Science.gov

Sample records for dendritic cell-based vaccination

  1. Dendritic Cell-Based Vaccine Against Fungal Infection.

    PubMed

    Ueno, Keigo; Urai, Makoto; Ohkouchi, Kayo; Miyazaki, Yoshitsugu; Kinjo, Yuki

    2016-01-01

    Several pathogenic fungi, including Cryptococcus gattii, Histoplasma capsulatum, Coccidioides immitis, and Penicillium marneffei, cause serious infectious diseases in immunocompetent humans. However, currently, prophylactic and therapeutic vaccines are not clinically used. In particular, C. gattii is an emerging pathogen and thus far protective immunity against this pathogen has not been well characterized. Experimental vaccines such as component and attenuated live vaccines have been used as tools to study protective immunity against fungal infection. Recently, we developed a dendritic cell (DC)-based vaccine to study protective immunity against pulmonary infection by highly virulent C. gattii strain R265 that was clinically isolated from bronchial washings of infected patients during the Vancouver Island outbreak. In this approach, bone marrow-derived DCs (BMDCs) are pulsed with heat-killed C. gattii and then transferred into mice prior to intratracheal infection. This DC vaccine significantly increases interleukin 17A (IL-17A)-, interferon gamma (IFN-γ)-, and tumor necrosis factor alpha (TNF-α)-producing T cells in the lungs and spleen and ameliorates the pathology, fungal burden, and mortality following C. gattii infection. This approach may result in the development of a new means of controlling lethal fungal infections. In this chapter, we describe the procedures of DC vaccine preparation and murine pulmonary infection model for analysis of immune response against C. gattii.

  2. Dendritic cell based vaccines for HIV infection: the way ahead.

    PubMed

    García, Felipe; Plana, Montserrat; Climent, Nuria; León, Agathe; Gatell, Jose M; Gallart, Teresa

    2013-11-01

    Dendritic cells have a central role in HIV infection. On one hand, they are essential to induce strong HIV-specific CD4⁺ helper T-cell responses that are crucial to achieve a sustained and effective HIV-specific CD8⁺ cytotoxic T-lymphocyte able to control HIV replication. On the other hand, DCs contribute to virus dissemination and HIV itself could avoid a correct antigen presentation. As the efficacy of immune therapy and therapeutic vaccines against HIV infection has been modest in the best of cases, it has been hypothesized that ex vivo generated DC therapeutic vaccines aimed to induce effective specific HIV immune responses might overcome some of these problems. In fact, DC-based vaccine clinical trials have yielded the best results in this field. However, despite these encouraging results, functional cure has not been reached with this strategy in any patient. In this Commentary, we discuss new approaches to improve the efficacy and feasibility of this type of therapeutic vaccine.

  3. Dendritic cell-based vaccine for pancreatic cancer in Japan.

    PubMed

    Okamoto, Masato; Kobayashi, Masanori; Yonemitsu, Yoshikazu; Koido, Shigeo; Homma, Sadamu

    2016-02-01

    "Vaccell" is a dendritic cell (DC)-based cancer vaccine which has been established in Japan. The DCs play central roles in deciding the direction of host immune reactions as well as antigen presentation. We have demonstrated that DCs treated with a streptococcal immune adjuvant OK-432, produce interleukin-12, induce Th1-dominant state, and elicit anti-tumor effects, more powerful than those treated with the known DC-maturating factors. We therefore decided to mature DCs by the OK-432 for making an effective DC vaccine, Vaccell. The 255 patients with inoperable pancreatic cancer who received standard chemotherapy combined with DC vaccines, were analyzed retrospectively. Survival time of the patients with positive delayed type hypersensitivity (DTH) skin reaction was significantly prolonged as compared with that of the patients with negative DTH. The findings strongly suggest that there may be "Responders" for the DC vaccine in advanced pancreatic cancer patients. We next conducted a small-scale prospective clinical study. In this trial, we pulsed HLA class II-restricted WT1 peptide (WT1-II) in addition to HLA class I-restricted peptide (WT1-I) into the DCs. Survival of the patients received WT1-I and -II pulsed DC vaccine was significantly extended as compared to that of the patients received DCs pulsed with WT1-I or WT1-II alone. Furthermore, WT1-specific DTH positive patients showed significantly improved the overall survival as well as progression-free survival as compared to the DTH negative patients. The activation of antigen-specific immune responses by DC vaccine in combination with standard chemotherapy may be associated with a good clinical outcome in advanced pancreatic cancer. We are now planning a pivotal study of the Vaccell in appropriate protocols in Japan. PMID:26855819

  4. Combination strategies to enhance the potency of monocyte-derived dendritic cell-based cancer vaccines.

    PubMed

    Fecek, Ronald J; Storkus, Walter J

    2016-10-01

    Dendritic cells (DCs) are potent inducers of adaptive immunity and their clinical use in cancer vaccine formulations remains an area of active translational and clinical investigation. Although cancer vaccines applied as monotherapies have had a modest history of clinical success, there is great enthusiasm for novel therapeutic strategies combining DC-based cancer vaccines with agents that 'normalize' immune function in the tumor microenvironment (TME). Broadly, these combination vaccines are designed to antagonize/remove immunosuppressive networks within the TME that serve to limit the antitumor action of vaccine-induced T cells and/or to condition the TME to facilitate the recruitment and optimal function and durability of vaccine-induced T cells. Such combination regimens are expected to dramatically enhance the clinical potency of DC-based cancer vaccine platforms. PMID:27605069

  5. Prophylactic Dendritic Cell-Based Vaccines Efficiently Inhibit Metastases in Murine Metastatic Melanoma.

    PubMed

    Markov, Oleg V; Mironova, Nadezhda L; Sennikov, Sergey V; Vlassov, Valentin V; Zenkova, Marina A

    2015-01-01

    Recent data on the application of dendritic cells (DCs) as anti-tumor vaccines has shown their great potential in therapy and prophylaxis of cancer. Here we report on a comparison of two treatment schemes with DCs that display the models of prophylactic and therapeutic vaccination using three different experimental tumor models: namely, Krebs-2 adenocarcinoma (primary tumor), melanoma (B16, metastatic tumor without a primary node) and Lewis lung carcinoma (LLC, metastatic tumor with a primary node). Dendritic cells generated from bone marrow-derived DC precursors and loaded with lysate of tumor cells or transfected with the complexes of total tumor RNA with cationic liposomes were used for vaccination. Lipofectamine 2000 and liposomes consisting of helper lipid DOPE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine) and cationic lipid 2D3 (1,26-Bis(1,2-de-O-tetradecyl-rac-glycerol)-7,11,16,20-tetraazahexacosan tetrahydrocloride) were used for RNA transfection. It was shown that DCs loaded with tumor lysate were ineffective in contrast to tumor-derived RNA. Therapeutic vaccination with DCs loaded by lipoplexes RNA/Lipofectamine 2000 was the most efficient for treatment of non-metastatic Krebs-2, where a 1.9-fold tumor growth retardation was observed. Single prophylactic vaccination with DCs loaded by lipoplexes RNA/2D3 was the most efficient to treat highly aggressive metastatic tumors LLC and B16, where 4.7- and 10-fold suppression of the number of lung metastases was observed, respectively. Antimetastatic effect of single prophylactic DC vaccination in metastatic melanoma model was accompanied by the reductions in the levels of Th2-specific cytokines however the change of the levels of Th1/Th2/Th17 master regulators was not found. Failure of double prophylactic vaccination is explained by Th17-response polarization associated with autoimmune and pro-inflammatory reactions. In the case of therapeutic DC vaccine the polarization of Th1-response was found nevertheless

  6. Prophylactic Dendritic Cell-Based Vaccines Efficiently Inhibit Metastases in Murine Metastatic Melanoma

    PubMed Central

    Sennikov, Sergey V.; Vlassov, Valentin V.; Zenkova, Marina A.

    2015-01-01

    Recent data on the application of dendritic cells (DCs) as anti-tumor vaccines has shown their great potential in therapy and prophylaxis of cancer. Here we report on a comparison of two treatment schemes with DCs that display the models of prophylactic and therapeutic vaccination using three different experimental tumor models: namely, Krebs-2 adenocarcinoma (primary tumor), melanoma (B16, metastatic tumor without a primary node) and Lewis lung carcinoma (LLC, metastatic tumor with a primary node). Dendritic cells generated from bone marrow-derived DC precursors and loaded with lysate of tumor cells or transfected with the complexes of total tumor RNA with cationic liposomes were used for vaccination. Lipofectamine 2000 and liposomes consisting of helper lipid DOPE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine) and cationic lipid 2D3 (1,26-Bis(1,2-de-O-tetradecyl-rac-glycerol)-7,11,16,20-tetraazahexacosan tetrahydrocloride) were used for RNA transfection. It was shown that DCs loaded with tumor lysate were ineffective in contrast to tumor-derived RNA. Therapeutic vaccination with DCs loaded by lipoplexes RNA/Lipofectamine 2000 was the most efficient for treatment of non-metastatic Krebs-2, where a 1.9-fold tumor growth retardation was observed. Single prophylactic vaccination with DCs loaded by lipoplexes RNA/2D3 was the most efficient to treat highly aggressive metastatic tumors LLC and B16, where 4.7- and 10-fold suppression of the number of lung metastases was observed, respectively. Antimetastatic effect of single prophylactic DC vaccination in metastatic melanoma model was accompanied by the reductions in the levels of Th2-specific cytokines however the change of the levels of Th1/Th2/Th17 master regulators was not found. Failure of double prophylactic vaccination is explained by Th17-response polarization associated with autoimmune and pro-inflammatory reactions. In the case of therapeutic DC vaccine the polarization of Th1-response was found nevertheless

  7. Uric acid enhances the antitumor immunity of dendritic cell-based vaccine.

    PubMed

    Wang, Yihan; Ma, Xuelei; Su, Chao; Peng, Bin; Du, Jing; Jia, Hongyuan; Luo, Min; Fang, Chunju; Wei, Yuquan

    2015-01-01

    Uric acid (UA) released from dying cells has been recognized by the immune system as a danger signal. In response to UA, dendritic cells (DC) in the immune system mature and enhance the T cell response to foreign antigens. It is conceivable that the antitumor immunity of a tumor vaccine could be promoted by the administration of UA. To test this concept, we applied UA as an adjuvant to a DC-based vaccine, and discovered that the administration of UA as an adjuvant significantly enhanced the ability of the tumor lysate-pulsed DC vaccine in delaying the tumor growth. The antitumor activity was achieved with adoptively transferred lymphocytes, and both CD8(+) T cells and NK cells were required to achieve effective immunity. This resulted in an increased accumulation of activated CD8(+) T cells and an elevated production of IFN-γ. Collectively, our study shows that the administration of UA enhances the antitumor activity of tumor lysate-pulsed DC vaccine, thus providing the preclinical rationale for the application of UA in DC-based vaccine strategies.

  8. Immune Evasion Pathways and the Design of Dendritic Cell-based Cancer Vaccines

    PubMed Central

    Hanks, Brent A.

    2016-01-01

    Emerging data is suggesting that the process of dendritic cell (DC) tolerization is an important step in tumorigenesis. Our understanding of the networks within the tumor microenvironment that functionally tolerize DC function is evolving while methods for genetically manipulating DC populations in situ continue to develop. A more intimate understanding of the paracrine signaling pathways which mediate immune evasion by subverting DC function promises to provide novel strategies for improving the clinical efficacy of DC-based cancer vaccines. This will likely require a better understanding of both the antigen expression profile and the immune evasion network of the tumor and its associated stromal tissues. PMID:27011049

  9. Use of Cell-Penetrating Peptides in Dendritic Cell-Based Vaccination

    PubMed Central

    Lim, Sangho; Koo, Ja-Hyun

    2016-01-01

    Cell-penetrating peptides (CPPs) are short amino acids that have been widely used to deliver macromolecules such as proteins, peptides, DNA, or RNA, to control cellular behavior for therapeutic purposes. CPPs have been used to treat immunological diseases through the delivery of immune modulatory molecules in vivo. Their intracellular delivery efficiency is highly synergistic with the cellular characteristics of the dendritic cells (DCs), which actively uptake foreign antigens. DC-based vaccines are primarily generated by pulsing DCs ex vivo with various immunomodulatory antigens. CPP conjugation to antigens would increase DC uptake as well as antigen processing and presentation on both MHC class II and MHC class I molecules, leading to antigen specific CD4+ and CD8+ T cell responses. CPP-antigen based DC vaccination is considered a promising tool for cancer immunotherapy due to the enhanced CTL response. In this review, we discuss the various applications of CPPs in immune modulation and DC vaccination, and highlight the advantages and limitations of the current CPP-based DC vaccination. PMID:26937230

  10. Comparative evaluation of techniques for the manufacturing of dendritic cell-based cancer vaccines

    PubMed Central

    Dohnal, Alexander Michael; Graffi, Sebastian; Witt, Volker; Eichstill, Christina; Wagner, Dagmar; Ul-Haq, Sidrah; Wimmer, Doris; Felzmann, Thomas

    2009-01-01

    Abstract Manufacturing procedures for cellular therapies are continuously improved with particular emphasis on product safety. We previously developed a dendritic cell (DC) cancer vaccine technology platform that uses clinical grade lipopolysaccharide (LPS) and interferon (IFN)-y for the maturation of monocyte derived DCs. DCs are frozen after 6 hrs exposure at a semi-mature stage (smDCs) retaining the capacity to secret interleukin (IL)-12 and thus support cytolytic T-cell responses, which is lost at full maturation. We compared closed systems for monocyte enrichment from leucocyte apheresis products from healthy individuals using plastic adherence, CD14 selection, or CD2/19 depletion with magnetic beads, or counter flow centrifugation (elutriation) using a clinical grade in comparison to a research grade culture medium for the following DC generation. We found that elutriation was superior compared to the other methods showing 36 ± 4% recovery, which was approximately 5-fold higher as the most frequently used adherence protocol (8 ± 1%), and a very good purity (92 ± 5%) of smDCs. Immune phenotype and IL-12 secretion (adherence: 1.4 ± 0.4; selection: 20 ± 0.6; depletion: 1 ±0.5; elutriation: 3.6 ± 1.5 ng/ml) as well as the potency of all DCs to stimulate T cells in an allogeneic mixed leucocyte reaction did not show statistically significant differences. Research grade and clinical grade DC culture media were equally potent and freezing did not impair the functions of smDCs. Finally, we assessed the functional capacity of DC cancer vaccines manufactured for three patients using this optimized procedure thereby demonstrating the feasibility of manufacturing DC cancer vaccines that secret IL-12 (9.4 ± 6.4 ng/ml). We conclude that significant steps were taken here towards clinical grade DC cancer vaccine manufacturing. PMID:18363835

  11. Evaluation of an α synuclein sensitized dendritic cell based vaccine in a transgenic mouse model of Parkinson disease.

    PubMed

    Ugen, Kenneth E; Lin, Xiaoyang; Bai, Ge; Liang, Zhanhua; Cai, Jianfeng; Li, Kunyun; Song, Shijie; Cao, Chuanhai; Sanchez-Ramos, Juan

    2015-01-01

    In order to develop a cell-based vaccine against the Parkinson disease (PD) associated protein α-synuclein (α-Syn) 3 peptides were synthesized based upon predicted B cell epitopes within the full length α-Syn protein sequence. These peptide fragments as well as the full length recombinant human α-Syn (rh- α-Syn) protein were used to sensitize mouse bone marrow-derived dendritic cells (DC) ex vivo, followed by intravenous delivery of these sensitized DCs into transgenic (Tg) mice expressing the human A53T variant of α-Syn. ELISA analysis and testing of behavioral locomotor function by rotometry were performed on all mice after the 5th vaccination as well as just prior to euthanasia. The results indicated that vaccination with peptide sensitized DCs (PSDC) as well as DCs sensitized by rh-α-Syn induced specific anti-α-Syn antibodies in all immunized mice. In terms of rotometry performance, a measure of locomotor activity correlated to brain dopamine levels, mice vaccinated with PSDC or rh- α-Syn sensitized DCs performed significantly better than non-vaccinated Tg control mice during the final assessment (i.e. at 17 months of age) before euthanasia. As well, measurement of levels of brain IL-1α, a cytokine hypothesized to be associated with neuroinflammation, demonstrated that this proinflammatory molecule was significantly reduced in the PSDC and rh- α-Syn sensitized DC vaccinated mice compared to the non-vaccinated Tg control group. Overall, α-Syn antigen-sensitized DC vaccination was effective in generating specific anti- α-Syn antibodies and improved locomotor function without eliciting an apparent general inflammatory response, indicating that this strategy may be a safe and effective treatment for PD.

  12. Cancer-associated fibroblast-targeted strategy enhances antitumor immune responses in dendritic cell-based vaccine.

    PubMed

    Ohshio, Yasuhiko; Teramoto, Koji; Hanaoka, Jun; Tezuka, Noriaki; Itoh, Yasushi; Asai, Tohru; Daigo, Yataro; Ogasawara, Kazumasa

    2015-02-01

    Given the close interaction between tumor cells and stromal cells in the tumor microenvironment (TME), TME-targeted strategies would be promising for developing integrated cancer immunotherapy. Cancer-associated fibroblasts (CAFs) are the dominant stromal component, playing critical roles in generation of the pro-tumorigenic TME. We focused on the immunosuppressive trait of CAFs, and systematically explored the alteration of tumor-associated immune responses by CAF-targeted therapy. C57BL/6 mice s.c. bearing syngeneic E.G7 lymphoma, LLC1 Lewis lung cancer, or B16F1 melanoma were treated with an anti-fibrotic agent, tranilast, to inhibit CAF function. The infiltration of immune suppressor cell types, including regulatory T cells and myeloid-derived suppressor cells, in the TME was effectively decreased through reduction of stromal cell-derived factor-1, prostaglandin E2 , and transforming growth factor-β. In tumor-draining lymph nodes, these immune suppressor cell types were significantly decreased, leading to activation of tumor-associated antigen-specific CD8(+) T cells. In addition, CAF-targeted therapy synergistically enhanced multiple types of systemic antitumor immune responses such as the cytotoxic CD8(+) T cell response, natural killer activity, and antitumor humoral immunity in combination with dendritic cell-based vaccines; however, the suppressive effect on tumor growth was not observed in tumor-bearing SCID mice. These data indicate that systemic antitumor immune responses by various immunologic cell types are required to bring out the efficacy of CAF-targeted therapy, and these effects are enhanced when combined with effector-stimulatory immunotherapy such as dendritic cell-based vaccines. Our mouse model provides a novel rationale with TME-targeted strategy for the development of cell-based cancer immunotherapy.

  13. Systemic Administration of Interleukin 2 Enhances the Therapeutic Efficacy of Dendritic Cell-Based Tumor Vaccines

    NASA Astrophysics Data System (ADS)

    Shimizu, K.; Fields, R. C.; Giedlin, M.; Mule, J. J.

    1999-03-01

    We have reported previously that murine bone marrow-derived dendritic cells (DC) pulsed with whole tumor lysates can mediate potent antitumor immune responses both in vitro and in vivo. Because successful therapy was dependent on host immune T cells, we have now evaluated whether the systemic administration of the T cell stimulatory/growth promoting cytokine interleukin-2 (IL-2) could enhance tumor lysate-pulsed DC-based immunizations to further promote protective immunity toward, and therapeutic rejection of, syngeneic murine tumors. In three separate approaches using a weakly immunogenic sarcoma (MCA-207), the systemic administration of non-toxic doses of recombinant IL-2 (20,000 and 40,000 IU/dose) was capable of mediating significant increases in the potency of DC-based immunizations. IL-2 could augment the efficacy of tumor lysate-pulsed DC to induce protective immunity to lethal tumor challenge as well as enhance splenic cytotoxic T lymphocyte activity and interferon-γ production in these treated mice. Moreover, treatment with the combination of tumor lysate-pulsed DC and IL-2 could also mediate regressions of established pulmonary 3-day micrometastases and 7-day macrometastases as well as established 14- and 28-day s.c. tumors, leading to either significant cure rates or prolongation in overall survival. Collectively, these findings show that nontoxic doses of recombinant IL-2 can potentiate the antitumor effects of tumor lysate-pulsed DC in vivo and provide preclinical rationale for the use of IL-2 in DC-based vaccine strategies in patients with advanced cancer.

  14. A simple in vitro method for evaluating dendritic cell-based vaccinations

    PubMed Central

    Pham, Phuc Van; Nguyen, Nhung Thi; Nguyen, Hoang Minh; Khuat, Lam Tan; Le, Phong Minh; Pham, Viet Quoc; Nguyen, Sinh Truong; Phan, Ngoc Kim

    2014-01-01

    Background Dendritic cell (DC) therapy is a promising therapy for cancer-targeting treatments. Recently, DCs have been used for treatment of some cancers. We aimed to develop an in vitro assay to evaluate DC therapy in cancer treatment using a breast cancer model. Methods DCs were induced from murine bone marrow mononuclear cells in Roswell Park Memorial Institute (RPMI) 1640 medium supplemented with GM-CSF (20 ng/mL) and IL-4 (20 ng/mL). Immature DCs were primed with breast cancer stem cell (BCSC)-derived antigens. BCSCs were sorted from 4T1 cell lines based on aldehyde dehydrogenase expression. A mixture of DCs and cytotoxic T lymphocytes (CTLs) were used to evaluate the inhibitory effect of antigen-primed DCs on BCSCs. BCSC proliferation and doubling time were recorded based on impedance-based cell analysis using the xCELLigence system. The specification of inhibitory effects of DCs and CTLs was also evaluated using the same system. Results The results showed that impedance-based analysis of BCSCs reflected cytotoxicity and inhibitory effects of DCs and CTLs at 72 hours. Differences in ratios of DC:CTL changed the cytotoxicity of DCs and CTLs. Conclusion This study successfully used impedance-based cell analysis as a new in vitro assay to evaluate DC efficacy in cancer immunotherapy. We hope this technique will contribute to the development and improvement of immunotherapies in the near future. PMID:25170272

  15. T cell-derived IL-10 determines leishmaniasis disease outcome and is suppressed by a dendritic cell based vaccine.

    PubMed

    Schwarz, Tobias; Remer, Katharina A; Nahrendorf, Wiebke; Masic, Anita; Siewe, Lisa; Müller, Werner; Roers, Axel; Moll, Heidrun

    2013-01-01

    In the murine model of Leishmania major infection, resistance or susceptibility to the parasite has been associated with the development of a Th1 or Th2 type of immune response. Recently, however, the immunosuppressive effects of IL-10 have been ascribed a crucial role in the development of the different clinical correlates of Leishmania infection in humans. Since T cells and professional APC are important cellular sources of IL-10, we compared leishmaniasis disease progression in T cell-specific, macrophage/neutrophil-specific and complete IL-10-deficient C57BL/6 as well as T cell-specific and complete IL-10-deficient BALB/c mice. As early as two weeks after infection of these mice with L. major, T cell-specific and complete IL-10-deficient animals showed significantly increased lesion development accompanied by a markedly elevated secretion of IFN-γ or IFN-γ and IL-4 in the lymph nodes draining the lesions of the C57BL/6 or BALB/c mutants, respectively. In contrast, macrophage/neutrophil-specific IL-10-deficient C57BL/6 mice did not show any altered phenotype. During the further course of disease, the T cell-specific as well as the complete IL-10-deficient BALB/c mice were able to control the infection. Furthermore, a dendritic cell-based vaccination against leishmaniasis efficiently suppresses the early secretion of IL-10, thus contributing to the control of parasite spread. Taken together, IL-10 secretion by T cells has an influence on immune activation early after infection and is sufficient to render BALB/c mice susceptible to an uncontrolled Leishmania major infection.

  16. PD-L1 peptide co-stimulation increases immunogenicity of a dendritic cell-based cancer vaccine.

    PubMed

    Munir Ahmad, Shamaila; Martinenaite, Evelina; Hansen, Morten; Junker, Niels; Borch, Troels Holz; Met, Özcan; Donia, Marco; Svane, Inge Marie; Andersen, Mads Hald

    2016-08-01

    We recently described naturally occurring PD-L1-specific T cells that recognize PD-L1-expressing immune cells as well as malignant cells. In the present study, we investigated whether the immunogenicity of a dendritic cell (DC)-based vaccine could be influenced by co-stimulation with a known PD-L1-derived epitope. We incubated a PD-L1-derived peptide epitope (19 amino acids long) or a control peptide (an irrelevant HIV epitope) with peripheral blood mononuclear cells from patients with malignant melanoma who had received a DC-based vaccine. We observed a significantly higher number of T cells that reacted to the vaccine in cultures that had been co-stimulated with the PD-L1 peptide epitope compared to cultures incubated with control peptide. Next, we characterized a novel PD-L1-derived epitope (23 amino acids long) and found that co-stimulation with both PD-L1 epitopes boosted the immune response elicited by the DC vaccine even further. Consequently, we observed a significant increase in the number of vaccine-reacting T cells in vitro. In conclusion, activation of PD-L1-specific T cells may directly modulate immunogenicity of DC vaccines. Addition of PD-L1 epitopes may thus be an easily applicable and attractive option to augment the effectiveness of cancer vaccines and other immunotherapeutic agents. PMID:27622072

  17. A human dendritic cell-based in vitro model to assess Mycobacterium tuberculosis SO2 vaccine immunogenicity.

    PubMed

    Etna, Marilena P; Giacomini, Elena; Severa, Martina; Pardini, Manuela; Aguilo, Nacho; Martin, Carlos; Coccia, Eliana M

    2014-01-01

    Among the tuberculosis (TB) vaccine candidates, SO2 is the prototype of the first live-attenuated vaccine that recently entered into clinical trials. To investigate the capacity of SO2 to stimulate an appropriate immune response in vitro within a human immunological context, a comparative analysis of the effects promoted by SO2, the current Bacille Calmette-Guerin (BCG) vaccine and Mycobacterium tuberculosis (Mtb) was conducted in human primary dendritic cells (DC), which are critical modulators of vaccine-induced immunity. In particular, we found that SO2 promotes the expression of maturation markers similarly to BCG but at a lower extent than Mtb. Moreover, SO2-infected DC released higher levels of interleukin (IL)-23 than BCG-infected cells, which account for the expansion of interferon (IFN)-γ-producing T cells in an IL-12-independent manner. In the autologous mixed leukocyte reaction setting, the expansion of IL-17-producing T cells was also observed in response to SO2 infection. Interestingly, apoptosis and autophagic flux, events required for the antigen presentation within MHC class II complex, were not affected in DC infected with SO2, conversely to what observed upon Mtb stimulation. Collectively, our results indicate that SO2 represents a promising TB vaccine candidate, which displays an attenuated phenotype and promotes in DC a stronger capacity to stimulate the Th response than BCG vaccine. Interestingly, the data obtained by using the human DC-based experimental setting mirrored the results derived from studies in animal models, suggesting that this system could be used for an efficient and rapid down-selection of new TB vaccine candidates, contributing to achieve the "3Rs" objective.

  18. Rapamycin Promotes Mouse 4T1 Tumor Metastasis that Can Be Reversed by a Dendritic Cell-Based Vaccine

    PubMed Central

    Lin, Tien-Jen; Liang, Wen-Miin; Hsiao, Pei-Wen; M. S, Pradeep; Wei, Wen-Chi; Lin, Hsin-Ting; Yin, Shu-Yi; Yang, Ning-Sun

    2015-01-01

    Suppression of tumor metastasis is a key strategy for successful cancer interventions. Previous studies indicated that rapamycin (sirolimus) may promote tumor regression activity or enhance immune response against tumor targets. However, rapamycin also exhibits immunosuppressant effects and is hence used clinically as an organ transplantation drug. We hypothesized that the immunosuppressive activities of rapamycin might also negatively mediate host immunity, resulting in promotion of tumor metastasis. In this study, the effects of rapamycin and phytochemical shikonin were investigated in vitro and in vivo in a 4T1 mouse mammary tumor model through quantitative assessment of immunogenic cell death (ICD), autophagy, tumor growth and metastasis. Tumor-bearing mice were immunized with test vaccines to monitor their effect on tumor metastasis. We found that intraperitoneal (ip) administration of rapamycin after a tumor-resection surgery drastically increased the metastatic activity of 4T1 tumors. Possible correlation of this finding to human cancers was suggested by epidemiological analysis of data from Taiwan’s National Health Insurance Research Database (NHIRD). Since our previous studies showed that modified tumor cell lysate (TCL)-pulsed, dendritic cell (DC)-based cancer vaccines can effectively suppress metastasis in mouse tumor models, we assessed whether such vaccines may help offset this rapamycin-promoted metastasis. We observed that shikonin efficiently induced ICD of 4T1 cells in culture, and DC vaccines pulsed with shikonin-treated TCL (SK-TCL-DC) significantly suppressed rapamycin-enhanced metastasis and Treg cell expansion in test mice. In conclusion, rapamycin treatment in mice (and perhaps in humans) promotes metastasis and the effect may be offset by treatment with a DC-based cancer vaccine. PMID:26426423

  19. Rapamycin Promotes Mouse 4T1 Tumor Metastasis that Can Be Reversed by a Dendritic Cell-Based Vaccine.

    PubMed

    Lin, Tien-Jen; Liang, Wen-Miin; Hsiao, Pei-Wen; M S, Pradeep; Wei, Wen-Chi; Lin, Hsin-Ting; Yin, Shu-Yi; Yang, Ning-Sun

    2015-01-01

    Suppression of tumor metastasis is a key strategy for successful cancer interventions. Previous studies indicated that rapamycin (sirolimus) may promote tumor regression activity or enhance immune response against tumor targets. However, rapamycin also exhibits immunosuppressant effects and is hence used clinically as an organ transplantation drug. We hypothesized that the immunosuppressive activities of rapamycin might also negatively mediate host immunity, resulting in promotion of tumor metastasis. In this study, the effects of rapamycin and phytochemical shikonin were investigated in vitro and in vivo in a 4T1 mouse mammary tumor model through quantitative assessment of immunogenic cell death (ICD), autophagy, tumor growth and metastasis. Tumor-bearing mice were immunized with test vaccines to monitor their effect on tumor metastasis. We found that intraperitoneal (ip) administration of rapamycin after a tumor-resection surgery drastically increased the metastatic activity of 4T1 tumors. Possible correlation of this finding to human cancers was suggested by epidemiological analysis of data from Taiwan's National Health Insurance Research Database (NHIRD). Since our previous studies showed that modified tumor cell lysate (TCL)-pulsed, dendritic cell (DC)-based cancer vaccines can effectively suppress metastasis in mouse tumor models, we assessed whether such vaccines may help offset this rapamycin-promoted metastasis. We observed that shikonin efficiently induced ICD of 4T1 cells in culture, and DC vaccines pulsed with shikonin-treated TCL (SK-TCL-DC) significantly suppressed rapamycin-enhanced metastasis and Treg cell expansion in test mice. In conclusion, rapamycin treatment in mice (and perhaps in humans) promotes metastasis and the effect may be offset by treatment with a DC-based cancer vaccine. PMID:26426423

  20. Antitumor dendritic cell-based vaccines: lessons from 20 years of clinical trials and future perspectives.

    PubMed

    Constantino, João; Gomes, Célia; Falcão, Amílcar; Cruz, Maria T; Neves, Bruno M

    2016-02-01

    Dendritic cells (DCs) are versatile elements of the immune system and are best known for their unparalleled ability to initiate and modulate adaptive immune responses. During the past few decades, DCs have been the subject of numerous studies seeking new immunotherapeutic strategies against cancer. Despite the initial enthusiasm, disappointing results from early studies raised some doubts regarding the true clinical value of these approaches. However, our expanding knowledge of DC immunobiology and the definition of the optimal characteristics for antitumor immune responses have allowed a more rational development of DC-based immunotherapies in recent years. Here, after a brief overview of DC immunobiology, we sought to systematize the knowledge provided by 20 years of clinical trials, with a special emphasis on the diversity of approaches used to manipulate DCs and their consequent impact on vaccine effectiveness. We also address how new therapeutic concepts, namely the combination of DC vaccines with other anticancer therapies, are being implemented and are leveraging clinical outcomes. Finally, optimization strategies, new insights, and future perspectives on the field are also highlighted. PMID:26297944

  1. Dendritic Cell-Based Vaccines that Utilize Myeloid Rather than Plasmacytoid Cells Offer a Superior Survival Advantage in Malignant Glioma.

    PubMed

    Dey, Mahua; Chang, Alan L; Miska, Jason; Wainwright, Derek A; Ahmed, Atique U; Balyasnikova, Irina V; Pytel, Peter; Han, Yu; Tobias, Alex; Zhang, Lingjiao; Qiao, Jian; Lesniak, Maciej S

    2015-07-01

    Dendritic cells (DCs) are professional APCs that are traditionally divided into two distinct subsets, myeloid DC (mDCs) and plasmacytoid DC (pDCs). pDCs are known for their ability to secrete large amounts of IFN-α. Apart from IFN-α production, pDCs can also process Ag and induce T cell immunity or tolerance. In several solid tumors, pDCs have been shown to play a critical role in promoting tumor immunosuppression. We investigated the role of pDCs in the process of glioma progression in the syngeneic murine model of glioma. We show that glioma-infiltrating pDCs are the major APC in glioma and are deficient in IFN-α secretion (p < 0.05). pDC depletion leads to increased survival of the mice bearing intracranial tumor by decreasing the number of regulatory T cells (Tregs) and by decreasing the suppressive capabilities of Tregs. We subsequently compared the ability of mDCs and pDCs to generate effective antiglioma immunity in a GL261-OVA mouse model of glioma. Our data suggest that mature pDCs and mDCs isolated from naive mice can be effectively activated and loaded with SIINFEKL Ag in vitro. Upon intradermal injection in the hindleg, a fraction of both types of DCs migrate to the brain and lymph nodes. Compared to mice vaccinated with pDC or control mice, mice vaccinated with mDCs generate a robust Th1 type immune response, characterized by high frequency of CD4(+)T-bet(+) T cells and CD8(+)SIINFEKEL(+) T cells. This robust antitumor T cell response results in tumor eradication and long-term survival in 60% of the animals (p < 0.001). PMID:26026061

  2. Dendritic Cell-Based Vaccines that Utilize Myeloid Rather than Plasmacytoid Cells Offer a Superior Survival Advantage in Malignant Glioma.

    PubMed

    Dey, Mahua; Chang, Alan L; Miska, Jason; Wainwright, Derek A; Ahmed, Atique U; Balyasnikova, Irina V; Pytel, Peter; Han, Yu; Tobias, Alex; Zhang, Lingjiao; Qiao, Jian; Lesniak, Maciej S

    2015-07-01

    Dendritic cells (DCs) are professional APCs that are traditionally divided into two distinct subsets, myeloid DC (mDCs) and plasmacytoid DC (pDCs). pDCs are known for their ability to secrete large amounts of IFN-α. Apart from IFN-α production, pDCs can also process Ag and induce T cell immunity or tolerance. In several solid tumors, pDCs have been shown to play a critical role in promoting tumor immunosuppression. We investigated the role of pDCs in the process of glioma progression in the syngeneic murine model of glioma. We show that glioma-infiltrating pDCs are the major APC in glioma and are deficient in IFN-α secretion (p < 0.05). pDC depletion leads to increased survival of the mice bearing intracranial tumor by decreasing the number of regulatory T cells (Tregs) and by decreasing the suppressive capabilities of Tregs. We subsequently compared the ability of mDCs and pDCs to generate effective antiglioma immunity in a GL261-OVA mouse model of glioma. Our data suggest that mature pDCs and mDCs isolated from naive mice can be effectively activated and loaded with SIINFEKL Ag in vitro. Upon intradermal injection in the hindleg, a fraction of both types of DCs migrate to the brain and lymph nodes. Compared to mice vaccinated with pDC or control mice, mice vaccinated with mDCs generate a robust Th1 type immune response, characterized by high frequency of CD4(+)T-bet(+) T cells and CD8(+)SIINFEKEL(+) T cells. This robust antitumor T cell response results in tumor eradication and long-term survival in 60% of the animals (p < 0.001).

  3. Dendritic Cell Based Vaccines that Utilize Myeloid Rather than Plasmacytoid Cells Offer a Superior Survival Advantage in Malignant Glioma

    PubMed Central

    Dey, Mahua; Chang, Alan L.; Miska, Jason; Wainwright, Derek A.; Ahmed, Atique U.; Balyasnikova, Irina V.; Pytel, Peter; Han, Yu; Tobias, Alex; Zhang, Lingjiao; Qiao, Jian; Lesniak, Maciej S.

    2015-01-01

    Dendritic cells (DC) are professional antigen presenting cells (APC) that are traditionally divided into two distinct subsets: myeloid DC (mDCs) and plasmacytoid DC (pDCs). pDCs are known for their ability to secrete large amount of IFN-α. Apart from IFN-α production, pDCs can also process antigen and induce T-cell immunity or tolerance. In several solid tumors, pDCs have been shown to play a critical role in promoting tumor immunosuppression. We investigated the role of pDCs in the process of glioma progression in the syngeneic murine model of glioma. We show that glioma-infiltrating pDCs are the major APC in glioma and are deficient in IFN-α secretion (p < 0.05). pDC depletion leads to increased survival of the mice bearing intracranial tumor by decreasing the number of regulatory T-cells (Treg) and by decreasing the suppressive capabilities of Tregs. We subsequently compared the ability of mDCs and pDCs to generate effective anti-glioma immunity in a GL261-OVA mouse model of glioma. Our data suggest that mature pDCs and mDCs isolated from naïve mice can be effectively activated and loaded with SIINFEKL antigen in vitro. Upon intra-dermal injection in the hind leg, a fraction of both types of DCs migrate to the brain and lymph nodes.. Compared to mice vaccinated with pDC or control mice, mice vaccinated with mDCs generated a robust Th1 type immune response, characterized by high frequency of CD4+Tbet+ T-cells and CD8+Siinfekel+ T-cells. This robust anti-tumor T-cell response resulted in tumor eradication and long-term survival in 60% of the animals (p<0.001). PMID:26026061

  4. SLA-PGN-primed dendritic cell-based vaccination induces Th17-mediated protective immunity against experimental visceral leishmaniasis: a crucial role of PKCβ.

    PubMed

    Jawed, Junaid Jibran; Majumder, Saikat; Bandyopadhyay, Syamdas; Biswas, Satabdi; Parveen, Shabina; Majumdar, Subrata

    2016-07-01

    Emergence of drug resistance during visceral leishmaniasis (VL) is a major obstacle imposed during successful therapy. An effective vaccine strategy against this disease is therefore necessary. Our present study exploited the SLA (soluble leishmanial antigen) and PGN (peptidoglycan) stimulated bone marrow-derived dendritic cells (DCs) as a suitable vaccine candidate during experimental VL. SLA-PGN-stimulated DCs showed a significant decrease in hepatic and splenic parasite burden, which were associated with increased production of nitric oxide and pro-inflammatory cytokines such as IL-12, IFN-γ and IL-17. Elevated level of IL-17 was accompanied with the generation of more Th17 cells. Further studies on DC provided the evidence that these SLA-PGN-stimulated DCs played an important role in providing necessary cytokines such as IL-6, IL-23 and TGF-β for the generation of Th17 cells. Interestingly, inhibition of protein kinase C-β (PKCβ) in DCs led to decreased production of Th17 polarizing cytokines, causing reduction of the Th17 population size. Altogether, our finding highlighted the important role of DC-based PKCβ in regulation of the function and generation of Th17 cells.

  5. The combination of Pleurotus ferulae water extract and CpG-ODN enhances the immune responses and antitumor efficacy of HPV peptides pulsed dendritic cell-based vaccine.

    PubMed

    Li, Jinyu; Li, Jinyao; Aipire, Adila; Luo, JiaoJiao; Yuan, Pengfei; Zhang, Fuchun

    2016-06-30

    Our previous study reported that the combination of Pleurotus ferulae water extract (PFWE) and CpG (PFWE+CpG) enhanced the maturation and function of dendritic cells (DCs). Here, we investigated the effects of PFWE+CpG on the immune responses and antitumor efficacy of DC-based vaccine. We observed that all of HPV E6 and E7 peptides pulsed DCs (HPV-immature DCs, HPV+PFWE-, +CpG- or +PFWE+CpG-DCs) induced antigen-specific CD8(+) T cell responses and HPV+PFWE+CpG-DCs induced highest level of CD8(+) T cell responses. The antitumor efficacy of HPV-DCs vaccines was evaluated in TC-1 tumor mouse model. The early therapeutic study showed that HPV+PFWE-, +CpG- and +PFWE+CpG-DCs greatly inhibited tumor growth. Moreover, HPV+PFWE+CpG-DCs controlled tumor growth at a faster rate compared to other groups. These three groups induced HPV-specific CD8(+) T cell responses and significantly decreased the frequencies of induced regulatory T cells (iTregs: CD4(+)CD25(-)Fopx3(+)). However, only HPV+PFWE+CpG-DCs significantly decreased the frequency of natural Tregs (nTregs: CD4(+)CD25(+)Fopx3(+)). Furthermore, HPV+PFWE+CpG-DCs also significantly inhibited tumor growth in the late therapeutic study. The results showed that PFWE+CpG enhanced the immune responses and antitumor efficacy of DC-based vaccine, suggesting that PFWE+CpG might be the potential candidate for the generation of clinical-grade mature DCs. PMID:27211038

  6. In vivo immunogenicity of Tax(11-19) epitope in HLA-A2/DTR transgenic mice: implication for dendritic cell-based anti-HTLV-1 vaccine.

    PubMed

    Sagar, Divya; Masih, Shet; Schell, Todd; Jacobson, Steven; Comber, Joseph D; Philip, Ramila; Wigdahl, Brian; Jain, Pooja; Khan, Zafar K

    2014-05-30

    Viral oncoprotein Tax plays key roles in transformation of human T-cell leukemia virus (HTLV-1)-infected T cells leading to adult T-cell leukemia (ATL), and is the key antigen recognized during HTLV-associated myelopathy (HAM). In HLA-A2+ asymptomatic carriers as well as ATL and HAM patients, Tax(11-19) epitope exhibits immunodominance. Here, we evaluate CD8 T-cell immune response against this epitope in the presence and absence of dendritic cells (DCs) given the recent encouraging observations made with Phase 1 DC-based vaccine trial for ATL. To facilitate these studies, we first generated an HLA-A2/DTR hybrid mouse strain carrying the HLA-A2.1 and CD11c-DTR genes. We then studied CD8 T-cell immune response against Tax(11-19) epitope delivered in the absence or presence of Freund's adjuvant and/or DCs. Overall results demonstrate that naturally presented Tax epitope could initiate an antigen-specific CD8T cell response in vivo but failed to do so upon DC depletion. Presence of adjuvant potentiated Tax(11-19)-specific response. Elevated serum IL-6 levels coincided with depletion of DCs whereas decreased TGF-β was associated with adjuvant use. Thus, Tax(11-19) epitope is a potential candidate for the DC-based anti-HTLV-1 vaccine and the newly hybrid mouse strain could be used for investigating DC involvement in human class-I-restricted immune responses.

  7. Targeting vaccines to dendritic cells.

    PubMed

    Foged, Camilla; Sundblad, Anne; Hovgaard, Lars

    2002-03-01

    Dendritic cells (DC) are specialized antigen presenting cells (APC) with a remarkable ability to take up antigens and stimulate major histocompatibility complex (MHC)-restricted specific immune responses. Recent discoveries have shown that their role in initiating primary immune responses seems to be far superior to that of B-cells and macrophages. DC are localized at strategic places in the body at sites used by pathogens to enter the organism, and are thereby in an optimal position to capture antigens. In general, vaccination strategies try to mimic the invasiveness of the pathogens. DC are considered to play a central role for the provocation of primary immune responses by vaccination. A rational way of improving the potency and safety of new and already existing vaccines could therefore be to direct vaccines specifically to DC. There is a need for developing multifunctional vaccine drug delivery systems (DDS) with adjuvant effect that target DC directly and induce optimal immune responses. This paper will review the current knowledge of DC physiology as well as the progress in the field of novel vaccination strategies that directly or indirectly aim at targeting DC.

  8. Enhancement of dendritic cell-based vaccine potency by anti-apoptotic siRNAs targeting key pro-apoptotic proteins in cytotoxic CD8(+) T cell-mediated cell death.

    PubMed

    Kim, Jin Hee; Kang, Tae Heung; Noh, Kyung Hee; Bae, Hyun Cheol; Kim, Seok-Ho; Yoo, Young Do; Seong, Seung-Yong; Kim, Tae Woo

    2009-01-29

    Dendritic cells (DCs) have become an important measure for the treatment of malignancies. Current DC preparations, however, generate short-lived DCs because they are subject to cell death from various apoptotic pressures. Antigen-specific CD8(+) cytotoxic T lymphocytes (CTLs) is one of the main obstacles to limit the DC-mediated immune priming since CTLs can recognize the target antigen expressing DCs as target cells and kill the DCs. CTLs secret perforin and serine protease granzymes during CTL killing. Perforin and serine protease granzymes induce the release of a number of mitochondrial pro-apoptotic factors, which are controlled by members of the BCL-2 family, such as BAK, BAX and BIM. FasL linking to Fas on DCs triggers the activation of caspase-8, which eventually leads to mitochondria-mediated apoptosis via truncation of BID. In this study, we tried to enhance the DC priming capacity by prolonging DC survival using anti-apoptotic siRNA targeting these key pro-apoptotic molecules in CTL killing. Human papillomavirus (HPV)-16 E7 antigen presenting DCs that were transfected with these anti-apoptotic siRNAs showed increased resistance to T cell-mediated death, leading to enhanced E7-specific CD8(+) T cell activation in vitro and in vivo. Among them, siRNA targeting BIM (siBIM) generated strongest E7-specific E7-specific CD8(+) T cell immunity. More importantly, vaccination with E7 presenting DCs transfected with siBIM was capable of generating a marked therapeutic effect in vaccinated mice. Our data indicate that ex vivo manipulation of DCs with siBIM may represent a plausible strategy for enhancing dendritic cell-based vaccine potency.

  9. Dendritic cell-based immunotherapy in mesothelioma.

    PubMed

    Cornelissen, Robin; Lievense, Lysanne A; Heuvers, Marlies E; Maat, Alexander P; Hendriks, Rudi W; Hoogsteden, Henk C; Hegmans, Joost P; Aerts, Joachim G

    2012-10-01

    Mesothelioma is a rare thoracic malignancy with a dismal prognosis. Current treatment options are scarce and clinical outcomes are rather disappointing. Due to the immunogenic nature of mesothelioma, several studies have investigated immunotherapeutic strategies to improve the prognosis of patients with mesothelioma. In the last decade, progress in knowledge of the modulation of the immune system to attack the tumor has been remarkable, but the optimal strategy for immunotherapy has yet to be unraveled. Because of their potent antigen-presenting capacity, dendritic cells are acknowledged as a promising agent in immunotherapeutic approaches in a number of malignancies. This review gives an update and provides a future perspective in which immunotherapy may improve the outcome of mesothelioma therapy.

  10. Dendritic cell-based vaccines in the setting of peripheral blood stem cell transplantation: CD34+ cell-depleted mobilized peripheral blood can serve as a source of potent dendritic cells.

    PubMed

    Choi, D; Perrin, M; Hoffmann, S; Chang, A E; Ratanatharathorn, V; Uberti, J; McDonagh, K T; Mulé, J J

    1998-11-01

    We are investigating the use of tumor-pulsed dendritic cell (DC)-based vaccines in the treatment of patients with advanced cancer. In the current study, we evaluated the feasibility of obtaining both CD34+ hematopoietic stem/ progenitor cells (HSCs) and functional DCs from the same leukapheresis collection in adequate numbers for both peripheral blood stem cell transplantation (PBSCT) and immunization purposes, respectively. Leukapheresis collections of mobilized peripheral blood mononuclear cells (PBMCs) were obtained from normal donors receiving granulocyte colony-stimulating factor (G-CSF) (for allogeneic PBSCT) and from intermediate grade non-Hodgkin's lymphoma or multiple myeloma patients receiving cyclophosphamide plus G-CSF (for autologous PBSCT). High enrichment of CD34+ HSCs was obtained using an immunomagnetic bead cell separation device. After separation, the negative fraction of mobilized PBMCs from normal donors and cancer patients contained undetectable levels of CD34+ HSCs by flow cytometry. This fraction of cells was then subjected to plastic adherence, and the adherent cells were cultured for 7 days in GM-CSF (100 ng/ml) and interleukin 4 (50 ng/ml) followed by an additional 7 days in GM-CSF, interleukin 4, and tumor necrosis factor alpha (10 ng/ml) to generate DCs. Harvested DCs represented yields of 4.1+/-1.4 and 5.8+/-5.4% of the initial cells plated from the CD34+ cell-depleted mobilized PBMCs of normal donors and cancer patients, respectively, and displayed a high level expression of CD80, CD86, HLA-DR, and CD11c but not CD14. This phenotypic profile was similar to that of DCs derived from non-CD34+ cell-depleted mobilized PBMCs. DCs generated from CD34+ cell-depleted mobilized PBMCs elicited potent antitetanus as well as primary allogeneic T-cell proliferative responses in vitro, which were equivalent to DCs derived from non-CD34+ cell-depleted mobilized PBMCs. Collectively, these results demonstrate the feasibility of obtaining both DCs and

  11. Enhancement of tumor-specific T cell-mediated immunity in dendritic cell-based vaccines by Mycobacterium tuberculosis heat shock protein X.

    PubMed

    Jung, In Duk; Shin, Sung Jae; Lee, Min-Goo; Kang, Tae Heung; Han, Hee Dong; Lee, Seung Jun; Kim, Woo Sik; Kim, Hong Min; Park, Won Sun; Kim, Han Wool; Yun, Cheol-Heui; Lee, Eun Kyung; Wu, T-C; Park, Yeong-Min

    2014-08-01

    Despite the potential for stimulation of robust antitumor immunity by dendritic cells (DCs), clinical applications of DC-based immunotherapy are limited by the low potency in generating tumor Ag-specific T cell responses. Therefore, optimal conditions for generating potent immunostimulatory DCs that overcome tolerance and suppression are key factors in DC-based tumor immunotherapy. In this study, we demonstrate that use of the Mycobacterium tuberculosis heat shock protein X (HspX) as an immunoadjuvant in DC-based tumor immunotherapy has significant potential in therapeutics. In particular, the treatment aids the induction of tumor-reactive T cell responses, especially tumor-specific CTLs. The HspX protein induces DC maturation and proinflammatory cytokine production (TNF-α, IL-1β, IL-6, and IFN-β) through TLR4 binding partially mediated by both the MyD88 and the TRIF signaling pathways. We employed two models of tumor progression and metastasis to evaluate HspX-stimulated DCs in vivo. The administration of HspX-stimulated DCs increased the activation of naive T cells, effectively polarizing the CD4(+) and CD8(+) T cells to secrete IFN-γ, as well as enhanced the cytotoxicity of splenocytes against HPV-16 E7 (E7)-expressing TC-1 murine tumor cells in therapeutic experimental animals. Moreover, the metastatic capacity of B16-BL6 melanoma cancer cells toward the lungs was remarkably attenuated in mice that received HspX-stimulated DCs. In conclusion, the high therapeutic response rates with tumor-targeted Th1-type T cell immunity as a result of HspX-stimulated DCs in two models suggest that HspX harnesses the exquisite immunological power and specificity of DCs for the treatment of tumors.

  12. Dendritic cell-based cancer immunotherapy for colorectal cancer.

    PubMed

    Kajihara, Mikio; Takakura, Kazuki; Kanai, Tomoya; Ito, Zensho; Saito, Keisuke; Takami, Shinichiro; Shimodaira, Shigetaka; Okamoto, Masato; Ohkusa, Toshifumi; Koido, Shigeo

    2016-05-01

    Colorectal cancer (CRC) is one of the most common cancers and a leading cause of cancer-related mortality worldwide. Although systemic therapy is the standard care for patients with recurrent or metastatic CRC, the prognosis is extremely poor. The optimal sequence of therapy remains unknown. Therefore, alternative strategies, such as immunotherapy, are needed for patients with advanced CRC. This review summarizes evidence from dendritic cell-based cancer immunotherapy strategies that are currently in clinical trials. In addition, we discuss the possibility of antitumor immune responses through immunoinhibitory PD-1/PD-L1 pathway blockade in CRC patients. PMID:27158196

  13. Dendritic cell-based cancer immunotherapy for colorectal cancer.

    PubMed

    Kajihara, Mikio; Takakura, Kazuki; Kanai, Tomoya; Ito, Zensho; Saito, Keisuke; Takami, Shinichiro; Shimodaira, Shigetaka; Okamoto, Masato; Ohkusa, Toshifumi; Koido, Shigeo

    2016-05-01

    Colorectal cancer (CRC) is one of the most common cancers and a leading cause of cancer-related mortality worldwide. Although systemic therapy is the standard care for patients with recurrent or metastatic CRC, the prognosis is extremely poor. The optimal sequence of therapy remains unknown. Therefore, alternative strategies, such as immunotherapy, are needed for patients with advanced CRC. This review summarizes evidence from dendritic cell-based cancer immunotherapy strategies that are currently in clinical trials. In addition, we discuss the possibility of antitumor immune responses through immunoinhibitory PD-1/PD-L1 pathway blockade in CRC patients.

  14. Dendritic cell-based cancer immunotherapy for colorectal cancer

    PubMed Central

    Kajihara, Mikio; Takakura, Kazuki; Kanai, Tomoya; Ito, Zensho; Saito, Keisuke; Takami, Shinichiro; Shimodaira, Shigetaka; Okamoto, Masato; Ohkusa, Toshifumi; Koido, Shigeo

    2016-01-01

    Colorectal cancer (CRC) is one of the most common cancers and a leading cause of cancer-related mortality worldwide. Although systemic therapy is the standard care for patients with recurrent or metastatic CRC, the prognosis is extremely poor. The optimal sequence of therapy remains unknown. Therefore, alternative strategies, such as immunotherapy, are needed for patients with advanced CRC. This review summarizes evidence from dendritic cell-based cancer immunotherapy strategies that are currently in clinical trials. In addition, we discuss the possibility of antitumor immune responses through immunoinhibitory PD-1/PD-L1 pathway blockade in CRC patients. PMID:27158196

  15. Optimizing Dendritic Cell-Based Approaches for Cancer Immunotherapy

    PubMed Central

    Datta, Jashodeep; Terhune, Julia H.; Lowenfeld, Lea; Cintolo, Jessica A.; Xu, Shuwen; Roses, Robert E.; Czerniecki, Brian J.

    2014-01-01

    Dendritic cells (DC) are professional antigen-presenting cells uniquely suited for cancer immunotherapy. They induce primary immune responses, potentiate the effector functions of previously primed T-lymphocytes, and orchestrate communication between innate and adaptive immunity. The remarkable diversity of cytokine activation regimens, DC maturation states, and antigen-loading strategies employed in current DC-based vaccine design reflect an evolving, but incomplete, understanding of optimal DC immunobiology. In the clinical realm, existing DC-based cancer immunotherapy efforts have yielded encouraging but inconsistent results. Despite recent U.S. Federal and Drug Administration (FDA) approval of DC-based sipuleucel-T for metastatic castration-resistant prostate cancer, clinically effective DC immunotherapy as monotherapy for a majority of tumors remains a distant goal. Recent work has identified strategies that may allow for more potent “next-generation” DC vaccines. Additionally, multimodality approaches incorporating DC-based immunotherapy may improve clinical outcomes. PMID:25506283

  16. Advances in inducing adaptive immunity using cell-based cancer vaccines: Clinical applications in pancreatic cancer.

    PubMed

    Kajihara, Mikio; Takakura, Kazuki; Kanai, Tomoya; Ito, Zensho; Matsumoto, Yoshihiro; Shimodaira, Shigetaka; Okamoto, Masato; Ohkusa, Toshifumi; Koido, Shigeo

    2016-05-14

    The incidence of pancreatic ductal adenocarcinoma (PDA) is on the rise, and the prognosis is extremely poor because PDA is highly aggressive and notoriously difficult to treat. Although gemcitabine- or 5-fluorouracil-based chemotherapy is typically offered as a standard of care, most patients do not survive longer than 1 year. Therefore, the development of alternative therapeutic approaches for patients with PDA is imperative. As PDA cells express numerous tumor-associated antigens that are suitable vaccine targets, one promising treatment approach is cancer vaccines. During the last few decades, cell-based cancer vaccines have offered encouraging results in preclinical studies. Cell-based cancer vaccines are mainly generated by presenting whole tumor cells or dendritic cells to cells of the immune system. In particular, several clinical trials have explored cell-based cancer vaccines as a promising therapeutic approach for patients with PDA. Moreover, chemotherapy and cancer vaccines can synergize to result in increased efficacies in patients with PDA. In this review, we will discuss both the effect of cell-based cancer vaccines and advances in terms of future strategies of cancer vaccines for the treatment of PDA patients. PMID:27182156

  17. Advances in inducing adaptive immunity using cell-based cancer vaccines: Clinical applications in pancreatic cancer

    PubMed Central

    Kajihara, Mikio; Takakura, Kazuki; Kanai, Tomoya; Ito, Zensho; Matsumoto, Yoshihiro; Shimodaira, Shigetaka; Okamoto, Masato; Ohkusa, Toshifumi; Koido, Shigeo

    2016-01-01

    The incidence of pancreatic ductal adenocarcinoma (PDA) is on the rise, and the prognosis is extremely poor because PDA is highly aggressive and notoriously difficult to treat. Although gemcitabine- or 5-fluorouracil-based chemotherapy is typically offered as a standard of care, most patients do not survive longer than 1 year. Therefore, the development of alternative therapeutic approaches for patients with PDA is imperative. As PDA cells express numerous tumor-associated antigens that are suitable vaccine targets, one promising treatment approach is cancer vaccines. During the last few decades, cell-based cancer vaccines have offered encouraging results in preclinical studies. Cell-based cancer vaccines are mainly generated by presenting whole tumor cells or dendritic cells to cells of the immune system. In particular, several clinical trials have explored cell-based cancer vaccines as a promising therapeutic approach for patients with PDA. Moreover, chemotherapy and cancer vaccines can synergize to result in increased efficacies in patients with PDA. In this review, we will discuss both the effect of cell-based cancer vaccines and advances in terms of future strategies of cancer vaccines for the treatment of PDA patients. PMID:27182156

  18. Harnessing Dendritic Cells to Generate Cancer Vaccines

    PubMed Central

    Palucka, Karolina; Ueno, Hideki; Fay, Joseph; Banchereau, Jacques

    2009-01-01

    Passive immunotherapy of cancer, i.e., transfer of T cells or antibodies, can lead to some objective clinical responses, thus demonstrating that the immune system can reject tumors. However, passive immunotherapy is not expected to yield memory T cells that might control tumor outgrowth. Active immunotherapy with dendritic cell (DCs) vaccines has the potential to induce tumor-specific effector and memory T cells. Clinical trials testing first generation DC vaccines pulsed with tumor antigens provided a proof-of-principle that therapeutic immunity can be elicited. Newer generation DC vaccines are build on the increased knowledge of the DC system including the existence of distinct DC subsets and their plasticity all leading to generation of distinct types of immunity. Rather than the quantity of IFN-γ secreting CD8+ T cells, we should aim at generating high quality high avidity poly-functional effector CD8+ T cells able to reject tumors and long-lived memory CD8+ T cells able to prevent relapse. PMID:19769741

  19. A multifunctional core-shell nanoparticle for dendritic cell-based cancer immunotherapy

    NASA Astrophysics Data System (ADS)

    Cho, Nam-Hyuk; Cheong, Taek-Chin; Min, Ji Hyun; Wu, Jun Hua; Lee, Sang Jin; Kim, Daehong; Yang, Jae-Seong; Kim, Sanguk; Kim, Young Keun; Seong, Seung-Yong

    2011-10-01

    Dendritic cell-based cancer immunotherapy requires tumour antigens to be delivered efficiently into dendritic cells and their migration to be monitored in vivo. Nanoparticles have been explored as carriers for antigen delivery, but applications have been limited by the toxicity of the solvents used to make nanoparticles, and by the need to use transfection agents to deliver nanoparticles into cells. Here we show that an iron oxide-zinc oxide core-shell nanoparticle can deliver carcinoembryonic antigen into dendritic cells while simultaneously acting as an imaging agent. The nanoparticle-antigen complex is efficiently taken up by dendritic cells within one hour and can be detected in vitro by confocal microscopy and in vivo by magnetic resonance imaging. Mice immunized with dendritic cells containing the nanoparticle-antigen complex showed enhanced tumour antigen specific T-cell responses, delayed tumour growth and better survival than controls.

  20. Dendritic cell vaccination in glioblastoma after fluorescence-guided resection

    PubMed Central

    Valle, Ricardo Diez; de Cerio, Ascension Lopez-Diaz; Inoges, Susana; Tejada, Sonia; Pastor, Fernando; Villanueva, Helena; Gallego, Jaime; Espinos, Jaime; Aristu, Javier; Idoate, Miguel Angel; Andreu, Enrique; Bendandi, Maurizio

    2012-01-01

    AIM: To assess whether the addition of a customized, active immunotherapy to standard of care including fluorescence-guided surgery, may provide hints of an improved survival for patients with poor-prognosis, incurable glioblastoma multiform. METHODS: Preliminary to our ongoing, phase-II clinical trial, we conducted a small pilot study enrolling five consecutive patients with resectable glioblastoma. In terms of Recursive Partitioning Analysis, four patients were class V and one was class IV. In all five cases, fluorescence-guided surgery was employed, followed by rapid steroid discontinuation. Patients were then treated with a combination of standard radio-chemotherapy with temozolomide and tumor lysate-pulsed, mature dendritic cell-based vaccinations. RESULTS: Though all five patients ultimately progressed, with any further treatment left to the sole decision of the treating oncologist, active immunotherapy was very well tolerated and induced specific immune responses in all three patients for whom enough material was available for such an assessment. Median progression-free survival was 16.1 mo. Even more important, median and mean overall survival were 27 mo and 26 mo, respectively. Three patients have died with an overall survival of 9 mo, 27 mo and 27.4 mo, while the other two are still alive at 32 mo and 36 mo, the former receiving treatment with bevacizumab, while the latter has now been off therapy for 12 mo. Four of five patients were alive at two years. CONCLUSION: Active immunotherapy with tumor lysate-pulsed, autologous dendritic cells is feasible, safe, well tolerated and biologically efficacious. A phase-II study is ongoing to possibly improve further on our very encouraging clinical results. PMID:23293753

  1. Plasmacytoid dendritic cells delineate immunogenicity of influenza vaccine subtypes.

    PubMed

    Koyama, Shohei; Aoshi, Taiki; Tanimoto, Takeshi; Kumagai, Yutaro; Kobiyama, Kouji; Tougan, Takahiro; Sakurai, Kazuo; Coban, Cevayir; Horii, Toshihiro; Akira, Shizuo; Ishii, Ken J

    2010-03-31

    A variety of different vaccine types are available for H1N1 influenza A virus infections; however, their immunological mechanisms of action remain unclear. Here, we show that plasmacytoid dendritic cells (pDCs) and type I interferon (IFN)-mediated signaling delineate the immunogenicity of live attenuated virus, inactivated whole-virus (WV), and split-virus vaccines. Although Toll-like receptor 7 acted as the adjuvant receptor for the immunogenicity of both live virus and WV vaccines, the requirement for type I IFN production by pDCs for the immunogenicity of the vaccines was restricted to WV. A split vaccine commonly used in humans failed to immunize naïve mice, but a pDC-activating adjuvant could restore immunogenicity. In blood from human adults, however, split vaccine alone could recall memory T cell responses, underscoring the importance of this adjuvant pathway for primary, but not secondary, vaccination. PMID:20424013

  2. Trial watch: Dendritic cell-based anticancer therapy

    PubMed Central

    Bloy, Norma; Pol, Jonathan; Aranda, Fernando; Eggermont, Alexander; Cremer, Isabelle; Fridman, Wolf Hervé; Fučíková, Jitka; Galon, Jérôme; Tartour, Eric; Spisek, Radek; Dhodapkar, Madhav V.; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2014-01-01

    The use of patient-derived dendritic cells (DCs) as a means to elicit therapeutically relevant immune responses in cancer patients has been extensively investigated throughout the past decade. In this context, DCs are generally expanded, exposed to autologous tumor cell lysates or loaded with specific tumor-associated antigens (TAAs), and then reintroduced into patients, often in combination with one or more immunostimulatory agents. As an alternative, TAAs are targeted to DCs in vivo by means of monoclonal antibodies, carbohydrate moieties or viral vectors specific for DC receptors. All these approaches have been shown to (re)activate tumor-specific immune responses in mice, often mediating robust therapeutic effects. In 2010, the first DC-based preparation (sipuleucel-T, also known as Provenge®) has been approved by the US Food and Drug Administration (FDA) for use in humans. Reflecting the central position occupied by DCs in the regulation of immunological tolerance and adaptive immunity, the interest in harnessing them for the development of novel immunotherapeutic anticancer regimens remains high. Here, we summarize recent advances in the preclinical and clinical development of DC-based anticancer therapeutics. PMID:25941593

  3. Dendritic Cell-Based Immunotherapy for Myeloid Leukemias

    PubMed Central

    Schürch, Christian M.; Riether, Carsten; Ochsenbein, Adrian F.

    2013-01-01

    Acute and chronic myeloid leukemia (AML, CML) are hematologic malignancies arising from oncogene-transformed hematopoietic stem/progenitor cells known as leukemia stem cells (LSCs). LSCs are selectively resistant to various forms of therapy including irradiation or cytotoxic drugs. The introduction of tyrosine kinase inhibitors has dramatically improved disease outcome in patients with CML. For AML, however, prognosis is still quite dismal. Standard treatments have been established more than 20 years ago with only limited advances ever since. Durable remission is achieved in less than 30% of patients. Minimal residual disease (MRD), reflected by the persistence of LSCs below the detection limit by conventional methods, causes a high rate of disease relapses. Therefore, the ultimate goal in the treatment of myeloid leukemia must be the eradication of LSCs. Active immunotherapy, aiming at the generation of leukemia-specific cytotoxic T cells (CTLs), may represent a powerful approach to target LSCs in the MRD situation. To fully activate CTLs, leukemia antigens have to be successfully captured, processed, and presented by mature dendritic cells (DCs). Myeloid progenitors are a prominent source of DCs under homeostatic conditions, and it is now well established that LSCs and leukemic blasts can give rise to “malignant” DCs. These leukemia-derived DCs can express leukemia antigens and may either induce anti-leukemic T cell responses or favor tolerance to the leukemia, depending on co-stimulatory or -inhibitory molecules and cytokines. This review will concentrate on the role of DCs in myeloid leukemia immunotherapy with a special focus on their generation, application, and function and how they could be improved in order to generate highly effective and specific anti-leukemic CTL responses. In addition, we discuss how DC-based immunotherapy may be successfully integrated into current treatment strategies to promote remission and potentially cure myeloid leukemias

  4. Targeting human dendritic cells in situ to improve vaccines

    PubMed Central

    Sehgal, Kartik; Dhodapkar, Kavita M.; Dhodapkar, Madhav V.

    2014-01-01

    Dendritic cells (DCs) provide a critical link between innate and adaptive immunity. The potent antigen presenting properties of DCs makes them a valuable target for the delivery of immunogenic cargo. Recent clinical studies describing in situ DC targeting with antibodymediated targeting of DC receptor through DEC-205 provide new opportunities for the clinical application of DC-targeted vaccines. Further advances with nanoparticle vectors which can encapsulate antigens and adjuvants within the same compartment and be targeted against diverse DC subsets also represent an attractive strategy for targeting DCs. This review provides a brief summary of the rationale behind targeting dendritic cells in situ, the existing pre-clinical and clinical data on these vaccines and challenges faced by the next generation DC-targeted vaccines. PMID:25072116

  5. Topical vaccination with functionalized particles targeting dendritic cells.

    PubMed

    Baleeiro, Renato B; Wiesmüller, Karl-Heinz; Reiter, Yoran; Baude, Barbara; Dähne, Lars; Patzelt, Alexa; Lademann, Jürgen; Barbuto, José A; Walden, Peter

    2013-08-01

    Needle-free vaccination, for reasons of safety, economy, and convenience, is a central goal in vaccine development, but it also needs to meet the immunological requirements for efficient induction of prophylactic and therapeutic immune responses. Combining the principles of noninvasive delivery to dendritic cells (DCs) through skin and the immunological principles of cell-mediated immunity, we developed microparticle-based topical vaccines. We show here that the microparticles are efficient carriers for coordinated delivery of the essential vaccine constituents to DCs for cross-presentation of the antigens and stimulation of T-cell responses. When applied to the skin, the microparticles penetrate into hair follicles and target the resident DCs, the immunologically most potent cells and site for induction of efficient immune responses. The microparticle vaccine principle can be applied to different antigen formats such as peptides and proteins, or nucleic acids coding for the antigens. PMID:23426134

  6. Topical vaccination with functionalized particles targeting dendritic cells.

    PubMed

    Baleeiro, Renato B; Wiesmüller, Karl-Heinz; Reiter, Yoran; Baude, Barbara; Dähne, Lars; Patzelt, Alexa; Lademann, Jürgen; Barbuto, José A; Walden, Peter

    2013-08-01

    Needle-free vaccination, for reasons of safety, economy, and convenience, is a central goal in vaccine development, but it also needs to meet the immunological requirements for efficient induction of prophylactic and therapeutic immune responses. Combining the principles of noninvasive delivery to dendritic cells (DCs) through skin and the immunological principles of cell-mediated immunity, we developed microparticle-based topical vaccines. We show here that the microparticles are efficient carriers for coordinated delivery of the essential vaccine constituents to DCs for cross-presentation of the antigens and stimulation of T-cell responses. When applied to the skin, the microparticles penetrate into hair follicles and target the resident DCs, the immunologically most potent cells and site for induction of efficient immune responses. The microparticle vaccine principle can be applied to different antigen formats such as peptides and proteins, or nucleic acids coding for the antigens.

  7. Designing vaccines based on biology of human dendritic cell subsets

    PubMed Central

    Palucka, Karolina; Banchereau, Jacques; Mellman, Ira

    2010-01-01

    The effective vaccines developed against a variety of infectious agents, including polio, measles and Hepatitis B, represent major achievements in medicine. These vaccines, usually composed of microbial antigens, are often associated with an adjuvant that activates dendritic cells (DCs). Many infectious diseases are still in need of an effective vaccine including HIV, malaria, hepatitis C and tuberculosis. In some cases, the induction of cellular rather than humoral responses may be more important as the goal is to control and eliminate the existing infection rather than to prevent it. Our increased understanding of the mechanisms of antigen presentation, particularly with the description of DC subsets with distinct functions, as well as their plasticity in responding to extrinsic signals, represent opportunities to develop novel vaccines. In addition, we foresee that this increased knowledge will permit us to design vaccines that will reprogram the immune system to intervene therapeutically in cancer, allergy and autoimmunity. PMID:21029958

  8. In Situ Modulation of Dendritic Cells by Injectable Thermosensitive Hydrogels for Cancer Vaccines in Mice

    PubMed Central

    2014-01-01

    Attempts to develop cell-based cancer vaccines have shown limited efficacy, partly because transplanted dendritic cells (DCs) do not survive long enough to reach the lymph nodes. The development of biomaterials capable of modulating DCs in situ to enhance antigen uptake and presentation has emerged as a novel method toward developing more efficient cancer vaccines. Here, we propose a two-step hybrid strategy to produce a more robust cell-based cancer vaccine in situ. First, a significant number of DCs are recruited to an injectable thermosensitive mPEG–PLGA hydrogel through sustained release of chemoattractants, in particular, granulocyte-macrophage colony-stimulating factor (GM-CSF). Then, these resident DCs can be loaded with cancer antigens through the use of viral or nonviral vectors. We demonstrate that GM-CSF-releasing mPEG–PLGA hydrogels successfully recruit and house DCs and macrophages, allowing the subsequent introduction of antigens by vectors to activate the resident cells, thus, initiating antigen presentation and triggering immune response. Moreover, this two-step hybrid strategy generates a high level of tumor-specific immunity, as demonstrated in both prophylactic and therapeutic models of murine melanoma. This injectable thermosensitive hydrogel shows great promise as an adjuvant for cancer vaccines, potentially providing a new approach for cell therapies through in situ modulation of cells. PMID:25207465

  9. Building on Dendritic Cell Subsets to Improve Cancer Vaccines

    PubMed Central

    Palucka, Karolina; Ueno, Hideki; Zurawski, Gerard; Fay, Joseph; Banchereau, Jacques

    2010-01-01

    SUMMARY T cells can reject established tumors when adoptively transferred into patients, thereby demonstrating that the immune system can be harnessed for cancer therapy. However, such passive immunotherapy is unlikely to maintain memory T cells that might control tumor outgrowth on the long term. Active immunotherapy with vaccines has the potential to induce tumor-specific effector and memory T cells. Vaccines act through dendritic cells (DCs) which induce, regulate and maintain T cell immunity. Clinical trials testing first generation DC vaccines pulsed with tumor antigens provided a proof-of-principle that therapeutic immunity can be elicited. The increased knowledge of the DC system, including the existence of distinct DC subsets is leading to new trials which aim at improved immune and clinical outcomes. PMID:20226644

  10. Dendritic-cell-based technology landscape: Insights from patents and citation networks.

    PubMed

    Kong, Xiangjun; Hu, Yuanjia; Cai, Zhifang; Yang, Fengqing; Zhang, Qianru

    2015-01-01

    As the most potent antigen-presenting cells, dendritic cells (DCs) are pivotal players in regulating immune responses. DC-based technologies have generated a series of typical and promising therapeutic options, especially after the first DC-based cancer vaccine was approved by US. Food and Drug Administration (US. FDA). In this context, this paper employs patents and citation networks to conduct a fundamental analysis in order to show overall landscape of DC-based technologies. The results in this research can be used as references for decision-making in developing efficacious DC therapeutic products.

  11. Dendritic-cell-based technology landscape: Insights from patents and citation networks

    PubMed Central

    Kong, Xiangjun; Hu, Yuanjia; Cai, Zhifang; Yang, Fengqing; Zhang, Qianru

    2015-01-01

    As the most potent antigen-presenting cells, dendritic cells (DCs) are pivotal players in regulating immune responses. DC-based technologies have generated a series of typical and promising therapeutic options, especially after the first DC-based cancer vaccine was approved by US. Food and Drug Administration (US. FDA). In this context, this paper employs patents and citation networks to conduct a fundamental analysis in order to show overall landscape of DC-based technologies. The results in this research can be used as references for decision-making in developing efficacious DC therapeutic products. PMID:25714961

  12. Dendritic cell based immunotherapy using tumor stem cells mediates potent antitumor immune responses.

    PubMed

    Dashti, Amir; Ebrahimi, Marzieh; Hadjati, Jamshid; Memarnejadian, Arash; Moazzeni, Seyed Mohammad

    2016-04-28

    Cancer stem cells (CSCs) are demonstrated to be usually less sensitive to conventional methods of cancer therapies, resulting in tumor relapse. It is well-known that an ideal treatment would be able to selectively target and kill CSCs, so as to avoid the tumor reversion. The aim of our present study was to evaluate the effectiveness of a dendritic cell (DC) based vaccine against CSCs in a mouse model of malignant melanoma. C57BL/6 mouse bone marrow derived DCs pulsed with a murine melanoma cell line (B16F10) or CSC lysates were used as a vaccine. Immunization of mice with CSC lysate-pulsed DCs was able to induce a significant prophylactic effect by a higher increase in lifespan and obvious depression of tumor growth in tumor bearing mice. The mice vaccinated with DCs loaded with CSC-lysate were revealed to produce specific cytotoxic responses to CSCs. The proliferation assay and cytokine (IFN-γ and IL-4) secretion of mice vaccinated with CSC lysate-pulsed DCs also showed more favorable results, when compared to those receiving B16F10 lysate-pulsed DCs. These findings suggest a potential strategy to improve the efficacy of DC-based immunotherapy of cancers. PMID:26803056

  13. Dendritic Cell-Based Immunization Ameliorates Pulmonary Infection with Highly Virulent Cryptococcus gattii

    PubMed Central

    Ueno, Keigo; Okubo, Yoichiro; Aki, Kyoko; Urai, Makoto; Kaneko, Yukihiro; Shimizu, Kiminori; Wang, Dan-Ni; Okawara, Akiko; Nara, Takuya; Ohkouchi, Kayo; Mizuguchi, Yuki; Kawamoto, Susumu; Kamei, Katsuhiko; Ohno, Hideaki; Niki, Yoshihito; Shibuya, Kazutoshi; Miyazaki, Yoshitsugu

    2015-01-01

    Cryptococcosis due to a highly virulent fungus, Cryptococcus gattii, emerged as an infectious disease on Vancouver Island in Canada and surrounding areas in 1999, causing deaths among immunocompetent individuals. Previous studies indicated that C. gattii strain R265 isolated from the Canadian outbreak had immune avoidance or immune suppression capabilities. However, protective immunity against C. gattii has not been identified. In this study, we used a gain-of-function approach to investigate the protective immunity against C. gattii infection using a dendritic cell (DC)-based vaccine. Bone marrow-derived dendritic cells (BMDCs) efficiently engulfed acapsular C. gattii (Δcap60 strain), which resulted in their expression of costimulatory molecules and inflammatory cytokines. This was not observed for BMDCs that were cultured with encapsulated strains. When Δcap60 strain-pulsed BMDCs were transferred to mice prior to intratracheal R265 infection, significant amelioration of pathology, fungal burden, and the survival rate resulted compared with those in controls. Multinucleated giant cells (MGCs) that engulfed fungal cells were significantly increased in the lungs of immunized mice. Interleukin 17A (IL-17A)-, gamma interferon (IFN-γ)-, and tumor necrosis factor alpha (TNF-α)-producing lymphocytes were significantly increased in the spleens and lungs of immunized mice. The protective effect of this DC vaccine was significantly reduced in IFN-γ knockout mice. These results demonstrated that an increase in cytokine-producing lymphocytes and the development of MGCs that engulfed fungal cells were associated with the protection against pulmonary infection with highly virulent C. gattii and suggested that IFN-γ may have been an important mediator for this vaccine-induced protection. PMID:25644007

  14. Cancer Vaccine by Fusions of Dendritic and Cancer Cells

    PubMed Central

    Koido, Shigeo; Hara, Eiichi; Homma, Sadamu; Namiki, Yoshihisa; Ohkusa, Toshifumi; Gong, Jianlin; Tajiri, Hisao

    2009-01-01

    Dendritic cells (DCs) are potent antigen-presenting cells and play a central role in the initiation and regulation of primary immune responses. Therefore, their use for the active immunotherapy against cancers has been studied with considerable interest. The fusion of DCs with whole tumor cells represents in many ways an ideal approach to deliver, process, and subsequently present a broad array of tumor-associated antigens, including those yet to be unidentified, in the context of DCs-derived costimulatory molecules. DCs/tumor fusion vaccine stimulates potent antitumor immunity in the animal tumor models. In the human studies, T cells stimulated by DC/tumor fusion cells are effective in lysis of tumor cells that are used as the fusion partner. In the clinical trials, clinical and immunological responses were observed in patients with advanced stage of malignant tumors after being vaccinated with DC/tumor fusion cells, although the antitumor effect is not as vigorous as in the animal tumor models. This review summarizes recent advances in concepts and techniques that are providing new impulses to DCs/tumor fusions-based cancer vaccination. PMID:20182533

  15. Targeting Antigens to Dendritic Cell Receptors for Vaccine Development

    PubMed Central

    Apostolopoulos, Vasso; Thalhammer, Theresia; Tzakos, Andreas G.

    2013-01-01

    Dendritic cells (DCs) are highly specialized antigen presenting cells of the immune system which play a key role in regulating immune responses. Depending on the method of antigen delivery, DCs stimulate immune responses or induce tolerance. As a consequence of the dual function of DCs, DCs are studied in the context of immunotherapy for both cancer and autoimmune diseases. In vaccine development, a major aim is to induce strong, specific T-cell responses. This is achieved by targeting antigen to cell surface molecules on DCs that efficiently channel the antigen into endocytic compartments for loading onto MHC molecules and stimulation of T-cell responses. The most attractive cell surface receptors, expressed on DCs used as targets for antigen delivery for cancer and other diseases, are discussed. PMID:24228179

  16. A cell-based backup to speed up pandemic influenza vaccine production.

    PubMed

    Lee, Min-Shi; Hu, Alan Yung-Chih

    2012-03-01

    Influenza vaccines are currently produced through egg-based methods, with one drawback being that this system is slow to respond to the surging global demand during an influenza pandemic. Alternative influenza vaccine production strategies, such as using a cell-based strategy, should be considered in pandemic situations.

  17. Exploiting dendritic cells in the development of cancer vaccines.

    PubMed

    Bracci, Laura; Capone, Imerio; Moschella, Federica; Proietti, Enrico; Belardelli, Filippo

    2013-10-01

    Due to their central role in priming and modulating the immune response, dendritic cells (DCs) represent an ideal instrument for the design of effective immunotherapeutic strategies for cancer patients. Recent advancement on the knowledge of the numerous DC subtypes, their functions and T-cell polarizing abilities has led to the development of several protocols for the ex vivo differentiation of autologous DCs and their loading with tumor-associated antigens. Moreover, novel strategies for the in vivo targeting of tumor antigens and adjuvants to natural DC subsets have been developed. Despite the large number of clinical studies carried out in cancer patients, a consensus on the optimal treatment modalities has not been reached yet. In this review, we summarize our current knowledge on DC biology and on DC use in clinical trials. Special attention is given to the many open issues regarding DC-based vaccination to sensitize researchers in the field to the compelling need of conducting comparative studies systematically addressing the still unresolved problems.

  18. Dendritic cell targeted vaccines: Recent progresses and challenges.

    PubMed

    Chen, Pengfei; Liu, Xinsheng; Sun, Yuefeng; Zhou, Peng; Wang, Yonglu; Zhang, Yongguang

    2016-03-01

    Dendritic cells (DCs) are known to be a set of morphology, structure and function of heterogeneous professional antigen presenting cells (APCs), as well as the strongest functional antigen presenting cells, which can absorb, process and present antigens. As the key regulators of innate and adaptive immune responses, DCs are at the center of the immune system and capable of interacting with both B cells and T cells, thereby manipulating the humoral and cellular immune responses. DCs provide an essential link between the innate and adaptive immunity, and the strong immune activation function of DCs and their properties of natural adjuvants, make them a valuable target for antigen delivery. Targeting antigens to DC-specific endocytic receptors in combination with the relevant antibodies or ligands along with immunostimulatory adjuvants has been recently recognized as a promising strategy for designing an effective vaccine that elicits a strong and durable T cell response against intracellular pathogens and cancer. This opinion article provides a brief summary of the rationales, superiorities and challenges of existing DC-targeting approaches.

  19. HIV-1 Reservoir Dynamics after Vaccination and Antiretroviral Therapy Interruption Are Associated with Dendritic Cell Vaccine-Induced T Cell Responses

    PubMed Central

    Andrés, Cristina; Plana, Montserrat; Guardo, Alberto C.; Alvarez-Fernández, Carmen; Climent, Nuria; Gallart, Teresa; León, Agathe; Clotet, Bonaventura; Autran, Brigitte; Chomont, Nicolas; Gatell, Josep M.; Sánchez-Palomino, Sonsoles

    2015-01-01

    . The development of therapeutic vaccines aimed at enhancing immune-mediated clearance of virus-producing cells is of high priority. Few therapeutic vaccine clinical trials have investigated the role of therapeutic vaccines as a strategy to safely eliminate or control viral reservoirs. We recently reported that a dendritic cell-based therapeutic vaccine was able to significantly decrease the viral set point in vaccinated patients, with a concomitant increase in HIV-1-specific T cell responses. The HIV-1-specific T cell immune responses elicited by this therapeutic dendritic cell vaccine drove changes in the viral reservoir after vaccinations and significantly delayed the replenishment of integrated HIV-1 DNA after cART interruption. These data help in understanding how an immunization could shift the virus-host balance and are instrumental for better design of strategies to reach a functional cure of HIV-1 infection. PMID:26109727

  20. Expansion of a BDCA1+CD14+ Myeloid Cell Population in Melanoma Patients May Attenuate the Efficacy of Dendritic Cell Vaccines.

    PubMed

    Bakdash, Ghaith; Buschow, Sonja I; Gorris, Mark A J; Halilovic, Altuna; Hato, Stanleyson V; Sköld, Annette E; Schreibelt, Gerty; Sittig, Simone P; Torensma, Ruurd; Duiveman-de Boer, Tjitske; Schröder, Christoph; Smits, Evelien L; Figdor, Carl G; de Vries, I Jolanda M

    2016-08-01

    The tumor microenvironment is characterized by regulatory T cells, type II macrophages, myeloid-derived suppressor cells, and other immunosuppressive cells that promote malignant progression. Here we report the identification of a novel BDCA1(+)CD14(+) population of immunosuppressive myeloid cells that are expanded in melanoma patients and are present in dendritic cell-based vaccines, where they suppress CD4(+) T cells in an antigen-specific manner. Mechanistic investigations showed that BDCA1(+)CD14(+) cells expressed high levels of the immune checkpoint molecule PD-L1 to hinder T-cell proliferation. While this BDCA1(+)CD14(+) cell population expressed markers of both BDCA1(+) dendritic cells and monocytes, analyses of function, transcriptome, and proteome established their unique nature as exploited by tumors for immune escape. We propose that targeting these cells may improve the efficacy of cancer immunotherapy. Cancer Res; 76(15); 4332-46. ©2016 AACR. PMID:27325645

  1. Mutant amyloid-beta-sensitized dendritic cells as Alzheimer's disease vaccine.

    PubMed

    Cao, Chuanhai; Lin, Xiaoyang; Zhang, Chi; Wahi, Monika M; Wefes, Inge; Arendash, Gary; Potter, Huntington

    2008-08-30

    Vaccines using bone marrow-derived dendritic cells (DCs) sensitized to Abeta 1-42 peptide and other mutant peptides were tested on BALB/c and APP(SW) transgenic mice. Wild type Abeta 1-42-sensitized DC vaccine (DCSV) produced no response, but all peptides with a T-cell epitope mutation induced antibody responses without inflammation. DCSV with Abeta 1-25 peptide with mutated T-cell epitope failed to induce antibody response, while DCSV with Abeta 1-35 with mutated T-cell epitope produced a strong antibody response. The entire T-cell epitope is required in a DC vaccine to induce antibody response. DCSV with Abeta peptide carrying the entire mutant T-cell epitope may be an appropriate vaccine against AD.

  2. Natural killer cells: the secret weapon in dendritic cell vaccination strategies.

    PubMed

    Van Elssen, Catharina H M J; Oth, Tammy; Germeraad, Wilfred T V; Bos, Gerard M J; Vanderlocht, Joris

    2014-03-01

    In cancer therapy, dendritic cell (DC) vaccination is still being explored. Clinical responses, however, are diverse and there is a lack of immunologic readout systems that correspond with clinical outcome. Only in the minority of patients, T-cell responses correlate with clinical outcome, indicating that other immune cells also gain anticancer activity. We still have limited knowledge of the effect of DC vaccination on different immune effector cells. However, it has been shown that bidirectional cross-talk between natural killer (NK) cells and DCs is responsible for enhanced activation of both cell types and increases their antitumor activity. In this review, we postulate the possibility that NK cells are the secret weapons in DC vaccination and studying their behavior together with T-cell activation in vaccinated individuals might predict clinical outcome. PMID:24590885

  3. Self-Amplifying Replicon RNA Vaccine Delivery to Dendritic Cells by Synthetic Nanoparticles

    PubMed Central

    McCullough, Kenneth C.; Milona, Panagiota; Thomann-Harwood, Lisa; Démoulins, Thomas; Englezou, Pavlos; Suter, Rolf; Ruggli, Nicolas

    2014-01-01

    Dendritic cells (DC) play essential roles determining efficacy of vaccine delivery with respect to immune defence development and regulation. This renders DCs important targets for vaccine delivery, particularly RNA vaccines. While delivery of interfering RNA oligonucleotides to the appropriate intracellular sites for RNA-interference has proven successful, the methodologies are identical for RNA vaccines, which require delivery to RNA translation sites. Delivery of mRNA has benefitted from application of cationic entities; these offer value following endocytosis of RNA, when cationic or amphipathic properties can promote endocytic vesicle membrane perturbation to facilitate cytosolic translocation. The present review presents how such advances are being applied to the delivery of a new form of RNA vaccine, replicons (RepRNA) carrying inserted foreign genes of interest encoding vaccine antigens. Approaches have been developed for delivery to DCs, leading to the translation of the RepRNA and encoded vaccine antigens both in vitro and in vivo. Potential mechanisms favouring efficient delivery leading to translation are discussed with respect to the DC endocytic machinery, showing the importance of cytosolic translocation from acidifying endocytic structures. The review relates the DC endocytic pathways to immune response induction, and the potential advantages for these self-replicating RNA vaccines in the near future. PMID:26344889

  4. Electrofusion of a weakly immunogenic neuroblastoma with dendritic cells produces a tumor vaccine.

    PubMed

    Orentas, R J; Schauer, D; Bin, Q; Johnson, B D

    2001-10-10

    The absence of surface costimulatory molecules explains in part the lack of an effective anti-tumor immune response in tumor-bearing animals, even though unique tumor antigens may be presented by class I MHC. We determined that the immunogenicity of a murine neuroblastoma, Neuro-2a, which lacks surface costimulatory molecules, could be increased by electrically induced fusion with dendritic cells. Electrofusion induced a higher level of cell fusion than polyethylene glycol, and tumor/dendritic cell heterokaryons expressed high levels of costimulatory molecules. While Neuro-2a was unable to induce the proliferation of syngeneic or allogeneic T cells in vitro, fused cells were able to induce T cell responses both in vitro and in vivo. When fused dendritic tumor cells were used as a cancer vaccine, immunized mice were significantly protected from challenge with Neuro-2a. We propose that electrofusion with patient-derived tumor and dendritic cells may provide a rapid means to produce patient-specific tumor vaccines.

  5. Induction of complete and molecular remissions in acute myeloid leukemia by Wilms’ tumor 1 antigen-targeted dendritic cell vaccination

    PubMed Central

    Van Tendeloo, Viggo F.; Van de Velde, Ann; Van Driessche, Ann; Cools, Nathalie; Anguille, Sébastien; Ladell, Kristin; Gostick, Emma; Vermeulen, Katrien; Pieters, Katrien; Nijs, Griet; Stein, Barbara; Smits, Evelien L.; Schroyens, Wilfried A.; Gadisseur, Alain P.; Vrelust, Inge; Jorens, Philippe G.; Goossens, Herman; de Vries, I. Jolanda; Price, David A.; Oji, Yusuke; Oka, Yoshihiro; Sugiyama, Haruo; Berneman, Zwi N.

    2010-01-01

    Active immunization using tumor antigen-loaded dendritic cells holds promise for the adjuvant treatment of cancer to eradicate or control residual disease, but so far, most dendritic cell trials have been performed in end-stage cancer patients with high tumor loads. Here, in a phase I/II trial, we investigated the effect of autologous dendritic cell vaccination in 10 patients with acute myeloid leukemia (AML). The Wilms’ tumor 1 protein (WT1), a nearly universal tumor antigen, was chosen as an immunotherapeutic target because of its established role in leukemogenesis and superior immunogenic characteristics. Two patients in partial remission after chemotherapy were brought into complete remission after intradermal administration of full-length WT1 mRNA-electroporated dendritic cells. In these two patients and three other patients who were in complete remission, the AML-associated tumor marker returned to normal after dendritic cell vaccination, compatible with the induction of molecular remission. Clinical responses were correlated with vaccine-associated increases in WT1-specific CD8+ T cell frequencies, as detected by peptide/HLA-A*0201 tetramer staining, and elevated levels of activated natural killer cells postvaccination. Furthermore, vaccinated patients showed increased levels of WT1-specific IFN-γ–producing CD8+ T cells and features of general immune activation. These data support the further development of vaccination with WT1 mRNA-loaded dendritic cells as a postremission treatment to prevent full relapse in AML patients. PMID:20631300

  6. Ipilimumab administered to metastatic melanoma patients who progressed after dendritic cell vaccination

    PubMed Central

    Boudewijns, Steve; Koornstra, Rutger H. T.; Westdorp, Harm; Schreibelt, Gerty; van den Eertwegh, Alfons J. M.; Geukes Foppen, Marnix H.; Haanen, John B.; de Vries, I. Jolanda M.; Figdor, Carl G.; Bol, Kalijn F.; Gerritsen, Winald R.

    2016-01-01

    ABSTRACT Background: Ipilimumab has proven to be effective in metastatic melanoma patients. The purpose of this study was to determine the efficacy of ipilimumab in advanced melanoma patients who showed progressive disease upon experimental dendritic cell (DC) vaccination. Methods: Retrospective analysis of 48 stage IV melanoma patients treated with ipilimumab after progression upon DC vaccination earlier in their treatment. DC vaccination was given either as adjuvant treatment for stage III disease (n = 18) or for stage IV disease (n = 30). Ipilimumab (3 mg/kg) was administered every 3 weeks for up to 4 cycles. Results: Median time between progression upon DC vaccination and first gift of ipilimumab was 5.4 mo. Progression-free survival (PFS) rates for patients that received ipilimumab after adjuvant DC vaccination, and patients that received DC vaccination for stage IV melanoma, were 35% and 7% at 1 y and 35% and 3% at 2 y, while the median PFS was 2.9 mo and 3.1 mo, respectively. Median overall survival of patients pre-treated with adjuvant DC vaccination for stage III melanoma was not reached versus 8.0 mo (95% CI, 5.2–10.9) in the group pre-treated with DC vaccination for stage IV disease (HR of death, 0.36; p = 0.017). Grade 3 immune-related adverse events occurred in 19% of patients and one death (2%) was related to ipilimumab. Conclusions: Clinical responses to ipilimumab were found in a considerable number of advanced melanoma patients with progression after adjuvant DC vaccination for stage III disease, while the effect was very limited in patients who showed progression after DC vaccination for stage IV disease.

  7. Ipilimumab administered to metastatic melanoma patients who progressed after dendritic cell vaccination

    PubMed Central

    Boudewijns, Steve; Koornstra, Rutger H. T.; Westdorp, Harm; Schreibelt, Gerty; van den Eertwegh, Alfons J. M.; Geukes Foppen, Marnix H.; Haanen, John B.; de Vries, I. Jolanda M.; Figdor, Carl G.; Bol, Kalijn F.; Gerritsen, Winald R.

    2016-01-01

    ABSTRACT Background: Ipilimumab has proven to be effective in metastatic melanoma patients. The purpose of this study was to determine the efficacy of ipilimumab in advanced melanoma patients who showed progressive disease upon experimental dendritic cell (DC) vaccination. Methods: Retrospective analysis of 48 stage IV melanoma patients treated with ipilimumab after progression upon DC vaccination earlier in their treatment. DC vaccination was given either as adjuvant treatment for stage III disease (n = 18) or for stage IV disease (n = 30). Ipilimumab (3 mg/kg) was administered every 3 weeks for up to 4 cycles. Results: Median time between progression upon DC vaccination and first gift of ipilimumab was 5.4 mo. Progression-free survival (PFS) rates for patients that received ipilimumab after adjuvant DC vaccination, and patients that received DC vaccination for stage IV melanoma, were 35% and 7% at 1 y and 35% and 3% at 2 y, while the median PFS was 2.9 mo and 3.1 mo, respectively. Median overall survival of patients pre-treated with adjuvant DC vaccination for stage III melanoma was not reached versus 8.0 mo (95% CI, 5.2–10.9) in the group pre-treated with DC vaccination for stage IV disease (HR of death, 0.36; p = 0.017). Grade 3 immune-related adverse events occurred in 19% of patients and one death (2%) was related to ipilimumab. Conclusions: Clinical responses to ipilimumab were found in a considerable number of advanced melanoma patients with progression after adjuvant DC vaccination for stage III disease, while the effect was very limited in patients who showed progression after DC vaccination for stage IV disease. PMID:27622070

  8. Anti-Tumor Effects From Dendritic Cell-Based Cancer Immunotherapy Using Liposomal Bubbles and Ultrasound

    NASA Astrophysics Data System (ADS)

    Oda, Yusuke; Suzuki, Ryo; Hirata, Keiichi; Nomura, Tetsuya; Utoguchi, Naoki; Maruyama, Kazuo

    2011-09-01

    Dendritic cell (DC)-based cancer immunotherapy has the potential to be a minimally invasive therapy that could prevent cancer metastasis and recurrence. Recently, in order to induce effective anti-tumor immunity, we developed a novel antigen delivery system for DCs by the combination of ultrasound (US) and liposomal bubbles (Bubble Liposomes: BLs) with entrapped perfluoropropane gas. In this study, we investigated the induction of antigen specific immune responses in vivo and the anti-tumor effect caused by immunization of DCs treated with BLs and US. For the immunization of DCs which had delivered antigen, using BLs and US, the mice induced antigen specific cytotoxic T lymphocytes (CTLs) were found to be the main effector cells in DC-based cancer immunotherapy. In addition, immunization with DCs that had been pulsed with antigen using BLs and US completely suppressed tumor growth Therefore, immunization of DCs with this antigen delivery system has promise for the efficient induction of anti-tumor immune responses.

  9. Dendritic Cell-based Immunotherapy for Rheumatoid Arthritis: from Bench to Bedside

    PubMed Central

    Ahmed, Md. Selim

    2016-01-01

    Dendritic cells (DCs) are professional antigen presenting cells, and play an important role in the induction of antigen-specific adaptive immunity. However, some DC populations are involved in immune regulation and immune tolerance. These DC populations are believed to take part in the control of immune exaggeration and immune disorder, and maintain immune homeostasis in the body. Tolerogenic DCs (tolDCs) can be generated in vitro by genetic or pharmacological modification or by controlling the maturation stages of cytokine-derived DCs. These tolDCs have been investigated for the treatment of rheumatoid arthritis (RA) in experimental animal models. In the last decade, several in vitro and in vivo approaches have been translated into clinical trials. As of 2015, three tolDC trials for RA are on the list of ClinicalTrial.gov (www.clinicaltrials.gov). Other trials for RA are in progress and will be listed soon. In this review, we discuss the evolution of tolDC-based immunotherapy for RA and its limitations and future prospects. PMID:26937231

  10. Experimental production of clinical-grade dendritic cell vaccine for acute myeloid leukemia.

    PubMed

    Tan, Yuen-Fen; Sim, Geok-Choo; Habsah, Aziz; Leong, Chooi-Fun; Cheong, Soon-Keng

    2008-12-01

    Dendritic cells (DC) are professional antigen presenting cells of the immune system. Through the use of DC vaccines (DC after exposure to tumour antigens), cryopreserved in single-use aliquots, an attractive and novel immunotherapeutic strategy is available as an option for treatment. In this paper we describe an in vitro attempt to scale-up production of clinical-grade DC vaccines from leukemic cells. Blast cells of two relapsed AML patients were harvested for DC generation in serum-free culture medium containing clinical-grade cytokines GM-CSF, IL-4 and TNF-alpha. Cells from patient 1 were cultured in a bag and those from patient 2 were cultured in a flask. The numbers of seeding cells were 2.24 x 10(8) and 0.8 x 10(8), respectively. DC yields were 10 x 10(6) and 29.8 x 10(6) cells, giving a conversion rate of 4.7% and 37%, respectively. These DC vaccines were then cryopreserved in approximately one million cells per vial with 20% fresh frozen group AB plasma and 10% DMSO. At 12 months and 21 months post cryopreservation, these DC vaccines were thawed, and their sterility, viability, phenotype and functionality were studied. DC vaccines remained sterile up to 21 months of storage. Viability of the cryopreserved DC in the culture bag and flask was found to be 50% and 70% at 12 months post cryopreservation respectively; and 48% and 67% at 21 months post cryopreservation respectively. These DC vaccines exhibited mature DC surface phenotypic markers of CD83, CD86 and HLA-DR, and negative for haemopoietic markers. Mixed lymphocyte reaction (MLR) study showed functional DC vaccines. These experiments demonstrated that it is possible to produce clinical-grade DC vaccines in vitro from blast cells of leukemic patients, which could be cryopreserved up to 21 months for use if repeated vaccinations are required in the course of therapy. PMID:19291915

  11. Duality at the gate: Skin dendritic cells as mediators of vaccine immunity and tolerance.

    PubMed

    Nirschl, Christopher J; Anandasabapathy, Niroshana

    2016-01-01

    Since Edward Jenner's discovery that intentional exposure to cowpox could provide lifelong protection from smallpox, vaccinations have been a major focus of medical research. However, while the protective benefits of many vaccines have been successfully translated into the clinic, the cellular and molecular mechanisms that differentiate effective vaccines from sub-optimal ones are not well understood. Dendritic cells (DCs) are the gatekeepers of the immune system, and are ultimately responsible for the generation of adaptive immunity and lifelong protective memory through interactions with T cells. In addition to lymph node and spleen resident DCs, a number of tissue resident DC populations have been identified at barrier tissues, such as the skin, which migrate to the local lymph node (migDC). These populations have unique characteristics, and play a key role in the function of cutaneous vaccinations by shuttling antigen from the vaccination site to the draining lymph node, rapidly capturing freely draining antigens in the lymph node, and providing key stimuli to T cells. However, while migDCs are responsible for the generation of immunity following exposure to certain pathogens and vaccines, recent work has identified a tolerogenic role for migDCs in the steady state as well as during protein immunization. Here, we examine the roles and functions of skin DC populations in the generation of protective immunity, as well as their role as regulators of the immune system. PMID:26836327

  12. Induction of Indoleamine 2, 3-Dioxygenase in Human Dendritic Cells by a Cholera Toxin B Subunit—Proinsulin Vaccine

    PubMed Central

    Mbongue, Jacques C.; Nicholas, Dequina A.; Zhang, Kangling; Kim, Nan-Sun; Hamilton, Brittany N.; Larios, Marco; Zhang, Guangyu; Umezawa, Kazuo; Firek, Anthony F.; Langridge, William H. R.

    2015-01-01

    Dendritic cells (DC) interact with naïve T cells to regulate the delicate balance between immunity and tolerance required to maintain immunological homeostasis. In this study, immature human dendritic cells (iDC) were inoculated with a chimeric fusion protein vaccine containing the pancreatic β-cell auto-antigen proinsulin linked to a mucosal adjuvant the cholera toxin B subunit (CTB-INS). Proteomic analysis of vaccine inoculated DCs revealed strong up-regulation of the tryptophan catabolic enzyme indoleamine 2, 3-dioxygenase (IDO1). Increased biosynthesis of the immunosuppressive enzyme was detected in DCs inoculated with the CTB-INS fusion protein but not in DCs inoculated with proinsulin, CTB, or an unlinked combination of the two proteins. Immunoblot and PCR analyses of vaccine treated DCs detected IDO1mRNA by 3 hours and IDO1 protein synthesis by 6 hours after vaccine inoculation. Determination of IDO1 activity in vaccinated DCs by measurement of tryptophan degradation products (kynurenines) showed increased tryptophan cleavage into N-formyl kynurenine. Vaccination did not interfere with monocytes differentiation into DC, suggesting the vaccine can function safely in the human immune system. Treatment of vaccinated DCs with pharmacological NF-κB inhibitors ACHP or DHMEQ significantly inhibited IDO1 biosynthesis, suggesting a role for NF-κB signaling in vaccine up-regulation of dendritic cell IDO1. Heat map analysis of the proteomic data revealed an overall down-regulation of vaccinated DC functions, suggesting vaccine suppression of DC maturation. Together, our experimental data indicate that CTB-INS vaccine induction of IDO1 biosynthesis in human DCs may result in the inhibition of DC maturation generating a durable state of immunological tolerance. Understanding how CTB-INS modulates IDO1 activity in human DCs will facilitate vaccine efficacy and safety, moving this immunosuppressive strategy closer to clinical applications for prevention of type 1

  13. Tetanus toxoid and CCL3 improve dendritic cell vaccines in mice and glioblastoma patients.

    PubMed

    Mitchell, Duane A; Batich, Kristen A; Gunn, Michael D; Huang, Min-Nung; Sanchez-Perez, Luis; Nair, Smita K; Congdon, Kendra L; Reap, Elizabeth A; Archer, Gary E; Desjardins, Annick; Friedman, Allan H; Friedman, Henry S; Herndon, James E; Coan, April; McLendon, Roger E; Reardon, David A; Vredenburgh, James J; Bigner, Darell D; Sampson, John H

    2015-03-19

    After stimulation, dendritic cells (DCs) mature and migrate to draining lymph nodes to induce immune responses. As such, autologous DCs generated ex vivo have been pulsed with tumour antigens and injected back into patients as immunotherapy. While DC vaccines have shown limited promise in the treatment of patients with advanced cancers including glioblastoma, the factors dictating DC vaccine efficacy remain poorly understood. Here we show that pre-conditioning the vaccine site with a potent recall antigen such as tetanus/diphtheria (Td) toxoid can significantly improve the lymph node homing and efficacy of tumour-antigen-specific DCs. To assess the effect of vaccine site pre-conditioning in humans, we randomized patients with glioblastoma to pre-conditioning with either mature DCs or Td unilaterally before bilateral vaccination with DCs pulsed with Cytomegalovirus phosphoprotein 65 (pp65) RNA. We and other laboratories have shown that pp65 is expressed in more than 90% of glioblastoma specimens but not in surrounding normal brain, providing an unparalleled opportunity to subvert this viral protein as a tumour-specific target. Patients given Td had enhanced DC migration bilaterally and significantly improved survival. In mice, Td pre-conditioning also enhanced bilateral DC migration and suppressed tumour growth in a manner dependent on the chemokine CCL3. Our clinical studies and corroborating investigations in mice suggest that pre-conditioning with a potent recall antigen may represent a viable strategy to improve anti-tumour immunotherapy.

  14. Glioma Stem Cell-Targeted Dendritic Cells as a Tumor Vaccine Against Malignant Glioma

    PubMed Central

    Ji, Baowei; Liu, Baohui; Wu, Liquan; Tian, Daofeng; Guo, Zhentao; Yi, Wei

    2013-01-01

    Purpose Cancer stem cells have recently been thought to be closely related to tumor development and reoccurrence. It may be a promising way to cure malignant glioma by using glioma stem cell-targeted dendritic cells as a tumor vaccine. In this study, we explored whether pulsing dendritic cells with antigens of glioma stem cells was a potent way to induce specific cytotoxic T lymphocytes and anti-tumor immunity. Materials and Methods Cancer stem cells were cultured from glioma cell line U251. Lysate of glioma stem cells was obtained by the repeated freezing and thawing method. Dendritic cells (DCs) were induced and cultured from the murine bone marrow cells, the biological characteristics were detected by electron microscope and flow cytometry. The DC vaccine was obtained by mixing DCs with lysate of glioma stem cells. The DC vaccine was charactirizated through the mixed lymphocyte responses and cell killing experiment in vitro. Level of interferon-γ (IFN-γ) in the supernatant was checked by ELISA. Results After stimulation of lysate of glioma stem cell, expression of surface molecules of DC was up-regulated, including CD80, CD86, CD11C and MHC-II. DCs pulsed with lysate of glioma stem cells were more effective than the control group in stimulating original glioma cells-specific cytotoxic T lymphocytes responses, killing glioma cells and boosting the secretion of IFN-γ in vitro. Conclusion The results demonstrated DCs loaded with antigens derived from glioma stem cells can effectively stimulate naive T cells to form specific cytotoxic T cells, kill glioma cells cultured in vitro. PMID:23225804

  15. Live-Attenuated Measles Virus Vaccine Targets Dendritic Cells and Macrophages in Muscle of Nonhuman Primates

    PubMed Central

    Rennick, Linda J.; de Vries, Rory D.; Carsillo, Thomas J.; Lemon, Ken; van Amerongen, Geert; Ludlow, Martin; Nguyen, D. Tien; Yüksel, Selma; Verburgh, R. Joyce; Haddock, Paula; McQuaid, Stephen; de Swart, Rik L.

    2014-01-01

    ABSTRACT Although live-attenuated measles virus (MV) vaccines have been used successfully for over 50 years, the target cells that sustain virus replication in vivo are still unknown. We generated a reverse genetics system for the live-attenuated MV vaccine strain Edmonston-Zagreb (EZ), allowing recovery of recombinant (r)MVEZ. Three recombinant viruses were generated that contained the open reading frame encoding enhanced green fluorescent protein (EGFP) within an additional transcriptional unit (ATU) at various positions within the genome. rMVEZEGFP(1), rMVEZEGFP(3), and rMVEZEGFP(6) contained the ATU upstream of the N gene, following the P gene, and following the H gene, respectively. The viruses were compared in vitro by growth curves, which indicated that rMVEZEGFP(1) was overattenuated. Intratracheal infection of cynomolgus macaques with these recombinant viruses revealed differences in immunogenicity. rMVEZEGFP(1) and rMVEZEGFP(6) did not induce satisfactory serum antibody responses, whereas both in vitro and in vivo rMVEZEGFP(3) was functionally equivalent to the commercial MVEZ-containing vaccine. Intramuscular vaccination of macaques with rMVEZEGFP(3) resulted in the identification of EGFP+ cells in the muscle at days 3, 5, and 7 postvaccination. Phenotypic characterization of these cells demonstrated that muscle cells were not infected and that dendritic cells and macrophages were the predominant target cells of live-attenuated MV. IMPORTANCE Even though MV strain Edmonston-Zagreb has long been used as a live-attenuated vaccine (LAV) to protect against measles, nothing is known about the primary cells in which the virus replicates in vivo. This is vital information given the push to move toward needle-free routes of vaccination, since vaccine virus replication is essential for vaccination efficacy. We have generated a number of recombinant MV strains expressing enhanced green fluorescent protein. The virus that best mimicked the nonrecombinant vaccine

  16. Immunogenicity of DNA Vaccines Encoding Simian Immunodeficiency Virus Antigen Targeted to Dendritic Cells in Rhesus Macaques

    PubMed Central

    Nchinda, Godwin; Trumpfheller, Christine; Salazar, Andres M.; Töpfer, Katharina; Sauermann, Ulrike; Wagner, Ralf; Hannaman, Drew; Tenner-Racz, Klara; Racz, Paul; Stahl-Hennig, Christiane; Überla, Klaus

    2012-01-01

    Background Targeting antigens encoded by DNA vaccines to dendritic cells (DCs) in the presence of adjuvants enhances their immunogenicity and efficacy in mice. Methodology/Principal Findings To explore the immunogenicity of this approach in non-human primates, we generated a single chain antibody to the antigen uptake receptor DEC-205 expressed on rhesus macaque DCs. DNA vaccines encoding this single chain antibody fused to the SIV capsid protein were delivered to six monkeys each by either intramuscular electroporation or conventional intramuscular injection co-injected or not with poly ICLC, a stabilized poly I: C analogue, as adjuvant. Antibodies to capsid were induced by the DC-targeting and non-targeting control DNA delivered by electroporation while conventional DNA immunization at a 10-fold higher dose of DNA failed to induce detectable humoral immune responses. Substantial cellular immune responses were also observed after DNA electroporation of both DNAs, but stronger responses were induced by the non-targeting vaccine. Conventional immunization with the DC-targeting DNA at a 10-fold higher dose did not give rise to substantial cellular immune responses, neither when co-injected with poly ICLC. Conclusions/Significance The study confirms the potent immunogenicity of DNA vaccines delivered by electroporation. Targeting the DNA via a single chain antibody to DEC-205 expressed by DCs, however, does not improve the immunogenicity of the antigens in non-human primates. PMID:22720025

  17. Heat-shock proteins as dendritic cell-targeting vaccines – getting warmer

    PubMed Central

    McNulty, Shaun; Colaco, Camilo A; Blandford, Lucy E; Bailey, Christopher R; Baschieri, Selene; Todryk, Stephen

    2013-01-01

    Heat-shock proteins (hsp) provide a natural link between innate and adaptive immune responses by combining the ideal properties of antigen carriage (chaperoning), targeting and activation of antigen-presenting cells (APC), including dendritic cells (DC). Targeting is achieved through binding of hsp to distinct cell surface receptors and is followed by antigen internalization, processing and presentation. An improved understanding of the interaction of hsp with DC has driven the development of numerous hsp-containing vaccines, designed to deliver antigens directly to DC. Studies in mice have shown that for cancers, such vaccines generate impressive immune responses and protection from tumour challenge. However, translation to human use, as for many experimental immunotherapies, has been slow partly because of the need to perform trials in patients with advanced cancers, where demonstration of efficacy is challenging. Recently, the properties of hsp have been used for development of prophylactic vaccines against infectious diseases including tuberculosis and meningitis. These hsp-based vaccines, in the form of pathogen-derived hsp–antigen complexes, or recombinant hsp combined with selected antigens in vitro, offer an innovative approach against challenging diseases where broad antigen coverage is critical. PMID:23551234

  18. Dendritic cell vaccines: A review of recent developments and their potential pediatric application.

    PubMed

    Elster, Jennifer D; Krishnadas, Deepa K; Lucas, Kenneth G

    2016-09-01

    For many cancers the use of conventional chemotherapy has been maximized, and further intensification of chemotherapy generally results in excess toxicity with little long-term benefit for cure. Many tumors become resistant to chemotherapy, making the investigation of novel approaches such as immunotherapy of interest. Because the tumor microenvironment is known to promote immune tolerance and down regulate the body's natural defense mechanisms, modulating the immune system with the use of dendritic cell (DC) therapy is an attractive approach. Thousands of patients with diverse tumor types have been treated with DC vaccines. While antigen specific immune responses have been reported, the duration and magnitude of these responses are typically weak, and objective clinical responses have been limited. DC vaccine generation and administration is a multi-step process with opportunities for improvement in source of DC for vaccine, selection of target antigen, and boosting effector cell response via administration of vaccine adjuvant or concomitant pharmacologic immunomodulation. In this review we will discuss recent developments in each of these areas and highlight elements that could be moved into pediatric clinical trials.

  19. Favorable overall survival in stage III melanoma patients after adjuvant dendritic cell vaccination

    PubMed Central

    Bol, Kalijn F; Aarntzen, Erik H J G; Hout, Florentien E M in 't; Schreibelt, Gerty; Creemers, Jeroen H A; Lesterhuis, W Joost; Gerritsen, Winald R; Grunhagen, Dirk J; Verhoef, Cornelis; Punt, Cornelis J A; Bonenkamp, Johannes J; de Wilt, Johannes H W; Figdor, Carl G; de Vries, I Jolanda M

    2016-01-01

    Melanoma patients with regional metastatic disease are at high risk for recurrence and metastatic disease, despite radical lymph node dissection (RLND). We investigated the immunologic response and clinical outcome to adjuvant dendritic cell (DC) vaccination in melanoma patients with regional metastatic disease who underwent RLND with curative intent. In this retrospective study, 78 melanoma patients with regional lymph node metastasis who underwent RLND received autologous DCs loaded with gp100 and tyrosinase and were analyzed for functional tumor-specific T cell responses in skin-test infiltrating lymphocytes. The study shows that adjuvant DC vaccination in melanoma patients with regional lymph node metastasis is safe and induced functional tumor-specific T cell responses in 71% of the patients. The presence of functional tumor-specific T cells was correlated with a better 2-year overall survival (OS) rate. OS was significantly higher after adjuvant DC vaccination compared to 209 matched controls who underwent RLND without adjuvant DC vaccination, 63.6 mo vs. 31.0 mo (p = 0.018; hazard ratio 0.59; 95%CI 0.42–0.84). Five-year survival rate increased from 38% to 53% (p < 0.01). In summary, in melanoma patients with regional metastatic disease, who are at high risk for recurrence and metastatic disease after RLND, adjuvant DC vaccination is well tolerated. It induced functional tumor-specific immune responses in the majority of patients and these were related to clinical outcome. OS was significantly higher compared to matched controls. A randomized clinical trial is needed to prospectively validate the efficacy of DC vaccination in the adjuvant setting. PMID:26942068

  20. Vaccination of melanoma patients using dendritic cells loaded with an allogeneic tumor cell lysate.

    PubMed

    Salcedo, Margarita; Bercovici, Nadège; Taylor, Rachel; Vereecken, Pierre; Massicard, Séverine; Duriau, Dominique; Vernel-Pauillac, Frédérique; Boyer, Aurélie; Baron-Bodo, Véronique; Mallard, Eric; Bartholeyns, Jacques; Goxe, Béatrice; Latour, Nathalie; Leroy, Sophie; Prigent, Didier; Martiat, Philippe; Sales, François; Laporte, Marianne; Bruyns, Catherine; Romet-Lemonne, Jean-Loup; Abastado, Jean-Pierre; Lehmann, Frédéric; Velu, Thierry

    2006-07-01

    The aim of the present phase I/II study was to evaluate the safety, immune responses and clinical activity of a vaccine based on autologous dendritic cells (DC) loaded with an allogeneic tumor cell lysate in advanced melanoma patients. DC derived from monocytes were generated in serum-free medium containing GM-CSF and IL-13 according to Good Manufacturing Practices. Fifteen patients with metastatic melanoma (stage III or IV) received four subcutaneous, intradermal, and intranodal vaccinations of both DC loaded with tumor cell lysate and DC loaded with hepatitis B surface protein (HBs) and/or tetanus toxoid (TT). No grade 3 or 4 adverse events related to the vaccination were observed. Enhanced immunity to the allogeneic tumor cell lysate and to TAA-derived peptides were documented, as well as immune responses to HBs/TT antigens. Four out of nine patients who received the full treatment survived for more than 20 months. Two patients showed signs of clinical response and received 3 additional doses of vaccine: one patient showed regression of in-transit metastases leading to complete remission. Eighteen months later, the patient was still free of disease. The second patient experienced stabilization of lung metastases for approximately 10 months. Overall, our results show that vaccination with DC loaded with an allogeneic melanoma cell lysate was feasible in large-scale and well-tolerated in this group of advanced melanoma patients. Immune responses to tumor-related antigens documented in some treated patients support further investigations to optimize the vaccine formulation.

  1. Progress on the development of human in vitro dendritic cell based assays for assessment of the sensitizing potential of a compound

    SciTech Connect

    Galvao dos Santos, G.; Reinders, J.; Ouwehand, K.; Rustemeyer, T.; Scheper, R.J.; Gibbs, S.

    2009-05-01

    Allergic contact dermatitis is the result of an adaptive immune response of the skin to direct exposure to an allergen. Since many chemicals are also allergens, European regulations require strict screening of all ingredients in consumer products. Until recently, identifying a potential allergen has completely relied on animal testing (e.g.: Local Lymph Node Assay). In addition to the ethical problems, both the 7th Amendment to the Cosmetics Directive and REACH have stimulated the development of alternative tests for the assessment of potential sensitizers. This review is aimed at summarising the progress on cell based assays, in particular dendritic cell based assays, being developed as animal alternatives. Primary cells (CD34{sup +} derived dendritic cells, monocyte derived dendritic cells) as well as dendritic cell-like cell lines (THP-1, U-937, MUTZ-3, KG-1, HL-60, and K562) are extensively described along with biomarkers such as cell surface markers, cytokines, chemokines and kinases. From this review, it can be concluded that no single cell based assay nor single marker is yet able to distinguish all sensitizers from non-sensitizers in a test panel of chemicals, nor is it possible to rank the sensitizing potential of the test chemicals. This suggests that sensitivity and specificity may be increased by a tiered assay approach. Only a limited number of genomic and proteomic studies have been completed until now. Such studies have the potential to identify novel biomarkers for inclusion in future assay development. Although progress is promising, this review suggests that it may be difficult to meet the up and coming European regulatory deadlines.

  2. Commonly used prophylactic vaccines as an alternative for synthetically produced TLR ligands to mature monocyte-derived dendritic cells.

    PubMed

    Schreibelt, Gerty; Benitez-Ribas, Daniel; Schuurhuis, Danita; Lambeck, Annechien J A; van Hout-Kuijer, Maaike; Schaft, Niels; Punt, Cornelis J A; Figdor, Carl G; Adema, Gosse J; de Vries, I Jolanda M

    2010-07-29

    Currently dendritic cell (DC)-based vaccines are explored in clinical trials, predominantly in cancer patients. Murine studies showed that only maturation with Toll-like receptor (TLR) ligands generates mature DCs that produce interleukin-12 and promote optimal T-cell help. Unfortunately, the limited availability of clinical-grade TLR ligands significantly hampers the translation of these findings into DC-based vaccines. Therefore, we explored 15 commonly used preventive vaccines as a possible source of TLR ligands. We have identified a cocktail of the vaccines BCG-SSI, Influvac, and Typhim that contains TLR ligands and is capable of optimally maturing DCs. These DCs (vaccine DCs) showed high expression of CD80, CD86, and CD83 and secreted interleukin-12. Although vaccine DCs exhibited an impaired migratory capacity, this could be restored by addition of prostaglandin E(2) (PGE(2); vaccine PGE(2) DCs). Vaccine PGE(2) DCs are potent inducers of T-cell proliferation and induce Th1 polarization. In addition, vaccine PGE(2) DCs are potent inducers of tumor antigen-specific CD8(+) effector T cells. Finally, vaccine PGE(2)-induced DC maturation is compatible with different antigen-loading strategies, including RNA electroporation. These data thus identify a new clinical application for a mixture of commonly used preventive vaccines in the generation of Th1-inducing clinical-grade mature DCs.

  3. Exploiting the Immunogenic Potential of Cancer Cells for Improved Dendritic Cell Vaccines

    PubMed Central

    Vandenberk, Lien; Belmans, Jochen; Van Woensel, Matthias; Riva, Matteo; Van Gool, Stefaan W.

    2016-01-01

    Cancer immunotherapy is currently the hottest topic in the oncology field, owing predominantly to the discovery of immune checkpoint blockers. These promising antibodies and their attractive combinatorial features have initiated the revival of other effective immunotherapies, such as dendritic cell (DC) vaccinations. Although DC-based immunotherapy can induce objective clinical and immunological responses in several tumor types, the immunogenic potential of this monotherapy is still considered suboptimal. Hence, focus should be directed on potentiating its immunogenicity by making step-by-step protocol innovations to obtain next-generation Th1-driving DC vaccines. We review some of the latest developments in the DC vaccination field, with a special emphasis on strategies that are applied to obtain a highly immunogenic tumor cell cargo to load and to activate the DCs. To this end, we discuss the effects of three immunogenic treatment modalities (ultraviolet light, oxidizing treatments, and heat shock) and five potent inducers of immunogenic cell death [radiotherapy, shikonin, high-hydrostatic pressure, oncolytic viruses, and (hypericin-based) photodynamic therapy] on DC biology and their application in DC-based immunotherapy in preclinical as well as clinical settings. PMID:26834740

  4. Vaccination with Leishmania histone H1-pulsed dendritic cells confers protection in murine visceral leishmaniasis.

    PubMed

    Agallou, Maria; Smirlis, Despina; Soteriadou, Ketty P; Karagouni, Evdokia

    2012-07-20

    Visceral leishmaniasis is the most severe form of leishmaniases affecting millions of people worldwide often resulting in death despite optimal therapy. Thus, there is an urgent need for the development of effective anti-infective vaccine(s). In the present study, we evaluated the prophylactic value of bone marrow-derived dendritic cells (BM-DCs) pulsed with the Leishmania (L.) infantum histone H1. We developed fully mature BM-DCs characterized by enhanced capacity of IL-12 production after ex vivo pulsing with GST-LeishH1. Intravenous administration of these BM-DCs in naive BALB/c mice resulted in antigen-specific spleenocyte proliferation and IgG1 isotype antibody production and conferred protection against experimental challenge with L. infantum independently of CpG oligonucleotides (ODNs) co-administration. Protection was associated with a pronounced enhancement of parasite-specific IFNγ-producing cells and reduction of cells producing IL-10, whereas IL-4 production was comparable in protected and non-protected mice. The polarization of immune responses to Th1 type was further confirmed by the elevation of parasite-specific IgG2a/IgG1 ratio in protected mice. The above data indicate the immunostimulatory capacity of Leishmania histone H1 and further support its exploitation as a candidate protein for vaccine development against leishmaniasis.

  5. Polypropylene Sulfide Nanoparticle p24 Vaccine Promotes Dendritic Cell-Mediated Specific Immune Responses against HIV-1.

    PubMed

    Caucheteux, Stephan M; Mitchell, John P; Ivory, Matthew O; Hirosue, Sachiko; Hakobyan, Svetlana; Dolton, Garry; Ladell, Kristin; Miners, Kelly; Price, David A; Kan-Mitchell, June; Sewell, Andrew K; Nestle, Frank; Moris, Arnaud; Karoo, Richard O; Birchall, James C; Swartz, Melody A; Hubbel, Jeffrey A; Blanchet, Fabien P; Piguet, Vincent

    2016-06-01

    Delivery of vaccine formulations into the dermis using antigen-coated microneedle patches is a promising and safe approach because of efficient antigen delivery and safety. We evaluated an intradermal vaccine using HIV-1 p24 Gag peptide-conjugated polypropylene sulfide nanoparticles to induce immunity against HIV-1. This peptide-conjugated polypropylene sulfide nanoparticle formulation did not accelerate the maturation of blood- or skin-derived subsets of dendritic cells, either generated in vitro or purified ex vivo, despite efficient uptake in the absence of adjuvant. Moreover, dendritic cell-mediated capture of particulate antigen in this form induced potent HIV-1-specific CD4(+) T-cell responses, as well as B-cell-mediated antibody production. Nanoparticle-based intradermal antigen delivery may therefore provide a new option in the global effort to develop an effective vaccine against HIV-1. PMID:26896775

  6. A high-throughput microparticle microarray platform for dendritic cell-targeting vaccines.

    PubMed

    Acharya, Abhinav P; Clare-Salzler, Michael J; Keselowsky, Benjamin G

    2009-09-01

    Immunogenomic approaches combined with advances in adjuvant immunology are guiding progress toward rational design of vaccines. Furthermore, drug delivery platforms (e.g., synthetic particles) are demonstrating promise for increasing vaccine efficacy. Currently there are scores of known antigenic epitopes and adjuvants, and numerous synthetic delivery systems accessible for formulation of vaccines for various applications. However, the lack of an efficient means to test immune cell responses to the abundant combinations available represents a significant blockade on the development of new vaccines. In order to overcome this barrier, we report fabrication of a new class of microarray consisting of antigen/adjuvant-loadable poly(D,L lactide-co-glycolide) microparticles (PLGA MPs), identified as a promising carrier for immunotherapeutics, which are co-localized with dendritic cells (DCs), key regulators of the immune system and prime targets for vaccines. The intention is to utilize this high-throughput platform to optimize particle-based vaccines designed to target DCs in vivo for immune system-related disorders, such as autoimmune diseases, cancer and infection. Fabrication of DC/MP arrays leverages the use of standard contact printing miniarraying equipment in conjunction with surface modification to achieve co-localization of particles/cells on isolated islands while providing background non-adhesive surfaces to prevent off-island cell migration. We optimized MP overspotting pin diameter, accounting for alignment error, to allow construction of large, high-fidelity arrays. Reproducible, quantitative delivery of as few as 16+/-2 MPs per spot was demonstrated and two-component MP dosing arrays were constructed, achieving MP delivery which was independent of formulation, with minimal cross-contamination. Furthermore, quantification of spotted, surface-adsorbed MP degradation was demonstrated, potentially useful for optimizing MP release properties. Finally, we

  7. Immune Monitoring Using mRNA-Transfected Dendritic Cells.

    PubMed

    Borch, Troels Holz; Svane, Inge Marie; Met, Özcan

    2016-01-01

    Dendritic cells are known to be the most potent antigen presenting cell in the immune system and are used as cellular adjuvants in therapeutic anticancer vaccines using various tumor-associated antigens or their derivatives. One way of loading antigen into the dendritic cells is by mRNA electroporation, ensuring presentation of antigen through major histocompatibility complex I and potentially activating T cells, enabling them to kill the tumor cells. Despite extensive research in the field, only one dendritic cell-based vaccine has been approved. There is therefore a great need to elucidate and understand the immunological impact of dendritic cell vaccination in order to improve clinical benefit. In this chapter, we describe a method for performing immune monitoring using peripheral blood mononuclear cells and autologous dendritic cells transfected with tumor-associated antigen-encoding mRNA. PMID:27236804

  8. Intranodal vaccination with mRNA-optimized dendritic cells in metastatic melanoma patients

    PubMed Central

    Bol, Kalijn F; Figdor, Carl G; Aarntzen, Erik HJG; Welzen, Marieke EB; van Rossum, Michelle M; Blokx, Willeke AM; van de Rakt, Mandy WMM; Scharenborg, Nicole M; de Boer, Annemiek J; Pots, Jeanette M; olde Nordkamp, Michel AM; van Oorschot, Tom GM; Mus, Roel DM; Croockewit, Sandra AJ; Jacobs, Joannes FM; Schuler, Gerold; Neyns, Bart; Austyn, Jonathan M; Punt, Cornelis JA; Schreibelt, Gerty; de Vries, I Jolanda M

    2015-01-01

    Autologous dendritic cell (DC) therapy is an experimental cellular immunotherapy that is safe and immunogenic in patients with advanced melanoma. In an attempt to further improve the therapeutic responses, we treated 15 patients with melanoma, with autologous monocyte-derived immature DC electroporated with mRNA encoding CD40 ligand (CD40L), CD70 and a constitutively active TLR4 (caTLR4) together with mRNA encoding a tumor-associated antigen (TAA; respectively gp100 or tyrosinase). In addition, DC were pulsed with keyhole limpet hemocyanin (KLH) that served as a control antigen. Production of this DC vaccine with high cellular viability, high expression of co-stimulatory molecules and MHC class I and II and production of IL-12p70, was feasible in all patients. A vaccination cycle consisting of three vaccinations with up to 15×106 DC per vaccination at a biweekly interval, was repeated after 6 and 12 months in the absence of disease progression. mRNA-optimized DC were injected intranodally, because of low CCR7 expression on the DC, and induced de novo immune responses against control antigen. T cell responses against tyrosinase were detected in the skin-test infiltrating lymphocytes (SKIL) of two patients. One mixed tumor response and two durable tumor stabilizations were observed among 8 patients with evaluable disease at baseline. In conclusion, autologous mRNA-optimized DC can be safely administered intranodally to patients with metastatic melanoma but showed limited immunological responses against tyrosinase and gp100. PMID:26405571

  9. Optimization of natural killer T cell-mediated immunotherapy in cancer using cell-based and nanovector vaccines.

    PubMed

    Faveeuw, C; Trottein, F

    2014-03-15

    α-Galactosylceramide (α-GalCer) represents a new class of immune stimulators and vaccine adjuvants that activate type I natural killer T (NKT) cells to swiftly release cytokines and to exert helper functions for acquired immune responses. This unique property prompted clinicians to exploit the antitumor potential of NKT cells. Here, we review the effects of α-GalCer in (pre)clinics and discuss current and future strategies that aim to optimize NKT cell-mediated antitumor therapy, with a particular focus on cell-based and nanovector vaccines.

  10. The attenuated hepatocellular carcinoma-specific Listeria vaccine Lmdd-MPFG prevents tumor occurrence through immune regulation of dendritic cells.

    PubMed

    Wan, Xin; Cheng, Ci; Lin, Zhe; Jiang, Runqiu; Zhao, Wei; Yan, Xin; Tang, Junwei; Yao, Kun; Sun, Beicheng; Chen, Yun

    2015-04-20

    Immunotherapy is a promising treatment for liver cancer. Here, we tested the ability of the attenuated hepatocellular carcinoma-specific Listeria vaccine (Lmdd-MPFG) to treat hepatocellular carcinoma (HCC) in a mouse model. Immunization with the vaccine caused a strong anti-tumor response, especially in mice reinfused with dendritic cells (DCs). In mice that were also administered DCs, tumor suppression was accompanied by the strongest cytotoxic T lymphocyte response of all treatment groups and by induced differentiation of CD4+ T cells, especially Th17 cells. Additionally, the Lmdd-MPFG vaccine caused maturation of DCs in vitro. We demonstrated the synergistic effect of TLR4 and NLRP3 or NOD1 signaling pathways in LM-induced DC activation. These results suggest that the Lmdd-MPFG vaccine is a feasible strategy for preventing HCC. PMID:25826093

  11. The impact of dendritic cell-tumor fusion cells on cancer vaccines - past progress and future strategies.

    PubMed

    Kajihara, Mikio; Takakura, Kazuki; Ohkusa, Toshifumi; Koido, Shigeo

    2015-01-01

    Dendritic cells (DCs) are potent antigen-presenting cells that can be used in cancer vaccines. Thus, various strategies have been developed to deliver tumor-associated antigens via DCs. One strategy includes administering DC-tumor fusion cells (DC-tumor FCs) to induce antitumor immune responses in cancer patients. However, clinical trials using this strategy have fallen short of expectations. Several factors might limit the efficacy of these anticancer vaccines. To induce efficient antitumor immune responses and enhance potential clinical benefits, DC-tumor FC-based cancer vaccines require manipulations that improve immunogenicity for both DCs and whole tumor cells. This review addresses recent progress in improving clinical outcomes using DC-tumor FC-based cancer vaccines. PMID:26507578

  12. Cancer immunotherapy. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells.

    PubMed

    Carreno, Beatriz M; Magrini, Vincent; Becker-Hapak, Michelle; Kaabinejadian, Saghar; Hundal, Jasreet; Petti, Allegra A; Ly, Amy; Lie, Wen-Rong; Hildebrand, William H; Mardis, Elaine R; Linette, Gerald P

    2015-05-15

    T cell immunity directed against tumor-encoded amino acid substitutions occurs in some melanoma patients. This implicates missense mutations as a source of patient-specific neoantigens. However, a systematic evaluation of these putative neoantigens as targets of antitumor immunity is lacking. Moreover, it remains unknown whether vaccination can augment such responses. We found that a dendritic cell vaccine led to an increase in naturally occurring neoantigen-specific immunity and revealed previously undetected human leukocyte antigen (HLA) class I-restricted neoantigens in patients with advanced melanoma. The presentation of neoantigens by HLA-A*02:01 in human melanoma was confirmed by mass spectrometry. Vaccination promoted a diverse neoantigen-specific T cell receptor (TCR) repertoire in terms of both TCR-β usage and clonal composition. Our results demonstrate that vaccination directed at tumor-encoded amino acid substitutions broadens the antigenic breadth and clonal diversity of antitumor immunity.

  13. Antitumor effects of a xenogeneic survivin bone marrow derived dendritic cell vaccine against murine GL261 gliomas.

    PubMed

    Ciesielski, Michael J; Apfel, Lisa; Barone, Tara A; Castro, Carla A; Weiss, Tina C; Fenstermaker, Robert A

    2006-12-01

    Survivin is a member of the inhibitor of apoptosis protein family. Gliomas and many other tumors express survivin at high levels; whereas, normal fully differentiated cells generally do not. Therefore, survivin represents a tumor-specific target for cancer vaccine therapy. It has been shown that it is possible to produce a MHC-I-restricted cellular immunologic response to survivin vaccines. To study differences in immunogenicity between murine and human survivin proteins, we vaccinated C57BL/6 mice with bone marrow dendritic cells (BMDC) transfected with expression vectors containing the murine and human survivin genes. Mice vaccinated with BMDCs expressing a truncated human survivin protein developed cytotoxic T lymphocyte to subcutaneous GL261 glioma cells and exhibited prolonged tumor-free survival compared to mice vaccinated with BMDCs transfected with vector alone (P<0.01). While mice challenged with intracerebral GL261 cells had increased survival, no cures were observed. In contrast, vaccinated mice that fully resisted subcutaneous tumor challenge were rendered resistant to intracerebral GL261 re-challenge. BMDCs transfected with the full-length human survivin molecule were significantly more effective at prolonging survival than BMDCs expressing the full-length murine survivin gene (P=0.0175). Therefore, xenogeneic differences between human and murine sequences might be exploited to develop more immunogenic tumor vaccines.

  14. A novel adjuvant Ling Zhi-8 enhances the efficacy of DNA cancer vaccine by activating dendritic cells.

    PubMed

    Lin, Chi-Chen; Yu, Yen-Ling; Shih, Chia-Chiao; Liu, Ko-Jiunn; Ou, Keng-Liang; Hong, Ling-Zong; Chen, Jody D C; Chu, Ching-Liang

    2011-07-01

    DNA vaccine has been suggested to use in cancer therapy, but the efficacy remains to be improved. The immunostimulatory effect of a fungal immunomodulatory protein Ling Zhi-8 (LZ-8) isolated from Ganoderma lucidum has been reported. In this study, we tested the adjuvanticity of LZ-8 for HER-2/neu DNA vaccine against p185(neu) expressing tumor MBT-2 in mice. We found that recombinant LZ-8 stimulated mouse bone marrow-derived dendritic cells (DCs) via TLR4 and its stimulatory effect was not due to any microbe contaminant. In addition, LZ-8 enhanced the ability of DCs to induce antigen-specific T cell activation in vitro and in a subunit vaccine model in vivo. Surprisingly, LZ-8 cotreatment strongly improved the therapeutic effect of DNA vaccine against MBT-2 tumor in mice. This increase in antitumor activity was attributed to the enhancement of vaccine-induced Th1 and CTL responses. Consistent with the results from DCs, the promoting effect of LZ-8 on DNA vaccine was diminished when the MBT-2 tumor cells were grown in TLR4 mutant mice. Thus, we concluded that LZ-8 may be a promising adjuvant to enhance the efficacy of DNA vaccine by activating DCs via TLR4. PMID:21499904

  15. Exceptional antineoplastic activity of a dendritic-cell-targeted vaccine loaded with a Listeria peptide proposed against metastatic melanoma

    PubMed Central

    Calderon-Gonzalez, Ricardo; Bronchalo-Vicente, Lucia; Freire, Javier; Frande-Cabanes, Elisabet; Alaez-Alvarez, Lidia; Gomez-Roman, Javier; Yañez-Diaz, Sonsóles; Alvarez-Dominguez, Carmen

    2016-01-01

    Vaccination with dendritic cells (DCs) is proposed to induce lasting responses against melanoma but its survival benefit in patients needs to be demonstrated. We propose a DC-targeted vaccine loaded with a Listeria peptide with exceptional anti-tumour activity to prevent metastasis of melanoma. Mice vaccinated with vaccines based on DCs loaded with listeriolysin O peptide (91–99) (LLO91–99) showed clear reduction of metastatic B16OVA melanoma size and adhesion, prevention of lung metastasis, enhanced survival, and reversion of immune tolerance. Robust innate and specific immune responses explained the efficiency of DC-LLO91–99 vaccines against B16OVA melanoma. The noTable features of this vaccine related to melanoma reduction were: expansion of immune-dominant LLO91–99-specific CD8 T cells that helped to expand melanoma-specific CD8+ T cells; high numbers of tumour-infiltrating lymphocytes with a cytotoxic phenotype; and a decrease in CD4+CD25high regulatory T cells. This vaccine might be a useful alternative treatment for advanced melanoma, alone or in combination with other therapies. PMID:26942874

  16. Myeloid-derived suppressor cells impair the quality of dendritic cell vaccines.

    PubMed

    Poschke, I; Mao, Y; Adamson, L; Salazar-Onfray, F; Masucci, G; Kiessling, R

    2012-06-01

    Myeloid-derived suppressor cells (MDSC) are important regulators of the immune system and key players in tumor-induced suppression of T-cell responses. CD14+HLA-DR-/low MDSC have been detected in a great number of malignancies, including melanoma. MDSC are known to be impaired in their ability to differentiate along the myeloid lineage, e.g., into dendritic cells (DC). This is a concern for utilization of monocyte-derived DC for vaccination of patients with melanoma or other cancers exhibiting accumulation of CD14+ MDSC. When producing DC according to standard operating procedures of two currently ongoing clinical trials, we found that MDSC co-purified with monocytes isolated by elutriation. MDSC frequencies did not affect yield or viability of the produced DC, but induced a dose-dependent decrease in DC maturation, ability to take up antigen, migrate and induce T-cell IFNγ production. Changes in DC characteristics were most notable when 'pathological' frequencies of >50% CD14+HLA-DR- cells were present in the starting culture. The impaired DC quality could not be explained by altered cytokine production or increased oxidative stress in the cultures. Tracking of HLA-DR- cells throughout the culture period revealed that the observed changes were partially due to the impaired maturation and functionality of the originally HLA-DR- population, but also to their negative effects on HLA-DR+ cells. In conclusion, MDSC could be induced to differentiate into DC but, due to the impairment of overall DC vaccine quality when >50% HLA-DR- cells were present in the starting culture, their removal could be advisable.

  17. Therapeutic effect of autologous dendritic cell vaccine on patients with chronic hepatitis B: A clinical study

    PubMed Central

    Chen, Min; Li, Yong-Guo; Zhang, Da-Zhi; Wang, Zhi-Yi; Zeng, Wei-Qun; Shi, Xiao-Feng; Guo, Yuan; Guo, Shu-Hua; Ren, Hong

    2005-01-01

    AIM: To investigate the therapeutic effect of autologous HBsAg-loaded dendritic cells (DCs) on patients with chronic hepatitis B. METHODS: Monocytes were isolated from fresh peripheral blood of 19 chronic HBV-infected patients by Ficoll-Hypaque density gradient centrifugation and cultured by plastic-adherence methods. DCs were induced and proliferated in the culture medium with recombinant human granulocyte-macrophage-colony- stimulating factor (rhGM-CSF) and human interleukin-4 (rhIL-4). DCs pulsed with HBsAg for twelve hours were injected into patients subcutaneously twice at intervals of two weeks. Two patients received 100 mg oral lamivudine daily for 12 mo at the same time. HBV-DNA and viral markers in sera of patients were tested every two months. RESULTS: By the end of 2003, 11 of 19 (57.9%) patients had a clinical response to DC-treatment. HBeAg of 10 (52.6%) patients became negative, and the copies of HBV-DNA decreased 101.77±2.39 averagely (t = 3.13, P<0.01).Two cases co-treated with DCs and lamivudine had a complete clinical response. There were no significant differences in the efficient rate between the cases with ALT level lower than 2×ULN and those with ALT level higher than 2×ULN before treatment (χ2 = 0.0026). CONCLUSION: Autologous DC-vaccine induced in vitro can effectively suppress HBV replication, reduce the virus load in sera, eliminate HBeAg and promote HBeAg/anti-HBe transformation. Not only the patients with high serum ALT levels but also those with normal ALT levels can respond to DC vaccine treatment, and the treatment combining DCs with lamivudine can eliminate viruses more effectively. PMID:15793869

  18. Therapeutic vaccine generated by electrofusion of dendritic cells and tumour cells.

    PubMed

    Kuriyama, H; Shimizu, K; Lee, W; Kjaergaard, J; Parkhurst, M R; Cohen, P A; Shu, S

    2004-01-01

    Immunotherapy with fusion of dendritic cells (DCs) and tumour cells potentially confers the advantages of DC antigen-presenting functionality and a continuous source of unaltered tumour antigens. However, fusion using chemical or viral fusogens has been inefficient. We have recently developed a high throughput electrofusion technique with which very efficient fusion rates (15-54%) were observed in over 300 experiments, using a variety of murine and human tumour cell lines. The fused cells display a mature DC phenotype and express tumour-associated antigens. In two pre-clinical animal models (B16 melanoma transduced with the LacZ gene and the MCA 205 fibrosarcoma), a single vaccination of mice bearing tumours established in the lung, brain and skin resulted in tumour regression and prolongation of life. However, therapeutic efficacy required the administration of adjuvants such as IL-12 and OX-40R mAbs. Effective immunotherapy also required the delivery of fusion cells directly into lymphoid organs (spleen or lymph nodes). Using five defined human T cell lines derived from melanoma patients, allogeneic DCs of HLA-A2, HLA-DR4 and HLA-DR7 haplotypes fused with MART-1, gp100, tyrosinase and TRP-2 expressing 888 mel melanoma cells were analysed for their ability to stimulate specific cytokine (IFN-gamma and GM-CSF) secretion. DC-888 mel hybrids presented all tumour-associated epitopes to both CD4 and CD8 T cell lines in the context of MHC class II and I molecules, respectively. The therapeutic efficacy of a DC-tumour fusion vaccine is now being evaluated for the treatment of metastatic melanoma. PMID:15603192

  19. Dendritic cell preactivation impairs MHC class II presentation of vaccines and endogenous viral antigens

    PubMed Central

    Young, Louise J.; Wilson, Nicholas S.; Schnorrer, Petra; Mount, Adele; Lundie, Rachel J.; La Gruta, Nicole L.; Crabb, Brendan S.; Belz, Gabrielle T.; Heath, William R.; Villadangos, Jose A.

    2007-01-01

    When dendritic cells (DCs) encounter signals associated with infection or inflammation, they become activated and undergo maturation. Mature DCs are very efficient at presenting antigens captured in association with their activating signal but fail to present subsequently encountered antigens, at least in vitro. Such impairment of MHC class II (MHC II) antigen presentation has generally been thought to be a consequence of down-regulation of endocytosis, so it might be expected that antigens synthesized by the DCs themselves (for instance, viral antigens) would still be presented by mature DCs. Here, we show that DCs matured in vivo could still capture and process soluble antigens, but were unable to present peptides derived from these antigens. Furthermore, presentation of viral antigens synthesized by the DCs themselves was also severely impaired. Indeed, i.v. injection of pathogen mimics, which caused systemic DC activation in vivo, impaired the induction of CD4 T cell responses against subsequently encountered protein antigens. This immunosuppressed state could be reversed by adoptive transfer of DCs loaded exogenously with antigens, demonstrating that impairment of CD4 T cell responses was due to lack of antigen presentation rather than to overt suppression of T cell activation. The biochemical mechanism underlying this phenomenon was the down-regulation of MHC II–peptide complex formation that accompanied DC maturation. These observations have important implications for the design of prophylactic and therapeutic DC vaccines and contribute to the understanding of the mechanisms causing immunosuppression during systemic blood infections. PMID:17978177

  20. Antitumor efficacy of argon-helium cryoablation-generated dendritic cell vaccine in glioma.

    PubMed

    Yin, Zhilin; Lu, Guohui; Xiao, Zhenyong; Liu, Tianzhu; He, Xiaozheng; Wang, Qifu; Lin, Chunnan; Zhang, Shizhong

    2014-03-01

    Dendritic cells (DCs) are potent antigen-presenting cells that play a critical role in priming tumor immune responses. We investigated the mechanisms of antitumor efficacy of DCs pulsed with argon-helium-cryotreated glioma cells. There was significant upregulation of maturation markers (CD80, CD86, MHC-I, and MHC-II) in argon-helium freeze-thawed lysate-pulsed DCs. The concentration of interleukin-6 (IL-6), IL-1β, tumor necrosis factor-α, and IL-12 secreted by lysate-pulsed DCs was increased. The concentration of interferon-γ secreted by T cells stimulated by lysate-pulsed DCs was increased. The cytotoxicity assay showed that T cells stimulated by lysate-pulsed DCs could kill glioma cells significantly more effectively. Our results suggest that argon-helium freeze-thawed lysate-pulsed DCs in vitro can promote DC maturation and enhance DC antigen-presenting function, and induce cytotoxic T lymphocytes to kill tumor cells. Therefore, the combination of argon-helium cryoablation and DC vaccine may represent a novel treatment method for glioma.

  1. Trans-nodal migration of resident dendritic cells into medullary interfollicular regions initiates immunity to influenza vaccine

    PubMed Central

    Woodruff, Matthew C.; Heesters, Balthasar A.; Herndon, Caroline N.; Groom, Joanna R.; Thomas, Paul G.; Luster, Andrew D.; Turley, Shannon J.

    2014-01-01

    Dendritic cells (DCs) are well established as potent antigen-presenting cells critical to adaptive immunity. In vaccination approaches, appropriately stimulating lymph node–resident DCs (LNDCs) is highly relevant to effective immunization. Although LNDCs have been implicated in immune response, their ability to directly drive effective immunity to lymph-borne antigen remains unclear. Using an inactive influenza vaccine model and whole node imaging approaches, we observed surprising responsiveness of LNDC populations to vaccine arrival resulting in a transnodal repositioning into specific antigen collection sites within minutes after immunization. Once there, LNDCs acquired viral antigen and initiated activation of viral specific CD4+ T cells, resulting in germinal center formation and B cell memory in the absence of skin migratory DCs. Together, these results demonstrate an unexpected stimulatory role for LNDCs where they are capable of rapidly locating viral antigen, driving early activation of T cell populations, and independently establishing functional immune response. PMID:25049334

  2. HPV vaccine stimulates cytotoxic activity of killer dendritic cells and natural killer cells against HPV-positive tumour cells

    PubMed Central

    Van den Bergh, Johan M J; Guerti, Khadija; Willemen, Yannick; Lion, Eva; Cools, Nathalie; Goossens, Herman; Vorsters, Alex; Van Tendeloo, Viggo F I; Anguille, Sébastien; Van Damme, Pierre; Smits, Evelien L J M

    2014-01-01

    Cervarix™ is approved as a preventive vaccine against infection with the human papillomavirus (HPV) strains 16 and 18, which are causally related to the development of cervical cancer. We are the first to investigate in vitro the effects of this HPV vaccine on interleukin (IL)-15 dendritic cells (DC) as proxy of a naturally occurring subset of blood DC, and natural killer (NK) cells, two innate immune cell types that play an important role in antitumour immunity. Our results show that exposure of IL-15 DC to the HPV vaccine results in increased expression of phenotypic maturation markers, pro-inflammatory cytokine production and cytotoxic activity against HPV-positive tumour cells. These effects are mediated by the vaccine adjuvant, partly through Toll-like receptor 4 activation. Next, we demonstrate that vaccine-exposed IL-15 DC in turn induce phenotypic activation of NK cells, resulting in a synergistic cytotoxic action against HPV-infected tumour cells. Our study thus identifies a novel mode of action of the HPV vaccine in boosting innate immunity, including killing of HPV-infected cells by DC and NK cells. PMID:24979331

  3. In Vivo Targeting of Antigens to Maturing Dendritic Cells via the DEC-205 Receptor Improves T Cell Vaccination

    PubMed Central

    Bonifaz, Laura C.; Bonnyay, David P.; Charalambous, Anna; Darguste, Dara I.; Fujii, Shin-Ichiro; Soares, Helena; Brimnes, Marie K.; Moltedo, Bruno; Moran, Thomas M.; Steinman, Ralph M.

    2004-01-01

    The prevention and treatment of prevalent infectious diseases and tumors should benefit from improvements in the induction of antigen-specific T cell immunity. To assess the potential of antigen targeting to dendritic cells to improve immunity, we incorporated ovalbumin protein into a monoclonal antibody to the DEC-205 receptor, an endocytic receptor that is abundant on these cells in lymphoid tissues. Simultaneously, we injected agonistic α-CD40 antibody to mature the dendritic cells. We found that a single low dose of antibody-conjugated ovalbumin initiated immunity from the naive CD4+ and CD8+ T cell repertoire. Unexpectedly, the αDEC-205 antigen conjugates, given s.c., targeted to dendritic cells systemically and for long periods, and ovalbumin peptide was presented on MHC class I for 2 weeks. This was associated with stronger CD8+ T cell–mediated immunity relative to other forms of antigen delivery, even when the latter was given at a thousand times higher doses. In parallel, the mice showed enhanced resistance to an established rapidly growing tumor and to viral infection at a mucosal site. By better harnessing the immunizing functions of maturing dendritic cells, antibody-mediated antigen targeting via the DEC-205 receptor increases the efficiency of vaccination for T cell immunity, including systemic and mucosal resistance in disease models. PMID:15024047

  4. In vivo targeting of antigens to maturing dendritic cells via the DEC-205 receptor improves T cell vaccination.

    PubMed

    Bonifaz, Laura C; Bonnyay, David P; Charalambous, Anna; Darguste, Dara I; Fujii, Shin-Ichiro; Soares, Helena; Brimnes, Marie K; Moltedo, Bruno; Moran, Thomas M; Steinman, Ralph M

    2004-03-15

    The prevention and treatment of prevalent infectious diseases and tumors should benefit from improvements in the induction of antigen-specific T cell immunity. To assess the potential of antigen targeting to dendritic cells to improve immunity, we incorporated ovalbumin protein into a monoclonal antibody to the DEC-205 receptor, an endocytic receptor that is abundant on these cells in lymphoid tissues. Simultaneously, we injected agonistic alpha-CD40 antibody to mature the dendritic cells. We found that a single low dose of antibody-conjugated ovalbumin initiated immunity from the naive CD4+ and CD8+ T cell repertoire. Unexpectedly, the alphaDEC-205 antigen conjugates, given s.c., targeted to dendritic cells systemically and for long periods, and ovalbumin peptide was presented on MHC class I for 2 weeks. This was associated with stronger CD8+ T cell-mediated immunity relative to other forms of antigen delivery, even when the latter was given at a thousand times higher doses. In parallel, the mice showed enhanced resistance to an established rapidly growing tumor and to viral infection at a mucosal site. By better harnessing the immunizing functions of maturing dendritic cells, antibody-mediated antigen targeting via the DEC-205 receptor increases the efficiency of vaccination for T cell immunity, including systemic and mucosal resistance in disease models.

  5. High-yield production of a stable Vero cell-based vaccine candidate against the highly pathogenic avian influenza virus H5N1

    SciTech Connect

    Zhou, Fangye; Zhou, Jian; Ma, Lei; Song, Shaohui; Zhang, Xinwen; Li, Weidong; Jiang, Shude; Wang, Yue; Liao, Guoyang

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer Vero cell-based HPAI H5N1 vaccine with stable high yield. Black-Right-Pointing-Pointer Stable high yield derived from the YNVa H3N2 backbone. Black-Right-Pointing-Pointer H5N1/YNVa has a similar safety and immunogenicity to H5N1delta. -- Abstract: Highly pathogenic avian influenza (HPAI) viruses pose a global pandemic threat, for which rapid large-scale vaccine production technology is critical for prevention and control. Because chickens are highly susceptible to HPAI viruses, the supply of chicken embryos for vaccine production might be depleted during a virus outbreak. Therefore, developing HPAI virus vaccines using other technologies is critical. Meeting vaccine demand using the Vero cell-based fermentation process has been hindered by low stability and yield. In this study, a Vero cell-based HPAI H5N1 vaccine candidate (H5N1/YNVa) with stable high yield was achieved by reassortment of the Vero-adapted (Va) high growth A/Yunnan/1/2005(H3N2) (YNVa) virus with the A/Anhui/1/2005(H5N1) attenuated influenza vaccine strain (H5N1delta) using the 6/2 method. The reassorted H5N1/YNVa vaccine maintained a high hemagglutination (HA) titer of 1024. Furthermore, H5N1/YNVa displayed low pathogenicity and uniform immunogenicity compared to that of the parent virus.

  6. Tumor-associated antigen/IL-21-transduced dendritic cell vaccines enhance immunity and inhibit immunosuppressive cells in metastatic melanoma.

    PubMed

    Aravindaram, K; Wang, P-H; Yin, S-Y; Yang, N-S

    2014-05-01

    Dendritic cell (DC)-based vaccine approaches are being actively evaluated for developing immunotherapeutic agents against cancers. In this study, we investigated the use of engineered DCs expressing transgenic tumor-associated antigen hgp100 and the regulatory cytokine interleukin-21, namely DC-hgp100/mIL-21, as a therapeutic vaccine against melanoma. Tumor-bearing mice were injected intratumorally with transgenic DCs followed by three booster injections. Transgenic DC-hgp100/mIL-21 showed significant reduction in primary tumor growth and metastasis compared with DC-hgp100 alone and DC-mIL-21 alone. In vivo depletion of specific immune cell types (CD8(+) T, CD4(+) T and Natural killer (NK)-1.1(+) cells) effectively blocked the protective effect of this combinational vaccine. In adoptive transfer experiments, a survival rate of nearly 90% was observed at 60 days post-tumor inoculation for the combinational vaccine group. In contrast, all mice in the DC-hgp100 and DC-mIL-21-only groups died within 43-46 days after tumor challenge. Considerably increased levels of interferon (IFN)-γ, tumor necrosis factor (TNF)-α, granulocyte macrophage colony-stimulating factor (GM-CSF) and cytotoxic T lymphocytes (CTLs) were detected with the combination vaccine group compared with other individual treatment groups. In comparison with the DC-hgp100 or mIL-21 groups, the combinational DC-hgp100/mIL-21 vaccine also drastically suppressed the myeloid-derived suppressor cells (MDSCs) and T-regulatory (Treg) cell populations. Our findings suggest that a combinational DC- and gene-based hgp100 and mIL-21 vaccine therapy strategy warrants further evaluation as a clinically relevant cancer vaccine approach for human melanoma patients.

  7. Vaccination with Antigen Combined with αβ-ATP as a Vaccine Adjuvant Enhances Antigen-Specific Antibody Production via Dendritic Cell Activation.

    PubMed

    Matsuo, Kazuhiko; Nishiuma, Satoshi; Hasegawa, Yuta; Kawabata, Fumika; Kitahata, Kosuke; Nakayama, Takashi

    2016-01-01

    Adjuvants are required to enhance antigen-specific immune responses by vaccines. Extracellular ATP serves as a danger signal to alert the immune system of tissue damage by acting on P2X and P2Y receptors and triggers the activation of dendritic cells (DCs). Here we investigated the in vivo adjuvant efficacy of α,β-methylene-ATP (αβ-ATP), a non-hydrolysable form of ATP. We found that intradermal injection of ovalbumin (OVA), as a model antigen, combined with αβ-ATP, as the adjuvant, enhanced OVA-specific immune responses more than OVA alone. Additionally, DCs in the skin of mice injected with OVA and αβ-ATP had increased expression of major histocompatibility complex class II and co-stimulator molecules, CD40, CD80, and CD86, suggesting that αβ-ATP activated DC. These findings indicate that αβ-ATP functions as a potent vaccine adjuvant. PMID:27251512

  8. Closely Related Mycobacterial Strains Demonstrate Contrasting Levels of Efficacy as Antitumor Vaccines and Are Processed for Major Histocompatibility Complex Class I Presentation by Multiple Routes in Dendritic Cells

    PubMed Central

    Cheadle, Eleanor J.; O'Donnell, Dearbhaile; Selby, Peter J.; Jackson, Andrew M.

    2005-01-01

    Mycobacteria expressing recombinant antigens are already being developed as vaccines against both infections and tumors. Little is known about how dendritic cells might process such antigens. Two different mycobacterial species, the fast-growing Mycobacterium smegmatis and the slow-growing M. bovis M. bovis BCG, were engineered to express a model tumor antigen, the Kb-restricted dominant cytotoxic T-lymphocyte epitope OVA257-264. Recombinant M. bovis BCG but not recombinant M. smegmatis conferred protection to mice challenged with the B16-OVA tumor cell line. We went on to investigate whether the contrast in antitumor efficacy could be due to differences in how dendritic cells process antigen from the two mycobacterial strains for class I presentation. Both strains of mycobacteria caused phenotypic maturation of dendritic cells, but recombinant M. smegmatis infection led to a greater degree of dendritic cell maturation than recombinant M. bovis BCG infection. Antigen from recombinant M. smegmatis was processed and presented as OVA257-264 on Kb molecules by the dendritic cell line DC2.4 but not by bone marrow-derived dendritic cells (BMDC) or splenic dendritic cells. In contrast, antigen from recombinant M. bovis BCG was presented by all three dendritic cell types as long as the mycobacteria were viable. Such presentation was dependent on proteasome function and nascent major histocompatibility complex (MHC) class I molecules in DC2.4 cells but independent of the proteasome and transporter associated with antigen processings (TAP) in BMDC and splenic dendritic cells. These data demonstrate for the first time that antigen vectored by the slow-growing M. bovis BCG but not that vectored by fast-growing, readily destroyed M. smegmatis is processed and presented on MHC class I by in vitro-generated dendritic cells, which has implications for recombinant microbial vaccine development. PMID:15664917

  9. Effect of HSV-IL12 Loaded Tumor Cell-Based Vaccination in a Mouse Model of High-Grade Neuroblastoma

    PubMed Central

    Pereboeva, Larisa; Gillespie, G. Yancey; Cloud, Gretchen A.; Langford, Catherine

    2016-01-01

    We designed multimodal tumor vaccine that consists of irradiated tumor cells infected with the oncolytic IL-12-expressing HSV-1 virus, M002. This vaccine was tested against the syngeneic neuroblastoma mouse model Neuro 2a injected into the right caudate nucleus of the immunocompetent A/J mice. Mice were vaccinated via intramuscular injection of multimodal vaccine or uninfected irradiated tumor cells at seven and 14 days after tumor establishment. While there was no survival difference between groups vaccinated with cell-based vaccine applied following tumor injection, a premunition prime/boost vaccination strategy produced a significant survival advantage in both groups and sustained immune response to an intracranial rechallenge of the same tumor. The syngeneic but unrelated H6 hepatocellular tumor cell line grew unrestricted in vaccinated mice, indicative of vaccine-mediated specific immunity to Neuro 2a tumors. Longitudinal analyses of tumor-infiltrating lymphocytes revealed a primary adaptive T cell response involving both CD4+ and CD8+ T cell subsets. Spleen cell mononuclear preparations from vaccinated mice were significantly more cytotoxic to Neuro 2a tumor cells than spleen cells from control mice as demonstrated in a four-hour in vitro cytotoxicity assay. These results strongly suggest that an irradiated whole cell tumor vaccine incorporating IL-12-expressing M002 HSV can produce a durable, specific immunization in a murine model of intracranial tumor.

  10. Effect of HSV-IL12 Loaded Tumor Cell-Based Vaccination in a Mouse Model of High-Grade Neuroblastoma

    PubMed Central

    Pereboeva, Larisa; Gillespie, G. Yancey; Cloud, Gretchen A.; Langford, Catherine

    2016-01-01

    We designed multimodal tumor vaccine that consists of irradiated tumor cells infected with the oncolytic IL-12-expressing HSV-1 virus, M002. This vaccine was tested against the syngeneic neuroblastoma mouse model Neuro 2a injected into the right caudate nucleus of the immunocompetent A/J mice. Mice were vaccinated via intramuscular injection of multimodal vaccine or uninfected irradiated tumor cells at seven and 14 days after tumor establishment. While there was no survival difference between groups vaccinated with cell-based vaccine applied following tumor injection, a premunition prime/boost vaccination strategy produced a significant survival advantage in both groups and sustained immune response to an intracranial rechallenge of the same tumor. The syngeneic but unrelated H6 hepatocellular tumor cell line grew unrestricted in vaccinated mice, indicative of vaccine-mediated specific immunity to Neuro 2a tumors. Longitudinal analyses of tumor-infiltrating lymphocytes revealed a primary adaptive T cell response involving both CD4+ and CD8+ T cell subsets. Spleen cell mononuclear preparations from vaccinated mice were significantly more cytotoxic to Neuro 2a tumor cells than spleen cells from control mice as demonstrated in a four-hour in vitro cytotoxicity assay. These results strongly suggest that an irradiated whole cell tumor vaccine incorporating IL-12-expressing M002 HSV can produce a durable, specific immunization in a murine model of intracranial tumor. PMID:27610392

  11. Effect of HSV-IL12 Loaded Tumor Cell-Based Vaccination in a Mouse Model of High-Grade Neuroblastoma.

    PubMed

    Bauer, David F; Pereboeva, Larisa; Gillespie, G Yancey; Cloud, Gretchen A; Elzafarany, Osama; Langford, Catherine; Markert, James M; Jr, Lawrence S Lamb

    2016-01-01

    We designed multimodal tumor vaccine that consists of irradiated tumor cells infected with the oncolytic IL-12-expressing HSV-1 virus, M002. This vaccine was tested against the syngeneic neuroblastoma mouse model Neuro 2a injected into the right caudate nucleus of the immunocompetent A/J mice. Mice were vaccinated via intramuscular injection of multimodal vaccine or uninfected irradiated tumor cells at seven and 14 days after tumor establishment. While there was no survival difference between groups vaccinated with cell-based vaccine applied following tumor injection, a premunition prime/boost vaccination strategy produced a significant survival advantage in both groups and sustained immune response to an intracranial rechallenge of the same tumor. The syngeneic but unrelated H6 hepatocellular tumor cell line grew unrestricted in vaccinated mice, indicative of vaccine-mediated specific immunity to Neuro 2a tumors. Longitudinal analyses of tumor-infiltrating lymphocytes revealed a primary adaptive T cell response involving both CD4+ and CD8+ T cell subsets. Spleen cell mononuclear preparations from vaccinated mice were significantly more cytotoxic to Neuro 2a tumor cells than spleen cells from control mice as demonstrated in a four-hour in vitro cytotoxicity assay. These results strongly suggest that an irradiated whole cell tumor vaccine incorporating IL-12-expressing M002 HSV can produce a durable, specific immunization in a murine model of intracranial tumor. PMID:27610392

  12. Identification and characterisation of T-cell epitopes for incorporation into dendritic cell-delivered Listeria vaccines.

    PubMed

    Calderon-Gonzalez, Ricardo; Tobes, Raquel; Pareja, Eduardo; Frande-Cabanes, Elisabet; Petrovsky, Nikolai; Alvarez-Dominguez, Carmen

    2015-09-01

    Dendritic cells loaded with antigenic peptides, because of their safety and robust immune stimulation, would be ideal for induction of immunity to protect against listeriosis. However, there is no currently accepted method to predict which peptides derived from the Listeria proteome might confer protection. While elution of peptides from MHC molecules after Listeria infection yields high-affinity immune-dominant epitopes, these individual epitopes did not reliably confer Listeria protection. Instead we applied bioinformatic predictions of MHC class I and II epitopes to generate antigenic peptides that were then formulated with Advax™, a novel polysaccharide particulate adjuvant able to enhance cross-presentation prior to being screened for their ability to induce protective T-cell responses. A combination of at least four intermediate strength MHC-I binding epitopes and one weak MHC-II binding epitope when expressed in a single peptide sequence and formulated with Advax adjuvant induced a potent T-cell response and high TNF-α and IL-12 production by dendritic cells resulting in robust listeriosis protection in susceptible mice. This T-cell vaccine approach might be useful for the design of vaccines to protect against listeriosis or other intracellular infections. PMID:26031451

  13. Identification and characterisation of T-cell epitopes for incorporation into dendritic cell-delivered Listeria vaccines.

    PubMed

    Calderon-Gonzalez, Ricardo; Tobes, Raquel; Pareja, Eduardo; Frande-Cabanes, Elisabet; Petrovsky, Nikolai; Alvarez-Dominguez, Carmen

    2015-09-01

    Dendritic cells loaded with antigenic peptides, because of their safety and robust immune stimulation, would be ideal for induction of immunity to protect against listeriosis. However, there is no currently accepted method to predict which peptides derived from the Listeria proteome might confer protection. While elution of peptides from MHC molecules after Listeria infection yields high-affinity immune-dominant epitopes, these individual epitopes did not reliably confer Listeria protection. Instead we applied bioinformatic predictions of MHC class I and II epitopes to generate antigenic peptides that were then formulated with Advax™, a novel polysaccharide particulate adjuvant able to enhance cross-presentation prior to being screened for their ability to induce protective T-cell responses. A combination of at least four intermediate strength MHC-I binding epitopes and one weak MHC-II binding epitope when expressed in a single peptide sequence and formulated with Advax adjuvant induced a potent T-cell response and high TNF-α and IL-12 production by dendritic cells resulting in robust listeriosis protection in susceptible mice. This T-cell vaccine approach might be useful for the design of vaccines to protect against listeriosis or other intracellular infections.

  14. Transcriptional specialization of human dendritic cell subsets in response to microbial vaccines.

    PubMed

    Banchereau, Romain; Baldwin, Nicole; Cepika, Alma-Martina; Athale, Shruti; Xue, Yaming; Yu, Chun I; Metang, Patrick; Cheruku, Abhilasha; Berthier, Isabelle; Gayet, Ingrid; Wang, Yuanyuan; Ohouo, Marina; Snipes, LuAnn; Xu, Hui; Obermoser, Gerlinde; Blankenship, Derek; Oh, Sangkon; Ramilo, Octavio; Chaussabel, Damien; Banchereau, Jacques; Palucka, Karolina; Pascual, Virginia

    2014-10-22

    The mechanisms by which microbial vaccines interact with human APCs remain elusive. Herein, we describe the transcriptional programs induced in human DCs by pathogens, innate receptor ligands and vaccines. Exposure of DCs to influenza, Salmonella enterica and Staphylococcus aureus allows us to build a modular framework containing 204 transcript clusters. We use this framework to characterize the responses of human monocytes, monocyte-derived DCs and blood DC subsets to 13 vaccines. Different vaccines induce distinct transcriptional programs based on pathogen type, adjuvant formulation and APC targeted. Fluzone, Pneumovax and Gardasil, respectively, activate monocyte-derived DCs, monocytes and CD1c+ blood DCs, highlighting APC specialization in response to vaccines. Finally, the blood signatures from individuals vaccinated with Fluzone or infected with influenza reveal a signature of adaptive immunity activation following vaccination and symptomatic infections, but not asymptomatic infections. These data, offered with a web interface, may guide the development of improved vaccines.

  15. Transcriptional specialization of human dendritic cell subsets in response to microbial vaccines

    PubMed Central

    Banchereau, Romain; Baldwin, Nicole; Cepika, Alma-Martina; Athale, Shruti; Xue, Yaming; Yu, Chun I; Metang, Patrick; Cheruku, Abhilasha; Berthier, Isabelle; Gayet, Ingrid; Wang, Yuanyuan; Ohouo, Marina; Snipes, LuAnn; Xu, Hui; Obermoser, Gerlinde; Blankenship, Derek; Oh, Sangkon; Ramilo, Octavio; Chaussabel, Damien; Banchereau, Jacques; Palucka, Karolina; Pascual, Virginia

    2014-01-01

    The mechanisms by which microbial vaccines interact with human APCs remain elusive. Herein, we describe the transcriptional programs induced in human DCs by pathogens, innate receptor ligands and vaccines. Exposure of DCs to influenza, Salmonella enterica and Staphylococcus aureus allows us to build a modular framework containing 204 transcript clusters. We use this framework to characterize the responses of human monocytes, monocyte-derived DCs and blood DC subsets to 13 vaccines. Different vaccines induce distinct transcriptional programs based on pathogen type, adjuvant formulation and APC targeted. Fluzone, Pneumovax and Gardasil, respectively, activate monocyte-derived DCs, monocytes and CD1c+ blood DCs, highlighting APC specialization in response to vaccines. Finally, the blood signatures from individuals vaccinated with Fluzone or infected with influenza reveal a signature of adaptive immunity activation following vaccination and symptomatic infections, but not asymptomatic infections. These data, offered with a web interface, may guide the development of improved vaccines. PMID:25335753

  16. Enhanced immunogenicity of a tricomponent mannan tetanus toxoid conjugate vaccine targeted to dendritic cells via Dectin-1 by incorporating β-glucan.

    PubMed

    Lipinski, Tomasz; Fitieh, Amira; St Pierre, Joëlle; Ostergaard, Hanne L; Bundle, David R; Touret, Nicolas

    2013-04-15

    In a previous attempt to generate a protective vaccine against Candida albicans, a β-mannan tetanus toxoid conjugate showed poor immunogenicity in mice. To improve the specific activation toward the fungal pathogen, we aimed to target Dectin-1, a pattern-recognition receptor expressed on monocytes, macrophages, and dendritic cells. Laminarin, a β-glucan ligand of Dectin-1, was incorporated into the original β-mannan tetanus toxoid conjugate providing a tricomponent conjugate vaccine. A macrophage cell line expressing Dectin-1 was employed to show binding and activation of Dectin-1 signal transduction pathway by the β-glucan-containing vaccine. Ligand binding to Dectin-1 resulted in the following: 1) activation of Src family kinases and Syk revealed by their recruitment and phosphorylation in the vicinity of bound conjugate and 2) translocation of NF-κB to the nucleus. Treatment of immature bone marrow-derived dendritic cells (BMDCs) with tricomponent or control vaccine confirmed that the β-glucan-containing vaccine exerted its enhanced activity by virtue of dendritic cell targeting and uptake. Immature primary cells stimulated by the tricomponent vaccine, but not the β-mannan tetanus toxoid vaccine, showed activation of BMDCs. Moreover, treated BMDCs secreted increased levels of several cytokines, including TGF-β and IL-6, which are known activators of Th17 cells. Immunization of mice with the novel type of vaccine resulted in improved immune response manifested by high titers of Ab recognizing C. albicans β-mannan Ag. Vaccine containing laminarin also affected distribution of IgG subclasses, showing that vaccine targeting to Dectin-1 receptor can benefit from augmentation and immunomodulation of the immune response.

  17. Signal transduction profile of chemical sensitisers in dendritic cells: An endpoint to be included in a cell-based in vitro alternative approach to hazard identification?

    SciTech Connect

    Neves, Bruno Miguel; Goncalo, Margarida; Figueiredo, Americo; Duarte, Carlos B.; Lopes, Maria Celeste; Cruz, Maria Teresa

    2011-01-15

    The development of non-animal testing methods for the assessment of skin sensitisation potential is an urgent challenge within the framework of existing and forthcoming legislation. Efforts have been made to replace current animal tests, but so far no alternative methods have been developed. It is widely recognised that alternatives to animal testing cannot be accomplished with a single approach, but rather will require the integration of results obtained from different in vitro and in silico assays. The argument subjacent to the development of in vitro dendritic cell (DC)-based assays is that sensitiser-induced changes in the DC phenotype can be differentiated from those induced by irritants. This assumption is derived from the unique capacity of DC to convert environmental signals encountered at the skin into a receptor expression pattern (MHC class II molecules, co-stimulatory molecules, chemokine receptors) and a soluble mediator release profile that will stimulate T lymphocytes. Since signal transduction cascades precede changes in surface marker expression and cytokine/chemokine secretion, these phenotypic modifications are a consequence of a signal transduction profile that is specifically triggered by sensitisers and not by irritants. A limited number of studies have addressed this subject and the present review attempts to summarise and highlight all of the signalling pathways modulated by skin sensitisers and irritants. Furthermore, we conclude this review by focusing on the most promising strategies suitable for inclusion into a cell-based in vitro alternative approach to hazard identification.

  18. Chimeric Vaccine Stimulation of Human Dendritic Cell Indoleamine 2, 3-Dioxygenase Occurs via the Non-Canonical NF-κB Pathway.

    PubMed

    Kim, Nan-Sun; Mbongue, Jacques C; Nicholas, Dequina A; Esebanmen, Grace E; Unternaehrer, Juli J; Firek, Anthony F; Langridge, William H R

    2016-01-01

    A chimeric protein vaccine composed of the cholera toxin B subunit fused to proinsulin (CTB-INS) was shown to suppress type 1 diabetes onset in NOD mice and upregulate biosynthesis of the tryptophan catabolic enzyme indoleamine 2, 3-dioxygenase (IDO1) in human dendritic cells (DCs). Here we demonstrate siRNA inhibition of the NF-κB-inducing kinase (NIK) suppresses vaccine-induced IDO1 biosynthesis as well as IKKα phosphorylation. Chromatin immunoprecipitation (ChIP) analysis of CTB-INS inoculated DCs showed that RelB bound to NF-κB consensus sequences in the IDO1 promoter, suggesting vaccine stimulation of the non-canonical NF-κB pathway activates IDO1 expression in vivo. The addition of Tumor Necrosis Factor Associated Factors (TRAF) TRAF 2, 3 and TRAF6 blocking peptides to vaccine inoculated DCs was shown to inhibit IDO1 biosynthesis. This experimental outcome suggests vaccine activation of the TNFR super-family receptor pathway leads to upregulation of IDO1 biosynthesis in CTB-INS inoculated dendritic cells. Together, our experimental data suggest the CTB-INS vaccine uses a TNFR-dependent signaling pathway of the non-canonical NF-κB signaling pathway resulting in suppression of dendritic cell mediated type 1 diabetes autoimmunity. PMID:26881431

  19. A Mammalian Cell Based FACS-Panning Platform for the Selection of HIV-1 Envelopes for Vaccine Development

    PubMed Central

    Bruun, Tim-Henrik; Mühlbauer, Katharina; Benen, Thomas; Kliche, Alexander; Wagner, Ralf

    2014-01-01

    An increasing number of broadly neutralizing monoclonal antibodies (bnMAb) against the HIV-1 envelope (Env) protein has been discovered recently. Despite this progress, vaccination efforts with the aim to re-elicit bnMAbs that provide protective immunity have failed so far. Herein, we describe the development of a mammalian cell based FACS-panning method in which bnMAbs are used as tools to select surface-exposed envelope variants according to their binding affinity. For that purpose, an HIV-1 derived lentiviral vector was developed to infect HEK293T cells at low multiplicity of infection (MOI) in order to link Env phenotype and genotype. For proof of principle, a gp145 Env model-library was established in which the complete V3 domain was substituted by five strain specific V3 loop sequences with known binding affinities to nMAb 447-52D, respectively. Env genes were recovered from selected cells by PCR, subcloned into a lentiviral vector (i) to determine and quantify the enrichment nMAb binders and (ii) to generate a new batch of transduction competent particles. After 2 selection cycles the Env variant with highest affinity was enriched 20-fold and represented 80% of the remaining Env population. Exploiting the recently described bnMAbs, this procedure might prove useful in selecting Env proteins from large Env libraries with the potential to elicit bnMAbs when used as vaccine candidates. PMID:25279768

  20. Adjuvant dendritic cell vaccination induces tumor-specific immune responses in the majority of stage III melanoma patients

    PubMed Central

    Boudewijns, Steve; Bol, Kalijn F.; Schreibelt, Gerty; Westdorp, Harm; Textor, Johannes C.; van Rossum, Michelle M.; Scharenborg, Nicole M.; de Boer, Annemiek J.; van de Rakt, Mandy W. M. M.; Pots, Jeanne M.; van Oorschot, Tom G. M.; Duiveman-de Boer, Tjitske; Olde Nordkamp, Michel A.; van Meeteren, Wilmy S. E. C.; van der Graaf, Winette T. A.; Bonenkamp, Johannes J.; de Wilt, Johannes H. W.; Aarntzen, Erik H. J. G.; Punt, Cornelis J. A.; Gerritsen, Winald R.; Figdor, Carl G.; de Vries, I. Jolanda M.

    2016-01-01

    ABSTRACT Purpose: To determine the effectiveness of adjuvant dendritic cell (DC) vaccination to induce tumor-specific immunological responses in stage III melanoma patients. Experimental design: Retrospective analysis of stage III melanoma patients, vaccinated with autologous monocyte-derived DC loaded with tumor-associated antigens (TAA) gp100 and tyrosinase after radical lymph node dissection. Skin-test infiltrating lymphocytes (SKILs) obtained from delayed-type hypersensitivity skin-test biopsies were analyzed for the presence of TAA-specific CD8+ T cells by tetrameric MHC-peptide complexes and by functional TAA-specific T cell assays, defined by peptide-recognition (T2 cells) and/or tumor-recognition (BLM and/or MEL624) with specific production of Th1 cytokines and no Th2 cytokines. Results: Ninety-seven patients were analyzed: 21 with stage IIIA, 34 with stage IIIB, and 42 had stage IIIC disease. Tetramer-positive CD8+ T cells were present in 68 patients (70%), and 24 of them showed a response against all 3 epitopes tested (gp100:154–162, gp100:280–288, and tyrosinase:369–377) at any point during vaccinations. A functional T cell response was found in 62 patients (64%). Rates of peptide-recognition of gp100:154–162, gp100:280–288, and tyrosinase:369–377 were 40%, 29%, and 45%, respectively. Median recurrence-free survival and distant metastasis-free survival of the whole study population were 23.0 mo and 36.8 mo, respectively. Conclusions: DC vaccination induces a functional TAA-specific T cell response in the majority of stage III melanoma patients, indicating it is more effective in stage III than in stage IV melanoma patients. Furthermore, performing multiple cycles of vaccinations enhances the chance of a broader immune response. PMID:27622047

  1. Laser-assisted intradermal delivery of adjuvant-free vaccines targeting XCR1+ dendritic cells induces potent antitumoral responses.

    PubMed

    Terhorst, Dorothea; Fossum, Even; Baranska, Anna; Tamoutounour, Samira; Malosse, Camille; Garbani, Mattia; Braun, Reinhard; Lechat, Elmira; Crameri, Reto; Bogen, Bjarne; Henri, Sandrine; Malissen, Bernard

    2015-06-15

    The development of vaccines inducing efficient CD8(+) T cell responses is the focus of intense research. Dendritic cells (DCs) expressing the XCR1 chemokine receptor, also known as CD103(+) or CD8α(+) DCs, excel in the presentation of extracellular Ags to CD8(+) T cells. Because of its high numbers of DCs, including XCR1(+) DCs, the skin dermis is an attractive site for vaccine administration. By creating laser-generated micropores through the epidermis, we targeted a model protein Ag fused to XCL1, the ligand of XCR1, to dermal XCR1(+) DCs and induced Ag-specific CD8(+) and CD4(+) T cell responses. Efficient immunization required the emigration of XCR1(+) dermal DCs to draining lymph nodes and occurred irrespective of TLR signaling. Moreover, a single intradermal immunization protected mice against melanoma tumor growth in prophylactic and therapeutic settings, in the absence of exogenous adjuvant. The mild inflammatory milieu created in the dermis by skin laser microporation itself most likely favored the development of potent T cell responses in the absence of exogenous adjuvants. The existence of functionally equivalent XCR1(+) dermal DCs in humans should permit the translation of laser-assisted intradermal delivery of a tumor-specific vaccine targeting XCR1(+) DCs to human cancer immunotherapy. Moreover, considering that the use of adjuvants in vaccines is often associated with safety issues, the possibility of inducing protective responses against melanoma tumor growth independently of the administration of exogenous adjuvants should facilitate the development of safer vaccines. PMID:25941327

  2. Adjuvant dendritic cell vaccination induces tumor-specific immune responses in the majority of stage III melanoma patients

    PubMed Central

    Boudewijns, Steve; Bol, Kalijn F.; Schreibelt, Gerty; Westdorp, Harm; Textor, Johannes C.; van Rossum, Michelle M.; Scharenborg, Nicole M.; de Boer, Annemiek J.; van de Rakt, Mandy W. M. M.; Pots, Jeanne M.; van Oorschot, Tom G. M.; Duiveman-de Boer, Tjitske; Olde Nordkamp, Michel A.; van Meeteren, Wilmy S. E. C.; van der Graaf, Winette T. A.; Bonenkamp, Johannes J.; de Wilt, Johannes H. W.; Aarntzen, Erik H. J. G.; Punt, Cornelis J. A.; Gerritsen, Winald R.; Figdor, Carl G.; de Vries, I. Jolanda M.

    2016-01-01

    ABSTRACT Purpose: To determine the effectiveness of adjuvant dendritic cell (DC) vaccination to induce tumor-specific immunological responses in stage III melanoma patients. Experimental design: Retrospective analysis of stage III melanoma patients, vaccinated with autologous monocyte-derived DC loaded with tumor-associated antigens (TAA) gp100 and tyrosinase after radical lymph node dissection. Skin-test infiltrating lymphocytes (SKILs) obtained from delayed-type hypersensitivity skin-test biopsies were analyzed for the presence of TAA-specific CD8+ T cells by tetrameric MHC-peptide complexes and by functional TAA-specific T cell assays, defined by peptide-recognition (T2 cells) and/or tumor-recognition (BLM and/or MEL624) with specific production of Th1 cytokines and no Th2 cytokines. Results: Ninety-seven patients were analyzed: 21 with stage IIIA, 34 with stage IIIB, and 42 had stage IIIC disease. Tetramer-positive CD8+ T cells were present in 68 patients (70%), and 24 of them showed a response against all 3 epitopes tested (gp100:154–162, gp100:280–288, and tyrosinase:369–377) at any point during vaccinations. A functional T cell response was found in 62 patients (64%). Rates of peptide-recognition of gp100:154–162, gp100:280–288, and tyrosinase:369–377 were 40%, 29%, and 45%, respectively. Median recurrence-free survival and distant metastasis-free survival of the whole study population were 23.0 mo and 36.8 mo, respectively. Conclusions: DC vaccination induces a functional TAA-specific T cell response in the majority of stage III melanoma patients, indicating it is more effective in stage III than in stage IV melanoma patients. Furthermore, performing multiple cycles of vaccinations enhances the chance of a broader immune response.

  3. Enhancing whole-tumor cell vaccination by engaging innate immune system through NY-ESO-1/dendritic cell interactions.

    PubMed

    Xu, Le; Zheng, Junying; Nguyen, David H; Luong, Quang T; Zeng, Gang

    2013-10-01

    NY-ESO-1 is a cancer/germline antigen (Ag) with distinctively strong immunogenicity. We have previously demonstrated that NY-ESO-1 serves as an endogenous adjuvant by engaging dendritic cell (DC)-surface receptors of calreticulin (CRT) and toll-like receptor (TLR) 4. In the present study, NY-ESO-1 was investigated for its immunomodulatory roles as a molecular adjuvant in whole-tumor cell vaccines using the Renca kidney cancer model. Renca cells were genetically engineered to express NY-ESO-1 on the cell surface to enhance direct interactions with DC. The effect of ectopic cell-surface expression of NY-ESO-1 was investigated on tumor immunogenicity, DC activation, cytotoxic T lymphocytes against model tumor-associated Ags, and the effectiveness of the modified tumor cells as a therapeutic whole-cell vaccine. Cell-surface expression of NY-ESO-1 was able to reduce the tumor growth of Renca cells in BALB/c mice, although the modification did not alter cell proliferation rate in vitro. Directly engaging the innate immune system through NY-ESO-1 facilitated the interaction of tumor cells with DC, leading to enhanced DC activation and subsequent tumor-specific T-cell priming. When used as a therapeutic whole-cell vaccine, Renca cells with NY-ESO-1 on the surface mediated stronger inhibitory effects on tumor growth and metastasis compared with parental Renca or Renca cells expressing a control protein GFP on the surface. Augmented antitumor efficacy correlated with increased CD8 T-cell infiltration into tumors and decreased myeloid-derived suppressor cells and regulatory T cells in the spleen. As a cancer/germline Ag and as an immunomodulatory adjuvant through engaging innate immune receptors, NY-ESO-1 offers a unique opportunity for improved whole-tumor cell vaccinations upon the classic GM-CSF-engineered cell vaccines.

  4. Poly(2-aminoethyl methacrylate) with well-defined chain-length for DNA vaccine delivery to dendritic cells

    PubMed Central

    Ji, Weihang; Panus, David; Palumbo, R. Noelle; Tang, Rupei; Wang, Chun

    2011-01-01

    Poly(2-aminoethyl methacrylate) (PAEM) homopolymers with defined chain-length and narrow molecular weight distribution were synthesized using atom transfer radical polymerization (ATRP), and a comprehensive study was conducted to evaluate the colloidal properties of PAEM/plasmid DNA polyplexes, the uptake and subcellular trafficking of polyplexes in antigen-presenting dendritic cells (DCs), and the biological performance of PAEM as a potential DNA vaccine carrier. PAEM of different chain-length (45, 75 and 150 repeating units) showed varying strength in condensing plasmid DNA into narrowly dispersed nanoparticles with very low cytotoxicity. Longer polymer chain-length resulted in higher levels of overall cellular uptake and nuclear uptake of plasmid DNA, but shorter polymer chains favored intracellular and intra-nuclear release of free plasmid from the polyplexes. Despite its simple chemical structure, PAEM transfected DCs very efficiently in vitro in media with or without serum and led to phenotypic maturation of DCs. When a model antigen-encoding ovalbumin plasmid was used, transfected DCs stimulated the activation of naïve CD8+ T cells to produce high levels of interferon-γ. The efficiency of transfection, DC maturation, and CD8+ T cell activation showed varying degrees of polymer chain-length dependence. These structurally defined cationic polymers may have much potential as efficient DNA vaccine carriers and immunostimulatory adjuvants. They may also serve as a model material system for elucidating structural and intracellular mechanisms of polymer-mediated DNA vaccine delivery. PMID:22082257

  5. Whole tumor antigen vaccination using dendritic cells: comparison of RNA electroporation and pulsing with UV-irradiated tumor cells.

    PubMed

    Benencia, Fabian; Courrèges, Maria C; Coukos, George

    2008-01-01

    Because of the lack of full characterization of tumor associated antigens for solid tumors, whole antigen use is a convenient approach to tumor vaccination. Tumor RNA and apoptotic tumor cells have been used as a source of whole tumor antigen to prepare dendritic cell (DC) based tumor vaccines, but their efficacy has not been directly compared. Here we compare directly RNA electroporation and pulsing of DCs with whole tumor cells killed by ultraviolet (UV) B radiation using a convenient tumor model expressing human papilloma virus (HPV) E6 and E7 oncogenes. Although both approaches led to DCs presenting tumor antigen, electroporation with tumor cell total RNA induced a significantly higher frequency of tumor-reactive IFN-gamma secreting T cells, and E7-specific CD8+ lymphocytes compared to pulsing with UV-irradiated tumor cells. DCs electroporated with tumor cell RNA induced a larger tumor infiltration by T cells and produced a significantly stronger delay in tumor growth compared to DCs pulsed with UV-irradiated tumor cells. We conclude that electroporation with whole tumor cell RNA and pulsing with UV-irradiated tumor cells are both effective in eliciting antitumor immune response, but RNA electroporation results in more potent tumor vaccination under the examined experimental conditions. PMID:18445282

  6. The role of dendritic cells in innate and adaptive immunity to respiratory syncytial virus, and implications for vaccine development.

    PubMed

    Garg, Ravendra; Shrivastava, Pratima; van Drunen Littel-van den Hurk, Sylvia

    2012-12-01

    Respiratory syncytial virus (RSV) is a common human pathogen that causes cold-like symptoms in most healthy adults and children. However, RSV often moves into the lower respiratory tract in infants and young children predisposed to respiratory illness, making it the most common cause of pediatric broncheolitis and pneumonia. The development of an appropriate balanced immune response is critical for recovery from RSV, while an unbalanced and/or excessively vigorous response may lead to immunopathogenesis. Different dendritic cell (DC) subsets influence the magnitude and quality of the host response to RSV infection, with myeloid DCs mediating and plasmacytoid DCs modulating immunopathology. Furthermore, stimulation of DCs through Toll-like receptors is essential for induction of protective immunity to RSV. These characteristics have implications for the rational design of a RSV vaccine.

  7. Mature autologous dendritic cell vaccines in advanced non-small cell lung cancer: a phase I pilot study

    PubMed Central

    2011-01-01

    Background Overall therapeutic outcomes of advanced non-small-cell lung cancer (NSCLC) are poor. The dendritic cell (DC) immunotherapy has been developed as a new strategy for the treatment of lung cancer. The purpose of this study was to evaluate the feasibility, safety and immunologic responses in use in mature, antigen-pulsed autologous DC vaccine in NSCLC patients. Methods Five HLA-A2 patients with inoperable stage III or IV NSCLC were selected to receive two doses of 5 × 107 DC cells administered subcutaneous and intravenously two times at two week intervals. The immunologic response, safety and tolerability to the vaccine were evaluated by the lymphoproliferation assay and clinical and laboratorial evolution, respectively. Results The dose of the vaccine has shown to be safe and well tolerated. The lymphoproliferation assay showed an improvement in the specific immune response after the immunization, with a significant response after the second dose (p = 0.005). This response was not long lasting and a tendency to reduction two weeks after the second dose of the vaccine was observed. Two patients had a survival almost twice greater than the expected average and were the only ones that expressed HER-2 and CEA together. Conclusion Despite the small sample size, the results on the immune response, safety and tolerability, combined with the results of other studies, are encouraging to the conduction of a large clinical trial with multiples doses in patients with early lung cancer who underwent surgical treatment. Trial Registration Current Controlled Trials: ISRCTN45563569 PMID:21682877

  8. Adoptive transfer of MART-1 T cell receptor transgenic lymphocytes and dendritic cell vaccination in patients with metastatic melanoma

    PubMed Central

    Chodon, Thinle; Comin-Anduix, Begonya; Chmielowski, Bartosz; Koya, Richard C; Wu, Zhongqi; Auerbach, Martin; Ng, Charles; Avramis, Earl; Seja, Elizabeth; Villanueva, Arturo; McCannel, Tara A.; Ishiyama, Akira; Czernin, Johannes; Radu, Caius G.; Wang, Xiaoyan; Gjertson, David W.; Cochran, Alistair J.; Cornetta, Kenneth; Wong, Deborah J.L.; Kaplan-lefko, Paula; Hamid, Omid; Samlowski, Wolfram; Cohen, Peter A.; Daniels, Gregory A.; Mukherji, Bijay; Yang, Lili; Zack, Jerome A.; Kohn, Donald B.; Heath, James R.; Glaspy, John A.; Witte, Owen N.; Baltimore, David; Economou, James S.; Ribas, Antoni

    2014-01-01

    Purpose It has been demonstrated that large numbers of tumor-specific T cells for adoptive cell transfer (ACT) can be manufactured by retroviral genetic engineering of autologous peripheral blood lymphocytes and expanding them over several weeks. In mouse models, this therapy is optimized when administered with dendritic cell (DC) vaccination. We developed a short one-week manufacture protocol to determine the feasibility, safety and antitumor efficacy of this double cell therapy. Experimnetal Design A clinical trial (NCT00910650) adoptively transferring MART-1 T cell receptor (TCR) transgenic lymphocytes together with MART-1 peptide pulsed DC vaccination in HLA-A2.1 patients with metastatic melanoma. Autologous TCR transgenic cells were manufactured in 6 to 7 days using retroviral vector gene transfer, and re-infused with (n = 10) or without (n = 3) prior cryopreservation. Results 14 patients with metastatic melanoma were enrolled and nine out of 13 treated patients (69%) showed evidence of tumor regression. Peripheral blood reconstitution with MART-1-specific T cells peaked within two weeks of ACT indicating rapid in vivo expansion. Administration of freshly manufactured TCR transgenic T cells resulted in a higher persistence of MART-1-specific T cells in the blood as compared to cryopreserved. Evidence that DC vaccination could cause further in vivo expansion was only observed with ACT using non-cryopreserved T cells. Conclusion Double cell therapy with ACT of TCR engineered T cells with a very short ex vivo manipulation and DC vaccines is feasible and results in antitumor activity, but improvements are needed to maintain tumor responses. PMID:24634374

  9. Vaccination of metastatic colorectal cancer patients with matured dendritic cells loaded with multiple major histocompatibility complex class I peptides.

    PubMed

    Kavanagh, Brian; Ko, Andrew; Venook, Alan; Margolin, Kim; Zeh, Herbert; Lotze, Michael; Schillinger, Brian; Liu, Weihong; Lu, Ying; Mitsky, Peggie; Schilling, Marta; Bercovici, Nadege; Loudovaris, Maureen; Guillermo, Roy; Lee, Sun Min; Bender, James; Mills, Bonnie; Fong, Lawrence

    2007-10-01

    Developing a process to generate dendritic cells (DCs) applicable for multicenter trials would facilitate cancer vaccine development. Moreover, targeting multiple antigens with such a vaccine strategy could enhance the efficacy of such a treatment approach. We performed a phase 1/2 clinical trial administering a DC-based vaccine targeting multiple tumor-associated antigens to patients with advanced colorectal cancer (CRC). A qualified manufacturing process was used to generate DC from blood monocytes using granulocyte macrophage colony-stimulating factor and IL-13, and matured for 6 hours with Klebsiella-derived cell wall fraction and interferon-gamma (IFN-gamma). DCs were also loaded with 6 HLA-A*0201 binding peptides derived from carcinoembryonic antigen (CEA), MAGE, and HER2/neu, as well as keyhole limpet hemocyanin protein and pan-DR epitope peptide. Four planned doses of 35x10(6) cells were administered intradermally every 3 weeks. Immune response was assessed by IFN-gamma enzyme-linked immunosorbent spot (ELISPOT). Matured DC possessed an activated phenotype and could prime T cells in vitro. In the trial, 21 HLA-A2+ patients were apheresed, 13 were treated with the vaccine, and 11 patients were evaluable. No significant treatment-related toxicity was reported. T-cell responses to a CEA-derived peptide were detected by ELISPOT in 3 patients. T cells induced to CEA possessed high avidity T-cell receptors. ELISPOT after in vitro restimulation detected responses to multiple peptides in 2 patients. All patients showed progressive disease. This pilot study in advanced CRC patients demonstrates DC-generated granulocyte macrophage colony-stimulating factor and IL-13 matured with Klebsiella-derived cell wall fraction and IFN-gamma can induce immune responses to multiple tumor-associated antigens in patients with advanced CRC.

  10. Long-lasting multifunctional CD8+ T cell responses in end-stage melanoma patients can be induced by dendritic cell vaccination

    PubMed Central

    Wimmers, Florian; Aarntzen, Erik H. J. G.; Duiveman-deBoer, Tjitske; Figdor, Carl G.; Jacobs, Joannes F. M.; Tel, Jurjen; de Vries, I. Jolanda M.

    2016-01-01

    ABSTRACT Cytotoxic T cells are considered crucial for antitumor immunity and their induction is the aim of various immunotherapeutic strategies. High frequencies of tumor-specific CD8+ T cells alone, however, are no guarantee for long-term tumor control. Here, we analyzed the functionality of tumor-specific CD8+ T cells in melanoma patients upon dendritic cell vaccination by measuring multiple T cell effector functions considered crucial for anticancer immunity, including the expression of pro-inflammatory cytokines, chemokines and cytotoxic markers (IFNγ, TNFα, IL-2, CCL4, CD107a). We identified small numbers of multifunctional (polyfunctional) tumor-specific CD8+ T cells in several patients and dendritic cell therapy was able to improve the functionality of these pre-existing tumor-specific CD8+ T cells. Generated multifunctional CD8+ T cell responses could persist for up to ten years and within the same patient functionality could vary greatly for the different vaccination antigens. Importantly, after one cycle of DC vaccination highly functional CD8+ T cells were only detected in patients displaying prolonged overall survival. Our results shed light on the dynamics of multifunctional tumor-specific CD8+ T cells during metastatic melanoma and reveal a new feature of dendritic cell vaccination in vivo. PMID:26942087

  11. High-density sub-100-nm peptide-gold nanoparticle complexes improve vaccine presentation by dendritic cells in vitro

    PubMed Central

    2013-01-01

    Nanocarriers have been explored to improve the delivery of tumor antigens to dendritic cells (DCs). Gold nanoparticles are attractive nanocarriers because they are inert, non-toxic, and can be readily endocytosed by DCs. Here, we designed novel gold-based nanovaccines (AuNVs) using a simple self-assembling bottom-up conjugation method to generate high-peptide density delivery and effective immune responses with limited toxicity. AuNVs were synthesized using a self-assembling conjugation method and optimized using DC-to-splenocyte interferon-γ enzyme-linked immunosorbent spot assays. The AuNV design has shown successful peptide conjugation with approximately 90% yield while remaining smaller than 80 nm in diameter. DCs uptake AuNVs with minimal toxicity and are able to process the vaccine peptides on the particles to stimulate cytotoxic T lymphocytes (CTLs). These high-peptide density AuNVs can stimulate CTLs better than free peptides and have great potential as carriers for various vaccine types. PMID:23402570

  12. DNA vaccination strategy targets epidermal dendritic cells, initiating their migration and induction of a host immune response

    PubMed Central

    Smith, Trevor RF; Schultheis, Katherine; Kiosses, William B; Amante, Dinah H; Mendoza, Janess M; Stone, John C; McCoy, Jay R; Sardesai, Niranjan Y; Broderick, Kate E

    2014-01-01

    The immunocompetence and clinical accessibility of dermal tissue offers an appropriate and attractive target for vaccination. We previously demonstrated that pDNA injection into the skin in combination with surface electroporation (SEP), results in rapid and robust expression of the encoded antigen in the epidermis. Here, we demonstrate that intradermally EP-enhanced pDNA vaccination results in the rapid induction of a host humoral immune response. In the dermally relevant guinea pig model, we used high-resolution laser scanning confocal microscopy to observe direct dendritic cell (DC) transfections in the epidermis, to determine the migration kinetics of these cells from the epidermal layer into the dermis, and to follow them sequentially to the immediate draining lymph nodes. Furthermore, we delineate the relationship between the migration of directly transfected epidermal DCs and the generation of the host immune response. In summary, these data indicate that direct presentation of antigen to the immune system by DCs through SEP-based in vivo transfection in the epidermis, is related to the generation of a humoral immune response. PMID:26052522

  13. Dendritic cell targeted liposomes-protamine-DNA complexes mediated by synthetic mannosylated cholestrol as a potential carrier for DNA vaccine

    NASA Astrophysics Data System (ADS)

    Li, Pan; Chen, Simu; Jiang, Yuhong; Jiang, Jiayu; Zhang, Zhirong; Sun, Xun

    2013-07-01

    To construct mannosylated liposomes/protamine/DNA (LPD) carriers for DNA vaccine targeting to dendritic cells (DCs), a mannosylated cholesterol derivative (Man-C6-Chol) was synthesized via simple ester linkage and amide bonds. Then, the Man-C6-Chol was applied to LPD formulation as a synthetic ligand. The physicochemical properties of mannosylated LPD (Man-LPD) were first evaluated, including the size and zeta potential, morphology and the ability to protect DNA against DNase I degradation. Man-LPD showed a small size with a stable viral-like structure. In comparison to non-mannose liposomes/LPD (Man-free liposomes/LPD), mannosylated liposomes/LPD (Man-liposomes/Man-LPD) exhibited higher efficiency in both intracellular uptake (2.3-fold) and transfection (4.5-fold) in vitro. Subsequent MTT assays indicated that the LPD carriers had low toxicity on the tested cells. Afterwards, the investigation into the maturation activation on primary bone marrow-derived DCs (BMDCs) showed that both Man-LPD and Man-free LPD induced remarkable up-regulation of CD80, CD86 and CD40 on BMDCs. Inspired by these studies, we can conclude that the synthetic mannosylated LPD targeting to DCs was a potential carrier for DNA vaccine.

  14. The role of surface charge density in cationic liposome-promoted dendritic cell maturation and vaccine-induced immune responses

    NASA Astrophysics Data System (ADS)

    Ma, Yifan; Zhuang, Yan; Xie, Xiaofang; Wang, Ce; Wang, Fei; Zhou, Dongmei; Zeng, Jianqiang; Cai, Lintao

    2011-05-01

    Cationic liposomes have emerged as a novel adjuvant and antigen delivery system to enhance vaccine efficacy. However, the role of surface charge density in cationic liposome-regulated immune responses has not yet been elucidated. In the present study, we prepared a series of DOTAP/DOPC cationic liposomes with different surface densities by incorporating varying amounts of DOPC (a neutral lipid) into DOTAP (a cationic lipid). The results showed that DOTAP/DOPC cationic liposome-regulated immune responses relied on the surface charge density, and might occur through ROS signaling. The liposomes with a relatively high charge density, such as DOTAP/DOPC 5 : 0 and 4 : 1 liposomes, potently enhanced dendritic cell maturation, ROS generaion, antigen uptake, as well as the production of OVA-specific IgG2a and IFN-γ. In contrast, low-charge liposomes, such as DOTAP/DOPC 1 : 4 liposome, failed to promote immune responses even at high concentrations, confirming that the immunoregulatory effect of cationic liposomes is mostly attributable to their surface charge density. Moreover, the DOTAP/DOPC 1 : 4 liposome suppressed anti-OVA antibody responses in vivo. Overall, maintaining an appropriate surface charge is crucial for optimizing the adjuvant effect of cationic liposomes and enhancing the efficacy of liposome-based vaccines.

  15. High-density sub-100-nm peptide-gold nanoparticle complexes improve vaccine presentation by dendritic cells in vitro

    NASA Astrophysics Data System (ADS)

    Lin, Adam Yuh; Lunsford, Jessica; Bear, Adham Sean; Young, Joseph Keith; Eckels, Phillip; Luo, Laureen; Foster, Aaron Edward; Drezek, Rebekah Anna

    2013-02-01

    Nanocarriers have been explored to improve the delivery of tumor antigens to dendritic cells (DCs). Gold nanoparticles are attractive nanocarriers because they are inert, non-toxic, and can be readily endocytosed by DCs. Here, we designed novel gold-based nanovaccines (AuNVs) using a simple self-assembling bottom-up conjugation method to generate high-peptide density delivery and effective immune responses with limited toxicity. AuNVs were synthesized using a self-assembling conjugation method and optimized using DC-to-splenocyte interferon-γ enzyme-linked immunosorbent spot assays. The AuNV design has shown successful peptide conjugation with approximately 90% yield while remaining smaller than 80 nm in diameter. DCs uptake AuNVs with minimal toxicity and are able to process the vaccine peptides on the particles to stimulate cytotoxic T lymphocytes (CTLs). These high-peptide density AuNVs can stimulate CTLs better than free peptides and have great potential as carriers for various vaccine types.

  16. Targeting breast cancer stem cells by dendritic cell vaccination in humanized mice with breast tumor: preliminary results

    PubMed Central

    Pham, Phuc Van; Le, Hanh Thi; Vu, Binh Thanh; Pham, Viet Quoc; Le, Phong Minh; Phan, Nhan Lu-Chinh; Trinh, Ngu Van; Nguyen, Huyen Thi-Lam; Nguyen, Sinh Truong; Nguyen, Toan Linh; Phan, Ngoc Kim

    2016-01-01

    Background Breast cancer (BC) is one of the leading cancers in women. Recent progress has enabled BC to be cured with high efficiency. However, late detection or metastatic disease often renders the disease untreatable. Additionally, relapse is the main cause of death in BC patients. Breast cancer stem cells (BCSCs) are considered to cause the development of BC and are thought to be responsible for metastasis and relapse. This study aimed to target BCSCs using dendritic cells (DCs) to treat tumor-bearing humanized mice models. Materials and methods NOD/SCID mice were used to produce the humanized mice by transplantation of human hematopoietic stem cells. Human BCSCs were injected into the mammary fat pad to produce BC humanized mice. Both hematopoietic stem cells and DCs were isolated from the human umbilical cord blood, and immature DCs were produced from cultured mononuclear cells. DCs were matured by BCSC-derived antigen incubation for 48 hours. Mature DCs were vaccinated to BC humanized mice with a dose of 106 cells/mice, and the survival percentage was monitored in both treated and untreated groups. Results The results showed that DC vaccination could target BCSCs and reduce the tumor size and prolong survival. Conclusion These results suggested that targeting BCSCs with DCs is a promising therapy for BC. PMID:27499638

  17. Live Brucella abortus rough vaccine strain RB51 stimulates enhanced innate immune response in vitro compared to rough vaccine strain RB51SOD and virulent smooth strain 2308 in murine bone marrow-derived dendritic cells.

    PubMed

    Surendran, Naveen; Hiltbold, Elizabeth M; Heid, Bettina; Sriranganathan, Nammalwar; Boyle, Stephen M; Zimmerman, Kurt L; Makris, Melissa R; Witonsky, Sharon G

    2011-01-10

    Brucella spp. are Gram-negative, coccobacillary, facultative intracellular pathogens. B. abortus strain 2308 is a pathogenic strain affecting cattle and humans. Rough B. abortus strain RB51, which lacks the O-side chain of lipopolysaccharide (LPS), is the live attenuated USDA approved vaccine for cattle in the United States. Strain RB51SOD, which overexpresses Cu-Zn superoxide dismutase (SOD), has been shown to confer better protection than strain RB51 in a murine model. Protection against brucellosis is mediated by a strong CD4+ Th(1) and CD8+ Tc(1) adaptive immune response. In order to stimulate a robust adaptive response, a solid innate immune response, including that mediated by dendritic cells, is essential. As dendritic cells (DCs) are highly susceptible to Brucella infection, it is possible that pathogenic strains could limit the innate and thereby adaptive immune response. By contrast, vaccine strains could limit or bolster the innate and subsequent adaptive immune response. Identifying how Brucella vaccines stimulate innate and adaptive immunity is critical for enhancing vaccine efficacy. The ability of rough vaccine strains RB51 and RB51SOD to stimulate DC function has not been characterized. We report that live rough vaccine strain RB51 induced significantly better (p ≤ 0.05) DC maturation and function compared to either strain RB51SOD or smooth virulent strain 2308, based on costimulatory marker expression and cytokine production.

  18. Prophylactic and therapeutic vaccination with dendritic cells against hepatitis C virus infection

    PubMed Central

    Encke, J; Findeklee, J; Geib, J; Pfaff, E; Stremmel, W

    2005-01-01

    Antigen uptake and presentation capacities enable DC to prime and activate T cells. Recently, several studies demonstrated a diminished DC function in hepatitis C virus (HCV) infected patients showing impaired abilities to stimulate allogenic T cells and to produce IFN-γ in HCV infected patients. Moreover, DC of patients who have resolved HCV infection behave like DC from healthy donors responding to maturation stimuli, decrease antigen uptake, up-regulate expression of appropriate surface marker, and are potent stimulators of allogenic T cells. A number of studies have demonstrated in tumour models and models of infectious diseases strong induction of immune responses after DC vaccination. Because DC are essential for T-cell activation and since viral clearance in HCV infected patients is associated with a vigorous T-cell response, we propose a new type of HCV vaccine based on ex vivo stimulated and matured DC loaded with HCV specific antigens. This vaccine circumvents the impaired DC maturation and the down regulated DC function of HCV infected patients in vivo by giving the necessary maturation stimuli and the HCV antigens in a different setting and location ex vivo. Strong humoral and cellular immune responses were detected after HCV core DC vaccination. Furthermore, DC vaccination shows partial protection in a therapeutic and prophylactic model of HCV infection. In conclusion, mice immunized with HCV core pulsed DC generated a specific antiviral response in a mouse HCV challenge model. Our results indicate that HCV core pulsed DC may serve as a new modality for immunotherapy of HCV especially in chronically infected patients. PMID:16232225

  19. Induction of a VLA-2 (CD49b)-expressing effector T cell population by a cell-based neuroblastoma vaccine expressing CD137L.

    PubMed

    Yan, Xiaocai; Johnson, Bryon D; Orentas, Rimas J

    2008-10-01

    In malignancies where no universally expressed dominant Ag exists, the use of tumor cell-based vaccines has been proposed. We have modified a mouse neuroblastoma cell line to express either CD80 (B7.1), CD137L (4-1BBL), or both receptors on the tumor cell surface. Vaccines expressing both induce a strong T cell response that is unique in that among responding CD8 T cells, a T effector memory cell (T(EM)) response arises in which a large number of the T(EM) express the alpha-chain of VLA-2, CD49b. We demonstrate using both in vitro and in vivo assays that the CD49b(+) CD8 T cell population is a far more potent antitumor effector cell population than nonfractionated CD8 or CD49b(-) CD8 T cells and that CD49b on vaccine-induced CD8 T cells mediates invasion of a collagen matrix. In in vivo rechallenge studies, CD49b(+) T cells no longer expanded, indicating that CD49b T(EM) expansion is restricted to the initial response to vaccine. To demonstrate a mechanistic link between the expression of costimulatory molecules on the vaccine and CD49b on responding T cells, we stimulated naive T cells in vitro with artificial APC expressing different combinations of anti-CD3, anti-CD28, and CD137L. Although some mRNA encoding CD49b was induced by combining anti-CD3 with anti-CD28 or CD137L, the highest level was induced when all three signals were present. This indicates that CD49b expression results from additive costimulation and that the level of CD49b message serves as an indicator of the effectiveness of T cell activation by a cell-based vaccine.

  20. In vitro innate immune cell based models to assess whole cell Bordetella pertussis vaccine quality: a proof of principle.

    PubMed

    Hoonakker, M E; Verhagen, L M; Hendriksen, C F M; van Els, C A C M; Vandebriel, R J; Sloots, A; Han, W G H

    2015-03-01

    Lot release testing of vaccines is primarily based on animal models that are costly, time-consuming and sometimes of questionable relevance. In order to reduce animal use, functional in vitro assays are being explored as an alternative approach for the current lot release testing paradigm. In this study, we present an evaluation of APC platforms assessing innate immune activation by whole cell Bordetella pertussis (wP) vaccines. Primary monocytes, monocyte-derived DC (moDC) and human monocyte/DC cell lines (MonoMac6 and MUTZ-3) were compared for their capacity to respond to wP vaccines of varying quality. To produce such vaccines, the production process of wP was manipulated, resulting in wP vaccines covering a range of in vivo potencies. The responses of MUTZ-3 cells and primary monocytes to these vaccines were marginal and these models were therefore considered inappropriate. Importantly, moDC and MonoMac6 cells responded to the wP vaccines and discriminated between vaccines of varying quality, although slight variations in the responses to wP vaccines of similar quality were also observed. This study provides a proof of principle for the use of in vitro APC platforms as part of a new strategy to assess wP vaccine lot consistency, though careful standardisation of assay conditions is necessary.

  1. The dendritic cell subtype-restricted C-type lectin Clec9A is a target for vaccine enhancement

    PubMed Central

    Proietto, Anna I.; Ahmet, Fatma; Kitsoulis, Susie; Shin Teh, Joo; Lo, Jennifer C. Y.; Rizzitelli, Alexandra; Wu, Li; Vremec, David; van Dommelen, Serani L. H.; Campbell, Ian K.; Maraskovsky, Eugene; Braley, Hal; Davey, Gayle M.; Mottram, Patricia; van de Velde, Nicholas; Jensen, Kent; Lew, Andrew M.; Wright, Mark D.; Heath, William R.; Shortman, Ken

    2008-01-01

    A novel dendritic cell (DC)–restricted molecule, Clec9A, was identified by gene expression profiling of mouse DC subtypes. Based on sequence similarity, a human ortholog was identified. Clec9A encodes a type II membrane protein with a single extracellular C-type lectin domain. Both the mouse Clec9A and human CLEC9A were cloned and expressed, and monoclonal antibodies (mAbs) against each were generated. Surface staining revealed that Clec9A was selective for mouse DCs and was restricted to the CD8+ conventional DC and plasmacytoid DC subtypes. A subset of human blood DCs also expressed CLEC9A. A single injection of mice with a mAb against Clec9A, which targets antigens (Ags) to the DCs, produced a striking enhancement of antibody responses in the absence of added adjuvants or danger signals, even in mice lacking Toll-like receptor signaling pathways. Such targeting also enhanced CD4 and CD8 T-cell responses. Thus, Clec9A serves as a new marker to distinguish subtypes of both mouse and human DCs. Furthermore, targeting Ags to DCs with antibodies to Clec9A is a promising strategy to enhance the efficiency of vaccines, even in the absence of adjuvants. PMID:18669894

  2. Generation of hypoallergenic neoglycoconjugates for dendritic cell targeted vaccination: A novel tool for specific immunotherapy

    PubMed Central

    Weinberger, Esther E.; Himly, Martin; Myschik, Julia; Hauser, Michael; Altmann, Friedrich; Isakovic, Almedina; Scheiblhofer, Sandra; Thalhamer, Josef; Weiss, Richard

    2013-01-01

    The incidence of allergic disorders and asthma continuously increased over the past decades, consuming a considerable proportion of the health care budget. Allergen-specific subcutaneous immunotherapy represents the only intervention treating the underlying causes of type I allergies, but still suffers from unwanted side effects and low compliance. There is an urgent need for novel approaches improving safety and efficacy of this therapy. In the present study we investigated carbohydrate-mediated targeting of allergens to dermal antigen-presenting cells and its influence on immunogenicity and allergenicity. Mannan, high (40 kDa) and low (6 kDa) molecular weight dextran, and maltodextrin were covalently attached to ovalbumin and papain via mild carbohydrate oxidation resulting in neoglycocomplexes of various sizes. In particular, mannan-conjugates were efficiently taken up by dendritic cells in vivo leading to elevated humoral immune responses against the protein moiety and a shift from IgE to IgG. Beyond providing an adjuvant effect, papain glycocomplexes also proved to mask B-cell epitopes, thus rendering the allergen derivative hypoallergenic. The present data demonstrate that carbohydrate-modified allergens combine targeting of antigen presenting cells with hypoallergenicity, offering the potential for low dose allergen-specific immunotherapy while concomitantly reducing the risk of side effects. PMID:23147517

  3. Dendritic Cell Vaccination Combined with CTLA4 Blockade in Patients with Metastatic Melanoma

    PubMed Central

    Ribas, Antoni; Comin-Anduix, Begoña; Chmielowski, Bartosz; Jalil, Jason; de la Rocha, Pilar; McCannel, Tara A.; Ochoa, Maria Teresa; Seja, Elizabeth; Villanueva, Arturo; Oseguera, Denise K.; Straatsma, Bradley R.; Cochran, Alistair J.; Glaspy, John A.; Hui, Liu; Marincola, Francesco M.; Wang, Ena; Economou, James S.; Gomez-Navarro, Jesus

    2009-01-01

    Purpose Tumor antigen-loaded dendritic cells (DC) are believed to activate antitumor immunity by stimulating T cells, and cytotoxic T lymphocyte-associated antigen 4 (CTLA4)-blocking antibodies should release a key negative regulatory pathway on T cells. The combination was tested in a phase 1 clinical trial in patients with advanced melanoma. Experimental Design Autologous DC were pulsed with MART-126-35 peptide and administered with a dose escalation of the CTLA4 blocking antibody tremelimumab. Sixteen patients were accrued to 5 dose levels. Primary endpoints were safety and immune effects; clinical efficacy was a secondary endpoint. Results Dose-limiting toxicities (DLTs) of grade 3 diarrhea and grade 2 hypophysitis developed in 2 out of 3 patients receiving tremelimumab at 10 mg/kg monthly. Four patients had an objective tumor response, two partial responses (PR) and two complete responses (CR), all melanoma-free between 2 and 4 years after study initiation. There was no difference in immune monitoring results between patients with an objective tumor response and those without a response. Exploratory gene expression analysis suggested that immune-related gene signatures, in particular for B cell function, may be important in predicting response. Conclusion The combination of MART-1 peptide-pulsed DC and tremelimumab results in objective and durable tumor responses at the higher range of the expected response rate with either agent alone. PMID:19789309

  4. Tolerogenic dendritic cells and negative vaccination in transplantation: from rodents to clinical trials

    PubMed Central

    Moreau, Aurélie; Varey, Emilie; Bériou, Gaëlle; Hill, Marcelo; Bouchet-Delbos, Laurence; Segovia, Mercedes; Cuturi, Maria-Cristina

    2012-01-01

    The use of immunosuppressive (IS) drugs to treat transplant recipients has markedly reduced the incidence of acute rejection and early graft loss. However, such treatments have numerous adverse side effects and fail to prevent chronic allograft dysfunction. In this context, therapies based on the adoptive transfer of regulatory cells are promising strategies to induce indefinite transplant survival. The use of tolerogenic dendritic cells (DC) has shown great potential, as preliminary experiments in rodents have demonstrated that administration of tolerogenic DC prolongs graft survival. Recipient DC, Donor DC, or Donor Ag-pulsed recipient DC have been used in preclinical studies and administration of these cells with suboptimal immunosuppression increases their tolerogenic potential. We have demonstrated that autologous unpulsed tolerogenic DC injected in the presence of suboptimal immunosuppression are able to induce Ag-specific allograft tolerance. We derived similar tolerogenic DC in different animal models (mice and non-human primates) and confirmed their protective abilities in vitro and in vivo. The mechanisms involved in the tolerance induced by autologous tolerogenic DC were also investigated. With the aim of using autologous DC in kidney transplant patients, we have developed and characterized tolerogenic monocyte-derived DC in humans. In this review, we will discuss the preclinical studies and describe our recent results from the generation and characterization of tolerogenic monocyte-derived DC in humans for a clinical application. We will also discuss the limits and difficulties in translating preclinical experiments to theclinic. PMID:22908013

  5. A DNA vaccine against tuberculosis based on the 65 kDa heat-shock protein differentially activates human macrophages and dendritic cells

    PubMed Central

    Franco, Luís H; Wowk, Pryscilla F; Silva, Célio L; Trombone, Ana PF; Coelho-Castelo, Arlete AM; Oliver, Constance; Jamur, Maria C; Moretto, Edson L; Bonato, Vânia LD

    2008-01-01

    Background A number of reports have demonstrated that rodents immunized with DNA vaccines can produce antibodies and cellular immune responses presenting a long-lasting protective immunity. These findings have attracted considerable interest in the field of DNA vaccination. We have previously described the prophylactic and therapeutic effects of a DNA vaccine encoding the Mycobacterium leprae 65 kDa heat shock protein (DNA-HSP65) in a murine model of tuberculosis. As DNA vaccines are often less effective in humans, we aimed to find out how the DNA-HSP65 stimulates human immune responses. Methods To address this question, we analysed the activation of both human macrophages and dendritic cells (DCs) cultured with DNA-HSP65. Then, these cells stimulated with the DNA vaccine were evaluated regarding the expression of surface markers, cytokine production and microbicidal activity. Results It was observed that DCs and macrophages presented different ability to uptake DNA vaccine. Under DNA stimulation, macrophages, characterized as CD11b+/CD86+/HLA-DR+, produced high levels of TNF-alpha, IL-6 (pro-inflammatory cytokines), and IL-10 (anti-inflammatory cytokine). Besides, they also presented a microbicidal activity higher than that observed in DCs after infection with M. tuberculosis. On the other hand, DCs, characterized as CD11c+/CD86+/CD123-/BDCA-4+/IFN-alpha-, produced high levels of IL-12 and low levels of TNF-alpha, IL-6 and IL-10. Finally, the DNA-HSP65 vaccine was able to induce proliferation of peripheral blood lymphocytes. Conclusion Our data suggest that the immune response is differently activated by the DNA-HSP65 vaccine in humans. These findings provide important clues to the design of new strategies for using DNA vaccines in human immunotherapy. PMID:18208592

  6. Prophylactic vaccines are potent activators of monocyte-derived dendritic cells and drive effective anti-tumor responses in melanoma patients at the cost of toxicity.

    PubMed

    Bol, Kalijn F; Aarntzen, Erik H J G; Pots, Jeanette M; Olde Nordkamp, Michel A M; van de Rakt, Mandy W M M; Scharenborg, Nicole M; de Boer, Annemiek J; van Oorschot, Tom G M; Croockewit, Sandra A J; Blokx, Willeke A M; Oyen, Wim J G; Boerman, Otto C; Mus, Roel D M; van Rossum, Michelle M; van der Graaf, Chantal A A; Punt, Cornelis J A; Adema, Gosse J; Figdor, Carl G; de Vries, I Jolanda M; Schreibelt, Gerty

    2016-03-01

    Dendritic cell (DC)-based immunotherapy is explored worldwide in cancer patients, predominantly with DC matured with pro-inflammatory cytokines and prostaglandin E2. We studied the safety and efficacy of vaccination with monocyte-derived DC matured with a cocktail of prophylactic vaccines that contain clinical-grade Toll-like receptor ligands (BCG, Typhim, Act-HIB) and prostaglandin E2 (VAC-DC). Stage III and IV melanoma patients were vaccinated via intranodal injection (12 patients) or combined intradermal/intravenous injection (16 patients) with VAC-DC loaded with keyhole limpet hemocyanin (KLH) and mRNA encoding tumor antigens gp100 and tyrosinase. Tumor antigen-specific T cell responses were monitored in blood and skin-test infiltrating-lymphocyte cultures. Almost all patients mounted prophylactic vaccine- or KLH-specific immune responses. Both after intranodal injection and after intradermal/intravenous injection, tumor antigen-specific immune responses were detected, which coincide with longer overall survival in stage IV melanoma patients. VAC-DC induce local and systemic CTC grade 2 and 3 toxicity, which is most likely caused by BCG in the maturation cocktail. The side effects were self-limiting or resolved upon a short period of systemic steroid therapy. We conclude that VAC-DC can induce functional tumor-specific responses. Unfortunately, toxicity observed after vaccination precludes the general application of VAC-DC, since in DC maturated with prophylactic vaccines BCG appears to be essential in the maturation cocktail.

  7. A novel dendritic-cell-targeting DNA vaccine for hepatitis B induces T cell and humoral immune responses and potentiates the antivirus activity in HBV transgenic mice.

    PubMed

    Yu, Debin; Liu, Hong; Shi, Shuai; Dong, Liwei; Wang, Hongge; Wu, Nuoting; Gao, Hui; Cheng, Zhaojun; Zheng, Qun; Cai, Jiaojiao; Zou, Libo; Zou, Zhihua

    2015-12-01

    Strategies for inducing an effective immune response following vaccination have focused on targeting antigens to dendritic cells (DCs) through the DC-specific surface molecule DEC-205. The immunogenicity and efficacy of DNA vaccination can also be enhanced by fusing the encoded antigen to single-chain antibodies directed against DEC-205. Here, we investigated this promising approach for its enhancement of hepatitis B virus (HBV)-specific cellular and humoral immune responses and its antiviral effects in HBV transgenic mice. A plasmid DNA vaccine encoding mouse DEC-205 single-chain fragment variable (mDEC-205-scFv) linked with the hepatitis B surface antigen (HBsAg) was constructed. Vaccination with this fusion DNA vaccine in HBV transgenic mice induced robust antiviral T cell and antibody immunity against HBsAg. The levels of serum-circulating HBsAg and the HBV DNA copy number were downregulated by the induction of a higher HBsAg-specific response. Thus, in this study, we demonstrated the therapeutic efficacy of the novel mDEC-205-scFv-fused DNA vaccine in a mouse model of immune-tolerant, chronic HBV infection.

  8. Clinical outcomes of a novel therapeutic vaccine with Tax peptide-pulsed dendritic cells for adult T cell leukaemia/lymphoma in a pilot study.

    PubMed

    Suehiro, Youko; Hasegawa, Atsuhiko; Iino, Tadafumi; Sasada, Amane; Watanabe, Nobukazu; Matsuoka, Masao; Takamori, Ayako; Tanosaki, Ryuji; Utsunomiya, Atae; Choi, Ilseung; Fukuda, Tetsuya; Miura, Osamu; Takaishi, Shigeo; Teshima, Takanori; Akashi, Koichi; Kannagi, Mari; Uike, Naokuni; Okamura, Jun

    2015-05-01

    Adult T cell leukaemia/lymphoma (ATL) is a human T cell leukaemia virus type-I (HTLV-I)-infected T cell malignancy with poor prognosis. We herein developed a novel therapeutic vaccine designed to augment an HTLV-I Tax-specific cytotoxic T lymphocyte (CTL) response that has been implicated in anti-ATL effects, and conducted a pilot study to investigate its safety and efficacy. Three previously treated ATL patients, classified as intermediate- to high-risk, were subcutaneously administered with the vaccine, consisting of autologous dendritic cells (DCs) pulsed with Tax peptides corresponding to the CTL epitopes. In all patients, the performance status improved after vaccination without severe adverse events, and Tax-specific CTL responses were observed with peaks at 16-20 weeks. Two patients achieved partial remission in the first 8 weeks, one of whom later achieved complete remission, maintaining their remission status without any additional chemotherapy 24 and 19 months after vaccination, respectively. The third patient, whose tumour cells lacked the ability to express Tax at biopsy, obtained stable disease in the first 8 weeks and later developed slowly progressive disease although additional therapy was not required for 14 months. The clinical outcomes of this pilot study indicate that the Tax peptide-pulsed DC vaccine is a safe and promising immunotherapy for ATL. PMID:25612920

  9. Carthamus tinctorius Enhances the Antitumor Activity of Dendritic Cell Vaccines via Polarization toward Th1 Cytokines and Increase of Cytotoxic T Lymphocytes

    PubMed Central

    Chang, Jia-Ming; Hung, Le-Mei; Chyan, Yau-Jan; Cheng, Chun-Ming; Wu, Rey-Yuh

    2011-01-01

    Carthamus tinctorius (CT), also named safflower, is a traditional Chinese medicine widely used to improve blood circulation. CT also has been studied for its antitumor activity in certain cancers. To investigate the effects of CT on the dendritic cell (DC)-based vaccine in cancer treatment, cytokine secretion of mouse splenic T lymphocytes and the maturation of DCs in response to CT were analyzed. To assess the antitumor activity of CT extract on mouse CD117+ (c-kit)-derived DCs pulsed with JC mammal tumor antigens, the JC tumor was challenged by the CT-treated DC vaccine in vivo. CT stimulated IFN-γ and IL-10 secretion of splenic T lymphocytes and enhanced the maturation of DCs by enhancing immunological molecule expression. When DC vaccine was pulsed with tumor antigens along with CT extract, the levels of TNF-α and IL-1β were dramatically increased with a dose-dependent response and more immunologic and co-stimulatory molecules were expressed on the DC surface. In addition, CT-treated tumor lysate-pulsed DC vaccine reduced the tumor weight in tumor-bearing mice by 15.3% more than tumor lysate-pulsed DC vaccine without CT treatment. CT polarized cytokine secretion toward the Th1 pathway and also increased the population of cytotoxic T lymphocytes ex vivo. In conclusion, CT activates DCs might promote the recognition of antigens and facilitate antigen presentation to Th1 immune responses. PMID:19001481

  10. Clinical outcomes of a novel therapeutic vaccine with Tax peptide-pulsed dendritic cells for adult T cell leukaemia/lymphoma in a pilot study.

    PubMed

    Suehiro, Youko; Hasegawa, Atsuhiko; Iino, Tadafumi; Sasada, Amane; Watanabe, Nobukazu; Matsuoka, Masao; Takamori, Ayako; Tanosaki, Ryuji; Utsunomiya, Atae; Choi, Ilseung; Fukuda, Tetsuya; Miura, Osamu; Takaishi, Shigeo; Teshima, Takanori; Akashi, Koichi; Kannagi, Mari; Uike, Naokuni; Okamura, Jun

    2015-05-01

    Adult T cell leukaemia/lymphoma (ATL) is a human T cell leukaemia virus type-I (HTLV-I)-infected T cell malignancy with poor prognosis. We herein developed a novel therapeutic vaccine designed to augment an HTLV-I Tax-specific cytotoxic T lymphocyte (CTL) response that has been implicated in anti-ATL effects, and conducted a pilot study to investigate its safety and efficacy. Three previously treated ATL patients, classified as intermediate- to high-risk, were subcutaneously administered with the vaccine, consisting of autologous dendritic cells (DCs) pulsed with Tax peptides corresponding to the CTL epitopes. In all patients, the performance status improved after vaccination without severe adverse events, and Tax-specific CTL responses were observed with peaks at 16-20 weeks. Two patients achieved partial remission in the first 8 weeks, one of whom later achieved complete remission, maintaining their remission status without any additional chemotherapy 24 and 19 months after vaccination, respectively. The third patient, whose tumour cells lacked the ability to express Tax at biopsy, obtained stable disease in the first 8 weeks and later developed slowly progressive disease although additional therapy was not required for 14 months. The clinical outcomes of this pilot study indicate that the Tax peptide-pulsed DC vaccine is a safe and promising immunotherapy for ATL.

  11. Synthetic virus seeds for improved vaccine safety: Genetic reconstruction of poliovirus seeds for a PER.C6 cell based inactivated poliovirus vaccine.

    PubMed

    Sanders, Barbara P; Edo-Matas, Diana; Papic, Natasa; Schuitemaker, Hanneke; Custers, Jerome H H V

    2015-10-13

    Safety of vaccines can be compromised by contamination with adventitious agents. One potential source of adventitious agents is a vaccine seed, typically derived from historic clinical isolates with poorly defined origins. Here we generated synthetic poliovirus seeds derived from chemically synthesized DNA plasmids encoding the sequence of wild-type poliovirus strains used in marketed inactivated poliovirus vaccines. The synthetic strains were phenotypically identical to wild-type polioviruses as shown by equivalent infectious titers in culture supernatant and antigenic content, even when infection cultures are scaled up to 10-25L bioreactors. Moreover, the synthetic seeds were genetically stable upon extended passaging on the PER.C6 cell culture platform. Use of synthetic seeds produced on the serum-free PER.C6 cell platform ensures a perfectly documented seed history and maximum control over starting materials. It provides an opportunity to maximize vaccine safety which increases the prospect of a vaccine end product that is free from adventitious agents.

  12. Langerin negative dendritic cells promote potent CD8+ T-cell priming by skin delivery of live adenovirus vaccine microneedle arrays

    PubMed Central

    Bachy, Veronique; Hervouet, Catherine; Becker, Pablo D.; Chorro, Laurent; Carlin, Leo M.; Herath, Shanthi; Papagatsias, Timos; Barbaroux, Jean-Baptiste; Oh, Sea-Jin; Benlahrech, Adel; Athanasopoulos, Takis; Dickson, George; Patterson, Steven; Kwon, Sung-Yun; Geissmann, Frederic; Klavinskis, Linda S.

    2013-01-01

    Stabilization of virus protein structure and nucleic acid integrity is challenging yet essential to preserve the transcriptional competence of live recombinant viral vaccine vectors in the absence of a cold chain. When coupled with needle-free skin delivery, such a platform would address an unmet need in global vaccine coverage against HIV and other global pathogens. Herein, we show that a simple dissolvable microneedle array (MA) delivery system preserves the immunogenicity of vaccines encoded by live recombinant human adenovirus type 5 (rAdHu5). Specifically, dried rAdHu5 MA immunization induced CD8+ T-cell expansion and multifunctional cytokine responses equipotent with conventional injectable routes of immunization. Intravital imaging demonstrated MA cargo distributed both in the epidermis and dermis, with acquisition by CD11c+ dendritic cells (DCs) in the dermis. The MA immunizing properties were attributable to CD11c+ MHCIIhi CD8αneg epithelial cell adhesion molecule (EpCAMneg) CD11b+ langerin (Lang; CD207)neg DCs, but neither Langerhans cells nor Lang+ DCs were required for CD8+ T-cell priming. This study demonstrates an important technical advance for viral vaccine vectors progressing to the clinic and provides insights into the mechanism of CD8+ T-cell priming by live rAdHu5 MAs. PMID:23386724

  13. A correlation of measles specific antibodies and the number of plasmacytoid dendritic cells is observed after measles vaccination in 9 month old infants

    PubMed Central

    García-León, Miguel L; Bonifaz, Laura C; Espinosa-Torres, Bogart; Hernández-Pérez, Brenda; Cardiel-Marmolejo, Lino; Santos-Preciado, José I; Wong-Chew, Rosa M

    2015-01-01

    Measles virus (MeV) represents one of the main causes of death among young children, particularly in developing countries. Upon infection, MeV controls both interferon induction (IFN) and the interferon signaling pathway which results in a severe host immunosuppression that can persists for up to 6 mo after infection. Despite the global biology of MeV infection is well studied, the role of the plasmacytoid dendritic cells (pDCs) during the host innate immune response after measles vaccination remains largely uncharacterized. Here we investigated the role of pDCs, the major producers of interferon in response to viral infections, in the development of adaptive immune response against MeV vaccine. We report that there is a strong correlation between pDCs population and the humoral immune response to Edmonston Zagreb (EZ) measles vaccination in 9-month-old mexican infants. Five infants were further evaluated after vaccination, showing a clear increase in pDCs at baseline, one week and 3 months after immunization. Three months postvaccination they showed increase in memory T-cells and pDCs populations, high induction of adaptive immunity and also observed a correlation between pDCs number and the humoral immune response. These findings suggest that the development and magnitude of the adaptive immune response following measles immunization is directly dependent on the number of pDCs of the innate immune response. PMID:26075901

  14. A correlation of measles specific antibodies and the number of plasmacytoid dendritic cells is observed after measles vaccination in 9 month old infants.

    PubMed

    García-León, Miguel L; Bonifaz, Laura C; Espinosa-Torres, Bogart; Hernández-Pérez, Brenda; Cardiel-Marmolejo, Lino; Santos-Preciado, José I; Wong-Chew, Rosa M

    2015-01-01

    Measles virus (MeV) represents one of the main causes of death among young children, particularly in developing countries. Upon infection, MeV controls both interferon induction (IFN) and the interferon signaling pathway which results in a severe host immunosuppression that can persists for up to 6 mo after infection. Despite the global biology of MeV infection is well studied, the role of the plasmacytoid dendritic cells (pDCs) during the host innate immune response after measles vaccination remains largely uncharacterized. Here we investigated the role of pDCs, the major producers of interferon in response to viral infections, in the development of adaptive immune response against MeV vaccine. We report that there is a strong correlation between pDCs population and the humoral immune response to Edmonston Zagreb (EZ) measles vaccination in 9-month-old mexican infants. Five infants were further evaluated after vaccination, showing a clear increase in pDCs at baseline, one week and 3 months after immunization. Three months postvaccination they showed increase in memory T-cells and pDCs populations, high induction of adaptive immunity and also observed a correlation between pDCs number and the humoral immune response. These findings suggest that the development and magnitude of the adaptive immune response following measles immunization is directly dependent on the number of pDCs of the innate immune response.

  15. Irradiation of necrotic cancer cells, employed for pulsing dendritic cells (DCs), potentiates DC vaccine-induced antitumor immunity against high-grade glioma

    PubMed Central

    Vandenberk, Lien; Garg, Abhishek D.; Verschuere, Tina; Koks, Carolien; Belmans, Jochen; Beullens, Monique; Agostinis, Patrizia; De Vleeschouwer, Steven; Van Gool, Stefaan W.

    2016-01-01

    ABSTRACT Dendritic cell (DC)-based immunotherapy has yielded promising results against high-grade glioma (HGG). However, the efficacy of DC vaccines is abated by HGG-induced immunosuppression and lack of attention toward the immunogenicity of the tumor lysate/cells used for pulsing DCs. A literature analysis of DC vaccination clinical trials in HGG patients delineated the following two most predominantly applied methods for tumor lysate preparation: freeze-thaw (FT)-induced necrosis or FT-necrosis followed by X-ray irradiation. However, from the available clinical evidence, it is unclear which of both methodologies has superior immunogenic potential. Using an orthotopic HGG murine model (GL261-C57BL/6), we observed that prophylactic vaccination with DCs pulsed with irradiated FT-necrotic cells (compared to FT-necrotic cells only) prolonged overall survival by increasing tumor rejection in glioma-challenged mice. This was associated, both in prophylactic and curative vaccination setups, with an increase in brain-infiltrating Th1 cells and cytotoxic T lymphocytes (CTL), paralleled by a reduced accumulation of regulatory T cells, tumor-associated macrophages (TAM) and myeloid-derived suppressor cells (MDSC). Further analysis showed that irradiation treatment of FT-necrotic cells considerably increased the levels of carbonylated proteins — a surrogate-marker of oxidation-associated molecular patterns (OAMPs). Through further application of antioxidants and hydrogen peroxide, we found a striking correlation between the amount of lysate-associated protein carbonylation/OAMPs and DC vaccine-mediated tumor rejection capacity thereby suggesting for the first time a role for protein carbonylation/OAMPs in at least partially mediating antitumor immunity. Together, these data strongly advocate the use of protein oxidation-inducing modalities like irradiation for increasing the immunogenicity of tumor lysate/cells used for pulsing DC vaccines. PMID:27057467

  16. How do I steer this thing? Using dendritic cell targeted vaccination to more effectively guide the antitumor immune response with combination immunotherapy.

    PubMed

    Linch, Stefanie N; Redmond, William L

    2016-01-01

    Mounting an immune response sufficient to eradicate a tumor is the goal of modern immunotherapy. Single agent therapies with checkpoint inhibitors or costimulatory molecule agonists are effective only for a small portion of all treated patients. Combined therapy, e.g., CTLA-4 and PD-1 checkpoint blockade, is a more effective treatment modality, but in preclinical studies OX40 agonism with CTLA-4 blockade using monoclonal antibodies (aOX40/aCTLA-4) failed to induce tumor regression of larger, more established tumors. We hypothesized that administration of a vaccine with a tumor-associated antigen targeted to the appropriate antigen presenting cell could make combined aOX40/aCTLA-4 therapy more effective. We administered an antibody-based vaccine targeting HER2 to the DEC-205 endocytic receptor on cross-presenting dendritic cells (anti-DEC-205/HER2; aDEC-205/HER2) and a potent adjuvant (poly (I:C)) to assist with maturation, along with aOX40/aCTLA-4 therapy. This therapy induced complete regression of established tumors and a pronounced infiltration of effector CD8 and CD4 T cells, with no effect on regulatory T cell infiltration compared to aOX40/aCTLA-4 alone. To be maximally effective, this therapy required expression of both OX40 and CTLA-4 on CD8 T cells. These data indicate that vaccination targeting cross-presenting dendritic cells with a tumor-associated antigen is a highly effective immunization strategy that can overcome some of the limitations of current systemic immunotherapeutic approaches that lack defined tumor-directed antigenic targets. PMID:27330804

  17. Poly-(lactic-co-glycolic-acid)-based particulate vaccines: particle uptake by dendritic cells is a key parameter for immune activation.

    PubMed

    Silva, A L; Rosalia, R A; Varypataki, E; Sibuea, S; Ossendorp, F; Jiskoot, W

    2015-02-11

    Poly(lactic-co-glycolic acid) (PLGA) particles have been extensively studied as biodegradable delivery system to improve the potency and safety of protein-based vaccines. In this study we analyzed how the size of PLGA particles, and hence their ability to be engulfed by dendritic cells (DC), affects the type and magnitude of the immune response in comparison to sustained release from a local depot. PLGA microparticles (MP, volume mean diameter≈112 μm) and nanoparticles (NP, Z-average diameter≈350 nm) co-encapsulating ovalbumin (OVA) and poly(I:C), with comparable antigen (Ag) release characteristics, were prepared and characterized. The immunogenicity of these two distinct particulate vaccines was evaluated in vitro and in vivo. NP were efficiently taken up by DC and greatly facilitated MHC I Ag presentation in vitro, whereas DC cultured in the presence of MP failed to internalize significant amounts of Ag and hardly showed MHC I Ag presentation. Vaccination of mice with NP resulted in significantly better priming of Ag-specific CD8(+) T cells compared to MP and OVA emulsified with incomplete Freund's adjuvant (IFA). Moreover, NP induced a balanced TH1/TH2-type antibody response, compared to vaccinations with IFA which stimulated a predominant TH2-type response, whereas MP failed to increase antibody titers. In conclusion, we postulate that particle internalization is of crucial importance and therefore particulate vaccines should be formulated in the nano- but not micro-size range to achieve efficient uptake, significant MHC class I cross-presentation and effective T and B cell responses.

  18. Targeting a mimotope vaccine to activating Fcgamma receptors empowers dendritic cells to prime specific CD8+ T cell responses in tumor-bearing mice.

    PubMed

    Gil, Margaret; Bieniasz, Magdalena; Wierzbicki, Andrzej; Bambach, Barbara J; Rokita, Hanna; Kozbor, Danuta

    2009-11-15

    A major challenge for inducing antitumor immune responses with native or modified tumor/self-Ags in tumor-bearing hosts relates to achieving efficient uptake and processing by dendritic cells (DCs) to activate immune effector cells and limit the generation of regulatory T cell activity. We analyzed the ability of therapeutic DC vaccines expressing a CD166 cross-reactive mimotope of the GD2 ganglioside, 47-LDA, to selectively expand adoptively transferred, tumor-specific T cells in NXS2 neuroblastoma tumor-bearing syngeneic mice. Before the adoptive cell transfer and DC vaccination, the tumor-bearing mice were lymphodepleted by nonmyeloablative total body irradiation or a myeloablative regimen that required bone marrow transplantation. The 47-LDA mimotope was presented to DCs either as a linear polypeptide in conjunction with universal Th epitopes or as a fusion protein with the murine IgG2a Fc fragment (47-LDA-Fcgamma2a) to deliver the antigenic cassette to the activating Fcgamma receptors. We demonstrate that immunization of adoptively transferred T cells in tumor-bearing mice with the 47-LDA mimotope expressed in the context of the activating Fc fusion protein induced higher levels of antitumor immune responses and protection than the 47-LDA polypeptide-DC vaccine. The antitumor efficacy of the therapeutic 47-LDA-Fcgamma2a-DC vaccine was comparable to that achieved by a virotherapy-associated cancer vaccine using a recombinant oncolytic vaccinia virus expressing the 47-LDA-Fcgamma2a fusion protein. The latter treatment, however, did not require total body irradiation or adoptive cell transfer and resulted in induction of antitumor immune responses in the setting of established tolerance, paving the way for testing novel anticancer treatment strategies.

  19. Targeting a Mimotope Vaccine to Activating Fcγ Receptors Empowers Dendritic Cells to Prime Specific CD8+ T Cell Responses in Tumor-Bearing Mice1

    PubMed Central

    Gil, Margaret; Bieniasz, Magdalena; Wierzbicki, Andrzej; Bambach, Barbara J.; Rokita, Hanna; Kozbor, Danuta

    2009-01-01

    A major challenge for inducing antitumor immune responses with native or modified tumor/self-Ags in tumor-bearing hosts relates to achieving efficient uptake and processing by dendritic cells (DCs) to activate immune effector cells and limit the generation of regulatory T cell activity. We analyzed the ability of therapeutic DC vaccines expressing a CD166 cross-reactive mimotope of the GD2 ganglioside, 47-LDA, to selectively expand adoptively transferred, tumor-specific T cells in NXS2 neuroblastoma tumor-bearing syngeneic mice. Before the adoptive cell transfer and DC vaccination, the tumor-bearing mice were lymphodepleted by nonmyeloablative total body irradiation or a myeloablative regimen that required bone marrow transplantation. The 47-LDA mimotope was presented to DCs either as a linear polypeptide in conjunction with universal Th epitopes or as a fusion protein with the murine IgG2a Fc fragment (47-LDA-Fcγ2a) to deliver the antigenic cassette to the activating Fcγ receptors. We demonstrate that immunization of adoptively transferred T cells in tumor-bearing mice with the 47-LDA mimotope expressed in the context of the activating Fc fusion protein induced higher levels of antitumor immune responses and protection than the 47-LDA polypeptide-DC vaccine. The antitumor efficacy of the therapeutic 47-LDA-Fcγ2a-DC vaccine was comparable to that achieved by a virotherapy-associated cancer vaccine using a recombinant oncolytic vaccinia virus expressing the 47-LDA-Fcγ2a fusion protein. The latter treatment, however, did not require total body irradiation or adoptive cell transfer and resulted in induction of antitumor immune responses in the setting of established tolerance, paving the way for testing novel anticancer treatment strategies. PMID:19846865

  20. Type I Interferon Signals in Macrophages and Dendritic Cells Control Dengue Virus Infection: Implications for a New Mouse Model To Test Dengue Vaccines

    PubMed Central

    Toh, Ying-Xiu; Valdés, Iris; Cerny, Daniela; Heinrich, Julia; Hermida, Lisset; Marcos, Ernesto; Guillén, Gerardo; Kalinke, Ulrich; Shi, Pei-Yong; Fink, Katja

    2014-01-01

    ABSTRACT Dengue virus (DENV) infects an estimated 400 million people every year, causing prolonged morbidity and sometimes mortality. Development of an effective vaccine has been hampered by the lack of appropriate small animal models; mice are naturally not susceptible to DENV and only become infected if highly immunocompromised. Mouse models lacking both type I and type II interferon (IFN) receptors (AG129 mice) or the type I IFN receptor (IFNAR−/− mice) are susceptible to infection with mouse-adapted DENV strains but are severely impaired in mounting functional immune responses to the virus and thus are of limited use for study. Here we used conditional deletion of the type I IFN receptor (IFNAR) on individual immune cell subtypes to generate a minimally manipulated mouse model that is susceptible to DENV while retaining global immune competence. Mice lacking IFNAR expression on CD11c+ dendritic cells and LysM+ macrophages succumbed completely to DENV infection, while mice deficient in the receptor on either CD11c+ or LysM+ cells were susceptible to infection but often resolved viremia and recovered fully from infection. Conditional IFNAR mice responded with a swift and strong CD8+ T-cell response to viral infection, compared to a weak response in IFNAR−/− mice. Furthermore, mice lacking IFNAR on either CD11c+ or LysM+ cells were also sufficiently immunocompetent to raise a protective immune response to a candidate subunit vaccine against DENV-2. These data demonstrate that mice with conditional deficiencies in expression of the IFNAR represent improved models for the study of DENV immunology and screening of vaccine candidates. IMPORTANCE Dengue virus infects 400 million people every year worldwide, causing 100 million clinically apparent infections, which can be fatal if untreated. Despite many years of research, there are no effective vaccine and no antiviral treatment available for dengue. Development of vaccines has been hampered in particular by

  1. Generation of a cord blood-derived Wilms Tumor 1 dendritic cell vaccine for AML patients treated with allogeneic cord blood transplantation

    PubMed Central

    de Haar, Colin; Plantinga, Maud; Blokland, Nina JG; van Til, Niek P; Flinsenberg, Thijs WH; Van Tendeloo, Viggo F; Smits, Evelien L; Boon, Louis; Spel, Lotte; Boes, Marianne; Boelens, Jaap Jan; Nierkens, Stefan

    2015-01-01

    The poor survival rates of refractory/relapsed acute myeloid leukemia (AML) patients after haematopoietic cell transplantation (HCT) requires the development of additional immune therapeutic strategies. As the elicitation of tumor-antigen specific cytotoxic T lymphocytes (CTLs) is associated with reduced relapses and enhanced survival, enhanced priming of these CTLs using an anti-AML vaccine may result in long-term immunity against AML. Cord blood (CB), as allogeneic HCT source, may provide a unique setting for such post-HCT vaccination, considering its enhanced graft-versus-leukemia (GvL) effects and population of highly responsive naïve T cells. It is our goal to develop a powerful and safe immune therapeutic strategy composed of CB-HCT followed by vaccination with CB CD34+-derived dendritic cells (DCs) presenting the oncoprotein Wilms Tumor-1 (WT1), which is expressed in AML-blasts in the majority of patients. Here, we describe the optimization of a clinically applicable DC culture protocol. This two-step protocol consisting of an expansion phase followed by the differentiation toward DCs, enables us to generate sufficient cord blood-derived DCs (CBDCs) in the clinical setting. At the end of the culture, the CBDCs exhibit a mature surface phenotype, are able to migrate, express tumor antigen (WT1) after electroporation with mRNA encoding the full-length WT1 protein, and stimulate WT1-specific T cells. PMID:26451309

  2. Induction of CML28-specific cytotoxic T cell responses using co-transfected dendritic cells with CML28 DNA vaccine and SOCS1 small interfering RNA expression vector

    SciTech Connect

    Zhou Hongsheng; Zhang Donghua . E-mail: hanson2008@gmail.com; Wang Yaya; Dai Ming; Zhang Lu; Liu Wenli; Liu Dan; Tan Huo; Huang Zhenqian

    2006-08-18

    CML28 is an attractive target for antigen-specific immunotherapy. SOCS1 represents an inhibitory control mechanism for DC antigen presentation and the magnitude of adaptive immunity. In this study, we evaluated the potential for inducing CML28-specific cytotoxic T lymphocytes (CTL) responses by dendritic cells (DCs)-based vaccination. We constructed a CML28 DNA vaccine and a SOCS1 siRNA vector and then cotransfect monocyte-derived DCs. Flow cytometry analysis showed gene silencing of SOCS1 resulted in higher expressions of costimulative moleculars in DCs. Mixed lymphocyte reaction (MLR) indicated downregulation of SOCS1 stronger capability to stimulate proliferation of responder cell in DCs. The CTL assay revealed transfected DCs effectively induced autologous CML28-specific CTL responses and the lytic activities induced by SOCS1-silenced DCs were significantly higher compared with those induced by SOCS1-expressing DCs. These results in our study indicates gene silencing of SOCS1 remarkably enhanced the cytotoxicity efficiency of CML28 DNA vaccine in DCs.

  3. Vaccinations

    MedlinePlus

    ... vaccinated? For many years, a set of annual vaccinations was considered normal and necessary for dogs and ... to protect for a full year. Consequently, one vaccination schedule will not work well for all pets. ...

  4. Induction of dendritic cell production of type I and type III interferons by wild-type and vaccine strains of measles virus: role of defective interfering RNAs.

    PubMed

    Shivakoti, Rupak; Siwek, Martina; Hauer, Debra; Schultz, Kimberly L W; Griffin, Diane E

    2013-07-01

    The innate immune response to viral infection frequently includes induction of type I interferons (IFN), but many viruses have evolved ways to block this response and increase virulence. In vitro studies of IFN production after infection of susceptible cells with measles virus (MeV) have often reported greater IFN synthesis after infection with vaccine than with wild-type strains of MeV. However, the possible presence in laboratory virus stocks of 5' copy-back defective interfering (DI) RNAs that induce IFN independent of the standard virus has frequently confounded interpretation of data from these studies. To further investigate MeV strain-dependent differences in IFN induction and the role of DI RNAs, monocyte-derived dendritic cells (moDCs) were infected with the wild-type Bilthoven strain and the vaccine Edmonston-Zagreb strain with and without DI RNAs. Production of type I IFN, type III IFN, and the interferon-stimulated genes (ISGs) Mx and ISG56 by infected cells was assessed with a flow cytometry-based IFN bioassay, quantitative reverse transcriptase PCR (RT-PCR), and immunoassays. Bilthoven infected moDCs less efficiently than Edmonston-Zagreb. Presence of DI RNAs in vaccine stocks resulted in greater maturation of moDCs, inhibition of virus replication, and induction of higher levels of IFN and ISGs. Production of type I IFN, type III IFN, and ISG mRNA and protein was determined by both the level of infection and the presence of DI RNAs. At the same levels of infection and in the absence of DI RNA, IFN induction was similar between wild-type and vaccine strains of MeV. PMID:23678166

  5. Diversification of Antitumour Immunity in a Patient with Metastatic Melanoma Treated with Ipilimumab and an IDO-Silenced Dendritic Cell Vaccine.

    PubMed

    Sioud, Mouldy; Nyakas, Marta; Sæbøe-Larssen, Stein; Mobergslien, Anne; Aamdal, Steinar; Kvalheim, Gunnar

    2016-01-01

    Indoleamine 2,3-dioxygenase (IDO) expression in dendritic cells (DCs) inhibits T-cell activation and promotes T-cell differentiation into regulatory T-cells. Moreover, IDO expression promotes resistance to immunotherapies targeting immune checkpoints such as the cytotoxic T lymphocyte antigen-4 (CTLA-4). Here, a patient with metastatic melanoma pretreated with ipilimumab, an anti-CTLA-4 blocking antibody, was vaccinated with IDO-silenced DCs cotransfected with mRNA for survivin or hTERT tumour antigens. During vaccination, T-cell responses to survivin and hTERT tumour antigens were generated, and a certain degree of clinical benefit was achieved, with a significant reduction in lung, liver, and skin metastases, along with a better performance status. T-cell responses against MART-1 and NY-ESO-1 tumour antigens were also detected in the peripheral blood. The patient also mounted an antibody response to several melanoma proteins, indicating diversification of the antitumour immunity in this patient. The identification of such serum antibody-reacting proteins could facilitate the discovery of tumour neoantigens. PMID:27504122

  6. Diversification of Antitumour Immunity in a Patient with Metastatic Melanoma Treated with Ipilimumab and an IDO-Silenced Dendritic Cell Vaccine.

    PubMed

    Sioud, Mouldy; Nyakas, Marta; Sæbøe-Larssen, Stein; Mobergslien, Anne; Aamdal, Steinar; Kvalheim, Gunnar

    2016-01-01

    Indoleamine 2,3-dioxygenase (IDO) expression in dendritic cells (DCs) inhibits T-cell activation and promotes T-cell differentiation into regulatory T-cells. Moreover, IDO expression promotes resistance to immunotherapies targeting immune checkpoints such as the cytotoxic T lymphocyte antigen-4 (CTLA-4). Here, a patient with metastatic melanoma pretreated with ipilimumab, an anti-CTLA-4 blocking antibody, was vaccinated with IDO-silenced DCs cotransfected with mRNA for survivin or hTERT tumour antigens. During vaccination, T-cell responses to survivin and hTERT tumour antigens were generated, and a certain degree of clinical benefit was achieved, with a significant reduction in lung, liver, and skin metastases, along with a better performance status. T-cell responses against MART-1 and NY-ESO-1 tumour antigens were also detected in the peripheral blood. The patient also mounted an antibody response to several melanoma proteins, indicating diversification of the antitumour immunity in this patient. The identification of such serum antibody-reacting proteins could facilitate the discovery of tumour neoantigens.

  7. Restoring anti-oncodriver Th1 responses with dendritic cell vaccines in HER2/neu-positive breast cancer: progress and potential.

    PubMed

    De La Cruz, Lucy M; Nocera, Nadia F; Czerniecki, Brian J

    2016-10-01

    HER2/neu is expressed in the majority of in situ breast cancers, but maintained in 20-30% of invasive breast cancer (IBC). During breast tumorigenesis, there is a progressive loss of anti-HER2 CD4(pos) Th1 (anti-HER2Th1) from benign to ductal carcinoma in situ, with almost complete loss in IBC. This anti-HER2Th1 response can predict response to neoadjuvant therapy, risk of recurrence and disease-free survival. Vaccines consisting of HER2-pulsed type I polarized dendritic cells (DC1) administered during ductal carcinoma in situ and early IBC can efficiently correct anti-HER2Th1 response and have clinical impact on the disease. In this review, we will discuss the role of anti-HER2Th1 response in the three phases of immunoediting during HER2 breast cancer development and opportunities for reversing these processes using DC1 vaccines alone or in combination with standard therapies. Correcting the anti-HER2Th1 response may represent an opportunity for improving outcomes and providing a path to eliminate escape variants. PMID:27605070

  8. Diversification of Antitumour Immunity in a Patient with Metastatic Melanoma Treated with Ipilimumab and an IDO-Silenced Dendritic Cell Vaccine

    PubMed Central

    Nyakas, Marta; Sæbøe-Larssen, Stein; Mobergslien, Anne; Aamdal, Steinar; Kvalheim, Gunnar

    2016-01-01

    Indoleamine 2,3-dioxygenase (IDO) expression in dendritic cells (DCs) inhibits T-cell activation and promotes T-cell differentiation into regulatory T-cells. Moreover, IDO expression promotes resistance to immunotherapies targeting immune checkpoints such as the cytotoxic T lymphocyte antigen-4 (CTLA-4). Here, a patient with metastatic melanoma pretreated with ipilimumab, an anti-CTLA-4 blocking antibody, was vaccinated with IDO-silenced DCs cotransfected with mRNA for survivin or hTERT tumour antigens. During vaccination, T-cell responses to survivin and hTERT tumour antigens were generated, and a certain degree of clinical benefit was achieved, with a significant reduction in lung, liver, and skin metastases, along with a better performance status. T-cell responses against MART-1 and NY-ESO-1 tumour antigens were also detected in the peripheral blood. The patient also mounted an antibody response to several melanoma proteins, indicating diversification of the antitumour immunity in this patient. The identification of such serum antibody-reacting proteins could facilitate the discovery of tumour neoantigens. PMID:27504122

  9. Immune-related Adverse Events of Dendritic Cell Vaccination Correlate With Immunologic and Clinical Outcome in Stage III and IV Melanoma Patients.

    PubMed

    Boudewijns, Steve; Westdorp, Harm; Koornstra, Rutger H T; Aarntzen, Erik H J G; Schreibelt, Gerty; Creemers, Jeroen H A; Punt, Cornelis J A; Figdor, Carl G; de Vries, I Jolanda M; Gerritsen, Winald R; Bol, Kalijn F

    2016-01-01

    The purpose of this study was to determine the toxicity profile of dendritic cell (DC) vaccination in stage III and IV melanoma patients, and to evaluate whether there is a correlation between side effects and immunologic and clinical outcome. This is a retrospective analysis of 82 stage III and 137 stage IV melanoma patients, vaccinated with monocyte-derived or naturally circulating autologous DCs loaded with tumor-associated antigens gp100 and tyrosinase. Median follow-up time was 54.3 months in stage III patients and 12.9 months in stage IV patients. Treatment-related adverse events occurred in 84% of patients; grade 3 toxicity was present in 3% of patients. Most common adverse events were flu-like symptoms (67%) and injection site reactions (50%), and both correlated with the presence of tetramer-positive CD8 T cells (both P<0.001). In stage III melanoma patients experiencing flu-like symptoms, median overall survival (OS) was not reached versus 32.3 months in patients without flu-like symptoms (P=0.009); median OS in patients with an injection site reaction was not reached versus 53.7 months in patients without an injection site reaction (P<0.05). In stage IV melanoma patients (primary uveal and mucosal melanomas excluded), median OS in patients with or without flu-like symptoms was 13.1 versus 8.9 months, respectively (P=0.03); median OS in patients with an injection site reaction was 15.7 months versus 9.8 months in patients without an injection site reaction (P=0.003). In conclusion, DC vaccination is safe and tolerable and the occurrence of the immune-related side effects, such as flu-like symptoms and injection site reactions, correlates with immunologic and clinical outcome. PMID:27227325

  10. Immune-related Adverse Events of Dendritic Cell Vaccination Correlate With Immunologic and Clinical Outcome in Stage III and IV Melanoma Patients

    PubMed Central

    Boudewijns, Steve; Westdorp, Harm; Koornstra, Rutger H.T.; Aarntzen, Erik H.J.G.; Schreibelt, Gerty; Creemers, Jeroen H.A.; Punt, Cornelis J.A.; Figdor, Carl G.; Gerritsen, Winald R.; Bol, Kalijn F.

    2016-01-01

    The purpose of this study was to determine the toxicity profile of dendritic cell (DC) vaccination in stage III and IV melanoma patients, and to evaluate whether there is a correlation between side effects and immunologic and clinical outcome. This is a retrospective analysis of 82 stage III and 137 stage IV melanoma patients, vaccinated with monocyte-derived or naturally circulating autologous DCs loaded with tumor-associated antigens gp100 and tyrosinase. Median follow-up time was 54.3 months in stage III patients and 12.9 months in stage IV patients. Treatment-related adverse events occurred in 84% of patients; grade 3 toxicity was present in 3% of patients. Most common adverse events were flu-like symptoms (67%) and injection site reactions (50%), and both correlated with the presence of tetramer-positive CD8+ T cells (both P<0.001). In stage III melanoma patients experiencing flu-like symptoms, median overall survival (OS) was not reached versus 32.3 months in patients without flu-like symptoms (P=0.009); median OS in patients with an injection site reaction was not reached versus 53.7 months in patients without an injection site reaction (P<0.05). In stage IV melanoma patients (primary uveal and mucosal melanomas excluded), median OS in patients with or without flu-like symptoms was 13.1 versus 8.9 months, respectively (P=0.03); median OS in patients with an injection site reaction was 15.7 months versus 9.8 months in patients without an injection site reaction (P=0.003). In conclusion, DC vaccination is safe and tolerable and the occurrence of the immune-related side effects, such as flu-like symptoms and injection site reactions, correlates with immunologic and clinical outcome. PMID:27227325

  11. Enhancement of the priming efficacy of DNA vaccines encoding dendritic cell-targeted antigens by synergistic toll-like receptor ligands

    PubMed Central

    Grossmann, Claudius; Tenbusch, Matthias; Nchinda, Godwin; Temchura, Vladimir; Nabi, Ghulam; Stone, Geoffrey W; Kornbluth, Richard S; Überla, Klaus

    2009-01-01

    Background Targeting of protein antigens to dendritic cells (DC) via the DEC205 receptor enhances presentation of antigen-derived peptides on MHC-I and MHC-II molecules and, in the presence of costimulatory signals, antigen-specific immune responses. The immunogenicity and efficacy of DNA vaccination can also be enhanced by fusing the encoded antigen to single chain antibodies directed against DEC205. To further improve this strategy, we evaluated different toll-like receptor ligands (TLR) and CD40 ligands (CD40L) as adjuvants for DNA vaccines encoding a DEC205-single-chain antibody fused to the ovalbumin model antigen or HIV-1 Gag and assessed the priming efficacy of DNA in a DNA prime adenoviral vector boost immunization regimen. Results Mice were primed with the adjuvanted DEC-205 targeted DNA vaccines and boosted with adenoviral vectors encoding the same antigens. CD8+ T cell responses were determined after the adenoviral booster immunization, to determine how well the different DNA immunization regimens prime for the adenoviral boost. In the absence of adjuvants, targeting of DNA-encoded ovalbumin to DCs suppressed CD8+ T-cell responses after the adenoviral booster immunization. CD8+ T-cell responses to the DEC205 targeted DNA vaccines increased only slightly by adding either the TLR-9 ligand CpG, the TLR-3 ligand Poly I:C, or CD40 ligand expression plasmids. However, the combination of both TLR-ligands led to a strong enhancement of CD8+ T-cell responses compared to a non-targeted DNA vaccine. This finding was confirmed using HIV Gag as antigen. Conclusion Although DNA prime adenoviral vector boost immunizations belong to the strongest inducers of cytotoxic T cell responses in different animal models and humans, the CD8+ T cell responses can be further improved by targeting the DNA encoded antigen to DEC205 in the presence of synergistic TLR ligands CpG and Poly I:C. PMID:19650904

  12. Vaccines

    MedlinePlus Videos and Cool Tools

    Vaccinations are injections of antigens into the body. Once the antigens enter the blood, they circulate along ... suppressor T cells stop the attack. After a vaccination, the body will have a memory of an ...

  13. Design and evaluation of surface and adjuvant modified PLGA microspheres for uptake by dendritic cells to improve vaccine responses.

    PubMed

    Salvador, Aiala; Sandgren, Kerrie J; Liang, Frank; Thompson, Elizabeth A; Koup, Richard A; Pedraz, José Luis; Hernandez, Rosa Maria; Loré, Karin; Igartua, Manoli

    2015-12-30

    Designing strategies for targeting antigens to dendritic cells is a major goal in vaccinology. Here, PLGA (poly lactic-co-glycolic acid) microspheres and with several surface modifications that affect to their uptake by human blood primary dendritic cells and monocytes have been evaluated. Higher uptake was found by all the cell types when cationic microspheres (PLGA modified with polyethylene imine) were used. These cationic particles were in vivo evaluated in mice. In addition, MPLA(1) or poly(I:C)(2) and α-GalCer(3) were also encapsulated to address their adjuvant effect. All the microspheres were able to produce humoral immune responses, albeit they were higher for cationic microspheres. Moreover, surface charge seemed to have a role on biasing the immune response; cationic microspheres induced higher IFN-γ levels, indicative of Th1 activation, while unmodified ones mainly triggered IL4 and IL17A release, showing Th2 activation. Thus, we have shown here the potential and versatility of these MS, which may be tailored to needs.

  14. Vaccination of pediatric solid tumor patients with tumor lysate-pulsed dendritic cells can expand specific T cells and mediate tumor regression.

    PubMed

    Geiger, J D; Hutchinson, R J; Hohenkirk, L F; McKenna, E A; Yanik, G A; Levine, J E; Chang, A E; Braun, T M; Mulé, J J

    2001-12-01

    Dendritic cells (DCs) have been shown to be a promising adjuvant for inducing immunity to cancer. We evaluated tumor lysate-pulsed DC in a Phase I trial of pediatric patients with solid tumors. Children with relapsed solid malignancies who had failed standard therapies were eligible. The vaccine used immature DC (CD14-, CD80+, CD86+, CD83-, and HLA-DR+) generated from peripheral blood monocytes in the presence of granulocyte/monocyte colony-stimulating factor and interleukin-4. These DC were then pulsed separately with tumor cell lysates and the immunogenic protein keyhole limpet hemocyanin (KLH) for 24 h and then combined. A total of 1 x 10(6) to 1 x 10(7) DC are administered intradermally every 2 weeks for a total of three vaccinations. Fifteen patients (ages 3-17 years) were enrolled with 10 patients completing all vaccinations. Leukapheresis yields averaged 2.8 x 10(8) peripheral blood mononuclear cells (PBMC)/kg, and DC yields averaged 10.9% of starting PBMC. Patients with neuroblastoma, sarcoma, and renal malignancies were treated without obvious toxicity. Delayed-type hypersensitivity (DTH) response was detected in 7 of 10 patients for KLH and 3 of 6 patients for tumor lysates. Priming of T cells to KLH was seen in 6 of 10 patients and to tumor in 3 of 7 patients as demonstrated by specific IFN-gamma-secreting T cells in unstimulated PBMCs. Significant regression of multiple metastatic sites was seen in 1 patient. Five patients showed stable disease, including 3 who had minimal disease at time of vaccine therapy and remain free of tumor with 16-30 months follow-up. Our results demonstrate that it is feasible to generate large numbers of functional DC from pediatric patients even in those highly pretreated and with a large tumor burden. The DC can be administered in an outpatient setting without any observable toxicity. Most importantly, we have demonstrated the ability of the tumor lysate/KLH-pulsed DC to generate specific T-cell responses and to elicit

  15. Autologous aldrithiol-2-inactivated HIV-1 combined with polyinosinic-polycytidylic acid-poly-L-lysine carboxymethylcellulose as a vaccine platform for therapeutic dendritic cell immunotherapy.

    PubMed

    Miller, Elizabeth; Spadaccia, Meredith; Sabado, Rachel; Chertova, Elena; Bess, Julian; Trubey, Charles Mac; Holman, Rose Marie; Salazar, Andres; Lifson, Jeffrey; Bhardwaj, Nina

    2015-01-01

    Therapeutic interventions for HIV-1 that successfully augment adaptive immunity to promote killing of infected cells may be a requisite component of strategies to reduce latent cellular reservoirs. Adoptive immunotherapies utilizing autologous monocyte-derived dendritic cells (DCs) that have been activated and antigen loaded ex vivo may serve to circumvent defects in DC function that are present during HIV infection in order to enhance adaptive immune responses. Here we detail the clinical preparation of DCs loaded with autologous aldrithiol-2 (AT-2)-inactivated HIV that have been potently activated with the viral mimic, Polyinosinic-polycytidylic acid-poly-l-lysine carboxymethylcellulose (Poly-ICLC). HIV is first propagated from CD4+ T cells from HIV-infected donors and then rendered non-replicative by chemical inactivation with aldrithiol-2 (AT-2), purified, and quantified. Viral inactivation is confirmed through measurement of Tat-regulated β-galactosidase reporter gene expression following infection of TZM-bl cells. In-process testing for sterility, mycoplasma, LPS, adventitious agents, and removal of AT-2 is performed on viral preparations. Autologous DCs are generated and pulsed with autologous AT-2-inactivated virus and simultaneously stimulated with Poly-ICLC to constitute the final DC vaccine product. Phenotypic identity, maturation, and induction of HIV-specific adaptive immune responses are confirmed via flow cytometric analysis of DCs and cocultured autologous CD4+ and CD8+ T cells. Lot release criteria for the DC vaccine have been defined in accordance with Good Manufacturing Practice (GMP) guidelines. The demonstrated feasibility of this approach has resulted in approval by the FDA for investigational use in antiretroviral (ART) suppressed individuals. We discuss how this optimized DC formulation may enhance the quality of anti-HIV adaptive responses beyond what has been previously observed during DC immunotherapy trials for HIV infection.

  16. Induction of antigen-specific immunity with a vaccine targeting NY-ESO-1 to the dendritic cell receptor DEC-205.

    PubMed

    Dhodapkar, Madhav V; Sznol, Mario; Zhao, Biwei; Wang, Ding; Carvajal, Richard D; Keohan, Mary L; Chuang, Ellen; Sanborn, Rachel E; Lutzky, Jose; Powderly, John; Kluger, Harriet; Tejwani, Sheela; Green, Jennifer; Ramakrishna, Venky; Crocker, Andrea; Vitale, Laura; Yellin, Michael; Davis, Thomas; Keler, Tibor

    2014-04-16

    Immune-based therapies for cancer are generating substantial interest because of the success of immune checkpoint inhibitors. This study aimed to enhance anticancer immunity by exploiting the capacity of dendritic cells (DCs) to initiate T cell immunity by efficient uptake and presentation of endocytosed material. Delivery of tumor-associated antigens to DCs using receptor-specific monoclonal antibodies (mAbs) in the presence of DC-activating agents elicits robust antigen-specific immune responses in preclinical models. DEC-205 (CD205), a molecule expressed on DCs, has been extensively studied for its role in antigen processing and presentation. CDX-1401 is a vaccine composed of a human mAb specific for DEC-205 fused to the full-length tumor antigen NY-ESO-1. This phase 1 trial assessed the safety, immunogenicity, and clinical activity of escalating doses of CDX-1401 with the Toll-like receptor (TLR) agonists resiquimod (TLR7/8) and Hiltonol (poly-ICLC, TLR3) in 45 patients with advanced malignancies refractory to available therapies. Treatment induced humoral and cellular immunity to NY-ESO-1 in patients with confirmed NY-ESO-1-expressing tumors across various dose levels and adjuvant combinations. No dose-limiting or grade 3 toxicities were reported. Thirteen patients experienced stabilization of disease, with a median duration of 6.7 months (range, 2.4+ to 13.4 months). Two patients had tumor regression (~20% shrinkage in target lesions). Six of eight patients who received immune-checkpoint inhibitors within 3 months after CDX-1401 administration had objective tumor regression. This first-in-human study of a protein vaccine targeting DCs demonstrates its feasibility, safety, and biological activity and provides rationale for combination immunotherapy strategies including immune checkpoint blockade. PMID:24739759

  17. In vivo dendritic cell targeting cellular vaccine induces CD4+ Tfh cell-dependent antibody against influenza virus

    PubMed Central

    Yamasaki, Satoru; Shimizu, Kanako; Kometani, Kohei; Sakurai, Maki; Kawamura, Masami; Fujii, Shin-ichiro

    2016-01-01

    An induction of long-term cellular and humoral immunity is for the goal of vaccines, but the combination of antigens and adjuvant remain unclear. Here, we show, using a cellular vaccine carrying foreign protein antigen plus iNKT cell glycolipid antigen, designated as artificial adjuvant vector cells (aAVCs), that mature XCR1− DCs in situ elicit not only ordinal antigen-specific CD4+T cells, but also CD4+ Tfh and germinal center, resulted in inducing long-term antibody production. As a mechanism for leading the long-term antibody production by aAVC, memory CD4+ Tfh cells but not iNKTfh cells played an important role in a Bcl6 dependent manner. To develop it for influenza infection, we established influenza hemagglutinin-carrying aAVC (aAVC-HA) and found that all the mice vaccinated with aAVC-HA were protected from life-threatening influenza infection. Thus, the in vivo DC targeting therapy by aAVC would be useful for protection against viral infection. PMID:27739478

  18. Magnetic Enrichment of Dendritic Cell Vaccine in Lymph Node with Fluorescent-Magnetic Nanoparticles Enhanced Cancer Immunotherapy

    PubMed Central

    Jin, Honglin; Qian, Yuan; Dai, Yanfeng; Qiao, Sha; Huang, Chuan; Lu, Lisen; Luo, Qingming; Chen, Jing; Zhang, Zhihong

    2016-01-01

    Dendritic cell (DC) migration to the lymph node is a key component of DC-based immunotherapy. However, the DC homing rate to the lymphoid tissues is poor, thus hindering the DC-mediated activation of antigen-specific T cells. Here, we developed a system using fluorescent magnetic nanoparticles (α-AP-fmNPs; loaded with antigen peptide, iron oxide nanoparticles, and indocyanine green) in combination with magnetic pull force (MPF) to successfully manipulate DC migration in vitro and in vivo. α-AP-fmNPs endowed DCs with MPF-responsiveness, antigen presentation, and simultaneous optical and magnetic resonance imaging detectability. We showed for the first time that α-AP-fmNP-loaded DCs were sensitive to MPF, and their migration efficiency could be dramatically improved both in vitro and in vivo through MPF treatment. Due to the enhanced migration of DCs, MPF treatment significantly augmented antitumor efficacy of the nanoparticle-loaded DCs. Therefore, we have developed a biocompatible approach with which to improve the homing efficiency of DCs and subsequent anti-tumor efficacy, and track their migration by multi-modality imaging, with great potential applications for DC-based cancer immunotherapy.

  19. Immunologically augmented skin flap as a novel dendritic cell vaccine against head and neck cancer in a rat model.

    PubMed

    Inoue, Keita; Saegusa, Noriko; Omiya, Maho; Ashizawa, Tadashi; Miyata, Haruo; Komiyama, Masaru; Iizuka, Akira; Kume, Akiko; Sugino, Takashi; Yamaguchi, Ken; Kiyohara, Yoshio; Nakagawa, Masahiro; Akiyama, Yasuto

    2015-02-01

    Local recurrence is a major clinical issue following surgical resection in head and neck cancer, and the dissemination and lymph node metastasis of minimal residual disease is relatively difficult to treat due to the lack of suitable therapeutic approaches. In the present study, we developed and evaluated a novel immunotherapy using a skin flap transfer treated with sensitized dendritic cells (DC), termed the "immuno-flap," in a rat tumor model. After the local round area of skin was resected, SCC-158 cells (a rat head and neck cancer cell line) were inoculated into the muscle surface; lastly, the groin skin flap injected with mature DC was overlaid. Two weeks after the second DC injection, systemic immunological reactions and tumor size were measured. The DC-treated group showed a significant reduction in tumor size compared with the control. Although the induction of CTL activity in spleen cells was marginal, Th1 cytokines such as interleukin-2 and interferon-γ were elevated in the DC-treated group. These results suggest that a novel immunotherapy based on the immuno-flap method has the potential for clinical application to prevent the local recurrence of head and neck cancer patients.

  20. Magnetic Enrichment of Dendritic Cell Vaccine in Lymph Node with Fluorescent-Magnetic Nanoparticles Enhanced Cancer Immunotherapy

    PubMed Central

    Jin, Honglin; Qian, Yuan; Dai, Yanfeng; Qiao, Sha; Huang, Chuan; Lu, Lisen; Luo, Qingming; Chen, Jing; Zhang, Zhihong

    2016-01-01

    Dendritic cell (DC) migration to the lymph node is a key component of DC-based immunotherapy. However, the DC homing rate to the lymphoid tissues is poor, thus hindering the DC-mediated activation of antigen-specific T cells. Here, we developed a system using fluorescent magnetic nanoparticles (α-AP-fmNPs; loaded with antigen peptide, iron oxide nanoparticles, and indocyanine green) in combination with magnetic pull force (MPF) to successfully manipulate DC migration in vitro and in vivo. α-AP-fmNPs endowed DCs with MPF-responsiveness, antigen presentation, and simultaneous optical and magnetic resonance imaging detectability. We showed for the first time that α-AP-fmNP-loaded DCs were sensitive to MPF, and their migration efficiency could be dramatically improved both in vitro and in vivo through MPF treatment. Due to the enhanced migration of DCs, MPF treatment significantly augmented antitumor efficacy of the nanoparticle-loaded DCs. Therefore, we have developed a biocompatible approach with which to improve the homing efficiency of DCs and subsequent anti-tumor efficacy, and track their migration by multi-modality imaging, with great potential applications for DC-based cancer immunotherapy. PMID:27698936

  1. Autologous tumor lysate-pulsed dendritic cell immunotherapy for pediatric patients with newly diagnosed or recurrent high-grade gliomas.

    PubMed

    Lasky, Joseph L; Panosyan, Eduard H; Plant, Ashley; Davidson, Tom; Yong, William H; Prins, Robert M; Liau, Linda M; Moore, Theodore B

    2013-05-01

    Immunotherapy has the potential to improve clinical outcomes with little toxicity for pediatric patients with brain tumors. We conducted a pilot feasibility study of tumor lysate-pulsed dendritic cell (DC) vaccination in pediatric patients (1 to 18 years old) with newly diagnosed or recurrent high-grade glioma (HGG). A total of nine DC vaccine doses, each containing 1 × 10(6) cells per dose were administered to three out of the seven originally enrolled patients. Toxicities were limited to mild side-effects, except in one case of elevated alkaline phosphatase, which resolved without clinical consequences. Two patients with primary lesions amongst the three vaccinated were alive at the time of writing, both without evidence of disease. Pre- and post-vaccination tumor samples from a patient with an anaplastic oligoastrocytoma that recurred failed to demonstrate immune cell infiltration by immunohistochemistry. Peripheral cytokine levels were evaluated in one patient following DC vaccination and demonstrated some changes in relation to vaccination. DC vaccine is tolerable and feasible with some limitations for pediatric patients with HGG. Dendritic cell based immunotherapy may provide some clinical benefit in pediatric patients with glioma, especially for patients with minimal residual disease, but further investigation of this modality is required. PMID:23645755

  2. Autologous Tumor Lysate-pulsed Dendritic Cell Immunotherapy for Pediatric Patients with Newly Diagnosed or Recurrent High-grade Gliomas

    PubMed Central

    Lasky, Joseph L.; Panosyan, Eduard H.; Plant, Ashley; Davidson, Tom; Yong, William H.; Prins, Robert M.; Liau, Linda M.; Moore, Theodore B.

    2014-01-01

    Immunotherapy has the potential to improve clinical outcomes with little toxicity for pediatric patients with brain tumors. We conducted a pilot feasibility study of tumor lysate-pulsed dendritic cell (DC) vaccination in pediatric patients (1 to 18 years old) with newly diagnosed or recurrent high-grade glioma (HGG). A total of nine DC vaccine doses, each containing 1×106 cells per dose were administered to three out of the seven originally enrolled patients. Toxicities were limited to mild side-effects, except in one case of elevated alkaline phosphatase, which resolved without clinical consequences. Two patients with primary lesions amongst the three vaccinated were alive at the time of writing, both without evidence of disease. Pre- and post-vaccination tumor samples from a patient with an anaplastic oligoastrocytoma that recurred failed to demonstrate immune cell infiltration by immunohistochemistry. Peripheral cytokine levels were evaluated in one patient following DC vaccination and demonstrated some changes in relation to vaccination. DC vaccine is tolerable and feasible with some limitations for pediatric patients with HGG. Dendritic cell based immunotherapy may provide some clinical benefit in pediatric patients with glioma, especially for patients with minimal residual disease, but further investigation of this modality is required. PMID:23645755

  3. Autologous tumor lysate-pulsed dendritic cell immunotherapy for pediatric patients with newly diagnosed or recurrent high-grade gliomas.

    PubMed

    Lasky, Joseph L; Panosyan, Eduard H; Plant, Ashley; Davidson, Tom; Yong, William H; Prins, Robert M; Liau, Linda M; Moore, Theodore B

    2013-05-01

    Immunotherapy has the potential to improve clinical outcomes with little toxicity for pediatric patients with brain tumors. We conducted a pilot feasibility study of tumor lysate-pulsed dendritic cell (DC) vaccination in pediatric patients (1 to 18 years old) with newly diagnosed or recurrent high-grade glioma (HGG). A total of nine DC vaccine doses, each containing 1 × 10(6) cells per dose were administered to three out of the seven originally enrolled patients. Toxicities were limited to mild side-effects, except in one case of elevated alkaline phosphatase, which resolved without clinical consequences. Two patients with primary lesions amongst the three vaccinated were alive at the time of writing, both without evidence of disease. Pre- and post-vaccination tumor samples from a patient with an anaplastic oligoastrocytoma that recurred failed to demonstrate immune cell infiltration by immunohistochemistry. Peripheral cytokine levels were evaluated in one patient following DC vaccination and demonstrated some changes in relation to vaccination. DC vaccine is tolerable and feasible with some limitations for pediatric patients with HGG. Dendritic cell based immunotherapy may provide some clinical benefit in pediatric patients with glioma, especially for patients with minimal residual disease, but further investigation of this modality is required.

  4. [VACCINES].

    PubMed

    Bellver Capella, Vincente

    2015-10-01

    Vaccines are an extraordinary instrument of immunization of the population against infectious diseases. Around them there are many ethical issues. One of the most debated is what to do with certain groups opposition to vaccination of their children. States have managed in different ways the conflict between the duty of vaccination and the refusal to use vaccines: some impose the vaccination and others simply promote it. In this article we deal with which of these two approaches is the most suitable from an ethical and legal point of view. We stand up for the second option, which is the current one in Spain, and we propose some measures which should be kept in mind to improve immunization programs.

  5. Therapeutic cancer vaccines and combination immunotherapies involving vaccination

    PubMed Central

    Nguyen, Trang; Urban, Julie; Kalinski, Pawel

    2014-01-01

    Recent US Food and Drug Administration approvals of Provenge® (sipuleucel-T) as the first cell-based cancer therapeutic factor and ipilimumab (Yervoy®/anticytotoxic T-lymphocyte antigen-4) as the first “checkpoint blocker” highlight recent advances in cancer immunotherapy. Positive results of the clinical trials evaluating additional checkpoint blocking agents (blockade of programmed death [PD]-1, and its ligands, PD-1 ligand 1 and 2) and of several types of cancer vaccines suggest that cancer immunotherapy may soon enter the center stage of comprehensive cancer care, supplementing surgery, radiation, and chemotherapy. This review discusses the current status of the clinical evaluation of different classes of therapeutic cancer vaccines and possible avenues for future development, focusing on enhancing the magnitude and quality of cancer-specific immunity by either the functional reprogramming of patients’ endogenous dendritic cells or the use of ex vivo-manipulated dendritic cells as autologous cellular transplants. This review further discusses the available strategies aimed at promoting the entry of vaccination-induced T-cells into tumor tissues and prolonging their local antitumor activity. Finally, the recent improvements to the above three modalities for cancer immunotherapy (inducing tumor-specific T-cells, prolonging their persistence and functionality, and enhancing tumor homing of effector T-cells) and rationale for their combined application in order to achieve clinically effective anticancer responses are addressed. PMID:27471705

  6. Dendritic cell-mediated vaccination relies on interleukin-4 receptor signaling to avoid tissue damage after Leishmania major infection of BALB/c mice.

    PubMed

    Masic, Anita; Hurdayal, Ramona; Nieuwenhuizen, Natalie E; Brombacher, Frank; Moll, Heidrun

    2012-01-01

    Prevention of tissue damages at the site of Leishmania major inoculation can be achieved if the BALB/c mice are systemically given L. major antigen (LmAg)-loaded bone marrow-derived dendritic cells (DC) that had been exposed to CpG-containing oligodeoxynucleotides (CpG ODN). As previous studies allowed establishing that interleukin-4 (IL-4) is involved in the redirection of the immune response towards a type 1 profile, we were interested in further exploring the role of IL-4. Thus, wild-type (wt) BALB/c mice or DC-specific IL-4 receptor alpha (IL-4Rα)-deficient (CD11c(cre)IL-4Rα(-/lox)) BALB/c mice were given either wt or IL-4Rα-deficient LmAg-loaded bone marrow-derived DC exposed or not to CpG ODN prior to inoculation of 2×10⁵ stationary-phase L. major promastigotes into the BALB/c footpad. The results provide evidence that IL4/IL-4Rα-mediated signaling in the vaccinating DC is required to prevent tissue damage at the site of L. major inoculation, as properly conditioned wt DC but not IL-4Rα-deficient DC were able to confer resistance. Furthermore, uncontrolled L. major population size expansion was observed in the footpad and the footpad draining lymph nodes of CD11c(cre)IL-4Rα(-/lox) mice immunized with CpG ODN-exposed LmAg-loaded IL-4Rα-deficient DC, indicating the influence of IL-4Rα-mediated signaling in host DC to control parasite replication. In addition, no footpad damage occurred in BALB/c mice that were systemically immunized with LmAg-loaded wt DC doubly exposed to CpG ODN and recombinant IL-4. We discuss these findings and suggest that the IL4/IL4Rα signaling pathway could be a key pathway to trigger when designing vaccines aimed to prevent damaging processes in tissues hosting intracellular microorganisms.

  7. Colocalization of a CD1d-Binding Glycolipid with a Radiation-Attenuated Sporozoite Vaccine in Lymph Node-Resident Dendritic Cells for a Robust Adjuvant Effect.

    PubMed

    Li, Xiangming; Kawamura, Akira; Andrews, Chasity D; Miller, Jessica L; Wu, Douglass; Tsao, Tiffany; Zhang, Min; Oren, Deena; Padte, Neal N; Porcelli, Steven A; Wong, Chi-Huey; Kappe, Stefan H I; Ho, David D; Tsuji, Moriya

    2015-09-15

    A CD1d-binding glycolipid, α-Galactosylceramide (αGalCer), activates invariant NK T cells and acts as an adjuvant. We previously identified a fluorinated phenyl ring-modified αGalCer analog, 7DW8-5, displaying nearly 100-fold stronger CD1d binding affinity. In the current study, 7DW8-5 was found to exert a more potent adjuvant effect than αGalCer for a vaccine based on radiation-attenuated sporozoites of a rodent malaria parasite, Plasmodium yoelii, also referred to as irradiated P. yoelii sporozoites (IrPySpz). 7DW8-5 had a superb adjuvant effect only when the glycolipid and IrPySpz were conjointly administered i.m. Therefore, we evaluated the effect of distinctly different biodistribution patterns of αGalCer and 7DW8-5 on their respective adjuvant activities. Although both glycolipids induce a similar cytokine response in sera of mice injected i.v., after i.m. injection, αGalCer induces a systemic cytokine response, whereas 7DW8-5 is locally trapped by CD1d expressed by dendritic cells (DCs) in draining lymph nodes (dLNs). Moreover, the i.m. coadministration of 7DW8-5 with IrPySpz results in the recruitment of DCs to dLNs and the activation and maturation of DCs. These events cause the potent adjuvant effect of 7DW8-5, resulting in the enhancement of the CD8(+) T cell response induced by IrPySpz and, ultimately, improved protection against malaria. Our study is the first to show that the colocalization of a CD1d-binding invariant NK T cell-stimulatory glycolipid and a vaccine, like radiation-attenuated sporozoites, in dLN-resident DCs upon i.m. conjoint administration governs the potency of the adjuvant effect of the glycolipid. PMID:26254338

  8. Exome analysis of HIV patients submitted to dendritic cells therapeutic vaccine reveals an association of CNOT1 gene with response to the treatment

    PubMed Central

    Moura, Ronald; Pontillo, Alessandra; D'Adamo, Pio; Pirastu, Nicola; Coelho, Antonio Campos; Crovella, Sergio

    2014-01-01

    Introduction With the aim of searching genetic factors associated with the response to an immune treatment based on autologous monocyte-derived dendritic cells pulsed with autologous inactivated HIV, we performed exome analysis by screening more than 240,000 putative functional exonic variants in 18 HIV-positive Brazilian patients that underwent the immune treatment. Methods Exome analysis has been performed using the ILLUMINA Infinium HumanExome BeadChip. zCall algorithm allowed us to recall rare variants. Quality control and SNP-centred analysis were done with GenABEL R package. An in-house implementation of the Wang method permitted gene-centred analysis. Results CCR4-NOT transcription complex, subunit 1 (CNOT1) gene (16q21), showed the strongest association with the modification of the response to the therapeutic vaccine (p=0.00075). CNOT1 SNP rs7188697 A/G was significantly associated with DC treatment response. The presence of a G allele indicated poor response to the therapeutic vaccine (p=0.0031; OR=33.00; CI=1.74–624.66), and the SNP behaved in a dominant model (A/A vs. A/G+G/G p=0.0009; OR=107.66; 95% CI=3.85–3013.31), being the A/G genotype present only in weak/transient responders, conferring susceptibility to poor response to the immune treatment. Discussion CNOT1 is known to be involved in the control of mRNA deadenylation and mRNA decay. Moreover, CNOT1 has been recently described as being involved in the regulation of inflammatory processes mediated by tristetraprolin (TTP). The TTP-CCR4-NOT complex (CNOT1 in the CCR4-NOT complex is the binding site for TTP) has been reported as interfering with HIV replication, through post-transcriptional control. Therefore, we can hypothesize that genetic variation occurring in the CNOT1 gene could impair the TTP-CCR4-NOT complex, thus interfering with HIV replication and/or host immune response. Conclusions Being aware that our findings are exclusive to the 18 patients studied with a need for replication

  9. Dendritic cell vaccine and cytokine-induced killer cell therapy for the treatment of advanced non-small cell lung cancer

    PubMed Central

    ZHANG, LIHONG; YANG, XUEJING; SUN, ZHEN; LI, JIALI; ZHU, HUI; LI, JING; PANG, YAN

    2016-01-01

    The present study aimed to evaluate the survival time, immune response and safety of a dendritic cell (DC) vaccine and cytokine-induced killer (CIK) cell therapy (DC-CIK) in advanced non-small cell lung cancer (NSCLC). The present retrospective study enrolled 507 patients with advanced NSCLC; 99 patients received DC-CIK [immunotherapy group (group I)] and 408 matched patients did not receive DC-CIK, and acted as the control [non-immunotherapy group (group NI)]. Delayed-type hypersensitivity (DTH), quality of life (QOL) and safety were analyzed in group I. The follow-up period for the two groups was 489.2±160.4 days. The overall survival (OS) time was calculated using the Kaplan-Meier method. DTH was observed in 59 out of 97 evaluated patients (60.8%) and 67 out of 98 evaluated patients (68.4%) possessed an improved QOL. Fever and a skin rash occurred in 36 out of 98 patients (36.7%) and 7 out of 98 patients (7.1%) in group I. DTH occurred more frequently in patients with squamous cell carcinoma compared with patients with adenocarcinoma (77.1 vs. 40.4%; P=0.0013). Radiotherapy was not associated with DC-CIK-induced DTH (72.7 vs. 79.6%; P=0.18), but chemotherapy significantly reduced the rate of DTH (18.2 vs. 79.6%; P=0.00). The OS time was significantly increased in group I compared with group NI (P=0.03). In conclusion, DC-CIK may induce an immune response against NSCLC, improve the QOL, and prolong the OS time of patients, without adverse effects. Therefore, the present study recommends DC-CIK for the treatment of patients with advanced NSCLC. PMID:27073525

  10. Dendritic Cells Transduced with an Adenovirus Vector Encoding Epstein-Barr Virus Latent Membrane Protein 2B: a New Modality for Vaccination

    PubMed Central

    Ranieri, E.; Herr, W.; Gambotto, A.; Olson, W.; Rowe, D.; Robbins, P. D.; Kierstead, L. Salvucci; Watkins, S. C.; Gesualdo, L.; Storkus, W. J.

    1999-01-01

    Epstein-Barr virus (EBV) is a herpesvirus commonly associated with several malignancies, particularly in immunocompromised hosts. As a strategy for stimulating immunity against EBV for the treatment of EBV-associated tumors, we have genetically engineered dendritic cells (DC) to express EBV antigens, such as latent membrane protein 2B (LMP2B), using recombinant adenovirus vectors. CD8+ T lymphocytes from HLA-A2.1+, EBV-seropositive healthy donors were cultured with autologous DC infected with recombinant adenovirus vector AdEGFP, encoding an enhanced green fluorescent protein (EGFP), or AdLMP2B at a multiplicity of infection of 250. After 48 h, >95% of the DC were positive for EGFP expression as assessed by fluorescence-activated cell sorting analysis, indicating efficient gene transfer. AdLMP2-transduced DC were used to stimulate CD8+ T cells. Responder CD8+ T cells were tested for gamma interferon (IFN-γ) release by enzyme-linked spot (ELISPOT) assay and cytotoxic activity. Prior to in vitro stimulation, the frequencies of T-cells directed against two HLA-A2-presented LMP2 peptides (LMP2 329-337 and LMP2 426-434) were very low as assessed by IFN-γ spot formation (T-cell frequency, <0.003%). IFN-γ ELISPOT assays performed at day 14 showed a significant (2-log) increase of the day 0 frequency of T cells reactive against the LMP2 329-337 peptide, from 0.003 to 0.3 (P < 0.001). Moreover, specific cytolytic activity was observed against the autologous EBV B-lymphoblastoid cell lines after 21 days of stimulation of T-cell responders with AdLMP2-transduced DC (P < 0.01). In summary, autologous mature DC genetically modified with an adenovirus encoding EBV antigens stimulate the generation of EBV-specific CD8+ effector T cells in vitro, supporting the potential application of EBV-based adenovirus vector vaccination for the immunotherapy of the EBV-associated malignancies. PMID:10559360

  11. A phase I trial combining decitabine/dendritic cell vaccine targeting MAGE-A1, MAGE-A3 and NY-ESO-1 for children with relapsed or therapy-refractory neuroblastoma and sarcoma.

    PubMed

    Krishnadas, Deepa K; Shusterman, Suzanne; Bai, Fanqi; Diller, Lisa; Sullivan, Janice E; Cheerva, Alexandra C; George, Rani E; Lucas, Kenneth G

    2015-10-01

    Antigen-specific immunotherapy was studied in a multi-institutional phase 1/2 study by combining decitabine (DAC) followed by an autologous dendritic cell (DC)/MAGE-A1, MAGE-A3 and NY-ESO-1 peptide vaccine in children with relapsed/refractory solid tumors. Patients aged 2.5-15 years with relapsed neuroblastoma, Ewing's sarcoma, osteosarcoma and rhabdomyosarcoma were eligible to receive DAC followed by DC pulsed with overlapping peptides derived from full-length MAGE-A1, MAGE-A3 and NY-ESO-1. The primary endpoints were to assess the feasibility and tolerability of this regimen. Each of four cycles consisted of week 1: DAC 10 mg/m(2)/day for 5 days and weeks 2 and 3: DC vaccine once weekly. Fifteen patients were enrolled in the study, of which 10 were evaluable. Generation of DC was highly feasible for all enrolled patients. The treatment regimen was generally well tolerated, with the major toxicity being DAC-related myelosuppression in 5/10 patients. Six of nine patients developed a response to MAGE-A1, MAGE-A3 or NY-ESO-1 peptides post-vaccine. Due to limitations in number of cells available for analysis, controls infected with a virus encoding relevant genes have not been performed. Objective responses were documented in 1/10 patients who had a complete response. Of the two patients who had no evidence of disease at the time of treatment, one remains disease-free 2 years post-therapy, while the other experienced a relapse 10 months post-therapy. The chemoimmunotherapy approach using DAC/DC-CT vaccine is feasible, well tolerated and results in antitumor activity in some patients. Future trials to maximize the likelihood of T cell responses post-vaccine are warranted.

  12. Improved efficacy of therapeutic vaccination with dendritic cells pulsed with tumor cell lysate against hepatocellular carcinoma by introduction of 2 tandem repeats of microbial HSP70 peptide epitope 407-426 and OK-432.

    PubMed

    Ge, Chiyu; Xing, Yun; Wang, Qi; Xiao, Wen; Lu, Yong; Hu, Xiangbing; Gao, Zhenqiu; Xu, Maolei; Ma, Yanjun; Cao, Rongyue; Liu, Jingjing

    2011-12-01

    Therapeutic vaccination with dendritic cells (DCs) pulsed with tumor cell lysate vaccine (H-D) represents an attractive approach for hepatocellular carcinoma (HCC) treatment. However, the efficacy of this approach is not most satisfactory for the low levels of T helper 1 (Th1)-type cytokines secretion and weak T cell responses. In this study, in order to increase the potency of H-D, two tandem repeats of microbial HSP70 peptide epitope 407-426 (2mHSP70(407-426), M2) which has been demonstrated to be effective in enhancing DC maturation were applied. The DC vaccine (HM-D) which was HCC tumor cell lysate pulsed with M2 was developed. Nevertheless, the immunotherapeutic effect was still not satisfactory enough even some promotion was obtained. Therefore, OK-432 (OK), which is a useful anti-cancer agent and effectively in stimulating DC maturation, was introduced to HM-D. Our results demonstrated that treatment with the improved DC vaccine which was tumor cell lysate pulsed with M2 and OK (HMO-D), compared with H-D and HM-D, significantly increased cell surface markers (MHC-I and II, CD40, CD80, CD86 and CD11c) expression on DCs, enhanced Th1-type cytokines (IL-12, TNF-α and IFN-γ) production but not Th2-type cytokine (IL-5) production, induced remarkable high levels of lymphocytes proliferation and CD8(+) cytotoxic T-lymphocyte (CTL). Furthermore, immunization with HMO-D effectively reduced tumor progression and enhanced the survival of mice with H22 tumors. Besides, we also found that the capability of M2 in inducing the Th1 cytokines was stronger than OK. In view of these results, HMO-D vaccination provided a novel immunotherapeutic approach for the treatment of HCC.

  13. Bubble-Assisted Ultrasound: Application in Immunotherapy and Vaccination.

    PubMed

    Escoffre, Jean-Michel; Deckers, Roel; Bos, Clemens; Moonen, Chrit

    2016-01-01

    Bubble-assisted ultrasound is a versatile technology with great potential in immunotherapy and vaccination. This technology involves the exposure of immune cells (i.e., dendritic cells, lymphocytes) in-vitro or diseased tissues (i.e., brain, tumor) in-vivo to ultrasound treatment with gas bubbles. Bubble destruction leads to physical forces that induce the direct delivery of weakly permeant immuno-stimulatory molecules either into the cytoplasm of immune cells, or through the endothelial barrier of diseased tissues. Hence, therapeutic antibodies (i.e., antibody-based immunotherapy) and cytokine-encoding nucleic acids (i.e., cytokine gene therapy) can be successfully delivered into diseased tissues, thus improving immune responses. In addition, protein antigens, as well as antigen-encoding nucleic acids (pDNA, mRNA), can be delivered into dendritic cells (i.e., dendritic cell-based vaccines), thus leading to a long-lasting prophylactic or therapeutic immunization. This chapter focuses on the state-of-the-art of bubble-assisted ultrasound in the field of immunotherapy and vaccination.

  14. Mycobacterium tuberculosis Rv3628 drives Th1-type T cell immunity via TLR2-mediated activation of dendritic cells and displays vaccine potential against the hyper-virulent Beijing K strain

    PubMed Central

    Cha, Seung Bin; Kim, Hongmin; Kwon, Kee Woong; Kim, So Jeong; Han, Seung Jung; Choi, Soo Young; Cho, Sang-Nae; Park, Jong-Hwan; Shin, Sung Jae

    2016-01-01

    Identification of vaccine target antigens (Ags) that induce Ag-specific Th1 immunity is the first step toward the development of a tuberculosis vaccine. Here, we evaluated the Mycobacterium tuberculosis (Mtb) protein Rv3628, a soluble inorganic pyrophosphatase, as a vaccine target and characterized the molecular details of its interaction with dendritic cells (DCs). Rv3628 activated DCs, increasing their expression of cell surface molecules and augmenting their production of TNF-α, IL-1β, IL-6, and IL-12p70. Rv3628 mediated these effects by binding to TLR2 and activating downstream MyD88-, MAPK- and NF-κB-dependent signaling pathways. Rv3628-stimulated DCs induced the expansion of OVA-specific CD4+ and CD8+ T cells, which secreted IFN-γ and IL-2. Rv3628-specific effector/memory T cells expanded to a similar extent as those stimulated with ESAT-6 Ag in samples of lung and spleen cells collected from Mtb-infected mice. Finally, an Rv3628 subunit vaccine adjuvanted with dimethyldioctadecylammonium liposomes containing monophosphoryl lipid-A caused significant reductions in bacterial counts and lung inflammation after challenge with the hyper-virulent Mtb K strain. Importantly, protective efficacy was correlated with the generation of Rv3628-specific CD4+ T cells co-producing IFN-γ, TNF-α and IL-2 and exhibiting an elevated IFN-γ recall response. Thus, Rv3628 polarizes DCs toward a Th1 phenotype and promotes protective immunity against Mtb infection. PMID:27097115

  15. Priming with two DNA vaccines expressing hepatitis C virus NS3 protein targeting dendritic cells elicits superior heterologous protective potential in mice.

    PubMed

    Guan, Jie; Deng, Yao; Chen, Hong; Yin, Xiao; Yang, Yang; Tan, Wenjie

    2015-10-01

    Development an effective vaccine may offer an alternative preventive and therapeutic strategy against HCV infection. DNA vaccination has been shown to induce robust humoral and cellular immunity and overcome many problems associated with conventional vaccines. In this study, mice were primed with either conventional pVRC-based or suicidal pSC-based DNA vaccines carrying DEC-205-targeted NS3 antigen (DEC-NS3) and boosted with type 5 adenoviral vectors encoding the partial NS3 and core antigens (C44P). The prime boost regimen induced a marked increase in antigen-specific humoral and T-cell responses in comparison with either rAd5-based vaccines or DEC-205-targeted DNA immunization in isolation. The protective effect against heterogeneous challenge was correlated with high levels of anti-NS3 IgG and T-cell-mediated immunity against NS3 peptides. Moreover, priming with a suicidal DNA vaccine (pSC-DEC-NS3), which elicited increased TNF-α-producing CD4+ and CD8+ T-cells against NS3-2 peptides (aa 1245-1461), after boosting, showed increased heterogeneous protective potential compared with priming with a conventional DNA vaccine (pVRC-DEC-NS3). In conclusion, a suicidal DNA vector (pSC-DEC-NS3) expressing DEC-205-targeted NS3 combined with boosting using an rAd5-based HCV vaccine (rAd5-C44P) is a good candidate for a safe and effective vaccine against HCV infection.

  16. Dendrite inhibitor

    DOEpatents

    Miller, W.E.

    1988-06-07

    An apparatus for removing dendrites or other crystalline matter from the surface of a liquid in a matter transport process, and an electrolytic cell including such an apparatus. A notch may be provided to allow continuous exposure of the liquid surface, and a bore may be further provided to permit access to the liquid. 2 figs.

  17. Dendrite inhibitor

    DOEpatents

    Miller, William E.

    1989-01-01

    An apparatus for removing dendrites or other crystalline matter from the surface of a liquid in a matter transport process, and an electrolytic cell including such an apparatus. A notch may be provided to allow continuous exposure of the liquid surface, and a bore may be further provided to permit access to the liquid.

  18. Dendrite Model

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Dr. Donald Gilles, the Discipline Scientist for Materials Science in NASA's Microgravity Materials Science and Applications Department, demonstrates to Carl Dohrman a model of dendrites, the branch-like structures found in many metals and alloys. Dohrman was recently selected by the American Society for Metals International as their 1999 ASM International Foundation National Merit Scholar. The University of Illinois at Urbana-Champaign freshman recently toured NASA's materials science facilities at the Marshall Space Flight Center.

  19. Dendritic Cell (DC) Vaccine in Mouse Lung Cancer Minimal Residual Model; Comparison of Monocyte-derived DC vs. Hematopoietic Stem Cell Derived-DC.

    PubMed

    Baek, Soyoung; Lee, Seog Jae; Kim, Myoung Joo; Lee, Hyunah

    2012-12-01

    The anti-tumor effect of monocyte-derived DC (MoDC) vaccine was studied in lung cancer model with feasible but weak Ag-specific immune response and incomplete blocking of tumor growth. To overcome this limitation, the hematopoietic stem cell-derived DC (SDC) was cultured and the anti-tumor effect of MoDC & SDC was compared in mouse lung cancer minimal residual model (MRD). Therapeutic DCs were cultured from either CD34(+) hematopoietic stem cells with GM-CSF, SCF and IL-4 for 14 days (SDC) or monocytes with GM-CSF and IL-4 for 7 days (MoDC). DCs were injected twice by one week interval into the peritoneum of mice that are inoculated with Lewis Lung Carcinoma cells (LLC) one day before the DC injection. Anti-tumor responses and the immune modulation were observed 3 weeks after the final DC injection. CD11c expression, IL-12 and TGF-β secretion were higher in SDC but CCR7 expression, IFN-γ and IL-10 secretion were higher in MoDC. The proportion of CD11c(+)CD8a(+) cells was similar in both DC cultures. Although both DC reduced the tumor burden, histological anti-tumor effect and the frequencies of IFN-γ secreting CD8(+) T cells were higher in SDC treated group than in MoDC. Conclusively, although both MoDC and SDC can induce the anti-tumor immunity, SDC may be better module as anti-tumor vaccine than MoDC in mouse lung cancer. PMID:23396889

  20. A phase I clinical study of vaccination of melanoma patients with dendritic cells loaded with allogeneic apoptotic/necrotic melanoma cells. Analysis of toxicity and immune response to the vaccine and of IL-10 -1082 promoter genotype as predictor of disease progression

    PubMed Central

    von Euw, Erika M; Barrio, María M; Furman, David; Levy, Estrella M; Bianchini, Michele; Peguillet, Isabelle; Lantz, Olivier; Vellice, Alejandra; Kohan, Abraham; Chacón, Matías; Yee, Cassian; Wainstok, Rosa; Mordoh, José

    2008-01-01

    Background Sixteen melanoma patients (1 stage IIC, 8 stage III, and 7 stage IV) were treated in a Phase I study with a vaccine (DC/Apo-Nec) composed of autologous dendritic cells (DCs) loaded with a mixture of apoptotic/necrotic allogeneic melanoma cell lines (Apo-Nec), to evaluate toxicity and immune responses. Also, IL-10 1082 genotype was analyzed in an effort to predict disease progression. Methods PBMC were obtained after leukapheresis and DCs were generated from monocytes cultured in the presence of GM-CSF and IL-4 in serum-free medium. Immature DCs were loaded with gamma-irradiated Apo-Nec cells and injected id without adjuvant. Cohorts of four patients were given four vaccines each with 5, 10, 15, or 20 × 106 DC/Apo-Nec cell per vaccine, two weeks apart. Immune responses were measured by ELISpot and tetramer analysis. Il-10 genotype was measured by PCR and corroborated by IL-10 production by stimulated PBMC. Results Immature DCs efficiently phagocytosed melanoma Apo-Nec cells and matured after phagocytosis as evidenced by increased expression of CD83, CD80, CD86, HLA class I and II, and 75.2 ± 16% reduction in Dextran-FITC endocytosis. CCR7 was also up-regulated upon Apo-Nec uptake in DCs from all patients, and accordingly DC/Apo-Nec cells were able to migrate in vitro toward MIP-3 beta. The vaccine was well tolerated in all patients. The DTH score increased significantly in all patients after the first vaccination (Mann-Whitney Test, p < 0.05). The presence of CD8+T lymphocytes specific to gp100 and Melan A/MART-1 Ags was determined by ELISpot and tetramer analysis in five HLA-A*0201 patients before and after vaccination; one patient had stable elevated levels before and after vaccination; two increased their CD8 + levels, one had stable moderate and one had negligible levels. The analysis of IL-10 promoter -1082 polymorphism in the sixteen patients showed a positive correlation between AA genotype, accompanied by lower in vitro IL-10 production by

  1. Biphasic function of TLR3 adjuvant on tumor and spleen dendritic cells promotes tumor T cell infiltration and regression in a vaccine therapy.

    PubMed

    Azuma, Masahiro; Takeda, Yohei; Nakajima, Hiroko; Sugiyama, Haruo; Ebihara, Takashi; Oshiumi, Hiroyuki; Matsumoto, Misako; Seya, Tsukasa

    2016-08-01

    Successful cancer immunotherapy necessitates T cell proliferation and infiltration into tumor without exhaustion, a process closely links optimal maturation of dendritic cells (DC), and adjuvant promotes this process as an essential prerequisite. Poly(I:C) has contributed to adjuvant immunotherapy that evokes an antitumor response through the Toll-loke receptor 3 (TLR3)/TICAM-1 pathway in DC. However, the mechanism whereby Poly(I:C) acts on DC for T cell proliferation and migration remains undetermined. Subcutaneous injection of Poly(I:C) regressed implant tumors (WT1-C1498 or OVA-EG7) in C57BL/6 mice, which coincided with tumor-infiltration of CD8(+) T cells. Epitope-specific cytotoxic T lymphocytes (CTLs) were increased in spleen by challenge with Poly(I:C)+Db126 WT-1 peptide but not Poly(I:C) alone, suggesting the need of an exogenous Ag density for cross-priming. In tumor, CXCR3 ligands were upregulated by Poly(I:C), which facilitated recruitment of CTL to the tumor. Thus, Poly(I:C) acts on splenic CD8α(+) DC to cross-prime T cells and on intratumor cells to attract CTLs. Besides CD8(+) T cell cross-priming, T cell recruitment into tumor was significantly dampened in Batf3 (-/-) mice, reflecting the importance of tumor Batf3-dependent DC rather than macrophages in T cell recruitment. Poly(I:C)-induced XCR1(hi) CD8α(+) DC with high TLR3 levels were markedly decreased in Batf3 (-/-) mice, which hampered the production of IL-12 and IL-12-mediated CD4(+)/CD8(+) T cell proliferation. Subcutaneous administration of Poly(I:C) and adoptive transfer of wild-type CD8α(+) DC largely recovered antitumor response in those Batf3 (-/-) mice. Collectively, Poly(I:C) tunes up proper maturation of CD8α(+) DC to establish TLR3-mediated IL-12 function and cross-presentation in spleen and lymphocyte-attractive antitumor microenvironment in tumor. PMID:27622060

  2. Advances in Therapeutic Cancer Vaccines.

    PubMed

    Wong, Karrie K; Li, WeiWei Aileen; Mooney, David J; Dranoff, Glenn

    2016-01-01

    Therapeutic cancer vaccines aim to induce durable antitumor immunity that is capable of systemic protection against tumor recurrence or metastatic disease. Many approaches to therapeutic cancer vaccines have been explored, with varying levels of success. However, with the exception of Sipuleucel T, an ex vivo dendritic cell vaccine for prostate cancer, no therapeutic cancer vaccine has yet shown clinical efficacy in phase 3 randomized trials. Though disappointing, lessons learned from these studies have suggested new strategies to improve cancer vaccines. The clinical success of checkpoint blockade has underscored the role of peripheral tolerance mechanisms in limiting vaccine responses and highlighted the potential for combination therapies. Recent advances in transcriptome sequencing, computational modeling, and material engineering further suggest new opportunities to intensify cancer vaccines. This review will discuss the major approaches to therapeutic cancer vaccination and explore recent advances that inform the design of the next generation of cancer vaccines. PMID:26923002

  3. Cell-based Immunotherapy for Colorectal Cancer with Cytokine-induced Killer Cells

    PubMed Central

    Kim, Ji Sung; Kim, Yong Guk; Park, Eun Jae; Kim, Boyeong; Lee, Hong Kyung; Hong, Jin Tae; Kim, Youngsoo

    2016-01-01

    Colorectal cancer is the third leading cancer worldwide. Although incidence and mortality of colorectal cancer are gradually decreasing in the US, patients with metastatic colorectal cancer have poor prognosis with an estimated 5-year survival rate of less than 10%. Over the past decade, advances in combination chemotherapy regimens for colorectal cancer have led to significant improvement in progression-free and overall survival. However, patients with metastatic disease gain little clinical benefit from conventional therapy, which is associated with grade 3~4 toxicity with negative effects on quality of life. In previous clinical studies, cell-based immunotherapy using dendritic cell vaccines and sentinel lymph node T cell therapy showed promising therapeutic results for metastatic colorectal cancer. In our preclinical and previous clinical studies, cytokine-induced killer (CIK) cells treatment for colorectal cancer showed favorable responses without toxicities. Here, we review current treatment options for colorectal cancer and summarize available clinical studies utilizing cell-based immunotherapy. Based on these studies, we recommend the use CIK cell therapy as a promising therapeutic strategy for patients with metastatic colorectal cancer. PMID:27162526

  4. [Regulatory requirements regarding cell-based medicinal products for human and veterinary use - a comparison].

    PubMed

    Kuhlmann-Gottke, Johanna; Duchow, Karin

    2015-11-01

    At present, there is no separate regulatory framework for cell-based medicinal products (CBMP) for veterinary use at the European or German level. Current European and national regulations exclusively apply to the corresponding medicinal products for human use. An increasing number of requests for the regulatory classification of CBMP for veterinary use, such as allogeneic stem cell preparations and dendritic cell-based autologous tumour vaccines, and a rise in scientific advice for companies developing these products, illustrate the need for adequate legislation. Currently, advice is given and decisions are made on a case-by-case basis regarding the regulatory classification and authorisation requirements.Since some of the CBMP - in particular in the area of stem-cell products - are developed in parallel for human and veterinary use, there is an urgent need to create specific legal definitions, regulations, and guidelines for these complex innovative products in the veterinary sector as well. Otherwise, there is a risk that that the current legal grey area regarding veterinary medicinal products will impede therapeutic innovations in the long run. A harmonised EU-wide approach is desirable. Currently the European legislation on veterinary medicinal products is under revision. In this context, veterinary therapeutics based on allogeneic cells and tissues will be defined and regulated. Certainly, the legal framework does not have to be as comprehensive as for human CBMP; a leaner solution is conceivable, similar to the special provisions for advanced-therapy medicinal products laid down in the German Medicines Act.

  5. Human dendritic cells as targets of dengue virus infection.

    PubMed

    Marovich, M; Grouard-Vogel, G; Louder, M; Eller, M; Sun, W; Wu, S J; Putvatana, R; Murphy, G; Tassaneetrithep, B; Burgess, T; Birx, D; Hayes, C; Schlesinger-Frankel, S; Mascola, J

    2001-12-01

    Dengue virus infections are an emerging global threat. Severe dengue infection is manifested as dengue hemorrhagic fever and dengue shock syndrome, both of which can be fatal complications. Factors predisposing to complicated disease and pathogenesis of severe infections are discussed. Using immunohistochemistry, immunofluorescence, flow cytometry, and ELISA techniques, we studied the cellular targets of dengue virus infection, at both the clinical (in vivo) and the laboratory (in vitro) level. Resident skin dendritic cells are targets of dengue virus infection as demonstrated in a skin biopsy from a dengue vaccine recipient. We show that factors influencing infection of monocytes/macrophages and dendritic cells are different. Immature dendritic cells were found to be the cells most permissive for dengue infection and maybe early targets for infection. Immature dendritic cells exposed to dengue virus produce TNF-alpha protein. Some of these immature dendritic cells undergo TNF-alpha mediated maturation as a consequence of exposure to the dengue virus. PMID:11924831

  6. Dendritic-tumor fusion cells in cancer immunotherapy.

    PubMed

    Takakura, Kazuki; Kajihara, Mikio; Ito, Zensho; Ohkusa, Toshifumi; Gong, Jianlin; Koido, Shigeo

    2015-03-01

    A promising area of clinical investigation is the use of cancer immunotherapy to treat cancer patients. Dendritic cells (DCs) operate as professional antigen-presenting cells (APCs) and play a critical role in the induction of antitumor immune responses. Thus, DC-based cancer immunotherapy represents a powerful strategy. One DC-based cancer immunotherapy strategy that has been investigated is the administration of fusion cells generated with DCs and whole tumor cells (DC-tumor fusion cells). The DC-tumor fusion cells can process a broad array of tumor-associated antigens (TAAs), including unidentified molecules, and present them through major histocompatibility complex (MHC) class I and II pathways in the context of co-stimulatory signals. Improving the therapeutic efficacy of DC-tumor fusion cell-based cancer immunotherapy requires increased immunogenicity of DCs and whole tumor cells. We discuss the potential ability of DC-tumor fusion cells to activate antigen-specific T cells and strategies to improve the immunogenicity of DC-tumor fusion cells as anticancer vaccines.

  7. Dendritic-tumor fusion cells in cancer immunotherapy.

    PubMed

    Takakura, Kazuki; Kajihara, Mikio; Ito, Zensho; Ohkusa, Toshifumi; Gong, Jianlin; Koido, Shigeo

    2015-03-01

    A promising area of clinical investigation is the use of cancer immunotherapy to treat cancer patients. Dendritic cells (DCs) operate as professional antigen-presenting cells (APCs) and play a critical role in the induction of antitumor immune responses. Thus, DC-based cancer immunotherapy represents a powerful strategy. One DC-based cancer immunotherapy strategy that has been investigated is the administration of fusion cells generated with DCs and whole tumor cells (DC-tumor fusion cells). The DC-tumor fusion cells can process a broad array of tumor-associated antigens (TAAs), including unidentified molecules, and present them through major histocompatibility complex (MHC) class I and II pathways in the context of co-stimulatory signals. Improving the therapeutic efficacy of DC-tumor fusion cell-based cancer immunotherapy requires increased immunogenicity of DCs and whole tumor cells. We discuss the potential ability of DC-tumor fusion cells to activate antigen-specific T cells and strategies to improve the immunogenicity of DC-tumor fusion cells as anticancer vaccines. PMID:25828520

  8. Isothermal Dendritic Growth Experiment - PVA Dendrites

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Isothermal Dendritic Growth Experiment (IDGE), flown on three Space Shuttle missions, is yielding new insights into virtually all industrially relevant metal and alloy forming operations. IDGE used transparent organic liquids that form dendrites (treelike structures) similar to those inside metal alloys. Comparing Earth-based and space-based dendrite growth velocity, tip size and shape provides a better understanding of the fundamentals of dentritic growth, including gravity's effects. Shalowgraphic images of pivalic acid (PVA) dendrites forming from the melt show the subtle but distinct effects of gravity-driven heat convection on dentritic growth. In orbit, the dendrite grows as its latent heat is liberated by heat conduction. This yields a blunt dendrite tip. On Earth, heat is carried away by both conduction and gravity-driven convection. This yields a sharper dendrite tip. In addition, under terrestrial conditions, the sidebranches growing in the direction of gravity are augmented as gravity helps carry heat out of the way of the growing sidebranches as opposed to microgravity conditions where no augmentation takes place. IDGE was developed by Rensselaer Polytechnic Institute and NASA/Glenn Research Center. Advanced follow-on experiments are being developed for flight on the International Space Station. Photo Credit: NASA/Glenn Research Center

  9. Free dendritic growth

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.

    1984-01-01

    Free dendritic growth refers to the unconstrained development of crystals within a supercooled melt, which is the classical 'dendrite problem'. Great strides have been taken in recent years in both the theoretical understanding of dendritic growth and its experimental status. The development of this field will be sketched, showing that transport theory and interfacial thermodynamics (capillarity theory) were sufficient ingredients to develop a truly predictive model of dendrite formation. The convenient, but incorrect, notion of 'maximum velocity' was used for many years to estimate the behavior of dendritic transformations until supplanted by modern dynamic stability theory. The proper combinations of transport theory and morphological stability seem to able to predict the salient aspects of dendritic growth, especially in the neighborhood of the tip. The overall development of cast microstructures, such as equiaxed zone formation, rapidly solidified microstructures, etc., also seems to contain additional non-deterministic features which lie outside the current theories discussed here.

  10. Dendritic polyurea polymers.

    PubMed

    Tuerp, David; Bruchmann, Bernd

    2015-01-01

    Dendritic polymers, subsuming dendrimers as well as hyperbranched or highly branched polymers are well established in the field of polymer chemistry. This review article focuses on urea based dendritic polymers and summarizes their synthetic routes through both isocyanate and isocyanate-free processes. Furthermore, this article highlights applications where dendritic polyureas show their specific chemical and physical potential. For these purposes scientific publications as well as patent literature are investigated to generate a comprehensive overview on this topic.

  11. Cancer Vaccines: A Brief Overview.

    PubMed

    Thomas, Sunil; Prendergast, George C

    2016-01-01

    Vaccine approaches for cancer differ from traditional vaccine approaches for infectious disease in tending to focus on clearing active disease rather than preventing disease. In this review, we provide a brief overview of different types of vaccines and adjuvants that have been investigated for the purpose of controlling cancer burdens in patients, some of which are approved for clinical use or in late-stage clinical trials, such as the personalized dendritic cell vaccine sipuleucel-T (Provenge) and the recombinant viral prostate cancer vaccine PSA-TRICOM (Prostvac-VF). Vaccines against human viruses implicated in the development and progression of certain cancers, such as human papillomavirus in cervical cancer, are not considered here. Cancers express "altered self" antigens that tend to induce weaker responses than the "foreign" antigens expressed by infectious agents. Thus, immune stimulants and adjuvant approaches have been explored widely. Vaccine types considered include autologous patient-derived immune cell vaccines, tumor antigen-expressing recombinant virus vaccines, peptide vaccines, DNA vaccines, and heterologous whole-cell vaccines derived from established human tumor cell lines. Opportunities to develop effective cancer vaccines may benefit from seminal recent advances in understanding how immunosuppressive barricades are erected by tumors to mediate immune escape. In particular, targeted ablation of these barricades with novel agents, such as the immune checkpoint drug ipilimumab (anti-CTLA-4) approved recently for clinical use, may offer significant leverage to vaccinologists seeking to control and prevent malignancy.

  12. DENDRITIC CELLS: ARE THEY CLINICALLY RELEVANT?

    PubMed Central

    Palucka, Karolina; Ueno, Hideki; Roberts, Lee; Fay, Joseph; Banchereau, Jacques

    2010-01-01

    Cancer vaccines have undergone a renaissance due to recent clinical trials showing promising immunological data and some clinical benefit to patients. Current trials exploiting dendritic cells (DCs) as vaccines have shown durable tumor regressions in a fraction of patients. Clinical efficacy of current vaccines is hampered by myeloid-derived suppressor cells, inflammatory type 2 T cells and regulatory T cells (Tregs), all of which prevent the generation of effector cells. To improve the clinical efficacy of DC vaccines, we need to design novel and improved strategies that can boost adaptive immunity to cancer, help overcome Tregs and allow the breakdown of the immunosuppressive tumor microenvironment. This can be achieved by exploiting the fast increasing knowledge about the DC system, including the existence of distinct DC subsets. Critical to the design of better vaccines is the concept of distinct DC subsets and distinct DC activation pathways, all contributing to the generation of unique adaptive immune responses. Such novel DC vaccines will be used as monotherapy in patients with resected disease and in combination with antibodies and/or drugs targeting suppressor pathways and modulation of the tumor environment in patients with metastatic disease. PMID:20693842

  13. Promise of cancer stem cell vaccine

    PubMed Central

    Zhou, Li; Lu, Lin; Wicha, Max S; Chang, Alfred E; Xia, Jian-chuan; Ren, Xiubao; Li, Qiao

    2015-01-01

    Dendritic cell (DC)-based vaccines designed to target cancer stem cells (CSC) can induce significant antitumor responses via conferring host anti-CSC immunity. Our recent studies have demonstrated that CSC-DC vaccine could inhibit metastasis of primary tumors and induce humoral immune responses against cancer stem cells. This approach highlights the promise of cancer stem cell vaccine in cancer immunotherapy. PMID:26337078

  14. Molecular mechanisms of dendrite stability

    PubMed Central

    Koleske, Anthony J.

    2014-01-01

    In the developing brain, dendrite branches and dendritic spines form and turn over dynamically. By contrast, most dendrite arbors and dendritic spines in the adult brain are stable for months, years and possibly even decades. Emerging evidence reveals that dendritic spine and dendrite arbor stability have crucial roles in the correct functioning of the adult brain and that loss of stability is associated with psychiatric disorders and neurodegenerative diseases. Recent findings have provided insights into the molecular mechanisms that underlie long-term dendrite stabilization, how these mechanisms differ from those used to mediate structural plasticity and how they are disrupted in disease. PMID:23839597

  15. Vaccine Therapy, Oncolytic Viruses, and Gliomas.

    PubMed

    Desjardins, Annick; Vlahovic, Gordana; Friedman, Henry S

    2016-03-01

    After years of active research and refinement, vaccine therapy and oncolytic viruses are becoming part of the arsenal in the treatment of gliomas. In contrast to standard treatment with radiation therapy and chemotherapy, vaccines are more specific to the patient and the tumor. The majority of ongoing vaccine trials are investigating peptide, heat shock protein, and dendritic cell vaccines. The immunosuppression triggered by the tumor itself and by its treatment is a major obstacle to vaccine and oncolytic virus therapy. Thus, combination therapy with different agents that affect the immune system will probably be necessary. PMID:26984213

  16. Partial Protection against Porcine Influenza A Virus by a Hemagglutinin-Expressing Virus Replicon Particle Vaccine in the Absence of Neutralizing Antibodies.

    PubMed

    Ricklin, Meret E; Vielle, Nathalie J; Python, Sylvie; Brechbühl, Daniel; Zumkehr, Beatrice; Posthaus, Horst; Zimmer, Gert; Summerfield, Artur

    2016-01-01

    This work was initiated by previous reports demonstrating that mismatched influenza A virus (IAV) vaccines can induce enhanced disease, probably mediated by antibodies. Our aim was, therefore, to investigate if a vaccine inducing opsonizing but not neutralizing antibodies against the hemagglutinin (HA) of a selected heterologous challenge virus would enhance disease or induce protective immune responses in the pig model. To this end, we immunized pigs with either whole inactivated virus (WIV)-vaccine or HA-expressing virus replicon particles (VRP) vaccine based on recombinant vesicular stomatitis virus (VSV). Both types of vaccines induced virus neutralizing and opsonizing antibodies against homologous virus as shown by a highly sensitive plasmacytoid dendritic cell-based opsonization assay. Opsonizing antibodies showed a broader reactivity against heterologous IAV compared with neutralizing antibodies. Pigs immunized with HA-recombinant VRP vaccine were partially protected from infection with a mismatched IAV, which was not neutralized but opsonized by the immune sera. The VRP vaccine reduced lung lesions, lung inflammatory cytokine responses, serum IFN-α responses, and viral loads in the airways. Only the VRP vaccine was able to prime IAV-specific IFNγ/TNFα dual secreting CD4(+) T cells detectable in the peripheral blood. In summary, this work demonstrates that with the virus pair selected, a WIV vaccine inducing opsonizing antibodies against HA which lack neutralizing activity, is neither protective nor does it induce enhanced disease in pigs. In contrast, VRP-expressing HA is efficacious vaccines in swine as they induced both potent antibodies and T-cell immunity resulting in a broader protective value. PMID:27446083

  17. Partial Protection against Porcine Influenza A Virus by a Hemagglutinin-Expressing Virus Replicon Particle Vaccine in the Absence of Neutralizing Antibodies

    PubMed Central

    Ricklin, Meret E.; Vielle, Nathalie J.; Python, Sylvie; Brechbühl, Daniel; Zumkehr, Beatrice; Posthaus, Horst; Zimmer, Gert; Summerfield, Artur

    2016-01-01

    This work was initiated by previous reports demonstrating that mismatched influenza A virus (IAV) vaccines can induce enhanced disease, probably mediated by antibodies. Our aim was, therefore, to investigate if a vaccine inducing opsonizing but not neutralizing antibodies against the hemagglutinin (HA) of a selected heterologous challenge virus would enhance disease or induce protective immune responses in the pig model. To this end, we immunized pigs with either whole inactivated virus (WIV)-vaccine or HA-expressing virus replicon particles (VRP) vaccine based on recombinant vesicular stomatitis virus (VSV). Both types of vaccines induced virus neutralizing and opsonizing antibodies against homologous virus as shown by a highly sensitive plasmacytoid dendritic cell-based opsonization assay. Opsonizing antibodies showed a broader reactivity against heterologous IAV compared with neutralizing antibodies. Pigs immunized with HA-recombinant VRP vaccine were partially protected from infection with a mismatched IAV, which was not neutralized but opsonized by the immune sera. The VRP vaccine reduced lung lesions, lung inflammatory cytokine responses, serum IFN-α responses, and viral loads in the airways. Only the VRP vaccine was able to prime IAV-specific IFNγ/TNFα dual secreting CD4+ T cells detectable in the peripheral blood. In summary, this work demonstrates that with the virus pair selected, a WIV vaccine inducing opsonizing antibodies against HA which lack neutralizing activity, is neither protective nor does it induce enhanced disease in pigs. In contrast, VRP-expressing HA is efficacious vaccines in swine as they induced both potent antibodies and T-cell immunity resulting in a broader protective value. PMID:27446083

  18. HPV vaccine

    MedlinePlus

    ... Gardasil; Cervarix; HPV2; HPV4; Vaccine to prevent cervical cancer; Genital warts - HPV vaccine; Cervical dysplasia - HPV vaccine; Cervical cancer - HPV vaccine; Cancer of the cervix - HPV vaccine; ...

  19. Nanoparticle Drug Delivery Systems Designed to Improve Cancer Vaccines and Immunotherapy.

    PubMed

    Fan, Yuchen; Moon, James J

    2015-08-27

    Recent studies have demonstrated great therapeutic potential of educating and unleashing our own immune system for cancer treatment. However, there are still major challenges in cancer immunotherapy, including poor immunogenicity of cancer vaccines, off-target side effects of immunotherapeutics, as well as suboptimal outcomes of adoptive T cell transfer-based therapies. Nanomaterials with defined physico-biochemical properties are versatile drug delivery platforms that may address these key technical challenges facing cancer vaccines and immunotherapy. Nanoparticle systems have been shown to improve targeted delivery of tumor antigens and therapeutics against immune checkpoint molecules, amplify immune activation via the use of new stimuli-responsive or immunostimulatory materials, and augment the efficacy of adoptive cell therapies. Here, we review the current state-of-the-art in nanoparticle-based strategies designed to potentiate cancer immunotherapies, including cancer vaccines with subunit antigens (e.g., oncoproteins, mutated neo-antigens, DNA and mRNA antigens) and whole-cell tumor antigens, dendritic cell-based vaccines, artificial antigen-presenting cells, and immunotherapeutics based on immunogenic cell death, immune checkpoint blockade, and adoptive T-cell therapy.

  20. Nanoparticle Drug Delivery Systems Designed to Improve Cancer Vaccines and Immunotherapy.

    PubMed

    Fan, Yuchen; Moon, James J

    2015-01-01

    Recent studies have demonstrated great therapeutic potential of educating and unleashing our own immune system for cancer treatment. However, there are still major challenges in cancer immunotherapy, including poor immunogenicity of cancer vaccines, off-target side effects of immunotherapeutics, as well as suboptimal outcomes of adoptive T cell transfer-based therapies. Nanomaterials with defined physico-biochemical properties are versatile drug delivery platforms that may address these key technical challenges facing cancer vaccines and immunotherapy. Nanoparticle systems have been shown to improve targeted delivery of tumor antigens and therapeutics against immune checkpoint molecules, amplify immune activation via the use of new stimuli-responsive or immunostimulatory materials, and augment the efficacy of adoptive cell therapies. Here, we review the current state-of-the-art in nanoparticle-based strategies designed to potentiate cancer immunotherapies, including cancer vaccines with subunit antigens (e.g., oncoproteins, mutated neo-antigens, DNA and mRNA antigens) and whole-cell tumor antigens, dendritic cell-based vaccines, artificial antigen-presenting cells, and immunotherapeutics based on immunogenic cell death, immune checkpoint blockade, and adoptive T-cell therapy. PMID:26350600

  1. Nanoparticle Drug Delivery Systems Designed to Improve Cancer Vaccines and Immunotherapy

    PubMed Central

    Fan, Yuchen; Moon, James J.

    2015-01-01

    Recent studies have demonstrated great therapeutic potential of educating and unleashing our own immune system for cancer treatment. However, there are still major challenges in cancer immunotherapy, including poor immunogenicity of cancer vaccines, off-target side effects of immunotherapeutics, as well as suboptimal outcomes of adoptive T cell transfer-based therapies. Nanomaterials with defined physico-biochemical properties are versatile drug delivery platforms that may address these key technical challenges facing cancer vaccines and immunotherapy. Nanoparticle systems have been shown to improve targeted delivery of tumor antigens and therapeutics against immune checkpoint molecules, amplify immune activation via the use of new stimuli-responsive or immunostimulatory materials, and augment the efficacy of adoptive cell therapies. Here, we review the current state-of-the-art in nanoparticle-based strategies designed to potentiate cancer immunotherapies, including cancer vaccines with subunit antigens (e.g., oncoproteins, mutated neo-antigens, DNA and mRNA antigens) and whole-cell tumor antigens, dendritic cell-based vaccines, artificial antigen-presenting cells, and immunotherapeutics based on immunogenic cell death, immune checkpoint blockade, and adoptive T-cell therapy. PMID:26350600

  2. Vaccine therapies for pediatric malignancies.

    PubMed

    Rousseau, Raphaël F; Brenner, Malcolm K

    2005-01-01

    Cancer vaccines are examples of active immunotherapy. In pediatric malignancy such active strategies may be particularly problematic because of immune suppression produced by the tumor or its intensive treatment with combined chemotherapy. Nonetheless, the expression of tumor-specific and tumor-associated antigens on a range of pediatric tumors has encouraged investigation of the approach in patients with either bulky or minimal residual disease. Here we describe promising results in neuroblastoma and acute leukemia, suing genetically modified whole cell vaccines, peptides, and dendritic cells. The difficulties of conducting and evaluating such studies in a pediatric population are also described, and a strategy for cancer vaccine development is outlined.

  3. Isothermal Dendritic Growth Experiment - SCN Dendrites

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Isothermal Dendritic Growth Experiment (IDGE), flown on three Space Shuttle missions, is yielding new insights into virtually all industrially relevant metal and alloy forming operations. IDGE used transparent organic liquids that form dendrites (treelike structures) similar to the crystals that form inside metal alloys. Comparing Earth-based and space-based dentrite growth velocity, tip size and shape provid a better understanding of the fundamentals of dentritic growth, including gravity's effects. These shadowgraphic images show succinonitrile (SCN) dentrites growing in a melt (liquid). The space-grown crystals also have cleaner, better defined sidebranches. IDGE was developed by Rensselaer Polytechnic Institude (RPI) and NASA/ Glenn Research Center(GRC). Advanced follow-on experiments are being developed for flight on the International Space Station. Photo gredit: NASA/Glenn Research Center

  4. On the dendrites and dendritic transitions in undercooled germanium

    SciTech Connect

    Lau, C.F.; Kui, H.W. . Dept. of Physics)

    1993-07-01

    Undercooled molten Ge was allowed to solidify at initial bulk undercoolings, [Delta]T, from 10 to 200C under dehydrated boron oxide flux. It turned out that in addition to the (211) twin dendrite found by Billig and the (100) twin-free dendrite discovered by Devaud and Turnbill, there is a third novel twin dendrite, the (110) twin dendrite. The twin planes in a (110) dendrite always appear in multiple numbers and the orientation is (111). These different kinds of dendrites exist at different initial interfacial undercoolings and the transition temperatures for (110) to (211), (211) to (100) are [Delta]T = 61 and 93C, respectively.

  5. Optimization principles of dendritic structure

    PubMed Central

    Cuntz, Hermann; Borst, Alexander; Segev, Idan

    2007-01-01

    Background Dendrites are the most conspicuous feature of neurons. However, the principles determining their structure are poorly understood. By employing cable theory and, for the first time, graph theory, we describe dendritic anatomy solely on the basis of optimizing synaptic efficacy with minimal resources. Results We show that dendritic branching topology can be well described by minimizing the path length from the neuron's dendritic root to each of its synaptic inputs while constraining the total length of wiring. Tapering of diameter toward the dendrite tip – a feature of many neurons – optimizes charge transfer from all dendritic synapses to the dendritic root while housekeeping the amount of dendrite volume. As an example, we show how dendrites of fly neurons can be closely reconstructed based on these two principles alone. PMID:17559645

  6. Laser vaccine adjuvants

    PubMed Central

    Kashiwagi, Satoshi; Brauns, Timothy; Gelfand, Jeffrey; Poznansky, Mark C

    2014-01-01

    Immunologic adjuvants are essential for current vaccines to maximize their efficacy. Unfortunately, few have been found to be sufficiently effective and safe for regulatory authorities to permit their use in vaccines for humans and none have been approved for use with intradermal vaccines. The development of new adjuvants with the potential to be both efficacious and safe constitutes a significant need in modern vaccine practice. The use of non-damaging laser light represents a markedly different approach to enhancing immune responses to a vaccine antigen, particularly with intradermal vaccination. This approach, which was initially explored in Russia and further developed in the US, appears to significantly improve responses to both prophylactic and therapeutic vaccines administered to the laser-exposed tissue, particularly the skin. Although different types of lasers have been used for this purpose and the precise molecular mechanism(s) of action remain unknown, several approaches appear to modulate dendritic cell trafficking and/or activation at the irradiation site via the release of specific signaling molecules from epithelial cells. The most recent study, performed by the authors of this review, utilized a continuous wave near-infrared laser that may open the path for the development of a safe, effective, low-cost, simple-to-use laser vaccine adjuvant that could be used in lieu of conventional adjuvants, particularly with intradermal vaccines. In this review, we summarize the initial Russian studies that have given rise to this approach and comment upon recent advances in the use of non-tissue damaging lasers as novel physical adjuvants for vaccines. PMID:25424797

  7. Vaccine Therapies in Malignant Glioma

    PubMed Central

    Oh, Taemin; Sayegh, Eli T.; Fakurnejad, Shayan; Oyon, Daniel; Lamano, Jonathan Balquiedra; DiDomenico, Joseph David; Bloch, Orin; Parsa, Andrew T.

    2015-01-01

    Glioblastoma is a grade IV astrocytoma that is widely accepted in clinical neurosurgery as being an extremely lethal diagnosis. Long-term survival rates remain dismal and, even when tumors undergo gross resection with confirmation of total removal on neuroimaging, they invariably recur with even greater virulence. Standard therapeutic modalities as well as more contemporary treatments have largely resulted in disappointing improvements. However, the therapeutic potential of vaccine immunotherapy for malignant glioma should not be underestimated. In contrast to many of the available treatments, vaccine immunotherapy is unique because it offers the means of delivering treatment that is highly specific to both the patient and the tumor. Peptide, heat-shock proteins, and dendritic cell vaccines collectively encapsulate the majority of research efforts involving vaccine-based treatment modalities. In this review, important recent findings for these vaccine types are discussed in the context of ongoing clinical trials. Broad challenges to immunotherapy are also considered. PMID:25431096

  8. Dendritic cells and immunity against cancer

    PubMed Central

    Palucka, Karolina; Ueno, Hideki; Fay, Joseph; Banchereau, Jacques

    2010-01-01

    SUMMARY T cells can reject established tumors when adoptively transferred into patients, thereby demonstrating the power of the immune system for cancer therapy. However, it has proven difficult to maintain adoptively transferred T cells in the long term. Vaccines have the potential to induce tumor-specific effector and memory T cells. However, clinical efficacy of current vaccines is limited, possibly because tumors skew the immune system by means of myeloid-derived suppressor cells, inflammatory type 2 T cells and regulatory T cells (Tregs), all of which prevent the generation of effector cells. To improve the clinical efficacy of cancer vaccines in patients with metastatic disease, we need to design novel and improved strategies that can boost adaptive immunity to cancer, help overcome Tregs and allow the breakdown of the immunosuppressive tumor microenvironment. This can be achieved by exploiting the fast increasing knowledge about the dendritic cell (DC) system, including the existence of distinct DC subsets which respond differentially to distinct activation signals, (functional plasticity), both contributing to the generation of unique adaptive immune responses. We foresee that these novel cancer vaccines will be used as monotherapy in patients with resected disease, and in combination with drugs targeting regulatory/suppressor pathways in patients with metastatic disease. PMID:21158979

  9. CD40-Activated B Cell Cancer Vaccine Improves Second Clinical Remission and Survival in Privately Owned Dogs with Non-Hodgkin's Lymphoma

    PubMed Central

    Krick, Erika; Coughlin, Christina M.; Overley, Beth; Gregor, Thomas P.

    2011-01-01

    Cell-based active immunotherapy for cancer is a promising novel strategy, with the first dendritic cell (DC) vaccine achieving regulatory approval for clinical use last year. Manufacturing remains arduous, especially for DC vaccines, and the prospect of using cell-based immunotherapy in the adjuvant setting or in combination with chemotherapy remains largely untested. Here, we used a comparative oncology approach to test the safety and potential efficacy of tumor RNA-loaded, CD40-activated B cells in privately owned dogs presenting with non-Hodgkin's lymphoma (NHL), a clinical scenario that represents not only a major problem in veterinary medicine but also a bona fide spontaneous animal model for the human condition. When administered to NHL dogs in remission after induction chemotherapy, CD40-B cells electroporated ex vivo with autologous tumor RNA safely stimulated immunity in vivo. Although chemotherapy plus CD40-B vaccination did not improve time-to-progression or lymphoma-specific survival compared to dogs treated with chemotherapy alone, vaccination potentiated the effects of salvage therapy and improved the rate of durable second remissions as well as subsequent lymphoma-specific survival following salvage therapy. Several of these relapsed dogs are now long-term survivors and free of disease for more than a year. Overall, these clinical and immunological results suggest that cell-based CD40 cancer vaccination is safe and synergizes with chemotherapy to improve clinical outcome in canine NHL. More broadly, our findings underscore the unique value of clinical investigations in tumor-bearing companion animals. PMID:21904611

  10. Dendritic Polymers for Theranostics

    PubMed Central

    Ma, Yuan; Mou, Quanbing; Wang, Dali; Zhu, Xinyuan; Yan, Deyue

    2016-01-01

    Dendritic polymers are highly branched polymers with controllable structures, which possess a large population of terminal functional groups, low solution or melt viscosity, and good solubility. Their size, degree of branching and functionality can be adjusted and controlled through the synthetic procedures. These tunable structures correspond to application-related properties, such as biodegradability, biocompatibility, stimuli-responsiveness and self-assembly ability, which are the key points for theranostic applications, including chemotherapeutic theranostics, biotherapeutic theranostics, phototherapeutic theranostics, radiotherapeutic theranostics and combined therapeutic theranostics. Up to now, significant progress has been made for the dendritic polymers in solving some of the fundamental and technical questions toward their theranostic applications. In this review, we briefly summarize how to control the structures of dendritic polymers, the theranostics-related properties derived from their structures and their theranostics-related applications. PMID:27217829

  11. Lithium Dendrite Formation

    SciTech Connect

    2015-03-06

    Scientists at the Department of Energy’s Oak Ridge National Laboratory have captured the first real-time nanoscale images of lithium dendrite structures known to degrade lithium-ion batteries. The ORNL team’s electron microscopy could help researchers address long-standing issues related to battery performance and safety. Video shows annular dark-field scanning transmission electron microscopy imaging (ADF STEM) of lithium dendrite nucleation and growth from a glassy carbon working electrode and within a 1.2M LiPF6 EC:DM battery electrolyte.

  12. Isothermal Dendritic Growth Experiment Video

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This video, captured during the Isothermal Dendritic Growth Experiment (IDGE) flown on STS-87 as a part of the fourth United States Microgravity payload, shows the growth of a dendrite, and the surface solidification that occurred on the front and back windows of the growth chamber. Dendrites are tiny, tree like structures that form as metals solidify.

  13. Neuroblastoma and dendritic cell function.

    PubMed

    Redlinger, Richard E; Mailliard, Robbie B; Barksdale, Edward M

    2004-02-01

    Neuroblastoma, the most common extracranial solid tumor of childhood, remains a challenge for clinicians and investigators in pediatric surgical oncology. The absence of effective conventional therapies for most patients with neuroblastoma justifies the application of novel, biology-based, experimental approaches to the treatment of this deadly disease. The observation that some aggressive neuroblastomas, particularly in infants, may spontaneously regress suggested that immune-mediated mechanisms may be important in the biology of this disease. Advances in the understanding of the cognate interactions between T cells, antigen-presenting cells and tumors have demonstrated the sentinel role of dendritic cells (DC), the most potent antigen presenting cells, in initiating the cellular immune response to cancer. Until recently the function of DC in pediatric solid tumors, especially neuroblastoma, had not been extensively studied. This review discusses the role of DC in initiating and coordinating the immune response against cancer, the ability of neuroblastoma to induce DC dysregulation at multiple levels by inhibiting DC maturation and function, and the current vaccine strategies being designed to employ the unique ability of DC to promote neuroblastoma regression.

  14. Polio Vaccination

    MedlinePlus

    ... inactive polio vaccine OPV=oral polio vaccine Polio Vaccination Pronounced [PO-lee-oh] Recommend on Facebook Tweet ... handling and storage Related Pages Global Vaccines and Immunization Global Polio Also Known As & Abbreviations Polio=poliomyelitis ...

  15. Infection-mimicking materials to program dendritic cells in situ

    NASA Astrophysics Data System (ADS)

    Ali, Omar A.; Huebsch, Nathaniel; Cao, Lan; Dranoff, Glenn; Mooney, David J.

    2009-02-01

    Cancer vaccines typically depend on cumbersome and expensive manipulation of cells in the laboratory, and subsequent cell transplantation leads to poor lymph-node homing and limited efficacy. We propose that materials mimicking key aspects of bacterial infection may instead be used to directly control immune-cell trafficking and activation in the body. It is demonstrated that polymers can be designed to first release a cytokine to recruit and house host dendritic cells, and subsequently present cancer antigens and danger signals to activate the resident dendritic cells and markedly enhance their homing to lymph nodes. Specific and protective anti-tumour immunity was generated with these materials, as 90% survival was achieved in animals that otherwise die from cancer within 25days. These materials show promise as cancer vaccines, and more broadly suggest that polymers may be designed to program and control the trafficking of a variety of cell types in the body.

  16. Transport Processes in Dendritic Crystallization

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.

    1984-01-01

    Free dentritic growth refers to the unconstrained development of crystals within a supercooled melt, which is the classical dendrite problem. The development of theoretical understanding of dendritic growth and its experimental status is sketched showing that transport theory and interfacial thermodynamics (capillarity theory) are insufficient ingredients to develop a truly predictive model of dendrite formation. The convenient, but incorrect, notion of maximum velocity was used for many years to estimate the behavior of dendritic transformations until supplanted by modern dynamic stability theory. The proper combinations of transport theory and morphological stability seem to be able to predict the salient aspects of dendritic growth, especially in the neighborhood of the tip.

  17. Modification of dendritic development.

    PubMed

    Feria-Velasco, Alfredo; del Angel, Alma Rosa; Gonzalez-Burgos, Ignacio

    2002-01-01

    Since 1890 Ramón y Cajal strongly defended the theory that dendrites and their processes and spines had a function of not just nutrient transport to the cell body, but they had an important conductive role in neural impulse transmission. He extensively discussed and supported this theory in the Volume 1 of his extraordinary book Textura del Sistema Nervioso del Hombre y de los Vertebrados. Also, Don Santiago significantly contributed to a detailed description of the various neural components of the hippocampus and cerebral cortex during development. Extensive investigation has been done in the last Century related to the functional role of these complex brain regions, and their association with learning, memory and some limbic functions. Likewise, the organization and expression of neuropsychological qualities such as memory, exploratory behavior and spatial orientation, among others, depend on the integrity and adequate functional activity of the cerebral cortex and hippocampus. It is known that brain serotonin synthesis and release depend directly and proportionally on the availability of its precursor, tryptophan (TRY). By using a chronic TRY restriction model in rats, we studied their place learning ability in correlation with the dendritic spine density of pyramidal neurons in field CA1 of the hippocampus during postnatal development. We have also reported alterations in the maturation pattern of the ability for spontaneous alternation and task performance evaluating short-term memory, as well as adverse effects on the density of dendritic spines of hippocampal CA1 field pyramidal neurons and on the dendritic arborization and the number of dendritic spines of pyramidal neurons from the third layer of the prefrontal cortex using the same model of TRY restriction. The findings obtained in these studies employing a modified Golgi method, can be interpreted as a trans-synaptic plastic response due to understimulation of serotoninergic receptors located in the

  18. Vaccine hesitancy

    PubMed Central

    Dubé, Eve; Laberge, Caroline; Guay, Maryse; Bramadat, Paul; Roy, Réal; Bettinger, Julie A.

    2013-01-01

    Despite being recognized as one of the most successful public health measures, vaccination is perceived as unsafe and unnecessary by a growing number of individuals. Lack of confidence in vaccines is now considered a threat to the success of vaccination programs. Vaccine hesitancy is believed to be responsible for decreasing vaccine coverage and an increasing risk of vaccine-preventable disease outbreaks and epidemics. This review provides an overview of the phenomenon of vaccine hesitancy. First, we will characterize vaccine hesitancy and suggest the possible causes of the apparent increase in vaccine hesitancy in the developed world. Then we will look at determinants of individual decision-making about vaccination. PMID:23584253

  19. Toward a cure for HIV--Seeking effective therapeutic vaccine strategies.

    PubMed

    Autran, Brigitte

    2015-12-01

    This review article focuses on the rationale and evaluation of therapeutic vaccines against HIV. This strategy has been developed in order to restore or restimulate HIV-specific immunity in patients treated with antiretroviral therapies. Despite the lack of good candidate vaccines against HIV, two objectives have been targeted during the past 15 years. Therapeutic immunization was first proposed to help control virus relapses during treatment interruptions. More recently, the concept of therapeutic immunization has been boosted by efforts to reach HIV remission or cure, in combination to HIV reactivating agents, to help purge HIV reservoirs in a "shock and kill" strategy. This review analyses the rationales for these strategies and the results of the most widely therapeutic vaccines designed to generate T-cell immunity, i.e. recombinant viral vectors and dendritic cell-based strategies, while extremely few strategies targeted HIV-specific Abs. Only marginal control of HIV was obtained with cellular-based strategies, suggesting that approaches targeting or using broadly neutralizing Abs, should be of benefit for future efforts of therapeutic immunization against HIV in the quest toward a cure for HIV.

  20. Magnetic and dendritic catalysts.

    PubMed

    Wang, Dong; Deraedt, Christophe; Ruiz, Jaime; Astruc, Didier

    2015-07-21

    The recovery and reuse of catalysts is a major challenge in the development of sustainable chemical processes. Two methods at the frontier between homogeneous and heterogeneous catalysis have recently emerged for addressing this problem: loading the catalyst onto a dendrimer or onto a magnetic nanoparticle. In this Account, we describe representative examples of these two methods, primarily from our research group, and compare them. We then describe new chemistry that combines the benefits of these two methods of catalysis. Classic dendritic catalysis has involved either attaching the catalyst covalently at the branch termini or within the dendrimer core. We have used chelating pyridyltriazole ligands to insolubilize catalysts at the termini of dendrimers, providing an efficient, recyclable heterogeneous catalysts. With the addition of dendritic unimolecular micelles olefin metathesis reactions catalyzed by commercial Grubbs-type ruthenium-benzylidene complexes in water required unusually low amounts of catalyst. When such dendritic micelles include intradendritic ligands, both the micellar effect and ligand acceleration promote faster catalysis in water. With these types of catalysts, we could carry out azide alkyne cycloaddition ("click") chemistry with only ppm amounts of CuSO4·5H2O and sodium ascorbate under ambient conditions. Alternatively we can attach catalysts to the surface of superparamagnetic iron oxide nanoparticles (SPIONs), essentially magnetite (Fe3O4) or maghemite (γ-Fe2O3), offering the opportunity to recover the catalysts using magnets. Taking advantage of the merits of both of these strategies, we and others have developed a new generation of recyclable catalysts: dendritic magnetically recoverable catalysts. In particular, some of our catalysts with a γ-Fe2O3@SiO2 core and 1,2,3-triazole tethers and loaded with Pd nanoparticles generate strong positive dendritic effects with respect to ligand loading, catalyst loading, catalytic activity and

  1. Silicon dendritic web material

    NASA Technical Reports Server (NTRS)

    Meier, D. L.; Campbell, R. B.; Sienkiewicz, L. J.; Rai-Choudhury, P.

    1982-01-01

    The development of a low cost and reliable contact system for solar cells and the fabrication of several solar cell modules using ultrasonic bonding for the interconnection of cells and ethylene vinyl acetate as the potting material for module encapsulation are examined. The cells in the modules were made from dendritic web silicon. To reduce cost, the electroplated layer of silver was replaced with an electroplated layer of copper. The modules that were fabricated used the evaporated Ti, Pd, Ag and electroplated Cu (TiPdAg/Cu) system. Adherence of Ni to Si is improved if a nickel silicide can be formed by heat treatment. The effectiveness of Ni as a diffusion barrier to Cu and the ease with which nickel silicide is formed is discussed. The fabrication of three modules using dendritic web silicon and employing ultrasonic bonding for interconnecting calls and ethylene vinyl acetate as the potting material is examined.

  2. Isolation of dendritic cells.

    PubMed

    Inaba, K; Swiggard, W J; Steinman, R M; Romani, N; Schuler, G

    2001-05-01

    This unit presents two methods for preparing dendritic cells (DCs), a highly specialized type of antigen-presenting cell (APC). The first method involves the isolation of DCs from mouse spleen, resulting in a cell population that is highly enriched in accessory cell and APC function. A support protocol for collagenase digestion of splenocyte suspensions is described to increase the yield of dendritic cells. The second method involves generating large numbers of DCs from mouse bone marrow progenitor cells. In that technique, bone marrow cells are cultured in the presence of granulocyte/macrophage colony-stimulating factor (GM-CSF) to yield 5-10 10(6) cells, 60% of which express DC surface markers (e.g., B-7-2/CD86). Additional techniques for isolating DCs from mouse spleens or other mouse tissues, as well as from human tissues, are also discussed.

  3. Isolation of dendritic cells.

    PubMed

    Inaba, Kayo; Swiggard, William J; Steinman, Ralph M; Romani, Nikolaus; Schuler, Gerold; Brinster, Carine

    2009-08-01

    This unit presents two methods for preparing dendritic cells (DCs), a highly specialized type of antigen-presenting cell (APC). The first method involves the isolation of DCs from mouse spleen, resulting in a cell population that is highly enriched in accessory cell and APC function. A support protocol for collagenase digestion of splenocyte suspensions is described to increase the yield of dendritic cells. The second method involves generating large numbers of DCs from mouse bone marrow progenitor cells. In that technique, bone marrow cells are cultured in the presence of granulocyte/macrophage colony-stimulating factor (GM-CSF) to yield 5-10 x 10(6) cells, 60% of which express DC surface markers (e.g., B-7-2/CD86). Additional techniques for isolating DCs from mouse spleens or other mouse tissues, as well as from human tissues, are also discussed.

  4. Silicon dendritic web growth

    NASA Technical Reports Server (NTRS)

    Duncan, S.

    1984-01-01

    Technological goals for a silicon dendritic web growth program effort are presented. Principle objectives for this program include: (1) grow long web crystals front continuously replenished melt; (2) develop temperature distribution in web and melt; (3) improve reproductibility of growth; (4) develop configurations for increased growth rates (width and speed); (5) develop new growth system components as required for improved growth; and (6) evaluate quality of web growth.

  5. Carbon nanotubes as vaccine scaffolds

    PubMed Central

    Scheinberg, David A.; McDevitt, Michael R.; Dao, Tao; Mulvey, Justin J.; Feinberg, Evan; Alidori, Simone

    2013-01-01

    Carbon nanotubes display characteristics that are potentially useful in their development as scaffolds for vaccine compositions. These features include stability in vivo, lack of intrinsic immunogenicity, low toxicity, and the ability to be appended with multiple copies of antigens. In addition, the particulate nature of carbon nanotubes and their unusual properties of rapid entry into antigen-presenting cells, such as dendritic cells, make them especially useful as carriers of antigens. Early attempts demonstrating carbon nanotube-based vaccines can be used in both infectious disease settings and cancer are promising. PMID:23899863

  6. New vaccines against influenza virus

    PubMed Central

    Lee, Young-Tae; Kim, Ki-Hye; Ko, Eun-Ju; Lee, Yu-Na; Kim, Min-Chul; Kwon, Young-Man; Tang, Yinghua; Cho, Min-Kyoung; Lee, Youn-Jeong

    2014-01-01

    Vaccination is one of the most effective and cost-benefit interventions that prevent the mortality and reduce morbidity from infectious pathogens. However, the licensed influenza vaccine induces strain-specific immunity and must be updated annually based on predicted strains that will circulate in the upcoming season. Influenza virus still causes significant health problems worldwide due to the low vaccine efficacy from unexpected outbreaks of next epidemic strains or the emergence of pandemic viruses. Current influenza vaccines are based on immunity to the hemagglutinin antigen that is highly variable among different influenza viruses circulating in humans and animals. Several scientific advances have been endeavored to develop universal vaccines that will induce broad protection. Universal vaccines have been focused on regions of viral proteins that are highly conserved across different virus subtypes. The strategies of universal vaccines include the matrix 2 protein, the hemagglutinin HA2 stalk domain, and T cell-based multivalent antigens. Supplemented and/or adjuvanted vaccination in combination with universal target antigenic vaccines would have much promise. This review summarizes encouraging scientific advances in the field with a focus on novel vaccine designs. PMID:24427759

  7. New vaccines against influenza virus.

    PubMed

    Lee, Young-Tae; Kim, Ki-Hye; Ko, Eun-Ju; Lee, Yu-Na; Kim, Min-Chul; Kwon, Young-Man; Tang, Yinghua; Cho, Min-Kyoung; Lee, Youn-Jeong; Kang, Sang-Moo

    2014-01-01

    Vaccination is one of the most effective and cost-benefit interventions that prevent the mortality and reduce morbidity from infectious pathogens. However, the licensed influenza vaccine induces strain-specific immunity and must be updated annually based on predicted strains that will circulate in the upcoming season. Influenza virus still causes significant health problems worldwide due to the low vaccine efficacy from unexpected outbreaks of next epidemic strains or the emergence of pandemic viruses. Current influenza vaccines are based on immunity to the hemagglutinin antigen that is highly variable among different influenza viruses circulating in humans and animals. Several scientific advances have been endeavored to develop universal vaccines that will induce broad protection. Universal vaccines have been focused on regions of viral proteins that are highly conserved across different virus subtypes. The strategies of universal vaccines include the matrix 2 protein, the hemagglutinin HA2 stalk domain, and T cell-based multivalent antigens. Supplemented and/or adjuvanted vaccination in combination with universal target antigenic vaccines would have much promise. This review summarizes encouraging scientific advances in the field with a focus on novel vaccine designs.

  8. Web-dendritic ribbon growth

    NASA Technical Reports Server (NTRS)

    Hilborn, R. B., Jr.; Faust, J. W., Jr.

    1976-01-01

    A web furnace was constructed for pulling dendritic-web samples. The effect of changes in the furnace thermal geometry on the growth of dendritic-web was studied. Several attempts were made to grow primitive dendrites for use as the dendritic seed crystals for web growth and to determine the optimum twin spacing in the dendritic seed crystal for web growth. Mathematical models and computer programs were used to determine the thermal geometries in the susceptor, crucible melt, meniscus, and web. Several geometries were determined for particular furnace geometries and growth conditions. The information obtained was used in conjunction with results from the experimental growth investigations in order to achieve proper conditions for sustained pulling of two dendrite web ribbons. In addition, the facilities for obtaining the following data were constructed: twin spacing, dislocation density, web geometry, resistivity, majority charge carrier type, and minority carrier lifetime.

  9. IDGE: Isothermal Dendritic Growth Experiment

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Isothermal Dendritic Growth Experiment (IDGE) flew on STS-62 to study the microscopic, tree-like structures (dendrites) that form within metals as they solidify from molten materials. The size, shape, and orientation of these dendrites affect the strength and usefulness of metals. Data from this experiment will be used to test and improve the mathematical models that support the industrial production of metals.

  10. Dendritic spine alterations in schizophrenia.

    PubMed

    Moyer, Caitlin E; Shelton, Micah A; Sweet, Robert A

    2015-08-01

    Schizophrenia is a chronic illness affecting approximately 0.5-1% of the world's population. The etiology of schizophrenia is complex, including multiple genes, and contributing environmental effects that adversely impact neurodevelopment. Nevertheless, a final common result, present in many subjects with schizophrenia, is impairment of pyramidal neuron dendritic morphology in multiple regions of the cerebral cortex. In this review, we summarize the evidence of reduced dendritic spine density and other dendritic abnormalities in schizophrenia, evaluate current data that informs the neurodevelopment timing of these impairments, and discuss what is known about possible upstream sources of dendritic spine loss in this illness.

  11. Dendrite development: a surprising origin.

    PubMed

    Ehlers, Michael D

    2005-08-15

    Neurons extend elaborate dendrites studded with spines. Unexpectedly, this cellular sculpting is regulated by the origin recognition complex -- the core machinery for initiating DNA replication. PMID:16103221

  12. Harnessing Human Dendritic Cell Subsets for Medicine

    PubMed Central

    Ueno, Hideki; Schmitt, Nathalie; Klechevsky, Eynav; Pedroza-Gonzales, Alexander; Matsui, Toshimichi; Zurawski, Gerard; Oh, SangKon; Fay, Joseph; Pascual, Virginia; Banchereau, Jacques; Palucka, Karolina

    2010-01-01

    Summary Immunity results from a complex interplay between the antigen-nonspecific innate immune system and the antigen-specific adaptive immune system. The cells and molecules of the innate system employ non-clonal recognition receptors including lectins, Toll-like receptors, NOD-like receptors and helicases. B and T lymphocytes of the adaptive immune system employ clonal receptors recognizing antigens or their derived peptides in a highly specific manner. An essential link between innate and adaptive immunity is provided by dendritic cells (DCs). DCs can induce such contrasting states as immunity and tolerance. The recent years have brought a wealth of information on the biology of DCs revealing the complexity of this cell system. Indeed, DC plasticity and subsets are prominent determinants of the type and quality of elicited immune responses. Here we summarize our recent studies aimed at a better understanding of the DC system to unravel the pathophysiology of human diseases and design novel human vaccines. PMID:20193020

  13. Vaccine Safety

    MedlinePlus

    ... During Pregnancy Frequently Asked Questions about Vaccine Recalls Historical Vaccine Safety Concerns FAQs about GBS and Menactra ... CISA Resources for Healthcare Professionals Evaluation Current Studies Historical Background 2001-12 Publications Technical Reports Vaccine Safety ...

  14. Smallpox Vaccination

    MedlinePlus

    ... Newsletters Events Also Known As Smallpox = Vaccinia Smallpox Vaccination Recommend on Facebook Tweet Share Compartir The smallpox ... like many other vaccines. For that reason, the vaccination site must be cared for carefully to prevent ...

  15. Dendritic Cells: Cellular Mediators for Immunological Tolerance

    PubMed Central

    Chung, Chun Yuen J.; Ysebaert, Dirk; Berneman, Zwi N.

    2013-01-01

    In general, immunological tolerance is acquired upon treatment with non-specific immunosuppressive drugs. This indiscriminate immunosuppression of the patient often causes serious side-effects, such as opportunistic infectious diseases. Therefore, the need for antigen-specific modulation of pathogenic immune responses is of crucial importance in the treatment of inflammatory diseases. In this perspective, dendritic cells (DCs) can have an important immune-regulatory function, besides their notorious antigen-presenting capacity. DCs appear to be essential for both central and peripheral tolerance. In the thymus, DCs are involved in clonal deletion of autoreactive immature T cells by presenting self-antigens. Additionally, tolerance is achieved by their interactions with T cells in the periphery and subsequent induction of T cell anergy, T cell deletion, and induction of regulatory T cells (Treg). Various studies have described, modulation of DC characteristics with the purpose to induce antigen-specific tolerance in autoimmune diseases, graft-versus-host-disease (GVHD), and transplantations. Promising results in animal models have prompted researchers to initiate first-in-men clinical trials. The purpose of current review is to provide an overview of the role of DCs in the immunopathogenesis of autoimmunity, as well as recent concepts of dendritic cell-based therapeutic opportunities in autoimmune diseases. PMID:23762100

  16. Dendritic Alloy Solidification Experiment (DASE)

    NASA Technical Reports Server (NTRS)

    Beckermann, C.; Karma, A.; Steinbach, I.; deGroh, H. C., III

    2001-01-01

    A space experiment, and supporting ground-based research, is proposed to study the microstructural evolution in free dendritic growth from a supercooled melt of the transparent model alloy succinonitrile-acetone (SCN-ACE). The research is relevant to equiaxed solidification of metal alloy castings. The microgravity experiment will establish a benchmark for testing of equiaxed dendritic growth theories, scaling laws, and models in the presence of purely diffusive, coupled heat and solute transport, without the complicating influences of melt convection. The specific objectives are to: determine the selection of the dendrite tip operating state, i.e. the growth velocity and tip radius, for free dendritic growth of succinonitrile-acetone alloys; determine the growth morphology and sidebranching behavior for freely grown alloy dendrites; determine the effects of the thermal/solutal interactions in the growth of an assemblage of equiaxed alloy crystals; determine the effects of melt convection on the free growth of alloy dendrites; measure the surface tension anisotropy strength of succinon itrile -acetone alloys establish a theoretical and modeling framework for the experiments. Microgravity experiments on equiaxed dendritic growth of alloy dendrites have not been performed in the past. The proposed experiment builds on the Isothermal Dendritic Growth Experiment (IDGE) of Glicksman and coworkers, which focused on the steady growth of a single crystal from pure supercooled melts (succinonitrile and pivalic acid). It also extends the Equiaxed Dendritic Solidification Experiment (EDSE) of the present investigators, which is concerned with the interactions and transients arising in the growth of an assemblage of equiaxed crystals (succinonitrile). However, these experiments with pure substances are not able to address the issues related to coupled heat and solute transport in growth of alloy dendrites.

  17. Vaccine Hesitancy.

    PubMed

    Jacobson, Robert M; St Sauver, Jennifer L; Finney Rutten, Lila J

    2015-11-01

    Vaccine refusal received a lot of press with the 2015 Disneyland measles outbreak, but vaccine refusal is only a fraction of a much larger problem of vaccine delay and hesitancy. Opposition to vaccination dates back to the 1800 s, Edward Jenner, and the first vaccine ever. It has never gone away despite the public's growing scientific sophistication. A variety of factors contribute to modern vaccine hesitancy, including the layperson's heuristic thinking when it comes to balancing risks and benefits as well as a number of other features of vaccination, including falling victim to its own success. Vaccine hesitancy is pervasive, affecting a quarter to a third of US parents. Clinicians report that they routinely receive requests to delay vaccines and that they routinely acquiesce. Vaccine rates vary by state and locale and by specific vaccine, and vaccine hesitancy results in personal risk and in the failure to achieve or sustain herd immunity to protect others who have contraindications to the vaccine or fail to generate immunity to the vaccine. Clinicians should adopt a variety of practices to combat vaccine hesitancy, including a variety of population health management approaches that go beyond the usual call to educate patients, clinicians, and the public. Strategies include using every visit to vaccinate, the creation of standing orders or nursing protocols to provide vaccination without clinical encounters, and adopting the practice of stating clear recommendations. Up-to-date, trusted resources exist to support clinicians' efforts in adopting these approaches to reduce vaccine hesitancy and its impact. PMID:26541249

  18. [Vaccination perspectives].

    PubMed

    Saliou, P; Plotkin, S

    1994-01-01

    The aim of vaccinology is to improve the available vaccines and to develop new ones in the light of progress in immunology, molecular biology and biotechnologies. But it must go beyond this, and aim to protect all populations and control diseases, even eradicate them where possible. New vaccine strategies must be developed taking into account the epidemiology of diseases and the inherent logistic problems of implementing these strategies under local conditions. There are three major thrusts to the progress of the discipline. The improvement of the vaccines available. One of the drives of vaccinology is not only to deliver vaccines of increasing safety (replacement of the current vaccine for whooping cough with an acellular vaccine for example), but also to improve vaccine efficacy and immunogenicity (in particular for flu, tuberculosis, cholera and rabies vaccines). The optimisation of vaccination programmes and strategies for vaccinations. The ideal is to protect against the greatest possible number of diseases with the smallest number of vaccinations. The development of combinations of vaccines is central to this goal. The objective for the year 2000 is a hexavalent vaccine DTPP Hib HB. The development of new vaccines. Classic techniques continue to be successfully used (inactivated hepatitis A vaccine; attenuated live vaccines for chicken pox and dengue fever; conjugated polyosidic bacterial vaccines for meningococci and Streptococcus pneumoniae). However, it will become possible to prepare vaccines against most transmissible diseases using genetic engineering techniques.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Vaccine Hesitancy.

    PubMed

    Jacobson, Robert M; St Sauver, Jennifer L; Finney Rutten, Lila J

    2015-11-01

    Vaccine refusal received a lot of press with the 2015 Disneyland measles outbreak, but vaccine refusal is only a fraction of a much larger problem of vaccine delay and hesitancy. Opposition to vaccination dates back to the 1800 s, Edward Jenner, and the first vaccine ever. It has never gone away despite the public's growing scientific sophistication. A variety of factors contribute to modern vaccine hesitancy, including the layperson's heuristic thinking when it comes to balancing risks and benefits as well as a number of other features of vaccination, including falling victim to its own success. Vaccine hesitancy is pervasive, affecting a quarter to a third of US parents. Clinicians report that they routinely receive requests to delay vaccines and that they routinely acquiesce. Vaccine rates vary by state and locale and by specific vaccine, and vaccine hesitancy results in personal risk and in the failure to achieve or sustain herd immunity to protect others who have contraindications to the vaccine or fail to generate immunity to the vaccine. Clinicians should adopt a variety of practices to combat vaccine hesitancy, including a variety of population health management approaches that go beyond the usual call to educate patients, clinicians, and the public. Strategies include using every visit to vaccinate, the creation of standing orders or nursing protocols to provide vaccination without clinical encounters, and adopting the practice of stating clear recommendations. Up-to-date, trusted resources exist to support clinicians' efforts in adopting these approaches to reduce vaccine hesitancy and its impact.

  20. Enhancing anti-melanoma immunity by electrochemotherapy and in vivo dendritic-cell activation

    PubMed Central

    Gerlini, Gianni; Di Gennaro, Paola; Borgognoni, Lorenzo

    2012-01-01

    Combining electrochemotherapy with dendritic cell-based immunotherapy is a promising strategy against human metastatic melanoma that deserves to be clinically assessed. While electrochemotherapy induces a rapid regression of metastases, immunotherapy generates systemic anticancer immunity, contributes to eradicate the tumor and maintains an immunological memory to control relapse. PMID:23264927

  1. Vaccine Delivery Methods into the Future

    PubMed Central

    Apostolopoulos, Vasso

    2016-01-01

    Several modes of vaccine delivery have been developed in the last 25 years, which induce strong immune responses in pre-clinical models and in human clinical trials. Some modes of delivery include, adjuvants (aluminum hydroxide, Ribi formulation, QS21), liposomes, nanoparticles, virus like particles, immunostimulatory complexes (ISCOMs), dendrimers, viral vectors, DNA delivery via gene gun, electroporation or Biojector 2000, cell penetrating peptides, dendritic cell receptor targeting, toll-like receptors, chemokine receptors and bacterial toxins. There is an enormous amount of information and vaccine delivery methods available for guiding vaccine and immunotherapeutics development against diseases. PMID:27043641

  2. Dendritic cell metabolism

    PubMed Central

    Pearce, Edward J.; Everts, Bart

    2015-01-01

    The past 15 years have seen enormous advances in our understanding of the receptor and signalling systems that allow dendritic cells (DCs) to respond to pathogens or other danger signals and initiate innate and adaptive immune responses. We are now beginning to appreciate that many of these pathways not only stimulate changes in the expression of genes that control DC immune functions, but also affect metabolic pathways, thereby integrating the cellular requirements of the activation process. In this Review, we focus on this relatively new area of research and attempt to describe an integrated view of DC immunometabolism. PMID:25534620

  3. The thyroid hormone triiodothyronine reinvigorates dendritic cells and potentiates anti-tumor immunity

    PubMed Central

    Alamino, V.A.; Montesinos, M.M.; Rabinovich, G.A.; Pellizas, C.G.

    2016-01-01

    ABSTRACT Dendritic cell (DC) cancer vaccines have shown limited clinical benefit. Thus, the identification of signals and molecular pathways that potentiate the immunogenicity of DCs has become a major challenge in cancer research. Our studies demonstrate that triiodothyronine endows DCs with enhanced ability to stimulate cytotoxic T-cell responses with implications in DC-based immunotherapy. PMID:26942081

  4. Functional Identification of Dendritic Cells in the Teleost Model, Rainbow Trout (Oncorhynchus mykiss)

    PubMed Central

    Bassity, Elizabeth; Clark, Theodore G.

    2012-01-01

    Dendritic cells are specialized antigen presenting cells that bridge innate and adaptive immunity in mammals. This link between the ancient innate immune system and the more evolutionarily recent adaptive immune system is of particular interest in fish, the oldest vertebrates to have both innate and adaptive immunity. It is unknown whether dendritic cells co-evolved with the adaptive response, or if the connection between innate and adaptive immunity relied on a fundamentally different cell type early in evolution. We approached this question using the teleost model organism, rainbow trout (Oncorhynchus mykiss), with the aim of identifying dendritic cells based on their ability to stimulate naïve T cells. Adapting mammalian protocols for the generation of dendritic cells, we established a method of culturing highly motile, non-adherent cells from trout hematopoietic tissue that had irregular membrane processes and expressed surface MHCII. When side-by-side mixed leukocyte reactions were performed, these cells stimulated greater proliferation than B cells or macrophages, demonstrating their specialized ability to present antigen and therefore their functional homology to mammalian dendritic cells. Trout dendritic cells were then further analyzed to determine if they exhibited other features of mammalian dendritic cells. Trout dendritic cells were found to have many of the hallmarks of mammalian DCs including tree-like morphology, the expression of dendritic cell markers, the ability to phagocytose small particles, activation by toll-like receptor-ligands, and the ability to migrate in vivo. As in mammals, trout dendritic cells could be isolated directly from the spleen, or larger numbers could be derived from hematopoietic tissue and peripheral blood mononuclear cells in vitro. PMID:22427987

  5. The control of dendritic cell maturation by pH-sensitive polyion complex micelles.

    PubMed

    Boudier, Ariane; Aubert-Pouëssel, Anne; Louis-Plence, Pascale; Gérardin, Corine; Jorgensen, Christian; Devoisselle, Jean-Marie; Bégu, Sylvie

    2009-01-01

    Double-hydrophilic block copolymer micelles were designed as vectors for ex vivo dendritic cell engineering to improve the delivery of therapeutic molecules in such immune cells. Polymethacrylic acid-b-polyethylene oxide (PMAA(2100)-b-POE(5000))/poly-L-lysine micelles were optimised and showed a hydrodynamic diameter of 30 nm with a peculiar core organised with hydrogen bonds as well as hydrophobic domains. The micelles proved high stability in physiological conditions (pH and ionic strength) and were also able to disassemble under acidic conditions mimicking acidic endolysosomes. The efficient endocytosis of the optimised micelles tested on bone marrow-derived dendritic cells was monitored by fluorescence-activated cell sorting and microscopy analysis. Finally, the micelle biocompatibility permitted a complete control of the dendritic cell-maturation process widening the therapeutical potential of such engineered dendritic cells for cancer vaccines as well as for immunomodulation in autoimmune diseases.

  6. Dendritic and Langerhans cells respond to Aβ peptides differently: implication for AD immunotherapy

    PubMed Central

    Cheng, Jiang; Lin, Xiaoyang; Morgan, David; Gordon, Marcia; Chen, Xi; Wang, Zhen-Hai; Li, Hai-Ning; He, Lan-Jie; Zhou, Shu-Feng; Cao, Chuanhai

    2015-01-01

    Both wild-type and mutated beta-amyloid (Aβ) peptides can elicit an immune response when delivered subcutaneously. However, only mutated forms of Aβ can sensitize dendritic cells when administered intravenously or intraperitoneally. To understand the role of mutation and delivery routes in creating immune responses, and the function of dendritic cells as therapeutic agents, we used fluorescent-conjugated WT Aβ1-40 (WT40) and artificially mutated Aβ1-40 (22W40) peptides to treat dendritic and Langerhans cells from young and/or old mice at different time points. The cell types were analyzed by flow cytometry and confocal microscopy to identify differences in function and antigen presentation, and Luminex and Western blots for cell activation and associated mechanisms. Our results demonstrated that the artificial mutant, 22W40, enhanced dendritic cell's phagocytosis and antigen presentation better than the WT40. Interestingly, Langerhans cells were more effective at early presentation. The artificial mutant 22W40 increased CD8α+ dendritic cells, CD8+ T-cells, and IFN-γ production when co-cultured with self-lymphocytes and dendritic cells from aged mice (30-month-old). Here, the 22W40 mutant peptide has been found to be potent enough to activate DCs, and that dendritic cell-based therapy may be a more effective treatment for age-related diseases, such as Alzheimer's disease (AD). PMID:26473448

  7. Dendritic cells in cancer immunotherapy clinical trials: are we making progress?

    PubMed

    Butterfield, Lisa H

    2013-12-13

    Dendritic cells (DC) have been tested in cancer immunotherapy clinical trials for two decades. Over this time, the methods of DC culture (or manufacture) have evolved, the approaches for antigen loading have broadened, the maturation signals have varied and different sites of administration have been tested. The post-vaccination immunologic questions asked have also varied between trials and over time. In this review, I will consider multiple aspects of DC-based vaccines tested in cancer patients, including the cell culture, antigen loading, maturation, and delivery, as well as what we have learned from testing immune responses in vaccinated patients who have benefited clinically, and those who have not measurably benefited.

  8. Peripheral blood lymphocytes from low-grade squamous intraepithelial lesions patients recognize vaccine antigens in the presence of activated dendritic cells, and produced high levels of CD8 + IFNγ + T cells and low levels of IL-2 when induced to proliferate

    PubMed Central

    2012-01-01

    Background Most infections with human papillomavirus (HPV) are resolved without clinical intervention, but a minority evolves into chronic lesions of distinct grades, including cervical-uterine cancer. It is known that in most cases the immune system mediates elimination of HPV infection. However, the mechanism of immune evasion leading to HPV persistence and development of early cervical lesions is not fully understood. The aim of the present work was to evaluate the potential of peripheral blood leukocytes (PBL) from low-grade squamous intraepithelial lesions (LSIL) patients to be activated ex-vivo by vaccine antigens, the participation of cytotoxic lymphocytes and regulatory T cells, and to determine the secretion of Th1 and Th2 cytokines mediated by stimulation of T cell receptors. Results We found that PBL from LSIL patients showed a significantly lower proliferation rate to vaccine antigens as compared to that of healthy donors, even though there was not a difference in the presence of antibodies to those antigens in sera from both groups. We did not find differences in either the frequency of CD4 + CD25 + FoxP3+ in PBL, or the levels of IL-4, IL-5 and IL-10 in plasma or conditioned media from PBL incubated with TcR agonists in vitro, between the two groups. However, we detected a lower production of IL-2 and a higher proportion of CD8 + IFNγ + cells in PBL from LSIL patients as compared with PBL from normal donors. We also observed that PBL from patients infected by HPV-16 and −18 were not able to proliferate in the presence of soluble HPV antigens added to the culture; however, a high level of proliferation was attained when these antigens were presented by activated dendritic cells. Conclusions Our results suggest that the immunodeficiency reported in LSIL patients could be due to the inability of specific cytotoxic T lymphocytes that for some unknown reason are present but unable to mount a response when challenged with their antigens

  9. [Vaccinations 1979].

    PubMed

    Herzog, C; Just, M

    1980-05-17

    On the basis of the Federal Health Department's "Swiss Vaccination Scheme" of 1976, some up to data additions and alterations are proposed mainly with regard to combined measles-mumps-rubella vaccination during the second year of life together with the first tetanus, diphtheria and poliomyelitis booster. Oral vaccination against poliomyelitis is not contraindicated during pregnancy. Among the inoculations not considered in the official vaccination scheme, regular influenza vaccination is only indicated for certain chronically ill people. Whether this is also true of the pneumococcal vaccine newly licensed in Switzerland remains uncertain. The (likewise new) meningococcal vaccine is only effective against type A and C and not against the type B meningococci prevalent in Switzerland. In view of its safety, only HDC vaccine produced with human tissue cultures should be used for anti-rabies vaccination. For counselling prior to travel abroad, a simple vaccination scheme is provided and the importance of other prophylactic measures is emphasized. PMID:7394495

  10. An overview of hepatitis C vaccines.

    PubMed

    Garcia, Alexis; Fernandez, Saturnino; Toro, Felix; De Sanctis, Juan B

    2014-01-01

    The hepatitis C virus (HCV) is a prevalent human pathogen that causes persistent liver infections in most infected individuals; thus, efforts to develop a safe vaccine, preventive and therapeutic, are urgently needed. Current approaches for the vaccine include the use of recombinant E1 and E2 proteins, synthetic peptides, viral particles, viral vectors, DNA vaccines, dendritic cells, and prime-boost strategies. However, several problems have been encountered: restricted humoral and cell mediated responses, the low delivery of potentially protective viral epitopes, and the low effectiveness of the adjuvants used in the different protocols. Strong neutralizing antibodies and powerful cellular immune responses are required for an effective vaccine against HCV. New patents are being developed to enhance both immune responses. The high prevalence of global HCV infection obliges the development of new efforts in primary prevention; therefore, a safe and efficient vaccine to confer protection against HCV is urgently needed.

  11. RECENT DEVELOPMENTS IN CANCER VACCINES1

    PubMed Central

    Palucka, Karolina; Ueno, Hideki; Banchereau, Jacques

    2011-01-01

    SUMMARY The adoptive transfer of cancer antigen-specific effector T cells in patients can result in tumor rejection, thereby illustrating the immune system potential for cancer therapy. Ideally, one would like to directly induce efficient tumor-specific effector and memory T cells through vaccination. Therapeutic vaccines have two objectives: priming antigen-specific T cells and reprogramming memory T cells, i.e., a transformation from one type of immunity to another (e.g., regulatory to cytotoxic). Recent successful phase III clinical trials showing benefit to the patients revived cancer vaccines. Dendritic cells (DCs) are essential in generation of immune responses and as such represent targets and vectors for vaccination. We have learned that different DC subsets elicit different T cells. Similarly, different activation methods result in DCs able to elicit distinct T cells. We contend that a careful manipulation of activated DCs will allow cancer immunotherapists to produce the next generation of highly efficient cancer vaccines. PMID:21248270

  12. Dendritic Growth Velocities in Microgravity

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.; Koss, M. B.; Winsa, E. A.

    1994-01-01

    We measured dendritic tip velocities in pure succinonitrile (SCN) in microgravity. using a sequence of telemetered binary images sent to Earth from the Space Shuttle Columbia (STS-62). Growth velocities were measured as a function of the supercooling over the range 0.05-1.5 K. Microgravity observations show that buoyancy-induced convection alters the growth kinetics of SCN dendrites at supercooling as high as 1.3 K. Also, the dendrite velocity data measured under microgravity agree well with the Ivantsov paraboloidal diffusion solution when coupled to a scaling constant of sigma(sup *) = 0.0157.

  13. Beyond empiricism: informing vaccine development through innate immunity research.

    PubMed

    Levitz, Stuart M; Golenbock, Douglas T

    2012-03-16

    Although a great public heath success, vaccines provide suboptimal protection in some patient populations and are not available to protect against many infectious diseases. Insights from innate immunity research have led to a better understanding of how existing vaccines work and have informed vaccine development. New adjuvants and delivery systems are being designed based upon their capacity to stimulate innate immune sensors and target antigens to dendritic cells, the cells responsible for initiating adaptive immune responses. Incorporating these adjuvants and delivery systems in vaccines can beneficially alter the quantitative and qualitative nature of the adaptive immune response, resulting in enhanced protection.

  14. Transient Dendritic Solidification Experiment (TDSE)

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Transient Dendritic Solidification Expepriment (TDSE) is being developed as a candidate for flight aboard the International Space Station. TDSE will study the growth of dendrites (treelike crystalline structures) in a transparent material (succinonitrile or SCN) that mimics the behavior of widely used iron-based metals. Basic work by three Space Shuttle missions of the Isothermal Dendritic Growth Expepriment (IDGE) is yielding new insights into virtually all industrially relevant metal and alloy forming operations. The TDSE is similar to IDGE, but will maintain a constant temperature while varying pressure on the dendrites. Shown here is an exploded view of major elements of TDSE. A similar view is available with labels. The principal investigator is Matthew Koss of College of the Holy Cross in Worcester, MA. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  15. Transient Dendritic Solidification Experiment (TDSE)

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Transient Dendritic Solidification Experiment (TDSE) is being developed as a candidate for flight aboard the International Space Station. TDSE will study the growth of dendrites (treelike crystalline structures) in a transparent material (succinonitrile or SCN) that mimics the behavior or widely used iron-based metals. Basic work by three Space Shuttle missions of the Isothermal Dendritic Growth Experiment (IDGE) is yielding new insights into virtually all industrially relevant metal and alloy forming operations. The TDSE is similar to IDGE, but will maintain a constant temperature while varying pressure on the dendrites. Shown here is an exploded view of major elements of the TDSE. A similar view is availble without labels. The principal investigator is Matthew Koss of College of the Holy Cross in Worcester, MA. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  16. Optimal Current Transfer in Dendrites

    PubMed Central

    Bird, Alex D.

    2016-01-01

    Integration of synaptic currents across an extensive dendritic tree is a prerequisite for computation in the brain. Dendritic tapering away from the soma has been suggested to both equalise contributions from synapses at different locations and maximise the current transfer to the soma. To find out how this is achieved precisely, an analytical solution for the current transfer in dendrites with arbitrary taper is required. We derive here an asymptotic approximation that accurately matches results from numerical simulations. From this we then determine the diameter profile that maximises the current transfer to the soma. We find a simple quadratic form that matches diameters obtained experimentally, indicating a fundamental architectural principle of the brain that links dendritic diameters to signal transmission. PMID:27145441

  17. [Dengue vaccines].

    PubMed

    Morita, Kouichi

    2008-10-01

    Dengue is the most important mosquito borne virus infection in the tropics. Based on the effects of global warming, it is expected that dengue epidemic areas will further expand in the next decades unless effective and affordable vaccines are made available soon. At the moment, several vaccine developers have utilized live-attenuated live tetravalent vaccines and two of them have already completed phase two trials. However, the risk of antibody-dependent enhancement infection is not well elucidated and thus further and careful evaluation of the safety on proposed candidate vaccines are essential. At the moment, Bill and Melinda Gates Foundation strongly support the vaccine development through the Pediatric Dengue Vaccine Initiative.

  18. Directing dendritic cell immunotherapy towards successful cancer treatment

    PubMed Central

    Sabado, Rachel Lubong; Bhardwaj, Nina

    2010-01-01

    The use of dendritic cells (DCs) for tumor immunotherapy represents a powerful approach for harnessing the patient's own immune system to eliminate tumor cells. However, suboptimal conditions for generating potent immunostimulatory DCs, as well as the induction of tolerance and suppression mediated by the tumors and its microenvironment have contributed to limited success. Combining DC vaccines with new approaches that enhance immunogenicity and overcome the regulatory mechanisms underlying peripheral tolerance may be the key to achieving effective and durable anti-tumor immune responses that translate to better clinical outcomes. PMID:20473346

  19. Exogenous Addition of Arachidonic Acid to the Culture Media Enhances the Functionality of Dendritic Cells for Their Possible Use in Cancer Immunotherapy

    PubMed Central

    Kumar, Jeetendra; Gurav, Rupali; Kale, Vaijayanti; Limaye, Lalita

    2014-01-01

    The development of dendritic cell based vaccines is a promising approach in cancer immunotherapy. For their successful use in the clinics, the propagation and functionality of DCs is crucial. We earlier established a two-step method for the large scale generation of DCs from umbilical cord blood derived MNCs/CD34+ cells. This work aims at improving their functionality based on the following observations: in vitro generated DCs can be less efficient in migration and other functional activities due to lower eicosanoid levels. The production of eicosanoids from Arachidonic Acid (AA) can be hampered due to suppression of the enzyme phospholipase A2 by IL-4, an essential cytokine required for the differentiation of DCs. We hypothesized that exogenous addition of AA to the culture media during DC generation may result in DCs with improved functionality. DCs were generated with and without AA. The two DC sets were compared by phenotypic analysis, morphology and functional assays like antigen uptake, MLR, CTL assay and in vitro and in vivo migration. Though there were no differences between the two types of DCs in terms of morphology, phenotype and antigen uptake, AA+ DCs exhibited an enhanced in vitro and in vivo migration, T cell stimulatory capacity, CTL activity and significantly higher transcript levels of COX-2. AA+ DCs also show a favorable Th1 cytokine profile than AA- DCs. Thus addition of AA to the culture media is skewing the DCs towards the secretion of more IL-12 and less of IL-10 along with the restoration of eicosanoids levels in a COX-2 mediated pathway thereby enhancing the functionality of these cells to be used as a potent cellular vaccine. Taken together, these findings will be helpful in the better contriving of DC based vaccines for cancer immunotherapy. PMID:25369453

  20. Vaccines (immunizations) - overview

    MedlinePlus

    ... mumps, and rubella (MMR) vaccine and the varicella (chickenpox) vaccine are examples. Killed (inactivated) vaccines are made from ... countries. Some countries require this record. COMMON VACCINES ... DTaP immunization (vaccine) Hepatitis A vaccine Hepatitis B ...

  1. Diphtheria Vaccination

    MedlinePlus

    ... and adults - Tetanus-diphtheria-acellular Pertussis vaccine Diphtheria Vaccination Pronounced (dif-THEER-ee-a) Recommend on Facebook ... Related Pages Pertussis Tetanus Feature Story: Adults Need Immunizations, Too Abbreviations DTaP=Pediatric - Diphtheria-Tetanus-acellular Pertussis ...

  2. Who Needs Chickenpox Vaccine

    MedlinePlus

    ... Not Get Chickenpox Vaccine Types of Chickenpox Vaccine Child and Adult Immunization Schedules Possible Side Effects of Chickenpox Vaccine Childcare and School Vaccine Requirements Also Known As & Abbreviations ...

  3. Exosomes as potent cell-free peptide-based vaccine. II. Exosomes in CpG adjuvants efficiently prime naive Tc1 lymphocytes leading to tumor rejection.

    PubMed

    Chaput, Nathalie; Schartz, Nöel E C; André, Fabrice; Taïeb, Julien; Novault, Sophie; Bonnaventure, Pierre; Aubert, Nathalie; Bernard, Jacky; Lemonnier, François; Merad, Miriam; Adema, Gosse; Adams, Malcolm; Ferrantini, Maria; Carpentier, Antoine F; Escudier, Bernard; Tursz, Thomas; Angevin, Eric; Zitvogel, Laurence

    2004-02-15

    Ideal vaccines should be stable, safe, molecularly defined, and out-of-shelf reagents efficient at triggering effector and memory Ag-specific T cell-based immune responses. Dendritic cell-derived exosomes could be considered as novel peptide-based vaccines because exosomes harbor a discrete set of proteins, bear functional MHC class I and II molecules that can be loaded with synthetic peptides of choice, and are stable reagents that were safely used in pioneering phase I studies. However, we showed in part I that exosomes are efficient to promote primary MHC class I-restricted effector CD8(+) T cell responses only when transferred onto mature DC in vivo. In this work, we bring evidence that among the clinically available reagents, Toll-like receptor 3 and 9 ligands are elective adjuvants capable of triggering efficient MHC-restricted CD8(+) T cell responses when combined to exosomes. Exosome immunogenicity across species allowed to verify the efficacy of good manufactory procedures-manufactured human exosomes admixed with CpG oligonucleotides in prophylactic and therapeutic settings of melanoma in HLA-A2 transgenic mice. CpG adjuvants appear to be ideal adjuvants for exosome-based cancer vaccines.

  4. DNA vaccines

    NASA Astrophysics Data System (ADS)

    Gregersen, Jens-Peter

    2001-12-01

    Immunization by genes encoding immunogens, rather than with the immunogen itself, has opened up new possibilities for vaccine research and development and offers chances for new applications and indications for future vaccines. The underlying mechanisms of antigen processing, immune presentation and regulation of immune responses raise high expectations for new and more effective prophylactic or therapeutic vaccines, particularly for vaccines against chronic or persistent infectious diseases and tumors. Our current knowledge and experience of DNA vaccination is summarized and critically reviewed with particular attention to basic immunological mechanisms, the construction of plasmids, screening for protective immunogens to be encoded by these plasmids, modes of application, pharmacokinetics, safety and immunotoxicological aspects. DNA vaccines have the potential to accelerate the research phase of new vaccines and to improve the chances of success, since finding new immunogens with the desired properties is at least technically less demanding than for conventional vaccines. However, on the way to innovative vaccine products, several hurdles have to be overcome. The efficacy of DNA vaccines in humans appears to be much less than indicated by early studies in mice. Open questions remain concerning the persistence and distribution of inoculated plasmid DNA in vivo, its potential to express antigens inappropriately, or the potentially deleterious ability to insert genes into the host cell's genome. Furthermore, the possibility of inducing immunotolerance or autoimmune diseases also needs to be investigated more thoroughly, in order to arrive at a well-founded consensus, which justifies the widespread application of DNA vaccines in a healthy population.

  5. Recent Advances in Subunit Vaccine Carriers

    PubMed Central

    Vartak, Abhishek; Sucheck, Steven J.

    2016-01-01

    The lower immunogenicity of synthetic subunit antigens, compared to live attenuated vaccines, is being addressed with improved vaccine carriers. Recent reports indicate that the physio-chemical properties of these carriers can be altered to achieve optimal antigen presentation, endosomal escape, particle bio-distribution, and cellular trafficking. The carriers can be modified with various antigens and ligands for dendritic cells targeting. They can also be modified with adjuvants, either covalently or entrapped in the matrix, to improve cellular and humoral immune responses against the antigen. As a result, these multi-functional carrier systems are being explored for use in active immunotherapy against cancer and infectious diseases. Advancing technology, improved analytical methods, and use of computational methodology have also contributed to the development of subunit vaccine carriers. This review details recent breakthroughs in the design of nano-particulate vaccine carriers, including liposomes, polymeric nanoparticles, and inorganic nanoparticles. PMID:27104575

  6. RNA-Based Vaccines in Cancer Immunotherapy.

    PubMed

    McNamara, Megan A; Nair, Smita K; Holl, Eda K

    2015-01-01

    RNA vaccines traditionally consist of messenger RNA synthesized by in vitro transcription using a bacteriophage RNA polymerase and template DNA that encodes the antigen(s) of interest. Once administered and internalized by host cells, the mRNA transcripts are translated directly in the cytoplasm and then the resulting antigens are presented to antigen presenting cells to stimulate an immune response. Alternatively, dendritic cells can be loaded with either tumor associated antigen mRNA or total tumor RNA and delivered to the host to elicit a specific immune response. In this review, we will explain why RNA vaccines represent an attractive platform for cancer immunotherapy, discuss modifications to RNA structure that have been developed to optimize mRNA vaccine stability and translational efficiency, and describe strategies for nonviral delivery of mRNA vaccines, highlighting key preclinical and clinical data related to cancer immunotherapy.

  7. RNA-Based Vaccines in Cancer Immunotherapy

    PubMed Central

    McNamara, Megan A.; Nair, Smita K.; Holl, Eda K.

    2015-01-01

    RNA vaccines traditionally consist of messenger RNA synthesized by in vitro transcription using a bacteriophage RNA polymerase and template DNA that encodes the antigen(s) of interest. Once administered and internalized by host cells, the mRNA transcripts are translated directly in the cytoplasm and then the resulting antigens are presented to antigen presenting cells to stimulate an immune response. Alternatively, dendritic cells can be loaded with either tumor associated antigen mRNA or total tumor RNA and delivered to the host to elicit a specific immune response. In this review, we will explain why RNA vaccines represent an attractive platform for cancer immunotherapy, discuss modifications to RNA structure that have been developed to optimize mRNA vaccine stability and translational efficiency, and describe strategies for nonviral delivery of mRNA vaccines, highlighting key preclinical and clinical data related to cancer immunotherapy. PMID:26665011

  8. Recent Advances in Subunit Vaccine Carriers.

    PubMed

    Vartak, Abhishek; Sucheck, Steven J

    2016-01-01

    The lower immunogenicity of synthetic subunit antigens, compared to live attenuated vaccines, is being addressed with improved vaccine carriers. Recent reports indicate that the physio-chemical properties of these carriers can be altered to achieve optimal antigen presentation, endosomal escape, particle bio-distribution, and cellular trafficking. The carriers can be modified with various antigens and ligands for dendritic cells targeting. They can also be modified with adjuvants, either covalently or entrapped in the matrix, to improve cellular and humoral immune responses against the antigen. As a result, these multi-functional carrier systems are being explored for use in active immunotherapy against cancer and infectious diseases. Advancing technology, improved analytical methods, and use of computational methodology have also contributed to the development of subunit vaccine carriers. This review details recent breakthroughs in the design of nano-particulate vaccine carriers, including liposomes, polymeric nanoparticles, and inorganic nanoparticles. PMID:27104575

  9. Gold nanorod vaccine for respiratory syncytial virus

    NASA Astrophysics Data System (ADS)

    Stone, John W.; Thornburg, Natalie J.; Blum, David L.; Kuhn, Sam J.; Wright, David W.; Crowe, James E., Jr.

    2013-07-01

    Respiratory syncytial virus (RSV) is a major cause of pneumonia and wheezing in infants and the elderly, but to date there is no licensed vaccine. We developed a gold nanorod construct that displayed the major protective antigen of the virus, the fusion protein (F). Nanorods conjugated to RSV F were formulated as a candidate vaccine preparation by covalent attachment of viral protein using a layer-by-layer approach. In vitro studies using ELISA, electron microscopy and circular dichroism revealed that conformation-dependent epitopes were maintained during conjugation, and transmission electron microscopy studies showed that a dispersed population of particles could be achieved. Human dendritic cells treated with the vaccine induced immune responses in primary human T cells. These results suggest that this vaccine approach may be a potent method for immunizing against viruses such as RSV with surface glycoproteins that are targets for the human immune response.

  10. Lysophosphatidic acid induces osteocyte dendrite outgrowth

    SciTech Connect

    Karagiosis, Sue A.; Karin, Norm J.

    2007-05-25

    A method was developed to measure dendrite formation in bone cells. Lysophosphatidic acid (LPA) was found to stimulate dendrite outgrowth. It is postulated that LPA plays a role in regulating the osteocyte network in vivo.

  11. Gravitational effects in dendritic growth

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.; Singh, N. B.; Chopra, M.

    1983-01-01

    The theories of diffusion-controlled dendritic crystallization will be reviewed briefly, along with recently published critical experiments on the kinetics and morphology of dendritic growth in pure substances. The influence of the gravitational body force on dendrite growth kinetics will be shown to be highly dependent on the growth orientation with respect to the gravity vector and on the level of the thermal supercooling. In fact, an abrupt transition occurs at a critical supercooling, above which diffusional transport dominates the growth process and below which convective transport dominates. Our most recent work on binary mixtures shows that dilute solute additions influence the crystallization process indirectly, by altering the interfacial stability, rather than by directly affecting the transport mode. Directions for future studies in this field will also be discussed.

  12. Hepatitis Vaccines

    PubMed Central

    Ogholikhan, Sina; Schwarz, Kathleen B.

    2016-01-01

    Viral hepatitis is a serious health problem all over the world. However, the reduction of the morbidity and mortality due to vaccinations against hepatitis A and hepatitis B has been a major component in the overall reduction in vaccine preventable diseases. We will discuss the epidemiology, vaccine development, and post-vaccination effects of the hepatitis A and B virus. In addition, we discuss attempts to provide hepatitis D vaccine for the 350 million individuals infected with hepatitis B globally. Given the lack of a hepatitis C vaccine, the many challenges facing the production of a hepatitis C vaccine will be shown, along with current and former vaccination trials. As there is no current FDA-approved hepatitis E vaccine, we will present vaccination data that is available in the rest of the world. Finally, we will discuss the existing challenges and questions facing future endeavors for each of the hepatitis viruses, with efforts continuing to focus on dramatically reducing the morbidity and mortality associated with these serious infections of the liver. PMID:26978406

  13. Immune response triggered by Brucella abortus following infection or vaccination.

    PubMed

    Dorneles, Elaine M S; Teixeira-Carvalho, Andréa; Araújo, Márcio S S; Sriranganathan, Nammalwar; Lage, Andrey P

    2015-07-17

    Brucella abortus live vaccines have been used successfully to control bovine brucellosis worldwide for decades. However, due to some limitations of these live vaccines, efforts are being made for the development of new safer and more effective vaccines that could also be used in other susceptible species. In this context, understanding the protective immune responses triggered by B. abortus is critical for the development of new vaccines. Such understandings will enhance our knowledge of the host/pathogen interactions and enable to develop methods to evaluate potential vaccines and innovative treatments for animals or humans. At present, almost all the knowledge regarding B. abortus specific immunological responses comes from studies in mice. Active participation of macrophages, dendritic cells, IFN-γ producing CD4(+) T-cells and cytotoxic CD8(+) T-cells are vital to overcome the infection. In this review, we discuss the characteristics of the immune responses triggered by vaccination versus infection by B. abortus, in different hosts.

  14. GMP-Grade mRNA Electroporation of Dendritic Cells for Clinical Use.

    PubMed

    Derdelinckx, Judith; Berneman, Zwi N; Cools, Nathalie

    2016-01-01

    mRNA-electroporated dendritic cells (DC) are demonstrating clinical benefit in patients in many therapeutic areas, including cancer and infectious diseases. According to current good manufacturing guidelines, cell-based medicinal products have to be defined for identity, purity, potency, stability, and viability. In order to comply with the directives and guidelines defined by the regulatory authorities, we report here a standardized and reproducible method for the manufacturing of clinical-grade mRNA-transfected DC. PMID:27236797

  15. Meningococcal Vaccinations.

    PubMed

    Crum-Cianflone, Nancy; Sullivan, Eva

    2016-06-01

    Neisseria meningitidis, a gram-negative diplococcal bacterium, is a common asymptomatic nasopharyngeal colonizer that may infrequently lead to invasive disease in the form of meningitis or bacteremia. Six serogroups (A, B, C, W, X and Y) are responsible for the majority of invasive infections. Increased risk of disease occurs in specific population groups including infants, adolescents, those with asplenia or complement deficiencies, and those residing in crowded living conditions such as in college dormitories. The incidence of invasive meningococcal disease varies geographically with some countries (e.g., in the African meningitis belt) having both high endemic disease rates and ongoing epidemics, with annual rates reaching 1000 cases per 100,000 persons. Given the significant morbidity and mortality associated with meningococcal disease, it remains a major global health threat best prevented by vaccination. Several countries have implemented vaccination programs with the selection of specific vaccine(s) based on locally prevalent serogroup(s) of N. meningitidis and targeting population groups at highest risk. Polysaccharide meningococcal vaccines became available over 40 years ago, but are limited by their inability to produce immunologic memory responses, poor immunogenicity in infants/children, hyporesponsiveness after repeated doses, and lack of efficacy against nasopharyngeal carriage. In 1999, the first meningococcal conjugate vaccines were introduced and have been successful in overcoming many of the shortcomings of polysaccharide vaccines. The implementation of meningococcal conjugate vaccination programs in many areas of the world (including the massive campaign in sub-Saharan Africa using a serogroup A conjugate vaccine) has led to dramatic reductions in the incidence of meningococcal disease by both individual and population protection. Progressive advances in vaccinology have led to the recent licensure of two effective vaccines against serogroup B

  16. Varicella (Chickenpox) Vaccine

    MedlinePlus

    ... product containing Measles Vaccine, Mumps Vaccine, Rubella Vaccine, Varicella Vaccine) ... Why get vaccinated?Chickenpox (also called varicella) is a common childhood disease. It is usually mild, but it can be serious, especially in ...

  17. Vaccine Adverse Events

    MedlinePlus

    ... Vaccines, Blood & Biologics Animal & Veterinary Cosmetics Tobacco Products Vaccines, Blood & Biologics Home Vaccines, Blood & Biologics Safety & Availability ( ... Center for Biologics Evaluation & Research Vaccine Adverse Events Vaccine Adverse Events Share Tweet Linkedin Pin it More ...

  18. Adjuvants for allergy vaccines.

    PubMed

    Moingeon, Philippe

    2012-10-01

    Allergen-specific immunotherapy is currently performed via either the subcutaneous or sublingual routes as a treatment for type I (IgE dependent) allergies. Aluminum hydroxide or calcium phosphate are broadly used as adjuvants for subcutaneous allergy vaccines, whereas commercial sublingual vaccines rely upon high doses of aqueous allergen extracts in the absence of any immunopotentiator. Adjuvants to be included in the future in products for allergen specific immunotherapy should ideally enhance Th1 and CD4+ regulatory T cell responses. Imunomodulators impacting dendritic or T cell functions to induce IL10, IL12 and IFNγ production are being investigated in preclinical allergy models. Such candidate adjuvants encompass synthetic or biological immunopotentiators such as glucocorticoids, 1,25-dihydroxy vitamin D3, selected probiotic strains (e.g., Lactobacillus and Bifidobacterium species) as well as TLR2 (Pam3CSK4), TLR4 (monophosphoryl lipid A, synthetic lipid A analogs) or TLR9 (CpGs) ligands. Furthermore, the use of vector systems such as mucoadhesive particules, virus-like particles or liposomes are being considered to enhance allergen uptake by tolerogenic antigen presenting cells present in mucosal tissues.

  19. Dendritic polyglycerols for biomedical applications.

    PubMed

    Calderón, Marcelo; Quadir, Mohiuddin Abdul; Sharma, Sunil Kumar; Haag, Rainer

    2010-01-12

    The application of nanotechnology in medicine and pharmaceuticals is a rapidly advancing field that is quickly gaining acceptance and recognition as an independent area of research called "nanomedicine". Urgent needs in this field, however, are biocompatible and bioactive materials for antifouling surfaces and nanoparticles for drug delivery. Therefore, extensive attention has been given to the design and development of new macromolecular structures. Among the various polymeric architectures, dendritic ("treelike") polymers have experienced an exponential development due to their highly branched, multifunctional, and well-defined structures. This Review describes the diverse syntheses and biomedical applications of dendritic polyglycerols (PGs). These polymers exhibit good chemical stability and inertness under biological conditions and are highly biocompatible. Oligoglycerols and their fatty acid esters are FDA-approved and are already being used in a variety of consumer applications, e.g., cosmetics and toiletries, food industries, cleaning and softening agents, pharmaceuticals, polymers and polymer additives, printing photographing materials, and electronics. Herein, we present the current status of dendritic PGs as functional dendritic architectures with particular focus on their application in nanomedicine, in drug, dye, and gene delivery, as well as in regenerative medicine in the form of non-fouling surfaces and matrix materials.

  20. Advanced dendritic web growth development

    NASA Technical Reports Server (NTRS)

    Hopkins, R. H.

    1985-01-01

    A program to develop the technology of the silicon dendritic web ribbon growth process is examined. The effort is being concentrated on the area rate and quality requirements necessary to meet the JPL/DOE goals for terrestrial PV applications. Closed loop web growth system development and stress reduction for high area rate growth is considered.

  1. Wiring dendrites in layers and columns.

    PubMed

    Luo, Jiangnan; McQueen, Philip G; Shi, Bo; Lee, Chi-Hon; Ting, Chun-Yuan

    2016-06-01

    The most striking structure in the nervous system is the complex yet stereotyped morphology of the neuronal dendritic tree. Dendritic morphologies and the connections they make govern information flow and integration in the brain. The fundamental mechanisms that regulate dendritic outgrowth and branching are subjects of extensive study. In this review, we summarize recent advances in the molecular and cellular mechanisms for routing dendrites in layers and columns, prevalent organizational structures in the brain. We highlight how dendritic patterning influences the formation of synaptic circuits. PMID:27315108

  2. [HPV vaccination].

    PubMed

    Stronski Huwiler, Susanne; Spaar, Anne

    2016-01-01

    Human Papilloma Viruses are associated with genital carcinoma (of the cervix, anus, vulva, vagina and the penis) as well as with non-genital carcinoma (oropharyngeal carcinoma) and genital warts. In Switzerland two highly efficient and safe vaccines are available. The safety of these vaccines has been repeatedly subject of controversial discussions, however so far post marketing surveillance has always been able to confirm the safety. In Switzerland girls and young women have been offered the HPV vaccination within cantonal programmes since 2008. 2015 the recommendation for the HPV-vaccination for boys and young men was issued, and starting July 1, 2016 they as well will be offered vaccination free of charge within the cantonal programmes. This article discusses the burden of disease, efficacy and safety of the vaccines and presents facts which are important for vaccinating these young people. Specifically, aspects of the decisional capacity of adolescents to consent to the vaccination are presented. Finally, the future perspective with a focus on a new vaccine with an enlarged spectrum of HPV-types is discussed. PMID:27268446

  3. Engineering Enhanced Vaccine Cell Lines To Eradicate Vaccine-Preventable Diseases: the Polio End Game

    PubMed Central

    van der Sanden, Sabine M. G.; Wu, Weilin; Dybdahl-Sissoko, Naomi; Weldon, William C.; Brooks, Paula; O'Donnell, Jason; Jones, Les P.; Brown, Cedric; Tompkins, S. Mark; Karpilow, Jon; Tripp, Ralph A.

    2015-01-01

    ABSTRACT Vaccine manufacturing costs prevent a significant portion of the world's population from accessing protection from vaccine-preventable diseases. To enhance vaccine production at reduced costs, a genome-wide RNA interference (RNAi) screen was performed to identify gene knockdown events that enhanced poliovirus replication. Primary screen hits were validated in a Vero vaccine manufacturing cell line using attenuated and wild-type poliovirus strains. Multiple single and dual gene silencing events increased poliovirus titers >20-fold and >50-fold, respectively. Host gene knockdown events did not affect virus antigenicity, and clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9-mediated knockout of the top candidates dramatically improved viral vaccine strain production. Interestingly, silencing of several genes that enhanced poliovirus replication also enhanced replication of enterovirus 71, a clinically relevant virus to which vaccines are being targeted. The discovery that host gene modulation can markedly increase virus vaccine production dramatically alters mammalian cell-based vaccine manufacturing possibilities and should facilitate polio eradication using the inactivated poliovirus vaccine. IMPORTANCE Using a genome-wide RNAi screen, a collection of host virus resistance genes was identified that, upon silencing, increased poliovirus and enterovirus 71 production by from 10-fold to >50-fold in a Vero vaccine manufacturing cell line. This report provides novel insights into enterovirus-host interactions and describes an approach to developing the next generation of vaccine manufacturing through engineered vaccine cell lines. The results show that specific gene silencing and knockout events can enhance viral titers of both attenuated (Sabin strain) and wild-type polioviruses, a finding that should greatly facilitate global implementation of inactivated polio vaccine as well as further reduce costs for live-attenuated oral polio vaccines

  4. Monocyte-derived dendritic cells identified as booster of T follicular helper cell differentiation

    PubMed Central

    Fillatreau, Simon

    2014-01-01

    Adjuvants play an essential role in the induction of acquired immunity upon vaccination with protein antigen. In this issue of EMBO Molecular Medicine, a classical type of adjuvant made of DNA oligonucleotide containing CpG motifs, which has already been used in humans, is shown to boost humoral immunity primarily by acting on monocyte-derived dendritic cells. This study provides novel insight on the mode of action of adjuvant targeting Toll-like receptors. PMID:24803394

  5. Dendritic solidification of alloys in low gravity

    NASA Astrophysics Data System (ADS)

    Curreri, P. A.; Lee, J. E.; Stefanescu, D. M.

    1988-11-01

    Gravity-driven convective flow influences dendrite morphology, interdendritic fluid flow, dendrite interface morphology, casting macrosegregation, formation of channel type casting defects, and casting grain structure. Dendritic solidification experiments during multiple parabolic aircraft maneuvers for iron-carbon type alloys and superalloys show increased dendritic spacing in low-gravity periods. Larger dendrite spacings for low-gravity solidification have also been reported for sounding rocket and space laboratory experiments for metal-model and binary alloys. Convection decreases local solidification time and increases the rate of interdendritic solute removal. The elimination of convection in low gravity is thus expected to increase dendritic spacing. Convection's effect on dendritic arm coarsening is expected to be dependent on the coarsening mechanism. Decreased coarsening in low gravity found for Al-Cu is indicative of coarsening predominately by arm coalescence.

  6. Micelle-Based Adjuvants for Subunit Vaccine Delivery

    PubMed Central

    Trimaille, Thomas; Verrier, Bernard

    2015-01-01

    In the development of subunit vaccines with purified or recombinant antigens for cancer and infectious diseases, the design of improved and safe adjuvants able to efficiently target the antigen presenting cells, such as dendritic cells, represents a crucial challenge. Nanoparticle-based antigen delivery systems have been identified as an innovative strategy to improve the efficacy of subunit vaccines. Among them, self-assembled micellar nanoparticles from amphiphilic (macro)molecules have recently emerged as promising candidates. In this short review, we report on the recent research findings highlighting the versatility and potential of such systems in vaccine delivery. PMID:26426060

  7. Universal cancer vaccine: an update on the design of cancer vaccines generated from endothelial cells.

    PubMed

    Lokhov, Petr G; Balashova, Elena E

    2013-07-01

    Among the potential cancer immunotherapies, vaccination against antigens expressed by endothelial cells lining the tumor vasculature represents one of the most attractive options because this approach may prevent the growth of any solid tumor. Therefore, endothelial cells can be used as a source of antigens for developing a so-called "universal" cancer vaccine. Unfortunately, efficient endothelial cell-based cancer vaccines have not yet been developed because previous approaches utilized direct endothelial cell immunizations which is not effective and can result in the elicitation of autoimmune responses associated with systemic autoimmune vasculitis. Recently, the heterogeneity of the endothelial cell surface was defined using an in vitro system as a means of developing antiangiogenic cancer vaccines. This analysis demonstrated that tumors induced specific changes to the microvascular of human endothelial cell (HMEC) surface thereby providing a basis for the design of endothelial cell-based vaccines that directly target the tumor endothelium. (1) This commentary further describes HMEC heterogeneity from the perspective of designing an endothelial cell-based universal (for the treatment of all solid tumors) cancer vaccine with high immunogenicity that does not pose the risk of eliciting autoimmunity.

  8. Biologic Vaccines

    PubMed Central

    ADAMS, KATHERINE T.

    2009-01-01

    The threat of new disease pandemics has spurred the development of biologic vaccines, which promise tremendous improvements in global and local health. Several lend themselves to the prevention or treatment of chronic diseases. But the uncertainties of whom to vaccinate raise the question of whether the health care system can make these promising products viable. PMID:22478749

  9. [Pretravel vaccination].

    PubMed

    Koch, Claus

    2005-10-17

    Vaccination is a simple and effective way to protect against certain infectious diseases and is nearly always to be recommended when one is travelling to countries with lesser hygienic standards. This report provides guidance on immunization concerns and describes the individual vaccines most commonly used in travel medicine.

  10. HPV Vaccine

    MedlinePlus

    ... can cause problems like genital warts and some kinds of cancer, a vaccine is an important step in preventing infection and protecting against the spread of HPV. That's why doctors recommend that all girls and guys get the vaccine at these ages: ...

  11. Rotavirus Vaccine

    MedlinePlus

    Why get vaccinated?Rotavirus is a virus that causes diarrhea, mostly in babies and young children. The diarrhea can be severe, and lead ... and fever are also common in babies with rotavirus.Before rotavirus vaccine, rotavirus disease was a common ...

  12. Typhoid Vaccine

    MedlinePlus

    ... should be given at least 2 weeks before travel to allow the vaccine time to work. A booster dose is needed every ... should be given at least 1 week before travel to allow the vaccine time to work. Swallow each dose about an hour ...

  13. Dengue vaccine.

    PubMed

    Simasathien, Sriluck; Watanaveeradej, Veerachai

    2005-11-01

    Dengue is an expanding health problem. About two-fifths of the world population are at risk for acquiring dengue with 50-100 million cases of acute febrile illness yearly including about 500,000 cases of DHF/DSS. No antiviral drugs active against the flavivirus exist. Attempts to control mosquito vector has been largely unsuccessful. Vaccination remains the most hopeful preventive measure. Dengue vaccine has been in development for more than 30 years, yet none has been licensed. The fact that enhancing antibody from previous infection and high level of T cell activation during secondary infection contribute to immunopathology of DHF, the vaccine must be able to induce protective response to four dengue serotypes simultaneously. Inactivated vaccine is safe but needs a repeated booster thus, development is delayed. Tetravalent live attenuated vaccine and chimeric vaccine using yellow fever or dengue viruses as a backbone are being carried out in human trials. DNA vaccine and subunit vaccine are being carried out in animal trials.

  14. Neisseria gonorrhoeae suppresses dendritic cell-induced, antigen-dependent CD4 T cell proliferation.

    PubMed

    Zhu, Weiyan; Ventevogel, Melissa S; Knilans, Kayla J; Anderson, James E; Oldach, Laurel M; McKinnon, Karen P; Hobbs, Marcia M; Sempowski, Gregory D; Duncan, Joseph A

    2012-01-01

    Neisseria gonorrhoeae is the second most common sexually transmitted bacterial pathogen worldwide. Diseases associated with N. gonorrhoeae cause localized inflammation of the urethra and cervix. Despite this inflammatory response, infected individuals do not develop protective adaptive immune responses to N. gonorrhoeae. N. gonorrhoeae is a highly adapted pathogen that has acquired multiple mechanisms to evade its host's immune system, including the ability to manipulate multiple immune signaling pathways. N. gonorrhoeae has previously been shown to engage immunosuppressive signaling pathways in B and T lymphocytes. We have now found that N. gonorrhoeae also suppresses adaptive immune responses through effects on antigen presenting cells. Using primary, murine bone marrow-derived dendritic cells and lymphocytes, we show that N. gonorrhoeae-exposed dendritic cells fail to elicit antigen-induced CD4+ T lymphocyte proliferation. N. gonorrhoeae exposure leads to upregulation of a number of secreted and dendritic cell surface proteins with immunosuppressive properties, particularly Interleukin 10 (IL-10) and Programmed Death Ligand 1 (PD-L1). We also show that N. gonorrhoeae is able to inhibit dendritic cell- induced proliferation of human T-cells and that human dendritic cells upregulate similar immunosuppressive molecules. Our data suggest that, in addition to being able to directly influence host lymphocytes, N. gonorrhoeae also suppresses development of adaptive immune responses through interactions with host antigen presenting cells. These findings suggest that gonococcal factors involved in host immune suppression may be useful targets in developing vaccines that induce protective adaptive immune responses to this pathogen.

  15. Combination Vaccines

    PubMed Central

    Skibinski, David AG; Baudner, Barbara C; Singh, Manmohan; O’Hagan, Derek T

    2011-01-01

    The combination of diphtheria, tetanus, and pertussis vaccines into a single product has been central to the protection of the pediatric population over the past 50 years. The addition of inactivated polio, Haemophilus influenzae, and hepatitis B vaccines into the combination has facilitated the introduction of these vaccines into recommended immunization schedules by reducing the number of injections required and has therefore increased immunization compliance. However, the development of these combinations encountered numerous challenges, including the reduced response to Haemophilus influenzae vaccine when given in combination; the need to consolidate the differences in the immunization schedule (hepatitis B); and the need to improve the safety profile of the diphtheria, tetanus, and pertussis combination. Here, we review these challenges and also discuss future prospects for combination vaccines. PMID:21572611

  16. Helminth Antigens Enable CpG-Activated Dendritic Cells to Inhibit the Symptoms of Collagen-induced Arthritis through Foxp3+ Regulatory T Cells

    PubMed Central

    Carranza, Franco; Falcón, Cristian Roberto; Nuñez, Nicolás; Knubel, Carolina; Correa, Silvia Graciela; Bianco, Ismael; Maccioni, Mariana; Fretes, Ricardo; Triquell, María Fernanda; Motrán, Claudia Cristina; Cervi, Laura

    2012-01-01

    Dendritic cells (DC) have the potential to control the outcome of autoimmunity by modulating the immune response. In this study, we tested the ability of Fasciola hepatica total extract (TE) to induce tolerogenic properties in CpG-ODN (CpG) maturated DC, to then evaluate the therapeutic potential of these cells to diminish the inflammatory response in collagen induced arthritis (CIA). DBA/1J mice were injected with TE plus CpG treated DC (T/C-DC) pulsed with bovine collagen II (CII) between two immunizations with CII and clinical scores CIA were determined. The levels of CII-specific IgG2 and IgG1 in sera, the histological analyses in the joints, the cytokine profile in the draining lymph node (DLN) cells and in the joints, and the number, and functionality of CD4+CD25+Foxp3+ T cells (Treg) were evaluated. Vaccination of mice with CII pulsed T/C-DC diminished the severity and incidence of CIA symptoms and the production of the inflammatory cytokine, while induced the production of anti-inflammatory cytokines. The therapeutic effect was mediated by Treg cells, since the adoptive transfer of CD4+CD25+ T cells, inhibited the inflammatory symptoms in CIA. The in vitro blockage of TGF-β in cultures of DLN cells plus CII pulsed T/C-DC inhibited the expansion of Treg cells. Vaccination with CII pulsed T/C-DC seems to be a very efficient approach to diminish exacerbated immune response in CIA, by inducing the development of Treg cells, and it is therefore an interesting candidate for a cell-based therapy for rheumatoid arthritis (RA). PMID:22848374

  17. Microtubule nucleation and organization in dendrites.

    PubMed

    Delandre, Caroline; Amikura, Reiko; Moore, Adrian W

    2016-07-01

    Dendrite branching is an essential process for building complex nervous systems. It determines the number, distribution and integration of inputs into a neuron, and is regulated to create the diverse dendrite arbor branching patterns characteristic of different neuron types. The microtubule cytoskeleton is critical to provide structure and exert force during dendrite branching. It also supports the functional requirements of dendrites, reflected by differential microtubule architectural organization between neuron types, illustrated here for sensory neurons. Both anterograde and retrograde microtubule polymerization occur within growing dendrites, and recent studies indicate that branching is enhanced by anterograde microtubule polymerization events in nascent branches. The polarities of microtubule polymerization events are regulated by the position and orientation of microtubule nucleation events in the dendrite arbor. Golgi outposts are a primary microtubule nucleation center in dendrites and share common nucleation machinery with the centrosome. In addition, pre-existing dendrite microtubules may act as nucleation sites. We discuss how balancing the activities of distinct nucleation machineries within the growing dendrite can alter microtubule polymerization polarity and dendrite branching, and how regulating this balance can generate neuron type-specific morphologies. PMID:27097122

  18. Lipid dynamics at dendritic spines.

    PubMed

    Dotti, Carlos Gerardo; Esteban, Jose Antonio; Ledesma, María Dolores

    2014-01-01

    Dynamic changes in the structure and composition of the membrane protrusions forming dendritic spines underlie memory and learning processes. In recent years a great effort has been made to characterize in detail the protein machinery that controls spine plasticity. However, we know much less about the involvement of lipids, despite being major membrane components and structure determinants. Moreover, protein complexes that regulate spine plasticity depend on specific interactions with membrane lipids for proper function and accurate intracellular signaling. In this review we gather information available on the lipid composition at dendritic spine membranes and on its dynamics. We pay particular attention to the influence that spine lipid dynamism has on glutamate receptors, which are key regulators of synaptic plasticity.

  19. Convective flow during dendritic growth

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.; Huang, S. C.

    1979-01-01

    A review is presented of the major experimental findings obtained from recent ground-based research conducted under the SPAR program. Measurements of dendritic growth at small supercoolings indicate that below approximately 1.5 K a transition occurs from diffusive control to convective control in succinonitrile, a model system chosen for this study. The key theoretical ideas concerning diffusive and convective heat transport during dendritic growth are discussed, and it is shown that a transition in the transport control should occur when the characteristic length for diffusion becomes larger than the characteristic length for convection. The experimental findings and the theoretical ideas discussed suggest that the Fluid Experiment System could provide appropriate experimental diagnostics for flow field visualization and quantification of the fluid dynamical effects presented here.

  20. Dynamic Visualization of Dendritic Cell-Antigen Interactions in the Skin Following Transcutaneous Immunization

    PubMed Central

    Rattanapak, Teerawan; Birchall, James C.; Young, Katherine; Kubo, Atsuko; Fujimori, Sayumi; Ishii, Masaru; Hook, Sarah

    2014-01-01

    Delivery of vaccines into the skin provides many advantages over traditional parenteral vaccination and is a promising approach due to the abundance of antigen presenting cells (APC) residing in the skin including Langerhans cells (LC) and dermal dendritic cells (DDC). However, the main obstacle for transcutaneous immunization (TCI) is the effective delivery of the vaccine through the stratum corneum (SC) barrier to the APC in the deeper skin layers. This study therefore utilized microneedles (MN) and a lipid-based colloidal delivery system (cubosomes) as a synergistic approach for the delivery of vaccines to APC in the skin. The process of vaccine uptake and recruitment by specific types of skin APC was investigated in real-time over 4 hours in B6.Cg-Tg (Itgax-EYFP) 1 Mnz/J mice by two-photon microscopy. Incorporation of the vaccine into a particulate delivery system and the use of MN preferentially increased vaccine antigen uptake by a highly motile subpopulation of skin APC known as CD207+ DC. No uptake of antigen or any response to immunisation by LC could be detected. PMID:24586830

  1. Method of inhibiting dislocation generation in silicon dendritic webs

    DOEpatents

    Spitznagel, John A.; Seidensticker, Raymond G.; McHugh, James P.

    1990-11-20

    A method of tailoring the heat balance of the outer edge of the dendrites adjacent the meniscus to produce thinner, smoother dendrites, which have substantially less dislocation sources contiguous with the dendrites, by changing the view factor to reduce radiation cooling or by irradiating the dendrites with light from a quartz lamp or a laser to raise the temperature of the dendrites.

  2. Quality vaccines for all people: Report on the 16th annual general meeting of the Developing Countries Vaccine Manufacturers' Network, 05-07th October 2015, Bangkok, Thailand.

    PubMed

    Pagliusi, Sonia; Ting, Ching-Chia; Khomvilai, Sumana

    2016-06-30

    The Developing Countries Vaccine Manufacturers Network (DCVMN) assembled high-profile leaders from global health organisations and vaccine manufactures for its 16th Annual General Meeting to work towards a common goal: providing quality vaccines for all people. Vaccines contribute to a healthy community and robust health system; the Ebola outbreak has raised awareness of the threat and damage one single infectious disease can make, and it is clear that the world was not prepared. However, more research to better understand emerging infectious agents might lead to suitable vaccines which help prevent future outbreaks. DCVMN members presented their progress in developing novel vaccines against Dengue, HPV, Chikungunya, Cholera, cell-based influenza and other vaccines, demonstrating the commitment towards eliminating and eradicating preventable diseases worldwide through global collaboration and technology transfer. The successful introduction of novel Sabin-IPV and Oral Cholera vaccine in China and Korea respectively in 2015 was highlighted. In order to achieve global immunisation, local authorities and community leaders play an important role in the decision-making in vaccine introduction and uptake, based on the ability of vaccines to protect vaccinated people and protect non-vaccinated in the community through herd immunity. Reducing the risk of vaccine shortages can also be achieved by increasing regulatory convergence at regional and international levels. Combatting preventable diseases remains challenging, and collective efforts for improving multi-centre clinical trials, creating regional vaccine security strategies, fostering developing vaccine markets and procurement, and building trust in vaccines were discussed.

  3. Rotavirus vaccines.

    PubMed

    Barnes, G

    1998-01-01

    Encouraging results have been reported from several large trials of tetravalent rhesus rotavirus vaccine, with efficacy of 70-80% against severe disease. A recent Venezuelan study showed similar results to trials in USA and Europe. The vaccine may soon be licensed in USA. It provides the exciting prospect of a strategy to prevent one of the world's major child killers. Other candidate vaccines are under development including human-bovine reassortants, neonatal strains, non-replicating rotaviruses, vector vaccines and other genetically engineered products. Second and third generation rotavirus vaccines are on the horizon. The need for a rotavirus vaccine is well accepted by paediatricians, but public health authorities need to be lobbied. Other issues which need to be addressed include relative importance of non-group A rotaviruses, possible administration with OPV, the influence of breast feeding, and most importantly, cost. It is essential that rotavirus vaccine is somehow made available to all of the world's children, not just those in developed countries. PMID:9553287

  4. CpG DNA as a vaccine adjuvant.

    PubMed

    Bode, Christian; Zhao, Gan; Steinhagen, Folkert; Kinjo, Takeshi; Klinman, Dennis M

    2011-04-01

    Synthetic oligodeoxynucleotides (ODNs) containing unmethylated CpG motifs trigger cells that express Toll-like receptor 9 (including human plasmacytoid dendritic cells and B cells) to mount an innate immune response characterized by the production of Th1 and proinflammatory cytokines. When used as vaccine adjuvants, CpG ODNs improve the function of professional antigen-presenting cells and boost the generation of humoral and cellular vaccine-specific immune responses. These effects are optimized by maintaining ODNs and vaccine in close proximity. The adjuvant properties of CpG ODNs are observed when administered either systemically or mucosally, and persist in immunocompromised hosts. Preclinical studies indicate that CpG ODNs improve the activity of vaccines targeting infectious diseases and cancer. Clinical trials demonstrate that CpG ODNs have a good safety profile and increase the immunogenicity of coadministered vaccines. PMID:21506647

  5. Transcranial magnetic stimulation (TMS) inhibits cortical dendrites.

    PubMed

    Murphy, Sean C; Palmer, Lucy M; Nyffeler, Thomas; Müri, René M; Larkum, Matthew E

    2016-03-18

    One of the leading approaches to non-invasively treat a variety of brain disorders is transcranial magnetic stimulation (TMS). However, despite its clinical prevalence, very little is known about the action of TMS at the cellular level let alone what effect it might have at the subcellular level (e.g. dendrites). Here, we examine the effect of single-pulse TMS on dendritic activity in layer 5 pyramidal neurons of the somatosensory cortex using an optical fiber imaging approach. We find that TMS causes GABAB-mediated inhibition of sensory-evoked dendritic Ca(2+) activity. We conclude that TMS directly activates fibers within the upper cortical layers that leads to the activation of dendrite-targeting inhibitory neurons which in turn suppress dendritic Ca(2+) activity. This result implies a specificity of TMS at the dendritic level that could in principle be exploited for investigating these structures non-invasively.

  6. Dendritic web silicon for solar cell application

    NASA Technical Reports Server (NTRS)

    Seidensticker, R. G.

    1977-01-01

    The dendritic web process for growing long thin ribbon crystals of silicon and other semiconductors is described. Growth is initiated from a thin wirelike dendrite seed which is brought into contact with the melt surface. Initially, the seed grows laterally to form a button at the melt surface; when the seed is withdrawn, needlelike dendrites propagate from each end of the button into the melt, and the web portion of the crystal is formed by the solidification of the liquid film supported by the button and the bounding dendrites. Apparatus used for dendritic web growth, material characteristics, and the two distinctly different mechanisms involved in the growth of a single crystal are examined. The performance of solar cells fabricated from dendritic web material is indistinguishable from the performance of cells fabricated from Czochralski grown material.

  7. Cell-intrinsic drivers of dendrite morphogenesis

    PubMed Central

    Puram, Sidharth V.; Bonni, Azad

    2013-01-01

    The proper formation and morphogenesis of dendrites is fundamental to the establishment of neural circuits in the brain. Following cell cycle exit and migration, neurons undergo organized stages of dendrite morphogenesis, which include dendritic arbor growth and elaboration followed by retraction and pruning. Although these developmental stages were characterized over a century ago, molecular regulators of dendrite morphogenesis have only recently been defined. In particular, studies in Drosophila and mammalian neurons have identified numerous cell-intrinsic drivers of dendrite morphogenesis that include transcriptional regulators, cytoskeletal and motor proteins, secretory and endocytic pathways, cell cycle-regulated ubiquitin ligases, and components of other signaling cascades. Here, we review cell-intrinsic drivers of dendrite patterning and discuss how the characterization of such crucial regulators advances our understanding of normal brain development and pathogenesis of diverse cognitive disorders. PMID:24255095

  8. Meningococcal Vaccinations.

    PubMed

    Crum-Cianflone, Nancy; Sullivan, Eva

    2016-06-01

    Neisseria meningitidis, a gram-negative diplococcal bacterium, is a common asymptomatic nasopharyngeal colonizer that may infrequently lead to invasive disease in the form of meningitis or bacteremia. Six serogroups (A, B, C, W, X and Y) are responsible for the majority of invasive infections. Increased risk of disease occurs in specific population groups including infants, adolescents, those with asplenia or complement deficiencies, and those residing in crowded living conditions such as in college dormitories. The incidence of invasive meningococcal disease varies geographically with some countries (e.g., in the African meningitis belt) having both high endemic disease rates and ongoing epidemics, with annual rates reaching 1000 cases per 100,000 persons. Given the significant morbidity and mortality associated with meningococcal disease, it remains a major global health threat best prevented by vaccination. Several countries have implemented vaccination programs with the selection of specific vaccine(s) based on locally prevalent serogroup(s) of N. meningitidis and targeting population groups at highest risk. Polysaccharide meningococcal vaccines became available over 40 years ago, but are limited by their inability to produce immunologic memory responses, poor immunogenicity in infants/children, hyporesponsiveness after repeated doses, and lack of efficacy against nasopharyngeal carriage. In 1999, the first meningococcal conjugate vaccines were introduced and have been successful in overcoming many of the shortcomings of polysaccharide vaccines. The implementation of meningococcal conjugate vaccination programs in many areas of the world (including the massive campaign in sub-Saharan Africa using a serogroup A conjugate vaccine) has led to dramatic reductions in the incidence of meningococcal disease by both individual and population protection. Progressive advances in vaccinology have led to the recent licensure of two effective vaccines against serogroup B

  9. [Rabbies vaccination].

    PubMed

    Jelinek, Tomas

    2016-01-01

    With very few exceptions, rabies is occurring around the globe. The clinical course of this mammal-transmitted infection is almost universally fatal. Thus, the disease is causing more human deaths than any other zoonosis. Due to the lack of effective therapeutic options, pre- or post-exposure vaccination remains the only effective means to avoid development of fatal disease. Save and highly effective cell culture vaccines which have been available for decades provide long-lasting protection. Various vaccination schedules have been tested and are being recommended. PMID:27268449

  10. Malaria vaccine.

    PubMed

    Khurana, S K; Talib, V H

    1996-12-01

    Recently it has become evident that he same candidate antigen can be shared by several of the parasite stages, and thus the concept of a multistage vaccine is becoming more and more attractive. A TDR Task Force evaluated the promise and stage of development of some 20 existing asexual blood stage candidate antigens and prepared a strategy for their development leading to clinical testing and field trials, Amongst these are merozoite surface protein 1 (MSP-1), Serine Rich Antigen (SERA), Apical Membrane Antigen (AMA-1), and Erythrocyte Binding Antigen (EBA). A field study conducted in Tanzanian children showed that the SPf66 Colombian vaccine was safe, induced antibodies, and reduced the risk of developing clinical malaria by around 30%. This study, confirmed the potential of the vaccine to confer partial protection in areas of high as well as low intensity of transmission. Pfs25 is a leading candidate antigen for a transmission blocking vaccine. It is found in the ookinete stage of the parasite in the mosquito midgut. Gramme amounts of GMP-grade material have been produced and a vaccine based on the Pfs25 antigen formulated with alum should have gone into phase I and II clinical trials in the USA and Africa during 1995. Because the first malaria prototype vaccine to be tried out in people on a large scale has been the polymerized synthetic peptide developed by patarroye on the basis of the SPf66 antigen of P. faliciparum, the results are with much interest. It is still premature to predict the effectiveness of this vaccine globally, but its development will encourage further progress in a fields that has repeatedly been characterized by raised and then dashed drops. These various vaccines are based on the classical approach to vaccination, which is to raise host immunity against the parasite so as to reduce parasite densities or to sterilize an infection. A newer approach is development of antidisease vaccines which aim to alleviate morbidity by suppressing

  11. The Equiaxed Dendritic Solidification Experiment (EDSE)

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The Equiaxed Dendritic Solidification Experiment (EDSE) is a material sciences investigation under the Formation of Microstructures/pattern formation discipline. The objective is to study the microstructural evolution of and thermal interactions between several equiaxed crystals growing dendritically in a supercooled melt of a pure and transparent substance under diffusion controlled conditions. Dendrites growing at .4 supercooling from a 2 stinger growth chamber for the EDSE in the Microgravity Development Lab (MDL).

  12. Dendrite preventing separator for secondary lithium batteries

    NASA Technical Reports Server (NTRS)

    Shen, David H. (Inventor); Surampudi, Subbarao (Inventor); Huang, Chen-Kuo (Inventor); Halpert, Gerald (Inventor)

    1993-01-01

    Dendrites are prevented from shorting a secondary lithium battery by use of a first porous separator, such as porous polypropylene, adjacent to the lithium anode that is unreactive with lithium and a second porous fluoropolymer separator between the cathode and the first separator, such as polytetrafluoroethylene, that is reactive with lithium. As the tip of a lithium dendrite contacts the second separator, an exothermic reaction occurs locally between the lithium dendrite and the fluoropolymer separator. This results in the prevention of the dendrite propagation to the cathode.

  13. Dendrite preventing separator for secondary lithium batteries

    NASA Technical Reports Server (NTRS)

    Shen, David H. (Inventor); Surampudi, Subbarao (Inventor); Huang, Chen-Kuo (Inventor); Halpert, Gerald (Inventor)

    1995-01-01

    Dendrites are prevented from shorting a secondary lithium battery by use of a first porous separator such as porous polypropylene adjacent the lithium anode that is unreactive with lithium and a second porous fluoropolymer separator between the cathode and the first separator such as polytetrafluoroethylene that is reactive with lithium. As the tip of a lithium dendrite contacts the second separator, an exothermic reaction occurs locally between the lithium dendrite and the fluoropolymer separator. This results in the prevention of the dendrite propagation to the cathode.

  14. Hierarchical assembly of diphenylalanine into dendritic nanoarchitectures.

    PubMed

    Han, Tae Hee; Oh, Jun Kyun; Lee, Gyoung-Ja; Pyun, Su-Il; Kim, Sang Ouk

    2010-09-01

    Highly ordered, multi-dimensional dendritic nanoarchitectures were created via self-assembly of diphenylalanine from an acidic buffer solution. The self-similarity of dendritic structures was characterized by examining their fractal dimensions with the box-counting method. The fractal dimension was determined to be 1.7, which demonstrates the fractal dimension of structures generated by diffusion limited aggregation on a two-dimensional substrate surface. By confining the dendritic assembly of diphenylalanine within PDMS microchannels, the self-similar dendritic growth could be hierarchically directed to create linearly assembled nanoarchitectures. Our approach offers a novel pathway for creating and directing hierarchical nanoarchitecture from biomolecular assembly. PMID:20605423

  15. Precipitation dendrites in turbulent pipe flows

    NASA Astrophysics Data System (ADS)

    Angheluta, Luiza; Hawkins, Christopher; Hammer, Øyvind; Jamtveit, Bjørn

    2013-04-01

    Surface precipitation in pipelines, as well as freezing in water pipes is of great concern in many industrial applications where scaling phenomena becomes a control problem of pipe-clogging or an efficiency reduction in transport. Flow blockage often occurs even when only a small fraction is deposited non-uniformly on the walls in the form of dendrites. Dendritic patterns are commonly encountered in surface precipitation from supersaturated solutions, e.g. calcite dendrites, as well as in solidification from undercooled liquids, e.g. freezing of water into ice dendrites. We explore the mathematical similarities between precipitation and freezing processes and, in particular, investigate the effect of fluid flow on the precipitation dendrites on pipe walls. We use a phase field approach to model surface growth coupled with a lattice Boltzmann method that simulates a channel flow at varying Reynolds number. The dendrites orientation and shape depend non-trivially on the ratio between advection and diffusion, i.e. the Peclet number, as well as the Reynolds number. Roughness induced vortices near growing dendrites at high flow rates further affect the branch splitting of dendrites. We show how the transport rate in a pipeline may depend on the different dendritic morphologies, and provide estimates for the flow conditions that correspond to most efficient transport regimes.

  16. Typhoid Vaccine

    MedlinePlus

    ... serious disease. It is caused by bacteria called Salmonella Typhi. Typhoid causes a high fever, fatigue, weakness, ... a typhoid carrier. • Laboratory workers who work with Salmonella Typhi bacteria. Inactivated typhoid vaccine (shot) • One dose ...

  17. One-step spray-dried polyelectrolyte microparticles enhance the antigen cross-presentation capacity of porcine dendritic cells.

    PubMed

    Devriendt, Bert; Baert, Kim; Dierendonck, Marijke; Favoreel, Herman; De Koker, Stefaan; Remon, Jean Paul; De Geest, Bruno G; Cox, Eric

    2013-06-01

    Vaccination is regarded as the most efficient and cost-effective way to prevent infectious diseases. Vaccine design nowadays focuses on the implementation of safer recombinant subunit vaccines. However, these recombinant subunit antigens are often poor immunogens and several strategies are currently under investigation to enhance their immunogenicity. The encapsulation of antigens in biodegradable microparticulate delivery systems seems a promising strategy to boost their immunogenicity. Here, we evaluate the capacity of polyelectrolyte complex microparticles (PECMs), fabricated by single step spray-drying, to deliver antigens to porcine dendritic cells and how these particles affect the functional maturation of dendritic cells (DCs). As clinically relevant model antigen F4 fimbriae, a bacterial adhesin purified from a porcine-specific enterotoxigenic Escherichia coli strain was chosen. The resulting antigen-loaded PECMs are efficiently internalised by porcine monocyte-derived DCs. F4 fimbriae-loaded PECMs (F4-PECMs) enhanced CD40 and CD25 surface expression by DCs and this phenotypical maturation correlated with an increased secretion of IL-6 and IL-1β. More importantly, F4-PECMs enhance both the T cell stimulatory and antigen presentation capacity of DCs. Moreover, PECMs efficiently promoted the CD8(+) T cell stimulatory capacity of dendritic cells, indicating an enhanced ability to cross-present the encapsulated antigens. These results could accelerate the development of veterinary and human subunit vaccines based on polyelectrolyte complex microparticles to induce protective immunity against a variety of extra- and intracellular pathogens. PMID:23207327

  18. Auxiliary pattern for cell-based OPC

    NASA Astrophysics Data System (ADS)

    Kahng, Andrew B.; Park, Chul-Hong

    2006-10-01

    The runtime of model-based optical proximity correction (OPC) tools has grown unacceptably with each successive technology generation, and has emerged as one of the major bottlenecks for turnaround time (TAT) of IC data preparation and manufacturing. The cell-based OPC approach improves runtime by performing OPC once per cell definition as opposed to once per cell instantiation in the layout. However, cell-based OPC does not comprehend inter-cell optical interactions that affect feature printability in a layout context. In this work, we propose auxiliary pattern-enabled cell-based OPC which can minimize the CD differences between cell-based OPC and model-based OPC. To enable effective insertion of auxiliary pattern (AP) in the design, we also propose a post-placement optimization of a standard cell block with respect to detailed placement. By dynamic programming-based placement perturbation, we achieve 100% AP applicability in designs with placement utilizations of < 70%. In an evaluation with a complete industrial flow, cell-based OPC with AP can match gate edge placement error (EPE) count of model-based OPC within 4%. This is an improvement of 90%, on average, over cell-based OPC without APs. The AP-based OPC approach can reduce OPC runtimes versus model-based OPC by up to 40X in our benchmark designs. We can also achieve reduction of GDSII file size and ORC runtimes due to hierarchy maintenance of cell-based OPC.

  19. Dendritic cell maturation and cross-presentation: timing matters!

    PubMed

    Alloatti, Andrés; Kotsias, Fiorella; Magalhaes, Joao Gamelas; Amigorena, Sebastian

    2016-07-01

    As a population, dendritic cells (DCs) appear to be the best cross-presenters of internalized antigens on major histocompatibility complex class I molecules in the mouse. To do this, DCs have developed a number of unique and dedicated means to control their endocytic and phagocytic pathways: among them, the capacity to limit acidification of their phagosomes, to prevent proteolytic degradation, to delay fusion of phagosomes to lysosomes, to recruit ER proteins to phagosomes, and to export phagocytosed antigens to the cytosol. The regulation of phagocytic functions, and thereby of antigen processing and presentation by innate signaling, represents a critical level of integration of adaptive and innate immune responses. Understanding how innate signals control antigen cross-presentation is critical to define effective vaccination strategies for CD8(+) T-cell responses.

  20. Lipid accumulation and dendritic cell dysfunction in cancer

    PubMed Central

    Herber, Donna L.; Cao, Wei; Nefedova, Yulia; Novitskiy, Sergey V.; Nagaraj, Srinivas; Tyurin, Vladimir A.; Corzo, Alex; Cho, Hyun Il; Celis, Esteban; Lennox, Briana; Knight, Stella C.; Padhya, Tapan; McCaffrey, Thomas V.; McCaffrey, Judith C.; Antonia, Scott; Fishman, Mayer; Ferris, Robert L.; Kagan, Valerian E.; Gabrilovich, Dmitry I.

    2010-01-01

    Professional antigen presenting cells, dendritic cells (DC) are responsible for initiation and maintenance of immune responses. Here, we report that a substantial proportion of DCs in tumor-bearing mice and cancer patients have increased levels of triglycerides. Lipid accumulation in DCs was caused by increased uptake of extracellular lipids due to up-regulation of scavenger receptor A. DCs with high lipid content were not able to effectively stimulate allogeneic T cells or present tumor-associated antigens. DCs with high and normal lipid levels did not differ in expression of MHC and co-stimulatory molecules. However, lipid-laden DCs had reduced capacity to process antigens. Pharmacological normalization of lipid levels in DCs with an inhibitor of acetyl-CoA carboxylase restored the functional activity of DCs and substantially enhanced the effects of a cancer vaccine. These findings support the regulation of immune responses in cancer by manipulation of lipid levels in DCs. PMID:20622859

  1. [The vaccines based on the replicon of the venezuelan equine encephalomyelitis virus against viral hemorrhagic fevers].

    PubMed

    Petrov, A A; Plekhanova, T M; Sidorova, O N; Borisevich, S V; Makhlay, A A

    2015-01-01

    The status of the various recombinant DNA and RNA-derived candidate vaccines, as well as the Venezuelan equine encephalomyelitis virus (VEEV) replicon vaccine system against extremely hazardous viral hemorrhagic fevers, were reviewed. The VEEV-based replication-incompetent vectors offer attractive features in terms of safety, high expression levels of the heterologous viral antigen, tropism to dendritic cells, robust immune responses, protection efficacy, low potential for pre-existing anti-vector immunity and possibility of engineering multivalent vaccines were tested. These features of the VEEV replicon system hold much promise for the development of new generation vaccine candidates against viral hemorrhagic fevers.

  2. Ear Infection and Vaccines

    MedlinePlus

    ... an ENT Doctor Near You Ear Infection and Vaccines Ear Infection and Vaccines Patient Health Information News ... or may need reinsertion over time. What about vaccines? A vaccine is a preparation administered to stimulate ...

  3. Live Virus Smallpox Vaccine

    MedlinePlus

    ... Index SMALLPOX FACT SHEET The Live Virus Smallpox Vaccine The vaccinia virus is the "live virus" used ... cannot cause smallpox. What is a "live virus" vaccine? A "live virus" vaccine is a vaccine that ...

  4. Pertussis (Whooping Cough) Vaccination

    MedlinePlus

    ... Tetanus-diphtheria-acellular Pertussis vaccine Pertussis (Whooping Cough) Vaccination Pronounced (per-TUS-iss) Recommend on Facebook Tweet ... The best way to prevent it is through vaccinations. The childhood vaccine is called DTaP. The whooping ...

  5. Influenza Vaccine, Live Intranasal

    MedlinePlus

    ... the recombinant influenza vaccine (RIV). The nasal spray flu vaccine (live attenuated influenza vaccine or LAIV) should NOT ... to your doctor or pharmacist about the best flu vaccine option for you or your family.

  6. Human Vaccines & Immunotherapeutics: News

    PubMed Central

    Riedmann, Eva M.

    2013-01-01

    Long-term effectiveness shown for Merck’s chickenpox vaccine Again—no link between vaccines and autism Experimental ovarian cancer vaccine successful in phase 1 Sinovac’s HFMD vaccine meets phase 3 study goal A vaccine for long-suffering cat allergy patients Vaccines are key to breaking infectious disease-malnutrition cycle Cancer vaccine failures due to the adjuvant IFA? Novartis’ typhoid vaccine make good progress

  7. Mode of dendrite growth in undercooled alloy melts

    SciTech Connect

    Li, J.; Yang, G.; Zhou, Y.

    1998-01-01

    The mode of dendrite growth in the undercooled Ni-50 at% Cu alloy was investigated. At lower undercoolings, the dendrite growth is mainly controlled by solute diffusion, and the formed dendritic morphologies are similar to those of the conventional as-cast equiaxed crystals, except that here the branches are much denser. At higher undercoolings, however, the severe solutal trapping that results from high dendrite growth velocity weakens the effect of solute diffusion on the dendrite growth. In this case, the dendrites branch in the bunching form. The dendrite spacings were measured, and the results were interpreted with the current dendrite growth theories.

  8. Generation of tumor immunity by bone marrow-derived dendritic cells correlates with dendritic cell maturation stage.

    PubMed

    Labeur, M S; Roters, B; Pers, B; Mehling, A; Luger, T A; Schwarz, T; Grabbe, S

    1999-01-01

    Bone marrow-derived dendritic cells (BmDC) are potent APC and can promote antitumor immunity in mice when pulsed with tumor Ag. This study aimed to define the culture conditions and maturation stages of BmDC that enable them to optimally function as APC in vivo. BmDC cultured under various conditions (granulocyte-macrophage CSF (GM-CSF) or GM-CSF plus IL-4 alone or in combination with Flt3 ligand, TNF-alpha, LPS, or CD40 ligand (CD40L)) were analyzed morphologically, phenotypically, and functionally and were tested for their ability to promote prophylactic and/or therapeutic antitumor immunity. Each of the culture conditions generated typical BmDC. Whereas cells cultured in GM-CSF alone were functionally immature, cells incubated with CD40L or LPS were mature BmDC, as evident by morphology, capacity to internalize Ag, migration into regional lymph nodes, IL-12 secretion, and alloantigen or peptide Ag presentation in vitro. The remaining cultures exhibited intermediate dendritic cell maturation. The in vivo Ag-presenting capacity of BmDC was compared with respect to induction of both protective tumor immunity and immunotherapy of established tumors, using the poorly immunogenic squamous cell carcinoma, KLN205. In correspondence to their maturation stage, BmDC cultured in the presence of CD40L exhibited the most potent immunostimulatory effects. In general, although not entirely, the capacity of BmDC to induce an antitumor immune response in vivo correlated to their degree of maturation. The present data support the clinical use of mature, rather than immature, tumor Ag-pulsed dendritic cells as cancer vaccines and identifies CD40L as a potent stimulus to enhance their in vivo Ag-presenting capacity.

  9. In vivo dendrite regeneration after injury is different from dendrite development.

    PubMed

    Thompson-Peer, Katherine L; DeVault, Laura; Li, Tun; Jan, Lily Yeh; Jan, Yuh Nung

    2016-08-01

    Neurons receive information along dendrites and send signals along axons to synaptic contacts. The factors that control axon regeneration have been examined in many systems, but dendrite regeneration has been largely unexplored. Here we report that, in intact Drosophila larvae, a discrete injury that removes all dendrites induces robust dendritic growth that recreates many features of uninjured dendrites, including the number of dendrite branches that regenerate and responsiveness to sensory stimuli. However, the growth and patterning of injury-induced dendrites is significantly different from uninjured dendrites. We found that regenerated arbors cover much less territory than uninjured neurons, fail to avoid crossing over other branches from the same neuron, respond less strongly to mechanical stimuli, and are pruned precociously. Finally, silencing the electrical activity of the neurons specifically blocks injury-induced, but not developmental, dendrite growth. By elucidating the essential features of dendrites grown in response to acute injury, our work builds a framework for exploring dendrite regeneration in physiological and pathological conditions. PMID:27542831

  10. Dendritic cell delivery of plasmid DNA. Applications for controlled genetic immunization.

    PubMed

    Mumper, R J; Ledebur, H C

    2001-09-01

    Positive human clinical data using biolistic-mediated gene transfer (i.e., gene gun) to administer a nucleic acid-based Hepatitis B vaccine has validated genetic immunization as an effective clinical vaccine modality. Although the precise mechanism of action has yet to be determined, preclinical studies using jet injection have indicated that direct targeting of resident antigen presenting cells (Langerhan's cells) in the skin as the primary immunological driving force for the potent and long-lived immune response. Moreover, positive results with topical delivery of genetic vaccines and ex vivo loading of dendritic cells with antigen has strengthened the movement toward directly targeting antigen presenting cells as a means to amplify, control, and mediate the immunological consequences of prophylactic and/or therapeutic genetic vaccines. Despite these encouraging results with the gene gun, it is unclear whether this technology will translate into commercially available vaccines due to potential product development barriers such as cost and convenience. It is clear that safety concerns in using genetic approaches to treat and prevent disease have highlighted the need for strict product requirements for genetic vaccines. A plausible strategy to meet these requirements is to combine controlled plasmid delivery systems with tissue-specific gene expression systems.

  11. A novel method for synthetic vaccine construction based on protein assembly

    PubMed Central

    Liu, Zhida; Zhou, Hang; Wang, Wenjun; Tan, Wenjie; Fu, Yang-Xin; Zhu, Mingzhao

    2014-01-01

    In the history of vaccine development, the synthetic vaccine is a milestone that is in stark contrast with traditional vaccines based on live-attenuated or inactivated microorganisms. Synthetic vaccines not only are safer than attenuated or inactivated microorganisms but also provide the opportunity for vaccine design for specific purposes. The first generation of synthetic vaccines has been largely based on DNA recombination technology and genetic manipulation. This de novo generation is occasionally time consuming and costly, especially in the era of genomics and when facing pandemic outbreaks of infectious diseases. To accelerate and simplify the R&D process for vaccines, we developed an improved method of synthetic vaccine construction based on protein assembly. We optimized and employed the recently developed SpyTag/SpyCatcher technique to establish a protein assembly system for vaccine generation from pre-prepared subunit proteins. As proof of principle, we chose a dendritic cell (DC)-targeting molecule and specific model antigens to generate desired vaccines. The results demonstrated that a new vaccine generated in this way does not hamper the individual function of different vaccine components and is efficient in inducing both T and B cell responses. This protein assembly strategy may be especially useful for high-throughput antigen screening or rapid vaccine generation. PMID:25434527

  12. Early events in axon/dendrite polarization.

    PubMed

    Cheng, Pei-lin; Poo, Mu-ming

    2012-01-01

    Differentiation of axons and dendrites is a critical step in neuronal development. Here we review the evidence that axon/dendrite formation during neuronal polarization depends on the intrinsic cytoplasmic asymmetry inherited by the postmitotic neuron, the exposure of the neuron to extracellular chemical factors, and the action of anisotropic mechanical forces imposed by the environment. To better delineate the functions of early signals among a myriad of cellular components that were shown to influence axon/dendrite formation, we discuss their functions by distinguishing their roles as determinants, mediators, or modulators and consider selective degradation of these components as a potential mechanism for axon/dendrite polarization. Finally, we examine whether these early events of axon/dendrite formation involve local autocatalytic activation and long-range inhibition, as postulated by Alan Turing for the morphogenesis of patterned biological structure.

  13. Early events in axon/dendrite polarization.

    PubMed

    Cheng, Pei-lin; Poo, Mu-ming

    2012-01-01

    Differentiation of axons and dendrites is a critical step in neuronal development. Here we review the evidence that axon/dendrite formation during neuronal polarization depends on the intrinsic cytoplasmic asymmetry inherited by the postmitotic neuron, the exposure of the neuron to extracellular chemical factors, and the action of anisotropic mechanical forces imposed by the environment. To better delineate the functions of early signals among a myriad of cellular components that were shown to influence axon/dendrite formation, we discuss their functions by distinguishing their roles as determinants, mediators, or modulators and consider selective degradation of these components as a potential mechanism for axon/dendrite polarization. Finally, we examine whether these early events of axon/dendrite formation involve local autocatalytic activation and long-range inhibition, as postulated by Alan Turing for the morphogenesis of patterned biological structure. PMID:22715881

  14. Nanoparticle vaccines.

    PubMed

    Zhao, Liang; Seth, Arjun; Wibowo, Nani; Zhao, Chun-Xia; Mitter, Neena; Yu, Chengzhong; Middelberg, Anton P J

    2014-01-01

    Nanotechnology increasingly plays a significant role in vaccine development. As vaccine development orientates toward less immunogenic "minimalist" compositions, formulations that boost antigen effectiveness are increasingly needed. The use of nanoparticles in vaccine formulations allows not only improved antigen stability and immunogenicity, but also targeted delivery and slow release. A number of nanoparticle vaccines varying in composition, size, shape, and surface properties have been approved for human use and the number of candidates is increasing. However, challenges remain due to a lack of fundamental understanding regarding the in vivo behavior of nanoparticles, which can operate as either a delivery system to enhance antigen processing and/or as an immunostimulant adjuvant to activate or enhance immunity. This review provides a broad overview of recent advances in prophylactic nanovaccinology. Types of nanoparticles used are outlined and their interaction with immune cells and the biosystem are discussed. Increased knowledge and fundamental understanding of nanoparticle mechanism of action in both immunostimulatory and delivery modes, and better understanding of in vivo biodistribution and fate, are urgently required, and will accelerate the rational design of nanoparticle-containing vaccines. PMID:24295808

  15. Cancer vaccines.

    PubMed

    Butterfield, Lisa H

    2015-04-22

    Cancer vaccines are designed to promote tumor specific immune responses, particularly cytotoxic CD8 positive T cells that are specific to tumor antigens. The earliest vaccines, which were developed in 1994-95, tested non-mutated, shared tumor associated antigens that had been shown to be immunogenic and capable of inducing clinical responses in a minority of people with late stage cancer. Technological developments in the past few years have enabled the investigation of vaccines that target mutated antigens that are patient specific. Several platforms for cancer vaccination are being tested, including peptides, proteins, antigen presenting cells, tumor cells, and viral vectors. Standard of care treatments, such as surgery and ablation, chemotherapy, and radiotherapy, can also induce antitumor immunity, thereby having cancer vaccine effects. The monitoring of patients' immune responses at baseline and after standard of care treatment is shedding light on immune biomarkers. Combination therapies are being tested in clinical trials and are likely to be the best approach to improving patient outcomes.

  16. Topical immunization using nanoengineered genetic vaccines.

    PubMed

    Cui, Zhengrong; Mumper, Russell J

    2002-05-17

    DNA vaccines have been shown to elicit both broad humoral and cellular immune responses. Needle-free injection devices and the gene gun have been used to deliver these DNA vaccines to dendritic cells in the viable skin epidermis with some success. However, more cost-effective and dendritic cell (DC)-targeted immunization strategies are sought. To this end, a nanoengineered genetic vaccine for simple topical application was developed. Expressed beta-galactosidase was used as a model antigen. Plasmid DNA was coated on the surface of preformed cationic nanoparticles engineered directly from warm oil-in-water (O/W) microemulsion precursors comprised of emulsifying wax as the oil phase and CTAB as a cationic surfactant. Mannan, a DC ligand, was coated on the nanoparticles with and without entrapped endosomolytic agents, dioleoyl phosphatidylethanolamine (DOPE) and cholesterol. In-vitro cell transfection studies were performed to confirm transgene expression with these pDNA-coated nanoparticles. An in-vitro Concanavalin A (ConA) agglutination assay confirmed the presence of mannan on the surface of nanoparticles. The humoral and proliferative immune responses were assessed after topical application of these nanoengineered systems to the skin of shaved Balb/C mice. All pDNA-coated nanoparticles, especially the mannan-coated pDNA-nanoparticles with DOPE, resulted in significant enhancement in both antigen-specific IgG titers (16-fold) and splenocyte proliferation over 'naked' pDNA alone. PMID:11992690

  17. Topical immunization using nanoengineered genetic vaccines.

    PubMed

    Cui, Zhengrong; Mumper, Russell J

    2002-05-17

    DNA vaccines have been shown to elicit both broad humoral and cellular immune responses. Needle-free injection devices and the gene gun have been used to deliver these DNA vaccines to dendritic cells in the viable skin epidermis with some success. However, more cost-effective and dendritic cell (DC)-targeted immunization strategies are sought. To this end, a nanoengineered genetic vaccine for simple topical application was developed. Expressed beta-galactosidase was used as a model antigen. Plasmid DNA was coated on the surface of preformed cationic nanoparticles engineered directly from warm oil-in-water (O/W) microemulsion precursors comprised of emulsifying wax as the oil phase and CTAB as a cationic surfactant. Mannan, a DC ligand, was coated on the nanoparticles with and without entrapped endosomolytic agents, dioleoyl phosphatidylethanolamine (DOPE) and cholesterol. In-vitro cell transfection studies were performed to confirm transgene expression with these pDNA-coated nanoparticles. An in-vitro Concanavalin A (ConA) agglutination assay confirmed the presence of mannan on the surface of nanoparticles. The humoral and proliferative immune responses were assessed after topical application of these nanoengineered systems to the skin of shaved Balb/C mice. All pDNA-coated nanoparticles, especially the mannan-coated pDNA-nanoparticles with DOPE, resulted in significant enhancement in both antigen-specific IgG titers (16-fold) and splenocyte proliferation over 'naked' pDNA alone.

  18. Therapeutic Vaccine Strategies against Human Papillomavirus

    PubMed Central

    Khallouf, Hadeel; Grabowska, Agnieszka K.; Riemer, Angelika B.

    2014-01-01

    High-risk types of human papillomavirus (HPV) cause over 500,000 cervical, anogenital and oropharyngeal cancer cases per year. The transforming potential of HPVs is mediated by viral oncoproteins. These are essential for the induction and maintenance of the malignant phenotype. Thus, HPV-mediated malignancies pose the unique opportunity in cancer vaccination to target immunologically foreign epitopes. Therapeutic HPV vaccination is therefore an ideal scenario for proof-of-concept studies of cancer immunotherapy. This is reflected by the fact that a multitude of approaches has been utilized in therapeutic HPV vaccination design: protein and peptide vaccination, DNA vaccination, nanoparticle- and cell-based vaccines, and live viral and bacterial vectors. This review provides a comprehensive overview of completed and ongoing clinical trials in therapeutic HPV vaccination (summarized in tables), and also highlights selected promising preclinical studies. Special emphasis is given to adjuvant science and the potential impact of novel developments in vaccinology research, such as combination therapies to overcome tumor immune suppression, the use of novel materials and mouse models, as well as systems vaccinology and immunogenetics approaches. PMID:26344626

  19. Impact of dendritic size and dendritic topology on burst firing in pyramidal cells.

    PubMed

    van Elburg, Ronald A J; van Ooyen, Arjen

    2010-05-13

    Neurons display a wide range of intrinsic firing patterns. A particularly relevant pattern for neuronal signaling and synaptic plasticity is burst firing, the generation of clusters of action potentials with short interspike intervals. Besides ion-channel composition, dendritic morphology appears to be an important factor modulating firing pattern. However, the underlying mechanisms are poorly understood, and the impact of morphology on burst firing remains insufficiently known. Dendritic morphology is not fixed but can undergo significant changes in many pathological conditions. Using computational models of neocortical pyramidal cells, we here show that not only the total length of the apical dendrite but also the topological structure of its branching pattern markedly influences inter- and intraburst spike intervals and even determines whether or not a cell exhibits burst firing. We found that there is only a range of dendritic sizes that supports burst firing, and that this range is modulated by dendritic topology. Either reducing or enlarging the dendritic tree, or merely modifying its topological structure without changing total dendritic length, can transform a cell's firing pattern from bursting to tonic firing. Interestingly, the results are largely independent of whether the cells are stimulated by current injection at the soma or by synapses distributed over the dendritic tree. By means of a novel measure called mean electrotonic path length, we show that the influence of dendritic morphology on burst firing is attributable to the effect both dendritic size and dendritic topology have, not on somatic input conductance, but on the average spatial extent of the dendritic tree and the spatiotemporal dynamics of the dendritic membrane potential. Our results suggest that alterations in size or topology of pyramidal cell morphology, such as observed in Alzheimer's disease, mental retardation, epilepsy, and chronic stress, could change neuronal burst firing and

  20. Equipotent generation of protective antitumor immunity by various methods of dendritic cell loading with whole cell tumor antigens.

    PubMed

    Lambert, L A; Gibson, G R; Maloney, M; Barth, R J

    2001-01-01

    Multiple clinically applicable methods have been used to induce dendritic cells (DCs) to express whole cell tumor antigens, including pulsing DCs with tumor lysate, and mixing DCs with apoptotic or live tumor cells. Herein we demonstrate, using two different tumor systems, that these methods are equipotent inducers of systemic antitumor immunity. Furthermore, tumor lysate pulsed DC vaccines generate more potent antitumor immunity than immunization with irradiated tumor cells plus the classic adjuvant, Corynebacterium parvum. PMID:11394500

  1. Adjuvants and vector systems for allergy vaccines.

    PubMed

    Moingeon, Philippe; Lombardi, Vincent; Saint-Lu, Nathalie; Tourdot, Sophie; Bodo, Véronique; Mascarell, Laurent

    2011-05-01

    Allergen-specific immunotherapy represents a curative treatment of type I allergies. Subcutaneous immunotherapy is conducted with allergens adsorbed on aluminum hydroxide or calcium phosphate particles, whereas sublingual immunotherapy relies on high doses of soluble allergen without any immunopotentiator. There is a potential benefit of adjuvants enhancing regulatory and Th1 CD4+T cell responses during specific immunotherapy. Molecules affecting dendritic cells favor the induction of T regulatory cell and Th1 responses and represent valid candidate adjuvants for allergy vaccines. Furthermore, the interest in viruslike particles and mucoadhesive particulate vector systems, which may better address the allergen(s) to tolerogenic antigen-presenting cells, is documented.

  2. Valuing vaccination

    PubMed Central

    Bärnighausen, Till; Bloom, David E.; Cafiero-Fonseca, Elizabeth T.; O’Brien, Jennifer Carroll

    2014-01-01

    Vaccination has led to remarkable health gains over the last century. However, large coverage gaps remain, which will require significant financial resources and political will to address. In recent years, a compelling line of inquiry has established the economic benefits of health, at both the individual and aggregate levels. Most existing economic evaluations of particular health interventions fail to account for this new research, leading to potentially sizable undervaluation of those interventions. In line with this new research, we set forth a framework for conceptualizing the full benefits of vaccination, including avoided medical care costs, outcome-related productivity gains, behavior-related productivity gains, community health externalities, community economic externalities, and the value of risk reduction and pure health gains. We also review literature highlighting the magnitude of these sources of benefit for different vaccinations. Finally, we outline the steps that need to be taken to implement a broad-approach economic evaluation and discuss the implications of this work for research, policy, and resource allocation for vaccine development and delivery. PMID:25136129

  3. Replicating vaccines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Early work on fish immunology and disease resistance demonstrated fish (like animals and humans) that survived infection were typically resistant to re-infection with the same pathogen. The concepts of resistance upon reinfection lead to the research and development of replicating (live) vaccines in...

  4. Vexing Vaccines

    ERIC Educational Resources Information Center

    Bowman, Darcia Harris

    2004-01-01

    Schools play a key role in ensuring that children are being immunized against diseases, but conflicting research is making enforcement difficult. This article discusses a growing trend of vaccine avoidance and the endless supply of conflicting information and research about immunization safety. Despite the controversy, many people appear to accept…

  5. Malaria vaccine.

    PubMed

    1994-05-01

    Some have argued that the vaccine against malaria developed by Manuel Pattaroyo, a Colombian scientist, is being tested prematurely in humans and that it is unlikely to be successful. While the Pattaroyo vaccine has been shown to confer protection against the relatively mild malaria found in Colombia, doubts exist over whether it will be effective in Africa. Encouraging first results, however, are emerging from field tests in Tanzania. The vaccine triggered a strong new immune response, even in individuals previously exposed to malaria. Additional steps must be taken to establish its impact upon mortality and morbidity. Five major trials are underway around the world. The creator estimates that the first ever effective malaria vaccine could be available for widespread use within five years and he has no intention of securing a patent for the discovery. In another development, malaria specialists from 35 African countries convened at an international workshop in Zimbabwe to compare notes. Participants disparaged financial outlays for the fight against malaria equivalent to 2% of total AIDS funding as insufficient; noted intercountry differences in prevention, diagnosis, and treatment; and found information exchange between anglophone and francophone doctors to be generally poor. PMID:12287671

  6. Melioidosis Vaccines: A Systematic Review and Appraisal of the Potential to Exploit Biodefense Vaccines for Public Health Purposes

    PubMed Central

    Lubell, Yoel; Koh, Gavin C. K. W.; White, Lisa J.; Day, Nicholas P. J.; Titball, Richard W.

    2012-01-01

    Background Burkholderia pseudomallei is a Category B select agent and the cause of melioidosis. Research funding for vaccine development has largely considered protection within the biothreat context, but the resulting vaccines could be applicable to populations who are at risk of naturally acquired melioidosis. Here, we discuss target populations for vaccination, consider the cost-benefit of different vaccination strategies and review potential vaccine candidates. Methods and Findings Melioidosis is highly endemic in Thailand and northern Australia, where a biodefense vaccine might be adopted for public health purposes. A cost-effectiveness analysis model was developed, which showed that a vaccine could be a cost-effective intervention in Thailand, particularly if used in high-risk populations such as diabetics. Cost-effectiveness was observed in a model in which only partial immunity was assumed. The review systematically summarized all melioidosis vaccine candidates and studies in animal models that had evaluated their protectiveness. Possible candidates included live attenuated, whole cell killed, sub-unit, plasmid DNA and dendritic cell vaccines. Live attenuated vaccines were not considered favorably because of possible reversion to virulence and hypothetical risk of latent infection, while the other candidates need further development and evaluation. Melioidosis is acquired by skin inoculation, inhalation and ingestion, but routes of animal inoculation in most published studies to date do not reflect all of this. We found a lack of studies using diabetic models, which will be central to any evaluation of a melioidosis vaccine for natural infection since diabetes is the most important risk factor. Conclusion Vaccines could represent one strand of a public health initiative to reduce the global incidence of melioidosis. PMID:22303489

  7. Cell-Based Therapy for Urinary Incontinence

    PubMed Central

    Bae, Jae Hyun

    2010-01-01

    Urinary incontinence has become a societal problem that affects millions of people worldwide. Although numerous therapeutic modalities are available, none has been shown to be entirely satisfactory. Consequently, cell-based approaches using regenerative medicine technology have emerged as a potential solution that would provide a means of correcting anatomical deficiencies and restoring normal function. As such, numerous cell-based investigations have been performed to develop systems that are focused on addressing clinical needs. While most of these attempts remain in the experimental stages, several clinical trials are being designed or are in progress. This article provides an overview of the cell-based approaches that utilize various cell sources to develop effective treatment modalities for urinary incontinence. PMID:20414402

  8. Double dendrite growth in solidification.

    PubMed

    Utter, Brian; Bodenschatz, E

    2005-07-01

    We present experiments on the doublon growth morphology in directional solidification. Samples used are succinonitrile with small amounts of poly(ethylene oxide), acetone, or camphor as the solute. Doublons, or symmetry-broken dendrites, are generic diffusion-limited growth structures expected at large undercooling and low anisotropy. Low anisotropy growth is achieved by selecting a grain near the {111} plane leading to either seaweed (dense branching morphology) or doublon growth depending on experimental parameters. We find selection of doublons to be strongly dependent on solute concentration and sample orientation. Doublons are selected at low concentrations (low solutal undercooling) in contrast to the prediction of doublons at large thermal undercooling in pure materials. Doublons also exhibit preferred growth directions and changing the orientation of a specific doublonic grain changes the character and stability of the doublons. We observe transitions between seaweed and doublon growth with changes in concentration and sample orientation.

  9. Dendritic cell immunotherapy: clinical outcomes

    PubMed Central

    Apostolopoulos, Vasso; Pietersz, Geoffrey A; Tsibanis, Anastasios; Tsikkinis, Annivas; Stojanovska, Lily; McKenzie, Ian FC; Vassilaros, Stamatis

    2014-01-01

    The use of tumour-associated antigens for cancer immunotherapy studies is exacerbated by tolerance to these self-antigens. Tolerance may be broken by using ex vivo monocyte-derived dendritic cells (DCs) pulsed with self-antigens. Targeting tumour-associated antigens directly to DCs in vivo is an alternative and simpler strategy. The identification of cell surface receptors on DCs, and targeting antigens to DC receptors, has become a popular approach for inducing effective immune responses against cancer antigens. Many years ago, we demonstrated that targeting the mannose receptor on macrophages using the carbohydrate mannan to DCs led to appropriate immune responses and tumour protection in animal models. We conducted Phase I, I/II and II, clinical trials demonstrating the effectiveness of oxidised mannan-MUC1 in patients with adenocarcinomas. Here we summarise DC targeting approaches and their efficacy in human clinical trials. PMID:25505969

  10. Evidence for Eigenfrequencies in Dendritic Growth Dynamics

    NASA Astrophysics Data System (ADS)

    Lacombe, Jeffrey C.; Koss, Matthew B.; Giummarra, Cindie; Frei, Julie E.; Lupulescu, Afina O.; Glicksman, Martin E.

    Microgravity dendritic growth experiments, conducted aboard the space shuttle Columbia, are described. In-situ video images reveal that pivalic acid dendrites growing in the diffusion-controlled environment of low-earth orbit exhibit a range of transient or non-steady-state behaviors. The observed transient features of the growth process are being studied with the objective of understanding the mechanisms responsible for these behaviors. Included in these observations is possible evidence for characteristic frequencies or limit cycles in the growth behavior near the tip of the dendrites. These data, and their interpretations, will be discussed.

  11. Active dendrites support efficient initiation of dendritic spikes in hippocampal CA3 pyramidal neurons

    PubMed Central

    Kim, Sooyun; Guzman, Segundo J; Hu, Hua; Jonas, Peter

    2013-01-01

    CA3 pyramidal neurons are important for memory formation and pattern completion in the hippocampal network. It is generally thought that proximal synapses from the mossy fibers activate these neurons most efficiently, whereas distal inputs from the perforant path have a weaker modulatory influence. We used confocally targeted patch-clamp recording from dendrites and axons to map the activation of rat CA3 pyramidal neurons at the subcellular level. Our results reveal two distinct dendritic domains. In the proximal domain, action potentials initiated in the axon backpropagate actively with large amplitude and fast time course. In the distal domain, Na+ channel–mediated dendritic spikes are efficiently initiated by waveforms mimicking synaptic events. CA3 pyramidal neuron dendrites showed a high Na+-to-K+ conductance density ratio, providing ideal conditions for active backpropagation and dendritic spike initiation. Dendritic spikes may enhance the computational power of CA3 pyramidal neurons in the hippocampal network. PMID:22388958

  12. The vaccine-site microenvironment induced by injection of incomplete Freund's adjuvant, with or without melanoma peptides

    PubMed Central

    Harris, Rebecca C.; Chianese-Bullock, Kimberly A.; Petroni, Gina R.; Schaefer, Jochen T.; Brill, Louis B.; Molhoek, Kerrington R.; Deacon, Donna H.; Patterson, James W.; Slingluff, Craig L.

    2011-01-01

    Cancer vaccines have not been optimized. They depend on adjuvants to create an immunogenic microenvironment for antigen presentation. However, remarkably little is understood about cellular and molecular changes induced by these adjuvants in the vaccine microenvironment. We hypothesized that vaccination induces dendritic cell activation in the dermal vaccination microenvironment but that regulatory processes may also limit the effectiveness of repeated vaccination. We evaluated biopsies from immunization sites in two clinical trials of melanoma patients. In one study (Mel38), patients received one injection with an adjuvant mixture alone, comprised of incomplete Freund's adjuvant (IFA) plus granulocyte-macrophage colony stimulating factor (GM-CSF). In a second study, patients received multiple vaccinations with melanoma peptide antigens plus IFA. Single injections with adjuvant alone induced dermal inflammatory infiltrates consisting of B cells, T cells, mature dendritic cells (DC) and vessels resembling high endothelial venules (HEV). These cellular aggregates usually lacked organization and were transient. In contrast, multiple repeated vaccinations with peptides in adjuvant induced more organized and persistent lymphoid aggregates containing separate B and T cell areas, mature DC, HEV-like vessels, and lymphoid chemokines. Within these structures, there are proliferating CD4+ and CD8+ T lymphocytes, as well as FoxP3+CD4+ lymphocytes, suggesting a complex interplay of lymphoid expansion and regulation within the dermal immunization microenvironment. Further study of the physiology of the vaccine site microenvironment promises to identify opportunities for enhancing cancer vaccine efficacy by modulating immune activation and regulation at the site of vaccination. PMID:22130163

  13. Self-adjuvanting lipoimmunogens for therapeutic HPV vaccine development: potential clinical impact.

    PubMed

    Shen, Kuan-Yin; Chang, Li-Sheng; Leng, Chih-Hsiang; Liu, Shih-Jen

    2015-03-01

    The goal of therapeutic HPV vaccines is the induction of cytotoxic T lymphocyte immunity against HPV-associated cancers. Recombinant proteins and synthetic peptides have high safety profiles but low immunogenicity, which limits their efficacy when used in a vaccine. Self-adjuvanting lipid moieties have been conjugated to synthetic peptides or expressed as lipoproteins to enhance the immunogenicity of vaccine candidates. Mono-, di- and tri-palmitoylated peptides have been demonstrated to activate dendritic cells and induce robust cellular immunity against infectious diseases and cancer. Recently, a platform technology using the high-yield production of recombinant lipoproteins with Toll-like receptor 2 agonist activity was established for the development of novel subunit vaccines. This technology represents a novel strategy for the development of therapeutic HPV vaccines. In this review, we describe recent progress in the design of therapeutic HPV vaccines using lipoimmunogens.

  14. ISCOMATRIX Adjuvant Combines Immune Activation with Antigen Delivery to Dendritic Cells In Vivo Leading to Effective Cross-Priming of CD8+ T Cells

    PubMed Central

    Duewell, Peter; Kisser, Ulrich; Heckelsmiller, Klaus; Hoves, Sabine; Stoitzner, Patrizia; Koernig, Sandra; Morelli, Adriana B.; Clausen, Björn E.; Dauer, Marc; Eigler, Andreas; Anz, David; Bourquin, Carole; Maraskovsky, Eugene; Endres, Stefan; Schnurr, Max

    2014-01-01

    Cancer vaccines aim to induce CTL responses against tumors. Challenges for vaccine design are targeting Ag to dendritic cells (DCs) in vivo, facilitating cross-presentation, and conditioning the microenvironment for Th1 type immune responses. In this study, we report that ISCOM vaccines, which consist of ISCOMATRIX adjuvant and protein Ag, meet these challenges. Subcutaneous injection of an ISCOM vaccine in mice led to a substantial influx and activation of innate and adaptive immune effector cells in vaccine site-draining lymph nodes (VDLNs) as well as IFN-γ production by NK and NKT cells. Moreover, an ISCOM vaccine containing the model Ag OVA (OVA/ISCOM vaccine) was efficiently taken up by CD8α+ DCs in VDLNs and induced their maturation and IL-12 production. Adoptive transfer of transgenic OT-I T cells revealed highly efficient cross-presentation of the OVA/ISCOM vaccine in vivo, whereas cross-presentation of soluble OVA was poor even at a 100-fold higher concentration. Cross-presenting activity was restricted to CD8α+ DCs in VDLNs, whereas Langerin+ DCs and CD8α− DCs were dispensable. Remarkably, compared with other adjuvant systems, the OVA/ISCOM vaccine induced a high frequency of OVA-specific CTLs capable of tumor cell killing in different tumor models. Thus, ISCOM vaccines combine potent immune activation with Ag delivery to CD8α+ DCs in vivo for efficient induction of CTL responses. PMID:21613613

  15. Improving vaccine efficacy against malignant glioma.

    PubMed

    Ladomersky, Erik; Genet, Matthew; Zhai, Lijie; Gritsina, Galina; Lauing, Kristen L; Lulla, Rishi R; Fangusaro, Jason; Lenzen, Alicia; Kumthekar, Priya; Raizer, Jeffrey J; Binder, David C; James, C David; Wainwright, Derek A

    2016-08-01

    The effective treatment of adult and pediatric malignant glioma is a significant clinical challenge. In adults, glioblastoma (GBM) accounts for the majority of malignant glioma diagnoses with a median survival of 14.6 mo. In children, malignant glioma accounts for 20% of primary CNS tumors with a median survival of less than 1 y. Here, we discuss vaccine treatment for children diagnosed with malignant glioma, through targeting EphA2, IL-13Rα2 and/or histone H3 K27M, while in adults, treatments with RINTEGA, Prophage Series G-100 and dendritic cells are explored. We conclude by proposing new strategies that are built on current vaccine technologies and improved upon with novel combinatorial approaches. PMID:27622066

  16. Synthetic and biogenic magnetite nanoparticles for tracking of stem cells and dendritic cells

    NASA Astrophysics Data System (ADS)

    Schwarz, Sebastian; Fernandes, Fabiana; Sanroman, Laura; Hodenius, Michael; Lang, Claus; Himmelreich, Uwe; Schmitz-Rode, Thomas; Schueler, Dirk; Hoehn, Mathias; Zenke, Martin; Hieronymus, Thomas

    2009-05-01

    Accurate delivery of cells to target organs is critical for success of cell-based therapies with stem cells or immune cells such as antigen-presenting dendritic cells (DC). Labeling with contrast agents before implantation provides a powerful means for monitoring cellular migration using magnetic resonance imaging (MRI). In this study, we investigated the uptake of fully synthesized or bacterial magnetic nanoparticles (MNPs) into hematopoietic Flt3 + stem cells and DC from mouse bone marrow. We show that (i) uptake of both synthetic and biogenic nanoparticles into cells endow magnetic activity and (ii) low numbers of MNP-loaded cells are readily detected by MRI.

  17. Functional impact of dendritic branch point morphology

    PubMed Central

    Ferrante, Michele; Migliore, Michele; Ascoli, Giorgio A.

    2013-01-01

    Cortical pyramidal cells store multiple features of complex synaptic input in individual dendritic branches and independently regulate the coupling between dendritic and somatic spikes. Branch points in apical trees exhibit wide ranges of sizes and shapes, and the large diameter ratio between trunk and oblique dendrites exacerbates impedance mismatch. The morphological diversity of dendritic bifurcations could thus locally tune neuronal excitability and signal integration. However, these aspects have never been investigated. Here, we first quantified the morphological variability of branch points from two-photon images of rat CA1 pyramidal neurons. We then investigated the geometrical features affecting spike initiation, propagation, and timing with a computational model validated by glutamate uncaging experiments. The results suggest that even subtle membrane readjustments at branch point could drastically alter the ability of synaptic input to generate, propagate, and time action potentials. PMID:23365251

  18. Dendritic spine dysgenesis in Autism Related Disorders

    PubMed Central

    Phillips, Mary; Pozzo-Miller, Lucas

    2015-01-01

    The activity-dependent structural and functional plasticity of dendritic spines has led to the long-standing belief that these neuronal compartments are the subcellular sites of learning and memory. Of relevance to human health, central neurons in several neuropsychiatric illnesses, including autism related disorders, have atypical numbers and morphologies of dendritic spines. These so-called dendritic spine dysgeneses found in individuals with autism related disorders are consistently replicated in experimental mouse models. Dendritic spine dysgenesis reflects the underlying synaptopathology that drives clinically relevant behavioral deficits in experimental mouse models, providing a platform for testing new therapeutic approaches. By examining molecular signaling pathways, synaptic deficits, and spine dysgenesis in experimental mouse models of autism related disorders we find strong evidence for mTOR to be a critical point of convergence and promising therapeutic target. PMID:25578949

  19. Dendritic cells are stressed out in tumor.

    PubMed

    Maj, Tomasz; Zou, Weiping

    2015-09-01

    A recently paper published in Cell reports that dendritic cells (DCs) are dysfunctional in the tumor environment. Tumor impairs DC function through induction of endoplasmic reticulum stress response and subsequent disruption of lipid metabolic homeostasis.

  20. Dendritic Growth in Nematic Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Martin, Joshua; Garg, Shila

    2000-03-01

    The experimental study of the onset of electrohydrodynamic convection (EHC) through a dendritic growth is reported. If a magnetic Freedericksz-distorted liquid crystal of negative dielectric anisotropy is subjected to an electric field parallel to the magnetic field, EHC sets in through the nucleation of dendrites [1,2]. Measurements of tip speeds of the dendrites as a function of applied voltage at a fixed magnetic field are made. The goal is to explore the effect of the magnetic and electric fields on the dendritic growth. In addition, pattern dynamics is monitored once the final state of spatio-temporal chaos is reached by the system. [1] J. T. Gleeson, Nature 385, 511 (1997). [2] J. T. Gleeson, Physica A 239, 211 (1997). This research was supported by NSF grants DMR 9704579 and DMR 9619406.

  1. Dendritic spine dysgenesis in autism related disorders.

    PubMed

    Phillips, Mary; Pozzo-Miller, Lucas

    2015-08-01

    The activity-dependent structural and functional plasticity of dendritic spines has led to the long-standing belief that these neuronal compartments are the subcellular sites of learning and memory. Of relevance to human health, central neurons in several neuropsychiatric illnesses, including autism related disorders, have atypical numbers and morphologies of dendritic spines. These so-called dendritic spine dysgeneses found in individuals with autism related disorders are consistently replicated in experimental mouse models. Dendritic spine dysgenesis reflects the underlying synaptopathology that drives clinically relevant behavioral deficits in experimental mouse models, providing a platform for testing new therapeutic approaches. By examining molecular signaling pathways, synaptic deficits, and spine dysgenesis in experimental mouse models of autism related disorders we find strong evidence for mTOR to be a critical point of convergence and promising therapeutic target. PMID:25578949

  2. Dendritic spine dysgenesis in Rett syndrome

    PubMed Central

    Xu, Xin; Miller, Eric C.; Pozzo-Miller, Lucas

    2014-01-01

    Spines are small cytoplasmic extensions of dendrites that form the postsynaptic compartment of the majority of excitatory synapses in the mammalian brain. Alterations in the numerical density, size, and shape of dendritic spines have been correlated with neuronal dysfunction in several neurological and neurodevelopmental disorders associated with intellectual disability, including Rett syndrome (RTT). RTT is a progressive neurodevelopmental disorder associated with intellectual disability that is caused by loss of function mutations in the transcriptional regulator methyl CpG-binding protein 2 (MECP2). Here, we review the evidence demonstrating that principal neurons in RTT individuals and Mecp2-based experimental models exhibit alterations in the number and morphology of dendritic spines. We also discuss the exciting possibility that signaling pathways downstream of brain-derived neurotrophic factor (BDNF), which is transcriptionally regulated by MeCP2, offer promising therapeutic options for modulating dendritic spine development and plasticity in RTT and other MECP2-associated neurodevelopmental disorders. PMID:25309341

  3. Vaccine-Preventable Disease Photos

    MedlinePlus

    ... About | A-Z | Contact | Follow Vaccine Information You Need VACCINE BASICS Evaluating Online Health Information FAQs How Vaccines Work Importance of Vaccines Paying for Vaccines State Immunization Programs Tips for Finding Vaccine Records Trusted Sources of Vaccine ... PRETEENS Vaccines You Need ...

  4. Dendritic cells in autoimmune thyroid disease.

    PubMed

    Kabel, P J; Voorbij, H A; van der Gaag, R D; Wiersinga, W M; de Haan, M; Drexhage, H A

    1987-01-01

    Dendritic cells form a morphologically distinct class of cells characterized by shape, reniform nucleus, absent to weak acid-phosphatase activity and strong Class II MHC determinant positivity. Functionally they are the most efficient cells in antigen presentation to T-lymphocytes which indicates their role in the initiation of an immune response. Using immunehistochemical techniques we studied the presence of dendritic cells in normal Wistar rat and human thyroids, in thyroids of BBW rats developing thyroid autoimmunity and in Graves' goitres. Dendritic cells could be identified in all thyroids studied and were positioned underneath the thyrocytes in between the follicles. Skin dendritic cells travel via lymphatics to draining lymph nodes, thus forming an antigen presenting cell system. It is likely that a similar cell system exists on the level of the thyroid for dendritic cells have also been detected in thyroid draining lymph nodes. In normal thyroid tissue of both human and rat dendritic cells were relatively scarce. During the initial phases of the thyroid autoimmune response in the BBW rat (before the appearance of Tg-antibodies in the circulation) numbers of thyroid dendritic cells increased. Intrathyroidal T-helper cells, B-cells or plasma cells could not be found. The thyroid draining lymph node contained large numbers of plasma cells. During the later stages of the thyroid autoimmune response in the BB/W rat (after the appearance of Tg-antibodies in the circulation) and in Graves' goitres dendritic cells were not only present in high number, but 20-30% were seen in contact with now-present intrathyroidal T-helper lymphocytes.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3475920

  5. Non-synaptic dendritic spines in neocortex.

    PubMed

    Arellano, J I; Espinosa, A; Fairén, A; Yuste, R; DeFelipe, J

    2007-03-16

    A long-held assumption states that each dendritic spine in the cerebral cortex forms a synapse, although this issue has not been systematically investigated. We performed complete ultrastructural reconstructions of a large (n=144) population of identified spines in adult mouse neocortex finding that only 3.6% of the spines clearly lacked synapses. Nonsynaptic spines were small and had no clear head, resembling dendritic filopodia, and could represent a source of new synaptic connections in the adult cerebral cortex.

  6. Dendritic cells in autoimmune thyroid disease.

    PubMed

    Kabel, P J; Voorbij, H A; van der Gaag, R D; Wiersinga, W M; de Haan, M; Drexhage, H A

    1987-01-01

    Dendritic cells form a morphologically distinct class of cells characterized by shape, reniform nucleus, absent to weak acid-phosphatase activity and strong Class II MHC determinant positivity. Functionally they are the most efficient cells in antigen presentation to T-lymphocytes which indicates their role in the initiation of an immune response. Using immunehistochemical techniques we studied the presence of dendritic cells in normal Wistar rat and human thyroids, in thyroids of BBW rats developing thyroid autoimmunity and in Graves' goitres. Dendritic cells could be identified in all thyroids studied and were positioned underneath the thyrocytes in between the follicles. Skin dendritic cells travel via lymphatics to draining lymph nodes, thus forming an antigen presenting cell system. It is likely that a similar cell system exists on the level of the thyroid for dendritic cells have also been detected in thyroid draining lymph nodes. In normal thyroid tissue of both human and rat dendritic cells were relatively scarce. During the initial phases of the thyroid autoimmune response in the BBW rat (before the appearance of Tg-antibodies in the circulation) numbers of thyroid dendritic cells increased. Intrathyroidal T-helper cells, B-cells or plasma cells could not be found. The thyroid draining lymph node contained large numbers of plasma cells. During the later stages of the thyroid autoimmune response in the BB/W rat (after the appearance of Tg-antibodies in the circulation) and in Graves' goitres dendritic cells were not only present in high number, but 20-30% were seen in contact with now-present intrathyroidal T-helper lymphocytes.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Transcranial magnetic stimulation (TMS) inhibits cortical dendrites

    PubMed Central

    Murphy, Sean C; Palmer, Lucy M; Nyffeler, Thomas; Müri, René M; Larkum, Matthew E

    2016-01-01

    One of the leading approaches to non-invasively treat a variety of brain disorders is transcranial magnetic stimulation (TMS). However, despite its clinical prevalence, very little is known about the action of TMS at the cellular level let alone what effect it might have at the subcellular level (e.g. dendrites). Here, we examine the effect of single-pulse TMS on dendritic activity in layer 5 pyramidal neurons of the somatosensory cortex using an optical fiber imaging approach. We find that TMS causes GABAB-mediated inhibition of sensory-evoked dendritic Ca2+ activity. We conclude that TMS directly activates fibers within the upper cortical layers that leads to the activation of dendrite-targeting inhibitory neurons which in turn suppress dendritic Ca2+ activity. This result implies a specificity of TMS at the dendritic level that could in principle be exploited for investigating these structures non-invasively. DOI: http://dx.doi.org/10.7554/eLife.13598.001 PMID:26988796

  8. Vaccines and Pregnancy

    MedlinePlus

    ... pregnancy, please see the MotherToBaby fact sheet Seasonal Influenza Vaccine (Flu Shot) during Pregnancy ( http: / / mothertobaby. org/ fact- sheets/ seasonal- influenza- vaccine- flu- shot- pregnancy/ pdf/ ). Nasal spray flu vaccines ...

  9. Vaccinations and HIV

    MedlinePlus

    ... Do not measure your viral load within 4 weeks of any vaccination. Flu shots have been studied ... live” vaccination in the past 2 or 3 weeks. Still, the “MMR” vaccine against measles, mumps and ...

  10. Your Baby's First Vaccines

    MedlinePlus

    ... Barcodes Related Link Vaccines & Immunizations Your Child's First Vaccines Format: Select one PDF [335 KB] RTF [260 ... child will get one or more of these vaccines today: DTaP Hib Hepatitis B Polio PCV13 Why ...

  11. Vaccines Stop Illness

    MedlinePlus

    Skip Navigation Bar Home Current Issue Past Issues Vaccines Stop Illness Past Issues / Spring 2008 Table of ... meningitis won't infect, cripple, or kill children. Vaccine Safety In light of recent questions about vaccine ...

  12. Rotavirus Vaccine -- Questions and Answers

    MedlinePlus

    ... to these vaccines. The infant's immune response to influenza vaccine administered at the same time as rotavirus vaccine ... previously that an inactivated vaccine (e.g., inactivated influenza vaccine) may be administered either simultaneously or at any ...

  13. Subviral Particle as Vaccine and Vaccine Platform

    PubMed Central

    Tan, Ming; Jiang, Xi

    2014-01-01

    Recombinant subvirual particles retain similar antigenic features of their authentic viral capsids and thus have been applied as nonreplicating subunit vaccines against viral infection and illness. Additionally, the self-assembled, polyvalent subviral particles are excellent platforms to display foreign antigens for immune enhancement for vaccine development. These subviral particle-based vaccines are noninfectious and thus safer than the conventional live attenuated and inactivated vaccines. While several VLP vaccines are available in the markets, numerous others, including dual vaccines against more than one pathogen, are under clinical or preclinical development. This article provides an update of these efforts. PMID:24662314

  14. Human Vaccines & Immunotherapeutics

    PubMed Central

    Riedmann, Eva M

    2014-01-01

    Measles vaccination: Targeted and non-targeted benefits CDC reports: 2-dose regimen of chickenpox vaccine is a success Positive preliminary results from the CAPiTA study Seasonal flu vaccine associate with reduced stroke risk HPV vaccine shown to halve cervical abnormalities Global prize for mobile mast vaccine storage project Developmental pathway of potent HIV-neutralizing antibodies Burkholderia vaccine: US Dep of Defense collaborates with Bavarian Nordic

  15. Human Vaccines & Immunotherapeutics

    PubMed Central

    Riedmann, Eva M.

    2012-01-01

    Two therapeutic HPV vaccine candidates successful in phase 1 Flu shot may prevent heart attacks and stroke CDX-1401 combined with TLR agonist: Positive phase 1 results Three MRSA vaccines in early clincial trials Ovarian cancer vaccine candidate DPX-Survivac: Positive interim results from phase 1 Chinese biotech partnership brings first hepatitis E vaccine to the market Therapeutic vaccine for treatment of genital herpes enters phase 2 Visionary concept: Printable vaccines PMID:23817319

  16. Engineered human vaccines

    SciTech Connect

    Sandhu, J.S. . Div. of Immunology and Neurobiology)

    1994-01-01

    The limitations of human vaccines in use at present and the design requirements for a new generation of human vaccines are discussed. The progress in engineering of human vaccines for bacteria, viruses, parasites, and cancer is reviewed, and the data from human studies with the engineered vaccines are discussed, especially for cancer and AIDS vaccines. The final section of the review deals with the possible future developments in the field of engineered human vaccines and the requirement for effective new human adjuvants.

  17. Local administration of granulocyte macrophage colony-stimulating factor induces local accumulation of dendritic cells and antigen-specific CD8+ T cells and enhances dendritic cell cross-presentation

    PubMed Central

    Lee, Sung-Jong; Song, Liwen; Yang, Ming-Cheh; Mao, Chih-Ping; Yang, Benjamin; Yang, Andrew; Jeang, Jessica; Peng, Shiwen; Wu, T.-C.; Hung, Chien-Fu

    2015-01-01

    Immunotherapy has emerged as a promising treatment strategy for the control of HPV-associated malignancies. Various therapeutic HPV vaccines have elicited potent antigen-specific CD8+ T cell mediated antitumor immune responses in preclinical models and are currently being tested in several clinical trials. Recent evidence indicates the importance of local immune activation, and higher number of immune cells in the site of lesion correlates with positive prognosis. Granulocyte macrophage colony-stimulating factor (GMCSF) has been reported to posses the ability to induce migration of antigen presentation cells and CD8+ T cells. Therefore, in the current study, we employ a combination of systemic therapeutic HPV DNA vaccination with local GMCSF application in the TC-1 tumor model. We show that intramuscular vaccination with CRT/E7 DNA followed by GMCSF intravaginal administration effectively controls cervicovaginal TC-1 tumors in mice. Furthermore, we observe an increase in the accumulation of E7-specific CD8+ T cells and dendritic cells in vaginal tumors following the combination treatment. In addition, we show that GMCSF induces activation and maturation in dendritic cells and promotes antigen cross-presentation. Our results support the clinical translation of the combination treatment of systemic therapeutic vaccination followed by local GMCSF administration as an effective strategy for tumor treatment. PMID:25701675

  18. Vaccines.gov

    MedlinePlus

    ... Getting Vaccinated More Info Glossary Our Partners Related Websites AIDS.gov Biomedical Advanced Research and Development Authority (BARDA) CDC Vaccines Countermeasures Injury Compensation Program ...

  19. Architecture of apical dendrites in the murine neocortex: dual apical dendritic systems.

    PubMed

    Escobar, M I; Pimienta, H; Caviness, V S; Jacobson, M; Crandall, J E; Kosik, K S

    1986-04-01

    A monoclonal antibody (5F9) against microtubule-associated protein 2 is a selective and sensitive marker for neocortical dendrites in the mouse. The marker stains all dendrites. It affords a particularly comprehensive picture of the patterns of arrangements of apical dendrites which are most intensely stained with this antibody. Dual systems of apical dendrites arise from the polymorphic neurons of layer VI, on the one hand, and the pyramidal neurons of layers II-V, on the other. Terminal arborization of the former is concentrated principally at the interface of layers V and IV, while that of the latter is in the molecular layer. Apical dendrites of both systems are grouped into fascicles. In supragranular layers and in upper layer VI-lower layer V, where apical dendrites are most abundant, the fascicles coalesce into septa. These generate a honeycomb-like pattern, subdividing these cortical levels into columnar spaces of approximately 20-40 micron diameter. At the level of layer IV, where the number of apical dendrites is greatly reduced, the fascicles are isolated bundles. These bundles have the form of circular, elliptical or rectangular columns in the primary somatosensory, temporal and frontal regions, respectively. Those in the barrel field are preferentially concentrated in the sides of barrels and the interbarrel septa. The configurations of the dendritic fascicles, particularly the midcortical bundles, may conform to the spatial configuration of investing axons of interneurons.

  20. Vaccination against foot-and-mouth disease virus using peptides conjugated to nano-beads.

    PubMed

    Greenwood, Deanne L V; Dynon, Kemperly; Kalkanidis, Martha; Xiang, Sue; Plebanski, Magdalena; Scheerlinck, Jean-Pierre Y

    2008-05-23

    Vaccination against foot-and-mouth disease virus (FMDV) is a major problem as current vaccines do not allow easy differentiation between infected and vaccinated animals. Furthermore, large scale production of inactivated virus poses significant risks. To address this we investigated the feasibility of using inert nano-beads that target antigen to dendritic cells (DCs) to induce immune responses against FMDV-specific synthetic peptides in sheep. Our results demonstrate that while single peptides induce responses in most sheep, the combination of multiple peptides either conjugated separately to individual nano-beads or conjugated as a mixture induce significant cell-mediated (CM) and humoral immune responses.

  1. Clinical evaluation of CpG oligonucleotides as adjuvants for vaccines targeting infectious diseases and cancer.

    PubMed

    Scheiermann, Julia; Klinman, Dennis M

    2014-11-12

    Synthetic oligonucleotides (ODN) that express unmethylated "CpG motifs" trigger cells that express Toll-like receptor 9. In humans this includes plasmacytoid dendritic cells and B cells. CpG ODN induce an innate immune response characterized by the production of Th1 and pro-inflammatory cytokines. Their utility as vaccine adjuvants was evaluated in a number of clinical trials. Results indicate that CpG ODN improve antigen presentation and the generation of vaccine-specific cellular and humoral responses. This work provides an up-to-date overview of the utility of CpG ODN as adjuvants for vaccines targeting infectious agents and cancer. PMID:24975812

  2. Interaction of foot-and-mouth disease virus with dendritic cells.

    PubMed

    Bayry, Jagadeesh; Tough, David F

    2006-08-01

    Despite several decades of investigation, the manner in which foot-and-mouth disease virus (FMDV) interacts with the innate and adaptive immune compartments is not completely understood. The importance of elucidating this relationship is emphasized by the inability of current FMDV vaccines to provide long-term protection and the recent outbreaks of FMDV in formerly disease-free countries. Dendritic cells (DCs) are professional antigen-presenting cells that have evolved to monitor the environment and provide a link between the innate and adaptive immune systems. Comprehending the cross-talk between DC and FMDV will provide valuable information towards understanding the host response to the virus and will aid in the design of effective tools and vaccines to block virus spread. PMID:16781155

  3. Low Thymic Activity and Dendritic Cell Numbers Are Associated with the Immune Response to Primary Viral Infection in Elderly Humans.

    PubMed

    Schulz, Axel Ronald; Mälzer, Julia Nora; Domingo, Cristina; Jürchott, Karsten; Grützkau, Andreas; Babel, Nina; Nienen, Mikalai; Jelinek, Tomas; Niedrig, Matthias; Thiel, Andreas

    2015-11-15

    Immunological competence declines progressively with age, resulting in increased susceptibility of the elderly to infection and impaired responses to vaccines. Underlying mechanisms remain largely obscure as they have been related to complex, individual systemic immune properties that are challenging to investigate. In this study, we explored age-related changes in human immunity during a primary virus infection experimentally induced by immunization with live-attenuated yellow fever (YF) vaccine. Applying detailed serology, advanced FACS analysis, and systems biology, we discovered that aged subjects developed fewer neutralizing Abs, mounted diminished YF-specific CD8(+) T cell responses, and showed quantitatively and qualitatively altered YF-specific CD4(+) T cell immunity. Among numerous immune signatures, low in vivo numbers of naive CD4(+) recent thymic emigrants and peripheral dendritic cells correlated well with reduced acute responsiveness and altered long-term persistence of human cellular immunity to YF vaccination. Hence, we reveal in this article that essential elements of immune responses such as recent thymic emigrants and dendritic cells strongly relate to productive immunity in the elderly, providing a conceivable explanation for diminished responsiveness to vaccination with neoantigens and infection with de novo pathogens in the aged population. PMID:26459351

  4. Perinatal opiate treatment delays growth of cortical dendrites.

    PubMed

    Ricalde, A A; Hammer, R P

    1990-07-31

    Basilar dendritic arborizations of layer II-III pyramidal neurons in primary somatosensory cortex of 5-day-old male rats were reconstructed following perinatal morphine, morphine/naltrexone, or saline vehicle administration. Morphine treatment was observed to reduce total dendritic length. This effect was limited to higher order dendritic branches, with terminal dendrites manifesting the greatest reduction of length. The action of morphine was presumably mediated by opiate receptors, since concurrent naltrexone administration completely reversed morphine effects on dendritic length and branching. These results suggest that opiates act during late ontogenesis to affect dendritic growth in cerebral cortex. PMID:2172870

  5. Dendritic crystal growth in pure /sup 4/He

    SciTech Connect

    Franck, J.P.; Jung, J.

    1986-08-01

    Dendritic crystal growth of pure hcp and fcc /sup 4/He was observed at pressures between 210 and 6500 bar. Dendrite morphology depends on fluid supercooling and crystal phase. At large supercooling, dendrites with side arms are observed, whereas at low supercooling dendrites grow without side arms. The morpholpogy of hcp /sup 4/He dendrites is strongly influenced by crystalline anisotropy. Comparison with present theories of dendrite growth show good agreement with the power law dependencies of velocity, tip radius, and Peclet number on supercooling. Numerically, theory predicts much larger velocities than are observed. The stability parameter sigma is found to be much smaller than theoretically predicted.

  6. A magnetic cell-based sensor.

    PubMed

    Wang, Hua; Mahdavi, Alborz; Tirrell, David A; Hajimiri, Ali

    2012-11-01

    Cell-based sensing represents a new paradigm for performing direct and accurate detection of cell- or tissue-specific responses by incorporating living cells or tissues as an integral part of a sensor. Here we report a new magnetic cell-based sensing platform by combining magnetic sensors implemented in the complementary metal-oxide-semiconductor (CMOS) integrated microelectronics process with cardiac progenitor cells that are differentiated directly on-chip. We show that the pulsatile movements of on-chip cardiac progenitor cells can be monitored in a real-time manner. Our work provides a new low-cost approach to enable high-throughput screening systems as used in drug development and hand-held devices for point-of-care (PoC) biomedical diagnostic applications.

  7. Cell-based therapy in allergy.

    PubMed

    Baranyi, Ulrike; Gattringer, Martina; Valenta, Rudolf; Wekerle, Thomas

    2011-01-01

    IgE-mediated allergy is an immunological disorder occurring in response to otherwise harmless environmental antigens (i.e., allergens). Development of effective therapeutic or preventive approaches inducing robust tolerance toward allergens remains an unmet goal. Several experimental tolerance approaches have been described. The therapeutic use of regulatory T cells (Tregs) and the establishment of molecular chimerism are two cell-based strategies that are of particular interest. Treg therapy is close to clinical application, but its efficacy remains to be fully defined. Recent proof-of-concept studies demonstrated that transplantation of syngeneic hematopoietic stem cells modified in vitro to express a major allergen leads to molecular chimerism and robust allergen-specific tolerance. Here we review cell-based tolerance strategies in allergy, discussing their potentials and limitations.

  8. Cell-based bioassays in microfluidic systems

    NASA Astrophysics Data System (ADS)

    Itle, Laura J.; Zguris, Jeanna C.; Pishko, Michael V.

    2004-12-01

    The development of cell-based bioassays for high throughput drug screening or the sensing of biotoxins is contingent on the development of whole cell sensors for specific changes in intracellular conditions and the integration of those systems into sample delivery devices. Here we show the feasibility of using a 5-(and-6)-carboxy SNARF-1, acetoxymethyl ester, acetate, a fluorescent dye capable of responding to changes in intracellular pH, as a detection method for the bacterial endotoxin, lipopolysaccharide. We used photolithography to entrap cells with this dye within poly(ethylene) glyocol diacrylate hydrogels in microfluidic channels. After 18 hours of exposure to lipopolysaccharide, we were able to see visible changes in the fluorescent pattern. This work shows the feasibility of using whole cell based biosensors within microfluidic networks to detect cellular changes in response to exogenous agents.

  9. [Vaccination in the elderly].

    PubMed

    Kwetkat, A; Pletz, M W

    2013-10-01

    The aging immune system, so-called immunosenescence, is well documented as the cause of increased infection rates and severe, often complicated course of infections in the elderly with increased morbidity and mortality rates. Furthermore, it can lead to decreased efficacy of vaccination. The administration of more immunogenic vaccines can be beneficial in the elderly. Implementing vaccination recommendations for the elderly by STIKO can reduce burden of infectious diseases by prevention of infection or reduction of severity of infection. The following vaccinations are recommended by STIKO for all persons aged 60 and above: annual influenza vaccination (additionally all nursing home residents independently of age), once only pneumococcal polysaccharide vaccination, completion of tetanus and diphtheria (Td) vaccination as well as regular revaccination. All adults should be vaccinated against pertussis with Tdap vaccine once. Meanwhile, pneumococcal conjugate vaccine is allowed for administration in adults but is not recommended by STIKO yet. A lifelong course of vaccination may help to attenuate the effect of immunosenescence.

  10. Evaluation of various adjuvant nanoparticulate formulations for meningococcal capsular polysaccharide-based vaccine.

    PubMed

    Gala, Rikhav P; D'Souza, Martin; Zughaier, Susu M

    2016-06-14

    Neisseria meningitidis is a leading cause of bacterial meningitis and sepsis and its capsular polysaccharides (CPS) are a major virulence factor in meningococcal infections and form the basis for serogroup designation and preventive vaccines. We have formulated a novel meningococcal nanoparticulate vaccine formulation that does not require chemical conjugation, but encapsulates meningococcal CPS polymers in a biodegradable material that slowly release antigens, thereby has antigen depot effect to enhance antigenicity. The novel vaccine formulation is inexpensive and can be stored as a dry powder with extended shelf life that does not require the cold-chain which facilitates storage and distribution. In order to enhance the antigenicity of meningococcal nanoparticulate vaccine, we screened various adjuvants formulated in nanoparticles, for their ability to potentiate antigen presentation by dendritic cells. Here, we report that MF59 and Alum are superior to TLR-based adjuvants in enhancing dendritic cell maturation and antigen presentation markers MHC I, MHC II, CD40, CD80 and CD86 in dendritic cells pulsed with meningococcal CPS nanoparticulate vaccine. PMID:27177946

  11. Ontology for cell-based geographic information

    NASA Astrophysics Data System (ADS)

    Zheng, Bin; Huang, Lina; Lu, Xinhai

    2009-10-01

    Inter-operability is a key notion in geographic information science (GIS) for the sharing of geographic information (GI). That requires a seamless translation among different information sources. Ontology is enrolled in GI discovery to settle the semantic conflicts for its natural language appearance and logical hierarchy structure, which are considered to be able to provide better context for both human understanding and machine cognition in describing the location and relationships in the geographic world. However, for the current, most studies on field ontology are deduced from philosophical theme and not applicable for the raster expression in GIS-which is a kind of field-like phenomenon but does not physically coincide to the general concept of philosophical field (mostly comes from the physics concepts). That's why we specifically discuss the cell-based GI ontology in this paper. The discussion starts at the investigation of the physical characteristics of cell-based raster GI. Then, a unified cell-based GI ontology framework for the recognition of the raster objects is introduced, from which a conceptual interface for the connection of the human epistemology and the computer world so called "endurant-occurrant window" is developed for the better raster GI discovery and sharing.

  12. Colonic Immune Stimulation by Targeted Oral Vaccine

    PubMed Central

    Kathania, Mahesh; Zadeh, Mojgan; Lightfoot, Yaíma L.; Roman, Robert M.; Sahay, Bikash; Abbott, Jeffrey R.; Mohamadzadeh, Mansour

    2013-01-01

    Background Currently, sufficient data exist to support the use of lactobacilli as candidates for the development of new oral targeted vaccines. To this end, we have previously shown that Lactobacillus gasseri expressing the protective antigen (PA) component of anthrax toxin genetically fused to a dendritic cell (DC)-binding peptide (DCpep) induced efficacious humoral and T cell-mediated immune responses against Bacillus anthracis Sterne challenge. Methodology/Principal Finding In the present study, we investigated the effects of a dose dependent treatment of mice with L. gasseri expressing the PA-DCpep fusion protein on intestinal and systemic immune responses and confirmed its safety. Treatment of mice with different doses of L. gasseri expressing PA-DCpep stimulated colonic immune responses, resulting in the activation of innate immune cells, including dendritic cells, which induced robust Th1, Th17, CD4+Foxp3+ and CD8+Foxp3+ T cell immune responses. Notably, high doses of L. gasseri expressing PA-DCpep (1012 CFU) were not toxic to the mice. Treatment of mice with L. gasseri expressing PA-DCpep triggered phenotypic maturation and the release of proinflammatory cytokines by dendritic cells and macrophages. Moreover, treatment of mice with L. gasseri expressing PA-DCpep enhanced antibody immune responses, including IgA, IgG1, IgG2b, IgG2c and IgG3. L. gasseri expressing PA-DCpep also increased the gene expression of numerous pattern recognition receptors, including Toll-like receptors, C-type lectin receptors and NOD-like receptors. Conclusion/Significance These findings suggest that L. gasseri expressing PA-DCpep has substantial immunopotentiating properties, as it can induce humoral and T cell-mediated immune responses upon oral administration and may be used as a safe oral vaccine against anthrax challenge. PMID:23383086

  13. History of vaccination.

    PubMed

    Plotkin, Stanley

    2014-08-26

    Vaccines have a history that started late in the 18th century. From the late 19th century, vaccines could be developed in the laboratory. However, in the 20th century, it became possible to develop vaccines based on immunologic markers. In the 21st century, molecular biology permits vaccine development that was not possible before.

  14. Hepatitis B Vaccination Protection

    MedlinePlus

    ... The hepatitis B vaccination is a non-infectious, vaccine prepared from recombinant yeast cultures, rather than human blood or plasma. There is no risk of contamination from other bloodborne pathogens nor is there any ... from the vaccine. The vaccine must be administered according to the ...

  15. Pancreatic adenocarcinoma upregulated factor serves as adjuvant by activating dendritic cells through stimulation of TLR4

    PubMed Central

    Yang, Benjamin; Lee, Je-Jung; Lee, Hyun-Ju; Lee, Jaemin; Jung, In Duk; Han, Hee Dong; Lee, Seung-Hyun; Koh, Sang Seok; Wu, T.-C.; Park, Yeong-Min

    2015-01-01

    Dendritic cell (DC) based cancer vaccines represent a promising immunotherapeutic strategy against cancer. To enhance the modest immunogenicity of DC vaccines, various adjuvants are often incorporated. Particularly, most of the common adjuvants are derived from bacteria. In the current study, we evaluate the use of a human pancreatic cancer derived protein, pancreatic adenocarcinoma upregulated factor (PAUF), as a novel DC vaccine adjuvant. We show that PAUF can induce activation and maturation of DCs and activate NFkB by stimulating the Toll-like receptor signaling pathway. Furthermore, vaccination with PAUF treated DCs pulsed with E7 or OVA peptides leads to generation of E7 or OVA-specific CD8+ T cells and memory T cells, which correlate with long term tumor protection and antitumor effects against TC-1 and EG.7 tumors in mice. Finally, we demonstrated that PAUF mediated DC activation and immune stimulation are dependent on TLR4. Our data provides evidence supporting PAUF as a promising adjuvant for DC based therapies, which can be applied in conjunction with other cancer therapies. Most importantly, our results serve as a reference for future investigation of human based adjuvants. PMID:26336989

  16. Thimerosal compromises human dendritic cell maturation, IL-12 production, chemokine release, and T-helper polarization

    PubMed Central

    Loison, Emily; Gougeon, Marie-Lise

    2014-01-01

    Thimerosal is a preservative used in multidose vials of vaccine formulations to prevent bacterial and fungal contamination. We recently reported that nanomolar concentrations of thimerosal induce cell cycle arrest of human T cells activated via the TCR and inhibition of proinflammatory cytokine production, thus interfering with T-cell functions. Given the essential role of dendritic cells (DCs) in T-cell polarization and vaccine immunity, we studied the influence of non-toxic concentrations of thimerosal on DC maturation and functions. Ex-vivo exposure of human monocyte-derived DCs to nanomolar concentrations of thimerosal prevented LPS-induced DC maturation, as evidenced by the inhibition of morphological changes and a decreased expression of the maturation markers CD86 and HLA-DR. In addition thimerosal dampened their proinflammatory response, in particular the production of the Th1 polarizing cytokine IL-12, as well as TNF-α and IL-6. DC-dependent T helper polarization was altered, leading to a decreased production of IFN-γ IP10 and GM-CSF and increased levels of IL-8, IL-9, and MIP-1α. Although multi-dose vials of vaccines containing thimerosal remain important for vaccine delivery, our results alert about the ex-vivo immunomodulatory effects of thimerosal on DCs, a key player for the induction of an adaptive response PMID:25424939

  17. DENDRITIC CELL SUBSETS AS VECTORS AND TARGETS FOR IMPROVED CANCER THERAPY

    PubMed Central

    Palucka, Karolina; Ueno, Hideki; Roberts, Lee; Fay, Joseph; Banchereau, Jacques

    2010-01-01

    SUMMARY Current active immunotherapy trials have shown durable tumor regressions in a fraction of patients. However, clinical efficacy of current vaccines is limited, possibly because tumors skew the immune system by means of myeloid-derived suppressor cells, inflammatory type 2 T cells and regulatory T cells (Tregs), all of which prevent the generation of effector cells. To improve the clinical efficacy of cancer vaccines in patients with metastatic disease, we need to design novel and improved strategies that can boost adaptive immunity to cancer, help overcome Tregs and allow the breakdown of the immunosuppressive tumor microenvironment. This can be achieved by exploiting the fast increasing knowledge about the dendritic cell (DC) system, including the existence of distinct DC subsets. Critical to the design of better vaccines is the concept of distinct DC subsets and distinct DC activation pathways, all contributing to the generation of unique adaptive immune responses. Such novel DC vaccines will be used as monotherapy in patients with resected disease and in combination with antibodies and/or drugs targeting suppressor pathways and modulation of the tumor environment in patients with metastatic disease. PMID:20490776

  18. Vaccine adverse events.

    PubMed

    Follows, Jill

    2012-01-01

    Millions of adults are vaccinated annually against the seasonal influenza virus. An undetermined number of individuals will develop adverse events to the influenza vaccination. Those who suffer substantiated vaccine injuries, disabilities, and aggravated conditions may file a timely, no-fault and no-cost petition for financial compensation under the National Vaccine Act in the Vaccine Court. The elements of a successful vaccine injury claim are described in the context of a claim showing the seasonal influenza vaccination was the cause of Guillain-Barré syndrome.

  19. Activity affects dendritic shape and synapse elimination during steroid controlled dendritic retraction in Manduca sexta.

    PubMed

    Duch, Carsten; Mentel, Tim

    2004-11-01

    Insect metamorphosis is a compelling example for dendritic and synaptic remodeling as larval and adult behaviors place distinct demands on the CNS. During the metamorphosis of the moth, Manduca sexta, many larval motoneurons are remodeled to serve a new function in the adult. During late larval life, steroid hormones trigger axonal and dendritic regression as well as larval synapse elimination. These regressive events are accompanied by stereotypical changes in motor behavior during the so-called wandering stages. Both normally occurring changes in dendritic shape and in motor output have previously been analyzed quantitatively for the individually identified motoneuron MN5. This study tested whether activity affected steroid-induced dendritic regression and synapse disassembly in MN5 by means of chronically implanted extracellular electrodes. Stimulating MN5 in vivo in intact, normally developing animals during a developmental period when it usually shows no activity significantly slowed the regression of high-order dendrites. Both physiological and anatomical analysis demonstrated that reduced dendritic regression was accompanied by a significant reduction in larval synapse disassembly. Therefore, steroid-induced alterations of dendritic shape and synaptic connectivity are modified by activity-dependent mechanisms. This interaction might be a common mechanism for rapid adjustments of rigid, inflexible, hormonal programs.

  20. Successful Isothermal Dendritic Growth Experiment (IDGE) Proves Current Theories of Dendritic Solidification are Flawed

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The scientific objective of the Isothermal Dendritic Growth Experiment (IDGE) is to test fundamental assumptions about dendritic solidification of molten materials. "Dendrites"-- from the ancient Greek word for tree--are tiny branching structures that form inside molten metal alloys when they solidify during manufacturing. The size, shape, and orientation of the dendrites have a major effect on the strength, ductility (ability to be molded or shaped), and usefulness of an alloy. Nearly all of the cast metal alloys used in everyday products (such as automobiles and airplanes) are composed of thousands to millions of tiny dendrites. Gravity, present on Earth, causes convection currents in molten alloys that disturb dendritic solidification and make its precise study impossible. In space, gravity is negated by the orbiting of the space shuttle. Consequently, IDGE (which was conducted on the space shuttle) gathered the first precise data regarding undisturbed dendritic solidification. IDGE is a microgravity materials science experiment that uses an apparatus which was designed, built, tested, and operated by people from the NASA Lewis Research Center. This experiment was conceived by the principal investigator, Professor Martin E. Glicksman, from Rensselaer Polytechnic Institute in Troy, New York. The experiment was a team effort of Lewis civil servants, contractors from Aerospace Design & Fabrication Inc. (ADF), and personnel at Rensselaer.

  1. Suppression of zinc dendrites in zinc electrode power cells

    NASA Technical Reports Server (NTRS)

    Damjanovic, A.; Diggle, J. W.

    1970-01-01

    Addition of various tetraalkyl quarternary ammonium salts, to alkaline zincate electrolyte of cell, prevents formation of zinc dendrites during charging of zinc electrode. Electrode capacity is not impaired and elimination of dendrites prolongs cell life.

  2. Daedalic DNA vaccination against self antigens as a treatment for chronic kidney disease

    PubMed Central

    Wang, Yuan Min; Zhou, Jimmy Jianheng; Wang, Ya; Watson, Debbie; Zhang, Geoff Yu; Hu, Min; Wu, Huiling; Zheng, Guoping; Wang, Yiping; Durkan, Anne M; Harris, David CH; Alexander, Stephen I

    2013-01-01

    Chronic kidney disease (CKD) is a major cause of death and morbidity in Australia and worldwide. DNA vaccination has been used for targeting foreign antigens to induce immune responses and prevent autoimmune disease, viral infection and cancer. However, the use of DNA vaccination has been restricted by a limited ability to induce strong immune responses, especially against self-antigens which are limited by mechanisms of self-tolerance. Furthermore, there have been few studies on the potential of DNA vaccination in chronic inflammatory diseases, including CKD. We have established strategies of DNA vaccination targeting specific self-antigens in the immune system including co-stimulatory pathways, T cell receptors and chemokine molecules, which have been effective in protecting against the development of CKD in a variety of animal models. In particular, we find that the efficacy of DNA vaccination is improved by dendritic cell (DC) targeting and can protect against animal models of autoimmune nephritis mimicking human membranous nephropathy. In this review, we summarize several approaches that have been tested to improve the efficacy of DNA vaccination in CKD models, including enhanced DNA vaccine delivery methods, DNA vaccine modifications and new molecular targets for DNA vaccination. Finally, we discuss the specific application of DNA vaccination for preventing and treating CKD. PMID:23412421

  3. Forward- and backpropagation in a silicon dendrite.

    PubMed

    Rasche, C; Douglas, R J

    2001-01-01

    We have developed an analog very-large-scale integrated (aVLSI) electronic circuit that emulates a compartmental model of a neuronal dendrite. The horizontal conductances of the compartmental model are implemented as a switched capacitor network. The transmembrane conductances are implemented as transconductance amplifiers. The electrotonic properties of our silicon cable are qualitatively similar to those of the ideal passive cable that is commonly used to model mathematically the electrotonic behavior of neurons. In particular the propagation of excitatory postsynaptic potentials is realistic, and we are easily able to emulate such classical synaptic integration models as direction selectivity. We are also able to emulate the backpropagation into the dendrite of single somatic spikes and bursts of spikes. Thus, this silicon dendrite is suitable for incorporation in detailed silicon neurons operating in real-time; in particular for the emulation of forward- and backpropagating electrical activities found in real neurons. PMID:18244392

  4. Studying Signal Transduction in Single Dendritic Spines

    PubMed Central

    Yasuda, Ryohei

    2012-01-01

    Many forms of synaptic plasticity are triggered by biochemical signaling that occurs in small postsynaptic compartments called dendritic spines, each of which typically houses the postsynaptic terminal associated with a single glutamatergic synapse. Recent advances in optical techniques allow investigators to monitor biochemical signaling in single dendritic spines and thus reveal the signaling mechanisms that link synaptic activity and the induction of synaptic plasticity. This is mostly in the study of Ca2+-dependent forms of synaptic plasticity for which many of the steps between Ca2+ influx and changes to the synapse are now known. This article introduces the new techniques used to investigate signaling in single dendritic spines and the neurobiological insights that they have produced. PMID:22843821

  5. Countering Vaccine Hesitancy.

    PubMed

    Edwards, Kathryn M; Hackell, Jesse M

    2016-09-01

    Immunizations have led to a significant decrease in rates of vaccine-preventable diseases and have made a significant impact on the health of children. However, some parents express concerns about vaccine safety and the necessity of vaccines. The concerns of parents range from hesitancy about some immunizations to refusal of all vaccines. This clinical report provides information about addressing parental concerns about vaccination. PMID:27573088

  6. Existing antiviral vaccines.

    PubMed

    Ravanfar, Parisa; Satyaprakash, Anita; Creed, Rosella; Mendoza, Natalia

    2009-01-01

    The innovation of vaccines has allowed for one of the greatest advancements in the history of public health. The first of the vaccines have been the antiviral vaccines, in particular the smallpox vaccine that was first developed by Edward Jenner in 1796. This article will review vaccination for the following viral diseases: measles, mumps, rubella, polio, hepatitis A, hepatitis B, influenza, rotavirus, rabies, monkeypox, smallpox, Japanese encephalitis, and yellow fever. PMID:19335723

  7. Vaccine-Associated Uveitis.

    PubMed

    Benage, Matthew; Fraunfelder, Frederick W

    2016-01-01

    All of the widely administered vaccines have been reported to cause uveitis. The ocular inflammation is usually temporary and resolves with topical ocular steroids. During a 26-year period, a total of 289 cases of vaccine-associated uveitis were reported to three adverse reaction reporting databases. Hepatitis B vaccine, either alone or administered with other vaccines, appears to be the leading offender. Clinicians are encouraged to report cases of vaccine- or drug-associated ocular adverse reactions to www.eyedrugregistry.com.

  8. Dendritic Cells Stimulated by Cationic Liposomes.

    PubMed

    Vitor, Micaela Tamara; Bergami-Santos, Patrícia Cruz; Cruz, Karen Steponavicius Piedade; Pinho, Mariana Pereira; Barbuto, José Alexandre Marzagão; De La Torre, Lucimara Gaziola

    2016-01-01

    Immunotherapy of cancer aims to harness the immune system to detect and destroy cancer cells. To induce an immune response against cancer, activated dendritic cells (DCs) must present tumor antigens to T lymphocytes of patients. However, cancer patients' DCs are frequently defective, therefore, they are prone to induce rather tolerance than immune responses. In this context, loading tumor antigens into DCs and, at the same time, activating these cells, is a tempting goal within the field. Thus, we investigated the effects of cationic liposomes on the DCs differentiation/maturation, evaluating their surface phenotype and ability to stimulate T lymphocytes proliferation in vitro. The cationic liposomes composed by egg phosphatidylcholine, 1,2-dioleoyl-3-trimethylammonium propane and 1,2-dioleoylphosphatidylethanolamine (50/25/25% molar) were prepared by the thin film method followed by extrusion (65 nm, polydispersity of 0.13) and by the dehydration-rehydration method (95% of the population 107 nm, polydispersity of 0.52). The phenotypic analysis of dendritic cells and the analysis of T lymphocyte proliferation were performed by flow cytometry and showed that both cationic liposomes were incorporated and activated dendritic cells. Extruded liposomes were better incorporated and induced higher CD86 expression for dendritic cells than dehydrated-rehydrated vesicles. Furthermore, dendritic cells which internalized extruded liposomes also provided stronger T lymphocyte stimulation. Thus, cationic liposomes with a smaller size and polydispersity seem to be better incorporated by dendritic cells. Hence, these cationic liposomes could be used as a potential tool in further cancer immunotherapy strategies and contribute to new strategies in immunotherapy. PMID:27398454

  9. Convection Effects in Three-dimensional Dendritic Growth

    NASA Technical Reports Server (NTRS)

    Lu, Yili; Beckermann, C.; Karma, A.

    2003-01-01

    A phase-field model is developed to simulate free dendritic growth coupled with fluid flow for a pure material in three dimensions. The preliminary results presented here illustrate the strong influence of convection on the three-dimensional (3D) dendrite growth morphology. The detailed knowledge of the flow and temperature fields in the melt around the dendrite from the simulations allows for a detailed understanding of the convection effects on dendritic growth.

  10. Challenges and advances towards the rational design of mRNA vaccines.

    PubMed

    Pollard, Charlotte; De Koker, Stefaan; Saelens, Xavier; Vanham, Guido; Grooten, Johan

    2013-12-01

    In recent years, mRNA vaccines have emerged as a safe and potent approach for the induction of cellular immune responses. Whereas initial studies were limited to the ex vivo loading of dendritic cells (DCs) with antigen-encoding mRNA, recent progress has led to the development of improved mRNA vaccines that enable direct in vivo targeting of DCs. Although preclinical studies demonstrated their potency in inducing antitumor immunity, several bottlenecks hinder the broader application of mRNA vaccines. In this review, we discuss the challenges associated with mRNA-based vaccination strategies, the technological advances that have been made to overcome these limitations, and the hurdles that remain to be tackled for the development of an optimal mRNA vaccine.

  11. Current Advances in Virus-Like Particles as a Vaccination Approach against HIV Infection

    PubMed Central

    Zhao, Chongbo; Ao, Zhujun; Yao, Xiaojian

    2016-01-01

    HIV-1 virus-like particles (VLPs) are promising vaccine candidates against HIV-1 infection. They are capable of preserving the native conformation of HIV-1 antigens and priming CD4+ and CD8+ T cell responses efficiently via cross presentation by both major histocompatibility complex (MHC) class I and II molecules. Progress has been achieved in the preclinical research of HIV-1 VLPs as prophylactic vaccines that induce broadly neutralizing antibodies and potent T cell responses. Moreover, the progress in HIV-1 dendritic cells (DC)-based immunotherapy provides us with a new vision for HIV-1 vaccine development. In this review, we describe updates from the past 5 years on the development of HIV-1 VLPs as a vaccine candidate and on the combined use of HIV particles with HIV-1 DC-based immunotherapy as efficient prophylactic and therapeutic vaccination strategies. PMID:26805898

  12. Seaweed to dendrite transition in directional solidification.

    PubMed

    Provatas, Nikolas; Wang, Quanyong; Haataja, Mikko; Grant, Martin

    2003-10-10

    We simulate directional solidification using a phase-field model solved with adaptive mesh refinement. For small surface tension anisotropy directed at 45 degrees relative to the pulling direction we observe a crossover from a seaweed to a dendritic morphology as the thermal gradient is lowered, consistent with recent experimental findings. We show that the morphology of crystal structures can be unambiguously characterized through the local interface velocity distribution. We derive semiempirically an estimate for the crossover from seaweed to dendrite as a function of thermal gradient and pulling speed.

  13. Apparatus for growing a dendritic web

    DOEpatents

    Duncan, Charles S.; Piotrowski, Paul A.; Skutch, Maria E.; McHugh, James P.

    1983-06-21

    A melt system including a susceptor-crucible assembly having improved gradient control when melt replenishment is used during dendritic web growth. The improvement lies in the formation of a thermal barrier in the base of the receptor which is in the form of a vertical slot in the region of the susceptor underlying the crucible at the location of a compartmental separator dividing the crucible into a growth compartment and a melt replenishment compartment. The result achieved is a step change in temperature gradient in the melt thereby providing a more uniform temperature in the growth compartment from which the dendritic web is drawn.

  14. The Isothermal Dendritic Growth Experiment (IDGE)

    NASA Technical Reports Server (NTRS)

    Glicksman, Martin E.; Koss, M. B.; Lupulescu, A. O.; LaCombe, J. C.; Frei, J. E.; Malarik, D. C.

    1999-01-01

    The Isothermal Dendritic Growth Experiment (IDGE) constituted a series of three NASA-supported microgravity experiments, all of which flew aboard the space shuttle, Columbia. This experimental space flight series was designed and operated to grow and record dendrite solidification in the absence of gravity-induced convective heat transfer, and thereby produce a wealth of benchmark-quality data for testing solidification scaling laws. The data and analysis performed on the dendritic growth speed and tip size in Succinontrie (SCN) demonstrates that although the theory yields predictions that are reasonably in agreement with experiment, there are significant discrepancies. However, some of these discrepancies can be explained by accurately describing the diffusion of heat. The key finding involves recognition that the actual three-dimensional shape of dendrites includes time-dependent side-branching and a tip region that is not a paraboloid of revolution. Thus, the role of heat transfer in dendritic growth is validated, with the caveat that a more realistic model of the dendrite then a paraboloid is needed to account for heat flow in an experimentally observed dendrite. We are currently conducting additional analysis to further confirm and demonstrate these conclusions. The data and analyses for the growth selection physics remain much less definitive. From the first flight, the data indicated that the selection parameter, sigma*, is not exactly a constant, but exhibits a slight dependence on the supercooling. Additional data from the second flight are being examined to investigate the selection of a unique dendrite speed, tip size and shape. The IDGE flight series is now complete. We are currently completing analyses and moving towards final data archiving. It is gratifying to see that the IDGE published results and archived data sets are being used actively by other scientists and engineers. In addition, we are also pleased to report that the techniques and IDGE

  15. Dendritic microstructure in argon atomized superalloy powders

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Kumar, Mahundra

    1986-01-01

    The dendritic microstructure of atomized nickel base superalloy powders (Ni-20 pct Cr, NIMONIC-80A, ASTROALOY, and ZHS6-K) was studied. Prealloyed vacuum induction melted ingots were argon-atomized, the powders were cooled to room temperature, and various powder-size fractions were examined by optical metallography. Linear correlations were obtained for the powder size dependence of the secondary dendrite arm spacing, following the expected d-alpha (R) to the m power dependence on the particle size for all four superalloy compositions. However, the Ni-20 pct Cr alloy, which had much coarser arm spacing as compared to the other three alloys, had a much larger value of m.

  16. Silicon dendritic web growth thermal analysis task

    NASA Technical Reports Server (NTRS)

    Richter, R.; Bhandari, P.

    1985-01-01

    A thermal analysis model is presented which describes the dendritic ribbon process. The model uses a melt-dendrite interface which projects out of the bulk melt as the basic interpretation of the ribbon production process. This is a marked departure from the interpretations of the interface phenomena which were used previously. The model was extensively illustrated with diagrams and pictures of ribbon samples. This model should have great impact on the analyses of experimental data as well as on future design modifications of ribbon-pulling equipment.

  17. Cell-Based Therapy for Silicosis

    PubMed Central

    Lopes-Pacheco, Miquéias; Bandeira, Elga; Morales, Marcelo M.

    2016-01-01

    Silicosis is the most common pneumoconiosis globally, with higher prevalence and incidence in developing countries. To date, there is no effective treatment to halt or reverse the disease progression caused by silica-induced lung injury. Significant advances have to be made in order to reduce morbidity and mortality related to silicosis. In this review, we have highlighted the main mechanisms of action that cause lung damage by silica particles and summarized the data concerning the therapeutic promise of cell-based therapy for silicosis. PMID:27066079

  18. Vaccines against malaria.

    PubMed

    Hill, Adrian V S

    2011-10-12

    There is no licenced vaccine against any human parasitic disease and Plasmodium falciparum malaria, a major cause of infectious mortality, presents a great challenge to vaccine developers. This has led to the assessment of a wide variety of approaches to malaria vaccine design and development, assisted by the availability of a safe challenge model for small-scale efficacy testing of vaccine candidates. Malaria vaccine development has been at the forefront of assessing many new vaccine technologies including novel adjuvants, vectored prime-boost regimes and the concept of community vaccination to block malaria transmission. Most current vaccine candidates target a single stage of the parasite's life cycle and vaccines against the early pre-erythrocytic stages have shown most success. A protein in adjuvant vaccine, working through antibodies against sporozoites, and viral vector vaccines targeting the intracellular liver-stage parasite with cellular immunity show partial efficacy in humans, and the anti-sporozoite vaccine is currently in phase III trials. However, a more effective malaria vaccine suitable for widespread cost-effective deployment is likely to require a multi-component vaccine targeting more than one life cycle stage. The most attractive near-term approach to develop such a product is to combine existing partially effective pre-erythrocytic vaccine candidates. PMID:21893544

  19. [Application of dendritic cells in clinical tumor therapy].

    PubMed

    Li, Yan; Xian, Li-jian

    2002-04-01

    The active immunotherapy of dendritic cells is hot in tumor therapy research area. This article is a review of the source of dendritic cells, loading antigen, immunotherapy pathway, clinical application, choice of patients, and so on. It makes preparation for further research of dendritic cells. PMID:12452029

  20. Trial watch: Peptide vaccines in cancer therapy.

    PubMed

    Vacchelli, Erika; Martins, Isabelle; Eggermont, Alexander; Fridman, Wolf Hervé; Galon, Jerome; Sautès-Fridman, Catherine; Tartour, Eric; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2012-12-01

    Prophylactic vaccination constitutes one of the most prominent medical achievements of history. This concept was first demonstrated by the pioneer work of Edward Jenner, dating back to the late 1790s, after which an array of preparations that confer life-long protective immunity against several infectious agents has been developed. The ensuing implementation of nation-wide vaccination programs has de facto abated the incidence of dreadful diseases including rabies, typhoid, cholera and many others. Among all, the most impressive result of vaccination campaigns is surely represented by the eradication of natural smallpox infection, which was definitively certified by the WHO in 1980. The idea of employing vaccines as anticancer interventions was first theorized in the 1890s by Paul Ehrlich and William Coley. However, it soon became clear that while vaccination could be efficiently employed as a preventive measure against infectious agents, anticancer vaccines would have to (1) operate as therapeutic, rather than preventive, interventions (at least in the vast majority of settings), and (2) circumvent the fact that tumor cells often fail to elicit immune responses. During the past 30 y, along with the recognition that the immune system is not irresponsive to tumors (as it was initially thought) and that malignant cells express tumor-associated antigens whereby they can be discriminated from normal cells, considerable efforts have been dedicated to the development of anticancer vaccines. Some of these approaches, encompassing cell-based, DNA-based and purified component-based preparations, have already been shown to exert conspicuous anticancer effects in cohorts of patients affected by both hematological and solid malignancies. In this Trial Watch, we will summarize the results of recent clinical trials that have evaluated/are evaluating purified peptides or full-length proteins as therapeutic interventions against cancer. PMID:23264902

  1. Emerging Cancer Vaccines: The Promise of Genetic Vectors

    PubMed Central

    Aurisicchio, Luigi; Ciliberto, Gennaro

    2011-01-01

    Therapeutic vaccination against cancer is an important approach which, when combined with other therapies, can improve long-term control of cancer. In fact, the induction of adaptive immune responses against Tumor Associated Antigens (TAAs) as well as innate immunity are important factors for tumor stabilization/eradication. A variety of immunization technologies have been explored in last decades and are currently under active evaluation, such as cell-based, protein, peptide and heat-shock protein-based cancer vaccines. Genetic vaccines are emerging as promising methodologies to elicit immune responses against a wide variety of antigens, including TAAs. Amongst these, Adenovirus (Ad)-based vectors show excellent immunogenicity profile and have achieved immunological proof of concept in humans. In vivo electroporation of plasmid DNA (DNA-EP) is also a desirable vaccine technology for cancer vaccines, as it is repeatable several times, a parameter required for the long-term maintenance of anti-tumor immunity. Recent findings show that combinations of different modalities of immunization (heterologous prime/boost) are able to induce superior immune reactions as compared to single-modality vaccines. In this review, we will discuss the challenges and requirements of emerging cancer vaccines, particularly focusing on the genetic cancer vaccines currently under active development and the promise shown by Ad and DNA-EP heterologous prime-boost. PMID:24212974

  2. Plasmacytoid dendritic cells: development, functions, and role in atherosclerotic inflammation

    PubMed Central

    Chistiakov, Dimitry A.; Orekhov, Alexander N.; Sobenin, Igor A.; Bobryshev, Yuri V.

    2014-01-01

    Plasmacytoid dendritic cells (pDCs) are a specialized subset of DCs that links innate and adaptive immunity. They sense viral and bacterial pathogens and release high levels of Type I interferons (IFN-I) in response to infection. pDCs were shown to contribute to inflammatory responses in the steady state and in pathology. In atherosclerosis, pDCs are involved in priming vascular inflammation and atherogenesis through production of IFN-I and chemokines that attract inflammatory cells to inflamed sites. pDCs also contribute to the proinflammatory activation of effector T cells, cytotoxic T cells, and conventional DCs. However, tolerogenic populations of pDCs are found that suppress atherosclerosis-associated inflammation through down-regulation of function and proliferation of proinflammatory T cell subsets and induction of regulatory T cells with potent immunomodulatory properties. Notably, atheroprotective tolerogenic DCs could be induced by certain self-antigens or bacterial antigens that suggests for great therapeutic potential of these DCs for development of DC-based anti-atherogenic vaccines. PMID:25120492

  3. Different protein of Echinococcus granulosus stimulates dendritic induced immune response.

    PubMed

    Wang, Yana; Wang, Qiang; Lv, Shiyu; Zhang, Shengxiang

    2015-06-01

    Cystic echinococcosis is a chronic infectious disease that results from a host/parasite interaction. Vaccination with ferritin derived from Echinococcus granulosus is a potential preventative treatment. To understand whether ferritin is capable of inducing a host immune response, we investigated the response of dendritic cells (DCs) to both recombinant ferritin protein and the hydatid fluid (HF) of E. granulosus. We evaluated the immunomodulatory potential of these antigens by performing, immunocytochemistry, electron microscopy and in vivo imaging of monocyte-derived murine DCs. During antigen stimulation of DCs, ferritin cause DCs maturation and induced higher levels of surface marker expression and activated T-cell proliferation and migration. On contrary, HF failed to induce surface marker expression and to stimulate T-cell proliferation. In response to HF, DCs produced interleukin-6 (IL-6), but no IL-12 and IL-10. DCs stimulated with ferritin produced high levels of cytokines. Overall, HF appears to induce host immunosuppression in order to ensure parasite survival via inhibits DC maturation and promotes Th2-dependent secretion of cytokines. Although ferritin also promoted DC maturation and cytokine release, it also activates CD4+T-cell proliferation, but regard of the mechanism of the Eg.ferritin induce host to eradicate E. granulosus were not clear.

  4. Ginseng Berry Extract Promotes Maturation of Mouse Dendritic Cells

    PubMed Central

    Zhang, Wei; Cho, Si-Young; Xiang, Gao; Min, Kyung-Jin; Yu, Qing; Jin, Jun-O

    2015-01-01

    Ginseng extract has been shown to possess certain anti-virus, anti-tumor and immune-activating effects. However, the immunostimulatory effect of ginseng berry extract (GB) has been less well characterized. In this study, we investigated the effect of GB on the activation of mouse dendritic cells (DCs) in vitro and in vivo. GB treatment induced up-regulation of co-stimulatory molecules in bone marrow-derived DCs (BMDCs). Interestingly, GB induced a higher degree of co-stimulatory molecule up-regulation than ginseng root extract (GR) at the same concentrations. Moreover, in vivo administration of GB promoted up-regulation of CD86, MHC class I and MHC class II and production of IL-6, IL-12 and TNF-α in spleen DCs. GB also promoted the generation of Th1 and Tc1 cells. Furthermore, Toll like receptor 4 (TLR4) and myeloid differentiation primary response 88 (MyD88) signaling pathway were essential for DC activation induced by GB. In addition, GB strongly prompted the proliferation of ovalbumin (OVA)-specific CD4 and CD8 T cells. Finally, GB induced DC activation in tumor-bearing mice and the combination of OVA and GB treatment inhibited B16-OVA tumor cell growth in C57BL/6 mice. These results demonstrate that GB is a novel tumor therapeutic vaccine adjuvant by promoting DC and T cell activation. PMID:26090808

  5. Dendritic cells and the malaria pre-erythrocytic stage.

    PubMed

    Mauduit, Marjorie; See, Peter; Peng, Kaitian; Rénia, Laurent; Ginhoux, Florent

    2012-09-01

    Malaria remains one of the main infectious diseases in intertropical regions. The malaria parasite has a complex life cycle in its mammalian host, switching between variable forms as it traverses through different tissues and anatomic locations, either intra- or intercellularly. During its journey, the parasite encounters and interacts with the host immune system, which functions to prevent infections and limit ensuing pathologies. One important component of the host immune system is the dendritic cells (DC) network. DC form a heterogeneous group of pathogen-sensing and antigen-presenting cells that play a crucial role in the initiation of adaptive immunity. Here, we review the known and unknown interactions between the malaria parasites and the DC system, starting from the inoculation of the parasite in the skin up to its exit from the liver, also known as the pre-erythrocytic stage of the infection, and discuss how deciphering these interactions may contribute to our understanding of the Plasmodium parasite biology as well as to the induction of immune protection via vaccination. PMID:22418726

  6. Obesity vaccines.

    PubMed

    Monteiro, Mariana P

    2014-01-01

    Obesity is one of the largest and fastest growing public health problems in the world. Last century social changes have set an obesogenic milieu that calls for micro and macro environment interventions for disease prevention, while treatment is mandatory for individuals already obese. The cornerstone of overweight and obesity treatment is diet and physical exercise. However, many patients find lifestyle modifications difficult to comply and prone to failure in the long-term; therefore many patients consider anti-obesity drugs an important adjuvant if not a better alternative to behavioral approach or obesity surgery. Since the pharmacological options for obesity treatment remain quite limited, this is an exciting research area, with new treatment targets and strategies on the horizon. This review discusses the development of innovative therapeutic agents, focusing in energy homeostasis regulation and the use of molecular vaccines, targeting hormones such as somatostatin, GIP and ghrelin, to reduce body weight.

  7. Typhoid fever vaccination strategies.

    PubMed

    Date, Kashmira A; Bentsi-Enchill, Adwoa; Marks, Florian; Fox, Kimberley

    2015-06-19

    Typhoid vaccination is an important component of typhoid fever prevention and control, and is recommended for public health programmatic use in both endemic and outbreak settings. We reviewed experiences with various vaccination strategies using the currently available typhoid vaccines (injectable Vi polysaccharide vaccine [ViPS], oral Ty21a vaccine, and injectable typhoid conjugate vaccine [TCV]). We assessed the rationale, acceptability, effectiveness, impact and implementation lessons of these strategies to inform effective typhoid vaccination strategies for the future. Vaccination strategies were categorized by vaccine disease control strategy (preemptive use for endemic disease or to prevent an outbreak, and reactive use for outbreak control) and vaccine delivery strategy (community-based routine, community-based campaign and school-based). Almost all public health typhoid vaccination programs used ViPS vaccine and have been in countries of Asia, with one example in the Pacific and one experience using the Ty21a vaccine in South America. All vaccination strategies were found to be acceptable, feasible and effective in the settings evaluated; evidence of impact, where available, was strongest in endemic settings and in the short- to medium-term. Vaccination was cost-effective in high-incidence but not low-incidence settings. Experience in disaster and outbreak settings remains limited. TCVs have recently become available and none are WHO-prequalified yet; no program experience with TCVs was found in published literature. Despite the demonstrated success of several typhoid vaccination strategies, typhoid vaccines remain underused. Implementation lessons should be applied to design optimal vaccination strategies using TCVs which have several anticipated advantages, such as potential for use in infant immunization programs and longer duration of protection, over the ViPS and Ty21a vaccines for typhoid prevention and control.

  8. Recent Advances in Lentiviral Vaccines for HIV-1 Infection.

    PubMed

    Norton, Thomas D; Miller, Elizabeth A

    2016-01-01

    The development of an effective HIV vaccine to prevent and/or cure HIV remains a global health priority. Given their central role in the initiation of adaptive immune responses, dendritic cell (DC)-based vaccines are being increasingly explored as immunotherapeutic strategies to enhance HIV-specific T cells in infected individuals and, thus, promote immune responses that may help facilitate a functional cure. HIV-1-based lentiviral (LV) vectors have inherent advantages as DC vaccine vectors due to their ability to transduce non-dividing cells and integrate into the target cell genomic DNA, allowing for expression of encoded antigens over the lifespan of the cell. Moreover, LV vectors may express additional immunostimulatory and immunoregulatory proteins that enhance DC function and direct antigen-specific T cells responses. Recent basic and clinical research efforts have broadened our understanding of LV vectors as DC-based vaccines. In this review, we provide an overview of the pre-clinical and clinical LV vector vaccine studies for treating HIV to date. We also discuss advances in LV vector designs that have enhanced DC transduction efficiency, target cell specificity, and immunogenicity, and address potential safety concerns regarding LV vector-based vaccines. PMID:27446074

  9. Novel vaccine development strategies for inducing mucosal immunity

    PubMed Central

    Fujkuyama, Yoshiko; Tokuhara, Daisuke; Kataoka, Kosuke; Gilbert, Rebekah S; McGhee, Jerry R; Yuki, Yoshikazu; Kiyono, Hiroshi; Fujihashi, Kohtaro

    2012-01-01

    To develop protective immune responses against mucosal pathogens, the delivery route and adjuvants for vaccination are important. The host, however, strives to maintain mucosal homeostasis by responding to mucosal antigens with tolerance, instead of immune activation. Thus, induction of mucosal immunity through vaccination is a rather difficult task, and potent mucosal adjuvants, vectors or other special delivery systems are often used, especially in the elderly. By taking advantage of the common mucosal immune system, the targeting of mucosal dendritic cells and microfold epithelial cells may facilitate the induction of effective mucosal immunity. Thus, novel routes of immunization and antigen delivery systems also show great potential for the development of effective and safe mucosal vaccines against various pathogens. The purpose of this review is to introduce several recent approaches to induce mucosal immunity to vaccines, with an emphasis on mucosal tissue targeting, new immunization routes and delivery systems. Defining the mechanisms of mucosal vaccines is as important as their efficacy and safety, and in this article, examples of recent approaches, which will likely accelerate progress in mucosal vaccine development, are discussed. PMID:22380827

  10. Recent Advances in Lentiviral Vaccines for HIV-1 Infection

    PubMed Central

    Norton, Thomas D.; Miller, Elizabeth A.

    2016-01-01

    The development of an effective HIV vaccine to prevent and/or cure HIV remains a global health priority. Given their central role in the initiation of adaptive immune responses, dendritic cell (DC)-based vaccines are being increasingly explored as immunotherapeutic strategies to enhance HIV-specific T cells in infected individuals and, thus, promote immune responses that may help facilitate a functional cure. HIV-1-based lentiviral (LV) vectors have inherent advantages as DC vaccine vectors due to their ability to transduce non-dividing cells and integrate into the target cell genomic DNA, allowing for expression of encoded antigens over the lifespan of the cell. Moreover, LV vectors may express additional immunostimulatory and immunoregulatory proteins that enhance DC function and direct antigen-specific T cells responses. Recent basic and clinical research efforts have broadened our understanding of LV vectors as DC-based vaccines. In this review, we provide an overview of the pre-clinical and clinical LV vector vaccine studies for treating HIV to date. We also discuss advances in LV vector designs that have enhanced DC transduction efficiency, target cell specificity, and immunogenicity, and address potential safety concerns regarding LV vector-based vaccines. PMID:27446074

  11. Raman Spectroscopy Cell-based Biosensors

    PubMed Central

    Notingher, Ioan

    2007-01-01

    One of the main challenges faced by biodetection systems is the ability to detect and identify a large range of toxins at low concentrations and in short times. Cell-based biosensors rely on detecting changes in cell behaviour, metabolism, or induction of cell death following exposure of live cells to toxic agents. Raman spectroscopy is a powerful technique for studying cellular biochemistry. Different toxic chemicals have different effects on living cells and induce different time-dependent biochemical changes related to cell death mechanisms. Cellular changes start with membrane receptor signalling leading to cytoplasmic shrinkage and nuclear fragmentation. The potential advantage of Raman spectroscopy cell-based systems is that they are not engineered to respond specifically to a single toxic agent but are free to react to many biologically active compounds. Raman spectroscopy biosensors can also provide additional information from the time-dependent changes of cellular biochemistry. Since no cell labelling or staining is required, the specific time dependent biochemical changes in the living cells can be used for the identification and quantification of the toxic agents. Thus, detection of biochemical changes of cells by Raman spectroscopy could overcome the limitations of other biosensor techniques, with respect to detection and discrimination of a large range of toxic agents. Further developments of this technique may also include integration of cellular microarrays for high throughput in vitro toxicological testing of pharmaceuticals and in situ monitoring of the growth of engineered tissues.

  12. Sensitive-cell-based fish chromatophore biosensor

    NASA Astrophysics Data System (ADS)

    Plant, Thomas K.; Chaplen, Frank W.; Jovanovic, Goran; Kolodziej, Wojtek; Trempy, Janine E.; Willard, Corwin; Liburdy, James A.; Pence, Deborah V.; Paul, Brian K.

    2004-07-01

    A sensitive biosensor (cytosensor) has been developed based on color changes in the toxin-sensitive colored living cells of fish. These chromatophores are highly sensitive to the presence of many known and unknown toxins produced by microbial pathogens and undergo visible color changes in a dose-dependent manner. The chromatophores are immobilized and maintained in a viable state while potential pathogens multiply and fish cell-microbe interactions are monitored. Low power LED lighting is used to illuminate the chromatophores which are magnified using standard optical lenses and imaged onto a CCD array. Reaction to toxins is detected by observing changes is the total area of color in the cells. These fish chromatophores are quite sensitive to cholera toxin, Staphococcus alpha toxin, and Bordatella pertussis toxin. Numerous other toxic chemical and biological agents besides bacterial toxins also cause readily detectable color effects in chromatophores. The ability of the chromatophore cell-based biosensor to distinguish between different bacterial pathogens was examined. Toxin producing strains of Salmonella enteritis, Vibrio parahaemolyticus, and Bacillus cereus induced movement of pigmented organelles in the chromatophore cells and this movement was measured by changes in the optical density over time. Each bacterial pathogen elicited this measurable response in a distinctive and signature fashion. These results suggest a chromatophore cell-based biosensor assay may be applicable for the detection and identification of virulence activities associated with certain air-, food-, and water-borne bacterial pathogens.

  13. Cell-based strategies for vascular regeneration.

    PubMed

    Zou, Tongqiang; Fan, Jiabing; Fartash, Armita; Liu, Haifeng; Fan, Yubo

    2016-05-01

    Vascular regeneration is known to play an essential role in the repair of injured tissues mainly through accelerating the repair of vascular injury caused by vascular diseases, as well as the recovery of ischemic tissues. However, the clinical vascular regeneration is still challenging. Cell-based therapy is thought to be a promising strategy for vascular regeneration, since various cells have been identified to exert important influences on the process of vascular regeneration such as the enhanced endothelium formation on the surface of vascular grafts, and the induction of vessel-like network formation in the ischemic tissues. Here are a vast number of diverse cell-based strategies that have been extensively studied in vascular regeneration. These strategies can be further classified into three main categories, including cell transplantation, construction of tissue-engineered grafts, and surface modification of scaffolds. Cells used in these strategies mainly refer to terminally differentiated vascular cells, pluripotent stem cells, multipotent stem cells, and unipotent stem cells. The aim of this review is to summarize the reported research advances on the application of various cells for vascular regeneration, yielding insights into future clinical treatment for injured tissue/organ. PMID:26864677

  14. Biotoxin Detection Using Cell-Based Sensors

    PubMed Central

    Banerjee, Pratik; Kintzios, Spyridon; Prabhakarpandian, Balabhaskar

    2013-01-01

    Cell-based biosensors (CBBs) utilize the principles of cell-based assays (CBAs) by employing living cells for detection of different analytes from environment, food, clinical, or other sources. For toxin detection, CBBs are emerging as unique alternatives to other analytical methods. The main advantage of using CBBs for probing biotoxins and toxic agents is that CBBs respond to the toxic exposures in the manner related to actual physiologic responses of the vulnerable subjects. The results obtained from CBBs are based on the toxin-cell interactions, and therefore, reveal functional information (such as mode of action, toxic potency, bioavailability, target tissue or organ, etc.) about the toxin. CBBs incorporate both prokaryotic (bacteria) and eukaryotic (yeast, invertebrate and vertebrate) cells. To create CBB devices, living cells are directly integrated onto the biosensor platform. The sensors report the cellular responses upon exposures to toxins and the resulting cellular signals are transduced by secondary transducers generating optical or electrical signals outputs followed by appropriate read-outs. Examples of the layout and operation of cellular biosensors for detection of selected biotoxins are summarized. PMID:24335754

  15. [Developments in HPV vaccination].

    PubMed

    de Melker, Hester; Kenter, Gemma; van Rossum, Tekla; Conyn-van Spaendonck, Marina

    2012-01-01

    Vaccination against the human papilloma virus (HPV) has been included in the national Vaccination Programme of the Netherlands for 12-year-old girls since 2010. Vaccination coverage for the birth cohort of 1997 was 56.; there is a gradual increase in uptake. Continuous safety monitoring brought no new unknown serious side effects to light; many girls suffered from transient symptoms such as painful arm, fatigue and headache. After the current vaccines that protect against HPV types 2 and 4 types, respectively and induce some cross protection, vaccines are being developed that can induce broader protection. HPV vaccination of 12-year-old girls is cost-effective, even for relatively low vaccination coverage. The potential protection of HPV vaccination extends beyond prevention of cervical cancer by preventing other oncological manifestations of HPV infection in women as well as men and genital warts. The preventive HPV vaccines do not appear to be effective in treating existing abnormalities. PMID:23171565

  16. Effects of inactivated porcine epidemic diarrhea virus on porcine monocyte-derived dendritic cells and intestinal dendritic cells.

    PubMed

    Gao, Qi; Zhao, Shanshan; Qin, Tao; Yin, Yinyan; Yu, Qinghua; Yang, Qian

    2016-06-01

    Porcine epidemic diarrhea (PED) is a serious infection in neonatal piglets. As the causative agent of PED, porcine epidemic diarrhea virus (PEDV) results in acute diarrhea and dehydration with high mortality rates in swine. Dendritic cells (DCs) are highly effective antigen-presenting cells to uptake and present viral antigens to T cells, which then initiate a distinct immune response. In this study, our results show that the expression of Mo-DCs surface markers such as SWC3a(+)CD1a(+), SWC3a(+)CD80/86(+) and SWC3a(+)SLA-II-DR(+) is increased after incubation with UV-PEDV for 24h. Mo-DCs incubated with UV-PEDV produce higher levels of IL-12 and INF-γ compared to mock-infected Mo-DCs. Interactions between Mo-DCs and UV-PEDV significantly stimulate T-cell proliferation in vitro. Consistent with these results, there is an enhancement in the ability of porcine intestinal DCs to activate T-cell proliferation in vivo. We conclude that UV-PEDV may be a useful and safe vaccine to trigger adaptive immunity. PMID:27234553

  17. Neurologic complications of vaccinations.

    PubMed

    Miravalle, Augusto A; Schreiner, Teri

    2014-01-01

    This chapter reviews the most common neurologic disorders associated with common vaccines, evaluates the data linking the disorder with the vaccine, and discusses the potential mechanism of disease. A literature search was conducted in PubMed using a combination of the following terms: vaccines, vaccination, immunization, and neurologic complications. Data were also gathered from publications of the American Academy of Pediatrics Committee on Infectious Diseases, the World Health Organization, the US Centers for Disease Control and Prevention, and the Vaccine Adverse Event Reporting System. Neurologic complications of vaccination are rare. Many associations have been asserted without objective data to support a causal relationship. Rarely, patients with a neurologic complication will have a poor outcome. However, most patients recover fully from the neurologic complication. Vaccinations have altered the landscape of infectious disease. However, perception of risk associated with vaccinations has limited the success of disease eradication measures. Neurologic complications can be severe, and can provoke fear in potential vaccines. Evaluating whether there is causal link between neurologic disorders and vaccinations, not just temporal association, is critical to addressing public misperception of risk of vaccination. Among the vaccines available today, the cost-benefit analysis of vaccinations and complications strongly argues in favor of vaccination.

  18. Mumps - Vaccine Q and A

    MedlinePlus

    ... containing vaccine, given as combination measles, mumps, rubella (MMR) vaccine, separated by at least 28 days, are routinely ... been vaccinated should also receive 1 dose of MMR vaccine, but adults who work in healthcare, a school/ ...

  19. Vaccinations for Adults with Diabetes

    MedlinePlus

    Vaccinations for Adults with Diabetes The table below shows which vaccinations you should have to protect your health if ... sure you and your healthcare provider keep your vaccinations up to date. Vaccine Do you need it? ...

  20. Side Effects of Smallpox Vaccination

    MedlinePlus

    ... Index SMALLPOX FACT SHEET Side Effects of Smallpox Vaccination The smallpox vaccine prevents smallpox. For most people, ... go away without treatment: The arm receiving the vaccination may be sore and red where the vaccine ...

  1. Vaccination: An Act of Love

    MedlinePlus

    ... benefits of vaccines. For this reason, we created Vaccination Week in the Americas to get vaccines to ... and no one gets left behind. Help the vaccination teams when they come to your town, your ...

  2. Vaccines against poverty.

    PubMed

    MacLennan, Calman A; Saul, Allan

    2014-08-26

    With the 2010s declared the Decade of Vaccines, and Millennium Development Goals 4 and 5 focused on reducing diseases that are potentially vaccine preventable, now is an exciting time for vaccines against poverty, that is, vaccines against diseases that disproportionately affect low- and middle-income countries (LMICs). The Global Burden of Disease Study 2010 has helped better understand which vaccines are most needed. In 2012, US$1.3 billion was spent on research and development for new vaccines for neglected infectious diseases. However, the majority of this went to three diseases: HIV/AIDS, malaria, and tuberculosis, and not neglected diseases. Much of it went to basic research rather than development, with an ongoing decline in funding for product development partnerships. Further investment in vaccines against diarrheal diseases, hepatitis C, and group A Streptococcus could lead to a major health impact in LMICs, along with vaccines to prevent sepsis, particularly among mothers and neonates. The Advanced Market Commitment strategy of the Global Alliance for Vaccines and Immunisation (GAVI) Alliance is helping to implement vaccines against rotavirus and pneumococcus in LMICs, and the roll out of the MenAfriVac meningococcal A vaccine in the African Meningitis Belt represents a paradigm shift in vaccines against poverty: the development of a vaccine primarily targeted at LMICs. Global health vaccine institutes and increasing capacity of vaccine manufacturers in emerging economies are helping drive forward new vaccines for LMICs. Above all, partnership is needed between those developing and manufacturing LMIC vaccines and the scientists, health care professionals, and policy makers in LMICs where such vaccines will be implemented.

  3. Hyper-dendritic nanoporous zinc foam anodes

    SciTech Connect

    Chamoun, Mylad; Hertzberg, Benjamin J.; Gupta, Tanya; Davies, Daniel; Bhadra, Shoham; Van Tassell, Barry.; Erdonmez, Can; Steingart, Daniel A.

    2015-04-24

    The low cost, significant reducing potential, and relative safety of the zinc electrode is a common hope for a reductant in secondary batteries, but it is limited mainly to primary implementation due to shape change. In this work we exploit such shape change for the benefit of static electrodes through the electrodeposition of hyper-dendritic nanoporous zinc foam. Electrodeposition of zinc foam resulted in nanoparticles formed on secondary dendrites in a three-dimensional network with a particle size distribution of 54.1 - 96.0 nm. The nanoporous zinc foam contributed to highly oriented crystals, high surface area and more rapid kinetics in contrast to conventional zinc in alkaline mediums. The anode material presented had a utilization of ~ 88% at full depth-of-discharge at various rates indicating a superb rate-capability. The rechargeability of Zn⁰/Zn²⁺ showed significant capacity retention over 100 cycles at a 40% depth-of-discharge to ensure that the dendritic core structure was imperforated. The dendritic architecture was densified upon charge-discharge cycling and presented superior performance compared to bulk zinc electrodes.

  4. Hyper-dendritic nanoporous zinc foam anodes

    DOE PAGESBeta

    Chamoun, Mylad; Hertzberg, Benjamin J.; Gupta, Tanya; Davies, Daniel; Bhadra, Shoham; Van Tassell, Barry.; Erdonmez, Can; Steingart, Daniel A.

    2015-04-24

    The low cost, significant reducing potential, and relative safety of the zinc electrode is a common hope for a reductant in secondary batteries, but it is limited mainly to primary implementation due to shape change. In this work we exploit such shape change for the benefit of static electrodes through the electrodeposition of hyper-dendritic nanoporous zinc foam. Electrodeposition of zinc foam resulted in nanoparticles formed on secondary dendrites in a three-dimensional network with a particle size distribution of 54.1 - 96.0 nm. The nanoporous zinc foam contributed to highly oriented crystals, high surface area and more rapid kinetics in contrastmore » to conventional zinc in alkaline mediums. The anode material presented had a utilization of ~ 88% at full depth-of-discharge at various rates indicating a superb rate-capability. The rechargeability of Zn⁰/Zn²⁺ showed significant capacity retention over 100 cycles at a 40% depth-of-discharge to ensure that the dendritic core structure was imperforated. The dendritic architecture was densified upon charge-discharge cycling and presented superior performance compared to bulk zinc electrodes.« less

  5. Detecting Danger: The Dendritic Cell Algorithm

    NASA Astrophysics Data System (ADS)

    Greensmith, Julie; Aickelin, Uwe; Cayzer, Steve

    The "Dendritic Cell Algorithm" (DCA) is inspired by the function of the dendritic cells of the human immune system. In nature, dendritic cells are the intrusion detection agents of the human body, policing the tissue and organs for potential invaders in the form of pathogens. In this research, an abstract model of dendritic cell (DC) behavior is developed and subsequently used to form an algorithm—the DCA. The abstraction process was facilitated through close collaboration with laboratory-based immunologists, who performed bespoke experiments, the results of which are used as an integral part of this algorithm. The DCA is a population-based algorithm, with each agent in the system represented as an "artificial DC". Each DC has the ability to combine multiple data streams and can add context to data suspected as anomalous. In this chapter, the abstraction process and details of the resultant algorithm are given. The algorithm is applied to numerous intrusion detection problems in computer security including the detection of port scans and botnets, where it has produced impressive results with relatively low rates of false positives.

  6. Characterization of chicken dendritic cell markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Animal and Natural Resources Institute, ARS-USDA, Beltsville, MD, USA. New mouse monoclonal antibodies which detect CD80 and CD83 were developed to characterize chicken dendritic cells (DCs). The characteristics of these molecules have been studied in human, swine, ovine, feline, and canine but not ...

  7. Thermosolutal convection and macrosegregation in dendritic alloys

    NASA Technical Reports Server (NTRS)

    Poirier, David R.; Heinrich, J. C.

    1993-01-01

    A mathematical model of solidification, that simulates the formation of channel segregates or freckles, is presented. The model simulates the entire solidification process, starting with the initial melt to the solidified cast, and the resulting segregation is predicted. Emphasis is given to the initial transient, when the dendritic zone begins to develop and the conditions for the possible nucleation of channels are established. The mechanisms that lead to the creation and eventual growth or termination of channels are explained in detail and illustrated by several numerical examples. A finite element model is used for the simulations. It uses a single system of equations to deal with the all-liquid region, the dendritic region, and the all-solid region. The dendritic region is treated as an anisotropic porous medium. The algorithm uses the bilinear isoparametric element, with a penalty function approximation and a Petrov-Galerkin formulation. The major task was to develop the solidification model. In addition, other tasks that were performed in conjunction with the modeling of dendritic solidification are briefly described.

  8. Defect characterization of silicon dendritic web ribbons

    NASA Technical Reports Server (NTRS)

    Cheng, L. J.

    1985-01-01

    Progress made in the study of defect characterization of silicon dendritic web ribbon is presented. Chemical etching is used combined with optical microscopy, as well as the electron beam induced current (EBIC) technique. Thermal annealing effect on carrier lifetime is examined.

  9. 42 CFR 410.57 - Pneumococcal vaccine and flu vaccine.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false Pneumococcal vaccine and flu vaccine. 410.57... § 410.57 Pneumococcal vaccine and flu vaccine. (a) Medicare Part B pays for pneumococcal vaccine and its administration when reasonable and necessary for the prevention of disease, if the vaccine is ordered by a...

  10. 42 CFR 410.57 - Pneumococcal vaccine and flu vaccine.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 2 2014-10-01 2014-10-01 false Pneumococcal vaccine and flu vaccine. 410.57... § 410.57 Pneumococcal vaccine and flu vaccine. (a) Medicare Part B pays for pneumococcal vaccine and its administration when reasonable and necessary for the prevention of disease, if the vaccine is ordered by a...

  11. 42 CFR 410.57 - Pneumococcal vaccine and flu vaccine.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 2 2013-10-01 2013-10-01 false Pneumococcal vaccine and flu vaccine. 410.57... § 410.57 Pneumococcal vaccine and flu vaccine. (a) Medicare Part B pays for pneumococcal vaccine and its administration when reasonable and necessary for the prevention of disease, if the vaccine is ordered by a...

  12. 42 CFR 410.57 - Pneumococcal vaccine and flu vaccine.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 2 2011-10-01 2011-10-01 false Pneumococcal vaccine and flu vaccine. 410.57... § 410.57 Pneumococcal vaccine and flu vaccine. (a) Medicare Part B pays for pneumococcal vaccine and its administration when reasonable and necessary for the prevention of disease, if the vaccine is ordered by a...

  13. 42 CFR 410.57 - Pneumococcal vaccine and flu vaccine.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 2 2012-10-01 2012-10-01 false Pneumococcal vaccine and flu vaccine. 410.57... § 410.57 Pneumococcal vaccine and flu vaccine. (a) Medicare Part B pays for pneumococcal vaccine and its administration when reasonable and necessary for the prevention of disease, if the vaccine is ordered by a...

  14. Return of inactivated whole-virus vaccine for superior efficacy.

    PubMed

    Furuya, Yoichi

    2012-07-01

    The swine, influenza, H1N1 outbreak in 2009 highlighted the inadequacy of the currently used antibody-based vaccine strategies as a preventive measure for combating influenza pandemics. The ultimate goal for successful control of newly arising influenza outbreaks is to design a single-shot vaccine that will provide long-lasting immunity against all strains of influenza A virus. A large amount of data from animal studies has indicated that the cross-reactive cytotoxic T (Tc) cell response against conserved influenza virus epitopes may be the key immune response needed for a universal influenza vaccine. However, decades of research have shown that the development of safe T-cell-based vaccines for influenza is not an easy task. Here, I discuss the overlooked but potentially highly advantageous inactivation method, namely, γ-ray irradiation, as a mean to reach the Holy Grail of influenza vaccinology.

  15. Supramolecular dendritic polymers: from synthesis to applications.

    PubMed

    Dong, Ruijiao; Zhou, Yongfeng; Zhu, Xinyuan

    2014-07-15

    CONSPECTUS: Supramolecular dendritic polymers (SDPs), which perfectly combine the advantages of dendritic polymers with those of supramolecular polymers, are a novel class of non-covalently bonded, highly branched macromolecules with three-dimensional globular topology. Because of their dynamic/reversible nature, unique topological structure, and exceptional physical/chemical properties (e.g., low viscosity, high solubility, and a large number of functional terminal groups), SDPs have attracted increasing attention in recent years in both academic and industrial fields. In particular, the reversibility of non-covalent interactions endows SDPs with the ability to undergo dynamic switching of structure, morphology, and function in response to various external stimuli, such as pH, temperature, light, stress, and redox agents, which further provides a flexible and robust platform for designing and developing smart supramolecular polymeric materials and functional supramolecular devices. The existing SDPs can be systematically classified into the following six major types according to their topological features: supramolecular dendrimers, supramolecular dendronized polymers, supramolecular hyperbranched polymers, supramolecular linear-dendritic block copolymers, supramolecular dendritic-dendritic block copolymers, and supramolecular dendritic multiarm copolymers. These different types of SDPs possess distinct morphologies, unique architectures, and specific functions. Benefiting from their versatile topological structures as well as stimuli-responsive properties, SDPs have displayed not only unique characteristics or advantages in supramolecular self-assembly behaviors (e.g., controllable morphologies, specific performance, and facile functionalization) but also great potential to be promising candidates in various fields. In this Account, we summarize the recent progress in the synthesis, functionalization, and self-assembly of SDPs as well as their potential

  16. [Vaccination against poliomyelitis].

    PubMed

    Cellesi, C; Rossolini, A

    1984-01-01

    The authors, after a review of some data about the actual poliomyelitis epidemiology in the world, point out the necessity of periodical checks for poliomyelitis vaccination. To this purpose, preliminary data of a research, undertaken in the province of Siena, into the effectiveness and innocuity of oral poliovirus vaccine, are reported. This evaluation has been made through isolation and identification of vaccinal polioviruses from stool after the first, second and then third dose of vaccine, and through titration of serum neutralizing antibodies. Results confirm the high effectiveness and innocuity of oral poliovirus vaccine, but suggest the opportuneness of some changes in the way of giving the oral vaccine.

  17. Vaccines and Immunization Practice.

    PubMed

    Hogue, Michael D; Meador, Anna E

    2016-03-01

    Vaccines are among most cost-effective public health strategies. Despite effective vaccines for many bacterial and viral illnesses, tens of thousands of adults and hundreds of children die each year in the United States from vaccine-preventable diseases. Underutilization of vaccines requires rethinking the approach to incorporating vaccines into practice. Arguably, immunizations could be a part all health care encounters. Shared responsibility is paramount if deaths are to be reduced. This article reviews the available vaccines in the US market, as well as practice recommendations of the Centers for Disease Control and Prevention's Advisory Committee on Immunization Practices.

  18. Immunosenescence and vaccination of the elderly II. New strategies to restore age-related immune impairment.

    PubMed

    Ongrádi, J; Stercz, B; Kövesdi, Valéria; Vértes, L

    2009-12-01

    One of the greatest health-care challenges in the elderly is to ensure that vaccination against infections are optimally effective, but vaccination can only be effective if cells that are capable of responding are still present in the repertoire. The reversing of immunosenescence could be achieved by improving immune responses or altering vaccine formulation. Recent vaccination strategies in the elderly exert low effectiveness. Nutritional interventions and moderate exercise delay T cell senescence. Telomerase activity and expression of toll-like receptors can be improved by chemotherapy. Reversion of thymic atrophy could be achieved by thymus transplantation, depletion of accumulated dysfunctional naive T cells and herpesvirus-specific exhausted memory cells. Administration of immunostimulatory and anti-inflammatory cytokines show the best practical approach. Reduced dendritic cell activity and co-receptor expression might be increased by interleukin (IL)-2 administration. IL-7 protects both B and T lymphocytes, but IL-2, IL-10, keratinocyte growth factor, thymic stromal lymphopoietin, as well as leptin and growth hormone also have a stimulatory effect on thymopoiesis. In animals, several strategies have been explored to produce more efficacious vaccines including high dose vaccines, DNA vaccines with immunostimulatory patch, virosomal vaccines and vaccines containing new adjuvants. Hopefully, one of these approaches will be translated into human therapy in a short time.

  19. Improving cell-based therapies by nanomodification.

    PubMed

    Chen, Wei; Fu, Liwu; Chen, Xiaoyuan

    2015-12-10

    Cell-based therapies are emerging as a promising approach for various diseases. Their therapeutic efficacy depends on rational control and regulation of the functions and behaviors of cells during their treatments. Different from conventional regulatory strategy by chemical adjuvants or genetic engineering, which is restricted by limited synergistic regulatory efficiency or uncertain safety problems, a novel approach based on nanoscale artificial materials can be applied to modify living cells to endow them with novel functions and unique properties. Inspired by natural "nano shell" and "nano compass" structures, cell nanomodification can be developed through both external and internal pathways. In this review, some novel cell surface engineering and intracellular nanoconjugation strategies are summarized. Their potential applications are also discussed, including cell protection, cell labeling, targeted delivery and in situ regulation. It is believed that these novel cell-material complexes can have great potentials for biomedical applications. PMID:26423238

  20. HIV/AIDS and Vaccines

    MedlinePlus

    ... Prevention Research : Vaccines Subscribe Translate Text Size Print Vaccines What Are Vaccines and What Do They Do? A vaccine—also ... immune response against the disease. Is There a Vaccine for HIV? No. There is currently no vaccine ...

  1. Development of Cross-Protective Influenza A Vaccines Based on Cellular Responses

    PubMed Central

    Soema, Peter Christiaan; van Riet, Elly; Kersten, Gideon; Amorij, Jean-Pierre

    2015-01-01

    Seasonal influenza vaccines provide protection against matching influenza A virus (IAV) strains mainly through the induction of neutralizing serum IgG antibodies. However, these antibodies fail to confer a protective effect against mismatched IAV. This lack of efficacy against heterologous influenza strains has spurred the vaccine development community to look for other influenza vaccine concepts, which have the ability to elicit cross-protective immune responses. One of the concepts that is currently been worked on is that of influenza vaccines inducing influenza-specific T cell responses. T cells are able to lyse infected host cells, thereby clearing the virus. More interestingly, these T cells can recognize highly conserved epitopes of internal influenza proteins, making cellular responses less vulnerable to antigenic variability. T cells are therefore cross-reactive against many influenza strains, and thus are a promising concept for future influenza vaccines. Despite their potential, there are currently no T cell-based IAV vaccines on the market. Selection of the proper antigen, appropriate vaccine formulation and evaluation of the efficacy of T cell vaccines remains challenging, both in preclinical and clinical settings. In this review, we will discuss the current developments in influenza T cell vaccines, focusing on existing protein-based and novel peptide-based vaccine formulations. Furthermore, we will discuss the feasibility of influenza T cell vaccines and their possible use in the future. PMID:26029218

  2. Hepatitis B Vaccine

    MedlinePlus

    ... as a combination product containing Hepatitis A Vaccine, Hepatitis B Vaccine) ... What is hepatitis B?Hepatitis B is a serious infection that affects the liver. It is caused by the hepatitis B virus. ...

  3. The HPV Vaccination Crisis

    Cancer.gov

    Following the release of a consensus statement from the NCI-Designated Cancer Centers urging HPV vaccination in the United States, Dr. Noel Brewer discusses the country’s low vaccination rates and how clinicians can help to improve them.

  4. Vaccine Safety Datalink

    Cancer.gov

    The Vaccine Safety Datalink is part of the National Immunization Program within the Centers for Disease Control and Prevention and was started in recognition of gaps in the scientific knowledge of rare vaccine side effects.

  5. Ethics of vaccination programs.

    PubMed

    Schwartz, Jason L; Caplan, Arthur L

    2011-10-01

    Ethical issues are present at each stage in the vaccine product life cycle, the period extending from the earliest stages of research through the eventual design and implementation of global vaccination programs. Recent developments highlight fundamental principles of vaccine ethics and raise unique issues for ongoing vaccination activities worldwide. These include the 2009-10 H1N1 pandemic influenza vaccination campaign, renewed attention to the potential global eradication of polio, and the ongoing evaluation of vaccine risk controversies, most notably the alleged link between childhood vaccines and autism. These cases present ethical challenges for public health policy-makers, scientists, physicians, and other stakeholders in their efforts to improve the health of individuals, communities, and nations through vaccination. PMID:22440783

  6. Smallpox Vaccine Overview

    MedlinePlus

    ... complications from the vaccinia virus can be severe. Benefit of Vaccine Following Exposure Vaccination within 3 days ... Policies About CDC.gov Link to Us All Languages Contact CDC Centers for Disease Control and Prevention ...

  7. Shingles (Zoster) Vaccine

    MedlinePlus

    ... who has had chickenpox, or rarely, has gotten chickenpox vaccine, can get shingles. The virus stays in your ... a person who has never had chickenpox (or chickenpox vaccine) could get chickenpox from someone with shingles. This ...

  8. Pneumococcal Vaccines (PCV, PPSV)

    MedlinePlus

    ... Know About Zika & Pregnancy Your Child's Immunizations: Pneumococcal Vaccines (PCV, PPSV) KidsHealth > For Parents > Your Child's Immunizations: ... or HIV infection); or cochlear implants. Why the Vaccines Are Recommended Children younger than 2 years old, ...

  9. Screening Tests and Vaccines

    MedlinePlus

    ... Contact Us Text size | Print | Screening Tests and Vaccines This information in Spanish ( en español ) Getting important screening tests and vaccines can save your life. Check this section of ...

  10. Clinical vaccine development

    PubMed Central

    2015-01-01

    Vaccination is regarded as one of the biggest triumphs in the history of medicine. We are living in the most successful period of vaccine development. The accumulation of multidisciplinary knowledge and the investment of massive funding have enabled the development of vaccines against many infectious diseases as well as other diseases including malignant tumors. The paradigm of clinical vaccine evaluation and licensure has also been modernized based on scientific improvements and historical experience. However, there remain a number of hurdles to overcome. Continuous efforts are focused on increasing the efficacy and reducing the risks related to vaccine use. Cutting-edge knowledge about immunology and microbiology is being rapidly translated to vaccine development. Thus, physicians and others involved in the clinical development of vaccines should have sufficient understanding of the recent developmental trends in vaccination and the diseases of interest. PMID:25648742

  11. Tetanus (Lockjaw) Vaccination

    MedlinePlus

    ... adults - Tetanus-diphtheria-acellular Pertussis vaccine Tetanus (Lockjaw) Vaccination Recommend on Facebook Tweet Share Compartir Tetanus (lockjaw) ... Related Pages Diphtheria Pertussis Feature Story: Adults Need Immunizations, Too Also Known As & Abbreviations Tetanus = Lockjaw DTaP = ...

  12. Meningococcal Vaccine (For Parents)

    MedlinePlus

    ... Things to Know About Zika & Pregnancy Your Child's Immunizations: Meningococcal Vaccines KidsHealth > For Parents > Your Child's Immunizations: ... are at increased risk of developing meningococcal disease. Immunization Schedule Vaccination with MCV4 is recommended: when kids ...

  13. Vaccines in Multiple Sclerosis.

    PubMed

    Williamson, Eric M L; Chahin, Salim; Berger, Joseph R

    2016-04-01

    Vaccinations help prevent communicable disease. To be valuable, a vaccine's ability to prevent disease must exceed the risk of adverse effects from administration. Many vaccines present no risk of infection as they are comprised of killed or non-infectious components while other vaccines consist of live attenuated microorganisms which carry a potential risk of infection-particularly, in patients with compromised immunity. There are several unique considerations with respect to vaccination in the multiple sclerosis (MS) population. First, there has been concern that vaccination may trigger or aggravate the disease. Second, disease-modifying therapies (DMTs) employed in the treatment of MS may increase the risk of infectious complications from vaccines or alter their efficacy. Lastly, in some cases, vaccination strategies may be part of the treatment paradigm in attempts to avoid complications of therapy. PMID:26922172

  14. Vaccine Reaction Images

    MedlinePlus

    ... Training Materials Q fever Info & Guidance for Clinicians Salmonella Shigella Smallpox Smallpox Basics Vaccine Basics Clinicians Vaccination ... Metals Nerve Agents Pulmonary Agents Riot Control Agents Toxic Alcohols Vesicants Chemical-Specific Fact Sheets Toxicology FAQs ...

  15. Ethics of vaccination programs.

    PubMed

    Schwartz, Jason L; Caplan, Arthur L

    2011-10-01

    Ethical issues are present at each stage in the vaccine product life cycle, the period extending from the earliest stages of research through the eventual design and implementation of global vaccination programs. Recent developments highlight fundamental principles of vaccine ethics and raise unique issues for ongoing vaccination activities worldwide. These include the 2009-10 H1N1 pandemic influenza vaccination campaign, renewed attention to the potential global eradication of polio, and the ongoing evaluation of vaccine risk controversies, most notably the alleged link between childhood vaccines and autism. These cases present ethical challenges for public health policy-makers, scientists, physicians, and other stakeholders in their efforts to improve the health of individuals, communities, and nations through vaccination.

  16. Vaccines in Multiple Sclerosis.

    PubMed

    Williamson, Eric M L; Chahin, Salim; Berger, Joseph R

    2016-04-01

    Vaccinations help prevent communicable disease. To be valuable, a vaccine's ability to prevent disease must exceed the risk of adverse effects from administration. Many vaccines present no risk of infection as they are comprised of killed or non-infectious components while other vaccines consist of live attenuated microorganisms which carry a potential risk of infection-particularly, in patients with compromised immunity. There are several unique considerations with respect to vaccination in the multiple sclerosis (MS) population. First, there has been concern that vaccination may trigger or aggravate the disease. Second, disease-modifying therapies (DMTs) employed in the treatment of MS may increase the risk of infectious complications from vaccines or alter their efficacy. Lastly, in some cases, vaccination strategies may be part of the treatment paradigm in attempts to avoid complications of therapy.

  17. A Generic Polymer-Protein Ligation Strategy for Vaccine Delivery.

    PubMed

    Lybaert, Lien; Vanparijs, Nane; Fierens, Kaat; Schuijs, Martijn; Nuhn, Lutz; Lambrecht, Bart N; De Geest, Bruno G

    2016-03-14

    Although the field of cancer immunotherapy is intensively investigated, there is still a need for generic strategies that allow easy, mild and efficient formulation of vaccine antigens. Here we report on a generic polymer-protein ligation strategy to formulate protein antigens into reversible polymeric conjugates for enhanced uptake by dendritic cells and presentation to CD8 T-cells. A N-hydroxypropylmethacrylamide (HPMA)-based copolymer was synthesized via RAFT polymerization followed by introduction of pyridyldisulfide moieties. To enhance ligation efficiency to ovalbumin, which is used as a model protein antigen, protected thiols were introduced onto lysine residues and deprotected in situ in the presence of the polymer. The ligation efficiency was compared for both the thiol-modified versus unmodified ovalbumin, and the reversibility was confirmed. Furthermore, the obtained nanoconjugates were tested in vitro for their interaction and association with dendritic cells, showing enhanced cellular uptake and antigen cross-presentation to CD8 T-cells.

  18. CD45 epitope mapping of human CD1a+ dendritic cells and peripheral blood dendritic cells.

    PubMed Central

    Wood, G. S.; Freudenthal, P. S.; Edinger, A.; Steinman, R. M.; Warnke, R. A.

    1991-01-01

    The authors studied the pattern of leukocyte common antigen (CD45) epitope expression on dendritic cells in sections of human epidermis, tonsillar epithelium, dermatopathic lymph nodes, and in isolates from blood. The monoclonal antibodies (MAb) used were specific for all known CD45 epitopes, including the seven different CD45 common epitopes as well as the four known CD45R epitopes (two CD45RA, one CD45RB, and one CD45RO). Dendritic cells in all sites were uniformly reactive for the CD45 common epitopes tested except 2B11, which may recognize a CD45R rather than CD45 epitope. By single-label immunoperoxidase and double-label immunofluorescence epitope mapping of CD1a+ dendritic cells in tissue sections, it was generally difficult or impossible to detect expression of CD45RA, CD45RB, CD45RO, or 2B11. In blood dendritic cells, however, low levels of these CD45R epitopes were detected consistently using single-label immunoperoxidase staining of cytocentrifuge preparations. Monocytes were similar to blood dendritic cells except that the staining with MAb to CD45RO and 2B11 was slightly stronger. The authors conclude that dendritic cells differ from most subpopulations of lymphocytes in that CD45 common epitopes are readily detectable but the existing RA, RB, and RO epitopes are either undetectable or expressed at relatively low levels. These studies raise the possibility that CD1a+ dendritic cells may express a novel dominant CD45 isoform. Images Figure 1 Figure 2 PMID:1711291

  19. Controlling Endemic Cholera with Oral Vaccines

    PubMed Central

    Longini, Ira M; Nizam, Azhar; Ali, Mohammad; Yunus, Mohammad; Shenvi, Neeta; Clemens, John D

    2007-01-01

    Background Although advances in rehydration therapy have made cholera a treatable disease with low case-fatality in settings with appropriate medical care, cholera continues to impose considerable mortality in the world's most impoverished populations. Internationally licensed, killed whole-cell based oral cholera vaccines (OCVs) have been available for over a decade, but have not been used for the control of cholera. Recently, these vaccines were shown to confer significant levels of herd protection, suggesting that the protective potential of these vaccines has been underestimated and that these vaccines may be highly effective in cholera control when deployed in mass immunization programs. We used a large-scale stochastic simulation model to investigate the possibility of controlling endemic cholera with OCVs. Methods and Findings We construct a large-scale, stochastic cholera transmission model of Matlab, Bangladesh. We find that cholera transmission could be controlled in endemic areas with 50% coverage with OCVs. At this level of coverage, the model predicts that there would be an 89% (95% confidence interval [CI] 72%–98%) reduction in cholera cases among the unvaccinated, and a 93% (95% CI 82%–99%) reduction overall in the entire population. Even a more modest coverage of 30% would result in a 76% (95% CI 44%–95%) reduction in cholera incidence for the population area covered. For populations that have less natural immunity than the population of Matlab, 70% coverage would probably be necessary for cholera control, i.e., an annual incidence rate of ≤ 1 case per 1,000 people in the population. Conclusions Endemic cholera could be reduced to an annual incidence rate of ≤ 1 case per 1,000 people in endemic areas with biennial vaccination with OCVs if coverage could reach 50%–70% depending on the level of prior immunity in the population. These vaccination efforts could be targeted with careful use of ecological data. PMID:18044983

  20. Human Vaccines: News

    PubMed Central

    Riedmann, Eva M.

    2012-01-01

    High safety marks for Merck’s Gardasil Cuba tests prostate cancer vaccine HIV’s weak spot: V2 Unique anti-cancer agent ColoAd1 enters the clinic Broadly neutralizing antibodies against influenza A and B discovered Clinical trials initiated: Nexvax2 therapeutic vaccine for celiac disease The 20 top-selling vaccines in the first half of 2012 Influenza vaccine safe for pregnant women PMID:23151443