functional properties of these HBDs or the intrinsic and network properties of the granule cells that possess these aberrant dendrites. We performed patch-clamp recordings of granule cells within the granule cell layer "normotopic" from sham-control and status epilepticus (SE) animals. Normotopic granule cells from SE animals possessed an HBD (SE + HBD + cells) or not (SE + HBD - cells). Apical and basal dendrites were stimulated using multiphoton uncaging of glutamate. Two-photon Ca 2+ imaging was used to measure Ca 2+ transients associated with back-propagating action potentials (bAPs). Near-synchronous synaptic input integrated linearly in apical dendrites from sham-control animals and was not significantly different in apical dendrites of SE + HBD - cells. The majority of HBDs integrated input linearly, similar to apical dendrites. However, 2 of 11 HBDs were capable of supralinear integration mediated by a dendritic spike. Furthermore, the bAP-evoked Ca 2+ transients were relatively well maintained along HBDs, compared with apical dendrites. This further suggests an enhanced electrogenesis in HBDs. In addition, the output of granule cells from epileptic tissue was enhanced, with both SE + HBD - and SE + HBD + cells displaying increased high-frequency (>100 Hz) burst-firing. Finally, both SE + HBD - and SE + HBD + cells received recurrent excitatory input that was capable of generating APs, especially in the absence of feedback inhibition. Taken together, these data suggest that the enhanced excitability of HBDs combined with the altered intrinsic and network properties of granule cells collude to promote excitability and synchrony in the epileptic dentate gyrus. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.
Structural basis of orientation sensitivity of cat retinal ganglion cells.
Leventhal, A G; Schall, J D
1983-11-10
We investigated the structural basis of the physiological orientation sensitivity of retinal ganglion cells (Levick and Thibos, '82). The dendritic fields of 840 retinal ganglion cells labeled by injections of horseradish peroxidase into the dorsal lateral geniculate nucleus (LGNd) or optic tracts of normal cats. Siamese cats, and cat deprived of patterned visual experience from birth by monocular lid-suture (MD) were studied. Mathematical techniques designed to analyze direction were used to find the dendritic field orientation of each cell. Statistical techniques designed for angular data were used to determine the relationship between dendritic field orientation and angular position on the retina (polar angle). Our results indicate that 88% of retinal ganglion cells have oriented dendritic fields and that dendritic field orientation is related systematically to retinal position. In all regions of retina more that 0.5 mm from the area centralis the dendritic fields of retinal ganglion cells are oriented radially, i.e., like the spokes of a wheel having the area centralis at its hub. This relationship was present in all animals and cell types studied and was strongest for cells located close to the horizontal meridian (visual streak) of the retina. Retinal ganglion cells appear to be sensitive to stimulus orientation because they have oriented dendritic fields.
Epidermal Viral Immunity Induced by CD8α+ Dendritic Cells But Not by Langerhans Cells
NASA Astrophysics Data System (ADS)
Allan, Rhys S.; Smith, Chris M.; Belz, Gabrielle T.; van Lint, Allison L.; Wakim, Linda M.; Heath, William R.; Carbone, Francis R.
2003-09-01
The classical paradigm for dendritic cell function derives from the study of Langerhans cells, which predominate within skin epidermis. After an encounter with foreign agents, Langerhans cells are thought to migrate to draining lymph nodes, where they initiate T cell priming. Contrary to this, we show here that infection of murine epidermis by herpes simplex virus did not result in the priming of virus-specific cytotoxic T lymphocytes by Langerhans cells. Rather, the priming response required a distinct CD8α+ dendritic cell subset. Thus, the traditional view of Langerhans cells in epidermal immunity needs to be revisited to accommodate a requirement for other dendritic cells in this response.
Hur, E E; Edwards, R H; Rommer, E; Zaborszky, L
2009-12-29
The basal forebrain (BF) comprises morphologically and functionally heterogeneous cell populations, including cholinergic and non-cholinergic corticopetal neurons that are implicated in sleep-wake modulation, learning, memory and attention. Several studies suggest that glutamate may be among inputs affecting cholinergic corticopetal neurons but such inputs have not been demonstrated unequivocally. We examined glutamatergic axon terminals in the sublenticular substantia innominata in rats using double-immunolabeling for vesicular glutamate transporters (Vglut1 and Vglut2) and choline acetyltransferase (ChAT) at the electron microscopic level. In a total surface area of 30,000 microm(2), we classified the pre- and postsynaptic elements of 813 synaptic boutons. Vglut1 and Vglut2 boutons synapsed with cholinergic dendrites, and occasionally Vglut2 axon terminals also synapsed with cholinergic cell bodies. Vglut1 terminals formed synapses with unlabeled dendrites and spines with equal frequency, while Vglut2 boutons were mainly in synaptic contact with unlabeled dendritic shafts and occasionally with unlabeled spines. In general, Vglut1 boutons contacted more distal dendritic compartments than Vglut2 boutons. About 21% of all synaptic boutons (n=347) detected in tissue that was stained for Vglut1 and ChAT were positive for Vglut1, and 14% of the Vglut1 synapses were made on cholinergic profiles. From separate cases stained for Vglut2 and ChAT, 35% of all synaptic boutons (n=466) were positive for Vglut2, and 23% of the Vglut2 synapses were made on cholinergic profiles. On average, Vglut1 boutons were significantly smaller than Vglut2 synaptic boutons. The Vglut2 boutons that synapsed cholinergic profiles tended to be larger than the Vglut2 boutons that contacted unlabeled, non-cholinergic postsynaptic profiles. The presence of two different subtypes of Vgluts, the size differences of the Vglut synaptic boutons, and their preference for different postsynaptic targets suggest that the action of glutamate on BF neurons is complex and may arise from multiple afferent sources.
Hur, Elizabeth E.; Edwards, Robert H.; Rommer, Erzsebet; Zaborszky, Laszlo
2009-01-01
The basal forebrain (BF) comprises morphologically and functionally heterogeneous cell populations, including cholinergic and non-cholinergic corticopetal neurons that are implicated in sleep-wake modulation, learning, memory and attention. Several studies suggest that glutamate may be among inputs affecting cholinergic corticopetal neurons but such inputs have not been demonstrated unequivocally. We examined glutamatergic axon terminals in the sublenticular substantia innominata in rats using double-immunolabeling for vesicular glutamate transporters (Vglut1 and Vglut2) and choline acetyltransferase (ChAT) at the electron microscopic level. In a total surface area of 30,000 μm2, we classified the pre- and postsynaptic elements of 813 synaptic boutons. Vglut1 and Vglut2 boutons synapsed with cholinergic dendrites, and occasionally Vglut2 axon terminals also synapsed with cholinergic cell bodies. Vglut1 terminals formed synapses with unlabeled dendrites and spines with equal frequency, while Vglut2 boutons were mainly in synaptic contact with unlabeled dendritic shafts and occasionally with unlabeled spines. In general, Vglut1 boutons contacted more distal dendritic compartments than Vglut2 boutons. About 21% of all synaptic boutons (n=347) detected in tissue that was stained for Vglut1 and ChAT were positive for Vglut1, and 14% of the Vglut1 synapses were made on cholinergic profiles. From separate cases stained for Vglut2 and ChAT, 35% of all synaptic boutons (n=466) were positive for Vglut2, and 23% of the Vglut2 synapses were made on cholinergic profiles. On average, Vglut1 boutons were significantly smaller than Vglut2 synaptic boutons. The Vglut2 boutons that synapsed cholinergic profiles tended to be larger than the Vglut2 boutons that contacted unlabeled, non-cholinergic postsynaptic profiles. The presence of two different subtypes of Vgluts, the size differences of the Vglut synaptic boutons, and their preference for different postsynaptic targets suggest that the action of glutamate on BF neurons is complex and may arise from multiple afferent sources. PMID:19778580
Manipulation of visible-light polarization with dendritic cell-cluster metasurfaces.
Fang, Zhen-Hua; Chen, Huan; An, Di; Luo, Chun-Rong; Zhao, Xiao-Peng
2018-06-26
Cross-polarization conversion plays an important role in visible light manipulation. Metasurface with asymmetric structure can be used to achieve polarization conversion of linearly polarized light. Based on this, we design a quasi-periodic dendritic metasurface model composed of asymmetric dendritic cells. The simulation indicates that the asymmetric dendritic structure can vertically rotate the polarization direction of the linear polarization wave in visible light. Silver dendritic cell-cluster metasurface samples were prepared by the bottom-up electrochemical deposition. It experimentally proved that they could realize the cross - polarization conversion in visible light. Cross-polarized propagating light is deflected into anomalous refraction channels. Dendritic cell-cluster metasurface with asymmetric quasi-periodic structure conveys significance in cross-polarization conversion research and features extensive practical application prospect and development potential.
Breece, Elizabeth; Paciotti, Brian; Nordahl, Christine Wu; Ozonoff, Sally; Van de Water, Judy A.; Rogers, Sally J.; Amaral, David; Ashwood, Paul
2012-01-01
The pathophysiology of Autism Spectrum Disorder (ASD) is not yet known; however, studies suggest that dysfunction of the immune system affects many children with ASD. Increasing evidence points to dysfunction of the innate immune system including activation of microglia and perivascular macrophages, increases in inflammatory cytokines/chemokines in brain tissue and CSF, and abnormal peripheral monocyte cell function. Dendritic cells are major players in innate immunity and have important functions in the phagocytosis of pathogens or debris, antigen presentation, activation of naïve T cells, induction of tolerance and cytokine/chemokine production. In this study, we assessed circulating frequencies of myeloid dendritic cells (defined as Lin-1−BDCA1+CD11c+ and Lin-1−BDCA3+CD123−) and plasmacytoid dendritic cells (Lin-1− BDCA2+CD123+ or Lin-1−BDCA4+ CD11c−) in 57 children with ASD, and 29 typically developing controls of the same age, all of who were enrolled as part of the Autism Phenome Project (APP). The frequencies of dendritic cells and associations with behavioral assessment and MRI measurements of amygdala volume were compared in the same participants. The frequencies of myeloid dendritic cells were significantly increased in children with ASD compared to typically developing controls (p < 0.03). Elevated frequencies of myeloid dendritic cells were positively associated with abnormal right and left amygdala enlargement, severity of gastrointestinal symptoms and increased repetitive behaviors. The frequencies of plasmacytoid dendritic cells were also associated with amygdala volumes as well as developmental regression in children with ASD. Dendritic cells play key roles in modulating immune responses and differences in frequencies or functions of these cells may result in immune dysfunction in children with ASD. These data further implicate innate immune cells in the complex pathophysiology of ASD. PMID:23063420
Oka, Y
1983-04-01
The local neuronal circuitry of goldfish olfactory bulb was analyzed in Golgi preparations combining light- and electron-microscopy, as well as in routinely prepared ultrastructural preparations. Mitral cells were identified with the light-microscope in Golgi-impregnated thick sections according to the following criteria: (1) cell bodies were distributed irregularly in a wide layer between 100 and 200 micrometer from the surface, (2) cell bodies were larger than other neurons (10-20 micrometer in diameter), and (3) the dendrites were directed toward the superficially-located olfactory nerve layer where they ended as highly branched glomerular tufts. These impregnated cells were examined by electron-microscopy in serial section. The results demonstrate synaptic organization in relation to the mitral cells. (1) Glomerular tufts received afferent input from primary olfactory axons which made Gray's Type I synaptic contacts. These dendrites also had reciprocal dendrodendritic synapses with dendrites of certain non-mitral cells. (2) Dendritic shafts of mitral cells made reciprocal dendritic synapses with dendrites of certain non-mitral cells. (3) Cell bodies and their initial axon segments had reciprocal synapses with certain dendrites but occurred infrequently. In reciprocal synapses, the direction of the Gray Type I (asymmetrical) is away from the mitral cell while those with Gray Type II synapses (symmetrical) are toward the mitral cell. Assuming that the type I synapse is excitatory and Type II is inhibitory, these findings explain the electrophysiological demonstration of self-inhibition discharge found in mitral cells.
Linking macroscopic with microscopic neuroanatomy using synthetic neuronal populations.
Schneider, Calvin J; Cuntz, Hermann; Soltesz, Ivan
2014-10-01
Dendritic morphology has been shown to have a dramatic impact on neuronal function. However, population features such as the inherent variability in dendritic morphology between cells belonging to the same neuronal type are often overlooked when studying computation in neural networks. While detailed models for morphology and electrophysiology exist for many types of single neurons, the role of detailed single cell morphology in the population has not been studied quantitatively or computationally. Here we use the structural context of the neural tissue in which dendritic trees exist to drive their generation in silico. We synthesize the entire population of dentate gyrus granule cells, the most numerous cell type in the hippocampus, by growing their dendritic trees within their characteristic dendritic fields bounded by the realistic structural context of (1) the granule cell layer that contains all somata and (2) the molecular layer that contains the dendritic forest. This process enables branching statistics to be linked to larger scale neuroanatomical features. We find large differences in dendritic total length and individual path length measures as a function of location in the dentate gyrus and of somatic depth in the granule cell layer. We also predict the number of unique granule cell dendrites invading a given volume in the molecular layer. This work enables the complete population-level study of morphological properties and provides a framework to develop complex and realistic neural network models.
Linking Macroscopic with Microscopic Neuroanatomy Using Synthetic Neuronal Populations
Schneider, Calvin J.; Cuntz, Hermann; Soltesz, Ivan
2014-01-01
Dendritic morphology has been shown to have a dramatic impact on neuronal function. However, population features such as the inherent variability in dendritic morphology between cells belonging to the same neuronal type are often overlooked when studying computation in neural networks. While detailed models for morphology and electrophysiology exist for many types of single neurons, the role of detailed single cell morphology in the population has not been studied quantitatively or computationally. Here we use the structural context of the neural tissue in which dendritic trees exist to drive their generation in silico. We synthesize the entire population of dentate gyrus granule cells, the most numerous cell type in the hippocampus, by growing their dendritic trees within their characteristic dendritic fields bounded by the realistic structural context of (1) the granule cell layer that contains all somata and (2) the molecular layer that contains the dendritic forest. This process enables branching statistics to be linked to larger scale neuroanatomical features. We find large differences in dendritic total length and individual path length measures as a function of location in the dentate gyrus and of somatic depth in the granule cell layer. We also predict the number of unique granule cell dendrites invading a given volume in the molecular layer. This work enables the complete population-level study of morphological properties and provides a framework to develop complex and realistic neural network models. PMID:25340814
Gerlini, Gianni; Tun-Kyi, Adrian; Dudli, Christa; Burg, Günter; Pimpinelli, Nicola; Nestle, Frank O.
2004-01-01
CD1 molecules are expressed by antigen-presenting cells such as dendritic cells and mediate primary immune responses to lipids and glycolipids which have been shown to be expressed by various tumors. Glycolipids are expressed by melanoma cells but, despite their immunogenicity, no efficient spontaneous immune responses are elicited. As IL-10 has previously been shown to down-regulate CD1a on dendritic cells and is known to be expressed by various melanoma cell lines, we investigated if melanoma-derived IL-10 could down-regulate CD1 molecule expression on dendritic cells as a possible way to circumvent immune recognition. We found that CD1a, CD1b, CD1c, and CD1d were significantly down-regulated on dendritic cells in metastatic (n = 10) but not in primary melanoma lesions (n = 10). We further detected significantly higher IL-10 protein levels in metastatic than in primary melanomas. Moreover, supernatants from metastatic melanomas were significantly more effective in down-regulating CD1 molecules on dendritic cells than supernatants from primary melanoma cultures. This effect was blocked using a neutralizing IL-10 antibody in a dose dependent manner. Our findings suggest that metastatic but not primary melanomas can down-regulate CD1 molecules on infiltrating dendritic cells by secreting IL-10 which may represent a novel way to escape the immune response directed against the tumor. PMID:15579430
Delayed stabilization of dendritic spines in fragile X mice.
Cruz-Martín, Alberto; Crespo, Michelle; Portera-Cailliau, Carlos
2010-06-09
Fragile X syndrome (FXS) causes mental impairment and autism through transcriptional silencing of the Fmr1 gene, resulting in the loss of the RNA-binding protein fragile X mental retardation protein (FMRP). Cortical pyramidal neurons in affected individuals and Fmr1 knock-out (KO) mice have an increased density of dendritic spines. The mutant mice also show defects in synaptic and experience-dependent circuit plasticity, which are known to be mediated in part by dendritic spine dynamics. We used in vivo time-lapse imaging with two-photon microscopy through cranial windows in male and female neonatal mice to test the hypothesis that dynamics of dendritic protrusions are altered in KO mice during early postnatal development. We find that layer 2/3 neurons from wild-type mice exhibit a rapid decrease in dendritic spine dynamics during the first 2 postnatal weeks, as immature filopodia are replaced by mushroom spines. In contrast, KO mice show a developmental delay in the downregulation of spine turnover and in the transition from immature to mature spine subtypes. Blockade of metabotropic glutamate receptor (mGluR) signaling, which reverses some adult phenotypes of KO mice, accentuated this immature protrusion phenotype in KO mice. Thus, absence of FMRP delays spine stabilization and dysregulated mGluR signaling in FXS may partially normalize this early synaptic defect.
Mikulic, Josip; Longet, Stéphanie; Favre, Laurent; Benyacoub, Jalil; Corthesy, Blaise
2017-01-01
The importance of secretory IgA in controlling the microbiota is well known, yet how the antibody affects the perception of the commensals by the local immune system is still poorly defined. We have previously shown that the transport of secretory IgA in complex with bacteria across intestinal microfold cells results in an association with dendritic cells in Peyer’s patches. However, the consequences of such an interaction on dendritic cell conditioning have not been elucidated. In this study, we analyzed the impact of the commensal Lactobacillus rhamnosus, alone or associated with secretory IgA, on the responsiveness of dendritic cells freshly recovered from mouse Peyer’s patches, mesenteric lymph nodes, and spleen. Lactobacillus rhamnosus-conditioned mucosal dendritic cells are characterized by increased expression of Toll-like receptor regulatory proteins [including single immunoglobulin interleukin-1 receptor-related molecule, suppressor of cytokine signaling 1, and Toll-interacting molecule] and retinaldehyde dehydrogenase 2, low surface expression of co-stimulatory markers, high anti- versus pro-inflammatory cytokine production ratios, and induction of T regulatory cells with suppressive function. Association with secretory IgA enhanced the anti-inflammatory/regulatory Lactobacillus rhamnosus-induced conditioning of mucosal dendritic cells, particularly in Peyer’s patches. At the systemic level, activation of splenic dendritic cells exposed to Lactobacillus rhamnosus was partially dampened upon association with secretory IgA. These data suggest that secretory IgA, through coating of commensal bacteria, contributes to the conditioning of mucosal dendritic cells toward tolerogenic profiles essential for the maintenance of intestinal homeostasis. PMID:26972771
Rollins-Raval, Marian A; Marafioti, Teresa; Swerdlow, Steven H; Roth, Christine G
2013-06-01
Plasmacytoid dendritic cells, which play a fundamental role in the innate immune response, are best known for their presence in hyaline-vascular Castleman disease and histiocytic necrotizing lymphadenitis. The relative number and distribution in many reactive entities as detected using more sensitive methods are uncertain, and their diagnostic implications are unknown. Immunohistochemical studies for plasmacytoid dendritic cell-associated markers CD123 and CD2AP were performed on 42 lymph nodes with hyaline-vascular Castleman disease, histiocytic necrotizing lymphadenitis, sarcoidosis, necrotizing granulomatous inflammation, viral infection, dermatopathic lymphadenopathy, autoimmune disease, and a histologic pattern compatible with toxoplasmosis. The overall plasmacytoid dendritic cell numbers and growth patterns (tight aggregates, loose aggregates/clusters, scattered single cells) were assessed. Plasmacytoid dendritic cells were present in all cases and were predominantly distributed in loose aggregates/clusters or singly. They were most numerous in granulomatous inflammation and histiocytic necrotizing lymphadenitis, whereas viral infections showed the fewest overall numbers and a predominant pattern of scattered single cells. Tight aggregates of plasmacytoid dendritic cells were most numerous in hyaline-vascular Castleman disease (100% sensitive, 68% specific). Plasmacytoid dendritic cells are not limited to a small number of reactive lymphadenopathies but are found in many reactive processes, often with a predominant pattern of loose aggregates/clusters and scattered single cells. However, tight aggregates were a characteristic feature of hyaline-vascular Castleman disease, and viral infections typically showed only few scattered cells distributed singly. Copyright © 2013 Elsevier Inc. All rights reserved.
Antigen-loaded dendritic cell migration: MR imaging in a pancreatic carcinoma model.
Zhang, Zhuoli; Li, Weiguo; Procissi, Daniele; Li, Kangan; Sheu, Alexander Y; Gordon, Andrew C; Guo, Yang; Khazaie, Khashayarsha; Huan, Yi; Han, Guohong; Larson, Andrew C
2015-01-01
To test the following hypotheses in a murine model of pancreatic cancer: (a) Vaccination with antigen-loaded iron-labeled dendritic cells reduces T2-weighted signal intensity at magnetic resonance (MR) imaging within peripheral draining lymph nodes ( LN lymph node s) and (b) such signal intensity reductions are associated with tumor size changes after dendritic cell vaccination. The institutional animal care and use committee approved this study. Panc02 cells were implanted into the flanks of 27 C57BL/6 mice bilaterally. After tumors reached 10 mm, cell viability was evaluated, and iron-labeled dendritic cell vaccines were injected into the left hind footpad. The mice were randomly separated into the following three groups (n = 9 in each): Group 1 was injected with 1 million iron-labeled dendritic cells; group 2, with 2 million cells; and control mice, with 200 mL of phosphate-buffered saline. T1- and T2-weighted MR imaging of labeled dendritic cell migration to draining LN lymph node s was performed before cell injection and 6 and 24 hours after injection. The signal-to-noise ratio ( SNR signal-to-noise ratio ) of the draining LN lymph node s was measured. One-way analysis of variance ( ANOVA analysis of variance ) was used to compare Prussian blue-positive dendritic cell measurements in LN lymph node s. Repeated-measures ANOVA analysis of variance was used to compare in vivo T2-weighted SNR signal-to-noise ratio LN lymph node measurements between groups over the observation time points. Trypan blue assays showed no significant difference in mean viability indexes (unlabeled vs labeled dendritic cells, 4.32% ± 0.69 [standard deviation] vs 4.83% ± 0.76; P = .385). Thirty-five days after injection, the mean left and right flank tumor sizes, respectively, were 112.7 mm(2) ± 16.4 and 109 mm(2) ± 24.3 for the 1-million dendritic cell group, 92.2 mm(2) ± 9.9 and 90.4 mm(2) ± 12.8 for the 2-million dendritic cell group, and 193.7 mm(2) ± 20.9 and 189.4 mm(2) ± 17.8 for the control group (P = .0001 for control group vs 1-million cell group; P = .00007 for control group vs 2-million cell group). There was a correlation between postinjection T2-weighted SNR signal-to-noise ratio decreases in the left popliteal LN lymph node 24 hours after injection and size changes at follow-up for tumors in both flanks (R = 0.81 and R = 0.76 for left and right tumors, respectively). MR imaging approaches can be used for quantitative measurement of accumulated iron-labeled dendritic cell-based vaccines in draining LN lymph node s. The amount of dendritic cell-based vaccine in draining LN lymph node s correlates well with observed protective effects.
Watanabe, Tomoya; Hotta, Chie; Koizumi, Shin-ichi; Miyashita, Kazuho; Nakabayashi, Jun; Kurotaki, Daisuke; Sato, Go R; Yamamoto, Michio; Nakazawa, Masatoshi; Fujita, Hiroyuki; Sakai, Rika; Fujisawa, Shin; Nishiyama, Akira; Ikezawa, Zenro; Aihara, Michiko; Ishigatsubo, Yoshiaki; Tamura, Tomohiko
2013-11-15
BCR-ABL tyrosine kinase inhibitors (TKI) have dramatically improved therapy for chronic myelogenous leukemia (CML). However, several problems leading to TKI resistance still impede a complete cure of this disease. IFN regulatory factor-8 (IRF8) is a transcription factor essential for the development and functions of immune cells, including dendritic cells. Irf8(-/-) mice develop a CML-like disease and IRF8 expression is downregulated in patients with CML, suggesting that IRF8 is involved in the pathogenesis of CML. In this study, by using a murine CML model, we show that BCR-ABL strongly inhibits a generation of dendritic cells from an early stage of their differentiation in vivo, concomitant with suppression of Irf8 expression. Forced expression of IRF8 overrode BCR-ABL (both wild-type and T315I-mutated) to rescue dendritic cell development in vitro, indicating that the suppression of Irf8 causes dendritic cell deficiency. Gene expression profiling revealed that IRF8 restored the expression of a significant portion of BCR-ABL-dysregulated genes and predicted that BCR-ABL has immune-stimulatory potential. Indeed, IRF8-rescued BCR-ABL-expressing dendritic cells were capable of inducing CTLs more efficiently than control dendritic cells. Altogether, our findings suggest that IRF8 is an attractive target in next-generation therapies for CML. ©2013 AACR
Ziegler, Susanne M; Beisel, Claudia; Sutter, Kathrin; Griesbeck, Morgane; Hildebrandt, Heike; Hagen, Sven H; Dittmer, Ulf; Altfeld, Marcus
2017-02-01
The outcomes of many diseases differ between women and men, with women experiencing a higher incidence and more severe pathogenesis of autoimmune and some infectious diseases. It has been suggested that this is partially due to activation of plasmacytoid dendritic cells (pDCs), the main producers of interferon (IFN)-α, in response to toll-like receptor (TLR)7 stimulation. We investigated the induction of type I IFN (IFN-I) subtypes upon TLR7 stimulation on isolated pDCs. Our data revealed a sex-specific differential expression of IFN-Is, with pDCs from females showing a significantly higher mRNA expression of all 13 IFN-α subtypes. In addition, pDCs from females had higher levels of IFN-β mRNA after stimulation, indicating that sex differences in IFN-I production by pDCs were mediated by a signaling event upstream of the first loop of IFN-I mRNA transcription. Furthermore, the surface expression levels of the common IFN-α/β receptor subunit 2 were significantly higher on pDCs from females in comparison to males. These data indicate that higher IFN-α production is already established at the mRNA level and propose a contribution of higher IFN-α/β receptor 2 expression on pDCs to the immunological differences in IFN-I production observed between females and males. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Can dendritic cells see light?
NASA Astrophysics Data System (ADS)
Chen, Aaron C.-H.; Huang, Ying-Ying; Sharma, Sulbha K.; Hamblin, Michael R.
2010-02-01
There are many reports showing that low-level light/laser therapy (LLLT) can enhance wound healing, upregulate cell proliferation and has anti-apoptotic effects by activating intracellular protective genes. In the field of immune response study, it is not known with any certainty whether light/laser is proinflammatory or anti-inflammatory. Increasingly in recent times dendritic cells have been found to play an important role in inflammation and the immunological response. In this study, we try to look at the impact of low level near infrared light (810-nm) on murine bone-marrow derived dendritic cells. Changes in surface markers, including MHC II, CD80 and CD11c and the secretion of interleukins induced by light may provide additional evidence to reveal the mystery of how light affects the maturation of dendritic cells as well how these light-induced mature dendritic cells would affect the activation of adaptive immune response.
CT findings associated with blastic plasmacytoid dendritic cell neoplasm: a case report
Choi, Jung W; Jeong, Katherine; Sokol, Lubomir
2016-01-01
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare hematologic malignancy that is frequently misdiagnosed. We present a case of a 53-year-old man diagnosed with blastic plasmacytoid dendritic cell neoplasm with extensive computed tomography (CT) findings and provide an imaging focused review of this uncommon malignancy. PMID:27504192
USDA-ARS?s Scientific Manuscript database
Phylogenic comparisons of the mononuclear phagocyte system (MPS) of humans and mice demonstrate phenotypic divergence of dendritic cell (DC) subsets that play similar roles in innate and adaptive immunity. Although differing in phenotype, DC can be classified into four groups according to ontogeny a...
NASA Technical Reports Server (NTRS)
Tewari, S. N.; Raj, S. V.; Locci, I. E.
2003-01-01
Directionally solidified (DS) intermetallic and ceramic-based eutectic alloys with an in-situ composite microstructure containing finely distributed, long aspect ratio, fiber, or plate reinforcements are being seriously examined for several advanced aero-propulsion applications. In designing these alloys, additional solutes need to be added to the base eutectic composition in order to improve heir high-temperature strength, and provide for adequate toughness and resistance to environmental degradation. Solute addition, however, promotes instability at the planar liquid-solid interface resulting in the formation of two-phase eutectic "colonies." Because morphology of eutectic colonies is very similar to the single-phase cells and dendrites, the stability analysis of Mullins and Sekerka has been extended to describe their formation. Onset of their formation shows a good agreement with this approach; however, unlike the single-phase cells and dendrites, there is limited examination of their growth speed dependence of spacing, morphology, and spatial distribution. The purpose of this study is to compare the growth speed dependence of the morphology, spacing, and spatial distribution of eutectic cells and dendrites with that for the single-phase cells and dendrites.
Antigen-loaded Dendritic Cell Migration: MR Imaging in a Pancreatic Carcinoma Model
Li, Weiguo; Procissi, Daniele; Li, Kangan; Sheu, Alexander Y.; Gordon, Andrew C.; Guo, Yang; Khazaie, Khashayarsha; Huan, Yi; Han, Guohong; Larson, Andrew C.
2015-01-01
Purpose To test the following hypotheses in a murine model of pancreatic cancer: (a) Vaccination with antigen-loaded iron-labeled dendritic cells reduces T2-weighted signal intensity at magnetic resonance (MR) imaging within peripheral draining lymph nodes (LNlymph nodes) and (b) such signal intensity reductions are associated with tumor size changes after dendritic cell vaccination. Materials and Methods The institutional animal care and use committee approved this study. Panc02 cells were implanted into the flanks of 27 C57BL/6 mice bilaterally. After tumors reached 10 mm, cell viability was evaluated, and iron-labeled dendritic cell vaccines were injected into the left hind footpad. The mice were randomly separated into the following three groups (n = 9 in each): Group 1 was injected with 1 million iron-labeled dendritic cells; group 2, with 2 million cells; and control mice, with 200 mL of phosphate-buffered saline. T1- and T2-weighted MR imaging of labeled dendritic cell migration to draining LNlymph nodes was performed before cell injection and 6 and 24 hours after injection. The signal-to-noise ratio (SNRsignal-to-noise ratio) of the draining LNlymph nodes was measured. One-way analysis of variance (ANOVAanalysis of variance) was used to compare Prussian blue–positive dendritic cell measurements in LNlymph nodes. Repeated-measures ANOVAanalysis of variance was used to compare in vivo T2-weighted SNRsignal-to-noise ratio LNlymph node measurements between groups over the observation time points. Results Trypan blue assays showed no significant difference in mean viability indexes (unlabeled vs labeled dendritic cells, 4.32% ± 0.69 [standard deviation] vs 4.83% ± 0.76; P = .385). Thirty-five days after injection, the mean left and right flank tumor sizes, respectively, were 112.7 mm2 ± 16.4 and 109 mm2 ± 24.3 for the 1-million dendritic cell group, 92.2 mm2 ± 9.9 and 90.4 mm2 ± 12.8 for the 2-million dendritic cell group, and 193.7 mm2 ± 20.9 and 189.4 mm2 ± 17.8 for the control group (P = .0001 for control group vs 1-million cell group; P = .00007 for control group vs 2-million cell group). There was a correlation between postinjection T2-weighted SNRsignal-to-noise ratio decreases in the left popliteal LNlymph node 24 hours after injection and size changes at follow-up for tumors in both flanks (R = 0.81 and R = 0.76 for left and right tumors, respectively). Conclusion MR imaging approaches can be used for quantitative measurement of accumulated iron-labeled dendritic cell–based vaccines in draining LNlymph nodes. The amount of dendritic cell–based vaccine in draining LNlymph nodes correlates well with observed protective effects. © RSNA, 2014 Online supplemental material is available for this article. PMID:25222066
Hayashi, Kenji; Suzuki, Atsushi; Hirai, Syu-ichi; Kurihara, Yasuyuki; Hoogenraad, Casper C; Ohno, Shigeo
2011-08-24
Dendritic spines are postsynaptic structures that receive excitatory synaptic input from presynaptic terminals. Actin and its regulatory proteins play a central role in morphogenesis of dendritic spines. In addition, recent studies have revealed that microtubules are indispensable for the maintenance of mature dendritic spine morphology by stochastically invading dendritic spines and regulating dendritic localization of p140Cap, which is required for actin reorganization. However, the regulatory mechanisms of microtubule dynamics remain poorly understood. Partitioning-defective 1b (PAR1b), a cell polarity-regulating serine/threonine protein kinase, is thought to regulate microtubule dynamics by inhibiting microtubule binding of microtubule-associated proteins. Results from the present study demonstrated that PAR1b participates in the maintenance of mature dendritic spine morphology in mouse hippocampal neurons. Immunofluorescent analysis revealed PAR1b localization in the dendrites, which was concentrated in dendritic spines of mature neurons. PAR1b knock-down cells exhibited decreased mushroom-like dendritic spines, as well as increased filopodia-like dendritic protrusions, with no effect on the number of protrusions. Live imaging of microtubule plus-end tracking proteins directly revealed decreases in distance and duration of microtubule growth following PAR1b knockdown in a neuroblastoma cell line and in dendrites of hippocampal neurons. In addition, reduced accumulation of GFP-p140Cap in dendritic protrusions was confirmed in PAR1b knock-down neurons. In conclusion, the present results suggested a novel function for PAR1b in the maintenance of mature dendritic spine morphology by regulating microtubule growth and the accumulation of p140Cap in dendritic spines.
p15Ink4b is Key in Dendritic Cell Development | Center for Cancer Research
An important step in the initiation of leukemia is the ability of pre-leukemic and leukemic cells to evade the immune system. Dendritic cells are instrumental in maintaining the body’s immunity, and CCR scientists have shown for the first time that the tumor suppressor protein p15Ink4b regulates the differentiation and maturation of conventional dendritic cells.
Vitte, Franck; Fabiani, Bettina; Bénet, Claire; Dalac, Sophie; Balme, Brigitte; Delattre, Claire; Vergier, Béatrice; Beylot-Barry, Marie; Vignon-Pennamen, Dominique; Ortonne, Nicolas; Algros, Marie Paule; Carlotti, Agnès; Samaleire, Dimitri; Frouin, Eric; Levy, Anne; Laroche, Liliane; Theate, Ivan; Monnien, Franck; Mugneret, Francine; Petrella, Tony
2012-09-01
Chronic myelomonocytic leukemia (CMML) is a rare clonal hematopoietic disorder that can also involve the skin. The histopathology of these skin lesions is not clearly defined, and few data are available in the literature. To better understand tumoral skin involvements in CMML we carried out an extensive, retrospective clinicopathologic study of 42 cases selected from the database of the French Study Group of Cutaneous Lymphomas. On the basis of clinical data, morphology, and phenotype we identified 4 clinicopathologic profiles representing 4 distinct groups. The first group comprised myelomonocytic cell tumors (n=18), exhibiting a proliferation of granulocytic or monocytic blast cells, which were CD68 and/or MPO positive but negative for dendritic cell markers. The second group comprised mature plasmacytoid dendritic cell tumors (n=16), denoted by a proliferation of mature plasmacytoid dendritic cells, which were CD123, TCL1, and CD303 positive but CD56, CD1a, and S100 negative. The third group comprised blastic plasmacytoid dendritic cell tumors (n=4), characterized by a proliferation of monomorphous medium-sized blast cells, which were CD4, CD56, CD123, TCL1 positive but CD1a and S100 negative. The fourth group consisted of a putatively novel category of tumor that we named blastic indeterminate dendritic cell tumors (n=4), distinguished by a proliferation of large blast cells that not only exhibited monocytic markers but also the dendritic markers CD1a and S100. These 4 groups showed distinctive outcomes. Finally, we showed, by fluorescence in situ hybridization analysis, a clonal link between bone marrow disease and skin lesions in 4 patients. Herein, we have described a novel scheme for pathologists and physicians to handle specific lesions in CMML, which correspond to a spectrum of myelomonocytic and dendritic cell proliferations with different outcomes. A minimal panel of immunohistochemical markers including CD68, CD1a, S100, Langerin, and CD123 is necessary to make the correct classification in this spectrum of cutaneous CMML tumors, in which dendritic cell lineage plays an important role.
Yatim, Karim M; Gosto, Minja; Humar, Rishab; Williams, Amanda L; Oberbarnscheidt, Martin H
2016-10-01
Bony fish are among the first vertebrates to possess an innate and adaptive immune system. In these species, the kidney has a dual function: filtering solutes similar to mammals and acting as a lymphoid organ responsible for hematopoiesis and antigen processing. Recent studies have shown that the mammalian kidney has an extensive network of mononuclear phagocytes, whose function is not fully understood. Here, we employed two-photon intravital microscopy of fluorescent reporter mice to demonstrate that renal dendritic cells encase the microvasculature in the cortex, extend dendrites into the peritubular capillaries, and sample the blood for antigen. We utilized a mouse model of systemic bacterial infection as well as immune complexes to demonstrate antigen uptake by renal dendritic cells. As a consequence, renal dendritic cells mediated T-cell migration into the kidney in an antigen-dependent manner in the setting of bacterial infection. Thus, renal dendritic cells may be uniquely positioned to play an important role not only in surveillance of systemic infection but also in local infection and autoimmunity. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Modulation of Dendritic Cell Activation and Subsequent Th1 Cell Polarization by Lidocaine
Chung, Yeonseok
2015-01-01
Dendritic cells play an essential role in bridging innate and adaptive immunity by recognizing cellular stress including pathogen- and damage-associated molecular patterns and by shaping the types of antigen-specific T cell immunity. Although lidocaine is widely used in clinical settings that trigger cellular stress, it remains unclear whether such treatment impacts the activation of innate immune cells and subsequent differentiation of T cells. Here we showed that lidocaine inhibited the production of IL–6, TNFα and IL–12 from dendritic cells in response to toll-like receptor ligands including lipopolysaccharide, poly(I:C) and R837 in a dose-dependent manner. Notably, the differentiation of Th1 cells was significantly suppressed by the addition of lidocaine while the same treatment had little effect on the differentiation of Th17, Th2 and regulatory T cells in vitro. Moreover, lidocaine suppressed the ovalbumin-specific Th1 cell responses in vivo induced by the adoptive transfer of ovalbumin-pulsed dendritic cells. These results demonstrate that lidocaine inhibits the activation of dendritic cells in response to toll-like receptor signals and subsequently suppresses the differentiation of Th1 cell responses. PMID:26445366
Dendritic excitation–inhibition balance shapes cerebellar output during motor behaviour
Jelitai, Marta; Puggioni, Paolo; Ishikawa, Taro; Rinaldi, Arianna; Duguid, Ian
2016-01-01
Feedforward excitatory and inhibitory circuits regulate cerebellar output, but how these circuits interact to shape the somatodendritic excitability of Purkinje cells during motor behaviour remains unresolved. Here we perform dendritic and somatic patch-clamp recordings in vivo combined with optogenetic silencing of interneurons to investigate how dendritic excitation and inhibition generates bidirectional (that is, increased or decreased) Purkinje cell output during self-paced locomotion. We find that granule cells generate a sustained depolarization of Purkinje cell dendrites during movement, which is counterbalanced by variable levels of feedforward inhibition from local interneurons. Subtle differences in the dendritic excitation–inhibition balance generate robust, bidirectional changes in simple spike (SSp) output. Disrupting this balance by selectively silencing molecular layer interneurons results in unidirectional firing rate changes, increased SSp regularity and disrupted locomotor behaviour. Our findings provide a mechanistic understanding of how feedforward excitatory and inhibitory circuits shape Purkinje cell output during motor behaviour. PMID:27976716
Kidney dendritic cells in acute and chronic renal disease.
Hochheiser, Katharina; Tittel, André; Kurts, Christian
2011-06-01
Dendritic cells are not only the master regulators of adaptive immunity, but also participate profoundly in innate immune responses. Much has been learned about their basic immunological functions and their roles in various diseases. Comparatively little is still known about their role in renal disease, despite their obvious potential to affect immune responses in the kidney, and immune responses that are directed against renal components. Kidney dendritic cells form an abundant network in the renal tubulointerstitium and constantly survey the environment for signs of injury or infection, in order to alert the immune system to the need to initiate defensive action. Recent studies have identified a role for dendritic cells in several murine models of acute renal injury and chronic nephritis. Here we summarize the current knowledge on the role of kidney dendritic cells that has been obtained from the study of murine models of renal disease. © 2010 The Authors. Journal compilation © 2010 Blackwell Publishing Ltd.
The E3 ligase c-Cbl regulates dendritic cell activation
Chiou, Shin-Heng; Shahi, Payam; Wagner, Ryan T; Hu, Hongbo; Lapteva, Natalia; Seethammagari, Mamatha; Sun, Shao-Cong; Levitt, Jonathan M; Spencer, David M
2011-01-01
The activation of innate and adaptive immunity is always balanced by inhibitory signalling mechanisms to maintain tissue integrity. We have identified the E3 ligase c-Cbl––known for its roles in regulating lymphocyte signalling––as a modulator of dendritic cell activation. In c-Cbl-deficient dendritic cells, Toll-like receptor-induced expression of proinflammatory factors, such as interleukin-12, is increased, correlating with a greater potency of dendritic-cell-based vaccines against established tumours. This proinflammatory phenotype is accompanied by an increase in nuclear factor (NF)-κB activity. In addition, c-Cbl deficiency reduces both p50 and p105 levels, which have been shown to modulate the stimulatory function of NF-κB. Our data indicate that c-Cbl has a crucial, RING-domain-dependent role in regulating dendritic cell maturation, probably by facilitating the regulatory function of p105 and/or p50. PMID:21799517
Malo, Courtney S; Huggins, Matthew A; Goddery, Emma N; Tolcher, Heather M A; Renner, Danielle N; Jin, Fang; Hansen, Michael J; Pease, Larry R; Pavelko, Kevin D; Johnson, Aaron J
2018-02-12
The contribution of antigen-presenting cell (APC) types in generating CD8 + T cell responses in the central nervous system (CNS) is not fully defined, limiting the development of vaccines and understanding of immune-mediated neuropathology. Here, we generate a transgenic mouse that enables cell-specific deletion of the H-2Kb MHC class I molecule. By deleting H-2K b on dendritic cells and macrophages, we compare the effect of each APC in three distinct models of neuroinflammation: picornavirus infection, experimental cerebral malaria, and a syngeneic glioma. Dendritic cells and macrophages both activate CD8 + T cell responses in response to these CNS immunological challenges. However, the extent to which each of these APCs contributes to CD8 + T cell priming varies. These findings reveal distinct functions for dendritic cells and macrophages in generating CD8 + T cell responses to neurological disease.
Li, Yi; Xu, Xiaoping; Xu, Junyan; Huang, Dan
2018-05-31
Follicular dendritic cell sarcoma is a very rare neoplasm, which is not lymphoma, but originates from a type of immune cells called follicular dendritic cells. We presented a 37-year-old woman who has suffered from obstructive jaundice, weight loss and right upper abdominal pain for 2 months. The contrast CT revealed masses located in the region of pancreatic head and lots of enlarged retroperitoneal lymph nodes, both of which were enhanced on the artery phase of CT images. Meanwhile, Tc-HYNIC-TOC SPECT/CT revealed high activity in the corresponding lesions. After biopsy, the masses were pathologically confirmed as retroperitoneal follicular dendritic cell sarcoma.
Sherkhane, Pradeep; Kapfhammer, Josef P
2017-09-01
The Na + /Ca 2+ exchanger (NCX) is a bidirectional plasma membrane antiporter involved in Ca 2+ homeostasis in eukaryotes. NCX has three isoforms, NCX1-3, and all of them are expressed in the cerebellum. Immunostaining on cerebellar slice cultures indicates that NCX is widely expressed in the cerebellum, including expression in Purkinje cells. The pharmacological blockade of the forward mode of NCX (Ca 2+ efflux mode) by bepridil moderately inhibited growth and development of Purkinje cell dendritic arbor in cerebellar slice cultures. However, the blockade of the reverse mode (Ca 2+ influx mode) by KB-R7943 severely reduced the dendritic arbor and induced a morphological change with thickened distal dendrites. The effect of KB-R7943 on dendritic growth was unrelated to the activity of voltage-gated calcium channels and was also apparent in the absence of bioelectrical activity indicating that it was mediated by NCX expressed in Purkinje cells. We have used additional NCX inhibitors including CB-DMB, ORM-10103, SEA0400, YM-244769, and SN-6 which have higher specificity for NCX isoforms and target either the forward, reverse, or both modes. These inhibitors caused a strong dendritic reduction similar to that seen with KB-R7943, but did not elicit thickening of distal dendrites. Our findings indicate that disturbance of the NCX-dependent calcium transport in Purkinje cells induces a reduction of dendritic arbor, which is presumably caused by changes in the calcium handling, and underline the importance of the calcium equilibrium for the dendritic development in cerebellar Purkinje cells. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Leontovich, T A; Zvegintseva, E G
1985-10-01
Two principal classes of striatum long axonal neurons (sparsely ramified reticular cells and densely ramified dendritic cells) were analyzed quantitatively in four animal species: hedgehog, rabbit, dog and monkey. The cross section area, total dendritic length and the area of dendritic field were measured using "LEITZ-ASM" system. Classes of neurons studied were significantly different in dogs and monkeys, while no differences were noted between hedgehog and rabbit. Reticular neurons of different species varied much more than dendritic ones. Quantitative analysis has revealed the progressive increase in the complexity of dendritic tree in mammals from rabbit to monkey.
Cytoarchitectonic and quantitative Golgi study of the hedgehog supraoptic nucleus.
Caminero, A A; Machín, C; Sanchez-Toscano, F
1992-02-01
A cytoarchitectural study was made of the supraoptic nucleus (SON) of the hedgehog with special attention to the quantitative comparison of its main neuronal types. The main purposes were (1) to relate the characteristics of this nucleus in the hedgehog (a primitive mammalian insectivorous brain) with those in the SONs of more evolutionarily advanced species; (2) to identify quantitatively the dendritic fields of the main neuronal types in the hedgehog SON and to study their synaptic connectivity. From a descriptive standpoint, 3 neuronal types were found with respect to the number of dendritic stems arising from the neuronal soma: bipolar neurons (48%), multipolar neurons (45.5%) and monopolar neurons (6.5%). Within the multipolar type 2 subtypes could be distinguished, taking into account the number of dendritic spines: (a) with few spines (93%) and (b) very spiny (7%). These results indicate that the hedgehog SON is similar to that in other species except for the very spiny neurons, the significance of which is discussed. In order to characterise the main types more satisfactorily (bipolar and multipolars with few spines) we undertook a quantitative Golgi study of their dendritic fields. Although the patterns of the dendritic field are similar in both neuronal types, the differences in the location of their connectivity can reflect functional changes and alterations in relation to the synaptic afferences.
Migration of Toxoplasma gondii–Infected Dendritic Cells across Human Retinal Vascular Endothelium
Furtado, João M.; Bharadwaj, Arpita S.; Ashander, Liam M.; Olivas, Antoinette; Smith, Justine R.
2012-01-01
Purpose. Toxoplasma gondii, the parasite responsible for ocular toxoplasmosis, accesses the retina from the bloodstream. We investigated the dendritic cell as a potential taxi for T. gondii tachyzoites moving across the human retinal endothelium, and examined the participation of adhesion molecules and chemokines in this process. Methods. CD14-positive monocytes were isolated from human peripheral blood by antibody-mediated cell enrichment, and cultured in granulocyte-macrophage colony-stimulating factor and interleukin-4 to generate dendritic cells. Transmigration assays were performed over 18 hours in transwells seeded with human retinal endothelial cells and using dendritic cells exposed to laboratory or natural strains of T. gondii tachyzoites. Parasites were tagged with yellow fluorescent protein to verify infection. In some experiments, endothelial monolayers were preincubated with antibody directed against adhesion molecules, or chemokine was added to lower chambers of transwells. Results. Human monocyte–derived dendritic cell preparations infected with laboratory or natural strain T. gondii tachyzoites transmigrated in larger numbers across simulated human retinal endothelium than uninfected dendritic cells (P ≤ 0.0004 in 5 of 6 experiments). Antibody blockade of intercellular adhesion molecule (ICAM)–1, vascular cell adhesion molecule (VCAM)–1, and activated leukocyte cell adhesion molecule (ALCAM) inhibited transmigration (P ≤ 0.007), and CCL21 or CXCL10 increased transmigration (P ≤ 0.031). Conclusions. Transmigration of human dendritic cells across retinal endothelium is increased following infection with T. gondii. Movement may be impacted by locally produced chemokines and is mediated in part by ICAM-1, VCAM-1, and ALCAM. These findings have implications for development of novel therapeutics aimed at preventing retinal infection by T. gondii. PMID:22952125
de Haar, Colin; Kool, Mirjam; Hassing, Ine; Bol, Marianne; Lambrecht, Bart N; Pieters, Raymond
2008-05-01
The adjuvant activity of air pollution particles on allergic airway sensitization is well known, but the cellular mechanisms underlying this adjuvant potential are not clear. We sough to study the role of dendritic cells and the costimulatory molecules CD80 and CD86 in the adjuvant activity of ultrafine carbon black particles (CBP). The proliferation of CFSE-labeled DO11.10 CD4 cells was studied after intranasal exposure to particles and ovalbumin (OVA). Next the frequency of myeloid dendritic cells (mDCs) and plasmacytoid dendritic cells and their expression of CD80 and CD86 were studied in the peribronchial lymph nodes (PBLNs). The expression of costimulatory molecules was also studied on bone marrow-derived mDCs after exposure to CBPs in vitro, and the importance of costimulation in CBP adjuvant activity was assessed by using CD80/CD86-deficient mice or cytotoxic T lymphocyte-associated antigen 4 (CTLA4)-Ig in vivo. Our data show that CBPs plus OVA caused proliferation of DO11.10 CD4 cells and high levels of cytokine production in the PBLNs. Furthermore, the combined CBP plus OVA exposure increased the number of mDCs and expression of costimulatory molecules in the PBLNs. In addition, CBPs upregulated the expression of CD80/CD86 molecules on dendritic cells in vitro, which are necessary for the particle adjuvant effects in vivo. Together this study shows the importance of dendritic cells and costimulation in particle adjuvant activity. Furthermore, we show for the first time that CBPs can also directly induce maturation of dendritic cells.
Leguey, Ignacio; Bielza, Concha; Larrañaga, Pedro; Kastanauskaite, Asta; Rojo, Concepción; Benavides-Piccione, Ruth; DeFelipe, Javier
2016-09-01
The characterization of the structural design of cortical microcircuits is essential for understanding how they contribute to function in both health and disease. Since pyramidal neurons represent the most abundant neuronal type and their dendritic spines constitute the major postsynaptic elements of cortical excitatory synapses, our understanding of the synaptic organization of the neocortex largely depends on the available knowledge regarding the structure of pyramidal cells. Previous studies have identified several apparently common rules in dendritic geometry. We study the dendritic branching angles of pyramidal cells across layers to further shed light on the principles that determine the geometric shapes of these cells. We find that the dendritic branching angles of pyramidal cells from layers II-VI of the juvenile rat somatosensory cortex suggest common design principles, despite the particular morphological and functional features that are characteristic of pyramidal cells in each cortical layer. J. Comp. Neurol. 524:2567-2576, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Calcium transient prevalence across the dendritic arbour predicts place field properties.
Sheffield, Mark E J; Dombeck, Daniel A
2015-01-08
Establishing the hippocampal cellular ensemble that represents an animal's environment involves the emergence and disappearance of place fields in specific CA1 pyramidal neurons, and the acquisition of different spatial firing properties across the active population. While such firing flexibility and diversity have been linked to spatial memory, attention and task performance, the cellular and network origin of these place cell features is unknown. Basic integrate-and-fire models of place firing propose that such features result solely from varying inputs to place cells, but recent studies suggest instead that place cells themselves may play an active role through regenerative dendritic events. However, owing to the difficulty of performing functional recordings from place cell dendrites, no direct evidence of regenerative dendritic events exists, leaving any possible connection to place coding unknown. Using multi-plane two-photon calcium imaging of CA1 place cell somata, axons and dendrites in mice navigating a virtual environment, here we show that regenerative dendritic events do exist in place cells of behaving mice, and, surprisingly, their prevalence throughout the arbour is highly spatiotemporally variable. Furthermore, we show that the prevalence of such events predicts the spatial precision and persistence or disappearance of place fields. This suggests that the dynamics of spiking throughout the dendritic arbour may play a key role in forming the hippocampal representation of space.
Calcium transient prevalence across the dendritic arbor predicts place field properties
Sheffield, Mark E. J.; Dombeck, Daniel A.
2014-01-01
Establishing the hippocampal cellular ensemble that represents an animal’s environment involves the emergence and disappearance of place fields in specific CA1 pyramidal neurons1–4, and the acquisition of different spatial firing properties across the active population5. While such firing flexibility and diversity have been linked to spatial memory, attention and task performance6,7, the cellular and network origin of these place cell features is unknown. Basic integrate-and-fire models of place firing propose that such features result solely from varying inputs to place cells8,9, but recent studies3,10 instead suggest that place cells themselves may play an active role through regenerative dendritic events. However, due to the difficulty of performing functional recordings from place cell dendrites, no direct evidence of regenerative dendritic events exists, leaving any possible connection to place coding unknown. Using multi-plane two-photon calcium imaging of CA1 place cell somata, axons, and dendrites in mice navigating a virtual environment, we show that regenerative dendritic events do exist in place cells of behaving mice and, surprisingly, their prevalence throughout the arbor is highly spatiotemporally variable. Further, we show that the prevalence of such events predicts the spatial precision and persistence or disappearance of place fields. This suggests that the dynamics of spiking throughout the dendritic arbor may play a key role in forming the hippocampal representation of space. PMID:25363782
Lingenhöhl, K; Finch, D M
1991-01-01
We used in vivo intracellular labeling with horseradish peroxidase in order to study the soma-dendritic morphology and axonal projections of rat entorhinal neurons. The cells responded to hippocampal stimulation with inhibitory postsynaptic potentials, and thus likely received direct or indirect hippocampal input. All cells (n = 24) showed extensive dendritic domains that extended in some cases for more than 1 mm. The dendrites of layer II neurons were largely restricted to layers I and II or layers I-III, while the dendrites of deeper cells could extend through all cortical layers. Computed 3D rotations showed that the basilar dendrites of deep pyramids extended roughly parallel to the cortical layering, and that they were mostly confined to the layer containing the soma and layers immediately adjacent. Total dendritic lengths averaged 9.8 mm +/- 3.8 (SD), and ranged from 5 mm to more than 18 mm. Axonal processes could be visualized in 21 cells. Most of these showed axonal branching within the entorhinal cortex, sometimes extensive. Efferent axonal domains were reconstructed in detail in 3 layer II stellate cells. All 3 projected axons across the subicular complex to the dentate gyrus. One of these cells showed an extensive net-like axonal domain that also projected to several other structures, including the hippocampus proper, subicular complex, and the amygdalo-piriform transition area. The axons of layer III and IV cells projected to the angular bundle, where they continued in a rostral direction. In contrast to the layer II, III and IV cells, no efferent axonal branches leaving the entorhinal cortex could be visualized in 5 layer V neurons. The data indicate that entorhinal neurons can integrate input from a considerable volume of entorhinal cortex by virtue of their extensive dendritic domains, and provide a further basis for specifying the layers in which cells receive synaptic input. The extensive axonal branching pattern seen in most of the cells would support divergent propagation of their activity.
Democracy-independence trade-off in oscillating dendrites and its implications for grid cells.
Remme, Michiel W H; Lengyel, Máté; Gutkin, Boris S
2010-05-13
Dendritic democracy and independence have been characterized for near-instantaneous processing of synaptic inputs. However, a wide class of neuronal computations requires input integration on long timescales. As a paradigmatic example, entorhinal grid fields have been thought to be generated by the democratic summation of independent dendritic oscillations performing direction-selective path integration. We analyzed how multiple dendritic oscillators embedded in the same neuron integrate inputs separately and determine somatic membrane voltage jointly. We found that the interaction of dendritic oscillations leads to phase locking, which sets an upper limit on the timescale for independent input integration. Factors that increase this timescale also decrease the influence that the dendritic oscillations exert on somatic voltage. In entorhinal stellate cells, interdendritic coupling dominates and causes these cells to act as single oscillators. Our results suggest a fundamental trade-off between local and global processing in dendritic trees integrating ongoing signals. Copyright 2010 Elsevier Inc. All rights reserved.
Al-Hussain Bani Hani, Saleh M; El-Dwairi, Qasim A; Bataineh, Ziad M; Al-Haidari, Mohammad S; Al-Alami, Jamil
2008-05-01
The morphological and quantitative features of neurons in the adult human ventral anterior thalamic nucleus were studied in Golgi preparations. Two neuronal types were found and their quantitative features were studied. Golgi-type I neurons were medium to large cells with dense dendritic trees and dendritic protrusions and short hair-like appendages. They have somatic mean diameter of 30.8 microm (+/-9.4, n = 85). They have an average 100.3 dendritic branches, 48.97 dendritic branching points, and 58.85 dendritic tips. The mean diameters of their primary, secondary, and tertiary dendrites were 3.1 microm (+/-1, n = 80), 1.85 microm (+/-0.8, n = 145), and 1.5 microm (+/-0.4, n = 160), respectively. Golgi-type II neurons were small to medium cells with few sparsely branching dendrites and dendritic stalked appendages with or without terminal swellings. They have somatic mean diameters of 22.2 microm (+/-5.8, n = 120). They have an average 33.76 dendritic branches, 16.49 dendritic branching points, and 21.97 dendritic tips. The mean diameters of their primary, secondary, and tertiary dendrites were 1.6 microm (+/-0.86, n = 70), 1.15 microm (+/-0.55, n = 118), and 1 microm (+/-0.70, n = 95), respectively. These quantitative data may form the basis for further quantitative studies involving aging or some degenerative diseases that may affect cell bodies and/or dendritic trees of the Golgi-type I and/or Golgi-type II thalamic neurons.
Roquilly, Antoine; Broquet, Alexis; Jacqueline, Cédric; Masson, Damien; Segain, Jean Pierre; Braudeau, Cecile; Vourc'h, Mickael; Caillon, Jocelyne; Altare, Frédéric; Josien, Regis; Retière, Christelle; Villadangos, Jose; Asehnoune, Karim
2014-12-01
Trauma induces a state of immunosuppression, which is responsible for the development of nosocomial infections. Hydrocortisone reduces the rate of pneumonia in patients with trauma. Because alterations of dendritic cells and natural killer cells play a central role in trauma-induced immunosuppression, we investigated whether hydrocortisone modulates the dendritic cell/natural killer cell cross talk in the context of posttraumatic pneumonia. Experimental study. Research laboratory from an university hospital. Bagg Albino/cJ mice (weight, 20-24 g). First, in an a priori substudy of a multicenter, randomized, double-blind, placebo-controlled trial of hydrocortisone (200 mg/d for 7 d) in patients with severe trauma, we have measured the blood levels of five cytokines (tumor necrosis factor-α, interleukin-6, interleukin-10, interleukin-12, interleukin-17) at day 1 and day 8. In a second step, the effects of hydrocortisone on dendritic cell/natural killer cell cross talk were studied in a mouse model of posttraumatic pneumonia. Hydrocortisone (0.6 mg/mice i.p.) was administered immediately after hemorrhage. Twenty-four hours later, the mice were challenged with Staphylococcus aureus (7 × 10 colony-forming units). Using sera collected during a multicenter study in patients with trauma, we found that hydrocortisone decreased the blood level of interleukin-10, a cytokine centrally involved in the regulation of dendritic cell/natural killer cell cluster. In a mouse model of trauma-hemorrhage-induced immunosuppression, splenic natural killer cells induced an interleukin-10-dependent elimination of splenic dendritic cell. Hydrocortisone treatment reduced this suppressive function of natural killer cells and increased survival of mice with posthemorrhage pneumonia. The reduction of the interleukin-10 level in natural killer cells by hydrocortisone was partially dependent on the up-regulation of glucocorticoid-induced tumor necrosis factor receptor-ligand (TNFsf18) on dendritic cell. These data demonstrate that trauma-induced immunosuppression is characterized by an interleukin-10-dependent elimination of dendritic cell by natural killer cells and that hydrocortisone improves outcome by limiting this immunosuppressive feedback loop.
Multivalent glycopeptide dendrimers for the targeted delivery of antigens to dendritic cells.
García-Vallejo, Juan J; Ambrosini, Martino; Overbeek, Annemieke; van Riel, Wilhelmina E; Bloem, Karien; Unger, Wendy W J; Chiodo, Fabrizio; Bolscher, Jan G; Nazmi, Kamran; Kalay, Hakan; van Kooyk, Yvette
2013-04-01
Dendritic cells are the most powerful type of antigen presenting cells. Current immunotherapies targeting dendritic cells have shown a relative degree of success but still require further improvement. One of the most important issues to solve is the efficiency of antigen delivery to dendritic cells in order to achieve an appropriate uptake, processing, and presentation to Ag-specific T cells. C-type lectins have shown to be ideal receptors for the targeting of antigens to dendritic cells and allow the use of their natural ligands - glycans - instead of antibodies. Amongst them, dendritic cell-specific ICAM-3-grabbing non-integrin (DC-SIGN) is an interesting candidate due to its biological properties and the availability of its natural carbohydrate ligands. Using Le(b)-conjugated poly(amido amine) (PAMAM) dendrimers we aimed to characterize the optimal level of multivalency necessary to achieve the desired internalization, lysosomal delivery, Ag-specific T cell proliferation, and cytokine response. Increasing DC-SIGN ligand multivalency directly translated in an enhanced binding, which might also be interesting for blocking purposes. Internalization, routing to lysosomal compartments, antigen presentation and cytokine response could be optimally achieved with glycopeptide dendrimers carrying 16-32 glycan units. This report provides the basis for the design of efficient targeting of peptide antigens for the immunotherapy of cancer, autoimmunity and infectious diseases. Copyright © 2012 Elsevier Ltd. All rights reserved.
Johnson, M D; Yee, A G
1995-08-01
Recent electrophysiological investigations in this laboratory have shown that cultured mesopontine serotonergic neurons from neonatal rats evoke serotonergic and/or glutamatergic responses in themselves and in non-serotonergic neurons. Serotonergic nerve terminals in vivo are heterogeneous with respect to vesicle type, synaptic structure, and the frequency with which they form conventional synaptic contacts, but the functional correlates of this heterogeneity are unclear. We have therefore examined the ultrastructure of electrophysiologically-characterized synapses formed by cultured serotonergic neurons, and have compared the findings with the ultrastructural characteristics of serotonergic synapses reported in vivo. Dissociated rat serotonergic neurons in microcultures were identified by serotonin immunocytochemistry or by uptake of the autofluorescent serotonin analogue 5,7-dihydroxytryptamine, and were subsequently processed for electron microscopy. Unlabeled axon terminals formed numerous synapses on serotonin-immunoreactive somata and dendrites. Serotonin-immunoreactive axon terminals formed synapses on the somata, dendrites and somatodendritic spine-like appendages of serotonergic and non-serotonergic neurons. In microcultures containing a solitary serotonergic neuron that evoked glutamatergic or serotonergic/glutamatergic autaptic responses, both symmetric and asymmetric synapses were present. In addition to large dense core vesicles, individual neurons contained either microcanaliculi and microvesicles, clear round vesicles, or clear pleiomorphic vesicles. For a given cell, however, the subtypes of vesicles present in each axon terminal were similar. Thus, dissociated serotonergic and non-serotonergic raphe neurons formed functional, morphological synapses in culture. A direct examination of both the synaptic physiology and ultrastructure of single cultured serotonergic neurons indicated that these cells released serotonin and glutamate at synapses that were morphologically similar to synapses formed by serotonergic neurons in vivo. The findings also suggested that individual serotonergic neurons differ with respect to synaptic vesicle morphology, and are capable of simultaneously forming symmetric and asymmetric synapses with target cells.
NASA Astrophysics Data System (ADS)
Marañón, Concepción; Desoutter, Jean-François; Hoeffel, Guillaume; Cohen, William; Hanau, Daniel; Hosmalin, Anne
2004-04-01
A better understanding of the antigen presentation pathways that lead to CD8+ T cell recognition of HIV epitopes in vivo is needed to achieve better immune control of HIV replication. Here, we show that cross-presentation of very small amounts of HIV proteins from apoptotic infected CD4+ T lymphocytes by dendritic cells to CD8+ T cells is much more efficient than other known HIV presentation pathways, i.e., direct presentation of infectious virus or cross-presentation of defective virus. Unexpectedly, dendritic cells also take up actively antigens into endosomes from live infected CD4+ T lymphocytes and cross-present them as efficiently as antigens derived from apoptotic infected cells. Moreover, live infected CD4+ T cells costimulate cross-presenting dendritic cells in the process. Therefore, dendritic cells can present very small amounts of viral proteins from infected T cells either after apoptosis, which is frequent during HIV infection, or not. Thus, if HIV expression is transiently induced while costimulation is enhanced (for instance after IL-2 and IFN immune therapy), this HIV antigen presentation pathway could be exploited to eradicate latently infected reservoirs, which are poorly recognized by patients' immune systems.
Kuznetsov, A V
1992-09-01
Dendritic cells of central lymph of rabbits have been identified according to the form of the cell body, characteristics of formation and branchiness of its processes in health, in atherosclerosis, its correction with radon, polyphenol preparations made of Sanguisorba officinalis and in combination of the latter. Two main types of dendritic cells have been distinguished. Type I is characterized by a rounded body with clear outlines, protrusions and one compact process. Such cells are often found in lymph of intact animals. Type II has a cell body of various forms with two and more compact or branching processes. This type is mainly detected in atherosclerosis and its correction. The prevalence of the above phenotypes of dendritic cells is attributed to the response of the immune system to atherosclerosis and its correction.
Nowatzky, Johannes; Manches, Olivier; Khan, Shaukat Ali; Godefroy, Emmanuelle; Bhardwaj, Nina
2018-06-13
Apoptotic cell receptors contribute to the induction of tolerance by modulating dendritic cell function following the uptake of apoptotic cells or microparticles. Dendritic cells that have bound or ingested apoptotic cells produce only low amounts of pro-inflammatory cytokines and fail to prime effector T cell responses. Specifically, ligation of the apoptotic cell receptor CR3 (CD11 b/CD18) on human monocyte-derived dendritic cells (moDC) down-modates proinflammatory cytokine secretion, but the consequences for human Th17 cell homeostasis and effector responses remain unknown. Here, we aimed to establish whether CD11b-ligated moDC modulate Th17 cell effector reponses to assess their potential for future use in moDC-based suppressive immunotherapy. We generated a bead-based surrogate system to target CD11b on monocyte-derived human dendritic cells and examined the effects of CD11b ligation on Th17-skewing cytokine secretion, priming, expansion and functional plasticity in DC/T cell co-culture systems at the poly- and monoclonal level. We show that Th17 cell expansion within the human memory CD4 + T cell compartment was efficiently constricted by targeting the CD11b receptor on moDC. This tolerogenic capacity was primarily dependent on cytokine skewing. Furthermore, ligation of CD11b on healthy homozygous carriers of the rs11143679 (ITGAM) variant - a strong genetic susceptibility marker for human systemic lupus erythematosus - also down-modulated the secretion of Th17-skewing cytokines. Overall, our findings underline the potential of targeted CD11b ligation on human dendritic cells for the engineering of suppressive immunotherapy for Th17-related autoimmune disorders. Copyright © 2018 Elsevier Ltd. All rights reserved.
Mesquita, Ricardo Alves; de Araújo, Vera Cavalcanti; Paes, Roberto Antônio Pinto; Nunes, Fábio Daumas; de Sousa, Suzana Cantanhede Orsini Machado
2009-01-01
Objective: Follicular dendritic cells (FDCs) and interdigitating dendritic cells (IDCs) are dendritic cells found in lymphoid follicles, reactive follicles and in lymphomas. The goal of this study was to evaluate the presence and distribution of FDCs and IDCs in oral lymphomas. Material and Methods: Immunohistochemistry reactions were applied to 50 oral lymphomas using the antibodies anti-CD21, anti-CD35 and anti-caldesmon to FDCs, and anti-S100 protein to IDCs. Caldesmon+/FDCs and S100+/IDCs were quantified in Imagelab® software. Results: FDCs revealed by CD21 and CD35 were positively stained in two cases of diffuse large B-cell lymphoma, one MALT lymphoma, and in one case of mantle cell lymphoma. FDCs were immunopositive to caldesmon in all cases, as well as IDCs to S100 protein. Burkitt lymphoma presented a lower amount of caldesmon+/FDCs and S100+/IDCs than diffuse large B-cell lymphoma and plasmablastic lymphoma of the oral mucosa type. Conclusions: The microenvironment determined by neoplastic lymphoid cells in oral lymphomas is responsible by the development and expression of dendritic cells types. PMID:19466261
Xu, Cheng; Evensen, Øystein; Munang'andu, Hetron
2016-04-21
A fundamental step in cellular defense mechanisms is the recognition of "danger signals" made of conserved pathogen associated molecular patterns (PAMPs) expressed by invading pathogens, by host cell germ line coded pattern recognition receptors (PRRs). In this study, we used RNA-seq and the Kyoto encyclopedia of genes and genomes (KEGG) to identify PRRs together with the network pathway of differentially expressed genes (DEGs) that recognize salmonid alphavirus subtype 3 (SAV-3) infection in macrophage/dendritic like TO-cells derived from Atlantic salmon (Salmo salar L) headkidney leukocytes. Our findings show that recognition of SAV-3 in TO-cells was restricted to endosomal Toll-like receptors (TLRs) 3 and 8 together with RIG-I-like receptors (RLRs) and not the nucleotide-binding oligomerization domain-like receptors NOD-like receptor (NLRs) genes. Among the RLRs, upregulated genes included the retinoic acid inducible gene I (RIG-I), melanoma differentiation association 5 (MDA5) and laboratory of genetics and physiology 2 (LGP2). The study points to possible involvement of the tripartite motif containing 25 (TRIM25) and mitochondrial antiviral signaling protein (MAVS) in modulating RIG-I signaling being the first report that links these genes to the RLR pathway in SAV-3 infection in TO-cells. Downstream signaling suggests that both the TLR and RLR pathways use interferon (IFN) regulatory factors (IRFs) 3 and 7 to produce IFN-a2. The validity of RNA-seq data generated in this study was confirmed by quantitative real time qRT-PCR showing that genes up- or downregulated by RNA-seq were also up- or downregulated by RT-PCR. Overall, this study shows that de novo transcriptome assembly identify key receptors of the TLR and RLR sensors engaged in host pathogen interaction at cellular level. We envisage that data presented here can open a road map for future intervention strategies in SAV infection of salmon.
Heterogeneous integration of adult-generated granule cells into the epileptic brain
Murphy, Brian L.; Pun, Raymund Y.K.; Yin, Hulian; Faulkner, Christian R.; Loepke, Andreas W.; Danzer, Steve C.
2011-01-01
The functional impact of adult-generated granule cells in the epileptic brain is unclear, with data supporting both protective and maladaptive roles. These conflicting findings could be explained if new granule cells integrate heterogeneously, with some cells taking neutral or adaptive roles, while others contribute to recurrent circuitry supporting seizures. Here, we tested this hypothesis by completing detailed morphological characterizations of age- and experience-defined cohorts of adult-generated granule cells from transgenic mice. The majority of newborn cells exposed to an epileptogenic insult exhibited reductions in dendritic spine number, suggesting reduced excitatory input to these cells. A significant subset, however, exhibited higher spine numbers. These latter cells tended to have enlarged cell bodies, long basal dendrites or both. Moreover, cells with basal dendrites received significantly more recurrent mossy fiber input through their apical dendrites, indicating that these cells are robustly integrated into the pathological circuitry of the epileptic brain. These data imply that newborn cells play complex – and potentially conflicting – roles in epilepsy. PMID:21209195
Pyramidal neurons in the septal and temporal CA1 field of the human and hedgehog tenrec hippocampus.
Liagkouras, Ioannis; Michaloudi, Helen; Batzios, Christos; Psaroulis, Dimitrios; Georgiadis, Marios; Künzle, Heinz; Papadopoulos, Georgios C
2008-07-07
The present study examines comparatively the cellular density of disector-counted/Nissl-stained CA1 pyramidal neurons and the morphometric characteristics (dendritic number/length, spine number/density and Sholl-counted dendritic branch points/20 microm) of the basal and apical dendritic systems of Golgi-impregnated CA1 neurons, in the septal and temporal hippocampus of the human and hedgehog tenrec brain. The obtained results indicate that in both hippocampal parts the cellular density of the CA1 pyramidal neurons is lower in human than in tenrec. However, while the human pyramidal cell density is higher in the septal hippocampal part than in the temporal one, in the tenrec the density of these cells is higher in the temporal part. The dendritic tree of the CA1 pyramidal cells, more developed in the septal than in temporal hippocampus in both species studied, is in general more complex in the human hippocampus. The basal and the apical dendritic systems exhibit species related morphometric differences, while dendrites of different orders exhibit differences in their number and length, and in their spine density. Finally, in both species, as well as hippocampal parts and dendritic systems, changes of dendritic morphometric features along ascending dendritic orders fluctuate in a similar way, as do the number of dendritic branch points in relation to the distance from the neuron soma.
Dendritic cell and histiocytic neoplasms: biology, diagnosis, and treatment.
Dalia, Samir; Shao, Haipeng; Sagatys, Elizabeth; Cualing, Hernani; Sokol, Lubomir
2014-10-01
Dendritic and histiocytic cell neoplasms are rare malignancies that make up less than 1% of all neoplasms arising in lymph nodes or soft tissues. These disorders have distinctive disease biology, clinical presentations, pathology, and unique treatment options. Morphology and immunohistochemistry evaluation by a hematopathologist remains key for differentiating between these neoplasms. In this review, we describe tumor biology, clinical features, pathology, and treatment of follicular dendritic cell sarcoma, interdigitating dendritic cell sarcoma, indeterminate dendritic cell sarcoma, histiocytic sarcoma, fibroblastic reticular cell tumors, and disseminated juvenile xanthogranuloma. A literature search for articles published between 1990 and 2013 was undertaken. Articles are reviewed and salient findings are systematically described. Patients with dendritic cell and histiocytic neoplasms have distinct but variable clinical presentations; however, because many tumors have recently been recognized, their true incidence is uncertain. Although the clinical features can present in many organs, most occur in the lymph nodes or skin. Most cases are unifocal and solitary presentations have good prognoses with surgical resection. The role of adjuvant therapy in these disorders remains unclear. In cases with disseminated disease, prognosis is poor and data on treatment options are limited, although chemotherapy and referral to a tertiary care center should be considered. Excisional biopsy is the preferred method of specimen collection for tissue diagnosis, and immunohistochemistry is the most important diagnostic method for differentiating these disorders from other entities. Dendritic cell and histiocytic cell neoplasms are rare hematological disorders with variable clinical presentations and prognoses. Immunohistochemistry remains important for diagnosis. Larger pooled analyses or clinical trials are needed to better understand optimal treatment options in these rare disorders. Whenever possible, patients should be referred to a tertiary care center for disease management.
Connelly, William M; Crunelli, Vincenzo; Errington, Adam C
2015-11-25
Low-threshold Ca(2+) spikes (LTS) are an indispensible signaling mechanism for neurons in areas including the cortex, cerebellum, basal ganglia, and thalamus. They have critical physiological roles and have been strongly associated with disorders including epilepsy, Parkinson's disease, and schizophrenia. However, although dendritic T-type Ca(2+) channels have been implicated in LTS generation, because the properties of low-threshold spiking neuron dendrites are unknown, the precise mechanism has remained elusive. Here, combining data from fluorescence-targeted dendritic recordings and Ca(2+) imaging from low-threshold spiking cells in rat brain slices with computational modeling, the cellular mechanism responsible for LTS generation is established. Our data demonstrate that key somatodendritic electrical conduction properties are highly conserved between glutamatergic thalamocortical neurons and GABAergic thalamic reticular nucleus neurons and that these properties are critical for LTS generation. In particular, the efficiency of soma to dendrite voltage transfer is highly asymmetric in low-threshold spiking cells, and in the somatofugal direction, these neurons are particularly electrotonically compact. Our data demonstrate that LTS have remarkably similar amplitudes and occur synchronously throughout the dendritic tree. In fact, these Ca(2+) spikes cannot occur locally in any part of the cell, and hence we reveal that LTS are generated by a unique whole-cell mechanism that means they always occur as spatially global spikes. This all-or-none, global electrical and biochemical signaling mechanism clearly distinguishes LTS from other signals, including backpropagating action potentials and dendritic Ca(2+)/NMDA spikes, and has important consequences for dendritic function in low-threshold spiking neurons. Low-threshold Ca(2+) spikes (LTS) are critical for important physiological processes, including generation of sleep-related oscillations, and are implicated in disorders including epilepsy, Parkinson's disease, and schizophrenia. However, the mechanism underlying LTS generation in neurons, which is thought to involve dendritic T-type Ca(2+) channels, has remained elusive due to a lack of knowledge of the dendritic properties of low-threshold spiking cells. Combining dendritic recordings, two-photon Ca(2+) imaging, and computational modeling, this study reveals that dendritic properties are highly conserved between two prominent low-threshold spiking neurons and that these properties underpin a whole-cell somatodendritic spike generation mechanism that makes the LTS a unique global electrical and biochemical signal in neurons. Copyright © 2015 Connelly et al.
FURTHER STUDY OF SOMA, DENDRITE, AND AXON EXCITATION IN SINGLE NEURONS
Eyzaguirre, Carlos; Kuffler, Stephen W.
1955-01-01
The present investigation continues a previous study in which the soma-dendrite system of sensory neurons was excited by stretch deformation of the peripheral dendrite portions. Recording was done with intracellular leads which were inserted into the cell soma while the neuron was activated orthodromically or antidromically. The analysis was also extended to axon conduction. Crayfish, Procambarus alleni (Faxon) and Orconectes virilis (Hagen), were used. 1. The size and time course of action potentials recorded from the soma-dendrite complex vary greatly with the level of the cell's membrane potential. The latter can be changed over a wide range by stretch deformation which sets up a "generator potential" in the distal portions of the dendrites. If a cell is at its resting unstretched equilibrium potential, antidromic stimulation through the axon causes an impulse which normally overshoots the resting potential and decays into an afternegativity of 15 to 20 msec. duration. The postspike negativity is not followed by an appreciable hyperpolarization (positive) phase. If the membrane potential is reduced to a new steady level a postspike positivity appears and increases linearly over a depolarization range of 12 to 20 mv. in various cells. At those levels the firing threshold of the cell for orthodromic discharges is generally reached. 2. The safety factor for conduction between axon and cell soma is reduced under three unrelated conditions, (a) During the recovery period (2 to 3 msec.) immediately following an impulse which has conducted fully over the cell soma, a second impulse may be delayed, may invade the soma partially, or may be blocked completely. (b) If progressive depolarization is produced by stretch, it leads to a reduction of impulse height and eventually to complete block of antidromic soma invasion, resembling cathodal block, (c) In some cells, when the normal membrane potential is within several millivolts of the relaxed resting state, an antidromic impulse may be blocked and may set up within the soma a local potential only. The local potential can sum with a second one or it may sum with potential changes set up in the dendrites, leading to complete invasion of the soma. Such antidromic invasion block can always be relieved by appropriate stretch which shifts the membrane potential out of the "blocking range" nearer to the soma firing level. During the afterpositivity of an impulse in a stretched cell the membrane potential may fall below or near the blocking range. During that period another impulse may be delayed or blocked. 3. Information regarding activity and conduction in dendrites has been obtained indirectly, mainly by analyzing the generator action under various conditions of stretch. The following conclusions have been reached: The large dendrite branches have similar properties to the cell body from which they arise and carry the same kind of impulses. In the finer distal filaments of even lightly depolarized dendrites, however, no axon type all-or-none conduction occurs since the generator potential persists to a varying degree during antidromic invasion of the cell. With the membrane potential at its resting level the dendrite terminals contribute to the prolonged impulse afternegativity of the soma. 4. Action potentials in impaled axons and in cell bodies have been compared. It is thought that normally the over-all duration of axon impulses is shorter. Local activity during reduction of the safety margin for conduction was studied. 5. An analysis was made of high frequency grouped discharges which occasionally arise in cells. They differ in many essential aspects from the regular discharges set up by the generator action. It is proposed that grouped discharges occur only when invasion of dendrites is not synchronous, due to a delay in excitation spread between soma and dendrites. Each impulse in a group is assumed to be caused by an impulse in at least one of the large dendrite branches. Depolarization of dendrites abolishes the grouped activity by facilitating invasion of the large dendrite branches. PMID:13252238
Innate immunity and effector and regulatory mechanisms involved in allergic contact dermatitis.
Silvestre, Marilene Chaves; Sato, Maria Notomi; Reis, Vitor Manoel Silva Dos
2018-03-01
Skin's innate immunity is the initial activator of immune response mechanisms, influencing the development of adaptive immunity. Some contact allergens are detected by Toll-like receptors (TLRs) and inflammasome NLR3. Keratinocytes participate in innate immunity and, in addition to functioning as an anatomical barrier, secrete cytokines, such as TNF, IL-1β, and IL-18, contributing to the development of Allergic Contact Dermatitis. Dendritic cells recognize and process antigenic peptides into T cells. Neutrophils cause pro-inflammatory reactions, mast cells induce migration/maturation of skin DCs, the natural killer cells have natural cytotoxic capacity, the γδ T cells favor contact with hapten during the sensitization phase, and the innate lymphoid cells act in the early stages by secreting cytokines, as well as act in inflammation and tissue homeostasis. The antigen-specific inflammation is mediated by T cells, and each subtype of T cells (Th1/Tc1, Th2/Tc2, and Th17/Tc17) activates resident skin cells, thus contributing to inflammation. Skin's regulatory T cells have a strong ability to inhibit the proliferation of hapten-specific T cells, acting at the end of the Allergic Contact Dermatitis response and in the control of systemic immune responses. In this review, we report how cutaneous innate immunity is the first line of defense and focus its role in the activation of the adaptive immune response, with effector response induction and its regulation.
The DC-SIGN-CD56 interaction inhibits the anti-dendritic cell cytotoxicity of CD56 expressing cells.
Nabatov, Alexey A; Raginov, Ivan S
2015-01-01
This study aimed to clarify interactions of the pattern-recognition receptor DC-SIGN with cells from the HIV-infected peripheral blood lymphocyte cultures. Cells from control and HIV-infected peripheral blood lymphocyte cultures were tested for the surface expression of DC-SIGN ligands. The DC-SIGN ligand expressing cells were analyzed for the role of DC-SIGN-ligand interaction in their functionality. In the vast majority of experiments HIV-infected lymphocytes did not express detectable DC-SIGN ligands on their cell surfaces. In contrast, non-infected cells, carrying NK-specific marker CD56, expressed cell surface DC-SIGN ligands. The weakly polysialylated CD56 was identified as a novel DC-SIGN ligand. The treatment of DC-SIGN expressing dendritic cells with anti-DC-SIGN antibodies increased the anti-dendritic cell cytotoxicity of CD56(pos) cells. The treatment of CD56(pos) cells with a peptide, blocking the weakly polysialylated CD56-specifc trans-homophilic interactions, inhibited their anti-dendritic cells cytotoxicity. The interaction between DC-SIGN and CD56 inhibits homotypic intercellular interactions of CD56(pos) cells and protects DC-SIGN expressing dendritic cells against CD56(pos) cell-mediated cytotoxicity. This finding can have an impact on the development of approaches to HIV infection and cancer therapy as well as in transplantation medicine.
Peixoto, Mariana Lima Perazzini; Santos, Dilvani Oliveira; Souza, Ivy de Castro Campos de; Neri, Eloah Christina Lyrio; Sequeira, Danielly Correa Moreira de; De Luca, Paula Mello; Borba, Cíntia de Moraes
2014-01-01
Purpureocillium lilacinum is emerging as a causal agent of hyalohyphomycosis that is refractory to antifungal drugs; however, the pathogenic mechanisms underlying P. lilacinum infection are not understood. In this study, we investigated the interaction of P. lilacinum conidia with human macrophages and dendritic cells in vitro. Spores of a P. lilacinum clinical isolate were obtained by chill-heat shock. Mononuclear cells were isolated from eight healthy individuals. Monocytes were separated by cold aggregation and differentiated into macrophages by incubation for 7 to 10 days at 37°C or into dendritic cells by the addition of the cytokines human granulocyte-macrophage colony stimulating factor and interleukin-4. Conidial suspension was added to the human cells at 1:1, 2:1, and 5:1 (conidia:cells) ratios for 1h, 6h, and 24h, and the infection was evaluated by Giemsa staining and light microscopy. After 1h interaction, P. lilacinum conidia were internalized by human cells and after 6h contact, some conidia became inflated. After 24h interaction, the conidia produced germ tubes and hyphae, leading to the disruption of macrophage and dendritic cell membranes. The infection rate analyzed after 6h incubation of P. lilacinum conidia with cells at 2:1 and 1:1 ratios was 76.5% and 25.5%, respectively, for macrophages and 54.3% and 19.5%, respectively, for cultured dendritic cells. P. lilacinum conidia are capable of infecting and destroying both macrophages and dendritic cells, clearly demonstrating the ability of this pathogenic fungus to invade human phagocytic cells.
Larrañaga, Pedro; Benavides-Piccione, Ruth; Fernaud-Espinosa, Isabel; DeFelipe, Javier; Bielza, Concha
2017-01-01
We modeled spine distribution along the dendritic networks of pyramidal neurons in both basal and apical dendrites. To do this, we applied network spatial analysis because spines can only lie on the dendritic shaft. We expanded the existing 2D computational techniques for spatial analysis along networks to perform a 3D network spatial analysis. We analyzed five detailed reconstructions of adult human pyramidal neurons of the temporal cortex with a total of more than 32,000 spines. We confirmed that there is a spatial variation in spine density that is dependent on the distance to the cell body in all dendrites. Considering the dendritic arborizations of each pyramidal cell as a group of instances of the same observation (the neuron), we used replicated point patterns together with network spatial analysis for the first time to search for significant differences in the spine distribution of basal dendrites between different cells and between all the basal and apical dendrites. To do this, we used a recent variant of Ripley’s K function defined to work along networks. The results showed that there were no significant differences in spine distribution along basal arbors of the same neuron and along basal arbors of different pyramidal neurons. This suggests that dendritic spine distribution in basal dendritic arbors adheres to common rules. However, we did find significant differences in spine distribution along basal versus apical networks. Therefore, not only do apical and basal dendritic arborizations have distinct morphologies but they also obey different rules of spine distribution. Specifically, the results suggested that spines are more clustered along apical than in basal dendrites. Collectively, the results further highlighted that synaptic input information processing is different between these two dendritic domains. PMID:28662210
Anton-Sanchez, Laura; Larrañaga, Pedro; Benavides-Piccione, Ruth; Fernaud-Espinosa, Isabel; DeFelipe, Javier; Bielza, Concha
2017-01-01
We modeled spine distribution along the dendritic networks of pyramidal neurons in both basal and apical dendrites. To do this, we applied network spatial analysis because spines can only lie on the dendritic shaft. We expanded the existing 2D computational techniques for spatial analysis along networks to perform a 3D network spatial analysis. We analyzed five detailed reconstructions of adult human pyramidal neurons of the temporal cortex with a total of more than 32,000 spines. We confirmed that there is a spatial variation in spine density that is dependent on the distance to the cell body in all dendrites. Considering the dendritic arborizations of each pyramidal cell as a group of instances of the same observation (the neuron), we used replicated point patterns together with network spatial analysis for the first time to search for significant differences in the spine distribution of basal dendrites between different cells and between all the basal and apical dendrites. To do this, we used a recent variant of Ripley's K function defined to work along networks. The results showed that there were no significant differences in spine distribution along basal arbors of the same neuron and along basal arbors of different pyramidal neurons. This suggests that dendritic spine distribution in basal dendritic arbors adheres to common rules. However, we did find significant differences in spine distribution along basal versus apical networks. Therefore, not only do apical and basal dendritic arborizations have distinct morphologies but they also obey different rules of spine distribution. Specifically, the results suggested that spines are more clustered along apical than in basal dendrites. Collectively, the results further highlighted that synaptic input information processing is different between these two dendritic domains.
Ennis, Matthew; Zhu, Mingyan; Heinbockel, Thomas; Hayar, Abdallah
2008-01-01
The group I metabotropic glutamate receptor (mGluR) subtype, mGluR1, is highly expressed on the apical dendrites of olfactory bulb mitral cells and thus may be activated by glutamate released from olfactory nerve (ON) terminals. Previous studies have shown that mGluR1 agonists directly excite mitral cells. In the present study, we investigated the involvement of mGluR1 in ON-evoked responses in mitral cells in rat olfactory bulb slices using patch-clamp electrophysiology. In voltage-clamp recordings, the average EPSC evoked by single ON shocks or brief trains of ON stimulation (six pulses at 50 Hz) in normal physiological conditions were not significantly affected by the nonselective mGluR antagonist LY341495 (50–100 μM) or the mGluR1-specific antagonist LY367385 (100 μM); ON-evoked responses were attenuated, however, in a subset (36%) of cells. In the presence of blockers of ionotropic glutamate and GABA receptors, application of the glutamate uptake inhibitors THA (300 μM) and TBOA (100 μM) revealed large-amplitude, long-duration responses to ON stimulation, whereas responses elicited by antidromic activation of mitral/tufted cells were unaffected. Magnitudes of the ON-evoked responses elicited in the presence of THA–TBOA were dependent on stimulation intensity and frequency, and were maximal during high-frequency (50-Hz) bursts of ON spikes, which occur during odor stimulation. ON-evoked responses elicited in the presence of THA–TBOA were significantly reduced or completely blocked by LY341495 or LY367385 (100 μM). These results demonstrate that glutamate transporters tightly regulate access of synaptically evoked glutamate from ON terminals to postsynaptic mGluR1s on mitral cell apical dendrites. Taken together with other findings, the present results suggest that mGluR1s may not play a major role in phasic responses to ON input, but instead may play an important role in shaping slow oscillatory activity in mitral cells and/or activity-dependent regulation of plasticity at ON–mitral cell synapses. PMID:16394070
Booth, Victoria; Poe, Gina R.
2005-01-01
In simulation studies using a realistic model CA1 pyramidal cell, we accounted for the shift in mean firing phase from theta cycle peaks to theta cycle troughs during REM sleep reactivation of hippocampal CA1 place cells over several days of growing familiarization with an environment (Poe et al., 2000). Changes in the theta drive between proximal and distal dendritic regions of the cell modulated the theta phase of firing when stimuli were presented at proximal and distal dendritic locations. Stimuli at proximal dendritic sites (proximal to 100 μm from the soma) invoked firing with a significant phase preference at the depolarizing theta peaks, while distal stimuli (> 290 μm from the soma) invoked firing at hyperpolarizing theta troughs. The location-related phase preference depended on active dendritic conductances, a sufficient electrotonic separation between input sites and theta-induced subthreshold membrane potential oscillations in the cell. The simulation results predict that the shift in mean theta phase during REM sleep cellular reactivation could occur through potentiation of distal dendritic (temporo-ammonic) synapses and depotentiation of proximal dendritic (Schaffer collateral) synapses over the course of familiarization. PMID:16411243
The neuronal structure of paramamillary nuclei in Bison bonasus: Nissl and Golgi pictures.
Robak, A; Szteyn, S; Równiak, M
1998-01-01
The studies were carried out on the hypothalamus of bison bonasus aged 2 and 3 months. Sections were made by means of Bagiński's technique and Nissl and Klüver-Barrera methods. Four types of neurons were distinguished in the paramamillary nuclei: nucleus supramamillaris (Sm) and nucleus tuberomammillaris pars posterior (Tmp). Type I, small and medium-size, triangular or fusiform cells, which have 2-3 slender, poorly ramified dendrites; typical leptodendritic neurons. Type II, medium size neurons with quadrangular or spindle-shaped perikaryons. Most of them have 3-4 thick dendritic trunks with ramifying relatively long dendrites. These cells show stalked-appearance and possess different appendages sparsely distributed. Type III is similar to type II, but is made of medium-size to large multipolar cells having quadrangular, triangular or fusiform perikaryons and relatively short dendrites. Type IV, small and medium-size, globular cells with 2 or 3 dendritic trunks, which dichotomously subdivide into quaternary dendrites. In all types of neurons, axons emerge from the perikaryon or initial portion of a dendritic trunk. Type I was found in both studied nuclei. Types II and III constitute mainly the nucleus tuberomamillaris pars posterior. Type IV preponderate in the nucleus supramamillaris. The characteristic feature of Tmp cells, in Nissl picture was irregular contour of their somas and clumps of rough Nisls granules, which appear to lie outside the perikaryons. In Sm there were also lightly stained small rounded cells having both small amount of the cytoplasm and tigroid matter.
2012-07-01
Mediated by Listeria -Stimulated Human Dendritic Cells: Implications for Cancer Vaccine Therapy PRINCIPAL INVESTIGATOR: David J. Chung, M D , Ph D...CONTRACT NUMBER Evaluation of Immune Responses Mediated by Listeria -Stimulated Human Dendritic Cells: Implications for Cancer Vaccine Therapy 5b...Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The purpose of this project is to study the immunomodulatory effect of Listeria on
Dudda, Jan C; Simon, Jan C; Martin, Stefan
2004-01-15
The effector/memory T cell pool branches in homing subsets selectively trafficking to organs such as gut or skin. Little is known about the critical factors in the generation of skin-homing CD8+ T cells, although they are crucial effectors in skin-restricted immune responses such as contact hypersensitivity and melanoma defense. In this study, we show that intracutaneous, but not i.v. injection of bone marrow-derived dendritic cells induced skin-homing CD8+ T cells with up-regulated E-selectin ligand expression and effector function in contact hypersensitivity. The skin-homing potential and E-selectin ligand expression remained stable in memory phase without further Ag contact. In contrast, i.p. injection induced T cells expressing the gut-homing integrin alpha(4)beta(7). Although differential expression of these adhesion molecules was strictly associated with the immunization route, the postulated skin-homing marker CCR4 was transiently up-regulated in all conditions. Interestingly, dendritic cells from different tissues effectively induced the corresponding homing markers on T cells in vitro. Our results suggest a crucial role for the tissue microenvironment and dendritic cells in the instruction of T cells for tissue-selective homing and demonstrate that Langerhans cells are specialized to target T cells to inflamed skin.
The expression and function of cathepsin E in dendritic cells.
Chain, Benjamin M; Free, Paul; Medd, Patrick; Swetman, Claire; Tabor, Alethea B; Terrazzini, Nadia
2005-02-15
Cathepsin E is an aspartic proteinase that has been implicated in Ag processing within the class II MHC pathway. In this study, we document the presence of cathepsin E message and protein in human myeloid dendritic cells, the preeminent APCs of the immune system. Cathepsin E is found in a perinuclear compartment, which is likely to form part of the endoplasmic reticulum, and also a peripheral compartment just beneath the cell membrane, with a similar distribution to that of Texas Red-dextran within 2 min of endocytosis. To investigate the function of cathepsin E in processing, a new soluble targeted inhibitor was synthesized by linking the microbial aspartic proteinase inhibitor pepstatin to mannosylated BSA via a cleavable disulfide linker. This inhibitor was shown to block cathepsin D/E activity in cell-free assays and within dendritic cells. The inhibitor blocked the ability of dendritic cells from wild-type as well as cathepsin D-deficient mice to present intact OVA, but not an OVA-derived peptide, to cognate T cells. The data therefore support the hypothesis that cathepsin E has an important nonredundant role in the class II MHC Ag processing pathway within dendritic cells.
Blastic plasmacytoid dendritic cell neoplasm in an elderly woman.
Foong, H B B; Chong, M; Taylor, E M; Carlson, J A; Petrella, T
2013-04-01
Blastic plasmacytoid dendritic cell neoplasm (a.k.a. NK cell lymphoma, CD4+CD56+ haematodermic neoplasm) is a rare aggressive tumour that arises from plasmacytoid dendritic cell precursors. We report the first case from Malaysia of a 79-year-old Chinese woman who presented with purpuric plaques and nodules produced by pleomorphic CD4+, CD56+, CD68+, CD123+ and CD303+, but CD2APmononuclear cell infiltrates. Leukemic dissemination occurred and she succumbed to disease without treatment 4 weeks after diagnosis and 9 months after onset of cutaneous disease.
Rolny, I S; Tiscornia, I; Racedo, S M; Pérez, P F; Bollati-Fogolín, M
2016-11-30
It is known that probiotic microorganisms are able to modulate pathogen virulence. This ability is strain dependent and involves multiple interactions between microorganisms and relevant host's cell populations. In the present work we focus on the effect of a potentially probiotic lactobacillus strain (Lactobacillus delbrueckii subsp. lactis CIDCA 133) in an in vitro model of Bacillus cereus infection. Our results showed that infection of intestinal epithelial HT-29 cells by B. cereus induces nuclear factor kappa B (NF-κB) pathway. Noteworthy, the presence of strain L. delbrueckii subsp.lactis CIDCA 133 increases stimulation. However, B. cereus-induced interleukin (IL)-8 production by epithelial cells is partially abrogated by L. delbrueckii subsp. lactis CIDCA 133. These findings suggest that signalling pathways other than that of NF-κB are involved. In a co-culture system (HT-29 and monocyte-derived dendritic cells), B. cereus was able to translocate from the epithelial (upper) to the dendritic cell compartment (lower). This translocation was partially abrogated by the presence of lactobacilli in the upper compartment. In addition, infection of epithelial cells in the co-culture model, led to an increase in the expression of CD86 by dendritic cells. This effect could not be modified in the presence of lactobacilli. Interestingly, infection of enterocytes with B. cereus triggers production of proinflammatory cytokines by dendritic cells (IL-8, IL-6 and tumour necrosis factor alpha (TNF-α)). The production of TNF-α (a protective cytokine in B. cereus infections) by dendritic cells was increased in the presence of lactobacilli. The present work demonstrates for the first time the effect of L. delbrueckii subsp. lactis CIDCA 133, a potentially probiotic strain, in an in vitro model of B. cereus infection. The presence of the probiotic strain modulates cell response both in infected epithelial and dendritic cells thus suggesting a possible beneficial effect of selected lactobacilli strains on the course of B. cereus infection.
Feline atopic dermatitis. A model for Langerhans cell participation in disease pathogenesis.
Roosje, P J; Whitaker-Menezes, D; Goldschmidt, M H; Moore, P F; Willemse, T; Murphy, G F
1997-10-01
Atopic dermatitis is a disorder characterized by cutaneous exanthemata as a consequence of exaggerated eczematous reactions to topical and systemic allergens. Langerhans cells, expressing CD1a and HLA-DR, and dermal dendritic cells, expressing HLA-DR, are known to be potent antigen-presenting cells and are thought to play an important role in the pathogenesis of atopic dermatitis. The immunophenotype of lesional skin in atopic dermatitis in humans involves increased numbers of CD1a+/MHC class II+ dendritic cells in addition to activated T cells, mast cells, and macrophages. To establish feline skin as a model for the study of human atopic dermatitis, and to elucidate the role of dendritic cells in feline atopic dermatitis, we investigated the presence of CD1a+ cells and MHC class II+ cells in the epidermis and dermis of lesional feline skin and in skin of healthy control animals. Immunohistochemistry revealed that MHC class II+ epidermal dendritic cells were CD1a+ in normal feline skin and significantly increased numbers of CD1a+ cells and MHC class II+ cells were present in the epidermis and dermis of lesional skin. These data provide the first correlative documentation of CD1a expression by feline dendritic cells containing Birbeck granules, and indicate the utility of feline skin in the study of human cutaneous atopy.
Plasmacytoid dendritic cell leukaemia/lymphoma: towards a well defined entity?
Garnache-Ottou, Francine; Feuillard, Jean; Saas, Philippe
2007-02-01
CD4(+)/CD56(+) haematodermic neoplasm or 'early' plasmacytoid dendritic cell leukaemia/lymphoma (pDCL) was described as a disease entity in the last World Health Organisation/European Organisation for Research and Treatment of Cancer classification for cutaneous lymphomas. These leukaemia/lymphomas co-express CD4 and CD56 without any other lineage-specific markers and have been identified as arising from plasmacytoid dendritic cells. Despite a fairly homogeneous pattern of markers expressed by most pDCL, numerous distinctive features (e.g. cytological aspects and aberrant marker expression) have been reported. This may be related to the 'lineage-independent developmental' programme of dendritic cells, which may be able to develop from either immature or already committed haematopoietic progenitors. This highlights the need for specific validated markers to diagnose such aggressive leukaemia. Here, we propose--among others (e.g. T-cell leukaemia 1)--blood dendritic cell antigen-2 and high levels of CD123 expression as potential markers. In addition, we propose a multidisciplinary approach including several fields of haematology to improve pDCL diagnosis.
Szteyn, S; Robak, A; Równiak, M
1997-01-01
The neuronal structure of the somatic oculomotor nucleus (SON) was studied on the basis of Nissl and Golgi preparations, obtained from mesencephalons of 4 European bisons. We distinguished four types of neurons in the investigated nucleus: 1. The large multipolar nerve cells with 5-8 thick dendritic trunks and a thin axon which emerges directly from the soma. These are the most numerous neurons in the SON. 2. The small multipolar neurons. These cells have 4-6 thick dendritic trunks. An axon arises mostly from initial segment of one of the dendrites. This type represents about 8% neurons of SON. 3. The triangular neurons. From perikaryon 3 thick dendritic trunks emerge. A thin axon arises directly from the cell body. These cells make about 10% neurons of SON. 4. The pear-shaped cells which have 1 or 2 dendritic trunks concentrate at one pole of the neurons. In the SON there are about 2% pear-shaped cells. Their features correspond to the features attributed by many authors to the interneurons.
Rationale: Historically, single cell culture models have been limited in pathological and physiological relevance. A co-culture model of dendritic cells (DCs) and differentiated human airway epithelial cells was developed to examine potential interactions between these two cell t...
Lee, Andrew W; Hertel, Laura; Louie, Ryan K; Burster, Timo; Lacaille, Vashti; Pashine, Achal; Abate, Davide A; Mocarski, Edward S; Mellins, Elizabeth D
2006-09-15
Hemopoietic stem cell-derived mature Langerhans-type dendritic cells (LC) are susceptible to productive infection by human CMV (HCMV). To investigate the impact of infection on this cell type, we examined HLA-DR biosynthesis and trafficking in mature LC cultures exposed to HCMV. We found decreased surface HLA-DR levels in viral Ag-positive as well as in Ag-negative mature LC. Inhibition of HLA-DR was independent of expression of unique short US2-US11 region gene products by HCMV. Indeed, exposure to UV-inactivated virus, but not to conditioned medium from infected cells, was sufficient to reduce HLA-DR on mature LC, implicating particle binding/penetration in this effect. Reduced surface levels reflected an altered distribution of HLA-DR because total cellular HLA-DR was not diminished. Accumulation of HLA-DR was not explained by altered cathepsin S activity. Mature, peptide-loaded HLA-DR molecules were retained within cells, as assessed by the proportion of SDS-stable HLA-DR dimers. A block in egress was implicated, as endocytosis of surface HLA-DR was not increased. Immunofluorescence microscopy corroborated the intracellular retention of HLA-DR and revealed markedly fewer HLA-DR-positive dendritic projections in infected mature LC. Unexpectedly, light microscopic analyses showed a dramatic loss of the dendrites themselves and immunofluorescence revealed that cytoskeletal elements crucial for the formation and maintenance of dendrites are disrupted in viral Ag-positive cells. Consistent with these dendrite effects, HCMV-infected mature LC exhibit markedly reduced chemotaxis in response to lymphoid chemokines. Thus, HCMV impedes MHC class II molecule trafficking, dendritic projections, and migration of mature LC. These changes likely contribute to the reduced activation of CD4+ T cells by HCMV-infected mature LC.
Interactions of Cryptococcus with Dendritic Cells
Wozniak, Karen L.
2018-01-01
The fungal pathogens Cryptococcus neoformans and Cryptococcus gattii can cause life-threatening infections in immune compromised and immune competent hosts. These pathogens enter the host via inhalation, and respiratory tract innate immune cells such as dendritic cells (DCs) are one of the first host cells they encounter. The interactions between Cryptococcus and innate immune cells play a critical role in the progression of disease in the host. This review will focus specifically on the interactions between Cryptococcus and dendritic cells (DCs), including recognition/processing by DCs, effects of immune mediators on DC recruitment and activity, and the potential for DC vaccination against cryptococcosis. PMID:29543719
Interactions of Cryptococcus with Dendritic Cells.
Wozniak, Karen L
2018-03-15
The fungal pathogens Cryptococcus neoformans and Cryptococcus gattii can cause life-threatening infections in immune compromised and immune competent hosts. These pathogens enter the host via inhalation, and respiratory tract innate immune cells such as dendritic cells (DCs) are one of the first host cells they encounter. The interactions between Cryptococcus and innate immune cells play a critical role in the progression of disease in the host. This review will focus specifically on the interactions between Cryptococcus and dendritic cells (DCs), including recognition/processing by DCs, effects of immune mediators on DC recruitment and activity, and the potential for DC vaccination against cryptococcosis.
Arancio, O; Yoshimura, M; Murase, K; MacDermott, A B
1993-01-01
Excitatory amino acid receptor distribution was mapped on acutely dissociated neurons from postnatal rat spinal cord dorsal horn. N-methyl D-aspartate, quisqualate and kainate were applied to multiple locations along the somal and dendritic surfaces of voltage-clamped neurons by means of a pressure application system. To partially compensate for the decrement of response amplitude due to current loss between the site of activation on the dendrite and the recording electrode at the soma, a solution containing 0.15 M KCl was applied on the cell bodies and dendrites of some cells to estimate an empirical length constant. In the majority of the cells tested, the dendritic membrane had regions of higher sensitivity to excitatory amino acid agonists than the somatic membrane, with dendritic response amplitudes reaching more than seven times those at the cell body. A comparison of the relative changes in sensitivity between each combination of two of the three excitatory amino acid agonists along the same dendrite showed different patterns of agonist sensitivity along the dendrite in the majority of the cells. These data were obtained from dorsal horn neurons that had developed and formed synaptic connections in vivo. They demonstrate that in contrast to observations made on ventral horn neurons, receptor density for all the excitatory amino acid receptors on dorsal horn neurons, including the N-methyl-D-aspartate receptor, are generally higher on the dendrites than on the soma. Further, these results are similar to those obtained from dorsal horn neurons grown in culture.
Retinal ganglion cell dendritic fields in old-world monkeys are oriented radially.
Schall, J D; Perry, V H; Leventhal, A G
1986-03-12
We analyzed the dendritic field morphology of 297 ganglion cells from peripheral regions of monkey retina. Most of the dendritic fields were elongated, and there was a significant tendency for the dendritic fields to be oriented radially, i.e., like the spokes of a wheel with the fovea at the hub. An overrepresentation of radial orientations in the peripheral retina of primates might explain why humans are best able to detect stimuli which are oriented radially using peripheral vision.
Subramaniam, Sakthivel; Cao, Dianjun; Tian, Debin; Cao, Qian M; Overend, Christopher; Yugo, Danielle M; Matzinger, Shannon R; Rogers, Adam J; Heffron, C Lynn; Catanzaro, Nicholas; Kenney, Scott P; Opriessnig, Tanja; Huang, Yao-Wei; Labarque, Geoffrey; Wu, Stephen Q; Meng, Xiang-Jin
2017-01-02
Porcine epidemic diarrhea virus (PEDV) first emerged in the United States in 2013 causing high mortality and morbidity in neonatal piglets with immense economic losses to the swine industry. PEDV is an alpha-coronavirus replicating primarily in porcine intestinal cells. PEDV vaccines are available in Asia and Europe, and conditionally-licensed vaccines recently became available in the United States but the efficacies of these vaccines in eliminating PEDV from swine populations are questionable. In this study, the immunogenicity of a subunit vaccine based on the spike protein of PEDV, which was directly targeted to porcine dendritic cells (DCs) expressing Langerin, was assessed. The PEDV S antigen was delivered to the dendritic cells through a single-chain antibody specific to Langerin and the targeted cells were stimulated with cholera toxin adjuvant. This approach, known as "dendritic cell targeting," greatly improved PEDV S antigen-specific T cell interferon-γ responses in the CD4 pos CD8 pos T cell compartment in pigs as early as 7days upon transdermal administration. When the vaccine protein was targeted to Langerin pos DCs systemically through intramuscular vaccination, it induced higher serum IgG and IgA responses in pigs, though these responses require a booster dose, and the magnitude of T cell responses were lower as compared to transdermal vaccination. We conclude that PEDV spike protein domains targeting Langerin-expressing dendritic cells significantly increased CD4 T cell immune responses in pigs. The results indicate that the immunogenicity of protein subunit vaccines can be greatly enhanced by direct targeting of the vaccine antigens to desirable dendritic cell subsets in pigs. Copyright © 2016 Elsevier B.V. All rights reserved.
Dendritic excitability modulates dendritic information processing in a purkinje cell model.
Coop, Allan D; Cornelis, Hugo; Santamaria, Fidel
2010-01-01
Using an electrophysiological compartmental model of a Purkinje cell we quantified the contribution of individual active dendritic currents to processing of synaptic activity from granule cells. We used mutual information as a measure to quantify the information from the total excitatory input current (I(Glu)) encoded in each dendritic current. In this context, each active current was considered an information channel. Our analyses showed that most of the information was encoded by the calcium (I(CaP)) and calcium activated potassium (I(Kc)) currents. Mutual information between I(Glu) and I(CaP) and I(Kc) was sensitive to different levels of excitatory and inhibitory synaptic activity that, at the same time, resulted in the same firing rate at the soma. Since dendritic excitability could be a mechanism to regulate information processing in neurons we quantified the changes in mutual information between I(Glu) and all Purkinje cell currents as a function of the density of dendritic Ca (g(CaP)) and Kca (g(Kc)) conductances. We extended our analysis to determine the window of temporal integration of I(Glu) by I(CaP) and I(Kc) as a function of channel density and synaptic activity. The window of information integration has a stronger dependence on increasing values of g(Kc) than on g(CaP), but at high levels of synaptic stimulation information integration is reduced to a few milliseconds. Overall, our results show that different dendritic conductances differentially encode synaptic activity and that dendritic excitability and the level of synaptic activity regulate the flow of information in dendrites.
Con-nectin axons and dendrites.
Beaudoin, Gerard M J
2006-07-03
Unlike adherens junctions, synapses are asymmetric connections, usually between axons and dendrites, that rely on various cell adhesion molecules for structural stability and function. Two cell types of adhesion molecules found at adherens junctions, cadherins and nectins, are thought to mediate homophilic interaction between neighboring cells. In this issue, Togashi et al. (see p. 141) demonstrate that the differential localization of two heterophilic interacting nectins mediates the selective attraction of axons and dendrites in cooperation with cadherins.
ERIC Educational Resources Information Center
Saad, Khaled; Zahran, Asmaa M.; Elsayh, Khalid I.; Abdel-Rahman, Ahmed A.; Al-Atram, Abdulrahman A.; Hussein, Almontaser; El-Gendy, Yasmin G.
2017-01-01
The aim of our study was to evaluate the frequencies of myeloid dendritic cells (mDCs) and plasmacytoid dendritic cells (pDCs) in children with ASD. Subjects were 32 children with ASD and 30 healthy children as controls. The numbers of mDCs and pDCs and the expression of CD86 and CD80 on the entire DCs were detected by flow cytometry. ASD children…
Cytoarchitectonic and quantitative Golgi study of the hedgehog supraoptic nucleus.
Caminero, A A; Machín, C; Sanchez-Toscano, F
1992-01-01
A cytoarchitectural study was made of the supraoptic nucleus (SON) of the hedgehog with special attention to the quantitative comparison of its main neuronal types. The main purposes were (1) to relate the characteristics of this nucleus in the hedgehog (a primitive mammalian insectivorous brain) with those in the SONs of more evolutionarily advanced species; (2) to identify quantitatively the dendritic fields of the main neuronal types in the hedgehog SON and to study their synaptic connectivity. From a descriptive standpoint, 3 neuronal types were found with respect to the number of dendritic stems arising from the neuronal soma: bipolar neurons (48%), multipolar neurons (45.5%) and monopolar neurons (6.5%). Within the multipolar type 2 subtypes could be distinguished, taking into account the number of dendritic spines: (a) with few spines (93%) and (b) very spiny (7%). These results indicate that the hedgehog SON is similar to that in other species except for the very spiny neurons, the significance of which is discussed. In order to characterise the main types more satisfactorily (bipolar and multipolars with few spines) we undertook a quantitative Golgi study of their dendritic fields. Although the patterns of the dendritic field are similar in both neuronal types, the differences in the location of their connectivity can reflect functional changes and alterations in relation to the synaptic afferences. Images Fig. 2 Fig. 3 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 PMID:1452481
Neutrophils, dendritic cells and Toxoplasma.
Denkers, Eric Y; Butcher, Barbara A; Del Rio, Laura; Bennouna, Soumaya
2004-03-09
Toxoplasma gondii rapidly elicits strong Type 1 cytokine-based immunity. The necessity for this response is well illustrated by the example of IFN-gamma and IL-12 gene knockout mice that rapidly succumb to the effects of acute infection. The parasite itself is skilled at sparking complex interactions in the innate immune system that lead to protective immunity. Neutrophils are one of the first cell types to arrive at the site of infection, and the cells release several proinflammatory cytokines and chemokines in response to Toxoplasma. Dendritic cells are an important source of IL-12 during infection with T. gondii and other microbial pathogens, and they are also specialized for high-level antigen presentation to T lymphocytes. Tachyzoites express at least two types of molecules that trigger innate immune cell cytokine production. One of these involves Toll-like receptor/MyD88 pathways common to many microbial pathogens. The second pathway is less conventional and involves molecular mimicry between a parasite cyclophilin and host CC chemokine receptor 5-binding ligands. Neutrophils, dendritic cells and Toxoplasma work together to elicit the immune response required for host survival. Cytokine and chemokine cross-talk between parasite-triggered neutrophils and dendritic cells results in recruitment, maturation and activation of the latter. Neutrophil-empowered dendritic cells possess properties expected of highly potent antigen presenting cells that drive T helper 1 generation.
Nagamine, E; Hirayama, K; Matsuda, K; Okamoto, M; Ohmachi, T; Kadosawa, T; Taniyama, H
2015-09-01
Osteosarcoma (OS), the most common bone tumor, includes OS of the head (OSH) and appendicular OS (OSA). In dogs, it is classified into 6 histologic subtypes: osteoblastic, chondroblastic, fibroblastic, telangiectatic, giant cell, and poorly differentiated. This study investigated the significance of the histologic classification relevant to clinical outcome and the histologic and immunohistochemical relationships between pleomorphism and expression of cytoskeletal proteins in 60 cases each of OSH and OSA. Most neoplasms exhibited histologic diversity, and 64% of OS contained multiple subtypes. In addition to the above 6 subtypes, myxoid, round cell, and epithelioid subtypes were observed. Although the epithelioid subtypes were observed in only OSH, no significant difference in the frequency of other subtypes was observed. Also, no significant relevance was observed between the clinical outcome and histologic subtypes. Cytokeratin (CK) was expressed in both epithelioid and sarcomatoid tumor cells in various subtypes, and all CK-positive tumor cells also expressed vimentin. Vimentin and α-smooth muscle actin (SMA) were expressed in all subtypes. A few SMA-positive spindle-shaped tumor cells exhibited desmin expression. Glial fibrillary acidic protein-positive tumor cells were observed in many subtypes, and some of these cells showed neurofilament expression. Although OSH exhibited significantly stronger immunoreactivity for SMA than OSA, no significant difference in other cytoskeletal proteins was observed. Some tumor cells had cytoskeletal protein expression compatible with the corresponding histologic subtypes, such as CK in the epithelioid subtype and SMA in the fibroblastic subtype. Thus, canine skeletal OS is composed of pleomorphic and heterogenous tumor cells as is reflected in the diversity of histologic patterns and expression of cytoskeletal proteins. © The Author(s) 2015.
Presence and regulation of the endocannabinoid system in human dendritic cells.
Matias, Isabel; Pochard, Pierre; Orlando, Pierangelo; Salzet, Michel; Pestel, Joel; Di Marzo, Vincenzo
2002-08-01
Cannabinoid receptors and their endogenous ligands, the endocannabinoids, have been detected in several blood immune cells, including monocytes/macrophages, basophils and lymphocytes. However, their presence in dendritic cells, which play a key role in the initiation and development of the immune response, has never been investigated. Here we have analyzed human dendritic cells for the presence of the endocannabinoids, anandamide and 2-arachidonoylglycerol (2-AG), the cannabinoid CB1 and CB2 receptors, and one of the enzymes mostly responsible for endocannabinoid hydrolysis, the fatty acid amide hydrolase (FAAH). By using a very sensitive liquid chromatography-atmospheric pressure chemical ionization-mass spectrometric (LC-APCI-MS) method, lipids extracted from immature dendritic cells were shown to contain 2-AG, anandamide and the anti-inflammatory anandamide congener, N-palmitoylethanolamine (PalEtn) (2.1 +/- 1.0, 0.14 +/- 0.02 and 8.2 +/- 3.9 pmol x 10(-7) cells, respectively). The amounts of 2-AG, but not anandamide or PalEtn, were significantly increased following cell maturation induced by bacterial lipopolysaccharide (LPS) or the allergen Der p 1 (2.8- and 1.9-fold, respectively). By using both RT-PCR and Western immunoblotting, dendritic cells were also found to express measurable amounts of CB1 and CB2 receptors and of FAAH. Cell maturation did not consistently modify the expression of these proteins, although in some cell preparations a decrease of the levels of both CB1 and CB2 mRNA transcripts was observed after LPS stimulation. These findings demonstrate for the first time that the endogenous cannabinoid system is present in human dendritic cells and can be regulated by cell activation.
Cellular and dendritic growth in a binary melt - A marginal stability approach
NASA Technical Reports Server (NTRS)
Laxmanan, V.
1986-01-01
A simple model for the constrained growth of an array of cells or dendrites in a binary alloy in the presence of an imposed positive temperature gradient in the liquid is proposed, with the dendritic or cell tip radius calculated using the marginal stability criterion of Langer and Muller-Krumbhaar (1977). This approach, an approach adopting the ad hoc assumption of minimum undercooling at the cell or dendrite tip, and an approach based on the stability criterion of Trivedi (1980) all predict tip radii to within 30 percent of each other, and yield a simple relationship between the tip radius and the growth conditions. Good agreement is found between predictions and data obtained in a succinonitrile-acetone system, and under the present experimental conditions, the dendritic tip stability parameter value is found to be twice that obtained previously, possibly due to a transition in morphology from a cellular structure with just a few side branches, to a more fully developed dendritic structure.
A dendrite-autonomous mechanism for direction selectivity in retinal starburst amacrine cells.
Hausselt, Susanne E; Euler, Thomas; Detwiler, Peter B; Denk, Winfried
2007-07-01
Detection of image motion direction begins in the retina, with starburst amacrine cells (SACs) playing a major role. SACs generate larger dendritic Ca(2+) signals when motion is from their somata towards their dendritic tips than for motion in the opposite direction. To study the mechanisms underlying the computation of direction selectivity (DS) in SAC dendrites, electrical responses to expanding and contracting circular wave visual stimuli were measured via somatic whole-cell recordings and quantified using Fourier analysis. Fundamental and, especially, harmonic frequency components were larger for expanding stimuli. This DS persists in the presence of GABA and glycine receptor antagonists, suggesting that inhibitory network interactions are not essential. The presence of harmonics indicates nonlinearity, which, as the relationship between harmonic amplitudes and holding potential indicates, is likely due to the activation of voltage-gated channels. [Ca(2+)] changes in SAC dendrites evoked by voltage steps and monitored by two-photon microscopy suggest that the distal dendrite is tonically depolarized relative to the soma, due in part to resting currents mediated by tonic glutamatergic synaptic input, and that high-voltage-activated Ca(2+) channels are active at rest. Supported by compartmental modeling, we conclude that dendritic DS in SACs can be computed by the dendrites themselves, relying on voltage-gated channels and a dendritic voltage gradient, which provides the spatial asymmetry necessary for direction discrimination.
Histopathology of human superficial herpes simplex keratitis.
Maudgal, P. C.; Missotten, L.
1978-01-01
In vivo corneal replicas were made in 20 cases of patients with superficial dendritic ulcers of the cornea. Histopathological study of the replicas and superficial epithelial cells showed that the dendrites are composed of rounded epithelial cells and variable sized syncytia containing bizarre shaped nuclei. Pseudopodia-like processes containing DNA and some RNA extend from the syncytia into the surrounding epithelial cells, which on coming into contact with these processes become rounded and liquefied to give rise to another syncytium. The epithelial cells adjacent to the dendrite and elongated and usually orientated parallel to the long axis of the lesion. Surrounding the terminal bulbs, they are disposed in an arcuate fashion. These cells show C-mitotic lesions, intranuclear and cytoplasmic inclusion bodies, and polykaryocyte formation. Microscopic examination of the corneal replicas shows the intranuclear lesions and rounding of cells up to about 2 mm away from the dendritic ulcers. These areas appear normal on clinical examination. Images PMID:629910
Identification of a dendritic cell receptor that couples sensing of necrosis to immunity.
Sancho, David; Joffre, Olivier P; Keller, Anna M; Rogers, Neil C; Martínez, Dolores; Hernanz-Falcón, Patricia; Rosewell, Ian; Reis e Sousa, Caetano
2009-04-16
Injury or impaired clearance of apoptotic cells leads to the pathological accumulation of necrotic corpses, which induce an inflammatory response that initiates tissue repair. In addition, antigens present in necrotic cells can sometimes provoke a specific immune response and it has been argued that necrosis could explain adaptive immunity in seemingly infection-free situations, such as after allograft transplantation or in spontaneous and therapy-induced tumour rejection. In the mouse, the CD8alpha+ subset of dendritic cells phagocytoses dead cell remnants and cross-primes CD8+ T cells against cell-associated antigens. Here we show that CD8alpha+ dendritic cells use CLEC9A (also known as DNGR-1), a recently-characterized C-type lectin, to recognize a preformed signal that is exposed on necrotic cells. Loss or blockade of CLEC9A does not impair the uptake of necrotic cell material by CD8+ dendritic cells, but specifically reduces cross-presentation of dead-cell-associated antigens in vitro and decreases the immunogenicity of necrotic cells in vivo. The function of CLEC9A requires a key tyrosine residue in its intracellular tail that allows the recruitment and activation of the tyrosine kinase SYK, which is also essential for cross-presentation of dead-cell-associated antigens. Thus, CLEC9A functions as a SYK-coupled C-type lectin receptor to mediate sensing of necrosis by the principal dendritic-cell subset involved in regulating cross-priming to cell-associated antigens.
Wen, Quan; Stepanyants, Armen; Elston, Guy N.; Grosberg, Alexander Y.; Chklovskii, Dmitri B.
2009-01-01
The shapes of dendritic arbors are fascinating and important, yet the principles underlying these complex and diverse structures remain unclear. Here, we analyzed basal dendritic arbors of 2,171 pyramidal neurons sampled from mammalian brains and discovered 3 statistical properties: the dendritic arbor size scales with the total dendritic length, the spatial correlation of dendritic branches within an arbor has a universal functional form, and small parts of an arbor are self-similar. We proposed that these properties result from maximizing the repertoire of possible connectivity patterns between dendrites and surrounding axons while keeping the cost of dendrites low. We solved this optimization problem by drawing an analogy with maximization of the entropy for a given energy in statistical physics. The solution is consistent with the above observations and predicts scaling relations that can be tested experimentally. In addition, our theory explains why dendritic branches of pyramidal cells are distributed more sparsely than those of Purkinje cells. Our results represent a step toward a unifying view of the relationship between neuronal morphology and function. PMID:19622738
miR-451 regulates dendritic cell cytokine responses to influenza infection1
Rosenberger, Carrie M.; Podyminogin, Rebecca L.; Navarro, Garnet; Zhao, Guo-Wei; Askovich, Peter S.; Weiss, Mitchell J.; Aderem, Alan
2012-01-01
MicroRNAs are important post-transcriptional regulators in immune cells, but how viral infection regulates microRNA expression to shape dendritic cell responses has not been well characterized. We identified 20 miRNAs that were differentially expressed in primary murine dendritic cells in response to the double-stranded RNA agonist poly(I:C), a subset of which were modestly regulated by influenza infection. miR-451 was unique because it was induced more strongly in primary splenic and lung dendritic cells by live viral infection than by purified agonists of pattern recognition receptors. We determined that miR-451 regulates a subset of pro-inflammatory cytokine responses. Three types of primary dendritic cells treated with anti-sense RNA antagomirs directed against miR-451 secreted elevated levels of IL-6, TNF, CCL5/RANTES, and CCL3/MIP1α, and these results were confirmed using miR-451null cells. miR-451 negatively regulates YWHAZ/14-3-3ζ protein levels in various cell types, and we measured a similar inhibition of YWHAZ levels in dendritic cells. It is known that YWHAZ can control the activity of two negative regulators of cytokine production: FOXO3, which is an inhibitory transcription factor, and ZFP36/Tristetraprolin, which binds to AU-rich elements within 3′-UTRs to destabilize cytokine mRNAs. Inhibition of miR-451 expression correlated with increased YWHAZ protein expression and decreased ZFP36 expression, providing a possible mechanism for the elevated secretion of IL-6, TNF, CCL5/RANTES, and CCL3/MIP1α. miR-451 levels are themselves increased by IL-6 and type I interferon, potentially forming a regulatory loop. These data suggest that viral infection specifically induces a miRNA that directs a negative regulatory cascade to tune dendritic cell cytokine production. PMID:23169590
Dendrodendritic Synapses in the Mouse Olfactory Bulb External Plexiform Layer
Bartel, Dianna L.; Rela, Lorena; Hsieh, Lawrence; Greer, Charles A.
2014-01-01
Odor information relayed by olfactory bulb projection neurons, mitral and tufted cells (M/T), is modulated by pairs of reciprocal dendrodendritic synaptic circuits in the external plexiform layer (EPL). Interneurons, which are accounted for largely by granule cells, receive depolarizing input from M/T dendrites and in turn inhibit current spread in M/T dendrites via hyperpolarizing reciprocal dendrodendritic synapses. Because the location of dendrodendritic synapses may significantly affect the cascade of odor information, we assessed synaptic properties and density within sublaminae of the EPL and along the length of M/T secondary dendrites. In electron micrographs the M/T to granule cell synapse appeared to predominate and were equivalent in both the outer and inner EPL. However, the dendrodendritic synapses from granule cell spines onto M/T dendrites, were more prevalent in the outer EPL. In contrast, individual gephyrin-IR puncta, a postsynaptic scaffolding protein at inhibitory synapses used here as a proxy for the granule to M/T dendritic synapse was equally distributed throughout the EPL. Of significance to the organization of intrabulbar circuits, gephyrin-IR synapses are not uniformly distributed along M/T secondary dendrites. Synaptic density, expressed as a function of surface area, increases distal to the cell body. Furthermore, the distributions of gephyrin-IR puncta are heterogeneous and appear as clusters along the length of the M/T dendrites. Consistent with computational models, our data suggest that temporal coding in M/T cells is achieved by precisely located inhibitory input and that distance from the soma is compensated with an increase in synaptic density. PMID:25420934
Sun, Xiaoming; Hua, Stephane; Chen, Hsiao-Rong; Ouyang, Zhengyu; Einkauf, Kevin; Tse, Samantha; Ard, Kevin; Ciaranello, Andrea; Yawetz, Sigal; Sax, Paul; Rosenberg, Eric S; Lichterfeld, Mathias; Yu, Xu G
2017-12-19
Although dendritic cells are among the human cell population best equipped for cell-intrinsic antiviral immune defense, they seem highly susceptible to infection with the Zika virus (ZIKV). Using highly purified myeloid dendritic cells isolated from individuals with naturally acquired acute infection, we here show that ZIKV induces profound perturbations of transcriptional signatures relative to healthy donors. Interestingly, we noted a remarkable downregulation of antiviral interferon-stimulated genes and innate immune sensors, suggesting that ZIKV can actively suppress interferon-dependent immune responses. In contrast, several host factors known to support ZIKV infection were strongly upregulated during natural ZIKV infection; these transcripts included AXL, the main entry receptor for ZIKV; SOCS3, a negative regulator of ISG expression; and IDO-1, a recognized inducer of regulatory T cell responses. Thus, during in vivo infection, ZIKV can transform the transcriptome of dendritic cells in favor of the virus to render these cells highly conducive to ZIKV infection. Published by Elsevier Inc.
Targeted Therapeutics in Patients With High-Grade Gliomas: Past, Present, and Future.
Chen, Ricky; Cohen, Adam L; Colman, Howard
2016-08-01
High-grade gliomas remain incurable despite current therapies, which are plagued by high morbidity and mortality. Molecular categorization of glioma subtypes using mutations in isocitrate dehydrogenase 1/2 (IDH1/2), TP53, and ATRX; codeletion of chromosomes 1p and 19q; DNA methylation; and amplification of genes such as epidermal growth factor receptor (EGFR) and platelet-derived growth factor receptor, alpha polypeptide provides a more accurate prognostication and biologic classification than classical histopathological diagnoses, and a number of molecular markers are being incorporated in the new World Health Organization classification of gliomas. However, despite the improved understanding of the molecular subtypes of gliomas and the underlying alterations in specific signaling pathways, these observations have so far failed to result in the successful application of targeted therapies, as has occurred in other solid tumors. To date, the only targeted therapy for gliomas approved by the US Food and Drug Administration is bevacizumab, which targets vascular endothelial growth factor. EGFR remains a dominant molecular alteration in specific glioma subtypes and represents a potentially promising target, with drugs of multiple types targeting EGFR in development including vaccines, antibody drug conjugates, and chimeric antigen receptor (CAR) T cells, despite the prior failures of EGFR tyrosine kinase inhibitors. Immune therapies under investigation include checkpoint inhibitors, vaccines against tumor-associated antigens and tumor-specific antigens, pulsed dendritic cells, heat shock protein-tumor conjugates, and CAR T cells. Mutations in the IDH1/2 genes are central to gliomagenesis in a high proportion of grade II and III gliomas, and ongoing trials are examining vaccines against IDH1, small molecular inhibitors of IDH1 and IDH2, and metabolic components including NAD+ depletion to target IDH-mutated gliomas. The central role of DNA methylation in a subset of gliomas may be targetable, but better understanding of the relation between epigenetic alterations and resulting tumor biology appears necessary. Ultimately, given the prior failure of single-agent targeted therapy in high-grade gliomas, it appears that novel combinatorial therapy or targeted drugs with immunomodulatory or epigenetic approaches will likely be necessary to successfully combat these challenging tumors.
Yamamoto, Misato; Ueda, Ryu; Takahashi, Kuniaki; Saigo, Kaoru; Uemura, Tadashi
2006-08-22
Neurons are highly polarized cells with distinct subcellular compartments, including dendritic arbors and an axon. The proper function of the nervous system relies not only on correct targeting of axons, but also on development of neuronal-class-specific geometry of dendritic arbors [1-4]. To study the intercellular control of the shaping of dendritic trees in vivo, we searched for cell-surface proteins expressed by Drosophila dendritic arborization (da) neurons [5-7]. One of them was Neuroglian (Nrg), a member of the Ig superfamily ; Nrg and vertebrate L1-family molecules have been implicated in various aspects of neuronal wiring, such as axon guidance, axonal myelination, and synapse formation [9-12]. A subset of the da neurons in nrg mutant embryos exhibited deformed dendritic arbors and abnormal axonal sprouting. Our functional analysis in a cell-type-selective manner strongly suggested that those da neurons employed Nrg to interact with the peripheral glia for suppressing axonal sprouting and for forming second-order dendritic branches. At least for the former role, Nrg functioned in concert with the intracellular adaptor protein Ankyrin (Ank) [13]. Thus, the neuron-glia interaction that is mediated by Nrg, together with Ank under some situations, contributes to axonal and dendritic morphogenesis.
Liberman, Rachel; Bond, Sarah; Shainheit, Mara G.; Stadecker, Miguel J.; Forgac, Michael
2014-01-01
The vacuolar (H+)-ATPases (V-ATPases) are ATP-driven proton pumps composed of a peripheral V1 domain and a membrane-embedded V0 domain. Regulated assembly of V1 and V0 represents an important regulatory mechanism for controlling V-ATPase activity in vivo. Previous work has shown that V-ATPase assembly increases during maturation of bone marrow-derived dendritic cells induced by activation of Toll-like receptors. This increased assembly is essential for antigen processing, which is dependent upon an acidic lysosomal pH. Cluster disruption of dendritic cells induces a semi-mature phenotype associated with immune tolerance. Thus, semi-mature dendritic cells are able to process and present self-peptides to suppress autoimmune responses. We have investigated V-ATPase assembly in bone marrow-derived, murine dendritic cells and observed an increase in assembly following cluster disruption. This increased assembly is not dependent upon new protein synthesis and is associated with an increase in concanamycin A-sensitive proton transport in FITC-loaded lysosomes. Inhibition of phosphatidylinositol 3-kinase with wortmannin or mTORC1 with rapamycin effectively inhibits the increased assembly observed upon cluster disruption. These results suggest that the phosphatidylinositol 3-kinase/mTOR pathway is involved in controlling V-ATPase assembly during dendritic cell maturation. PMID:24273170
Arora, Pooja; Baena, Andres; Yu, Karl O.A.; Saini, Neeraj K.; Kharkwal, Shalu S.; Goldberg, Michael F.; Kunnath-Velayudhan, Shajo; Carreño, Leandro J.; Venkataswamy, Manjunatha M.; Kim, John; Lazar-Molnar, Eszter; Lauvau, Gregoire; Chang, Young-tae; Liu, Zheng; Bittman, Robert; Al-Shamkhani, Aymen; Cox, Liam R.; Jervis, Peter J.; Veerapen, Natacha; Besra, Gurdyal S.; Porcelli, Steven A.
2014-01-01
Summary Many hematopoietic cell types express CD1d and are capable of presenting glycolipid antigens to invariant natural killer T cells (iNKT cells). However, the question of which cells are the principal presenters of glycolipid antigens in vivo remains controversial, and it has been suggested that this might vary depending on the structure of a particular glycolipid antigen. Here we have shown that a single type of cell, the CD8α+ DEC-205+ dendritic cell, was mainly responsible for capturing and presenting a variety of different glycolipid antigens, including multiple forms of α-galactosylceramide that stimulate widely divergent cytokine responses. After glycolipid presentation, these dendritic cells rapidly altered their expression of various costimulatory and coinhibitory molecules in a manner that was dependent on the structure of the antigen. These findings show flexibility in the outcome of two-way communication between CD8α+ dendritic cells and iNKT cells, providing a mechanism for biasing toward either proinflammatory or anti-inflammatory responses. PMID:24412610
Synaptic integration in dendrites: exceptional need for speed
Golding, Nace L; Oertel, Donata
2012-01-01
Some neurons in the mammalian auditory system are able to detect and report the coincident firing of inputs with remarkable temporal precision. A strong, low-voltage-activated potassium conductance (gKL) at the cell body and dendrites gives these neurons sensitivity to the rate of depolarization by EPSPs, allowing neurons to assess the coincidence of the rising slopes of unitary EPSPs. Two groups of neurons in the brain stem, octopus cells in the posteroventral cochlear nucleus and principal cells of the medial superior olive (MSO), extract acoustic information by assessing coincident firing of their inputs over a submillisecond timescale and convey that information at rates of up to 1000 spikes s−1. Octopus cells detect the coincident activation of groups of auditory nerve fibres by broadband transient sounds, compensating for the travelling wave delay by dendritic filtering, while MSO neurons detect coincident activation of similarly tuned neurons from each of the two ears through separate dendritic tufts. Each makes use of filtering that is introduced by the spatial distribution of inputs on dendrites. PMID:22930273
Simmons, Aaron B.; Bloomsburg, Samuel J.; Sukeena, Joshua M.; Miller, Calvin J.; Ortega-Burgos, Yohaniz; Borghuis, Bart G.
2017-01-01
Mature mammalian neurons have a limited ability to extend neurites and make new synaptic connections, but the mechanisms that inhibit such plasticity remain poorly understood. Here, we report that OFF-type retinal bipolar cells in mice are an exception to this rule, as they form new anatomical connections within their tiled dendritic fields well after retinal maturity. The Down syndrome cell-adhesion molecule (Dscam) confines these anatomical rearrangements within the normal tiled fields, as conditional deletion of the gene permits extension of dendrite and axon arbors beyond these borders. Dscam deletion in the mature retina results in expanded dendritic fields and increased cone photoreceptor contacts, demonstrating that DSCAM actively inhibits circuit-level plasticity. Electrophysiological recordings from Dscam−/− OFF bipolar cells showed enlarged visual receptive fields, demonstrating that expanded dendritic territories comprise functional synapses. Our results identify cell-adhesion molecule-mediated inhibition as a regulator of circuit-level neuronal plasticity in the adult retina. PMID:29114051
A Novel Heat Shock Protein 70-based Vaccine Prepared from DC-Tumor Fusion Cells.
Weng, Desheng; Calderwood, Stuart K; Gong, Jianlin
2018-01-01
We have developed an enhanced molecular chaperone-based vaccine through rapid isolation of Hsp70 peptide complexes after the fusion of tumor and dendritic cells (Hsp70.PC-F). In this approach, the tumor antigens are introduced into the antigen processing machinery of dendritic cells through the cell fusion process and thus we can obtain antigenic tumor peptides or their intermediates that have been processed by dendritic cells. Our results show that Hsp70.PC-F has increased immunogenicity compared to preparations from tumor cells alone and therefore constitutes an improved formulation of chaperone protein-based tumor vaccine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sengupta, S.; Soda, H.; McLean, A.
2000-01-01
A ternary eutectic alloy with a composition of 57.2 pct Bi, 24.8 pct In, and 18 pct Sn was continuously cast into wire of 2 mm diameter with casting speeds of 14 and 79 mm/min using the Ohno Continuous Casting (OCC) process. The microstructures obtained were compared with those of statically cast specimens. Extensive segregation of massive Bi blocks, Bi complex structures, and tin-rich dendrites was found in specimens that were statically cast. Decomposition of {radical}Sn by a eutectoid reaction was confirmed based on microstructural evidence. Ternary eutectic alloy with a cooling rate of approximately 1 C/min formed a doublemore » binary eutectic. The double binary eutectic consisted of regions of BiIn and decomposed {radical}Sn in the form of a dendrite cell structure and regions of Bi and decomposed {radical}Sn in the form of a complex-regular cell. The Bi complex-regular cells, which are a ternary eutectic constituent, existed either along the boundaries of the BiIn-decomposed {radical}Sn dendrite cells or at the front of elongated dendrite cell structures. In the continuously cast wires, primary Sn dendrites coupled with a small Bi phase were uniformly distributed within the Bi-In alloy matrix. Neither massive Bi phase, Bi complex-regular cells, no BiIn eutectic dendrite cells were observed, resulting in a more uniform microstructure in contrast to the heavily segregated structures of the statically cast specimens.« less
Distal gap junctions and active dendrites can tune network dynamics.
Saraga, Fernanda; Ng, Leo; Skinner, Frances K
2006-03-01
Gap junctions allow direct electrical communication between CNS neurons. From theoretical and modeling studies, it is well known that although gap junctions can act to synchronize network output, they can also give rise to many other dynamic patterns including antiphase and other phase-locked states. The particular network pattern that arises depends on cellular, intrinsic properties that affect firing frequencies as well as the strength and location of the gap junctions. Interneurons or GABAergic neurons in hippocampus are diverse in their cellular characteristics and have been shown to have active dendrites. Furthermore, parvalbumin-positive GABAergic neurons, also known as basket cells, can contact one another via gap junctions on their distal dendrites. Using two-cell network models, we explore how distal electrical connections affect network output. We build multi-compartment models of hippocampal basket cells using NEURON and endow them with varying amounts of active dendrites. Two-cell networks of these model cells as well as reduced versions are explored. The relationship between intrinsic frequency and the level of active dendrites allows us to define three regions based on what sort of network dynamics occur with distal gap junction coupling. Weak coupling theory is used to predict the delineation of these regions as well as examination of phase response curves and distal dendritic polarization levels. We find that a nonmonotonic dependence of network dynamic characteristics (phase lags) on gap junction conductance occurs. This suggests that distal electrical coupling and active dendrite levels can control how sensitive network dynamics are to gap junction modulation. With the extended geometry, gap junctions located at more distal locations must have larger conductances for pure synchrony to occur. Furthermore, based on simulations with heterogeneous networks, it may be that one requires active dendrites if phase-locking is to occur in networks formed with distal gap junctions.
Schier, Christina J; Marks, William D; Paris, Jason J; Barbour, Aaron J; McLane, Virginia D; Maragos, William F; McQuiston, A Rory; Knapp, Pamela E; Hauser, Kurt F
2017-06-07
Despite marked regional differences in HIV susceptibility within the CNS, there has been surprisingly little exploration into the differential vulnerability among neuron types and the circuits they underlie. The dorsal striatum is especially susceptible, harboring high viral loads and displaying marked neuropathology, with motor impairment a frequent manifestation of chronic infection. However, little is known about the response of individual striatal neuron types to HIV or how this disrupts function. Therefore, we investigated the morphological and electrophysiological effects of HIV-1 trans -activator of transcription (Tat) in dopamine subtype 1 (D1) and dopamine subtype 2 (D2) receptor-expressing striatal medium spiny neurons (MSNs) by breeding transgenic Tat-expressing mice to Drd1a -tdTomato- or Drd2 -eGFP-reporter mice. An additional goal was to examine neuronal vulnerability early during the degenerative process to gain insight into key events underlying the neuropathogenesis. In D2 MSNs, exposure to HIV-1 Tat reduced dendritic spine density significantly, increased dendritic damage (characterized by swellings/varicosities), and dysregulated neuronal excitability (decreased firing at 200-300 pA and increased firing rates at 450 pA), whereas insignificant morphologic and electrophysiological consequences were observed in Tat-exposed D1 MSNs. These changes were concomitant with an increased anxiety-like behavioral profile (lower latencies to enter a dark chamber in a light-dark transition task, a greater frequency of light-dark transitions, and reduced rearing time in an open field), whereas locomotor behavior was unaffected by 2 weeks of Tat induction. Our findings suggest that D2 MSNs and a specific subset of neural circuits within the dorsal striatum are preferentially vulnerable to HIV-1. SIGNIFICANCE STATEMENT Despite combination antiretroviral therapy (cART), neurocognitive disorders afflict 30-50% of HIV-infected individuals and synaptodendritic injury remains evident in specific brain regions such as the dorsal striatum. A possible explanation for the sustained neuronal injury is that the neurotoxic HIV-1 regulatory protein trans -activator of transcription (Tat) continues to be expressed in virally suppressed patients on cART. Using inducible Tat-expressing transgenic mice, we found that dopamine subtype 2 (D2) receptor-expressing medium spiny neurons (MSNs) are selectively vulnerable to Tat exposure compared with D1 receptor-expressing MSNs. This includes Tat-induced reductions in D2 MSN dendritic spine density, increased dendritic damage, and disruptions in neuronal excitability, which coincide with elevated anxiety-like behavior. These data suggest that D2 MSNs and specific circuits within the basal ganglia are preferentially vulnerable to HIV-1. Copyright © 2017 the authors 0270-6474/17/375759-12$15.00/0.
Functions of TGF-β-exposed plasmacytoid dendritic cells.
Saas, Philippe; Perruche, Sylvain
2012-01-01
Plasmacytoid dendritic cells (pDCs) belong to the family of dendritic cells and possess specific features that distinguish them from conventional dendritic cells. For instance, pDC are the main interferon-alpha-secreting cells. Plasmacytoid dendritic cells exert both proinflammatory and regulatory functions. This is attested by the involvement of pDC through interferon-alpha secretion in several autoimmune diseases, and by the implication of pDC in tolerance. The same is true for TGF-β that plays a dual role in inflammation. In this review, we discuss recent data on pDC and TGF-β interactions. As with many cell types, pDCs are able to respond to TGF-β using the classic Smad signaling pathway. In addition, pDCs are capable to secrete TGF-β, in particular in response to TGF-β exposure. Exposure of pDCs to TGF-β prevents type I interferon secretion in response to TLR7/9 ligands. In contrast, the consequences of TGF-β on the antigen-presenting cell capacities of pDC are less clear, since TGF-β-exposed pDCs may lead to both regulatory T-cell and interleukin-17-secreting cell polarization. Here, we discuss the factors that may influence this polarization. We also discuss how pDCs exposed to TGF-β may participate in tolerance induction and maintenance, or, on the contrary, in autoimmune diseases.
Clarke, David J; Chohan, Tariq W; Kassem, Mustafa S; Smith, Kristie L; Chesworth, Rose; Karl, Tim; Kuligowski, Michael P; Fok, Sandra Y; Bennett, Maxwell R; Arnold, Jonathon C
2018-03-16
One neuropathological feature of schizophrenia is a diminished number of dendritic spines in the prefrontal cortex and hippocampus. The neuregulin 1 (Nrg1) system is involved in the plasticity of dendritic spines, and chronic stress decreases dendritic spine densities in the prefrontal cortex and hippocampus. Here, we aimed to assess whether Nrg1 deficiency confers vulnerability to the effects of adolescent stress on dendritic spine plasticity. We also assessed other schizophrenia-relevant neurobiological changes such as microglial cell activation, loss of parvalbumin (PV) interneurons, and induction of complement factor 4 (C4). Adolescent male wild-type (WT) and Nrg1 heterozygous mice were subjected to chronic restraint stress before their brains underwent Golgi impregnation or immunofluorescent staining of PV interneurons, microglial cells, and C4. Stress in WT mice promoted dendritic spine loss and microglial cell activation in the prefrontal cortex and the hippocampus. However, Nrg1 deficiency rendered mice resilient to stress-induced dendritic spine loss in the infralimbic cortex and the CA3 region of the hippocampus without affecting stress-induced microglial cell activation in these brain regions. Nrg1 deficiency and adolescent stress combined to trigger increased dendritic spine densities in the prelimbic cortex. In the hippocampal CA1 region, Nrg1 deficiency accentuated stress-induced dendritic spine loss. Nrg1 deficiency increased C4 protein and decreased C4 mRNA expression in the hippocampus, and the number of PV interneurons in the basolateral amygdala. This study demonstrates that Nrg1 modulates the impact of stress on the adolescent brain in a region-specific manner. It also provides first evidence of a link between Nrg1 and C4 systems in the hippocampus.
Wang, Xiaodong; Tong, Jingzhi; Li, Keqiu; Jing, Yaqing
2016-01-01
Recently, regulatory dendritic cells (DCregs), a newly described dendritic cell subset with potent immunomodulatory function, have attracted increased attention for their utility in treating immune response-related diseases, such as graft-versus-host disease, hypersensitivity, and autoimmune diseases. Danchaiheji (DCHJ) is a traditional Chinese formula that has been used for many years in the clinic. However, whether DCHJ can program dendritic cells towards a regulatory phenotype and the underlying mechanism behind this process remain unknown. Herein, we investigate the effects of traditional Chinese DCHJ on DCregs differentiation and a mouse model of skin transplantation. The current study demonstrates that DCHJ can induce dendritic cells to differentiate into DCregs, which are represented by high CD11b and low CD86 and HLA-DR expression as well as the secretion of IL-10 and TGF-β. In addition, DCHJ inhibited DC migration and T cell proliferation, which correlated with increased IDO expression. Furthermore, DCHJ significantly prolonged skin graft survival time in a mouse model of skin transplantation without any liver or kidney toxicity. The traditional Chinese formula DCHJ has the potential to be a potent immunosuppressive agent with high efficiency and nontoxicity. PMID:27525028
Nanoparticles, [Gd@C82(OH)22]n, induces dendritic cell maturation and activates Th1 immune responses
Yang, De; Zhao, Yuliang; Guo, Hua; Li, Yana; Tewary, Poonam; Xing, Gengmei; Hou, Wei; Oppenheim, Joost J.; Zhang, Ning
2010-01-01
Dendritic cells play a pivotal role in host immune defense, such as elimination of foreign pathogen and inhibition of tumorigenesis. In this paper, we report that [Gd@C82(OH)22]n could induce phenotypic maturation of dendritic cells by stimulating DC production of cytokines including IL-12p70, upregulating DC costimulatory (CD80, CD83, and CD86) and MHC (HLA-A,B,C and HLA-DR) molecules, and switching DCs from a CCL5-responsive to a CCL19-responsive phenotype. We found that [Gd@C82(OH)22]n can induce dendritic cells to become functionally mature as illustrated by their capacity to activate allogeneic T cells. Mice immunized with ovalbumin in the presence of [Gd@C82(OH)22]n exhibit enhanced ovalbumin-specific Th1-polarized immune response as evidenced by the predominantly increased production of IFNγ, IL-1β, and IL-2. The [Gd@C82(OH)22]n nanoparticle is a potent activator of dendritic cells and Th1 immune responses. These new findings also provide a rational understanding of the potent anticancer activities of [Gd@C82(OH)22]n nanoparticles reported previously. PMID:20121217
Pathogen-Sensing and Regulatory T Cells: Integrated Regulators of Immune Responses
Grossman, Zvi; Paul, William E.
2014-01-01
We present the concept that pathogen-sensing and Tregs mutually regulate immune responses to conventional and tumor antigens through countervailing effects on dendritic cells. Normally, conventional CD4 T cells recognizing their cognate antigen-presented by a dendritic cell will respond only if the dendritic cell also receives a signal through its pathogen-sensing/ danger / adjuvant recognition systems (the pathogen-sensing triad). However, if Tregs capable of interacting with the same DC are absent, dendritic cells are competent to present antigens, both foreign and self, even without the stimulation provided by the pathogen-sensing triad. Tregs recognizing an antigen presented by the DC that is also presenting antigen to a conventional CD4 T cell will prevent such responses but a signal delivered by a member of the pathogen-sensing traid will overcome the Tregs’inhibitory action and will allow responses to go forward. These considerations take on special meaning for responses to “weak antigens” such as many of the antigens displayed by spontaneous human tumors. PMID:24894087
Struck, Daniel; Roman, François; De Landtsheer, Sébastien; Servais, Jean-Yves; Lambert, Christine; Masquelier, Cécile; Venard, Véronique; Ruelle, Jean; Nijhuis, Monique; Schmit, Jean-Claude; Seguin-Devaux, Carole
2015-05-01
A new recombinant form representing a mosaic of HIV-1 subtype B and F1 and designated as CRF42_BF was identified in Luxembourg. We confirmed the inedited nature of CRF42_BF by near full-length genome characterization and retrieved a possible ancestor originating from Brazil. The demographic history of CRF42_BF in Luxembourg using Bayesian coalescent-based methods was investigated. The exponential phase of the logistic growth happened in a very short time period of approximately 5 months associated with a high mean rate of population growth of 15.02 new infections per year. However, CRF42_BF was not characterized by either a higher ex vivo replication capacity in peripheral blood mononuclear cells (PBMCs) or a higher ex vivo transmission efficiency from monocyte-derived dendritic cells to PBMCs as compared to B and F1 viruses. These data do not support a high pathogenic potential of CFR42_BF but rather an initial bursting spread of the recombinant probably due to a more favorable transmission route.
DSCAM Localization and Function at the Mouse Cone Synapse
de Andrade, Gabriel Belem; Long, Samuel S.; Fleming, Harrison; Li, Wei; Fuerst, Peter G.
2014-01-01
The Down Syndrome Cell Adhesion Molecule (DSCAM) is required for regulation of cell number, soma spacing and cell type specific dendrite avoidance in many types of retinal ganglion and amacrine cells. In this study we assay the organization of cells making up the outer plexiform layer of the retina in the absence of Dscam. Some types of OFF bipolar cells, type 3b and type 4 bipolar cells, had defects in dendrite arborization in the Dscam mutant retina, while other cell types appeared similar to wild type. The cone synapses that these cells project their dendrites to were intact, as visualized by electron microscopy, and had a distribution and density that was not significantly different than wild type. The spacing of type 3b bipolar cell dendrites was further analyzed by Voronoi domain analysis, Density Recovery Profiling (DRP) analysis and Nearest Neighbor Analysis (NNA). Spacing was found to be significantly different when comparing wild type and mutant type 3b bipolar cell dendrites. Defects in arborization of these bipolar cells could not be attributed to the disorganization of inner plexiform layer cells that occurs in the Dscam mutant retina or an increase in cell number, as they arborized when Dscam was targeted in retinal ganglion cells only or in the bax null retina. Localization of DSCAM was assayed and the protein was localized near to cone synapses in mouse, macaque and ground squirrel retinas. DSCAM protein was detected in several types of bipolar cells, including type 3b and type 4 bipolar cells. PMID:24477985
Woodham, Andrew W; Skeate, Joseph G; Sanna, Adriana M; Taylor, Julia R; Da Silva, Diane M; Cannon, Paula M; Kast, W Martin
2016-07-01
In the last three decades, extensive research on human immunodeficiency virus (HIV) has highlighted its capability to exploit a variety of strategies to enter and infect immune cells. Although CD4(+) T cells are well known as the major HIV target, with infection occurring through the canonical combination of the cluster of differentiation 4 (CD4) receptor and either the C-C chemokine receptor type 5 (CCR5) or C-X-C chemokine receptor type 4 (CXCR4) coreceptors, HIV has also been found to enter other important immune cell types such as macrophages, dendritic cells, Langerhans cells, B cells, and granulocytes. Interestingly, the expression of distinct cellular cofactors partially regulates the rate in which HIV infects each distinct cell type. Furthermore, HIV can benefit from the acquisition of new proteins incorporated into its envelope during budding events. While several publications have investigated details of how HIV manipulates particular cell types or subtypes, an up-to-date comprehensive review on HIV tropism for different immune cells is lacking. Therefore, this review is meant to focus on the different receptors, coreceptors, and cofactors that HIV exploits to enter particular immune cells. Additionally, prophylactic approaches that have targeted particular molecules associated with HIV entry and infection of different immune cells will be discussed. Unveiling the underlying cellular receptors and cofactors that lead to HIV preference for specific immune cell populations is crucial in identifying novel preventative/therapeutic targets for comprehensive strategies to eliminate viral infection.
Woodham, Andrew W.; Skeate, Joseph G.; Sanna, Adriana M.; Taylor, Julia R.; Da Silva, Diane M.; Cannon, Paula M.
2016-01-01
Abstract In the last three decades, extensive research on human immunodeficiency virus (HIV) has highlighted its capability to exploit a variety of strategies to enter and infect immune cells. Although CD4+ T cells are well known as the major HIV target, with infection occurring through the canonical combination of the cluster of differentiation 4 (CD4) receptor and either the C-C chemokine receptor type 5 (CCR5) or C-X-C chemokine receptor type 4 (CXCR4) coreceptors, HIV has also been found to enter other important immune cell types such as macrophages, dendritic cells, Langerhans cells, B cells, and granulocytes. Interestingly, the expression of distinct cellular cofactors partially regulates the rate in which HIV infects each distinct cell type. Furthermore, HIV can benefit from the acquisition of new proteins incorporated into its envelope during budding events. While several publications have investigated details of how HIV manipulates particular cell types or subtypes, an up-to-date comprehensive review on HIV tropism for different immune cells is lacking. Therefore, this review is meant to focus on the different receptors, coreceptors, and cofactors that HIV exploits to enter particular immune cells. Additionally, prophylactic approaches that have targeted particular molecules associated with HIV entry and infection of different immune cells will be discussed. Unveiling the underlying cellular receptors and cofactors that lead to HIV preference for specific immune cell populations is crucial in identifying novel preventative/therapeutic targets for comprehensive strategies to eliminate viral infection. PMID:27410493
Measuring Lithium Dendritic Growth in Polymer Electrolytes
NASA Astrophysics Data System (ADS)
He, Yuping; Downing, Gregory; Wang, Howard
The nature of Li dendritic growth in polymeric electrolytes for rechargeable batteries has been investigated using simultaneous electrochemical and neutron depth profiling (NDP) measurements. A symmetric sandwich cell of Li / poly(ethyleneoxide) (PEO) : lithium bis(trifluoromethane)sulfonamide (LiTFSI) / Li was used as a model system in this study. Operating the cell at a constant electric current of 0.1 mA, in situ NDP measurements show that after a period of steady Li plating, dendrites start to grow, which eventually short-circuit the sandwich cell. 3D Li mapping reveals heterogeneous lateral distribution of Li over length scales from below a millimeter to centimeters. Most Li in the electrolyte layer resides in dendrites growing from the top electrode, it is observed that dendrites also grow from the bottom electrode, where presumably only Li oxidation reaction occurs. The revelation poses new design and engineering challenges in using Li metal electrode in future development of rechargeable batteries.
Pane, Jessica A.; Webster, Nicole L.; Coulson, Barbara S.
2014-01-01
It has been proposed that rotavirus infection promotes the progression of genetically-predisposed children to type 1 diabetes, a chronic autoimmune disease marked by infiltration of activated lymphocytes into pancreatic islets. Non-obese diabetic (NOD) mice provide a model for the human disease. Infection of adult NOD mice with rhesus monkey rotavirus (RRV) accelerates diabetes onset, without evidence of pancreatic infection. Rather, RRV spreads to the pancreatic and mesenteric lymph nodes where its association with antigen-presenting cells, including dendritic cells, induces cellular maturation. RRV infection increases levels of the class I major histocompatibility complex on B cells and proinflammatory cytokine expression by T cells at these sites. In autoimmunity-resistant mice and human mononuclear cells from blood, rotavirus-exposed plasmacytoid dendritic cells contribute to bystander polyclonal B cell activation through type I interferon expression. Here we tested the hypothesis that rotavirus induces bystander activation of lymphocytes from NOD mice by provoking dendritic cell activation and proinflammatory cytokine secretion. NOD mouse splenocytes were stimulated with rotavirus and assessed for activation by flow cytometry. This stimulation activated antigen-presenting cells and B cells independently of virus strain and replicative ability. Instead, activation depended on virus dose and was prevented by blockade of virus decapsidation, inhibition of endosomal acidification and interference with signaling through Toll-like receptor 7 and the type I interferon receptor. Plasmacytoid dendritic cells were more efficiently activated than conventional dendritic cells by RRV, and contributed to the activation of B and T cells, including islet-autoreactive CD8+ T cells. Thus, a double-stranded RNA virus can induce Toll-like receptor 7 signaling, resulting in lymphocyte activation. Our findings suggest that bystander activation mediated by type I interferon contributes to the lymphocyte activation observed following RRV infection of NOD mice, and may play a role in diabetes acceleration by rotavirus. PMID:24676425
Leishmania Hijacks Myeloid Cells for Immune Escape
Martínez-López, María; Soto, Manuel; Iborra, Salvador; Sancho, David
2018-01-01
Protozoan parasites of the Leishmania genus are the causative agents of leishmaniasis, a group of neglected tropical diseases whose clinical manifestations vary depending on the infectious Leishmania species but also on host factors. Recognition of the parasite by host myeloid immune cells is a key to trigger an effective Leishmania-specific immunity. However, the parasite is able to persist in host myeloid cells by evading, delaying and manipulating host immunity in order to escape host resistance and ensure its transmission. Neutrophils are first in infiltrating infection sites and could act either favoring or protecting against infection, depending on factors such as the genetic background of the host or the parasite species. Macrophages are the main host cells where the parasites grow and divide. However, macrophages are also the main effector population involved in parasite clearance. Parasite elimination by macrophages requires the priming and development of an effector Th1 adaptive immunity driven by specific subtypes of dendritic cells. Herein, we will provide a comprehensive outline of how myeloid cells regulate innate and adaptive immunity against Leishmania, and the mechanisms used by the parasites to promote their evasion and sabotage. Understanding the interactions between Leishmania and the host myeloid cells may lead to the development of new therapeutic approaches and improved vaccination to leishmaniases, an important worldwide health problem in which current therapeutic or preventive approaches are limited. PMID:29867798
Monkey extensor digitorum communis motoneuron pool: Proximal dendritic trees and small motoneurons.
Jenny, Arthur B; Cheney, Paul D; Jenny, Andrew K
2018-05-14
Transverse sections of the monkey cervical spinal cord from a previous study (Jenny and Inukai, 1983) were reanalyzed using Neurolucida to create a three-dimensional display of extensor digitorum communis (EDC) motoneurons and proximal dendrites that had been labeled with horse radish peroxidase (HRP). The EDC motoneuron pool was located primarily in the C8 and T1 segments of the spinal cord. Small motoneurons (cell body areas less than 500 μm 2 and presumed to be gamma motoneurons) comprised about ten percent of the motoneurons and were located throughout the length of the motoneuron pool. Most small motoneurons were oblong in shape and had one or two major dendrites originating from the cell body in the transverse plane of section. The majority of the HRP labeled dendritic trees were directed either superiorly, dorsal-medially to the mid zone area between the base of the dorsal horn and the upper portion of the ventral horn, or medially to the ventromedial gray matter. The longer HRP labeled dendrites usually continued in the same radial direction as when originating from the cell body. As such we considered the radial direction of the longer proximal HRP labeled dendrites to be a reasonable estimate of the radial direction of the more distal dendritic tree. Our data suggest that the motoneuron dendritic tree as seen in transverse section has direction-oriented dendrites that extend toward functional terminal regions. Copyright © 2018 Elsevier B.V. All rights reserved.
Frequent Calcium Oscillations Lead to NFAT Activation in Human Immature Dendritic Cells*
Vukcevic, Mirko; Zorzato, Francesco; Spagnoli, Giulio; Treves, Susan
2010-01-01
Spontaneous Ca2+ oscillations have been observed in a number of excitable and non-excitable cells, but in most cases their biological role remains elusive. In the present study we demonstrate that spontaneous Ca2+ oscillations occur in immature human monocyte-derived dendritic cells but not in dendritic cells stimulated to undergo maturation with lipopolysaccharide or other toll like-receptor agonists. We investigated the mechanism and role of spontaneous Ca2+ oscillations in immature dendritic cells and found that they are mediated by the inositol 1,4,5-trisphosphate receptor as they were blocked by pretreatment of cells with the inositol 1,4,5-trisphosphate receptor antagonist Xestospongin C and 2-aminoethoxydiphenylborate. A component of the Ca2+ signal is also due to influx from the extracellular environment and may be involved in maintaining the level of the intracellular Ca2+ stores. As to their biological role, our results indicate that they are intimately linked to the “immature” phenotype and are associated with the translocation of the transcription factor NFAT into the nucleus. In fact, once the Ca2+ oscillations are blocked with 2-aminoethoxydiphenylborate or by treating the cells with lipopolysaccharide, NFAT remains cytoplasmic. The results presented in this report provide novel insights into the physiology of monocyte-derived dendritic cells and into the mechanisms involved in maintaining the cells in the immature stage. PMID:20348098
ISOLATION OF CHICKEN FOLLICULAR DENDRITIC CELLS
USDA-ARS?s Scientific Manuscript database
The aim of the present study was to isolate chicken follicular dendritic cells (FDC). A combination of methods involving panning, iodixanol density gradient centrifugation, and magnetic cell separation technology made it possible to obtain functional FDC from the cecal tonsils from chickens, which h...
Preparation of Horizontal Slices of Adult Mouse Retina for Electrophysiological Studies.
Feigenspan, Andreas; Babai, Norbert Zsolt
2017-01-27
Vertical slice preparations are well established to study circuitry and signal transmission in the adult mammalian retina. The plane of sectioning in these preparations is perpendicular to the retinal surface, making it ideal for the study of radially oriented neurons like photoreceptors and bipolar cells. However, the large dendritic arbors of horizontal cells, wide-field amacrine cells, and ganglion cells are mostly truncated, leaving markedly reduced synaptic activity in these cells. Whereas ganglion cells and displaced amacrine cells can be studied in a whole-mounted preparation of the retina, horizontal cells and amacrine cells located in the inner nuclear layer are only poorly accessible for electrodes in whole retina tissue. To achieve maximum accessibility and synaptic integrity, we developed a horizontal slice preparation of the mouse retina, and studied signal transmission at the synapse between photoreceptors and horizontal cells. Horizontal sectioning allows (1) easy and unambiguous visual identification of horizontal cell bodies for electrode targeting, and (2) preservation of the extended horizontal cell dendritic fields, as a prerequisite for intact and functional cone synaptic input to horizontal cell dendrites. Horizontal cells from horizontal slices exhibited tonic synaptic activity in the dark, and they responded to brief flashes of light with a reduction of inward current and diminished synaptic activity. Immunocytochemical evidence indicates that almost all cones within the dendritic field of a horizontal cell establish synapses with its peripheral dendrites. The horizontal slice preparation is therefore well suited to study the physiological properties of horizontally extended retinal neurons as well as sensory signal transmission and integration across selected synapses.
Dendritic Properties Control Energy Efficiency of Action Potentials in Cortical Pyramidal Cells
Yi, Guosheng; Wang, Jiang; Wei, Xile; Deng, Bin
2017-01-01
Neural computation is performed by transforming input signals into sequences of action potentials (APs), which is metabolically expensive and limited by the energy available to the brain. The metabolic efficiency of single AP has important consequences for the computational power of the cell, which is determined by its biophysical properties and morphologies. Here we adopt biophysically-based two-compartment models to investigate how dendrites affect energy efficiency of APs in cortical pyramidal neurons. We measure the Na+ entry during the spike and examine how it is efficiently used for generating AP depolarization. We show that increasing the proportion of dendritic area or coupling conductance between two chambers decreases Na+ entry efficiency of somatic AP. Activating inward Ca2+ current in dendrites results in dendritic spike, which increases AP efficiency. Activating Ca2+-activated outward K+ current in dendrites, however, decreases Na+ entry efficiency. We demonstrate that the active and passive dendrites take effects by altering the overlap between Na+ influx and internal current flowing from soma to dendrite. We explain a fundamental link between dendritic properties and AP efficiency, which is essential to interpret how neural computation consumes metabolic energy and how biophysics and morphologies contribute to such consumption. PMID:28919852
Dendritic Properties Control Energy Efficiency of Action Potentials in Cortical Pyramidal Cells.
Yi, Guosheng; Wang, Jiang; Wei, Xile; Deng, Bin
2017-01-01
Neural computation is performed by transforming input signals into sequences of action potentials (APs), which is metabolically expensive and limited by the energy available to the brain. The metabolic efficiency of single AP has important consequences for the computational power of the cell, which is determined by its biophysical properties and morphologies. Here we adopt biophysically-based two-compartment models to investigate how dendrites affect energy efficiency of APs in cortical pyramidal neurons. We measure the Na + entry during the spike and examine how it is efficiently used for generating AP depolarization. We show that increasing the proportion of dendritic area or coupling conductance between two chambers decreases Na + entry efficiency of somatic AP. Activating inward Ca 2+ current in dendrites results in dendritic spike, which increases AP efficiency. Activating Ca 2+ -activated outward K + current in dendrites, however, decreases Na + entry efficiency. We demonstrate that the active and passive dendrites take effects by altering the overlap between Na + influx and internal current flowing from soma to dendrite. We explain a fundamental link between dendritic properties and AP efficiency, which is essential to interpret how neural computation consumes metabolic energy and how biophysics and morphologies contribute to such consumption.
Jacome-Galarza, Christian E.; Lee, Sun-Kyeong; Lorenzo, Joseph A.; LeonardoAguila, Hector
2012-01-01
Osteoclasts are specialized bone resorbing cells that derive from monocyte precursors. We have identified three populations of cells with high osteoclastogenic potential in murine bone marrow, which expressed the phenotype: B220−CD3−CD11b−/low CD115+ and either CD117hi, CD117intermediate or CD117low. We have evaluated these populations for their ability to also generate macrophages and dendritic cells. At a single cell level, the population expressing higher CD117 levels was able to generate bone-resorbing osteoclasts, phagocytic macrophages and antigen-presenting dendritic cells in vitro with efficiencies of over 90 percent, indicating that there exists a common developmental pathway for these cell types. Cells with osteoclastogenic potential also exist in blood and peripheral hematopoietic organs. Their functional meaning and/or their relationship with bone marrow progenitors is not well established. Hence, we characterized murine peripheral cell populations for their ability to form osteoclasts, macrophages and dendritic cells in vitro. The spleen and peripheral blood monocyte progenitors share phenotypic markers with bone marrow progenitors, but differ in their expression of CD11b, which was low in bone marrow but high in periphery. We propose that circulating monocyte progenitors are derived from a common bone marrow osteoclasts/macrophage/dendritic cell progenitor (OcMDC), which we have now characterized at a clonal level. However, the lineage relationship between the bone marrow and peripheral monocyte progenitors has yet to be defined. PMID:23165930
Lin, Tsang-Hsiung; Su, Hsing-Hao; Kang, Hong-Yo; Chang, Tsung-Hsien
2017-10-23
The original hygiene hypothesis declares "more infections in early childhood protect against later atopy". According to the hygiene hypothesis, the increased incidence of allergic disorders in developed countries is explained by the decrease of infections. Epithelial cells and dendritic cells play key roles in bridging the innate and adaptive immune systems. Among the various pattern-recognition receptor systems of epithelial cells and dendritic cells, including toll-like receptors (TLRs), nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) and others, TLRs are the key systems of immune response regulation. In humans, TLRs consist of TLR1 to TLR10. They regulate cellular responses through engagement with TLR ligands, e.g., lipopolysaccharides (LPS) acts through TLR4 and dsRNA acts through TLR3, but there are certain common components between these two TLR pathways. dsRNA activates epithelial cells and dendritic cells in different directions, resulting in allergy-related Th2-skewing tendency in epithelial cells, and Th1-skewing tendency in dendritic cells. The Th2-skewing effect by stimulation of dsRNA on epithelial cells could be suppressed by the presence of LPS above some threshold. When LPS level decreases, the Th2-skewing effect increases. It may be via these interrelated networks and related factors that LPS modifies the allergic responses and provides a plausible mechanism of the hygiene hypothesis. Several hygiene hypothesis-related phenomena, seemingly conflicting, are also discussed in this review, along with their proposed mechanisms.
Massanella, Marta; Rodríguez-García, Marta; Blanco, Julià; Gatell, José M.; García, Felipe; Gallart, Teresa; Lluis, Carme; Mallol, Josefa
2012-01-01
ADA is an enzyme implicated in purine metabolism, and is critical to ensure normal immune function. Its congenital deficit leads to severe combined immunodeficiency (SCID). ADA binding to adenosine receptors on dendritic cell surface enables T-cell costimulation through CD26 crosslinking, which enhances T-cell activation and proliferation. Despite a large body of work on the actions of the ecto-enzyme ADA on T-cell activation, questions arise on whether ADA can also modulate dendritic cell maturation. To this end we investigated the effects of ADA on human monocyte derived dendritic cell biology. Our results show that both the enzymatic and non-enzymatic activities of ADA are implicated in the enhancement of CD80, CD83, CD86, CD40 and CCR7 expression on immature dendritic cells from healthy and HIV-infected individuals. These ADA-mediated increases in CD83 and costimulatory molecule expression is concomitant to an enhanced IL-12, IL-6, TNF-α, CXCL8(IL-8), CCL3(MIP1-α), CCL4(MIP-1β) and CCL5(RANTES) cytokine/chemokine secretion both in healthy and HIV-infected individuals and to an altered apoptotic death in cells from HIV-infected individuals. Consistently, ADA-mediated actions on iDCs are able to enhance allogeneic CD4 and CD8-T-cell proliferation, globally yielding increased iDC immunogenicity. Taken together, these findings suggest that ADA would promote enhanced and correctly polarized T-cell responses in strategies targeting asymptomatic HIV-infected individuals. PMID:23240012
Olfactory granule cell development in normal and hyperthyroid rats.
Brunjes, P C; Schwark, H D; Greenough, W T
1982-10-01
Dendritic development was examined in olfactory bulbs of both normal 7-, 14-, 21- and 60-day-old rats and littermates treated on postnatal days 1-4 with 1 microgram/g body weight of L-thyroxine sodium. Tissue was processed via the Golgi-Cox technique and subjected to quantitative analyses of mitral and internal layer granule cell development. These populations of granule cells were selected because their pattern of late proliferation suggested potentially greater susceptibility to postnatal hormonal alterations. Although neonatal hyperthyroidism induces widespread acceleration of maturation, including precocious chemosensitivity, granule cell development was unaffected relative to littermate controls. Both normal and hyperthyroid groups exhibited an inverted U-shaped pattern of cellular development, with rapid dendritic dendritic growth and expansion occurring during the earliest ages tested, but with loss of processes and dendritic field size occurring after day 21.
Weigand, Kilian; Voigt, Franziska; Encke, Jens; Hoyler, Birgit; Stremmel, Wolfgang; Eisenbach, Christoph
2012-01-01
AIM: To explore dendritic cells (DCs) multiple functions in immune modulation. METHODS: We used bone-marrow derived dendritic cells from BALB/c mice pulsed with pseudo particles from the hepatitis C virus to vaccinate naive BALB/c mice. Hepatitis C virus (HCV) pseudo particles consist of the genotype 1b derived envelope proteins E1 and E2, covering a non-HCV core structure. Thus, not a single epitope, but the whole “viral surface” induces immunogenicity. For vaccination, mature and activated DC were injected subcutaneously twice. RESULTS: Humoral and cellular immune responses measured by enzyme-linked immunosorbent assay and interferon-gamma enzyme-linked immunosorbent spot test showed antibody production as well as T-cells directed against HCV. Furthermore, T-cell responses confirmed two highly immunogenic regions in E1 and E2 outside the hypervariable region 1. CONCLUSION: Our results indicate dendritic cells as a promising vaccination model for HCV infection that should be evaluated further. PMID:22371638
Innate immunity and effector and regulatory mechanisms involved in allergic contact dermatitis*
Silvestre, Marilene Chaves; Sato, Maria Notomi; dos Reis, Vitor Manoel Silva
2018-01-01
Skin's innate immunity is the initial activator of immune response mechanisms, influencing the development of adaptive immunity. Some contact allergens are detected by Toll-like receptors (TLRs) and inflammasome NLR3. Keratinocytes participate in innate immunity and, in addition to functioning as an anatomical barrier, secrete cytokines, such as TNF, IL-1β, and IL-18, contributing to the development of Allergic Contact Dermatitis. Dendritic cells recognize and process antigenic peptides into T cells. Neutrophils cause pro-inflammatory reactions, mast cells induce migration/maturation of skin DCs, the natural killer cells have natural cytotoxic capacity, the γδ T cells favor contact with hapten during the sensitization phase, and the innate lymphoid cells act in the early stages by secreting cytokines, as well as act in inflammation and tissue homeostasis. The antigen-specific inflammation is mediated by T cells, and each subtype of T cells (Th1/Tc1, Th2/Tc2, and Th17/Tc17) activates resident skin cells, thus contributing to inflammation. Skin's regulatory T cells have a strong ability to inhibit the proliferation of hapten-specific T cells, acting at the end of the Allergic Contact Dermatitis response and in the control of systemic immune responses. In this review, we report how cutaneous innate immunity is the first line of defense and focus its role in the activation of the adaptive immune response, with effector response induction and its regulation. PMID:29723367
USDA-ARS?s Scientific Manuscript database
Activation statuses of monocytic cells, e.g. monocytes, macrophages and dendritic cells (DCs), are critically important for antiviral immunity. In particular, some devastating viruses, including porcine reproductive and respiratory syndrome virus (PRRSV), are capable of directly infecting these cell...
A bloody mess: dendritic cells use hemophagocytosis to regulate viral inflammation.
Miller, Elizabeth; Bhardwaj, Nina
2013-09-19
Previous studies have highlighted the immune-dampening effects of apoptotic cell uptake by phagocytes. Ohyagi et al. (2013) expose a unique mechanism of immune regulation during viral infection, which is mediated through phagocytosis of apoptotic red cells by dendritic cells. Copyright © 2013 Elsevier Inc. All rights reserved.
de Kock, Christiaan P. J.; Bruno, Randy M.; Ramirez, Alejandro; Meyer, Hanno S.; Dercksen, Vincent J.; Helmstaedter, Moritz; Sakmann, Bert
2012-01-01
Soma location, dendrite morphology, and synaptic innervation may represent key determinants of functional responses of individual neurons, such as sensory-evoked spiking. Here, we reconstruct the 3D circuits formed by thalamocortical afferents from the lemniscal pathway and excitatory neurons of an anatomically defined cortical column in rat vibrissal cortex. We objectively classify 9 cortical cell types and estimate the number and distribution of their somata, dendrites, and thalamocortical synapses. Somata and dendrites of most cell types intermingle, while thalamocortical connectivity depends strongly upon the cell type and the 3D soma location of the postsynaptic neuron. Correlating dendrite morphology and thalamocortical connectivity to functional responses revealed that the lemniscal afferents can account for some of the cell type- and location-specific subthreshold and spiking responses after passive whisker touch (e.g., in layer 4, but not for other cell types, e.g., in layer 5). Our data provides a quantitative 3D prediction of the cell type–specific lemniscal synaptic wiring diagram and elucidates structure–function relationships of this physiologically relevant pathway at single-cell resolution. PMID:22089425
Li, Angsheng; Yin, Xianchen; Pan, Yicheng
2016-01-01
In this study, we propose a method for constructing cell sample networks from gene expression profiles, and a structural entropy minimisation principle for detecting natural structure of networks and for identifying cancer cell subtypes. Our method establishes a three-dimensional gene map of cancer cell types and subtypes. The identified subtypes are defined by a unique gene expression pattern, and a three-dimensional gene map is established by defining the unique gene expression pattern for each identified subtype for cancers, including acute leukaemia, lymphoma, multi-tissue, lung cancer and healthy tissue. Our three-dimensional gene map demonstrates that a true tumour type may be divided into subtypes, each defined by a unique gene expression pattern. Clinical data analyses demonstrate that most cell samples of an identified subtype share similar survival times, survival indicators and International Prognostic Index (IPI) scores and indicate that distinct subtypes identified by our algorithms exhibit different overall survival times, survival ratios and IPI scores. Our three-dimensional gene map establishes a high-definition, one-to-one map between the biologically and medically meaningful tumour subtypes and the gene expression patterns, and identifies remarkable cells that form singleton submodules. PMID:26842724
Role of hepatocyte growth factor in the development of dendritic cells from CD34+ bone marrow cells.
Ovali, E; Ratip, S; Kibaroglu, A; Tekelioglu, Y; Cetiner, M; Karti, S; Aydin, F; Bayik, M; Akoglu, T
2000-05-01
Hepatocyte growth factor (HGF) is known to augment the effects of stem cell factor, interleukin-3, granulocyte-macrophage colony-stimulating factor (GM-CSF), erythropoetin, and granulocyte colony-stimulating factor, all of which are involved in hematopoiesis. HGF is also known to have a role in immune responses. The aim of this study was to investigate whether HGF is involved in the development of dendritic cells (DC) from CD34+ bone marrow cells. CD34+ cells obtained from three healthy donors were incubated in various combinations of HGF, GM-CSF, and tumor necrosis factor (TNF) for 12 days. Developing cell populations were analyzed for surface markers, morphology and functional capacities by flow cytometry, light microscopy and mixed lymphocyte reaction, respectively. Incubation with HGF alone generated greater number of dendritic cells from CD34+ bone marrow cells than incubation with GM-CSF, or a combination of GM-CSF with TNF. HGF was also found to potentiate the effect of GM-CSF on DC and monocyte development. The effects of HGF were inhibited by the concurrent use of TNF. HGF appears to be a significant factor in the development of dendritic cells from CD34+ bone marrow cells.
Thymic Dendritic Cells Are Primary Targets for the Oncogenic Virus SL3-3
Uittenbogaart, Christel H.; Law, Wendy; Leenen, Pieter J. M.; Bristol, Gregory; van Ewijk, Willem; Hays, Esther F.
1998-01-01
The murine retrovirus SL3-3 causes malignant transformation of thymocytes and thymic lymphoma in mice of the AKR and NFS strains when they are inoculated neonatally. The objective of the present study was to identify the primary target cells for the virus in the thymuses of these mice. Immunohistochemical studies of the thymus after neonatal inoculation of the SL3-3 virus showed that cells expressing the viral envelope glycoprotein (gp70+ cells) were first seen at 2 weeks of age. These virus-expressing cells were found in the cortex and at the corticomedullary junction in both mouse strains. The gp70+ cells had the morphology and immunophenotype of dendritic cells. They lacked macrophage-specific antigens. Cell separation studies showed that bright gp70+ cells were detected in a fraction enriched for dendritic cells. At 3 weeks of age, macrophages also expressed gp70. At that time, both gp70+ dendritic cells and macrophages were found at the corticomedullary junction and in foci in the thymic cortex. At no time during this 3-week period was the virus expressed in cortical and medullary epithelial cells or in thymic lymphoid cells. Infectious cell center assays indicated that cells expressing infectious virus were present in small numbers at 2 weeks after inoculation but increased at 5 weeks of age by several orders of magnitude, indicating virus spread to the thymic lymphoid cells. Thus, at 2 weeks after neonatal inoculation of SL3-3, thymic dendritic cells are the first cells to express the virus. At 3 weeks of age, macrophages also express the virus. In subsequent weeks, the virus spreads to the thymocytes. This pathway of virus expression in the thymus allows the inevitable provirus integration in a thymocyte that results in a clonal lymphoma. PMID:9811752
Magro, Cynthia M; Momtahen, Shabnam; Verma, Shalini; Abraham, Ronnie M; Friedman, Constantin; Nuovo, Gerard J; Tam, Wayne
2016-12-01
Monocytes are critical components of the innate immune system and they can differentiate into dendritic cells (DCs). Cutaneous neoplasms of dendritic cell origin are uncommon and mostly represented by histiocytic lesions derived primarily from Langerhans cells. The myeloid DC (mDC) while recognized in the immunology literature does not have a well-defined neoplastic cutaneous counterpart. Eleven patients with a diagnosis of cutaneous mDC dyscrasia were evaluated. Routine hematoxylin and eosin stain were performed followed by selective phenotypic studies. The patients were older without a gender predilection and exhibited an asymptomatic papular skin rash with a waxing and waning course. The biopsies demonstrated a dermal based monomorphic small mononuclear cell infiltrate. The cells expressed CD14, CD11c, HLA-DR, as well as granzyme and lysozyme that defines terminally differentiated monocyte/dendritic cells. Expression of BDCA-3 (CD141) by the tumor cells indicated that they were myeloid dendritic cells (mDC2). Each patient had a prior or subsequent diagnosis of an abnormal bone marrow biopsy that included myelodysplastic syndrome, myelofibrosis, chronic myelomonocytic leukemia, and acute myelogenous leukemia. We propose the term cutaneous mDC cell dyscrasia for distinctive infiltrates of differentiated mDCs reflective of underlying myeloproliferative disease. The clinical course is variable and can be indolent although it is strongly correlated with myelodysplastic syndrome that included leukemia. Copyright © 2016 Elsevier Inc. All rights reserved.
Song, Yuanquan; Ori-McKenney, Kassandra M.; Zheng, Yi; Han, Chun; Jan, Lily Yeh; Jan, Yuh Nung
2012-01-01
Both cell-intrinsic and extrinsic pathways govern axon regeneration, but only a limited number of factors have been identified and it is not clear to what extent axon regeneration is evolutionarily conserved. Whether dendrites also regenerate is unknown. Here we report that, like the axons of mammalian sensory neurons, the axons of certain Drosophila dendritic arborization (da) neurons are capable of substantial regeneration in the periphery but not in the CNS, and activating the Akt pathway enhances axon regeneration in the CNS. Moreover, those da neurons capable of axon regeneration also display dendrite regeneration, which is cell type-specific, developmentally regulated, and associated with microtubule polarity reversal. Dendrite regeneration is restrained via inhibition of the Akt pathway in da neurons by the epithelial cell-derived microRNA bantam but is facilitated by cell-autonomous activation of the Akt pathway. Our study begins to reveal mechanisms for dendrite regeneration, which depends on both extrinsic and intrinsic factors, including the PTEN–Akt pathway that is also important for axon regeneration. We thus established an important new model system—the fly da neuron regeneration model that resembles the mammalian injury model—with which to study and gain novel insights into the regeneration machinery. PMID:22759636
Dendritic nonlinearities are tuned for efficient spike-based computations in cortical circuits.
Ujfalussy, Balázs B; Makara, Judit K; Branco, Tiago; Lengyel, Máté
2015-12-24
Cortical neurons integrate thousands of synaptic inputs in their dendrites in highly nonlinear ways. It is unknown how these dendritic nonlinearities in individual cells contribute to computations at the level of neural circuits. Here, we show that dendritic nonlinearities are critical for the efficient integration of synaptic inputs in circuits performing analog computations with spiking neurons. We developed a theory that formalizes how a neuron's dendritic nonlinearity that is optimal for integrating synaptic inputs depends on the statistics of its presynaptic activity patterns. Based on their in vivo preynaptic population statistics (firing rates, membrane potential fluctuations, and correlations due to ensemble dynamics), our theory accurately predicted the responses of two different types of cortical pyramidal cells to patterned stimulation by two-photon glutamate uncaging. These results reveal a new computational principle underlying dendritic integration in cortical neurons by suggesting a functional link between cellular and systems--level properties of cortical circuits.
Horiguchi, Kotaro; Higuchi, Masashi; Yoshida, Saishu; Nakakura, Takashi; Tateno, Kozue; Hasegawa, Rumi; Takigami, Shu; Ohsako, Shunji; Kato, Takako; Kato, Yukio
2014-11-01
S100β-positive cells, which do not express the classical pituitary hormones, appear to possess multifunctional properties and are assumed to be heterogeneous in the anterior pituitary gland. The presence of several protein markers has shown that S100β-positive cells are composed of populations such as stem/progenitor cells, epithelial cells, astrocytes and dendritic cells. Recently, we succeeded in separating S100β-positive cells into round-cell (dendritic-cell-like) and process-cell types. We also found the characteristic expression of anti-inflammatory factors (interleukin-6, Il-6) and membrane receptors (integrin β-6) in the round type. Here, we further investigate the function of the subpopulation of S100β-positive cells. Since IL-6 is also a paracrine factor that regulates hormone producing-cells, we examine whether a correlation exists among extracellular acid stress, IL-6 and hormone production by using primary cultures of anterior pituitary cells. Dendritic-cell-like S100β-positive cells notably expressed Gpr68 (proton receptor) and Il-6. Furthermore, the expression of Il-6 and proopiomelanocortin (Pomc) was up-regulated by extracellular acidification. The functional role of IL-6 and GPR68 in the gene expression of Pomc during extracellular acidification was also examined. Small interfering RNA for Il-6 up-regulated Pomc expression and that for Gpr68 reversed the down-regulation of Il-6 and up-regulated Pomc expression by extracellular acidification. Thus, S100β-positive dendritic-like cells can sense an increase in extracellular protons via GPR68 and respond by the production of IL-6 in order to suppress the up-regulation of Pomc expression.
USDA-ARS?s Scientific Manuscript database
Activation statuses of monocytic cells including monocytes, macrophages and dendritic cells (DCs) are critically important for antiviral immunity. In particular, some devastating viruses, including porcine reproductive and respiratory syndrome virus (PRRSV), are capable of directly infecting these c...
Zhou, Wen-Liang; Yan, Ping; Wuskell, Joseph P; Loew, Leslie M; Antic, Srdjan D
2008-02-01
Basal dendrites of neocortical pyramidal neurons are relatively short and directly attached to the cell body. This allows electrical signals arising in basal dendrites to strongly influence the neuronal output. Likewise, somatic action potentials (APs) should readily propagate back into the basilar dendritic tree to influence synaptic plasticity. Two recent studies, however, determined that sodium APs are severely attenuated in basal dendrites of cortical pyramidal cells, so that they completely fail in distal dendritic segments. Here we used the latest improvements in the voltage-sensitive dye imaging technique (Zhou et al., 2007) to study AP backpropagation in basal dendrites of layer 5 pyramidal neurons of the rat prefrontal cortex. With a signal-to-noise ratio of > 15 and minimal temporal averaging (only four sweeps) we were able to sample AP waveforms from the very last segments of individual dendritic branches (dendritic tips). We found that in short- (< 150 microm) and medium (150-200 microm in length)-range basal dendrites APs backpropagated with modest changes in AP half-width or AP rise-time. The lack of substantial changes in AP shape and dynamics of rise is inconsistent with the AP-failure model. The lack of substantial amplitude boosting of the third AP in the high-frequency burst also suggests that in short- and medium-range basal dendrites backpropagating APs were not severely attenuated. Our results show that the AP-failure concept does not apply in all basal dendrites of the rat prefrontal cortex. The majority of synaptic contacts in the basilar dendritic tree actually received significant AP-associated electrical and calcium transients.
Clement, Cristina C.; Becerra, Aniuska; Yin, Liusong; Zolla, Valerio; Huang, Liling; Merlin, Simone; Follenzi, Antonia; Shaffer, Scott A.; Stern, Lawrence J.; Santambrogio, Laura
2016-01-01
The repertoire of peptides displayed in vivo by MHC II molecules derives from a wide spectrum of proteins produced by different cell types. Although intracellular endosomal processing in dendritic cells and B cells has been characterized for a few antigens, the overall range of processing pathways responsible for generating the MHC II peptidome are currently unclear. To determine the contribution of non-endosomal processing pathways, we eluted and sequenced over 3000 HLA-DR1-bound peptides presented in vivo by dendritic cells. The processing enzymes were identified by reference to a database of experimentally determined cleavage sites and experimentally validated for four epitopes derived from complement 3, collagen II, thymosin β4, and gelsolin. We determined that self-antigens processed by tissue-specific proteases, including complement, matrix metalloproteases, caspases, and granzymes, and carried by lymph, contribute significantly to the MHC II self-peptidome presented by conventional dendritic cells in vivo. Additionally, the presented peptides exhibited a wide spectrum of binding affinity and HLA-DM susceptibility. The results indicate that the HLA-DR1-restricted self-peptidome presented under physiological conditions derives from a variety of processing pathways. Non-endosomal processing enzymes add to the number of epitopes cleaved by cathepsins, altogether generating a wider peptide repertoire. Taken together with HLA-DM-dependent and-independent loading pathways, this ensures that a broad self-peptidome is presented by dendritic cells. This work brings attention to the role of “self-recognition” as a dynamic interaction between dendritic cells and the metabolic/catabolic activities ongoing in every parenchymal organ as part of tissue growth, remodeling, and physiological apoptosis. PMID:26740625
NMDA-receptor dependent synaptic activation of TRPC channels in olfactory bulb granule cells
Stroh, Olga; Freichel, Marc; Kretz, Oliver; Birnbaumer, Lutz; Hartmann, Jana; Egger, Veronica
2012-01-01
TRPC channels are widely expressed throughout the nervous system including the olfactory bulb where their function is largely unknown. Here we describe their contribution to central synaptic processing at the reciprocal mitral and tufted cell - granule cell microcircuit, the most abundant synapse of the mammalian olfactory bulb. Suprathreshold activation of the synapse causes sodium action potentials in mouse granule cells and a subsequent long-lasting depolarization (LLD) linked to a global dendritic postsynaptic calcium signal recorded with two-photon laser scanning microscopy. These signals are not observed after action potentials evoked by current injection in the same cells. The LLD persists in the presence of group I metabotropic glutamate receptor antagonists but is entirely absent from granule cells deficient for the NMDA receptor subunit NR1. Moreover, both depolarization and Ca2+ rise are sensitive to the blockade of NMDA receptors. The LLD and the accompanying Ca2+ rise are also absent in granule cells from mice deficient for both TRPC channel subtypes 1 and 4, whereas the deletion of either TRPC1 or TRPC4 results in only a partial reduction of the LLD. Recordings from mitral cells in the absence of both subunits reveal a reduction of asynchronous neurotransmitter release from the granule cells during recurrent inhibition. We conclude that TRPC1 and TRPC4 can be activated downstream of NMDA receptor activation and contribute to slow synaptic transmission in the olfactory bulb, including the calcium dynamics required for asynchronous release from the granule cell spine. PMID:22539836
Farinella, Matteo; Ruedt, Daniel T.; Gleeson, Padraig; Lanore, Frederic; Silver, R. Angus
2014-01-01
In vivo, cortical pyramidal cells are bombarded by asynchronous synaptic input arising from ongoing network activity. However, little is known about how such ‘background’ synaptic input interacts with nonlinear dendritic mechanisms. We have modified an existing model of a layer 5 (L5) pyramidal cell to explore how dendritic integration in the apical dendritic tuft could be altered by the levels of network activity observed in vivo. Here we show that asynchronous background excitatory input increases neuronal gain and extends both temporal and spatial integration of stimulus-evoked synaptic input onto the dendritic tuft. Addition of fast and slow inhibitory synaptic conductances, with properties similar to those from dendritic targeting interneurons, that provided a ‘balanced’ background configuration, partially counteracted these effects, suggesting that inhibition can tune spatio-temporal integration in the tuft. Excitatory background input lowered the threshold for NMDA receptor-mediated dendritic spikes, extended their duration and increased the probability of additional regenerative events occurring in neighbouring branches. These effects were also observed in a passive model where all the non-synaptic voltage-gated conductances were removed. Our results show that glutamate-bound NMDA receptors arising from ongoing network activity can provide a powerful spatially distributed nonlinear dendritic conductance. This may enable L5 pyramidal cells to change their integrative properties as a function of local network activity, potentially allowing both clustered and spatially distributed synaptic inputs to be integrated over extended timescales. PMID:24763087
Rapid, directed transport of DC-SIGN clusters in the plasma membrane
Liu, Ping; Weinreb, Violetta; Ridilla, Marc; Betts, Laurie; Patel, Pratik; de Silva, Aravinda M.; Thompson, Nancy L.; Jacobson, Ken
2017-01-01
C-type lectins, including dendritic cell–specific intercellular adhesion molecule-3–grabbing nonintegrin (DC-SIGN), are all-purpose pathogen receptors that exist in nanoclusters in plasma membranes of dendritic cells. A small fraction of these clusters, obvious from the videos, can undergo rapid, directed transport in the plane of the plasma membrane at average speeds of more than 1 μm/s in both dendritic cells and MX DC-SIGN murine fibroblasts ectopically expressing DC-SIGN. Surprisingly, instantaneous speeds can be considerably greater. In MX DC-SIGN cells, many cluster trajectories are colinear with microtubules that reside close to the ventral membrane, and the microtubule-depolymerizing drug, nocodazole, markedly reduced the areal density of directed movement trajectories, suggesting a microtubule motor–driven transport mechanism; by contrast, latrunculin A, which affects the actin network, did not depress this movement. Rapid, retrograde movement of DC-SIGN may be an efficient mechanism for bringing bound pathogen on the leading edge and projections of dendritic cells to the perinuclear region for internalization and processing. Dengue virus bound to DC-SIGN on dendritic projections was rapidly transported toward the cell center. The existence of this movement within the plasma membrane points to an unexpected lateral transport mechanism in mammalian cells and challenges our current concepts of cortex-membrane interactions. PMID:29134199
Transient potentials in dendritic systems of arbitrary geometry.
Butz, E G; Cowan, J D
1974-09-01
A simple graphical calculus is developed that generates analytic solutions for membrane potential transforms at any point on the dendritic tree of neurons with arbitrary dendritic geometries, in response to synaptic "current" inputs. Such solutions permit the computation of transients in neurons with arbitrary geometry and may facilitate analysis of the role of dendrites in such cells.
Lischka, Katharina; Ladel, Simone; Luksch, Harald; Weigel, Stefan
2018-02-15
The midbrain is an important subcortical area involved in distinct functions such as multimodal integration, movement initiation, bottom-up, and top-down attention. Our group is particularly interested in cellular computation of multisensory integration. We focus on the visual part of the avian midbrain, the optic tectum (TeO, counterpart to mammalian superior colliculus). This area has a layered structure with the great advantage of distinct input and output regions. In chicken, the TeO is organized in 15 layers where visual input targets the superficial layers while auditory input terminates in deeper layers. One specific cell type, the Shepherd's crook neuron (SCN), extends dendrites in both input regions. The characteristic feature of these neurons is the axon origin at the apical dendrite. The molecular identity of this characteristic region and thus, the site of action potential generation are of particular importance to understand signal flow and cellular computation in this neuron. We present immunohistochemical data of structural proteins (NF200, Ankyrin G, and Myelin) and ion channels (Pan-Na v , Na v 1.6, and K v 3.1b). NF200 is strongly expressed in the axon. Ankyrin G is mainly expressed at the axon initial segment (AIS). Myelination starts after the AIS as well as the distribution of Na v channels on the axon. The subtype Na v 1.6 has a high density in this region. K v 3.1b is restricted to the soma, the primary neurite and the axon branch. The distribution of functional molecules in SCNs provides insight into the information flow and the integration of sensory modalities in the TeO of the avian midbrain. © 2017 Wiley Periodicals, Inc.
Neocortical layers I and II of the hedgehog (Erinaceus europaeus). I. Intrinsic organization.
Valverde, F; Facal-Valverde, M V
1986-01-01
The intrinsic organization and interlaminar connections in neocortical layers I and II have been studied in adult hedgehogs (Erinaceus europaeus) using the Golgi method. Layer I contains a dense plexus of horizontal fibers, the terminal dendritic bouquets of pyramidal cells of layer II and of underlying layers, and varieties of intrinsic neurons. Four main types of cells were found in layer I. Small horizontal cells represent most probably persisting foetal horizontal cells described for other mammals. Large horizontal cells, tufted cells, and spinous horizontal cells were also found in this layer. Layer II contains primitive pyramidal cells representing the most outstanding feature of the neocortex of the hedgehog. Most pyramidal cells in layer II have two, three or more apical dendrites, richly covered by spines predominating over the basal dendrites. These cells resemble pyramidal cells found in the piriform cortex, hippocampus and other olfactory areas. It is suggested that the presence of these neurons reflects the retention of a primitive character in neocortical evolution. Cells with intrinsic axons were found among pyramidal cells in layer II. These have smooth dendrites penetrating layer I and local axons forming extremely complex terminal arborizations around the bodies and proximal dendritic portions of pyramidal cells. They most probably effect numerous axo-somatic contacts resembling basket cells. The similarity of some axonal terminals with the chandelier type of axonal arborization is discussed. Other varieties of cells located in deep cortical layers and having ascending axons for layers I and II were also studied. It is concluded that the two first neocortical layers represent a level of important integration in this primitive mammal.
Dendro-dendritic interactions between motion-sensitive large-field neurons in the fly.
Haag, Juergen; Borst, Alexander
2002-04-15
For visual course control, flies rely on a set of motion-sensitive neurons called lobula plate tangential cells (LPTCs). Among these cells, the so-called CH (centrifugal horizontal) cells shape by their inhibitory action the receptive field properties of other LPTCs called FD (figure detection) cells specialized for figure-ground discrimination based on relative motion. Studying the ipsilateral input circuitry of CH cells by means of dual-electrode and combined electrical-optical recordings, we find that CH cells receive graded input from HS (large-field horizontal system) cells via dendro-dendritic electrical synapses. This particular wiring scheme leads to a spatial blur of the motion image on the CH cell dendrite, and, after inhibiting FD cells, to an enhancement of motion contrast. This could be crucial for enabling FD cells to discriminate object from self motion.
Olfactory epithelium influences the orientation of mitral cell dendrites during development.
López-Mascaraque, Laura; García, Concepción; Blanchart, Albert; De Carlos, Juan A
2005-02-01
We have established previously that, although the olfactory epithelium is absent in the homozygous Pax-6 mutant mouse, an olfactory bulb-like structure (OBLS) does develop. Moreover, this OBLS contains cells that correspond to mitral cells, the primary projection neurons in the olfactory bulb. The current study aimed to address whether the dendrites of mitral cells in the olfactory bulb or in the OBLS mitral-like cells, exhibit a change in orientation in the presence of the olfactory epithelium. The underlying hypothesis is that the olfactory epithelium imparts a trophic signal on mitral and mitral-like cell that influences the growth of their primary dendrites, orientating them toward the surface of the olfactory bulb. Hence, we cultured hemibrains from wild-type and Pax 6 mutant mice from two different embryonic stages (embryonic days 14 and 15) either alone or in coculture with normal olfactory epithelial explants or control tissue (cerebellum). Our results indicate that the final dendritic orientation of mitral and mitral-like cells is directly influenced both by age and indeed by the presence of the olfactory epithelium. Copyright 2004 Wiley-Liss, Inc.
Aubin, F; Alcalay, J; Dall'Acqua, F; Kripke, M L
1990-06-01
Although some psoralens are therapeutically active in the treatment of cutaneous hyperproliferative diseases when combined with UVA (320-400 nm) radiation, the toxic effects of these compounds have led physicians to seek new photochemotherapeutic agents. One such agent is 4,4',5'-trimethylazapsoralen (TMAP), a new bifunctional psoralen compound. We investigated the effects of repetitive treatments with TMAP plus UVA radiation on the number of dendritic immune cells in murine epidermis and on the induction of phototoxicity. Mice treated 3 times per week for 4 weeks with 129 microgram TMAP plus 10 kJ/m2 UVA radiation exhibited no gross or microscopic evidence of phototoxicity. During this treatment, the numbers of ATPase+, Ia+, and Thy-l+ dendritic epidermal cells were greatly reduced, and by the end of the treatment period, few dendritic immune cells could be detected. We conclude that morphological alterations of cutaneous immune cells can occur in the absence of overt phototoxicity, and that TMAP plus low-dose UVA radiation decreases the numbers of detectable Langerhans cells and Thy-1+ cells in murine skin.
McGinley, Matthew J.; Liberman, M. Charles; Bal, Ramazan; Oertel, Donata
2012-01-01
Broadband transient sounds, such as clicks and consonants, activate a traveling wave in the cochlea. This wave evokes firing in auditory nerve fibers that are tuned to high frequencies several milliseconds earlier than in fibers tuned to low frequencies. Despite this substantial traveling wave delay, octopus cells in the brainstem receive broadband input and respond to clicks with submillisecond temporal precision. The dendrites of octopus cells lie perpendicular to the tonotopically organized array of auditory nerve fibers, placing the earliest arriving inputs most distally and the latest arriving closest to the soma. Here, we test the hypothesis that the topographic arrangement of synaptic inputs on dendrites of octopus cells allows octopus cells to compensate the traveling wave delay. We show that in mice the full cochlear traveling wave delay is 1.6 ms. Because the dendrites of each octopus cell spread across about one third of the tonotopic axis, a click evokes a soma directed sweep of synaptic input lasting 0.5 ms in individual octopus cells. Morphologically and biophysically realistic, computational models of octopus cells show that soma-directed sweeps with durations matching in vivo measurements result in the largest and sharpest somatic excitatory postsynaptic potentials (EPSPs). A low input resistance and activation of a low-voltage-activated potassium conductance that are characteristic of octopus cells are important determinants of sweep sensitivity. We conclude that octopus cells have dendritic morphologies and biophysics tailored to accomplish the precise encoding of broadband transient sounds. PMID:22764237
Shinomiya, Kazunori; Takemura, Shin-ya; Rivlin, Patricia K.; Plaza, Stephen M.; Scheffer, Louis K.; Meinertzhagen, Ian A.
2015-01-01
Synaptic circuits for identified behaviors in the Drosophila brain have typically been considered from either a developmental or functional perspective without reference to how the circuits might have been inherited from ancestral forms. For example, two candidate pathways for ON- and OFF-edge motion detection in the visual system act via circuits that use respectively either T4 or T5, two cell types of the fourth neuropil, or lobula plate (LOP), that exhibit narrow-field direction-selective responses and provide input to wide-field tangential neurons. T4 or T5 both have four subtypes that terminate one each in the four strata of the LOP. Representatives are reported in a wide range of Diptera, and both cell types exhibit various similarities in: (1) the morphology of their dendritic arbors; (2) their four morphological and functional subtypes; (3) their cholinergic profile in Drosophila; (4) their input from the pathways of L3 cells in the first neuropil, or lamina (LA), and by one of a pair of LA cells, L1 (to the T4 pathway) and L2 (to the T5 pathway); and (5) their innervation by a single, wide-field contralateral tangential neuron from the central brain. Progenitors of both also express the gene atonal early in their proliferation from the inner anlage of the developing optic lobe, being alone among many other cell type progeny to do so. Yet T4 receives input in the second neuropil, or medulla (ME), and T5 in the third neuropil or lobula (LO). Here we suggest that these two cell types were originally one, that their ancestral cell population duplicated and split to innervate separate ME and LO neuropils, and that a fiber crossing—the internal chiasma—arose between the two neuropils. The split most plausibly occurred, we suggest, with the formation of the LO as a new neuropil that formed when it separated from its ancestral neuropil to leave the ME, suggesting additionally that ME input neurons to T4 and T5 may also have had a common origin. PMID:26217193
Previously we found that dendritic cells (DC) were sensitive functional bioindicators of ambient PM (APM) exposure mediating Th2-allergic inflammation in the draining lymph nodes. Here, the ability of bone-marrow-derived DC (DC) and putative BM-derived basophils (Ba) to present a...
USDA-ARS?s Scientific Manuscript database
Dendritic cells (DC) are multifunctional cells that bridge the gap between innate and adaptive immune systems. In bovine, significant information is lacking on the precise identity and role of peripheral blood DC subsets. In this study, we identify and characterize bovine peripheral blood DC subsets...
Frøkiær, Hanne; Henningsen, Louise; Metzdorff, Stine Broeng; Weiss, Gudrun; Roller, Marc; Flanagan, John; Fromentin, Emilie; Ibarra, Alvin
2012-01-01
Many foods and food components boost the immune system, but little data are available regarding the mechanisms by which they do. Bacterial strains have disparate effects in stimulating the immune system. Indendritic cells, the gram-negative bacteria Escherichia coli upregulates proinflammatory cytokines, whereas gram-positive Lactobacillus acidophilus induces a robust interferon (IFN)-β response. The immune-modulating effects of astragalus root and elderberry fruit extracts were examined in bone marrow-derived murine dendritic cells that were stimulated with L. acidophilus or E. coli. IFN-β and other cytokines were measured by ELISA and RT-PCR. Endocytosis of fluorescence-labeled dextran and L. acidophilus in the presence of elderberry fruit or astragalus root extract was evaluated in dendritic cells. Our results show that both extracts enhanced L. acidophilus-induced IFN-β production and slightly decreased the proinflammatory response to E. coli. The enhanced IFN-β production was associated with upregulation of toll-like receptor 3 and to a varying degree, the cytokines IL-12, IL-6, IL-1β and TNF-α. Both extracts increased endocytosis in immature dendritic cells, and only slightly influenced the viability of the cells. In conclusion, astragalus root and elderberry fruit extracts increase the IFN-β inducing activity of L. acidophilus in dendritic cells, suggesting that they may exert antiviral and immune-enhancing activity. PMID:23118903
2013-07-01
by Listeria -Stimulated Human Dendritic Cells: Implications for Cancer Vaccine Therapy PRINCIPAL INVESTIGATOR: David J. Chung, MD, PhD...2013 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-11-1-0384 Evaluation of Immune Responses Mediated by Listeria -Stimulated Human Dendritic...Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The purpose of this project is to study the immunomodulatory effect of Listeria on human
Romero, Ana M; Renau-Piqueras, Jaime; Marín, M Pilar; Esteban-Pretel, Guillermo
2015-01-01
The specific traffic of the membrane components in neurons is a major requirement to establish and maintain neuronal domains-the axonal and the somatodendritic domains-and their polarized morphology. Unlike axons, dendrites contain membranous organelles, which are involved in the secretory pathway, including the endoplasmic reticulum, the Golgi apparatus and post-Golgi apparatus carriers, the cytoskeleton, and plasma membrane. A variety of molecules and factors are also involved in this process. Previous studies have shown that chronic alcohol exposure negatively affects several of these cell components, such as the Golgi apparatus or cytoskeleton in neurons. Yet very little information is available on the possible effects of this exposure on the remaining cell elements involved in intracellular trafficking in neurons, particularly in dendrites. By qualitative and quantitative electron microscopy, immunofluorescence and immunoblotting, we herein show that chronic exposure to moderate levels (30 mM) of ethanol in cultured neurons reduces the volume and surface density of the rough endoplasmic reticulum, and increases the levels of GRP78, a chaperone involved in endoplasmic reticulum stress. Ethanol also significantly diminishes the proportion of neurons that show an extension of Golgi into dendrites and dendritic Golgi outposts, a structure present exclusively in longer, thicker apical dendrites. Both Golgi apparatus types were also fragmented into a large number of cells. We also investigated the effect of alcohol on the levels of microtubule-based motor proteins KIF5, KIF17, KIFC2, dynein, and myosin IIb, responsible for transporting different cargoes in dendrites. Of these, alcohol differently affects several of them by lowering dynein and raising KIF5, KIFC2, and myosin IIb. These results, together with other previously published ones, suggest that practically all the protein trafficking steps in dendrites are altered to a greater or lesser extent by chronic alcohol exposure in neuronal cells, which may have negative repercussions for the development and maintenance of their polarized morphology and function.
Musical representation of dendritic spine distribution: a new exploratory tool.
Toharia, Pablo; Morales, Juan; de Juan, Octavio; Fernaud, Isabel; Rodríguez, Angel; DeFelipe, Javier
2014-04-01
Dendritic spines are small protrusions along the dendrites of many types of neurons in the central nervous system and represent the major target of excitatory synapses. For this reason, numerous anatomical, physiological and computational studies have focused on these structures. In the cerebral cortex the most abundant and characteristic neuronal type are pyramidal cells (about 85 % of all neurons) and their dendritic spines are the main postsynaptic target of excitatory glutamatergic synapses. Thus, our understanding of the synaptic organization of the cerebral cortex largely depends on the knowledge regarding synaptic inputs to dendritic spines of pyramidal cells. Much of the structural data on dendritic spines produced by modern neuroscience involves the quantitative analysis of image stacks from light and electron microscopy, using standard statistical and mathematical tools and software developed to this end. Here, we present a new method with musical feedback for exploring dendritic spine morphology and distribution patterns in pyramidal neurons. We demonstrate that audio analysis of spiny dendrites with apparently similar morphology may "sound" quite different, revealing anatomical substrates that are not apparent from simple visual inspection. These morphological/music translations may serve as a guide for further mathematical analysis of the design of the pyramidal neurons and of spiny dendrites in general.
Dendrite architecture organized by transcriptional control of the F-actin nucleator Spire.
Ferreira, Tiago; Ou, Yimiao; Li, Sally; Giniger, Edward; van Meyel, Donald J
2014-02-01
The architectures of dendritic trees are crucial for the wiring and function of neuronal circuits because they determine coverage of receptive territories, as well as the nature and strength of sensory or synaptic inputs. Here, we describe a cell-intrinsic pathway sculpting dendritic arborization (da) neurons in Drosophila that requires Longitudinals Lacking (Lola), a BTB/POZ transcription factor, and its control of the F-actin cytoskeleton through Spire (Spir), an actin nucleation protein. Loss of Lola from da neurons reduced the overall length of dendritic arbors, increased the expression of Spir, and produced inappropriate F-actin-rich dendrites at positions too near the cell soma. Selective removal of Lola from only class IV da neurons decreased the evasive responses of larvae to nociception. The increased Spir expression contributed to the abnormal F-actin-rich dendrites and the decreased nocifensive responses because both were suppressed by reduced dose of Spir. Thus, an important role of Lola is to limit expression of Spir to appropriate levels within da neurons. We found Spir to be expressed in dendritic arbors and to be important for their development. Removal of Spir from class IV da neurons reduced F-actin levels and total branch number, shifted the position of greatest branch density away from the cell soma, and compromised nocifensive behavior. We conclude that the Lola-Spir pathway is crucial for the spatial arrangement of branches within dendritic trees and for neural circuit function because it provides balanced control of the F-actin cytoskeleton.
Bielza, Concha; Benavides-Piccione, Ruth; López-Cruz, Pedro; Larrañaga, Pedro; DeFelipe, Javier
2014-08-01
Unraveling pyramidal cell structure is crucial to understanding cortical circuit computations. Although it is well known that pyramidal cell branching structure differs in the various cortical areas, the principles that determine the geometric shapes of these cells are not fully understood. Here we analyzed and modeled with a von Mises distribution the branching angles in 3D reconstructed basal dendritic arbors of hundreds of intracellularly injected cortical pyramidal cells in seven different cortical regions of the frontal, parietal, and occipital cortex of the mouse. We found that, despite the differences in the structure of the pyramidal cells in these distinct functional and cytoarchitectonic cortical areas, there are common design principles that govern the geometry of dendritic branching angles of pyramidal cells in all cortical areas.
Bielza, Concha; Benavides-Piccione, Ruth; López-Cruz, Pedro; Larrañaga, Pedro; DeFelipe, Javier
2014-01-01
Unraveling pyramidal cell structure is crucial to understanding cortical circuit computations. Although it is well known that pyramidal cell branching structure differs in the various cortical areas, the principles that determine the geometric shapes of these cells are not fully understood. Here we analyzed and modeled with a von Mises distribution the branching angles in 3D reconstructed basal dendritic arbors of hundreds of intracellularly injected cortical pyramidal cells in seven different cortical regions of the frontal, parietal, and occipital cortex of the mouse. We found that, despite the differences in the structure of the pyramidal cells in these distinct functional and cytoarchitectonic cortical areas, there are common design principles that govern the geometry of dendritic branching angles of pyramidal cells in all cortical areas. PMID:25081193
Schachter, Michael J; Oesch, Nicholas; Smith, Robert G; Taylor, W Rowland
2010-08-19
The On-Off direction-selective ganglion cell (DSGC) in mammalian retinas responds most strongly to a stimulus moving in a specific direction. The DSGC initiates spikes in its dendritic tree, which are thought to propagate to the soma with high probability. Both dendritic and somatic spikes in the DSGC display strong directional tuning, whereas somatic PSPs (postsynaptic potentials) are only weakly directional, indicating that spike generation includes marked enhancement of the directional signal. We used a realistic computational model based on anatomical and physiological measurements to determine the source of the enhancement. Our results indicate that the DSGC dendritic tree is partitioned into separate electrotonic regions, each summing its local excitatory and inhibitory synaptic inputs to initiate spikes. Within each local region the local spike threshold nonlinearly amplifies the preferred response over the null response on the basis of PSP amplitude. Using inhibitory conductances previously measured in DSGCs, the simulation results showed that inhibition is only sufficient to prevent spike initiation and cannot affect spike propagation. Therefore, inhibition will only act locally within the dendritic arbor. We identified the role of three mechanisms that generate directional selectivity (DS) in the local dendritic regions. First, a mechanism for DS intrinsic to the dendritic structure of the DSGC enhances DS on the null side of the cell's dendritic tree and weakens it on the preferred side. Second, spatially offset postsynaptic inhibition generates robust DS in the isolated dendritic tips but weak DS near the soma. Third, presynaptic DS is apparently necessary because it is more robust across the dendritic tree. The pre- and postsynaptic mechanisms together can overcome the local intrinsic DS. These local dendritic mechanisms can perform independent nonlinear computations to make a decision, and there could be analogous mechanisms within cortical circuitry.
Transient Potentials in Dendritic Systems of Arbitrary Geometry
Butz, Edward G.; Cowan, Jack D.
1974-01-01
A simple graphical calculus is developed that generates analytic solutions for membrane potential transforms at any point on the dendritic tree of neurons with arbitrary dendritic geometries, in response to synaptic “current” inputs. Such solutions permit the computation of transients in neurons with arbitrary geometry and may facilitate analysis of the role of dendrites in such cells. PMID:4416699
Kim, Myung-Gyu; Boo, Chang Su; Ko, Yoon Sook; Lee, Hee Young; Cho, Won Yong; Kim, Hyoung Kyu; Jo, Sang-Kyung
2010-09-01
Recent studies provided evidence of the potential role of CD11c(+) F4/80(+) dendritic subset in mediating injury and repair. The purpose of this study was to examine the role of kidney CD11c(+) F4/80(+) dendritic subset in the recovery phase of ischaemia/reperfusion injury (IRI). Following ischaemia/reperfusion (I/R), liposome clodronate or phosphate buffered saline (PBS) was administered, and on day 7 biochemical and histologic kidney damage was assessed. Activation and depletion of CD11c(+) F4/80(+) dendritic subset were confirmed by flow cytometry. Isolation of kidney CD11c(+) cells on days 1 and 7 with in vitro culture for measuring cytokines was performed to define functional characteristics of these cells, and adoptive transfer of CD11c(+) cells was also done. Following kidney IRI, the percentage of CD11c(+) F4/80(+) kidney dendritic cell subset that co-expresses maturation marker increased. Liposome clodronate injection after I/R resulted in preferential depletion of CD11c(+) F4/80(+) kidney dendritic subset, and depletion of these cells was associated with persistent kidney injury, more apoptosis, inflammation and impaired tubular cell proliferation. CD11c(+) F4/80(+) cell depletion was also associated with higher tissue levels of pro-inflammatory cytokines and lower level of IL-10, indicating the persistence of inflammatory milieu. Isolated kidney CD11c(+) cells on day 7 showed different phenotype with increased production of IL-10 compared with those on day 1. Adoptive transfer of CD11c(+) cells partially reversed impaired tissue recovery. Our results suggest that kidney CD11c(+) F4/80(+) dendritic subset might contribute to the recovery process by dynamic phenotypic change from pro-inflammatory to anti-inflammatory with modulation of immune response.
Engel, Dominique; Seutin, Vincent
2015-11-15
The hyperpolarization-activated cation current Ih is expressed in dopamine neurons of the substantia nigra, but the subcellular distribution of the current and its role in synaptic integration remain unknown. We used cell-attached patch recordings to determine the localization profile of Ih along the somatodendritic axis of nigral dopamine neurons in slices from young rats. Ih density is higher in axon-bearing dendrites, in a membrane area close to the axon origin, than in the soma and axon-lacking dendrites. Dual current-clamp recordings revealed a similar contribution of Ih to the waveform of single excitatory postsynaptic potentials throughout the somatodendritic domain. The Ih blocker ZD 7288 increased the temporal summation in all dendrites with a comparable effect in axon- and non-axon dendrites. The strategic position of Ih in the proximity of the axon may influence importantly transitions between pacemaker and bursting activities and consequently the downstream release of dopamine. Dendrites of most neurons express voltage-gated ion channels in their membrane. In combination with passive properties, active currents confer to dendrites a high computational potential. The hyperpolarization-activated cation current Ih present in the dendrites of some pyramidal neurons affects their membrane and integration properties, synaptic plasticity and higher functions such as memory. A gradient of increasing h-channel density towards distal dendrites has been found to be responsible for the location independence of excitatory postsynaptic potential (EPSP) waveform and temporal summation in cortical and hippocampal pyramidal cells. However, reports on other cell types revealed that smoother gradients or even linear distributions of Ih can achieve homogeneous temporal summation. Although the existence of a robust, slowly activating Ih current has been repeatedly demonstrated in nigral dopamine neurons, its subcellular distribution and precise role in synaptic integration are unknown. Using cell-attached patch-clamp recordings, we find a higher Ih current density in the axon-bearing dendrite than in the soma or in dendrites without axon in nigral dopamine neurons. Ih is mainly concentrated in the dendritic membrane area surrounding the axon origin and decreases with increasing distances from this site. Single EPSPs and temporal summation are similarly affected by blockade of Ih in axon- and non-axon-bearing dendrites. The presence of Ih close to the axon is pivotal to control the integrative functions and the output signal of dopamine neurons and may consequently influence the downstream coding of movement. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.
Different tissue phagocytes sample apoptotic cells to direct distinct homeostasis programs.
Cummings, Ryan J; Barbet, Gaetan; Bongers, Gerold; Hartmann, Boris M; Gettler, Kyle; Muniz, Luciana; Furtado, Glaucia C; Cho, Judy; Lira, Sergio A; Blander, J Magarian
2016-11-24
Recognition and removal of apoptotic cells by professional phagocytes, including dendritic cells and macrophages, preserves immune self-tolerance and prevents chronic inflammation and autoimmune pathologies. The diverse array of phagocytes that reside within different tissues, combined with the necessarily prompt nature of apoptotic cell clearance, makes it difficult to study this process in situ. The full spectrum of functions executed by tissue-resident phagocytes in response to homeostatic apoptosis, therefore, remains unclear. Here we show that mouse apoptotic intestinal epithelial cells (IECs), which undergo continuous renewal to maintain optimal barrier and absorptive functions, are not merely extruded to maintain homeostatic cell numbers, but are also sampled by a single subset of dendritic cells and two macrophage subsets within a well-characterized network of phagocytes in the small intestinal lamina propria. Characterization of the transcriptome within each subset before and after in situ sampling of apoptotic IECs revealed gene expression signatures unique to each phagocyte, including macrophage-specific lipid metabolism and amino acid catabolism, and a dendritic-cell-specific program of regulatory CD4 + T-cell activation. A common 'suppression of inflammation' signature was noted, although the specific genes and pathways involved varied amongst dendritic cells and macrophages, reflecting specialized functions. Apoptotic IECs were trafficked to mesenteric lymph nodes exclusively by the dendritic cell subset and served as critical determinants for the induction of tolerogenic regulatory CD4 + T-cell differentiation. Several of the genes that were differentially expressed by phagocytes bearing apoptotic IECs overlapped with susceptibility genes for inflammatory bowel disease. Collectively, these findings provide new insights into the consequences of apoptotic cell sampling, advance our understanding of how homeostasis is maintained within the mucosa and set the stage for development of novel therapeutics to alleviate chronic inflammatory diseases such as inflammatory bowel disease.
Yau, Kah Wai; Schätzle, Philipp; Tortosa, Elena; Pagès, Stéphane; Holtmaat, Anthony; Kapitein, Lukas C; Hoogenraad, Casper C
2016-01-27
In cultured vertebrate neurons, axons have a uniform arrangement of microtubules with plus-ends distal to the cell body (plus-end-out), whereas dendrites contain mixed polarity orientations with both plus-end-out and minus-end-out oriented microtubules. Rather than non-uniform microtubules, uniparallel minus-end-out microtubules are the signature of dendrites in Drosophila and Caenorhabditis elegans neurons. To determine whether mixed microtubule organization is a conserved feature of vertebrate dendrites, we used live-cell imaging to systematically analyze microtubule plus-end orientations in primary cultures of rat hippocampal and cortical neurons, dentate granule cells in mouse organotypic slices, and layer 2/3 pyramidal neurons in the somatosensory cortex of living mice. In vitro and in vivo, all microtubules had a plus-end-out orientation in axons, whereas microtubules in dendrites had mixed orientations. When dendritic microtubules were severed by laser-based microsurgery, we detected equal numbers of plus- and minus-end-out microtubule orientations throughout the dendritic processes. In dendrites, the minus-end-out microtubules were generally more stable and comparable with plus-end-out microtubules in axons. Interestingly, at early stages of neuronal development in nonpolarized cells, newly formed neurites already contained microtubules of opposite polarity, suggesting that the establishment of uniform plus-end-out microtubules occurs during axon formation. We propose a model in which the selective formation of uniform plus-end-out microtubules in the axon is a critical process underlying neuronal polarization. Live-cell imaging was used to systematically analyze microtubule organization in primary cultures of rat hippocampal neurons, dentate granule cells in mouse organotypic slices, and layer 2/3 pyramidal neuron in somatosensory cortex of living mice. In vitro and in vivo, all microtubules have a plus-end-out orientation in axons, whereas microtubules in dendrites have mixed orientations. Interestingly, newly formed neurites of nonpolarized neurons already contain mixed microtubules, and the specific organization of uniform plus-end-out microtubules only occurs during axon formation. Based on these findings, the authors propose a model in which the selective formation of uniform plus-end-out microtubules in the axon is a critical process underlying neuronal polarization. Copyright © 2016 the authors 0270-6474/16/361072-15$15.00/0.
Modeling somatic and dendritic spike mediated plasticity at the single neuron and network level.
Bono, Jacopo; Clopath, Claudia
2017-09-26
Synaptic plasticity is thought to be the principal neuronal mechanism underlying learning. Models of plastic networks typically combine point neurons with spike-timing-dependent plasticity (STDP) as the learning rule. However, a point neuron does not capture the local non-linear processing of synaptic inputs allowed for by dendrites. Furthermore, experimental evidence suggests that STDP is not the only learning rule available to neurons. By implementing biophysically realistic neuron models, we study how dendrites enable multiple synaptic plasticity mechanisms to coexist in a single cell. In these models, we compare the conditions for STDP and for synaptic strengthening by local dendritic spikes. We also explore how the connectivity between two cells is affected by these plasticity rules and by different synaptic distributions. Finally, we show that how memory retention during associative learning can be prolonged in networks of neurons by including dendrites.Synaptic plasticity is the neuronal mechanism underlying learning. Here the authors construct biophysical models of pyramidal neurons that reproduce observed plasticity gradients along the dendrite and show that dendritic spike dependent LTP which is predominant in distal sections can prolong memory retention.
Laouar, Yasmina; Sutterwala, Fayyaz S; Gorelik, Leonid; Flavell, Richard A
2005-06-01
Interferon-gamma and interleukin 12 produced by the innate arm of the immune system are important regulators of T helper type 1 (T(H)1) cell development, but signals that negatively regulate their expression remain controversial. Here we show that transforming growth factor-beta (TGF-beta) controlled T(H)1 differentiation through the regulation of interferon-gamma produced by natural killer (NK) cells. Blockade of TGF-beta signaling in NK cells caused the accumulation of a large pool of NK cells secreting copious interferon-gamma, responsible for T(H)1 differentiation and protection from leishmania infection. In contrast, blockade of TGF-beta signaling in dendritic cells did not affect dendritic cell homeostasis or interleukin 12 production, thus indicating a previously undescribed demarcation of the function of TGF-beta in NK cells versus dendritic cells.
Lei, Zhengdeng; Tan, Iain Beehuat; Das, Kakoli; Deng, Niantao; Zouridis, Hermioni; Pattison, Sharon; Chua, Clarinda; Feng, Zhu; Guan, Yeoh Khay; Ooi, Chia Huey; Ivanova, Tatiana; Zhang, Shenli; Lee, Minghui; Wu, Jeanie; Ngo, Anna; Manesh, Sravanthy; Tan, Elisabeth; Teh, Bin Tean; So, Jimmy Bok Yan; Goh, Liang Kee; Boussioutas, Alex; Lim, Tony Kiat Hon; Flotow, Horst; Tan, Patrick; Rozen, Steven G
2013-09-01
Almost all gastric cancers are adenocarcinomas, which have considerable heterogeneity among patients. We sought to identify subtypes of gastric adenocarcinomas with particular biological properties and responses to chemotherapy and targeted agents. We compared gene expression patterns among 248 gastric tumors; using a robust method of unsupervised clustering, consensus hierarchical clustering with iterative feature selection, we identified 3 major subtypes. We developed a classifier for these subtypes and validated it in 70 tumors from a different population. We identified distinct genomic and epigenomic properties of the subtypes. We determined drug sensitivities of the subtypes in primary tumors using clinical survival data, and in cell lines through high-throughput drug screening. We identified 3 subtypes of gastric adenocarcinoma: proliferative, metabolic, and mesenchymal. Tumors of the proliferative subtype had high levels of genomic instability, TP53 mutations, and DNA hypomethylation. Cancer cells of the metabolic subtype were more sensitive to 5-fluorouracil than the other subtypes. Furthermore, in 2 independent groups of patients, those with tumors of the metabolic subtype appeared to have greater benefits with 5-fluorouracil treatment. Tumors of the mesenchymal subtype contain cells with features of cancer stem cells, and cell lines of this subtype are particularly sensitive to phosphatidylinositol 3-kinase-AKT-mTOR inhibitors in vitro. Based on gene expression patterns, we classified gastric cancers into 3 subtypes, and validated these in an independent set of tumors. The subgroups have differences in molecular and genetic features and response to therapy; this information might be used to select specific treatment approaches for patients with gastric cancer. Copyright © 2013 AGA Institute. Published by Elsevier Inc. All rights reserved.
Roles of ON Cone Bipolar Cell Subtypes in Temporal Coding in the Mouse Retina
Fyk-Kolodziej, Bozena; Cohn, Jesse
2014-01-01
In the visual system, diverse image processing starts with bipolar cells, which are the second-order neurons of the retina. Thirteen subtypes of bipolar cells have been identified, which are thought to encode different features of image signaling and to initiate distinct signal-processing streams. Although morphologically identified, the functional roles of each bipolar cell subtype in visual signal encoding are not fully understood. Here, we investigated how ON cone bipolar cells of the mouse retina encode diverse temporal image signaling. We recorded bipolar cell voltage changes in response to two different input functions: sinusoidal light and step light stimuli. Temporal tuning in ON cone bipolar cells was diverse and occurred in a subtype-dependent manner. Subtypes 5s and 8 exhibited low-pass filtering property in response to a sinusoidal light stimulus, and responded with sustained fashion to step-light stimulation. Conversely, subtypes 5f, 6, 7, and XBC exhibited bandpass filtering property in response to sinusoidal light stimuli, and responded transiently to step-light stimuli. In particular, subtypes 7 and XBC were high-temporal tuning cells. We recorded responses in different ways to further examine the underlying mechanisms of temporal tuning. Current injection evoked low-pass filtering, whereas light responses in voltage-clamp mode produced bandpass filtering in all ON bipolar cells. These findings suggest that cone photoreceptor inputs shape bandpass filtering in bipolar cells, whereas intrinsic properties of bipolar cells shape low-pass filtering. Together, our results demonstrate that ON bipolar cells encode diverse temporal image signaling in a subtype-dependent manner to initiate temporal visual information-processing pathways. PMID:24966376
USDA-ARS?s Scientific Manuscript database
Dendritic cells (DC) are professional antigen-presenting cells of the immune system that function to initiate primary immune responses. Progenitors of DCs are derived from haematopoietic stem cells in the bone marrow (BM) that migrate in non-lymphoid tissues to develop into immature DCs. Here, they ...
Rudolph, Stephanie; Hull, Court; Regehr, Wade G
2015-11-25
Interneurons are essential to controlling excitability, timing, and synaptic integration in neuronal networks. Golgi cells (GoCs) serve these roles at the input layer of the cerebellar cortex by releasing GABA to inhibit granule cells (grcs). GoCs are excited by mossy fibers (MFs) and grcs and provide feedforward and feedback inhibition to grcs. Here we investigate two important aspects of GoC physiology: the properties of GoC dendrites and the role of calcium signaling in regulating GoC spontaneous activity. Although GoC dendrites are extensive, previous studies concluded they are devoid of voltage-gated ion channels. Hence, the current view holds that somatic voltage signals decay passively within GoC dendrites, and grc synapses onto distal dendrites are not amplified and are therefore ineffective at firing GoCs because of strong passive attenuation. Using whole-cell recording and calcium imaging in rat slices, we find that dendritic voltage-gated sodium channels allow somatic action potentials to activate voltage-gated calcium channels (VGCCs) along the entire dendritic length, with R-type and T-type VGCCs preferentially located distally. We show that R- and T-type VGCCs located in the dendrites can boost distal synaptic inputs and promote burst firing. Active dendrites are thus critical to the regulation of GoC activity, and consequently, to the processing of input to the cerebellar cortex. In contrast, we find that N-type channels are preferentially located near the soma, and control the frequency and pattern of spontaneous firing through their close association with calcium-activated potassium (KCa) channels. Thus, VGCC types are differentially distributed and serve specialized functions within GoCs. Interneurons are essential to neural processing because they modulate excitability, timing, and synaptic integration within circuits. At the input layer of the cerebellar cortex, a single type of interneuron, the Golgi cell (GoC), carries these functions. The extent of inhibition depends on both spontaneous activity of GoCs and the excitatory synaptic input they receive. In this study, we find that different types of calcium channels are differentially distributed, with dendritic calcium channels being activated by somatic activity, boosting synaptic inputs and enabling bursting, and somatic calcium cannels promoting regular firing. We therefore challenge the current view that GoC dendrites are passive and identify the mechanisms that contribute to GoCs regulating the flow of sensory information in the cerebellar cortex. Copyright © 2015 the authors 0270-6474/15/3515492-13$15.00/0.
Breast cancer subtypes: two decades of journey from cell culture to patients.
Zhao, Xiangshan; Gurumurthy, Channabasavaiah Basavaraju; Malhotra, Gautam; Mirza, Sameer; Mohibi, Shakur; Bele, Aditya; Quinn, Meghan G; Band, Hamid; Band, Vimla
2011-01-01
Recent molecular profiling has identified six major subtypes of breast cancers that exhibit different survival outcomes for patients. To address the origin of different subtypes of breast cancers, we have now identified, isolated, and immortalized (using hTERT) mammary stem/progenitor cells which maintain their stem/progenitor properties even after immortalization. Our decade long research has shown that these stem/progenitor cells are highly susceptible to oncogenesis. Given the emerging evidence that stem/progenitor cells are precursors of cancers and that distinct subtypes of breast cancer have different survival outcome, these cellular models provide novel tools to understand the oncogenic process leading to various subtypes of breast cancers and for future development of novel therapeutic strategies to treat different subtypes of breast cancers.
Neuropil threads occur in dendrites of tangle-bearing nerve cells.
Braak, H; Braak, E
1988-01-01
Transparent Golgi preparations counterstained for Alzheimer's neurofibrillary changes rendered possible the demonstration of neuropil threads in defined cellular processes. Only dendrites of tangle-bearing cortical nerve cells were found to contain neuropil threads. Processes of glial cells as well as axons present in the material were devoid of neuropil threads.
Dendritic cells control fibroblastic reticular network tension and lymph node expansion.
Acton, Sophie E; Farrugia, Aaron J; Astarita, Jillian L; Mourão-Sá, Diego; Jenkins, Robert P; Nye, Emma; Hooper, Steven; van Blijswijk, Janneke; Rogers, Neil C; Snelgrove, Kathryn J; Rosewell, Ian; Moita, Luis F; Stamp, Gordon; Turley, Shannon J; Sahai, Erik; Reis e Sousa, Caetano
2014-10-23
After immunogenic challenge, infiltrating and dividing lymphocytes markedly increase lymph node cellularity, leading to organ expansion. Here we report that the physical elasticity of lymph nodes is maintained in part by podoplanin (PDPN) signalling in stromal fibroblastic reticular cells (FRCs) and its modulation by CLEC-2 expressed on dendritic cells. We show in mouse cells that PDPN induces actomyosin contractility in FRCs via activation of RhoA/C and downstream Rho-associated protein kinase (ROCK). Engagement by CLEC-2 causes PDPN clustering and rapidly uncouples PDPN from RhoA/C activation, relaxing the actomyosin cytoskeleton and permitting FRC stretching. Notably, administration of CLEC-2 protein to immunized mice augments lymph node expansion. In contrast, lymph node expansion is significantly constrained in mice selectively lacking CLEC-2 expression in dendritic cells. Thus, the same dendritic cells that initiate immunity by presenting antigens to T lymphocytes also initiate remodelling of lymph nodes by delivering CLEC-2 to FRCs. CLEC-2 modulation of PDPN signalling permits FRC network stretching and allows for the rapid lymph node expansion--driven by lymphocyte influx and proliferation--that is the critical hallmark of adaptive immunity.
Ho, Giang Thanh Thi; Wangensteen, Helle; Barsett, Hilde
2017-01-01
Modulation of complement activity and inhibition of nitric oxide (NO) production by macrophages and dendritic cells may have therapeutic value in inflammatory diseases. Elderberry and elderflower extracts, constituents, and metabolites were investigated for their effects on the complement system, and on NO production in lipopolysaccharide (LPS)-activated RAW 264.7 macrophages and murine dendritic D2SC/I cells. The EtOH crude extracts from elderberry and elderflower and the isolated anthocyanins and procyanidins possessed strong complement fixating activity and strong inhibitory activity on NO production in RAW cells and dendritic cells. Phenolic compounds in the range of 0.1–100 µM showed a dose-dependent inhibition of NO production, with quercetin, rutin, and kaempferol as the most potent ones. Among the metabolites, caffeic acid and 3,4-dihydroxyphenylacetic acid showed the strongest inhibitory effects on NO production in both cell lines, without having cytotoxic effect. Only 4-methylcatechol was cytotoxic at the highest tested concentration (100 µM). Elderberry and elderflower constituents may possess inflammatory modulating activity, which increases their nutritional value. PMID:28282861
Ho, Giang Thanh Thi; Wangensteen, Helle; Barsett, Hilde
2017-03-08
Modulation of complement activity and inhibition of nitric oxide (NO) production by macrophages and dendritic cells may have therapeutic value in inflammatory diseases. Elderberry and elderflower extracts, constituents, and metabolites were investigated for their effects on the complement system, and on NO production in lipopolysaccharide (LPS)-activated RAW 264.7 macrophages and murine dendritic D2SC/I cells. The EtOH crude extracts from elderberry and elderflower and the isolated anthocyanins and procyanidins possessed strong complement fixating activity and strong inhibitory activity on NO production in RAW cells and dendritic cells. Phenolic compounds in the range of 0.1-100 µM showed a dose-dependent inhibition of NO production, with quercetin, rutin, and kaempferol as the most potent ones. Among the metabolites, caffeic acid and 3,4-dihydroxyphenylacetic acid showed the strongest inhibitory effects on NO production in both cell lines, without having cytotoxic effect. Only 4-methylcatechol was cytotoxic at the highest tested concentration (100 µM). Elderberry and elderflower constituents may possess inflammatory modulating activity, which increases their nutritional value.
Cornu Ammonis Regions–Antecedents of Cortical Layers?
Mercer, Audrey; Thomson, Alex M.
2017-01-01
Studying neocortex and hippocampus in parallel, we are struck by the similarities. All three to four layered allocortices and the six layered mammalian neocortex arise in the pallium. All receive and integrate multiple cortical and subcortical inputs, provide multiple outputs and include an array of neuronal classes. During development, each cell positions itself to sample appropriate local and distant inputs and to innervate appropriate targets. Simpler cortices had already solved the need to transform multiple coincident inputs into serviceable outputs before neocortex appeared in mammals. Why then do phylogenetically more recent cortices need multiple pyramidal cell layers? A simple answer is that more neurones can compute more complex functions. The dentate gyrus and hippocampal CA regions—which might be seen as hippocampal antecedents of neocortical layers—lie side by side, albeit around a tight bend. Were the millions of cells of rat neocortex arranged in like fashion, the surface area of the CA pyramidal cell layers would be some 40 times larger. Even if evolution had managed to fold this immense sheet into the space available, the distances between neurones that needed to be synaptically connected would be huge and to maintain the speed of information transfer, massive, myelinated fiber tracts would be needed. How much more practical to stack the “cells that fire and wire together” into narrow columns, while retaining the mechanisms underlying the extraordinary precision with which circuits form. This demonstrably efficient arrangement presents us with challenges, however, not the least being to categorize the baffling array of neuronal subtypes in each of five “pyramidal layers.” If we imagine the puzzle posed by this bewildering jumble of apical dendrites, basal dendrites and axons, from many different pyramidal and interneuronal classes, that is encountered by a late-arriving interneurone insinuating itself into a functional circuit, we can perhaps begin to understand why definitive classification, covering every aspect of each neurone's structure and function, is such a challenge. Here, we summarize and compare the development of these two cortices, the properties of their neurones, the circuits they form and the ordered, unidirectional flow of information from one hippocampal region, or one neocortical layer, to another. PMID:29018334
Connelly, William M; Crunelli, Vincenzo; Errington, Adam C
2017-05-24
Backpropagating action potentials (bAPs) are indispensable in dendritic signaling. Conflicting Ca 2+ -imaging data and an absence of dendritic recording data means that the extent of backpropagation in thalamocortical (TC) and thalamic reticular nucleus (TRN) neurons remains unknown. Because TRN neurons signal electrically through dendrodendritic gap junctions and possibly via chemical dendritic GABAergic synapses, as well as classical axonal GABA release, this lack of knowledge is problematic. To address this issue, we made two-photon targeted patch-clamp recordings from rat TC and TRN neuron dendrites to measure bAPs directly. These recordings reveal that "tonic"' and low-threshold-spike (LTS) "burst" APs in both cell types are always recorded first at the soma before backpropagating into the dendrites while undergoing substantial distance-dependent dendritic amplitude attenuation. In TC neurons, bAP attenuation strength varies according to firing mode. During LTS bursts, somatic AP half-width increases progressively with increasing spike number, allowing late-burst spikes to propagate more efficiently into the dendritic tree compared with spikes occurring at burst onset. Tonic spikes have similar somatic half-widths to late burst spikes and undergo similar dendritic attenuation. In contrast, in TRN neurons, AP properties are unchanged between LTS bursts and tonic firing and, as a result, distance-dependent dendritic attenuation remains consistent across different firing modes. Therefore, unlike LTS-associated global electrical and calcium signals, the spatial influence of bAP signaling in TC and TRN neurons is more restricted, with potentially important behavioral-state-dependent consequences for synaptic integration and plasticity in thalamic neurons. SIGNIFICANCE STATEMENT In most neurons, action potentials (APs) initiate in the axosomatic region and propagate into the dendritic tree to provide a retrograde signal that conveys information about the level of cellular output to the locations that receive most input: the dendrites. In thalamocortical and thalamic reticular nucleus neurons, the site of AP generation and the true extent of backpropagation remain unknown. Using patch-clamp recordings, this study measures dendritic propagation of APs directly in these neurons. In either cell type, high-frequency low-threshold spike burst or lower-frequency tonic APs undergo substantial voltage attenuation as they spread into the dendritic tree. Therefore, backpropagating spikes in these cells can only influence signaling in the proximal part of the dendritic tree. Copyright © 2017 Connelly et al.
Nyíri, G; Stephenson, F A; Freund, T F; Somogyi, P
2003-01-01
Pyramidal cells receive input from several types of GABA-releasing interneurons and innervate them reciprocally. Glutamatergic activation of interneurons involves both alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) type glutamate receptors expressed in type I synapses, mostly on their dendritic shafts. On average, the synaptic AMPA receptor content is several times higher on interneurons than in the spines of pyramidal cells. To compare the NMDA receptor content of synapses, we used a quantitative postembedding immunogold technique on serial electron microscopic sections, and analysed the synapses on interneuron dendrites and pyramidal cell spines in the CA1 area. Because all NMDA receptors contain the obligatory NR1 subunit, receptor localisation was carried out using antibodies recognising all splice variants of the NR1 subunit. Four populations of synapse were examined: i). on spines of pyramidal cells in stratum (str.) radiatum and str. oriens; ii). on parvalbumin-positive interneuronal dendritic shafts in str. radiatum; iii). on randomly found dendritic shafts in str. oriens and iv). on somatostatin-positive interneuronal dendritic shafts and somata in str. oriens. On average, the size of the synapses on spines was about half of those on interneurons. The four populations of synapse significantly differed in labelling for the NR1 subunit. The median density of NR1 subunit labelling was highest on pyramidal cell spines. It was lowest in the synapses on parvalbumin-positive dendrites in str. radiatum, where more than half of these synapses were immunonegative. In str. oriens, synapses on interneurons had a high variability of receptor content; some dendrites were similar to those in str. radiatum, including the proximal synapses of somatostatin-positive cells, whereas others had immunoreactivity for the NR1 subunit similar to or higher than synapses on pyramidal cell spines. These results show that synaptic NMDA receptor density differs between pyramidal cells and interneurons. Some interneurons may have a high NMDA receptor content, whereas others, like some parvalbumin-expressing cells, a particularly low synaptic NMDA receptor content. Consequently, fast glutamatergic activation of interneurons is expected to show cell type-specific time course and state-dependent dynamics.
Campeau, Jody L; Wu, Gengshu; Bell, John R; Rasmussen, Jay; Sim, Valerie L
2013-01-01
Prion diseases are infectious neurodegenerative diseases associated with the accumulation of protease-resistant prion protein, neuronal loss, spongiform change and astrogliosis. In the mouse model, the loss of dendritic spines is one of the earliest pathological changes observed in vivo, occurring 4-5 weeks after the first detection of protease-resistant prion protein in the brain. While there are cell culture models of prion infection, most do not recapitulate the neuropathology seen in vivo. Only the recently developed prion organotypic slice culture assay has been reported to undergo neuronal loss and the development of some aspects of prion pathology, namely small vacuolar degeneration and tubulovesicular bodies. Given the rapid replication of prions in this system, with protease-resistant prion protein detectable by 21 days, we investigated whether the dendritic spine loss and altered dendritic morphology seen in prion disease might also develop within the lifetime of this culture system. Indeed, six weeks after first detection of protease-resistant prion protein in tga20 mouse cerebellar slice cultures infected with RML prion strain, we found a statistically significant loss of Purkinje cell dendritic spines and altered dendritic morphology in infected cultures, analogous to that seen in vivo. In addition, we found a transient but statistically significant increase in Purkinje cell dendritic spine density during infection, at the time when protease-resistant prion protein was first detectable in culture. Our findings support the use of this slice culture system as one which recapitulates prion disease pathology and one which may facilitate study of the earliest stages of prion disease pathogenesis.
Baude, A; Nusser, Z; Molnár, E; McIlhinney, R A; Somogyi, P
1995-12-01
The cellular and subcellular localization of the GluRA, GluRB/C and GluRD subunits of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) type glutamate receptor was determined in the rat hippocampus using polyclonal antipeptide antibodies in immunoperoxidase and immunogold procedures. For the localization of the GluRD subunit a new polyclonal antiserum was developed using the C-terminal sequence of the protein (residues 869-881), conjugated to carrier protein and absorbed to colloidal gold for immunization. The purified antibodies immunoprecipitated about 25% of 3[H]AMPA binding activity from the hippocampus, cerebellum or whole brain, but very little from neocortex. These antibodies did not precipitate a significant amount of 3[H]kainate binding activity. The antibodies also recognize the GluRD subunit, but not the other AMPA receptor subunits, when expressed in transfected COS-7 cells and only when permeabilized with detergent, indicating an intracellular epitope. All subunits were enriched in the neuropil of the dendritic layers of the hippocampus and in the molecular layer of the dentate gyrus. The cellular distribution of the GluRD subunit was studied more extensively. The strata radiatum, oriens and the dentate molecular layer were more strongly immunoreactive than the stratum lacunosum moleculare, the stratum lucidum and the hilus. However, in the stratum lucidum of the CA3 area and in the hilus the weakly reacting dendrites were surrounded by immunopositive rosettes, shown in subsequent electron microscopic studies to correspond to complex dendritic spines. In the stratum radiatum, the weakly reacting apical dendrites contrasted with the surrounding intensely stained neuropil. The cell bodies of pyramidal and granule cells were moderately reactive. Some non-principal cells and their dendrites in the pyramidal cell layer and in the alveus also reacted very strongly for the GluRD subunit. At the subcellular level, silver intensified immunogold particles for the GluRA, GluRB/C and GluRD subunits were present at type 1 synaptic membrane specializations on dendritic spines of pyramidal cells throughout all layers of the CA1 and CA3 areas. The most densely labelled synapses tended to be on the largest spines and many smaller spines remained unlabelled. Immunoparticle density at type 1 synapses on dendritic shafts of some non-principal cells was consistently higher than at labelled synapses of dendritic spines of pyramidal cells. Synapses established between dendritic spines and mossy fibre terminals, were immunoreactive for all studied subunits in stratum lucidum of the CA3 area. The postembedding immunogold method revealed that the AMPA type receptors are concentrated within the main body of the anatomically defined type 1 (asymmetrical) synaptic junction. Often only a part of the membrane specialization showed clustered immunoparticles. There was a sharp decrease in immunoreactive receptor density at the edge of the synaptic specialization. Immunolabelling was consistently demonstrated at extrasynaptic sites on dendrites, dendritic spines and somata. The results demonstrate that the GluRA, B/C and D subunits of the AMPA type glutamate receptor are present in many of the glutamatergic synapses formed by the entorhinal, CA3 pyramidal and mossy fibre terminals. Some interneurons have a higher density of AMPA type receptors in their asymmetrical afferent synapses than pyramidal cells. This may contribute to a lower activation threshold of interneurons as compared to principal cells by the same afferents in the hippocampal formation.
Yamamichi, Nobutake; Oka, Masashi; Inada, Ken-ichi; Konno-Shimizu, Maki; Kageyama-Yahara, Natsuko; Tamai, Hideyuki; Kato, Jun; Fujishiro, Mitsuhiro; Kodashima, Shinya; Niimi, Keiko; Ono, Satoshi; Tsutsumi, Yutaka; Ichinose, Masao; Koike, Kazuhiko
2012-07-20
Rebamipide is usually used for mucosal protection, healing of gastric ulcers, treatment of gastritis, etc., but its effects on gastric malignancy have not been elucidated. Using Lewis and Buffalo rat strains treated with peroral administration of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), we evaluated the effect of rebamipide on the induction of tumor-suppressive dendritic cells, which are known to be heterogeneous antigen-presenting cells of bone marrow origin and are critical for the initiation of primary T-cell responses. Using CD68 as a marker for dendritic cells, the stomach pyloric mucosae of Lewis and Buffalo rats were immunohistochemically analyzed in the presence or absence of rebamipide and MNNG. After a 14-day treatment of rebamipide alone, no significant change in number of CD68-expressing cells was detected in either rat strain. However, after concurrent exposure to MNNG for 14 days, treatment with rebamipide slightly increased CD68-positive cells in the Lewis strain, and significantly increased them in the Buffalo strain. Analysis of two chemotactic factors of dendritic cells, IL-1β and TNF-α, in the gastric cancer cells showed that expression of IL-1β, but not TNF-α, was induced by rebamipide in a dose-dependent manner. A luciferase promoter assay using gastric SH-10-TC cells demonstrated that an element mediating rebamipide action exists in the IL-1β gene promoter region. In conclusion, rebamipide has potential tumor-suppressive effects on gastric tumorigenesis via the recruitment of dendritic cells, based on the upregulation of the IL-1β gene in gastric epithelial cells. Copyright © 2012 Elsevier Inc. All rights reserved.
Passive dendrites enable single neurons to compute linearly non-separable functions.
Cazé, Romain Daniel; Humphries, Mark; Gutkin, Boris
2013-01-01
Local supra-linear summation of excitatory inputs occurring in pyramidal cell dendrites, the so-called dendritic spikes, results in independent spiking dendritic sub-units, which turn pyramidal neurons into two-layer neural networks capable of computing linearly non-separable functions, such as the exclusive OR. Other neuron classes, such as interneurons, may possess only a few independent dendritic sub-units, or only passive dendrites where input summation is purely sub-linear, and where dendritic sub-units are only saturating. To determine if such neurons can also compute linearly non-separable functions, we enumerate, for a given parameter range, the Boolean functions implementable by a binary neuron model with a linear sub-unit and either a single spiking or a saturating dendritic sub-unit. We then analytically generalize these numerical results to an arbitrary number of non-linear sub-units. First, we show that a single non-linear dendritic sub-unit, in addition to the somatic non-linearity, is sufficient to compute linearly non-separable functions. Second, we analytically prove that, with a sufficient number of saturating dendritic sub-units, a neuron can compute all functions computable with purely excitatory inputs. Third, we show that these linearly non-separable functions can be implemented with at least two strategies: one where a dendritic sub-unit is sufficient to trigger a somatic spike; another where somatic spiking requires the cooperation of multiple dendritic sub-units. We formally prove that implementing the latter architecture is possible with both types of dendritic sub-units whereas the former is only possible with spiking dendrites. Finally, we show how linearly non-separable functions can be computed by a generic two-compartment biophysical model and a realistic neuron model of the cerebellar stellate cell interneuron. Taken together our results demonstrate that passive dendrites are sufficient to enable neurons to compute linearly non-separable functions.
Passive Dendrites Enable Single Neurons to Compute Linearly Non-separable Functions
Cazé, Romain Daniel; Humphries, Mark; Gutkin, Boris
2013-01-01
Local supra-linear summation of excitatory inputs occurring in pyramidal cell dendrites, the so-called dendritic spikes, results in independent spiking dendritic sub-units, which turn pyramidal neurons into two-layer neural networks capable of computing linearly non-separable functions, such as the exclusive OR. Other neuron classes, such as interneurons, may possess only a few independent dendritic sub-units, or only passive dendrites where input summation is purely sub-linear, and where dendritic sub-units are only saturating. To determine if such neurons can also compute linearly non-separable functions, we enumerate, for a given parameter range, the Boolean functions implementable by a binary neuron model with a linear sub-unit and either a single spiking or a saturating dendritic sub-unit. We then analytically generalize these numerical results to an arbitrary number of non-linear sub-units. First, we show that a single non-linear dendritic sub-unit, in addition to the somatic non-linearity, is sufficient to compute linearly non-separable functions. Second, we analytically prove that, with a sufficient number of saturating dendritic sub-units, a neuron can compute all functions computable with purely excitatory inputs. Third, we show that these linearly non-separable functions can be implemented with at least two strategies: one where a dendritic sub-unit is sufficient to trigger a somatic spike; another where somatic spiking requires the cooperation of multiple dendritic sub-units. We formally prove that implementing the latter architecture is possible with both types of dendritic sub-units whereas the former is only possible with spiking dendrites. Finally, we show how linearly non-separable functions can be computed by a generic two-compartment biophysical model and a realistic neuron model of the cerebellar stellate cell interneuron. Taken together our results demonstrate that passive dendrites are sufficient to enable neurons to compute linearly non-separable functions. PMID:23468600
Dendritic Immunotherapy Improvement for an Optimal Control Murine Model
Chimal-Eguía, J. C.; Castillo-Montiel, E.
2017-01-01
Therapeutic protocols in immunotherapy are usually proposed following the intuition and experience of the therapist. In order to deduce such protocols mathematical modeling, optimal control and simulations are used instead of the therapist's experience. Clinical efficacy of dendritic cell (DC) vaccines to cancer treatment is still unclear, since dendritic cells face several obstacles in the host environment, such as immunosuppression and poor transference to the lymph nodes reducing the vaccine effect. In view of that, we have created a mathematical murine model to measure the effects of dendritic cell injections admitting such obstacles. In addition, the model considers a therapy given by bolus injections of small duration as opposed to a continual dose. Doses timing defines the therapeutic protocols, which in turn are improved to minimize the tumor mass by an optimal control algorithm. We intend to supplement therapist's experience and intuition in the protocol's implementation. Experimental results made on mice infected with melanoma with and without therapy agree with the model. It is shown that the dendritic cells' percentage that manages to reach the lymph nodes has a crucial impact on the therapy outcome. This suggests that efforts in finding better methods to deliver DC vaccines should be pursued. PMID:28912828
Ona-Jodar, Tiffany; Gerkau, Niklas J; Sara Aghvami, S; Rose, Christine R; Egger, Veronica
2017-01-01
Dendrodendritic synaptic interactions are a hallmark of neuronal processing in the vertebrate olfactory bulb. Many classes of olfactory bulb neurons including the principal mitral cells (MCs) and the axonless granule cells (GCs) dispose of highly efficient propagation of action potentials (AP) within their dendrites, from where they can release transmitter onto each other. So far, backpropagation in GC dendrites has been investigated indirectly via Ca 2+ imaging. Here, we used two-photon Na + imaging to directly report opening of voltage-gated sodium channels due to AP propagation in both cell types. To this end, neurons in acute slices from juvenile rat bulbs were filled with 1 mM SBFI via whole-cell patch-clamp. Calibration of SBFI signals revealed that a change in fluorescence Δ F / F by 10% corresponded to a Δ[Na + ] i of ∼22 mM. We then imaged proximal axon segments of MCs during somatically evoked APs (sAP). While single sAPs were detectable in ∼50% of axons, trains of 20 sAPs at 50 Hz always resulted in substantial Δ F / F of ∼15% (∼33 mM Δ[Na + ] i ). Δ F / F was significantly larger for 80 Hz vs. 50 Hz trains, and decayed with half-durations τ 1/2 ∼0.6 s for both frequencies. In MC lateral dendrites, AP trains yielded small Δ F / F of ∼3% (∼7 mM Δ[Na + ] i ). In GC apical dendrites and adjacent spines, single sAPs were not detectable. Trains resulted in an average dendritic Δ F / F of 7% (16 mM Δ[Na + ] i ) with τ 1/2 ∼1 s, similar for 50 and 80 Hz. Na + transients were indistinguishable between large GC spines and their adjacent dendrites. Cell-wise analysis revealed two classes of GCs with the first showing a decrease in Δ F / F along the dendrite with distance from the soma and the second an increase. These classes clustered with morphological parameters. Simulations of Δ[Na + ] i replicated these behaviors via negative and positive gradients in Na + current density, assuming faithful AP backpropagation. Such specializations of dendritic excitability might confer specific temporal processing capabilities to bulbar principal cell-GC subnetworks. In conclusion, we show that Na + imaging provides a valuable tool for characterizing AP invasion of MC axons and GC dendrites and spines.
Ona-Jodar, Tiffany; Gerkau, Niklas J.; Sara Aghvami, S.; Rose, Christine R.; Egger, Veronica
2017-01-01
Dendrodendritic synaptic interactions are a hallmark of neuronal processing in the vertebrate olfactory bulb. Many classes of olfactory bulb neurons including the principal mitral cells (MCs) and the axonless granule cells (GCs) dispose of highly efficient propagation of action potentials (AP) within their dendrites, from where they can release transmitter onto each other. So far, backpropagation in GC dendrites has been investigated indirectly via Ca2+ imaging. Here, we used two-photon Na+ imaging to directly report opening of voltage-gated sodium channels due to AP propagation in both cell types. To this end, neurons in acute slices from juvenile rat bulbs were filled with 1 mM SBFI via whole-cell patch-clamp. Calibration of SBFI signals revealed that a change in fluorescence ΔF/F by 10% corresponded to a Δ[Na+]i of ∼22 mM. We then imaged proximal axon segments of MCs during somatically evoked APs (sAP). While single sAPs were detectable in ∼50% of axons, trains of 20 sAPs at 50 Hz always resulted in substantial ΔF/F of ∼15% (∼33 mM Δ[Na+]i). ΔF/F was significantly larger for 80 Hz vs. 50 Hz trains, and decayed with half-durations τ1/2 ∼0.6 s for both frequencies. In MC lateral dendrites, AP trains yielded small ΔF/F of ∼3% (∼7 mM Δ[Na+]i). In GC apical dendrites and adjacent spines, single sAPs were not detectable. Trains resulted in an average dendritic ΔF/F of 7% (16 mM Δ[Na+]i) with τ1/2 ∼1 s, similar for 50 and 80 Hz. Na+ transients were indistinguishable between large GC spines and their adjacent dendrites. Cell-wise analysis revealed two classes of GCs with the first showing a decrease in ΔF/F along the dendrite with distance from the soma and the second an increase. These classes clustered with morphological parameters. Simulations of Δ[Na+]i replicated these behaviors via negative and positive gradients in Na+ current density, assuming faithful AP backpropagation. Such specializations of dendritic excitability might confer specific temporal processing capabilities to bulbar principal cell-GC subnetworks. In conclusion, we show that Na+ imaging provides a valuable tool for characterizing AP invasion of MC axons and GC dendrites and spines. PMID:28293175
Ivy and neurogliaform interneurons are a major target of μ opioid receptor modulation
Krook-Magnuson, Esther; Luu, Lillian; Lee, Sang-Hun; Varga, Csaba; Soltesz, Ivan
2011-01-01
Mu opioid receptors (μORs) are selectively expressed on interneurons in area CA1 of the hippocampus. Fast-spiking, parvalbumin expressing, basket cells express μORs, but circumstantial evidence suggests that another major, unidentified, GABAergic cell class must also be modulated by μORs. Here we report that the abundant, dendritically targeting, neurogliaform family of cells (Ivy and neurogliaform cells) is a previously unrecognized target of direct modulation by μORs. Ivy and neurogliaform cells are not only numerous, but also have unique properties, including promiscuous gap junctions formed with various interneuronal subtypes, volume transmission, and the ability to produce a postsynaptic GABAB response after a single presynaptic spike. Using a mouse line expressing green fluorescent protein under the neuropeptide Y promoter, we find that across all layers of CA1, activation of μORs hyperpolarizes Ivy and neurogliaform cells. Further, paired recordings between synaptically coupled Ivy and pyramidal cells show that Ivy cell terminals are dramatically inhibited by μOR-activation. Effects in Ivy and neurogliaform cells are seen at similar concentrations of agonist as those producing inhibition in fast-spiking PV basket cells. We also report that Ivy cells display the recently described phenomenon of persistent firing, a state of continued firing in the absence of continued input, and that induction of persistent firing is inhibited by μOR-activation. Together these findings identify a major, previously unrecognized, target of μOR-modulation. Given the prominence of this cell type in and beyond CA1, as well as its unique role in microcircuitry, opioid modulation of neurogliaform cells has wide implications. PMID:22016519
Ivy and neurogliaform interneurons are a major target of μ-opioid receptor modulation.
Krook-Magnuson, Esther; Luu, Lillian; Lee, Sang-Hun; Varga, Csaba; Soltesz, Ivan
2011-10-19
μ-Opioid receptors (μORs) are selectively expressed on interneurons in area CA1 of the hippocampus. Fast-spiking, parvalbumin-expressing, basket cells express μORs, but circumstantial evidence suggests that another major, unidentified, GABAergic cell class must also be modulated by μORs. Here we report that the abundant, dendritically targeting, neurogliaform family of cells (Ivy and neurogliaform cells) is a previously unrecognized target of direct modulation by μORs. Ivy and neurogliaform cells are not only numerous but also have unique properties, including promiscuous gap junctions formed with various interneuronal subtypes, volume transmission, and the ability to produce a postsynaptic GABA(B) response after a single presynaptic spike. Using a mouse line expressing green fluorescent protein under the neuropeptide Y promoter, we find that, across all layers of CA1, activation of μORs hyperpolarizes Ivy and neurogliaform cells. Furthermore, paired recordings between synaptically coupled Ivy and pyramidal cells show that Ivy cell terminals are dramatically inhibited by μOR activation. Effects in Ivy and neurogliaform cells are seen at similar concentrations of agonist as those producing inhibition in fast-spiking parvalbumin basket cells. We also report that Ivy cells display the recently described phenomenon of persistent firing, a state of continued firing in the absence of continued input, and that induction of persistent firing is inhibited by μOR activation. Together, these findings identify a major, previously unrecognized, target of μOR modulation. Given the prominence of this cell type in and beyond CA1, as well as its unique role in microcircuitry, opioid modulation of neurogliaform cells has wide implications.
Dendrites of dentate gyrus granule cells contribute to pattern separation by controlling sparsity
Chavlis, Spyridon; Petrantonakis, Panagiotis C.
2016-01-01
ABSTRACT The hippocampus plays a key role in pattern separation, the process of transforming similar incoming information to highly dissimilar, nonverlapping representations. Sparse firing granule cells (GCs) in the dentate gyrus (DG) have been proposed to undertake this computation, but little is known about which of their properties influence pattern separation. Dendritic atrophy has been reported in diseases associated with pattern separation deficits, suggesting a possible role for dendrites in this phenomenon. To investigate whether and how the dendrites of GCs contribute to pattern separation, we build a simplified, biologically relevant, computational model of the DG. Our model suggests that the presence of GC dendrites is associated with high pattern separation efficiency while their atrophy leads to increased excitability and performance impairments. These impairments can be rescued by restoring GC sparsity to control levels through various manipulations. We predict that dendrites contribute to pattern separation as a mechanism for controlling sparsity. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc. PMID:27784124
Dendritic nonlinearities are tuned for efficient spike-based computations in cortical circuits
Ujfalussy, Balázs B; Makara, Judit K; Branco, Tiago; Lengyel, Máté
2015-01-01
Cortical neurons integrate thousands of synaptic inputs in their dendrites in highly nonlinear ways. It is unknown how these dendritic nonlinearities in individual cells contribute to computations at the level of neural circuits. Here, we show that dendritic nonlinearities are critical for the efficient integration of synaptic inputs in circuits performing analog computations with spiking neurons. We developed a theory that formalizes how a neuron's dendritic nonlinearity that is optimal for integrating synaptic inputs depends on the statistics of its presynaptic activity patterns. Based on their in vivo preynaptic population statistics (firing rates, membrane potential fluctuations, and correlations due to ensemble dynamics), our theory accurately predicted the responses of two different types of cortical pyramidal cells to patterned stimulation by two-photon glutamate uncaging. These results reveal a new computational principle underlying dendritic integration in cortical neurons by suggesting a functional link between cellular and systems--level properties of cortical circuits. DOI: http://dx.doi.org/10.7554/eLife.10056.001 PMID:26705334
Meigo governs dendrite targeting specificity by modulating Ephrin level and N-glycosylation
Sekine, Sayaka U; Haraguchi, Shuka; Chao, Kinhong; Kato, Tomoko; Luo, Liqun; Miura, Masayuki; Chihara, Takahiro
2016-01-01
Neural circuit assembly requires precise dendrite and axon targeting. We identified an evolutionarily conserved endoplasmic reticulum (ER) protein, Meigo, from a mosaic genetic screen in Drosophila melanogaster. Meigo was cell-autonomously required in olfactory receptor neurons and projection neurons to target their axons and dendrites to the lateral antennal lobe and to refine projection neuron dendrites into individual glomeruli. Loss of Meigo induced an unfolded protein response and reduced the amount of neuronal cell surface proteins, including Ephrin. Ephrin overexpression specifically suppressed the projection neuron dendrite refinement defect present in meigo mutant flies, and ephrin knockdown caused a similar projection neuron dendrite refinement defect. Meigo positively regulated the level of Ephrin N-glycosylation, which was required for its optimal function in vivo. Thus, Meigo, an ER-resident protein, governs neuronal targeting specificity by regulating ER folding capacity and protein N-glycosylation. Furthermore, Ephrin appears to be an important substrate that mediates Meigo’s function in refinement of glomerular targeting. PMID:23624514
Quantitative Analysis of Dendritic Cell Haptotaxis.
Schwarz, Jan; Sixt, Michael
2016-01-01
Chemokines are the main guidance cues directing leukocyte migration. Opposed to early assumptions, chemokines do not necessarily act as soluble cues but are often immobilized within tissues, e.g., dendritic cell migration toward lymphatic vessels is guided by a haptotactic gradient of the chemokine CCL21. Controlled assay systems to quantitatively study haptotaxis in vitro are still missing. In this chapter, we describe an in vitro haptotaxis assay optimized for the unique properties of dendritic cells. The chemokine CCL21 is immobilized in a bioactive state, using laser-assisted protein adsorption by photobleaching. The cells follow this immobilized CCL21 gradient in a haptotaxis chamber, which provides three dimensionally confined migration conditions. © 2016 Elsevier Inc. All rights reserved.
Direct antigen presentation and gap junction mediated cross-presentation during apoptosis.
Pang, Baoxu; Neijssen, Joost; Qiao, Xiaohang; Janssen, Lennert; Janssen, Hans; Lippuner, Christoph; Neefjes, Jacques
2009-07-15
MHC class I molecules present peptides from endogenous proteins. Ags can also be presented when derived from extracellular sources in the form of apoptotic bodies. Cross-presentation of such Ags by dendritic cells is required for proper CTL responses. The fate of Ags in cells initiated for apoptosis is unclear as is the mechanism of apoptosis-derived Ag transfer into dendritic cells. Here we show that novel Ags can be generated by caspases and be presented by MHC class I molecules of apoptotic cells. Since gap junctions function until apoptotic cells remodel to form apoptotic bodies, transfer and cross-presentation of apoptotic peptides by neighboring and dendritic cells occurs. We thus define a novel phase in classical Ag presentation and cross-presentation by MHC class I molecules: presentation of Ags created by caspase activities in cells in apoptosis.
Dendritic cells in cancer immunotherapy
NASA Astrophysics Data System (ADS)
Le Gall, Camille M.; Weiden, Jorieke; Eggermont, Loek J.; Figdor, Carl G.
2018-06-01
Camille M. Le Gall, Jorieke Weiden, Loek J. Eggermont and Carl G. Figdor provide an overview of immunotherapeutics for cancer treatment that harness dendritic cells, their challenges in clinical use, and approaches employed to enhance their recruitment and activation to promote effective anti-tumour immunity.
'Educated' dendritic cells act as messengers from memory to naive T helper cells.
Alpan, Oral; Bachelder, Eric; Isil, Eda; Arnheiter, Heinz; Matzinger, Polly
2004-06-01
Ingested antigens lead to the generation of effector T cells that secrete interleukin 4 (IL-4) rather than interferon-gamma (IFN-gamma) and are capable of influencing naive T cells in their immediate environment to do the same. Using chimeric mice generated by aggregation of two genotypically different embryos, we found that the conversion of a naive T cell occurs only if it can interact with the same antigen-presenting cell, although not necessarily the same antigen, as the effector T cell. Using a two-step culture system in vitro, we found that antigen-presenting dendritic cells can act as 'temporal bridges' to relay information from orally immunized memory CD4 T cells to naive CD4 T cells. The orally immunized T cells use IL-4 and IL-10 (but not CD40 ligand) to 'educate' dendritic cells, which in turn induce naive T cells to produce the same cytokines as those produced by the orally immunized memory T cells.
Patel, Vineet I.; Booth, J. Leland; Duggan, Elizabeth S.; Cate, Steven; White, Vicky L.; Hutchings, David; Kovats, Susan; Burian, Dennis M.; Dozmorov, Mikhail; Metcalf, Jordan P.
2016-01-01
The respiratory system is a complex network of many cell types, including subsets of macrophages and dendritic cells that work together to maintain steady-state respiration. Due to limitations in acquiring cells from healthy human lung, these subsets remain poorly characterized transcriptionally and phenotypically. We set out to systematically identify these subsets in human airways by developing a schema of isolating large numbers of cells by whole lung bronchoalveolar lavage. Six subsets of phagocytic antigen presenting (HLA-DR+) cells were consistently observed. Aside from alveolar macrophages, subsets of Langerin+, BDCA1− CD14+, BDCA1+ CD14+, BDCA1+ CD14−, and BDCA1− CD14− cells were identified. These subsets varied in their ability to internalize Escherichia coli, Staphylococcus aureus, and Bacillus anthracis particles. All subsets were more efficient at internalizing S. aureus and B. anthracis compared to E. coli. Alveolar macrophages and CD14+ cells were overall more efficient at particle internalization compared to the four other populations. Subsets were further separated into two groups based on their inherent capacities to upregulate surface CD83, CD86, and CCR7 expression levels. Whole genome transcriptional profiling revealed a clade of “true dendritic cells” consisting of Langerin+, BDCA1+ CD14+, and BDCA1+ CD14− cells. The dendritic cell clade was distinct from a macrophage/monocyte clade, as supported by higher mRNA expression levels of several dendritic cell-associated genes, including CD1, FLT3, CX3CR1, and CCR6. Each clade, and each member of both clades, were discerned by specific upregulated genes, which can serve as markers for future studies in healthy and diseased states. PMID:28031342
Winters, Bradley D.; Jin, Shan-Xue; Ledford, Kenneth R.
2017-01-01
The principal neurons of the medial superior olive (MSO) encode cues for horizontal sound localization through comparisons of the relative timing of EPSPs. To understand how the timing and amplitude of EPSPs are maintained during propagation in the dendrites, we made dendritic and somatic whole-cell recordings from MSO principal neurons in brain slices from Mongolian gerbils. In somatic recordings, EPSP amplitudes were largely uniform following minimal stimulation of excitatory synapses at visualized locations along the dendrites. Similar results were obtained when excitatory synaptic transmission was eliminated in a low calcium solution and then restored at specific dendritic sites by pairing input stimulation and focal application of a higher calcium solution. We performed dual dendritic and somatic whole-cell recordings to measure spontaneous EPSPs using a dual-channel template-matching algorithm to separate out those events initiated at or distal to the dendritic recording location. Local dendritic spontaneous EPSP amplitudes increased sharply in the dendrite with distance from the soma (length constant, 53.6 μm), but their attenuation during propagation resulted in a uniform amplitude of ∼0.2 mV at the soma. The amplitude gradient of dendritic EPSPs was also apparent in responses to injections of identical simulated excitatory synaptic currents in the dendrites. Compartmental models support the view that these results extensively reflect the influence of dendritic cable properties. With relatively few excitatory axons innervating MSO neurons, the normalization of dendritic EPSPs at the soma would increase the importance of input timing versus location during the processing of interaural time difference cues in vivo. SIGNIFICANCE STATEMENT The neurons of the medial superior olive analyze cues for sound localization by detecting the coincidence of binaural excitatory synaptic inputs distributed along the dendrites. Previous studies have shown that dendritic voltages undergo severe attenuation as they propagate to the soma, potentially reducing the influence of distal inputs. However, using dendritic and somatic patch recordings, we found that dendritic EPSP amplitude increased with distance from the soma, compensating for dendritic attenuation and normalizing EPSP amplitude at the soma. Much of this normalization reflected the influence of dendritic morphology. As different combinations of presynaptic axons may be active during consecutive cycles of sound stimuli, somatic EPSP normalization renders spike initiation more sensitive to synapse timing than dendritic location. PMID:28213442
Sulkowski, Mikolaj J.; Iyer, Srividya Chandramouli; Kurosawa, Mathieu S.; Iyer, Eswar Prasad R.; Cox, Daniel N.
2011-01-01
Background Dendritic morphology largely determines patterns of synaptic connectivity and electrochemical properties of a neuron. Neurons display a myriad diversity of dendritic geometries which serve as a basis for functional classification. Several types of molecules have recently been identified which regulate dendrite morphology by acting at the levels of transcriptional regulation, direct interactions with the cytoskeleton and organelles, and cell surface interactions. Although there has been substantial progress in understanding the molecular mechanisms of dendrite morphogenesis, the specification of class-specific dendritic arbors remains largely unexplained. Furthermore, the presence of numerous regulators suggests that they must work in concert. However, presently, few genetic pathways regulating dendrite development have been defined. Methodology/Principal Findings The Drosophila gene turtle belongs to an evolutionarily conserved class of immunoglobulin superfamily members found in the nervous systems of diverse organisms. We demonstrate that Turtle is differentially expressed in Drosophila da neurons. Moreover, MARCM analyses reveal Turtle acts cell autonomously to exert class specific effects on dendritic growth and/or branching in da neuron subclasses. Using transgenic overexpression of different Turtle isoforms, we find context-dependent, isoform-specific effects on mediating dendritic branching in class II, III and IV da neurons. Finally, we demonstrate via chromatin immunoprecipitation, qPCR, and immunohistochemistry analyses that Turtle expression is positively regulated by the Cut homeodomain transcription factor and via genetic interaction studies that Turtle is downstream effector of Cut-mediated regulation of da neuron dendrite morphology. Conclusions/Significance Our findings reveal that Turtle proteins differentially regulate the acquisition of class-specific dendrite morphologies. In addition, we have established a transcriptional regulatory interaction between Cut and Turtle, representing a novel pathway for mediating class specific dendrite development. PMID:21811639
Abdala-Valencia, Hiam; Soveg, Frank
2016-01-01
γ-Tocopherol increases responses to allergen challenge in allergic adult mice, but it is not known whether γ-tocopherol regulates the development of allergic disease. Development of allergic disease often occurs early in life. In clinical studies and animal models, offspring of allergic mothers have increased responsiveness to allergen challenge. Therefore, we determined whether γ-tocopherol augments development of allergic responses in offspring of allergic female mice. Allergic female mice were supplemented with γ-tocopherol starting at mating. The pups from allergic mothers developed allergic lung responses, whereas pups from saline-treated mothers did not respond to allergen challenge. The γ-tocopherol supplementation of allergic female mice increased the numbers of eosinophils twofold in the pup bronchoalveolar lavage and lungs after allergen challenge. There was also about a twofold increase in pup lung CD11b+ subsets of CD11c+ dendritic cells and in numbers of these dendritic cells expressing the transcription factor IRF4. There was no change in several CD11b− dendritic cell subsets. Furthermore, maternal supplementation with γ-tocopherol increased the number of fetal liver CD11b+CD11c+ dendritic cells twofold in utero. In the pups, γ-tocopherol increased lung expression of the inflammatory mediators CCL11, amphiregulin, activin A, and IL-5. In conclusion, maternal supplementation with γ-tocopherol increased fetal development of subsets of dendritic cells that are critical for allergic responses and increased development of allergic responses in pups from allergic mothers. These results have implications for supplementation of allergic mothers with γ-tocopherol in prenatal vitamins. PMID:26801566
Tukker, John J.; Lasztóczi, Bálint; Katona, Linda; Roberts, J. David B.; Pissadaki, Eleftheria K.; Dalezios, Yannis; Márton, László; Zhang, Limei; Klausberger, Thomas; Somogyi, Peter
2015-01-01
Hippocampal CA3 area generates temporally structured network activity such as sharp waves and gamma and theta oscillations. Parvalbumin-expressing basket cells, making GABAergic synapses onto cell bodies and proximal dendrites of pyramidal cells, control pyramidal cell activity and participate in network oscillations in slice preparations, but their roles in vivo remain to be tested. We have recorded the spike timing of parvalbumin-expressing basket cells in areas CA2/3 of anesthetized rats in relation to CA3 putative pyramidal cell firing and activity locally and in area CA1. During theta oscillations, CA2/3 basket cells fired on the same phase as putative pyramidal cells, but, surprisingly, significantly later than downstream CA1 basket cells. This indicates a distinct modulation of CA3 and CA1 pyramidal cells by basket cells, which receive different inputs. We observed unexpectedly large dendritic arborization of CA2/3 basket cells in stratum lacunosum moleculare (33% of length, 29% surface, and 24% synaptic input from a total of ~35,000), different from the dendritic arborizations of CA1 basket cells. Area CA2/3 basket cells fired phase locked to both CA2/3 and CA1 gamma oscillations, and increased firing during CA1 sharp waves, thus supporting the role of CA3 networks in the generation of gamma oscillations and sharp waves. However, during ripples associated with sharp waves, firing of CA2/3 basket cells was phase locked only to local but not CA1 ripples, suggesting the independent generation of fast oscillations by basket cells in CA1 and CA2/3. The distinct spike timing of basket cells during oscillations in CA1 and CA2/3 suggests differences in synaptic inputs paralleled by differences in dendritic arborizations. PMID:23595740
Hyoung, Kim Je; Hajam, Irshad Ahmed; Lee, John Hwa
2017-06-13
H7N3 and H7N7 are highly pathogenic avian influenza (HPAI) viruses and have posed a great threat not only for the poultry industry but for the human health as well. H7N9, a low pathogenic avian influenza (LPAI) virus, is also highly pathogenic to humans, and there is a great concern that these H7 subtypes would acquire the ability to spread efficiently between humans, thereby becoming a pandemic threat. A vaccine candidate covering all the three subtypes must, therefore, be an integral part of any pandemic preparedness plan. To address this need, we constructed a consensus hemagglutinin (HA) sequence of H7N3, H7N7, and H7N9 based on the data available in the NCBI in early 2012-2015. This artificial sequence was then optimized for protein expression before being transformed into an attenuated auxotrophic mutant of Salmonella Typhimurium, JOL1863 strain. Immunizing chickens with JOL1863, delivered intramuscularly, nasally or orally, elicited efficient humoral and cell mediated immune responses, independently of the route of vaccination. Our results also showed that JOL1863 deliver efficient maturation signals to chicken monocyte derived dendritic cells (MoDCs) which were characterized by upregulation of costimulatory molecules and higher cytokine induction. Moreover, immunization with JOL1863 in chickens conferred a significant protection against the heterologous LPAI H7N1 virus challenge as indicated by reduced viral sheddings in the cloacal swabs. We conclude that this vaccine, based on a consensus HA, could induce broader spectrum of protection against divergent H7 influenza viruses and thus warrants further study.
Skin diseases associated with Malassezia yeasts: facts and controversies.
Gaitanis, Georgios; Velegraki, Aristea; Mayser, Peter; Bassukas, Ioannis D
2013-01-01
The implication of the yeast genus Malassezia in skin diseases has been characterized by controversy, since the first description of the fungal nature of pityriasis versicolor in 1846 by Eichstedt. This is underscored by the existence of Malassezia yeasts as commensal but also by their implication in diseases with distinct absence of inflammation despite the heavy fungal load (pityriasis versicolor) or with characteristic inflammation (eg, seborrheic dermatitis, atopic dermatitis, folliculitis, or psoriasis). The description of 14 Malassezia species and subsequent worldwide epidemiologic studies did not reveal pathogenic species but rather disease-associated subtypes within species. Emerging evidence demonstrates that the interaction of Malassezia yeasts with the skin is multifaceted and entails constituents of the fungal wall (melanin, lipid cover), enzymes (lipases, phospholipases), and metabolic products (indoles), as well as the cellular components of the epidermis (keratinocytes, dendritic cells, and melanocytes). Understanding the complexity of their interactions will highlight the controversies on the clinical presentation of Malassezia-associated diseases and unravel the complexity of skin homeostatic mechanisms. Copyright © 2013 Elsevier Inc. All rights reserved.
Russ, Jeffrey B; Kaltschmidt, Julia A
2014-10-01
Every behaviour of an organism relies on an intricate and vastly diverse network of neurons whose identity and connectivity must be specified with extreme precision during development. Intrinsically, specification of neuronal identity depends heavily on the expression of powerful transcription factors that direct numerous features of neuronal identity, including especially properties of neuronal connectivity, such as dendritic morphology, axonal targeting or synaptic specificity, ultimately priming the neuron for incorporation into emerging circuitry. As the neuron's early connectivity is established, extrinsic signals from its pre- and postsynaptic partners feedback on the neuron to further refine its unique characteristics. As a result, disruption of one component of the circuitry during development can have vital consequences for the proper identity specification of its synaptic partners. Recent studies have begun to harness the power of various transcription factors that control neuronal cell fate, including those that specify a neuron's subtype-specific identity, seeking insight for future therapeutic strategies that aim to reconstitute damaged circuitry through neuronal reprogramming.
Herzog, E; Landry, M; Buhler, E; Bouali-Benazzouz, R; Legay, C; Henderson, C E; Nagy, F; Dreyfus, P; Giros, B; El Mestikawy, S
2004-10-01
Mammalian spinal motoneurons are cholinergic neurons that have long been suspected to use also glutamate as a neurotransmitter. We report that VGLUT1 and VGLUT2, two subtypes of vesicular glutamate transporters, are expressed in rat spinal motoneurons. Both proteins are present in somato-dendritic compartments as well as in axon terminals in primary cultures of immunopurified motoneurons and sections of spinal cord from adult rat. However, VGLUT1 and VGLUT2 are not found at neuromuscular junctions of skeletal muscles. After intracellular injection of biocytin in motoneurons, VGLUT2 is observed in anterogradely labelled terminals contacting Renshaw inhibitory interneurons. These VGLUT2- and VGLUT1-positive terminals do not express VAChT, the vesicular acetylcholine transporter. Overall, our study establishes for the first time that (i) mammalian spinal motoneurons express vesicular glutamate transporters, (ii) these motoneurons have the potential to release glutamate (in addition to acetylcholine) at terminals contacting Renshaw cells, and finally (iii) the VGLUTs are not present at neuromuscular synapses of skeletal muscles.
Scott, Naomi M; Ng, Royce L X; McGonigle, Terence A; Gorman, Shelley; Hart, Prue H
2015-11-01
During respiratory inflammation, it is generally assumed that dendritic cells differentiating from the bone marrow are immunogenic rather than immunoregulatory. Using chimeric mice, the outcomes of airways inflammation on bone marrow progenitor cells were studied. Immune responses were analyzed in chimeric mice engrafted for >16 weeks with bone marrow cells from mice with experimental allergic airways disease (EAAD). Responses to sensitization and challenge with the allergen causing inflammation in the bone marrow-donor mice were significantly reduced in the chimeric mice engrafted with bone marrow cells from mice with EAAD (EAAD-chimeric). Responses to intranasal LPS and topical fluorescein isothiocyanate (non-specific challenges) were significantly attenuated. Fewer activated dendritic cells from the airways and skin of the EAAD-chimeric mice could be tracked to the draining lymph nodes, and may contribute to the significantly reduced antigen/chemical-induced hypertrophy in the draining nodes, and the reduced immune responses to sensitizing allergens. Dendritic cells differentiating in vitro from the bone marrow of >16 weeks reconstituted EAAD-chimeric mice retained an ability to poorly prime immune responses when transferred into naïve mice. Dendritic cells developing from bone marrow progenitors during airways inflammation are altered such that daughter cells have reduced antigen priming capabilities.
Resolution of Novel Pancreatic Ductal Adenocarcinoma Subtypes by Global Phosphotyrosine Profiling*
Humphrey, Emily S.; Su, Shih-Ping; Nagrial, Adnan M.; Hochgräfe, Falko; Pajic, Marina; Lehrbach, Gillian M.; Parton, Robert G.; Yap, Alpha S.; Horvath, Lisa G.; Chang, David K.; Biankin, Andrew V.; Wu, Jianmin; Daly, Roger J.
2016-01-01
Comprehensive characterization of signaling in pancreatic ductal adenocarcinoma (PDAC) promises to enhance our understanding of the molecular aberrations driving this devastating disease, and may identify novel therapeutic targets as well as biomarkers that enable stratification of patients for optimal therapy. Here, we use immunoaffinity-coupled high-resolution mass spectrometry to characterize global tyrosine phosphorylation patterns across two large panels of human PDAC cell lines: the ATCC series (19 cell lines) and TKCC series (17 cell lines). This resulted in the identification and quantification of over 1800 class 1 tyrosine phosphorylation sites and the consistent segregation of both PDAC cell line series into three subtypes with distinct tyrosine phosphorylation profiles. Subtype-selective signaling networks were characterized by identification of subtype-enriched phosphosites together with pathway and network analyses. This revealed that the three subtypes characteristic of the ATCC series were associated with perturbations in signaling networks associated with cell-cell adhesion and epithelial-mesenchyme transition, mRNA metabolism, and receptor tyrosine kinase (RTK) signaling, respectively. Specifically, the third subtype exhibited enhanced tyrosine phosphorylation of multiple RTKs including the EGFR, ERBB3 and MET. Interestingly, a similar RTK-enriched subtype was identified in the TKCC series, and 'classifier' sites for each series identified using Random Forest models were able to predict the subtypes of the alternate series with high accuracy, highlighting the conservation of the three subtypes across the two series. Finally, RTK-enriched cell lines from both series exhibited enhanced sensitivity to the small molecule EGFR inhibitor erlotinib, indicating that their phosphosignature may provide a predictive biomarker for response to this targeted therapy. These studies highlight how resolution of subtype-selective signaling networks can provide a novel taxonomy for particular cancers, and provide insights into PDAC biology that can be exploited for improved patient management. PMID:27259358
Characterization of chicken dendritic cell markers
USDA-ARS?s Scientific Manuscript database
Animal and Natural Resources Institute, ARS-USDA, Beltsville, MD, USA. New mouse monoclonal antibodies which detect CD80 and CD83 were developed to characterize chicken dendritic cells (DCs). The characteristics of these molecules have been studied in human, swine, ovine, feline, and canine but not ...
ROCK1 and 2 differentially regulate actomyosin organization to drive cell and synaptic polarity
Badoual, Mathilde; Asmussen, Hannelore; Patel, Heather; Whitmore, Leanna; Horwitz, Alan Rick
2015-01-01
RhoGTPases organize the actin cytoskeleton to generate diverse polarities, from front–back polarity in migrating cells to dendritic spine morphology in neurons. For example, RhoA through its effector kinase, RhoA kinase (ROCK), activates myosin II to form actomyosin filament bundles and large adhesions that locally inhibit and thereby polarize Rac1-driven actin polymerization to the protrusions of migratory fibroblasts and the head of dendritic spines. We have found that the two ROCK isoforms, ROCK1 and ROCK2, differentially regulate distinct molecular pathways downstream of RhoA, and their coordinated activities drive polarity in both cell migration and synapse formation. In particular, ROCK1 forms the stable actomyosin filament bundles that initiate front–back and dendritic spine polarity. In contrast, ROCK2 regulates contractile force and Rac1 activity at the leading edge of migratory cells and the spine head of neurons; it also specifically regulates cofilin-mediated actin remodeling that underlies the maturation of adhesions and the postsynaptic density of dendritic spines. PMID:26169356
Bangert, Christine; Friedl, Josef; Stary, Georg; Stingl, Georg; Kopp, Tamara
2003-12-01
Contrary to our abundant knowledge about the sensitization phase of human contact hypersensitivity, little is known about the cell types orchestrating the effector phase. In order to address this issue, we phenotypically analyzed biopsies from 72 h epicutaneous patch test reactions (n=10) and normal human skin (n=5) for the presence of various leukocyte differentiation antigens. The inflammatory infiltrate was dominated by CD3+/CD4+ T cells with approximately 30% of the cells coexpressing CD25 and CTLA-4, a phenotype consistent with either activated effector or regulatory T cells. In our search for professional antigen-presenting cells, we were surprised to find not only sizeable numbers of CD1a+ dendritic cells and CD1c+ dendritic cells, but also of CD123+, CD45RA+, BDCA-2+, CLA+, and CD62L+ plasmacytoid dendritic cells. Although virtually absent in normal human skin, these cells were detectable already 6 h after hapten challenge and were often found in close proximity to CD56+ natural killer cells, indicative of a functional interaction between these cell types. The detailed knowledge of the cellular composition of the inflammatory infiltrate in allergic contact dermatitis and its kinetics should form the basis for the investigation of the immunologic and molecular events operative in the perpetuation and resolution of the eczematous response.
Ugonna, Kelechi; Bingle, Colin D; Plant, Karen; Wilson, Kirsty; Everard, Mark L
2014-01-01
We have previously shown that the respiratory syncytial virus [RSV] can productively infect monocyte derived dendritic cells [MoDC] and remain dormant within the same cells for prolonged periods. It is therefore possible that infected dendritic cells act as a reservoir within the airways of individuals between annual epidemics. In the present study we explored the possibility that sub-epithelial DCs can be infected with RSV from differentiated bronchial epithelium and that in turn RSV from DCs can infect the epithelium. A dual co-culture model was established in which a differentiated primary airway epithelium on an Air Liquid Interface (ALI) was cultured on a transwell insert and MoDCs were subsequently added to the basolateral membrane of the insert. Further experiments were undertaken using a triple co-culture model in which in which macrophages were added to the apical surface of the differentiated epithelium. A modified RSV [rr-RSV] expressing a red fluorescent protein marker of replication was used to infect either the MoDCs or the differentiated epithelium and infection of the reciprocal cell type was assessed using confocal microscopy. Our data shows that primary epithelium became infected when rr-RSV infected MoDCs were introduced onto the basal surface of the transwell insert. MoDCs located beneath the epithelium did not become infected with virus from infected epithelial cells in the dual co-culture model. However when macrophages were present on the apical surface of the primary epithelium infection of the basal MoDCs occurred. Our data suggests that RSV infected dendritic cells readily transmit infection to epithelial cells even when they are located beneath the basal layer. However macrophages appear to be necessary for the transmission of infection from epithelial cells to basal dendritic cells.
Kay, Jeremy N; De la Huerta, Irina; Kim, In-Jung; Zhang, Yifeng; Yamagata, Masahito; Chu, Monica W; Meister, Markus; Sanes, Joshua R
2011-05-25
The retina contains ganglion cells (RGCs) that respond selectively to objects moving in particular directions. Individual members of a group of ON-OFF direction-selective RGCs (ooDSGCs) detect stimuli moving in one of four directions: ventral, dorsal, nasal, or temporal. Despite this physiological diversity, little is known about subtype-specific differences in structure, molecular identity, and projections. To seek such differences, we characterized mouse transgenic lines that selectively mark ooDSGCs preferring ventral or nasal motion as well as a line that marks both ventral- and dorsal-preferring subsets. We then used the lines to identify cell surface molecules, including Cadherin 6, CollagenXXVα1, and Matrix metalloprotease 17, that are selectively expressed by distinct subsets of ooDSGCs. We also identify a neuropeptide, CART (cocaine- and amphetamine-regulated transcript), that distinguishes all ooDSGCs from other RGCs. Together, this panel of endogenous and transgenic markers distinguishes the four ooDSGC subsets. Patterns of molecular diversification occur before eye opening and are therefore experience independent. They may help to explain how the four subsets obtain distinct inputs. We also demonstrate differences among subsets in their dendritic patterns within the retina and their axonal projections to the brain. Differences in projections indicate that information about motion in different directions is sent to different destinations.
EVIR: chimeric receptors that enhance dendritic cell cross-dressing with tumor antigens.
Squadrito, Mario Leonardo; Cianciaruso, Chiara; Hansen, Sarah K; De Palma, Michele
2018-03-01
We describe a lentivirus-encoded chimeric receptor, termed extracellular vesicle (EV)-internalizing receptor (EVIR), which enables the selective uptake of cancer-cell-derived EVs by dendritic cells (DCs). The EVIR enhances DC presentation of EV-associated tumor antigens to CD8 + T cells primarily through MHCI recycling and cross-dressing. EVIRs should facilitate exploring the mechanisms and implications of horizontal transfer of tumor antigens to antigen-presenting cells.
Lithium dendrite growth through solid polymer electrolyte membranes
NASA Astrophysics Data System (ADS)
Harry, Katherine; Schauser, Nicole; Balsara, Nitash
2015-03-01
Replacing the graphite-based anode in current batteries with a lithium foil will result in a qualitative increase in the energy density of lithium batteries. The primary reason for not adopting lithium-foil anodes is the formation of dendrites during cell charging. In this study, stop-motion X-ray microtomography experiments were used to directly monitor the growth of lithium dendrites during electrochemical cycling of symmetric lithium-lithium cells with a block copolymer electrolyte. In an attempt to understand the relationship between viscoelastic properties of the electrolyte on dendrite formation, a series of complementary experiments including cell cycling, tomography, ac impedance, and rheology, were conducted above and below the glass transition temperature of the non-conducting poly(styrene) block; the conducting phase is a mixture of rubbery poly(ethylene oxide) and a lithium salt. The tomography experiments enable quantification of the evolution of strain in the block copolymer electrolyte. Our work provides fundamental insight into the dynamics of electrochemical deposition of metallic films in contact with high modulus polymer electrolytes. Rational approaches for slowing down and, perhaps, eliminating dendrite growth are proposed.
Emitter formation in dendritic web silicon solar cells
NASA Technical Reports Server (NTRS)
Meier, D. L.; Rohatgi, A.; Campbell, R. B.; Alexander, P.; Fonash, S. J.; Singh, R.
1984-01-01
The use of liquid dopants and liquid masks for p-n junction formation in dendritic web solar cells was investigated and found to be equivalent to the use of gaseous dopants and CVD SiO2 masks previously used. This results in a projected cost reduction of 0.02 1980$/Watt for a 25 MW/year production line, and makes possible junction formation processes having a higher throughput than more conventional processes. The effect of a low-energy (0.4 keV) hydrogen ion implant on dendritic web solar cells was also investigated. Such an implant was observed to improve Voc and Jsc substantially. Measurements of internal quantum efficiency suggest that it is the base of the cell, rather than the emitter, which benefits from the hydrogen implant. The diffusion length for electrons in the p-type base increased from 53 microns to 150 microns in one case, with dendritic web cell efficiency being boosted to 15.2 percent. The mechanism by which low-energy hydrogen ions can penetrate deeply into the silicon to effect the observed improvement is not known at this time.
[Role of Langerhans cells in the physiopathology of atopic dermatitis].
Bieber, T
1995-12-01
The demonstration of IgE receptors on the surface of epidermal dendritic cells and on other antigen presenting cells is a crucial element in the understanding of the pathophysiological role of these cells in the genesis of atopic disease, and especially the atopic dermatitis (AD). The sensibilisation phase to an aeroallergen at the level of nasal or bronchial mucosa and even at the skin may be mediated by dendritic cells expressing Fc epsilon RI. Distinct forms of AD may then represent the equivalent of the ellicitation phase of the classical allergic contact dermatitis. Fc epsilon RI would lead, via specific IgE, to an efficient antigen capture, to the activation of the dendritic cells and finally to an antigen presentation. Thus, AD may represent the paradigma of an IgE-mediated type IV reaction.
Glaffig, Markus; Stergiou, Natascha; Hartmann, Sebastian; Schmitt, Edgar; Kunz, Horst
2018-01-08
A MUC1 anticancer vaccine equipped with covalently linked divalent mannose ligands was found to improve the antigen uptake and presentation by targeting mannose-receptor-positive macrophages and dendritic cells. It induced much stronger specific IgG immune responses in mice than the non-mannosylated reference vaccine. Mannose coupling also led to increased numbers of macrophages, dendritic cells, and CD4 + T cells in the local lymph organs. Comparison of di- and tetravalent mannose ligands revealed an increased binding of the tetravalent version, suggesting that higher valency improves binding to the mannose receptor. The mannose-coupled vaccine and the non-mannosylated reference vaccine induced IgG antibodies that exhibited similar binding to human breast tumor cells. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lymphatic exosomes promote dendritic cell migration along guidance cues
Brown, Markus; Johnson, Louise A.; Leone, Dario A.; Majek, Peter; Senfter, Daniel; Bukosza, Nora; Asfour, Gabriele; Langer, Brigitte; Parapatics, Katja; Hong, Young-Kwon; Bennett, Keiryn L.; Sixt, Michael
2018-01-01
Lymphatic endothelial cells (LECs) release extracellular chemokines to guide the migration of dendritic cells. In this study, we report that LECs also release basolateral exosome-rich endothelial vesicles (EEVs) that are secreted in greater numbers in the presence of inflammatory cytokines and accumulate in the perivascular stroma of small lymphatic vessels in human chronic inflammatory diseases. Proteomic analyses of EEV fractions identified >1,700 cargo proteins and revealed a dominant motility-promoting protein signature. In vitro and ex vivo EEV fractions augmented cellular protrusion formation in a CX3CL1/fractalkine-dependent fashion and enhanced the directional migratory response of human dendritic cells along guidance cues. We conclude that perilymphatic LEC exosomes enhance exploratory behavior and thus promote directional migration of CX3CR1-expressing cells in complex tissue environments. PMID:29650776
A role for a rat homolog of staufen in the transport of RNA to neuronal dendrites.
Tang, S J; Meulemans, D; Vazquez, L; Colaco, N; Schuman, E
2001-11-08
RNAs are present in dendrites and may be used for local protein synthesis in response to synaptic activity. To begin to understand dendritic RNA targeting, we cloned a rat homolog of staufen, a Drosophila gene that participates in mRNA targeting during development. In hippocampal neurons, rat staufen protein displays a microtubule-dependent somatodendritic distribution pattern that overlaps with dendritic RNAs. To determine whether r-staufen is required for dendritic RNA targeting, we constructed a mutant version containing the RNA binding domains (stau-RBD) but lacking the C-terminal portion potentially involved in dendritic targeting. Stau-RBD expression was restricted to the cell bodies and proximal dendrites. Expression of stau-RBD significantly decreased, while overexpression of wild-type r-staufen increased, the amount of dendritic mRNA. Taken together, these results suggest that the rat staufen protein plays an important role in the delivery of RNA to dendrites.
The multifaceted biology of plasmacytoid dendritic cells
Swiecki, Melissa; Colonna, Marco
2015-01-01
Plasmacytoid dendritic cells (pDCs) are a unique dendritic cell subset that specializes in the production of type I interferons (IFNs). pDCs promote antiviral immune responses and have been implicated in the pathogenesis of autoimmune diseases characterized by a type I IFN signature. However, pDCs can also induce tolerogenic immune responses. Here, we review recent progress from the field of pDC biology, focusing on: the molecular mechanisms that regulate pDC development and functions; the pathways involved in their sensing of pathogens and endogenous nucleic acids; the function of pDCs at mucosal sites; and their roles in infections, autoimmunity and cancer. PMID:26160613
In vivo reprogramming of pancreatic acinar cells to three islet endocrine subtypes
Li, Weida; Nakanishi, Mio; Zumsteg, Adrian; Shear, Matthew; Wright, Christopher; Melton, Douglas A; Zhou, Qiao
2014-01-01
Direct lineage conversion of adult cells is a promising approach for regenerative medicine. A major challenge of lineage conversion is to generate specific cell subtypes. The pancreatic islets contain three major hormone-secreting endocrine subtypes: insulin+ β-cells, glucagon+ α-cells, and somatostatin+ δ-cells. We previously reported that a combination of three transcription factors, Ngn3, Mafa, and Pdx1, directly reprograms pancreatic acinar cells to β-cells. We now show that acinar cells can be converted to δ-like and α-like cells by Ngn3 and Ngn3+Mafa respectively. Thus, three major islet endocrine subtypes can be derived by acinar reprogramming. Ngn3 promotes establishment of a generic endocrine state in acinar cells, and also promotes δ-specification in the absence of other factors. δ-specification is in turn suppressed by Mafa and Pdx1 during α- and β-cell induction. These studies identify a set of defined factors whose combinatorial actions reprogram acinar cells to distinct islet endocrine subtypes in vivo. DOI: http://dx.doi.org/10.7554/eLife.01846.001 PMID:24714494
Patil, Sonali; Pincas, Hanna; Seto, Jeremy; Nudelman, German; Nudelman, Irina; Sealfon, Stuart C
2010-10-07
Dendritic cells are antigen-presenting cells that play an essential role in linking the innate and adaptive immune systems. Much research has focused on the signaling pathways triggered upon infection of dendritic cells by various pathogens. The high level of activity in the field makes it desirable to have a pathway-based resource to access the information in the literature. Current pathway diagrams lack either comprehensiveness, or an open-access editorial interface. Hence, there is a need for a dependable, expertly curated knowledgebase that integrates this information into a map of signaling networks. We have built a detailed diagram of the dendritic cell signaling network, with the goal of providing researchers with a valuable resource and a facile method for community input. Network construction has relied on comprehensive review of the literature and regular updates. The diagram includes detailed depictions of pathways activated downstream of different pathogen recognition receptors such as Toll-like receptors, retinoic acid-inducible gene-I-like receptors, C-type lectin receptors and nucleotide-binding oligomerization domain-like receptors. Initially assembled using CellDesigner software, it provides an annotated graphical representation of interactions stored in Systems Biology Mark-up Language. The network, which comprises 249 nodes and 213 edges, has been web-published through the Biological Pathway Publisher software suite. Nodes are annotated with PubMed references and gene-related information, and linked to a public wiki, providing a discussion forum for updates and corrections. To gain more insight into regulatory patterns of dendritic cell signaling, we analyzed the network using graph-theory methods: bifan, feedforward and multi-input convergence motifs were enriched. This emphasis on activating control mechanisms is consonant with a network that subserves persistent and coordinated responses to pathogen detection. This map represents a navigable aid for presenting a consensus view of the current knowledge on dendritic cell signaling that can be continuously improved through contributions of research community experts. Because the map is available in a machine readable format, it can be edited and may assist researchers in data analysis. Furthermore, the availability of a comprehensive knowledgebase might help further research in this area such as vaccine development. The dendritic cell signaling knowledgebase is accessible at http://tsb.mssm.edu/pathwayPublisher/DC_pathway/DC_pathway_index.html.
Lapadat, Razvan; Nam, Moon Woo; Mehrotra, Swati; Velankar, Milind; Pambuccian, Stefan E
2017-03-01
Warthin-Finkeldey type giant cells were first described in autopsies performed on young children who died during the highly lethal measles epidemic in Palermo during the winter of 1908. The cells had 8-15 nuclei without identifiable cytoplasm within the germinal centers of lymphoid organs resembling megakaryocytes. We describe a case of Hashimoto thyroiditis with an enlarging substernal throid mass. The resection specimen contained many Warthin-Finkeldey-Like Cells (WFLC) in an extranodal marginal zone lymphoma (MALT type) with focal transformation to diffuse large B-cell lymphoma. The WFLC showed nuclear features similar to those of neighboring follicular dendritic cells (FDCs), favoring the hypothesis that these cells might be the product of fusion of FDCs. This is supported by immunostaining results and the occurrence of similar cells in follicular dendritic cell sarcomas and in "dysplastic" FDCs in hyaline vascular type Castleman disease, a possible precursor of follicular dendritic cell tumors. Diagn. Cytopathol. 2017;45:212-216. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Laxmanan, V.
1986-01-01
The development of theoretical models which characterize the planar-cellular and cell-dendrite transitions is described. The transitions are analyzed in terms of the Chalmers number, the solute Peclet number, and the tip stability parameter, which correlate microstructural features and processing conditions. The planar-cellular transition is examined using the constitutional supercooling theory of Chalmers et al., (1953) and it is observed that the Chalmers number is between 0 and 1 during dendritic and cellular growth. Analysis of cell-dendrite transition data reveal that the transition occurs when the solute Peclet number goes through a minimum, the primary arm spacings go through a maximum, and the Chalmers number is equal to 1/2. The relation between the tip stability parameter and the solute Peclet number is investigated and it is noted that the tip stability parameter is useful for studying dendritic growth in alloys.
Palisade pattern of mormyrid Purkinje cells: a correlated light and electron microscopic study.
Meek, J; Nieuwenhuys, R
1991-04-01
The present study is devoted to a detailed analysis of the structural and synaptic organization of mormyrid Purkinje cells in order to evaluate the possible functional significance of their dendritic palisade pattern. For this purpose, the properties of Golgi-impregnated as well as unimpregnated Purkinje cells in lobe C1 and C3 of the cerebellum of Gnathonemus petersii were light and electron microscopically analyzed, quantified, reconstructed, and mutually compared. Special attention was paid to the degree of regularity of their dendritic trees, their relations with Bergmann glia, and the distribution and numerical properties of their synaptic connections with parallel fibers, stellate cells, "climbing" fibers, and Purkinje axonal boutons. The highest degree of palisade specialization was encountered in lobe C1, where Purkinje cells have on average 50 palisade dendrites with a very regular distribution in a sagittal plane. Their spine density decreases from superficial to deep (from 14 to 6 per micron dendritic length), a gradient correlated with a decreasing parallel fiber density but an increasing parallel fiber diameter. Each Purkinje cell makes on average 75,000 synaptic contacts with parallel fibers, some of which are rather coarse (0.45 microns), and provided with numerous short collaterals. Climbing fibers do not climb, since their synaptic contacts are restricted to the ganglionic layer (i.e., the layer of Purkinje and eurydendroid projection cells), where they make about 130 synaptic contacts per cell with 2 or 3 clusters of thorns on the proximal dendrites. These clusters contain also a type of "shunting" elements that make desmosome-like junctions with both the climbing fiber boutons and the necks of the thorns. The axons of Purkinje cells in lobe C1 make small terminal arborizations, with about 20 boutons, that may be substantially (up to 500 microns) displaced rostrally or caudally with respect to the soma. Purkinje axonal boutons were observed to make synaptic contacts with eurydendroid projection cells and with the proximal dendritic and somatic receptive surface of Purkinje cells, where about 15 randomly distributed boutons per neuron occur. The organization of Purkinje cells in lobe C3 differs markedly from that in C1 and seems to be less regular and specialized, although the overall palisade pattern is even more regular than in lobe C1 because of the absence of large eurydendroid neurons. However, individual neurons have a less regular dendritic tree, there is no apical-basal gradient in spine density or parallel fiber density and diameter, and there are no "shunting" elements in the climbing fiber glomeruli.(ABSTRACT TRUNCATED AT 400 WORDS)
NASA Technical Reports Server (NTRS)
1981-01-01
Liquid diffusion masks and liquid applied dopants to replace the CVD Silox masking and gaseous diffusion operations specified for forming junctions in the Westinghouse baseline process sequence for producing solar cells from dendritic web silicon were investigated. The baseline diffusion masking and drive processes were compared with those involving direct liquid applications to the dendritic web silicon strips. Attempts were made to control the number of variables by subjecting dendritic web strips cut from a single web crystal to both types of operations. Data generated reinforced earlier conclusions that efficiency levels at least as high as those achieved with the baseline back junction formation process can be achieved using liquid diffusion masks and liquid dopants. The deliveries of dendritic web sheet material and solar cells specified by the current contract were made as scheduled.
In vitro haematopoiesis of a novel dendritic-like cell present in murine spleen.
Tan, Jonathan K H; O'Neill, Helen C
2010-12-01
Dendritic cells (DC) are important antigen presenting cells (APC) which induce and control the adaptive immune response. In spleen alone, multiple DC subsets can be distinguished by cell surface marker phenotype. Most of these have been shown to develop from progenitors in bone marrow and to seed lymphoid and tissue sites during development. This study advances in vitro methodology for haematopoiesis of dendritic-like cells from progenitors in spleen. Since spleen progenitors undergo differentiation in vitro to produce these cells, the possibility exists that spleen represents a specific niche for differentiation of this subset. The fact that an equivalent cell subset has been shown to exist in spleen also supports that hypothesis. Studies have been directed at investigating the specific functional role of this novel subset as an APC accessible to blood-borne antigen, as well as the conditions under which haematopoiesis is initiated in spleen, and the type of progenitor involved.
Subtypes of medulloblastoma have distinct developmental origins
Gibson, Paul; Tong, Yiai; Robinson, Giles; Thompson, Margaret C.; Currle, D. Spencer; Eden, Christopher; Kranenburg, Tanya A.; Hogg, Twala; Poppleton, Helen; Martin, Julie; Finkelstein, David; Pounds, Stanley; Weiss, Aaron; Patay, Zoltan; Scoggins, Matthew; Ogg, Robert; Pei, Yanxin; Yang, Zeng-Jie; Brun, Sonja; Lee, Youngsoo; Zindy, Frederique; Lindsey, Janet C.; Taketo, Makoto M.; Boop, Frederick A.; Sanford, Robert A.; Gajjar, Amar; Clifford, Steven C.; Roussel, Martine F.; McKinnon, Peter J.; Gutmann, David H.; Ellison, David W.; Wechsler-Reya, Robert; Gilbertson, Richard J.
2010-01-01
Medulloblastoma encompasses a collection of clinically and molecularly diverse tumor subtypes that together comprise the most common malignant childhood brain tumor1–4. These tumors are thought to arise within the cerebellum, with approximately 25% originating from granule neuron precursor cells (GNPCs) following aberrant activation of the Sonic Hedgehog pathway (hereafter, SHH-subtype)3–8. The pathological processes that drive heterogeneity among the other medulloblastoma subtypes are not known, hindering the development of much needed new therapies. Here, we provide evidence that a discrete subtype of medulloblastoma that contains activating mutations in the WNT pathway effector CTNNB1 (hereafter, WNT-subtype)1,3,4, arises outside the cerebellum from cells of the dorsal brainstem. We found that genes marking human WNT-subtype medulloblastomas are more frequently expressed in the lower rhombic lip (LRL) and embryonic dorsal brainstem than in the upper rhombic lip (URL) and developing cerebellum. Magnetic resonance imaging (MRI) and intra-operative reports showed that human WNT-subtype tumors infiltrate the dorsal brainstem, while SHH-subtype tumors are located within the cerebellar hemispheres. Activating mutations in Ctnnb1 had little impact on progenitor cell populations in the cerebellum, but caused the abnormal accumulation of cells on the embryonic dorsal brainstem that included aberrantly proliferating Zic1+ precursor cells. These lesions persisted in all mutant adult mice and in 15% of cases in which Tp53 was concurrently deleted, progressed to form medulloblastomas that recapitulated the anatomy and gene expression profiles of human WNT-subtype medulloblastoma. We provide the first evidence that subtypes of medulloblastoma have distinct cellular origins. Our data provide an explanation for the marked molecular and clinical differences between SHH and WNT-subtype medulloblastomas and have profound implications for future research and treatment of this important childhood cancer. PMID:21150899
mRNA: From a chemical blueprint for protein production to an off-the-shelf therapeutic.
Van Lint, Sandra; Heirman, Carlo; Thielemans, Kris; Breckpot, Karine
2013-02-01
Two decades ago, mRNA became the focus of research in molecular medicine and was proposed as an active pharmaceutical ingredient for the therapy of cancer. In this regard, mRNA has been mainly used for ex vivo modification of antigen-presenting cells (APCs), such as dendritic cells (DCs). This vaccination strategy has proven to be safe, well tolerated and capable of inducing tumor antigen-specific immune responses. Recently, the direct application of mRNA for in situ modification of APCs, hence immunization was shown to be feasible and at least as effective as DC-based immunization in pre-clinical models. It is believed that application of mRNA as an off-the-shelf vaccine represents an important step in the development of future cancer immunotherapeutic strategies. Here, we will discuss the use of ex vivo mRNA-modified DCs and "naked mRNA" for cancer immunotherapy focusing on parameters such as the employed DC subtype, DC activation stimulus and route of immunization. In addition, we will provide an overview on the clinical trials published so far, trying to link their outcome to the aforementioned parameters.
Circulating Hematopoietic Stem and Progenitor Cells in Aging Atomic Bomb Survivors.
Kyoizumi, Seishi; Kubo, Yoshiko; Misumi, Munechika; Kajimura, Junko; Yoshida, Kengo; Hayashi, Tomonori; Imai, Kazue; Ohishi, Waka; Nakachi, Kei; Young, Lauren F; Shieh, Jae-Hung; Moore, Malcolm A; van den Brink, Marcel R M; Kusunoki, Yoichiro
2016-01-01
It is not yet known whether hematopoietic stem and progenitor cells (HSPCs) are compromised in the aging population of atomic bomb (A-bomb) survivors after their exposure nearly 70 years ago. To address this, we evaluated age- and radiation-related changes in different subtypes of circulating HSPCs among the CD34-positive/lineage marker-negative (CD34(+)Lin(-)) cell population in 231 Hiroshima A-bomb survivors. We enumerated functional HSPC subtypes, including: cobblestone area-forming cells; long-term culture-initiating cells; erythroid burst-forming units; granulocyte and macrophage colony-forming units; and T-cell and natural killer cell progenitors using cell culture. We obtained the count of each HSPC subtype per unit volume of blood and the proportion of each HSPC subtype in CD34(+)Lin(-) cells to represent the lineage commitment trend. Multivariate analyses, using sex, age and radiation dose as variables, showed significantly decreased counts with age in the total CD34(+)Lin(-) cell population and all HSPC subtypes. As for the proportion, only T-cell progenitors decreased significantly with age, suggesting that the commitment to the T-cell lineage in HSPCs continuously declines with age throughout the lifetime. However, neither the CD34(+)Lin(-) cell population, nor HSPC subtypes showed significant radiation-induced dose-dependent changes in counts or proportions. Moreover, the correlations of the proportions among HSPC subtypes in the survivors properly revealed the hierarchy of lineage commitments. Taken together, our findings suggest that many years after exposure to radiation and with advancing age, the number and function of HSPCs in living survivors as a whole may have recovered to normal levels.
Circulating Hematopoietic Stem and Progenitor Cells in Aging Atomic Bomb Survivors
Kyoizumi, Seishi; Kubo, Yoshiko; Misumi, Munechika; Kajimura, Junko; Yoshida, Kengo; Hayashi, Tomonori; Imai, Kazue; Ohishi, Waka; Nakachi, Kei; Young, Lauren F.; Shieh, Jae-Hung; Moore, Malcolm A.; van den Brink, Marcel R. M.; Kusunoki, Yoichiro
2016-01-01
It is not yet known whether hematopoietic stem and progenitor cells (HSPCs) are compromised in the aging population of atomic bomb (A-bomb) survivors after their exposure nearly 70 years ago. To address this, we evaluated age- and radiation-related changes in different subtypes of circulating HSPCs among the CD34-positive/lineage marker-negative (CD34+Lin− ) cell population in 231 Hiroshima A-bomb survivors. We enumerated functional HSPC subtypes, including: cobblestone area-forming cells; long-term culture-initiating cells; erythroid burst-forming units; granulocyte and macrophage colony-forming units; and T-cell and natural killer cell progenitors using cell culture. We obtained the count of each HSPC subtype per unit volume of blood and the proportion of each HSPC subtype in CD34+Lin− cells to represent the lineage commitment trend. Multivariate analyses, using sex, age and radiation dose as variables, showed significantly decreased counts with age in the total CD34+Lin− cell population and all HSPC subtypes. As for the proportion, only T-cell progenitors decreased significantly with age, suggesting that the commitment to the T-cell lineage in HSPCs continuously declines with age throughout the lifetime. However, neither the CD34+Lin− cell population, nor HSPC subtypes showed significant radiation-induced dose-dependent changes in counts or proportions. Moreover, the correlations of the proportions among HSPC subtypes in the survivors properly revealed the hierarchy of lineage commitments. Taken together, our findings suggest that many years after exposure to radiation and with advancing age, the number and function of HSPCs in living survivors as a whole may have recovered to normal levels. PMID:26720799
Kowalewicz-Kulbat, Magdalena; Ograczyk, Elżbieta; Włodarczyk, Marcin; Krawczyk, Krzysztof; Fol, Marek
2016-06-01
The immunomagnetic separation technique is the basis of monocyte isolation and further generation of monocyte-derived dendritic cells. To compare the efficiency of monocyte positive and negative separation, concentration of beads, and their impact on generated dendritic cells. Monocytes were obtained using monoclonal antibody-coated magnetic beads followed the Ficoll-Paque gradient separation of mononuclear cell fraction from the peripheral blood of 6 healthy volunteers. CD14 expression was analyzed by flow cytometry. Both types of magnetic separation including recommended and reduced concentrations of beads did not affect the yield and the purity of monocytes and their surface CD14 expression. However, DCs originated from the "positively" separated monocytes had noticeable higher expression of CD80.
Radiation-Induced Immune Modulation in Prostate Cancer
2008-01-01
cancers. 15. SUBJECT TERMS Radiation, Dendritic Cells , Cytokines, PSA 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18...radiation is more than a cytotoxic agent. Our recent study has shown that radiation modulates the immune system by affecting dendritic cell (DC...translate radiation-induced tumor cell death into generation of tumor immunity in the hope of optimizing therapy for localized and disseminated prostate
Neuroligin-1 overexpression in newborn granule cells in vivo.
Schnell, Eric; Bensen, Aesoon L; Washburn, Eric K; Westbrook, Gary L
2012-01-01
Adult-born dentate granule cells integrate into the hippocampal network, extend neurites and form synapses in otherwise mature tissue. Excitatory and inhibitory inputs innervate these new granule cells in a stereotyped, temporally segregated manner, which presents a unique opportunity to study synapse development in the adult brain. To examine the role of neuroligins as synapse-inducing molecules in vivo, we infected dividing neural precursors in adult mice with a retroviral construct that increased neuroligin-1 levels during granule cell differentiation. By 21 days post-mitosis, exogenous neuroligin-1 was expressed at the tips of dendritic spines and increased the number of dendritic spines. Neuroligin-1-overexpressing cells showed a selective increase in functional excitatory synapses and connection multiplicity by single afferent fibers, as well as an increase in the synaptic AMPA/NMDA receptor ratio. In contrast to its synapse-inducing ability in vitro, neuroligin-1 overexpression did not induce precocious synapse formation in adult-born neurons. However, the dendrites of neuroligin-1-overexpressing cells did have more thin protrusions during an early period of dendritic outgrowth, suggesting enhanced filopodium formation or stabilization. Our results indicate that neuroligin-1 expression selectively increases the degree, but not the onset, of excitatory synapse formation in adult-born neurons.
Lowenstein, P R; Castro, M G
2016-01-01
Malignant brain tumors are one of the most lethal cancers. They originate from glial cells which infiltrate throughout the brain. Current standard of care involves surgical resection, radiotherapy, and chemotherapy; median survival is currently ~14-20 months postdiagnosis. Given that the brain immune system is deficient in priming systemic immune responses to glioma antigens, we proposed to reconstitute the brain immune system to achieve immunological priming from within the brain. Two adenoviral vectors are injected into the resection cavity or remaining tumor. One adenoviral vector expresses the HSV-1-derived thymidine kinase which converts ganciclovir into a compound only cytotoxic to dividing glioma cells. The second adenovirus expresses the cytokine fms-like tyrosine kinase 3 ligand (Flt3L). Flt3L differentiates precursors into dendritic cells and acts as a chemokine that attracts dendritic cells to the brain. HSV-1/ganciclovir killing of tumor cells releases tumor antigens that are taken up by dendritic cells within the brain tumor microenvironment. Tumor killing also releases HMGB1, an endogenous TLR2 agonist that activates dendritic cells. HMGB1-activated dendritic cells, loaded with glioma antigens, migrate to cervical lymph nodes to stimulate a systemic CD8+ T cells cytotoxic immune response against glioma. This immune response is specific to glioma tumors, induces immunological memory, and does neither cause brain toxicity nor autoimmune responses. An IND was granted by the FDA on 4/7/2011. A Phase I, first in person trial, to test whether reengineering the brain immune system is potentially therapeutic is ongoing. © 2016 Elsevier Inc. All rights reserved.
Evans, Heather M.; Simpson, Andrew; Shen, Shu; Stromberg, Arnold J.; Pickett, Carol L.
2017-01-01
ABSTRACT The life cycle of the opportunistic fungal pathogen Pneumocystis murina consists of a trophic stage and an ascus-like cystic stage. Infection with the cyst stage induces proinflammatory immune responses, while trophic forms suppress the cytokine response to multiple pathogen-associated molecular patterns (PAMPs), including β-glucan. A targeted gene expression assay was used to evaluate the dendritic cell response following stimulation with trophic forms alone, with a normal mixture of trophic forms and cysts, or with β-glucan. We demonstrate that stimulation with trophic forms downregulated the expression of multiple genes normally associated with the response to infection, including genes encoding transcription factors. Trophic forms also suppressed the expression of genes related to antigen processing and presentation, including the gene encoding the major histocompatibility complex (MHC) class II transactivator, CIITA. Stimulation of dendritic cells with trophic forms, but not a mixture of trophic forms and cysts, reduced the expression of MHC class II and the costimulatory molecule CD40 on the surface of the cells. These defects in the expression of MHC class II and costimulatory molecules corresponded with a reduced capacity for trophic form-loaded dendritic cells to stimulate CD4+ T cell proliferation and polarization. These data are consistent with the delayed innate and adaptive responses previously observed in immunocompetent mice inoculated with trophic forms compared to responses in mice inoculated with a mixture of trophic forms and cysts. We propose that trophic forms broadly inhibit the ability of dendritic cells to fulfill their role as antigen-presenting cells. PMID:28694293
Travelling waves in a model of quasi-active dendrites with active spines
NASA Astrophysics Data System (ADS)
Timofeeva, Y.
2010-05-01
Dendrites, the major components of neurons, have many different types of branching structures and are involved in receiving and integrating thousands of synaptic inputs from other neurons. Dendritic spines with excitable channels can be present in large densities on the dendrites of many cells. The recently proposed Spike-Diffuse-Spike (SDS) model that is described by a system of point hot-spots (with an integrate-and-fire process) embedded throughout a passive tree has been shown to provide a reasonable caricature of a dendritic tree with supra-threshold dynamics. Interestingly, real dendrites equipped with voltage-gated ion channels can exhibit not only supra-threshold responses, but also sub-threshold dynamics. This sub-threshold resonant-like oscillatory behaviour has already been shown to be adequately described by a quasi-active membrane. In this paper we introduce a mathematical model of a branched dendritic tree based upon a generalisation of the SDS model where the active spines are assumed to be distributed along a quasi-active dendritic structure. We demonstrate how solitary and periodic travelling wave solutions can be constructed for both continuous and discrete spine distributions. In both cases the speed of such waves is calculated as a function of system parameters. We also illustrate that the model can be naturally generalised to an arbitrary branched dendritic geometry whilst remaining computationally simple. The spatio-temporal patterns of neuronal activity are shown to be significantly influenced by the properties of the quasi-active membrane. Active (sub- and supra-threshold) properties of dendrites are known to vary considerably among cell types and animal species, and this theoretical framework can be used in studying the combined role of complex dendritic morphologies and active conductances in rich neuronal dynamics.
Loo, Christopher P; Snyder, Christopher M; Hill, Ann B
2017-01-01
Increasing amounts of pathogen replication usually lead to a proportionate increase in size and effector differentiation of the CD8 + T cell response, which is attributed to increased Ag and inflammation. Using a murine CMV that is highly sensitive to the antiviral drug famciclovir to modulate virus replication, we found that increased virus replication drove increased effector CD8 + T cell differentiation, as expected. Paradoxically, however, increased virus replication dramatically decreased the size of the CD8 + T cell response to two immunodominant epitopes. The decreased response was due to type I IFN-dependent depletion of conventional dendritic cells and could be reproduced by specific depletion of dendritic cells from day 2 postinfection or by sterile induction of type I IFN. Increased virus replication and type I IFN specifically inhibited the response to two immunodominant epitopes that are known to be dependent on Ag cross-presented by DCs, but they did not inhibit the response to "inflationary" epitopes whose responses can be sustained by infected nonhematopoietic cells. Our results show that type I IFN can suppress CD8 + T cell responses to cross-presented Ag by depleting cross-presenting conventional dendritic cells. Copyright © 2016 by The American Association of Immunologists, Inc.
Guiton, R; Zagani, R; Dimier-Poisson, I
2009-10-01
Toxoplasma gondii is the causative agent of toxoplasmosis, a worldwide zoonosis for which an effective vaccine is needed. Vaccination with pulsed dendritic cells is very efficient but their use in a vaccination protocol is unconceivable. Nevertheless, unravelling the induced effector mechanisms is crucial to design new vaccine strategies. We vaccinated CBA/J mice with parasite extract-pulsed dendritic cells, challenged them with T. gondii cysts and carried out in vivo depletion of CD4(+) or CD8(+) T lymphocytes to study the subsequent cellular immune response and protective mechanisms. CD4(+) lymphocytes were poorly implicated either in spleen and mesenteric lymph node (MLN) cytokine secretion or in mice protection. By contrast, the increasing number of intracerebral cysts and depletion of CD8(+) cells were strongly correlated, revealing a prominent role for CD8(+) lymphocytes in the protection of mice. Splenic CD8(+) lymphocytes induce a strong Th1 response controlled by a Th2 response whereas CD8(+) cells from MLNs inhibit both Th1 and Th2 responses. CD8(+) cells are the main effectors following dendritic cell vaccination and Toxoplasma infection while CD4(+) T cells only play a minor role. This contrasts with T. gondii infection which elicits the generation of CD4(+) and CD8(+) T cells that provide protective immunity.
Shen, Hung-Chang; Chu, Sao-Yu; Hsu, Tsai-Chi; Wang, Chun-Han; Lin, I-Ya; Yu, Hung-Hsiang
2017-04-01
Elucidating how appropriate neurite patterns are generated in neurons of the olfactory system is crucial for comprehending the construction of the olfactory map. In the Drosophila olfactory system, projection neurons (PNs), primarily derived from four neural stem cells (called neuroblasts), populate their cell bodies surrounding to and distribute their dendrites in distinct but overlapping patterns within the primary olfactory center of the brain, the antennal lobe (AL). However, it remains unclear whether the same molecular mechanisms are employed to generate the appropriate dendritic patterns in discrete AL glomeruli among PNs produced from different neuroblasts. Here, by examining a previously explored transmembrane protein Semaphorin-1a (Sema-1a) which was proposed to globally control initial PN dendritic targeting along the dorsolateral-to-ventromedial axis of the AL, we discover a new role for Sema-1a in preventing dendrites of both uni-glomerular and poly-glomerular PNs from aberrant invasion into select AL regions and, intriguingly, this Sema-1a-deficient dendritic mis-targeting phenotype seems to associate with the origins of PNs from which they are derived. Further, ectopic expression of Sema-1a resulted in PN dendritic mis-projection from a select AL region into adjacent glomeruli, strengthening the idea that Sema-1a plays an essential role in preventing abnormal dendritic accumulation in select AL regions. Taken together, these results demonstrate that Sema-1a repulsion keeps dendrites of different types of PNs away from each other, enabling the same types of PN dendrites to be sorted into destined AL glomeruli and permitting for functional assembly of olfactory circuitry.
Oren-Suissa, Meital; Gattegno, Tamar; Kravtsov, Veronika; Podbilewicz, Benjamin
2017-01-01
Injury triggers regeneration of axons and dendrites. Research has identified factors required for axonal regeneration outside the CNS, but little is known about regeneration triggered by dendrotomy. Here, we study neuronal plasticity triggered by dendrotomy and determine the fate of complex PVD arbors following laser surgery of dendrites. We find that severed primary dendrites grow toward each other and reconnect via branch fusion. Simultaneously, terminal branches lose self-avoidance and grow toward each other, meeting and fusing at the tips via an AFF-1-mediated process. Ectopic branch growth is identified as a step in the regeneration process required for bypassing the lesion site. Failure of reconnection to the severed dendrites results in degeneration of the distal end of the neuron. We discover pruning of excess branches via EFF-1 that acts to recover the original wild-type arborization pattern in a late stage of the process. In contrast, AFF-1 activity during dendritic auto-fusion is derived from the lateral seam cells and not autonomously from the PVD neuron. We propose a model in which AFF-1-vesicles derived from the epidermal seam cells fuse neuronal dendrites. Thus, EFF-1 and AFF-1 fusion proteins emerge as new players in neuronal arborization and maintenance of arbor connectivity following injury in Caenorhabditis elegans. Our results demonstrate that there is a genetically determined multi-step pathway to repair broken dendrites in which EFF-1 and AFF-1 act on different steps of the pathway. EFF-1 is essential for dendritic pruning after injury and extrinsic AFF-1 mediates dendrite fusion to bypass injuries. PMID:28283540
Srivastava, U C; Pathak, S V
2010-10-30
To study interlaminar phenotypic variations in the pyramidal neurons of parietal isocortex in bat (Cynopterus sphinx), Golgi and Nissl methods have been employed. The parietal isocortex is relatively thin in the bat as compared to prototheria with layer III, V and VI accounting for more than two—thirds of total cortical thickness. Thick cell free layer I and thinnest accentuated layer II are quite in connotation with other chiropterids. Poor demarcation of layer III/IV in the present study is also in connotation with primitive eutherian mammal (i.e. prototherian) and other chiropterids. Most of the pyramidal cells in the different layers of the parietal isocortex are of typical type as seen in other eutherians but differ significantly in terms of soma shape and size, extent of dendritic arbor, diameter of dendrites and spine density. Percentage of pyramidal neurons, diameter of apical dendrite and spine density on apical dendrite appear to follow an increasing trend from primitive to advanced mammals; but extent of dendrites are probably governed by the specific life patterns of these mammals. It is thus concluded that 'typical' pyramidal neurons in parietal isocortex are similar in therians but different from those in prototherians. It is possible that these cells might have arisen among early eutherians after divergence from prototherian stock.
Functional μ-Opioid-Galanin Receptor Heteromers in the Ventral Tegmental Area
Moreno, Estefanía; Quiroz, César; Rea, William; Cai, Ning-Sheng; Cortés, Antoni
2017-01-01
The neuropeptide galanin has been shown to interact with the opioid system. More specifically, galanin counteracts the behavioral effects of the systemic administration of μ-opioid receptor (MOR) agonists. Yet the mechanism responsible for this galanin–opioid interaction has remained elusive. Using biophysical techniques in mammalian transfected cells, we found evidence for selective heteromerization of MOR and the galanin receptor subtype Gal1 (Gal1R). Also in transfected cells, a synthetic peptide selectively disrupted MOR–Gal1R heteromerization as well as specific interactions between MOR and Gal1R ligands: a negative cross talk, by which galanin counteracted MAPK activation induced by the endogenous MOR agonist endomorphin-1, and a cross-antagonism, by which a MOR antagonist counteracted MAPK activation induced by galanin. These specific interactions, which represented biochemical properties of the MOR-Gal1R heteromer, could then be identified in situ in slices of rat ventral tegmental area (VTA) with MAPK activation and two additional cell signaling pathways, AKT and CREB phosphorylation. Furthermore, in vivo microdialysis experiments showed that the disruptive peptide selectively counteracted the ability of galanin to block the dendritic dopamine release in the rat VTA induced by local infusion of endomorphin-1, demonstrating a key role of MOR-Gal1R heteromers localized in the VTA in the direct control of dopamine cell function and their ability to mediate antagonistic interactions between MOR and Gal1R ligands. The results also indicate that MOR-Gal1R heteromers should be viewed as targets for the treatment of opioid use disorders. SIGNIFICANCE STATEMENT The μ-opioid receptor (MOR) localized in the ventral tegmental area (VTA) plays a key role in the reinforcing and addictive properties of opioids. With parallel in vitro experiments in mammalian transfected cells and in situ and in vivo experiments in rat VTA, we demonstrate that a significant population of these MORs form functional heteromers with the galanin receptor subtype Gal1 (Gal1R), which modulate the activity of the VTA dopaminergic neurons. The MOR-Gal1R heteromer can explain previous results showing antagonistic galanin–opioid interactions and offers a new therapeutic target for the treatment of opioid use disorder. PMID:28007761
Hirokawa, N; Funakoshi, T; Sato-Harada, R; Kanai, Y
1996-02-01
In mature neurons, tau is abundant in axons, whereas microtubule-associated protein 2 (MAP2) and MAP2C are specifically localized in dendrites. Known mechanisms involved in the compartmentalization of these cytoskeletal proteins include the differential localization of mRNA (MAP2 mRNA in dendrites, MAP2C mRNA in cell body, and Tau mRNA in proximal axon revealed by in situ hybridization) (Garner, C.C., R.P. Tucker, and A. Matus. 1988. Nature (Lond.). 336:674-677; Litman, P., J. Barg, L. Rindzooski, and I. Ginzburg. 1993. Neuron. 10:627-638), suppressed transit of MAP2 into axons (revealed by cDNA transfection into neurons) (Kanai, Y., and N. Hirokawa. 1995. Neuron. 14:421-432), and differential turnover of MAP2 in axons vs dendrites (Okabe, S., and N. Hirokawa. 1989. Proc. Natl. Acad. Sci. USA. 86:4127-4131). To investigate whether differential turnover of MAPs contributes to localization of other major MAPs in general, we microinjected biotinylated tau, MAP2C, or MAP2 into mature spinal cord neurons in culture (approximately 3 wk) and then analyzed their fates by antibiotin immunocytochemistry. Initially, each was detected in axons and dendrites, although tau persisted only in axons, whereas MAP2C and MAP2 were restricted to cell bodies and dendrites. Injected MAP2C and MAP2 bound to dendritic microtubules more firmly than to microtubules in axons, while injected tau bound to axonal microtubules more firmly than to microtubules in dendrites. Thus, beyond contributions from mRNA localization and selective axonal transport, compartmentalization of each of the three major MAPs occurs through local differential turnover.
H9N2 avian influenza virus enhances the immune responses of BMDCs by down-regulating miR29c.
Lin, Jian; Xia, Jing; Chen, Ya T; Zhang, Ke Y; Zeng, Yan; Yang, Qian
2017-02-01
Avian influenza virus (AIV) of the subtypes H9 and N2 is well recognised and caused outbreaks-due to its high genetic variability and high rate of recombination with other influenza virus subtypes. The pathogenicity of H9N2 AIV depends on the host immune response. Dendritic cells (DCs) are major antigen presenting cells that can significantly inhibit H9N2 AIV replication. MicroRNAs (miRNAs) influence the ability of DCs to present antigens, as well as the ability of AIVs to infect host cells and replicate. Here, we studied the molecular mechanism underlying the miRNA-mediated regulation of immune function of mouse DCs. We first screened for and verified the induction of miRNAs in DCs after H9N2 AIVstimulation. We also constructed miR29c, miR339 and miR222 over-expression vector and showed that only the induction of miR29c lead to a hugely increased expression of surface marker MHCII and CD40. Whilst the inhibition of miR29c, miR339 and miR222 in mouse DCs would repressed the expression of DCs surface markers. Moreover, we found that miR29c stimulation not only up-regulate MHCII and CD40, but also enhance the ability of DCs to activate lymphocytes and secrete cytokines IL-6 or TNF-a. Furthermore, we found that Tarbp1 and Rfx7 were targeted and repressed by miR29c. Finally, we revealed that the inhibition of miR29c marvelously accelerated virus replication. Together, our data shed new light on the roles and mechanisms of miR29c in regulating DC function and suggest new strategies for combating AIVs. Copyright © 2016. Published by Elsevier Ltd.
Ismahil, Mohamed Ameen; Hamid, Tariq; Bansal, Shyam S; Patel, Bindiya; Kingery, Justin R; Prabhu, Sumanth D
2014-01-17
The role of mononuclear phagocytes in chronic heart failure (HF) is unknown. Our aim was to delineate monocyte, macrophage, and dendritic cell trafficking in HF and define the contribution of the spleen to cardiac remodeling. We evaluated C57Bl/6 mice with chronic HF 8 weeks after coronary ligation. As compared with sham-operated controls, HF mice exhibited: (1) increased proinflammatory CD11b+ F4/80+ CD206- macrophages and CD11b+ F4/80+ Gr-1(hi) monocytes in the heart and peripheral blood, respectively, and reduced CD11b+ F4/80+ Gr-1(hi) monocytes in the spleen; (2) significantly increased CD11c+ B220- classical dendritic cells and CD11c+ low)B220+ plasmacytoid dendritic cells in both the heart and spleen, and increased classic dendritic cells and plasmacytoid dendritic cells in peripheral blood and bone marrow, respectively; (3) increased CD4+ helper and CD8+ cytotoxic T-cells in the spleen; and (4) profound splenic remodeling with abundant white pulp follicles, markedly increased size of the marginal zone and germinal centers, and increased expression of alarmins. Splenectomy in mice with established HF reversed pathological cardiac remodeling and inflammation. Splenocytes adoptively transferred from mice with HF, but not from sham-operated mice, homed to the heart and induced long-term left ventricular dilatation, dysfunction, and fibrosis in naive recipients. Recipient mice also exhibited monocyte activation and splenic remodeling similar to HF mice. Activation of mononuclear phagocytes is central to the progression of cardiac remodeling in HF, and heightened antigen processing in the spleen plays a critical role in this process. Splenocytes (presumably splenic monocytes and dendritic cells) promote immune-mediated injurious responses in the failing heart and retain this memory on adoptive transfer.
Different tissue phagocytes sample apoptotic cells to direct distinct homeostasis programs
Cummings, Ryan J.; Barbet, Gaetan; Bongers, Gerold; Hartmann, Boris M.; Gettler, Kyle; Muniz, Luciana; Furtado, Glaucia C.; Cho, Judy; Lira, Sergio A.; Blander, J. Magarian
2017-01-01
Recognition and removal of apoptotic cells by professional phagocytes, including dendritic cells and macrophages, preserves immune self-tolerance and prevents chronic inflammation and autoimmune pathologies1,2. The diverse array of phagocytes that reside within different tissues, combined with the necessarily prompt nature of apoptotic cell clearance, makes it difficult to study this process in situ. The full spectrum of functions executed by tissue-resident phagocytes in response to homeostatic apoptosis, therefore, remains unclear. Here we show that mouse apoptotic intestinal epithelial cells (IECs), which undergo continuous renewal to maintain optimal barrier and absorptive functions3, are not merely extruded to maintain homeostatic cell numbers4, but are also sampled by a single subset of dendritic cells and two macrophage subsets within a well-characterized network of phagocytes in the small intestinal lamina propria5,6. Characterization of the transcriptome within each subset before and after in situ sampling of apoptotic IECs revealed gene expression signatures unique to each phagocyte, including macrophage-specific lipid metabolism and amino acid catabolism, and a dendritic-cell-specific program of regulatory CD4+ T-cell activation. A common ‘suppression of inflammation’ signature was noted, although the specific genes and pathways involved varied amongst dendritic cells and macrophages, reflecting specialized functions. Apoptotic IECs were trafficked to mesenteric lymph nodes exclusively by the dendritic cell subset and served as critical determinants for the induction of tolerogenic regulatory CD4+ T-cell differentiation. Several of the genes that were differentially expressed by phagocytes bearing apoptotic IECs overlapped with susceptibility genes for inflammatory bowel disease7. Collectively, these findings provide new insights into the consequences of apoptotic cell sampling, advance our understanding of how homeostasis is maintained within the mucosa and set the stage for development of novel therapeutics to alleviate chronic inflammatory diseases such as inflammatory bowel disease. PMID:27828940
Winters, Bradley D; Jin, Shan-Xue; Ledford, Kenneth R; Golding, Nace L
2017-03-22
The principal neurons of the medial superior olive (MSO) encode cues for horizontal sound localization through comparisons of the relative timing of EPSPs. To understand how the timing and amplitude of EPSPs are maintained during propagation in the dendrites, we made dendritic and somatic whole-cell recordings from MSO principal neurons in brain slices from Mongolian gerbils. In somatic recordings, EPSP amplitudes were largely uniform following minimal stimulation of excitatory synapses at visualized locations along the dendrites. Similar results were obtained when excitatory synaptic transmission was eliminated in a low calcium solution and then restored at specific dendritic sites by pairing input stimulation and focal application of a higher calcium solution. We performed dual dendritic and somatic whole-cell recordings to measure spontaneous EPSPs using a dual-channel template-matching algorithm to separate out those events initiated at or distal to the dendritic recording location. Local dendritic spontaneous EPSP amplitudes increased sharply in the dendrite with distance from the soma (length constant, 53.6 μm), but their attenuation during propagation resulted in a uniform amplitude of ∼0.2 mV at the soma. The amplitude gradient of dendritic EPSPs was also apparent in responses to injections of identical simulated excitatory synaptic currents in the dendrites. Compartmental models support the view that these results extensively reflect the influence of dendritic cable properties. With relatively few excitatory axons innervating MSO neurons, the normalization of dendritic EPSPs at the soma would increase the importance of input timing versus location during the processing of interaural time difference cues in vivo SIGNIFICANCE STATEMENT The neurons of the medial superior olive analyze cues for sound localization by detecting the coincidence of binaural excitatory synaptic inputs distributed along the dendrites. Previous studies have shown that dendritic voltages undergo severe attenuation as they propagate to the soma, potentially reducing the influence of distal inputs. However, using dendritic and somatic patch recordings, we found that dendritic EPSP amplitude increased with distance from the soma, compensating for dendritic attenuation and normalizing EPSP amplitude at the soma. Much of this normalization reflected the influence of dendritic morphology. As different combinations of presynaptic axons may be active during consecutive cycles of sound stimuli, somatic EPSP normalization renders spike initiation more sensitive to synapse timing than dendritic location. Copyright © 2017 the authors 0270-6474/17/373138-12$15.00/0.
Otsu, Yo; Marcaggi, Païkan; Feltz, Anne; Isope, Philippe; Kollo, Mihaly; Nusser, Zoltan; Mathieu, Benjamin; Kano, Masanobu; Tsujita, Mika; Sakimura, Kenji; Dieudonné, Stéphane
2014-01-01
Summary In cerebellar Purkinje cell dendrites, heterosynaptic calcium signaling induced by the proximal climbing fiber (CF) input controls plasticity at distal parallel fiber (PF) synapses. The substrate and regulation of this long-range dendritic calcium signaling are poorly understood. Using high-speed calcium imaging, we examine the role of active dendritic conductances. Under basal conditions, CF stimulation evokes T-type calcium signaling displaying sharp proximodistal decrement. Combined mGluR1 receptor activation and depolarization, two activity-dependent signals, unlock P/Q calcium spikes initiation and propagation, mediating efficient CF signaling at distal sites. These spikes are initiated in proximal smooth dendrites, independently from somatic sodium action potentials, and evoke high-frequency bursts of all-or-none fast-rising calcium transients in PF spines. Gradual calcium spike burst unlocking arises from increasing inactivation of mGluR1-modulated low-threshold A-type potassium channels located in distal dendrites. Evidence for graded activity-dependent CF calcium signaling at PF synapses refines current views on cerebellar supervised learning rules. PMID:25220810
Otsu, Yo; Marcaggi, Païkan; Feltz, Anne; Isope, Philippe; Kollo, Mihaly; Nusser, Zoltan; Mathieu, Benjamin; Kano, Masanobu; Tsujita, Mika; Sakimura, Kenji; Dieudonné, Stéphane
2014-10-01
In cerebellar Purkinje cell dendrites, heterosynaptic calcium signaling induced by the proximal climbing fiber (CF) input controls plasticity at distal parallel fiber (PF) synapses. The substrate and regulation of this long-range dendritic calcium signaling are poorly understood. Using high-speed calcium imaging, we examine the role of active dendritic conductances. Under basal conditions, CF stimulation evokes T-type calcium signaling displaying sharp proximodistal decrement. Combined mGluR1 receptor activation and depolarization, two activity-dependent signals, unlock P/Q calcium spikes initiation and propagation, mediating efficient CF signaling at distal sites. These spikes are initiated in proximal smooth dendrites, independently from somatic sodium action potentials, and evoke high-frequency bursts of all-or-none fast-rising calcium transients in PF spines. Gradual calcium spike burst unlocking arises from increasing inactivation of mGluR1-modulated low-threshold A-type potassium channels located in distal dendrites. Evidence for graded activity-dependent CF calcium signaling at PF synapses refines current views on cerebellar supervised learning rules. Copyright © 2014 Elsevier Inc. All rights reserved.
Harvey, Victoria L; Duguid, Ian C; Krasel, Cornelius; Stephens, Gary J
2006-01-01
Ionotropic γ-amino butyric acid (GABA) receptors composed of heterogeneous molecular subunits are major mediators of inhibitory responses in the adult CNS. Here, we describe a novel ionotropic GABA receptor in mouse cerebellar Purkinje cells (PCs) using agents reported to have increased affinity for ρ subunit-containing GABAC over other GABA receptors. Exogenous application of the GABAC-preferring agonist cis-4-aminocrotonic acid (CACA) evoked whole-cell currents in PCs, whilst equimolar concentrations of GABA evoked larger currents. CACA-evoked currents had a greater sensitivity to the selective GABAC antagonist (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA) than GABA-evoked currents. Focal application of agonists produced a differential response profile; CACA-evoked currents displayed a much more pronounced attenuation with increasing distance from the PC soma, displayed a slower time-to-peak and exhibited less desensitization than GABA-evoked currents. However, CACA-evoked currents were also completely blocked by bicuculline, a selective agent for GABAA receptors. Thus, we describe a population of ionotropic GABA receptors with a mixed GABAA/GABAC pharmacology. TPMPA reduced inhibitory synaptic transmission at interneurone–Purkinje cell (IN–PC) synapses, causing clear reductions in miniature inhibitory postsynaptic current (mIPSC) amplitude and frequency. Combined application of NO-711 (a selective GABA transporter subtype 1 (GAT-1) antagonist) and SNAP-5114 (a GAT-(2)/3/4 antagonist) induced a tonic GABA conductance in PCs; however, TPMPA had no effect on this current. Immunohistochemical studies suggest that ρ subunits are expressed predominantly in PC soma and proximal dendritic compartments with a lower level of expression in more distal dendrites; this selective immunoreactivity contrasted with a more uniform distribution of GABAA α1 subunits in PCs. Finally, co-immunoprecipitation studies suggest that ρ subunits can form complexes with GABAA receptor α1 subunits in the cerebellar cortex. Overall, these data suggest that ρ subunits contribute to functional ionotropic receptors that mediate a component of phasic inhibitory GABAergic transmission at IN–PC synapses in the cerebellum. PMID:16945976
Cell-Autonomous Regulation of Dendritic Spine Density by PirB.
Vidal, George S; Djurisic, Maja; Brown, Kiana; Sapp, Richard W; Shatz, Carla J
2016-01-01
Synapse density on cortical pyramidal neurons is modulated by experience. This process is highest during developmental critical periods, when mechanisms of synaptic plasticity are fully engaged. In mouse visual cortex, the critical period for ocular dominance (OD) plasticity coincides with the developmental pruning of synapses. At this time, mice lacking paired Ig-like receptor B (PirB) have excess numbers of dendritic spines on L5 neurons; these spines persist and are thought to underlie the juvenile-like OD plasticity observed in adulthood. Here we examine whether PirB is required specifically in excitatory neurons to exert its effect on dendritic spine and synapse density during the critical period. In mice with a conditional allele of PirB (PirB fl/fl ), PirB was deleted only from L2/3 cortical pyramidal neurons in vivo by timed in utero electroporation of Cre recombinase. Sparse mosaic expression of Cre produced neurons lacking PirB in a sea of wild-type neurons and glia. These neurons had significantly elevated dendritic spine density, as well as increased frequency of miniature EPSCs, suggesting that they receive a greater number of synaptic inputs relative to Cre - neighbors. The effect of cell-specific PirB deletion on dendritic spine density was not accompanied by changes in dendritic branching complexity or axonal bouton density. Together, results imply a neuron-specific, cell-autonomous action of PirB on synaptic density in L2/3 pyramidal cells of visual cortex. Moreover, they are consistent with the idea that PirB functions normally to corepress spine density and synaptic plasticity, thereby maintaining headroom for cells to encode ongoing experience-dependent structural change throughout life.
Chabaud, Mélanie; Heuzé, Mélina L.; Bretou, Marine; Vargas, Pablo; Maiuri, Paolo; Solanes, Paola; Maurin, Mathieu; Terriac, Emmanuel; Le Berre, Maël; Lankar, Danielle; Piolot, Tristan; Adelstein, Robert S.; Zhang, Yingfan; Sixt, Michael; Jacobelli, Jordan; Bénichou, Olivier; Voituriez, Raphaël; Piel, Matthieu; Lennon-Duménil, Ana-Maria
2015-01-01
The immune response relies on the migration of leukocytes and on their ability to stop in precise anatomical locations to fulfil their task. How leukocyte migration and function are coordinated is unknown. Here we show that in immature dendritic cells, which patrol their environment by engulfing extracellular material, cell migration and antigen capture are antagonistic. This antagonism results from transient enrichment of myosin IIA at the cell front, which disrupts the back-to-front gradient of the motor protein, slowing down locomotion but promoting antigen capture. We further highlight that myosin IIA enrichment at the cell front requires the MHC class II-associated invariant chain (Ii). Thus, by controlling myosin IIA localization, Ii imposes on dendritic cells an intermittent antigen capture behaviour that might facilitate environment patrolling. We propose that the requirement for myosin II in both cell migration and specific cell functions may provide a general mechanism for their coordination in time and space. PMID:26109323
Flutter, Barry; Nestle, Frank O
2013-10-17
Interferon regulatory factors play an important role in the transcriptional regulation of immunity. In this issue of Immunity, Kumamoto et al. (2013) and Gao et al. (2013) identify an Irf4-dependent migratory dendritic cell subset required for T helper 2 cell polarization following cutaneous challenge. Copyright © 2013 Elsevier Inc. All rights reserved.
Dendritic Cell-Based Genetic Immunotherapy for Ovarian Cancer
2008-12-01
transduction of dendritic cells (DCs) is inefficient because of the lack of the primary Ad receptor, CAR. CD40 is a surface marker expressed by DCs that...ligands or antibodies that can bind to the cell surface markers expressed by DCs. The tumor antigen or peptides are linked to the ligands...thus pose the risk of insertional mutagenesis and oncogenesis. The various cell- surface markers that have been exploited for targeting DCs have
PDC expressing CD36, CD61 and IL-10 may contribute to propagation of immune tolerance.
Parcina, Marijo; Schiller, Martin; Gierschke, Aline; Heeg, Klaus; Bekeredjian-Ding, Isabelle
2009-05-01
Human plasmacytoid dendritic cells (PDC) are blood dendritic cell antigen 2 (BDCA2) and blood dendritic cell antigen 4 (BDCA4) positive leukocytes that do not express common lineage markers. They have been described as proinflammatory innate immune cells and are the major source of alphaIFN in the human body. PDC-derived secretion of type I IFNs upon triggering of nucleic acid-sensing toll-like receptors (TLR) primes immune cells to rapidly respond to microbial stimuli and promotes a Th1 response. Here, we report that human PDC express CD36 and CD61 (beta3 integrin), both involved in uptake of apoptotic cells and in induction of tolerance. Freshly isolated PDC and PDC within human blood leukocytes constitutively express IL-10. Thus, PDC may possess a so far neglected role in propagation of immune tolerance.
Maxwell, Russell; Luksik, Andrew S; Garzon-Muvdi, Tomas; Lim, Michael
2017-06-01
Malignant gliomas, including glioblastoma and anaplastic astrocytoma, are the most frequent primary brain tumors and present with many treatment challenges. In this review, we discuss the potential of cellular- and viral-based immunotherapies in the treatment of malignant glioma, specifically focusing on dendritic cell vaccines, adoptive cell therapy, and oncolytic viruses. Diverse cellular- and viral-based strategies have been engineered and optimized to generate either a specific or broad antitumor immune response in malignant glioma. Due to their successes in the preclinical arena, many of these therapies have undergone phase I and II clinical testing. These early clinical trials have demonstrated the feasibility, safety, and efficacy of these immunotherapies. Dendritic cell vaccines, adoptive cell transfer, and oncolytic viruses may have a potential role in the treatment of malignant glioma. However, these modalities must be investigated in well-designed phase III trials to prove their efficacy.
Immune heterogeneity in neuroinflammation: dendritic cells in the brain.
Colton, Carol A
2013-03-01
Dendritic cells (DC) are critical to an integrated immune response and serve as the key link between the innate and adaptive arms of the immune system. Under steady state conditions, brain DC's act as sentinels, continually sampling their local environment. They share this function with macrophages derived from the same basic hemopoietic (bone marrow-derived) precursor and with parenchymal microglia that arise from a unique non-hemopoietic origin. While multiple cells may serve as antigen presenting cells (APCs), dendritic cells present both foreign and self-proteins to naïve T cells that, in turn, carry out effector functions that serve to protect or destroy. The resulting activation of the adaptive response is a critical step to resolution of injury or infection and is key to survival. In this review we will explore the critical roles that DCs play in the brain's response to neuroinflammatory disease with emphasis on how the brain's microenvironment impacts these actions.
Designing oral vaccines targeting intestinal dendritic cells.
Devriendt, Bert; De Geest, Bruno G; Cox, Eric
2011-04-01
Most pathogens colonize and invade the host at mucosal surfaces, such as the lung and the intestine. To combat intestinal pathogens the induction of local adaptive immune responses is required, which is mainly achieved through oral vaccination. However, most vaccines are ineffective when given orally owing to the hostile environment in the gastrointestinal tract. The encapsulation of antigens in biodegradable microparticulate delivery systems enhances their immunogenicity; however, the uptake of these delivery systems by intestinal immune cells is rather poor. Surface decoration of the particulates with targeting ligands could increase the uptake and mediate the selective targeting of the vaccine to intestinal antigen-presenting cells, including dendritic cells. In this review, current knowledge on dendritic cell subsets is discussed, along with progress in the development of selective antigen targeting to these cells, in addition to focusing on data obtained in mice and, where possible, the pig, as a non-rodent animal model for humans. Moreover, the potential use and benefits of Fcγ receptor-mediated targeting of antigen delivery systems are highlighted. In conclusion, dendritic cell targeting ligands grafted on antigen carrier systems should preferably bind to a conserved endocytotic receptor, facilitating the design of a multispecies vaccine platform, which could elicit robust protective immune responses against enteric pathogens.
Matias, Bruna F; de Oliveira, Tânia M; Rodrigues, Cláudia M; Abdalla, Douglas R; Montes, Letícia; Murta, Eddie F C; Michelin, Márcia A
2013-01-01
The objective of this study was to evaluate some of the mechanisms involved in the activation of the immune system in patients with advanced-stage cancer (n = 7) who received an autologous dendritic cell vaccine. We examined the immune response mediated by macrophages (CD14+), natural killer cells (CD56+), and B lymphocytes (CD19+) by flow cytometry and assessed the expression of Th1 (IFN-γ, TNF-α, IL-2, and IL-12), Th2 (IL-4), and Treg (TGF-β) cytokines by flow cytometry and an enzyme-linked immunosorbent assay. The CD14+ TNF-α+ population was significantly increased (P < 0.04) when patients received the vaccine; IL-2 expression in both NK cells and in B lymphocytes was increased after a transient initial increase showed a nearly significant decrease (P < 0.07 and P < 0.06 respectively), whereas the CD19+ and CD56+ populations did not show significant changes. Dendritic cell-based immunotherapy led to increased secretion of IFN-γ and IL-12 and reduced secretion of TGF-β. In conclusion, it is likely that the autologous dendritic cell vaccine stimulated the immune cells from the peripheral blood of patients with cancer and generally increased the production of Th1 cytokines, which are related to immunomodulatory responses against cancer.
Matias, Bruna F.; de Oliveira, Tânia M.; Rodrigues, Cláudia M.; Abdalla, Douglas R.; Montes, Letícia; Murta, Eddie F.C.; Michelin, Márcia A.
2013-01-01
The objective of this study was to evaluate some of the mechanisms involved in the activation of the immune system in patients with advanced-stage cancer (n = 7) who received an autologous dendritic cell vaccine. We examined the immune response mediated by macrophages (CD14+), natural killer cells (CD56+), and B lymphocytes (CD19+) by flow cytometry and assessed the expression of Th1 (IFN-γ, TNF-α, IL-2, and IL-12), Th2 (IL-4), and Treg (TGF-β) cytokines by flow cytometry and an enzyme-linked immunosorbent assay. The CD14+ TNF-α+ population was significantly increased (P < 0.04) when patients received the vaccine; IL-2 expression in both NK cells and in B lymphocytes was increased after a transient initial increase showed a nearly significant decrease (P < 0.07 and P < 0.06 respectively), whereas the CD19+ and CD56+ populations did not show significant changes. Dendritic cell-based immunotherapy led to increased secretion of IFN-γ and IL-12 and reduced secretion of TGF-β. In conclusion, it is likely that the autologous dendritic cell vaccine stimulated the immune cells from the peripheral blood of patients with cancer and generally increased the production of Th1 cytokines, which are related to immunomodulatory responses against cancer. PMID:23926442
Onset of Curved Dendrite Growth in an Al-Cu Welding Pool: A Phase Field Study
NASA Astrophysics Data System (ADS)
Wang, Lei; Wei, Yanhong
2018-02-01
A phase field model is developed to predict curved dendrite growth in the gas tungsten arc (GTA) welding pool of an Al-Cu alloy. The equations of temperature gradient, pulling velocity and dendrite growth orientation are proposed to consider the transient solidification process during welding. Solidification microstructures and solute diffusion along the fusion boundary in the welding pool are predicted by using the phase field model coupled with transient solidification conditions. Predicted primary dendrites are curved and point toward the welding direction. Welding experiments are carried out to observe solidification microstructures of the weld. Comparisons of simulation results with experimental measurements are conducted. Predicted dendritic morphology, dendrite growth orientation, primary dendrite arm spacing and initial cell spacing give a good agreement with experimental measurements.
Lee, Jonathan K; Garbe, James C; Vrba, Lukas; Miyano, Masaru; Futscher, Bernard W; Stampfer, Martha R; LaBarge, Mark A
2015-01-01
Based on molecular features, breast cancers are grouped into intrinsic subtypes that have different prognoses and therapeutic response profiles. With increasing age, breast cancer incidence increases, with hormone receptor-positive and other luminal-like subtype tumors comprising a majority of cases. It is not known at what stage of tumor progression subtype specification occurs, nor how the process of aging affects the intrinsic subtype. We examined subtype markers in immortalized human mammary epithelial cell lines established following exposure of primary cultured cell strains to a two-step immortalization protocol that targets the two main barriers to immortality: stasis (stress-associated senescence) and replicative senescence. Cell lines derived from epithelial cells obtained from non-tumorous pre- and post-menopausal breast surgery tissues were compared. Additionally, comparisons were made between lines generated using two different genetic interventions to bypass stasis: transduction of either an shRNA that down-regulated p16(INK4A), or overexpressed constitutive active cyclin D1/CDK2. In all cases, the replicative senescence barrier was bypassed by transduction of c-Myc. Cells from all resulting immortal lines exhibited normal karyotypes. Immunofluorescence, flow cytometry, and gene expression analyses of lineage-specific markers were used to categorize the intrinsic subtypes of the immortalized lines. Bypassing stasis with p16 shRNA in young strains generated cell lines that were invariably basal-like, but the lines examined from older strains exhibited some luminal features such as keratin 19 and estrogen receptor expression. Overexpression of cyclin D1/CDK2 resulted in keratin 19 positive, luminal-like cell lines from both young and old strains, and the lines examined from older strains exhibited estrogen receptor expression. Thus age and the method of bypassing stasis independently influence the subtype of immortalized human mammary epithelial cells.
Dscam1-mediated self-avoidance counters netrin-dependent targeting of dendrites in Drosophila.
Matthews, Benjamin J; Grueber, Wesley B
2011-09-13
Dendrites and axons show precise targeting and spacing patterns for proper reception and transmission of information in the nervous system. Self-avoidance promotes complete territory coverage and nonoverlapping spacing between processes from the same cell [1, 2]. Neurons that lack Drosophila Down syndrome cell adhesion molecule 1 (Dscam1) show aberrant overlap, fasciculation, and accumulation of dendrites and axons, demonstrating a role in self-recognition and repulsion leading to self-avoidance [3-11]. Fasciculation and accumulation of processes suggested that Dscam1 might promote process spacing by counterbalancing developmental signals that otherwise promote self-association [9, 12]. Here we show that Dscam1 functions to counter Drosophila sensory neuron dendritic targeting signals provided by secreted Netrin-B and Frazzled, a netrin receptor. Loss of Dscam1 function resulted in aberrant dendrite accumulation at a Netrin-B-expressing target, whereas concomitant loss of Frazzled prevented accumulation and caused severe deficits in dendritic territory coverage. Netrin misexpression was sufficient to induce ectopic dendritic targeting in a Frazzled-dependent manner, whereas Dscam1 was required to prevent ectopic accumulation, consistent with separable roles for these receptors. Our results suggest that Dscam1-mediated self-avoidance counters extrinsic signals that are required for normal dendritic patterning, but whose action would otherwise favor neurite accumulation. Counterbalancing roles for Dscam1 may be deployed in diverse contexts during neural circuit formation. Copyright © 2011 Elsevier Ltd. All rights reserved.
Dscam1-mediated self-avoidance counters Netrin-dependent targeting of dendrites in Drosophila
Matthews, Benjamin J.; Grueber, Wesley B.
2011-01-01
SUMMARY Dendrites and axons show precise targeting and spacing patterns for proper reception and transmission of information in the nervous system. Self-avoidance promotes complete territory coverage and non-overlapping spacing between processes from the same cell [1, 2]. Neurons that lack Drosophila Down syndrome cell adhesion molecule 1 (Dscam1) show aberrant overlap, fasciculation, and accumulation of dendrites and axons, demonstrating a role in self-recognition and repulsion leading to self-avoidance [3–11]. Fasciculation and accumulation of processes suggested that Dscam1 might promote process spacing by counterbalancing developmental signals that otherwise promote self-association [9, 12]. Here we show that Dscam1 functions to counter sensory neuron dendritic targeting signals provided by secreted Netrin-B and Frazzled, a netrin receptor. Loss of Dscam1 function resulted in aberrant dendrite accumulation at a Netrin-B expressing target, whereas concomitant loss of Frazzled prevented accumulation and caused severe deficits in dendritic territory coverage. Netrin misexpression was sufficient to induce ectopic dendritic targeting in a Frazzled-dependent manner, whereas Dscam1 was required to prevent ectopic accumulation, consistent with separable roles for these receptors. Our results suggest that Dscam1-mediated self-avoidance counter extrinsic signals that are required for normal dendritic patterning, but whose action would otherwise favor neurite accumulation. Counterbalancing roles for Dscam1 may be deployed in diverse contexts during neural circuit formation. PMID:21871804
Zhang, Jiqing; Tai, Lee-Hwa; Ilkow, Carolina S; Alkayyal, Almohanad A; Ananth, Abhirami A; de Souza, Christiano Tanese; Wang, Jiahu; Sahi, Shalini; Ly, Lundi; Lefebvre, Charles; Falls, Theresa J; Stephenson, Kyle B; Mahmoud, Ahmad B; Makrigiannis, Andrew P; Lichty, Brian D; Bell, John C; Stojdl, David F; Auer, Rebecca C
2014-01-01
This study characterizes the ability of novel oncolytic rhabdoviruses (Maraba MG1) to boost natural killer (NK) cell activity. Our results demonstrate that MG1 activates NK cells via direct infection and maturation of conventional dendritic cells. Using NK depletion and conventional dendritic cells ablation studies in vivo, we established that both are required for MG1 efficacy. We further explored the efficacy of attenuated MG1 (nonreplicating MG1-UV2min and single-cycle replicating MG1-Gless) and demonstrated that these viruses activate conventional dendritic cells, although to a lesser extent than live MG1. This translates to equivalent abilities to remove tumor metastases only at the highest viral doses of attenuated MG1. In tandem, we characterized the antitumor ability of NK cells following preoperative administration of live and attenuated MG1. Our results demonstrates that a similar level of NK activation and reduction in postoperative tumor metastases was achieved with equivalent high viral doses concluding that viral replication is important, but not necessary for NK activation. Biochemical characterization of a panel of UV-inactivated MG1 (2–120 minutes) revealed that intact viral particle and target cell recognition are essential for NK cell–mediated antitumor responses. These findings provide mechanistic insight and preclinical rationale for safe perioperative virotherapy to effectively reduce metastatic disease following cancer surgery. PMID:24695102
Svirskis, Gytis; Baranauskas, Gytis; Svirskiene, Natasa; Tkatch, Tatiana
2015-01-01
The superior colliculus in mammals or the optic tectum in amphibians is a major visual information processing center responsible for generation of orientating responses such as saccades in monkeys or prey catching avoidance behavior in frogs. The conserved structure function of the superior colliculus the optic tectum across distant species such as frogs, birds monkeys permits to draw rather general conclusions after studying a single species. We chose the frog optic tectum because we are able to perform whole-cell voltage-clamp recordings fluorescence imaging of tectal neurons while they respond to a visual stimulus. In the optic tectum of amphibians most visual information is processed by pear-shaped neurons possessing long dendritic branches, which receive the majority of synapses originating from the retinal ganglion cells. Since the first step of the retinal input integration is performed on these dendrites, it is important to know whether this integration is enhanced by active dendritic properties. We demonstrate that rapid calcium transients coinciding with the visual stimulus evoked action potentials in the somatic recordings can be readily detected up to the fine branches of these dendrites. These transients were blocked by calcium channel blockers nifedipine CdCl2 indicating that calcium entered dendrites via voltage-activated L-type calcium channels. The high speed of calcium transient propagation, >300 μm in <10 ms, is consistent with the notion that action potentials, actively propagating along dendrites, open voltage-gated L-type calcium channels causing rapid calcium concentration transients in the dendrites. We conclude that such activation by somatic action potentials of the dendritic voltage gated calcium channels in the close vicinity to the synapses formed by axons of the retinal ganglion cells may facilitate visual information processing in the principal neurons of the frog optic tectum.
NASA Technical Reports Server (NTRS)
Stella, P. M.; Anspaugh, B. E.
1985-01-01
Electrical characteristics of thin (100- and 140-micron) Westinghouse dendritic-web N/P silicon solar cells are presented in graphical and tabular format as a function of solar illumination intensity and temperature. Performance is also shown as a function of solar illlumination angle of incidence for AMO.
Subtype and pathway specific responses to anticancer compounds in breast cancer.
Heiser, Laura M; Sadanandam, Anguraj; Kuo, Wen-Lin; Benz, Stephen C; Goldstein, Theodore C; Ng, Sam; Gibb, William J; Wang, Nicholas J; Ziyad, Safiyyah; Tong, Frances; Bayani, Nora; Hu, Zhi; Billig, Jessica I; Dueregger, Andrea; Lewis, Sophia; Jakkula, Lakshmi; Korkola, James E; Durinck, Steffen; Pepin, François; Guan, Yinghui; Purdom, Elizabeth; Neuvial, Pierre; Bengtsson, Henrik; Wood, Kenneth W; Smith, Peter G; Vassilev, Lyubomir T; Hennessy, Bryan T; Greshock, Joel; Bachman, Kurtis E; Hardwicke, Mary Ann; Park, John W; Marton, Laurence J; Wolf, Denise M; Collisson, Eric A; Neve, Richard M; Mills, Gordon B; Speed, Terence P; Feiler, Heidi S; Wooster, Richard F; Haussler, David; Stuart, Joshua M; Gray, Joe W; Spellman, Paul T
2012-02-21
Breast cancers are comprised of molecularly distinct subtypes that may respond differently to pathway-targeted therapies now under development. Collections of breast cancer cell lines mirror many of the molecular subtypes and pathways found in tumors, suggesting that treatment of cell lines with candidate therapeutic compounds can guide identification of associations between molecular subtypes, pathways, and drug response. In a test of 77 therapeutic compounds, nearly all drugs showed differential responses across these cell lines, and approximately one third showed subtype-, pathway-, and/or genomic aberration-specific responses. These observations suggest mechanisms of response and resistance and may inform efforts to develop molecular assays that predict clinical response.
Wiesner, Darin L.; Specht, Charles A.; Lee, Chrono K.; Smith, Kyle D.; Mukaremera, Liliane; Lee, S. Thera; Lee, Chun G.; Elias, Jack A.; Nielsen, Judith N.; Boulware, David R.; Bohjanen, Paul R.; Jenkins, Marc K.; Levitz, Stuart M.; Nielsen, Kirsten
2015-01-01
Pulmonary mycoses are often associated with type-2 helper T (Th2) cell responses. However, mechanisms of Th2 cell accumulation are multifactorial and incompletely known. To investigate Th2 cell responses to pulmonary fungal infection, we developed a peptide-MHCII tetramer to track antigen-specific CD4+ T cells produced in response to infection with the fungal pathogen Cryptococcus neoformans. We noted massive accruement of pathologic cryptococcal antigen-specific Th2 cells in the lungs following infection that was coordinated by lung-resident CD11b+ IRF4-dependent conventional dendritic cells. Other researchers have demonstrated that this dendritic cell subset is also capable of priming protective Th17 cell responses to another pulmonary fungal infection, Aspergillus fumigatus. Thus, higher order detection of specific features of fungal infection by these dendritic cells must direct Th2 cell lineage commitment. Since chitin-containing parasites commonly elicit Th2 responses, we hypothesized that recognition of fungal chitin is an important determinant of Th2 cell-mediated mycosis. Using C. neoformans mutants or purified chitin, we found that chitin abundance impacted Th2 cell accumulation and disease. Importantly, we determined Th2 cell induction depended on cleavage of chitin via the mammalian chitinase, chitotriosidase, an enzyme that was also prevalent in humans experiencing overt cryptococcosis. The data presented herein offers a new perspective on fungal disease susceptibility, whereby chitin recognition via chitotriosidase leads to the initiation of harmful Th2 cell differentiation by CD11b+ conventional dendritic cells in response to pulmonary fungal infection. PMID:25764512
Wiesner, Darin L; Specht, Charles A; Lee, Chrono K; Smith, Kyle D; Mukaremera, Liliane; Lee, S Thera; Lee, Chun G; Elias, Jack A; Nielsen, Judith N; Boulware, David R; Bohjanen, Paul R; Jenkins, Marc K; Levitz, Stuart M; Nielsen, Kirsten
2015-03-01
Pulmonary mycoses are often associated with type-2 helper T (Th2) cell responses. However, mechanisms of Th2 cell accumulation are multifactorial and incompletely known. To investigate Th2 cell responses to pulmonary fungal infection, we developed a peptide-MHCII tetramer to track antigen-specific CD4+ T cells produced in response to infection with the fungal pathogen Cryptococcus neoformans. We noted massive accruement of pathologic cryptococcal antigen-specific Th2 cells in the lungs following infection that was coordinated by lung-resident CD11b+ IRF4-dependent conventional dendritic cells. Other researchers have demonstrated that this dendritic cell subset is also capable of priming protective Th17 cell responses to another pulmonary fungal infection, Aspergillus fumigatus. Thus, higher order detection of specific features of fungal infection by these dendritic cells must direct Th2 cell lineage commitment. Since chitin-containing parasites commonly elicit Th2 responses, we hypothesized that recognition of fungal chitin is an important determinant of Th2 cell-mediated mycosis. Using C. neoformans mutants or purified chitin, we found that chitin abundance impacted Th2 cell accumulation and disease. Importantly, we determined Th2 cell induction depended on cleavage of chitin via the mammalian chitinase, chitotriosidase, an enzyme that was also prevalent in humans experiencing overt cryptococcosis. The data presented herein offers a new perspective on fungal disease susceptibility, whereby chitin recognition via chitotriosidase leads to the initiation of harmful Th2 cell differentiation by CD11b+ conventional dendritic cells in response to pulmonary fungal infection.
Distinct subtype distribution and somatic mutation spectrum of lymphomas in East Asia.
Ren, Weicheng; Li, Wei; Ye, Xiaofei; Liu, Hui; Pan-Hammarström, Qiang
2017-07-01
Here, we give an updated overview of the subtype distribution of lymphomas in East Asia and also present the genome sequencing data on two major subtypes of these tumors. The distribution of lymphoma types/subtypes among East Asian countries is very similar, with a lower proportion of B-cell malignancies and a higher proportion of T/natural killer (NK)-cell lymphomas as compared to Western populations. Extranodal NK/T-cell lymphoma is more frequently observed in East Asia, whereas follicular lymphoma and chronic lymphocytic leukemia, are proportionally lower. The incidence rate of lymphoma subtypes in Asians living in the US was generally intermediate to the general rate in US and Asia, suggesting that both genetic and environmental factors may underlie the geographical variations observed.Key cancer driver mutations have been identified in Asian patients with diffuse large B-cell lymphoma or extranodal NK/T-cell lymphoma through genome sequencing. A distinct somatic mutation profile has also been observed in Chinese diffuse large B-cell lymphoma patients. The incidence and distribution of lymphoma subtypes differed significantly between patients from East Asia and Western countries, suggesting subtype-specific etiologic mechanisms. Further studies on the mechanism underlying these geographical variations may give new insights into our understanding of lymphomagenesis.
Morton, Lindsay M.; Slager, Susan L.; Cerhan, James R.; Wang, Sophia S.; Vajdic, Claire M.; Skibola, Christine F.; Bracci, Paige M.; de Sanjosé, Silvia; Smedby, Karin E.; Chiu, Brian C. H.; Zhang, Yawei; Mbulaiteye, Sam M.; Monnereau, Alain; Turner, Jennifer J.; Clavel, Jacqueline; Adami, Hans-Olov; Chang, Ellen T.; Glimelius, Bengt; Hjalgrim, Henrik; Melbye, Mads; Crosignani, Paolo; di Lollo, Simonetta; Miligi, Lucia; Nanni, Oriana; Ramazzotti, Valerio; Rodella, Stefania; Costantini, Adele Seniori; Stagnaro, Emanuele; Tumino, Rosario; Vindigni, Carla; Vineis, Paolo; Becker, Nikolaus; Benavente, Yolanda; Boffetta, Paolo; Brennan, Paul; Cocco, Pierluigi; Foretova, Lenka; Maynadié, Marc; Nieters, Alexandra; Staines, Anthony; Colt, Joanne S.; Cozen, Wendy; Davis, Scott; de Roos, Anneclaire J.; Hartge, Patricia; Rothman, Nathaniel; Severson, Richard K.; Holly, Elizabeth A.; Call, Timothy G.; Feldman, Andrew L.; Habermann, Thomas M.; Liebow, Mark; Blair, Aaron; Cantor, Kenneth P.; Kane, Eleanor V.; Lightfoot, Tracy; Roman, Eve; Smith, Alex; Brooks-Wilson, Angela; Connors, Joseph M.; Gascoyne, Randy D.; Spinelli, John J.; Armstrong, Bruce K.; Kricker, Anne; Holford, Theodore R.; Lan, Qing; Zheng, Tongzhang; Orsi, Laurent; Dal Maso, Luigino; Franceschi, Silvia; La Vecchia, Carlo; Negri, Eva; Serraino, Diego; Bernstein, Leslie; Levine, Alexandra; Friedberg, Jonathan W.; Kelly, Jennifer L.; Berndt, Sonja I.; Birmann, Brenda M.; Clarke, Christina A.; Flowers, Christopher R.; Foran, James M.; Kadin, Marshall E.; Paltiel, Ora; Weisenburger, Dennis D.; Linet, Martha S.; Sampson, Joshua N.
2014-01-01
Background Non-Hodgkin lymphoma (NHL) comprises biologically and clinically heterogeneous subtypes. Previously, study size has limited the ability to compare and contrast the risk factor profiles among these heterogeneous subtypes. Methods We pooled individual-level data from 17 471 NHL cases and 23 096 controls in 20 case–control studies from the International Lymphoma Epidemiology Consortium (InterLymph). We estimated the associations, measured as odds ratios, between each of 11 NHL subtypes and self-reported medical history, family history of hematologic malignancy, lifestyle factors, and occupation. We then assessed the heterogeneity of associations by evaluating the variability (Q value) of the estimated odds ratios for a given exposure among subtypes. Finally, we organized the subtypes into a hierarchical tree to identify groups that had similar risk factor profiles. Statistical significance of tree partitions was estimated by permutation-based P values (P NODE). Results Risks differed statistically significantly among NHL subtypes for medical history factors (autoimmune diseases, hepatitis C virus seropositivity, eczema, and blood transfusion), family history of leukemia and multiple myeloma, alcohol consumption, cigarette smoking, and certain occupations, whereas generally homogeneous risks among subtypes were observed for family history of NHL, recreational sun exposure, hay fever, allergy, and socioeconomic status. Overall, the greatest difference in risk factors occurred between T-cell and B-cell lymphomas (P NODE < 1.0×10−4), with increased risks generally restricted to T-cell lymphomas for eczema, T-cell-activating autoimmune diseases, family history of multiple myeloma, and occupation as a painter. We further observed substantial heterogeneity among B-cell lymphomas (P NODE < 1.0×10−4). Increased risks for B-cell-activating autoimmune disease and hepatitis C virus seropositivity and decreased risks for alcohol consumption and occupation as a teacher generally were restricted to marginal zone lymphoma, Burkitt/Burkitt-like lymphoma/leukemia, diffuse large B-cell lymphoma, and/or lymphoplasmacytic lymphoma/Waldenström macroglobulinemia. Conclusions Using a novel approach to investigate etiologic heterogeneity among NHL subtypes, we identified risk factors that were common among subtypes as well as risk factors that appeared to be distinct among individual or a few subtypes, suggesting both subtype-specific and shared underlying mechanisms. Further research is needed to test putative mechanisms, investigate other risk factors (eg, other infections, environmental exposures, and diet), and evaluate potential joint effects with genetic susceptibility. PMID:25174034
A family of photoswitchable NMDA receptors
Berlin, Shai; Szobota, Stephanie; Reiner, Andreas; Carroll, Elizabeth C; Kienzler, Michael A; Guyon, Alice; Xiao, Tong; Trauner, Dirk; Isacoff, Ehud Y
2016-01-01
NMDA receptors, which regulate synaptic strength and are implicated in learning and memory, consist of several subtypes with distinct subunit compositions and functional properties. To enable spatiotemporally defined, rapid and reproducible manipulation of function of specific subtypes, we engineered a set of photoswitchable GluN subunits ('LiGluNs'). Photo-agonism of GluN2A or GluN2B elicits an excitatory drive to hippocampal neurons that can be shaped in time to mimic synaptic activation. Photo-agonism of GluN2A at single dendritic spines evokes spine-specific calcium elevation and expansion, the morphological correlate of LTP. Photo-antagonism of GluN2A alone, or in combination with photo-antagonism of GluN1a, reversibly blocks excitatory synaptic currents, prevents the induction of long-term potentiation and prevents spine expansion. In addition, photo-antagonism in vivo disrupts synaptic pruning of developing retino-tectal projections in larval zebrafish. By providing precise and rapidly reversible optical control of NMDA receptor subtypes, LiGluNs should help unravel the contribution of specific NMDA receptors to synaptic transmission, integration and plasticity. DOI: http://dx.doi.org/10.7554/eLife.12040.001 PMID:26929991
Zhang, Bin; Liu, Rui; Shi, Dan; Liu, Xingxia; Chen, Yuan; Dou, Xiaowei; Zhu, Xishan; Lu, Chunhua; Liang, Wei; Liao, Lianming; Zenke, Martin; Zhao, Robert C H
2009-01-01
Mesenchymal stem cells (MSCs), in addition to their multilineage differentiation, exert immunomodulatory effects on immune cells, even dendritic cells (DCs). However, whether they influence the destiny of full mature DCs (maDCs) remains controversial. Here we report that MSCs vigorously promote proliferation of maDCs, significantly reduce their expression of Ia, CD11c, CD80, CD86, and CD40 while increasing CD11b expression. Interestingly, though these phenotypes clearly suggest their skew to immature status, bacterial lipopolysaccharide (LPS) stimulation could not reverse this trend. Moreover, high endocytosic capacity, low immunogenicity, and strong immunoregulatory function of MSC-treated maDCs (MSC-DCs) were also observed. Furthermore we found that MSCs, partly via cell-cell contact, drive maDCs to differentiate into a novel Jagged-2-dependent regulatory DC population and escape their apoptotic fate. These results further support the role of MSCs in preventing rejection in organ transplantation and treatment of autoimmune disease.
Thymic cytoarchitecture changes in mice exposed to vanadium.
Ustarroz-Cano, Martha; Garcia-Pelaez, Isabel; Cervantes-Yepez, Silvana; Lopez-Valdez, Nelly; Fortoul, Teresa I
2017-12-01
The thymus is a vital immune system organ wherein selection of T-lymphocytes occurs in a process regulated by dendritic and epithelial thymic cells. Previously, we have reported that in a mouse model of vanadium inhalation, a decrease in CD11c dendritic cells was observed. In the present study, we report on a thymic cortex-medulla distribution distortion in these hosts due to apparent effects of the inhaled vanadium on cytokeratin-5 (K5 + ) epithelial cells in the same mouse model - after 1, 2, and 4 weeks of exposure - by immunohistochemistry. These cells - together with dendritic cells - eliminate autoreactive T-cell clones and regulate the production of regulatory T-cells in situ. Because both cell types are involved in the negative selection of autoreactive clones, a potential for an increase in development of autoimmune conditions could be a possible consequence among individuals who might be exposed often to vanadium in air pollution, including dwellers of highly polluted cities with elevated levels of particulate matter onto which vanadium is often adsorbed.
Herde, Michel K; Herbison, Allan E
2015-11-01
GnRH neurons are the final output neurons of the hypothalamic network controlling fertility in mammals. In the present study, we used ankyrin G immunohistochemistry and neurobiotin filling of live GnRH neurons in brain slices from GnRH-green fluorescent protein transgenic male mice to examine in detail the location of action potential initiation in GnRH neurons with somata residing at different locations in the basal forebrain. We found that the vast majority of GnRH neurons are bipolar in morphology, elaborating a thick (primary) and thinner (secondary) dendrite from opposite poles of the soma. In addition, an axon-like process arising predominantly from a proximal dendrite was observed in a subpopulation of GnRH neurons. Ankyrin G immunohistochemistry revealed the presence of a single action potential initiation zone ∼27 μm in length primarily in the secondary dendrite of GnRH neurons and located 30 to 140 μm distant from the cell soma, depending on the type of process and location of the cell body. In addition to dendrites, the GnRH neurons with cell bodies located close to hypothalamic circumventricular organs often elaborated ankyrin G-positive axon-like structures. Almost all GnRH neurons (>90%) had their action potential initiation site in a process that initially, or ultimately after a hairpin loop, was coursing in the direction of the median eminence. These studies indicate that action potentials are initiated in different dendritic and axonal compartments of the GnRH neuron in a manner that is dependent partly on the neuroanatomical location of the cell body.
Wu, Chi-Cheng; Chawla, Faisal; Games, Dora; Rydel, Russell E; Freedman, Stephen; Schenk, Dale; Young, Warren G; Morrison, John H; Bloom, Floyd E
2004-05-04
Increasing evidence from mouse models of Alzheimer's disease shows that overexpression of a mutant form of the amyloid precursor protein (APP) and its product, beta-amyloid peptide, initiate pathological changes before amyloid deposition. To evaluate the cytological basis for one of these early changes, namely reduced volume of the dentate gyrus (DG), we have used high-throughput diOlistic cell loading and 3D neuronal reconstruction to investigate potential dendritic pathology of granule cells (GCs) in 90-day-old PDAPP mice. Labeled GCs from fixed hippocampal slices were selected randomly and imaged digitally by using confocal laser-scanning microscopy. The dendritic complexity of GCs was quantified according to subordinate morphological parameters, including soma position within the granule cell layer (superficial versus deep) and topographic location within the DG (dorsal versus ventral blade) along the anterior-posterior hippocampal axis. Initial analysis, which included all sampled GC types, revealed a 12% reduction of total dendritic length in PDAPP mice compared with littermate controls. Further analysis, performed with refined subgroups, found that superficially located GCs in the dorsal blade were profoundly altered, exhibiting a 23% loss in total dendritic length, whereas neurons in the ventral blade were unaffected. Superficial GCs were particularly vulnerable (a 32% reduction) in the posterior region of the DG. Furthermore, the dendritic reductions of this select group were uniformly localized within middle-to-outer portions of the dentate molecular layer. We conclude that substantial dendritic pathology is evident in 90-day-old PDAPP mice for a spatially defined subset of GCs well before amyloid accumulation occurs.
Wu, Chi-Cheng; Chawla, Faisal; Games, Dora; Rydel, Russell E.; Freedman, Stephen; Schenk, Dale; Young, Warren G.; Morrison, John H.; Bloom, Floyd E.
2004-01-01
Increasing evidence from mouse models of Alzheimer's disease shows that overexpression of a mutant form of the amyloid precursor protein (APP) and its product, β-amyloid peptide, initiate pathological changes before amyloid deposition. To evaluate the cytological basis for one of these early changes, namely reduced volume of the dentate gyrus (DG), we have used high-throughput diOlistic cell loading and 3D neuronal reconstruction to investigate potential dendritic pathology of granule cells (GCs) in 90-day-old PDAPP mice. Labeled GCs from fixed hippocampal slices were selected randomly and imaged digitally by using confocal laser-scanning microscopy. The dendritic complexity of GCs was quantified according to subordinate morphological parameters, including soma position within the granule cell layer (superficial versus deep) and topographic location within the DG (dorsal versus ventral blade) along the anterior-posterior hippocampal axis. Initial analysis, which included all sampled GC types, revealed a 12% reduction of total dendritic length in PDAPP mice compared with littermate controls. Further analysis, performed with refined subgroups, found that superficially located GCs in the dorsal blade were profoundly altered, exhibiting a 23% loss in total dendritic length, whereas neurons in the ventral blade were unaffected. Superficial GCs were particularly vulnerable (a 32% reduction) in the posterior region of the DG. Furthermore, the dendritic reductions of this select group were uniformly localized within middle-to-outer portions of the dentate molecular layer. We conclude that substantial dendritic pathology is evident in 90-day-old PDAPP mice for a spatially defined subset of GCs well before amyloid accumulation occurs. PMID:15118092
Weber, A J; Stanford, L R
1994-05-15
It has long been known that a number of functionally different types of ganglion cells exist in the cat retina, and that each responds differently to visual stimulation. To determine whether the characteristic response properties of different retinal ganglion cell types might reflect differences in the number and distribution of their bipolar and amacrine cell inputs, we compared the percentages and distributions of the synaptic inputs from bipolar and amacrine cells to the entire dendritic arbors of physiologically characterized retinal X- and Y-cells. Sixty-two percent of the synaptic input to the Y-cell was from amacrine cell terminals, while the X-cells received approximately equal amounts of input from amacrine and bipolar cells. We found no significant difference in the distributions of bipolar or amacrine cell inputs to X- and Y-cells, or ON-center and OFF-center cells, either as a function of dendritic branch order or distance from the origin of the dendritic arbor. While, on the basis of these data, we cannot exclude the possibility that the difference in the proportion of bipolar and amacrine cell input contributes to the functional differences between X- and Y-cells, the magnitude of this difference, and the similarity in the distributions of the input from the two afferent cell types, suggest that mechanisms other than a simple predominance of input from amacrine or bipolar cells underlie the differences in their response properties. More likely, perhaps, is that the specific response features of X- and Y-cells originate in differences in the visual responses of the bipolar and amacrine cells that provide their input, or in the complex synaptic arrangements found among amacrine and bipolar cell terminals and the dendrites of specific types of retinal ganglion cells.
USDA-ARS?s Scientific Manuscript database
The effects of immunization with dendritic cell (DC) exosomes, which had been incubated or non-incubated with an anti-tetraspanin-3 (Tspan-3) blocking antibody (Ab), were studied using an experimental model of Eimeria tenella avian coccidiosis. Purified exosomes from cecal tonsil and splenic DCs exp...
Dupont, Christopher D.; Christian, David A.; Selleck, Elizabeth M.; Pepper, Marion; Leney-Greene, Michael; Harms Pritchard, Gretchen; Koshy, Anita A.; Wagage, Sagie; Reuter, Morgan A.; Sibley, L. David; Betts, Michael R.; Hunter, Christopher A.
2014-01-01
During infection with the intracellular parasite Toxoplasma gondii, the presentation of parasite-derived antigens to CD4+ and CD8+ T cells is essential for long-term resistance to this pathogen. Fundamental questions remain regarding the roles of phagocytosis and active invasion in the events that lead to the processing and presentation of parasite antigens. To understand the most proximal events in this process, an attenuated non-replicating strain of T. gondii (the cpsII strain) was combined with a cytometry-based approach to distinguish active invasion from phagocytic uptake. In vivo studies revealed that T. gondii disproportionately infected dendritic cells and macrophages, and that infected dendritic cells and macrophages displayed an activated phenotype characterized by enhanced levels of CD86 compared to cells that had phagocytosed the parasite, thus suggesting a role for these cells in priming naïve T cells. Indeed, dendritic cells were required for optimal CD4+ and CD8+ T cell responses, and the phagocytosis of heat-killed or invasion-blocked parasites was not sufficient to induce T cell responses. Rather, the selective transfer of cpsII-infected dendritic cells or macrophages (but not those that had phagocytosed the parasite) to naïve mice potently induced CD4+ and CD8+ T cell responses, and conferred protection against challenge with virulent T. gondii. Collectively, these results point toward a critical role for actively infected host cells in initiating T. gondii-specific CD4+ and CD8+ T cell responses. PMID:24722202
Wang, Feixiang; Jia, Yali; Liu, Jiajing; Zhai, Jinglei; Cao, Ning; Yue, Wen; He, Huixia; Pei, Xuetao
2017-06-01
Alzheimer's disease (AD) is an incurable neurodegenerative disease and many types of stem cells have been used in AD therapy with some favorable effects. In this study, we investigated the potential therapeutical effects of human dental pulp stem cells (hDPSCs) on AD cellular model which established by okadaic acid (OA)-induced damage to human neuroblastoma cell line, SH-SY5Y, in vitro for 24 h. After confirmed the AD cellular model, the cells were co-culture with hDPSCs by transwell co-culture system till 24 h for treatment. Then the cytomorphology of the hDPSCs-treated cells were found to restore gradually with re-elongation of retracted dendrites. Meanwhile, Cell Counting Kit-8 assay and Hoechst 33258 staining showed that hDPSCs caused significant increase in the viability and decrease in apoptosis of the model cells, respectively. Observation of DiI labeling also exhibited the prolongation dendrites in hDPSCs-treated cells which were obviously different from the retraction dendrites in AD model cells. Furthermore, specific staining of α-tubulin and F-actin demonstrated that the hDPSCs-treated cells had the morphology of restored neurons, with elongated dendrites, densely arranged microfilaments, and thickened microtubular fibrils. In addition, results from western blotting revealed that phosphorylation at Ser 396 of Tau protein was significantly suppressed by adding of hDPSCs. These results indicate that hDPSCs may promote regeneration of damaged neuron cells in vitro model of AD and may serve as a useful cell source for treatment of AD. © 2017 International Federation for Cell Biology.
Cruz, Luis J; Rueda, Felix; Simón, Lorena; Cordobilla, Begoña; Albericio, Fernando; Domingo, Joan C
2014-04-01
To improve the immunological response against tumors, a vaccine based on nanoliposomes targeted to the Fcg-receptor was developed to enhance the immunogenicity of tumor-associated antigens (TAAs). Using human dendritic cells in vitro, a fragment of the TAA NY-ESO-1 combined with a T-helper peptide from the tetanus toxoid encapsulated in nanoliposomes was evaluated. In addition, peptides Palm-IL-1 and MAP-IFN-g were coadministered as adjuvants to enhance the immunological response. Coadministration of Palm-IL-1 or MAP-IFN-g peptide adjuvants and the hybrid NY-ESO-1-tetanus toxoid (soluble or encapsulated in nanoliposomes without targeting) increased immunogenicity. However, the most potent immunological response was obtained when the peptide adjuvants were encapsulated in liposomes targeted to human dendritic cells via the Fc receptor. This targeted vaccine strategy is a promising tool to activate and deliver antigens to dendritic cells, thus improving immunotherapeutic response in situations in which the immune system is frequently compromised, as in advanced cancers.
SNAP-25 requirement for dendritic growth of hippocampal neurons.
Grosse, G; Grosse, J; Tapp, R; Kuchinke, J; Gorsleben, M; Fetter, I; Höhne-Zell, B; Gratzl, M; Bergmann, M
1999-06-01
Structure and dimension of the dendritic arbor are important determinants of information processing by the nerve cell, but mechanisms and molecules involved in dendritic growth are essentially unknown. We investigated early mechanisms of dendritic growth using mouse fetal hippocampal neurons in primary culture, which form processes during the first week in vitro. We detected a key component of regulated exocytosis, SNAP-25 (synaptosomal associated protein of 25 kDa), in axons and axonal terminals as well as in dendrites identified by the occurrence of the dendritic markers transferrin receptor and MAP2. Selective inactivation of SNAP-25 by botulinum neurotoxin A (BoNTA) resulted in inhibition of axonal growth and of vesicle recycling in axonal terminals. In addition, dendritic growth of hippocampal pyramidal and granule neurons was significantly inhibited by BoNTA. In contrast, cleavage of synaptobrevin by tetanus toxin had an effect on neither axonal nor dendritic growth. Our observations indicate that SNAP-25, but not synaptobrevin, is involved in constitutive axonal growth and dendrite formation by hippocampal neurons.
Yang, Wei-Kang; Peng, Yu-Huei; Li, Hsun; Lin, Hsiu-Chen; Lin, Yu-Ching; Lai, Tzu-Ting; Suo, Hsien; Wang, Chien-Hsiang; Lin, Wei-Hsiang; Ou, Chan-Yen; Zhou, Xin; Pi, Haiwei; Chang, Henry C; Chien, Cheng-Ting
2011-10-20
During development, dendrites arborize in a field several hundred folds of their soma size, a process regulated by intrinsic transcription program and cell adhesion molecule (CAM)-mediated interaction. However, underlying cellular machineries that govern distal higher-order dendrite extension remain largely unknown. Here, we show that Nak, a clathrin adaptor-associated kinase, promotes higher-order dendrite growth through endocytosis. In nak mutants, both the number and length of higher-order dendrites are reduced, which are phenocopied by disruptions of clathrin-mediated endocytosis. Nak interacts genetically with components of the endocytic pathway, colocalizes with clathrin puncta, and is required for dendritic localization of clathrin puncta. More importantly, these Nak-containing clathrin structures preferentially localize to branching points and dendritic tips that are undergoing active growth. We present evidence that the Drosophila L1-CAM homolog Neuroglian is a relevant cargo of Nak-dependent internalization, suggesting that localized clathrin-mediated endocytosis of CAMs facilitates the extension of nearby higher-order dendrites. Copyright © 2011 Elsevier Inc. All rights reserved.
Rojo, Concepción; Leguey, Ignacio; Kastanauskaite, Asta; Bielza, Concha; Larrañaga, Pedro; DeFelipe, Javier; Benavides-Piccione, Ruth
2016-06-01
Pyramidal cell structure varies between different cortical areas and species, indicating that the cortical circuits that these cells participate in are likely to be characterized by different functional capabilities. Structural differences between cortical layers have been traditionally reported using either the Golgi method or intracellular labeling, but the structure of pyramidal cells has not previously been systematically analyzed across all cortical layers at a particular age. In the present study, we investigated the dendritic architecture of complete basal arbors of pyramidal neurons in layers II, III, IV, Va, Vb, and VI of the hindlimb somatosensory cortical region of postnatal day 14 rats. We found that the characteristics of basal dendritic morphologies are statistically different in each cortical layer. The variations in size and branching pattern that exist between pyramidal cells of different cortical layers probably reflect the particular functional properties that are characteristic of the cortical circuit in which they participate. This new set of complete basal dendritic arbors of 3D-reconstructed pyramidal cell morphologies across each cortical layer will provide new insights into interlaminar information processing in the cerebral cortex. © The Author 2016. Published by Oxford University Press.
Yoo, Hyun Deog; Liang, Yanliang; Li, Yifei; Yao, Yan
2015-04-01
Hybrid magnesium-lithium-ion batteries (MLIBs) featuring dendrite-free deposition of Mg anode and Li-intercalation cathode are safe alternatives to Li-ion batteries for large-scale energy storage. Here we report for the first time the excellent stability of a high areal capacity MLIB cell and dendrite-free deposition behavior of Mg under high current density (2 mA cm(-2)). The hybrid cell showed no capacity loss for 100 cycles with Coulombic efficiency as high as 99.9%, whereas the control cell with a Li-metal anode only retained 30% of its original capacity with Coulombic efficiency well below 90%. The use of TiS2 as a cathode enabled the highest specific capacity and one of the best rate performances among reported MLIBs. Postmortem analysis of the cycled cells revealed dendrite-free Mg deposition on a Mg anode surface, while mossy Li dendrites were observed covering the Li surface and penetrated into separators in the Li cell. The energy density of a MLIB could be further improved by developing electrolytes with higher salt concentration and wider electrochemical window, leading to new opportunities for its application in large-scale energy storage.
IL17A Regulates Tumor Latency and Metastasis in Lung Adeno and Squamous SQ.2b and AD.1 Cancer.
You, Ran; DeMayo, Francesco J; Liu, Jian; Cho, Sung-Nam; Burt, Bryan M; Creighton, Chad J; Casal, Roberto F; Lazarus, Donald R; Lu, Wen; Tung, Hui-Ying; Yuan, Xiaoyi; Hill-McALester, Andrea; Kim, Myunghoo; Perusich, Sarah; Cornwell, Loraine; Rosen, Daniel; Song, Li-Zhen; Paust, Silke; Diehl, Gretchen; Corry, David; Kheradmand, Farrah
2018-04-13
Somatic mutations can promote malignant transformation of airway epithelial cells and induce inflammatory responses directed against resultant tumors. Tumor-infiltrating T lymphocytes (TIL) in early-stage non-small cell lung cancer (NSCLC) secrete distinct proinflammatory cytokines, but the contribution of these TILs to tumor development and metastasis remains unknown. We show here that TILs in early-stage NSCLC are biased toward IL17A expression (Th17) when compared with adjacent tumor-free tissue, whereas Th17 cells are decreased in tumor infiltrating locoregional lymph nodes in advanced NSCLC. Mice in which Pten and Smad4 ( Pts4 d/d ) are deleted from airway epithelial cells develop spontaneous tumors, that share genetic signatures with squamous- (SQ.2b), and adeno- (AD.1) subtypes of human NSCLC. Pts4 d/d mice globally lacking in IL17a ( Pts4 d/d Il17a -/- ) showed decreased tumor latency and increased metastasis. Th17 cells were required for recruitment of CD103 + dendritic cells, and adoptive transfer of IL17a -sufficient CD4 + T cells reversed early tumor development and metastasis in Pts4 d/d Il17a -/- mice. Together, these findings support a key role for Th17 cells in TILs associated with the Pts4 d/d model of NSCLC and suggest therapeutic and biomarker strategies for human SQ2b and AD1 lung cancer. Cancer Immunol Res; 1-13. ©2018 AACR. ©2018 American Association for Cancer Research.
Urrego, Diana; Troncoso, Julieta; Múnera, Alejandro
2015-01-01
This work was aimed at characterizing structural changes in primary motor cortex layer 5 pyramidal neurons and their relationship with microglial density induced by facial nerve lesion using a murine facial paralysis model. Adult transgenic mice, expressing green fluorescent protein in microglia and yellow fluorescent protein in projecting neurons, were submitted to either unilateral section of the facial nerve or sham surgery. Injured animals were sacrificed either 1 or 3weeks after surgery. Two-photon excitation microscopy was then used for evaluating both layer 5 pyramidal neurons and microglia in vibrissal primary motor cortex (vM1). It was found that facial nerve lesion induced long-lasting changes in the dendritic morphology of vM1 layer 5 pyramidal neurons and in their surrounding microglia. Dendritic arborization of the pyramidal cells underwent overall shrinkage. Apical dendrites suffered transient shortening while basal dendrites displayed sustained shortening. Moreover, dendrites suffered transient spine pruning. Significantly higher microglial cell density was found surrounding vM1 layer 5 pyramidal neurons after facial nerve lesion with morphological bias towards the activated phenotype. These results suggest that facial nerve lesions elicit active dendrite remodeling due to pyramidal neuron and microglia interaction, which could be the pathophysiological underpinning of some neuropathic motor sequelae in humans. PMID:26064916
Wong, Kuan Y; Baron, Rebecca; Seldon, Therese A; Jones, Martina L; Rice, Alison M; Munster, David J
2018-05-15
Anti-CD83 Ab capable of Ab-dependent cellular cytotoxicity can deplete activated CD83 + human dendritic cells, thereby inhibiting CD4 T cell-mediated acute graft-versus-host disease. As CD83 is also expressed on the surface of activated B lymphocytes, we hypothesized that anti-CD83 would also inhibit B cell responses to stimulation. We found that anti-CD83 inhibited total IgM and IgG production in vitro by allostimulated human PBMC. Also, Ag-specific Ab responses to immunization of SCID mice xenografted with human PBMC were inhibited by anti-CD83 treatment. This inhibition occurred without depletion of all human B cells because anti-CD83 lysed activated CD83 + B cells by Ab-dependent cellular cytotoxicity and spared resting (CD83 - ) B cells. In cultured human PBMC, anti-CD83 inhibited tetanus toxoid-stimulated B cell proliferation and concomitant dendritic cell-mediated CD4 T cell proliferation and expression of IFN-γ and IL-17A, with minimal losses of B cells (<20%). In contrast, the anti-CD20 mAb rituximab depleted >80% of B cells but had no effect on CD4 T cell proliferation and cytokine expression. By virtue of the ability of anti-CD83 to selectively deplete activated, but not resting, B cells and dendritic cells, with the latter reducing CD4 T cell responses, anti-CD83 may be clinically useful in autoimmunity and transplantation. Advantages might include inhibited expansion of autoantigen- or alloantigen-specific B cells and CD4 T cells, thus preventing further production of pathogenic Abs and inflammatory cytokines while preserving protective memory and regulatory cells. Copyright © 2018 by The American Association of Immunologists, Inc.
Zarkoob, Hadi; Taube, Joseph H.; Singh, Sheila K.; Mani, Sendurai A.; Kohandel, Mohammad
2013-01-01
In this manuscript, we use genetic data to provide a three-faceted analysis on the links between molecular subclasses of glioblastoma, epithelial-to-mesenchymal transition (EMT) and CD133 cell surface protein. The contribution of this paper is three-fold: First, we use a newly identified signature for epithelial-to-mesenchymal transition in human mammary epithelial cells, and demonstrate that genes in this signature have significant overlap with genes differentially expressed in all known GBM subtypes. However, the overlap between genes up regulated in the mesenchymal subtype of GBM and in the EMT signature was more significant than other GBM subtypes. Second, we provide evidence that there is a negative correlation between the genetic signature of EMT and that of CD133 cell surface protein, a putative marker for neural stem cells. Third, we study the correlation between GBM molecular subtypes and the genetic signature of CD133 cell surface protein. We demonstrate that the mesenchymal and neural subtypes of GBM have the strongest correlations with the CD133 genetic signature. While the mesenchymal subtype of GBM displays similarity with the signatures of both EMT and CD133, it also exhibits some differences with each of these signatures that are partly due to the fact that the signatures of EMT and CD133 are inversely related to each other. Taken together these data shed light on the role of the mesenchymal transition and neural stem cells, and their mutual interaction, in molecular subtypes of glioblastoma multiforme. PMID:23734191
Lehmann, Brian D.; Bauer, Joshua A.; Chen, Xi; Sanders, Melinda E.; Chakravarthy, A. Bapsi; Shyr, Yu; Pietenpol, Jennifer A.
2011-01-01
Triple-negative breast cancer (TNBC) is a highly diverse group of cancers, and subtyping is necessary to better identify molecular-based therapies. In this study, we analyzed gene expression (GE) profiles from 21 breast cancer data sets and identified 587 TNBC cases. Cluster analysis identified 6 TNBC subtypes displaying unique GE and ontologies, including 2 basal-like (BL1 and BL2), an immunomodulatory (IM), a mesenchymal (M), a mesenchymal stem–like (MSL), and a luminal androgen receptor (LAR) subtype. Further, GE analysis allowed us to identify TNBC cell line models representative of these subtypes. Predicted “driver” signaling pathways were pharmacologically targeted in these cell line models as proof of concept that analysis of distinct GE signatures can inform therapy selection. BL1 and BL2 subtypes had higher expression of cell cycle and DNA damage response genes, and representative cell lines preferentially responded to cisplatin. M and MSL subtypes were enriched in GE for epithelial-mesenchymal transition, and growth factor pathways and cell models responded to NVP-BEZ235 (a PI3K/mTOR inhibitor) and dasatinib (an abl/src inhibitor). The LAR subtype includes patients with decreased relapse-free survival and was characterized by androgen receptor (AR) signaling. LAR cell lines were uniquely sensitive to bicalutamide (an AR antagonist). These data may be useful in biomarker selection, drug discovery, and clinical trial design that will enable alignment of TNBC patients to appropriate targeted therapies. PMID:21633166
Young, Brett C.; Stanic, Aleksandar K.; Panda, Britta; Rueda, Bo R.; Panda, Alexander
2014-01-01
OBJECTIVE Toll-like receptors (TLRs) are integral parts of the innate immune system and have been implicated in complications of pregnancy. The longitudinal expression of TLRs on dendritic cells in the maternal circulation during uncomplicated pregnancies is unknown. The objective of this study was to prospectively evaluate TLRs 1-9 as expressed on dendritic cells in the maternal circulation at defined intervals throughout pregnancy and postpartum. STUDY DESIGN This was a prospective cohort of 30 pregnant women with uncomplicated pregnancies and 30 nonpregnant controls. TLRs and cytokine expression was measured in unstimulated dendritic cells at 4 defined intervals during pregnancy and postpartum. Basal expression of TLRs and cytokines was measured by multicolor flow cytometry. The percent-positive dendritic cells for each TLRs were compared with both nonpregnant and postpartum levels with multivariate linear regression. RESULTS TLRs 1, 7, and 9 were elevated compared with nonpregnant controls with persistent elevation of TLR 1 and interleukin-12 (IL-12) into the postpartum period. Concordantly, levels of IL-6, IL-12, interferon alpha, and tumor necrosis factor alpha increased during pregnancy and returned to levels similar to nonpregnant controls during the postpartum period. The elevated levels of TLR 1 and IL-12 were persistent postpartum, challenging notions that immunologic changes during pregnancy resolve after the prototypical postpartum period. CONCLUSION Normal pregnancy is associated with time-dependent changes in TLR expression compared with nonpregnant controls; these findings may help elucidate immunologic dysfunction in complicated pregnancies. PMID:24291497
Zhu, He; Li, Jian; Nolan, Thomas J.; Schad, Gerhard A.; Lok, James B.
2011-01-01
Owing to its ability to switch between free-living and parasitic modes of development, Parastrongyloides trichosuri represents a valuable model with which to study the evolution of parasitism among the nematodes, especially aspects pertaining to morphogenesis of infective third-stage larvae. In the free-living nematode Caenorhabditis elegans, developmental fates of third-stage larvae are determined in part by environmental cues received by chemosensory neurons in the amphidial sensillae. As a basis for comparative study, we have described the neuroanatomy of the amphidial sensillae of P. trichosuri. Using computational methods we incorporated serial electron micrographs into a three-dimensional reconstruction of the amphidial neurons of this parasite. Each amphid is innervated by 13 neurons, and the dendritic processes of 10 of these extend nearly to the amphidial pore. Dendritic processes of two specialized neurons leave the amphidial channel and terminate within invaginations of the sheath cell. One of these is similar to the finger cell of C. elegans, terminating in digitiform projections. The other projects a single cilium into the sheath cell. The dendritic process of a third specialized neuron terminates within the tight junction of the amphid. Each amphidial neuron was traced from the tip of its dendrite(s) to its cell body in the lateral ganglion. Positions of these cell bodies approximate those of morphologically similar amphidial neurons in Caenorhabditis elegans, so the standard nomenclature for amphidial neurons in C. elegans was adopted. A map of cell bodies within the lateral ganglion of P. trichosuri was prepared to facilitate functional study of these neurons. PMID:21456026
The cytoarchitecture of the torus semicircularis in the Tegu lizard, Tupinambis nigropunctatus.
Browner, R H; Rubinson, K
1977-12-15
The torus semicircularis (TS) of the Tegu lizard extends from the superficial caudal mesencephalon, dorsal to the exiting trochlear nerve, to a position ventral to the middle part of the optic tectum and its ventricle. It has an oblique orientation with the caudal pole abutting the midline while the rostal end is lateral and slightly ventral. The TS consists of a central nucleus and several adjacent cell groups. The central nucleus and the laminar nucleus, situated medially, extend the entire length of the TS while the cortical nucleus, situated dorsally and laterally, is present only in the caudal superficial portion. The central nucleus is composed of ovoid neurons with branched, radiating dendrites. The dendrites are directed medially and laterally with spines on the distal portion of the dendritic tree. The laminar nucleus consists of three to five neuronal layers. It is mainly composed of fusiform neurons with one dendritic trunk from each extremity of the soma. There is little branching and few dendritic spines. The cortical nucleus is a laminated region consisting of alternating layers of neurons and lateral lemniscal fibers. The neurons of the superficial layers are fusiform with their long axis perpendicular to the long axis of the brainstem. They possess two main dendritic trunks which parallel the laminae and are covered with dendritic spines. The deeper layers consist of pyramidal neurons with three dendritic trunks, secondary branches, and few spines. The long axis of these neurons extends from the center of the TS to the periphery. Two dendritic trunks extend dorsally or laterally towards the surface, while the third extends towards the central nucleus. The dendrites, thus, extend across the laminae. In addition, a cell-free lateral zone is described.
Wynne, P M; Puig, S I; Martin, G E; Treistman, S N
2009-06-01
Neurons are highly differentiated and polarized cells, whose various functions depend upon the compartmentalization of ion channels. The rat hypothalamic-neurohypophysial system (HNS), in which cell bodies and dendrites reside in the hypothalamus, physically separated from their nerve terminals in the neurohypophysis, provides a particularly powerful preparation in which to study the distribution and regional properties of ion channel proteins. Using electrophysiological and immunohistochemical techniques, we characterized the large-conductance calcium-activated potassium (BK) channel in each of the three primary compartments (soma, dendrite, and terminal) of HNS neurons. We found that dendritic BK channels, in common with somatic channels but in contrast to nerve terminal channels, are insensitive to iberiotoxin. Furthermore, analysis of dendritic BK channel gating kinetics indicates that they, like somatic channels, have fast activation kinetics, in contrast to the slow gating of terminal channels. Dendritic and somatic channels are also more sensitive to calcium and have a greater conductance than terminal channels. Finally, although terminal BK channels are highly potentiated by ethanol, somatic and dendritic channels are insensitive to the drug. The biophysical and pharmacological properties of somatic and dendritic versus nerve terminal channels are consistent with the characteristics of exogenously expressed alphabeta1 versus alphabeta4 channels, respectively. Therefore, one possible explanation for our findings is a selective distribution of auxiliary beta1 subunits to the somatic and dendritic compartments and beta4 to the terminal compartment. This hypothesis is supported immunohistochemically by the appearance of distinct punctate beta1 or beta4 channel clusters in the membrane of somatic and dendritic or nerve terminal compartments, respectively.
Oren-Suissa, Meital; Gattegno, Tamar; Kravtsov, Veronika; Podbilewicz, Benjamin
2017-05-01
Injury triggers regeneration of axons and dendrites. Research has identified factors required for axonal regeneration outside the CNS, but little is known about regeneration triggered by dendrotomy. Here, we study neuronal plasticity triggered by dendrotomy and determine the fate of complex PVD arbors following laser surgery of dendrites. We find that severed primary dendrites grow toward each other and reconnect via branch fusion. Simultaneously, terminal branches lose self-avoidance and grow toward each other, meeting and fusing at the tips via an AFF-1-mediated process. Ectopic branch growth is identified as a step in the regeneration process required for bypassing the lesion site. Failure of reconnection to the severed dendrites results in degeneration of the distal end of the neuron. We discover pruning of excess branches via EFF-1 that acts to recover the original wild-type arborization pattern in a late stage of the process. In contrast, AFF-1 activity during dendritic auto-fusion is derived from the lateral seam cells and not autonomously from the PVD neuron. We propose a model in which AFF-1-vesicles derived from the epidermal seam cells fuse neuronal dendrites. Thus, EFF-1 and AFF-1 fusion proteins emerge as new players in neuronal arborization and maintenance of arbor connectivity following injury in Caenorhabditis elegans Our results demonstrate that there is a genetically determined multi-step pathway to repair broken dendrites in which EFF-1 and AFF-1 act on different steps of the pathway. EFF-1 is essential for dendritic pruning after injury and extrinsic AFF-1 mediates dendrite fusion to bypass injuries. Copyright © 2017 by the Genetics Society of America.
Chu, Sao-Yu; Wang, Chun-Han; Lin, I-Ya
2017-01-01
Elucidating how appropriate neurite patterns are generated in neurons of the olfactory system is crucial for comprehending the construction of the olfactory map. In the Drosophila olfactory system, projection neurons (PNs), primarily derived from four neural stem cells (called neuroblasts), populate their cell bodies surrounding to and distribute their dendrites in distinct but overlapping patterns within the primary olfactory center of the brain, the antennal lobe (AL). However, it remains unclear whether the same molecular mechanisms are employed to generate the appropriate dendritic patterns in discrete AL glomeruli among PNs produced from different neuroblasts. Here, by examining a previously explored transmembrane protein Semaphorin-1a (Sema-1a) which was proposed to globally control initial PN dendritic targeting along the dorsolateral-to-ventromedial axis of the AL, we discover a new role for Sema-1a in preventing dendrites of both uni-glomerular and poly-glomerular PNs from aberrant invasion into select AL regions and, intriguingly, this Sema-1a-deficient dendritic mis-targeting phenotype seems to associate with the origins of PNs from which they are derived. Further, ectopic expression of Sema-1a resulted in PN dendritic mis-projection from a select AL region into adjacent glomeruli, strengthening the idea that Sema-1a plays an essential role in preventing abnormal dendritic accumulation in select AL regions. Taken together, these results demonstrate that Sema-1a repulsion keeps dendrites of different types of PNs away from each other, enabling the same types of PN dendrites to be sorted into destined AL glomeruli and permitting for functional assembly of olfactory circuitry. PMID:28448523
Brenman, J E; Gao, F B; Jan, L Y; Jan, Y N
2001-11-01
Morphological complexity of neurons contributes to their functional complexity. How neurons generate different dendritic patterns is not known. We identified the sequoia mutant from a previous screen for dendrite mutants. Here we report that Sequoia is a pan-neural nuclear protein containing two putative zinc fingers homologous to the DNA binding domain of Tramtrack. sequoia mutants affect the cell fate decision of a small subset of neurons but have global effects on axon and dendrite morphologies of most and possibly all neurons. In support of sequoia as a specific regulator of neuronal morphogenesis, microarray experiments indicate that sequoia may regulate downstream genes that are important for executing neurite development rather than altering a variety of molecules that specify cell fates.
Isolation of dendritic-cell-like S100β-positive cells in rat anterior pituitary gland.
Horiguchi, Kotaro; Fujiwara, Ken; Yoshida, Saishu; Higuchi, Masashi; Tsukada, Takehiro; Kanno, Naoko; Yashiro, Takashi; Tateno, Kozue; Osako, Shunji; Kato, Takako; Kato, Yukio
2014-07-01
S100β-protein-positive cells in the anterior pituitary gland appear to possess multifunctional properties. Because of their pleiotropic features, S100β-positive cells are assumed to be of a heterogeneous or even a non-pituitary origin. The observation of various markers has allowed these cells to be classified into populations such as stem/progenitor cells, epithelial cells, astrocytes and dendritic cells. The isolation and characterization of each heterogeneous population is a prerequisite for clarifying the functional character and origin of the cells. We attempt to isolate two of the subpopulations of S100β-positive cells from the anterior lobe. First, from transgenic rats that express green fluorescent protein (GFP) driven by the S100β protein promoter, we fractionate GFP-positive cells with a cell sorter and culture them so that they can interact with laminin, a component of the extracellular matrix. We observe that one morphological type of GFP-positive cells possesses extended cytoplasmic processes and shows high adhesiveness to laminin (process type), whereas the other is round in shape and exhibits low adherence to laminin (round type). We successfully isolate cells of the round type from the cultured GFP-positive cells by taking advantage of their low affinity to laminin and then measure mRNA levels of the two cell types by real-time polymerase chain reaction. The resultant data show that the process type expresses vimentin (mesenchymal cell marker) and glial fibrillary acidic protein (astrocyte marker). The round type expresses dendritic cell markers, CD11b and interleukin-6. Thus, we found a method for isolating dendritic-cell-like S100β-positive cells by means of their property of adhering to laminin.
The ultrastructure of conjunctival melanocytic tumors.
Jakobiec, F A
1984-01-01
The ultrastructure of conjunctival melanocytic lesions in 49 patients was evaluated to find significant differences between benign and malignant cells. The patients studied included 9 with benign epithelial (racial) melanosis, 2 with pigmented squamous cell papillomas, 16 with conjunctival nevi, 18 with primary acquired melanosis, and 11 with invasive nodules of malignant melanoma. In benign epithelial melanosis, dendritic melanocytes were situated along the basement membrane region of the conjunctival epithelium, with one basilar dendritic melanocyte lodged among every five or six basilar keratinocytes. The dendritic melanocytes extended arborizing cellular processes between the basilar and among the suprabasilar keratinocytes, which manifested considerable uptake of melanin granules into their cytoplasm. The benign dendritic melanocytes possessed nuclei with clumped heterochromatin at the nuclear membrane, small, tightly wound nucleoli, and large, elongated, fully melaninized melanin granules. In two patients with benign hyperplasia of the dendritic melanocytes, occasional dendritic melanocytes were located in a suprabasilar position, but were always separated from each other by keratinocytes or their processes. In the two black patients with benign pigmented squamous papillomas, the benign dendritic melanocytes were located hapharzardly at all levels of the acanthotic epithelium and not just along the basement membrane region. Melanin uptake by the proliferating keratinocytes was minimal. In benign melanocytic nevi of the conjunctiva, nevus cells within the intraepithelial junctional nests displayed a more rounded cellular configuration; short villi and broader cellular processes suggestive of abortive dendrites were found. The nuclear chromatin pattern was clumped at the nuclear membrane, but the nucleoli were somewhat larger than those of benign dendritic melanocytes in epithelial melanosis. The melanosomes were smaller and rounder than those in dendritic melanocytes and exhibited more haphazard arrangements of the melanofilaments, which were only partially melaninized. Mitochondria were more numerous than in dendritic melanocytes, and monoribosomes predominated over polyribosomes. Cytoplasmic filaments were inconspicuous. Cells in the immediate subepithelial connective tissue zone had features identical to those of the cells within the junctional nests. Smaller, lymphocytoid cells with less numerous and more rudimentary melanosomes were found in the middle and deeper portions of the lesions.(ABSTRACT TRUNCATED AT 400 WORDS) Images FIGURE 21 FIGURE 22 FIGURE 42 FIGURE 67 FIGURE 1 FIGURE 62 FIGURE 26 FIGURE 29 FIGURE 37 FIGURE 11 FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 7 FIGURE 8 FIGURE 9 FIGURE 10 FIGURE 12 FIGURE 13 FIGURE 14 FIGURE 15 FIGURE 16 FIGURE 17 FIGURE 18 FIGURE 19 FIGURE 20 FIGURE 23 FIGURE 24 FIGURE 25 FIGURE 27 FIGURE 28 FIGURE 30 FIGURE 31 FIGURE 32 FIGURE 33 FIGURE 34 FIGURE 35 FIGURE 36 FIGURE 38 FIGURE 39 FIGURE 40 FIGURE 41 FIGURE 43 FIGURE 44 FIGURE 45 FIGURE 46 FIGURE 47 FIGURE 48 FIGURE 49 FIGURE 50 FIGURE 51 FIGURE 52 FIGURE 53 FIGURE 54 FIGURE 55 FIGURE 56 FIGURE 57 FIGURE 58 FIGURE 59 FIGURE 60 FIGURE 61 FIGURE 63 FIGURE 64 FIGURE 65 FIGURE 66 FIGURE 68 FIGURE 69 FIGURE 70 FIGURE 71 FIGURE 72 FIGURE 73 FIGURE 74 FIGURE 75 FIGURE 76 FIGURE 77 FIGURE 78 FIGURE 79 FIGURE 80 FIGURE 81 FIGURE 82 FIGURE 83 FIGURE 84 FIGURE 85 FIGURE 86 FIGURE 87 FIGURE 88 FIGURE 89 PMID:6398936
Kouo, Theodore; Huang, Lanqing; Pucsek, Alexandra B; Cao, Minwei; Solt, Sara; Armstrong, Todd; Jaffee, Elizabeth
2015-04-01
Galectin-3 is a 31-kDa lectin that modulates T-cell responses through several mechanisms, including apoptosis, T-cell receptor (TCR) cross-linking, and TCR downregulation. We found that patients with pancreatic ductal adenocarcinoma (PDA) who responded to a granulocyte-macrophage colony-stimulating factor-secreting allogeneic PDA vaccine developed neutralizing antibodies to galectin-3 after immunization. We show that galectin-3 binds activated antigen-committed CD8(+) T cells only in the tumor microenvironment. Galectin-3-deficient mice exhibit improved CD8(+) T-cell effector function and increased expression of several inflammatory genes. Galectin-3 binds to LAG-3, and LAG-3 expression is necessary for galectin-3-mediated suppression of CD8(+) T cells in vitro. Lastly, galectin-3-deficient mice have elevated levels of circulating plasmacytoid dendritic cells, which are superior to conventional dendritic cells in activating CD8(+) T cells. Thus, inhibiting galectin-3 in conjunction with CD8(+) T-cell-directed immunotherapies should enhance the tumor-specific immune response. ©2015 American Association for Cancer Research.
Gröbner, Sabine; Schulz, Sebastian; Soldanova, Irena; Gunst, Dani S J; Waibel, Michaela; Wesselborg, Sebastian; Borgmann, Stefan; Autenrieth, Ingo B
2007-01-01
In an initial period (< or =4 h) Toll-like receptor 4 (TLR4) signaling is required for Yersinia enterocolitica YopP-induced dendritic cell (DC) death. Later (>4 h), DC die independent of TLR4 signaling. In TLR4-deficient DC caspase 8 cleavage is delayed, indicating that TLR4 signaling accelerates caspase 8 activation, leading to DC death.
Hillyer, Lyn; Whitley, Charlene; Olver, Amy; Webster, Michelle; Steevels, Tessa; Woodward, Bill
2008-02-01
Immune depression associated with prepubescent malnutrition underlies a staggering burden of infection-related morbidity. This investigation centered on dendritic cells as potentially decisive in this phenomenon. C57BL/6J mice, initially 19 days old, had free access for 14 days to a complete diet or to a low-protein formulation that induced wasting deficits of protein and energy. Mice were sensitized by i.p. injection of sheep red blood cells on day 9, at which time one-half of the animals in each dietary group received a simultaneous injection of 10(6) syngeneic dendritic cells (JAWS II). All mice were challenged with the immunizing antigen in the right hind footpad on day 13, and the 24-hour delayed hypersensitivity response was assessed as percentage increase in footpad thickness. The low-protein diet reduced the inflammatory immune response, but JAWS cells, which exhibited immature phenotypic and functional characteristics, increased the response of both the malnourished group and the controls. By contrast, i.p. injection of 10(6) syngeneic T cells did not influence the inflammatory immune response of mice subjected to the low-protein protocol. Antigen-presenting cell numbers limited primary inflammatory cell-mediated competence in this model of wasting malnutrition, an outcome that challenges the prevailing multifactorial model of malnutrition-associated immune depression. Thus, a new dendritic cell-centered perspective emerges regarding the cellular mechanism underlying immune depression in acute pediatric protein and energy deficit.
Viscum album neutralizes tumor-induced immunosuppression in a human in vitro cell model
Steinborn, Carmen; Klemd, Amy Marisa; Sauer, Barbara; Garcia-Käufer, Manuel; Urech, Konrad; Follo, Marie; Ücker, Annekathrin; Kienle, Gunver Sophia; Huber, Roman
2017-01-01
Tumor cells have the capacity to secrete immunosuppressive substances in order to diminish dendritic cell (DC) activity and thereby escape from immune responses. The impact of mistletoe (Viscum album) extracts (VAE), which are frequently used as an additive anti-cancer therapy to stimulate the immune response, is still unknown. Using a human cellular system, the impact of two different VAE (VAEA + VAEI) on the maturation of human dendritic cells and on T cell function has been investigated using flow cytometry, automated fluorescence microscopy and cytokine bead array assays. Furthermore, we examined whether VAEI was able to counteract tumor-induced immunosuppression within this cellular system using a renal cancer cell model. The role of mistletoe lectin (ML) was analyzed using ML-specific antibodies and ML-depleted VAEI. VAEI and VAEA augmented the maturation of dendritic cells. VAEI abrogated tumor-induced immunosuppression of dendritic cells and both processes were partially mediated by ML since ML-depleted VAEI and ML-specific antibodies almost neutralized the rehabilitative effects of VAEI on DC maturation. Using these settings, co-culture experiments with purified CD4+ T cells had no influence on T cell proliferation and activation but did have an impact on IFN-γ secretion. The study provides a potential mode-of-action of VAE as an additive cancer therapy based on immunomodulatory effects. However, the impact on the in vivo situation has to be evaluated in further studies. PMID:28719632
Zhang, Lin; Reckling, Stacie; Dean, Gregg A
2015-10-01
Numerous studies suggest dendritic cell (DC) dysfunction is central to the dysregulated immune response during HIV infection; however, in vivo studies are lacking. In the present study we used feline immunodeficiency virus (FIV) infection of cats as a model for HIV-1 infection to assess the maturation and function of dendritic cells, in vivo and in vitro. We compared CD1a+ DC migration, surface phenotype, endocytosis, mixed leukocyte reaction (MLR) and regulatory T cell (Treg) phenotype induction by CD1a+ cells isolated from lymph nodes of FIV-infected and control cats. Results showed that resident CD1a+ DC in lymph nodes of chronically FIV-infected cats are phenotypically mature, can stimulate normal primary T cell proliferation, override Treg suppression and do not skew toward Treg induction. In contrast, FIV infection had deleterious effects on antigen presentation and migratory capacity of CD1a+ cells in tissues. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hu, Hua; Vervaeke, Koen; Graham, Lyle J; Storm, Johan F
2009-11-18
Synaptic input to a neuron may undergo various filtering steps, both locally and during transmission to the soma. Using simultaneous whole-cell recordings from soma and apical dendrites from rat CA1 hippocampal pyramidal cells, and biophysically detailed modeling, we found two complementary resonance (bandpass) filters of subthreshold voltage signals. Both filters favor signals in the theta (3-12 Hz) frequency range, but have opposite location, direction, and voltage dependencies: (1) dendritic H-resonance, caused by h/HCN-channels, filters signals propagating from soma to dendrite when the membrane potential is close to rest; and (2) somatic M-resonance, caused by M/Kv7/KCNQ and persistent Na(+) (NaP) channels, filters signals propagating from dendrite to soma when the membrane potential approaches spike threshold. Hippocampal pyramidal cells participate in theta network oscillations during behavior, and we suggest that that these dual, polarized theta resonance mechanisms may convey voltage-dependent tuning of theta-mediated neural coding in the entorhinal/hippocampal system during locomotion, spatial navigation, memory, and sleep.
Differential polarization of cortical pyramidal neuron dendrites through weak extracellular fields
Obermayer, Klaus
2018-01-01
The rise of transcranial current stimulation (tCS) techniques have sparked an increasing interest in the effects of weak extracellular electric fields on neural activity. These fields modulate ongoing neural activity through polarization of the neuronal membrane. While the somatic polarization has been investigated experimentally, the frequency-dependent polarization of the dendritic trees in the presence of alternating (AC) fields has received little attention yet. Using a biophysically detailed model with experimentally constrained active conductances, we analyze the subthreshold response of cortical pyramidal cells to weak AC fields, as induced during tCS. We observe a strong frequency resonance around 10-20 Hz in the apical dendrites sensitivity to polarize in response to electric fields but not in the basal dendrites nor the soma. To disentangle the relative roles of the cell morphology and active and passive membrane properties in this resonance, we perform a thorough analysis using simplified models, e.g. a passive pyramidal neuron model, simple passive cables and reconstructed cell model with simplified ion channels. We attribute the origin of the resonance in the apical dendrites to (i) a locally increased sensitivity due to the morphology and to (ii) the high density of h-type channels. Our systematic study provides an improved understanding of the subthreshold response of cortical cells to weak electric fields and, importantly, allows for an improved design of tCS stimuli. PMID:29727454
van Vliet, Sandra J.; Steeghs, Liana; Bruijns, Sven C. M.; Vaezirad, Medi M.; Snijders Blok, Christian; Arenas Busto, Jésus A.; Deken, Marcel; van Putten, Jos P. M.; van Kooyk, Yvette
2009-01-01
Gonorrhea is one of the most prevalent sexually transmitted diseases in the world. A naturally occurring variation of the terminal carbohydrates on the lipooligosaccharide (LOS) molecule correlates with altered disease states. Here, we investigated the interaction of different stable gonoccocal LOS phenotypes with human dendritic cells and demonstrate that each variant targets a different set of receptors on the dendritic cell, including the C-type lectins MGL and DC-SIGN. Neisseria gonorrhoeae LOS phenotype C constitutes the first bacterial ligand to be described for the human C-type lectin receptor MGL. Both MGL and DC-SIGN are locally expressed at the male and female genital area, the primary site of N. gonorrhoeae infection. We show that targeting of different C-type lectins with the N. gonorrhoeae LOS variants results in alterations in dendritic cell cytokine secretion profiles and the induction of distinct adaptive CD4+ T helper responses. Whereas N. gonorrhoeae variant A with a terminal N-acetylglucosamine on its LOS was recognized by DC-SIGN and induced significantly more IL-10 production, phenotype C, carrying a terminal N-acetylgalactosamine, primarily interacted with MGL and skewed immunity towards the T helper 2 lineage. Together, our results indicate that N. gonorrhoeae LOS variation allows for selective manipulation of dendritic cell function, thereby shifting subsequent immune responses in favor of bacterial survival. PMID:19834553
Yau, Suk-Yu; Li, Ang; Tong, Jian-Bin; Bostrom, Crystal; Christie, Brian R; Lee, Tatia M C; So, Kwok-Fai
2016-09-21
Our previous work has shown that exposure to the stress hormone corticosterone (40 mg/kg CORT) for two weeks induces dendritic atrophy of pyramidal neurons in the hippocampal CA3 region and behavioral deficits. However, it is unclear whether this treatment also affects the dentate gyrus (DG), a subregion of the hippocampus comprising a heterogeneous population of young and mature neurons. We examined the effect of CORT treatment on the dendritic complexity of mature and young granule cells in the DG. We utilized a Golgi staining method to investigate the dendritic morphology and spine density of young neurons in the inner granular cell layer (GCL) and mature neurons in the outer GCL in response to CORT application. The expressions of glucocorticoid receptors during neuronal maturation were examined using Western blot analysis in a primary hippocampal neuronal culture. Sholl analysis revealed that CORT treatment decreased the number of intersections and shortened the dendritic length in mature, but not young, granule cells. However, the spine density of mature and young neurons was not affected. Western blot analysis showed a progressive increase in the protein levels of glucocorticoid receptors (GRs) in the cultured primary hippocampal neurons during neuronal maturation. These data suggest that mature neurons are likely more vulnerable to chronic exposure to CORT; this may be due to their higher expression of GRs when compared to younger DG neurons.
Cell-autonomous inactivation of the Reelin pathway impairs adult neurogenesis in the hippocampus
Teixeira, Catia M.; Kron, Michelle M.; Masachs, Nuria; Zhang, Helen; Lagace, Diane C.; Martinez, Albert; Reillo, Isabel; Duan, Xin; Bosch, Carles; Pujadas, Lluis; Brunso, Lucas; Song, Hongjun; Eisch, Amelia J.; Borrell, Victor; Howell, Brian W.; Parent, Jack M.; Soriano, Eduardo
2012-01-01
Adult hippocampal neurogenesis is thought to be essential for learning and memory and has been implicated in the pathogenesis of several disorders. Although recent studies have identified key factors regulating neuroprogenitor proliferation in the adult hippocampus, the mechanisms that control the migration and integration of adult-born neurons into circuits are largely unknown. Reelin is an extracellular matrix protein that is vital for neuronal development. Activation of the Reelin cascade leads to phosphorylation of disabled-1 (Dab1), an adaptor protein required for Reelin signaling. Here we used transgenic mouse and retroviral reporters along with Reelin signaling gain- and loss-of-function studies to show that the Reelin pathway regulates migration and dendritic development of adult-generated hippocampal neurons. Whereas overexpression of Reelin accelerated dendritic maturation, inactivation of the Reelin signaling pathway specifically in adult neuroprogenitor cells resulted in aberrant migration, decreased dendrite development, formation of ectopic dendrites in the hilus and the establishment of aberrant circuits. Our findings support a cell-autonomous and critical role for the Reelin pathway in regulating dendritic development and the integration of adult-generated granule cells and point to this pathway as a key regulator of adult neurogenesis. Moreover, our data reveal a novel role of the Reelin cascade in adult brain function with potential implications for the pathogenesis of several neurological and psychiatric disorders. PMID:22933789
Poudrier, J; Graber, P; Herren, S; Berney, C; Gretener, D; Kosco-Vilbois, M H; Gauchat, J F
2000-11-01
Responsiveness to IL-13 involves at least two chains, IL-4Ralpha and IL-13Ralpha1. Although mouse B cells express IL-4Ralpha, little is known about their expression of IL-13Ralpha chains. To investigate this topic further, we have generated a monoclonal antibody (C41) specific for murine IL-13Ralpha1. Using C41, IL-13Ralpha1 expression was detected on germinal center (GC) B cells by flow cytometry and immunohistochemistry. In addition, IL-13Ralpha1 was observed on follicular dendritic cells, but not interdigitating dendritic cells in the T cell areas. Furthermore, resting B cells also expressed IL-13Ralpha1, and in the presence of IL-13 produced increased amounts of IgM in response to in vitro CD40 stimulation. However, C41 was unable to neutralize this bioactivity. The distribution of IL-13Ralpha1 on murine B cells and during GC reactions suggests a role for IL-13 during B cell differentiation.
Ünal, Bengi; Shah, Fulva; Kothari, Janish; Tepper, James M.
2013-01-01
Using transgenic mice that express enhanced green fluorescent protein (EGFP) under the control of the tyrosine hydroxylase (TH) promoter, we have previously shown that there are approximately 3000 striatal EGFP-TH interneurons per hemisphere in mice. Here we report that striatal TH-EGFP interneurons exhibit a small, transient but significant increase in number after unilateral destruction of the nigrostriatal dopaminergic pathway. The increase in cell number is accompanied by electrophysiological and morphological changes. The intrinsic electrophysiological properties of EGFP-TH interneurons ipsilateral to 6-OHDA lesion were similar to those originally reported in intact mice except for a significant reduction in the duration of a characteristic depolarization induced plateau potential. There was a significant change in the distribution of the four previously described electrophysiologically distinct subtypes of striatal TH interneurons. There was a concomitant increase in the frequency of both spontaneous excitatory and inhibitory postsynaptic currents, while their amplitudes did not change. Nigrostriatal lesions did not affect somatic size or dendritic length or branching, but resulted in an increase in the density of proximal dendritic spines and spine-like appendages in EGFP-TH interneurons. The changes indicate that electrophysiology properties and morphology of striatal EGFP-TH interneurons depend on endogenous levels of dopamine arising from the nigrostriatal pathway. Furthermore, these changes may serve to help compensate for the changes in activity of spiny projection neurons that occur following loss of the nigrostriatal innervation in experimental or in early idiopathic Parkinson’s disease by increasing feedforward GABAergic inhibition exerted by these interneurons. PMID:24173616
Ünal, Bengi; Shah, Fulva; Kothari, Janish; Tepper, James M
2015-01-01
Using transgenic mice that express enhanced green fluorescent protein (EGFP) under the control of the tyrosine hydroxylase (TH) promoter, we have previously shown that there are approximately 3,000 striatal EGFP-TH interneurons per hemisphere in mice. Here, we report that striatal TH-EGFP interneurons exhibit a small, transient but significant increase in number after unilateral destruction of the nigrostriatal dopaminergic pathway. The increase in cell number is accompanied by electrophysiological and morphological changes. The intrinsic electrophysiological properties of EGFP-TH interneurons ipsilateral to 6-OHDA lesion were similar to those originally reported in intact mice except for a significant reduction in the duration of a characteristic depolarization induced plateau potential. There was a significant change in the distribution of the four previously described electrophysiologically distinct subtypes of striatal TH interneurons. There was a concomitant increase in the frequency of both spontaneous excitatory and inhibitory post-synaptic currents, while their amplitudes did not change. Nigrostriatal lesions did not affect somatic size or dendritic length or branching, but resulted in an increase in the density of proximal dendritic spines and spine-like appendages in EGFP-TH interneurons. The changes indicate that electrophysiology properties and morphology of striatal EGFP-TH interneurons depend on endogenous levels of dopamine arising from the nigrostriatal pathway. Furthermore, these changes may serve to help compensate for the changes in activity of spiny projection neurons that occur following loss of the nigrostriatal innervation in experimental or in early idiopathic Parkinson's disease by increasing feedforward GABAergic inhibition exerted by these interneurons.
Silverman, A J; Hou-Yu, A; Zimmerman, E A
1983-05-01
The ultrastructure of the vasopressin neurons of the paraventricular nucleus of the hypothalamus was studied by immunocytochemical techniques. Tissue antigen was detected in unembedded tissue sections using a monoclonal antibody that recognizes vasopressin but not oxytocin or vasotocin. At the light-microscopic level, reaction product was seen to fill the cytoplasm of the neuron cell body as well as large portions of the dendrite and axon. Immunoreactive spines were seen on both somatic and dendritic surfaces and their presence was confirmed at the ultrastructural level. In the light-microscope, axonal processes do not have spines and are thinner and more varicose than dendritic processes. At the electron-microscopic level, both axons and dendrites of the vasopressin cells are filled with reactive neurosecretory granules. The presence of large numbers of these organelles made it difficult to distinguish proximal dendrites from Herring bodies (axonal swellings). At the ultrastructural level, reaction product was also observed in the cytoplasm of all segments of the vasopressin cells. The presence of reaction product outside of membranous compartments is undoubtably due to disruption of membranes by detergent treatment or exposure to basic pH. However, the staining procedure used did allow us to examine the synaptic input to the vasopressin cells. All portions of the vasopressin neuron receive a diverse innervation. The somata have synapses on their surfaces and on spines. These axo-somatic terminals are primarily, but not exclusively, symmetrical and the presynaptic elements contain spherical or elongate vesicles. On the dendrites, terminals again were observed on the surface or on spines. these axo-dendritic synapses were usually asymmetrical. The presynaptic elements contained clear spherical, elongate or pleomorphic vesicles. Occasional varicosities with dense-core granules were seen to make en passant contacts with dendrites; these contacts did not have obvious membrane specializations. Input to vasopressin axons was studied both along the paraventricular-neurohypophysial tract and in the median eminence. Vasopressin axons receive a synaptic input (axo-axonic), predominately of the asymmetric variety with clear, spherical vesicles in the presynaptic element. These findings demonstrate that the vasopressin neurons of the paraventricular nucleus receive a diverse innervation.
Synthetic and biogenic magnetite nanoparticles for tracking of stem cells and dendritic cells
NASA Astrophysics Data System (ADS)
Schwarz, Sebastian; Fernandes, Fabiana; Sanroman, Laura; Hodenius, Michael; Lang, Claus; Himmelreich, Uwe; Schmitz-Rode, Thomas; Schueler, Dirk; Hoehn, Mathias; Zenke, Martin; Hieronymus, Thomas
2009-05-01
Accurate delivery of cells to target organs is critical for success of cell-based therapies with stem cells or immune cells such as antigen-presenting dendritic cells (DC). Labeling with contrast agents before implantation provides a powerful means for monitoring cellular migration using magnetic resonance imaging (MRI). In this study, we investigated the uptake of fully synthesized or bacterial magnetic nanoparticles (MNPs) into hematopoietic Flt3 + stem cells and DC from mouse bone marrow. We show that (i) uptake of both synthetic and biogenic nanoparticles into cells endow magnetic activity and (ii) low numbers of MNP-loaded cells are readily detected by MRI.
Differential excitability and modulation of striatal medium spiny neuron dendrites
Day, Michelle; Wokosin, David; Plotkin, Joshua L.; Tian, Xinyoung; Surmeier, D. James
2011-01-01
The loss of striatal dopamine (DA) in Parkinson's disease (PD) models triggers a cell-type specific reduction in the density of dendritic spines in D2 receptor-expressing striatopallidal medium spiny neurons (D2 MSNs). How the intrinsic properties of MSN dendrites, where the vast majority of DA receptors are found, contribute to this adaptation is not clear. To address this question, two-photon laser scanning microscopy (2PLSM) was performed in patch-clamped mouse MSNs identified in striatal slices by expression of green fluorescent protein (eGFP) controlled by DA receptor promoters. These studies revealed that single back-propagating action potentials (bAP) produced more reliable elevations in cytosolic Ca2+ concentration at distal dendritic locations in D2 MSNs than at similar locations in D1 receptor-expressing striatonigral MSNs (D1 MSNs). In both cell types, the dendritic Ca2+ entry elicited by bAPs was enhanced by pharmacological blockade of Kv4, but not Kv1 K+ channels. Local application of DA depressed dendritic bAP-evoked Ca2+ transients, whereas application of ACh increased these Ca2+ transients in D2 MSNs—but not in D1 MSNs. Following DA depletion, bAP-evoked Ca2+ transients were enhanced in distal dendrites and spines in D2 MSNs. Taken together, these results suggest that normally D2 MSN dendrites are more excitable than those of D1 MSNs and that DA depletion exaggerates this asymmetry, potentially contributing to adaptations in PD models. PMID:18987196
Empowering gamma delta T cells with antitumor immunity by dendritic cell-based immunotherapy
Van Acker, Heleen H; Anguille, Sébastien; Van Tendeloo, Viggo F; Lion, Eva
2015-01-01
Gamma delta (γδ) T cells are the all-rounders of our immune-system with their major histocompatibility complex-unrestricted cytotoxicity, capacity to secrete immunosti-mulatory cytokines and ability to promote the generation of tumor antigen-specific CD8+ and CD4+ T cell responses. Dendritic cell (DC)-based vaccine therapy has the prospective to harness these unique features of the γδ T cells in the fight against cancer. In this review, we will discuss our current knowledge on DC-mediated γδ T cell activation and related opportunities for tumor immunologists. PMID:26405575
It's Lonely at the Top: Winning Climbing Fibers Ascend Dendrites Solo
Draft, Ryan W.; Lichtman, Jeff W.
2009-01-01
In mammals, climbing fiber axons compete for sole innervation at each Purkinje cell. At the same time, synapses disappear from Purkinje somata and appear in great numbers on the dendrites. In this issue of Neuron, Hashimoto et al. show that, by the time climbing fibers ascend the dendrites, the winner and losers are already decided. PMID:19607787
Palma, Carla; Schiavoni, Giovanna; Abalsamo, Laura; Mattei, Fabrizio; Piccaro, Giovanni; Sanchez, Massimo; Fernandez, Carmen; Singh, Mahavir; Gabriele, Lucia
2013-09-01
The immunological mechanisms that modulate protection during Mycobacterium tuberculosis (Mtb) infection or vaccination are not fully understood. Secretion of IFN-γ and, to a lesser extent, of IL-17 by CD4(+) T cells plays a major role both in protection and immunopathology. Few Mtb Ags interacting with DCs affect priming, activation, and regulation of Ag-unrelated CD4(+) T-cell responses. Here we demonstrate that PstS1, a 38 kDa-lipoprotein of Mtb, promotes Ag-independent activation of memory T lymphocytes specific for Ag85B or Ag85A, two immunodominant protective Ags of Mtb. PstS1 expands CD4(+) and CD8(+) memory T cells, amplifies secretion of IFN-γ and IL-22 and induces IL-17 production by effector memory cells in an Ag-unrelated manner in vitro and in vivo. These effects were mediated through the stimulation of DCs, particularly of the CD8α(-) subtype, which respond to PstS1 by undergoing phenotypic maturation and by secreting IL-6, IL-1β and, to a lower extent, IL-23. IL-6 secretion by PstS1-stimulated DCs was required for IFN-γ, and to a lesser extent for IL-22 responses by Ag85B-specific memory T cells. These results may open new perspectives for immunotherapeutic strategies to control Th1/Th17 immune responses in Mtb infections and in vaccinations against tuberculosis. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hannibal, Jens; Christiansen, Anders Tolstrup; Heegaard, Steffen; Fahrenkrug, Jan; Kiilgaard, Jens Folke
2017-06-01
Intrinsically photosensitive retinal ganglion cells (ipRGCs) expressing the photopigment melanopsin belong to a heterogenic population of RGCs which regulate the circadian clock, masking behavior, melatonin suppression, the pupillary light reflex, and sleep/wake cycles. The different functions seem to be associated to different subtypes of melanopsin cells. In rodents, subtype classification has associated subtypes to function. In primate and human retina such classification has so far, not been applied. In the present study using antibodies against N- and C-terminal parts of human melanopsin, confocal microscopy and 3D reconstruction of melanopsin immunoreactive (-ir) RGCs, we applied the criteria used in mouse on human melanopsin-ir RGCs. We identified M1, displaced M1, M2, and M4 cells. We found two other subtypes of melanopsin-ir RGCs, which were named "gigantic M1 (GM1)" and "gigantic displaced M1 (GDM1)." Few M3 cells and no M5 subtypes were labeled. Total cell counts from one male and one female retina revealed that the human retina contains 7283 ± 237 melanopsin-ir (0.63-0.75% of the total number of RGCs). The melanopsin subtypes were unevenly distributed. Most significant was the highest density of M4 cells in the nasal retina. We identified input to the melanopsin-ir RGCs from AII amacrine cells and directly from rod bipolar cells via ribbon synapses in the innermost ON layer of the inner plexiform layer (IPL) and from dopaminergic amacrine cells and GABAergic processes in the outermost OFF layer of the IPL. The study characterizes a heterogenic population of human melanopsin-ir RGCs, which most likely are involved in different functions. © 2017 Wiley Periodicals, Inc.
Slowing down light using a dendritic cell cluster metasurface waveguide
Fang, Z. H.; Chen, H.; Yang, F. S.; Luo, C. R.; Zhao, X. P.
2016-01-01
Slowing down or even stopping light is the first task to realising optical information transmission and storage. Theoretical studies have revealed that metamaterials can slow down or even stop light; however, the difficulty of preparing metamaterials that operate in visible light hinders progress in the research of slowing or stopping light. Metasurfaces provide a new opportunity to make progress in such research. In this paper, we propose a dendritic cell cluster metasurface consisting of dendritic structures. The simulation results show that dendritic structure can realise abnormal reflection and refraction effects. Single- and double-layer dendritic metasurfaces that respond in visible light were prepared by electrochemical deposition. Abnormal Goos-Hänchen (GH) shifts were experimentally obtained. The rainbow trapping effect was observed in a waveguide constructed using the dendritic metasurface sample. The incident white light was separated into seven colours ranging from blue to red light. The measured transmission energy in the waveguide showed that the energy escaping from the waveguide was zero at the resonant frequency of the sample under a certain amount of incident light. The proposed metasurface has a simple preparation process, functions in visible light, and can be readily extended to the infrared band and communication wavelengths. PMID:27886279
Input integration around the dendritic branches in hippocampal dentate granule cells.
Kamijo, Tadanobu Chuyo; Hayakawa, Hirofumi; Fukushima, Yasuhiro; Kubota, Yoshiyuki; Isomura, Yoshikazu; Tsukada, Minoru; Aihara, Takeshi
2014-08-01
Recent studies have shown that the dendrites of several neurons are not simple translators but are crucial facilitators of excitatory postsynaptic potential (EPSP) propagation and summation of synaptic inputs to compensate for inherent voltage attenuation. Granule cells (GCs)are located at the gateway for valuable information arriving at the hippocampus from the entorhinal cortex. However, the underlying mechanisms of information integration along the dendrites of GCs in the hippocampus are still unclear. In this study, we investigated the input integration around dendritic branches of GCs in the rat hippocampus. We applied differential spatiotemporal stimulations to the dendrites using a high-speed glutamate-uncaging laser. Our results showed that when two sites close to and equidistant from a branching point were simultaneously stimulated, a nonlinear summation of EPSPs was observed at the soma. In addition, nonlinear summation (facilitation) depended on the stimulus location and was significantly blocked by the application of a voltage-dependent Ca(2+) channel antagonist. These findings suggest that the nonlinear summation of EPSPs around the dendritic branches of hippocampal GCs is a result of voltage-dependent Ca(2+) channel activation and may play a crucial role in the integration of input information.
Coding and decoding with dendrites.
Papoutsi, Athanasia; Kastellakis, George; Psarrou, Maria; Anastasakis, Stelios; Poirazi, Panayiota
2014-02-01
Since the discovery of complex, voltage dependent mechanisms in the dendrites of multiple neuron types, great effort has been devoted in search of a direct link between dendritic properties and specific neuronal functions. Over the last few years, new experimental techniques have allowed the visualization and probing of dendritic anatomy, plasticity and integrative schemes with unprecedented detail. This vast amount of information has caused a paradigm shift in the study of memory, one of the most important pursuits in Neuroscience, and calls for the development of novel theories and models that will unify the available data according to some basic principles. Traditional models of memory considered neural cells as the fundamental processing units in the brain. Recent studies however are proposing new theories in which memory is not only formed by modifying the synaptic connections between neurons, but also by modifications of intrinsic and anatomical dendritic properties as well as fine tuning of the wiring diagram. In this review paper we present previous studies along with recent findings from our group that support a key role of dendrites in information processing, including the encoding and decoding of new memories, both at the single cell and the network level. Copyright © 2013 Elsevier Ltd. All rights reserved.
Francischetti, Ivo M B; Oliveira, Carlo J; Ostera, Graciela R; Yager, Stephanie B; Debierre-Grockiego, Françoise; Carregaro, Vanessa; Jaramillo-Gutierrez, Giovanna; Hume, Jen C C; Jiang, Lubin; Moretz, Samuel E; Lin, Christina K; Ribeiro, José M C; Long, Carole A; Vickers, Brandi K; Schwarz, Ralph T; Seydel, Karl B; Iacobelli, Massimo; Ackerman, Hans C; Srinivasan, Prakash; Gomes, Regis B; Wang, Xunde; Monteiro, Robson Q; Kotsyfakis, Michail; Sá-Nunes, Anderson; Waisberg, Michael
2012-03-01
The coagulation-inflammation cycle has been implicated as a critical component in malaria pathogenesis. Defibrotide (DF), a mixture of DNA aptamers, displays anticoagulant, anti-inflammatory, and endothelial cell (EC)-protective activities and has been successfully used to treat comatose children with veno-occlusive disease. DF was investigated here as a drug to treat cerebral malaria. DF blocks tissue factor expression by ECs incubated with parasitized red blood cells and attenuates prothrombinase activity, platelet aggregation, and complement activation. In contrast, it does not affect nitric oxide bioavailability. We also demonstrated that Plasmodium falciparum glycosylphosphatidylinositol (Pf-GPI) induces tissue factor expression in ECs and cytokine production by dendritic cells. Notably, dendritic cells, known to modulate coagulation and inflammation systemically, were identified as a novel target for DF. Accordingly, DF inhibits Toll-like receptor ligand-dependent dendritic cells activation by a mechanism that is blocked by adenosine receptor antagonist (8-p-sulfophenyltheophylline) but not reproduced by synthetic poly-A, -C, -T, and -G. These results imply that aptameric sequences and adenosine receptor mediate dendritic cells responses to the drug. DF also prevents rosetting formation, red blood cells invasion by P. falciparum and abolishes oocysts development in Anopheles gambiae. In a murine model of cerebral malaria, DF affected parasitemia, decreased IFN-γ levels, and ameliorated clinical score (day 5) with a trend for increased survival. Therapeutic use of DF in malaria is proposed.
Krey, Gesa; Frank, Pierre; Shaikly, Valerie; Barrientos, Gabriela; Cordo-Russo, Rosalia; Ringel, Frauke; Moschansky, Petra; Chernukhin, Igor V; Metodiev, Metodi; Fernández, Nelson; Klapp, Burghard F; Arck, Petra C; Blois, Sandra M
2008-09-01
Implantation of mammalian embryos into their mother's uterus ensures optimal nourishment and protection throughout development. Complex molecular interactions characterize the implantation process, and an optimal synchronization of the components of this embryo-maternal dialogue is crucial for a successful reproductive outcome. In the present study, we investigated the role of dendritic cells (DC) during implantation process using a transgenic mouse system (DTRtg) that allows transient depletion of CD11c+ cells in vivo through administration of diphtheria toxin. We observed that DC depletion impairs the implantation process, resulting in a reduced breeding efficiency. Furthermore, the maturity of uterine natural killer cells at dendritic cell knockout (DCKO) implantation sites was affected as well; as demonstrated by decreased perforin expression and reduced numbers of periodic-acid-Schiff (PAS)-positive cells. This was accompanied by disarrangements in decidual vascular development. In the present study, we were also able to identify a novel DC-dependent protein, phosphatidylinositol transfer protein beta (PITPbeta), involved in implantation and trophoblast development using a proteomic approach. Indeed, DCKO mice exhibited substantial anomalies in placental development, including hypocellularity of the spongiotrophoblast and labyrinthine layers and reduced numbers of trophoblast giant cells. Giant cells also down-regulated their expression of two characteristic markers of trophoblast differentiation, placental lactogen 1 and proliferin. In view of these findings, dendritic cells emerge as possible modulators in the orchestration of events leading to the establishment and maintenance of pregnancy.
Shamji, M H; Bellido, V; Scadding, G W; Layhadi, J A; Cheung, D K M; Calderon, M A; Asare, A; Gao, Z; Turka, L A; Tchao, N; Togias, A; Phippard, D; Durham, S R
2015-02-01
Several studies have demonstrated the time course of inflammatory mediators in nasal fluids following nasal allergen challenge (NAC), whereas the effects of NAC on cells in the periphery are unknown. We examined the time course of effector cell markers (for basophils, dendritic cells and T cells) in peripheral blood after nasal grass pollen allergen challenge. Twelve participants with seasonal allergic rhinitis underwent a control (diluent) challenge followed by NAC after an interval of 14 days. Nasal symptoms and peak nasal inspiratory flow (PNIF) were recorded along with peripheral basophil, T-cell and dendritic cell responses (flow cytometry), T-cell proliferative responses (thymidine incorporation), and cytokine expression (FluoroSpot assay). Robust increases in nasal symptoms and decreases in PNIF were observed during the early (0-1 h) response and modest significant changes during the late (1-24 h) response. Sequential peaks in peripheral blood basophil activation markers were observed (CD107a at 3 h, CD63 at 6 h, and CD203c(bright) at 24 h). T effector/memory cells (CD4(+) CD25(lo) ) were increased at 6 h and accompanied by increases in CD80(+) and CD86(+) plasmacytoid dendritic cells (pDCs). Ex vivo grass antigen-driven T-cell proliferative responses and the frequency of IL-4(+) CD4(+) T cells were significantly increased at 6 h after NAC when compared to the control day. Basophil, T-cell, and dendritic cell activation increased the frequency of allergen-driven IL-4(+) CD4(+) T cells, and T-cell proliferative responses are detectable in the periphery after NAC. These data confirm systemic cellular activation following a local nasal provocation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Dantoft, Widad; Martínez-Vicente, Pablo; Jafali, James; Pérez-Martínez, Lara; Martin, Kim; Kotzamanis, Konstantinos; Craigon, Marie; Auer, Manfred; Young, Neil T.; Walsh, Paul; Marchant, Arnaud; Angulo, Ana; Forster, Thorsten; Ghazal, Peter
2017-01-01
Neonates and especially premature infants are highly susceptible to infection but still can have a remarkable resilience that is poorly understood. The view that neonates have an incomplete or deficient immune system is changing. Human neonatal studies are challenging, and elucidating host protective responses and underlying cognate pathway biology, in the context of viral infection in early life, remains to be fully explored. In both resource rich and poor settings, human cytomegalovirus (HCMV) is the most common cause of congenital infection. By using unbiased systems analyses of transcriptomic resources for HCMV neonatal infection, we find the systemic response of a preterm congenital HCMV infection, involves a focused IFN regulatory response associated with dendritic cells. Further analysis of transcriptional-programming of neonatal dendritic cells in response to HCMV infection in culture revealed an early dominant IFN-chemokine regulatory subnetworks, and at later times the plasticity of pathways implicated in cell-cycle control and lipid metabolism. Further, we identify previously unknown suppressed networks associated with infection, including a select group of GPCRs. Functional siRNA viral growth screen targeting 516-GPCRs and subsequent validation identified novel GPCR-dependent antiviral (ADORA1) and proviral (GPR146, RGS16, PTAFR, SCTR, GPR84, GPR85, NMUR2, FZ10, RDS, CCL17, and SORT1) roles. By contrast a gene family cluster of protocadherins is significantly differentially induced in neonatal cells, suggestive of possible immunomodulatory roles. Unexpectedly, programming responses of adult and neonatal dendritic cells, upon HCMV infection, demonstrated comparable quantitative and qualitative responses showing that functionally, neonatal dendritic cell are not overly compromised. However, a delay in responses of neonatal cells for IFN subnetworks in comparison with adult-derived cells are notable, suggestive of subtle plasticity differences. These findings support a set-point control mechanism rather than immaturity for explaining not only neonatal susceptibility but also resilience to infection. In summary, our findings show that neonatal HCMV infection leads to a highly plastic and functional robust programming of dendritic cells in vivo and in vitro. In comparison with adults, a minimal number of subtle quantitative and temporal differences may contribute to variability in host susceptibility and resilience, in a context dependent manner. PMID:28993767
Dantoft, Widad; Martínez-Vicente, Pablo; Jafali, James; Pérez-Martínez, Lara; Martin, Kim; Kotzamanis, Konstantinos; Craigon, Marie; Auer, Manfred; Young, Neil T; Walsh, Paul; Marchant, Arnaud; Angulo, Ana; Forster, Thorsten; Ghazal, Peter
2017-01-01
Neonates and especially premature infants are highly susceptible to infection but still can have a remarkable resilience that is poorly understood. The view that neonates have an incomplete or deficient immune system is changing. Human neonatal studies are challenging, and elucidating host protective responses and underlying cognate pathway biology, in the context of viral infection in early life, remains to be fully explored. In both resource rich and poor settings, human cytomegalovirus (HCMV) is the most common cause of congenital infection. By using unbiased systems analyses of transcriptomic resources for HCMV neonatal infection, we find the systemic response of a preterm congenital HCMV infection, involves a focused IFN regulatory response associated with dendritic cells. Further analysis of transcriptional-programming of neonatal dendritic cells in response to HCMV infection in culture revealed an early dominant IFN-chemokine regulatory subnetworks, and at later times the plasticity of pathways implicated in cell-cycle control and lipid metabolism. Further, we identify previously unknown suppressed networks associated with infection, including a select group of GPCRs. Functional siRNA viral growth screen targeting 516-GPCRs and subsequent validation identified novel GPCR-dependent antiviral (ADORA1) and proviral (GPR146, RGS16, PTAFR, SCTR, GPR84, GPR85, NMUR2, FZ10, RDS, CCL17, and SORT1) roles. By contrast a gene family cluster of protocadherins is significantly differentially induced in neonatal cells, suggestive of possible immunomodulatory roles. Unexpectedly, programming responses of adult and neonatal dendritic cells, upon HCMV infection, demonstrated comparable quantitative and qualitative responses showing that functionally, neonatal dendritic cell are not overly compromised. However, a delay in responses of neonatal cells for IFN subnetworks in comparison with adult-derived cells are notable, suggestive of subtle plasticity differences. These findings support a set-point control mechanism rather than immaturity for explaining not only neonatal susceptibility but also resilience to infection. In summary, our findings show that neonatal HCMV infection leads to a highly plastic and functional robust programming of dendritic cells in vivo and in vitro . In comparison with adults, a minimal number of subtle quantitative and temporal differences may contribute to variability in host susceptibility and resilience, in a context dependent manner.
NASA Astrophysics Data System (ADS)
Mirsafianf, Atefeh S.; Isfahani, Shirin N.; Kasaei, Shohreh; Mobasheri, Hamid
Here we present an approach for processing neural cells images to analyze their growth process in culture environment. We have applied several image processing techniques for: 1- Environmental noise reduction, 2- Neural cells segmentation, 3- Neural cells classification based on their dendrites' growth conditions, and 4- neurons' features Extraction and measurement (e.g., like cell body area, number of dendrites, axon's length, and so on). Due to the large amount of noise in the images, we have used feed forward artificial neural networks to detect edges more precisely.
Designer dendritic cells for tolerance induction: guided not misguided missiles.
Hackstein, H; Morelli, A E; Thomson, A W
2001-08-01
Dendritic cells (DCs) are professional antigen-presenting cells (APCs) that play crucial roles as initiators and modulators of adaptive immune responses. Although DC-based vaccines have been utilized successfully to generate cytolytic T-cell activity against tumor antigens (Ags), evidence has accumulated that DCs also have potent capabilities to tolerize T cells in an Ag-specific manner. DCs cultured in the laboratory can suppress auto- or alloimmunity. Current and prospective strategies to promote this inherent tolerogenic potential of DCs might prove to be important for the therapy of transplant rejection and autoimmune diseases.
Prominent role for plasmacytoid dendritic cells in mucosal T cell-independent IgA induction.
Tezuka, Hiroyuki; Abe, Yukiko; Asano, Jumpei; Sato, Taku; Liu, Jiajia; Iwata, Makoto; Ohteki, Toshiaki
2011-02-25
Although both conventional dendritic cells (cDCs) and plasmacytoid dendritic cells (pDCs) are present in the gut-associated lymphoid tissues (GALT), the roles of pDCs in the gut remain largely unknown. Here we show a critical role for pDCs in T cell-independent (TI) IgA production by B cells in the GALT. When pDCs of the mesenteric lymph nodes (MLNs) and Peyer's patches (PPs) (which are representative GALT) were cultured with naive B cells to induce TI IgA class switch recombination (CSR), IgA production was substantially higher than in cocultures of these cells with cDCs. IgA production was dependent on APRIL and BAFF production by pDCs. Importantly, pDC expression of APRIL and BAFF was dependent on stromal cell-derived type I IFN signaling under steady-state conditions. Our findings provide insight into the molecular basis of pDC conditioning to induce mucosal TI IgA production, which may lead to improvements in vaccination strategies and treatment for mucosal-related disorders. Copyright © 2011 Elsevier Inc. All rights reserved.
Disarmed by density: A glycolytic break for immunostimulatory dendritic cells?
Nasi, Aikaterini; Rethi, Bence
2013-12-01
We observed a cell concentration-dependent differentiation switch among cultured dendritic cells (DCs) triggered by lactic acid, a product of glycolytic metabolism. In particular, while interleukin (IL)-12, IL-23, and tumor necrosis factor α (TNFα)-producing, migratory DCs developed in sparse cultures, IL-10-producing, non-migratory DCs differentiated in dense cultures. This points to a novel opportunity for tailoring DC-based anticancer therapies through metabolism modulation in developing DCs.
2018-03-02
Adult Acute Myeloid Leukemia in Remission; Acute Biphenotypic Leukemia; Early Relapse of Acute Myeloid Leukemia; Late Relapse of Acute Myeloid Leukemia; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Blastic Plasmacytoid Dendritic Cell Neoplasm; Acute Myeloid Leukemia; Adult Acute Lymphoblastic Leukemia; Interleukin-3 Receptor Subunit Alpha Positive; Minimal Residual Disease; Refractory Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia
Banerjee, Shashwat S; Jalota-Badhwar, Archana; Satavalekar, Sneha D; Bhansali, Sujit G; Aher, Naval D; Mascarenhas, Russel R; Paul, Debjani; Sharma, Somesh; Khandare, Jayant J
2013-06-01
A multicomponent magneto-dendritic nanosystem (MDNS) is designed for rapid tumor cell targeting, isolation, and high-resolution imaging by a facile bioconjugation approach. The highly efficient and rapid-acting MDNS provides a convenient platform for simultaneous isolation and high-resolution imaging of tumor cells, potentially leading towards an early diagnosis of cancer. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Neuillé, Marion; Morgans, Catherine W.; Cao, Yan; Orhan, Elise; Michiels, Christelle; Sahel, José-Alain; Audo, Isabelle; Duvoisin, Robert M.; Martemyanov, Kirill A.; Zeitz, Christina
2016-01-01
Mutations in LRIT3 lead to complete congenital stationary night blindness (cCSNB). The exact role of LRIT3 in ON-bipolar cell signaling cascade remains to be elucidated. Recently, we have characterized a novel mouse model lacking Lrit3 (no b-wave 6, (Lrit3nob6/nob6)), which displays similar abnormalities as patients with cCSNB with LRIT3 mutations. Here we compare the localization of components of the ON-bipolar cell signaling cascade in wild-type and Lrit3nob6/nob6 retinal sections by immunofluorescence confocal microscopy. An anti-LRIT3 antibody was generated. Immunofluorescent staining of LRIT3 in wild-type mice revealed a specific punctate labeling in the outer plexiform layer (OPL), which was absent in Lrit3nob6/nob6 mice. LRIT3 did not colocalize with ribeye or calbindin but colocalized with mGluR6. TRPM1 staining was severely decreased at the dendritic tips of all depolarizing bipolar cells in Lrit3nob6/nob6 mice. mGluR6, GPR179, RGS7, RGS11 and Gβ5 immunofluorescence was absent at the dendritic tips of cone ON-bipolar cells in Lrit3nob6/nob6 mice, while it was present at the dendritic tips of rod bipolar cells. Furthermore, PNA labeling was severely reduced in the OPL in Lrit3nob6/nob6 mice. This study confirmed the localization of LRIT3 at the dendritic tips of depolarizing bipolar cells in mouse retina and demonstrated the dependence of TRPM1 localization on the presence of LRIT3. Since tested components of the ON-bipolar cell signaling cascade and PNA revealed disrupted localization, an additional function of LRIT3 in cone synapse formation is suggested. These results point to a possibly different regulation of the mGluR6 signaling cascade between rod and cone ON-bipolar cells. PMID:25997951
Conjunctival Primary Acquired Melanosis: Is It Time for a New Terminology?
Jakobiec, Frederick A
2016-02-01
To review the diagnostic categories of a group of conditions referred to as "primary acquired melanosis." Literature review on the subject and proposal of an alternative diagnostic schema with histopathologic and immunohistochemical illustrations. Standard hematoxylin-eosin-stained sections and immunohistochemical stains for MART-1, HMB-45, microphthalmia-associated transcription factor (MiTF), and Ki-67 for calculating the proliferation index are illustrated. "Melanosis" is an inadequate and misleading term because it does not distinguish between conjunctival intraepithelial melanin overproduction ("hyperpigmentation") and intraepithelial melanocytic proliferation. It is recommended that "intraepithelial melanocytic proliferation" be adopted for histopathologic diagnosis. Atypical proliferations are characterized either by bloated dendritic melanocytes with enlarged cell components (dendrites, cell bodies, and nuclei) or by epithelioid melanocytes without dendrites. Atypical polygonal or epithelioid pagetoid cells may reach higher levels of the epithelium beyond the basal layer. Immunohistochemistry defines the degree of melanocytic proliferation or the cellular shape (dendritic or nondendritic) (MART-1, HMB-45) or identifies the melanocytic nuclei (MiTF). Intraepithelial melanocytic proliferation without atypia represents increased numbers of normal-appearing dendritic melanocytes (hyperplasia or early neoplasia) that generally remain confined to the basal/basement membrane region. Intraepithelial nonproliferative melanocytic pigmentation signifies the usually small number of conjunctival basal dendritic melanocytes that synthesize increased amounts of melanin that is transferred to surrounding keratinocytes. All pre- and postoperative biopsies of flat conjunctival melanocytic disorders should be evaluated immunohistochemically if there is any question regarding atypicality. This should lead to a clearer microscopic descriptive diagnosis that is predicated on an analysis of the participating cell types and their architectural patterns. This approach is conducive to a better appreciation of features indicating when to intervene therapeutically. An accurate early diagnosis should forestall unnecessary later surgery. Copyright © 2016 Elsevier Inc. All rights reserved.
Random Positions of Dendritic Spines in Human Cerebral Cortex
Morales, Juan; Benavides-Piccione, Ruth; Dar, Mor; Fernaud, Isabel; Rodríguez, Angel; Anton-Sanchez, Laura; Bielza, Concha; Larrañaga, Pedro; DeFelipe, Javier
2014-01-01
Dendritic spines establish most excitatory synapses in the brain and are located in Purkinje cell's dendrites along helical paths, perhaps maximizing the probability to contact different axons. To test whether spine helixes also occur in neocortex, we reconstructed >500 dendritic segments from adult human cortex obtained from autopsies. With Fourier analysis and spatial statistics, we analyzed spine position along apical and basal dendrites of layer 3 pyramidal neurons from frontal, temporal, and cingulate cortex. Although we occasionally detected helical positioning, for the great majority of dendrites we could not reject the null hypothesis of spatial randomness in spine locations, either in apical or basal dendrites, in neurons of different cortical areas or among spines of different volumes and lengths. We conclude that in adult human neocortex spine positions are mostly random. We discuss the relevance of these results for spine formation and plasticity and their functional impact for cortical circuits. PMID:25057209
3D morphology-based clustering and simulation of human pyramidal cell dendritic spines.
Luengo-Sanchez, Sergio; Fernaud-Espinosa, Isabel; Bielza, Concha; Benavides-Piccione, Ruth; Larrañaga, Pedro; DeFelipe, Javier
2018-06-13
The dendritic spines of pyramidal neurons are the targets of most excitatory synapses in the cerebral cortex. They have a wide variety of morphologies, and their morphology appears to be critical from the functional point of view. To further characterize dendritic spine geometry, we used in this paper over 7,000 individually 3D reconstructed dendritic spines from human cortical pyramidal neurons to group dendritic spines using model-based clustering. This approach uncovered six separate groups of human dendritic spines. To better understand the differences between these groups, the discriminative characteristics of each group were identified as a set of rules. Model-based clustering was also useful for simulating accurate 3D virtual representations of spines that matched the morphological definitions of each cluster. This mathematical approach could provide a useful tool for theoretical predictions on the functional features of human pyramidal neurons based on the morphology of dendritic spines.
Active Dendrites Enhance Neuronal Dynamic Range
Gollo, Leonardo L.; Kinouchi, Osame; Copelli, Mauro
2009-01-01
Since the first experimental evidences of active conductances in dendrites, most neurons have been shown to exhibit dendritic excitability through the expression of a variety of voltage-gated ion channels. However, despite experimental and theoretical efforts undertaken in the past decades, the role of this excitability for some kind of dendritic computation has remained elusive. Here we show that, owing to very general properties of excitable media, the average output of a model of an active dendritic tree is a highly non-linear function of its afferent rate, attaining extremely large dynamic ranges (above 50 dB). Moreover, the model yields double-sigmoid response functions as experimentally observed in retinal ganglion cells. We claim that enhancement of dynamic range is the primary functional role of active dendritic conductances. We predict that neurons with larger dendritic trees should have larger dynamic range and that blocking of active conductances should lead to a decrease in dynamic range. PMID:19521531
Feng, Yuping; Wang, Jiao; Ling, Shixin; Li, Zhuo; Li, Mingsheng; Li, Qiongyi; Ma, Zongren; Yu, Sijiu
2014-01-01
The purpose of this study was to assess fetal bovine acellular dermal matrix as a scaffold for supporting the differentiation of bone marrow mesenchymal stem cells into neural cells following induction with neural differentiation medium. We performed long-term, continuous observation of cell morphology, growth, differentiation, and neuronal development using several microscopy techniques in conjunction with immunohistochemistry. We examined specific neuronal proteins and Nissl bodies involved in the differentiation process in order to determine the neuronal differentiation of bone marrow mesenchymal stem cells. The results show that bone marrow mesenchymal stem cells that differentiate on fetal bovine acellular dermal matrix display neuronal morphology with unipolar and bi/multipolar neurite elongations that express neuronal-specific proteins, including βIII tubulin. The bone marrow mesenchymal stem cells grown on fetal bovine acellular dermal matrix and induced for long periods of time with neural differentiation medium differentiated into a multilayered neural network-like structure with long nerve fibers that was composed of several parallel microfibers and neuronal cells, forming a complete neural circuit with dendrite-dendrite to axon-dendrite to dendrite-axon synapses. In addition, growth cones with filopodia were observed using scanning electron microscopy. Paraffin sectioning showed differentiated bone marrow mesenchymal stem cells with the typical features of neuronal phenotype, such as a large, round nucleus and a cytoplasm full of Nissl bodies. The data suggest that the biological scaffold fetal bovine acellular dermal matrix is capable of supporting human bone marrow mesenchymal stem cell differentiation into functional neurons and the subsequent formation of tissue engineered nerve. PMID:25598779
Stem Cell-Like Gene Expression in Ovarian Cancer Predicts Type II Subtype and Prognosis
Schwede, Matthew; Spentzos, Dimitrios; Bentink, Stefan; Hofmann, Oliver; Haibe-Kains, Benjamin; Harrington, David; Quackenbush, John; Culhane, Aedín C.
2013-01-01
Although ovarian cancer is often initially chemotherapy-sensitive, the vast majority of tumors eventually relapse and patients die of increasingly aggressive disease. Cancer stem cells are believed to have properties that allow them to survive therapy and may drive recurrent tumor growth. Cancer stem cells or cancer-initiating cells are a rare cell population and difficult to isolate experimentally. Genes that are expressed by stem cells may characterize a subset of less differentiated tumors and aid in prognostic classification of ovarian cancer. The purpose of this study was the genomic identification and characterization of a subtype of ovarian cancer that has stem cell-like gene expression. Using human and mouse gene signatures of embryonic, adult, or cancer stem cells, we performed an unsupervised bipartition class discovery on expression profiles from 145 serous ovarian tumors to identify a stem-like and more differentiated subgroup. Subtypes were reproducible and were further characterized in four independent, heterogeneous ovarian cancer datasets. We identified a stem-like subtype characterized by a 51-gene signature, which is significantly enriched in tumors with properties of Type II ovarian cancer; high grade, serous tumors, and poor survival. Conversely, the differentiated tumors share properties with Type I, including lower grade and mixed histological subtypes. The stem cell-like signature was prognostic within high-stage serous ovarian cancer, classifying a small subset of high-stage tumors with better prognosis, in the differentiated subtype. In multivariate models that adjusted for common clinical factors (including grade, stage, age), the subtype classification was still a significant predictor of relapse. The prognostic stem-like gene signature yields new insights into prognostic differences in ovarian cancer, provides a genomic context for defining Type I/II subtypes, and potential gene targets which following further validation may be valuable in the clinical management or treatment of ovarian cancer. PMID:23536770
Bray, Mike; Geisbert, Thomas W
2005-08-01
Ebola hemorrhagic fever is a severe viral infection characterized by fever, shock and coagulation defects. Recent studies in macaques show that major features of illness are caused by effects of viral replication on macrophages and dendritic cells. Infected macrophages produce proinflammatory cytokines, chemokines and tissue factor, attracting additional target cells and inducing vasodilatation, increased vascular permeability and disseminated intravascular coagulation. However, they cannot restrict viral replication, possibly because of suppression of interferon responses. Infected dendritic cells also secrete proinflammatory mediators, but cannot initiate antigen-specific responses. In consequence, virus disseminates to these and other cell types throughout the body, causing multifocal necrosis and a syndrome resembling septic shock. Massive "bystander" apoptosis of natural killer and T cells further impairs immunity. These findings suggest that modifying host responses would be an effective therapeutic strategy, and treatment of infected macaques with a tissue-factor inhibitor reduced both inflammation and viral replication and improved survival.
Rao, Xiaolan; Lu, Nan; Li, Guifen; Nakashima, Jin; Tang, Yuhong; Dixon, Richard A.
2016-01-01
Almost all C4 plants require the co-ordination of the adjacent and fully differentiated cell types, mesophyll (M) and bundle sheath (BS). The C4 photosynthetic pathway operates through two distinct subtypes based on how malate is decarboxylated in BS cells; through NAD-malic enzyme (NAD-ME) or NADP-malic enzyme (NADP-ME). The diverse or unique cell-specific molecular features of M and BS cells from separate C4 subtypes of independent lineages remain to be determined. We here provide an M/BS cell type-specific transcriptome data set from the monocot NAD-ME subtype switchgrass (Panicum virgatum). A comparative transcriptomics approach was then applied to compare the M/BS mRNA profiles of switchgrass, monocot NADP-ME subtype C4 plants maize and Setaria viridis, and dicot NAD-ME subtype Cleome gynandra. We evaluated the convergence in the transcript abundance of core components in C4 photosynthesis and transcription factors to establish Kranz anatomy, as well as gene distribution of biological functions, in these four independent C4 lineages. We also estimated the divergence between NAD-ME and NADP-ME subtypes of C4 photosynthesis in the two cell types within C4 species, including differences in genes encoding decarboxylating enzymes, aminotransferases, and metabolite transporters, and differences in the cell-specific functional enrichment of RNA regulation and protein biogenesis/homeostasis. We suggest that C4 plants of independent lineages in both monocots and dicots underwent convergent evolution to establish C4 photosynthesis, while distinct C4 subtypes also underwent divergent processes for the optimization of M and BS cell co-ordination. The comprehensive data sets in our study provide a basis for further research on evolution of C4 species. PMID:26896851
Wang, Qiwei; Wang, Yan; Yu, Fengwei
2018-05-16
Pruning that selectively removes unnecessary neurites without causing neuronal death is essential for sculpting the mature nervous system during development. In Drosophila , ddaC sensory neurons specifically prune their larval dendrites with intact axons during metamorphosis. However, it remains unknown about an important role of ER-to-Golgi transport in dendrite pruning. Here, in a clonal screen we identified Yif1, an uncharacterized Drosophila homologue of Yif1p that is known as a regulator of ER-to-Golgi transport in yeast. We show that Yif1 is required for dendrite pruning of ddaC neurons but not for apoptosis of ddaF neurons. We further identified the Yif1-binding partner Yip1 which is also crucial for dendrite pruning. Yif1 forms a protein complex with Yip1 in S2 cells and ddaC neurons. Yip1 and Yif1 colocalize on ER/Golgi and are required for the integrity of Golgi apparatus and outposts. Moreover, we show that two GTPases Rab1 and Sar1, known to regulate ER-to-Golgi transport, are essential for dendrite pruning of ddaC neurons. Finally, our data reveal that ER-to-Golgi transport promotes endocytosis and downregulation of cell adhesion molecule Neuroglian and thereby dendrite pruning. © 2018. Published by The Company of Biologists Ltd.
Zhang, Ming-Zhi; Wang, Xin; Wang, Yinqiu; Niu, Aolei; Wang, Suwan; Zou, Chenhang; Harris, Raymond C
2017-02-01
Cytokines IL-4 and IL-13 play important roles in polarization of macrophages/dendritic cells to an M2 phenotype, which is important for recovery from acute kidney injury. Both IL-4 and IL-13 activate JAK3/STAT6 signaling. In mice with diphtheria toxin receptor expression in proximal tubules (selective injury model), a relatively selective JAK3 inhibitor, tofacitinib, led to more severe kidney injury, delayed recovery from acute kidney injury, increased inflammatory M1 phenotype markers and decreased reparative M2 phenotype markers of macrophages/dendritic cells, and development of more severe renal fibrosis after diphtheria toxin administration. Similarly, there was delayed recovery and increased tubulointerstitial fibrosis in these diphtheria toxin-treated mice following tamoxifen-induced deletion of both IL-4 and IL-13, with increased levels of M1 and decreased levels of M2 markers in the macrophages/dendritic cells. Furthermore, deletion of IL-4 and IL-13 led to a decrease of tissue reparative M2a phenotype markers but had no effect on anti-inflammatory M2c phenotype markers. Deletion of IL-4 and IL-13 also inhibited recovery from ischemia-reperfusion injury in association with increased M1 and decreased M2 markers and promoted subsequent tubulointerstitial fibrosis. Thus, IL-4 and IL-13 are required to effectively polarize macrophages/dendritic cells to an M2a phenotype and to promote recovery from acute kidney injury. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Iizuka-Koga, Mana; Asashima, Hiromitsu; Ando, Miki; Lai, Chen-Yi; Mochizuki, Shinji; Nakanishi, Mahito; Nishimura, Toshinobu; Tsuboi, Hiroto; Hirota, Tomoya; Takahashi, Hiroyuki; Matsumoto, Isao; Otsu, Makoto; Sumida, Takayuki
2017-05-09
Although it is important to clarify the pathogenic functions of T cells in human samples, their examination is often limited due to difficulty in obtaining sufficient numbers of dendritic cells (DCs), used as antigen-presenting cells, especially in autoimmune diseases. We describe the generation of DCs from induced pluripotent stem cells derived from T cells (T-iPSCs). We reprogrammed CD4+ T cell clones from a patient with Sjögren's syndrome (SS) into iPSCs, which were differentiated into DCs (T-iPS-DCs). T-iPS-DCs had dendritic cell-like morphology, and expressed CD11c, HLA-DR, CD80, CD86, and also BDCA-3. Compared with monocyte-derived DCs, the capacity for antigen processing was similar, and T-iPS-DCs induced the proliferative response of autoreactive CD4+ T cells. Moreover, we could evaluate T cell functions of the patient with SS. In conclusion, we obtained adequate numbers of DCs from T-iPSCs, which could be used to characterize pathogenic T cells in autoimmune diseases such as SS. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Sonobe, Yoshifumi; Li, Hua; Jin, Shijie; Kishida, Satoshi; Kadomatsu, Kenji; Takeuchi, Hideyuki; Mizuno, Tetsuya; Suzumura, Akio
2012-03-15
Midkine (MK), a heparin-binding growth factor, reportedly contributes to inflammatory diseases, including Crohn's disease and rheumatoid arthritis. We previously showed that MK aggravates experimental autoimmune encephalomyelitis (EAE) by decreasing regulatory CD4(+)CD25(+)Foxp3(+) T cells (Tregs), a population that regulates the development of autoimmune responses, although the precise mechanism remains uncertain. In this article, we show that MK produced in inflammatory conditions suppresses the development of tolerogenic dendritic cells (DCregs), which drive the development of inducible Treg. MK suppressed DCreg-mediated expansion of the CD4(+)CD25(+)Foxp3(+) Treg population. DCregs expressed significantly higher levels of CD45RB and produced significantly less IL-12 compared with conventional dendritic cells. However, MK downregulated CD45RB expression and induced IL-12 production by reducing phosphorylated STAT3 levels via src homology region 2 domain-containing phosphatase-2 in DCreg. Inhibiting MK activity with anti-MK RNA aptamers, which bind to the targeted protein to suppress the function of the protein, increased the numbers of CD11c(low)CD45RB(+) dendritic cells and Tregs in the draining lymph nodes and suppressed the severity of EAE, an animal model of multiple sclerosis. Our results also demonstrated that MK was produced by inflammatory cells, in particular, CD4(+) T cells under inflammatory conditions. Taken together, these results suggest that MK aggravates EAE by suppressing DCreg development, thereby impairing the Treg population. Thus, MK is a promising therapeutic target for various autoimmune diseases.
Quintana, Francisco J.; Murugaiyan, Gopal; Farez, Mauricio F.; Mitsdoerffer, Meike; Tukpah, Ann-Marcia; Burns, Evan J.; Weiner, Howard L.
2010-01-01
The ligand-activated transcription factor aryl hydrocarbon receptor (AHR) participates in the differentiation of FoxP3+ Treg, Tr1 cells, and IL-17–producing T cells (Th17). Most of our understanding on the role of AHR on the FoxP3+ Treg compartment results from studies using the toxic synthetic chemical 2,3,7,8-tetrachlorodibenzo-p-dioxin. Thus, the physiological relevance of AHR signaling on FoxP3+ Treg in vivo is unclear. We studied mice that carry a GFP reporter in the endogenous foxp3 locus and a mutated AHR protein with reduced affinity for its ligands, and found that AHR signaling participates in the differentiation of FoxP3+ Treg in vivo. Moreover, we found that treatment with the endogenous AHR ligand 2-(1′H-indole-3′-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) given parenterally or orally induces FoxP3+ Treg that suppress experimental autoimmune encephalomyelitis. ITE acts not only on T cells, but also directly on dendritic cells to induce tolerogenic dendritic cells that support FoxP3+ Treg differentiation in a retinoic acid-dependent manner. Thus, our work demonstrates that the endogenous AHR ligand ITE promotes the induction of active immunologic tolerance by direct effects on dendritic and T cells, and identifies nontoxic endogenous AHR ligands as potential unique compounds for the treatment of autoimmune disorders. PMID:21068375
Brucella β 1,2 Cyclic Glucan Is an Activator of Human and Mouse Dendritic Cells
Martirosyan, Anna; Pérez-Gutierrez, Camino; Banchereau, Romain; Dutartre, Hélène; Lecine, Patrick; Dullaers, Melissa; Mello, Marielle; Pinto Salcedo, Suzana; Muller, Alexandre; Leserman, Lee; Levy, Yves; Zurawski, Gerard; Zurawski, Sandy; Moreno, Edgardo; Moriyón, Ignacio; Klechevsky, Eynav; Banchereau, Jacques; Oh, SangKon; Gorvel, Jean-Pierre
2012-01-01
Bacterial cyclic glucans are glucose polymers that concentrate within the periplasm of alpha-proteobacteria. These molecules are necessary to maintain the homeostasis of the cell envelope by contributing to the osmolarity of Gram negative bacteria. Here, we demonstrate that Brucella β 1,2 cyclic glucans are potent activators of human and mouse dendritic cells. Dendritic cells activation by Brucella β 1,2 cyclic glucans requires TLR4, MyD88 and TRIF, but not CD14. The Brucella cyclic glucans showed neither toxicity nor immunogenicity compared to LPS and triggered antigen-specific CD8+ T cell responses in vivo. These cyclic glucans also enhanced antigen-specific CD4+ and CD8+ T cell responses including cross-presentation by different human DC subsets. Brucella β 1,2 cyclic glucans increased the memory CD4+ T cell responses of blood mononuclear cells exposed to recombinant fusion proteins composed of anti-CD40 antibody and antigens from both hepatitis C virus and Mycobacterium tuberculosis. Thus cyclic glucans represent a new class of adjuvants, which might contribute to the development of effective antimicrobial therapies. PMID:23166489
Navarro-Sanchez, Erika; Altmeyer, Ralf; Amara, Ali; Schwartz, Olivier; Fieschi, Franck; Virelizier, Jean-Louis; Arenzana-Seisdedos, Fernando; Desprès, Philippe
2003-01-01
Dengue virus (DV) is a mosquito-borne flavivirus that causes haemorrhagic fever in humans. DV primarily targets immature dendritic cells (DCs) after a bite by an infected mosquito vector. Here, we analysed the interactions between DV and human-monocyte-derived DCs at the level of virus entry. We show that the DC-specific ICAM3-grabbing non-integrin (DC-SIGN) molecule, a cell-surface, mannose-specific, C-type lectin, binds mosquito-cell-derived DVs and allows viral replication. Conclusive evidence for the involvement of DC-SIGN in DV infection was obtained by the inhibition of viral infection by anti-DC-SIGN antibodies and by the soluble tetrameric ectodomain of DC-SIGN. Our data show that DC-SIGN functions as a DV-binding lectin by interacting with the DV envelope glycoprotein. Mosquito-cell-derived DVs may have differential infectivity for DC-SIGN-expressing cells. We suggest that the differential use of DC-SIGN by viral envelope glycoproteins may account for the immunopathogenesis of DVs. PMID:12783086
2010-01-01
Background Typhoid, which is caused by Salmonella enterica serovar Typhimurium, remains a major health concern worldwide. Multidrug-resistant strains of Salmonella have emerged which exhibit increased survivability and virulence, thus leading to increased morbidity. However, little is known about the protective immune response against this microorganism. The outer membrane protein (Omp)A of bacteria plays an important role in pathogenesis. Results We purified OmpA from S. enterica serovar Typhimurium (OmpA-sal) and characterized the role of OmpA-sal in promoting adaptive and innate immune responses. OmpA-sal functionally activated bone marrow-derived dendritic cells by augmenting expression of CD80, CD86, and major histocompatibility complex classes I and II. Interestingly, OmpA-sal induced production of interferon-γ from T cells in mixed lymphocyte reactions, thus indicating Th1-polarizing capacity. The expression of surface markers and cytokine production in dendritic cells was mediated by the TLR4 signaling pathway in a TLR4 Knock-out system. Conclusions Our findings suggest that OmpA-sal modulates the adaptive immune responses to S. enterica serovar Typhimurium by activating dendritic cells and driving Th1 polarization, which are important properties to consider in the development of effective S. enterica serovar Typhimurium vaccines and immunotherapy adjuvant. PMID:20950448
Li, Hongyan; Zhang, Zhijing; Kiyama, Takae; Panda, Satchidananda; Hattar, Samer; Ribelayga, Christophe P.; Mills, Stephen L.
2014-01-01
Opsin 4 (Opn4)/melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) play a major role in non-image-forming visual system. Although advances have been made in understanding their morphological features and functions, the molecular mechanisms that regulate their formation and survival remain unknown. Previously, we found that mouse T-box brain 2 (Tbr2) (also known as Eomes), a T-box-containing transcription factor, was expressed in a subset of newborn RGCs, suggesting that it is involved in the formation of specific RGC subtypes. In this in vivo study, we used complex mouse genetics, single-cell dye tracing, and behavioral analyses to determine whether Tbr2 regulates ipRGC formation and survival. Our results show the following: (1) Opn4 is expressed exclusively in Tbr2-positive RGCs; (2) no ipRGCs are detected when Tbr2 is genetically ablated before RGC specification; and (3) most ipRGCs are eliminated when Tbr2 is deleted in established ipRGCs. The few remaining ipRGCs display abnormal dendritic morphological features and functions. In addition, some Tbr2-expressing RGCs can activate Opn4 expression on the loss of native ipRGCs, suggesting that Tbr2-expressing RGCs may serve as a reservoir of ipRGCs to regulate the number of ipRGCs and the expression levels of Opn4. PMID:25253855
Role of Dendritic Cells in Immune Dysfunction
NASA Technical Reports Server (NTRS)
Savary, Cherylyn A.
1997-01-01
Specific aims include: (1) Application of the bioreactor to enhance cytokine-regulated proliferation and maturation of dendritic cells (DC); (2) Based on clues from spaceflight: compare the frequency and function of DC in normal donors and immunocompromised cancer patients; and (3) Initiate studies on the efficiency of cytokine therapy and DC-assisted immunotherapy (using bioreactor-expanded DC) in animal models of experimental fungal infections.
USDA-ARS?s Scientific Manuscript database
Foot-and-mouth disease virus (FMDV) is a highly contagious virus that causes one of the most devastating diseases in cloven-hoofed animals. Disease symptoms in FMDV-infected animals appear within 2 to 3 days of exposure. Dendritic cells (DC) play an essential role in protective immune responses agai...
Shi, Zhigang; Zhang, Yueping; Meek, Johannes; Qiao, Jiantian; Han, Victor Z.
2018-01-01
The distal valvula cerebelli is the most prominent part of the mormyrid cerebellum. It is organized in ridges of ganglionic and molecular layers, oriented perpendicular to the granular layer. We have combined intracellular recording and labelling techniques to reveal the cellular morphology of the valvula ridges in slice preparations. We have also locally ejected tracer in slices and in intact animals to examine its input fibers. The palisade dendrites and fine axon arbors of Purkinje cells are oriented in the horizontal plane of the ridge. The dendrites of basal efferent cells and large central cells are confined to the molecular layer, but are not planer. Basal efferent cell axons are thick, and join the basal bundle leaving the cerebellum. Large central cell axons are also thick, and traverse long distances in the transverse plane, with local collaterals in the ganglionic layer. Vertical cells and small central cells also have thick axons with local collaterals. The dendrites of Golgi cells are confined to the molecular layer, but their axon arbors are either confined to the granular layer or proliferate in both the granular and ganglionic layers. Dendrites of deep stellate cells are distributed in the molecular layer, with fine axon arbors in the ganglionic layer. Granule cell axons enter the molecular layer as parallel fibers without bifurcating. Climbing fibers run in the horizontal plane and terminate exclusively in the ganglionic layer. Our results confirm and extend previous studies and suggest a new concept of the circuitry of the mormyrid valvula cerebelli. PMID:18537139
Taxonomy of breast cancer based on normal cell phenotype predicts outcome
Santagata, Sandro; Thakkar, Ankita; Ergonul, Ayse; Wang, Bin; Woo, Terri; Hu, Rong; Harrell, J. Chuck; McNamara, George; Schwede, Matthew; Culhane, Aedin C.; Kindelberger, David; Rodig, Scott; Richardson, Andrea; Schnitt, Stuart J.; Tamimi, Rulla M.; Ince, Tan A.
2014-01-01
Accurate classification is essential for understanding the pathophysiology of a disease and can inform therapeutic choices. For hematopoietic malignancies, a classification scheme based on the phenotypic similarity between tumor cells and normal cells has been successfully used to define tumor subtypes; however, use of normal cell types as a reference by which to classify solid tumors has not been widely emulated, in part due to more limited understanding of epithelial cell differentiation compared with hematopoiesis. To provide a better definition of the subtypes of epithelial cells comprising the breast epithelium, we performed a systematic analysis of a large set of breast epithelial markers in more than 15,000 normal breast cells, which identified 11 differentiation states for normal luminal cells. We then applied information from this analysis to classify human breast tumors based on normal cell types into 4 major subtypes, HR0–HR3, which were differentiated by vitamin D, androgen, and estrogen hormone receptor (HR) expression. Examination of 3,157 human breast tumors revealed that these HR subtypes were distinct from the current classification scheme, which is based on estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2. Patient outcomes were best when tumors expressed all 3 hormone receptors (subtype HR3) and worst when they expressed none of the receptors (subtype HR0). Together, these data provide an ontological classification scheme associated with patient survival differences and provides actionable insights for treating breast tumors. PMID:24463450
Schwede, S; Alfer, J; von Rango, U
2014-06-01
Primary infertility, miscarriage, and preeclampsia have been correlated with reduced numbers of regulatory T-cells (Treg) suggesting that decreased extravillous trophoblast (EVT) invasion originates from inadequate EVT tolerance. In contrast increased numbers of Treg-cells may be responsible for over-invasion of EVT. As the maturation status of dendritic cells (DC) influences T-cell behavior (tolerance or immune activation), altered relation between immature and mature DCs may also influence EVT invasion. Paraffin-embedded specimens of placenta accreta/increta (Pc; n = 11) and healthy intrauterine pregnancy (IUG; n = 18) were double-stained for cytokeratin and CD45, CD68, CD56, CD20, CD3, or CD8 as well as FoxP3/CD4 and FoxP3/CD8 and single-stained for CD4, CD25, FoxP3, CD209, Dec205 and CD83. Quantification of the leukocyte subpopulations was performed for decidua parietalis and basalis as characterized by cytokeratin-positive EVT. Statistical analysis was performed by using the Mann-Whitney test. There were significantly fewer CD4(+) cells in Pc than in IUG. Concerning the Treg-markers, FoxP3(+) cells are significantly increased. CD25(+) cells showed a small non-significant increase in Pc in comparison to IUG. Concerning dendritic cells, immature non-activated CD209(+) DCs were significantly decreased in Pc while immature activated CD205(+) DCs were slightly but non-significantly increased. Mature activated CD83(+) DC were non-significantly decreased in IUG vs Pc. The increased number of Treg-cells in Pc suggests significance for these cells in the regulation of trophoblast invasion. Their adequate interaction with other lymphocyte populations (e.g. adequately maturated dendritic cells) may be one mechanism to assure controlled EVT invasion. Copyright © 2014 Elsevier Ltd. All rights reserved.
Silicon ribbon study program. [dendritic crystals for use in solar cells
NASA Technical Reports Server (NTRS)
Seidensticker, R. G.; Duncan, C. S.
1975-01-01
The feasibility is studied of growing wide, thin silicon dendritic web for solar cell fabrication and conceptual designs are developed for the apparatus required. An analysis of the mechanisms of dendritic web growth indicated that there were no apparent fundamental limitations to the process. The analysis yielded quantitative guidelines for the thermal conditions required for this mode of crystal growth. Crucible designs were then investigated: the usual quartz crucible configurations and configurations in which silicon itself is used for the crucible. The quartz crucible design is feasible and is incorporated into a conceptual design for a laboratory scale crystal growth facility capable of semi-automated quasi-continuous operation.
GMP-Grade mRNA Electroporation of Dendritic Cells for Clinical Use.
Derdelinckx, Judith; Berneman, Zwi N; Cools, Nathalie
2016-01-01
mRNA-electroporated dendritic cells (DC) are demonstrating clinical benefit in patients in many therapeutic areas, including cancer and infectious diseases. According to current good manufacturing guidelines, cell-based medicinal products have to be defined for identity, purity, potency, stability, and viability. In order to comply with the directives and guidelines defined by the regulatory authorities, we report here a standardized and reproducible method for the manufacturing of clinical-grade mRNA-transfected DC.
Rosário, Marta; Schuster, Steffen; Jüttner, René; Parthasarathy, Srinivas; Tarabykin, Victor; Birchmeier, Walter
2012-08-01
Neocortical neurons have highly branched dendritic trees that are essential for their function. Indeed, defects in dendritic arborization are associated with human neurodevelopmental disorders. The molecular mechanisms regulating dendritic arbor complexity, however, are still poorly understood. Here, we uncover the molecular basis for the regulation of dendritic branching during cortical development. We show that during development, dendritic branching requires post-mitotic suppression of the RhoGTPase Cdc42. By generating genetically modified mice, we demonstrate that this is catalyzed in vivo by the novel Cdc42-GAP NOMA-GAP. Loss of NOMA-GAP leads to decreased neocortical volume, associated specifically with profound oversimplification of cortical dendritic arborization and hyperactivation of Cdc42. Remarkably, dendritic complexity and cortical thickness can be partially restored by genetic reduction of post-mitotic Cdc42 levels. Furthermore, we identify the actin regulator cofilin as a key regulator of dendritic complexity in vivo. Cofilin activation during late cortical development depends on NOMA-GAP expression and subsequent inhibition of Cdc42. Strikingly, in utero expression of active cofilin is sufficient to restore postnatal dendritic complexity in NOMA-GAP-deficient animals. Our findings define a novel cell-intrinsic mechanism to regulate dendritic branching and thus neuronal complexity in the cerebral cortex.
Dendritic cell fate is determined by BCL11A
Ippolito, Gregory C.; Dekker, Joseph D.; Wang, Yui-Hsi; Lee, Bum-Kyu; Shaffer, Arthur L.; Lin, Jian; Wall, Jason K.; Lee, Baeck-Seung; Staudt, Louis M.; Liu, Yong-Jun; Iyer, Vishwanath R.; Tucker, Haley O.
2014-01-01
The plasmacytoid dendritic cell (pDC) is vital to the coordinated action of innate and adaptive immunity. pDC development has not been unequivocally traced, nor has its transcriptional regulatory network been fully clarified. Here we confirm an essential requirement for the BCL11A transcription factor in fetal pDC development, and demonstrate this lineage-specific requirement in the adult organism. Furthermore, we identify BCL11A gene targets and provide a molecular mechanism for its action in pDC commitment. Embryonic germ-line deletion of Bcl11a revealed an absolute cellular, molecular, and functional absence of pDCs in fetal mice. In adults, deletion of Bcl11a in hematopoietic stem cells resulted in perturbed yet continued generation of progenitors, loss of downstream pDC and B-cell lineages, and persisting myeloid, conventional dendritic, and T-cell lineages. Challenge with virus resulted in a marked reduction of antiviral response in conditionally deleted adults. Genome-wide analyses of BCL11A DNA binding and expression revealed that BCL11A regulates transcription of E2-2 and other pDC differentiation modulators, including ID2 and MTG16. Our results identify BCL11A as an essential, lineage-specific factor that regulates pDC development, supporting a model wherein differentiation into pDCs represents a primed “default” pathway for common dendritic cell progenitors. PMID:24591644
Induction and identification of rabbit peripheral blood derived dendritic cells
NASA Astrophysics Data System (ADS)
Zhou, Jing; Yang, FuYuan; Chen, WenLi
2012-03-01
Purpose: To study a method of the induction of dendritic cells (DCs) from rabbit peripheral blood. Methods: Peripheral blood cells were removed from rabbit, filtered through nylon mesh. Peripheral blood mononuclear cells (PBMC) were isolated from the blood cells by Ficoll-Hypaque centrifugation (density of 1.077g/cm3).To obtain DCs, PBMC were cultured in RPMI1640 medium containing 10% fetal calf serum, 50U/mL penicillin and streptomycin, referred to subsequently as complete medium, at 37°C in 5% CO2 atmosphere for 4 hours. Nonadherent cells were aspirated, adherent cells were continued incubated in complete medium, supplemented with granulocyte/macrophage colony-stimulating factor (GM-CSF, 50ng/ml),and interleukin 4 (IL-4, 50ng/ml) for 9 days. Fluorescein labeled antibodies(anti-CD14, anti-HLA-DR, anti-CD86) were used to sign cells cultured for 3,6,9 days respectively, Then flow cytometry was performed. Results: Ratio of anti-HLA-DR and anti-CD86 labeled cells increased with induction time extension, in contrast with anti-CD14. Conclusion: Dendritic cells can be effectively induced by the method of this experiment, cell maturation status increased with induction time extension.
Montoya, Carlos J; Jie, Hyun-Bae; Al-Harthi, Lena; Mulder, Candice; Patiño, Pablo J; Rugeles, María T; Krieg, Arthur M; Landay, Alan L; Wilson, S Brian
2006-07-15
CD1d-restricted invariant NK T (iNKT) cells and dendritic cells (DCs) have been shown to play crucial roles in various types of immune responses, including TLR9-dependent antiviral responses initiated by plasmacytoid DCs (pDCs). However, the mechanism by which this occurs is enigmatic because TLRs are absent in iNKT cells and human pDCs do not express CD1d. To explore this process, pDCs were activated with CpG oligodeoxyribonucleotides, which stimulated the secretion of several cytokines such as type I and TNF-alpha. These cytokines and other soluble factors potently induced the expression of activation markers on iNKT cells, selectively enhanced double-negative iNKT cell survival, but did not induce their expansion or production of cytokines. Notably, pDC-derived factors licensed iNKT cells to respond to myeloid DCs: an important downstream cellular target of iNKT cell effector function and a critical contributor to the initiation of adaptive immune responses. This interaction supports the notion that iNKT cells can mediate cross-talk between DC subsets known to express mutually exclusive TLR and cytokine profiles.
Vyas, Ashish Kumar; Ramakrishna, Usha; Sen, Bijoya; Islam, Mojahidul; Ramakrishna, Gayatri; Patra, Sharda; Rastogi, Archana; Sarin, Shiv Kumar; Trehanpati, Nirupma
2018-04-30
Asialoglycoprotein receptor expression on hepatocytes has been associated with endocytosis, binding and uptake of hepatitis B virus. The role of asialoglycoprotein receptor in hepatitis B virus vertical transmission and its expression on placenta has not yet been studied. Thirty-four HBsAg+ve and 13 healthy pregnant mothers along with their newborns were enrolled. The former were categorized into transmitting and non-transmitting mothers based on their newborns being hepatitis B surface antigen and hepatitis B virus DNA positive. Expression of asialoglycoprotein receptor and hepatitis B surface antigen in placenta and isoform of asialoglycoprotein receptor on dendritic cell in peripheral and cord blood dendritic cells were analysed using flowcytometry, immune histochemistry, immune florescence and qRT-PCR. Twelve HBsAg+ve mothers transmitted hepatitis B virus to their newborns whereas the rest (n = 22) did not. Hepatitis B virus-transmitting mothers showed increased expression of asialoglycoprotein receptor in trophoblasts of placenta. Immunofluorescence microscopy revealed colocalization of hepatitis B surface antigen and asialoglycoprotein receptor in placenta as well as in DCs of transmitting mothers. There was no significant difference in the expression of asialoglycoprotein receptor on peripheral blood mononuclear cells or chord blood mononuclear cells between the 2 groups. However, hepatitis B virus-transmitting mothers and their HBsAg+ve newborns showed increased mRNA levels of isoform of asialoglycoprotein receptor on dendritic cell in peripheral blood mononuclear cells. Hepatitis B virus-transmitting mothers and their HBsAg+ve newborns showed an increased expression of isoform of asialoglycoprotein receptor on dendritic cell on circulating dendritic cells compared to hepatitis B virus non-transmitting mothers and their negative newborns. This study revealed that increased expression of asialoglycoprotein receptor in placenta and colocalization with hepatitis B surface antigen strongly indicates its role in intrauterine transmission of hepatitis B virus. Asialoglycoprotein receptor-blocking strategy can be used for therapeutic intervention of vertical transmission. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Peripheral Frequency of CD4+ CD28− Cells in Acute Ischemic Stroke
Tuttolomondo, Antonino; Pecoraro, Rosaria; Casuccio, Alessandra; Di Raimondo, Domenico; Buttà, Carmelo; Clemente, Giuseppe; Corte, Vittoriano della; Guggino, Giuliana; Arnao, Valentina; Maida, Carlo; Simonetta, Irene; Maugeri, Rosario; Squatrito, Rosario; Pinto, Antonio
2015-01-01
Abstract CD4+ CD28− T cells also called CD28 null cells have been reported as increased in the clinical setting of acute coronary syndrome. Only 2 studies previously analyzed peripheral frequency of CD28 null cells in subjects with acute ischemic stroke but, to our knowledge, peripheral frequency of CD28 null cells in each TOAST subtype of ischemic stroke has never been evaluated. We hypothesized that CD4+ cells and, in particular, the CD28 null cell subset could show a different degree of peripheral percentage in subjects with acute ischemic stroke in relation to clinical subtype and severity of ischemic stroke. The aim of our study was to analyze peripheral frequency of CD28 null cells in subjects with acute ischemic stroke in relation to TOAST diagnostic subtype, and to evaluate their relationship with scores of clinical severity of acute ischemic stroke, and their predictive role in the diagnosis of acute ischemic stroke and diagnostic subtype We enrolled 98 consecutive subjects admitted to our recruitment wards with a diagnosis of ischemic stroke. As controls we enrolled 66 hospitalized patients without a diagnosis of acute ischemic stroke. Peripheral frequency of CD4+ and CD28 null cells has been evaluated with a FACS Calibur flow cytometer. Subjects with acute ischemic stroke had a significantly higher peripheral frequency of CD4+ cells and CD28 null cells compared to control subjects without acute ischemic stroke. Subjects with cardioembolic stroke had a significantly higher peripheral frequency of CD4+ cells and CD28 null cells compared to subjects with other TOAST subtypes. We observed a significant relationship between CD28 null cells peripheral percentage and Scandinavian Stroke Scale and NIHSS scores. ROC curve analysis showed that CD28 null cell percentage may be useful to differentiate between stroke subtypes. These findings seem suggest a possible role for a T-cell component also in acute ischemic stroke clinical setting showing a different peripheral frequency of CD28 null cells in relation of each TOAST subtype of stroke. PMID:25997053
Steeghs, Liana; van Vliet, Sandra J; Uronen-Hansson, Heli; van Mourik, Andries; Engering, Anneke; Sanchez-Hernandez, Martha; Klein, Nigel; Callard, Robin; van Putten, Jos P M; van der Ley, Peter; van Kooyk, Yvette; van de Winkel, Jan G J
2006-02-01
Neisseria meningitidis lipopolysaccharide (LPS) has been identified as a major determinant of dendritic cell (DC) function. Here we report that one of a series of meningococcal mutants with defined truncations in the lacto-N-neotetraose outer core of the LPS exhibited unique strong adhesion and internalization properties towards DC. These properties were mediated by interaction of the GlcNAc(beta1-3)-Gal(beta1-4)-Glc-R oligosaccharide outer core of lgtB LPS with the dendritic-cell-specific ICAM-3 grabbing non-integrin (DC-SIGN) lectin receptor. Activation of DC-SIGN with this novel oligosaccharide ligand skewed T-cell responses driven by DC towards T helper type 1 activity. Thus, the use of lgtB LPS may provide a powerful instrument to selectively induce the desired arm of the immune response and potentially increase vaccine efficacy.
A lipid-based nano-regulator for cancer immunotherapy (Conference Presentation)
NASA Astrophysics Data System (ADS)
Qian, Yuan; Qiao, Sha; Zhang, Zhihong
2017-02-01
In the application of nanotechnology in cancer immunotherapy, antigen presenting cells (APCs, dendritic cells and macrophages) are preferable target due to their endocytic capacity and suppressed phenotype. Recently, we developed a lipid-based core-shell nanocarrier, which is stabilized by changeable fusion peptides and possesses a sub-30 diameter. With the different peptides, the nanoparticles (NPs) could either target to dendritic cells (DCs) in lymph nodes (LNs) or tumor associated macrophages (TAMs) in tumor environment. After subcutaneous injection, the NPs could targeted deliver the encapsulated antigen peptides (APs) and adjuvants (CpG-ODN) to dendritic cells in LNs, and lead to the antigen presenting and activation of cytotoxic T lymphocytes against tumor. In other case, after systemic administration, the immune regulatory molecules were carried by NPs and targeting delivered to specific immunocytes in tumor microenvironment resulting in the immunosuppressive state broken and tumor growth inhibition.
Silicon dendritic web material
NASA Technical Reports Server (NTRS)
Meier, D. L.; Campbell, R. B.; Sienkiewicz, L. J.; Rai-Choudhury, P.
1982-01-01
The development of a low cost and reliable contact system for solar cells and the fabrication of several solar cell modules using ultrasonic bonding for the interconnection of cells and ethylene vinyl acetate as the potting material for module encapsulation are examined. The cells in the modules were made from dendritic web silicon. To reduce cost, the electroplated layer of silver was replaced with an electroplated layer of copper. The modules that were fabricated used the evaporated Ti, Pd, Ag and electroplated Cu (TiPdAg/Cu) system. Adherence of Ni to Si is improved if a nickel silicide can be formed by heat treatment. The effectiveness of Ni as a diffusion barrier to Cu and the ease with which nickel silicide is formed is discussed. The fabrication of three modules using dendritic web silicon and employing ultrasonic bonding for interconnecting calls and ethylene vinyl acetate as the potting material is examined.
Silicon dendritic web material
NASA Astrophysics Data System (ADS)
Meier, D. L.; Campbell, R. B.; Sienkiewicz, L. J.; Rai-Choudhury, P.
1982-03-01
The development of a low cost and reliable contact system for solar cells and the fabrication of several solar cell modules using ultrasonic bonding for the interconnection of cells and ethylene vinyl acetate as the potting material for module encapsulation are examined. The cells in the modules were made from dendritic web silicon. To reduce cost, the electroplated layer of silver was replaced with an electroplated layer of copper. The modules that were fabricated used the evaporated Ti, Pd, Ag and electroplated Cu (TiPdAg/Cu) system. Adherence of Ni to Si is improved if a nickel silicide can be formed by heat treatment. The effectiveness of Ni as a diffusion barrier to Cu and the ease with which nickel silicide is formed is discussed. The fabrication of three modules using dendritic web silicon and employing ultrasonic bonding for interconnecting calls and ethylene vinyl acetate as the potting material is examined.
Ceribelli, Michele; Hou, Zhiying Esther; Kelly, Priscilla N.; Huang, Da Wei; Wright, George; Ganapathi, Karthik; Evbuomwan, Moses O.; Pittaluga, Stefania; Shaffer, Arthur L.; Marcucci, Guido; Forman, Stephen J.; Xiao, Wenming; Guha, Rajarshi; Zhang, Xiaohu; Ferrer, Marc; Chaperot, Laurence; Plumas, Joel; Jaffe, Elaine S.; Thomas, Craig J.; Reizis, Boris; Staudt, Louis M.
2016-01-01
SUMMARY Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is an aggressive and largely incurable hematologic malignancy originating from plasmacytoid dendritic cells (pDCs). Using RNA interference screening, we identified the E-box transcription factor TCF4 as a master regulator of the BPDCN oncogenic program. TCF4 served as a faithful diagnostic marker of BPDCN, and its downregulation caused the loss of the BPDCN-specific gene expression program and apoptosis. High-throughput drug screening revealed that bromodomain and extra-terminal domain inhibitors (BETi’s) induced BPDCN apoptosis, which was attributable to disruption of a BPDCN-specific transcriptional network controlled by TCF4-dependent super-enhancers. BETi’s retarded the growth of BPDCN xenografts, supporting their clinical evaluation in this recalcitrant malignancy. PMID:27846392
Lee, Yangsoon; Kim, Sinyoung; Lee, Seung-Tae; Kim, Han-Soo; Baek, Eun-Jung; Kim, Hyung Jin; Lee, MeeKyung; Kim, Hyun Ok
2009-08-01
We investigated the characteristics of the mononuclear cells remaining in the leukoreduction system (LRS) chambers of Trima Accel in comparison with those of standard buffy coat cells, and evaluated their potential for differentiation into dendritic cells. Twenty-six LRS chambers of Trima Accel were collected after platelet pheresis from healthy adults. Flow cytometric analysis for T, B, NK, and CD14+ cells was performed and the number of CD34+ cells was counted. Differentiation and maturation into dendritic cells were induced using CD14+ cells seperated via Magnetic cell sorting (MACS) Seperation (Miltenyi Biotec Inc., USA). Total white blood cell (WBC) count in LRS chambers was 10.8 x 10(8) (range 7.7-18.0 x 10(8)). The median values (range) of proportions of each cells were CD4+ T cell 29.6% (18.7-37.6), CD8+ T cell 27.7% (19.2-40.0), B cell 5.5% (2.2-12.1), NK cell 15.7% (13.7-19.9), and CD14+ cells 12.4% (8.6-32.3) respectively. Although total WBC count was significantly higher in the buffy coat (whole blood of 400 mL) than the LRS chambers, the numbers of lymphocytes and monocytes were not statistically different. The numbers of B cells and CD4+ cells were significantly higher in the buffy coat than the LRS chambers (P<0.05). The median value (range) of CD34+ cells obtained from the LRS chambers was 0.9 x 10(6) (0.2-2.6 x 10(6)). After 7 days of cytokine-supplemented culture, the CD14+ cells were successfully differentiated into dendritic cells. The mononuclear cells in LRS chambers of Trima Accel are an excellent alternative source of viable and functional human blood cells, which can be used for research purposes.
Mizuguchi, Rumiko; Naritsuka, Hiromi; Mori, Kensaku; Mao, Chai-An; Klein, William H.; Yoshihara, Yoshihiro
2013-01-01
The olfactory bulb (OB) is the first relay station in the brain where odor information from the olfactory epithelium is integrated, processed through its intrinsic neural circuitry, and conveyed to higher olfactory centers. Compared with profound mechanistic insights into olfactory axon wiring from the nose to the OB, little is known about the molecular mechanisms underlying the formation of functional neural circuitry among various types of neurons inside the OB. T-box transcription factor Tbr2 is expressed in various types of glutamatergic excitatory neurons in the brain including the OB projection neurons, mitral and tufted cells. Here we generated conditional knockout mice in which the Tbr2 gene is inactivated specifically in mitral and tufted cells from late embryonic stages. Tbr2 deficiency caused cell-autonomous changes in molecular expression including a compensatory increase of another T-box member, Tbr1, and a concomitant shift of vesicular glutamate transporter (VGluT) subtypes from VGluT1 to VGluT2. Tbr2-deficient mitral and tufted cells also exhibited anatomical abnormalities in their dendritic morphology and projection patterns. Additionally, several non-cell-autonomous phenotypes were observed in parvalbumin-, calbindin-, and 5T4-positive GABAergic interneurons. Furthermore, the number of dendrodendritic reciprocal synapses between mitral/tufted cells and GABAergic interneurons was significantly reduced. Upon stimulation with odorants, larger numbers of mitral and tufted cells were activated in Tbr2 conditional knockout mice. These results suggest that Tbr2 is required for not only the proper differentiation of mitral and tufted cells, but also for the establishment of functional neuronal circuitry in the OB and maintenance of excitatory–inhibitory balance crucial for odor information processing. PMID:22745484
Mizuguchi, Rumiko; Naritsuka, Hiromi; Mori, Kensaku; Mao, Chai-An; Klein, William H; Yoshihara, Yoshihiro
2012-06-27
The olfactory bulb (OB) is the first relay station in the brain where odor information from the olfactory epithelium is integrated, processed through its intrinsic neural circuitry, and conveyed to higher olfactory centers. Compared with profound mechanistic insights into olfactory axon wiring from the nose to the OB, little is known about the molecular mechanisms underlying the formation of functional neural circuitry among various types of neurons inside the OB. T-box transcription factor Tbr2 is expressed in various types of glutamatergic excitatory neurons in the brain including the OB projection neurons, mitral and tufted cells. Here we generated conditional knockout mice in which the Tbr2 gene is inactivated specifically in mitral and tufted cells from late embryonic stages. Tbr2 deficiency caused cell-autonomous changes in molecular expression including a compensatory increase of another T-box member, Tbr1, and a concomitant shift of vesicular glutamate transporter (VGluT) subtypes from VGluT1 to VGluT2. Tbr2-deficient mitral and tufted cells also exhibited anatomical abnormalities in their dendritic morphology and projection patterns. Additionally, several non-cell-autonomous phenotypes were observed in parvalbumin-, calbindin-, and 5T4-positive GABAergic interneurons. Furthermore, the number of dendrodendritic reciprocal synapses between mitral/tufted cells and GABAergic interneurons was significantly reduced. Upon stimulation with odorants, larger numbers of mitral and tufted cells were activated in Tbr2 conditional knockout mice. These results suggest that Tbr2 is required for not only the proper differentiation of mitral and tufted cells, but also for the establishment of functional neuronal circuitry in the OB and maintenance of excitatory-inhibitory balance crucial for odor information processing.
Hong, Seong Cheol; Murale, Dhiraj P; Jang, Se-Young; Haque, Md Mamunul; Seo, Minah; Lee, Seok; Woo, Deok Ha; Kwon, Junghoon; Song, Chang-Seon; Kim, Yun Kyung; Lee, Jun-Seok
2018-06-22
Avian Influenza (AI) caused an annual epidemic outbreak that led to destroying tens of millions of poultry worldwide. Current gold standard AI diagnosis method is an embryonic egg-based hemagglutination assay followed by immunoblotting or PCR sequencing to confirm subtypes. It requires, however, specialized facilities to handle egg inoculation and incubation, and the subtyping methods relied on costly reagents. Here, we demonstrated the first differential sensing approach to distinguish AI subtypes using series of cell lines and fluorescent sensor. Susceptibility of AI virus differs depending on genetic backgrounds of host cells. Thus, we examined cells from different organ origin, and the infection patterns against a panel of cells were utilized for AI virus subtyping. To quantify AI infection, we designed a highly cell-permeable fluorescent superoxide sensor to visualize infection. Though many AI monitoring strategies relied on sophisticated antibody have been extensively studied, our differential sensing strategy successfully proved discriminations of AI subtypes and demonstrated as a useful primary screening platform to monitor a large number of samples. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.