Science.gov

Sample records for dendritic cell-based vaccination

  1. [Dendritic cell-based therapeutic cancer vaccines].

    PubMed

    Rizzo, Manglio; Alaniz, Laura; Mazzolini, Guillermo D

    2016-01-01

    In recent years immunotherapy has revolutionized the treatment of patients with advanced cancer. The increased knowledge in the tumor immune-biology has allowed developing rational treatments by manipulation of the immune system with significant clinical impact. This rapid development has significantly changed the prognosis of many tumors without treatment options up to date. Other strategies have explored the use of therapeutic vaccines based on dendritic cells (DC) by inducing antitumor immunity. DC are cells of hematopoietic origin, constitutively expressing molecules capable to present antigens, that are functionally the most potent inducers of the activation and proliferation of antigen specific T lymphocytes. The CD8+ T cells proliferate and acquire cytotoxic capacity after recognizing their specific antigen presented on the surface of DC, although only some types of DC can present antigens internalized from outside the cell to precursors of cytotoxic T lymphocytes (this function is called cross-presentation) requiring translocation mechanisms of complex antigens. The induction of an effective adaptive immune response is considered a good option given its specificity, and prolonged duration of response. The DC, thanks to its particular ability of antigen presentation and lymphocyte stimulation, are able to reverse the poor antitumor immune response experienced by patients with cancer. The DC can be obtained from various sources, using different protocols to generate differentiation and maturation, and are administered by various routes such as subcutaneous, intravenous or intranodal. The wide variety of protocols resulted in heterogeneous clinical responses.

  2. Immune modulation by dendritic-cell-based cancer vaccines.

    PubMed

    Kumar, Chaitanya; Kohli, Sakshi; Bapsy, Poonamalle Parthasarathy; Vaid, Ashok Kumar; Jain, Minish; Attili, Venkata Sathya Suresh; Sharan, Bandana

    2017-03-01

    The interplay between host immunity and tumour cells has opened the possibility of targeting tumour cells by modulation of the human immune system. Cancer immunotherapy involves the treatment of a tumour by utilizing the recombinant human immune system components to target the pro-tumour microenvironment or by revitalizing the immune system with the ability to kill tumour cells by priming the immune cells with tumour antigens. In this review, current immunotherapy approaches to cancer with special focus on dendritic cell (DC)-based cancer vaccines are discussed. Some of the DC-based vaccines under clinical trials for various cancer types are highlighted. Establishing tumour immunity involves a plethora of immune components and pathways; hence, combining chemotherapy, radiation therapy and various arms of immunotherapy, after analysing the benefits of individual therapeutic agents, might be beneficial to the patient.

  3. Dendritic cell based vaccines for HIV infection: the way ahead.

    PubMed

    García, Felipe; Plana, Montserrat; Climent, Nuria; León, Agathe; Gatell, Jose M; Gallart, Teresa

    2013-11-01

    Dendritic cells have a central role in HIV infection. On one hand, they are essential to induce strong HIV-specific CD4⁺ helper T-cell responses that are crucial to achieve a sustained and effective HIV-specific CD8⁺ cytotoxic T-lymphocyte able to control HIV replication. On the other hand, DCs contribute to virus dissemination and HIV itself could avoid a correct antigen presentation. As the efficacy of immune therapy and therapeutic vaccines against HIV infection has been modest in the best of cases, it has been hypothesized that ex vivo generated DC therapeutic vaccines aimed to induce effective specific HIV immune responses might overcome some of these problems. In fact, DC-based vaccine clinical trials have yielded the best results in this field. However, despite these encouraging results, functional cure has not been reached with this strategy in any patient. In this Commentary, we discuss new approaches to improve the efficacy and feasibility of this type of therapeutic vaccine.

  4. Using Magnetic Resonance Imaging to Evaluate Dendritic Cell-Based Vaccination

    PubMed Central

    Ferguson, Peter M.; Slocombe, Angela; Tilley, Richard D.; Hermans, Ian F.

    2013-01-01

    Cancer immunotherapy with antigen-loaded dendritic cell-based vaccines can induce clinical responses in some patients, but further optimization is required to unlock the full potential of this strategy in the clinic. Optimization is dependent on being able to monitor the cellular events that take place once the dendritic cells have been injected in vivo, and to establish whether antigen-specific immune responses to the tumour have been induced. Here we describe the use of magnetic resonance imaging (MRI) as a simple, non-invasive approach to evaluate vaccine success. By loading the dendritic cells with highly magnetic iron nanoparticles it is possible to assess whether the injected cells drain to the lymph nodes. It is also possible to establish whether an antigen-specific response is initiated by assessing migration of successive rounds of antigen-loaded dendritic cells; in the face of a successfully primed cytotoxic response, the bulk of antigen-loaded cells are eradicated on-route to the node, whereas cells without antigen can reach the node unchecked. It is also possible to verify the induction of a vaccine-induced response by simply monitoring increases in draining lymph node size as a consequence of vaccine-induced lymphocyte trapping, which is an antigen-specific response that becomes more pronounced with repeated vaccination. Overall, these MRI techniques can provide useful early feedback on vaccination strategies, and could also be used in decision making to select responders from non-responders early in therapy. PMID:23734246

  5. Clinical trials of dendritic cell-based cancer vaccines in hematologic malignancies

    PubMed Central

    Pyzer, Athalia R; Avigan, David E; Rosenblatt, Jacalyn

    2015-01-01

    The potential for the immune system to target hematological malignancies is demonstrated in the allogeneic transplant setting, where durable responses can be achieved. However, allogeneic transplantation is associated with significant morbidity and mortality related to graft versus host disease. Cancer immunotherapy has the capacity to direct a specific cytotoxic immune response against cancer cells, particularly residual cancer cells, in order to reduce the likelihood of disease relapse in a more targeted and tolerated manner. Ex vivo dendritic cells can be primed in various ways to present tumor associated antigen to the immune system, in the context of co-stimulatory molecules, eliciting a tumor specific cytotoxic response in patients. Several approaches to prime dendritic cells and overcome the immunosuppressive microenvironment have been evaluated in pre-clinical and early clinical trials with promising results. In this review, we summarize the clinical data evaluating dendritic cell based vaccines for the treatment of hematological malignancies. PMID:25625926

  6. Dendritic cell-based immunotherapy induces transient clinical response in advanced rat fibrosarcoma - comparison with preventive anti-tumour vaccination.

    PubMed

    Kucera, A; Pýcha, K; Pajer, P; Spísek, R; Skába, R

    2009-01-01

    In this study we present the models of preventive and therapeutic vaccination of sarcoma-bearing rats with dendritic cells that present tumour antigens from killed tumour cells. We present the characteristics of dendritic cell-based vaccine and its capacity to induce anti-tumour immune response both in vitro and in vivo. We show that preventive vaccination efficiently prevents tumour growth. On the other hand, vaccination of rats with established tumours did not lead to eradication of the tumours. Despite the induction of a vigorous immune response after administration of dendritic cell-based vaccine and transient decrease in tumour progression, tumours eventually resumed their growth and animals vaccinated with dendritic cells succumbed to cancer. In both settings, preventive and therapeutic, dendritic cell-based vaccination induced a vigorous tumour-specific T-cell response. These results argue for the timing of cancer immunotherapy to the stages of low tumour load. Immunotherapy initiated at the stage of minimal residual disease, after reduction of tumour load by other modalities, will have much better chance to offer a clinical benefit to cancer patients than the immunotherapy at the stage of metastatic disease.

  7. A Therapeutic Dendritic Cell-Based Vaccine for HIV-1 Infection

    PubMed Central

    Climent, Núria; Assoumou, Lambert; Gil, Cristina; González, Nuria; Alcamí, José; León, Agathe; Romeu, Joan; Dalmau, Judith; Martínez-Picado, Javier; Lifson, Jeff; Autran, Brigitte; Costagliola, Dominique; Clotet, Bonaventura; Gatell, Josep M; Plana, Montserrat; Gallart, Teresa

    2011-01-01

    A double-blinded, controlled study of vaccination of untreated patients with chronic human immunodeficiency virus type 1 (HIV-1) infection with 3 doses of autologous monocyte-derived dendritic cells (MD-DCs) pulsed with heat inactivated autologous HIV-1 was performed. Therapeutic vaccinations were feasible, safe, and well tolerated. At week 24 after first vaccination (primary end point), a modest significant decrease in plasma viral load was observed in vaccine recipients, compared with control subjects (P = .03). In addition, the change in plasma viral load after vaccination tended to be inversely associated with the increase in HIV-specific T cell responses in vaccinated patients but tended to be directly correlated with HIV-specific T cell responses in control subjects. Clinical trial.gov NCT00402142 PMID:21233310

  8. Prophylactic Dendritic Cell-Based Vaccines Efficiently Inhibit Metastases in Murine Metastatic Melanoma.

    PubMed

    Markov, Oleg V; Mironova, Nadezhda L; Sennikov, Sergey V; Vlassov, Valentin V; Zenkova, Marina A

    2015-01-01

    Recent data on the application of dendritic cells (DCs) as anti-tumor vaccines has shown their great potential in therapy and prophylaxis of cancer. Here we report on a comparison of two treatment schemes with DCs that display the models of prophylactic and therapeutic vaccination using three different experimental tumor models: namely, Krebs-2 adenocarcinoma (primary tumor), melanoma (B16, metastatic tumor without a primary node) and Lewis lung carcinoma (LLC, metastatic tumor with a primary node). Dendritic cells generated from bone marrow-derived DC precursors and loaded with lysate of tumor cells or transfected with the complexes of total tumor RNA with cationic liposomes were used for vaccination. Lipofectamine 2000 and liposomes consisting of helper lipid DOPE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine) and cationic lipid 2D3 (1,26-Bis(1,2-de-O-tetradecyl-rac-glycerol)-7,11,16,20-tetraazahexacosan tetrahydrocloride) were used for RNA transfection. It was shown that DCs loaded with tumor lysate were ineffective in contrast to tumor-derived RNA. Therapeutic vaccination with DCs loaded by lipoplexes RNA/Lipofectamine 2000 was the most efficient for treatment of non-metastatic Krebs-2, where a 1.9-fold tumor growth retardation was observed. Single prophylactic vaccination with DCs loaded by lipoplexes RNA/2D3 was the most efficient to treat highly aggressive metastatic tumors LLC and B16, where 4.7- and 10-fold suppression of the number of lung metastases was observed, respectively. Antimetastatic effect of single prophylactic DC vaccination in metastatic melanoma model was accompanied by the reductions in the levels of Th2-specific cytokines however the change of the levels of Th1/Th2/Th17 master regulators was not found. Failure of double prophylactic vaccination is explained by Th17-response polarization associated with autoimmune and pro-inflammatory reactions. In the case of therapeutic DC vaccine the polarization of Th1-response was found nevertheless

  9. Dendritic Cell-Based Vaccination in Cancer: Therapeutic Implications Emerging from Murine Models

    PubMed Central

    Mac Keon, Soledad; Ruiz, María Sol; Gazzaniga, Silvina; Wainstok, Rosa

    2015-01-01

    Dendritic cells (DCs) play a pivotal role in the orchestration of immune responses, and are thus key targets in cancer vaccine design. Since the 2010 FDA approval of the first cancer DC-based vaccine (Sipuleucel-T), there has been a surge of interest in exploiting these cells as a therapeutic option for the treatment of tumors of diverse origin. In spite of the encouraging results obtained in the clinic, many elements of DC-based vaccination strategies need to be optimized. In this context, the use of experimental cancer models can help direct efforts toward an effective vaccine design. This paper reviews recent findings in murine models regarding the antitumoral mechanisms of DC-based vaccination, covering issues related to antigen sources, the use of adjuvants and maturing agents, and the role of DC subsets and their interaction in the initiation of antitumoral immune responses. The summary of such diverse aspects will highlight advantages and drawbacks in the use of murine models, and contribute to the design of successful DC-based translational approaches for cancer treatment. PMID:26042126

  10. Uric acid enhances the antitumor immunity of dendritic cell-based vaccine

    PubMed Central

    Wang, Yihan; Ma, Xuelei; Su, Chao; Peng, Bin; Du, Jing; Jia, Hongyuan; Luo, Min; Fang, Chunju; Wei, Yuquan

    2015-01-01

    Uric acid (UA) released from dying cells has been recognized by the immune system as a danger signal. In response to UA, dendritic cells (DC) in the immune system mature and enhance the T cell response to foreign antigens. It is conceivable that the antitumor immunity of a tumor vaccine could be promoted by the administration of UA. To test this concept, we applied UA as an adjuvant to a DC-based vaccine, and discovered that the administration of UA as an adjuvant significantly enhanced the ability of the tumor lysate-pulsed DC vaccine in delaying the tumor growth. The antitumor activity was achieved with adoptively transferred lymphocytes, and both CD8+ T cells and NK cells were required to achieve effective immunity. This resulted in an increased accumulation of activated CD8+ T cells and an elevated production of IFN-γ. Collectively, our study shows that the administration of UA enhances the antitumor activity of tumor lysate-pulsed DC vaccine, thus providing the preclinical rationale for the application of UA in DC-based vaccine strategies. PMID:26553557

  11. Immune Evasion Pathways and the Design of Dendritic Cell-based Cancer Vaccines

    PubMed Central

    Hanks, Brent A.

    2016-01-01

    Emerging data is suggesting that the process of dendritic cell (DC) tolerization is an important step in tumorigenesis. Our understanding of the networks within the tumor microenvironment that functionally tolerize DC function is evolving while methods for genetically manipulating DC populations in situ continue to develop. A more intimate understanding of the paracrine signaling pathways which mediate immune evasion by subverting DC function promises to provide novel strategies for improving the clinical efficacy of DC-based cancer vaccines. This will likely require a better understanding of both the antigen expression profile and the immune evasion network of the tumor and its associated stromal tissues. PMID:27011049

  12. Dendritic cell-based vaccines in treating recurrent herpes labialis: Results of pilot clinical study.

    PubMed

    Leplina, Olga; Starostina, Nataliya; Zheltova, Olga; Ostanin, Alexandr; Shevela, Ekaterina; Chernykh, Elena

    2016-12-01

    Recurrent herpes simplex labialis caused predominantly with herpes simplexvirus 1(HSV-1) is a major problem, for which various treatments have minimal impact. Given the important role of the immune system in controlling virus infection, an activation of virus-specific immune responses, in particular,using dendritic cell (DCs) vaccines, seems to be a promising approach for the treatment of patients with frequent recurrences of herpes labialis. The current paper presents the results of a pilot study of the safety and efficacy of DC vaccines in 14 patients with recurrent HSV-1 infections. DCs were generated in presence of GM-CSF and IFN-alpha and were loaded with HSV-1 recombinant viral glycoprotein D (HSV1gD). DCs cells were injected subcutaneously as 2 courses of vaccination during 9 months. Immunotherapy with DCs did not induce any serious side effects and resulted in more than 2-fold reduction in the recurrence rate and significant enhancement of the inter-recurrent time during the 9 months of treatment and subsequent 6-month follow-up period. An obvious clinical improvement was accompanied with an induction of an antigen-specific response to HCV1gD and a normalization of reduced mitogenic responsiveness of mono-nuclear cells. According to long-term survey data (on average 48 months after the beginning of therapy), 87% of respondents reported the decreased incidence of recurrent infection. At this time, most patients (85.7%) responded to HCV1gD stimulation. The data obtained suggests that dendritic cell vaccines may be a promising new approach for the treatment of recurrent labial herpes.

  13. Evaluation of an α synuclein sensitized dendritic cell based vaccine in a transgenic mouse model of Parkinson disease.

    PubMed

    Ugen, Kenneth E; Lin, Xiaoyang; Bai, Ge; Liang, Zhanhua; Cai, Jianfeng; Li, Kunyun; Song, Shijie; Cao, Chuanhai; Sanchez-Ramos, Juan

    2015-01-01

    In order to develop a cell-based vaccine against the Parkinson disease (PD) associated protein α-synuclein (α-Syn) 3 peptides were synthesized based upon predicted B cell epitopes within the full length α-Syn protein sequence. These peptide fragments as well as the full length recombinant human α-Syn (rh- α-Syn) protein were used to sensitize mouse bone marrow-derived dendritic cells (DC) ex vivo, followed by intravenous delivery of these sensitized DCs into transgenic (Tg) mice expressing the human A53T variant of α-Syn. ELISA analysis and testing of behavioral locomotor function by rotometry were performed on all mice after the 5th vaccination as well as just prior to euthanasia. The results indicated that vaccination with peptide sensitized DCs (PSDC) as well as DCs sensitized by rh-α-Syn induced specific anti-α-Syn antibodies in all immunized mice. In terms of rotometry performance, a measure of locomotor activity correlated to brain dopamine levels, mice vaccinated with PSDC or rh- α-Syn sensitized DCs performed significantly better than non-vaccinated Tg control mice during the final assessment (i.e. at 17 months of age) before euthanasia. As well, measurement of levels of brain IL-1α, a cytokine hypothesized to be associated with neuroinflammation, demonstrated that this proinflammatory molecule was significantly reduced in the PSDC and rh- α-Syn sensitized DC vaccinated mice compared to the non-vaccinated Tg control group. Overall, α-Syn antigen-sensitized DC vaccination was effective in generating specific anti- α-Syn antibodies and improved locomotor function without eliciting an apparent general inflammatory response, indicating that this strategy may be a safe and effective treatment for PD.

  14. Glycyrrhiza uralensis water extract enhances dendritic cell maturation and antitumor efficacy of HPV dendritic cell-based vaccine

    PubMed Central

    Aipire, Adila; Li, Jinyu; Yuan, Pengfei; He, Jiang; Hu, Yelang; Liu, Lu; Feng, Xiaoli; Li, Yijie; Zhang, Fuchun; Yang, Jianhua; Li, Jinyao

    2017-01-01

    Licorice has been used as herbal medicine and natural sweetener. Here, we prepared Glycyrrhiza uralensis water extract (GUWE) and investigated the effect of GUWE on the maturation and function of dendritic cells (DCs) and its adjuvant effect on DC-based vaccine. We observed that GUWE dose-dependently promoted DC maturation and cytokine secretion through TLR4 signaling pathway. The capacity of DC to stimulate allogenic splenocyte proliferation was also enhanced by GUWE treatment. Compared with control group, GUWE treated DCs pulsed with human papillomavirus (HPV)-16 E6/E7 peptides significantly inhibited the tumor growth in both early and late therapeutic groups. In early therapeutic group, the frequencies of induced regulatory T cells (iTregs: CD4+CD25−Fopx3+) and CD4+ and CD8+ T cells were significantly decreased and increased, respectively. HPV-16-specific CD8+ T cell responses were significantly induced and negatively correlated with iTreg frequencies and tumor weight. These results indicated the immunoregulatory activities of licorice. PMID:28272545

  15. Glycyrrhiza uralensis water extract enhances dendritic cell maturation and antitumor efficacy of HPV dendritic cell-based vaccine.

    PubMed

    Aipire, Adila; Li, Jinyu; Yuan, Pengfei; He, Jiang; Hu, Yelang; Liu, Lu; Feng, Xiaoli; Li, Yijie; Zhang, Fuchun; Yang, Jianhua; Li, Jinyao

    2017-03-08

    Licorice has been used as herbal medicine and natural sweetener. Here, we prepared Glycyrrhiza uralensis water extract (GUWE) and investigated the effect of GUWE on the maturation and function of dendritic cells (DCs) and its adjuvant effect on DC-based vaccine. We observed that GUWE dose-dependently promoted DC maturation and cytokine secretion through TLR4 signaling pathway. The capacity of DC to stimulate allogenic splenocyte proliferation was also enhanced by GUWE treatment. Compared with control group, GUWE treated DCs pulsed with human papillomavirus (HPV)-16 E6/E7 peptides significantly inhibited the tumor growth in both early and late therapeutic groups. In early therapeutic group, the frequencies of induced regulatory T cells (iTregs: CD4(+)CD25(-)Fopx3(+)) and CD4(+) and CD8(+) T cells were significantly decreased and increased, respectively. HPV-16-specific CD8(+) T cell responses were significantly induced and negatively correlated with iTreg frequencies and tumor weight. These results indicated the immunoregulatory activities of licorice.

  16. Systemic Administration of Interleukin 2 Enhances the Therapeutic Efficacy of Dendritic Cell-Based Tumor Vaccines

    NASA Astrophysics Data System (ADS)

    Shimizu, K.; Fields, R. C.; Giedlin, M.; Mule, J. J.

    1999-03-01

    We have reported previously that murine bone marrow-derived dendritic cells (DC) pulsed with whole tumor lysates can mediate potent antitumor immune responses both in vitro and in vivo. Because successful therapy was dependent on host immune T cells, we have now evaluated whether the systemic administration of the T cell stimulatory/growth promoting cytokine interleukin-2 (IL-2) could enhance tumor lysate-pulsed DC-based immunizations to further promote protective immunity toward, and therapeutic rejection of, syngeneic murine tumors. In three separate approaches using a weakly immunogenic sarcoma (MCA-207), the systemic administration of non-toxic doses of recombinant IL-2 (20,000 and 40,000 IU/dose) was capable of mediating significant increases in the potency of DC-based immunizations. IL-2 could augment the efficacy of tumor lysate-pulsed DC to induce protective immunity to lethal tumor challenge as well as enhance splenic cytotoxic T lymphocyte activity and interferon-γ production in these treated mice. Moreover, treatment with the combination of tumor lysate-pulsed DC and IL-2 could also mediate regressions of established pulmonary 3-day micrometastases and 7-day macrometastases as well as established 14- and 28-day s.c. tumors, leading to either significant cure rates or prolongation in overall survival. Collectively, these findings show that nontoxic doses of recombinant IL-2 can potentiate the antitumor effects of tumor lysate-pulsed DC in vivo and provide preclinical rationale for the use of IL-2 in DC-based vaccine strategies in patients with advanced cancer.

  17. DNA is an efficient booster of dendritic cell-based vaccine

    PubMed Central

    Li, Jinyao; Valentin, Antonio; Beach, Rachel Kelly; Alicea, Candido; Felber, Barbara K; Pavlakis, George N

    2015-01-01

    DC-based therapeutic vaccines as a promising strategy against chronic infections and cancer have been validated in several clinical trials. However, DC-based vaccines are complex and require many in vitro manipulations, which makes this a personalized and expensive therapeutic approach. In contrast, DNA-based vaccines have many practical advantages including simplicity, low cost of manufacturing and potent immunogenicity already proven in non-human primates and humans. In this study, we explored whether DC-based vaccines can be simplified by the addition of plasmid DNA as prime or boost to achieve robust CD8-mediated immune responses. We compared the cellular immunity induced in BALB/c and C57BL/6 mice by DC vaccines, loaded either with peptides or optimized SIV Env DNA, and plasmid DNA-based vaccines delivered by electroporation (EP). We found that mature DC loaded with peptides (P-mDC) induced the highest CD8+ T cell responses in both strains of mice, but those responses were significantly higher in the C57BL/6 model. A heterologous prime-boost strategy (P-DC prime-DNA boost) induced CD8+ T cell responses similar to those obtained by the P-DC vaccine. Importantly, this strategy elicited robust polyfunctional T cells as well as highest antigen-specific central memory CD8+ T cells in C57BL/6 mice, suggesting long-term memory responses. These results indicate that a DC-based vaccine in combination with DNA in a heterologous DC prime-DNA boost strategy has potential as a repeatedly administered vaccine. PMID:26125100

  18. Vitamin E Succinate as an Adjuvant for Dendritic Cell Based Vaccines

    DTIC Science & Technology

    2006-07-01

    cancer cells by tocopherols and tocotrienols . Nutr Cancer, 33: 26-32, 1999. 33. Yu, W., Sanders, B. G., and Kline, K. RRR- alpha -tocopheryl succinate...DC vaccines with a chemotherapeutic drug, which may act as an adjuvant for DC vaccines. Vitamin E succinate or alpha tocopheryl succinate (α-TOS) is...residual disease setting, 3) identify the mechanism involved in mediating the anti-tumor response 15. SUBJECT TERMS Chemo-immunotherapy, alpha

  19. Maturation and trafficking of monocyte-derived dendritic cells in monkeys: implications for dendritic cell-based vaccines.

    PubMed

    Barratt-Boyes, S M; Zimmer, M I; Harshyne, L A; Meyer, E M; Watkins, S C; Capuano, S; Murphey-Corb, M; Falo, L D; Donnenberg, A D

    2000-03-01

    Human dendritic cells (DC) have polarized responses to chemokines as a function of maturation state, but the effect of maturation on DC trafficking in vivo is not known. We have addressed this question in a highly relevant rhesus macaque model. We demonstrate that immature and CD40 ligand-matured monocyte-derived DC have characteristic phenotypic and functional differences in vitro. In particular, immature DC express CC chemokine receptor 5 (CCR5) and migrate in response to macrophage inflammatory protein-1alpha (MIP-1alpha), whereas mature DC switch expression to CCR7 and respond exclusively to MIP-3beta and 6Ckine. Mature DC transduced to express a marker gene localized to lymph nodes after intradermal injection, constituting 1.5% of lymph node DC. In contrast, cutaneous DC transfected in situ via gene gun were detected in the draining lymph node at a 20-fold lower frequency. Unexpectedly, the state of maturation at the time of injection had no influence on the proportion of DC that localized to draining lymph nodes, as labeled immature and mature DC were detected in equal numbers. Immature DC that trafficked to lymph nodes underwent a significant up-regulation of CD86 expression indicative of spontaneous maturation. Moreover, immature DC exited completely from the dermis within 36 h of injection, whereas mature DC persisted in large numbers associated with a marked inflammatory infiltrate. We conclude that in vitro maturation is not a requirement for effective migration of DC in vivo and suggest that administration of Ag-loaded immature DC that undergo natural maturation following injection may be preferred for DC-based immunotherapy.

  20. T cell-derived IL-10 determines leishmaniasis disease outcome and is suppressed by a dendritic cell based vaccine.

    PubMed

    Schwarz, Tobias; Remer, Katharina A; Nahrendorf, Wiebke; Masic, Anita; Siewe, Lisa; Müller, Werner; Roers, Axel; Moll, Heidrun

    2013-01-01

    In the murine model of Leishmania major infection, resistance or susceptibility to the parasite has been associated with the development of a Th1 or Th2 type of immune response. Recently, however, the immunosuppressive effects of IL-10 have been ascribed a crucial role in the development of the different clinical correlates of Leishmania infection in humans. Since T cells and professional APC are important cellular sources of IL-10, we compared leishmaniasis disease progression in T cell-specific, macrophage/neutrophil-specific and complete IL-10-deficient C57BL/6 as well as T cell-specific and complete IL-10-deficient BALB/c mice. As early as two weeks after infection of these mice with L. major, T cell-specific and complete IL-10-deficient animals showed significantly increased lesion development accompanied by a markedly elevated secretion of IFN-γ or IFN-γ and IL-4 in the lymph nodes draining the lesions of the C57BL/6 or BALB/c mutants, respectively. In contrast, macrophage/neutrophil-specific IL-10-deficient C57BL/6 mice did not show any altered phenotype. During the further course of disease, the T cell-specific as well as the complete IL-10-deficient BALB/c mice were able to control the infection. Furthermore, a dendritic cell-based vaccination against leishmaniasis efficiently suppresses the early secretion of IL-10, thus contributing to the control of parasite spread. Taken together, IL-10 secretion by T cells has an influence on immune activation early after infection and is sufficient to render BALB/c mice susceptible to an uncontrolled Leishmania major infection.

  1. [Establishment of induced pluripotent stem cells from adipose tissue-derived stem cells for dendritic cell-based cancer vaccines].

    PubMed

    Matsushita, Norimasa; Kobayashi, Hajime; Aruga, Atsushi; Yamamoto, Masakazu

    2014-04-01

    Recently, studies on regenerative stem cell therapy are being encouraged, and efforts to generate dendritic cells, which play important roles in cancer immunotherapy, from stem cells are being made in the field of tumor immunology. Therapeutic acquisition of stem cells has important clinical applications. Studies on induced pluripotent stem(iPS)cells generated from somatic cells with pluripotent genes have advanced in recent years. Stem cells are reported to be found in adipose tissue (adipose-derived stem cells, ADSC). Our goal is to develop a new cancer vaccine by using dendritic cells generated from ADSC. In a preliminary study, we examined whether iPS cells can be generated from ADSC to serve as a source of dendritic cells.We introduced a plasmid with pluripotent genes(OCT3/4, KLF4, SOX2, L-MYC, LIN28, p53-shRNA)into an ADSC strain derived from adipose tissue by electroporation and subsequently cultured the cells for further examination. A colony sugges- tive of iPS cells from ADSC was observed. OCT3/4, KLF4, SOX2, L-MYC, and LIN28 mRNAs were expressed in the cultured cells, as confirmed by reverse transcriptase-polymerase chain reaction(RT-PCR). On the basis of these results, we confirmed that iPS cells were generated from ADSC. The method of inducing dendritic cells from iPS cells has already been reported, and the results of this study suggest that ADSC is a potential source of dendritic cells.

  2. Rapamycin Promotes Mouse 4T1 Tumor Metastasis that Can Be Reversed by a Dendritic Cell-Based Vaccine.

    PubMed

    Lin, Tien-Jen; Liang, Wen-Miin; Hsiao, Pei-Wen; M S, Pradeep; Wei, Wen-Chi; Lin, Hsin-Ting; Yin, Shu-Yi; Yang, Ning-Sun

    2015-01-01

    Suppression of tumor metastasis is a key strategy for successful cancer interventions. Previous studies indicated that rapamycin (sirolimus) may promote tumor regression activity or enhance immune response against tumor targets. However, rapamycin also exhibits immunosuppressant effects and is hence used clinically as an organ transplantation drug. We hypothesized that the immunosuppressive activities of rapamycin might also negatively mediate host immunity, resulting in promotion of tumor metastasis. In this study, the effects of rapamycin and phytochemical shikonin were investigated in vitro and in vivo in a 4T1 mouse mammary tumor model through quantitative assessment of immunogenic cell death (ICD), autophagy, tumor growth and metastasis. Tumor-bearing mice were immunized with test vaccines to monitor their effect on tumor metastasis. We found that intraperitoneal (ip) administration of rapamycin after a tumor-resection surgery drastically increased the metastatic activity of 4T1 tumors. Possible correlation of this finding to human cancers was suggested by epidemiological analysis of data from Taiwan's National Health Insurance Research Database (NHIRD). Since our previous studies showed that modified tumor cell lysate (TCL)-pulsed, dendritic cell (DC)-based cancer vaccines can effectively suppress metastasis in mouse tumor models, we assessed whether such vaccines may help offset this rapamycin-promoted metastasis. We observed that shikonin efficiently induced ICD of 4T1 cells in culture, and DC vaccines pulsed with shikonin-treated TCL (SK-TCL-DC) significantly suppressed rapamycin-enhanced metastasis and Treg cell expansion in test mice. In conclusion, rapamycin treatment in mice (and perhaps in humans) promotes metastasis and the effect may be offset by treatment with a DC-based cancer vaccine.

  3. Generation of dendritic cell-based vaccine using high hydrostatic pressure for non-small cell lung cancer immunotherapy.

    PubMed

    Hradilova, Nada; Sadilkova, Lenka; Palata, Ondrej; Mysikova, Dagmar; Mrazkova, Hana; Lischke, Robert; Spisek, Radek; Adkins, Irena

    2017-01-01

    High hydrostatic pressure (HHP) induces immunogenic death of tumor cells which confer protective anti-tumor immunity in vivo. Moreover, DC pulsed with HHP-treated tumor cells induced therapeutic effect in mouse cancer model. In this study, we tested the immunogenicity, stability and T cell stimulatory activity of human monocyte-derived dendritic cell (DC)-based HHP lung cancer vaccine generated in GMP compliant serum free medium using HHP 250 MPa. DC pulsed with HHP-killed lung cancer cells and poly(I:C) enhanced DC maturation, chemotactic migration and production of pro-inflammatory cytokines after 24h. Moreover, DC-based HHP lung cancer vaccine showed functional plasticity after transfer into serum-containing media and stimulation with LPS or CD40L after additional 24h. LPS and CD40L stimulation further differentially enhanced the expression of costimulatory molecules and production of IL-12p70. DC-based HHP lung cancer vaccine decreased the number of CD4+CD25+Foxp3+ T regulatory cells and stimulated IFN-γ-producing tumor antigen-specific CD4+ and CD8+ T cells from non-small cell lung cancer (NSCLC) patients. Tumor antigen specific CD8+ and CD4+ T cell responses were detected in NSCLC patient's against a selected tumor antigens expressed by lung cancer cell lines used for the vaccine generation. We also showed for the first time that protein antigen from HHP-killed lung cancer cells is processed and presented by DC to CD8+ T cells. Our results represent important preclinical data for ongoing NSCLC Phase I/II clinical trial using DC-based active cellular immunotherapy (DCVAC/LuCa) in combination with chemotherapy and immune enhancers.

  4. Tumor endothelial marker 8 expression levels in dendritic cell-based cancer vaccines are related to clinical outcome.

    PubMed

    Venanzi, Franco Maria; Petrini, Massimiliano; Fiammenghi, Laura; Bolli, Elisabetta; Granato, Anna Maria; Ridolfi, Laura; Gabrielli, Federica; Barucca, Alessandra; Concetti, Antonio; Ridolfi, Ruggero; Riccobon, Angela

    2010-01-01

    Previous studies have shown that tumor endothelial markers (TEMs 1-9) are up modulated in immunosuppressive, pro-angiogenic dendritic cells (DCs) found in tumor microenvironments. We recently reported that monocyte-derived DCs used for vaccination trials may accumulate high levels of TEM8 gene transcripts. Here, we investigate whether TEM8 expression in DC preparations represents a specific tumor-associated change of potential clinical relevance. TEM8 expression at the mRNA and protein level was evaluated by quantitative real-time RT-PCR and cytofluorimetric analysis in human clinical grade DCs utilized for the therapeutic vaccination of 17 advanced cancer patients (13 melanoma and 4 renal cell carcinoma). The analyses revealed that DCs from patients markedly differ in their ability to up-modulate TEM8. Indeed, mDCs from eight non-progressing patients [median overall survival (OS) = 32 months, all positive to the delayed-type hypersensitivity test (DTH)], had similar TEM8 mRNA expression levels [mDCs vs. immature iDCs; mean fold increase (mfi) = 1.97] to those found in healthy donors (mfi = 2.7). Conversely, mDCs from nine progressing patients (OS < 5 months, all but one with negative DTH) showed an increase in TEM8 mRNA levels (mfi = 12.88, p = 0.0018). The present observations suggest that TEM8 expression levels in DC-based therapeutic vaccines would allow the selection of a subgroup of patients who are most likely to benefit from therapeutic vaccination.

  5. Generation of dendritic cell-based vaccine using high hydrostatic pressure for non-small cell lung cancer immunotherapy

    PubMed Central

    Hradilova, Nada; Sadilkova, Lenka; Palata, Ondrej; Mysikova, Dagmar; Mrazkova, Hana; Lischke, Robert; Spisek, Radek; Adkins, Irena

    2017-01-01

    High hydrostatic pressure (HHP) induces immunogenic death of tumor cells which confer protective anti-tumor immunity in vivo. Moreover, DC pulsed with HHP-treated tumor cells induced therapeutic effect in mouse cancer model. In this study, we tested the immunogenicity, stability and T cell stimulatory activity of human monocyte-derived dendritic cell (DC)-based HHP lung cancer vaccine generated in GMP compliant serum free medium using HHP 250 MPa. DC pulsed with HHP-killed lung cancer cells and poly(I:C) enhanced DC maturation, chemotactic migration and production of pro-inflammatory cytokines after 24h. Moreover, DC-based HHP lung cancer vaccine showed functional plasticity after transfer into serum-containing media and stimulation with LPS or CD40L after additional 24h. LPS and CD40L stimulation further differentially enhanced the expression of costimulatory molecules and production of IL-12p70. DC-based HHP lung cancer vaccine decreased the number of CD4+CD25+Foxp3+ T regulatory cells and stimulated IFN-γ-producing tumor antigen-specific CD4+ and CD8+ T cells from non-small cell lung cancer (NSCLC) patients. Tumor antigen specific CD8+ and CD4+ T cell responses were detected in NSCLC patient’s against a selected tumor antigens expressed by lung cancer cell lines used for the vaccine generation. We also showed for the first time that protein antigen from HHP-killed lung cancer cells is processed and presented by DC to CD8+ T cells. Our results represent important preclinical data for ongoing NSCLC Phase I/II clinical trial using DC-based active cellular immunotherapy (DCVAC/LuCa) in combination with chemotherapy and immune enhancers. PMID:28187172

  6. Antitumor dendritic cell-based vaccines: lessons from 20 years of clinical trials and future perspectives.

    PubMed

    Constantino, João; Gomes, Célia; Falcão, Amílcar; Cruz, Maria T; Neves, Bruno M

    2016-02-01

    Dendritic cells (DCs) are versatile elements of the immune system and are best known for their unparalleled ability to initiate and modulate adaptive immune responses. During the past few decades, DCs have been the subject of numerous studies seeking new immunotherapeutic strategies against cancer. Despite the initial enthusiasm, disappointing results from early studies raised some doubts regarding the true clinical value of these approaches. However, our expanding knowledge of DC immunobiology and the definition of the optimal characteristics for antitumor immune responses have allowed a more rational development of DC-based immunotherapies in recent years. Here, after a brief overview of DC immunobiology, we sought to systematize the knowledge provided by 20 years of clinical trials, with a special emphasis on the diversity of approaches used to manipulate DCs and their consequent impact on vaccine effectiveness. We also address how new therapeutic concepts, namely the combination of DC vaccines with other anticancer therapies, are being implemented and are leveraging clinical outcomes. Finally, optimization strategies, new insights, and future perspectives on the field are also highlighted.

  7. Dendritic Cell Based Vaccines that Utilize Myeloid Rather than Plasmacytoid Cells Offer a Superior Survival Advantage in Malignant Glioma

    PubMed Central

    Dey, Mahua; Chang, Alan L.; Miska, Jason; Wainwright, Derek A.; Ahmed, Atique U.; Balyasnikova, Irina V.; Pytel, Peter; Han, Yu; Tobias, Alex; Zhang, Lingjiao; Qiao, Jian; Lesniak, Maciej S.

    2015-01-01

    Dendritic cells (DC) are professional antigen presenting cells (APC) that are traditionally divided into two distinct subsets: myeloid DC (mDCs) and plasmacytoid DC (pDCs). pDCs are known for their ability to secrete large amount of IFN-α. Apart from IFN-α production, pDCs can also process antigen and induce T-cell immunity or tolerance. In several solid tumors, pDCs have been shown to play a critical role in promoting tumor immunosuppression. We investigated the role of pDCs in the process of glioma progression in the syngeneic murine model of glioma. We show that glioma-infiltrating pDCs are the major APC in glioma and are deficient in IFN-α secretion (p < 0.05). pDC depletion leads to increased survival of the mice bearing intracranial tumor by decreasing the number of regulatory T-cells (Treg) and by decreasing the suppressive capabilities of Tregs. We subsequently compared the ability of mDCs and pDCs to generate effective anti-glioma immunity in a GL261-OVA mouse model of glioma. Our data suggest that mature pDCs and mDCs isolated from naïve mice can be effectively activated and loaded with SIINFEKL antigen in vitro. Upon intra-dermal injection in the hind leg, a fraction of both types of DCs migrate to the brain and lymph nodes.. Compared to mice vaccinated with pDC or control mice, mice vaccinated with mDCs generated a robust Th1 type immune response, characterized by high frequency of CD4+Tbet+ T-cells and CD8+Siinfekel+ T-cells. This robust anti-tumor T-cell response resulted in tumor eradication and long-term survival in 60% of the animals (p<0.001). PMID:26026061

  8. Induction of strong and persistent MelanA/MART-1-specific immune responses by adjuvant dendritic cell-based vaccination of stage II melanoma patients.

    PubMed

    Tuettenberg, Andrea; Becker, Christian; Huter, Eva; Knop, Jürgen; Enk, Alexander H; Jonuleit, Helmut

    2006-05-15

    A significant percentage of stage II melanoma patients (tumor thickness>1 mm) remain at risk of tumor recurrence after primary tumor excision. In this study, we used tumor antigen-pulsed dendritic cells as an adjuvant for immunization of these "high-risk" melanoma patients after resection of the primary tumor. A total of 13 patients were included and vaccinated 6 times every 14 days with autologous dendritic cells pulsed with a MelanA/MART-1 peptide in combination with a recall antigen. Antigen-specific immune responses were monitored before, during and up to 1 year after the last vaccination. The majority of patients exhibited increased recall antigen-specific CD4+ T cell responses upon vaccination. MelanA/MART-1-specific CD8+ T cells were expanded in 9/13 patients resulting in increased frequencies of memory cells in these patients. CD8+ T cells acquired the capacity to secrete IFN-gamma, to proliferate in culture in response to the tumor antigen used for vaccination and postvaccine samples contained MelanA/MART-1-specific T cells that recognized also the natural MelanA/MART-1-antigen expressed by tumor cells. Moreover, vaccination induced a long-lived tumor antigen-specific DTH-reactivity in the majority of the patients, detectable even 12 months after the last immunization. These data demonstrate for the first time that vaccination with tumor antigen-pulsed dendritic cells in a clinically adjuvant setting induces strong and persistent antigen-specific T-cell responses in tumor-free stage II melanoma patients, suggesting that tumor protective T cell immunity can be achieved.

  9. SLA-PGN-primed dendritic cell-based vaccination induces Th17-mediated protective immunity against experimental visceral leishmaniasis: a crucial role of PKCβ.

    PubMed

    Jawed, Junaid Jibran; Majumder, Saikat; Bandyopadhyay, Syamdas; Biswas, Satabdi; Parveen, Shabina; Majumdar, Subrata

    2016-07-01

    Emergence of drug resistance during visceral leishmaniasis (VL) is a major obstacle imposed during successful therapy. An effective vaccine strategy against this disease is therefore necessary. Our present study exploited the SLA (soluble leishmanial antigen) and PGN (peptidoglycan) stimulated bone marrow-derived dendritic cells (DCs) as a suitable vaccine candidate during experimental VL. SLA-PGN-stimulated DCs showed a significant decrease in hepatic and splenic parasite burden, which were associated with increased production of nitric oxide and pro-inflammatory cytokines such as IL-12, IFN-γ and IL-17. Elevated level of IL-17 was accompanied with the generation of more Th17 cells. Further studies on DC provided the evidence that these SLA-PGN-stimulated DCs played an important role in providing necessary cytokines such as IL-6, IL-23 and TGF-β for the generation of Th17 cells. Interestingly, inhibition of protein kinase C-β (PKCβ) in DCs led to decreased production of Th17 polarizing cytokines, causing reduction of the Th17 population size. Altogether, our finding highlighted the important role of DC-based PKCβ in regulation of the function and generation of Th17 cells.

  10. The combination of Pleurotus ferulae water extract and CpG-ODN enhances the immune responses and antitumor efficacy of HPV peptides pulsed dendritic cell-based vaccine.

    PubMed

    Li, Jinyu; Li, Jinyao; Aipire, Adila; Luo, JiaoJiao; Yuan, Pengfei; Zhang, Fuchun

    2016-06-30

    Our previous study reported that the combination of Pleurotus ferulae water extract (PFWE) and CpG (PFWE+CpG) enhanced the maturation and function of dendritic cells (DCs). Here, we investigated the effects of PFWE+CpG on the immune responses and antitumor efficacy of DC-based vaccine. We observed that all of HPV E6 and E7 peptides pulsed DCs (HPV-immature DCs, HPV+PFWE-, +CpG- or +PFWE+CpG-DCs) induced antigen-specific CD8(+) T cell responses and HPV+PFWE+CpG-DCs induced highest level of CD8(+) T cell responses. The antitumor efficacy of HPV-DCs vaccines was evaluated in TC-1 tumor mouse model. The early therapeutic study showed that HPV+PFWE-, +CpG- and +PFWE+CpG-DCs greatly inhibited tumor growth. Moreover, HPV+PFWE+CpG-DCs controlled tumor growth at a faster rate compared to other groups. These three groups induced HPV-specific CD8(+) T cell responses and significantly decreased the frequencies of induced regulatory T cells (iTregs: CD4(+)CD25(-)Fopx3(+)). However, only HPV+PFWE+CpG-DCs significantly decreased the frequency of natural Tregs (nTregs: CD4(+)CD25(+)Fopx3(+)). Furthermore, HPV+PFWE+CpG-DCs also significantly inhibited tumor growth in the late therapeutic study. The results showed that PFWE+CpG enhanced the immune responses and antitumor efficacy of DC-based vaccine, suggesting that PFWE+CpG might be the potential candidate for the generation of clinical-grade mature DCs.

  11. In vivo immunogenicity of Tax(11-19) epitope in HLA-A2/DTR transgenic mice: implication for dendritic cell-based anti-HTLV-1 vaccine.

    PubMed

    Sagar, Divya; Masih, Shet; Schell, Todd; Jacobson, Steven; Comber, Joseph D; Philip, Ramila; Wigdahl, Brian; Jain, Pooja; Khan, Zafar K

    2014-05-30

    Viral oncoprotein Tax plays key roles in transformation of human T-cell leukemia virus (HTLV-1)-infected T cells leading to adult T-cell leukemia (ATL), and is the key antigen recognized during HTLV-associated myelopathy (HAM). In HLA-A2+ asymptomatic carriers as well as ATL and HAM patients, Tax(11-19) epitope exhibits immunodominance. Here, we evaluate CD8 T-cell immune response against this epitope in the presence and absence of dendritic cells (DCs) given the recent encouraging observations made with Phase 1 DC-based vaccine trial for ATL. To facilitate these studies, we first generated an HLA-A2/DTR hybrid mouse strain carrying the HLA-A2.1 and CD11c-DTR genes. We then studied CD8 T-cell immune response against Tax(11-19) epitope delivered in the absence or presence of Freund's adjuvant and/or DCs. Overall results demonstrate that naturally presented Tax epitope could initiate an antigen-specific CD8T cell response in vivo but failed to do so upon DC depletion. Presence of adjuvant potentiated Tax(11-19)-specific response. Elevated serum IL-6 levels coincided with depletion of DCs whereas decreased TGF-β was associated with adjuvant use. Thus, Tax(11-19) epitope is a potential candidate for the DC-based anti-HTLV-1 vaccine and the newly hybrid mouse strain could be used for investigating DC involvement in human class-I-restricted immune responses.

  12. In vivo immunogenicity of Tax 11-19 epitope in HLA-A2/DTR transgenic mice: implication for dendritic cell-based anti-HTLV-1 vaccine

    PubMed Central

    Sagar, Divya; Masih, Shet; Schell, Todd; Jacobson, Steven; Comber, Joseph D.; Philip, Ramila; Wigdahl, Brian; Jain, Pooja; Khan, Zafar K.

    2014-01-01

    Viral oncoprotein Tax plays key roles in transformation of human T-cell leukemia virus (HTLV-1)-infected T cells leading to adult T-cell leukemia (ATL), and is the key antigen recognized during HTLV-associated myelopathy (HAM). In HLA-A2+ asymptomatic carriers as well as ATL and HAM patients, Tax(11-19) epitope exhibits immunodominance. Here, we evaluate CD8 T-cell immune response against this epitope in the presence and absence of dendritic cells (DCs) given the recent encouraging observations made with Phase 1 DC-based vaccine trial for ATL. To facilitate these studies, we first generated an HLA-A2/DTR hybrid mouse strain carrying the HLA-A2.1 and CD11c-DTR genes. We then studied CD8 T-cell immune response against Tax(11-19) epitope delivered in the absence or presence of Freund’s adjuvant and/or DCs. Overall results demonstrate that naturally presented Tax epitope could initiate an antigen-specific CD8 T cell response in vivo but failed to do so upon DC depletion. Presence of adjuvant potentiated Tax(11-19)-specific response. Elevated serum IL-6 levels coincided with depletion of DCs whereas decreased TGF-β was associated with adjuvant use. Thus, Tax(11-19) epitope is a potential candidate for the DC-based anti-HTLV-1 vaccine and the newly hybrid mouse strain could be used for investigating DC involvement in human class-I-restricted immune responses. PMID:24739247

  13. Enhancement of dendritic cell-based vaccine potency by anti-apoptotic siRNAs targeting key pro-apoptotic proteins in cytotoxic CD8(+) T cell-mediated cell death.

    PubMed

    Kim, Jin Hee; Kang, Tae Heung; Noh, Kyung Hee; Bae, Hyun Cheol; Kim, Seok-Ho; Yoo, Young Do; Seong, Seung-Yong; Kim, Tae Woo

    2009-01-29

    Dendritic cells (DCs) have become an important measure for the treatment of malignancies. Current DC preparations, however, generate short-lived DCs because they are subject to cell death from various apoptotic pressures. Antigen-specific CD8(+) cytotoxic T lymphocytes (CTLs) is one of the main obstacles to limit the DC-mediated immune priming since CTLs can recognize the target antigen expressing DCs as target cells and kill the DCs. CTLs secret perforin and serine protease granzymes during CTL killing. Perforin and serine protease granzymes induce the release of a number of mitochondrial pro-apoptotic factors, which are controlled by members of the BCL-2 family, such as BAK, BAX and BIM. FasL linking to Fas on DCs triggers the activation of caspase-8, which eventually leads to mitochondria-mediated apoptosis via truncation of BID. In this study, we tried to enhance the DC priming capacity by prolonging DC survival using anti-apoptotic siRNA targeting these key pro-apoptotic molecules in CTL killing. Human papillomavirus (HPV)-16 E7 antigen presenting DCs that were transfected with these anti-apoptotic siRNAs showed increased resistance to T cell-mediated death, leading to enhanced E7-specific CD8(+) T cell activation in vitro and in vivo. Among them, siRNA targeting BIM (siBIM) generated strongest E7-specific E7-specific CD8(+) T cell immunity. More importantly, vaccination with E7 presenting DCs transfected with siBIM was capable of generating a marked therapeutic effect in vaccinated mice. Our data indicate that ex vivo manipulation of DCs with siBIM may represent a plausible strategy for enhancing dendritic cell-based vaccine potency.

  14. Dendritic Cell-Targeted Vaccines

    PubMed Central

    Cohn, Lillian; Delamarre, Lélia

    2014-01-01

    Despite significant effort, the development of effective vaccines inducing strong and durable T-cell responses against intracellular pathogens and cancer cells has remained a challenge. The initiation of effector CD8+ T-cell responses requires the presentation of peptides derived from internalized antigen on class I major histocompatibility complex molecules by dendritic cells (DCs) in a process called cross-presentation. A current strategy to enhance the effectiveness of vaccination is to deliver antigens directly to DCs. This is done via selective targeting of antigen using monoclonal antibodies directed against endocytic receptors on the surface of the DCs. In this review, we will discuss considerations relevant to the design of such vaccines: the existence of DC subsets with specialized functions, the impact of the antigen intracellular trafficking on cross-presentation, and the influence of maturation signals received by DCs on the outcome of the immune response. PMID:24910635

  15. Development of cell-based tuberculosis vaccines: genetically modified dendritic cell vaccine is a much more potent activator of CD4 and CD8 T cells than peptide- or protein-loaded counterparts.

    PubMed

    Malowany, Janet I; McCormick, Sarah; Santosuosso, Michael; Zhang, Xizhong; Aoki, Naoko; Ngai, Patricia; Wang, Jun; Leitch, Jaina; Bramson, Jonathan; Wan, Yonghong; Xing, Zhou

    2006-04-01

    Genetically modified dendritic cell (DC)-based vaccines have not been explored for immunization against tuberculosis. A gene-modified DC vaccine expressing Mycobacterium tuberculosis (M.tb) antigen 85A (Ag85A) was developed by using a recombinant replication-deficient adenoviral gene transfer vector (AdAg85A). AdAg85A-transduced DC vaccine (AdAg85/DC) expressed higher levels of IL-12 and was much more immunogenic than Ag85 protein-loaded (pro/DC) or CD4/CD8 T cell peptide-loaded (pep/DC) DC vaccines. Compared to pro/DC or pep/DC, AdAg85/DC elicited a remarkably higher level of ex vivo IFN-gamma production by CD4 and CD8 T cells at weeks 2, 6, and 12 postimmunization, which was coupled with higher frequencies of antigen-specific T cells. By an in vivo CD8 or CD4 T cell cytotoxicity (CTL) assay, AdAg85/DC was shown to provoke much higher and more sustained levels of CD8 and CD4 CTL activity up to 12 weeks postimmunization. Intramuscular (im) AdAg85/DC immunization was more potent than the iv route of AdAg85/DC immunization. Such stronger immunogenicity of im AdAg85/DC vaccination was corroborated with better protection from M.tb challenge. Our results thus suggest that genetically modified DC-based TB vaccine is superior to subunit DC vaccines and has the potential for therapeutic applications.

  16. [Melanoma immunotherapy: dendritic cell vaccines].

    PubMed

    Lozada-Requena, Ivan; Núñez, César; Aguilar, José Luis

    2015-01-01

    This is a narrative review that shows accessible information to the scientific community about melanoma and immunotherapy. Dendritic cells have the ability to participate in innate and adaptive immunity, but are not unfamiliar to the immune evasion of tumors. Knowing the biology and role has led to generate in vitro several prospects of autologous cell vaccines against diverse types of cancer in humans and animal models. However, given the low efficiency they have shown, we must implement strategies to enhance their natural capacity either through the coexpression of key molecules to activate or reactivate the immune system, in combination with biosimilars or chemotherapeutic drugs. The action of natural products as alternative or adjuvant immunostimulant should not be ruled out. All types of immunotherapy should measure the impact of myeloid suppressor cells, which can attack the immune system and help tumor progression, respectively. This can reduce the activity of cellular vaccines and/or their combinations, that could be the difference between success or not of the immunotherapy. Although for melanoma there exist biosimilars approved by the Food and Drug Administration (FDA), not all have the expected success. Therefore it is necessary to evaluate other strategies including cellular vaccines loaded with tumor antigenic peptides expressed exclusively or antigens from tumor extracts and their respective adjuvants.

  17. Dendritic cell-based immunotherapy in mesothelioma.

    PubMed

    Cornelissen, Robin; Lievense, Lysanne A; Heuvers, Marlies E; Maat, Alexander P; Hendriks, Rudi W; Hoogsteden, Henk C; Hegmans, Joost P; Aerts, Joachim G

    2012-10-01

    Mesothelioma is a rare thoracic malignancy with a dismal prognosis. Current treatment options are scarce and clinical outcomes are rather disappointing. Due to the immunogenic nature of mesothelioma, several studies have investigated immunotherapeutic strategies to improve the prognosis of patients with mesothelioma. In the last decade, progress in knowledge of the modulation of the immune system to attack the tumor has been remarkable, but the optimal strategy for immunotherapy has yet to be unraveled. Because of their potent antigen-presenting capacity, dendritic cells are acknowledged as a promising agent in immunotherapeutic approaches in a number of malignancies. This review gives an update and provides a future perspective in which immunotherapy may improve the outcome of mesothelioma therapy.

  18. Inhibition of the Protein Tyrosine Phosphatase, SHP-1, in Dendritic Cells to Enhance their Efficacy as Cell-Based Prostate Cancer Vaccines

    DTIC Science & Technology

    2008-05-01

    hypothesis that the Src homology region 2 domain-containing phosphatase-1 (SHP-1), is a global inhibitor of DC activation and that by blocking SHP-1 in... inhibitor of DC function and that its inhibition in DCs enhances the strength of immune responses. Finally, using 2 ectopic mouse tumor models (B16 melanoma...enhance function and to overcome the limitations of the "first-generation vaccines". Our specific approach is to inhibit inhibitors of DC function

  19. Active specific T-cell-based immunotherapy for cancer: nucleic acids, peptides, whole native proteins, recombinant viruses, with dendritic cell adjuvants or whole tumor cell-based vaccines. Principles and future prospects.

    PubMed

    Fernandez, N; Duffour, M T; Perricaudet, M; Lotze, M T; Tursz, T; Zitvogel, L

    1998-03-01

    Whereas tumor cells are poor immunogens, recombinant tumor cells or dendritic cells as well as engineered viruses have been demonstrated to elicit specific antitumor immune responses leading to tumor growth suppression and long-lasting immunity in mouse tumor models. Single cytotoxic T lymphocyte-defined epitope-based strategies have proved useful for immunization in tumor-bearing mice. This strategy is under investigation in human melanoma, along with adjuvants such as cytokines or dendritic cells. Flt3L is an in vivo dendritic-cell growth factor that offers new prospects in the field of active specific immunotherapy. These immunotherapeutic approaches are being tested in clinical trials, and may open up novel avenues for disease-free patients with poor prognostic factors.

  20. Optimizing dendritic cell-based immunotherapy for cancer.

    PubMed

    Zhong, Hua; Shurin, Michael R; Han, Baohui

    2007-06-01

    Dendritic cells (DCs) are the most powerful professional antigen-presenting cells and are unique in their capability to initiate, maintain and regulate the intensity of primary immune responses, including specific antitumor responses. Development of practical procedures to prepare sufficient numbers of functional human DCs in culture from the peripheral blood precursors, paved the way for clinical trials to evaluate various DC-based strategies in patients with malignant diseases. However, no definite conclusions regarding the clinical and even immunological efficacy of DC vaccination can be stated, despite the fact that 12 years have passed since the first clinical trial utilizing DCs in cancer patients. Many unanswered questions hamper the development of DC-based vaccines, including the source of DC preparation and protocols for DC generation, activation and loading with tumor antigens, source of tumor antigens, route of vaccine administration and methods of immunomonitoring. Fortunately, in spite of the many obstacles, DC vaccines continue to hold promise for cancer therapy.

  1. Optimizing Dendritic Cell-Based Approaches for Cancer Immunotherapy

    PubMed Central

    Datta, Jashodeep; Terhune, Julia H.; Lowenfeld, Lea; Cintolo, Jessica A.; Xu, Shuwen; Roses, Robert E.; Czerniecki, Brian J.

    2014-01-01

    Dendritic cells (DC) are professional antigen-presenting cells uniquely suited for cancer immunotherapy. They induce primary immune responses, potentiate the effector functions of previously primed T-lymphocytes, and orchestrate communication between innate and adaptive immunity. The remarkable diversity of cytokine activation regimens, DC maturation states, and antigen-loading strategies employed in current DC-based vaccine design reflect an evolving, but incomplete, understanding of optimal DC immunobiology. In the clinical realm, existing DC-based cancer immunotherapy efforts have yielded encouraging but inconsistent results. Despite recent U.S. Federal and Drug Administration (FDA) approval of DC-based sipuleucel-T for metastatic castration-resistant prostate cancer, clinically effective DC immunotherapy as monotherapy for a majority of tumors remains a distant goal. Recent work has identified strategies that may allow for more potent “next-generation” DC vaccines. Additionally, multimodality approaches incorporating DC-based immunotherapy may improve clinical outcomes. PMID:25506283

  2. Advances in inducing adaptive immunity using cell-based cancer vaccines: Clinical applications in pancreatic cancer

    PubMed Central

    Kajihara, Mikio; Takakura, Kazuki; Kanai, Tomoya; Ito, Zensho; Matsumoto, Yoshihiro; Shimodaira, Shigetaka; Okamoto, Masato; Ohkusa, Toshifumi; Koido, Shigeo

    2016-01-01

    The incidence of pancreatic ductal adenocarcinoma (PDA) is on the rise, and the prognosis is extremely poor because PDA is highly aggressive and notoriously difficult to treat. Although gemcitabine- or 5-fluorouracil-based chemotherapy is typically offered as a standard of care, most patients do not survive longer than 1 year. Therefore, the development of alternative therapeutic approaches for patients with PDA is imperative. As PDA cells express numerous tumor-associated antigens that are suitable vaccine targets, one promising treatment approach is cancer vaccines. During the last few decades, cell-based cancer vaccines have offered encouraging results in preclinical studies. Cell-based cancer vaccines are mainly generated by presenting whole tumor cells or dendritic cells to cells of the immune system. In particular, several clinical trials have explored cell-based cancer vaccines as a promising therapeutic approach for patients with PDA. Moreover, chemotherapy and cancer vaccines can synergize to result in increased efficacies in patients with PDA. In this review, we will discuss both the effect of cell-based cancer vaccines and advances in terms of future strategies of cancer vaccines for the treatment of PDA patients. PMID:27182156

  3. New generation of dendritic cell vaccines.

    PubMed

    Radford, Kristen J; Caminschi, Irina

    2013-02-01

    Dendritic cells (DC) play a pivotal role in the induction and regulation of immune responses, including the induction of cytotoxic T lymphocytes (CTL) responses. These are essential for the eradication of cancers and pathogens including HIV and malaria, for which there are currently no effective vaccines. New developments in our understanding of DC biology have identified the key DC subset responsible for CTL induction, which is now an attractive candidate to target for vaccination. These DC are characterized by expression of novel markers Clec9A and XCR1, and a specialized capacity to cross-present antigen (Ag) from tumors and pathogens that do not directly infect DC. New generation DC vaccines that specifically target the cross-presenting DC in vivo have already demonstrated potential in preclinical animal models but the challenge remains to translate these findings into clinically efficacous vaccines in man. This has been greatly facilitated by the recent identification of the equivalent Clec9A(+) XCR1(+) cross-presenting DC in human lymphoid tissues and peripheral tissues that are key sites for vaccination administration. These findings combined with further studies on DC subset biology have important implications for the design of new CTL-mediated vaccines.

  4. Glycogen Synthase Kinase-3β (GSK-3β) Inhibition Enhances Dendritic Cell-based Cancer Vaccine Potency via Suppression of Interferon-γ-induced Indoleamine 2,3-Dioxygenase Expression.

    PubMed

    Noh, Kyung Tae; Son, Kwang Hee; Jung, In Duk; Kang, Tae Heung; Choi, Chang Hun; Park, Yeong-Min

    2015-05-08

    Indoleamine 2,3-dioxygenase (IDO) functions as a crucial mediator of tumor-mediated immune tolerance by causing T-cell suppression via tryptophan starvation in a tumor environment. Glycogen synthase kinase-3β (GSK-3β) is also involved in immune and anti-tumor responses. However, the relativity of these proteins has not been as well defined. Here, we found that GSK-3β-dependent IDO expression in the dendritic cell (DC) plays a role in anti-tumor activity via the regulation of CD8(+) T-cell polarization and cytotoxic T lymphocyte activity. By the inhibition of GSK-3β, attenuated IDO expression and impaired JAK1/2-Stat signaling crucial for IDO expression were observed. Protein kinase Cδ (PKCδ) activity and the interaction between JAK1/2 and Stat3, which are important for IDO expression, were also reduced by GSK-3β inhibition. CD8(+) T-cell proliferation mediated by OVA-pulsed DC was blocked by interferon (IFN)-γ-induced IDO expression via GSK-3β activity. Specific cytotoxic T lymphocyte activity mediated by OVA-pulsed DC against OVA-expressing EG7 thymoma cells but not OVA-nonexpressing EL4 thymoma cells was also attenuated by the expressed IDO via IFN-γ-induced activation of GSK-3β. Furthermore, tumor growth that was suppressed with OVA-pulsed DC vaccination was restored by IDO-expressing DC via IFN-γ-induced activation of GSK-3β in an OVA-expressing murine EG7 thymoma model. Taken together, DC-based immune response mediated by interferon-γ-induced IDO expression via GSK-3β activity not only regulates CD8(+) T-cell proliferation and cytotoxic T lymphocyte activity but also modulates OVA-pulsed DC vaccination against EG7 thymoma.

  5. Harnessing Dendritic Cells to Generate Cancer Vaccines

    PubMed Central

    Palucka, Karolina; Ueno, Hideki; Fay, Joseph; Banchereau, Jacques

    2009-01-01

    Passive immunotherapy of cancer, i.e., transfer of T cells or antibodies, can lead to some objective clinical responses, thus demonstrating that the immune system can reject tumors. However, passive immunotherapy is not expected to yield memory T cells that might control tumor outgrowth. Active immunotherapy with dendritic cell (DCs) vaccines has the potential to induce tumor-specific effector and memory T cells. Clinical trials testing first generation DC vaccines pulsed with tumor antigens provided a proof-of-principle that therapeutic immunity can be elicited. Newer generation DC vaccines are build on the increased knowledge of the DC system including the existence of distinct DC subsets and their plasticity all leading to generation of distinct types of immunity. Rather than the quantity of IFN-γ secreting CD8+ T cells, we should aim at generating high quality high avidity poly-functional effector CD8+ T cells able to reject tumors and long-lived memory CD8+ T cells able to prevent relapse. PMID:19769741

  6. A multifunctional core-shell nanoparticle for dendritic cell-based cancer immunotherapy

    NASA Astrophysics Data System (ADS)

    Cho, Nam-Hyuk; Cheong, Taek-Chin; Min, Ji Hyun; Wu, Jun Hua; Lee, Sang Jin; Kim, Daehong; Yang, Jae-Seong; Kim, Sanguk; Kim, Young Keun; Seong, Seung-Yong

    2011-10-01

    Dendritic cell-based cancer immunotherapy requires tumour antigens to be delivered efficiently into dendritic cells and their migration to be monitored in vivo. Nanoparticles have been explored as carriers for antigen delivery, but applications have been limited by the toxicity of the solvents used to make nanoparticles, and by the need to use transfection agents to deliver nanoparticles into cells. Here we show that an iron oxide-zinc oxide core-shell nanoparticle can deliver carcinoembryonic antigen into dendritic cells while simultaneously acting as an imaging agent. The nanoparticle-antigen complex is efficiently taken up by dendritic cells within one hour and can be detected in vitro by confocal microscopy and in vivo by magnetic resonance imaging. Mice immunized with dendritic cells containing the nanoparticle-antigen complex showed enhanced tumour antigen specific T-cell responses, delayed tumour growth and better survival than controls.

  7. A dendritic cell-based assay for measuring memory T cells specific to dengue envelope proteins in human peripheral blood.

    PubMed

    Sun, Peifang; Beckett, Charmagne; Danko, Janine; Burgess, Timothy; Liang, Zhaodong; Kochel, Tadeusz; Porter, Kevin

    2011-05-01

    Dengue envelope (E) protein is a dominant immune inducer and E protein-based vaccines elicited partial to complete protection in non-human primates. To study the immunogenicity of these vaccines in humans, an enzyme linked immunospot (ELISPOT) assay for measuring interferon gamma (IFN-γ) production was developed. Cells from two subject groups, based on dengue-exposure, were selected for assay development. The unique feature of the IFN-γ ELISPOT assay is the utilization of dendritic cells pulsed with E proteins as antigen presenting cells. IFN-γ production, ranging from 53-513 spot forming units per million peripheral blood mononuclear cells (PBMCs), was observed in dengue-exposed subjects as compared to 0-45 IFN-γ spot forming units in dengue-unexposed subjects. Further, both CD4(+) and CD8(+) T cells, and cells bearing CD45RO memory marker, were the major sources of IFN-γ production. The assay allowed quantification of E-specific IFN-γ-secreting memory T cells in subjects 9 years after exposure to a live-attenuated virus vaccine and live-virus challenge. Results suggested that the dendritic cell-based IFN-γ assay is a useful tool for assessing immunological memory for clinical research.

  8. Dendritic cell-based immunotherapy for cancer and relevant challenges for transfusion medicine.

    PubMed

    Voss, Ching Y; Albertini, Mark R; Malter, James S

    2004-07-01

    The encouraging results from dendritic cell-related cancer immunotherapy have created tremendous interest for its broad clinical application. Dendritic cells are the most potent antigen-presenting cells. In cancer patients, dendritic cell production and function along with other antitumor immune defenses are compromised. Autologous dendritic cells enriched and sensitized in vitro with tumor-associated antigens can effectively elicit host cellular immunity against cancer and result in clinical antitumor responses through either direct injection or ex vivo generation of antitumor T lymphocytes. In small group studies, clinical response rates have reached 50% in patients with advanced stage of cancer. These cellular products caused minimal side effects and were well tolerated. The isolation and preparation of clinical grade dendritic cells have been driven by transfusion medicine specialists who are well versed in similar processes for hematopoietic stem-cell preparation. The purpose of this article is to review the mechanisms of tumor immune surveillance and the biology of dendritic cells relevant to tumor antigen presentation, sensitization, and T-lymphocyte stimulation. Information on tumor-associated antigens and clinical trial results with dendritic cell-based cancer immunotherapy are summarized. The potential challenges for blood banking/transfusion medicine involving both technical and regulatory issues are discussed.

  9. Trial watch: Dendritic cell-based anticancer therapy

    PubMed Central

    Bloy, Norma; Pol, Jonathan; Aranda, Fernando; Eggermont, Alexander; Cremer, Isabelle; Fridman, Wolf Hervé; Fučíková, Jitka; Galon, Jérôme; Tartour, Eric; Spisek, Radek; Dhodapkar, Madhav V.; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2014-01-01

    The use of patient-derived dendritic cells (DCs) as a means to elicit therapeutically relevant immune responses in cancer patients has been extensively investigated throughout the past decade. In this context, DCs are generally expanded, exposed to autologous tumor cell lysates or loaded with specific tumor-associated antigens (TAAs), and then reintroduced into patients, often in combination with one or more immunostimulatory agents. As an alternative, TAAs are targeted to DCs in vivo by means of monoclonal antibodies, carbohydrate moieties or viral vectors specific for DC receptors. All these approaches have been shown to (re)activate tumor-specific immune responses in mice, often mediating robust therapeutic effects. In 2010, the first DC-based preparation (sipuleucel-T, also known as Provenge®) has been approved by the US Food and Drug Administration (FDA) for use in humans. Reflecting the central position occupied by DCs in the regulation of immunological tolerance and adaptive immunity, the interest in harnessing them for the development of novel immunotherapeutic anticancer regimens remains high. Here, we summarize recent advances in the preclinical and clinical development of DC-based anticancer therapeutics. PMID:25941593

  10. Targeting human dendritic cells in situ to improve vaccines.

    PubMed

    Sehgal, Kartik; Dhodapkar, Kavita M; Dhodapkar, Madhav V

    2014-11-01

    Dendritic cells (DCs) provide a critical link between innate and adaptive immunity. The potent antigen presenting properties of DCs makes them a valuable target for the delivery of immunogenic cargo. Recent clinical studies describing in situ DC targeting with antibody-mediated targeting of DC receptor through DEC-205 provide new opportunities for the clinical application of DC-targeted vaccines. Further advances with nanoparticle vectors which can encapsulate antigens and adjuvants within the same compartment and be targeted against diverse DC subsets also represent an attractive strategy for targeting DCs. This review provides a brief summary of the rationale behind targeting dendritic cells in situ, the existing pre-clinical and clinical data on these vaccines and challenges faced by the next generation DC-targeted vaccines.

  11. Targeting dendritic cells for improved HIV-1 vaccines.

    PubMed

    Smed-Sörensen, Anna; Loré, Karin

    2013-01-01

    As dendritic cells (DCs) have the unique capacity to activate antigen-naive T cells they likely play a critical role in eliciting immune responses to vaccines. DCs are therefore being explored as attractive targets for vaccines, but understanding the interaction of DCs and clinically relevant vaccine antigens and adjuvants is a prerequisite. The HIV-1/AIDS epidemic continues to be a significant health problem, and despite intense research efforts over the past 30 years a protective vaccine has not yet been developed. A common challenge in vaccine design is to find a vaccine formulation that best shapes the immune response to protect against and/or control the given pathogen. Here, we discuss the importance of understanding the diversity, anatomical location and function of different human DC subsets in order to identify the optimal target cells for an HIV-1 vaccine. We review human DC interactions with some of the HIV-1 vaccine antigen delivery vehicles and adjuvants currently utilized in preclinical and clinical studies. Specifically, the effects of distinctly different vaccine adjuvants in terms of activation of DCs and improving DC function and vaccine efficacy are discussed. The susceptibility and responses of DCs to recombinant adenovirus vectors are reviewed, as well as the strategy of directly targeting DCs by using DC marker-specific monoclonal antibodies coupled to an antigen.

  12. Designing vaccines based on biology of human dendritic cell subsets

    PubMed Central

    Palucka, Karolina; Banchereau, Jacques; Mellman, Ira

    2010-01-01

    The effective vaccines developed against a variety of infectious agents, including polio, measles and Hepatitis B, represent major achievements in medicine. These vaccines, usually composed of microbial antigens, are often associated with an adjuvant that activates dendritic cells (DCs). Many infectious diseases are still in need of an effective vaccine including HIV, malaria, hepatitis C and tuberculosis. In some cases, the induction of cellular rather than humoral responses may be more important as the goal is to control and eliminate the existing infection rather than to prevent it. Our increased understanding of the mechanisms of antigen presentation, particularly with the description of DC subsets with distinct functions, as well as their plasticity in responding to extrinsic signals, represent opportunities to develop novel vaccines. In addition, we foresee that this increased knowledge will permit us to design vaccines that will reprogram the immune system to intervene therapeutically in cancer, allergy and autoimmunity. PMID:21029958

  13. New generation of oral mucosal vaccines targeting dendritic cells

    PubMed Central

    Owen, Jennifer L.; Sahay, Bikash; Mohamadzadeh, Mansour

    2013-01-01

    As most infectious organisms gain entry at mucosal surfaces, there is a great deal of interest in developing vaccines that elicit effective mucosal immune responses against pathogen challenge. Targeted vaccination is one of the most effective methods available to prevent and control infectious diseases. Mucosal vaccines can offer lower costs, better accessibility, needle free delivery, and a higher capacity for mass immunizations during pandemics. Both local mucosal immunity and robust systemic responses can be achieved through mucosal vaccination. Recent progress in understanding the molecular and cellular components of the mucosal immune system have allowed for the development of a novel mucosal vaccine platform utilizing specific dendritic cell-targeting peptides and orally administered lactobacilli to elicit efficient antigen specific immune responses against infections, including B. anthracis in experimental models of disease. PMID:23835515

  14. New generation of oral mucosal vaccines targeting dendritic cells.

    PubMed

    Owen, Jennifer L; Sahay, Bikash; Mohamadzadeh, Mansour

    2013-12-01

    As most infectious organisms gain entry at mucosal surfaces, there is a great deal of interest in developing vaccines that elicit effective mucosal immune responses against pathogen challenge. Targeted vaccination is one of the most effective methods available to prevent and control infectious diseases. Mucosal vaccines can offer lower costs, better accessibility, needle free delivery, and a higher capacity for mass immunizations during pandemics. Both local mucosal immunity and robust systemic responses can be achieved through mucosal vaccination. Recent progress in understanding the molecular and cellular components of the mucosal immune system have allowed for the development of a novel mucosal vaccine platform utilizing specific dendritic cell-targeting peptides and orally administered lactobacilli to elicit efficient antigen specific immune responses against infections, including Bacillus anthracis in experimental models of disease.

  15. Topical vaccination with functionalized particles targeting dendritic cells.

    PubMed

    Baleeiro, Renato B; Wiesmüller, Karl-Heinz; Reiter, Yoran; Baude, Barbara; Dähne, Lars; Patzelt, Alexa; Lademann, Jürgen; Barbuto, José A; Walden, Peter

    2013-08-01

    Needle-free vaccination, for reasons of safety, economy, and convenience, is a central goal in vaccine development, but it also needs to meet the immunological requirements for efficient induction of prophylactic and therapeutic immune responses. Combining the principles of noninvasive delivery to dendritic cells (DCs) through skin and the immunological principles of cell-mediated immunity, we developed microparticle-based topical vaccines. We show here that the microparticles are efficient carriers for coordinated delivery of the essential vaccine constituents to DCs for cross-presentation of the antigens and stimulation of T-cell responses. When applied to the skin, the microparticles penetrate into hair follicles and target the resident DCs, the immunologically most potent cells and site for induction of efficient immune responses. The microparticle vaccine principle can be applied to different antigen formats such as peptides and proteins, or nucleic acids coding for the antigens.

  16. Dendritic Cells, New Tools for Vaccination

    DTIC Science & Technology

    2003-01-01

    19], Borrelia burgdorferi [20] Chlamydia trachomatis [21] and Candida albicans [22]. C. albicans provides a paradigmatic example of how this ap... Borrelia burgdorferi -pulsed dendritic cells induce a protective immune response against tick-transmitted spirochetes, Infect. Immun. 65 (1997) 3386–3390

  17. Vaccination with Dendritic Cell Myeloma Fusions in Conjuction with Stem Cell Transplantation and PD-1 Blockade

    DTIC Science & Technology

    2015-07-01

    Award Number: W81XWH-09-1-0296 TITLE: Vaccination with Dendritic Cell Myeloma Fusions in Conjuction with Stem Cell Transplantation and PD-1...Addendum 3. DATES COVERED (From - To) 1May2014 - 30Apr2015 4. TITLE AND SUBTITLE Vaccination with Dendritic Cell Myeloma Fusions in Conjuction with Stem...anti-PD1 antibody (CT-011) alone (Cohort 1) and in conjunction with a dendritic cell/myeloma fusion cell vaccine (Cohort 2) following autologous

  18. Building on Dendritic Cell Subsets to Improve Cancer Vaccines

    PubMed Central

    Palucka, Karolina; Ueno, Hideki; Zurawski, Gerard; Fay, Joseph; Banchereau, Jacques

    2010-01-01

    SUMMARY T cells can reject established tumors when adoptively transferred into patients, thereby demonstrating that the immune system can be harnessed for cancer therapy. However, such passive immunotherapy is unlikely to maintain memory T cells that might control tumor outgrowth on the long term. Active immunotherapy with vaccines has the potential to induce tumor-specific effector and memory T cells. Vaccines act through dendritic cells (DCs) which induce, regulate and maintain T cell immunity. Clinical trials testing first generation DC vaccines pulsed with tumor antigens provided a proof-of-principle that therapeutic immunity can be elicited. The increased knowledge of the DC system, including the existence of distinct DC subsets is leading to new trials which aim at improved immune and clinical outcomes. PMID:20226644

  19. Dendritic-cell-based technology landscape: Insights from patents and citation networks

    PubMed Central

    Kong, Xiangjun; Hu, Yuanjia; Cai, Zhifang; Yang, Fengqing; Zhang, Qianru

    2015-01-01

    As the most potent antigen-presenting cells, dendritic cells (DCs) are pivotal players in regulating immune responses. DC-based technologies have generated a series of typical and promising therapeutic options, especially after the first DC-based cancer vaccine was approved by US. Food and Drug Administration (US. FDA). In this context, this paper employs patents and citation networks to conduct a fundamental analysis in order to show overall landscape of DC-based technologies. The results in this research can be used as references for decision-making in developing efficacious DC therapeutic products. PMID:25714961

  20. Targeted antigen delivery and activation of dendritic cells in vivo: steps towards cost effective vaccines.

    PubMed

    Tacken, Paul J; Figdor, Carl G

    2011-02-01

    During the past decade, the immunotherapeutic potential of ex vivo generated professional antigen presenting dendritic cells (DCs) has been explored in the clinic. Albeit safe, clinical results have thus far been limited. A major disadvantage of current cell-based dendritic cell (DC) therapies, preventing universal implementation of this form of immunotherapy, is the requirement that vaccines need to be tailor made for each individual. Targeted delivery of antigens to DC surface receptors in vivo would circumvent this laborious and expensive ex vivo culturing steps involved with these cell-based therapies. In addition, the opportunity to target natural and often rare DC subsets in vivo might have advantages over loading more artificial ex vivo cultured DCs. Preclinical studies show targeting antigens to DCs effectively induces humoral responses, while cellular responses are induced provided a DC maturation or activation stimulus is co-administered. Here, we discuss strategies to target antigens to distinct DC subsets and to simultaneously employ adjuvants to activate these cells to induce immunity.

  1. Dendritic cell-based immunization ameliorates pulmonary infection with highly virulent Cryptococcus gattii.

    PubMed

    Ueno, Keigo; Kinjo, Yuki; Okubo, Yoichiro; Aki, Kyoko; Urai, Makoto; Kaneko, Yukihiro; Shimizu, Kiminori; Wang, Dan-Ni; Okawara, Akiko; Nara, Takuya; Ohkouchi, Kayo; Mizuguchi, Yuki; Kawamoto, Susumu; Kamei, Katsuhiko; Ohno, Hideaki; Niki, Yoshihito; Shibuya, Kazutoshi; Miyazaki, Yoshitsugu

    2015-04-01

    Cryptococcosis due to a highly virulent fungus, Cryptococcus gattii, emerged as an infectious disease on Vancouver Island in Canada and surrounding areas in 1999, causing deaths among immunocompetent individuals. Previous studies indicated that C. gattii strain R265 isolated from the Canadian outbreak had immune avoidance or immune suppression capabilities. However, protective immunity against C. gattii has not been identified. In this study, we used a gain-of-function approach to investigate the protective immunity against C. gattii infection using a dendritic cell (DC)-based vaccine. Bone marrow-derived dendritic cells (BMDCs) efficiently engulfed acapsular C. gattii (Δcap60 strain), which resulted in their expression of costimulatory molecules and inflammatory cytokines. This was not observed for BMDCs that were cultured with encapsulated strains. When Δcap60 strain-pulsed BMDCs were transferred to mice prior to intratracheal R265 infection, significant amelioration of pathology, fungal burden, and the survival rate resulted compared with those in controls. Multinucleated giant cells (MGCs) that engulfed fungal cells were significantly increased in the lungs of immunized mice. Interleukin 17A (IL-17A)-, gamma interferon (IFN-γ)-, and tumor necrosis factor alpha (TNF-α)-producing lymphocytes were significantly increased in the spleens and lungs of immunized mice. The protective effect of this DC vaccine was significantly reduced in IFN-γ knockout mice. These results demonstrated that an increase in cytokine-producing lymphocytes and the development of MGCs that engulfed fungal cells were associated with the protection against pulmonary infection with highly virulent C. gattii and suggested that IFN-γ may have been an important mediator for this vaccine-induced protection.

  2. The current state of therapeutic and T cell-based vaccines against human papillomaviruses.

    PubMed

    Yang, Andrew; Farmer, Emily; Lin, John; Wu, T-C; Hung, Chien-Fu

    2017-03-02

    Human papillomavirus (HPV) is known to be a necessary factor for many gynecologic malignancies and is also associated with a subset of head and neck malignancies. This knowledge has created the opportunity to control these HPV-associated cancers through vaccination. However, despite the availability of prophylactic HPV vaccines, HPV infections remain extremely common worldwide. In addition, while prophylactic HPV vaccines have been effective in preventing infection, they are ineffective at clearing pre-existing HPV infections. Thus, there is an urgent need for therapeutic and T cell-based vaccines to treat existing HPV infections and HPV-associated lesions and cancers. Unlike prophylactic vaccines, which generate neutralizing antibodies, therapeutic, and T cell-based vaccines enhance cell-mediated immunity against HPV antigens. Our review will cover various therapeutic and T cell-based vaccines in development for the treatment of HPV-associated diseases. Furthermore, we review the strategies to enhance the efficacy of therapeutic vaccines and the latest clinical trials on therapeutic and T cell-based HPV vaccines.

  3. Dendritic cell based PSMA immunotherapy for prostate cancer using a CD40-targeted adenovirus vector.

    PubMed

    Williams, Briana Jill; Bhatia, Shilpa; Adams, Lisa K; Boling, Susan; Carroll, Jennifer L; Li, Xiao-Lin; Rogers, Donna L; Korokhov, Nikolay; Kovesdi, Imre; Pereboev, Alexander V; Curiel, David T; Mathis, J Michael

    2012-01-01

    Human prostate tumor vaccine and gene therapy trials using ex vivo methods to prime dendritic cells (DCs) with prostate specific membrane antigen (PSMA) have been somewhat successful, but to date the lengthy ex vivo manipulation of DCs has limited the widespread clinical utility of this approach. Our goal was to improve upon cancer vaccination with tumor antigens by delivering PSMA via a CD40-targeted adenovirus vector directly to DCs as an efficient means for activation and antigen presentation to T-cells. To test this approach, we developed a mouse model of prostate cancer by generating clonal derivatives of the mouse RM-1 prostate cancer cell line expressing human PSMA (RM-1-PSMA cells). To maximize antigen presentation in target cells, both MHC class I and TAP protein expression was induced in RM-1 cells by transduction with an Ad vector expressing interferon-gamma (Ad5-IFNγ). Administering DCs infected ex vivo with CD40-targeted Ad5-huPSMA, as well as direct intraperitoneal injection of the vector, resulted in high levels of tumor-specific CTL responses against RM-1-PSMA cells pretreated with Ad5-IFNγ as target cells. CD40 targeting significantly improved the therapeutic antitumor efficacy of Ad5-huPSMA encoding PSMA when combined with Ad5-IFNγ in the RM-1-PSMA model. These results suggest that a CD-targeted adenovirus delivering PSMA may be effective clinically for prostate cancer immunotherapy.

  4. Evaluation of Immune Responses Mediated by Listeria-Stimulated Human Dendritic Cells: Implications for Cancer Vaccine Therapy

    DTIC Science & Technology

    2014-07-01

    by Listeria -Stimulated Human Dendritic Cells: Implications for Cancer Vaccine Therapy PRINCIPAL INVESTIGATOR: David J. Chung, MD, PhD...5a. CONTRACT NUMBER Evaluation of Immune Responses Mediated by Listeria -Stimulated Human Dendritic Cells: Implications for Cancer Vaccine...ABSTRACT The purpose of this project is to study the immunomodulatory effect of Listeria on human dendritic cells (DCs) to optimize Listeria - based

  5. Dendritic cell targeting vaccine for HPV-associated cancer

    PubMed Central

    Yin, Wenjie; Duluc, Dorothée; Joo, HyeMee; Oh, SangKon

    2017-01-01

    Dendritic cells (DCs) are major antigen presenting cells that can efficiently prime and activate cellular immune responses. Delivering antigens to in vivo DCs has thus been considered as a promising strategy that could allow us to mount T cell-mediated therapeutic immunity against cancers in patients. Successful development of such types of cancer vaccines that can target in vivo DCs, however, requires a series of outstanding questions that need to be addressed. These include the proper selection of which DC surface receptors, specific DC subsets and DC activators that can further enhance the efficacy of vaccines by promoting effector T cell infiltration and retention in tumors and their actions against tumors. Supplementing these areas of research with additional strategies that can counteract tumor immune evasion mechanisms is also expected to enhance the efficacy of such therapeutic vaccines against cancers. After more than a decade of study, we have concluded that antigen targeting to DCs via CD40 to evoke cellular responses is more efficient than targeting antigens to the same types of DCs via eleven other DC surface receptors tested. In recent work, we have further demonstrated that a prototype vaccine (anti-CD40-HPV16.E6/7, a recombinant fusion protein of anti-human CD40 and HPV16.E6/7 protein) for HPV16-associated cancers can efficiently activate HPV16.E6/7-specific T cells, particularly CD8+ T cells, from the blood of HPV16+ head-and-neck cancer patients. Moreover, anti-CD40-HPV16.E6/7 plus poly(I:C) can mount potent therapeutic immunity against TC-1 tumor expressing HPV16.E6/7 protein in human CD40 transgenic mice. In this manuscript, we thus highlight our recent findings for the development of novel CD40 targeting immunotherapeutic vaccines for HPV16-associated malignancies. In addition, we further discuss several of key questions that still remain to be addressed for enhancing therapeutic immunity elicited by our prototype vaccine against HPV16

  6. Th17 cell based vaccines in mucosal immunity.

    PubMed

    Kumar, Pawan; Chen, Kong; Kolls, Jay K

    2013-06-01

    Vaccination is proven to be effective in controlling many infections including small pox, influenza and hepatitis, but strain-specific factors may limit vaccine efficacy. All of these vaccines work through the generation of neutralizing antibodies but for some pathogens there may be roles for serotype-independent immunity. Recently several groups using murine vaccine models have shown that induced T helper cell responses including Th17 responses have shown the potential for CD4+ T-cell dependent vaccine responses. Th17 mediated protective responses involve the recruitment of neutrophils, release of anti-microbial peptides and IL-17-driven Th1 immunity. These effector mechanisms provide immunity against a range of pathogens including the recently described antibiotic-resistant metallo-beta-lactamase 1 Klebsiella pneumoniae. Continued elucidation of the mechanism of Th17 responses and identification of effective adjuvants for inducing robust non pathogenic Th17 responses may lead to successful Th17 based vaccines. Here we summarize the recent advances in understanding the role of Th17 in vaccine induced immunity. We also discuss the current status and future challenges in Th17-based mucosal vaccine development.

  7. Dendritic cells and vaccine design for sexually-transmitted diseases.

    PubMed

    Duluc, Dorothee; Gannevat, Julien; Joo, Hyemee; Ni, Ling; Upchurch, Katherine; Boreham, Muriel; Carley, Michael; Stecher, Jack; Zurawski, Gerard; Oh, Sangkon

    2013-05-01

    Dendritic cells (DCs) are major antigen presenting cells (APCs) that can initiate and control host immune responses toward either immunity or tolerance. These features of DCs, as immune orchestrators, are well characterized by their tissue localizations as well as by their subset-dependent functional specialties and plasticity. Thus, the level of protective immunity to invading microbial pathogens can be dependent on the subsets of DCs taking up microbial antigens and their functional plasticity in response to microbial products, host cellular components and the cytokine milieu in the microenvironment. Vaccines are the most efficient and cost-effective preventive medicine against infectious diseases. However, major challenges still remain for the diseases caused by sexually-transmitted pathogens, including HIV, HPV, HSV and Chlamydia. We surmise that the establishment of protective immunity in the female genital mucosa, the major entry and transfer site of these pathogens, will bring significant benefit for the protection against sexually-transmitted diseases. Recent progresses made in DC biology suggest that vaccines designed to target proper DC subsets may permit us to establish protective immunity in the female genital mucosa against sexually-transmitted pathogens.

  8. Dendritic cell targeted vaccines: Recent progresses and challenges

    PubMed Central

    Chen, Pengfei; Liu, Xinsheng; Sun, Yuefeng; Zhou, Peng; Wang, Yonglu; Zhang, Yongguang

    2016-01-01

    ABSTRACT Dendritic cells (DCs) are known to be a set of morphology, structure and function of heterogeneous professional antigen presenting cells (APCs), as well as the strongest functional antigen presenting cells, which can absorb, process and present antigens. As the key regulators of innate and adaptive immune responses, DCs are at the center of the immune system and capable of interacting with both B cells and T cells, thereby manipulating the humoral and cellular immune responses. DCs provide an essential link between the innate and adaptive immunity, and the strong immune activation function of DCs and their properties of natural adjuvants, make them a valuable target for antigen delivery. Targeting antigens to DC-specific endocytic receptors in combination with the relevant antibodies or ligands along with immunostimulatory adjuvants has been recently recognized as a promising strategy for designing an effective vaccine that elicits a strong and durable T cell response against intracellular pathogens and cancer. This opinion article provides a brief summary of the rationales, superiorities and challenges of existing DC-targeting approaches. PMID:26513200

  9. Cell-Based Systems Biology Analysis of Human AS03-Adjuvanted H5N1 Avian Influenza Vaccine Responses: A Phase I Randomized Controlled Trial

    PubMed Central

    Samir, Parimal; Galassie, Allison; Allos, Tara M.; Niu, Xinnan; Gordy, Laura E.; Creech, C. Buddy; Prasad, Nripesh; Jensen, Travis L.; Hill, Heather; Levy, Shawn E.; Joyce, Sebastian; Link, Andrew J.; Edwards, Kathryn M.

    2017-01-01

    Background Vaccine development for influenza A/H5N1 is an important public health priority, but H5N1 vaccines are less immunogenic than seasonal influenza vaccines. Adjuvant System 03 (AS03) markedly enhances immune responses to H5N1 vaccine antigens, but the underlying molecular mechanisms are incompletely understood. Objective and Methods We compared the safety (primary endpoint), immunogenicity (secondary), gene expression (tertiary) and cytokine responses (exploratory) between AS03-adjuvanted and unadjuvanted inactivated split-virus H5N1 influenza vaccines. In a double-blinded clinical trial, we randomized twenty adults aged 18–49 to receive two doses of either AS03-adjuvanted (n = 10) or unadjuvanted (n = 10) H5N1 vaccine 28 days apart. We used a systems biology approach to characterize and correlate changes in serum cytokines, antibody titers, and gene expression levels in six immune cell types at 1, 3, 7, and 28 days after the first vaccination. Results Both vaccines were well-tolerated. Nine of 10 subjects in the adjuvanted group and 0/10 in the unadjuvanted group exhibited seroprotection (hemagglutination inhibition antibody titer > 1:40) at day 56. Within 24 hours of AS03-adjuvanted vaccination, increased serum levels of IL-6 and IP-10 were noted. Interferon signaling and antigen processing and presentation-related gene responses were induced in dendritic cells, monocytes, and neutrophils. Upregulation of MHC class II antigen presentation-related genes was seen in neutrophils. Three days after AS03-adjuvanted vaccine, upregulation of genes involved in cell cycle and division was detected in NK cells and correlated with serum levels of IP-10. Early upregulation of interferon signaling-related genes was also found to predict seroprotection 56 days after first vaccination. Conclusions Using this cell-based systems approach, novel mechanisms of action for AS03-adjuvanted pandemic influenza vaccination were observed. Trial Registration ClinicalTrials.gov NCT

  10. Evaluation of Immune Responses Mediated by Listeria-Stimulated Human Dendritic Cells: Implications for Cancer Vaccine Therapy

    DTIC Science & Technology

    2012-07-01

    Mediated by Listeria -Stimulated Human Dendritic Cells: Implications for Cancer Vaccine Therapy PRINCIPAL INVESTIGATOR: David J. Chung, M D , Ph D...CONTRACT NUMBER Evaluation of Immune Responses Mediated by Listeria -Stimulated Human Dendritic Cells: Implications for Cancer Vaccine Therapy 5b...Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The purpose of this project is to study the immunomodulatory effect of Listeria on

  11. HIV-1 Reservoir Dynamics after Vaccination and Antiretroviral Therapy Interruption Are Associated with Dendritic Cell Vaccine-Induced T Cell Responses

    PubMed Central

    Andrés, Cristina; Plana, Montserrat; Guardo, Alberto C.; Alvarez-Fernández, Carmen; Climent, Nuria; Gallart, Teresa; León, Agathe; Clotet, Bonaventura; Autran, Brigitte; Chomont, Nicolas; Gatell, Josep M.; Sánchez-Palomino, Sonsoles

    2015-01-01

    . The development of therapeutic vaccines aimed at enhancing immune-mediated clearance of virus-producing cells is of high priority. Few therapeutic vaccine clinical trials have investigated the role of therapeutic vaccines as a strategy to safely eliminate or control viral reservoirs. We recently reported that a dendritic cell-based therapeutic vaccine was able to significantly decrease the viral set point in vaccinated patients, with a concomitant increase in HIV-1-specific T cell responses. The HIV-1-specific T cell immune responses elicited by this therapeutic dendritic cell vaccine drove changes in the viral reservoir after vaccinations and significantly delayed the replenishment of integrated HIV-1 DNA after cART interruption. These data help in understanding how an immunization could shift the virus-host balance and are instrumental for better design of strategies to reach a functional cure of HIV-1 infection. PMID:26109727

  12. Active immunotherapy for cancer patients using tumor lysate pulsed dendritic cell vaccine: a safety study.

    PubMed

    Ovali, E; Dikmen, T; Sonmez, M; Yilmaz, M; Unal, A; Dalbasti, T; Kuzeyli, K; Erturk, M; Omay, S B

    2007-06-01

    Cancer vaccine therapy represents a promising therapeutical option. Consistently, with these new treatment strategies, the use of dendritic cell vaccines is becoming increasingly widespread and currently in the forefront for cancer treatment. The purpose of this study was to evaluate the feasibility and safety of tumor lysate-pulsed dendritic cell (DC) vaccine in patients with advanced cancers. For this purpose, eighteen patients with relapsed or refractory cancer were vaccinated with peripheral monocyte-derived DCs generated with GM-CSF and IL-4, and pulsed consequently with 100 microg/ml of tumor lysate before maturation in culture in the presence of IL-1beta, PGE2 and TNF alpha for two days. The first two vaccinations were given intradermally every two weeks while further injections were given monthly. Tumor lysate-pulsed dendritic cell injections were well-tolerated in all patients with no more than grade 1 injection-related toxicity. Local inflammatory response was mainly erythematous which subsided in 48 hrs time. No end organ toxicity or autoimmune toxicity was identified. Clinical responses observed in our study were satisfactory for a phase I clinical study. We observed 4 (22%) objective clinical responses. These responses are significantly correlated with delayed type hypersensitivity testing (DTH) (p < 0.01). The results showed that this active immunotherapy is feasible, safe, and may be capable of eliciting immune responses against cancer.

  13. Vaccines, adjuvants and dendritic cell activators – Current Status and Future Challenges

    PubMed Central

    Obeid, Joseph M.; Hu, Yinin; Slingluff, Craig L.

    2015-01-01

    Cancer vaccines offer a low-toxicity approach to induce anticancer immune responses. They have shown promise for clinical benefit with one cancer vaccine approved in the U.S. for advanced prostate cancer. As other immune therapies are now clearly effective for treatment of advanced cancers of many histologies, there is renewed enthusiasm for optimizing cancer vaccines for use to prevent recurrence in early stage cancers and/or to combine with other immune therapies for therapy of advanced cancers. Future advancements in vaccine therapy will involve the identification and selection of effective antigen formulations, optimization of adjuvants, dendritic cell activation, and combination therapies. In this summary we present the current practice, the broad collection of challenges, and the promising future directions of vaccine therapy for cancer. PMID:26320060

  14. Extended protection capabilities of an immature dendritic-cell targeting malaria sporozoite vaccine.

    PubMed

    Luo, Kun; Zavala, Fidel; Gordy, James; Zhang, Hong; Markham, Richard B

    2017-03-22

    Mouse studies evaluating candidate malaria vaccines have typically examined protective efficacy over the relatively short time frames of several weeks after the final of multiple immunizations. The current study examines the protective ability in a mouse model system of a novel protein vaccine construct in which the adjuvant polyinosinic polycytidilic acid (poly(I:C)) is used in combination with a vaccine in which the immature dendritic cell targeting chemokine, macrophage inflammatory protein 3 alpha (MIP3α), is fused to the circumsporozoite protein (CSP) of Plasmodium falciparum (P. falciparum). Two vaccinations, three weeks apart, elicited extraordinarily high, MIP3α-dependent antibody responses. MIP3α was able to target the vaccine to the CCR6 receptor found predominantly on immature dendritic cells and significantly enhanced the cellular influx at the vaccination site. At three and 23 weeks after the final of two immunizations, mice were challenged by intravenous injection of 5×10(3) transgenic Plasmodium berghei sporozoites expressing P. falciparum CSP, a challenge dose approximately one order of magnitude greater than that which is encountered after mosquito bite in the clinical setting. A ninety-seven percent reduction in liver sporozoite load was observed at both time points, 23 weeks being the last time point tested.

  15. Fusions of Breast Carcinoma and Dendritic Cells as a Vaccine for the Treatment of Metastatic Breast Cancer

    DTIC Science & Technology

    2005-07-01

    regulate the development of anti-tumor immune responses . Importantly, our results show that, compared to unfused DC and tumor cells, the DC/ breast tumor...AD Award Number: DAMD17-03-1-0487 TITLE: Fusions of Breast Carcinoma and Dendritic Cells as a Vaccine for the Treatment of Metastatic Breast Cancer ...4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Fusions of Breast Carcinoma and Dendritic Cells as a Vaccine for the Treatment of Metastatic Breast Cancer

  16. Dendritic Cells The Tumor Microenvironment and the Challenges for an Effective Antitumor Vaccination

    PubMed Central

    Benencia, Fabian; Sprague, Leslee; McGinty, John; Pate, Michelle; Muccioli, Maria

    2012-01-01

    Many clinical trials have been carried out or are in progress to assess the therapeutic potential of dendritic-cell- (DC-) based vaccines on cancer patients, and recently the first DC-based vaccine for human cancer was approved by the FDA. Herewith, we describe the general characteristics of DCs and different strategies to generate effective antitumor DC vaccines. In recent years, the relevance of the tumor microenvironment in the progression of cancer has been highlighted. It has been shown that the tumor microenvironment is capable of inactivating various components of the immune system responsible for tumor clearance. In particular, the effect of the tumor microenvironment on antigen-presenting cells, such as DCs, does not only render these immune cells unable to induce specific immune responses, but also turns them into promoters of tumor growth. We also describe strategies likely to increase the efficacy of DC vaccines by reprogramming the immunosuppressive nature of the tumor microenvironment. PMID:22505809

  17. A Light Responsive Nanoparticle-Based Delivery System Using Pheophorbide A Graft Polyethylenimine for Dendritic Cell-Based Cancer Immunotherapy.

    PubMed

    Zhang, Chuangnian; Zhang, Ju; Shi, Gaona; Song, Huijuan; Shi, Shengbin; Zhang, Xiuyuan; Huang, Pingsheng; Wang, Zhihong; Wang, Weiwei; Wang, Chun; Kong, Deling; Li, Chen

    2017-03-28

    In this study, the photochemical internalization (PCI) technique was adopted in a nanoparticle-based antigen delivery system to enhance antigen-specific CD8(+) T cell immune response for cancer immunotherapy. Pheophorbide A, a hydrophobic photosensitizer, grafted with polyethylenimine (PheoA-PEI) with endosome escape activity and near-infrared imaging capability was prepared. A model antigen ovalbumin (OVA) was then complexed with PheoA-PEI to form PheoA-PEI/OVA nanoparticles (PheoA-PEI/OVA NPs) that are responsive to light. Flow cytometry analysis revealed increased endocytosis in a murine dendritic cell line (DC2.4) that was treated with PheoA-PEI/OVA NPs compared to free OVA. Generation of reactive oxygen species (ROS) in DC2.4 cells was also confirmed quantitatively and qualitatively using 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA). Confocal laser scanning microscopy (CLSM) further demonstrated that the PheoA-PEI/OVA NPs enhanced cytosolic antigen release after light stimulation. Moreover, PheoA-PEI/OVA NP treated DC2.4 cells exhibited enhanced cross-presentation to B3Z T cell hybridoma in vitro after light irradiation, substantially increased compared to those treated with free OVA. Consistently, in vivo results revealed upregulation of CD3(+)CD8(+)T lymphocytes in tumors of mice treated with dendritic cells plus PheoA-PEI/OVA NPs and light irradiation. The activated T cell response is partly responsible for the inhibitory effect on E.G7 tumor growth in mice immunized with dendritic cells plus PheoA-PEI/OVA NPs and light irradiation. Our results demonstrate the feasibility to enhance antigen-specific CD8(+) T cell immune response by light-responsive nanoparticle-based vaccine delivery for cancer immunotherapy.

  18. IL-10 expression defines an immunosuppressive dendritic cell population induced by antitumor therapeutic vaccination.

    PubMed

    Llopiz, Diana; Ruiz, Marta; Infante, Stefany; Villanueva, Lorea; Silva, Leyre; Hervas-Stubbs, Sandra; Alignani, Diego; Guruceaga, Elizabeth; Lasarte, Juan J; Sarobe, Pablo

    2017-01-10

    Vaccination induces immunostimulatory signals that are often accompanied by regulatory mechanisms such as IL-10, which control T-cell activation and inhibit vaccine-dependent antitumor therapeutic effect. Here we characterized IL-10-producing cells in different tumor models treated with therapeutic vaccines. Although several cell subsets produced IL-10 irrespective of treatment, an early vaccine-dependent induction of IL-10 was detected in dendritic cells (DC). IL-10 production defined a DC population characterized by a poorly mature phenotype, lower expression of T-cell stimulating molecules and upregulation of PD-L1. These IL-10+ DC showed impaired in vitro T-cell stimulatory capacity, which was rescued by incubation with IL-10R and PD-L1-inhibiting antibodies. In vivo IL-10 blockade during vaccination decreased the proportion of IL-10+ DC and improved their maturation, without modifying PD-L1 expression. Similarly, PD-L1 blockade did not affect IL- 10 expression. Interestingly, vaccination combined with simultaneous blockade of IL-10 and PD-L1 induced stronger immune responses, resulting in a higher therapeutic efficacy in tumor-bearing mice. These results show that vaccine-induced immunoregulatory IL- 10+ DC impair priming of antitumor immunity, suggesting that therapeutic vaccination protocols may benefit from combined targeting of inhibitory molecules expressed by this DC subset.

  19. Targeting dendritic cells to accelerate T-cell activation overcomes a bottleneck in tuberculosis vaccine efficacy

    PubMed Central

    Griffiths, Kristin L.; Ahmed, Mushtaq; Das, Shibali; Gopal, Radha; Horne, William; Connell, Terry D.; Moynihan, Kelly D.; Kolls, Jay K.; Irvine, Darrell J.; Artyomov, Maxim N.; Rangel-Moreno, Javier; Khader, Shabaana A.

    2016-01-01

    The development of a tuberculosis (TB) vaccine that induces sterilizing immunity to Mycobacterium tuberculosis infection has been elusive. Absence of sterilizing immunity induced by TB vaccines may be due to delayed activation of mucosal dendritic cells (DCs), and subsequent delay in antigen presentation and activation of vaccine-induced CD4+ T-cell responses. Here we show that pulmonary delivery of activated M. tuberculosis antigen-primed DCs into vaccinated mice, at the time of M. tuberculosis exposure, can overcome the delay in accumulation of vaccine-induced CD4+ T-cell responses. In addition, activating endogenous host CD103+ DCs and the CD40–CD40L pathway can similarly induce rapid accumulation of vaccine-induced lung CD4+ T-cell responses and limit early M. tuberculosis growth. Thus, our study provides proof of concept that targeting mucosal DCs can accelerate vaccine-induced T-cell responses on M. tuberculosis infection, and provide insights to overcome bottlenecks in TB vaccine efficacy. PMID:28004802

  20. Administration route-dependent vaccine efficiency of murine dendritic cells pulsed with antigens

    PubMed Central

    Okada, N; Tsujino, M; Hagiwara, Y; Tada, A; Tamura, Y; Mori, K; Saito, T; Nakagawa, S; Mayumi, T; Fujita, T; Yamamoto, A

    2001-01-01

    Dendritic cells (DCs) loaded with tumour antigens have been successfully used to induce protective tumour immunity in murine models and human trials. However, it is still unclear which DC administration route elicits a superior therapeutic effect. Herein, we investigated the vaccine efficiency of DC2.4 cells, a murine dendritic cell line, pulsed with ovalbumin (OVA) in the murine E.G7-OVA tumour model after immunization via various routes. After a single vaccination using 1 × 106OVA-pulsed DC2.4 cells, tumour was completely rejected in the intradermally (i.d.; three of four mice), subcutaneously (s.c.; three of four mice), and intraperitoneally (i.p.; one of four mice) immunized groups. Double vaccinations enhanced the anti-tumour effect in all groups except the intravenous (i.v.) group, which failed to achieve complete rejection. The anti-tumour efficacy of each immunization route was correlated with the OVA-specific cytotoxic T lymphocyte (CTL) activity evaluated on day 7 post-vaccination. Furthermore, the accumulation of DC2.4 cells in the regional lymph nodes was detected only in the i.d.-and s.c.-injected groups. These results demonstrate that the administration route of antigen-loaded DCs affects the migration of DCs to lymphoid tissues and the magnitude of antigen-specific CTL response. Furthermore, the immunization route affects vaccine efficiency. © 2001 Cancer Research Campaign http://www.bjcancer.com PMID:11384109

  1. Ipilimumab administered to metastatic melanoma patients who progressed after dendritic cell vaccination

    PubMed Central

    Boudewijns, Steve; Koornstra, Rutger H. T.; Westdorp, Harm; Schreibelt, Gerty; van den Eertwegh, Alfons J. M.; Geukes Foppen, Marnix H.; Haanen, John B.; de Vries, I. Jolanda M.; Figdor, Carl G.; Bol, Kalijn F.; Gerritsen, Winald R.

    2016-01-01

    ABSTRACT Background: Ipilimumab has proven to be effective in metastatic melanoma patients. The purpose of this study was to determine the efficacy of ipilimumab in advanced melanoma patients who showed progressive disease upon experimental dendritic cell (DC) vaccination. Methods: Retrospective analysis of 48 stage IV melanoma patients treated with ipilimumab after progression upon DC vaccination earlier in their treatment. DC vaccination was given either as adjuvant treatment for stage III disease (n = 18) or for stage IV disease (n = 30). Ipilimumab (3 mg/kg) was administered every 3 weeks for up to 4 cycles. Results: Median time between progression upon DC vaccination and first gift of ipilimumab was 5.4 mo. Progression-free survival (PFS) rates for patients that received ipilimumab after adjuvant DC vaccination, and patients that received DC vaccination for stage IV melanoma, were 35% and 7% at 1 y and 35% and 3% at 2 y, while the median PFS was 2.9 mo and 3.1 mo, respectively. Median overall survival of patients pre-treated with adjuvant DC vaccination for stage III melanoma was not reached versus 8.0 mo (95% CI, 5.2–10.9) in the group pre-treated with DC vaccination for stage IV disease (HR of death, 0.36; p = 0.017). Grade 3 immune-related adverse events occurred in 19% of patients and one death (2%) was related to ipilimumab. Conclusions: Clinical responses to ipilimumab were found in a considerable number of advanced melanoma patients with progression after adjuvant DC vaccination for stage III disease, while the effect was very limited in patients who showed progression after DC vaccination for stage IV disease. PMID:27622070

  2. Anti-Tumor Effects From Dendritic Cell-Based Cancer Immunotherapy Using Liposomal Bubbles and Ultrasound

    NASA Astrophysics Data System (ADS)

    Oda, Yusuke; Suzuki, Ryo; Hirata, Keiichi; Nomura, Tetsuya; Utoguchi, Naoki; Maruyama, Kazuo

    2011-09-01

    Dendritic cell (DC)-based cancer immunotherapy has the potential to be a minimally invasive therapy that could prevent cancer metastasis and recurrence. Recently, in order to induce effective anti-tumor immunity, we developed a novel antigen delivery system for DCs by the combination of ultrasound (US) and liposomal bubbles (Bubble Liposomes: BLs) with entrapped perfluoropropane gas. In this study, we investigated the induction of antigen specific immune responses in vivo and the anti-tumor effect caused by immunization of DCs treated with BLs and US. For the immunization of DCs which had delivered antigen, using BLs and US, the mice induced antigen specific cytotoxic T lymphocytes (CTLs) were found to be the main effector cells in DC-based cancer immunotherapy. In addition, immunization with DCs that had been pulsed with antigen using BLs and US completely suppressed tumor growth Therefore, immunization of DCs with this antigen delivery system has promise for the efficient induction of anti-tumor immune responses.

  3. Duality at the gate: Skin dendritic cells as mediators of vaccine immunity and tolerance

    PubMed Central

    Nirschl, Christopher J; Anandasabapathy, Niroshana

    2016-01-01

    Since Edward Jenner's discovery that intentional exposure to cowpox could provide lifelong protection from smallpox, vaccinations have been a major focus of medical research. However, while the protective benefits of many vaccines have been successfully translated into the clinic, the cellular and molecular mechanisms that differentiate effective vaccines from sub-optimal ones are not well understood. Dendritic cells (DCs) are the gatekeepers of the immune system, and are ultimately responsible for the generation of adaptive immunity and lifelong protective memory through interactions with T cells. In addition to lymph node and spleen resident DCs, a number of tissue resident DC populations have been identified at barrier tissues, such as the skin, which migrate to the local lymph node (migDC). These populations have unique characteristics, and play a key role in the function of cutaneous vaccinations by shuttling antigen from the vaccination site to the draining lymph node, rapidly capturing freely draining antigens in the lymph node, and providing key stimuli to T cells. However, while migDCs are responsible for the generation of immunity following exposure to certain pathogens and vaccines, recent work has identified a tolerogenic role for migDCs in the steady state as well as during protein immunization. Here, we examine the roles and functions of skin DC populations in the generation of protective immunity, as well as their role as regulators of the immune system. PMID:26836327

  4. Efficiency of Dendritic Cell Vaccination against B16 Melanoma Depends on the Immunization Route

    PubMed Central

    Edele, Fanny; Dudda, Jan C.; Bachtanian, Eva; Jakob, Thilo; Pircher, Hanspeter; Martin, Stefan F.

    2014-01-01

    Dendritic cells (DC) presenting tumor antigens are crucial to induce potent T cell-mediated anti-tumor immune responses. Therefore DC-based cancer vaccines have been established for therapy, however clinical outcomes are often poor and need improvement. Using a mouse model of B16 melanoma, we found that the route of preventive DC vaccination critically determined tumor control. While repeated DC vaccination did not show an impact of the route of DC application on the prevention of tumor growth, a single DC vaccination revealed that both the imprinting of skin homing receptors and an enhanced proliferation state of effector T cells was seen only upon intracutaneous but not intravenous or intraperitoneal immunization. Tumor growth was prevented only by intracutaneous DC vaccination. Our results indicate that under suboptimal conditions the route of DC vaccination crucially determines the efficiency of tumor defense. DC-based strategies for immunotherapy of cancer should take into account the immunization route in order to optimize tissue targeting of tumor antigen specific T cells. PMID:25121970

  5. Induction of Indoleamine 2, 3-Dioxygenase in Human Dendritic Cells by a Cholera Toxin B Subunit—Proinsulin Vaccine

    PubMed Central

    Mbongue, Jacques C.; Nicholas, Dequina A.; Zhang, Kangling; Kim, Nan-Sun; Hamilton, Brittany N.; Larios, Marco; Zhang, Guangyu; Umezawa, Kazuo; Firek, Anthony F.; Langridge, William H. R.

    2015-01-01

    Dendritic cells (DC) interact with naïve T cells to regulate the delicate balance between immunity and tolerance required to maintain immunological homeostasis. In this study, immature human dendritic cells (iDC) were inoculated with a chimeric fusion protein vaccine containing the pancreatic β-cell auto-antigen proinsulin linked to a mucosal adjuvant the cholera toxin B subunit (CTB-INS). Proteomic analysis of vaccine inoculated DCs revealed strong up-regulation of the tryptophan catabolic enzyme indoleamine 2, 3-dioxygenase (IDO1). Increased biosynthesis of the immunosuppressive enzyme was detected in DCs inoculated with the CTB-INS fusion protein but not in DCs inoculated with proinsulin, CTB, or an unlinked combination of the two proteins. Immunoblot and PCR analyses of vaccine treated DCs detected IDO1mRNA by 3 hours and IDO1 protein synthesis by 6 hours after vaccine inoculation. Determination of IDO1 activity in vaccinated DCs by measurement of tryptophan degradation products (kynurenines) showed increased tryptophan cleavage into N-formyl kynurenine. Vaccination did not interfere with monocytes differentiation into DC, suggesting the vaccine can function safely in the human immune system. Treatment of vaccinated DCs with pharmacological NF-κB inhibitors ACHP or DHMEQ significantly inhibited IDO1 biosynthesis, suggesting a role for NF-κB signaling in vaccine up-regulation of dendritic cell IDO1. Heat map analysis of the proteomic data revealed an overall down-regulation of vaccinated DC functions, suggesting vaccine suppression of DC maturation. Together, our experimental data indicate that CTB-INS vaccine induction of IDO1 biosynthesis in human DCs may result in the inhibition of DC maturation generating a durable state of immunological tolerance. Understanding how CTB-INS modulates IDO1 activity in human DCs will facilitate vaccine efficacy and safety, moving this immunosuppressive strategy closer to clinical applications for prevention of type 1

  6. CCR7-CCL19/CCL21-regulated dendritic cells are responsible for effectiveness of sublingual vaccination.

    PubMed

    Song, Joo-Hye; Kim, Jung-Im; Kwon, Hyung-Joon; Shim, Doo-Hee; Parajuli, Nirmala; Cuburu, Nicolas; Czerkinsky, Cecil; Kweon, Mi-Na

    2009-06-01

    Our previous studies demonstrated the potential of the sublingual (s.l.) route for delivering vaccines capable of inducing mucosal as well as systemic immune responses. Those findings prompted us to attempt to identify possible inductive mechanism of s.l. vaccination for immune responses. Within 2 h after s.l. administration with cholera toxin (CT), significantly higher numbers of MHC class II(+) cells accumulated in the s.l. mucosa. Of note, there were brisk expression levels of both CCL19 and CCL21 in cervical lymph nodes (CLN) 24 h after s.l. vaccination with CT. In reconstitution experiments using OVA-specific CD4(+) or CD8(+) T cells, s.l. vaccination elicited strong Ag-specific T cell proliferation mainly in CLN. Interestingly, Ag-specific T cell proliferation completely disappeared in CD11c-depleted and CCR7(-/-) mice but not in Langerin-depleted, macrophage-depleted, and CCR6(-/-) mice. Similar to CD4(+) T cell responses, induction of Ag-specific IgG (systemic) and IgA (mucosal) Ab responses were significantly reduced in CD11c-depleted and CCR7(-/-) mice after s.l. vaccination with OVA plus CT. Although CD8alpha(-) dendritic cells ferried Ag from the s.l. mucosa, both migratory CD8alpha(-) and resident CD8alpha(+) dendritic cells were essential to prime CD4(+) T cells in the CLN. On the basis of these findings, we believe that CCR7 expressed CD8alpha(-)CD11c(+) cells ferry Ag in the s.l. mucosa, migrate into the CLN, and share the Ag with resident CD8alpha(+)CD11c(+) cells for the initiation of Ag-specific T and B cell responses following s.l. challenge. We propose that the s.l. mucosa is one of the effective mucosal inductive sites regulated by the CCR7-CCL19/CCL21 pathway.

  7. Tetanus toxoid and CCL3 improve dendritic cell vaccines in mice and glioblastoma patients.

    PubMed

    Mitchell, Duane A; Batich, Kristen A; Gunn, Michael D; Huang, Min-Nung; Sanchez-Perez, Luis; Nair, Smita K; Congdon, Kendra L; Reap, Elizabeth A; Archer, Gary E; Desjardins, Annick; Friedman, Allan H; Friedman, Henry S; Herndon, James E; Coan, April; McLendon, Roger E; Reardon, David A; Vredenburgh, James J; Bigner, Darell D; Sampson, John H

    2015-03-19

    After stimulation, dendritic cells (DCs) mature and migrate to draining lymph nodes to induce immune responses. As such, autologous DCs generated ex vivo have been pulsed with tumour antigens and injected back into patients as immunotherapy. While DC vaccines have shown limited promise in the treatment of patients with advanced cancers including glioblastoma, the factors dictating DC vaccine efficacy remain poorly understood. Here we show that pre-conditioning the vaccine site with a potent recall antigen such as tetanus/diphtheria (Td) toxoid can significantly improve the lymph node homing and efficacy of tumour-antigen-specific DCs. To assess the effect of vaccine site pre-conditioning in humans, we randomized patients with glioblastoma to pre-conditioning with either mature DCs or Td unilaterally before bilateral vaccination with DCs pulsed with Cytomegalovirus phosphoprotein 65 (pp65) RNA. We and other laboratories have shown that pp65 is expressed in more than 90% of glioblastoma specimens but not in surrounding normal brain, providing an unparalleled opportunity to subvert this viral protein as a tumour-specific target. Patients given Td had enhanced DC migration bilaterally and significantly improved survival. In mice, Td pre-conditioning also enhanced bilateral DC migration and suppressed tumour growth in a manner dependent on the chemokine CCL3. Our clinical studies and corroborating investigations in mice suggest that pre-conditioning with a potent recall antigen may represent a viable strategy to improve anti-tumour immunotherapy.

  8. Adenovirus MART-1-engineered autologous dendritic cell vaccine for metastatic melanoma.

    PubMed

    Butterfield, Lisa H; Comin-Anduix, Begonya; Vujanovic, Lazar; Lee, Yohan; Dissette, Vivian B; Yang, Jin-Quan; Vu, Hong T; Seja, Elizabeth; Oseguera, Denise K; Potter, Douglas M; Glaspy, John A; Economou, James S; Ribas, Antoni

    2008-04-01

    We performed a phase 1/2 trial testing the safety, toxicity, and immune response of a vaccine consisting of autologous dendritic cells (DCs) transduced with a replication-defective adenovirus (AdV) encoding the full-length melanoma antigen MART-1/Melan-A (MART-1). This vaccine was designed to activate MART-1-specific CD+8 and CD4+ T cells. Metastatic melanoma patients received 3 injections of 10(6) or 10(7) DCs, delivered intradermally. Cell surface phenotype and cytokine production of the DCs used for the vaccines were tested, and indicated intermediate maturity. CD8+ T-cell responses to MART-1 27-35 were assessed by both major histocompatibility complex class I tetramer and interferon (IFN)-gamma enzyme-linked immunosorbent spot (ELISPOT) before, during, and after each vaccine and CD4+ T-cell responses to MART-1 51-73 were followed by IFN-gamma ELISPOT. We also measured antigen response breadth. Determinant spreading from the immunizing antigen MART-1 to other melanoma antigens [gp100, tyrosinase, human melanoma antigen-A3 (MAGE-A3)] was assessed by IFN-gamma ELISPOT. Twenty-three patients were enrolled and 14 patients received all 3 scheduled DC vaccines. Significant CD8+ and/or CD4+ MART-1-specific T-cell responses were observed in 6/11 and 2/4 patients evaluated, respectively, indicating that the E1-deleted adenovirus encoding the cDNA for MART-1/Melan-A (AdVMART1)/DC vaccine activated both helper and killer T cells in vivo. Responses in CD8+ and CD4+ T cells to additional antigens were noted in 2 patients. The AdVMART1-transduced DC vaccine was safe and immunogenic in patients with metastatic melanoma.

  9. Adenovirus MART-1–engineered Autologous Dendritic Cell Vaccine for Metastatic Melanoma

    PubMed Central

    Butterfield, Lisa H.; Comin-Anduix, Begonya; Vujanovic, Lazar; Lee, Yohan; Dissette, Vivian B.; Yang, Jin-Quan; Vu, Hong T.; Seja, Elizabeth; Oseguera, Denise K.; Potter, Douglas M.; Glaspy, John A.; Economou, James S.; Ribas, Antoni

    2013-01-01

    Summary We performed a phase 1/2 trial testing the safety, toxicity, and immune response of a vaccine consisting of autologous dendritic cells (DCs) transduced with a replication-defective adenovirus (AdV) encoding the full-length melanoma antigen MART-1/Melan-A (MART-1). This vaccine was designed to activate MART-1–specific CD8+ and CD4+ T cells. Metastatic melanoma patients received 3 injections of 106 or 107 DCs, delivered intradermally. Cell surface phenotype and cytokine production of the DCs used for the vaccines were tested, and indicated intermediate maturity. CD8+ T-cell responses to MART-127-35 were assessed by both major histocompatibility complex class I tetramer and interferon (IFN)-γ enzyme-linked immunosorbent spot (ELISPOT) before, during, and after each vaccine and CD4+ T-cell responses to MART-151-73 were followed by IFN-γ ELISPOT. We also measured antigen response breadth. Determinant spreading from the immunizing antigen MART-1 to other melanoma antigens [gp100, tyrosinase, human melanoma antigen-A3 (MAGE-A3)] was assessed by IFN-γ ELISPOT. Twenty-three patients were enrolled and 14 patients received all 3 scheduled DC vaccines. Significant CD8+ and/or CD4+ MART-1–specific T-cell responses were observed in 6/11 and 2/4 patients evaluated, respectively, indicating that the E1-deleted adeno-virus encoding the cDNA for MART-1/Melan-A (AdV-MART1)/DC vaccine activated both helper and killer T cells in vivo. Responses in CD8+ and CD4+ T cells to additional antigens were noted in 2 patients. The AdVMART1-transduced DC vaccine was safe and immunogenic in patients with metastatic melanoma. PMID:18317358

  10. The use of dendritic cells for peptide-based vaccination in cancer immunotherapy.

    PubMed

    Salem, Mohamed L

    2014-01-01

    Effective antitumor immunity requires the generation and persistence of functional tumor-specific T-cell responses. Among the critical factors that often control these responses is how the antigen is delivered and presented to T cells. The use of peptide-based vaccination has been found to be a promising means to induce antitumor T-cell responses but with limited effects even if the peptide is co-delivered with a potent adjuvant. This limited response could be due to cancer-induced dysfunction in dendritic cells (DC), which play a central role in shaping the quantity and quality of antitumor immunity. Therefore, DC-based peptide delivery of tumor antigen is becoming a potential approach in cancer immunotherapy. In this approach, autologous DC are generated from their precursors in bone marrow or peripheral blood mononuclear cells, loaded with tumor antigen(s) and then infused back to the tumor-bearing host in about 7 days. This DC-based vaccination can act as an antigen delivery vehicle as well as a potent adjuvant, resulting in measurable antitumor immunity in several cancer settings in preclinical and clinical studies. This chapter focuses on DC-based vaccination and how this approach can be more efficacious in cancer immunotherapy.Effective antitumor immunity requires the generation and persistence of functional tumor-specific T-cell responses. Among the critical factors that often control these responses is how the antigen is delivered and presented to T cells. The use of peptide-based vaccination has been found to be a promising means to induce antitumor T-cell responses but with limited effects even if the peptide is co-delivered with a potent adjuvant. This limited response could be due to cancer-induced dysfunction in dendritic cells (DC), which play a central role in shaping the quantity and quality of antitumor immunity. Therefore, DC-based peptide delivery of tumor antigen is becoming a potential approach in cancer immunotherapy. In this approach

  11. Progress on the development of human in vitro dendritic cell based assays for assessment of the sensitizing potential of a compound

    SciTech Connect

    Galvao dos Santos, G.; Reinders, J.; Ouwehand, K.; Rustemeyer, T.; Scheper, R.J.; Gibbs, S.

    2009-05-01

    Allergic contact dermatitis is the result of an adaptive immune response of the skin to direct exposure to an allergen. Since many chemicals are also allergens, European regulations require strict screening of all ingredients in consumer products. Until recently, identifying a potential allergen has completely relied on animal testing (e.g.: Local Lymph Node Assay). In addition to the ethical problems, both the 7th Amendment to the Cosmetics Directive and REACH have stimulated the development of alternative tests for the assessment of potential sensitizers. This review is aimed at summarising the progress on cell based assays, in particular dendritic cell based assays, being developed as animal alternatives. Primary cells (CD34{sup +} derived dendritic cells, monocyte derived dendritic cells) as well as dendritic cell-like cell lines (THP-1, U-937, MUTZ-3, KG-1, HL-60, and K562) are extensively described along with biomarkers such as cell surface markers, cytokines, chemokines and kinases. From this review, it can be concluded that no single cell based assay nor single marker is yet able to distinguish all sensitizers from non-sensitizers in a test panel of chemicals, nor is it possible to rank the sensitizing potential of the test chemicals. This suggests that sensitivity and specificity may be increased by a tiered assay approach. Only a limited number of genomic and proteomic studies have been completed until now. Such studies have the potential to identify novel biomarkers for inclusion in future assay development. Although progress is promising, this review suggests that it may be difficult to meet the up and coming European regulatory deadlines.

  12. Preclinical Evaluation of Novel Dendritic Cell-Based Prostate Cancer Vaccines

    DTIC Science & Technology

    2008-01-01

    negative selection using the Pan-T Cell Isolation kit ( Miltenyi Biotec, Auburn, CA) and mixed with DCs at a DC:T cell ratio of 1:5. Cells will be...resulting immature DCs were MHC class Ihi, MHC class IIhi, CD40lo, CD80lo, CD83lo, CD86lo. The immature DCs were CD14 ! and contained ɛ% contaminating...genotyped using FASTYPE HLA-DNA SSP typing kit; BioSynthesis) were isolated by negative selection using naı̈ve CD4+ T-cell isolation kit ( Miltenyi

  13. Vitamin E Succinate as an Adjuvant for Dendritic Cell-Based Vaccines

    DTIC Science & Technology

    2005-07-01

    effect on DC using supernatant fluid derived from Va-TOS-treated lewis lung (3LL) carcinoma cells. Previously it has been shown that heat shock...Andera, L., Lahm, H., Gellert, N., Fariss, M. W., Korinek, V., Sattler, W., Ucker, D. S., Terman , A., Schroder, A., Erl, W., Brunk, U. T., Coffey, R

  14. Dendritic Cell Targeting Effectively Boosts T Cell Responses Elicited by an HIV Multiepitope DNA Vaccine.

    PubMed

    Apostólico, Juliana de Souza; Lunardelli, Victória Alves Santos; Yamamoto, Marcio Massao; Souza, Higo Fernando Santos; Cunha-Neto, Edecio; Boscardin, Silvia Beatriz; Rosa, Daniela Santoro

    2017-01-01

    Despite several efforts in the last decades, an efficacious HIV-1 vaccine is still not available. Different approaches have been evaluated, such as recombinant proteins, viral vectors, DNA vaccines, and, most recently, dendritic cell (DC) targeting. This strategy is based on DC features that place them as central for induction of immunity. Targeting is accomplished by the use of chimeric monoclonal antibodies directed to DC surface receptors fused to the antigen of interest. In this work, we targeted eight promiscuous HIV-derived CD4(+) T cell epitopes (HIVBr8) to the DEC205(+) DCs by fusing the multiepitope immunogen to the heavy chain of αDEC205 (αDECHIVBr8), in the presence of the TLR3 agonist poly (I:C). In addition, we tested a DNA vaccine encoding the same epitopes using homologous or heterologous prime-boost regimens. Our results showed that mice immunized with αDECHIVBr8 presented higher CD4(+) and CD8(+) T cell responses when compared to mice that received the DNA vaccine (pVAXHIVBr8). In addition, pVAXHIVBr8 priming followed by αDECHIVBr8 boosting induced higher polyfunctional proliferative and cytokine-producing T cell responses to HIV-1 peptides than homologous DNA immunization or heterologous αDEC prime/DNA boost. Based on these results, we conclude that homologous prime-boost and heterologous boosting immunization strategies targeting CD4(+) epitopes to DCs are effective to improve HIV-specific cellular immune responses when compared to standalone DNA immunization. Moreover, our results indicate that antigen targeting to DC is an efficient strategy to boost immunity against a multiepitope immunogen, especially in the context of DNA vaccination.

  15. Dendritic Cell Targeting Effectively Boosts T Cell Responses Elicited by an HIV Multiepitope DNA Vaccine

    PubMed Central

    Apostólico, Juliana de Souza; Lunardelli, Victória Alves Santos; Yamamoto, Marcio Massao; Souza, Higo Fernando Santos; Cunha-Neto, Edecio; Boscardin, Silvia Beatriz; Rosa, Daniela Santoro

    2017-01-01

    Despite several efforts in the last decades, an efficacious HIV-1 vaccine is still not available. Different approaches have been evaluated, such as recombinant proteins, viral vectors, DNA vaccines, and, most recently, dendritic cell (DC) targeting. This strategy is based on DC features that place them as central for induction of immunity. Targeting is accomplished by the use of chimeric monoclonal antibodies directed to DC surface receptors fused to the antigen of interest. In this work, we targeted eight promiscuous HIV-derived CD4+ T cell epitopes (HIVBr8) to the DEC205+ DCs by fusing the multiepitope immunogen to the heavy chain of αDEC205 (αDECHIVBr8), in the presence of the TLR3 agonist poly (I:C). In addition, we tested a DNA vaccine encoding the same epitopes using homologous or heterologous prime-boost regimens. Our results showed that mice immunized with αDECHIVBr8 presented higher CD4+ and CD8+ T cell responses when compared to mice that received the DNA vaccine (pVAXHIVBr8). In addition, pVAXHIVBr8 priming followed by αDECHIVBr8 boosting induced higher polyfunctional proliferative and cytokine-producing T cell responses to HIV-1 peptides than homologous DNA immunization or heterologous αDEC prime/DNA boost. Based on these results, we conclude that homologous prime-boost and heterologous boosting immunization strategies targeting CD4+ epitopes to DCs are effective to improve HIV-specific cellular immune responses when compared to standalone DNA immunization. Moreover, our results indicate that antigen targeting to DC is an efficient strategy to boost immunity against a multiepitope immunogen, especially in the context of DNA vaccination. PMID:28223987

  16. Dendritic Cell-Based Immunotherapies to Fight HIV: How Far from a Success Story? A Systematic Review and Meta-Analysis.

    PubMed

    Coelho, Antonio Victor Campos; de Moura, Ronald Rodrigues; Kamada, Anselmo Jiro; da Silva, Ronaldo Celerino; Guimarães, Rafael Lima; Brandão, Lucas André Cavalcanti; de Alencar, Luiz Cláudio Arraes; Crovella, Sergio

    2016-11-26

    The scientific community still faces the challenge of developing strategies to cure HIV-1. One of these pursued strategies is the development of immunotherapeutic vaccines based on dendritic cells (DCs), pulsed with the virus, that aim to boost HIV-1 specific immune response. We aimed to review DCs-based therapeutic vaccines reports and critically assess evidence to gain insights for the improvement of these strategies. We performed a systematic review, followed by meta-analysis and meta-regression, of clinical trial reports. Twelve studies were selected for meta-analysis. The experimental vaccines had low efficiency, with an overall success rate around 38% (95% confidence interval = 26.7%-51.3%). Protocols differed according to antigen choice, DC culture method, and doses, although multivariate analysis did not show an influence of any of them on overall success rate. The DC-based vaccines elicited at least some immunogenicity, that was sometimes associated with plasmatic viral load transient control. The protocols included both naïve and antiretroviral therapy (ART)-experienced individuals, and used different criteria for assessing vaccine efficacy. Although the vaccines did not work as expected, they are proof of concept that immune responses can be boosted against HIV-1. Protocol standardization and use of auxiliary approaches, such as latent HIV-1 reservoir activation and patient genomics are paramount for fine-tuning future HIV-1 cure strategies.

  17. Dendritic Cell-Based Immunotherapies to Fight HIV: How Far from a Success Story? A Systematic Review and Meta-Analysis

    PubMed Central

    Coelho, Antonio Victor Campos; de Moura, Ronald Rodrigues; Kamada, Anselmo Jiro; da Silva, Ronaldo Celerino; Guimarães, Rafael Lima; Brandão, Lucas André Cavalcanti; de Alencar, Luiz Cláudio Arraes; Crovella, Sergio

    2016-01-01

    The scientific community still faces the challenge of developing strategies to cure HIV-1. One of these pursued strategies is the development of immunotherapeutic vaccines based on dendritic cells (DCs), pulsed with the virus, that aim to boost HIV-1 specific immune response. We aimed to review DCs-based therapeutic vaccines reports and critically assess evidence to gain insights for the improvement of these strategies. We performed a systematic review, followed by meta-analysis and meta-regression, of clinical trial reports. Twelve studies were selected for meta-analysis. The experimental vaccines had low efficiency, with an overall success rate around 38% (95% confidence interval = 26.7%–51.3%). Protocols differed according to antigen choice, DC culture method, and doses, although multivariate analysis did not show an influence of any of them on overall success rate. The DC-based vaccines elicited at least some immunogenicity, that was sometimes associated with plasmatic viral load transient control. The protocols included both naïve and antiretroviral therapy (ART)-experienced individuals, and used different criteria for assessing vaccine efficacy. Although the vaccines did not work as expected, they are proof of concept that immune responses can be boosted against HIV-1. Protocol standardization and use of auxiliary approaches, such as latent HIV-1 reservoir activation and patient genomics are paramount for fine-tuning future HIV-1 cure strategies. PMID:27898045

  18. Immature dendritic cell-derived exosomes: a promise subcellular vaccine for autoimmunity.

    PubMed

    Yin, Weifan; Ouyang, Song; Li, Yi; Xiao, Bo; Yang, Huan

    2013-02-01

    Exosomes, 60-90-nm-sized vesicles, are produced by a large number of cell types, including tumor cells, neurons, astrocytes, hemocytes, intestinal epithelial cells, and so on. Dendritic cell (DC), the most potent professional antigen-presenting cell in the immune system, produces exosomes in the course of maturation. Mature DCs produce exosomes with the ability to elicit potent immunoactivation, resulting in tumor eradication and bacterial or virus elimination. Given the notion that exosomes are stable and easy to be modified artificially, autologous mature DC-derived exosomes have been vaccinated into patients with malignant diseases. In clinical trials utilizing exosomes as therapeutic approaches, researchers observed considerable curative effect with little side effect. However, immature or suppressive DC-derived exosomes harbor anti-inflammatory properties distinct from mature DC-derived exosomes. In murine models of autoimmune disease and transplantation, immature DC-derived exosomes reduced T cell-dependent immunoactivation, relieved clinical manifestation of autoimmune disease, and prolonged survival time of transplantation. Although the exact mechanism of how immature DC-derived exosomes function in vivo is still unclear, and there are no clinical trials regarding application of exosome vaccine into patients with autoimmune disease, we will analyze the promise of immature DC-derived exosomes as a subcellular vaccine in autoimmunity in this review.

  19. Vaccination with Leishmania histone H1-pulsed dendritic cells confers protection in murine visceral leishmaniasis.

    PubMed

    Agallou, Maria; Smirlis, Despina; Soteriadou, Ketty P; Karagouni, Evdokia

    2012-07-20

    Visceral leishmaniasis is the most severe form of leishmaniases affecting millions of people worldwide often resulting in death despite optimal therapy. Thus, there is an urgent need for the development of effective anti-infective vaccine(s). In the present study, we evaluated the prophylactic value of bone marrow-derived dendritic cells (BM-DCs) pulsed with the Leishmania (L.) infantum histone H1. We developed fully mature BM-DCs characterized by enhanced capacity of IL-12 production after ex vivo pulsing with GST-LeishH1. Intravenous administration of these BM-DCs in naive BALB/c mice resulted in antigen-specific spleenocyte proliferation and IgG1 isotype antibody production and conferred protection against experimental challenge with L. infantum independently of CpG oligonucleotides (ODNs) co-administration. Protection was associated with a pronounced enhancement of parasite-specific IFNγ-producing cells and reduction of cells producing IL-10, whereas IL-4 production was comparable in protected and non-protected mice. The polarization of immune responses to Th1 type was further confirmed by the elevation of parasite-specific IgG2a/IgG1 ratio in protected mice. The above data indicate the immunostimulatory capacity of Leishmania histone H1 and further support its exploitation as a candidate protein for vaccine development against leishmaniasis.

  20. Exploiting the Immunogenic Potential of Cancer Cells for Improved Dendritic Cell Vaccines

    PubMed Central

    Vandenberk, Lien; Belmans, Jochen; Van Woensel, Matthias; Riva, Matteo; Van Gool, Stefaan W.

    2016-01-01

    Cancer immunotherapy is currently the hottest topic in the oncology field, owing predominantly to the discovery of immune checkpoint blockers. These promising antibodies and their attractive combinatorial features have initiated the revival of other effective immunotherapies, such as dendritic cell (DC) vaccinations. Although DC-based immunotherapy can induce objective clinical and immunological responses in several tumor types, the immunogenic potential of this monotherapy is still considered suboptimal. Hence, focus should be directed on potentiating its immunogenicity by making step-by-step protocol innovations to obtain next-generation Th1-driving DC vaccines. We review some of the latest developments in the DC vaccination field, with a special emphasis on strategies that are applied to obtain a highly immunogenic tumor cell cargo to load and to activate the DCs. To this end, we discuss the effects of three immunogenic treatment modalities (ultraviolet light, oxidizing treatments, and heat shock) and five potent inducers of immunogenic cell death [radiotherapy, shikonin, high-hydrostatic pressure, oncolytic viruses, and (hypericin-based) photodynamic therapy] on DC biology and their application in DC-based immunotherapy in preclinical as well as clinical settings. PMID:26834740

  1. A Cell-Based Systems Biology Assessment of Human Blood to Monitor Immune Responses after Influenza Vaccination

    PubMed Central

    Hoek, Kristen L.; Samir, Parimal; Howard, Leigh M.; Niu, Xinnan; Prasad, Nripesh; Galassie, Allison; Liu, Qi; Allos, Tara M.; Floyd, Kyle A.; Guo, Yan; Shyr, Yu; Levy, Shawn E.; Joyce, Sebastian; Edwards, Kathryn M.; Link, Andrew J.

    2015-01-01

    Systems biology is an approach to comprehensively study complex interactions within a biological system. Most published systems vaccinology studies have utilized whole blood or peripheral blood mononuclear cells (PBMC) to monitor the immune response after vaccination. Because human blood is comprised of multiple hematopoietic cell types, the potential for masking responses of under-represented cell populations is increased when analyzing whole blood or PBMC. To investigate the contribution of individual cell types to the immune response after vaccination, we established a rapid and efficient method to purify human T and B cells, natural killer (NK) cells, myeloid dendritic cells (mDC), monocytes, and neutrophils from fresh venous blood. Purified cells were fractionated and processed in a single day. RNA-Seq and quantitative shotgun proteomics were performed to determine expression profiles for each cell type prior to and after inactivated seasonal influenza vaccination. Our results show that transcriptomic and proteomic profiles generated from purified immune cells differ significantly from PBMC. Differential expression analysis for each immune cell type also shows unique transcriptomic and proteomic expression profiles as well as changing biological networks at early time points after vaccination. This cell type-specific information provides a more comprehensive approach to monitor vaccine responses. PMID:25706537

  2. A cell-based systems biology assessment of human blood to monitor immune responses after influenza vaccination.

    PubMed

    Hoek, Kristen L; Samir, Parimal; Howard, Leigh M; Niu, Xinnan; Prasad, Nripesh; Galassie, Allison; Liu, Qi; Allos, Tara M; Floyd, Kyle A; Guo, Yan; Shyr, Yu; Levy, Shawn E; Joyce, Sebastian; Edwards, Kathryn M; Link, Andrew J

    2015-01-01

    Systems biology is an approach to comprehensively study complex interactions within a biological system. Most published systems vaccinology studies have utilized whole blood or peripheral blood mononuclear cells (PBMC) to monitor the immune response after vaccination. Because human blood is comprised of multiple hematopoietic cell types, the potential for masking responses of under-represented cell populations is increased when analyzing whole blood or PBMC. To investigate the contribution of individual cell types to the immune response after vaccination, we established a rapid and efficient method to purify human T and B cells, natural killer (NK) cells, myeloid dendritic cells (mDC), monocytes, and neutrophils from fresh venous blood. Purified cells were fractionated and processed in a single day. RNA-Seq and quantitative shotgun proteomics were performed to determine expression profiles for each cell type prior to and after inactivated seasonal influenza vaccination. Our results show that transcriptomic and proteomic profiles generated from purified immune cells differ significantly from PBMC. Differential expression analysis for each immune cell type also shows unique transcriptomic and proteomic expression profiles as well as changing biological networks at early time points after vaccination. This cell type-specific information provides a more comprehensive approach to monitor vaccine responses.

  3. Dendrite

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Researchers have found that as melted metals and alloys (combinations of metals) solidify, they can form with different arrangements of atoms, called microstructures. These microstructures depend on the shape of the interface (boundary) between the melted metal and the solid crystal it is forming. There are generally three shapes that the interface can take: planar, or flat; cellular, which looks like the cells of a beehive; and dendritic, which resembles tiny fir trees. Convection at this interface can affect the interface shape and hide the other phenomena (physical events). To reduce the effects of convection, researchers conduct experiments that examine and control conditions at the interface in microgravity. Microgravity also helps in the study of alloys composed of two metals that do not mix. On Earth, the liquid mixtures of these alloys settle into different layers due to gravity. In microgravity, the liquid metals do not settle, and a solid more uniform mixture of both metals can be formed.

  4. Lysosome-Dependent Activation of Human Dendritic Cells by the Vaccine Adjuvant QS-21

    PubMed Central

    Welsby, Iain; Detienne, Sophie; N’Kuli, Francisca; Thomas, Séverine; Wouters, Sandrine; Bechtold, Viviane; De Wit, Dominique; Gineste, Romain; Reinheckel, Thomas; Elouahabi, Abdelatif; Courtoy, Pierre J.; Didierlaurent, Arnaud M.; Goriely, Stanislas

    2017-01-01

    The adjuvant properties of the saponin QS-21 have been known for decades. It is a component of the Adjuvant System AS01 that is used in several vaccine candidates. QS-21 strongly potentiates both cellular and humoral immune responses to purified antigens, yet how it activates immune cells is largely unknown. Here, we report that QS-21 directly activated human monocyte-derived dendritic cells (moDCs) and promoted a pro-inflammatory transcriptional program. Cholesterol-dependent QS-21 endocytosis followed by lysosomal destabilization and Syk kinase activation were prerequisites for this response. Cathepsin B, a lysosomal cysteine protease, was essential for moDC activation in vitro and contributed to the adjuvant effects of QS-21 in vivo. Collectively, these findings provide new insights into the pathways involved in the direct activation of antigen-presenting cells by a clinically relevant QS-21 formulation. PMID:28105029

  5. Paradigm Shift in Dendritic Cell-Based Immunotherapy: From in vitro Generated Monocyte-Derived DCs to Naturally Circulating DC Subsets

    PubMed Central

    Wimmers, Florian; Schreibelt, Gerty; Sköld, Annette E.; Figdor, Carl G.; De Vries, I. Jolanda M.

    2014-01-01

    Dendritic cell (DC)-based immunotherapy employs the patients’ immune system to fight neoplastic lesions spread over the entire body. This makes it an important therapy option for patients suffering from metastatic melanoma, which is often resistant to chemotherapy. However, conventional cellular vaccination approaches, based on monocyte-derived DCs (moDCs), only achieved modest response rates despite continued optimization of various vaccination parameters. In addition, the generation of moDCs requires extensive ex vivo culturing conceivably hampering the immunogenicity of the vaccine. Recent studies, thus, focused on vaccines that make use of primary DCs. Though rare in the blood, these naturally circulating DCs can be readily isolated and activated thereby circumventing lengthy ex vivo culture periods. The first clinical trials not only showed increased survival rates but also the induction of diversified anti-cancer immune responses. Upcoming treatment paradigms aim to include several primary DC subsets in a single vaccine as pre-clinical studies identified synergistic effects between various antigen-presenting cells. PMID:24782868

  6. Clinical testing of a dendritic cell targeted therapeutic vaccine in patients with chronic hepatitis C virus infection

    PubMed Central

    Zabaleta, Aintzane; D’Avola, Delia; Echeverria, Itziar; Llopiz, Diana; Silva, Leyre; Villanueva, Lorea; Riezu-Boj, José Ignacio; Larrea, Esther; Pereboev, Alexander; Lasarte, Juan José; Rodriguez-Lago, Iago; Iñarrairaegui, Mercedes; Sangro, Bruno; Prieto, Jesús; Sarobe, Pablo

    2015-01-01

    The lack of antiviral cellular immune responses in patients with chronic hepatitis C virus (HCV) infection suggests that T-cell vaccines may provide therapeutic benefit. Due to the central role that dendritic cells (DC) play in the activation of T-cell responses, our aim was to carry out a therapeutic vaccination clinical trial in HCV patients using DC. Five patients with chronic HCV infection were vaccinated with three doses of 5 × 106 or 107 autologous DC transduced with a recombinant adenovirus encoding NS3 using the adapter protein CFh40L, which facilitates DC transduction and maturation. No significant adverse effects were recorded after vaccination. Treatment caused no changes in serum liver enzymes nor in viral load. Vaccination induced weak but consistent expansion of T-cell responses against NS3 and adenoviral antigens. Patients’ DC, as opposed to murine DC or DC from healthy subjects, secreted high IL-10 levels after transduction, inducing the activation of IL-10–producing T cells. IL-10 blockade during vaccine preparation restored its ability to stimulate anti-NS3 Th1 responses. Thus, vaccination with adenovirus-transduced DC is safe and induces weak antiviral immune responses. IL-10 associated with vaccine preparation may be partly responsible for these effects, suggesting that future vaccines should consider concomitant inhibition of this cytokine. PMID:26029717

  7. Vpx-containing Dendritic Cell Vaccine Vectors Induce CTLs and Reactivate Latent HIV-1 in vitro

    PubMed Central

    Norton, Thomas D.; Miller, Elizabeth A.; Bhardwaj, Nina; Landau, Nathaniel R.

    2015-01-01

    Eradication of HIV-1 from an infected individual requires a means of inducing production of virus from latently infected cells and stimulating an immune response against the infected cells. We report the development of lentiviral vectors that transduce dendritic cells (DCs) to both induce production of virus from latently infected cells and stimulate antigen-specific CTLs. The vectors package Vpx, a lentiviral accessory protein that counteracts the SAMHD1-mediated block to DC transduction, allowing for long-term expression of vector-encoded proteins. The vectors encode influenza or HIV-1-derived epitopes fused via a self-cleaving peptide to CD40L that releases the peptide into the endoplasmic reticulum for entry into the antigen presentation pathway. Expression of CD40L caused transduced DCs to mature and produce Th1-skewing cytokines. The DCs presented antigen to CD8 T cells, enhancing antigen-specific CTLs. Coculture of the transduced DCs with latently infected cells induced high level virus production, an effect that was mediated by TNF-α. The ability of a DC vaccine to reactivate latent HIV-1 and stimulate an adaptive immune response provides a means to reduce the size of the latent reservoir in patients. This strategy can also be applied to develop DC vaccines for other diseases. PMID:25567537

  8. [State of the art about new therapeutic vaccines in prostate cancer: dendritic cells, engineered tumor cells and recombinant virus].

    PubMed

    Eymard, Jean-Christophe; Gervais, Alban; Jarcau, Rosana; Bernard, Jacky

    2007-07-01

    Therapeutic vaccines for prostate cancer were initially reported as limited with low immunological responses and uncertain clinical benefit. Recently, new methods become available, such preparations of well-characterized autologous dendritic cells, and use of gene therapy tools to increase whole-tumor cells or host tissue immunogenicity. These are able to enhance and diversify therapeutic options. Indeed, several vaccinal approaches are being investigated, including optimized mature dendritic cells, allogeneic genetically modified tumor cells, or viral vectors. Due to the description of immunological and clinical responses, large phase III randomized trials are now conducted. After summarizing the mechanistic basis for these approaches, this review describes the experience with the most recent and promising clinical studies and introduces short-term perspectives that could lead to improvement in healthcare offer for prostate cancer patients.

  9. Autologous lysate-pulsed dendritic cell vaccination followed by adoptive transfer of vaccine-primed ex vivo co-stimulated T cells in recurrent ovarian cancer.

    PubMed

    Kandalaft, Lana E; Powell, Daniel J; Chiang, Cheryl L; Tanyi, Janos; Kim, Sarah; Bosch, Marnix; Montone, Kathy; Mick, Rosemarie; Levine, Bruce L; Torigian, Drew A; June, Carl H; Coukos, George

    2013-01-01

    Novel strategies for the therapy of recurrent ovarian cancer are warranted. We report a study of a combinatorial approach encompassing dendritic cell (DC)-based autologous whole tumor vaccination and anti-angiogenesis therapy, followed by the adoptive transfer of autologous vaccine-primed CD3/CD28-co-stimulated lymphocytes. Recurrent ovarian cancer patients for whom tumor lysate was available from prior cytoreductive surgery underwent conditioning with intravenous bevacizumab and oral metronomic cyclophosphamide, sequentially followed by (1) bevacizumab plus vaccination with DCs pulsed with autologous tumor cell lysate supernatants, (2) lymphodepletion and (3) transfer of 5 × 10(9) autologous vaccine-primed T-cells in combination with the vaccine. Feasibility, safety as well as immunological and clinical efficacy were evaluated. Six subjects received this vaccination. Therapy was feasible, well tolerated, and elicited antitumor immune responses in four subjects, who also experienced clinical benefits. Of these, three patients with residual measurable disease received outpatient lymphodepletion and adoptive T-cell transfer, which was well tolerated and resulted in a durable reduction of circulating regulatory T cells and increased CD8(+) lymphocyte counts. The vaccine-induced restoration of antitumor immunity was achieved in two subjects, who also demonstrated clinical benefits, including one complete response. Our findings indicate that combinatorial cellular immunotherapy for the treatment of recurrent ovarian cancer is well tolerated and warrants further investigation. Several modifications of this approach can be envisioned to optimize immunological and clinical outcomes.

  10. Exceptional antineoplastic activity of a dendritic-cell-targeted vaccine loaded with a Listeria peptide proposed against metastatic melanoma

    PubMed Central

    Calderon-Gonzalez, Ricardo; Bronchalo-Vicente, Lucia; Freire, Javier; Frande-Cabanes, Elisabet; Alaez-Alvarez, Lidia; Gomez-Roman, Javier; Yañez-Diaz, Sonsóles; Alvarez-Dominguez, Carmen

    2016-01-01

    Vaccination with dendritic cells (DCs) is proposed to induce lasting responses against melanoma but its survival benefit in patients needs to be demonstrated. We propose a DC-targeted vaccine loaded with a Listeria peptide with exceptional anti-tumour activity to prevent metastasis of melanoma. Mice vaccinated with vaccines based on DCs loaded with listeriolysin O peptide (91–99) (LLO91–99) showed clear reduction of metastatic B16OVA melanoma size and adhesion, prevention of lung metastasis, enhanced survival, and reversion of immune tolerance. Robust innate and specific immune responses explained the efficiency of DC-LLO91–99 vaccines against B16OVA melanoma. The noTable features of this vaccine related to melanoma reduction were: expansion of immune-dominant LLO91–99-specific CD8 T cells that helped to expand melanoma-specific CD8+ T cells; high numbers of tumour-infiltrating lymphocytes with a cytotoxic phenotype; and a decrease in CD4+CD25high regulatory T cells. This vaccine might be a useful alternative treatment for advanced melanoma, alone or in combination with other therapies. PMID:26942874

  11. Genetic Immunization With In Vivo Dendritic Cell-targeting Liposomal DNA Vaccine Carrier Induces Long-lasting Antitumor Immune Response

    PubMed Central

    Garu, Arup; Moku, Gopikrishna; Gulla, Suresh Kumar; Chaudhuri, Arabinda

    2016-01-01

    A major limiting factor retarding the clinical success of dendritic cell (DC)-based genetic immunizations (DNA vaccination) is the scarcity of biologically safe and effective carrier systems for targeting the antigen-encoded DNA vaccines to DCs under in vivo settings. Herein, we report on a potent, mannose receptor selective in vivo DC-targeting liposomes of a novel cationic amphiphile with mannose-mimicking shikimoyl head-group. Flow cytometric experiments with cells isolated from draining lymph nodes of mice s.c. immunized with lipoplexes of pGFP plasmid (model DNA vaccine) using anti-CD11c antibody-labeled magnetic beads revealed in vivo DC-targeting properties of the presently described liposomal DNA vaccine carrier. Importantly, s.c. immunizations of mice with electrostatic complex of the in vivo DC-targeting liposome and melanoma antigen-encoded DNA vaccine (p-CMV-MART1) induced long-lasting antimelanoma immune response (100 days post melanoma tumor challenge) with remarkable memory response (more than 6 months after the second tumor challenge). The presently described direct in vivo DC-targeting liposomal DNA vaccine carrier is expected to find future exploitations toward designing effective vaccines for various infectious diseases and cancers. PMID:26666450

  12. CD40-targeted dendritic cell delivery of PLGA-nanoparticle vaccines induce potent anti-tumor responses.

    PubMed

    Rosalia, Rodney A; Cruz, Luis J; van Duikeren, Suzanne; Tromp, Angelino T; Silva, Ana L; Jiskoot, Wim; de Gruijl, Tanja; Löwik, Clemens; Oostendorp, Jaap; van der Burg, Sjoerd H; Ossendorp, Ferry

    2015-02-01

    Dendritic cells (DC) play a prominent role in the priming of CD8(+) T cells. Vaccination is a promising treatment to boost tumor-specific CD8(+) T cells which is crucially dependent on adequate delivery of the vaccine to DC. Upon subcutaneous (s.c.) injection, only a small fraction of the vaccine is delivered to DC whereas the majority is cleared by the body or engulfed by other immune cells. To overcome this, we studied vaccine delivery to DC via CD40-targeting using a multi-compound particulate vaccine with the aim to induce potent CD8(+) T cell responses. To this end, biodegradable poly(lactic-co-glycolic acid) nanoparticles (NP) were formulated encapsulating a protein Ag, Pam3CSK4 and Poly(I:C) and coated with an agonistic αCD40-mAb (NP-CD40). Targeting NP to CD40 led to very efficient and selective delivery to DC in vivo upon s.c. injection and improved priming of CD8(+) T cells against two independent tumor associated Ag. Therapeutic application of NP-CD40 enhanced tumor control and prolonged survival of tumor-bearing mice. We conclude that CD40-mediated delivery to DC of NP-vaccines, co-encapsulating Ag and adjuvants, efficiently drives specific T cell responses, and therefore, is an attractive method to improve the efficacy of protein based cancer vaccines undergoing clinical testing in the clinic.

  13. Immunogenic Properties of a BCG Adjuvanted Chitosan Nanoparticle-Based Dengue Vaccine in Human Dendritic Cells

    PubMed Central

    Hunsawong, Taweewun; Sunintaboon, Panya; Warit, Saradee; Thaisomboonsuk, Butsaya; Jarman, Richard G.; Yoon, In-Kyu; Ubol, Sukathida; Fernandez, Stefan

    2015-01-01

    Dengue viruses (DENVs) are among the most rapidly and efficiently spreading arboviruses. WHO recently estimated that about half of the world’s population is now at risk for DENV infection. There is no specific treatment or vaccine available to treat or prevent DENV infections. Here, we report the development of a novel dengue nanovaccine (DNV) composed of UV-inactivated DENV-2 (UVI-DENV) and Mycobacterium bovis Bacillus Calmette-Guerin cell wall components (BCG-CWCs) loaded into chitosan nanoparticles (CS-NPs). CS-NPs were prepared by an emulsion polymerization method prior to loading of the BCG-CWCs and UVI-DENV components. Using a scanning electron microscope and a zetasizer, DNV was determined to be of spherical shape with a diameter of 372.0 ± 11.2 nm in average and cationic surface properties. The loading efficacies of BCG-CWCs and UVI-DENV into the CS-NPs and BCG-CS-NPs were up to 97.2 and 98.4%, respectively. THP-1 cellular uptake of UVI-DENV present in the DNV was higher than soluble UVI-DENV alone. DNV stimulation of immature dendritic cells (iDCs) resulted in a significantly higher expression of DCs maturation markers (CD80, CD86 and HLA-DR) and induction of various cytokine and chemokine productions than in UVI-DENV-treated iDCs, suggesting a potential use of BCG- CS-NPs as adjuvant and delivery system for dengue vaccines. PMID:26394138

  14. Dendritic cell-derived exosomes as cell-free peptide-based vaccines.

    PubMed

    Taïeb, Julien; Chaput, Nathalie; Zitvogel, Laurence

    2005-01-01

    Dendritic cells (DC) are professional antigen-presenting cells and the only ones capable of inducing primary cytotoxic immune responses both in vivo and in vitro. DCs secrete a 60-100 nm membrane vesicle population of endocytic origin, called exosomes. The lipid and protein composition of DC-derived exosomes (DEX) is now well characterized. Besides MHC and costimulatory molecules, DEX bear several adhesion proteins, which are probably involved in their specific targeting. DEX also accumulate several cytosolic factors, most likely involved in exosome's biogenesis in late endosomes. In 1998, we reported that DEX are immunogenic in mice and lead to tumor rejection. These findings have renewed the interest in DEX. The current challenge consists of understanding the mechanisms and the physiological relevance of DEX, which could contribute to the design of the optimal DEX-based vaccination. In this review, we focus on the biological features of DEX and their immunostimulatory functions in mice and humans, and we discuss their potential clinical implementation in the immunotherapy of cancer.

  15. Dendritic cell preactivation impairs MHC class II presentation of vaccines and endogenous viral antigens

    PubMed Central

    Young, Louise J.; Wilson, Nicholas S.; Schnorrer, Petra; Mount, Adele; Lundie, Rachel J.; La Gruta, Nicole L.; Crabb, Brendan S.; Belz, Gabrielle T.; Heath, William R.; Villadangos, Jose A.

    2007-01-01

    When dendritic cells (DCs) encounter signals associated with infection or inflammation, they become activated and undergo maturation. Mature DCs are very efficient at presenting antigens captured in association with their activating signal but fail to present subsequently encountered antigens, at least in vitro. Such impairment of MHC class II (MHC II) antigen presentation has generally been thought to be a consequence of down-regulation of endocytosis, so it might be expected that antigens synthesized by the DCs themselves (for instance, viral antigens) would still be presented by mature DCs. Here, we show that DCs matured in vivo could still capture and process soluble antigens, but were unable to present peptides derived from these antigens. Furthermore, presentation of viral antigens synthesized by the DCs themselves was also severely impaired. Indeed, i.v. injection of pathogen mimics, which caused systemic DC activation in vivo, impaired the induction of CD4 T cell responses against subsequently encountered protein antigens. This immunosuppressed state could be reversed by adoptive transfer of DCs loaded exogenously with antigens, demonstrating that impairment of CD4 T cell responses was due to lack of antigen presentation rather than to overt suppression of T cell activation. The biochemical mechanism underlying this phenomenon was the down-regulation of MHC II–peptide complex formation that accompanied DC maturation. These observations have important implications for the design of prophylactic and therapeutic DC vaccines and contribute to the understanding of the mechanisms causing immunosuppression during systemic blood infections. PMID:17978177

  16. Antitumor efficacy of argon-helium cryoablation-generated dendritic cell vaccine in glioma.

    PubMed

    Yin, Zhilin; Lu, Guohui; Xiao, Zhenyong; Liu, Tianzhu; He, Xiaozheng; Wang, Qifu; Lin, Chunnan; Zhang, Shizhong

    2014-03-05

    Dendritic cells (DCs) are potent antigen-presenting cells that play a critical role in priming tumor immune responses. We investigated the mechanisms of antitumor efficacy of DCs pulsed with argon-helium-cryotreated glioma cells. There was significant upregulation of maturation markers (CD80, CD86, MHC-I, and MHC-II) in argon-helium freeze-thawed lysate-pulsed DCs. The concentration of interleukin-6 (IL-6), IL-1β, tumor necrosis factor-α, and IL-12 secreted by lysate-pulsed DCs was increased. The concentration of interferon-γ secreted by T cells stimulated by lysate-pulsed DCs was increased. The cytotoxicity assay showed that T cells stimulated by lysate-pulsed DCs could kill glioma cells significantly more effectively. Our results suggest that argon-helium freeze-thawed lysate-pulsed DCs in vitro can promote DC maturation and enhance DC antigen-presenting function, and induce cytotoxic T lymphocytes to kill tumor cells. Therefore, the combination of argon-helium cryoablation and DC vaccine may represent a novel treatment method for glioma.

  17. High-yield production of a stable Vero cell-based vaccine candidate against the highly pathogenic avian influenza virus H5N1

    SciTech Connect

    Zhou, Fangye; Zhou, Jian; Ma, Lei; Song, Shaohui; Zhang, Xinwen; Li, Weidong; Jiang, Shude; Wang, Yue; Liao, Guoyang

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer Vero cell-based HPAI H5N1 vaccine with stable high yield. Black-Right-Pointing-Pointer Stable high yield derived from the YNVa H3N2 backbone. Black-Right-Pointing-Pointer H5N1/YNVa has a similar safety and immunogenicity to H5N1delta. -- Abstract: Highly pathogenic avian influenza (HPAI) viruses pose a global pandemic threat, for which rapid large-scale vaccine production technology is critical for prevention and control. Because chickens are highly susceptible to HPAI viruses, the supply of chicken embryos for vaccine production might be depleted during a virus outbreak. Therefore, developing HPAI virus vaccines using other technologies is critical. Meeting vaccine demand using the Vero cell-based fermentation process has been hindered by low stability and yield. In this study, a Vero cell-based HPAI H5N1 vaccine candidate (H5N1/YNVa) with stable high yield was achieved by reassortment of the Vero-adapted (Va) high growth A/Yunnan/1/2005(H3N2) (YNVa) virus with the A/Anhui/1/2005(H5N1) attenuated influenza vaccine strain (H5N1delta) using the 6/2 method. The reassorted H5N1/YNVa vaccine maintained a high hemagglutination (HA) titer of 1024. Furthermore, H5N1/YNVa displayed low pathogenicity and uniform immunogenicity compared to that of the parent virus.

  18. Trans-nodal migration of resident dendritic cells into medullary interfollicular regions initiates immunity to influenza vaccine

    PubMed Central

    Woodruff, Matthew C.; Heesters, Balthasar A.; Herndon, Caroline N.; Groom, Joanna R.; Thomas, Paul G.; Luster, Andrew D.; Turley, Shannon J.

    2014-01-01

    Dendritic cells (DCs) are well established as potent antigen-presenting cells critical to adaptive immunity. In vaccination approaches, appropriately stimulating lymph node–resident DCs (LNDCs) is highly relevant to effective immunization. Although LNDCs have been implicated in immune response, their ability to directly drive effective immunity to lymph-borne antigen remains unclear. Using an inactive influenza vaccine model and whole node imaging approaches, we observed surprising responsiveness of LNDC populations to vaccine arrival resulting in a transnodal repositioning into specific antigen collection sites within minutes after immunization. Once there, LNDCs acquired viral antigen and initiated activation of viral specific CD4+ T cells, resulting in germinal center formation and B cell memory in the absence of skin migratory DCs. Together, these results demonstrate an unexpected stimulatory role for LNDCs where they are capable of rapidly locating viral antigen, driving early activation of T cell populations, and independently establishing functional immune response. PMID:25049334

  19. HPV vaccine stimulates cytotoxic activity of killer dendritic cells and natural killer cells against HPV-positive tumour cells.

    PubMed

    Van den Bergh, Johan M J; Guerti, Khadija; Willemen, Yannick; Lion, Eva; Cools, Nathalie; Goossens, Herman; Vorsters, Alex; Van Tendeloo, Viggo F I; Anguille, Sébastien; Van Damme, Pierre; Smits, Evelien L J M

    2014-07-01

    Cervarix™ is approved as a preventive vaccine against infection with the human papillomavirus (HPV) strains 16 and 18, which are causally related to the development of cervical cancer. We are the first to investigate in vitro the effects of this HPV vaccine on interleukin (IL)-15 dendritic cells (DC) as proxy of a naturally occurring subset of blood DC, and natural killer (NK) cells, two innate immune cell types that play an important role in antitumour immunity. Our results show that exposure of IL-15 DC to the HPV vaccine results in increased expression of phenotypic maturation markers, pro-inflammatory cytokine production and cytotoxic activity against HPV-positive tumour cells. These effects are mediated by the vaccine adjuvant, partly through Toll-like receptor 4 activation. Next, we demonstrate that vaccine-exposed IL-15 DC in turn induce phenotypic activation of NK cells, resulting in a synergistic cytotoxic action against HPV-infected tumour cells. Our study thus identifies a novel mode of action of the HPV vaccine in boosting innate immunity, including killing of HPV-infected cells by DC and NK cells.

  20. In vivo targeting of antigens to maturing dendritic cells via the DEC-205 receptor improves T cell vaccination.

    PubMed

    Bonifaz, Laura C; Bonnyay, David P; Charalambous, Anna; Darguste, Dara I; Fujii, Shin-Ichiro; Soares, Helena; Brimnes, Marie K; Moltedo, Bruno; Moran, Thomas M; Steinman, Ralph M

    2004-03-15

    The prevention and treatment of prevalent infectious diseases and tumors should benefit from improvements in the induction of antigen-specific T cell immunity. To assess the potential of antigen targeting to dendritic cells to improve immunity, we incorporated ovalbumin protein into a monoclonal antibody to the DEC-205 receptor, an endocytic receptor that is abundant on these cells in lymphoid tissues. Simultaneously, we injected agonistic alpha-CD40 antibody to mature the dendritic cells. We found that a single low dose of antibody-conjugated ovalbumin initiated immunity from the naive CD4+ and CD8+ T cell repertoire. Unexpectedly, the alphaDEC-205 antigen conjugates, given s.c., targeted to dendritic cells systemically and for long periods, and ovalbumin peptide was presented on MHC class I for 2 weeks. This was associated with stronger CD8+ T cell-mediated immunity relative to other forms of antigen delivery, even when the latter was given at a thousand times higher doses. In parallel, the mice showed enhanced resistance to an established rapidly growing tumor and to viral infection at a mucosal site. By better harnessing the immunizing functions of maturing dendritic cells, antibody-mediated antigen targeting via the DEC-205 receptor increases the efficiency of vaccination for T cell immunity, including systemic and mucosal resistance in disease models.

  1. In Vivo Targeting of Antigens to Maturing Dendritic Cells via the DEC-205 Receptor Improves T Cell Vaccination

    PubMed Central

    Bonifaz, Laura C.; Bonnyay, David P.; Charalambous, Anna; Darguste, Dara I.; Fujii, Shin-Ichiro; Soares, Helena; Brimnes, Marie K.; Moltedo, Bruno; Moran, Thomas M.; Steinman, Ralph M.

    2004-01-01

    The prevention and treatment of prevalent infectious diseases and tumors should benefit from improvements in the induction of antigen-specific T cell immunity. To assess the potential of antigen targeting to dendritic cells to improve immunity, we incorporated ovalbumin protein into a monoclonal antibody to the DEC-205 receptor, an endocytic receptor that is abundant on these cells in lymphoid tissues. Simultaneously, we injected agonistic α-CD40 antibody to mature the dendritic cells. We found that a single low dose of antibody-conjugated ovalbumin initiated immunity from the naive CD4+ and CD8+ T cell repertoire. Unexpectedly, the αDEC-205 antigen conjugates, given s.c., targeted to dendritic cells systemically and for long periods, and ovalbumin peptide was presented on MHC class I for 2 weeks. This was associated with stronger CD8+ T cell–mediated immunity relative to other forms of antigen delivery, even when the latter was given at a thousand times higher doses. In parallel, the mice showed enhanced resistance to an established rapidly growing tumor and to viral infection at a mucosal site. By better harnessing the immunizing functions of maturing dendritic cells, antibody-mediated antigen targeting via the DEC-205 receptor increases the efficiency of vaccination for T cell immunity, including systemic and mucosal resistance in disease models. PMID:15024047

  2. Compartmental models of rat cerebellar Purkinje cells based on simultaneous somatic and dendritic patch-clamp recordings

    PubMed Central

    Roth, Arnd; Häusser, Michael

    2001-01-01

    Simultaneous dendritic and somatic patch-clamp recordings were made from Purkinje cells in cerebellar slices from 12- to 21-day-old rats. Voltage responses to current impulses injected via either the dendritic or the somatic pipette were obtained in the presence of the selective Ih blocker ZD 7288 and blockers of spontaneous synaptic input. Neurons were filled with biocytin for subsequent morphological reconstruction. Four neurons were reconstructed and converted into detailed compartmental models. The specific membrane capacitance (Cm), specific membrane resistance (Rm) and intracellular resistivity (Ri) were optimized by direct fitting of the model responses to the electrophysiological data from the same cell. Mean values were: Cm, 0.77 ± 0.17 μF cm−2 (mean ±s.d.; range, 0.64-1.00 μF cm−2), Rm, 122 ± 18 kΩ cm2 (98-141 kΩ cm2) and Ri, 115 ± 20 Ω cm (93-142 Ω cm). The steady-state electrotonic architecture of these cells was compact under the experimental conditions used. However, somatic voltage-clamp recordings of parallel fibre and climbing fibre synaptic currents were substantially filtered and attenuated. The detailed models were compared with a two-compartment model of Purkinje cells. The range of synaptic current kinetics that can be faithfully recorded using somatic voltage clamp is predicted fairly well by the two-compartment model, even though some of its underlying assumptions are violated. A model of Ih was constructed based on voltage-clamp data, and inserted into the passive compartmental models. Somatic EPSP amplitude was substantially attenuated compared to the amplitude of dendritic EPSPs at their site of generation. However, synaptic efficacy of the same quantal synaptic conductance, as measured by the somatic EPSP amplitude, was only weakly dependent on synaptic location on spiny branchlets. The passive electrotonic structure of Purkinje cells is unusual in that the steady-state architecture is very compact, while voltage transients

  3. Effect of HSV-IL12 Loaded Tumor Cell-Based Vaccination in a Mouse Model of High-Grade Neuroblastoma.

    PubMed

    Bauer, David F; Pereboeva, Larisa; Gillespie, G Yancey; Cloud, Gretchen A; Elzafarany, Osama; Langford, Catherine; Markert, James M; Lamb, Lawrence S

    2016-01-01

    We designed multimodal tumor vaccine that consists of irradiated tumor cells infected with the oncolytic IL-12-expressing HSV-1 virus, M002. This vaccine was tested against the syngeneic neuroblastoma mouse model Neuro 2a injected into the right caudate nucleus of the immunocompetent A/J mice. Mice were vaccinated via intramuscular injection of multimodal vaccine or uninfected irradiated tumor cells at seven and 14 days after tumor establishment. While there was no survival difference between groups vaccinated with cell-based vaccine applied following tumor injection, a premunition prime/boost vaccination strategy produced a significant survival advantage in both groups and sustained immune response to an intracranial rechallenge of the same tumor. The syngeneic but unrelated H6 hepatocellular tumor cell line grew unrestricted in vaccinated mice, indicative of vaccine-mediated specific immunity to Neuro 2a tumors. Longitudinal analyses of tumor-infiltrating lymphocytes revealed a primary adaptive T cell response involving both CD4+ and CD8+ T cell subsets. Spleen cell mononuclear preparations from vaccinated mice were significantly more cytotoxic to Neuro 2a tumor cells than spleen cells from control mice as demonstrated in a four-hour in vitro cytotoxicity assay. These results strongly suggest that an irradiated whole cell tumor vaccine incorporating IL-12-expressing M002 HSV can produce a durable, specific immunization in a murine model of intracranial tumor.

  4. Effect of HSV-IL12 Loaded Tumor Cell-Based Vaccination in a Mouse Model of High-Grade Neuroblastoma

    PubMed Central

    Pereboeva, Larisa; Gillespie, G. Yancey; Cloud, Gretchen A.; Langford, Catherine

    2016-01-01

    We designed multimodal tumor vaccine that consists of irradiated tumor cells infected with the oncolytic IL-12-expressing HSV-1 virus, M002. This vaccine was tested against the syngeneic neuroblastoma mouse model Neuro 2a injected into the right caudate nucleus of the immunocompetent A/J mice. Mice were vaccinated via intramuscular injection of multimodal vaccine or uninfected irradiated tumor cells at seven and 14 days after tumor establishment. While there was no survival difference between groups vaccinated with cell-based vaccine applied following tumor injection, a premunition prime/boost vaccination strategy produced a significant survival advantage in both groups and sustained immune response to an intracranial rechallenge of the same tumor. The syngeneic but unrelated H6 hepatocellular tumor cell line grew unrestricted in vaccinated mice, indicative of vaccine-mediated specific immunity to Neuro 2a tumors. Longitudinal analyses of tumor-infiltrating lymphocytes revealed a primary adaptive T cell response involving both CD4+ and CD8+ T cell subsets. Spleen cell mononuclear preparations from vaccinated mice were significantly more cytotoxic to Neuro 2a tumor cells than spleen cells from control mice as demonstrated in a four-hour in vitro cytotoxicity assay. These results strongly suggest that an irradiated whole cell tumor vaccine incorporating IL-12-expressing M002 HSV can produce a durable, specific immunization in a murine model of intracranial tumor. PMID:27610392

  5. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes.

    PubMed

    Zitvogel, L; Regnault, A; Lozier, A; Wolfers, J; Flament, C; Tenza, D; Ricciardi-Castagnoli, P; Raposo, G; Amigorena, S

    1998-05-01

    Dendritic cells (DCs) are professional antigen presenting cells with the unique capacity to induce primary and secondary immune responses in vivo. Here, we show that DCs secrete antigen presenting vesicles, called exosomes, which express functional Major Histocompatibility Complex class I and class II, and T-cell costimulatory molecules. Tumor peptide-pulsed DC-derived exosomes prime specific cytotoxic T lymphocytes in vivo and eradicate or suppress growth of established murine tumors in a T cell-dependent manner. Exosome-based cell-free vaccines represent an alternative to DC adoptive therapy for suppressing tumor growth.

  6. Discovery of BVDU as a promising Drug for autoimmune diseases Therapy by Dendritic-cell-based functional screening

    PubMed Central

    Chen, Shuai; Zhou, Jinfeng; Cai, Yingying; Zheng, Xinyuan; Xie, Sirong; Liao, Yuhan; Zhu, Yu; Qin, Chaoyan; Lai, Weiming; Yang, Cuixia; Xie, Xin; Du, Changsheng

    2017-01-01

    Dendritic cells (DCs) play a critical role in the pathogenesis of autoimmune diseases including multiple sclerosis, and targeting DCs’ cytokines production is an important strategy for autoimmune diseases treatment. By establishing a high-throughput screening system, we analyzed LOPAC drug library to identify drugs that control the secretion of IL-6 by DCs, we selected the most likely candidate drug, BVDU, and found that it affected not only IL-6 production, but also that of IL-12, IL-1β during the DCs differentiation and maturation. The mechanism studies showed that BVDU treatment restricted the phosphorylation of MAP kinase, which played an important role in DC cytokine production. We further assessed the in vivo therapeutic potentials of BVDU on mouse models including EAE and STZ-induced T1D, and found that BVDU treated EAE mice exhibited significantly lower EAE clinical scores, decreased leukocyte infiltration in central nervous system lesions, and reduced demyelination. As in T1D mice, BVDU treatment also showed promising therapeutic effects based on both alleviated disease symptoms and tissue pathogenesis. More interestingly, the modulating effect of BVDU on IL-6 production was further verified in human primary DCs. The above data supported the promising application of our screen model, and also the potential of BVDU for autoimmune diseases therapy. PMID:28272439

  7. T cell-dependent antitumor immunity mediated by secondary lymphoid tissue chemokine: augmentation of dendritic cell-based immunotherapy.

    PubMed

    Kirk, C J; Hartigan-O'Connor, D; Nickoloff, B J; Chamberlain, J S; Giedlin, M; Aukerman, L; Mule, J J

    2001-03-01

    Secondary lymphoid tissue chemokine (SLC) is a CC chemokine that is selective in its recruitment of naive T cells and dendritic cells (DCs). In the lymph node, SLC is believed to play an important role in the initiation of an immune response by colocalizing naive T cells with DC-presenting antigen. Here, we used SLC as a treatment for tumors established from the poorly immunogenic B16 melanoma. Intratumoral injections of SLC inhibited tumor growth in a CD8+, T cell-dependent manner. SLC elicited a substantial infiltration of DCs and T cells into the tumor, coincident with the antitumor response. We next used SLC gene-modified DCs as a treatment of established tumors. Intratumoral injections of SLC-expressing DCs resulted in tumor growth inhibition that was significantly better than either control DCs or SLC alone. Distal site immunization of tumor-bearing mice with SLC gene-modified DCs pulsed with tumor lysate elicited an antitumor response whereas control DCs did not. We also found that s.c. injection of lysate-pulsed DCs expressing SLC promoted the migration of T cells to the immunization site. This report demonstrates that SLC can both induce antitumor responses and enhance the antitumor immunity elicited by DCs.

  8. Discovery of BVDU as a promising Drug for autoimmune diseases Therapy by Dendritic-cell-based functional screening.

    PubMed

    Chen, Shuai; Zhou, Jinfeng; Cai, Yingying; Zheng, Xinyuan; Xie, Sirong; Liao, Yuhan; Zhu, Yu; Qin, Chaoyan; Lai, Weiming; Yang, Cuixia; Xie, Xin; Du, Changsheng

    2017-03-08

    Dendritic cells (DCs) play a critical role in the pathogenesis of autoimmune diseases including multiple sclerosis, and targeting DCs' cytokines production is an important strategy for autoimmune diseases treatment. By establishing a high-throughput screening system, we analyzed LOPAC drug library to identify drugs that control the secretion of IL-6 by DCs, we selected the most likely candidate drug, BVDU, and found that it affected not only IL-6 production, but also that of IL-12, IL-1β during the DCs differentiation and maturation. The mechanism studies showed that BVDU treatment restricted the phosphorylation of MAP kinase, which played an important role in DC cytokine production. We further assessed the in vivo therapeutic potentials of BVDU on mouse models including EAE and STZ-induced T1D, and found that BVDU treated EAE mice exhibited significantly lower EAE clinical scores, decreased leukocyte infiltration in central nervous system lesions, and reduced demyelination. As in T1D mice, BVDU treatment also showed promising therapeutic effects based on both alleviated disease symptoms and tissue pathogenesis. More interestingly, the modulating effect of BVDU on IL-6 production was further verified in human primary DCs. The above data supported the promising application of our screen model, and also the potential of BVDU for autoimmune diseases therapy.

  9. Toll-like receptor ligands synergize through distinct dendritic cell pathways to induce T cell responses: Implications for vaccines

    PubMed Central

    Zhu, Qing; Egelston, Colt; Vivekanandhan, Aravindhan; Uematsu, Satoshi; Akira, Shizuo; Klinman, Dennis M.; Belyakov, Igor M.; Berzofsky, Jay A.

    2008-01-01

    Toll-like receptors (TLRs) may need to cooperate with each other to be effective in detecting imminent infection and trigger immune responses. Understanding is still limited about the intracellular mechanism of this cooperation. We found that when certain TLRs are involved, dendritic cells (DCs) establish unidirectional intracellular cross-talk, in which the MyD88-independent TRIF-dependent pathway amplifies the MyD88-dependent DC function through a JNK-dependent mechanism. The amplified MyD88-dependent DC function determines the induction of the T cell response to a given vaccine in vivo. Therefore, our study revealed an underlying TLR mechanism governing the functional, nonrandom interplay among TLRs for recognition of combinatorial ligands that may be dangerous to the host, providing important guidance for design of novel synergistic molecular vaccine adjuvants. PMID:18845682

  10. Immunogenic Cell Death Induced by Ginsenoside Rg3: Significance in Dendritic Cell-based Anti-tumor Immunotherapy.

    PubMed

    Son, Keum-Joo; Choi, Ki Ryung; Lee, Seog Jae; Lee, Hyunah

    2016-02-01

    Cancer is one of the leading causes of morbidity and mortality worldwide; therefore there is a need to discover new therapeutic modules with improved efficacy and safety. Immune-(cell) therapy is a promising therapeutic strategy for the treatment of intractable cancers. The effectiveness of certain chemotherapeutics in inducing immunogenic tumor cell death thus promoting cancer eradication has been reported. Ginsenoside Rg3 is a ginseng saponin that has antitumor and immunomodulatory activity. In this study, we treated tumor cells with Rg3 to verify the significance of inducing immunogenic tumor cell death in antitumor therapy, especially in DC-based immunotherapy. Rg3 killed the both immunogenic (B16F10 melanoma cells) and non-immunogenic (LLC: Lewis Lung Carcinoma cells) tumor cells by inducing apoptosis. Surface expression of immunogenic death markers including calreticulin and heat shock proteins and the transcription of relevant genes were increased in the Rg3-dying tumor. Increased calreticulin expression was directly related to the uptake of dying tumor cells by dendritic cells (DCs): the proportion of CRT(+) CD11c(+) cells was increased in the Rg3-treated group. Interestingly, tumor cells dying by immunogenic cell death secreted IFN-γ, an effector molecule for antitumor activity in T cells. Along with the Rg3-induced suppression of pro-angiogenic (TNF-α) and immunosuppressive cytokine (TGF-β) secretion, IFN-γ production from the Rg3-treated tumor cells may also indicate Rg3 as an effective anticancer immunotherapeutic strategy. The data clearly suggests that Rg3-induced immunogenic tumor cell death due its cytotoxic effect and its ability to induce DC function. This indicates that Rg3 may be an effective immunotherapeutic strategy.

  11. A mammalian cell based FACS-panning platform for the selection of HIV-1 envelopes for vaccine development.

    PubMed

    Bruun, Tim-Henrik; Mühlbauer, Katharina; Benen, Thomas; Kliche, Alexander; Wagner, Ralf

    2014-01-01

    An increasing number of broadly neutralizing monoclonal antibodies (bnMAb) against the HIV-1 envelope (Env) protein has been discovered recently. Despite this progress, vaccination efforts with the aim to re-elicit bnMAbs that provide protective immunity have failed so far. Herein, we describe the development of a mammalian cell based FACS-panning method in which bnMAbs are used as tools to select surface-exposed envelope variants according to their binding affinity. For that purpose, an HIV-1 derived lentiviral vector was developed to infect HEK293T cells at low multiplicity of infection (MOI) in order to link Env phenotype and genotype. For proof of principle, a gp145 Env model-library was established in which the complete V3 domain was substituted by five strain specific V3 loop sequences with known binding affinities to nMAb 447-52D, respectively. Env genes were recovered from selected cells by PCR, subcloned into a lentiviral vector (i) to determine and quantify the enrichment nMAb binders and (ii) to generate a new batch of transduction competent particles. After 2 selection cycles the Env variant with highest affinity was enriched 20-fold and represented 80% of the remaining Env population. Exploiting the recently described bnMAbs, this procedure might prove useful in selecting Env proteins from large Env libraries with the potential to elicit bnMAbs when used as vaccine candidates.

  12. Insight into the immunobiology of human skin and functional specialization of skin dendritic cell subsets to innovate intradermal vaccination design.

    PubMed

    Teunissen, M B M; Haniffa, M; Collin, M P

    2012-01-01

    Dendritic cells (DC) are the key initiators and regulators of any immune response which determine the outcome of CD4(+) and CD8(+) T-cell responses. Multiple distinct DC subsets can be distinguished by location, phenotype, and function in the homeostatic and inflamed human skin. The function of steady-state cutaneous DCs or recruited inflammatory DCs is influenced by the surrounding cellular and extracellular skin microenvironment. The skin is an attractive site for vaccination given the extended local network of DCs and the easy access to the skin-draining lymph nodes to generate effector T cells and immunoglobulin-producing B cells for long-term protective immunity. In the context of intradermal vaccination we describe in this review the skin-associated immune system, the characteristics of the different skin DC subsets, the mechanism of antigen uptake and presentation, and how the properties of DCs can be manipulated. This knowledge is critical for the development of intradermal vaccine strategies and supports the concept of intradermal vaccination as a superior route to the conventional intramuscular or subcutaneous methods.

  13. Transcriptional specialization of human dendritic cell subsets in response to microbial vaccines.

    PubMed

    Banchereau, Romain; Baldwin, Nicole; Cepika, Alma-Martina; Athale, Shruti; Xue, Yaming; Yu, Chun I; Metang, Patrick; Cheruku, Abhilasha; Berthier, Isabelle; Gayet, Ingrid; Wang, Yuanyuan; Ohouo, Marina; Snipes, LuAnn; Xu, Hui; Obermoser, Gerlinde; Blankenship, Derek; Oh, Sangkon; Ramilo, Octavio; Chaussabel, Damien; Banchereau, Jacques; Palucka, Karolina; Pascual, Virginia

    2014-10-22

    The mechanisms by which microbial vaccines interact with human APCs remain elusive. Herein, we describe the transcriptional programs induced in human DCs by pathogens, innate receptor ligands and vaccines. Exposure of DCs to influenza, Salmonella enterica and Staphylococcus aureus allows us to build a modular framework containing 204 transcript clusters. We use this framework to characterize the responses of human monocytes, monocyte-derived DCs and blood DC subsets to 13 vaccines. Different vaccines induce distinct transcriptional programs based on pathogen type, adjuvant formulation and APC targeted. Fluzone, Pneumovax and Gardasil, respectively, activate monocyte-derived DCs, monocytes and CD1c+ blood DCs, highlighting APC specialization in response to vaccines. Finally, the blood signatures from individuals vaccinated with Fluzone or infected with influenza reveal a signature of adaptive immunity activation following vaccination and symptomatic infections, but not asymptomatic infections. These data, offered with a web interface, may guide the development of improved vaccines.

  14. Enhanced immunogenicity of a tricomponent mannan tetanus toxoid conjugate vaccine targeted to dendritic cells via Dectin-1 by incorporating β-glucan.

    PubMed

    Lipinski, Tomasz; Fitieh, Amira; St Pierre, Joëlle; Ostergaard, Hanne L; Bundle, David R; Touret, Nicolas

    2013-04-15

    In a previous attempt to generate a protective vaccine against Candida albicans, a β-mannan tetanus toxoid conjugate showed poor immunogenicity in mice. To improve the specific activation toward the fungal pathogen, we aimed to target Dectin-1, a pattern-recognition receptor expressed on monocytes, macrophages, and dendritic cells. Laminarin, a β-glucan ligand of Dectin-1, was incorporated into the original β-mannan tetanus toxoid conjugate providing a tricomponent conjugate vaccine. A macrophage cell line expressing Dectin-1 was employed to show binding and activation of Dectin-1 signal transduction pathway by the β-glucan-containing vaccine. Ligand binding to Dectin-1 resulted in the following: 1) activation of Src family kinases and Syk revealed by their recruitment and phosphorylation in the vicinity of bound conjugate and 2) translocation of NF-κB to the nucleus. Treatment of immature bone marrow-derived dendritic cells (BMDCs) with tricomponent or control vaccine confirmed that the β-glucan-containing vaccine exerted its enhanced activity by virtue of dendritic cell targeting and uptake. Immature primary cells stimulated by the tricomponent vaccine, but not the β-mannan tetanus toxoid vaccine, showed activation of BMDCs. Moreover, treated BMDCs secreted increased levels of several cytokines, including TGF-β and IL-6, which are known activators of Th17 cells. Immunization of mice with the novel type of vaccine resulted in improved immune response manifested by high titers of Ab recognizing C. albicans β-mannan Ag. Vaccine containing laminarin also affected distribution of IgG subclasses, showing that vaccine targeting to Dectin-1 receptor can benefit from augmentation and immunomodulation of the immune response.

  15. Chimeric Vaccine Stimulation of Human Dendritic Cell Indoleamine 2, 3-Dioxygenase Occurs via the Non-Canonical NF-κB Pathway.

    PubMed

    Kim, Nan-Sun; Mbongue, Jacques C; Nicholas, Dequina A; Esebanmen, Grace E; Unternaehrer, Juli J; Firek, Anthony F; Langridge, William H R

    2016-01-01

    A chimeric protein vaccine composed of the cholera toxin B subunit fused to proinsulin (CTB-INS) was shown to suppress type 1 diabetes onset in NOD mice and upregulate biosynthesis of the tryptophan catabolic enzyme indoleamine 2, 3-dioxygenase (IDO1) in human dendritic cells (DCs). Here we demonstrate siRNA inhibition of the NF-κB-inducing kinase (NIK) suppresses vaccine-induced IDO1 biosynthesis as well as IKKα phosphorylation. Chromatin immunoprecipitation (ChIP) analysis of CTB-INS inoculated DCs showed that RelB bound to NF-κB consensus sequences in the IDO1 promoter, suggesting vaccine stimulation of the non-canonical NF-κB pathway activates IDO1 expression in vivo. The addition of Tumor Necrosis Factor Associated Factors (TRAF) TRAF 2, 3 and TRAF6 blocking peptides to vaccine inoculated DCs was shown to inhibit IDO1 biosynthesis. This experimental outcome suggests vaccine activation of the TNFR super-family receptor pathway leads to upregulation of IDO1 biosynthesis in CTB-INS inoculated dendritic cells. Together, our experimental data suggest the CTB-INS vaccine uses a TNFR-dependent signaling pathway of the non-canonical NF-κB signaling pathway resulting in suppression of dendritic cell mediated type 1 diabetes autoimmunity.

  16. Signal transduction profile of chemical sensitisers in dendritic cells: An endpoint to be included in a cell-based in vitro alternative approach to hazard identification?

    SciTech Connect

    Neves, Bruno Miguel; Goncalo, Margarida; Figueiredo, Americo; Duarte, Carlos B.; Lopes, Maria Celeste; Cruz, Maria Teresa

    2011-01-15

    The development of non-animal testing methods for the assessment of skin sensitisation potential is an urgent challenge within the framework of existing and forthcoming legislation. Efforts have been made to replace current animal tests, but so far no alternative methods have been developed. It is widely recognised that alternatives to animal testing cannot be accomplished with a single approach, but rather will require the integration of results obtained from different in vitro and in silico assays. The argument subjacent to the development of in vitro dendritic cell (DC)-based assays is that sensitiser-induced changes in the DC phenotype can be differentiated from those induced by irritants. This assumption is derived from the unique capacity of DC to convert environmental signals encountered at the skin into a receptor expression pattern (MHC class II molecules, co-stimulatory molecules, chemokine receptors) and a soluble mediator release profile that will stimulate T lymphocytes. Since signal transduction cascades precede changes in surface marker expression and cytokine/chemokine secretion, these phenotypic modifications are a consequence of a signal transduction profile that is specifically triggered by sensitisers and not by irritants. A limited number of studies have addressed this subject and the present review attempts to summarise and highlight all of the signalling pathways modulated by skin sensitisers and irritants. Furthermore, we conclude this review by focusing on the most promising strategies suitable for inclusion into a cell-based in vitro alternative approach to hazard identification.

  17. Toll-like receptor 3-induced immune response by poly(d,l-lactide-co-glycolide) nanoparticles for dendritic cell-based cancer immunotherapy

    PubMed Central

    Han, Hee Dong; Byeon, Yeongseon; Kang, Tae Heung; Jung, In Duk; Lee, Jeong-Won; Shin, Byung Cheol; Lee, Young Joo; Sood, Anil K; Park, Yeong-Min

    2016-01-01

    Dendritic cells (DCs) are potent professional antigen-presenting cells that are capable of initiating a primary immune response and activating T cells, and they play a pivotal role in the immune responses of the host to cancer. Prior to antigen presentation, efficient antigen and adjuvant uptake by DCs is necessary to induce their maturation and cytokine generation. Nanoparticles (NPs) are capable of intracellular delivery of both antigen and adjuvant to DCs. Here, we developed an advanced poly(d,l-lactide-co-glycolide) (PLGA)-NP encapsulating both ovalbumin (OVA) as a model antigen and polyinosinic-polycytidylic acid sodium salt (Toll-like receptor 3 ligand) as an adjuvant to increase intracellular delivery and promote DC maturation. The PLGA-NPs were taken up by DCs, and their uptake greatly facilitated major histocompatibility class I antigen presentation in vitro. Moreover, vaccination with PLGA-NP-treated DCs led to the generation of ovalbumin-specific CD8+ T cells, and the resulting antitumor efficacy was significantly increased in EG.7 and TC-1 tumor-bearing mice compared to control mice (P<0.01). Taken together, these findings demonstrated that the PLGA-NP platform may be an effective method for delivering tumor-specific antigens or adjuvants to DCs. PMID:27843314

  18. In vivo targeting of dendritic cells for activation of cellular immunity using vaccine carriers based on pH-responsive microparticles

    NASA Astrophysics Data System (ADS)

    Kwon, Young Jik; James, Edward; Shastri, Nilabh; Fréchet, Jean M. J.

    2005-12-01

    Activating the immune system to trigger a specific response is a major challenge in vaccine development. In particular, activating sufficient cytotoxic T lymphocyte-mediated cellular immunity, which is crucial for the treatment of many diseases including cancer and AIDS, has proven to be especially challenging. In this study, antigens were encapsulated in acid-degradable polymeric particle carriers to cascade cytotoxic T lymphocyte activation. To target dendritic cells, the most potent antigen-presenting cells, the particle carriers, were further conjugated with monoclonal antibodies. A series of ex vivo and in vivo studies have shown increased receptor-mediated uptake of antibody-conjugated particles by dendritic cells as well as migration of particle-carrying dendritic cells to lymph nodes and stimulation of naïve T cells leading to enhanced cellular immune response as confirmed by specific cell lysis and IFN- secretion. acid-degradable particle | drug delivery | targeted vaccine

  19. Enhancing whole-tumor cell vaccination by engaging innate immune system through NY-ESO-1/dendritic cell interactions.

    PubMed

    Xu, Le; Zheng, Junying; Nguyen, David H; Luong, Quang T; Zeng, Gang

    2013-10-01

    NY-ESO-1 is a cancer/germline antigen (Ag) with distinctively strong immunogenicity. We have previously demonstrated that NY-ESO-1 serves as an endogenous adjuvant by engaging dendritic cell (DC)-surface receptors of calreticulin (CRT) and toll-like receptor (TLR) 4. In the present study, NY-ESO-1 was investigated for its immunomodulatory roles as a molecular adjuvant in whole-tumor cell vaccines using the Renca kidney cancer model. Renca cells were genetically engineered to express NY-ESO-1 on the cell surface to enhance direct interactions with DC. The effect of ectopic cell-surface expression of NY-ESO-1 was investigated on tumor immunogenicity, DC activation, cytotoxic T lymphocytes against model tumor-associated Ags, and the effectiveness of the modified tumor cells as a therapeutic whole-cell vaccine. Cell-surface expression of NY-ESO-1 was able to reduce the tumor growth of Renca cells in BALB/c mice, although the modification did not alter cell proliferation rate in vitro. Directly engaging the innate immune system through NY-ESO-1 facilitated the interaction of tumor cells with DC, leading to enhanced DC activation and subsequent tumor-specific T-cell priming. When used as a therapeutic whole-cell vaccine, Renca cells with NY-ESO-1 on the surface mediated stronger inhibitory effects on tumor growth and metastasis compared with parental Renca or Renca cells expressing a control protein GFP on the surface. Augmented antitumor efficacy correlated with increased CD8 T-cell infiltration into tumors and decreased myeloid-derived suppressor cells and regulatory T cells in the spleen. As a cancer/germline Ag and as an immunomodulatory adjuvant through engaging innate immune receptors, NY-ESO-1 offers a unique opportunity for improved whole-tumor cell vaccinations upon the classic GM-CSF-engineered cell vaccines.

  20. Adjuvant dendritic cell vaccination induces tumor-specific immune responses in the majority of stage III melanoma patients

    PubMed Central

    Boudewijns, Steve; Bol, Kalijn F.; Schreibelt, Gerty; Westdorp, Harm; Textor, Johannes C.; van Rossum, Michelle M.; Scharenborg, Nicole M.; de Boer, Annemiek J.; van de Rakt, Mandy W. M. M.; Pots, Jeanne M.; van Oorschot, Tom G. M.; Duiveman-de Boer, Tjitske; Olde Nordkamp, Michel A.; van Meeteren, Wilmy S. E. C.; van der Graaf, Winette T. A.; Bonenkamp, Johannes J.; de Wilt, Johannes H. W.; Aarntzen, Erik H. J. G.; Punt, Cornelis J. A.; Gerritsen, Winald R.; Figdor, Carl G.; de Vries, I. Jolanda M.

    2016-01-01

    ABSTRACT Purpose: To determine the effectiveness of adjuvant dendritic cell (DC) vaccination to induce tumor-specific immunological responses in stage III melanoma patients. Experimental design: Retrospective analysis of stage III melanoma patients, vaccinated with autologous monocyte-derived DC loaded with tumor-associated antigens (TAA) gp100 and tyrosinase after radical lymph node dissection. Skin-test infiltrating lymphocytes (SKILs) obtained from delayed-type hypersensitivity skin-test biopsies were analyzed for the presence of TAA-specific CD8+ T cells by tetrameric MHC-peptide complexes and by functional TAA-specific T cell assays, defined by peptide-recognition (T2 cells) and/or tumor-recognition (BLM and/or MEL624) with specific production of Th1 cytokines and no Th2 cytokines. Results: Ninety-seven patients were analyzed: 21 with stage IIIA, 34 with stage IIIB, and 42 had stage IIIC disease. Tetramer-positive CD8+ T cells were present in 68 patients (70%), and 24 of them showed a response against all 3 epitopes tested (gp100:154–162, gp100:280–288, and tyrosinase:369–377) at any point during vaccinations. A functional T cell response was found in 62 patients (64%). Rates of peptide-recognition of gp100:154–162, gp100:280–288, and tyrosinase:369–377 were 40%, 29%, and 45%, respectively. Median recurrence-free survival and distant metastasis-free survival of the whole study population were 23.0 mo and 36.8 mo, respectively. Conclusions: DC vaccination induces a functional TAA-specific T cell response in the majority of stage III melanoma patients, indicating it is more effective in stage III than in stage IV melanoma patients. Furthermore, performing multiple cycles of vaccinations enhances the chance of a broader immune response. PMID:27622047

  1. [Cancer vaccine therapy using genetically modified induced pluripotent stem cell-derived dendritic cells expressing the TAA gene].

    PubMed

    Iwamoto, Hiromitsu; Ojima, Toshiyasu; Nakamori, Mikihito; Nakamura, Masaki; Hayata, Keiji; Katsuda, Masahiro; Iida, Takeshi; Miyazawa, Motoki; Iwahashi, Makoto; Yamaue, Hiroki

    2013-11-01

    It is generally accepted that the difficulty in obtaining a sufficient number of functional dendritic cells (DCs) poses a serious problem in DC-based immunotherapy. Therefore, we used induced pluripotent stem (iPS) cell-derived DCs (iPSDCs) instead. If the therapeutic efficacy of iPSDCs was equivalent to that of bone marrow-derived DCs( BMDCs), then the above-mentioned problems may be solved. In this study, we generated iPSDCs from iPS cells and compared their capacity to mature and migrate to the regional lymph nodes with that of BMDCs. We adenovirally transduced the hgp100 gene, which codes for a natural tumor antigen, into the DCs and immunized the mice with these genetically modified DCs. The cytotoxic activity of CD8( +) cytotoxic T lymphocytes( CTLs) was assayed using a 51Cr-release assay. The therapeutic efficacy of the vaccination was examined in a subcutaneous tumor model. Our results demonstrated that iPSDCs equaled BMDCs in terms of their maturation and migration capacity. Furthermore, hgp100-specific CTLs were generated in mice that were immunized with the genetically modified iPSDCs. These CTLs exhibited a high level of cytotoxicity against B16 cells, which is similar to that exhibited by CTLs generated in BMDCs immunized mice. Moreover, vaccination with genetically modified iPSDCs elicited a high level of therapeutic efficacy equaling that of vaccination with BMDCs. This study clarified experimentally that genetically modified iPSDCs are equivalent to BMDCs in terms of tumor-associated antigen-specific therapeutic antitumor immunity. This vaccination strategy may therefore be useful for future clinical application as a cancer vaccine.

  2. Gene expression profile correlates with T cell infiltration and relative survival in glioblastoma patients vaccinated with dendritic cell immunotherapy

    PubMed Central

    Prins, Robert M.; Soto, Horacio; Konkankit, Vera; Odesa, Sylvia K.; Eskin, Ascia; Yong, William H.; Nelson, Stanley F.; Liau, Linda M.

    2010-01-01

    Purpose To assess the feasibility, safety, and toxicity of autologous tumor lysate-pulsed dendritic cell (DC) vaccination and toll-like receptor (TLR) agonists in patients with newly diagnosed and recurrent glioblastoma. Clinical and immune responses were monitored and correlated with tumor gene expression profiles. Experimental Design Twenty-three patients with glioblastoma (WHO grade IV) were enrolled in this dose-escalation study and received three biweekly injections of glioma lysate-pulsed DCs followed by booster vaccinations with either imiquimod or poly-ICLC adjuvant every three months until tumor progression. Gene expression profiling, IHC, FACS, and cytokine bead arrays were performed on patient tumors and PBMC. Results DC vaccinations are safe and not associated with any dose-limiting toxicity. The median overall survival from the time of initial surgical diagnosis of glioblastoma was 31.4 months, with a one-, two-, and three-year survival rate of 91%, 55% and 47%, respectively. Patients whose tumors had mesenchymal gene expression signatures exhibited increased survival following DC vaccination compared to historical controls of the same genetic subtype. Tumor samples with a mesenchymal gene expression signature had a higher number of CD3+ and CD8+ tumor infiltrating lymphocytes (TILs) compared with glioblastomas of other gene expression signatures (p = 0.006). Conclusion Autologous tumor lysate-pulsed DC vaccination in conjunction with TLR agonists is safe as adjuvant therapy in newly diagnosed and recurrent glioblastoma patients. Our results suggest that the mesenchymal gene expression profile may identify an immunogenic subgroup of glioblastoma that may be more responsive to immune-based therapies. PMID:21135147

  3. Recombinant invasive Lactococcus lactis can transfer DNA vaccines either directly to dendritic cells or across an epithelial cell monolayer.

    PubMed

    de Azevedo, Marcela; Meijerink, Marjolein; Taverne, Nico; Pereira, Vanessa Bastos; LeBlanc, Jean Guy; Azevedo, Vasco; Miyoshi, Anderson; Langella, Philippe; Wells, Jerry M; Chatel, Jean-Marc

    2015-09-11

    Lactococcus lactis (L. lactis), a generally regarded as safe (GRAS) bacterium has recently been investigated as a mucosal delivery vehicle for DNA vaccines. Because of its GRAS status, L. lactis represents an attractive alternative to attenuated pathogens. Previous studies showed that eukaryotic expression plasmids could be delivered into intestinal epithelial cells (IECs) by L. lactis, or recombinant invasive strains of L. lactis, leading to heterologous protein expression. Although expression of antigens in IECs might lead to vaccine responses, it would be of interest to know whether uptake of L. lactis DNA vaccines by dendritic cells (DCs) could lead to antigen expression as they are unique in their ability to induce antigen-specific T cell responses. To test this, we incubated mouse bone marrow-derived DCs (BMDCs) with invasive L. lactis strains expressing either Staphylococcus aureus Fibronectin Binding Protein A (LL-FnBPA+), or Listeria monocytogenes mutated Internalin A (LL-mInlA+), both strains carrying a plasmid DNA vaccine (pValac) encoding for the cow milk allergen β-lactoglobulin (BLG). We demonstrated that they can transfect BMDCs, inducing the secretion of the pro-inflammatory cytokine IL-12. We also measured the capacity of strains to invade a polarized monolayer of IECs, mimicking the situation encountered in the gastrointestinal tract. Gentamycin survival assay in these cells showed that LL-mInlA+ is 100 times more invasive than L. lactis. The cross-talk between differentiated IECs, BMDCs and bacteria was also evaluated using an in vitro transwell co-culture model. Co-incubation of strains in this model showed that DCs incubated with LL-mInlA+ containing pValac:BLG could express significant levels of BLG. These results suggest that DCs could sample bacteria containing the DNA vaccine across the epithelial barrier and express the antigen.

  4. Whole tumor antigen vaccination using dendritic cells: Comparison of RNA electroporation and pulsing with UV-irradiated tumor cells

    PubMed Central

    Benencia, Fabian; Courrèges, Maria C; Coukos, George

    2008-01-01

    Because of the lack of full characterization of tumor associated antigens for solid tumors, whole antigen use is a convenient approach to tumor vaccination. Tumor RNA and apoptotic tumor cells have been used as a source of whole tumor antigen to prepare dendritic cell (DC) based tumor vaccines, but their efficacy has not been directly compared. Here we compare directly RNA electroporation and pulsing of DCs with whole tumor cells killed by ultraviolet (UV) B radiation using a convenient tumor model expressing human papilloma virus (HPV) E6 and E7 oncogenes. Although both approaches led to DCs presenting tumor antigen, electroporation with tumor cell total RNA induced a significantly higher frequency of tumor-reactive IFN-gamma secreting T cells, and E7-specific CD8+ lymphocytes compared to pulsing with UV-irradiated tumor cells. DCs electroporated with tumor cell RNA induced a larger tumor infiltration by T cells and produced a significantly stronger delay in tumor growth compared to DCs pulsed with UV-irradiated tumor cells. We conclude that electroporation with whole tumor cell RNA and pulsing with UV-irradiated tumor cells are both effective in eliciting antitumor immune response, but RNA electroporation results in more potent tumor vaccination under the examined experimental conditions. PMID:18445282

  5. Protein-bound polysaccharide activates dendritic cells and enhances OVA-specific T cell response as vaccine adjuvant

    PubMed Central

    Engel, Abbi L.; Sun, Guan-Cheng; Gad, Ekram; Rastetter, Lauren R.; Strobe, Katie; Yang, Yi; Dang, Yushe; Disis, Mary L; Lu, Hailing

    2013-01-01

    Protein-bound polysaccharide-K (PSK) is a hot water extract from Trametes versicolor mushroom. It has been used traditionally in Asian countries for its immune stimulating and anti-cancer effects. We have recently found that PSK can activate toll-like receptor 2 (TLR2). TLR2 is highly expressed on dendritic cells (DC), so the currently study was undertaken to evaluate the effect of PSK on DC activation and the potential of using PSK as a vaccine adjuvant. In vitro experiments using mouse bone marrow-derived DC (BMDC) demonstrated that PSK induces DC maturation as shown by dose-dependent increase in the expression of CD80, CD86, MHCII, and CD40. PSK also induces the production of multiple inflammatory cytokines by DC, including IL-12, TNF-α, and IL-6, at both mRNA and protein levels. In vivo experiments using PSK as an adjuvant to OVAp323-339 vaccine showed that PSK as adjuvant leads to enlarged draining lymph nodes with higher number of activated DC. PSK also stimulates proliferation of OVA-specific T cells, and induces T cells that produce multiple cytokines, IFN-γ, IL-2, and TNF-α. Altogether, these results demonstrate the ability of PSK to activate DC in vitro and in vivo and the potential of using PSK as a novel vaccine adjuvant. PMID:23735481

  6. Adoptive transfer of MART-1 T cell receptor transgenic lymphocytes and dendritic cell vaccination in patients with metastatic melanoma

    PubMed Central

    Chodon, Thinle; Comin-Anduix, Begonya; Chmielowski, Bartosz; Koya, Richard C; Wu, Zhongqi; Auerbach, Martin; Ng, Charles; Avramis, Earl; Seja, Elizabeth; Villanueva, Arturo; McCannel, Tara A.; Ishiyama, Akira; Czernin, Johannes; Radu, Caius G.; Wang, Xiaoyan; Gjertson, David W.; Cochran, Alistair J.; Cornetta, Kenneth; Wong, Deborah J.L.; Kaplan-lefko, Paula; Hamid, Omid; Samlowski, Wolfram; Cohen, Peter A.; Daniels, Gregory A.; Mukherji, Bijay; Yang, Lili; Zack, Jerome A.; Kohn, Donald B.; Heath, James R.; Glaspy, John A.; Witte, Owen N.; Baltimore, David; Economou, James S.; Ribas, Antoni

    2014-01-01

    Purpose It has been demonstrated that large numbers of tumor-specific T cells for adoptive cell transfer (ACT) can be manufactured by retroviral genetic engineering of autologous peripheral blood lymphocytes and expanding them over several weeks. In mouse models, this therapy is optimized when administered with dendritic cell (DC) vaccination. We developed a short one-week manufacture protocol to determine the feasibility, safety and antitumor efficacy of this double cell therapy. Experimnetal Design A clinical trial (NCT00910650) adoptively transferring MART-1 T cell receptor (TCR) transgenic lymphocytes together with MART-1 peptide pulsed DC vaccination in HLA-A2.1 patients with metastatic melanoma. Autologous TCR transgenic cells were manufactured in 6 to 7 days using retroviral vector gene transfer, and re-infused with (n = 10) or without (n = 3) prior cryopreservation. Results 14 patients with metastatic melanoma were enrolled and nine out of 13 treated patients (69%) showed evidence of tumor regression. Peripheral blood reconstitution with MART-1-specific T cells peaked within two weeks of ACT indicating rapid in vivo expansion. Administration of freshly manufactured TCR transgenic T cells resulted in a higher persistence of MART-1-specific T cells in the blood as compared to cryopreserved. Evidence that DC vaccination could cause further in vivo expansion was only observed with ACT using non-cryopreserved T cells. Conclusion Double cell therapy with ACT of TCR engineered T cells with a very short ex vivo manipulation and DC vaccines is feasible and results in antitumor activity, but improvements are needed to maintain tumor responses. PMID:24634374

  7. Mature autologous dendritic cell vaccines in advanced non-small cell lung cancer: a phase I pilot study

    PubMed Central

    2011-01-01

    Background Overall therapeutic outcomes of advanced non-small-cell lung cancer (NSCLC) are poor. The dendritic cell (DC) immunotherapy has been developed as a new strategy for the treatment of lung cancer. The purpose of this study was to evaluate the feasibility, safety and immunologic responses in use in mature, antigen-pulsed autologous DC vaccine in NSCLC patients. Methods Five HLA-A2 patients with inoperable stage III or IV NSCLC were selected to receive two doses of 5 × 107 DC cells administered subcutaneous and intravenously two times at two week intervals. The immunologic response, safety and tolerability to the vaccine were evaluated by the lymphoproliferation assay and clinical and laboratorial evolution, respectively. Results The dose of the vaccine has shown to be safe and well tolerated. The lymphoproliferation assay showed an improvement in the specific immune response after the immunization, with a significant response after the second dose (p = 0.005). This response was not long lasting and a tendency to reduction two weeks after the second dose of the vaccine was observed. Two patients had a survival almost twice greater than the expected average and were the only ones that expressed HER-2 and CEA together. Conclusion Despite the small sample size, the results on the immune response, safety and tolerability, combined with the results of other studies, are encouraging to the conduction of a large clinical trial with multiples doses in patients with early lung cancer who underwent surgical treatment. Trial Registration Current Controlled Trials: ISRCTN45563569 PMID:21682877

  8. A novel recombinant protein of ephrinA1-PE38/GM-CSF activate dendritic cells vaccine in rats with glioma.

    PubMed

    Li, Ming; Wang, Bin; Wu, Zhonghua; Zhang, Jiadong; Shi, Xiwen; Cheng, Wenlan; Han, Shuangyin

    2015-07-01

    Dendritic cells loaded with tumor-associated antigens can effectively stimulate the antitumor immune response of cytotoxic T lymphocytes in the body, which facilitates the development of novel and effective treatments for cancer. In this study, the adenovirus-mediated ephrinA1-PE38/GM-CSF was successfully constructed using the overlap extension method, and verified with sequencing analysis. HEK293 cells were infected with the adenovirus and the cellular expression of ephrinA1-PE38/GM-CSF was measured with an enzyme-linked immunosorbent assay. The recombinant adenovirus was then delivered into the tumor-bearing rats and the results showed that such treatment significantly reduced the volumes of gliomas and improved the survival of the transplanted rats. The results from immunohistochemistry and flow cytometry suggested that this immunomodulatory agent cause activation of dendritic cells. The findings that ephrinA1-PE38/GM-CSF had a high efficacy in the activation of the dendritic cells would facilitate the development of in vivo dendritic-cell vaccines for the treatment of gliomas in rats. Our new method of DC vaccine production induces not only a specific local antitumor immune response but also a systemic immunotherapeutic effect. In addition, this method completely circumvents the risk of contamination related to the in vitro culture of DCs, thus greatly improving the safety and feasibility of clinical application of the DC vaccines in glioma.

  9. Differential Cultivation of Francisella tularensis Induces Changes in the Immune Response to and Protective Efficacy of Whole Cell-Based Inactivated Vaccines

    PubMed Central

    Kumar, Sudeep; Sunagar, Raju; Pham, Giang; Franz, Brian J.; Rosa, Sarah J.; Hazlett, Karsten R. O.; Gosselin, Edmund J.

    2017-01-01

    Francisella tularensis (Ft) is a category A biothreat agent for which there is no Food and Drug Administration-approved vaccine. Ft can survive in a variety of habitats with a remarkable ability to adapt to changing environmental conditions. Furthermore, Ft expresses distinct sets of antigens (Ags) when inside of macrophages (its in vivo host) as compared to those grown in vitro with Mueller Hinton Broth (MHB). However, in contrast to MHB-grown Ft, Ft grown in Brain-Heart Infusion (BHI) more closely mimics the antigenic profile of macrophage-grown Ft. Thus, we anticipated that when used as a vaccine, BHI-grown Ft would provide better protection compared to MHB-grown Ft, primarily due to its greater antigenic similarity to Ft circulating inside the host (macrophages) during natural infection. Our investigation, however, revealed that inactivated Ft (iFt) grown in MHB (iFt-MHB) exhibited superior protective activity when used as a vaccine, as compared to iFt grown in BHI (iFt-BHI). The superior protection afforded by iFt-MHB compared to that of iFt-BHI was associated with significantly lower bacterial burden and inflammation in the lungs and spleens of vaccinated mice. Moreover, iFt-MHB also induced increased levels of Ft-specific IgG. Further evaluation of early immunological cues also revealed that iFt-MHB exhibits increased engagement of Ag-presenting cells including increased iFt binding to dendritic cells, increased expression of costimulatory markers, and increased secretion of pro-inflammatory cytokines. Importantly, these studies directly demonstrate that Ft growth conditions strongly impact Ft vaccine efficacy and that the growth medium used to produce whole cell vaccines to Ft must be a key consideration in the development of a tularemia vaccine. PMID:28119692

  10. Differential Cultivation of Francisella tularensis Induces Changes in the Immune Response to and Protective Efficacy of Whole Cell-Based Inactivated Vaccines.

    PubMed

    Kumar, Sudeep; Sunagar, Raju; Pham, Giang; Franz, Brian J; Rosa, Sarah J; Hazlett, Karsten R O; Gosselin, Edmund J

    2016-01-01

    Francisella tularensis (Ft) is a category A biothreat agent for which there is no Food and Drug Administration-approved vaccine. Ft can survive in a variety of habitats with a remarkable ability to adapt to changing environmental conditions. Furthermore, Ft expresses distinct sets of antigens (Ags) when inside of macrophages (its in vivo host) as compared to those grown in vitro with Mueller Hinton Broth (MHB). However, in contrast to MHB-grown Ft, Ft grown in Brain-Heart Infusion (BHI) more closely mimics the antigenic profile of macrophage-grown Ft. Thus, we anticipated that when used as a vaccine, BHI-grown Ft would provide better protection compared to MHB-grown Ft, primarily due to its greater antigenic similarity to Ft circulating inside the host (macrophages) during natural infection. Our investigation, however, revealed that inactivated Ft (iFt) grown in MHB (iFt-MHB) exhibited superior protective activity when used as a vaccine, as compared to iFt grown in BHI (iFt-BHI). The superior protection afforded by iFt-MHB compared to that of iFt-BHI was associated with significantly lower bacterial burden and inflammation in the lungs and spleens of vaccinated mice. Moreover, iFt-MHB also induced increased levels of Ft-specific IgG. Further evaluation of early immunological cues also revealed that iFt-MHB exhibits increased engagement of Ag-presenting cells including increased iFt binding to dendritic cells, increased expression of costimulatory markers, and increased secretion of pro-inflammatory cytokines. Importantly, these studies directly demonstrate that Ft growth conditions strongly impact Ft vaccine efficacy and that the growth medium used to produce whole cell vaccines to Ft must be a key consideration in the development of a tularemia vaccine.

  11. DNA vaccination strategy targets epidermal dendritic cells, initiating their migration and induction of a host immune response

    PubMed Central

    Smith, Trevor RF; Schultheis, Katherine; Kiosses, William B; Amante, Dinah H; Mendoza, Janess M; Stone, John C; McCoy, Jay R; Sardesai, Niranjan Y; Broderick, Kate E

    2014-01-01

    The immunocompetence and clinical accessibility of dermal tissue offers an appropriate and attractive target for vaccination. We previously demonstrated that pDNA injection into the skin in combination with surface electroporation (SEP), results in rapid and robust expression of the encoded antigen in the epidermis. Here, we demonstrate that intradermally EP-enhanced pDNA vaccination results in the rapid induction of a host humoral immune response. In the dermally relevant guinea pig model, we used high-resolution laser scanning confocal microscopy to observe direct dendritic cell (DC) transfections in the epidermis, to determine the migration kinetics of these cells from the epidermal layer into the dermis, and to follow them sequentially to the immediate draining lymph nodes. Furthermore, we delineate the relationship between the migration of directly transfected epidermal DCs and the generation of the host immune response. In summary, these data indicate that direct presentation of antigen to the immune system by DCs through SEP-based in vivo transfection in the epidermis, is related to the generation of a humoral immune response. PMID:26052522

  12. Galactosylated liposome as a dendritic cell-targeted mucosal vaccine for inducing protective anti-tumor immunity.

    PubMed

    Jiang, Ping-Lun; Lin, Hung-Jun; Wang, Hsiao-Wen; Tsai, Wen-Yu; Lin, Shen-Fu; Chien, Mei-Yin; Liang, Pi-Hui; Huang, Yi-You; Liu, Der-Zen

    2015-01-01

    Mucosal surfaces contain specialized dendritic cells (DCs) that are able to recognize foreign pathogens and mount protective immunity. We previously demonstrated that intranasal administration of targeted galactosylated liposomes can elicit mucosal and systemic antibody responses. In the present study, we assessed whether galactosylated liposomes could act as an effective DC-targeted mucosal vaccine that would be capable of inducing systemic anti-tumor immunity as well as antibody responses. We show that targeted galactosylated liposomes effectively facilitated antigen uptake by DCs beyond that mediated by unmodified liposomes both in vitro and in vivo. Targeted galactosylated liposomes induced higher levels of pro-inflammatory cytokines than unmodified liposomes in vitro. C57BL/6 mice thrice immunized intranasally with ovalbumin (OVA)-encapsulated galactosylated liposomes produced high levels of OVA-specific IgG antibodies in their serum. Spleen cells from mice receiving galactosylated liposomes were restimulated with OVA and showed significantly augmented levels of IFN-γ, IL-4, IL-5 and IL-6. In addition, intranasal administration of OVA-encapsulated beta-galactosylated liposomes resulted in complete protection against EG7 tumor challenge in C57BL/6 mice. Taken together, these results indicate that nasal administration of a galactosylated liposome vaccine mediates the development of an effective immunity against tumors and might be useful for further clinical anti-tumoral applications.

  13. Dendritic cell targeted liposomes-protamine-DNA complexes mediated by synthetic mannosylated cholestrol as a potential carrier for DNA vaccine

    NASA Astrophysics Data System (ADS)

    Li, Pan; Chen, Simu; Jiang, Yuhong; Jiang, Jiayu; Zhang, Zhirong; Sun, Xun

    2013-07-01

    To construct mannosylated liposomes/protamine/DNA (LPD) carriers for DNA vaccine targeting to dendritic cells (DCs), a mannosylated cholesterol derivative (Man-C6-Chol) was synthesized via simple ester linkage and amide bonds. Then, the Man-C6-Chol was applied to LPD formulation as a synthetic ligand. The physicochemical properties of mannosylated LPD (Man-LPD) were first evaluated, including the size and zeta potential, morphology and the ability to protect DNA against DNase I degradation. Man-LPD showed a small size with a stable viral-like structure. In comparison to non-mannose liposomes/LPD (Man-free liposomes/LPD), mannosylated liposomes/LPD (Man-liposomes/Man-LPD) exhibited higher efficiency in both intracellular uptake (2.3-fold) and transfection (4.5-fold) in vitro. Subsequent MTT assays indicated that the LPD carriers had low toxicity on the tested cells. Afterwards, the investigation into the maturation activation on primary bone marrow-derived DCs (BMDCs) showed that both Man-LPD and Man-free LPD induced remarkable up-regulation of CD80, CD86 and CD40 on BMDCs. Inspired by these studies, we can conclude that the synthetic mannosylated LPD targeting to DCs was a potential carrier for DNA vaccine.

  14. High-density sub-100-nm peptide-gold nanoparticle complexes improve vaccine presentation by dendritic cells in vitro

    NASA Astrophysics Data System (ADS)

    Lin, Adam Yuh; Lunsford, Jessica; Bear, Adham Sean; Young, Joseph Keith; Eckels, Phillip; Luo, Laureen; Foster, Aaron Edward; Drezek, Rebekah Anna

    2013-02-01

    Nanocarriers have been explored to improve the delivery of tumor antigens to dendritic cells (DCs). Gold nanoparticles are attractive nanocarriers because they are inert, non-toxic, and can be readily endocytosed by DCs. Here, we designed novel gold-based nanovaccines (AuNVs) using a simple self-assembling bottom-up conjugation method to generate high-peptide density delivery and effective immune responses with limited toxicity. AuNVs were synthesized using a self-assembling conjugation method and optimized using DC-to-splenocyte interferon-γ enzyme-linked immunosorbent spot assays. The AuNV design has shown successful peptide conjugation with approximately 90% yield while remaining smaller than 80 nm in diameter. DCs uptake AuNVs with minimal toxicity and are able to process the vaccine peptides on the particles to stimulate cytotoxic T lymphocytes (CTLs). These high-peptide density AuNVs can stimulate CTLs better than free peptides and have great potential as carriers for various vaccine types.

  15. Microencapsulation of inorganic nanocrystals into PLGA microsphere vaccines enables their intracellular localization in dendritic cells by electron and fluorescence microscopy.

    PubMed

    Schliehe, Christopher; Schliehe, Constanze; Thiry, Marc; Tromsdorf, Ulrich I; Hentschel, Joachim; Weller, Horst; Groettrup, Marcus

    2011-05-10

    Biodegradable poly-(D,L-lactide-co-glycolide) microspheres (PLGA-MS) are approved as a drug delivery system in humans and represent a promising antigen delivery device for immunotherapy against cancer. Immune responses following PLGA-MS vaccination require cross-presentation of encapsulated antigen by professional antigen presenting cells (APCs). While the potential of PLGA-MS as vaccine formulations is well established, the intracellular pathway of cross-presentation following phagocytosis of PLGA-MS is still under debate. A part of the controversy stems from the difficulty in unambiguously identifying PLGA-MS within cells. Here we show a novel strategy for the efficient encapsulation of inorganic nanocrystals (NCs) into PLGA-MS as a tool to study their intracellular localization. We microencapsulated NCs as an electron dense marker to study the intracellular localization of PLGA-MS by transmission electron microscopy (TEM) and as fluorescent labels for confocal laser scanning microscopy. Using this method, we found PLGA-MS to be rapidly taken up by dendritic cells and macrophages. Co-localization with the lysosomal marker LAMP1 showed a lysosomal storage of PLGA-MS for over two days after uptake, long after the initiation of cross-presentation had occurred. Our data argue against an escape of PLGA-MS from the endosome as has previously been suggested as a mechanism to facilitate cross-presentation of PLGA-MS encapsulated antigen.

  16. Targeting breast cancer stem cells by dendritic cell vaccination in humanized mice with breast tumor: preliminary results

    PubMed Central

    Pham, Phuc Van; Le, Hanh Thi; Vu, Binh Thanh; Pham, Viet Quoc; Le, Phong Minh; Phan, Nhan Lu-Chinh; Trinh, Ngu Van; Nguyen, Huyen Thi-Lam; Nguyen, Sinh Truong; Nguyen, Toan Linh; Phan, Ngoc Kim

    2016-01-01

    Background Breast cancer (BC) is one of the leading cancers in women. Recent progress has enabled BC to be cured with high efficiency. However, late detection or metastatic disease often renders the disease untreatable. Additionally, relapse is the main cause of death in BC patients. Breast cancer stem cells (BCSCs) are considered to cause the development of BC and are thought to be responsible for metastasis and relapse. This study aimed to target BCSCs using dendritic cells (DCs) to treat tumor-bearing humanized mice models. Materials and methods NOD/SCID mice were used to produce the humanized mice by transplantation of human hematopoietic stem cells. Human BCSCs were injected into the mammary fat pad to produce BC humanized mice. Both hematopoietic stem cells and DCs were isolated from the human umbilical cord blood, and immature DCs were produced from cultured mononuclear cells. DCs were matured by BCSC-derived antigen incubation for 48 hours. Mature DCs were vaccinated to BC humanized mice with a dose of 106 cells/mice, and the survival percentage was monitored in both treated and untreated groups. Results The results showed that DC vaccination could target BCSCs and reduce the tumor size and prolong survival. Conclusion These results suggested that targeting BCSCs with DCs is a promising therapy for BC. PMID:27499638

  17. The role of surface charge density in cationic liposome-promoted dendritic cell maturation and vaccine-induced immune responses

    NASA Astrophysics Data System (ADS)

    Ma, Yifan; Zhuang, Yan; Xie, Xiaofang; Wang, Ce; Wang, Fei; Zhou, Dongmei; Zeng, Jianqiang; Cai, Lintao

    2011-05-01

    Cationic liposomes have emerged as a novel adjuvant and antigen delivery system to enhance vaccine efficacy. However, the role of surface charge density in cationic liposome-regulated immune responses has not yet been elucidated. In the present study, we prepared a series of DOTAP/DOPC cationic liposomes with different surface densities by incorporating varying amounts of DOPC (a neutral lipid) into DOTAP (a cationic lipid). The results showed that DOTAP/DOPC cationic liposome-regulated immune responses relied on the surface charge density, and might occur through ROS signaling. The liposomes with a relatively high charge density, such as DOTAP/DOPC 5 : 0 and 4 : 1 liposomes, potently enhanced dendritic cell maturation, ROS generaion, antigen uptake, as well as the production of OVA-specific IgG2a and IFN-γ. In contrast, low-charge liposomes, such as DOTAP/DOPC 1 : 4 liposome, failed to promote immune responses even at high concentrations, confirming that the immunoregulatory effect of cationic liposomes is mostly attributable to their surface charge density. Moreover, the DOTAP/DOPC 1 : 4 liposome suppressed anti-OVA antibody responses in vivo. Overall, maintaining an appropriate surface charge is crucial for optimizing the adjuvant effect of cationic liposomes and enhancing the efficacy of liposome-based vaccines.

  18. Fusion of Antigen to a Dendritic Cell Targeting Chemokine Combined with Adjuvant Yields a Malaria DNA Vaccine with Enhanced Protective Capabilities

    PubMed Central

    Luo, Kun; Zhang, Hong; Zavala, Fidel; Biragyn, Arya; Espinosa, Diego A.; Markham, Richard B.

    2014-01-01

    Although sterilizing immunity to malaria can be elicited by irradiated sporozoite vaccination, no clinically practical subunit vaccine has been shown to be capable of preventing the approximately 600,000 annual deaths attributed to this infection. DNA vaccines offer several potential advantages for a disease that primarily affects the developing world, but new approaches are needed to improve the immunogenicity of these vaccines. By using a novel, lipid-based adjuvant, Vaxfectin, to attract immune cells to the immunization site, in combination with an antigen-chemokine DNA construct designed to target antigen to immature dendritic cells, we elicited a humoral immune response that provided sterilizing immunity to malaria challenge in a mouse model system. The chemokine, MIP3αCCL20, did not significantly enhance the cellular infiltrate or levels of cytokine or chemokine expression at the immunization site but acted with Vaxfectin to reduce liver stage malaria infection by orders of magnitude compared to vaccine constructs lacking the chemokine component. The levels of protection achieved were equivalent to those observed with irradiated sporozoites, a candidate vaccine undergoing development for further large scale clinical trial. Only vaccination with the combined regimen of adjuvant and chemokine provided 80–100% protection against the development of bloodstream infection. Treating the immunization process as requiring the independent steps of 1) attracting antigen-presenting cells to the site of immunization and 2) specifically directing vaccine antigen to the immature dendritic cells that initiate the adaptive immune response may provide a rational strategy for the development of a clinically applicable malaria DNA vaccine. PMID:24599116

  19. Fusion of antigen to a dendritic cell targeting chemokine combined with adjuvant yields a malaria DNA vaccine with enhanced protective capabilities.

    PubMed

    Luo, Kun; Zhang, Hong; Zavala, Fidel; Biragyn, Arya; Espinosa, Diego A; Markham, Richard B

    2014-01-01

    Although sterilizing immunity to malaria can be elicited by irradiated sporozoite vaccination, no clinically practical subunit vaccine has been shown to be capable of preventing the approximately 600,000 annual deaths attributed to this infection. DNA vaccines offer several potential advantages for a disease that primarily affects the developing world, but new approaches are needed to improve the immunogenicity of these vaccines. By using a novel, lipid-based adjuvant, Vaxfectin, to attract immune cells to the immunization site, in combination with an antigen-chemokine DNA construct designed to target antigen to immature dendritic cells, we elicited a humoral immune response that provided sterilizing immunity to malaria challenge in a mouse model system. The chemokine, MIP3αCCL20, did not significantly enhance the cellular infiltrate or levels of cytokine or chemokine expression at the immunization site but acted with Vaxfectin to reduce liver stage malaria infection by orders of magnitude compared to vaccine constructs lacking the chemokine component. The levels of protection achieved were equivalent to those observed with irradiated sporozoites, a candidate vaccine undergoing development for further large scale clinical trial. Only vaccination with the combined regimen of adjuvant and chemokine provided 80-100% protection against the development of bloodstream infection. Treating the immunization process as requiring the independent steps of 1) attracting antigen-presenting cells to the site of immunization and 2) specifically directing vaccine antigen to the immature dendritic cells that initiate the adaptive immune response may provide a rational strategy for the development of a clinically applicable malaria DNA vaccine.

  20. Novel plant virus-based vaccine induces protective cytotoxic T-lymphocyte-mediated antiviral immunity through dendritic cell maturation.

    PubMed

    Lacasse, Patrick; Denis, Jérôme; Lapointe, Réjean; Leclerc, Denis; Lamarre, Alain

    2008-01-01

    Currently used vaccines protect mainly through the production of neutralizing antibodies. However, antibodies confer little or no protection for a majority of chronic viral infections that require active involvement of cytotoxic T lymphocytes (CTLs). Virus-like particles (VLPs) have been shown to be efficient inducers of cell-mediated immune responses, but administration of an adjuvant is generally required. We recently reported the generation of a novel VLP system exploiting the self-assembly property of the papaya mosaic virus (PapMV) coat protein. We show here that uptake of PapMV-like particles by murine splenic dendritic cells (DCs) in vivo leads to their maturation, suggesting that they possess intrinsic adjuvant-like properties. DCs pulsed with PapMV-like particles displaying the lymphocytic choriomeningitis virus (LCMV) p33 immunodominant CTL epitope (PapMV-p33) efficiently process and cross-present the viral epitope to p33-specific transgenic T cells. Importantly, the CTL epitope is also properly processed and presented in vivo, since immunization of p33-specific T-cell receptor transgenic mice with PapMV-p33 induces the activation of large numbers of specific CTLs. C57BL/6 mice immunized with PapMV-p33 VLPs in the absence of adjuvant develop p33-specific effector CTLs that rapidly expand following LCMV challenge and protect vaccinated mice against LCMV infection in a dose-dependent manner. These results demonstrate the efficiency of this novel plant virus-based vaccination platform in inducing DC maturation leading to protective CTL responses.

  1. Genetic vaccines to potentiate the effective CD103+ dendritic cell-mediated cross-priming of antitumor immunity.

    PubMed

    Zhang, Yi; Chen, Guo; Liu, Zuqiang; Tian, Shenghe; Zhang, Jiying; Carey, Cara D; Murphy, Kenneth M; Storkus, Walter J; Falo, Louis D; You, Zhaoyang

    2015-06-15

    The development of effective cancer vaccines remains an urgent, but as yet unmet, clinical need. This deficiency is in part due to an incomplete understanding of how to best invoke dendritic cells (DC) that are crucial for the induction of tumor-specific CD8(+) T cells capable of mediating durable protective immunity. In this regard, elevated expression of the transcription factor X box-binding protein 1 (XBP1) in DC appears to play a decisive role in promoting the ability of DC to cross-present Ags to CD8(+) T cells in the therapeutic setting. Delivery of DNA vaccines encoding XBP1 and tumor Ag to skin DC resulted in increased IFN-α production by plasmacytoid DC (pDC) from skin/tumor draining lymph nodes and the cross-priming of Ag-specific CD8(+) T cell responses associated with therapeutic benefit. Antitumor protection was dependent on cross-presenting Batf3(+) DC, pDC, and CD8(+) T cells. CD103(+) DC from the skin/tumor draining lymph nodes of the immunized mice appeared responsible for activation of Ag-specific naive CD8(+) T cells, but were dependent on pDC for optimal effectiveness. Similarly, human XBP1 improved the capacity of human blood- and skin-derived DC to activate human T cells. These data support an important intrinsic role for XBP1 in DC for effective cross-priming and orchestration of Batf3(+) DC-pDC interactions, thereby enabling effective vaccine induction of protective antitumor immunity.

  2. Dynamic interplay among monocyte-derived, dermal, and resident lymph node dendritic cells during the generation of vaccine immunity to fungi.

    PubMed

    Ersland, Karen; Wüthrich, Marcel; Klein, Bruce S

    2010-06-25

    Early innate events that enable priming of antifungal CD4 T cells are poorly understood. We engineered an attenuated fungal vaccine with a model epitope, EalphaRFP, to track vaccine immunity to Blastomyces dermatitidis during yeast recognition, antigen presentation, and priming of naive T cells. After subcutaneous injection of the vaccine, monocyte-derived inflammatory dendritic cells (DCs) are the earliest and largest population that associates with yeast, carrying them into the draining lymph nodes. Despite marked association with yeast, these DCs fail to display surface peptide:MHC complexes or prime naive T cells. Instead, the ability to display antigen and prime CD4 T cells resides with lymph node-resident DCs after antigen transfer from immigrant DCs and with skin migratory DCs. Our work reveals the dynamic interplay among distinct DC subsets that prime naive CD4 T cells after yeast are injected in the skin and discloses the cellular elements underlying vaccine-induced immunity to fungi.

  3. Response of MUTZ-3 dendritic cells to the different components of the Haemophilus influenzae type B conjugate vaccine: towards an in vitro assay for vaccine immunogenicity.

    PubMed

    Hoefnagel, Marcel H N; Vermeulen, Jolanda P; Scheper, Rik J; Vandebriel, Rob J

    2011-07-18

    Potency testing is mandatory for vaccine registration and batch release. Due to various limitations to in vivo potency testing, there is need for relevant in vitro alternatives. These alternative tests should preferably comprise cells from the target (human) species. The whole suite of immune responses to vaccination that occur in vivo in humans cannot be tested in vitro using a single cell type. Even so, dendritic cells (DC) form an important candidate cell type since they are pivotal in inducing and orchestrating immune responses. Cell lines are preferred over ex vivo cells for reasons of safety, accessibility, and reproducibility. In this first feasibility study we used the human cell line MUTZ-3, because it most closely resembles ex vivo human DC, and compared its response to monocyte-derived DC (moDC). Haemophilus influenzae type B (HiB) vaccine was chosen because its components exert different effects in vivo: while the HiB antigen, polyribosyl ribitol phosphate (PRP) fails to induce sufficient protection in children below 2 years of age, conjugation of this polysaccharide antigen to outer membrane protein (OMP) of Neisseria meningitides, results in sufficient protection. Effects of PRP, OMP, conjugated PRP-OMP, and adjuvanted vaccine (PedVax HiB), on cytokine production and surface marker expression were established. PRP induced no effects on cytokine production and the effect on surface marker expression was limited to a minor decrease in CD209 (DC-SIGN). In both MUTZ-3 and moDC, OMP induced the strongest response both in cytokine production and surface marker expression. Compared to OMP alone conjugated PRP-OMP generally induced a weaker response in cytokine production and surface marker expression. The effects of PedVax HiB were comparable to conjugated PRP-OMP. While moDC showed a larger dynamic range than MUTZ-3 DC, these cells also showed considerable variability between donors, with MUTZ-3 DC showing a consistent response between the replicate assays

  4. Cytokine response to the RSV antigen delivered by dendritic cell-directed vaccination in congenic chicken lines.

    PubMed

    Mucksová, Jitka; Plachý, Jiří; Staněk, Ondřej; Hejnar, Jiří; Kalina, Jiří; Benešová, Barbora; Trefil, Pavel

    2017-04-05

    Systems of antigen delivery into antigen-presenting cells represent an important novel strategy in chicken vaccine development. In this study, we verified the ability of Rous sarcoma virus (RSV) antigens fused with streptavidin to be targeted by specific biotinylated monoclonal antibody (anti-CD205) into dendritic cells and induce virus-specific protective immunity. The method was tested in four congenic lines of chickens that are either resistant or susceptible to the progressive growth of RSV-induced tumors. Our analyses confirmed that the biot-anti-CD205-SA-FITC complex was internalized by chicken splenocytes. In the cytokine expression profile, several significant differences were evident between RSV-challenged progressor and regressor chicken lines. A significant up-regulation of IL-2, IL-12, IL-15, and IL-18 expression was detected in immunized chickens of both regressor and progressor groups. Of these cytokines, IL-2 and IL-12 were most up-regulated 14 days post-challenge (dpc), while IL-15 and IL-18 were most up-regulated at 28 dpc. On the contrary, IL-10 expression was significantly down-regulated in all immunized groups of progressor chickens at 14 dpc. We detected significant up-regulation of IL-17 in the group of immunized progressors. LITAF down-regulation with iNOS up-regulation was especially observed in the progressor group of immunized chickens that developed large tumors. Based on the increased expression of cytokines specific for activated dendritic cells, we conclude that our system is able to induce partial stimulation of specific cell types involved in cell-mediated immunity.

  5. Prophylactic and therapeutic vaccination with dendritic cells against hepatitis C virus infection

    PubMed Central

    Encke, J; Findeklee, J; Geib, J; Pfaff, E; Stremmel, W

    2005-01-01

    Antigen uptake and presentation capacities enable DC to prime and activate T cells. Recently, several studies demonstrated a diminished DC function in hepatitis C virus (HCV) infected patients showing impaired abilities to stimulate allogenic T cells and to produce IFN-γ in HCV infected patients. Moreover, DC of patients who have resolved HCV infection behave like DC from healthy donors responding to maturation stimuli, decrease antigen uptake, up-regulate expression of appropriate surface marker, and are potent stimulators of allogenic T cells. A number of studies have demonstrated in tumour models and models of infectious diseases strong induction of immune responses after DC vaccination. Because DC are essential for T-cell activation and since viral clearance in HCV infected patients is associated with a vigorous T-cell response, we propose a new type of HCV vaccine based on ex vivo stimulated and matured DC loaded with HCV specific antigens. This vaccine circumvents the impaired DC maturation and the down regulated DC function of HCV infected patients in vivo by giving the necessary maturation stimuli and the HCV antigens in a different setting and location ex vivo. Strong humoral and cellular immune responses were detected after HCV core DC vaccination. Furthermore, DC vaccination shows partial protection in a therapeutic and prophylactic model of HCV infection. In conclusion, mice immunized with HCV core pulsed DC generated a specific antiviral response in a mouse HCV challenge model. Our results indicate that HCV core pulsed DC may serve as a new modality for immunotherapy of HCV especially in chronically infected patients. PMID:16232225

  6. Dendritic cell-derived interleukin-15 is crucial for therapeutic cancer vaccine potency

    PubMed Central

    Zhang, Yi; Tian, Shenghe; Liu, Zuqiang; Zhang, Jiying; Zhang, Meili; Bosenberg, Marcus W; Kedl, Ross M; Waldmann, Thomas A; Storkus, Walter J; Falo, Louis D; You, Zhaoyang

    2014-01-01

    IL-15 supports improved antitumor immunity. How to best incorporate IL-15 into vaccine formulations for superior cancer immunotherapy remains a challenge. DC-derived IL-15 (DCIL-15) notably has the capacity to activate DC, to substitute for CD4+ Th and to potentiate vaccine efficacy making IL-15-based therapies attractive treatment options. We observed in transplantable melanoma, glioma and metastatic breast carcinoma models that DCIL-15-based DNA vaccines in which DC specifically express IL-15 and simultaneously produce tumor Aghsp70 were able to mediate potent therapeutic efficacy that required both host Batf3+ DC and CD8+ T cells. In an inducible BrafV600E/Pten-driven murine melanoma model, DCIL-15 (not rIL-15)-based DNA vaccines elicited durable therapeutic CD8+ T cell-dependent antitumor immunity. DCIL-15 was found to be superior to rIL-15 in “licensing” both mouse and human DC, and for activating CD8+ T cells. Such activation occurred even in the presence of Treg, without a need for CD4+ Th, but was IL-15/IL-15Rα-dependent. A single low-dose of DCIL-15 (not rIL-15)-based DC vaccines induced therapeutic antitumor immunity. CD14+ DC emigrating from human skin explants genetically-immunized by IL-15 and Aghsp70 were more effective than similar DC emigrating from the explants genetically-immunized by Aghsp70 in the presence of rIL-15 in expressing membrane-bound IL-15/IL-15Rα and activating CD8+ T cells. These results support future clinical use of DCIL-15 as a therapeutic agent in battling cancer. PMID:25941586

  7. Ex vivo generation of interstitial and Langerhans cell-like dendritic cell subset-based vaccines for hematological malignancies.

    PubMed

    Hutten, Tim; Thordardottir, Soley; Hobo, Willemijn; Hübel, Jessica; van der Waart, Anniek B; Cany, Jeannette; Dolstra, Harry; Hangalapura, Basav N

    2014-06-01

    Autologous, patient-specific, monocyte-derived dendritic cell (MoDC) vaccines have been successfully applied in the clinical studies so far. However, the routine application of this strategy has been hampered by the difficulties in generating sufficient numbers of DC and the poor DC vaccine quality because of pathology or prior treatment received by the patients. The immunotherapeutic potential of other subsets of DC has not been thoroughly investigated because of their rarity in tissues and difficulties associated with their ex vivo generation. The high expansion and differentiation potential of CD34 hematopoietic progenitor cells (HPC), isolated from umbilical cord blood (UCB), into different DC subsets make them an attractive alternative DC source for cancer immunotherapy. Therefore, the aim of this study was to generate a large number of different DC subsets from CD34 HPC and evaluate their functionality in comparison with MoDC. Our culture protocol generated a clinically relevant number of mature CD1a myeloid DC and CD207 Langerhans cells (LC)-like DC subsets from CD34 HPC with >95% purity. Both DC subsets exhibited a cytokine profile that favors cytotoxic T-cell responses. Furthermore, UCB-DC and UCB-LC demonstrated superior induction of proliferation of both allogeneic as well as viral antigen-specific CD8 T cells, both in vitro and in vivo. Additional studies revealed that UCC-DC and UCB-LC can efficiently expand minor histocompatibility antigen (MiHA) HA-1-specific cytotoxic T cells in the peripheral blood of leukemia patients and prime MiHA HA-1-specific and HA-2-specific cytotoxic T cells in vitro. These preclinical findings support the pharmaceutical development of the described culture protocol for clinical evaluation.

  8. Infection of nonhost species dendritic cells in vitro with an attenuated myxoma virus induces gene expression that predicts its efficacy as a vaccine vector.

    PubMed

    Top, S; Foulon, E; Pignolet, B; Deplanche, M; Caubet, C; Tasca, C; Bertagnoli, S; Meyer, G; Foucras, G

    2011-12-01

    Recombinant myxoma virus (MYXV) can be produced without a loss of infectivity, and its highly specific host range makes it an ideal vaccine vector candidate, although careful examination of its interaction with the immune system is necessary. Similar to rabbit bone marrow-derived dendritic cells (BM-DCs), ovine dendritic cells can be infected by SG33, a MYXV vaccine strain, and support recombinant antigen expression. The frequency of infected cells in the nonhost was lower and the virus cycle was abortive in these cell types. Among BM-DC subpopulations, Langerhans cell-like DCs were preferentially infected at low multiplicities of infection. Interestingly, ovine BM-DCs remained susceptible to MYXV after maturation, although apoptosis occurred shortly after infection as a function of the virus titer. When gene expression was assessed in infected BM-DC cultures, type I interferon (IFN)-related and inflammatory genes were strongly upregulated. DC gene expression profiles were compared with the profiles produced by other poxviruses in interaction with DCs, but very few commonalities were found, although genes that were previously shown to predict vaccine efficacy were present. Collectively, these data support the idea that MYXV permits efficient priming of adaptive immune responses and should be considered a promising vaccine vector along with other poxviruses.

  9. Development of a successful antitumor therapeutic model combining in vivo dendritic cell vaccination with tumor irradiation and intratumoral GM-CSF delivery.

    PubMed

    Driessens, Gregory; Nuttin, Lise; Gras, Alain; Maetens, Julie; Mievis, Stephane; Schoore, Marylène; Velu, Thierry; Tenenbaum, Liliane; Préat, Véronique; Bruyns, Catherine

    2011-02-01

    Vaccination of dendritic cells (DC) combined with GM-CSF secreting tumor cells has shown good therapeutic efficacy in several tumor models. Nevertheless, the engineering of GM-CSF secreting tumor cell line could represent a tedious step limiting its application for treatment in patients. We therefore developed in rats, an "all in vivo" strategy of combined vaccination using an in vivo local irradiation of the tumor as a source of tumor antigens for DC vaccines and an exogenous source of GM-CSF. We report here that supplying recombinant mGM-CSF by local injections or surgical implantation of osmotic pumps did not allow reproducing the therapeutic efficacy observed with in vitro prepared combined vaccines. To bypass this limitation possibly due to the short half-life of recombinant GM-CSF, we have generated adeno-associated virus coding for mGM-CSF and tested their efficacy to transduce tumor cells in vitro and in vivo. The in vivo vaccines combining local irradiation and AAV2/1-mGM-CSF vectors showed high therapeutic efficacy allowing to cure 60% of the rats with pre-implanted tumors, as previously observed with in vitro prepared vaccines. Same efficacy has been observed with a second generation of vaccines combining DC, local tumor irradiation, and the controlled supply of recombinant mGM-CSF in poloxamer 407, a biocompatible thermoreversible hydrogel. By generating a successful "all in vivo" vaccination protocol combining tumor radiotherapy with DC vaccines and a straightforward supply of GM-CSF, we have developed a therapeutic strategy easily translatable to clinic that could become accessible to a much bigger number of cancer patients.

  10. Prophylactic vaccines are potent activators of monocyte-derived dendritic cells and drive effective anti-tumor responses in melanoma patients at the cost of toxicity.

    PubMed

    Bol, Kalijn F; Aarntzen, Erik H J G; Pots, Jeanette M; Olde Nordkamp, Michel A M; van de Rakt, Mandy W M M; Scharenborg, Nicole M; de Boer, Annemiek J; van Oorschot, Tom G M; Croockewit, Sandra A J; Blokx, Willeke A M; Oyen, Wim J G; Boerman, Otto C; Mus, Roel D M; van Rossum, Michelle M; van der Graaf, Chantal A A; Punt, Cornelis J A; Adema, Gosse J; Figdor, Carl G; de Vries, I Jolanda M; Schreibelt, Gerty

    2016-03-01

    Dendritic cell (DC)-based immunotherapy is explored worldwide in cancer patients, predominantly with DC matured with pro-inflammatory cytokines and prostaglandin E2. We studied the safety and efficacy of vaccination with monocyte-derived DC matured with a cocktail of prophylactic vaccines that contain clinical-grade Toll-like receptor ligands (BCG, Typhim, Act-HIB) and prostaglandin E2 (VAC-DC). Stage III and IV melanoma patients were vaccinated via intranodal injection (12 patients) or combined intradermal/intravenous injection (16 patients) with VAC-DC loaded with keyhole limpet hemocyanin (KLH) and mRNA encoding tumor antigens gp100 and tyrosinase. Tumor antigen-specific T cell responses were monitored in blood and skin-test infiltrating-lymphocyte cultures. Almost all patients mounted prophylactic vaccine- or KLH-specific immune responses. Both after intranodal injection and after intradermal/intravenous injection, tumor antigen-specific immune responses were detected, which coincide with longer overall survival in stage IV melanoma patients. VAC-DC induce local and systemic CTC grade 2 and 3 toxicity, which is most likely caused by BCG in the maturation cocktail. The side effects were self-limiting or resolved upon a short period of systemic steroid therapy. We conclude that VAC-DC can induce functional tumor-specific responses. Unfortunately, toxicity observed after vaccination precludes the general application of VAC-DC, since in DC maturated with prophylactic vaccines BCG appears to be essential in the maturation cocktail.

  11. A novel dendritic-cell-targeting DNA vaccine for hepatitis B induces T cell and humoral immune responses and potentiates the antivirus activity in HBV transgenic mice.

    PubMed

    Yu, Debin; Liu, Hong; Shi, Shuai; Dong, Liwei; Wang, Hongge; Wu, Nuoting; Gao, Hui; Cheng, Zhaojun; Zheng, Qun; Cai, Jiaojiao; Zou, Libo; Zou, Zhihua

    2015-12-01

    Strategies for inducing an effective immune response following vaccination have focused on targeting antigens to dendritic cells (DCs) through the DC-specific surface molecule DEC-205. The immunogenicity and efficacy of DNA vaccination can also be enhanced by fusing the encoded antigen to single-chain antibodies directed against DEC-205. Here, we investigated this promising approach for its enhancement of hepatitis B virus (HBV)-specific cellular and humoral immune responses and its antiviral effects in HBV transgenic mice. A plasmid DNA vaccine encoding mouse DEC-205 single-chain fragment variable (mDEC-205-scFv) linked with the hepatitis B surface antigen (HBsAg) was constructed. Vaccination with this fusion DNA vaccine in HBV transgenic mice induced robust antiviral T cell and antibody immunity against HBsAg. The levels of serum-circulating HBsAg and the HBV DNA copy number were downregulated by the induction of a higher HBsAg-specific response. Thus, in this study, we demonstrated the therapeutic efficacy of the novel mDEC-205-scFv-fused DNA vaccine in a mouse model of immune-tolerant, chronic HBV infection.

  12. Clinically feasible approaches to potentiating cancer cell-based immunotherapies.

    PubMed

    Seledtsov, V I; Goncharov, A G; Seledtsova, G V

    2015-01-01

    The immune system exerts both tumor-destructive and tumor-protective functions. Mature dendritic cells (DCs), classically activated macrophages (M1), granulocytes, B lymphocytes, aβ and ɣδ T lymphocytes, natural killer T (NKT) cells, and natural killer (NK) cells may be implicated in antitumor immunoprotection. Conversely, tolerogenic DCs, alternatively activated macrophages (M2), myeloid-derived suppressor cells (MDSCs), and regulatory T (Tregs) and B cells (Bregs) are capable of suppressing antitumor immune responses. Anti-cancer vaccination is a useful strategy to elicit antitumor immune responses, while overcoming immunosuppressive mechanisms. Whole tumor cells or lysates derived thereof hold more promise as cancer vaccines than individual tumor-associated antigens (TAAs), because vaccinal cells can elicit immune responses to multiple TAAs. Cancer cell-based vaccines can be autologous, allogeneic or xenogeneic. Clinical use of xenogeneic vaccines is advantageous in that they can be most effective in breaking the preexisting immune tolerance to TAAs. To potentiate immunotherapy, vaccinations can be combined with other modalities that target different immune pathways. These modalities include 1) genetic or chemical modification of cell-based vaccines; 2) cross-priming TAAs to T cells by engaging dendritic cells; 3) T-cell adoptive therapy; 4) stimulation of cytotoxic inflammation by non-specific immunomodulators, toll-like receptor (TLR) agonists, cytokines, chemokines or hormones; 5) reduction of immunosuppression and/or stimulation of antitumor effector cells using antibodies, small molecules; and 6) various cytoreductive modalities. The authors envisage that combined immunotherapeutic strategies will allow for substantial improvements in clinical outcomes in the near future.

  13. Tolerogenic dendritic cells and negative vaccination in transplantation: from rodents to clinical trials

    PubMed Central

    Moreau, Aurélie; Varey, Emilie; Bériou, Gaëlle; Hill, Marcelo; Bouchet-Delbos, Laurence; Segovia, Mercedes; Cuturi, Maria-Cristina

    2012-01-01

    The use of immunosuppressive (IS) drugs to treat transplant recipients has markedly reduced the incidence of acute rejection and early graft loss. However, such treatments have numerous adverse side effects and fail to prevent chronic allograft dysfunction. In this context, therapies based on the adoptive transfer of regulatory cells are promising strategies to induce indefinite transplant survival. The use of tolerogenic dendritic cells (DC) has shown great potential, as preliminary experiments in rodents have demonstrated that administration of tolerogenic DC prolongs graft survival. Recipient DC, Donor DC, or Donor Ag-pulsed recipient DC have been used in preclinical studies and administration of these cells with suboptimal immunosuppression increases their tolerogenic potential. We have demonstrated that autologous unpulsed tolerogenic DC injected in the presence of suboptimal immunosuppression are able to induce Ag-specific allograft tolerance. We derived similar tolerogenic DC in different animal models (mice and non-human primates) and confirmed their protective abilities in vitro and in vivo. The mechanisms involved in the tolerance induced by autologous tolerogenic DC were also investigated. With the aim of using autologous DC in kidney transplant patients, we have developed and characterized tolerogenic monocyte-derived DC in humans. In this review, we will discuss the preclinical studies and describe our recent results from the generation and characterization of tolerogenic monocyte-derived DC in humans for a clinical application. We will also discuss the limits and difficulties in translating preclinical experiments to theclinic. PMID:22908013

  14. Dendritic Cell Vaccination Combined with CTLA4 Blockade in Patients with Metastatic Melanoma

    PubMed Central

    Ribas, Antoni; Comin-Anduix, Begoña; Chmielowski, Bartosz; Jalil, Jason; de la Rocha, Pilar; McCannel, Tara A.; Ochoa, Maria Teresa; Seja, Elizabeth; Villanueva, Arturo; Oseguera, Denise K.; Straatsma, Bradley R.; Cochran, Alistair J.; Glaspy, John A.; Hui, Liu; Marincola, Francesco M.; Wang, Ena; Economou, James S.; Gomez-Navarro, Jesus

    2009-01-01

    Purpose Tumor antigen-loaded dendritic cells (DC) are believed to activate antitumor immunity by stimulating T cells, and cytotoxic T lymphocyte-associated antigen 4 (CTLA4)-blocking antibodies should release a key negative regulatory pathway on T cells. The combination was tested in a phase 1 clinical trial in patients with advanced melanoma. Experimental Design Autologous DC were pulsed with MART-126-35 peptide and administered with a dose escalation of the CTLA4 blocking antibody tremelimumab. Sixteen patients were accrued to 5 dose levels. Primary endpoints were safety and immune effects; clinical efficacy was a secondary endpoint. Results Dose-limiting toxicities (DLTs) of grade 3 diarrhea and grade 2 hypophysitis developed in 2 out of 3 patients receiving tremelimumab at 10 mg/kg monthly. Four patients had an objective tumor response, two partial responses (PR) and two complete responses (CR), all melanoma-free between 2 and 4 years after study initiation. There was no difference in immune monitoring results between patients with an objective tumor response and those without a response. Exploratory gene expression analysis suggested that immune-related gene signatures, in particular for B cell function, may be important in predicting response. Conclusion The combination of MART-1 peptide-pulsed DC and tremelimumab results in objective and durable tumor responses at the higher range of the expected response rate with either agent alone. PMID:19789309

  15. Dendritic cells primed with a chimeric plasmid containing HIV-1-gag associated with lysosomal-associated protein-1 (LAMP/gag) is a potential therapeutic vaccine against HIV.

    PubMed

    Lucas, Carolina G D O; Matassoli, Flavio L; Peçanha, Ligia M T; Santillo, Bruna Tereso; Oliveira, Luanda Mara da Silva; Oshiro, Telma Miyuki; Marques, Ernesto T D A; Oxenius, Annette; de Arruda, Luciana B

    2016-08-01

    The decline in number and function of T cells is a hallmark of HIV infection, and preservation or restoration of HIV-specific cellular immune response is a major goal of AIDS treatment. Dendritic cells (DCs) play a key role in the initiation and maintenance of the immune response, and their use as a vaccine vehicle is a promising strategy for enhancing vaccine efficacy. We evaluated the potential of DC-mediated immunization with a DNA vaccine consisting of HIV-1-p55gag (gag, group-specific antigen) associated to lysosomal associated protein (LAMP) sequence (LAMP/gag vaccine). Immunization of mice with mouse DCs transfected with LAMP/gag (Lg-mDCs) stimulated more potent B- and T-cell responses than naked DNA or DCs pulsed with inactivated HIV. Anti-Gag antibody levels were sustained for at least 3 mo after immunization, and recall T-cell responses were also strongly detected at this time point. Human DCs transfected with LAMP/gag (Lg-hDCs) were also activated and able to stimulate greater T-cell response than native gag-transfected DCs. Coculture between Lg-hDCs and T lymphocytes obtained from patients with HIV resulted in upregulation of CD38, CD69, HLA-DR, and granzyme B by CD4(+) and CD8(+) T cells, and increased IFN-γ and TNF-α production. These results indicate that the use of LAMP/gag-DC may be an efficient strategy for enhancing immune function in patients with HIV.-Lucas, C. G. D. O., Matassoli, F. L., Peçanha, L. M. T., Santillo, B. T., Oliveira, L. M. D. S., Oshiro, T. M., Marques, E. T. D. A., Jr., Oxenius, A., de Arruda, L. B. Dendritic cells primed with a chimeric plasmid containing HIV-1-gag associated with lysosomal-associated protein-1 (LAMP/gag) is a potential therapeutic vaccine against HIV.

  16. The adjuvant effects of high-molecule-weight polysaccharides purified from Antrodia cinnamomea on dendritic cell function and DNA vaccines.

    PubMed

    Lin, Chi-Chen; Pan, I-Hong; Li, Yi-Rong; Pan, Yi-Gen; Lin, Ming-Kuem; Lu, Yi-Huang; Wu, Hsin-Chieh; Chu, Ching-Liang

    2015-01-01

    The biological activity of the edible basidiomycete Antrodia cinnamomea (AC) has been studied extensively. Many effects, such as anti-cancer, anti-inflammatory, and antioxidant activities, have been reported from either crude extracts or compounds isolated from AC. However, research addressing the function of AC in enhancing immunity is rare. The aim of the present study is to investigate the active components and the mechanism involved in the immunostimulatory effect of AC. We found that polysaccharides (PS) in the water extract of AC played a major role in dendritic cell (DC) activation, which is a critical leukocyte in initiating immune responses. We further size purified and identified that the high-molecular weight PS fraction (greater than 100 kDa) exhibited the activating effect. The AC high-molecular weight PSs (AC hmwPSs) promoted pro-inflammatory cytokine production by DCs and the maturation of DCs. In addition, DC-induced antigen-specific T cell activation and Th1 differentiation were increased by AC hmwPSs. In studying the molecular mechanism, we confirmed the activation of the MAPK and NF-κB pathways in DCs after AC hmwPSs treatment. Furthermore, we demonstrated that TLR2 and TLR4 are required for the stimulatory activity of AC hmwPSs on DCs. In a mouse tumor model, we demonstrated that AC hmwPSs enhanced the anti-tumor efficacy of the HER-2/neu DNA vaccine by facilitating specific Th1 responses. Thus, we conclude that hmwPSs are the major components of AC that stimulate DCs via the TLR2/TLR4 and NF-κB/MAPK signaling pathways. The AC hmwPSs have potential to be applied as adjuvants.

  17. The Adjuvant Effects of High-Molecule-Weight Polysaccharides Purified from Antrodia cinnamomea on Dendritic Cell Function and DNA Vaccines

    PubMed Central

    Lin, Chi-Chen; Pan, I-Hong; Li, Yi-Rong; Pan, Yi-Gen; Lin, Ming-Kuem; Lu, Yi-Huang; Wu, Hsin-Chieh; Chu, Ching-Liang

    2015-01-01

    The biological activity of the edible basidiomycete Antrodia cinnamomea (AC) has been studied extensively. Many effects, such as anti-cancer, anti-inflammatory, and antioxidant activities, have been reported from either crude extracts or compounds isolated from AC. However, research addressing the function of AC in enhancing immunity is rare. The aim of the present study is to investigate the active components and the mechanism involved in the immunostimulatory effect of AC. We found that polysaccharides (PS) in the water extract of AC played a major role in dendritic cell (DC) activation, which is a critical leukocyte in initiating immune responses. We further size purified and identified that the high-molecular weight PS fraction (greater than 100 kDa) exhibited the activating effect. The AC high-molecular weight PSs (AC hmwPSs) promoted pro-inflammatory cytokine production by DCs and the maturation of DCs. In addition, DC-induced antigen-specific T cell activation and Th1 differentiation were increased by AC hmwPSs. In studying the molecular mechanism, we confirmed the activation of the MAPK and NF-κB pathways in DCs after AC hmwPSs treatment. Furthermore, we demonstrated that TLR2 and TLR4 are required for the stimulatory activity of AC hmwPSs on DCs. In a mouse tumor model, we demonstrated that AC hmwPSs enhanced the anti-tumor efficacy of the HER-2/neu DNA vaccine by facilitating specific Th1 responses. Thus, we conclude that hmwPSs are the major components of AC that stimulate DCs via the TLR2/TLR4 and NF-κB/MAPK signaling pathways. The AC hmwPSs have potential to be applied as adjuvants. PMID:25723174

  18. Carthamus tinctorius Enhances the Antitumor Activity of Dendritic Cell Vaccines via Polarization toward Th1 Cytokines and Increase of Cytotoxic T Lymphocytes

    PubMed Central

    Chang, Jia-Ming; Hung, Le-Mei; Chyan, Yau-Jan; Cheng, Chun-Ming; Wu, Rey-Yuh

    2011-01-01

    Carthamus tinctorius (CT), also named safflower, is a traditional Chinese medicine widely used to improve blood circulation. CT also has been studied for its antitumor activity in certain cancers. To investigate the effects of CT on the dendritic cell (DC)-based vaccine in cancer treatment, cytokine secretion of mouse splenic T lymphocytes and the maturation of DCs in response to CT were analyzed. To assess the antitumor activity of CT extract on mouse CD117+ (c-kit)-derived DCs pulsed with JC mammal tumor antigens, the JC tumor was challenged by the CT-treated DC vaccine in vivo. CT stimulated IFN-γ and IL-10 secretion of splenic T lymphocytes and enhanced the maturation of DCs by enhancing immunological molecule expression. When DC vaccine was pulsed with tumor antigens along with CT extract, the levels of TNF-α and IL-1β were dramatically increased with a dose-dependent response and more immunologic and co-stimulatory molecules were expressed on the DC surface. In addition, CT-treated tumor lysate-pulsed DC vaccine reduced the tumor weight in tumor-bearing mice by 15.3% more than tumor lysate-pulsed DC vaccine without CT treatment. CT polarized cytokine secretion toward the Th1 pathway and also increased the population of cytotoxic T lymphocytes ex vivo. In conclusion, CT activates DCs might promote the recognition of antigens and facilitate antigen presentation to Th1 immune responses. PMID:19001481

  19. Clinical outcomes of a novel therapeutic vaccine with Tax peptide-pulsed dendritic cells for adult T cell leukaemia/lymphoma in a pilot study.

    PubMed

    Suehiro, Youko; Hasegawa, Atsuhiko; Iino, Tadafumi; Sasada, Amane; Watanabe, Nobukazu; Matsuoka, Masao; Takamori, Ayako; Tanosaki, Ryuji; Utsunomiya, Atae; Choi, Ilseung; Fukuda, Tetsuya; Miura, Osamu; Takaishi, Shigeo; Teshima, Takanori; Akashi, Koichi; Kannagi, Mari; Uike, Naokuni; Okamura, Jun

    2015-05-01

    Adult T cell leukaemia/lymphoma (ATL) is a human T cell leukaemia virus type-I (HTLV-I)-infected T cell malignancy with poor prognosis. We herein developed a novel therapeutic vaccine designed to augment an HTLV-I Tax-specific cytotoxic T lymphocyte (CTL) response that has been implicated in anti-ATL effects, and conducted a pilot study to investigate its safety and efficacy. Three previously treated ATL patients, classified as intermediate- to high-risk, were subcutaneously administered with the vaccine, consisting of autologous dendritic cells (DCs) pulsed with Tax peptides corresponding to the CTL epitopes. In all patients, the performance status improved after vaccination without severe adverse events, and Tax-specific CTL responses were observed with peaks at 16-20 weeks. Two patients achieved partial remission in the first 8 weeks, one of whom later achieved complete remission, maintaining their remission status without any additional chemotherapy 24 and 19 months after vaccination, respectively. The third patient, whose tumour cells lacked the ability to express Tax at biopsy, obtained stable disease in the first 8 weeks and later developed slowly progressive disease although additional therapy was not required for 14 months. The clinical outcomes of this pilot study indicate that the Tax peptide-pulsed DC vaccine is a safe and promising immunotherapy for ATL.

  20. Comprehensive immunological analyses of colorectal cancer patients in the phase I/II study of quickly matured dendritic cell vaccine pulsed with carcinoembryonic antigen peptide.

    PubMed

    Sakakibara, Mitsuru; Kanto, Tatsuya; Hayakawa, Michiyo; Kuroda, Shoko; Miyatake, Hideki; Itose, Ichiyo; Miyazaki, Masanori; Kakita, Naruyasu; Higashitani, Koyo; Matsubara, Tokuhiro; Hiramatsu, Naoki; Kasahara, Akinori; Takehara, Tetsuo; Hayashi, Norio

    2011-11-01

    Dendritic cell (DC) vaccine has been used to treat patients with advanced colorectal cancer (CRC). The results of vaccine-induced clinical responses have not always been satisfactory partially because of DC incompetence. In order to evaluate the feasibility of novel mature DCs for therapeutic adjuvants against CRC, we conducted clinical trials with carcinoembryonic antigen (CEA) peptide-loaded DC quickly generated with a combination of OK432 (Streptococcuspyogenes preparation), prostanoid, and interferon-α (OPA-DC). In the ten patients enrolled in this study, the OPA-DC vaccine was well tolerated and administered four times every 2 weeks except for two patients, who were switched to other treatments due to disease progression. Among the eight evaluable patients, one displayed stable disease (SD), while the remaining seven showed progressive disease (PD). In the SD patient, natural killer (NK) cell frequency and cytolytic activity were increased. In the same patient, the frequency of CEA-specific cytotoxic T cells (CTLs) increased stepwise with repetitive vaccinations; however, most of the CTLs exhibited central memory phenotype. In those with PD, NK cells proliferated well regardless of failure of response, whereas CTLs failed to do so. We concluded that the OPA-DC vaccine is well tolerated and has immune-stimulatory capacity in patients with CRC. Additional modulation is needed to attain significant clinical impact.

  1. Collaborative study for the standardisation of the histamine sensitizing test in mice and the CHO cell-based assay for the residual toxicity testing of acellular pertussis vaccines.

    PubMed

    Xing, D; Maes, A; Behr-Gross, M-E; Costanzo, A; Daas, A; Buchheit, K-H

    2010-04-01

    The European Pharmacopoeia (Ph. Eur.) and the World Health Organisation (WHO) require the performance of extensive quality and safety control testing before the release on the market of vaccine products for human use. Safety testing with regard to residual pertussis toxin (PT) in acellular pertussis combination vaccines is performed through assessment of fatal sensitisation of mice to histamine challenge by the vaccine product under test. Currently, use of different in-house procedures and no requirement for the inclusion of a standard reference in each assay render comparisons of results obtained for identical vaccine batches between different control laboratories very difficult. At the initiative of the European Directorate for the Quality of Medicines and HealthCare (EDQM), an international collaborative study was organised for the standardization of the Histamine Sensitizing Test (HIST) in mice and the Chinese Hamster Ovary (CHO)-cell-based assay (performed at the bulk product level) for the residual toxicity testing of acellular pertussis vaccines or acellular pertussis-based combination vaccines. The study was run under the aegis of the Biological Standardisation Programme, jointly supported by the Council of Europe and the European Commission under the project code BSP076. Ten (10) laboratories participated in the study and were requested to perform 3 independent Histamine Sensitizing Tests in mice and to report results of the lethal end-point measurement as prescribed by the Ph. Eur. monographs. Some of them also reported data from an in-house validated CHO-cell-based assay. In addition, some of the laboratories reported concomitantly data obtained by measurement of the drop in temperature induced after the histamine challenge, a method currently under investigation to be added as an alternative end-point for the HIST in the Ph. Eur. monographs for acellular pertussis-based combination vaccines in order to alleviate animal suffering (in application of the 3

  2. Synthetic virus seeds for improved vaccine safety: Genetic reconstruction of poliovirus seeds for a PER.C6 cell based inactivated poliovirus vaccine.

    PubMed

    Sanders, Barbara P; Edo-Matas, Diana; Papic, Natasa; Schuitemaker, Hanneke; Custers, Jerome H H V

    2015-10-13

    Safety of vaccines can be compromised by contamination with adventitious agents. One potential source of adventitious agents is a vaccine seed, typically derived from historic clinical isolates with poorly defined origins. Here we generated synthetic poliovirus seeds derived from chemically synthesized DNA plasmids encoding the sequence of wild-type poliovirus strains used in marketed inactivated poliovirus vaccines. The synthetic strains were phenotypically identical to wild-type polioviruses as shown by equivalent infectious titers in culture supernatant and antigenic content, even when infection cultures are scaled up to 10-25L bioreactors. Moreover, the synthetic seeds were genetically stable upon extended passaging on the PER.C6 cell culture platform. Use of synthetic seeds produced on the serum-free PER.C6 cell platform ensures a perfectly documented seed history and maximum control over starting materials. It provides an opportunity to maximize vaccine safety which increases the prospect of a vaccine end product that is free from adventitious agents.

  3. Dendritic cell-mediated, DNA-based vaccination against hepatitis C induces the multi-epitope-specific response of humanized, HLA transgenic mice.

    PubMed

    Mishra, Sasmita; Lavelle, Bianca J; Desrosiers, Joe; Ardito, Matt T; Terry, Frances; Martin, William D; De Groot, Anne S; Gregory, Stephen H

    2014-01-01

    Hepatitis C virus (HCV) is the etiologic agent of chronic liver disease, hepatitis C. Spontaneous resolution of viral infection is associated with vigorous HLA class I- and class II-restricted T cell responses to multiple viral epitopes. Unfortunately, only 20% of patients clear infection spontaneously, most develop chronic disease and require therapy. The response to chemotherapy varies, however; therapeutic vaccination offers an additional treatment strategy. To date, therapeutic vaccines have demonstrated only limited success. Vector-mediated vaccination with multi-epitope-expressing DNA constructs alone or in combination with chemotherapy offers an additional treatment approach. Gene sequences encoding validated HLA-A2- and HLA-DRB1-restricted epitopes were synthesized and cloned into an expression vector. Dendritic cells (DCs) derived from humanized, HLA-A2/DRB1 transgenic (donor) mice were transfected with these multi-epitope-expressing DNA constructs. Recipient HLA-A2/DRB1 mice were vaccinated s.c. with transfected DCs; control mice received non-transfected DCs. Peptide-specific IFN-γ production by splenic T cells obtained at 5 weeks post-immunization was quantified by ELISpot assay; additionally, the production of IL-4, IL-10 and TNF-α were quantified by cytokine bead array. Splenocytes derived from vaccinated HLA-A2/DRB1 transgenic mice exhibited peptide-specific cytokine production to the vast majority of the vaccine-encoded HLA class I- and class II-restricted T cell epitopes. A multi-epitope-based HCV vaccine that targets DCs offers an effective approach to inducing a broad immune response and viral clearance in chronic, HCV-infected patients.

  4. Genetic targeting of the active transcription factor XBP1s to dendritic cells potentiates vaccine-induced prophylactic and therapeutic antitumor immunity.

    PubMed

    Tian, Shenghe; Liu, Zuqiang; Donahue, Cara; Falo, Louis D; You, Zhaoyang

    2012-02-01

    In vivo dendritic cells (DC) targeting is an attractive approach with potential advantages in vaccine efficacy, cost, and availability. Identification of molecular adjuvants to in vivo "modulate " DC to coordinately render improved Th1 and CD8 T cell immunity, and attenuated deleterious Treg effects, is a critical challenge. Here, we report that in vivo genetic targeting of the active transcription factor XBP1s to DC (XBP1s/DC) potentiated vaccine-induced prophylactic and therapeutic antitumor immunity in multiple tumor models. This immunization strategy is based on a genetic vaccine encoding both cytomegalovirus (CMV)-driven vaccine Aghsp70 and DC-specific CD11c-driven XBP1s. The novel targeted vaccine induced durable Th1 and CD8 T cell responses to poorly immunogenic self/tumor antigen (Ag) and attenuated tumor-associated Treg suppressive function. Bone marrow (BM)-derived DC genetically modified to simultaneously overexpress XBP1s and express Aghsp70 upregulated CD40, CD70, CD86, interleukin (IL)-15, IL-15Rα, and CCR7 expression, and increased IL-6, IL-12, and tumor necrosis factor (TNF)-α production in vitro. XBP1s/DC elevated functional DEC205(+)CD8α(+)DC in the draining lymph nodes (DLN). The data suggest a novel role for XBP1s in modulating DC to potentiate tumor vaccine efficacy via overcoming two major obstacles to tumor vaccines (i.e., T cell hyporesponsiveness against poorly immunologic self/tumor Ag and tumor-associated Treg-mediated suppression) and improving DEC205(+)CD8α(+)DC.

  5. Langerin negative dendritic cells promote potent CD8+ T-cell priming by skin delivery of live adenovirus vaccine microneedle arrays

    PubMed Central

    Bachy, Veronique; Hervouet, Catherine; Becker, Pablo D.; Chorro, Laurent; Carlin, Leo M.; Herath, Shanthi; Papagatsias, Timos; Barbaroux, Jean-Baptiste; Oh, Sea-Jin; Benlahrech, Adel; Athanasopoulos, Takis; Dickson, George; Patterson, Steven; Kwon, Sung-Yun; Geissmann, Frederic; Klavinskis, Linda S.

    2013-01-01

    Stabilization of virus protein structure and nucleic acid integrity is challenging yet essential to preserve the transcriptional competence of live recombinant viral vaccine vectors in the absence of a cold chain. When coupled with needle-free skin delivery, such a platform would address an unmet need in global vaccine coverage against HIV and other global pathogens. Herein, we show that a simple dissolvable microneedle array (MA) delivery system preserves the immunogenicity of vaccines encoded by live recombinant human adenovirus type 5 (rAdHu5). Specifically, dried rAdHu5 MA immunization induced CD8+ T-cell expansion and multifunctional cytokine responses equipotent with conventional injectable routes of immunization. Intravital imaging demonstrated MA cargo distributed both in the epidermis and dermis, with acquisition by CD11c+ dendritic cells (DCs) in the dermis. The MA immunizing properties were attributable to CD11c+ MHCIIhi CD8αneg epithelial cell adhesion molecule (EpCAMneg) CD11b+ langerin (Lang; CD207)neg DCs, but neither Langerhans cells nor Lang+ DCs were required for CD8+ T-cell priming. This study demonstrates an important technical advance for viral vaccine vectors progressing to the clinic and provides insights into the mechanism of CD8+ T-cell priming by live rAdHu5 MAs. PMID:23386724

  6. A correlation of measles specific antibodies and the number of plasmacytoid dendritic cells is observed after measles vaccination in 9 month old infants.

    PubMed

    García-León, Miguel L; Bonifaz, Laura C; Espinosa-Torres, Bogart; Hernández-Pérez, Brenda; Cardiel-Marmolejo, Lino; Santos-Preciado, José I; Wong-Chew, Rosa M

    2015-01-01

    Measles virus (MeV) represents one of the main causes of death among young children, particularly in developing countries. Upon infection, MeV controls both interferon induction (IFN) and the interferon signaling pathway which results in a severe host immunosuppression that can persists for up to 6 mo after infection. Despite the global biology of MeV infection is well studied, the role of the plasmacytoid dendritic cells (pDCs) during the host innate immune response after measles vaccination remains largely uncharacterized. Here we investigated the role of pDCs, the major producers of interferon in response to viral infections, in the development of adaptive immune response against MeV vaccine. We report that there is a strong correlation between pDCs population and the humoral immune response to Edmonston Zagreb (EZ) measles vaccination in 9-month-old mexican infants. Five infants were further evaluated after vaccination, showing a clear increase in pDCs at baseline, one week and 3 months after immunization. Three months postvaccination they showed increase in memory T-cells and pDCs populations, high induction of adaptive immunity and also observed a correlation between pDCs number and the humoral immune response. These findings suggest that the development and magnitude of the adaptive immune response following measles immunization is directly dependent on the number of pDCs of the innate immune response.

  7. A correlation of measles specific antibodies and the number of plasmacytoid dendritic cells is observed after measles vaccination in 9 month old infants

    PubMed Central

    García-León, Miguel L; Bonifaz, Laura C; Espinosa-Torres, Bogart; Hernández-Pérez, Brenda; Cardiel-Marmolejo, Lino; Santos-Preciado, José I; Wong-Chew, Rosa M

    2015-01-01

    Measles virus (MeV) represents one of the main causes of death among young children, particularly in developing countries. Upon infection, MeV controls both interferon induction (IFN) and the interferon signaling pathway which results in a severe host immunosuppression that can persists for up to 6 mo after infection. Despite the global biology of MeV infection is well studied, the role of the plasmacytoid dendritic cells (pDCs) during the host innate immune response after measles vaccination remains largely uncharacterized. Here we investigated the role of pDCs, the major producers of interferon in response to viral infections, in the development of adaptive immune response against MeV vaccine. We report that there is a strong correlation between pDCs population and the humoral immune response to Edmonston Zagreb (EZ) measles vaccination in 9-month-old mexican infants. Five infants were further evaluated after vaccination, showing a clear increase in pDCs at baseline, one week and 3 months after immunization. Three months postvaccination they showed increase in memory T-cells and pDCs populations, high induction of adaptive immunity and also observed a correlation between pDCs number and the humoral immune response. These findings suggest that the development and magnitude of the adaptive immune response following measles immunization is directly dependent on the number of pDCs of the innate immune response. PMID:26075901

  8. Induction of Cytomegalovirus-Specific T Cell Responses in Healthy Volunteers and Allogeneic Stem Cell Recipients Using Vaccination With Messenger RNA–Transfected Dendritic Cells

    PubMed Central

    Van Craenenbroeck, Amaryllis H.; Smits, Evelien L.J.; Anguille, Sébastien; Van de Velde, Ann; Stein, Barbara; Braeckman, Tessa; Van Camp, Kirsten; Nijs, Griet; Ieven, Margareta; Goossens, Herman; Berneman, Zwi N.; Van Tendeloo, Viggo F.I.; Verpooten, Gert A.; Van Damme, Pierre; Cools, Nathalie

    2015-01-01

    Background Infection with human cytomegalovirus (CMV) is a significant cause of morbidity and mortality in solid organ and hematopoietic stem cell transplant (HSCT) recipients. Methods The present study explored the safety, feasibility, and immunogenicity of CMV pp65 messenger RNA–loaded autologous monocyte-derived dendritic cells (DC) as a cellular vaccine for active immunization in healthy volunteers and allogeneic HSCT recipients. Four CMV-seronegative healthy volunteers and three allogeneic HSCT recipients were included in the study. Four clinical-grade autologous monocyte-derived DC vaccines were prepared after a single leukapheresis procedure and administered intradermally at a weekly interval. Results De novo induction of CMV-specific T-cell responses was detected in three of four healthy volunteers without serious adverse events. Of the HSCT recipients, none developed CMV disease and one of two patients displayed a remarkable threefold increase in CMV pp65-specific T cells on completion of the DC vaccination trial. Conclusion In conclusion, our DC vaccination strategy induced or expanded a CMV-specific cellular response in four of six efficacy-evaluable study subjects, providing a base for its further exploration in larger cohorts. PMID:25050468

  9. Irradiation of necrotic cancer cells, employed for pulsing dendritic cells (DCs), potentiates DC vaccine-induced antitumor immunity against high-grade glioma

    PubMed Central

    Vandenberk, Lien; Garg, Abhishek D.; Verschuere, Tina; Koks, Carolien; Belmans, Jochen; Beullens, Monique; Agostinis, Patrizia; De Vleeschouwer, Steven; Van Gool, Stefaan W.

    2016-01-01

    ABSTRACT Dendritic cell (DC)-based immunotherapy has yielded promising results against high-grade glioma (HGG). However, the efficacy of DC vaccines is abated by HGG-induced immunosuppression and lack of attention toward the immunogenicity of the tumor lysate/cells used for pulsing DCs. A literature analysis of DC vaccination clinical trials in HGG patients delineated the following two most predominantly applied methods for tumor lysate preparation: freeze-thaw (FT)-induced necrosis or FT-necrosis followed by X-ray irradiation. However, from the available clinical evidence, it is unclear which of both methodologies has superior immunogenic potential. Using an orthotopic HGG murine model (GL261-C57BL/6), we observed that prophylactic vaccination with DCs pulsed with irradiated FT-necrotic cells (compared to FT-necrotic cells only) prolonged overall survival by increasing tumor rejection in glioma-challenged mice. This was associated, both in prophylactic and curative vaccination setups, with an increase in brain-infiltrating Th1 cells and cytotoxic T lymphocytes (CTL), paralleled by a reduced accumulation of regulatory T cells, tumor-associated macrophages (TAM) and myeloid-derived suppressor cells (MDSC). Further analysis showed that irradiation treatment of FT-necrotic cells considerably increased the levels of carbonylated proteins — a surrogate-marker of oxidation-associated molecular patterns (OAMPs). Through further application of antioxidants and hydrogen peroxide, we found a striking correlation between the amount of lysate-associated protein carbonylation/OAMPs and DC vaccine-mediated tumor rejection capacity thereby suggesting for the first time a role for protein carbonylation/OAMPs in at least partially mediating antitumor immunity. Together, these data strongly advocate the use of protein oxidation-inducing modalities like irradiation for increasing the immunogenicity of tumor lysate/cells used for pulsing DC vaccines. PMID:27057467

  10. Delayed-type hypersensitivity (DTH) immune response related with EBV-DNA in nasopharyngeal carcinoma treated with autologous dendritic cell vaccination after radiotherapy.

    PubMed

    Li, Feng; Song, Dan; Lu, Yue; Zhu, Huanfeng; Chen, Zhenzhang; He, Xia

    2013-04-01

    The aim of this work was to investigate the outcome of an autologous dendritic cell (DC) vaccination in patients with stage II/III nasopharyngeal carcinomas (NPC). From 38 patients with stage II/III Epstein-Barr virus (EBV)-associated NPCs after a radiotherapy, 16 human leukocyte antigen-A2 (HLA-A2)-positive patients were enrolled and medicated with autologous DCs, which were pulsed with HLA-A2-restricted EBV-encoded latent membrane protein 2A (LMP2A) peptides. The lymphocyte subsets, serum cytokines, and EBV-DNA levels as well as the delayed-type hypersensitivity (DTH) responses were determined after vaccination combined with a radiotherapy/chemotherapy. The serum levels of interleukin-2 and interferon-γ (P<0.05) as well as the percentage of natural killer and CD4+T cells increased significantly (P<0.05) after the vaccination. Nine of 16 (56.25%) patients showed a positive skin response to the HLA-A2 restricted EBV LMP2A peptides in a DTH test. The serum EBV-DNA level decreased significantly from 1519 ± 384 to 1214 ± 211 copies/mL in the 9 DTH-positive patients (P=0.0310). No unanticipated or serious toxicity was observed and the vaccine was well tolerated. In conclusion, in NPC patients vaccinated after radiotherapy with autologous DCs, which were pulsed with EBV LMP2A peptides, Th1-specific immune responses were elicited particularly in DTH test positive individuals. The clinical results obtained are encouraging and the EBV-specific HLA-A2-restricted DC vaccination is a promising treatment for EBV-related NPCs.

  11. Immune response and long-term clinical outcome in advanced melanoma patients vaccinated with tumor-mRNA-transfected dendritic cells.

    PubMed

    Kyte, Jon Amund; Aamdal, Steinar; Dueland, Svein; Sæbøe-Larsen, Stein; Inderberg, Else Marit; Madsbu, Ulf Erik; Skovlund, Eva; Gaudernack, Gustav; Kvalheim, Gunnar

    2016-01-01

    The most effective anticancer immune responses are probably directed against patient-specific neoantigens. We have developed a melanoma vaccine targeting this individual mutanome based on dendritic cells (DCs) loaded with autologous tumor-mRNA. Here, we report a phase I/II trial evaluating toxicity, immune response and clinical outcome in 31 metastatic melanoma patients. The first cohort (n = 22) received the vaccine without any adjuvant; the next cohort (n = 9) received adjuvant IL2. Each subject received four weekly intranodal or intradermal injections, followed by optional monthly vaccines. Immune response was evaluated by delayed-type hypersensitivity (DTH), T cell proliferation and cytokine assays. Data were collected for 10 y after inclusion of the last patient. No serious adverse events were detected. In the intention-to-treat-cohort, we demonstrated significantly superior survival compared to matched controls from a benchmark meta-analysis (1 y survival 43% vs. 24%, 2 y 23% vs. 6.6%). A tumor-specific immune response was demonstrated in 16/31 patients. The response rate was higher after intradermal than intranodal vaccination (80% vs. 38%). Immune responders had improved survival compared to non-responders (median 14 mo vs. 6 mo; p = 0.030), and all eight patients surviving >20 mo were immune responders. In addition to the tumor-specific response, most patients developed a response against autologous DC antigens. The cytokine profile was polyfunctional and did not follow a Th1/Th2 dichotomy. We conclude that the favorable safety profile and evidence of a possible survival benefit warrant further studies of the RNA/DC vaccine. The vaccine appears insufficient as monotherapy, but there is a strong rationale for combination with checkpoint modulators.

  12. [Experimental study on the immune response of fusion tumor vaccine of HepG2 and dendritic cells in vitro].

    PubMed

    Pang, Y B; Cui, B Y; He, J; Huang, X P; Liang, W; Li, L Q; Luo, X L

    2017-02-21

    Objective: To estimate the immune response of HepG2/dendritic cell (DC) fusion cells vaccines against HepG2 cells in vitro. Methods: Peripheral blood mononuclear cells (PBMCs) were isolated from healthy donors by Ficoll-Hypaque density-gradient centrifugation.Then DC were obtain from PBMCs by culturing in medium containing granulocyte macrophage colony-stimulating factor (GM-CSF) and interleukin-4 (IL-4) for 5 days.DC and HepG2 fusion cells were induced by polythyleneglycol (PEG). The fusion cells were examined under fluorescence microscope by labeling DCs and HepG2 with green and red fluorescein, respectively, and then the fusion rates were analyzed by flow cytometry.The capacity of fusion cells to secrete interleukin (IL)-12 and stimulate the proliferation of T lymphocyte was assessed by ELISA and Flow cytometry, respectively.ELISPOT was used to assess the interferon gamma (IFN-γ) produced by cytotoxicity T lymphocyte (CTL), and the specific killing ability of fusion cells induce-CTL targeting HepG2 was estimated. Results: The fusion rate of HepG2/DC was 54.5%, and the fusion cells expressed a higher levels of DC mature marker CD80 and costimulatory molecules CD83, CD86 and MHC-Ⅰ, MHC-Ⅱ molecules HLA-ABC and HLA-DR than those in immature DCs (P<0.01). HepG2/DC showed a greater capacity to secrete high level of IL-12 (P<0.05) and activate proliferation of lymphocytes in vitro, as compared with DCs alone and DCs mix HepG2 (P<0.01). The HepG2/DC -activated CTL generated higher IFN-γ level and had a specific killing ability against HepG2 cells at the effecter/target ratio 30∶1 (31.4%±2.4%) and 100∶1 (57.6%±7.3%) (P<0.01). Conclusions: HepG2/DC fusion cells could efficiently stimulate T lymphocytes to generate specific CTL targeting HepG2 cells.It might be a promising strategy of immunotherapy for HCC.

  13. Comparative assessment of lipid based nano-carrier systems for dendritic cell based targeting of tumor re-initiating cells in gynecological cancers.

    PubMed

    Bhargava, Arpit; Mishra, Dinesh K; Jain, Subodh K; Srivastava, Rupesh K; Lohiya, Nirmal K; Mishra, Pradyumna K

    2016-11-01

    We aimed to identify an optimum nano-carrier system to deliver tumor antigen to dendritic cells (DCs) for efficient targeting of tumor reinitiating cells (TRICs) in gynecological malignancies. Different lipid based nano-carrier systems i.e. liposomes, ethosomes and solid lipid nanoparticles (SLNPs) were examined for their ability to activate DCs in allogeneic settings. Out of these three, the most optimized formulation was subjected for cationic and mannosylated surface modification and pulsed with DCs for specific targeting of tumor cells. In both allogeneic and autologous trials, SLNPs showed a strong ability to activate DCs and orchestrate specific immune responses for targeting TRICs in gynecological malignancies. Our findings suggest that the mannosylated form of SLNPs is a suitable molecular vector for DC based therapeutics. DCs pulsed with mannosylated SLNPs may be utilized as adjuvant therapy for specific removal of TRICs to benefit patients from tumor recurrence.

  14. Targeting a mimotope vaccine to activating Fcgamma receptors empowers dendritic cells to prime specific CD8+ T cell responses in tumor-bearing mice.

    PubMed

    Gil, Margaret; Bieniasz, Magdalena; Wierzbicki, Andrzej; Bambach, Barbara J; Rokita, Hanna; Kozbor, Danuta

    2009-11-15

    A major challenge for inducing antitumor immune responses with native or modified tumor/self-Ags in tumor-bearing hosts relates to achieving efficient uptake and processing by dendritic cells (DCs) to activate immune effector cells and limit the generation of regulatory T cell activity. We analyzed the ability of therapeutic DC vaccines expressing a CD166 cross-reactive mimotope of the GD2 ganglioside, 47-LDA, to selectively expand adoptively transferred, tumor-specific T cells in NXS2 neuroblastoma tumor-bearing syngeneic mice. Before the adoptive cell transfer and DC vaccination, the tumor-bearing mice were lymphodepleted by nonmyeloablative total body irradiation or a myeloablative regimen that required bone marrow transplantation. The 47-LDA mimotope was presented to DCs either as a linear polypeptide in conjunction with universal Th epitopes or as a fusion protein with the murine IgG2a Fc fragment (47-LDA-Fcgamma2a) to deliver the antigenic cassette to the activating Fcgamma receptors. We demonstrate that immunization of adoptively transferred T cells in tumor-bearing mice with the 47-LDA mimotope expressed in the context of the activating Fc fusion protein induced higher levels of antitumor immune responses and protection than the 47-LDA polypeptide-DC vaccine. The antitumor efficacy of the therapeutic 47-LDA-Fcgamma2a-DC vaccine was comparable to that achieved by a virotherapy-associated cancer vaccine using a recombinant oncolytic vaccinia virus expressing the 47-LDA-Fcgamma2a fusion protein. The latter treatment, however, did not require total body irradiation or adoptive cell transfer and resulted in induction of antitumor immune responses in the setting of established tolerance, paving the way for testing novel anticancer treatment strategies.

  15. Poly-(lactic-co-glycolic-acid)-based particulate vaccines: particle uptake by dendritic cells is a key parameter for immune activation.

    PubMed

    Silva, A L; Rosalia, R A; Varypataki, E; Sibuea, S; Ossendorp, F; Jiskoot, W

    2015-02-11

    Poly(lactic-co-glycolic acid) (PLGA) particles have been extensively studied as biodegradable delivery system to improve the potency and safety of protein-based vaccines. In this study we analyzed how the size of PLGA particles, and hence their ability to be engulfed by dendritic cells (DC), affects the type and magnitude of the immune response in comparison to sustained release from a local depot. PLGA microparticles (MP, volume mean diameter≈112 μm) and nanoparticles (NP, Z-average diameter≈350 nm) co-encapsulating ovalbumin (OVA) and poly(I:C), with comparable antigen (Ag) release characteristics, were prepared and characterized. The immunogenicity of these two distinct particulate vaccines was evaluated in vitro and in vivo. NP were efficiently taken up by DC and greatly facilitated MHC I Ag presentation in vitro, whereas DC cultured in the presence of MP failed to internalize significant amounts of Ag and hardly showed MHC I Ag presentation. Vaccination of mice with NP resulted in significantly better priming of Ag-specific CD8(+) T cells compared to MP and OVA emulsified with incomplete Freund's adjuvant (IFA). Moreover, NP induced a balanced TH1/TH2-type antibody response, compared to vaccinations with IFA which stimulated a predominant TH2-type response, whereas MP failed to increase antibody titers. In conclusion, we postulate that particle internalization is of crucial importance and therefore particulate vaccines should be formulated in the nano- but not micro-size range to achieve efficient uptake, significant MHC class I cross-presentation and effective T and B cell responses.

  16. Dendritic cell vaccines based on immunogenic cell death elicit danger signals and T cell-driven rejection of high-grade glioma.

    PubMed

    Garg, Abhishek D; Vandenberk, Lien; Koks, Carolien; Verschuere, Tina; Boon, Louis; Van Gool, Stefaan W; Agostinis, Patrizia

    2016-03-02

    The promise of dendritic cell (DC)-based immunotherapy has been established by two decades of translational research. Of the four malignancies most targeted with clinical DC immunotherapy, high-grade glioma (HGG) has shown the highest susceptibility. HGG-induced immunosuppression is a roadblock to immunotherapy, but may be overcome by the application of T helper 1 (T(H)1) immunity-biased, next-generation, DC immunotherapy. To this end, we combined DC immunotherapy with immunogenic cell death (ICD; a modality shown to induce T(H)1 immunity) induced by hypericin-based photodynamic therapy. In an orthotopic HGG mouse model involving prophylactic/curative setups, both biologically and clinically relevant versions of ICD-based DC vaccines provided strong anti-HGG survival benefit. We found that the ability of DC vaccines to elicit HGG rejection was significantly blunted if cancer cell-associated reactive oxygen species and emanating danger signals were blocked either singly or concomitantly, showing hierarchical effect on immunogenicity, or if DCs, DC-associated MyD88 signal, or the adaptive immune system (especially CD8(+) T cells) were depleted. In a curative setting, ICD-based DC vaccines synergized with standard-of-care chemotherapy (temozolomide) to increase survival of HGG-bearing mice by ~300%, resulting in ~50% long-term survivors. Additionally, DC vaccines also induced an immunostimulatory shift in the brain immune contexture from regulatory T cells to T(H)1/cytotoxic T lymphocyte/T(H)17 cells. Analysis of the The Cancer Genome Atlas glioblastoma cohort confirmed that increased intratumor prevalence of T(H)1/cytotoxic T lymphocyte/T(H)17 cells linked genetic signatures was associated with good patient prognosis. Therefore, pending final preclinical checks, ICD-based vaccines can be clinically translated for glioma treatment.

  17. hTERT mRNA dendritic cell vaccination: complete response in a pancreatic cancer patient associated with response against several hTERT epitopes.

    PubMed

    Suso, Else M Inderberg; Dueland, Svein; Rasmussen, Anne-Marie; Vetrhus, Turid; Aamdal, Steinar; Kvalheim, Gunnar; Gaudernack, Gustav

    2011-06-01

    Immunotherapy targeting the hTERT subunit of telomerase has been shown to induce robust immune responses in cancer patients after vaccination with single hTERT peptides. Vaccination with dendritic cells (DCs) transfected with hTERT mRNA has the potential to induce strong immune responses to multiple hTERT epitopes and is therefore an attractive approach to more potent immunotherapy. Blood samples from such patients provide an opportunity for identification of new, in vivo processed T-cell epitopes that may be clinically relevant. A 62-year-old female patient underwent radical surgery for a pancreatic adenocarcinoma. After relapse, she obtained stable disease on gemcitabine treatment. Due to severe neutropenia, the chemotherapy was terminated. The patient has subsequently been treated with autologous DCs loaded with hTERT mRNA for 3 years. Immunomonitoring was performed at regular intervals following start of vaccination and clinical outcome measured by CT and PET/CT evaluation. The patient developed an immune response against several hTERT-derived Th and CTL epitopes. She presently shows no evidence of active disease based on PET/CT scans. No serious adverse events were experienced and the patient continues to receive regular booster injections. We here provide evidence for the induction of hTERT-specific immune responses following vaccination of a pancreas cancer patient with DCs loaded with hTERT mRNA. These responses are associated with complete remission. A thorough analysis of this patient immune response has provided a unique opportunity to identify novel epitopes, associated with clinical effects. These will be included in future hTERT vaccines.

  18. Vaccinations

    MedlinePlus

    ... vaccinated? For many years, a set of annual vaccinations was considered normal and necessary for dogs and ... to protect for a full year. Consequently, one vaccination schedule will not work well for all pets. ...

  19. Phase I/II clinical trial of dendritic-cell based immunotherapy (DCVAC/PCa) combined with chemotherapy in patients with metastatic, castration-resistant prostate cancer

    PubMed Central

    Becht, Etienne; Rozkova, Daniela; Bilkova, Pavla; Sochorova, Klara; Hromadkova, Hana; Kayserova, Jana; Vavrova, Katerina; Lastovicka, Jan; Vrabcova, Petra; Kubackova, Katerina; Gasova, Zdenka; Jarolim, Ladislav; Babjuk, Marek; Spisek, Radek; Bartunkova, Jirina; Fucikova, Jitka

    2015-01-01

    Purpose We conducted an open-label, single-arm Phase I/II clinical trial in metastatic CRPC (mCRPC) patients eligible for docetaxel combined with treatment with autologous mature dendritic cells (DCs) pulsed with killed LNCaP prostate cancer cells (DCVAC/PCa). The primary and secondary endpoints were safety and immune responses, respectively. Overall survival (OS), followed as a part of the safety evaluation, was compared to the predicted OS according to the Halabi and MSKCC nomograms. Experimental design Twenty-five patients with progressive mCRPC were enrolled. Treatment comprised of initial 7 days administration of metronomic cyclophosphamide 50 mg p.o. DCVAC/PCa treatment consisted of a median twelve doses of 1 × 107 dendritic cells per dose injected s.c. (Aldara creme was applied at the site of injection) during a one-year period. The initial 2 doses of DCVAC/PCa were administered at a 2-week interval, followed by the administration of docetaxel (75 mg/m2) and prednisone (5 mg twice daily) given every 3 weeks until toxicity or intolerance was observed. The DCVAC/PCa was then injected every 6 weeks up to the maximum number of doses manufactured from one leukapheresis. Results No serious DCVAC/PCa-related adverse events have been reported. The median OS was 19 months, whereas the predicted median OS was 11.8 months with the Halabi nomogram and 13 months with the MSKCC nomogram. Kaplan-Meier analyses showed that patients had a lower risk of death compared with both MSKCC (Hazard Ratio 0.26, 95% CI: 0.13–0.51) and Halabi (Hazard Ratio 0.33, 95% CI: 0.17–0.63) predictions. We observed a significant decrease in Tregs in the peripheral blood. The long-term administration of DCVAC/PCa led to the induction and maintenance of PSA specific T cells. We did not identify any immunological parameter that significantly correlated with better OS. Conclusions In patients with mCRPC, the combined chemoimmunotherapy with DCVAC/PCa and docetaxel was safe and resulted in

  20. Porcine Dendritic Cells as an In Vitro Model to Assess the Immunological Behaviour of Streptococcus suis Subunit Vaccine Formulations and the Polarizing Effect of Adjuvants

    PubMed Central

    Martelet, Léa; Lacouture, Sonia; Goyette-Desjardins, Guillaume; Beauchamp, Guy; Surprenant, Charles; Gottschalk, Marcelo; Segura, Mariela

    2017-01-01

    An in vitro porcine bone marrow-derived dendritic cell (DC) culture was developed as a model for evaluating immune polarization induced by adjuvants when administered with immunogens that may become vaccine candidates if appropriately formulated. The swine pathogen Streptococcus suis was chosen as a prototype to evaluate proposed S. suis vaccine candidates in combination with the adjuvants Poly I:C, Quil A ®, Alhydrogel ®, TiterMax Gold ® and Stimune ®. The toll-like receptor ligand Poly I:C and the saponin Quil A ® polarized swine DC cytokines towards a type 1 phenotype, with preferential production of IL-12 and TNF-α. The water-in-oil adjuvants TiterMax Gold ® and Stimune ® favoured a type 2 profile as suggested by a marked IL-6 release. In contrast, Alhydrogel ® induced a type 1/type 2 mixed cytokine profile. The antigen type differently modified the magnitude of the adjuvant effect, but overall polarization was preserved. This is the first comparative report on swine DC immune activation by different adjuvants. Although further swine immunization studies would be required to better characterize the induced responses, the herein proposed in vitro model is a promising approach that helps assessing behaviour of the vaccine formulation rapidly at the pre-screening stage and will certainly reduce numbers of animals used while advancing vaccinology science. PMID:28327531

  1. A novel cancer immunotherapy based on the combination of a synthetic carbohydrate-pulsed dendritic cell vaccine and glycoengineered cancer cells

    PubMed Central

    Yu, Shichong; Wang, Qianli; Li, Yinghua; Hu, Zhenlin; Wu, Qiuye; Guo, Zhongwu; Zhang, Junping

    2015-01-01

    Immune tolerance to tumor-associated carbohydrate antigens (TACAs) has severely restricted the usefulness of most TACAs. To overcome this problem, we selected a sialylated trisaccharide TACA, GM3, as a target antigen, and tested a new immunotherapeutic strategy by combining metabolic bioengineering with dendritic cell (DC) vaccination. We engineered cancer cells to express an artificial structure, N-phenylacetyl-D-neuraminic acid, in place of the natural N-acetyl-D-neuraminic acid of GM3 by using N-phenylacetyl-D-mannosamine (ManNPhAc) as a biosynthetic precursor. Next, we selectively targeted the bioengineered cancer cells by vaccination with DCs pulsed with the GM3 N-phenylacetyl derivative. Vaccination with GM3NPhAc-KLH-loaded DCs elicited robust GM3NPhAc-specific T cell-dependent immunity. The results showed that this strategy could significantly inhibit FBL3 tumor growth and prolong the survival of tumor-bearing mice; B16F10 lung metastases could also be reduced. These findings lay out a new strategy for overcoming immune tolerance to TACAs, such as GM3, for the development of effective tumor immunotherapies. PMID:25760071

  2. A novel cancer immunotherapy based on the combination of a synthetic carbohydrate-pulsed dendritic cell vaccine and glycoengineered cancer cells.

    PubMed

    Qiu, Lei; Li, Jie; Yu, Shichong; Wang, Qianli; Li, Yinghua; Hu, Zhenlin; Wu, Qiuye; Guo, Zhongwu; Zhang, Junping

    2015-03-10

    Immune tolerance to tumor-associated carbohydrate antigens (TACAs) has severely restricted the usefulness of most TACAs. To overcome this problem, we selected a sialylated trisaccharide TACA, GM3, as a target antigen, and tested a new immunotherapeutic strategy by combining metabolic bioengineering with dendritic cell (DC) vaccination. We engineered cancer cells to express an artificial structure, N-phenylacetyl-D-neuraminic acid, in place of the natural N-acetyl-D-neuraminic acid of GM3 by using N-phenylacetyl-D-mannosamine (ManNPhAc) as a biosynthetic precursor. Next, we selectively targeted the bioengineered cancer cells by vaccination with DCs pulsed with the GM3 N-phenylacetyl derivative. Vaccination with GM3NPhAc-KLH-loaded DCs elicited robust GM3NPhAc-specific T cell-dependent immunity. The results showed that this strategy could significantly inhibit FBL3 tumor growth and prolong the survival of tumor-bearing mice; B16F10 lung metastases could also be reduced. These findings lay out a new strategy for overcoming immune tolerance to TACAs, such as GM3, for the development of effective tumor immunotherapies.

  3. Induction of CML28-specific cytotoxic T cell responses using co-transfected dendritic cells with CML28 DNA vaccine and SOCS1 small interfering RNA expression vector

    SciTech Connect

    Zhou Hongsheng; Zhang Donghua . E-mail: hanson2008@gmail.com; Wang Yaya; Dai Ming; Zhang Lu; Liu Wenli; Liu Dan; Tan Huo; Huang Zhenqian

    2006-08-18

    CML28 is an attractive target for antigen-specific immunotherapy. SOCS1 represents an inhibitory control mechanism for DC antigen presentation and the magnitude of adaptive immunity. In this study, we evaluated the potential for inducing CML28-specific cytotoxic T lymphocytes (CTL) responses by dendritic cells (DCs)-based vaccination. We constructed a CML28 DNA vaccine and a SOCS1 siRNA vector and then cotransfect monocyte-derived DCs. Flow cytometry analysis showed gene silencing of SOCS1 resulted in higher expressions of costimulative moleculars in DCs. Mixed lymphocyte reaction (MLR) indicated downregulation of SOCS1 stronger capability to stimulate proliferation of responder cell in DCs. The CTL assay revealed transfected DCs effectively induced autologous CML28-specific CTL responses and the lytic activities induced by SOCS1-silenced DCs were significantly higher compared with those induced by SOCS1-expressing DCs. These results in our study indicates gene silencing of SOCS1 remarkably enhanced the cytotoxicity efficiency of CML28 DNA vaccine in DCs.

  4. A novel dendritic cell-based immunization approach for the induction of durable Th1-polarized anti-HER-2/neu responses in women with early breast cancer.

    PubMed

    Koski, Gary K; Koldovsky, Ursula; Xu, Shuwen; Mick, Rosemarie; Sharma, Anupama; Fitzpatrick, Elizabeth; Weinstein, Susan; Nisenbaum, Harvey; Levine, Bruce L; Fox, Kevin; Zhang, Paul; Czerniecki, Brian J

    2012-01-01

    Twenty-seven patients with HER-2/neu overexpressing ductal carcinoma in situ of the breast were enrolled in a neoadjuvant immunization trial for safety and immunogenicity of DC1-polarized dendritic cells (DC1) pulsed with 6 HER-2/neu promiscuous major histocompatibility complex class II-binding peptides and 2 additional human leukocyte antigen (HLA)-A2.1 class I-binding peptides. DC1 were generated with interferon-γ and a special clinical-grade bacterial endotoxin (lipopolysaccharide) and administered directly into groin lymph nodes 4 times at weekly intervals before scheduled surgical resection of ductal carcinoma in situ. Patients were monitored for the induction of new or enhanced antipeptide reactivity by interferon-γ ELISPOT and enzyme-linked immunosorbentassays performed on Th cells obtained from peripheral blood or excised sentinel lymph nodes. Responses by cytotoxic T lymphocyte against HLA-A2.1-binding peptides were measured using peptide-pulsed T2 target cells or HER-2/neu-expressing or nonexpressing tumor cell lines. DC1 showed surface phenotype indistinct from "gold standard" inflammatory cocktail-activated DC, but displayed a number of distinguishing functional characteristics including the secretion of soluble factors and enhanced "killer DC" capacity against tumor cells in vitro. Postimmunization, we observed sensitization of Th cells to at least 1 class II peptide in 22 of 25 (88%; 95% exact confidence interval, 68.8%-97.5%) evaluable patients, whereas 11 of 13 (84.6%; 95% exact confidence interval, 64%-99.8%) HLA-A2.1 patients were successfully sensitized to class I peptides. Perhaps most importantly, anti-HER-2/neu peptide responses were observed up to 52-month postimmunization. These data show that even in the presence of early breast cancer such DC1 are potent inducers of durable type I-polarized immunity, suggesting potential clinical value for development of cancer immunotherapy.

  5. Efficient nontoxic delivery of PD-L1 and PD-L2 siRNA into dendritic cell vaccines using the cationic lipid SAINT-18.

    PubMed

    Roeven, Mieke W H; Hobo, Willemijn; van der Voort, Robbert; Fredrix, Hanny; Norde, Wieger J; Teijgeler, Kasper; Ruiters, Marcel H J; Schaap, Nicolaas; Dolstra, Harry

    2015-05-01

    Dendritic cell (DC)-based vaccination is an appealing strategy to boost graft-versus-tumor immunity after allogeneic stem cell transplantation (allo-SCT), and thereby prevent or counteract tumor recurrence. By exploiting minor histocompatibility antigens (MiHA) presented on hematopoietic cells, donor CD8 T-cell immunity can be selectively targeted to patient's hematological tumor cells without the risk of inducing graft-versus-host disease. Previously, we demonstrated that silencing RNA (siRNA) of programmed death-ligand 1 (PD-L1) and PD-L2 on DCs markedly augments the expansion and function of MiHA-specific CD8 T cells. However, previously applied methods based on electroporation or lipid nanoparticles were either incompatible with target antigen mRNA delivery or required complex manufacturing compliant to Good Manufacturing Practice. Here, we investigated whether transfection using lipoplexes composed of PD-L1 and PD-L2 siRNAs plus SAINT-18:DOPE (ie, SAINT-RED) is an effective and feasible clinical-grade method in DC vaccine manufacturing. We observed that a single siRNA/SAINT-RED transfection resulted in efficient and long-term knockdown of the PD-1 ligands without affecting DC maturation or viability. Furthermore, we demonstrated that SAINT-RED can be heat sterilized without loss of function, facilitating its use in aseptic DC vaccine production. Finally, we showed that the established transfection method can be combined with target antigen mRNA or peptide loading to efficiently stimulate MiHA-specific T-cell expansion and cytokine production. Together, these findings indicate that the developed PD-L siRNA/SAINT-RED transfection protocol in combination with MiHA mRNA or peptide loading can be applied in the generation of clinical-grade DC vaccines to boost antitumor immunity after allo-SCT.

  6. Evaluation of Immune Responses Mediated by Listeria-Stimulated Human Dendritic Cells: Implications for Cancer Vaccine Therapy

    DTIC Science & Technology

    2015-09-01

    bacterium Lm is a potent stimulator of innate and adaptive immunity7, in large part through DC activation8-10. Vaccination with DCs activated by Lm...inducing allogeneic T cell proliferation, underscoring the immunologic potential of Lm as a vaccine adjuvant. Importantly, both attenuated strains...2174:3818) (2004). 3. Fujii, S.-i., Liu, K., Smith, C., Bonito, A.J. & Steinman, R.M. The Linkage of Innate to Adaptive Immunity via Maturing

  7. Vaccines

    MedlinePlus Videos and Cool Tools

    Vaccinations are injections of antigens into the body. Once the antigens enter the blood, they circulate along ... suppressor T cells stop the attack. After a vaccination, the body will have a memory of an ...

  8. Immune-related Adverse Events of Dendritic Cell Vaccination Correlate With Immunologic and Clinical Outcome in Stage III and IV Melanoma Patients

    PubMed Central

    Boudewijns, Steve; Westdorp, Harm; Koornstra, Rutger H.T.; Aarntzen, Erik H.J.G.; Schreibelt, Gerty; Creemers, Jeroen H.A.; Punt, Cornelis J.A.; Figdor, Carl G.; Gerritsen, Winald R.; Bol, Kalijn F.

    2016-01-01

    The purpose of this study was to determine the toxicity profile of dendritic cell (DC) vaccination in stage III and IV melanoma patients, and to evaluate whether there is a correlation between side effects and immunologic and clinical outcome. This is a retrospective analysis of 82 stage III and 137 stage IV melanoma patients, vaccinated with monocyte-derived or naturally circulating autologous DCs loaded with tumor-associated antigens gp100 and tyrosinase. Median follow-up time was 54.3 months in stage III patients and 12.9 months in stage IV patients. Treatment-related adverse events occurred in 84% of patients; grade 3 toxicity was present in 3% of patients. Most common adverse events were flu-like symptoms (67%) and injection site reactions (50%), and both correlated with the presence of tetramer-positive CD8+ T cells (both P<0.001). In stage III melanoma patients experiencing flu-like symptoms, median overall survival (OS) was not reached versus 32.3 months in patients without flu-like symptoms (P=0.009); median OS in patients with an injection site reaction was not reached versus 53.7 months in patients without an injection site reaction (P<0.05). In stage IV melanoma patients (primary uveal and mucosal melanomas excluded), median OS in patients with or without flu-like symptoms was 13.1 versus 8.9 months, respectively (P=0.03); median OS in patients with an injection site reaction was 15.7 months versus 9.8 months in patients without an injection site reaction (P=0.003). In conclusion, DC vaccination is safe and tolerable and the occurrence of the immune-related side effects, such as flu-like symptoms and injection site reactions, correlates with immunologic and clinical outcome. PMID:27227325

  9. Fusions of Breast Carcinoma and Dendritic Cells as a Vaccine for the Treatment of Metatastic Breast Cancer.

    DTIC Science & Technology

    2013-07-01

    elicited by peptide vaccination . J Immunol, 171:5931-5939, 2003. (9) Ercolini AM, Ladle BH, manning EA, Pfannenstiel LW, Armstrong TD, Machiels JP...composed of four HLA MHC class 1 molecules each bound to MUC1-specific epitopes M1.2 (MUC112–20) LLLLTVLTV (47). An A*0201 irrelevant peptide MHC...Immunol. 168: 1212–1218. 27. Stern, B. V., B. O. Boehm, and M. Tary-Lehmann. 2002. Vaccination with tumor peptide in CpG adjuvant protects via IFN

  10. Fusion of Breast Carcinoma and Dendritic Cells as a Vaccine for the Treatment of Metastatic Breast Cancer. Addendum

    DTIC Science & Technology

    2011-08-01

    tetanus toxoid (10 μg/mL) or media alone. After 5 days of coculture, expression of IFN-γ by CD4+ and CD8+ populations was determined by intracellular FACS...Vaccine potency and Phytohemagglutinin and tetanus -induced induced T-cell proliferation As a measure of potency of the generated vaccine as antigen...well U-bottomed plates for 4 days with 4 μg/ml PHA and tetanus toxoid (10 μg/mL (Figure 2, below). Proliferation was determined by measuring

  11. Understanding MHC class I presentation of viral antigens by human dendritic cells as a basis for rational design of therapeutic vaccines.

    PubMed

    van Montfoort, Nadine; van der Aa, Evelyn; Woltman, Andrea M

    2014-01-01

    Effective viral clearance requires the induction of virus-specific CD8(+) cytotoxic T lymphocytes (CTL). Since dendritic cells (DC) have a central role in initiating and shaping virus-specific CTL responses, it is important to understand how DC initiate virus-specific CTL responses. Some viruses can directly infect DC, which theoretically allow direct presentation of viral antigens to CTL, but many viruses target other cells than DC and thus the host depends on the cross-presentation of viral antigens by DC to activate virus-specific CTL. Research in mouse models has highly enhanced our understanding of the mechanisms underlying cross-presentation and the dendritic cells (DC) subsets involved, however, these results cannot be readily translated toward the role of human DC in MHC class I-antigen presentation of human viruses. Here, we summarize the insights gained in the past 20 years on MHC class I presentation of viral antigen by human DC and add to the current debate on the capacities of different human DC subsets herein. Furthermore, possible sources of viral antigens and essential DC characteristics for effective induction of virus-specific CTL are evaluated. We conclude that cross-presentation is not only an efficient mechanism exploited by DC to initiate immunity to viruses that do not infect DC but also to viruses that do infect DC, because cross-presentation has many conceptual advantages and bypasses direct immune modulatory effects of the virus on its infected target cells. Since knowledge on the mechanism of viral antigen presentation and the preferred DC subsets is crucial for rational vaccine design, the obtained insights are very instrumental for the development of effective anti-viral immunotherapy.

  12. A multi-trimeric fusion of CD40L and gp100 tumor antigen activates dendritic cells and enhances survival in a B16-F10 melanoma DNA vaccine model.

    PubMed

    Gupta, Sachin; Termini, James M; Rivas, Yaelis; Otero, Miguel; Raffa, Francesca N; Bhat, Vikas; Farooq, Amjad; Stone, Geoffrey W

    2015-09-11

    Vaccination with tumor-associated antigens can induce cancer-specific CD8+ T cells. A recent improvement has been the targeting of antigen to dendritic cells (DC) using antibodies that bind DC surface molecules. This study explored the use of multi-trimers of CD40L to target the gp100 melanoma tumor antigen to DC. The spontaneously-multimerizing gene Surfactant Protein D (SPD) was used to fuse gp100 tumor antigen and CD40L, creating the recombinant protein SPD-gp100-CD40L. This "third generation" DC-targeting vaccine was designed to both target antigen to DC and optimally activate dendritic cells by aggregating CD40 trimers on the DC membrane surface. SPD-gp100-CD40L expressed as a 110kDa protein. Analytical light scattering analysis gave elution data corresponding to 4-trimer and multi-trimer SPD-gp100-CD40L oligomers. The protein was biologically active on dendritic cells and induced CD40-mediated NF-κB signaling. DNA vaccination with SPD-gp100-CD40L plasmid, together with plasmids encoding IL-12p70 and GM-CSF, significantly enhanced survival and inhibited tumor growth in a B16-F10 melanoma model. Expression of gp100 and SPD-CD40L as separate molecules did not enhance survival, highlighting the requirement to encode gp100 within SPD-CD40L for optimal vaccine activity. These data support a model where DNA vaccination with SPD-gp100-CD40L targets gp100 to DC in situ, induces activation of these DC, and generates a protective anti-tumor response when given in combination with IL-12p70 and GM-CSF plasmids.

  13. Fusions of Breast Carcinoma and Dendritic Cells as a Vaccine for the Treatment of Metatastic Breast Cancer

    DTIC Science & Technology

    2010-07-31

    well as the stimulatory cytokines, IL-12 and IFNγ. In addition, fusion cells expressed CCR7 necessary for the migration of cells to sites of T cell...a marked expansion of anti-tumor effector cells. Body Our clinical protocol had received approval by the FDA, NCI/CTEP (distributor of IL...followed at the Dana-Farber Cancer Institute, and was receiving chemotherapy for metastatic disease. She was seen by our vaccine group on 3/23/10 to

  14. A pancreatic tumor-specific biomarker characterized in humans and mice as an immunogenic onco-glycoprotein is efficient in dendritic cell vaccination

    PubMed Central

    Collignon, Aurélie; Perles-Barbacaru, Adriana Teodora; Robert, Stéphane; Silvy, Françoise; Martinez, Emmanuelle; Crenon, Isabelle; Germain, Sébastien; Garcia, Stéphane; Viola, Angèle; Lombardo, Dominique

    2015-01-01

    Oncofetal fucose-rich glycovariants of the pathological bile salt-dependent lipase (pBSDL) appear during human pancreatic oncogenesis and are detected by themonoclonal antibody J28 (mAbJ28). We aimed to identify murine counterparts onpancreatic ductal adenocarcinoma (PDAC) cells and tissue and investigate the potential of dendritic cells (DC) loaded with this unique pancreatic tumor antigen to promote immunotherapy in preclinical trials. Pathological BSDLs purified from pancreatic juices of patients with PDAC were cleaved to generate glycosylated C-terminal moieties (C-ter) containing mAbJ28-reactive glycoepitopes. Immunoreactivity of the murine PDAC line Panc02 and tumor tissue to mAbJ28 was detected by immunohistochemistry and flow cytometry. C-ter-J28+ immunization promoted Th1-dominated immune responses. In vitro C-ter-J28+-loaded DCskewed CD3+ T-cells toward Th1 polarization. C-ter-J28+-DC-vaccinations selectively enhanced cell immunoreactivity to Panc02, as demonstrated by CD4+- and CD8+-T-cell activation, increased percentages of CD4+- and CD8+-T-cells and NK1.1+ cells expressing granzyme B, and T-cell cytotoxicity. Prophylactic and therapeutic C-ter-J28+-DC-vaccinations reduced ectopic Panc02-tumor growth, provided long-lasting protection from Panc02-tumor development in 100% of micebut not from melanoma, and attenuated progression of orthotopic tumors as revealed by MRI. Thusmurine DC loaded with pancreatic tumor-specific glycoepitope C-ter-J28+ induce efficient anticancer adaptive immunity and represent a potential adjuvant therapy for patients afflicted with PDAC. PMID:26405163

  15. In vivo dendritic cell targeting cellular vaccine induces CD4+ Tfh cell-dependent antibody against influenza virus

    PubMed Central

    Yamasaki, Satoru; Shimizu, Kanako; Kometani, Kohei; Sakurai, Maki; Kawamura, Masami; Fujii, Shin-ichiro

    2016-01-01

    An induction of long-term cellular and humoral immunity is for the goal of vaccines, but the combination of antigens and adjuvant remain unclear. Here, we show, using a cellular vaccine carrying foreign protein antigen plus iNKT cell glycolipid antigen, designated as artificial adjuvant vector cells (aAVCs), that mature XCR1− DCs in situ elicit not only ordinal antigen-specific CD4+T cells, but also CD4+ Tfh and germinal center, resulted in inducing long-term antibody production. As a mechanism for leading the long-term antibody production by aAVC, memory CD4+ Tfh cells but not iNKTfh cells played an important role in a Bcl6 dependent manner. To develop it for influenza infection, we established influenza hemagglutinin-carrying aAVC (aAVC-HA) and found that all the mice vaccinated with aAVC-HA were protected from life-threatening influenza infection. Thus, the in vivo DC targeting therapy by aAVC would be useful for protection against viral infection. PMID:27739478

  16. Inhibition of the Protein Tyrosine Phosphatase, SHP-1, in Dendritic Cells to Enhance their Efficacy as Cell-Based Prostate Cancer Vaccines

    DTIC Science & Technology

    2009-05-01

    inhibitor of DC activation and that by blocking SHP-1in DC would induce stronger anti-tumor immunity. Our results demonstrate that inhibition of SHP...observations suggest that SHP-1 is a pleiotropic inhibitor ofDC function and that its inhibition in DCs enhances the strength of immune responses...approach is to inhibit inhibitors of DC function that normally serve to regulate the initiation of immune responses. We hypothesized that the Src

  17. The Identification and Distribution of Cattle XCR1 and XCL1 among Peripheral Blood Cells: New Insights into the Design of Dendritic Cells Targeted Veterinary Vaccine

    PubMed Central

    Li, Kun; Wei, Guoyan; Cao, Yimei; Li, Dong; Li, Pinghua; Zhang, Jing; Bao, Huifang; Chen, Yingli; Fu, Yuanfang; Sun, Pu; Bai, Xingwen; Ma, Xueqing; Lu, Zengjun; Liu, Zaixin

    2017-01-01

    The chemokine (C motif) receptor 1 (XCR1) and its ligandXCL1 have been intensively studied in the mouse and human immune systems. Here, we determined the molecular characteristics of cattle XCR1 and XCL1 and their distribution among peripheral blood cells. Cattle XCR1 mRNA expression was mainly restricted to CD26+CADM1+CD205+MHCII+CD11b- cells in blood that were otherwise lineage marker negative (lin-); these represented a subset of classic dendritic cells (DCs), not plasmacytoid DCs. Some of these DCs expressed CD11a, CD44, CD80 and CD86, but they did not express CD4, CD8, CD163 or CD172a. Cattle XCL1 was expressed in quiescent NK cells and in activated CD8+ T cells. Cattle XCR1+ DCs migrated chemotactically in response to mouse, but not to human, XCL1. The distribution characters of cattle XCR1 and XCL1 suggested a vital role in regulation of acquired immune responses and indicated a potential for a DC targeted veterinary vaccine in cattle using XCL1 fused antigens. PMID:28129380

  18. Immunologically augmented skin flap as a novel dendritic cell vaccine against head and neck cancer in a rat model.

    PubMed

    Inoue, Keita; Saegusa, Noriko; Omiya, Maho; Ashizawa, Tadashi; Miyata, Haruo; Komiyama, Masaru; Iizuka, Akira; Kume, Akiko; Sugino, Takashi; Yamaguchi, Ken; Kiyohara, Yoshio; Nakagawa, Masahiro; Akiyama, Yasuto

    2015-02-01

    Local recurrence is a major clinical issue following surgical resection in head and neck cancer, and the dissemination and lymph node metastasis of minimal residual disease is relatively difficult to treat due to the lack of suitable therapeutic approaches. In the present study, we developed and evaluated a novel immunotherapy using a skin flap transfer treated with sensitized dendritic cells (DC), termed the "immuno-flap," in a rat tumor model. After the local round area of skin was resected, SCC-158 cells (a rat head and neck cancer cell line) were inoculated into the muscle surface; lastly, the groin skin flap injected with mature DC was overlaid. Two weeks after the second DC injection, systemic immunological reactions and tumor size were measured. The DC-treated group showed a significant reduction in tumor size compared with the control. Although the induction of CTL activity in spleen cells was marginal, Th1 cytokines such as interleukin-2 and interferon-γ were elevated in the DC-treated group. These results suggest that a novel immunotherapy based on the immuno-flap method has the potential for clinical application to prevent the local recurrence of head and neck cancer patients.

  19. Magnetic Enrichment of Dendritic Cell Vaccine in Lymph Node with Fluorescent-Magnetic Nanoparticles Enhanced Cancer Immunotherapy

    PubMed Central

    Jin, Honglin; Qian, Yuan; Dai, Yanfeng; Qiao, Sha; Huang, Chuan; Lu, Lisen; Luo, Qingming; Chen, Jing; Zhang, Zhihong

    2016-01-01

    Dendritic cell (DC) migration to the lymph node is a key component of DC-based immunotherapy. However, the DC homing rate to the lymphoid tissues is poor, thus hindering the DC-mediated activation of antigen-specific T cells. Here, we developed a system using fluorescent magnetic nanoparticles (α-AP-fmNPs; loaded with antigen peptide, iron oxide nanoparticles, and indocyanine green) in combination with magnetic pull force (MPF) to successfully manipulate DC migration in vitro and in vivo. α-AP-fmNPs endowed DCs with MPF-responsiveness, antigen presentation, and simultaneous optical and magnetic resonance imaging detectability. We showed for the first time that α-AP-fmNP-loaded DCs were sensitive to MPF, and their migration efficiency could be dramatically improved both in vitro and in vivo through MPF treatment. Due to the enhanced migration of DCs, MPF treatment significantly augmented antitumor efficacy of the nanoparticle-loaded DCs. Therefore, we have developed a biocompatible approach with which to improve the homing efficiency of DCs and subsequent anti-tumor efficacy, and track their migration by multi-modality imaging, with great potential applications for DC-based cancer immunotherapy. PMID:27698936

  20. Translational Mini-Review Series on Vaccines: Monitoring of human papillomavirus vaccination

    PubMed Central

    Dillner, J; Arbyn, M; Dillner, L

    2007-01-01

    ARTICLES PUBLISHED IN THIS MINI-REVIEW SERIES ON VACCINES Peptide vaccines for myeloid leukaemias. Clin Exp Immunol 2007; 148: doi:10.1111/j.1365-2249.2007.03383.x The Edward Jenner Museum and the history of vaccination. Clin Exp Immunol 2007; 147: doi:10.1111/j.1365-2249.2007.03304.x Dendritic cell-based vaccines in renal cancer. Clin Exp Immunol 2007; 147: doi:10.1111/j.1365-2249.2007.03305.xDevelopment and evaluation of improved vaccines against tuberculosis. Clin Exp Immunol 2007; 147: doi:10.1111/j.1365-2249.2007.03306.x Persistent infection with oncogenic human papillomavirus (HPV) is a necessary cause of cervical cancer. Moreover, HPV type 16 (and to a lesser degree HPV type 18) is linked with more rare cancers, namely cancer of the vulva, vagina, penis, anus, oropharynx and larynx. Effective prophylactic vaccines have been developed. In this review, we briefly address immunological aspects of HPV infection and the results of HPV vaccination trials. Internationally standardized monitoring and evaluation of prophylactic HPV vaccination programmes will be essential for arriving at the most (cost-)effective strategies for cancer control. PMID:17437418

  1. Vaccination with dendritic cells pulsed with peptides of myelin basic protein promotes functional recovery from spinal cord injury.

    PubMed

    Hauben, Ehud; Gothilf, Amalia; Cohen, Avi; Butovsky, Oleg; Nevo, Uri; Smirnov, Igor; Yoles, Eti; Akselrod, Solange; Schwartz, Michal

    2003-09-24

    Injury-induced self-destructive processes cause significant functional loss after incomplete spinal cord injury (SCI). Cellular elements of both the innate (macrophage) and the adaptive (T-cell) immune response can, if properly activated and controlled, promote post-traumatic regrowth and protection after SCI. Dendritic cells (DCs) trigger activation of effector and regulatory T-cells, providing a link between the functions of the innate and the adaptive immune systems. They also initiate and control the body's response to pathogenic agents and regulate immune responses to both foreign and self-antigens. Here we show that post-injury injection of bone marrow-derived DCs pulsed with encephalitogenic or nonencephalitogenic peptides derived from myelin basic protein, when administered (either systemically or locally by injection into the lesion site) up to 12 d after the injury, led to significant and pronounced recovery from severe incomplete SCI. No significant protection was seen in DC recipients deprived of mature T-cells. Flow cytometry, RT-PCR, and proliferation assays indicated that the DCs prepared and used here were mature and immunogenic. Taken together, the results suggest that the DC-mediated neuroprotection was achieved via the induction of a systemic T-cell-dependent immune response. Better preservation of neural tissue and diminished formation of cysts and scar tissue accompanied the improved functional recovery in DC-treated rats. The use of antigen-specific DCs may represent an effective way to obtain, via transient induction of an autoimmune response, the maximal benefit of immune-mediated repair and maintenance as well as protection against self-destructive compounds.

  2. Dendritic cell vaccine and cytokine-induced killer cell therapy for the treatment of advanced non-small cell lung cancer

    PubMed Central

    ZHANG, LIHONG; YANG, XUEJING; SUN, ZHEN; LI, JIALI; ZHU, HUI; LI, JING; PANG, YAN

    2016-01-01

    The present study aimed to evaluate the survival time, immune response and safety of a dendritic cell (DC) vaccine and cytokine-induced killer (CIK) cell therapy (DC-CIK) in advanced non-small cell lung cancer (NSCLC). The present retrospective study enrolled 507 patients with advanced NSCLC; 99 patients received DC-CIK [immunotherapy group (group I)] and 408 matched patients did not receive DC-CIK, and acted as the control [non-immunotherapy group (group NI)]. Delayed-type hypersensitivity (DTH), quality of life (QOL) and safety were analyzed in group I. The follow-up period for the two groups was 489.2±160.4 days. The overall survival (OS) time was calculated using the Kaplan-Meier method. DTH was observed in 59 out of 97 evaluated patients (60.8%) and 67 out of 98 evaluated patients (68.4%) possessed an improved QOL. Fever and a skin rash occurred in 36 out of 98 patients (36.7%) and 7 out of 98 patients (7.1%) in group I. DTH occurred more frequently in patients with squamous cell carcinoma compared with patients with adenocarcinoma (77.1 vs. 40.4%; P=0.0013). Radiotherapy was not associated with DC-CIK-induced DTH (72.7 vs. 79.6%; P=0.18), but chemotherapy significantly reduced the rate of DTH (18.2 vs. 79.6%; P=0.00). The OS time was significantly increased in group I compared with group NI (P=0.03). In conclusion, DC-CIK may induce an immune response against NSCLC, improve the QOL, and prolong the OS time of patients, without adverse effects. Therefore, the present study recommends DC-CIK for the treatment of patients with advanced NSCLC. PMID:27073525

  3. Aging affect the anti-tumor potential of dendritic cell vaccination, but it can be overcome by co-stimulation with anti-OX40 or anti-4-1BB.

    PubMed

    Sharma, Sanjay; Dominguez, Ana Lucia; Lustgarten, Joseph

    2006-01-01

    It has been well established that there is a decline in immune function with age resulting in a diminished capacity to respond to infections or tumors. Although many studies have demonstrated the efficacy of autologous dendritic cells (DC) vaccines in stimulating an anti-tumor immune response in the young, almost none of these reports consider the effect that aging has on the immune system or test whether DC-vaccination is effective in old hosts. In this study we compared the efficacy of DC-vaccination in young and old mice. Our results showed that DC-vaccination in young animals induced an anti-tumor response resulting in approximately 60% tumor growth inhibition, while minimal protection was observed in old animals. DC vaccination plus rIL-2 further enhanced the anti-tumor response in young animals (approximately 70-75% inhibition), while ineffective in old animals. In contrast, co-administration of anti-OX-40 or anti-4-1BB mAbs vigorously enhanced the anti-tumor immune response in both young (approximately 85-90% inhibition) and old mice (approximately 70-75% inhibition). Our data indicate that although old mice have a decline in immune function, they have the capacity to develop strong anti-tumor responses as long as they are provided with efficient co-stimulation.

  4. Influence of Immunotherapy with Autologous Dendritic Cells on Innate and Adaptive Immune Response in Cancer

    PubMed Central

    Matias, Bruna F.; de Oliveira, Tânia M.; Rodrigues, Cláudia M.; Abdalla, Douglas R.; Montes, Letícia; Murta, Eddie F.C.; Michelin, Márcia A.

    2013-01-01

    The objective of this study was to evaluate some of the mechanisms involved in the activation of the immune system in patients with advanced-stage cancer (n = 7) who received an autologous dendritic cell vaccine. We examined the immune response mediated by macrophages (CD14+), natural killer cells (CD56+), and B lymphocytes (CD19+) by flow cytometry and assessed the expression of Th1 (IFN-γ, TNF-α, IL-2, and IL-12), Th2 (IL-4), and Treg (TGF-β) cytokines by flow cytometry and an enzyme-linked immunosorbent assay. The CD14+ TNF-α+ population was significantly increased (P < 0.04) when patients received the vaccine; IL-2 expression in both NK cells and in B lymphocytes was increased after a transient initial increase showed a nearly significant decrease (P < 0.07 and P < 0.06 respectively), whereas the CD19+ and CD56+ populations did not show significant changes. Dendritic cell-based immunotherapy led to increased secretion of IFN-γ and IL-12 and reduced secretion of TGF-β. In conclusion, it is likely that the autologous dendritic cell vaccine stimulated the immune cells from the peripheral blood of patients with cancer and generally increased the production of Th1 cytokines, which are related to immunomodulatory responses against cancer. PMID:23926442

  5. Enhancement of antigen acquisition by dendritic cells and MHC class II-restricted epitope presentation to CD4+ T cells using VP22 DNA vaccine vectors that promote intercellular spreading following initial transfection.

    PubMed

    Mwangi, Waithaka; Brown, Wendy C; Splitter, Gary A; Zhuang, Yan; Kegerreis, Kimberly; Palmer, Guy H

    2005-08-01

    Induction of immune responses against microbial antigens using DNA is an attractive strategy to mimic the immunity induced by live vaccines. Although DNA vaccines are efficacious in murine models, the requirement for multiple immunizations using high doses in outbred animals and humans has hindered deployment. This requirement is, in part, a result of poor vaccine spreading and suboptimal DC transfection efficiency. Incorporation of a signal that directs intercellular spreading of a DNA-encoded antigen is proposed to mimic live vaccine spreading and increase dendritic cell (DC) presentation. Bovine herpes virus 1 tegument protein, BVP22, is capable of trafficking to surrounding cells. To test the hypothesis that BVP22 enhances spreading and antigen presentation to CD4+ T cells, a DNA construct containing BVP22, fused in-frame to a sequence encoding a T cell epitope of Anaplasma marginale, was generated. A construct with reversed BVP22 sequence served as a negative control. Immunocytometric analysis of transfected primary keratinocytes, human embryonic kidney 293, COS-7, and Chinese hamster ovary cells showed that BVP22 enhanced intercellular spreading by > or = 150-fold. Flow cytometric analysis of antigen-presenting cells (APCs) positively selected from cocultures of transfected cells and APCs showed that 5% of test APCs were antigen-positive, compared with 0.6% of control APCs. Antigen-specific CD4+ T cell proliferation demonstrated that BVP22 enhanced DC antigen presentation by > or = 20-fold. This first report of the ability of BVP22 to increase DNA-encoded antigen acquisition by DCs and macrophages, with subsequent enhancement of major histocompatibility complex class II-restricted CD4+ T cell responses, supports incorporating a spreading motif in a DNA vaccine to target CD4+ T cell-dependent immunity in outbred animals.

  6. Priming with two DNA vaccines expressing hepatitis C virus NS3 protein targeting dendritic cells elicits superior heterologous protective potential in mice.

    PubMed

    Guan, Jie; Deng, Yao; Chen, Hong; Yin, Xiao; Yang, Yang; Tan, Wenjie

    2015-10-01

    Development an effective vaccine may offer an alternative preventive and therapeutic strategy against HCV infection. DNA vaccination has been shown to induce robust humoral and cellular immunity and overcome many problems associated with conventional vaccines. In this study, mice were primed with either conventional pVRC-based or suicidal pSC-based DNA vaccines carrying DEC-205-targeted NS3 antigen (DEC-NS3) and boosted with type 5 adenoviral vectors encoding the partial NS3 and core antigens (C44P). The prime boost regimen induced a marked increase in antigen-specific humoral and T-cell responses in comparison with either rAd5-based vaccines or DEC-205-targeted DNA immunization in isolation. The protective effect against heterogeneous challenge was correlated with high levels of anti-NS3 IgG and T-cell-mediated immunity against NS3 peptides. Moreover, priming with a suicidal DNA vaccine (pSC-DEC-NS3), which elicited increased TNF-α-producing CD4+ and CD8+ T-cells against NS3-2 peptides (aa 1245-1461), after boosting, showed increased heterogeneous protective potential compared with priming with a conventional DNA vaccine (pVRC-DEC-NS3). In conclusion, a suicidal DNA vector (pSC-DEC-NS3) expressing DEC-205-targeted NS3 combined with boosting using an rAd5-based HCV vaccine (rAd5-C44P) is a good candidate for a safe and effective vaccine against HCV infection.

  7. Dendrite inhibitor

    DOEpatents

    Miller, William E.

    1989-01-01

    An apparatus for removing dendrites or other crystalline matter from the surface of a liquid in a matter transport process, and an electrolytic cell including such an apparatus. A notch may be provided to allow continuous exposure of the liquid surface, and a bore may be further provided to permit access to the liquid.

  8. Dendrite inhibitor

    DOEpatents

    Miller, W.E.

    1988-06-07

    An apparatus for removing dendrites or other crystalline matter from the surface of a liquid in a matter transport process, and an electrolytic cell including such an apparatus. A notch may be provided to allow continuous exposure of the liquid surface, and a bore may be further provided to permit access to the liquid. 2 figs.

  9. Ex vivo production of autologous whole inactivated HIV-1 for clinical use in therapeutic vaccines.

    PubMed

    Gil, Cristina; Climent, Núria; García, Felipe; Hurtado, Carmen; Nieto-Márquez, Sara; León, Agathe; García, M Teresa; Rovira, Cristina; Miralles, Laia; Dalmau, Judith; Pumarola, Tomás; Almela, Manel; Martinez-Picado, Javier; Lifson, Jeffrey D; Zamora, Laura; Miró, José M; Brander, Christian; Clotet, Bonaventura; Gallart, Teresa; Gatell, José M

    2011-08-05

    This study provides a detailed description and characterization of the preparation of individualized lots of autologous heat inactivated HIV-1 virions used as immunogen in a clinical trial designed to test an autologous dendritic-cell-based therapeutic HIV-1 vaccine (Clinical Trial DCV-2, NCT00402142). For each participant, ex vivo isolation and expansion of primary virus were performed by co-culturing CD4-enriched PBMCs from the HIV-1-infected patient with PBMC from HIV-seronegative unrelated healthy volunteer donors. The viral supernatants were heat-inactivated and concentrated to obtain 1 mL of autologous immunogen, which was used to load autologous dendritic cells of each patient. High sequence homology was found between the inactivated virus immunogen and the HIV-1 circulating in plasma at the time of HIV-1 isolation. Immunogens contained up to 10⁹ HIV-1 RNA copies/mL showed considerably reduced infectivity after heat inactivation (median of 5.6 log₁₀), and were free of specified adventitious agents. The production of individualized lots of immunogen based on autologous inactivated HIV-1 virus fulfilling clinical-grade good manufacturing practice proved to be feasible, consistent with predetermined specifications, and safe for use in a clinical trial designed to test autologous dendritic cell-based therapeutic HIV-1 vaccine.

  10. IL-6 and IL-10 induction from dendritic cells in response to Mycobacterium tuberculosis is predominantly dependent on TLR2-mediated recognition.

    PubMed

    Jang, Sihyug; Uematsu, Satoshi; Akira, Shizuo; Salgame, Padmini

    2004-09-01

    The initial TLR-mediated interaction between Mycobacterium tuberculosis and dendritic cells is critical, since the cytokine production that ensues can greatly influence the class of adaptive immunity that is generated to the pathogen. In this study, we therefore determined the dependency on TLR2 and TLR4 for M. tuberculosis-induced cytokine production by murine dendritic cells. A key new finding of this study is that production of IL-6 and IL-10 from dendritic cells in response to M. tuberculosis is principally dependent on TLR2. The study also indicates that M. tuberculosis can induce IL-12 production in the absence of either TLR2 or TLR4, suggesting redundancy or possibly involvement of other receptors in IL-12 production. In addition, the data also reveal that lack of TLR2 or TLR4 does not impact on dendritic cell maturation or on their ability to influence the polarity of differentiating naive T cells. Collectively, data presented here provide a mechanistic insight for the contribution of TLR2 and TLR4 to tuberculosis disease progression and offer strategies for regulating IL-6 and IL-10 production in dendritic cell-based vaccine strategies.

  11. A phase I clinical study of vaccination of melanoma patients with dendritic cells loaded with allogeneic apoptotic/necrotic melanoma cells. Analysis of toxicity and immune response to the vaccine and of IL-10 -1082 promoter genotype as predictor of disease progression

    PubMed Central

    von Euw, Erika M; Barrio, María M; Furman, David; Levy, Estrella M; Bianchini, Michele; Peguillet, Isabelle; Lantz, Olivier; Vellice, Alejandra; Kohan, Abraham; Chacón, Matías; Yee, Cassian; Wainstok, Rosa; Mordoh, José

    2008-01-01

    Background Sixteen melanoma patients (1 stage IIC, 8 stage III, and 7 stage IV) were treated in a Phase I study with a vaccine (DC/Apo-Nec) composed of autologous dendritic cells (DCs) loaded with a mixture of apoptotic/necrotic allogeneic melanoma cell lines (Apo-Nec), to evaluate toxicity and immune responses. Also, IL-10 1082 genotype was analyzed in an effort to predict disease progression. Methods PBMC were obtained after leukapheresis and DCs were generated from monocytes cultured in the presence of GM-CSF and IL-4 in serum-free medium. Immature DCs were loaded with gamma-irradiated Apo-Nec cells and injected id without adjuvant. Cohorts of four patients were given four vaccines each with 5, 10, 15, or 20 × 106 DC/Apo-Nec cell per vaccine, two weeks apart. Immune responses were measured by ELISpot and tetramer analysis. Il-10 genotype was measured by PCR and corroborated by IL-10 production by stimulated PBMC. Results Immature DCs efficiently phagocytosed melanoma Apo-Nec cells and matured after phagocytosis as evidenced by increased expression of CD83, CD80, CD86, HLA class I and II, and 75.2 ± 16% reduction in Dextran-FITC endocytosis. CCR7 was also up-regulated upon Apo-Nec uptake in DCs from all patients, and accordingly DC/Apo-Nec cells were able to migrate in vitro toward MIP-3 beta. The vaccine was well tolerated in all patients. The DTH score increased significantly in all patients after the first vaccination (Mann-Whitney Test, p < 0.05). The presence of CD8+T lymphocytes specific to gp100 and Melan A/MART-1 Ags was determined by ELISpot and tetramer analysis in five HLA-A*0201 patients before and after vaccination; one patient had stable elevated levels before and after vaccination; two increased their CD8 + levels, one had stable moderate and one had negligible levels. The analysis of IL-10 promoter -1082 polymorphism in the sixteen patients showed a positive correlation between AA genotype, accompanied by lower in vitro IL-10 production by

  12. [Regulatory requirements regarding cell-based medicinal products for human and veterinary use - a comparison].

    PubMed

    Kuhlmann-Gottke, Johanna; Duchow, Karin

    2015-11-01

    At present, there is no separate regulatory framework for cell-based medicinal products (CBMP) for veterinary use at the European or German level. Current European and national regulations exclusively apply to the corresponding medicinal products for human use. An increasing number of requests for the regulatory classification of CBMP for veterinary use, such as allogeneic stem cell preparations and dendritic cell-based autologous tumour vaccines, and a rise in scientific advice for companies developing these products, illustrate the need for adequate legislation. Currently, advice is given and decisions are made on a case-by-case basis regarding the regulatory classification and authorisation requirements.Since some of the CBMP - in particular in the area of stem-cell products - are developed in parallel for human and veterinary use, there is an urgent need to create specific legal definitions, regulations, and guidelines for these complex innovative products in the veterinary sector as well. Otherwise, there is a risk that that the current legal grey area regarding veterinary medicinal products will impede therapeutic innovations in the long run. A harmonised EU-wide approach is desirable. Currently the European legislation on veterinary medicinal products is under revision. In this context, veterinary therapeutics based on allogeneic cells and tissues will be defined and regulated. Certainly, the legal framework does not have to be as comprehensive as for human CBMP; a leaner solution is conceivable, similar to the special provisions for advanced-therapy medicinal products laid down in the German Medicines Act.

  13. Cell-based Immunotherapy for Colorectal Cancer with Cytokine-induced Killer Cells

    PubMed Central

    Kim, Ji Sung; Kim, Yong Guk; Park, Eun Jae; Kim, Boyeong; Lee, Hong Kyung; Hong, Jin Tae; Kim, Youngsoo

    2016-01-01

    Colorectal cancer is the third leading cancer worldwide. Although incidence and mortality of colorectal cancer are gradually decreasing in the US, patients with metastatic colorectal cancer have poor prognosis with an estimated 5-year survival rate of less than 10%. Over the past decade, advances in combination chemotherapy regimens for colorectal cancer have led to significant improvement in progression-free and overall survival. However, patients with metastatic disease gain little clinical benefit from conventional therapy, which is associated with grade 3~4 toxicity with negative effects on quality of life. In previous clinical studies, cell-based immunotherapy using dendritic cell vaccines and sentinel lymph node T cell therapy showed promising therapeutic results for metastatic colorectal cancer. In our preclinical and previous clinical studies, cytokine-induced killer (CIK) cells treatment for colorectal cancer showed favorable responses without toxicities. Here, we review current treatment options for colorectal cancer and summarize available clinical studies utilizing cell-based immunotherapy. Based on these studies, we recommend the use CIK cell therapy as a promising therapeutic strategy for patients with metastatic colorectal cancer. PMID:27162526

  14. Dendritic Cell-Based Genetic Immunotherapy for Ovarian Cancer

    DTIC Science & Technology

    2007-12-01

    a gamma-counter. Maximum and spontaneous release of 51 Cr was obtained from the supernatants of the target cells in 1% Nonidet P-40 and in...16: 1045-9. 7. Piazzolla, G., C. Tortorella, G. Fiore, M. Fanelli, A. Pisconti, and S. Antonaci, Interleukin-12 p40 /p70 ratio and in vivo

  15. Dendritic Cell-Based Genetic Immunotherapy for Ovarian Cancer

    DTIC Science & Technology

    2008-12-01

    post-infection. The concentrations of IL-1A, IL-1B, IL-2, IL-3, IL-4, IL-6, IL-12 ( p40 ), IL-12 (p70), IL-13, IL-17, TNF-α, KC and MCP-1 were analyzed...chemokines whose secretion was up regulated was mixed, and included the Th-1 type cytokines, IL-1α, IL-1β, IL-3, IL-12 ( p40 ), IL-12 (p70), IL-17 and TNF-α...were maximally secreted at 48 h post-infection, and IL-6, IL-12 ( p40 ), IL-12 (p70) and KC were maximally secreted by the DCs at 72 h post-infection

  16. Dendritic-tumor fusion cells in cancer immunotherapy.

    PubMed

    Takakura, Kazuki; Kajihara, Mikio; Ito, Zensho; Ohkusa, Toshifumi; Gong, Jianlin; Koido, Shigeo

    2015-03-01

    A promising area of clinical investigation is the use of cancer immunotherapy to treat cancer patients. Dendritic cells (DCs) operate as professional antigen-presenting cells (APCs) and play a critical role in the induction of antitumor immune responses. Thus, DC-based cancer immunotherapy represents a powerful strategy. One DC-based cancer immunotherapy strategy that has been investigated is the administration of fusion cells generated with DCs and whole tumor cells (DC-tumor fusion cells). The DC-tumor fusion cells can process a broad array of tumor-associated antigens (TAAs), including unidentified molecules, and present them through major histocompatibility complex (MHC) class I and II pathways in the context of co-stimulatory signals. Improving the therapeutic efficacy of DC-tumor fusion cell-based cancer immunotherapy requires increased immunogenicity of DCs and whole tumor cells. We discuss the potential ability of DC-tumor fusion cells to activate antigen-specific T cells and strategies to improve the immunogenicity of DC-tumor fusion cells as anticancer vaccines.

  17. Dendritic cell therapy for oncology roundtable conference

    PubMed Central

    2011-01-01

    2-3 September 2010, Brussels, Belgium The Dendritic Cell Therapy for Oncology Roundtable Conference was organized by Reliable Cancer Therapies and moderated by Prof. Dr. Steven De Vleeschouwer. The organizer, Reliable Cancer Therapies, is a Swiss non-profit organization that provides information on evidence-based cancer treatments and funding for the development of a selection of promising cancer therapies. In order to be able to give valuable information about dendritic cell (DC) therapy to patients and physicians, the organizing committee felt it necessary to organize this conference to get an up-to-date status of the academic DC therapy field, collect ideas to guide patients towards clinical trials and to induce cross-fertilization for protocol optimization. In total, 31 experts participated to an in-depth discussion about the status and the future development path for dendritic cell vaccines. The conference started with general presentations about cancer immunotherapy, followed by comprehensive overview presentations about the progress in DC vaccine development achieved by each speaker. At the end of the meeting, a thorough general discussion focused on key questions about what is needed to improve DC vaccines. This report does not cover all presentations, but aims to highlight selected points of interest, particularly relating to possible limitations and potential approaches to improvement of DC therapies specifically, and also immunotherapeutic interventions in general terms. PMID:21226916

  18. Isothermal Dendritic Growth Experiment - PVA Dendrites

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Isothermal Dendritic Growth Experiment (IDGE), flown on three Space Shuttle missions, is yielding new insights into virtually all industrially relevant metal and alloy forming operations. IDGE used transparent organic liquids that form dendrites (treelike structures) similar to those inside metal alloys. Comparing Earth-based and space-based dendrite growth velocity, tip size and shape provides a better understanding of the fundamentals of dentritic growth, including gravity's effects. Shalowgraphic images of pivalic acid (PVA) dendrites forming from the melt show the subtle but distinct effects of gravity-driven heat convection on dentritic growth. In orbit, the dendrite grows as its latent heat is liberated by heat conduction. This yields a blunt dendrite tip. On Earth, heat is carried away by both conduction and gravity-driven convection. This yields a sharper dendrite tip. In addition, under terrestrial conditions, the sidebranches growing in the direction of gravity are augmented as gravity helps carry heat out of the way of the growing sidebranches as opposed to microgravity conditions where no augmentation takes place. IDGE was developed by Rensselaer Polytechnic Institute and NASA/Glenn Research Center. Advanced follow-on experiments are being developed for flight on the International Space Station. Photo Credit: NASA/Glenn Research Center

  19. HPV vaccine

    MedlinePlus

    Vaccine - HPV; Immunization - HPV; Gardasil; HPV2; HPV4; Vaccine to prevent cervical cancer; Genital warts - HPV vaccine; Cervical dysplasia - HPV vaccine; Cervical cancer - HPV vaccine; Cancer of the cervix - HPV vaccine; Abnormal ...

  20. Cancer Vaccines: A Brief Overview.

    PubMed

    Thomas, Sunil; Prendergast, George C

    2016-01-01

    Vaccine approaches for cancer differ from traditional vaccine approaches for infectious disease in tending to focus on clearing active disease rather than preventing disease. In this review, we provide a brief overview of different types of vaccines and adjuvants that have been investigated for the purpose of controlling cancer burdens in patients, some of which are approved for clinical use or in late-stage clinical trials, such as the personalized dendritic cell vaccine sipuleucel-T (Provenge) and the recombinant viral prostate cancer vaccine PSA-TRICOM (Prostvac-VF). Vaccines against human viruses implicated in the development and progression of certain cancers, such as human papillomavirus in cervical cancer, are not considered here. Cancers express "altered self" antigens that tend to induce weaker responses than the "foreign" antigens expressed by infectious agents. Thus, immune stimulants and adjuvant approaches have been explored widely. Vaccine types considered include autologous patient-derived immune cell vaccines, tumor antigen-expressing recombinant virus vaccines, peptide vaccines, DNA vaccines, and heterologous whole-cell vaccines derived from established human tumor cell lines. Opportunities to develop effective cancer vaccines may benefit from seminal recent advances in understanding how immunosuppressive barricades are erected by tumors to mediate immune escape. In particular, targeted ablation of these barricades with novel agents, such as the immune checkpoint drug ipilimumab (anti-CTLA-4) approved recently for clinical use, may offer significant leverage to vaccinologists seeking to control and prevent malignancy.

  1. Free dendritic growth

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.

    1984-01-01

    Free dendritic growth refers to the unconstrained development of crystals within a supercooled melt, which is the classical 'dendrite problem'. Great strides have been taken in recent years in both the theoretical understanding of dendritic growth and its experimental status. The development of this field will be sketched, showing that transport theory and interfacial thermodynamics (capillarity theory) were sufficient ingredients to develop a truly predictive model of dendrite formation. The convenient, but incorrect, notion of 'maximum velocity' was used for many years to estimate the behavior of dendritic transformations until supplanted by modern dynamic stability theory. The proper combinations of transport theory and morphological stability seem to able to predict the salient aspects of dendritic growth, especially in the neighborhood of the tip. The overall development of cast microstructures, such as equiaxed zone formation, rapidly solidified microstructures, etc., also seems to contain additional non-deterministic features which lie outside the current theories discussed here.

  2. Dendritic polyurea polymers.

    PubMed

    Tuerp, David; Bruchmann, Bernd

    2015-01-01

    Dendritic polymers, subsuming dendrimers as well as hyperbranched or highly branched polymers are well established in the field of polymer chemistry. This review article focuses on urea based dendritic polymers and summarizes their synthetic routes through both isocyanate and isocyanate-free processes. Furthermore, this article highlights applications where dendritic polyureas show their specific chemical and physical potential. For these purposes scientific publications as well as patent literature are investigated to generate a comprehensive overview on this topic.

  3. Targeting dendritic cells--why bother?

    PubMed

    Kreutz, Martin; Tacken, Paul J; Figdor, Carl G

    2013-04-11

    Vaccination is among the most efficient forms of immunotherapy. Although sometimes inducing lifelong protective B-cell responses, T-cell-mediated immunity remains challenging. Targeting antigen to dendritic cells (DCs) is an extensively explored concept aimed at improving cellular immunity. The identification of various DC subsets with distinct functional characteristics now allows for the fine-tuning of targeting strategies. Although some of these DC subsets are regarded as superior for (cross-) priming of naive T cells, controversies still remain about which subset represents the best target for immunotherapy. Because targeting the antigen alone may not be sufficient to obtain effective T-cell responses, delivery systems have been developed to target multiple vaccine components to DCs. In this Perspective, we discuss the pros and cons of targeting DCs: if targeting is beneficial at all and which vaccine vehicles and immunization routes represent promising strategies to reach and activate DCs.

  4. Natural killer T cell based Immunotherapy

    PubMed Central

    Subrahmanyam, Priyanka B.; Sun, Wenji; East, James E.; Li, Junxin; Webb, Tonya J.

    2013-01-01

    Natural killer T (NKT) cells play an important immunoregulatory role and are thought to bridge the innate and adaptive immune responses. Following activation through cognate interactions with lipid antigen presented in the context of CD1d molecules, NKT cells rapidly produce a plethora of cytokines and can also mediate cytotoxicity. Due to their potent effector functions, extensive research has been performed to increase our understanding on how to effectively modulate these cells. In fact, NKT cell agonists have been used as vaccine adjuvants to enhance antigen specific T and B cell responses to infections and malignancy. In this review, we will focus on recent advances in NKT cell-based vaccination strategies. Given the role that NKT cells play in autoimmune disease, infectious diseases, cancer, transplant immunology and dermatology, it is important to understand how to effectively guide their effector functions in order to develop novel immunotherapeutic strategies. PMID:24089657

  5. Cells with dendritic cell morphology and immunophenotype, binuclear morphology, and immunosuppressive function in dendritic cell cultures.

    PubMed

    Dong, Rong; Moulding, Dale; Himoudi, Nourredine; Adams, Stuart; Bouma, Gerben; Eddaoudi, Ayad; Basu, B Piku; Derniame, Sophie; Chana, Prabhjoat; Duncan, Andrew; Anderson, John

    2011-01-01

    Culturing of human peripheral blood CD14 positive monocytes is a method for generation of dendritic cells (DCs) for experimental purposes or for use in clinical grade vaccines. When culturing human DCs in this manner for clinical vaccine production, we noticed that 5-10% of cells within the bulk culture were binuclear or multiple nuclear, but had typical dendritic cell morphology and immunophenotype. We refer to the cells as binuclear cells in dendritic cell cultures (BNiDCs). By using single cell PCR analysis of mitochondrial DNA polymorphisms we demonstrated that approximately 20-25% of cells in DC culture undergo a fusion event. Flow sorted BNiDC express low HLA-DR and IL-12p70, but high levels of IL-10. In mixed lymphocyte reactions, purified BNiDC suppressed lymphocyte proliferation. Blockade of dendritic cell-specific transmembrane protein (DC-STAMP) decreased the number of binuclear cells in DC cultures. BNiDC represent a potentially tolerogenic population within DC preparations for clinical use.

  6. DENDRITIC CELLS: ARE THEY CLINICALLY RELEVANT?

    PubMed Central

    Palucka, Karolina; Ueno, Hideki; Roberts, Lee; Fay, Joseph; Banchereau, Jacques

    2010-01-01

    Cancer vaccines have undergone a renaissance due to recent clinical trials showing promising immunological data and some clinical benefit to patients. Current trials exploiting dendritic cells (DCs) as vaccines have shown durable tumor regressions in a fraction of patients. Clinical efficacy of current vaccines is hampered by myeloid-derived suppressor cells, inflammatory type 2 T cells and regulatory T cells (Tregs), all of which prevent the generation of effector cells. To improve the clinical efficacy of DC vaccines, we need to design novel and improved strategies that can boost adaptive immunity to cancer, help overcome Tregs and allow the breakdown of the immunosuppressive tumor microenvironment. This can be achieved by exploiting the fast increasing knowledge about the DC system, including the existence of distinct DC subsets. Critical to the design of better vaccines is the concept of distinct DC subsets and distinct DC activation pathways, all contributing to the generation of unique adaptive immune responses. Such novel DC vaccines will be used as monotherapy in patients with resected disease and in combination with antibodies and/or drugs targeting suppressor pathways and modulation of the tumor environment in patients with metastatic disease. PMID:20693842

  7. Glatiramer acetate fights against Alzheimer’s disease by inducing dendritic-like microglia expressing insulin-like growth factor 1

    PubMed Central

    Butovsky, Oleg; Koronyo-Hamaoui, Maya; Kunis, Gilad; Ophir, Eran; Landa, Gennady; Cohen, Hagit; Schwartz, Michal

    2006-01-01

    Alzheimer’s disease (AD) is characterized by plaque formation, neuronal loss, and cognitive decline. The functions of the local and systemic immune response in this disease are still controversial. Using AD double-transgenic (APP/PS1) mice, we show that a T cell-based vaccination with glatiramer acetate, given according to a specific regimen, resulted in decreased plaque formation and induction of neurogenesis. It also reduced cognitive decline, assessed by performance in a Morris water maze. The vaccination apparently exerted its effect by causing a phenotype switch in brain microglia to dendritic-like (CD11c) cells producing insulin-like growth factor 1. In vitro findings showed that microglia activated by aggregated β-amyloid, and characterized as CD11b+/CD11c−/MHC class II−/TNF-α+ cells, impeded neurogenesis from adult neural stem/progenitor cells, whereas CD11b+/CD11c+/MHC class II+/TNF-α− microglia, a phenotype induced by IL-4, counteracted the adverse β-amyloid-induced effect. These results suggest that dendritic-like microglia, by facilitating the necessary adjustment, might contribute significantly to the brain’s resistance to AD and argue against the use of antiinflammatory drugs. PMID:16864778

  8. Partial Protection against Porcine Influenza A Virus by a Hemagglutinin-Expressing Virus Replicon Particle Vaccine in the Absence of Neutralizing Antibodies

    PubMed Central

    Ricklin, Meret E.; Vielle, Nathalie J.; Python, Sylvie; Brechbühl, Daniel; Zumkehr, Beatrice; Posthaus, Horst; Zimmer, Gert; Summerfield, Artur

    2016-01-01

    This work was initiated by previous reports demonstrating that mismatched influenza A virus (IAV) vaccines can induce enhanced disease, probably mediated by antibodies. Our aim was, therefore, to investigate if a vaccine inducing opsonizing but not neutralizing antibodies against the hemagglutinin (HA) of a selected heterologous challenge virus would enhance disease or induce protective immune responses in the pig model. To this end, we immunized pigs with either whole inactivated virus (WIV)-vaccine or HA-expressing virus replicon particles (VRP) vaccine based on recombinant vesicular stomatitis virus (VSV). Both types of vaccines induced virus neutralizing and opsonizing antibodies against homologous virus as shown by a highly sensitive plasmacytoid dendritic cell-based opsonization assay. Opsonizing antibodies showed a broader reactivity against heterologous IAV compared with neutralizing antibodies. Pigs immunized with HA-recombinant VRP vaccine were partially protected from infection with a mismatched IAV, which was not neutralized but opsonized by the immune sera. The VRP vaccine reduced lung lesions, lung inflammatory cytokine responses, serum IFN-α responses, and viral loads in the airways. Only the VRP vaccine was able to prime IAV-specific IFNγ/TNFα dual secreting CD4+ T cells detectable in the peripheral blood. In summary, this work demonstrates that with the virus pair selected, a WIV vaccine inducing opsonizing antibodies against HA which lack neutralizing activity, is neither protective nor does it induce enhanced disease in pigs. In contrast, VRP-expressing HA is efficacious vaccines in swine as they induced both potent antibodies and T-cell immunity resulting in a broader protective value. PMID:27446083

  9. Polyvalent AIDS Vaccines

    PubMed Central

    Lu, Shan; Grimes Serrano, Jill M.; Wang, Shixia

    2013-01-01

    A major hurdle in the development of a global HIV-1 vaccine is viral diversity. For close to three decades, HIV vaccine development has focused on either the induction of T cell immune responses or antibody responses, and only rarely on both components. After the failure of the STEP trial, the scientific community concluded that a T cell-based vaccine would likely not be protective if the T cell immune responses were elicited against only a few dominant epitopes. Similarly, for vaccines focusing on antibody responses, one of the main criticisms after VaxGen’s failed Phase III trials was on the limited antigen breadth included in the two formulations used. The successes of polyvalent vaccine approaches against other antigenically variable pathogens encourage implementation of the same approach for the design of HIV-1 vaccines. A review of the existing HIV-1 vaccination approaches based on the polyvalent principle is included here to provide a historical perspective for the current effort of developing a polyvalent HIV-1 vaccine. Results summarized in this review provide a clear indication that the polyvalent approach is a viable one for the future development of an effective HIV vaccine. PMID:21054250

  10. Nanoparticle Drug Delivery Systems Designed to Improve Cancer Vaccines and Immunotherapy

    PubMed Central

    Fan, Yuchen; Moon, James J.

    2015-01-01

    Recent studies have demonstrated great therapeutic potential of educating and unleashing our own immune system for cancer treatment. However, there are still major challenges in cancer immunotherapy, including poor immunogenicity of cancer vaccines, off-target side effects of immunotherapeutics, as well as suboptimal outcomes of adoptive T cell transfer-based therapies. Nanomaterials with defined physico-biochemical properties are versatile drug delivery platforms that may address these key technical challenges facing cancer vaccines and immunotherapy. Nanoparticle systems have been shown to improve targeted delivery of tumor antigens and therapeutics against immune checkpoint molecules, amplify immune activation via the use of new stimuli-responsive or immunostimulatory materials, and augment the efficacy of adoptive cell therapies. Here, we review the current state-of-the-art in nanoparticle-based strategies designed to potentiate cancer immunotherapies, including cancer vaccines with subunit antigens (e.g., oncoproteins, mutated neo-antigens, DNA and mRNA antigens) and whole-cell tumor antigens, dendritic cell-based vaccines, artificial antigen-presenting cells, and immunotherapeutics based on immunogenic cell death, immune checkpoint blockade, and adoptive T-cell therapy. PMID:26350600

  11. Dendritic cells and immunotherapy for cancer.

    PubMed

    Chang, David H; Dhodapkar, Madhav V

    2003-06-01

    Dendritic cells, nature's adjuvant, are antigen-presenting cells specialized to initiate and regulate immunity. Their potent antigen-presenting function has encouraged targeting of dendritic cells (DCs) for harnessing the immune system against cancer. DCs are efficient at activating not only CD4+ helper T-cells and CD8+ killer T-cells but also B-cells and innate effectors such as natural killer and natural killer T-cells. Early studies of adoptive transfer of tumor antigen-loaded DCs have shown promise. However, DC vaccination is at an early stage, and several parameters still need to be established. The complexity of the DC system brings about the necessity for its rational manipulation for achieving protective and therapeutic immunity in patients.

  12. Dendrite Model Explained

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Angie Jackman, a NASA project manager in microgravity research, explains a model of a dendrite to a visitor to the NASA exhibit at AirVenture 2000 sponsored by the Experimental Aircraft Association in Oshkosh, WI. The model depicts microscopic dendrites that grow as molten metals solidify. NASA sponsored three experiments aboard the Space Shuttle that used the microgravity environment to study the formation of large (1 to 4 mm) dendrites without Earth's gravity disrupting their growth. Three advanced follow-on experiments, managed by Jackman, are being developed for the International Space Station (ISS).

  13. Dendritic Cell Targeting of Bacillus anthracis Protective Antigen Expressed by Lactobacillus acidophilus Protects Mice from Lethal Challenge

    DTIC Science & Technology

    2008-10-28

    Dendritic cell targeting of Bacillus anthracis protective antigen expressed by Lactobacillus acidophilus protects mice from lethal challenge M...lethal chal- lenge. A vaccine strategy was established by using Lactobacillus acidophilus to deliver Bacillus anthracis protective antigen (PA) via...4. TITLE AND SUBTITLE Dendritic cell targeting of Bacillus anthracis protective antigen expressed by Lactobacillus acidophilus protects mice

  14. Dendritic Growth Investigators

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Representatives of NASA materials science experiments supported the NASA exhibit at the Rernselaer Polytechnic Institute's Space Week activities, April 5 through 11, 1999. From left to right are: Angie Jackman, project manager at NASA's Marshall Space Flight Center for dendritic growth experiments; Dr. Martin Glicksman of Rennselaer Polytechnic Instutute, Troy, NY, principal investigator on the Isothermal Dendritic Growth Experiment (IDGE) that flew three times on the Space Shuttle; and Dr. Matthew Koss of College of the Holy Cross in Worcester, MA, a co-investigator on the IDGE and now principal investigator on the Transient Dendritic Solidification Experiment being developed for the International Space Station (ISS). The image at far left is a dendrite grown in Glicksman's IDGE tests aboard the Shuttle. Glicksman is also principal investigator for the Evolution of Local Microstructures: Spatial Instabilities of Coarsening Clusters.

  15. HPV Vaccine

    MedlinePlus

    ... Surgery? A Week of Healthy Breakfasts Shyness HPV Vaccine KidsHealth > For Teens > HPV Vaccine Print A A ... starting at age 9. continue How Does the Vaccine Work? The HPV vaccine is approved for people ...

  16. HPV Vaccine

    MedlinePlus

    ... Surgery? A Week of Healthy Breakfasts Shyness HPV Vaccine KidsHealth > For Teens > HPV Vaccine A A A ... starting at age 9. continue How Does the Vaccine Work? The HPV vaccine is approved for people ...

  17. Isothermal Dendritic Growth Experiment - SCN Dendrites

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Isothermal Dendritic Growth Experiment (IDGE), flown on three Space Shuttle missions, is yielding new insights into virtually all industrially relevant metal and alloy forming operations. IDGE used transparent organic liquids that form dendrites (treelike structures) similar to the crystals that form inside metal alloys. Comparing Earth-based and space-based dentrite growth velocity, tip size and shape provid a better understanding of the fundamentals of dentritic growth, including gravity's effects. These shadowgraphic images show succinonitrile (SCN) dentrites growing in a melt (liquid). The space-grown crystals also have cleaner, better defined sidebranches. IDGE was developed by Rensselaer Polytechnic Institude (RPI) and NASA/ Glenn Research Center(GRC). Advanced follow-on experiments are being developed for flight on the International Space Station. Photo gredit: NASA/Glenn Research Center

  18. An optimized peptide vaccine strategy capable of inducing multivalent CD8+ T cell responses with potent antitumor effects

    PubMed Central

    Cho, Hyun-Il; Jung, Soo-Hyun; Sohn, Hyun-Jung; Celis, Esteban; Kim, Tai-Gyu

    2015-01-01

    Therapeutic cancer vaccines are an attractive alternative to conventional therapies for treating malignant tumors, and successful tumor eradication depends primarily on obtaining high numbers of long-lasting tumor-reactive CD8+ T cells. Dendritic cell (DC)-based vaccines constitute a promising approach for treating cancer, but in most instances low immune responses and suboptimal therapeutic effects are achieved indicating that further optimization is required. We describe here a novel vaccination strategy with peptide-loaded DCs followed by a mixture of synthetic peptides, polyinosine-polycytidylic acid (poly-IC) and anti-CD40 antibodies (TriVax) for improving the immunogenicity and therapeutic efficacy of DC-based vaccines in a melanoma mouse model. TriVax immunization 7–12 d after priming with antigen-loaded DCs generated large numbers of long-lasting multiple antigen-specific CD8+ T cells capable of recognizing tumor cells. These responses were far superior to those generated by homologous immunizations with either TriVax or DCs. CD8+ T cells but not CD4+ T cells or NK cells mediated the therapeutic efficacy of this heterologous prime-boost strategy. Moreover, combinations of this vaccination regimen with programmed cell death-1 (PD-1) blockade or IL2 anti-IL2 antibody complexes led to complete disease eradication and survival enhancement in melanoma-bearing mice. The overall results suggest that similar strategies would be applicable for the design of effective therapeutic vaccination for treating viral diseases and various cancers, which may circumvent current limitations of cell-based cancer vaccines. PMID:26451316

  19. Dendritic cells and immunity against cancer

    PubMed Central

    Palucka, Karolina; Ueno, Hideki; Fay, Joseph; Banchereau, Jacques

    2010-01-01

    SUMMARY T cells can reject established tumors when adoptively transferred into patients, thereby demonstrating the power of the immune system for cancer therapy. However, it has proven difficult to maintain adoptively transferred T cells in the long term. Vaccines have the potential to induce tumor-specific effector and memory T cells. However, clinical efficacy of current vaccines is limited, possibly because tumors skew the immune system by means of myeloid-derived suppressor cells, inflammatory type 2 T cells and regulatory T cells (Tregs), all of which prevent the generation of effector cells. To improve the clinical efficacy of cancer vaccines in patients with metastatic disease, we need to design novel and improved strategies that can boost adaptive immunity to cancer, help overcome Tregs and allow the breakdown of the immunosuppressive tumor microenvironment. This can be achieved by exploiting the fast increasing knowledge about the dendritic cell (DC) system, including the existence of distinct DC subsets which respond differentially to distinct activation signals, (functional plasticity), both contributing to the generation of unique adaptive immune responses. We foresee that these novel cancer vaccines will be used as monotherapy in patients with resected disease, and in combination with drugs targeting regulatory/suppressor pathways in patients with metastatic disease. PMID:21158979

  20. Vaccine hesitancy

    PubMed Central

    Dubé, Eve; Laberge, Caroline; Guay, Maryse; Bramadat, Paul; Roy, Réal; Bettinger, Julie A.

    2013-01-01

    Despite being recognized as one of the most successful public health measures, vaccination is perceived as unsafe and unnecessary by a growing number of individuals. Lack of confidence in vaccines is now considered a threat to the success of vaccination programs. Vaccine hesitancy is believed to be responsible for decreasing vaccine coverage and an increasing risk of vaccine-preventable disease outbreaks and epidemics. This review provides an overview of the phenomenon of vaccine hesitancy. First, we will characterize vaccine hesitancy and suggest the possible causes of the apparent increase in vaccine hesitancy in the developed world. Then we will look at determinants of individual decision-making about vaccination. PMID:23584253

  1. DNA vaccination as a treatment for chronic kidney disease.

    PubMed

    Wang, Yuan Min; Alexander, Stephen I

    2014-01-01

    Chronic kidney disease is one of the major health problems worldwide. DNA vaccination delivers plasmid DNA encoding the target gene to induce both humoral and cellular immune responses. Here, we describe the methods of CD40 DNA vaccine enhanced by dendritic cell (DC) targeting on the development of Heymann nephritis (HN), a rat model of human membranous nephropathy.

  2. Active properties of neuronal dendrites.

    PubMed

    Johnston, D; Magee, J C; Colbert, C M; Cristie, B R

    1996-01-01

    Dendrites of neurons in the central nervous system are the principal sites for excitatory synaptic input. Although little is known about their function, two disparate perspectives have arisen to describe the activity patterns inherent to these diverse tree-like structures. Dendrites are thus considered either passive or active in their role in integrating synaptic inputs. This review follows the history of dendritic research from before the turn of the century to the present, with a primary focus on the hippocampus. A number of recent techniques, including high-speed fluorescence imaging and dendritic patch clamping, have provided new information and perspectives about the active properties of dendrites. The results support previous notions about the dendritic propagation of action potentials and also indicate which types of voltage-gated sodium and calcium channels are expressed and functionally active in dendrites. Possible roles for the active properties of dendrites in synaptic plasticity and integration are also discussed.

  3. Dendritic Polymers for Theranostics

    PubMed Central

    Ma, Yuan; Mou, Quanbing; Wang, Dali; Zhu, Xinyuan; Yan, Deyue

    2016-01-01

    Dendritic polymers are highly branched polymers with controllable structures, which possess a large population of terminal functional groups, low solution or melt viscosity, and good solubility. Their size, degree of branching and functionality can be adjusted and controlled through the synthetic procedures. These tunable structures correspond to application-related properties, such as biodegradability, biocompatibility, stimuli-responsiveness and self-assembly ability, which are the key points for theranostic applications, including chemotherapeutic theranostics, biotherapeutic theranostics, phototherapeutic theranostics, radiotherapeutic theranostics and combined therapeutic theranostics. Up to now, significant progress has been made for the dendritic polymers in solving some of the fundamental and technical questions toward their theranostic applications. In this review, we briefly summarize how to control the structures of dendritic polymers, the theranostics-related properties derived from their structures and their theranostics-related applications. PMID:27217829

  4. Cancer therapy and vaccination.

    PubMed

    Aly, Hamdy A A

    2012-08-31

    Cancer remains one of the leading causes of death worldwide, both in developed and in developing nations. It may affect people at all ages, even fetuses, but the risk for most varieties increases with age. Current therapeutic approaches which include surgery, chemotherapy and radiotherapy are associated with adverse side effects arising from lack of specificity for tumors. The goal of any therapeutic strategy is to impact on the target tumor cells with limited detrimental effect to normal cell function. Immunotherapy is cancer specific and can target the disease with minimal impact on normal tissues. Cancer vaccines are capable of generating an active tumor-specific immune response and serve as an ideal treatment due to their specificity for tumor cells and long lasting immunological memory that may safeguard against recurrences. Cancer vaccines are designed to either prevent (prophylactic) or treat established cancer (therapeutic). Identification of tumor-associated antigens (TAAs) and tumor-specific antigens (TSAs) has led to increased efforts to develop vaccination strategies. Vaccines may be composed of whole cells or cell extracts, genetically modified tumor cells to express costimulatory molecules, dendritic cells (DCs) loaded with TAAs, immunization with soluble proteins or synthetic peptides, recombinant viruses or bacteria encoding tumor-associated antigens, and plasmid DNA encoding TSAs or TAAs in conjunction with appropriate immunomodulators. All of these antitumor vaccination approaches aim to induce specific immunological responses and localized to TAAs, destroying tumor cells alone and leaving the vast majority of other healthy cells of the body untouched.

  5. Isothermal Dendritic Growth Experiment Video

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This video, captured during the Isothermal Dendritic Growth Experiment (IDGE) flown on STS-87 as a part of the fourth United States Microgravity payload, shows the growth of a dendrite, and the surface solidification that occurred on the front and back windows of the growth chamber. Dendrites are tiny, tree like structures that form as metals solidify.

  6. Dendritic Release of Neurotransmitters.

    PubMed

    Ludwig, Mike; Apps, David; Menzies, John; Patel, Jyoti C; Rice, Margaret E

    2016-12-06

    Release of neuroactive substances by exocytosis from dendrites is surprisingly widespread and is not confined to a particular class of transmitters: it occurs in multiple brain regions, and includes a range of neuropeptides, classical neurotransmitters, and signaling molecules, such as nitric oxide, carbon monoxide, ATP, and arachidonic acid. This review is focused on hypothalamic neuroendocrine cells that release vasopressin and oxytocin and midbrain neurons that release dopamine. For these two model systems, the stimuli, mechanisms, and physiological functions of dendritic release have been explored in greater detail than is yet available for other neurons and neuroactive substances. © 2017 American Physiological Society. Compr Physiol 7:235-252, 2017.

  7. Lithium Dendrite Formation

    SciTech Connect

    2015-03-06

    Scientists at the Department of Energy’s Oak Ridge National Laboratory have captured the first real-time nanoscale images of lithium dendrite structures known to degrade lithium-ion batteries. The ORNL team’s electron microscopy could help researchers address long-standing issues related to battery performance and safety. Video shows annular dark-field scanning transmission electron microscopy imaging (ADF STEM) of lithium dendrite nucleation and growth from a glassy carbon working electrode and within a 1.2M LiPF6 EC:DM battery electrolyte.

  8. [Travelers' vaccines].

    PubMed

    Ouchi, Kazunobu

    2011-09-01

    The number of Japanese oversea travelers has gradually increased year by year, however they usually pay less attention to the poor physical condition at the voyage place. Many oversea travelers caught vaccine preventable diseases in developing countries. The Vaccine Guideline for Oversea Travelers 2010 published by Japanese Society of Travel Health will be helpful for spreading the knowledge of travelers' vaccine and vaccine preventable diseases in developing countries. Many travelers' vaccines have not licensed in Japan. I hope these travelers' vaccines, such as typhoid vaccine, meningococcal vaccine, cholera vaccine and so on will be licensed in the near future.

  9. Carbon nanotubes as vaccine scaffolds

    PubMed Central

    Scheinberg, David A.; McDevitt, Michael R.; Dao, Tao; Mulvey, Justin J.; Feinberg, Evan; Alidori, Simone

    2013-01-01

    Carbon nanotubes display characteristics that are potentially useful in their development as scaffolds for vaccine compositions. These features include stability in vivo, lack of intrinsic immunogenicity, low toxicity, and the ability to be appended with multiple copies of antigens. In addition, the particulate nature of carbon nanotubes and their unusual properties of rapid entry into antigen-presenting cells, such as dendritic cells, make them especially useful as carriers of antigens. Early attempts demonstrating carbon nanotube-based vaccines can be used in both infectious disease settings and cancer are promising. PMID:23899863

  10. Molecular mechanisms of dendrite morphogenesis

    PubMed Central

    Arikkath, Jyothi

    2012-01-01

    Dendrites are key integrators of synaptic information in neurons and play vital roles in neuronal plasticity. Hence, it is necessary that dendrite arborization is precisely controlled and coordinated with synaptic activity to ensure appropriate functional neural network integrity. In the past several years, it has become increasingly clear that several cell intrinsic and extrinsic mechanisms contribute to dendritic arborization. In this review, we will discuss some of the molecular mechanisms that regulate dendrite morphogenesis, particularly in cortical and hippocampal pyramidal neurons and some of the implications of aberrant dendritic morphology for human disease. Finally, we will discuss the current challenges and future directions in the field. PMID:23293584

  11. Transport Processes in Dendritic Crystallization

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.

    1984-01-01

    Free dentritic growth refers to the unconstrained development of crystals within a supercooled melt, which is the classical dendrite problem. The development of theoretical understanding of dendritic growth and its experimental status is sketched showing that transport theory and interfacial thermodynamics (capillarity theory) are insufficient ingredients to develop a truly predictive model of dendrite formation. The convenient, but incorrect, notion of maximum velocity was used for many years to estimate the behavior of dendritic transformations until supplanted by modern dynamic stability theory. The proper combinations of transport theory and morphological stability seem to be able to predict the salient aspects of dendritic growth, especially in the neighborhood of the tip.

  12. Novel Immune Modulating Cellular Vaccine for Prostate Cancer

    DTIC Science & Technology

    2014-10-01

    AWARD NUMBER: W81XWH-13-1-0423 TITLE: Novel immune modulating cellular vaccine for prostate cancer PRINCIPAL INVESTIGATOR: Smita Nair...2014 2. REPORT TYPE Annual 3. DATES COVERED 30 Sept 2013 to 29 Sept 2014 4. TITLE AND SUBTITLE Novel immune modulating cellular vaccine for...that will safely enhance vaccine -mediated immunity. This lead cellular therapy, called DC-PAPvac-C, consists of dendritic cells (DCs) co-transfected

  13. Modification of dendritic development.

    PubMed

    Feria-Velasco, Alfredo; del Angel, Alma Rosa; Gonzalez-Burgos, Ignacio

    2002-01-01

    Since 1890 Ramón y Cajal strongly defended the theory that dendrites and their processes and spines had a function of not just nutrient transport to the cell body, but they had an important conductive role in neural impulse transmission. He extensively discussed and supported this theory in the Volume 1 of his extraordinary book Textura del Sistema Nervioso del Hombre y de los Vertebrados. Also, Don Santiago significantly contributed to a detailed description of the various neural components of the hippocampus and cerebral cortex during development. Extensive investigation has been done in the last Century related to the functional role of these complex brain regions, and their association with learning, memory and some limbic functions. Likewise, the organization and expression of neuropsychological qualities such as memory, exploratory behavior and spatial orientation, among others, depend on the integrity and adequate functional activity of the cerebral cortex and hippocampus. It is known that brain serotonin synthesis and release depend directly and proportionally on the availability of its precursor, tryptophan (TRY). By using a chronic TRY restriction model in rats, we studied their place learning ability in correlation with the dendritic spine density of pyramidal neurons in field CA1 of the hippocampus during postnatal development. We have also reported alterations in the maturation pattern of the ability for spontaneous alternation and task performance evaluating short-term memory, as well as adverse effects on the density of dendritic spines of hippocampal CA1 field pyramidal neurons and on the dendritic arborization and the number of dendritic spines of pyramidal neurons from the third layer of the prefrontal cortex using the same model of TRY restriction. The findings obtained in these studies employing a modified Golgi method, can be interpreted as a trans-synaptic plastic response due to understimulation of serotoninergic receptors located in the

  14. Leptospirosis vaccines

    PubMed Central

    Wang, Zhijun; Jin, Li; Węgrzyn, Alicja

    2007-01-01

    Leptospirosis is a serious infection disease caused by pathogenic strains of the Leptospira spirochetes, which affects not only humans but also animals. It has long been expected to find an effective vaccine to prevent leptospirosis through immunization of high risk humans or animals. Although some leptospirosis vaccines have been obtained, the vaccination is relatively unsuccessful in clinical application despite decades of research and millions of dollars spent. In this review, the recent advancements of recombinant outer membrane protein (OMP) vaccines, lipopolysaccharide (LPS) vaccines, inactivated vaccines, attenuated vaccines and DNA vaccines against leptospirosis are reviewed. A comparison of these vaccines may lead to development of new potential methods to combat leptospirosis and facilitate the leptospirosis vaccine research. Moreover, a vaccine ontology database was built for the scientists working on the leptospirosis vaccines as a starting tool. PMID:18072968

  15. Vaccine Hesitancy.

    PubMed

    Jacobson, Robert M; St Sauver, Jennifer L; Finney Rutten, Lila J

    2015-11-01

    Vaccine refusal received a lot of press with the 2015 Disneyland measles outbreak, but vaccine refusal is only a fraction of a much larger problem of vaccine delay and hesitancy. Opposition to vaccination dates back to the 1800 s, Edward Jenner, and the first vaccine ever. It has never gone away despite the public's growing scientific sophistication. A variety of factors contribute to modern vaccine hesitancy, including the layperson's heuristic thinking when it comes to balancing risks and benefits as well as a number of other features of vaccination, including falling victim to its own success. Vaccine hesitancy is pervasive, affecting a quarter to a third of US parents. Clinicians report that they routinely receive requests to delay vaccines and that they routinely acquiesce. Vaccine rates vary by state and locale and by specific vaccine, and vaccine hesitancy results in personal risk and in the failure to achieve or sustain herd immunity to protect others who have contraindications to the vaccine or fail to generate immunity to the vaccine. Clinicians should adopt a variety of practices to combat vaccine hesitancy, including a variety of population health management approaches that go beyond the usual call to educate patients, clinicians, and the public. Strategies include using every visit to vaccinate, the creation of standing orders or nursing protocols to provide vaccination without clinical encounters, and adopting the practice of stating clear recommendations. Up-to-date, trusted resources exist to support clinicians' efforts in adopting these approaches to reduce vaccine hesitancy and its impact.

  16. Dendritic Spikes in Sensory Perception

    PubMed Central

    Manita, Satoshi; Miyakawa, Hiroyoshi; Kitamura, Kazuo; Murayama, Masanori

    2017-01-01

    What is the function of dendritic spikes? One might argue that they provide conditions for neuronal plasticity or that they are essential for neural computation. However, despite a long history of dendritic research, the physiological relevance of dendritic spikes in brain function remains unknown. This could stem from the fact that most studies on dendrites have been performed in vitro. Fortunately, the emergence of novel techniques such as improved two-photon microscopy, genetically encoded calcium indicators (GECIs), and optogenetic tools has provided the means for vital breakthroughs in in vivo dendritic research. These technologies enable the investigation of the functions of dendritic spikes in behaving animals, and thus, help uncover the causal relationship between dendritic spikes, and sensory information processing and synaptic plasticity. Understanding the roles of dendritic spikes in brain function would provide mechanistic insight into the relationship between the brain and the mind. In this review article, we summarize the results of studies on dendritic spikes from a historical perspective and discuss the recent advances in our understanding of the role of dendritic spikes in sensory perception. PMID:28261060

  17. Vaccine Delivery Methods into the Future

    PubMed Central

    Apostolopoulos, Vasso

    2016-01-01

    Several modes of vaccine delivery have been developed in the last 25 years, which induce strong immune responses in pre-clinical models and in human clinical trials. Some modes of delivery include, adjuvants (aluminum hydroxide, Ribi formulation, QS21), liposomes, nanoparticles, virus like particles, immunostimulatory complexes (ISCOMs), dendrimers, viral vectors, DNA delivery via gene gun, electroporation or Biojector 2000, cell penetrating peptides, dendritic cell receptor targeting, toll-like receptors, chemokine receptors and bacterial toxins. There is an enormous amount of information and vaccine delivery methods available for guiding vaccine and immunotherapeutics development against diseases. PMID:27043641

  18. [Reversion of the immunological eclipse and therapeutic vaccination against cancer in an experimental model].

    PubMed

    Chiarella, Paula; Vulcano, Marisa; Laborde, Evangelina; Vermeulen, Monica; Bruzzo, Juan; Rearte, Barbara; Bustuoabad, Oscar D; Ruggiero, Raul A

    2007-01-01

    Although animals can be prophylactically immunized against the growth of tumor implants, most of the attempts to use immunotherapy to cause the regression of animal and human tumors once they become established have been unsuccessful. To understand the nature of this refractoriness we have studied a methylcholanthrene-induced and strongly immunogenic murine fibrosarcoma. In our model, the onset of this refractoriness was associated with the beginning of an immunosuppressive state known as "immunological eclipse" characterized by a loss of the antitumor immune response when tumor grows beyond a critical size. This immunological eclipse was accompanied by the emergence of a systemic inflammatory condition. Treatment of tumor-bearing mice with a single dose of a synthetic corticosteroid, dexamethasone (DX), reduced significantly all parameters of systemic inflammation and simultaneously reversed the immunological eclipse. The reversion of the eclipse upon DX treatment was not curative itself, but allowed an immunological therapy based in dendritic cells pulsed with tumor antigens, which was itself absolutely ineffective, to exert a significant inhibitory effect against an established growing tumor. The two-step schedule using an anti-inflammatory treatment to reverse the immunological eclipse plus a dendritic cell-based vaccination strategy aimed to stimulate the antitumor immune response, could serve eventually as a model of immunotherapy against animal and human tumors.

  19. Silicon dendritic web material

    NASA Technical Reports Server (NTRS)

    Meier, D. L.; Campbell, R. B.; Sienkiewicz, L. J.; Rai-Choudhury, P.

    1982-01-01

    The development of a low cost and reliable contact system for solar cells and the fabrication of several solar cell modules using ultrasonic bonding for the interconnection of cells and ethylene vinyl acetate as the potting material for module encapsulation are examined. The cells in the modules were made from dendritic web silicon. To reduce cost, the electroplated layer of silver was replaced with an electroplated layer of copper. The modules that were fabricated used the evaporated Ti, Pd, Ag and electroplated Cu (TiPdAg/Cu) system. Adherence of Ni to Si is improved if a nickel silicide can be formed by heat treatment. The effectiveness of Ni as a diffusion barrier to Cu and the ease with which nickel silicide is formed is discussed. The fabrication of three modules using dendritic web silicon and employing ultrasonic bonding for interconnecting calls and ethylene vinyl acetate as the potting material is examined.

  20. Magnetic and dendritic catalysts.

    PubMed

    Wang, Dong; Deraedt, Christophe; Ruiz, Jaime; Astruc, Didier

    2015-07-21

    The recovery and reuse of catalysts is a major challenge in the development of sustainable chemical processes. Two methods at the frontier between homogeneous and heterogeneous catalysis have recently emerged for addressing this problem: loading the catalyst onto a dendrimer or onto a magnetic nanoparticle. In this Account, we describe representative examples of these two methods, primarily from our research group, and compare them. We then describe new chemistry that combines the benefits of these two methods of catalysis. Classic dendritic catalysis has involved either attaching the catalyst covalently at the branch termini or within the dendrimer core. We have used chelating pyridyltriazole ligands to insolubilize catalysts at the termini of dendrimers, providing an efficient, recyclable heterogeneous catalysts. With the addition of dendritic unimolecular micelles olefin metathesis reactions catalyzed by commercial Grubbs-type ruthenium-benzylidene complexes in water required unusually low amounts of catalyst. When such dendritic micelles include intradendritic ligands, both the micellar effect and ligand acceleration promote faster catalysis in water. With these types of catalysts, we could carry out azide alkyne cycloaddition ("click") chemistry with only ppm amounts of CuSO4·5H2O and sodium ascorbate under ambient conditions. Alternatively we can attach catalysts to the surface of superparamagnetic iron oxide nanoparticles (SPIONs), essentially magnetite (Fe3O4) or maghemite (γ-Fe2O3), offering the opportunity to recover the catalysts using magnets. Taking advantage of the merits of both of these strategies, we and others have developed a new generation of recyclable catalysts: dendritic magnetically recoverable catalysts. In particular, some of our catalysts with a γ-Fe2O3@SiO2 core and 1,2,3-triazole tethers and loaded with Pd nanoparticles generate strong positive dendritic effects with respect to ligand loading, catalyst loading, catalytic activity and

  1. Dendritic Materials Systems

    DTIC Science & Technology

    2003-09-22

    2-hydroxyethyl)-e-caprolactone,” Macromolecules, 32, 6881-4, (1999). Yu, D.; Vladimirov, N.; Fréchet, J.M.J. “ MALDI - TOF in the Characterization of...Mat Sci. Eng., (1999). Yu, D.; Vladimirov, N.; Fréchet, J. M. J. “ MALDI - TOF Mass Spectrometry in the Characterization of Dendritic-Linear Block and...with long endgroups capable of chain entanglements providing uniform continuous films. We found that the surface properties of polyetherimide ( PEI

  2. Web-dendritic ribbon growth

    NASA Technical Reports Server (NTRS)

    Hilborn, R. B., Jr.; Faust, J. W., Jr.

    1976-01-01

    A web furnace was constructed for pulling dendritic-web samples. The effect of changes in the furnace thermal geometry on the growth of dendritic-web was studied. Several attempts were made to grow primitive dendrites for use as the dendritic seed crystals for web growth and to determine the optimum twin spacing in the dendritic seed crystal for web growth. Mathematical models and computer programs were used to determine the thermal geometries in the susceptor, crucible melt, meniscus, and web. Several geometries were determined for particular furnace geometries and growth conditions. The information obtained was used in conjunction with results from the experimental growth investigations in order to achieve proper conditions for sustained pulling of two dendrite web ribbons. In addition, the facilities for obtaining the following data were constructed: twin spacing, dislocation density, web geometry, resistivity, majority charge carrier type, and minority carrier lifetime.

  3. IDGE: Isothermal Dendritic Growth Experiment

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Isothermal Dendritic Growth Experiment (IDGE) flew on STS-62 to study the microscopic, tree-like structures (dendrites) that form within metals as they solidify from molten materials. The size, shape, and orientation of these dendrites affect the strength and usefulness of metals. Data from this experiment will be used to test and improve the mathematical models that support the industrial production of metals.

  4. Edible vaccines.

    PubMed

    Meloen, R H; Hamilton, W D; Casal, J I; Dalsgaard, K; Langeveld, J P

    1998-01-01

    The ultimate vaccine is an oral vaccine which given once protects against a multitude of diseases. Furthermore this ultimate vaccine needs to be very stable and inexpensive to produce. Probably this latter condition can be met only if the vaccines are produced in plants. Such vaccines are called 'edible vaccines'. Edible vaccines can be produced in plants in many ways. Using recombinant plantvirus, CPMV, it was shown that plants can produce massive amounts of chimaeric virus particles which protect after a single injection the target animal against disease. The final step, oral administration, is being addressed at present. Preliminary experiments by others suggest that this step may be solved sooner than expected.

  5. Harnessing Human Dendritic Cell Subsets for Medicine

    PubMed Central

    Ueno, Hideki; Schmitt, Nathalie; Klechevsky, Eynav; Pedroza-Gonzales, Alexander; Matsui, Toshimichi; Zurawski, Gerard; Oh, SangKon; Fay, Joseph; Pascual, Virginia; Banchereau, Jacques; Palucka, Karolina

    2010-01-01

    Summary Immunity results from a complex interplay between the antigen-nonspecific innate immune system and the antigen-specific adaptive immune system. The cells and molecules of the innate system employ non-clonal recognition receptors including lectins, Toll-like receptors, NOD-like receptors and helicases. B and T lymphocytes of the adaptive immune system employ clonal receptors recognizing antigens or their derived peptides in a highly specific manner. An essential link between innate and adaptive immunity is provided by dendritic cells (DCs). DCs can induce such contrasting states as immunity and tolerance. The recent years have brought a wealth of information on the biology of DCs revealing the complexity of this cell system. Indeed, DC plasticity and subsets are prominent determinants of the type and quality of elicited immune responses. Here we summarize our recent studies aimed at a better understanding of the DC system to unravel the pathophysiology of human diseases and design novel human vaccines. PMID:20193020

  6. Edible vaccines.

    PubMed

    Artnzen, C J

    1997-01-01

    Vaccines were the result of trial and error research until molecular biology and genetic engineering made possible the creation of of many new and improved vaccines. New vaccines need to be inexpensive, easily administered, and capable of being stored and transported without refrigeration; without these characteristics, developing countries find it difficult to adopt vaccination as the central strategy for preventing their most devastating diseases. The authors describe a promising approach to inexpensive and effective vaccines: producing them in plants we commonly consume.

  7. The thyroid hormone triiodothyronine reinvigorates dendritic cells and potentiates anti-tumor immunity.

    PubMed

    Alamino, V A; Montesinos, M M; Rabinovich, G A; Pellizas, C G

    Dendritic cell (DC) cancer vaccines have shown limited clinical benefit. Thus, the identification of signals and molecular pathways that potentiate the immunogenicity of DCs has become a major challenge in cancer research. Our studies demonstrate that triiodothyronine endows DCs with enhanced ability to stimulate cytotoxic T-cell responses with implications in DC-based immunotherapy.

  8. The thyroid hormone triiodothyronine reinvigorates dendritic cells and potentiates anti-tumor immunity

    PubMed Central

    Alamino, V.A.; Montesinos, M.M.; Rabinovich, G.A.; Pellizas, C.G.

    2016-01-01

    ABSTRACT Dendritic cell (DC) cancer vaccines have shown limited clinical benefit. Thus, the identification of signals and molecular pathways that potentiate the immunogenicity of DCs has become a major challenge in cancer research. Our studies demonstrate that triiodothyronine endows DCs with enhanced ability to stimulate cytotoxic T-cell responses with implications in DC-based immunotherapy. PMID:26942081

  9. RECENT DEVELOPMENTS IN CANCER VACCINES1

    PubMed Central

    Palucka, Karolina; Ueno, Hideki; Banchereau, Jacques

    2011-01-01

    SUMMARY The adoptive transfer of cancer antigen-specific effector T cells in patients can result in tumor rejection, thereby illustrating the immune system potential for cancer therapy. Ideally, one would like to directly induce efficient tumor-specific effector and memory T cells through vaccination. Therapeutic vaccines have two objectives: priming antigen-specific T cells and reprogramming memory T cells, i.e., a transformation from one type of immunity to another (e.g., regulatory to cytotoxic). Recent successful phase III clinical trials showing benefit to the patients revived cancer vaccines. Dendritic cells (DCs) are essential in generation of immune responses and as such represent targets and vectors for vaccination. We have learned that different DC subsets elicit different T cells. Similarly, different activation methods result in DCs able to elicit distinct T cells. We contend that a careful manipulation of activated DCs will allow cancer immunotherapists to produce the next generation of highly efficient cancer vaccines. PMID:21248270

  10. Vaccine safety.

    PubMed

    Jacobson, Robert M

    2003-11-01

    Rates of reported adverse events are remarkably low. VAERS identifies an adverse event rate approximating 11.4 reports per 100,000 vaccine doses. Approximately 15% of these reports represent SAEs, but less than 2% involve death; in most cases, reviews have shown no causal relation between the events and the vaccine. Across the spectrum of vaccines in use (including those directed against influenza and hepatitis B virus), many claims of adverse events regarding vaccines represent typical reactions to vaccinations. These reactions can be thought of as foreign-body reactions and predominate among the inactivated vaccines. In controlled studies, the adverse event rates that occur with vaccination resemble those that occur with placebo injections. Typical reactions associated with live viral and bacterial vaccines, such as MMR and varicella vaccines, may resemble attenuated forms of the disease for which the vaccine is directed. Other claims against vaccines represent chance-coincidence or misunderstood data; further studies of claims have vindicated the overall safety of the vaccines in most cases. Two documented safety concerns with vaccines, however, have demonstrated that vaccines (like other biologics and pharmacologic) can result in harm (eg, rotavirus and OPV vaccines). The denouement with these vaccines indicates the broad postmarketing data collection and evaluation that extends efforts made with prelicensure study to balance the benefits from vaccination with the risk for harm. Overall, measures including prelicensure study and postlicensure surveillance, such as VAERS, the Vaccine Safety Datalink Project, and the Clinical Immunization Safety Assessment Centers, have resulted in an exceptional safety profile for the vaccines in use.

  11. Rotavirus vaccines

    PubMed Central

    Yen, Catherine; Tate, Jacqueline E; Hyde, Terri B; Cortese, Margaret M; Lopman, Benjamin A; Jiang, Baoming; Glass, Roger I; Parashar, Umesh D

    2016-01-01

    Rotavirus is the leading cause of severe diarrhea among children <5 years worldwide. Currently licensed rotavirus vaccines have been efficacious and effective, with many countries reporting substantial declines in diarrheal and rotavirus-specific morbidity and mortality. However, the full public health impact of these vaccines has not been realized. Most countries, including those with the highest disease burden, have not yet introduced rotavirus vaccines into their national immunization programs. Research activities that may help inform vaccine introduction decisions include (1) establishing effectiveness, impact, and safety for rotavirus vaccines in low-income settings; (2) identifying potential strategies to improve performance of oral rotavirus vaccines in developing countries, such as zinc supplementation; and (3) pursuing alternate approaches to oral vaccines, such as parenteral immunization. Policy- and program-level barriers, such as financial implications of new vaccine introductions, should be addressed to ensure that countries are able to make informed decisions regarding rotavirus vaccine introduction. PMID:24755452

  12. Peripheral blood lymphocytes from low-grade squamous intraepithelial lesions patients recognize vaccine antigens in the presence of activated dendritic cells, and produced high levels of CD8 + IFNγ + T cells and low levels of IL-2 when induced to proliferate

    PubMed Central

    2012-01-01

    Background Most infections with human papillomavirus (HPV) are resolved without clinical intervention, but a minority evolves into chronic lesions of distinct grades, including cervical-uterine cancer. It is known that in most cases the immune system mediates elimination of HPV infection. However, the mechanism of immune evasion leading to HPV persistence and development of early cervical lesions is not fully understood. The aim of the present work was to evaluate the potential of peripheral blood leukocytes (PBL) from low-grade squamous intraepithelial lesions (LSIL) patients to be activated ex-vivo by vaccine antigens, the participation of cytotoxic lymphocytes and regulatory T cells, and to determine the secretion of Th1 and Th2 cytokines mediated by stimulation of T cell receptors. Results We found that PBL from LSIL patients showed a significantly lower proliferation rate to vaccine antigens as compared to that of healthy donors, even though there was not a difference in the presence of antibodies to those antigens in sera from both groups. We did not find differences in either the frequency of CD4 + CD25 + FoxP3+ in PBL, or the levels of IL-4, IL-5 and IL-10 in plasma or conditioned media from PBL incubated with TcR agonists in vitro, between the two groups. However, we detected a lower production of IL-2 and a higher proportion of CD8 + IFNγ + cells in PBL from LSIL patients as compared with PBL from normal donors. We also observed that PBL from patients infected by HPV-16 and −18 were not able to proliferate in the presence of soluble HPV antigens added to the culture; however, a high level of proliferation was attained when these antigens were presented by activated dendritic cells. Conclusions Our results suggest that the immunodeficiency reported in LSIL patients could be due to the inability of specific cytotoxic T lymphocytes that for some unknown reason are present but unable to mount a response when challenged with their antigens

  13. Effect of glycoamphiphiles on the solubilization and dendritic cell uptake of a lipopeptide: a preliminary study.

    PubMed

    Bonnet, Dominique; Angyalosi, Gerhild; Demory, Alexandra; Santraine, Valérie; Boulet, Arnaud; Spriet, Corentin; Héliot, Laurent; Gras-Masse, Hélène; Grandjean, Cyrille

    2005-01-01

    The selective delivery of antigens to professional antigen-presenting cells represents a promising approach to improve vaccine efficacy. Addition of a glycoamphiphile to a lipopeptide, whose interest for vaccination is now well-established, greatly favors its solubilization in aqueous solutions through the formation of mixed vesicles. Flow cytometry experiments indicate that this formulation does not diminish the uptake of the lipopeptide by the dendritic cells (DCs). These preliminary results suggest a possible straightforward, noncovalent targeting of cocktail-lipopeptide vaccines to the DCs via carbohydrate receptor-mediated endocytosis.

  14. Dendritic cells in cancer immunotherapy clinical trials: are we making progress?

    PubMed

    Butterfield, Lisa H

    2013-12-13

    Dendritic cells (DC) have been tested in cancer immunotherapy clinical trials for two decades. Over this time, the methods of DC culture (or manufacture) have evolved, the approaches for antigen loading have broadened, the maturation signals have varied and different sites of administration have been tested. The post-vaccination immunologic questions asked have also varied between trials and over time. In this review, I will consider multiple aspects of DC-based vaccines tested in cancer patients, including the cell culture, antigen loading, maturation, and delivery, as well as what we have learned from testing immune responses in vaccinated patients who have benefited clinically, and those who have not measurably benefited.

  15. Developing dendrites demonstrate unexpected specificity.

    PubMed

    Chalupa, Leo M

    2006-11-22

    Our knowledge of how developing dendrites attain their mature state is still rudimentary. In this issue of Neuron, Mumm et al. rely on time-lapsed analysis of ingrowing dendrites of retinal ganglion cells in transgenic zebrafish to show that this process is much more specific than has been suspected.

  16. DENGUE VACCINES.

    PubMed

    Thisyakorn, Usa; Thisyakorn, Chule

    2015-01-01

    The uniqueness of the dengue viruses (DENVs) and the spectrum of disease resulting from infection have made dengue vaccine development difficult. Several vaccine candidates are currently being evaluated in clinical studies. The candidate currently at the most advanced clinical development stage, a live-attenuated tetravalent vaccine based on the chimeric yellow fever-dengue virus (CYD-TDV), has progressed to Phase 3 efficacy studies. Several other live-attenuated vaccines, as well as subunit, DNA, and purified inactivated vaccine candidates are at earlier stages of clinical development. Additional technological approaches, such as virus-vectored and Virus-Like Particles (VLP)-based vaccines are under evaluation in preclinical studies.

  17. Beyond empiricism: informing vaccine development through innate immunity research.

    PubMed

    Levitz, Stuart M; Golenbock, Douglas T

    2012-03-16

    Although a great public heath success, vaccines provide suboptimal protection in some patient populations and are not available to protect against many infectious diseases. Insights from innate immunity research have led to a better understanding of how existing vaccines work and have informed vaccine development. New adjuvants and delivery systems are being designed based upon their capacity to stimulate innate immune sensors and target antigens to dendritic cells, the cells responsible for initiating adaptive immune responses. Incorporating these adjuvants and delivery systems in vaccines can beneficially alter the quantitative and qualitative nature of the adaptive immune response, resulting in enhanced protection.

  18. Phenotype and function of nasal dendritic cells

    PubMed Central

    Lee, Haekyung; Ruane, Darren; Law, Kenneth; Ho, Yan; Garg, Aakash; Rahman, Adeeb; Esterházy, Daria; Cheong, Cheolho; Goljo, Erden; Sikora, Andrew G.; Mucida, Daniel; Chen, Benjamin; Govindraj, Satish; Breton, Gaëlle; Mehandru, Saurabh

    2015-01-01

    Intranasal vaccination generates immunity across local, regional and distant sites. However, nasal dendritic cells (DC), pivotal for the induction of intranasal vaccine- induced immune responses, have not been studied in detail. Here, using a variety of parameters, we define nasal DCs in mice and humans. Distinct subsets of “classical” DCs, dependent on the transcription factor zbtb46 were identified in the murine nose. The murine nasal DCs were FLT3 ligand-responsive and displayed unique phenotypic and functional characteristics including the ability to present antigen, induce an allogeneic T cell response and migrate in response to LPS or live bacterial pathogens. Importantly, in a cohort of human volunteers, BDCA-1+ DCs were observed to be the dominant nasal DC population at steady state. During chronic inflammation, the frequency of both BDCA-1+ and BDCA-3hi DCs was reduced in the nasal tissue, associating the loss of these immune sentinels with chronic nasal inflammation. The present study is the first detailed description of the phenotypic, ontogenetic and functional properties of nasal DCs and will inform the design of preventative immunization strategies as well as therapeutic modalities against chronic rhinosinusitis. PMID:25669151

  19. [Cell based therapy for COPD].

    PubMed

    Kubo, Hiroshi

    2007-04-01

    To develop a new cell based therapy for chronic obstructive pulmonary disease (COPD), we need to understand 1) the role of tissue-specific and bone marrow-derived stem cells, 2) extracellular matrix, and 3) growth factors. Recently, bronchioalveolar stem cells were identified in murine distal lungs. Impairment of these stem cells may cause improper lung repair after inflammation, resulting in pulmonary emphysema. Bone marrow-derived cells are necessary to repair injured lungs. However, the long term role of these cells is not understood yet. Although we need more careful analysis and additional experiments, growth factors, such as hepatocyte growth factor, are good candidates for the new cell based therapy for COPD. Lung was believed as a non-regenerative organ. Based on these recent reports about lung regeneration and stem cells, however, new strategies to treat COPD and a new point of view to understand the pathophysiology of COPD are rising.

  20. Vaccines (immunizations) - overview

    MedlinePlus

    ... diphtheria, mumps, measles, pertussis (whooping cough), meningitis, and polio. Many of these infections can cause serious or ... MMR - vaccine Pneumococcal conjugate vaccine Pneumococcal polysaccharide ... (vaccine) Rotavirus vaccine Tdap vaccine Tetanus - vaccine

  1. Vaccine Safety

    MedlinePlus

    ... FAQs about Vaccine Safety Research Publications HDM Reports ISO Scientific Agenda Ensuring Safety History Understanding Side Effects ... Datalink Publications Emergency Preparedness Vaccine Safety Partners About ISO File Formats Help: How do I view different ...

  2. How advances in immunology provide insight into improving vaccine efficacy

    PubMed Central

    Slifka, Mark K.; Amanna, Ian

    2014-01-01

    Vaccines represent one of the most compelling examples of how biomedical research has improved society by saving lives and dramatically reducing the burden of infectious disease. Despite the importance of vaccinology, we are still in the early stages of understanding how the best vaccines work and how we can achieve better protective efficacy through improved vaccine design. Most successful vaccines have been developed empirically, but recent advances in immunology are beginning to shed new light on the mechanisms of vaccine-mediated protection and development of long-term immunity. Although natural infection will often elicit lifelong immunity, almost all current vaccines require booster vaccination in order to achieve durable protective humoral immune responses, regardless of whether the vaccine is based on infection with replicating live-attenuated vaccine strains of the specific pathogen or whether they are derived from immunization with inactivated, non-replicating vaccines or subunit vaccines. The form of the vaccine antigen (e.g., soluble or particulate/aggregate) appears to play an important role in determining immunogenicity and the interactions between dendritic cells, B cells and T cells in the germinal center are likely to dictate the magnitude and duration of protective immunity. By learning how to optimize these interactions, we may be able to elicit more effective and long-lived immunity with fewer vaccinations. PMID:24709587

  3. Equiaxed Dendritic Solidification Experiment (EDSE)

    NASA Technical Reports Server (NTRS)

    Beckermann, C.; Steinbach, I.; Karma, A.; deGroh, H. C., III

    1999-01-01

    The objective of the research is to quantitatively determine and understand the fundamental mechanisms that control the microstructural evolution during solidification of an assemblage of equiaxed dendritic crystals. A microgravity experiment will be conducted to obtain benchmark data on the transient growth and interaction of up to four equiaxed crystals of a pure and transparent metal analog (succinonitrile, SCN) under strictly diffusion dominated conditions. Of interest in the experiment are the transient evolution of the primary and secondary dendrite tip speeds, the dendrite morphology (i.e., tip radii, branch spacings, etc.) and solid fraction, the tip selection criterion, and the temperature field in the melt for a range of initial supercoolings and, thus, interaction "strengths" between the crystals. The experiment thus extends the microgravity measurements of Glicksman and coworkers for steady growth of a single dendrite [Isothermal Dendritic Growth Experiment (IDGE), first flown on USMP-2] to a case where growth transients are introduced due to thermal interactions between neighboring dendrites - a situation more close to actual casting conditions. Corresponding earth-based experiments will be conducted to ascertain the influence of melt convection. The experiments are supported by a variety of analytical models and numerical simulations. The data will primarily be used to develop and test theories of transient dendritic growth and the solidification of multiple interacting equiaxed crystals in a supercooled melt.

  4. Equiaxed Dendritic Solidification Experiment (EDSE)

    NASA Technical Reports Server (NTRS)

    Beckermann, C.; Karma, A.; Steinbach, I.; deGroh, H. C., III

    2001-01-01

    The objective of the research is to quantitatively determine and understand the fundamental mechanisms that control the microstructural evolution during equiaxed dendritic solidification. A microgravity experiment will be conducted to obtain benchmark data on the transient growth and interaction of up to four equiaxed crystals of a pure and transparent metal analog (succinonitrile, SCN) under strictly diffusion-dominated conditions. Of interest in the experiment are the transient evolution of the primary and secondary dendrite tip speeds, the dendrite morphology and solid fraction, the tip selection criterion, and the temperature field in the melt for a range of interaction "strengths" between the crystals. The experiment extends the microgravity measurements of Glicksman and co-workers isothermal dendritic growth experiment (IDGE) for steady growth of a single dendrite to a case where growth transients are introduced due to thermal interactions between neighboring dendrites - a situation closer to actual casting conditions. Corresponding Earth-based experiments will be conducted to ascertain the influence of melt convection. The experiments are supported by a variety of analytical models and numerical simulations. The data will be used to develop and test theories of transient dendritic growth and the solidification of multiple interacting equiaxed crystals in a supercooled melt.

  5. Exogenous addition of arachidonic acid to the culture media enhances the functionality of dendritic cells for their possible use in cancer immunotherapy.

    PubMed

    Kumar, Jeetendra; Gurav, Rupali; Kale, Vaijayanti; Limaye, Lalita

    2014-01-01

    The development of dendritic cell based vaccines is a promising approach in cancer immunotherapy. For their successful use in the clinics, the propagation and functionality of DCs is crucial. We earlier established a two-step method for the large scale generation of DCs from umbilical cord blood derived MNCs/CD34(+) cells. This work aims at improving their functionality based on the following observations: in vitro generated DCs can be less efficient in migration and other functional activities due to lower eicosanoid levels. The production of eicosanoids from Arachidonic Acid (AA) can be hampered due to suppression of the enzyme phospholipase A2 by IL-4, an essential cytokine required for the differentiation of DCs. We hypothesized that exogenous addition of AA to the culture media during DC generation may result in DCs with improved functionality. DCs were generated with and without AA. The two DC sets were compared by phenotypic analysis, morphology and functional assays like antigen uptake, MLR, CTL assay and in vitro and in vivo migration. Though there were no differences between the two types of DCs in terms of morphology, phenotype and antigen uptake, AA(+) DCs exhibited an enhanced in vitro and in vivo migration, T cell stimulatory capacity, CTL activity and significantly higher transcript levels of COX-2. AA(+) DCs also show a favorable Th1 cytokine profile than AA- DCs. Thus addition of AA to the culture media is skewing the DCs towards the secretion of more IL-12 and less of IL-10 along with the restoration of eicosanoids levels in a COX-2 mediated pathway thereby enhancing the functionality of these cells to be used as a potent cellular vaccine. Taken together, these findings will be helpful in the better contriving of DC based vaccines for cancer immunotherapy.

  6. Dendritic Growth Velocities in Microgravity

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.; Koss, M. B.; Winsa, E. A.

    1994-01-01

    We measured dendritic tip velocities in pure succinonitrile (SCN) in microgravity. using a sequence of telemetered binary images sent to Earth from the Space Shuttle Columbia (STS-62). Growth velocities were measured as a function of the supercooling over the range 0.05-1.5 K. Microgravity observations show that buoyancy-induced convection alters the growth kinetics of SCN dendrites at supercooling as high as 1.3 K. Also, the dendrite velocity data measured under microgravity agree well with the Ivantsov paraboloidal diffusion solution when coupled to a scaling constant of sigma(sup *) = 0.0157.

  7. Edible vaccines.

    PubMed Central

    Artnzen, C J

    1997-01-01

    Vaccines were the result of trial and error research until molecular biology and genetic engineering made possible the creation of of many new and improved vaccines. New vaccines need to be inexpensive, easily administered, and capable of being stored and transported without refrigeration; without these characteristics, developing countries find it difficult to adopt vaccination as the central strategy for preventing their most devastating diseases. The authors describe a promising approach to inexpensive and effective vaccines: producing them in plants we commonly consume. Images p190-a p191-a p193-a p196-a PMID:9182305

  8. DNA vaccines

    NASA Astrophysics Data System (ADS)

    Gregersen, Jens-Peter

    2001-12-01

    Immunization by genes encoding immunogens, rather than with the immunogen itself, has opened up new possibilities for vaccine research and development and offers chances for new applications and indications for future vaccines. The underlying mechanisms of antigen processing, immune presentation and regulation of immune responses raise high expectations for new and more effective prophylactic or therapeutic vaccines, particularly for vaccines against chronic or persistent infectious diseases and tumors. Our current knowledge and experience of DNA vaccination is summarized and critically reviewed with particular attention to basic immunological mechanisms, the construction of plasmids, screening for protective immunogens to be encoded by these plasmids, modes of application, pharmacokinetics, safety and immunotoxicological aspects. DNA vaccines have the potential to accelerate the research phase of new vaccines and to improve the chances of success, since finding new immunogens with the desired properties is at least technically less demanding than for conventional vaccines. However, on the way to innovative vaccine products, several hurdles have to be overcome. The efficacy of DNA vaccines in humans appears to be much less than indicated by early studies in mice. Open questions remain concerning the persistence and distribution of inoculated plasmid DNA in vivo, its potential to express antigens inappropriately, or the potentially deleterious ability to insert genes into the host cell's genome. Furthermore, the possibility of inducing immunotolerance or autoimmune diseases also needs to be investigated more thoroughly, in order to arrive at a well-founded consensus, which justifies the widespread application of DNA vaccines in a healthy population.

  9. [Antiviral vaccines].

    PubMed

    Girard, M

    1999-01-01

    Vaccination has been successful in controlling numerous diseases in man and animals. Smallpox has been eradicated and poliomyelitis is on the verge of being eradicated. The traditional immunization arsenal includes vaccines using live, attenuated, and inactivated organisms. DNA recombinant technology has added two new types of vaccines, i.e. subunit vaccines based on purified antigens produced by genetic engineering in bacterial, yeast, or animal-cell cultures and live recombinant vaccines based on attenuated bacterial or viral vectors. Currently the best known examples of these new vaccines are those using poxvirus vectors (vaccinia virus, canarypox virus, or fowlpox virus) but new vectors are under development. Another application for genetic engineering in the field of vaccinology is the development of DNA vaccines using naked plasmid DNA. This technique has achieved remarkable results in small rodents but its efficacy, safety, and feasibility in man has yet to be demonstrated. Numerous studies are now under way to improve the process. In the field of synthetic vaccines, lipopeptides have shown promise for induction of cell immune response. Development of vaccines for administration by the oral or nasal route may one day revolutionize vaccination techniques. However, effective vaccines against hepatitis C and HIV have stalled in the face of the complexity and pathophysiology of these diseases. These are the greatest challenges confronting scientists at the dawn of the new millennium.

  10. Directing dendritic cell immunotherapy towards successful cancer treatment

    PubMed Central

    Sabado, Rachel Lubong; Bhardwaj, Nina

    2010-01-01

    The use of dendritic cells (DCs) for tumor immunotherapy represents a powerful approach for harnessing the patient's own immune system to eliminate tumor cells. However, suboptimal conditions for generating potent immunostimulatory DCs, as well as the induction of tolerance and suppression mediated by the tumors and its microenvironment have contributed to limited success. Combining DC vaccines with new approaches that enhance immunogenicity and overcome the regulatory mechanisms underlying peripheral tolerance may be the key to achieving effective and durable anti-tumor immune responses that translate to better clinical outcomes. PMID:20473346

  11. Safe and Reproducible Preparation of Functional Dendritic Cells for Immunotherapy in Glioblastoma Patients

    PubMed Central

    Lisini, Daniela; Pogliani, Simona; Dossena, Marta; Bersano, Anna; Pellegatta, Serena; Parati, Eugenio; Finocchiaro, Gaetano; Frigerio, Simona

    2015-01-01

    final product. This article summarizes the results of the quality controls on 54 batches, to demonstrate the feasibility of producing a therapeutic cell-based vaccine via a well-controlled Good Manufacturing Practices (GMP)-compliant production process. The findings may be of scientific interest to those working in the field of preparation of GMP-compliant products for cell-therapy applications. PMID:26273063

  12. Recent Advances in Subunit Vaccine Carriers

    PubMed Central

    Vartak, Abhishek; Sucheck, Steven J.

    2016-01-01

    The lower immunogenicity of synthetic subunit antigens, compared to live attenuated vaccines, is being addressed with improved vaccine carriers. Recent reports indicate that the physio-chemical properties of these carriers can be altered to achieve optimal antigen presentation, endosomal escape, particle bio-distribution, and cellular trafficking. The carriers can be modified with various antigens and ligands for dendritic cells targeting. They can also be modified with adjuvants, either covalently or entrapped in the matrix, to improve cellular and humoral immune responses against the antigen. As a result, these multi-functional carrier systems are being explored for use in active immunotherapy against cancer and infectious diseases. Advancing technology, improved analytical methods, and use of computational methodology have also contributed to the development of subunit vaccine carriers. This review details recent breakthroughs in the design of nano-particulate vaccine carriers, including liposomes, polymeric nanoparticles, and inorganic nanoparticles. PMID:27104575

  13. Gold nanorod vaccine for respiratory syncytial virus

    NASA Astrophysics Data System (ADS)

    Stone, John W.; Thornburg, Natalie J.; Blum, David L.; Kuhn, Sam J.; Wright, David W.; Crowe, James E., Jr.

    2013-07-01

    Respiratory syncytial virus (RSV) is a major cause of pneumonia and wheezing in infants and the elderly, but to date there is no licensed vaccine. We developed a gold nanorod construct that displayed the major protective antigen of the virus, the fusion protein (F). Nanorods conjugated to RSV F were formulated as a candidate vaccine preparation by covalent attachment of viral protein using a layer-by-layer approach. In vitro studies using ELISA, electron microscopy and circular dichroism revealed that conformation-dependent epitopes were maintained during conjugation, and transmission electron microscopy studies showed that a dispersed population of particles could be achieved. Human dendritic cells treated with the vaccine induced immune responses in primary human T cells. These results suggest that this vaccine approach may be a potent method for immunizing against viruses such as RSV with surface glycoproteins that are targets for the human immune response.

  14. Optimal Current Transfer in Dendrites

    PubMed Central

    Bird, Alex D.

    2016-01-01

    Integration of synaptic currents across an extensive dendritic tree is a prerequisite for computation in the brain. Dendritic tapering away from the soma has been suggested to both equalise contributions from synapses at different locations and maximise the current transfer to the soma. To find out how this is achieved precisely, an analytical solution for the current transfer in dendrites with arbitrary taper is required. We derive here an asymptotic approximation that accurately matches results from numerical simulations. From this we then determine the diameter profile that maximises the current transfer to the soma. We find a simple quadratic form that matches diameters obtained experimentally, indicating a fundamental architectural principle of the brain that links dendritic diameters to signal transmission. PMID:27145441

  15. Human Neural Cell-Based Biosensor

    DTIC Science & Technology

    2011-06-11

    astrocytes using defined medium conditions, (3) cell-based methods to detect botulinum toxin, and (4) HTS amenable assays for proliferation...progenitors into dopaminergic neurons, motoneurons and astrocytes using defined medium conditions, (3) cell-based methods to detect botulinum toxin...cell line developed for potential commercial distribution. (3) Development of cell based methods to detect botulinum toxin There has been

  16. The Isothermal Dendritic Growth Experiment

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.; Koss, M. B.; Malarik, D. C.

    1998-01-01

    The growth of dendrites is one of the commonly observed forms of solidification encountered when metals and alloys freeze under low thermal gradients, as occurs in most casting and welding processes. In engineering alloys, the details of the dendritic morphology directly relates to important material responses and properties. Of more generic interest, dendritic growth is also an archetypical problem in morphogenesis, where a complex pattern evolves from simple starting conditions. Thus, the physical understanding and mathematical description of how dendritic patterns emerge during the growth process are of interest to both scientists and engineers. The Isothermal Dendritic Growth Experiment (IDGE) is a basic science experiment designed to measure, for a fundamental test of theory, the kinetics and morphology of dendritic growth without complications induced by gravity-driven convection. The IDGE, a collaboration between Rensselaer Polytechnic Institute, in Troy NY, and NASA's Lewis Research Center (LeRC) was developed over a ten year period from a ground-based research program into a space flight experiment. Important to the success of this flight experiment was provision of in situ near-real-time teleoperations during the spaceflight experiment.

  17. Dendritic cell immunotherapy versus bevacizumab plus irinotecan in recurrent malignant glioma patients: a survival gain analysis

    PubMed Central

    Artene, Stefan-Alexandru; Turcu-Stiolica, Adina; Hartley, Richard; Ciurea, Marius Eugen; Daianu, Oana; Brindusa, Corina; Alexandru, Oana; Tataranu, Ligia Gabriela; Purcaru, Stefana Oana; Dricu, Anica

    2016-01-01

    Background The bevacizumab and irinotecan protocol is considered a standard treatment regimen for recurrent malignant glioma. Recent advances in immunotherapy have hinted that vaccination with dendritic cells could become an alternative salvage therapy for the treatment of recurrent malignant glioma. Methods A search was performed on PubMed, Cochrane Library, Web of Science, ScienceDirect, and Embase in order to identify studies with patients receiving bevacizumab plus irinotecan or dendritic cell therapy for recurrent malignant gliomas. The data obtained from these studies were used to perform a systematic review and survival gain analysis. Results Fourteen clinical studies with patients receiving either bevacizumab plus irinotecan or dendritic cell vaccination were identified. Seven studies followed patients that received bevacizumab plus irinotecan (302 patients) and seven studies included patients that received dendritic cell immunotherapy (80 patients). For the patients who received bevacizumab plus irinotecan, the mean reported median overall survival was 7.5 (95% confidence interval [CI] 4.84–10.16) months. For the patients who received dendritic cell immunotherapy, the mean reported median overall survival was 17.9 (95% CI 11.34–24.46) months. For irinotecan + bevacizumab group, the mean survival gain was −0.02±2.00, while that for the dendritic cell immunotherapy group was −0.01±4.54. Conclusion For patients with recurrent malignant gliomas, dendritic cell immunotherapy treatment does not have a significantly different effect when compared with bevacizumab and irinotecan in terms of survival gain (P=0.535) and does not improve weighted survival gain (P=0.620). PMID:27877052

  18. Novel chemotactic-antigen DNA vaccine against cancer.

    PubMed

    Zhang, Shuren; Zhang, Youhui

    2008-04-01

    Dendritic cells play a pivotal role in immune induction. Dendritic cells perform antigen uptake, processing and presentation to T cells only when they are matured and in the functional state. In the development of a vaccine, it is of utmost importance to consider how to make dendritic cells' functions immunologically adequate. In this paper, we report the development of a series of antitumor DNA vaccines with similar structural framework, in which a gene encoding tumor-associated antigenic peptide is ligated upstream to the gene coding secondary lymphoid-tissue chemokine and downstream to the gene encoding the Fc portion of IgG (named chemotactic-antigen DNA vaccine [CADV]). CCR7(+) T, B, natural killer and dendritic cells can be attracted by secondary lymphoid-tissue chemokine, and Fc facilitates antigen uptake via Fc receptors expressed on dendritic cells. In a series of experiments in mice vaccinated by CADV with such tumor-associated antigenic specificities as HPV-16 E7, PSA-PSM-PAP, HER-2/neu, p53 and hTERT, CADV can attract immune cells to the vaccine inoculation site, remarkably inhibit tumor growth and extend survival time in tumor-bearing mice. The antitumor effect is more efficacious than that in mice treated with SLC-Ag or Ag-Fc hybrid gene. Tumor-associated antigenic-specific cytotoxic T lymphocytes can be induced by in vitro experiment in a human system. When combined with measures blocking the negative immune feedback circuits, the therapeutic effect of the vaccine can be further enhanced. Large-scale production of CADV is possible for clinical application.

  19. Hepatitis Vaccines

    PubMed Central

    Ogholikhan, Sina; Schwarz, Kathleen B.

    2016-01-01

    Viral hepatitis is a serious health problem all over the world. However, the reduction of the morbidity and mortality due to vaccinations against hepatitis A and hepatitis B has been a major component in the overall reduction in vaccine preventable diseases. We will discuss the epidemiology, vaccine development, and post-vaccination effects of the hepatitis A and B virus. In addition, we discuss attempts to provide hepatitis D vaccine for the 350 million individuals infected with hepatitis B globally. Given the lack of a hepatitis C vaccine, the many challenges facing the production of a hepatitis C vaccine will be shown, along with current and former vaccination trials. As there is no current FDA-approved hepatitis E vaccine, we will present vaccination data that is available in the rest of the world. Finally, we will discuss the existing challenges and questions facing future endeavors for each of the hepatitis viruses, with efforts continuing to focus on dramatically reducing the morbidity and mortality associated with these serious infections of the liver. PMID:26978406

  20. Porcine B-cell activating factor promotes anti-FMDV antibodies in vitro but not in vivo after DNA vaccination of pigs.

    PubMed

    Bergamin, Fabio; Saurer, Leslie; Neuhaus, Viviane; McCullough, Kenneth C; Summerfield, Artur

    2007-12-15

    'B-cell activating factor belonging to the TNF family' (BAFF) represents a cytokine produced by antigen presenting cells promoting B-cell maturation, activation and immunoglobulin class switching. In the present study, we demonstrate expression of BAFF on cultured monocyte-derived dendritic cells, which is further enhanced by interferon-alpha or interferon-gamma treatment. From these cells, porcine BAFF was cloned and the recombinant protein was expressed in mammalian cells with and without a FLAG tag at the carboxyl terminus. Only the protein without the FLAG tag was bioactive in vitro, and promoted B-cell survival and the differentiation of foot-and-mouth disease virus (FMDV)-specific memory B cells into antibody producing cells. Based on this result it was tested whether BAFF can enhance FMDV antibody responses in the context of a DNA vaccination. To this end, pigs were immunised with the anti-FMDV DNA vaccine plasmid pcDNA3.1/P1-2A3C3D and a pCI plasmid expressing porcine BAFF. Using a needle-free transdermal application method, also referred to as 'jet injection', pigs were vaccinated three times and their humoral response quantified by ELISA and a virus neutralisation test. After the third vaccination, three out of six animals vaccinated with the pcDNA3.1/P1-2A3C3D alone but none of the animals that also received the BAFF expressing plasmid had seroconverted. These data suggest that BAFF is not appropriate as a genetic adjuvant when applied as a simple co-injection with the antigen-encoding plasmid.

  1. Immune response triggered by Brucella abortus following infection or vaccination.

    PubMed

    Dorneles, Elaine M S; Teixeira-Carvalho, Andréa; Araújo, Márcio S S; Sriranganathan, Nammalwar; Lage, Andrey P

    2015-07-17

    Brucella abortus live vaccines have been used successfully to control bovine brucellosis worldwide for decades. However, due to some limitations of these live vaccines, efforts are being made for the development of new safer and more effective vaccines that could also be used in other susceptible species. In this context, understanding the protective immune responses triggered by B. abortus is critical for the development of new vaccines. Such understandings will enhance our knowledge of the host/pathogen interactions and enable to develop methods to evaluate potential vaccines and innovative treatments for animals or humans. At present, almost all the knowledge regarding B. abortus specific immunological responses comes from studies in mice. Active participation of macrophages, dendritic cells, IFN-γ producing CD4(+) T-cells and cytotoxic CD8(+) T-cells are vital to overcome the infection. In this review, we discuss the characteristics of the immune responses triggered by vaccination versus infection by B. abortus, in different hosts.

  2. Vaccine Adverse Events

    MedlinePlus

    ... Vaccines, Blood & Biologics Animal & Veterinary Cosmetics Tobacco Products Vaccines, Blood & Biologics Home Vaccines, Blood & Biologics Safety & Availability ( ... Center for Biologics Evaluation & Research Vaccine Adverse Events Vaccine Adverse Events Share Tweet Linkedin Pin it More ...

  3. Vaccines.gov

    MedlinePlus

    ... Statements Vaccine Approvals Features: News & Video Free Resources Vaccines are safe, effective, and save lives. Find answers ... by science, on vaccine safety. Are your child’s vaccines up to date? Getting all recommended vaccines on ...

  4. Selection and characterization of vaccine strain for Enterovirus 71 vaccine development.

    PubMed

    Chang, Jui-Yuan; Chang, Cheng-Peng; Tsai, Hutchinson Hau-Pong; Lee, Chen-Dou; Lian, Wei-Cheng; Ih-Jen-Su; Sai, I-Hsi; Liu, Chia-Chyi; Chou, Ai-Hsiang; Lu, Ya-Jung; Chen, Ching-Yao; Lee, Pi-Hsiu; Chiang, Jen-Ron; Chong, Pele Choi-Sing

    2012-01-17

    Enterovirus 71 (EV71) has recently emerged as an important neurotropic virus in Asia because effective medications and prophylactic vaccine against EV71 infection are not available. Based on the success of inactivated poliovirus vaccine, the Vero cell-based chemically inactivated EV71 vaccine candidate could be developed. Identification of EV71 vaccine strain which can grow to high titer in Vero cell and induce cross-genotype virus neutralizing antibody responses represents the first step in vaccine development. In this report we describe the characterization and validation of a clinical isolate E59 belonging to B4 sub-genotype based on VP1 genetic analysis. Before selected as the vaccine strain, the genetic stability of E59 in passage had been analyzed based on the nucleotide sequences obtained from the Master Virus Seed, Working Seed banks and the virus harvested from the production lots, and found to be identical to those found in the original isolate. These results indicate that E59 vaccine strain has strong genetic stability in passage. Using this vaccine strain the prototype EV71 vaccine candidate was produced from 20L of Vero cell grown in serum-containing medium. The production processes were investigated, characterized and quantified to establish the potential vaccine manufacturing process including the time for virus harvest, the membrane for diafiltration and concentration, the gel-filtration chromatography for the down-stream virus purification, and the methods for viral inactivation. Finally, the inactivated virion vaccine candidate containing sub-microgram of viral proteins formulated with alum adjuvant was found to induce strong virus neutralizing antibody responses in mice and rabbits. Therefore, these results provide valuable information for cell-based EV71 vaccine development.

  5. Revving Up Dendritic Cells while Braking PD-L1 to Jump-Start the Cancer-Immunity Cycle Motor.

    PubMed

    Coffelt, Seth B; de Visser, Karin E

    2016-04-19

    Although it is successful for some, most melanoma patients are refractory to T cell checkpoint inhibition. In this issue of Immunity, Merad and colleagues (2016) describe a dendritic-cell-based strategy to heighten the efficacy of therapeutic anti-PD-L1 and BRAF inhibitors in mouse melanoma models.

  6. [HPV vaccination].

    PubMed

    Stronski Huwiler, Susanne; Spaar, Anne

    2016-01-01

    Human Papilloma Viruses are associated with genital carcinoma (of the cervix, anus, vulva, vagina and the penis) as well as with non-genital carcinoma (oropharyngeal carcinoma) and genital warts. In Switzerland two highly efficient and safe vaccines are available. The safety of these vaccines has been repeatedly subject of controversial discussions, however so far post marketing surveillance has always been able to confirm the safety. In Switzerland girls and young women have been offered the HPV vaccination within cantonal programmes since 2008. 2015 the recommendation for the HPV-vaccination for boys and young men was issued, and starting July 1, 2016 they as well will be offered vaccination free of charge within the cantonal programmes. This article discusses the burden of disease, efficacy and safety of the vaccines and presents facts which are important for vaccinating these young people. Specifically, aspects of the decisional capacity of adolescents to consent to the vaccination are presented. Finally, the future perspective with a focus on a new vaccine with an enlarged spectrum of HPV-types is discussed.

  7. Homophilic Dscam interactions control complex dendrite morphogenesis

    PubMed Central

    Hughes, Michael E.; Bortnick, Rachel; Tsubouchi, Asako; Bäumer, Philipp; Kondo, Masahiro; Uemura, Tadashi; Schmucker, Dietmar

    2007-01-01

    Summary The morphogenesis of complex dendritic fields requires highly specific patterning and dendrite-dendrite recognition mechanisms. Alternative splicing of the Drosophila cell surface receptor Dscam results in up to 38,016 different receptor isoforms and in vitro binding studies suggested that sequence variability in immunoglobulin-like ecto-domains determines the specificity of strictly homophilic interactions. We report that diverse Dscam receptors play an important role in controlling cell-intrinsic aspects of dendrite guidance. We examined the function of Dscam during morphogenesis of dendrite arborization neurons (“da” neurons) and found that loss of Dscam in single neurons causes abnormal dendritic fasciculation and a strong increase in self-crossing of dendritic branches of da neurons. Restriction of dendritic fields of neighboring class III neurons appeared intact in Dscam deficient neurons suggesting that dendritic self-avoidance but not hetero-neuronal tiling may depend on Dscam function. Over-expression of the same Dscam isoforms in two da neurons with normally overlapping dendritic fields forced a spatial segregation of the two dendritic fields. Taken together, our results suggest that dendritic branches of all four classes of da neurons use isoform-specific homophilic interactions of Dscam to ensure minimal overlap of dendrites. The large pool of Dscam’s extracellular recognition domains may allow the same ‘core’ repulsion mechanism to be used in every da neuron without interfering with hetero-neuronal interactions. PMID:17481395

  8. Micelle-Based Adjuvants for Subunit Vaccine Delivery

    PubMed Central

    Trimaille, Thomas; Verrier, Bernard

    2015-01-01

    In the development of subunit vaccines with purified or recombinant antigens for cancer and infectious diseases, the design of improved and safe adjuvants able to efficiently target the antigen presenting cells, such as dendritic cells, represents a crucial challenge. Nanoparticle-based antigen delivery systems have been identified as an innovative strategy to improve the efficacy of subunit vaccines. Among them, self-assembled micellar nanoparticles from amphiphilic (macro)molecules have recently emerged as promising candidates. In this short review, we report on the recent research findings highlighting the versatility and potential of such systems in vaccine delivery. PMID:26426060

  9. Gravitational effects in dendritic growth

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.; Singh, N. B.; Chopra, M.

    1983-01-01

    The theories of diffusion-controlled dendritic crystallization will be reviewed briefly, along with recently published critical experiments on the kinetics and morphology of dendritic growth in pure substances. The influence of the gravitational body force on dendrite growth kinetics will be shown to be highly dependent on the growth orientation with respect to the gravity vector and on the level of the thermal supercooling. In fact, an abrupt transition occurs at a critical supercooling, above which diffusional transport dominates the growth process and below which convective transport dominates. Our most recent work on binary mixtures shows that dilute solute additions influence the crystallization process indirectly, by altering the interfacial stability, rather than by directly affecting the transport mode. Directions for future studies in this field will also be discussed.

  10. Targeting Radiation Therapy for Developing Dendritic Cell Based Immunotherapy of Metastatic Prostate Cancer

    DTIC Science & Technology

    2006-01-01

    M V -M C S EcoR V H inD -III EcoR 1 H inD -III Schem atic presentation of construction of p A d-C C L -21 C M V prom oter C C L -21 F igure:13 M N R...21 gene from pORF-CCL-21 was sub cloned in the EcoR -1 and HinD-III restriction sites present in multiple cloning site (MCS) of the adeno-viral vector

  11. Dendritic Cell-Based Immunotherapy of Breast Cancer: Modulation by CpG DNA

    DTIC Science & Technology

    2005-09-01

    34). DCs were purified by magnetic cell sorting using anti-CD 1 I c-microbeads ( Miltenyi Biotech, CA). One million DCs were then plated in a 96-well plate in...from monocyte to DC was characterized by the up-regulation of CD83, CD86, CD80, CD40 and the down-regulation of CD14 in serum- and cytokine-free

  12. Human Neural Cell-Based Biosensor

    DTIC Science & Technology

    2011-03-11

    neurons, motoneurons and astrocytes using defined medium conditions, (3) cell-based methods to detect botulinum toxin, and (4) fluorescence based assays...medium conditions, (3) cell-based methods to detect botulinum toxin, and (4) fluorescence based assays for proliferation, cell migration, mitochondrial...line will begin shortly. (3) Development of cell based methods to detect botulinum toxin There has been substantial progress in the development

  13. Physiological Role of Plasmacytoid Dendritic Cells and Their Potential Use in Cancer Immunity

    PubMed Central

    Schettini, Jorge; Mukherjee, Pinku

    2008-01-01

    Dendritic cells (DCs) play a pivotal role in the control of innate and adaptive immune responses. They are a heterogeneous cell population, where plasmacytoid dendritic cells (pDCs) are a unique subset capable of secreting high levels of type I IFNs. It has been demonstrated that pDCs can coordinate events during the course of viral infection, atopy, autoimmune diseases, and cancer. Therefore, pDC, as a main source of type I IFN, is an attractive target for therapeutic manipulations of the immune system to elicit a powerful immune response against tumor antigens in combination with other therapies. The therapeutic vaccination with antigen-pulsed DCs has shown a limited efficacy to generate an effective long-lasting immune response against tumor cells. A rational manipulation and design of vaccines which could include DC subsets outside “Langerhans cell paradigm” might allow us to improve the therapeutic approaches for cancer patients. PMID:19190769

  14. An inverse approach for elucidating dendritic function.

    PubMed

    Torben-Nielsen, Benjamin; Stiefel, Klaus M

    2010-01-01

    We outline an inverse approach for investigating dendritic function-structure relationships by optimizing dendritic trees for a priori chosen computational functions. The inverse approach can be applied in two different ways. First, we can use it as a "hypothesis generator" in which we optimize dendrites for a function of general interest. The optimization yields an artificial dendrite that is subsequently compared to real neurons. This comparison potentially allows us to propose hypotheses about the function of real neurons. In this way, we investigated dendrites that optimally perform input-order detection. Second, we can use it as a "function confirmation" by optimizing dendrites for functions hypothesized to be performed by classes of neurons. If the optimized, artificial, dendrites resemble the dendrites of real neurons the artificial dendrites corroborate the hypothesized function of the real neuron. Moreover, properties of the artificial dendrites can lead to predictions about yet unmeasured properties. In this way, we investigated wide-field motion integration performed by the VS cells of the fly visual system. In outlining the inverse approach and two applications, we also elaborate on the nature of dendritic function. We furthermore discuss the role of optimality in assigning functions to dendrites and point out interesting future directions.

  15. Full restoration of Brucella-infected dendritic cell functionality through Vγ9Vδ2 T helper type 1 crosstalk.

    PubMed

    Ni, Ming; Martire, Delphine; Scotet, Emmanuel; Bonneville, Marc; Sanchez, Francoise; Lafont, Virginie

    2012-01-01

    Vγ9Vδ2 T cells play an important role in the immune response to infectious agents but the mechanisms contributing to this immune process remain to be better characterized. Following their activation, Vγ9Vδ2 T cells develop cytotoxic activity against infected cells, secrete large amounts of cytokines and influence the function of other effectors of immunity, notably cells playing a key role in the initiation of the adaptive immune response such as dendritic cells. Brucella infection dramatically impairs dendritic cell maturation and their capacity to present antigens to T cells. Herein, we investigated whether V T cells have the ability to restore the full functional capacities of Brucella-infected dendritic cells. Using an in vitro multicellular infection model, we showed that: 1/Brucella-infected dendritic cells activate Vγ9Vδ2 T cells through contact-dependent mechanisms, 2/activated Vγ9Vδ2 T cells induce full differentiation into IL-12 producing cells of Brucella-infected dendritic cells with functional antigen presentation activity. Furthermore, phosphoantigen-activated Vγ9Vδ2 T cells also play a role in triggering the maturation process of dendritic cells already infected for 24 h. This suggests that activated Vγ9Vδ2 T cells could be used to modulate the outcome of infectious diseases by promoting an adjuvant effect in dendritic cell-based cellular therapies.

  16. Monocyte-derived dendritic cells identified as booster of T follicular helper cell differentiation

    PubMed Central

    Fillatreau, Simon

    2014-01-01

    Adjuvants play an essential role in the induction of acquired immunity upon vaccination with protein antigen. In this issue of EMBO Molecular Medicine, a classical type of adjuvant made of DNA oligonucleotide containing CpG motifs, which has already been used in humans, is shown to boost humoral immunity primarily by acting on monocyte-derived dendritic cells. This study provides novel insight on the mode of action of adjuvant targeting Toll-like receptors. PMID:24803394

  17. Quality vaccines for all people: Report on the 16th annual general meeting of the Developing Countries Vaccine Manufacturers' Network, 05-07th October 2015, Bangkok, Thailand.

    PubMed

    Pagliusi, Sonia; Ting, Ching-Chia; Khomvilai, Sumana

    2016-06-30

    The Developing Countries Vaccine Manufacturers Network (DCVMN) assembled high-profile leaders from global health organisations and vaccine manufactures for its 16th Annual General Meeting to work towards a common goal: providing quality vaccines for all people. Vaccines contribute to a healthy community and robust health system; the Ebola outbreak has raised awareness of the threat and damage one single infectious disease can make, and it is clear that the world was not prepared. However, more research to better understand emerging infectious agents might lead to suitable vaccines which help prevent future outbreaks. DCVMN members presented their progress in developing novel vaccines against Dengue, HPV, Chikungunya, Cholera, cell-based influenza and other vaccines, demonstrating the commitment towards eliminating and eradicating preventable diseases worldwide through global collaboration and technology transfer. The successful introduction of novel Sabin-IPV and Oral Cholera vaccine in China and Korea respectively in 2015 was highlighted. In order to achieve global immunisation, local authorities and community leaders play an important role in the decision-making in vaccine introduction and uptake, based on the ability of vaccines to protect vaccinated people and protect non-vaccinated in the community through herd immunity. Reducing the risk of vaccine shortages can also be achieved by increasing regulatory convergence at regional and international levels. Combatting preventable diseases remains challenging, and collective efforts for improving multi-centre clinical trials, creating regional vaccine security strategies, fostering developing vaccine markets and procurement, and building trust in vaccines were discussed.

  18. Lipopolyplex potentiates anti-tumor immunity of mRNA-based vaccination.

    PubMed

    Persano, Stefano; Guevara, Maria L; Li, Zhaoqi; Mai, Junhua; Ferrari, Mauro; Pompa, Pier Paolo; Shen, Haifa

    2017-05-01

    mRNA-based vaccines have the benefit of triggering robust anti-cancer immunity without the potential danger of genome integration from DNA vaccines or the limitation of antigen selection from peptide vaccines. Yet, a conventional mRNA vaccine comprising of condensed mRNA molecules in a positively charged protein core structure is not effectively internalized by the antigen-presenting cells. It cannot offer sufficient protection for mRNA molecules from degradation by plasma and tissue enzymes either. Here, we have developed a lipopolyplex mRNA vaccine that consists of a poly-(β-amino ester) polymer mRNA core encapsulated into a 1,2-dioleoyl-sn-glycero-3-ethylphosphocholine/1,2-dioleoyl-sn-glycero-3-phosphatidyl-ethanolamine/1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)-2000 (EDOPC/DOPE/DSPE-PEG) lipid shell. This core-shell structured mRNA vaccine enters dendritic cells through macropinocytosis. It displayed intrinsic adjuvant activity by potently stimulating interferon-β and interleukin-12 expression in dendritic cells through Toll-like receptor 7/8 signaling. Dendritic cells treated with the mRNA vaccine displayed enhanced antigen presentation capability. Mice bearing lung metastatic B16-OVA tumors expressing the ovalbumin antigen were treated with the lipopolyplex mRNA, and over 90% reduction of tumor nodules was observed. Collectively, this core-shell structure offers a promising platform for mRNA vaccine development.

  19. Enhancing the Efficacy of Dendritic Cell Vaccines by Tissue Conditioning

    DTIC Science & Technology

    2009-03-01

    Kubler , H., Tseng, T., Sakai, Y., Su, Z. et al.: Oxidative Stress Regulates Expression of VEGFR1 in Myeloid Cells: Link to Tumor-Induced Immune Suppression in Renal Cell Carcinoma. J Immunol, 181: 346, 2008

  20. Breast Cancer Vaccines Based on Dendritic Cells and the Chemokines

    DTIC Science & Technology

    1998-07-01

    and TPO , or either molecule separately. Nucleated cell production was additive with the combination of IL-3 and TPO (83 fold) when compared to...increase in nucleated cells. HS-5CM supplemented with either PMP or the combination of IL-3 plus TPO resulted in the generation of similar numbers of...myeloid progenitors and both combinations generated significantly more progenitors than HS-5CM supplemented with IL-3 or TPO alone. further analysis

  1. Tumor-Mediated Suppression of Dendritic Cell Vaccines

    DTIC Science & Technology

    2005-03-01

    migration to DLNs. A B A 1.2- : .0 4000 rmDC 0., 3000 mDC+TGF-p S. . 0.- 2000 S 0.4m S0.2 Hi n 10000 0.0 CCR1 CCR4 CCR5 CCR6 CCR7 SLC MIP-3p Figure 4...containing tumor microenvironment. Mice bearing established mock transfected (4T1-N) or anti-sense TGF-p-expressing (4T1-asT) tumors received i.t...day Figure 9. Treatment of established 4T1 tumors with Smad7-overexpressing DC. Mice bearing established 4T1-N or 4T1-asT primary tumors received

  2. Bone marrow-derived dendritic cells.

    PubMed

    Roney, Kelly

    2013-01-01

    While much is understood about dendritic cells and their role in the immune system, the study of these cells is critical to gain a more complete understanding of their function. Dendritic cell isolation from mouse body tissues can be difficult and the number of cells isolated small. This protocol describes the growth of large number of dendritic cells from the culture of mouse bone marrow cells. The dendritic cells grown in culture facilitate experiments that may require large number of dendritic cells without great expense or use of large number of mice.

  3. Regulation of dendrite morphogenesis by extrinsic cues.

    PubMed

    Valnegri, Pamela; Puram, Sidharth V; Bonni, Azad

    2015-07-01

    Dendrites play a central role in the integration and flow of information in the nervous system. The morphogenesis and maturation of dendrites is hence an essential step in the establishment of neuronal connectivity. Recent studies have uncovered crucial functions for extrinsic cues in the development of dendrites. We review the contribution of secreted polypeptide growth factors, contact-mediated proteins, and neuronal activity in distinct phases of dendrite development. We also highlight how extrinsic cues influence local and global intracellular mechanisms of dendrite morphogenesis. Finally, we discuss how these studies have advanced our understanding of neuronal connectivity and have shed light on the pathogenesis of neurodevelopmental disorders.

  4. Advanced dendritic web growth development

    NASA Technical Reports Server (NTRS)

    Hopkins, R. H.

    1985-01-01

    A program to develop the technology of the silicon dendritic web ribbon growth process is examined. The effort is being concentrated on the area rate and quality requirements necessary to meet the JPL/DOE goals for terrestrial PV applications. Closed loop web growth system development and stress reduction for high area rate growth is considered.

  5. Molecular and cellular mechanisms of dendritic morphogenesis

    PubMed Central

    Gao, Fen-Biao

    2008-01-01

    Summary Dendrites exhibit unique cell-type specific branching patterns and targeting specificity that are critically important for neuronal function and connectivity. Recent evidence indicates that highly complex transcriptional regulatory networks dictate various aspects of dendritic outgrowth, branching, and routing. In addition to other intrinsic molecular pathways such as membrane protein trafficking, interactions between neighboring dendritic branches also contribute to the final specification of dendritic morphology. Nonredundant coverage by dendrites of same type of neurons, known as tiling, requires the actions of the Tricornered/Furry (Sax-1/Sax-2) signaling pathway. However, the dendrites of a neuron do not cross over each other, a process called self-avoidance that is mediated by Down’s syndrome cell adhesion molecule (Dscam). Those exciting findings have enhanced significantly our understanding of dendritic morphogenesis and revealed the magnitude of complexity in the underlying molecular regulatory networks. PMID:17933513

  6. Evidence that dendritic mitochondria negatively regulate dendritic branching in pyramidal neurons in the neocortex.

    PubMed

    Kimura, Toshiya; Murakami, Fujio

    2014-05-14

    The precise branching patterns of dendritic arbors have a profound impact on information processing in individual neurons and the brain. These patterns are established by positive and negative regulation of the dendritic branching. Although the mechanisms for positive regulation have been extensively investigated, little is known about those for negative regulation. Here, we present evidence that mitochondria located in developing dendrites are involved in the negative regulation of dendritic branching. We visualized mitochondria in pyramidal neurons of the mouse neocortex during dendritic morphogenesis using in utero electroporation of a mitochondria-targeted fluorescent construct. We altered the mitochondrial distribution in vivo by overexpressing Mfn1, a mitochondrial shaping protein, or the Miro-binding domain of TRAK2 (TRAK2-MBD), a truncated form of a motor-adaptor protein. We found that dendritic mitochondria were preferentially targeted to the proximal portion of dendrites only during dendritic morphogenesis. Overexpression of Mfn1 or TRAK2-MBD depleted mitochondria from the dendrites, an effect that was accompanied by increased branching of the proximal portion of the dendrites. This dendritic abnormality cannot be accounted for by changes in the distribution of membrane trafficking organelles since the overexpression of Mfn1 did not alter the distributions of the endoplasmic reticulum, Golgi, or endosomes. Additionally, neither did these constructs impair neuronal viability or mitochondrial function. Therefore, our results suggest that dendritic mitochondria play a critical role in the establishment of the precise branching pattern of dendritic arbors by negatively affecting dendritic branching.

  7. Exploring cell-based tolerance strategies for hand and face transplantation.

    PubMed

    Fryer, Madeline; Grahammer, Johanna; Khalifian, Saami; Furtmüller, Georg J; Lee, W P Andrew; Raimondi, Giorgio; Brandacher, Gerald

    2015-01-01

    Broader clinical application of reconstructive hand and face transplantation is hindered by the need for lifelong immunosuppression for allograft maintenance. In this review, we summarize various cell-based approaches to tolerance induction currently under investigation in both clinical and pre-clinical models to alleviate the need for chronic immunosuppression. These include strategies to induce mixed hematopoietic chimerism, therapy with T and B regulatory cells, regulatory macrophages, tolerogenic dendritic cells, and mesenchymal stem cells. The vascularized, intragraft bone components inherent to reconstructive transplants serve as a continuous source of donor-derived hematopoietic cells, and make hand and face transplants uniquely well suited for cell-based approaches to tolerance that may ultimately tilt the risk-benefit balance for these life-changing, but not life-saving, procedures.

  8. Typhoid Vaccine

    MedlinePlus

    ... serious disease. It is caused by bacteria called Salmonella Typhi. Typhoid causes a high fever, fatigue, weakness, stomach ... a typhoid carrier. Laboratory workers who work with Salmonella Typhi bacteria. Inactivated typhoid vaccine (shot)One dose provides ...

  9. Typhoid Vaccine

    MedlinePlus

    ... serious disease. It is caused by bacteria called Salmonella Typhi. Typhoid causes a high fever, fatigue, weakness, ... a typhoid carrier. • Laboratory workers who work with Salmonella Typhi bacteria. Inactivated typhoid vaccine (shot) • One dose ...

  10. Dynamic Visualization of Dendritic Cell-Antigen Interactions in the Skin Following Transcutaneous Immunization

    PubMed Central

    Rattanapak, Teerawan; Birchall, James C.; Young, Katherine; Kubo, Atsuko; Fujimori, Sayumi; Ishii, Masaru; Hook, Sarah

    2014-01-01

    Delivery of vaccines into the skin provides many advantages over traditional parenteral vaccination and is a promising approach due to the abundance of antigen presenting cells (APC) residing in the skin including Langerhans cells (LC) and dermal dendritic cells (DDC). However, the main obstacle for transcutaneous immunization (TCI) is the effective delivery of the vaccine through the stratum corneum (SC) barrier to the APC in the deeper skin layers. This study therefore utilized microneedles (MN) and a lipid-based colloidal delivery system (cubosomes) as a synergistic approach for the delivery of vaccines to APC in the skin. The process of vaccine uptake and recruitment by specific types of skin APC was investigated in real-time over 4 hours in B6.Cg-Tg (Itgax-EYFP) 1 Mnz/J mice by two-photon microscopy. Incorporation of the vaccine into a particulate delivery system and the use of MN preferentially increased vaccine antigen uptake by a highly motile subpopulation of skin APC known as CD207+ DC. No uptake of antigen or any response to immunisation by LC could be detected. PMID:24586830

  11. Ear Infection and Vaccines

    MedlinePlus

    ... an ENT Doctor Near You Ear Infection and Vaccines Ear Infection and Vaccines Patient Health Information News ... or may need reinsertion over time. What about vaccines? A vaccine is a preparation administered to stimulate ...

  12. Adults Need Vaccines, Too!

    MedlinePlus

    ... turn JavaScript on. Feature: Adult Vaccinations Adults Need Vaccines, Too! Past Issues / Summer 2015 Table of Contents ... of the millions of adults not receiving the vaccines you need? What vaccines do you need? All ...

  13. Smallpox Vaccine Overview

    MedlinePlus

    ... Facebook Tweet Share Compartir SMALLPOX FACT SHEET The Smallpox Vaccine The smallpox vaccine helps the body develop ... disease or may modify the severity of disease. Smallpox Vaccine Safety The smallpox vaccine is the best ...

  14. Influenza Vaccine, Live Intranasal

    MedlinePlus

    ... the recombinant influenza vaccine (RIV). The nasal spray flu vaccine (live attenuated influenza vaccine or LAIV) should NOT ... to your doctor or pharmacist about the best flu vaccine option for you or your family.

  15. [The vaccines based on the replicon of the venezuelan equine encephalomyelitis virus against viral hemorrhagic fevers].

    PubMed

    Petrov, A A; Plekhanova, T M; Sidorova, O N; Borisevich, S V; Makhlay, A A

    2015-01-01

    The status of the various recombinant DNA and RNA-derived candidate vaccines, as well as the Venezuelan equine encephalomyelitis virus (VEEV) replicon vaccine system against extremely hazardous viral hemorrhagic fevers, were reviewed. The VEEV-based replication-incompetent vectors offer attractive features in terms of safety, high expression levels of the heterologous viral antigen, tropism to dendritic cells, robust immune responses, protection efficacy, low potential for pre-existing anti-vector immunity and possibility of engineering multivalent vaccines were tested. These features of the VEEV replicon system hold much promise for the development of new generation vaccine candidates against viral hemorrhagic fevers.

  16. Human vaccines & immunotherapeutics: news.

    PubMed

    Riedmann, Eva M

    2013-10-01

    Infant rotavirus vaccination provides for herd immunity Nonreplicating sporozoite vaccine protects humans against malaria Personalized brain cancer vaccine enters phase 2 trial Novel implantable therapeutic cancer vaccine to be tested in humans Clostridium difficile vaccine candidate successful in phase 1 CDC reports strong uptake of HPV vaccine in boys Whooping cough outbreak in Texas.

  17. Dendritic cell analysis in primary immunodeficiency

    PubMed Central

    Bigley, Venetia; Barge, Dawn; Collin, Matthew

    2016-01-01

    Purpose of review Dendritic cells are specialized antigen-presenting cells which link innate and adaptive immunity, through recognition and presentation of antigen to T cells. Although the importance of dendritic cells has been demonstrated in many animal models, their contribution to human immunity remains relatively unexplored in vivo. Given their central role in infection, autoimmunity, and malignancy, dendritic cell deficiency or dysfunction would be expected to have clinical consequences. Recent findings Human dendritic cell deficiency disorders, related to GATA binding protein 2 (GATA2) and interferon regulatory factor 8 (IRF8) mutations, have highlighted the importance of dendritic cells and monocytes in primary immunodeficiency diseases and begun to shed light on their nonredundant roles in host defense and immune regulation in vivo. The contribution of dendritic cell and monocyte dysfunction to the pathogenesis of primary immunodeficiency disease phenotypes is becoming increasingly apparent. However, dendritic cell analysis is not yet a routine part of primary immunodeficiency disease workup. Summary Widespread uptake of dendritic cell/monocyte screening in clinical practice will facilitate the discovery of novel dendritic cell and monocyte disorders as well as advancing our understanding of human dendritic cell biology in health and disease. PMID:27755182

  18. Method of inhibiting dislocation generation in silicon dendritic webs

    DOEpatents

    Spitznagel, John A.; Seidensticker, Raymond G.; McHugh, James P.

    1990-11-20

    A method of tailoring the heat balance of the outer edge of the dendrites adjacent the meniscus to produce thinner, smoother dendrites, which have substantially less dislocation sources contiguous with the dendrites, by changing the view factor to reduce radiation cooling or by irradiating the dendrites with light from a quartz lamp or a laser to raise the temperature of the dendrites.

  19. HIV Infection and Adult Vaccination

    MedlinePlus

    ... conjugate vaccine series which protects against meningococcal disease Hepatitis B vaccine series to protect against hepatitis B HPV vaccine ... conjugate vaccine series which protects against meningococcal disease Hepatitis B vaccine series to protect against hepatitis B HPV vaccine ...

  20. Dendritic cells in Graves' disease.

    PubMed

    Purnamasari, Dyah; Soewondo, Pradana; Djauzi, Samsuridjal

    2015-01-01

    Dendritic cells are major antigen-presenting cells (APC) that stimulate naive T cells, which induce adaptive immune responses. Graves' disease (GD) is an autoimmune disease characterized by the presence of autoantibodies against Thyroid Stimulating Hormone Receptor (TSHR). The autoantibodies bind with TSHR and stimulate thyroid hormone production. Dendritic cells are still the major APC in GD immune response although thyrocytes in GD can also express Major Histocompatibility Class (MHC) class II molecule. Studies about DC in GD have been conducted by isolating intra-thyroid DC or DC in peripheral circulation. Results of DC studies in GD are still controversial. Changes in number and profile of DC are found, which indicate altered immune response activity and defects of regulator T cell (Treg) in GD.

  1. Vaccination elicits correlated immune and clinical responses in glioblastoma multiforme patients.

    PubMed

    Wheeler, Christopher J; Black, Keith L; Liu, Gentao; Mazer, Mia; Zhang, Xiao-xue; Pepkowitz, Samuel; Goldfinger, Dennis; Ng, Hiushan; Irvin, Dwain; Yu, John S

    2008-07-15

    Cancer vaccine trials have failed to yield robust immune-correlated clinical improvements as observed in animal models, fueling controversy over the utility of human cancer vaccines. Therapeutic vaccination represents an intriguing additional therapy for glioblastoma multiforme (GBM; grade 4 glioma), which has a dismal prognosis and treatment response, but only early phase I vaccine trial results have been reported. Immune and clinical responses from a phase II GBM vaccine trial are reported here. IFN-gamma responsiveness was quantified in peripheral blood of 32 GBM patients given therapeutic dendritic cell vaccines. Posttreatment times to tumor progression (TTP) and survival (TTS) were compared in vaccine responders and nonresponders and were correlated with immune response magnitudes. GBM patients (53%) exhibited >or=1.5-fold vaccine-enhanced cytokine responses. Endogenous antitumor responses of similar magnitude occurred in 22% of GBM patients before vaccination. Vaccine responders exhibited significantly longer TTS and TTP relative to nonresponders. Immune enhancement in vaccine responders correlated logarithmically with TTS and TTP spanning postvaccine chemotherapy, but not with initial TTP spanning vaccination alone. This is the first report of a progressive correlation between cancer clinical outcome and T-cell responsiveness after therapeutic vaccination in humans and the first tracing of such correlation to therapeutically exploitable tumor alteration. As such, our findings offer unique opportunities to identify cellular and molecular components of clinically meaningful antitumor immunity in humans.

  2. A novel method for synthetic vaccine construction based on protein assembly

    PubMed Central

    Liu, Zhida; Zhou, Hang; Wang, Wenjun; Tan, Wenjie; Fu, Yang-Xin; Zhu, Mingzhao

    2014-01-01

    In the history of vaccine development, the synthetic vaccine is a milestone that is in stark contrast with traditional vaccines based on live-attenuated or inactivated microorganisms. Synthetic vaccines not only are safer than attenuated or inactivated microorganisms but also provide the opportunity for vaccine design for specific purposes. The first generation of synthetic vaccines has been largely based on DNA recombination technology and genetic manipulation. This de novo generation is occasionally time consuming and costly, especially in the era of genomics and when facing pandemic outbreaks of infectious diseases. To accelerate and simplify the R&D process for vaccines, we developed an improved method of synthetic vaccine construction based on protein assembly. We optimized and employed the recently developed SpyTag/SpyCatcher technique to establish a protein assembly system for vaccine generation from pre-prepared subunit proteins. As proof of principle, we chose a dendritic cell (DC)-targeting molecule and specific model antigens to generate desired vaccines. The results demonstrated that a new vaccine generated in this way does not hamper the individual function of different vaccine components and is efficient in inducing both T and B cell responses. This protein assembly strategy may be especially useful for high-throughput antigen screening or rapid vaccine generation. PMID:25434527

  3. Cancer vaccines.

    PubMed

    Butterfield, Lisa H

    2015-04-22

    Cancer vaccines are designed to promote tumor specific immune responses, particularly cytotoxic CD8 positive T cells that are specific to tumor antigens. The earliest vaccines, which were developed in 1994-95, tested non-mutated, shared tumor associated antigens that had been shown to be immunogenic and capable of inducing clinical responses in a minority of people with late stage cancer. Technological developments in the past few years have enabled the investigation of vaccines that target mutated antigens that are patient specific. Several platforms for cancer vaccination are being tested, including peptides, proteins, antigen presenting cells, tumor cells, and viral vectors. Standard of care treatments, such as surgery and ablation, chemotherapy, and radiotherapy, can also induce antitumor immunity, thereby having cancer vaccine effects. The monitoring of patients' immune responses at baseline and after standard of care treatment is shedding light on immune biomarkers. Combination therapies are being tested in clinical trials and are likely to be the best approach to improving patient outcomes.

  4. Nanoparticle vaccines.

    PubMed

    Zhao, Liang; Seth, Arjun; Wibowo, Nani; Zhao, Chun-Xia; Mitter, Neena; Yu, Chengzhong; Middelberg, Anton P J

    2014-01-09

    Nanotechnology increasingly plays a significant role in vaccine development. As vaccine development orientates toward less immunogenic "minimalist" compositions, formulations that boost antigen effectiveness are increasingly needed. The use of nanoparticles in vaccine formulations allows not only improved antigen stability and immunogenicity, but also targeted delivery and slow release. A number of nanoparticle vaccines varying in composition, size, shape, and surface properties have been approved for human use and the number of candidates is increasing. However, challenges remain due to a lack of fundamental understanding regarding the in vivo behavior of nanoparticles, which can operate as either a delivery system to enhance antigen processing and/or as an immunostimulant adjuvant to activate or enhance immunity. This review provides a broad overview of recent advances in prophylactic nanovaccinology. Types of nanoparticles used are outlined and their interaction with immune cells and the biosystem are discussed. Increased knowledge and fundamental understanding of nanoparticle mechanism of action in both immunostimulatory and delivery modes, and better understanding of in vivo biodistribution and fate, are urgently required, and will accelerate the rational design of nanoparticle-containing vaccines.

  5. Dendritic web silicon for solar cell application

    NASA Technical Reports Server (NTRS)

    Seidensticker, R. G.

    1977-01-01

    The dendritic web process for growing long thin ribbon crystals of silicon and other semiconductors is described. Growth is initiated from a thin wirelike dendrite seed which is brought into contact with the melt surface. Initially, the seed grows laterally to form a button at the melt surface; when the seed is withdrawn, needlelike dendrites propagate from each end of the button into the melt, and the web portion of the crystal is formed by the solidification of the liquid film supported by the button and the bounding dendrites. Apparatus used for dendritic web growth, material characteristics, and the two distinctly different mechanisms involved in the growth of a single crystal are examined. The performance of solar cells fabricated from dendritic web material is indistinguishable from the performance of cells fabricated from Czochralski grown material.

  6. Active Dendrites Enhance Neuronal Dynamic Range

    PubMed Central

    Gollo, Leonardo L.; Kinouchi, Osame; Copelli, Mauro

    2009-01-01

    Since the first experimental evidences of active conductances in dendrites, most neurons have been shown to exhibit dendritic excitability through the expression of a variety of voltage-gated ion channels. However, despite experimental and theoretical efforts undertaken in the past decades, the role of this excitability for some kind of dendritic computation has remained elusive. Here we show that, owing to very general properties of excitable media, the average output of a model of an active dendritic tree is a highly non-linear function of its afferent rate, attaining extremely large dynamic ranges (above 50 dB). Moreover, the model yields double-sigmoid response functions as experimentally observed in retinal ganglion cells. We claim that enhancement of dynamic range is the primary functional role of active dendritic conductances. We predict that neurons with larger dendritic trees should have larger dynamic range and that blocking of active conductances should lead to a decrease in dynamic range. PMID:19521531

  7. Cell-intrinsic drivers of dendrite morphogenesis.

    PubMed

    Puram, Sidharth V; Bonni, Azad

    2013-12-01

    The proper formation and morphogenesis of dendrites is fundamental to the establishment of neural circuits in the brain. Following cell cycle exit and migration, neurons undergo organized stages of dendrite morphogenesis, which include dendritic arbor growth and elaboration followed by retraction and pruning. Although these developmental stages were characterized over a century ago, molecular regulators of dendrite morphogenesis have only recently been defined. In particular, studies in Drosophila and mammalian neurons have identified numerous cell-intrinsic drivers of dendrite morphogenesis that include transcriptional regulators, cytoskeletal and motor proteins, secretory and endocytic pathways, cell cycle-regulated ubiquitin ligases, and components of other signaling cascades. Here, we review cell-intrinsic drivers of dendrite patterning and discuss how the characterization of such crucial regulators advances our understanding of normal brain development and pathogenesis of diverse cognitive disorders.

  8. The Equiaxed Dendritic Solidification Experiment (EDSE)

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The Equiaxed Dendritic Solidification Experiment (EDSE) is a material sciences investigation under the Formation of Microstructures/pattern formation discipline. The objective is to study the microstructural evolution of and thermal interactions between several equiaxed crystals growing dendritically in a supercooled melt of a pure and transparent substance under diffusion controlled conditions. Dendrites growing at .4 supercooling from a 2 stinger growth chamber for the EDSE in the Microgravity Development Lab (MDL).

  9. Mucosal vaccines

    PubMed Central

    Nizard, Mevyn; Diniz, Mariana O; Roussel, Helene; Tran, Thi; Ferreira, Luis CS; Badoual, Cecile; Tartour, Eric

    2014-01-01

    The mucosal immune system displays several adaptations reflecting the exposure to the external environment. The efficient induction of mucosal immune responses also requires specific approaches, such as the use of appropriate administration routes and specific adjuvants and/or delivery systems. In contrast to vaccines delivered via parenteral routes, experimental, and clinical evidences demonstrated that mucosal vaccines can efficiently induce local immune responses to pathogens or tumors located at mucosal sites as well as systemic response. At least in part, such features can be explained by the compartmentalization of mucosal B and T cell populations that play important roles in the modulation of local immune responses. In the present review, we discuss molecular and cellular features of the mucosal immune system as well as novel immunization approaches that may lead to the development of innovative and efficient vaccines targeting pathogens and tumors at different mucosal sites. PMID:25424921

  10. Saponin-based adjuvants induce cross-presentation in dendritic cells by intracellular lipid body formation

    PubMed Central

    den Brok, Martijn H.; Büll, Christian; Wassink, Melissa; de Graaf, Annemarie M.; Wagenaars, Jori A.; Minderman, Marthe; Thakur, Mayank; Amigorena, Sebastian; Rijke, Eric O.; Schrier, Carla C.; Adema, Gosse J.

    2016-01-01

    Saponin-based adjuvants (SBAs) are being used in animal and human (cancer) vaccines, as they induce protective cellular immunity. Their adjuvant potency is a factor of inflammasome activation and enhanced antigen cross-presentation by dendritic cells (DCs), but how antigen cross-presentation is induced is not clear. Here we show that SBAs uniquely induce intracellular lipid bodies (LBs) in the CD11b+ DC subset in vitro and in vivo. Using genetic and pharmacological interference in models for vaccination and in situ tumour ablation, we demonstrate that LB induction is causally related to the saponin-dependent increase in cross-presentation and T-cell activation. These findings link adjuvant activity to LB formation, aid the application of SBAs as a cancer vaccine component, and will stimulate development of new adjuvants enhancing T-cell-mediated immunity. PMID:27819292

  11. Orientations of dendritic growth during solidification

    NASA Astrophysics Data System (ADS)

    Lee, Dong Nyung

    2017-02-01

    Dendrites are crystalline forms which grow far from the limit of stability of the plane front and adopt an orientation which is as close as possible to the heat flux direction. Dendritic growth orientations for cubic metals, bct Sn, and hcp Zn, can be controlled by thermal conductivity, Young's modulus, and surface energy. The control factors have been elaborated. Since the dendrite is a single crystal, its properties such as thermal conductivity that influences the heat flux direction, the minimum Young's modulus direction that influences the strain energy minimization, and the minimum surface energy plane that influences the crystal/liquid interface energy minimization have been proved to control the dendritic growth direction. The dendritic growth directions of cubic metals are determined by the minimum Young's modulus direction and/or axis direction of symmetry of the minimum crystal surface energy plane. The dendritic growth direction of bct Sn is determined by its maximum thermal conductivity direction and the minimum surface energy plane normal direction. The primary dendritic growth direction of hcp Zn is determined by its maximum thermal conductivity direction and the minimum surface energy plane normal direction and the secondary dendrite arm direction of hcp Zn is normal to the primary dendritic growth direction.

  12. Dendrite preventing separator for secondary lithium batteries

    NASA Technical Reports Server (NTRS)

    Shen, David H. (Inventor); Surampudi, Subbarao (Inventor); Huang, Chen-Kuo (Inventor); Halpert, Gerald (Inventor)

    1993-01-01

    Dendrites are prevented from shorting a secondary lithium battery by use of a first porous separator, such as porous polypropylene, adjacent to the lithium anode that is unreactive with lithium and a second porous fluoropolymer separator between the cathode and the first separator, such as polytetrafluoroethylene, that is reactive with lithium. As the tip of a lithium dendrite contacts the second separator, an exothermic reaction occurs locally between the lithium dendrite and the fluoropolymer separator. This results in the prevention of the dendrite propagation to the cathode.

  13. Dendrite preventing separator for secondary lithium batteries

    NASA Technical Reports Server (NTRS)

    Shen, David H. (Inventor); Surampudi, Subbarao (Inventor); Huang, Chen-Kuo (Inventor); Halpert, Gerald (Inventor)

    1995-01-01

    Dendrites are prevented from shorting a secondary lithium battery by use of a first porous separator such as porous polypropylene adjacent the lithium anode that is unreactive with lithium and a second porous fluoropolymer separator between the cathode and the first separator such as polytetrafluoroethylene that is reactive with lithium. As the tip of a lithium dendrite contacts the second separator, an exothermic reaction occurs locally between the lithium dendrite and the fluoropolymer separator. This results in the prevention of the dendrite propagation to the cathode.

  14. Orientations of dendritic growth during solidification

    NASA Astrophysics Data System (ADS)

    Lee, Dong Nyung

    2017-03-01

    Dendrites are crystalline forms which grow far from the limit of stability of the plane front and adopt an orientation which is as close as possible to the heat flux direction. Dendritic growth orientations for cubic metals, bct Sn, and hcp Zn, can be controlled by thermal conductivity, Young's modulus, and surface energy. The control factors have been elaborated. Since the dendrite is a single crystal, its properties such as thermal conductivity that influences the heat flux direction, the minimum Young's modulus direction that influences the strain energy minimization, and the minimum surface energy plane that influences the crystal/liquid interface energy minimization have been proved to control the dendritic growth direction. The dendritic growth directions of cubic metals are determined by the minimum Young's modulus direction and/or axis direction of symmetry of the minimum crystal surface energy plane. The dendritic growth direction of bct Sn is determined by its maximum thermal conductivity direction and the minimum surface energy plane normal direction. The primary dendritic growth direction of hcp Zn is determined by its maximum thermal conductivity direction and the minimum surface energy plane normal direction and the secondary dendrite arm direction of hcp Zn is normal to the primary dendritic growth direction.

  15. Intravital imaging of dendritic spine plasticity

    PubMed Central

    Sau Wan Lai, Cora

    2014-01-01

    Abstract Dendritic spines are the postsynaptic part of most excitatory synapses in the mammalian brain. Recent works have suggested that the structural and functional plasticity of dendritic spines have been associated with information coding and memories. Advances in imaging and labeling techniques enable the study of dendritic spine dynamics in vivo. This perspective focuses on intravital imaging studies of dendritic spine plasticity in the neocortex. I will introduce imaging tools for studying spine dynamics and will further review current findings on spine structure and function under various physiological and pathological conditions. PMID:28243511

  16. The renal microenvironment modifies dendritic cell phenotype.

    PubMed

    Chessa, Federica; Mathow, Daniel; Wang, Shijun; Hielscher, Thomas; Atzberger, Ann; Porubsky, Stefan; Gretz, Norbert; Burgdorf, Sven; Gröne, Hermann-Josef; Popovic, Zoran V

    2016-01-01

    Renal dendritic cells are a major component of the renal mononuclear phagocytic system. In the renal interstitium, these cells are exposed to an osmotic gradient, mainly sodium, whose concentration progressively increases towards inner medulla. Renal allograft rejection affects predominantly the cortex, suggesting a protective role of the renal medullary micromilieu. Whether osmolar variations can modulate the function of renal dendritic cells is currently undefined. Considering the central role of dendritic cells in promoting allorejection, we tested whether the biophysical micromilieu, particularly the interstitial osmotic gradient, influences their alloreactivity. There was a progressive depletion of leukocytes towards the medulla of homeostatic kidney. Only macrophages opposed this tendency. Flow cytometry of homeostatic and post-transplant medullary dendritic cells revealed a switch towards a macrophage-like phenotype. Similarly, bone marrow-derived dendritic cells developed ex vivo in sodium chloride-enriched medium acquired a M2-like signature. Microarray analysis of allotransplant dendritic cells posed a medullary downregulation of genes mainly involved in alloantigen recognition. Gene expression profiles of both medullary dendritic cells and bone marrow-derived dendritic cells matured in hyperosmolar medium had an overlap with the macrophage M2 signature. Thus, the medullary environment inhibits an alloimmune response by modulating the phenotype and function of dendritic cells.

  17. Precipitation dendrites in turbulent pipe flows

    NASA Astrophysics Data System (ADS)

    Angheluta, Luiza; Hawkins, Christopher; Hammer, Øyvind; Jamtveit, Bjørn

    2013-04-01

    Surface precipitation in pipelines, as well as freezing in water pipes is of great concern in many industrial applications where scaling phenomena becomes a control problem of pipe-clogging or an efficiency reduction in transport. Flow blockage often occurs even when only a small fraction is deposited non-uniformly on the walls in the form of dendrites. Dendritic patterns are commonly encountered in surface precipitation from supersaturated solutions, e.g. calcite dendrites, as well as in solidification from undercooled liquids, e.g. freezing of water into ice dendrites. We explore the mathematical similarities between precipitation and freezing processes and, in particular, investigate the effect of fluid flow on the precipitation dendrites on pipe walls. We use a phase field approach to model surface growth coupled with a lattice Boltzmann method that simulates a channel flow at varying Reynolds number. The dendrites orientation and shape depend non-trivially on the ratio between advection and diffusion, i.e. the Peclet number, as well as the Reynolds number. Roughness induced vortices near growing dendrites at high flow rates further affect the branch splitting of dendrites. We show how the transport rate in a pipeline may depend on the different dendritic morphologies, and provide estimates for the flow conditions that correspond to most efficient transport regimes.

  18. A novel cancer therapeutic using thrombospondin 1 in dendritic cells.

    PubMed

    Weng, Tzu-Yang; Huang, Shih-Shien; Yen, Meng-Chi; Lin, Chi-Chen; Chen, Yi-Ling; Lin, Chiu-Mei; Chen, Wei-Ching; Wang, Chih-Yang; Chang, Jang-Yang; Lai, Ming-Derg

    2014-02-01

    Induction of thrombospondin 1 (TSP-1) is generally assumed to suppress tumor growth through inhibiting angiogenesis; however, it is less clear how TSP-1 in dendritic cells (DCs) influences tumor progression. We investigated tumor growth and immune mechanism by downregulation of TSP-1 in dendritic cells. Administration of TSP-1 small hairpin RNA (shRNA) through the skin produced anticancer therapeutic effects. Tumor-infiltrating CD4(+) and CD8(+) T cells were increased after the administration of TSP-1 shRNA. The expression of interleukin-12 and interferon-γ in the lymph nodes was enhanced by injection of TSP-1 shRNA. Lymphocytes from the mice injected with TSP-1 shRNA selectively killed the tumor cells, and the cytotoxicity of lymphocytes was abolished by depletion of CD8(+) T cells. Injection of CD11c(+) TSP-1-knockout (TSP-1-KO) bone marrow-derived DCs (BMDCs) delayed tumor growth in tumor-bearing mice. Similarly, antitumor activity induced by TSP-1-KO BMDCs was abrogated by depletion of CD8(+) T cells. In contrast, the administration of shRNAs targeting TSP-2, another TSP family member, did not extend the survival of tumor-bearing mice. Finally, TSP-1 shRNA functioned as an immunotherapeutic adjuvant to augment the therapeutic efficacy of Neu DNA vaccination. Collectively, the downregulation of TSP-1 in DCs produces an effective antitumor response that is opposite to the protumor effects by silencing of TSP-1 within tumor cells.

  19. Immune Interference After Sequential Alphavirus Vaccine Vaccinations

    DTIC Science & Technology

    2009-01-01

    REPORT DATE 11 MAR 2009 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Immune interference after sequential alphavirus ...of administration of investigational alphavirus vaccines on neutralizing antibody response. Volunteers who received the inactivated eastern and...vaccine strategy among those receiving multiple alphavirus vaccines and those developing next generation vaccines for these threats. 15. SUBJECT TERMS

  20. Biodegradable dendritic positron-emitting nanoprobes for the noninvasive imaging of angiogenesis

    PubMed Central

    Almutairi, Adah; Rossin, Raffaella; Shokeen, Monica; Hagooly, Aviv; Ananth, Ashwin; Capoccia, Benjamin; Guillaudeu, Steve; Abendschein, Dana; Anderson, Carolyn J.; Welch, Michael J.; Fréchet, Jean M. J.

    2009-01-01

    A biodegradable positron-emitting dendritic nanoprobe targeted at αvβ3 integrin, a biological marker known to modulate angiogenesis, was developed for the noninvasive imaging of angiogenesis. The nanoprobe has a modular multivalent core-shell architecture consisting of a biodegradable heterobifunctional dendritic core chemoselectively functionalized with heterobifunctional polyethylene oxide (PEO) chains that form a protective shell, which imparts biological stealth and dictates the pharmacokinetics. Each of the 8 branches of the dendritic core was functionalized for labeling with radiohalogens. Placement of radioactive moieties at the core was designed to prevent in vivo dehalogenation, a potential problem for radiohalogens in imaging and therapy. Targeting peptides of cyclic arginine–glycine–aspartic acid (RGD) motifs were installed at the terminal ends of the PEO chains to enhance their accessibility to αvβ3 integrin receptors. This nanoscale design enabled a 50-fold enhancement of the binding affinity to αvβ3 integrin receptors with respect to the monovalent RGD peptide alone, from 10.40 nM to 0.18 nM IC50. Cell-based assays of the 125I-labeled dendritic nanoprobes using αvβ3-positive cells showed a 6-fold increase in αvβ3 receptor-mediated endocytosis of the targeted nanoprobe compared with the nontargeted nanoprobe, whereas αvβ3-negative cells showed no enhancement of cell uptake over time. In vivo biodistribution studies of 76Br-labeled dendritic nanoprobes showed excellent bioavailability for the targeted and nontargeted nanoprobes. In vivo studies in a murine hindlimb ischemia model for angiogenesis revealed high specific accumulation of 76Br-labeled dendritic nanoprobes targeted at αvβ3 integrins in angiogenic muscles, allowing highly selective imaging of this critically important process. PMID:19129498

  1. Replicating vaccines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Early work on fish immunology and disease resistance demonstrated fish (like animals and humans) that survived infection were typically resistant to re-infection with the same pathogen. The concepts of resistance upon reinfection lead to the research and development of replicating (live) vaccines in...

  2. AIDS Vaccines.

    ERIC Educational Resources Information Center

    Matthews, Thomas J.; Bolognesi, Dani P.

    1988-01-01

    Reveals that success of discovering vaccines is far from being assured although several candidates are being tested. States that the devious nature of the virus, the lack of a good animal model for the disease, and the difficulties of clinical trials inhibit the efforts of researchers. (RT)

  3. Polio Vaccine

    MedlinePlus

    ... workers who might handle polio virus, and healthcare workers treating patients who could have polio. These higher-risk adults may need 1 to 3 doses of IPV, depending on how many doses they have had in the past.There are no known risks to getting IPV at the same time as other vaccines.

  4. Rotavirus Vaccine

    MedlinePlus

    ... including a severe allergy to latex. Babies with "severe combined immunodeficiency" (SCID) should not get rotavirus vaccine. Babies who have had a type of bowel blockage called "intussusception" should not get ... with moderate or severe diarrhea or vomiting. Check with your doctor if ...

  5. Malaria vaccine.

    PubMed

    1994-05-01

    Some have argued that the vaccine against malaria developed by Manuel Pattaroyo, a Colombian scientist, is being tested prematurely in humans and that it is unlikely to be successful. While the Pattaroyo vaccine has been shown to confer protection against the relatively mild malaria found in Colombia, doubts exist over whether it will be effective in Africa. Encouraging first results, however, are emerging from field tests in Tanzania. The vaccine triggered a strong new immune response, even in individuals previously exposed to malaria. Additional steps must be taken to establish its impact upon mortality and morbidity. Five major trials are underway around the world. The creator estimates that the first ever effective malaria vaccine could be available for widespread use within five years and he has no intention of securing a patent for the discovery. In another development, malaria specialists from 35 African countries convened at an international workshop in Zimbabwe to compare notes. Participants disparaged financial outlays for the fight against malaria equivalent to 2% of total AIDS funding as insufficient; noted intercountry differences in prevention, diagnosis, and treatment; and found information exchange between anglophone and francophone doctors to be generally poor.

  6. Valuing vaccination

    PubMed Central

    Bärnighausen, Till; Bloom, David E.; Cafiero-Fonseca, Elizabeth T.; O’Brien, Jennifer Carroll

    2014-01-01

    Vaccination has led to remarkable health gains over the last century. However, large coverage gaps remain, which will require significant financial resources and political will to address. In recent years, a compelling line of inquiry has established the economic benefits of health, at both the individual and aggregate levels. Most existing economic evaluations of particular health interventions fail to account for this new research, leading to potentially sizable undervaluation of those interventions. In line with this new research, we set forth a framework for conceptualizing the full benefits of vaccination, including avoided medical care costs, outcome-related productivity gains, behavior-related productivity gains, community health externalities, community economic externalities, and the value of risk reduction and pure health gains. We also review literature highlighting the magnitude of these sources of benefit for different vaccinations. Finally, we outline the steps that need to be taken to implement a broad-approach economic evaluation and discuss the implications of this work for research, policy, and resource allocation for vaccine development and delivery. PMID:25136129

  7. Nanotoxoid Vaccines

    PubMed Central

    Hu, Che-Ming J.; Zhang, Liangfang

    2014-01-01

    To improve innate defense against diseases, vaccine formulations are routinely administered to mount immune responses against disease-causing organisms or their associated toxins. These formulations are typically prepared with weakened forms of microbes, their surface proteins, or their virulence factors, which can train the immune system to recognize and neutralize similar infectious threats in later exposures. Owing to many unique properties of nanoparticles in enhancing vaccine potency, nanoscale carriers are drawing increasing interest as a platform for developing safer and more effective vaccine formulations. Notably, a nanoparticle-based strategy was recently demonstrated to safely deliver intact, non-denatured protein toxins to mount a potent anti-toxin immune response. A biomimetic nanoparticle cloaked in biological membranes was used to sequester membrane-active toxins. Upon interaction with the nanoparticles, the toxins become retrained and lose their toxicity as they are precluded from interacting with cellular targets. The resulting particle/toxin complex adopts a nanoparticulate morphology that facilitates the toxins’ intracellular delivery. This sequestration approach has immense immunological implications owing to its ability in enabling structurally preserved toxins for immune processing. This technique offers opportunities in novel toxoid vaccine designs that promise more effective anti-toxin immune responses and contrasts the existing paradigm in toxoid preparation, in which toxins are antigenically altered to ensure virulence removal. The potent nanotoxoid formulations provide a viable anti-virulence measure in combating microbial infections that involve membrane-damaging toxins, including methicillin-resistant Staphylococcus aureus (MRSA) and Group A streptococcal infections. PMID:25285152

  8. Vexing Vaccines

    ERIC Educational Resources Information Center

    Bowman, Darcia Harris

    2004-01-01

    Schools play a key role in ensuring that children are being immunized against diseases, but conflicting research is making enforcement difficult. This article discusses a growing trend of vaccine avoidance and the endless supply of conflicting information and research about immunization safety. Despite the controversy, many people appear to accept…

  9. Humoral Immunity to Primary Smallpox Vaccination: Impact of Childhood versus Adult Immunization on Vaccinia Vector Vaccine Development in Military Populations.

    PubMed

    Slike, Bonnie M; Creegan, Matthew; Marovich, Mary; Ngauy, Viseth

    2017-01-01

    Modified Vaccinia virus has been shown to be a safe and immunogenic vector platform for delivery of HIV vaccines. Use of this vector is of particular importance to the military, with the implementation of a large scale smallpox vaccination campaign in 2002 in active duty and key civilian personnel in response to potential bioterrorist activities. Humoral immunity to smallpox vaccination was previously shown to be long lasting (up to 75 years) and protective. However, using vaccinia-vectored vaccine delivery for other diseases on a background of anti-vector antibodies (i.e. pre-existing immunity) may limit their use as a vaccine platform, especially in the military. In this pilot study, we examined the durability of vaccinia antibody responses in adult primary vaccinees in a healthy military population using a standard ELISA assay and a novel dendritic cell neutralization assay. We found binding and neutralizing antibody (NAb) responses to vaccinia waned after 5-10 years in a group of 475 active duty military, born after 1972, who were vaccinated as adults with Dryvax®. These responses decreased from a geometric mean titer (GMT) of 250 to baseline (<20) after 10-20 years post vaccination. This contrasted with a comparator group of adults, ages 35-49, who were vaccinated with Dryvax® as children. In the childhood vaccinees, titers persisted for >30 years with a GMT of 210 (range 112-3234). This data suggests limited durability of antibody responses in adult vaccinees compared to those vaccinated in childhood and further that adult vaccinia recipients may benefit similarly from receipt of a vaccinia based vaccine as those who are vaccinia naïve. Our findings may have implications for the smallpox vaccination schedule and support the ongoing development of this promising viral vector in a military vaccination program.

  10. Melioidosis Vaccines: A Systematic Review and Appraisal of the Potential to Exploit Biodefense Vaccines for Public Health Purposes

    PubMed Central

    Lubell, Yoel; Koh, Gavin C. K. W.; White, Lisa J.; Day, Nicholas P. J.; Titball, Richard W.

    2012-01-01

    Background Burkholderia pseudomallei is a Category B select agent and the cause of melioidosis. Research funding for vaccine development has largely considered protection within the biothreat context, but the resulting vaccines could be applicable to populations who are at risk of naturally acquired melioidosis. Here, we discuss target populations for vaccination, consider the cost-benefit of different vaccination strategies and review potential vaccine candidates. Methods and Findings Melioidosis is highly endemic in Thailand and northern Australia, where a biodefense vaccine might be adopted for public health purposes. A cost-effectiveness analysis model was developed, which showed that a vaccine could be a cost-effective intervention in Thailand, particularly if used in high-risk populations such as diabetics. Cost-effectiveness was observed in a model in which only partial immunity was assumed. The review systematically summarized all melioidosis vaccine candidates and studies in animal models that had evaluated their protectiveness. Possible candidates included live attenuated, whole cell killed, sub-unit, plasmid DNA and dendritic cell vaccines. Live attenuated vaccines were not considered favorably because of possible reversion to virulence and hypothetical risk of latent infection, while the other candidates need further development and evaluation. Melioidosis is acquired by skin inoculation, inhalation and ingestion, but routes of animal inoculation in most published studies to date do not reflect all of this. We found a lack of studies using diabetic models, which will be central to any evaluation of a melioidosis vaccine for natural infection since diabetes is the most important risk factor. Conclusion Vaccines could represent one strand of a public health initiative to reduce the global incidence of melioidosis. PMID:22303489

  11. Humoral Immunity to Primary Smallpox Vaccination: Impact of Childhood versus Adult Immunization on Vaccinia Vector Vaccine Development in Military Populations

    PubMed Central

    Slike, Bonnie M.; Creegan, Matthew

    2017-01-01

    Modified Vaccinia virus has been shown to be a safe and immunogenic vector platform for delivery of HIV vaccines. Use of this vector is of particular importance to the military, with the implementation of a large scale smallpox vaccination campaign in 2002 in active duty and key civilian personnel in response to potential bioterrorist activities. Humoral immunity to smallpox vaccination was previously shown to be long lasting (up to 75 years) and protective. However, using vaccinia-vectored vaccine delivery for other diseases on a background of anti-vector antibodies (i.e. pre-existing immunity) may limit their use as a vaccine platform, especially in the military. In this pilot study, we examined the durability of vaccinia antibody responses in adult primary vaccinees in a healthy military population using a standard ELISA assay and a novel dendritic cell neutralization assay. We found binding and neutralizing antibody (NAb) responses to vaccinia waned after 5–10 years in a group of 475 active duty military, born after 1972, who were vaccinated as adults with Dryvax®. These responses decreased from a geometric mean titer (GMT) of 250 to baseline (<20) after 10–20 years post vaccination. This contrasted with a comparator group of adults, ages 35–49, who were vaccinated with Dryvax® as children. In the childhood vaccinees, titers persisted for >30 years with a GMT of 210 (range 112–3234). This data suggests limited durability of antibody responses in adult vaccinees compared to those vaccinated in childhood and further that adult vaccinia recipients may benefit similarly from receipt of a vaccinia based vaccine as those who are vaccinia naïve. Our findings may have implications for the smallpox vaccination schedule and support the ongoing development of this promising viral vector in a military vaccination program. PMID:28046039

  12. Vaccine chronicle in Japan.

    PubMed

    Nakayama, Tetsuo

    2013-10-01

    The concept of immunization was started in Japan in 1849 when Jenner's cowpox vaccine seed was introduced, and the current immunization law was stipulated in 1948. There have been two turning points for amendments to the immunization law: the compensation remedy for vaccine-associated adverse events in 1976, and the concept of private vaccination in 1994. In 1992, the regional Court of Tokyo, not the Supreme Court, decided the governmental responsibility on vaccine-associated adverse events, which caused the stagnation of vaccine development. In 2010, many universal vaccines became available as the recommended vaccines, but several vaccines, including mumps, zoster, hepatitis B, and rota vaccines, are still voluntary vaccines, not universal routine applications. In this report, immunization strategies and vaccine development are reviewed for each vaccine item and future vaccine concerns are discussed.

  13. Adjuvants and vector systems for allergy vaccines.

    PubMed

    Moingeon, Philippe; Lombardi, Vincent; Saint-Lu, Nathalie; Tourdot, Sophie; Bodo, Véronique; Mascarell, Laurent

    2011-05-01

    Allergen-specific immunotherapy represents a curative treatment of type I allergies. Subcutaneous immunotherapy is conducted with allergens adsorbed on aluminum hydroxide or calcium phosphate particles, whereas sublingual immunotherapy relies on high doses of soluble allergen without any immunopotentiator. There is a potential benefit of adjuvants enhancing regulatory and Th1 CD4+T cell responses during specific immunotherapy. Molecules affecting dendritic cells favor the induction of T regulatory cell and Th1 responses and represent valid candidate adjuvants for allergy vaccines. Furthermore, the interest in viruslike particles and mucoadhesive particulate vector systems, which may better address the allergen(s) to tolerogenic antigen-presenting cells, is documented.

  14. In vivo dendrite regeneration after injury is different from dendrite development.

    PubMed

    Thompson-Peer, Katherine L; DeVault, Laura; Li, Tun; Jan, Lily Yeh; Jan, Yuh Nung

    2016-08-01

    Neurons receive information along dendrites and send signals along axons to synaptic contacts. The factors that control axon regeneration have been examined in many systems, but dendrite regeneration has been largely unexplored. Here we report that, in intact Drosophila larvae, a discrete injury that removes all dendrites induces robust dendritic growth that recreates many features of uninjured dendrites, including the number of dendrite branches that regenerate and responsiveness to sensory stimuli. However, the growth and patterning of injury-induced dendrites is significantly different from uninjured dendrites. We found that regenerated arbors cover much less territory than uninjured neurons, fail to avoid crossing over other branches from the same neuron, respond less strongly to mechanical stimuli, and are pruned precociously. Finally, silencing the electrical activity of the neurons specifically blocks injury-induced, but not developmental, dendrite growth. By elucidating the essential features of dendrites grown in response to acute injury, our work builds a framework for exploring dendrite regeneration in physiological and pathological conditions.

  15. In vivo dendrite regeneration after injury is different from dendrite development

    PubMed Central

    Li, Tun; Jan, Lily Yeh; Jan, Yuh Nung

    2016-01-01

    Neurons receive information along dendrites and send signals along axons to synaptic contacts. The factors that control axon regeneration have been examined in many systems, but dendrite regeneration has been largely unexplored. Here we report that, in intact Drosophila larvae, a discrete injury that removes all dendrites induces robust dendritic growth that recreates many features of uninjured dendrites, including the number of dendrite branches that regenerate and responsiveness to sensory stimuli. However, the growth and patterning of injury-induced dendrites is significantly different from uninjured dendrites. We found that regenerated arbors cover much less territory than uninjured neurons, fail to avoid crossing over other branches from the same neuron, respond less strongly to mechanical stimuli, and are pruned precociously. Finally, silencing the electrical activity of the neurons specifically blocks injury-induced, but not developmental, dendrite growth. By elucidating the essential features of dendrites grown in response to acute injury, our work builds a framework for exploring dendrite regeneration in physiological and pathological conditions. PMID:27542831

  16. Varicella (Chickenpox) Vaccine

    MedlinePlus

    ProQuad® (as a combination product containing Measles Vaccine, Mumps Vaccine, Rubella Vaccine, Varicella Vaccine) ... up to about 1 person in 5) and measles-like rash (about 1 person in 20) than MMR and varicella vaccines given separately. Moderate Problems:Seizure (jerking or staring) ...

  17. Dendritic Growth in Undercooled Melts

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.

    1985-01-01

    The kinetic and morphological behavior of systems solidifying at small undercooling were investigated with emphasis on the role of convective and diffusive transport and the influence of gravity. A data base was established for pure succinonitrile which permits a comprehensive check on diffusional dendrite growth theory and the development of scaling laws to extend the theory to other material systems. A departure from diffusional-controlled growth was observed which becomes more significant at smaller undercoolings. A shuttle experiment is prepared to test the theory at the low undercoolings where convective effects begin to dominate.

  18. Characterization of immune responses induced by inactivated, live attenuated and DNA vaccines against Japanese encephalitis virus in mice.

    PubMed

    Li, Jieqiong; Chen, Hui; Wu, Na; Fan, Dongying; Liang, Guodong; Gao, Na; An, Jing

    2013-08-28

    Vaccination is the most effective countermeasure for protecting individuals from Japanese encephalitis virus (JEV) infection. There are two types of JEV vaccines currently used in China: the Vero cell-derived inactivated vaccine and the live attenuated vaccine. In this study, we characterized the immune response and protective efficacy induced in mice by the inactivated vaccine, live attenuated vaccine and the DNA vaccine candidate pCAG-JME, which expresses JEV prM-E proteins. We found that the live attenuated vaccine conferred 100% protection and resulted in the generation of high levels of specific anti-JEV antibodies and cytokines. The pCAG-JME vaccine induced protective immunity as well as the live attenuated vaccine. Unexpectedly, immunization with the inactivated vaccine only induced a limited immune response and partial protection, which may be due to the decreased activity of dendritic cells and the expansion of CD4+CD25+Foxp3+ regulatory T cells observed in these mice. Altogether, our results suggest that the live attenuated vaccine is more effective in providing protection against JEV infection than the inactivated vaccine and that pCAG-JME will be a potential JEV vaccine candidate.

  19. Isolation and generation of human dendritic cells.

    PubMed

    Nair, Smita; Archer, Gerald E; Tedder, Thomas F

    2012-11-01

    Dendritic cells are highly specialized antigen-presenting cells (APC), which may be isolated or generated from human blood mononuclear cells. Although mature blood dendritic cells normally represent ∼0.2% of human blood mononuclear cells, their frequency can be greatly increased using the cell enrichment methods described in this unit. More highly purified dendritic cell preparations can be obtained from these populations by sorting of fluorescence-labeled cells. Alternatively, dendritic cells can be generated from monocytes by culture with the appropriate cytokines, as described here. In addition, a negative selection approach is provided that may be employed to generate cell preparations that have been depleted of dendritic cells to be used for comparison in functional studies.

  20. Convection and diffusion effects during dendritic solidification

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.; Huang, S.-C.

    1979-01-01

    A report is presented of the first quantitative measurements of dendritic growth at supercooling levels where convection instead of diffusion is the controlling heat transfer mechanism. Precautions similar to that used in an investigation conducted by Glicksman et al. (1976) were taken to insure 'free' dendritic growth conditions. Dendritic growth velocity was measured as a function of growth orientation at seventeen supercoolings which ranged from 0.043 C to 2 C. Selected but representative measurements of velocity versus orientation angle are shown in a graph. The relative growth velocity of a downward growing dendrite is found to be greater than that of a diffusion-limited dendrite. This result is consistent with that expected from the enhanced heat transfer arising from natural convection.

  1. Immune interference after sequential alphavirus vaccine vaccinations.

    PubMed

    Pittman, Phillip R; Liu, Ching-Tong; Cannon, Timothy L; Mangiafico, Joseph A; Gibbs, Paul H

    2009-08-06

    We compared the effect of order of administration of investigational alphavirus vaccines on neutralizing antibody response. Volunteers who received the inactivated eastern and western equine encephalitis (EEE and WEE) vaccines before live attenuated Venezuelan (VEE) vaccine had significantly lower rates of antibody response than those receiving VEE vaccine before EEE and WEE vaccines (66.7% vs. 80.6%; p=0.026). The odds of having a VEE antibody non-response among those initially receiving EEE and WEE vaccines, adjusted for gender, were significant (odds ratio [OR]=2.20; 95% CI=1.2-4.1 [p=0.0145]) as were the odds of non-response among females adjusted for group (OR=1.81; 95% CI=1.2-2.7 [p=0.0037]). Antibody interference and gender effect have major implications for vaccine strategy among those receiving multiple alphavirus vaccines and those developing next generation vaccines for these threats.

  2. Active dendrites, potassium channels and synaptic plasticity.

    PubMed Central

    Johnston, Daniel; Christie, Brian R; Frick, Andreas; Gray, Richard; Hoffman, Dax A; Schexnayder, Lalania K; Watanabe, Shigeo; Yuan, Li-Lian

    2003-01-01

    The dendrites of CA1 pyramidal neurons in the hippocampus express numerous types of voltage-gated ion channel, but the distributions or densities of many of these channels are very non-uniform. Sodium channels in the dendrites are responsible for action potential (AP) propagation from the axon into the dendrites (back-propagation); calcium channels are responsible for local changes in dendritic calcium concentrations following back-propagating APs and synaptic potentials; and potassium channels help regulate overall dendritic excitability. Several lines of evidence are presented here to suggest that back-propagating APs, when coincident with excitatory synaptic input, can lead to the induction of either long-term depression (LTD) or long-term potentiation (LTP). The induction of LTD or LTP is correlated with the magnitude of the rise in intracellular calcium. When brief bursts of synaptic potentials are paired with postsynaptic APs in a theta-burst pairing paradigm, the induction of LTP is dependent on the invasion of the AP into the dendritic tree. The amplitude of the AP in the dendrites is dependent, in part, on the activity of a transient, A-type potassium channel that is expressed at high density in the dendrites and correlates with the induction of the LTP. Furthermore, during the expression phase of the LTP, there are local changes in dendritic excitability that may result from modulation of the functioning of this transient potassium channel. The results support the view that the active properties of dendrites play important roles in synaptic integration and synaptic plasticity of these neurons. PMID:12740112

  3. Immunogenicity is preferentially induced in sparse dendritic cell cultures

    PubMed Central

    Nasi, Aikaterini; Bollampalli, Vishnu Priya; Sun, Meng; Chen, Yang; Amu, Sylvie; Nylén, Susanne; Eidsmo, Liv; Rothfuchs, Antonio Gigliotti; Réthi, Bence

    2017-01-01

    We have previously shown that human monocyte-derived dendritic cells (DCs) acquired different characteristics in dense or sparse cell cultures. Sparsity promoted the development of IL-12 producing migratory DCs, whereas dense cultures increased IL-10 production. Here we analysed whether the density-dependent endogenous breaks could modulate DC-based vaccines. Using murine bone marrow-derived DC models we show that sparse cultures were essential to achieve several key functions required for immunogenic DC vaccines, including mobility to draining lymph nodes, recruitment and massive proliferation of antigen-specific CD4+ T cells, in addition to their TH1 polarization. Transcription analyses confirmed higher commitment in sparse cultures towards T cell activation, whereas DCs obtained from dense cultures up-regulated immunosuppressive pathway components and genes suggesting higher differentiation plasticity towards osteoclasts. Interestingly, we detected a striking up-regulation of fatty acid and cholesterol biosynthesis pathways in sparse cultures, suggesting an important link between DC immunogenicity and lipid homeostasis regulation. PMID:28276533

  4. An Engineered Herpesvirus Activates Dendritic Cells and Induces Protective Immunity

    PubMed Central

    Ma, Yijie; Chen, Min; Jin, Huali; Prabhakar, Bellur S.; Valyi-Nagy, Tibor; He, Bin

    2017-01-01

    Herpes simplex viruses (HSV) are human pathogens that switch between lytic and latent infection. While attenuated HSV is explored for vaccine, the underlying event remains poorly defined. Here we report that recombinant HSV-1 with a mutation in the γ134.5 protein, a virulence factor, stimulates dendritic cell (DC) maturation which is dependent on TANK-binding kinase 1 (TBK1). When exposed to CD11+ DCs, the mutant virus that lacks the amino terminus of γ134.5 undergoes temporal replication without production of infectious virus. Mechanistically, this leads to sequential phosphorylation of interferon regulatory factor 3 (IRF3) and p65/RelA. In correlation, DCs up-regulate the expression of co-stimulatory molecules and cytokines. However, selective inhibition of TBK1 precludes phosphorylation of IRF3 and subsequent DC activation by the γ134.5 mutant. Herein, the γ134.5 mutant is immune-stimulatory and non-destructive to DCs. Remarkably, upon immunization the γ134.5 mutant induces protection against lethal challenge by the wild type virus, indicative of its vaccine potential. Furthermore, CD11+ DCs primed by the γ134.5 mutant in vivo mediate protection upon adoptive transfer. These results suggest that activation of TBK1 by engineered HSV is crucial for DC maturation, which may contribute to protective immunity. PMID:28150813

  5. Control of HPV infection and related cancer through vaccination.

    PubMed

    Tran, Nam Phuong; Hung, Chien-Fu; Roden, Richard; Wu, T-C

    2014-01-01

    Human papillomavirus (HPV), the most common sexually transmitted virus, and its associated diseases continue to cause significant morbidity and mortality in over 600 million infected individuals. Major progress has been made with preventative vaccines, and clinical data have emerged regarding the efficacy and cross-reactivity of the two FDA approved L1 virus like particle (VLP)-based vaccines. However, the cost of the approved vaccines currently limits their widespread use in developing countries which carry the greatest burden of HPV-associated diseases. Furthermore, the licensed preventive HPV vaccines only contain two high-risk types of HPV (HPV-16 and HPV-18) which can protect only up to 75 % of all cervical cancers. Thus, second generation preventative vaccine candidates hope to address the issues of cost and broaden protection through the use of more multivalent L1-VLPs, vaccine formulations, or alternative antigens such as L1 capsomers, L2 capsid proteins, and chimeric VLPs. Preventative vaccines are crucial to controlling the transmission of HPV, but there are already hundreds of millions of infected individuals who have HPV-associated lesions that are silently progressing toward malignancy. This raises the need for therapeutic HPV vaccines that can trigger T cell killing of established HPV lesions, including HPV-transformed tumor cells. In order to stimulate such antitumor immune responses, therapeutic vaccine candidates deliver HPV antigens in vivo by employing various bacterial, viral, protein, peptide, dendritic cell, and DNA-based vectors. This book chapter will review the commercially available preventive vaccines, present second generation candidates, and discuss the progress of developing therapeutic HPV vaccines.

  6. Human Papillomavirus (HPV) Vaccines

    MedlinePlus

    ... Directory Cancer Prevention Overview Research Human Papillomavirus (HPV) Vaccines On This Page What are human papillomaviruses? Which ... infections? Can HPV infections be prevented? What HPV vaccines are available? Who should get the HPV vaccines? ...

  7. Meningococcal Vaccine (For Parents)

    MedlinePlus

    ... to 2-Year-Old Your Child's Immunizations: Meningococcal Vaccines KidsHealth > For Parents > Your Child's Immunizations: Meningococcal Vaccines ... or her parents, and the doctor. Why the Vaccines Are Recommended Meningococcal disease is caused by a ...

  8. Your Baby's First Vaccines

    MedlinePlus

    ... Link Vaccines & Immunizations Immunization Schedules Your Child's First Vaccines Format: Select one PDF [335 KB] RTF [260 ... child will get one or more of these vaccines today: DTaP Hib Hepatitis B Polio PCV13 Why ...

  9. Vaccines Stop Illness

    MedlinePlus

    Skip Navigation Bar Home Current Issue Past Issues Vaccines Stop Illness Past Issues / Spring 2008 Table of ... meningitis won't infect, cripple, or kill children. Vaccine Safety In light of recent questions about vaccine ...

  10. Vaccines and Thimerosal

    MedlinePlus

    ... this? Submit What's this? Submit Button Thimerosal in Vaccines Recommend on Facebook Tweet Share Compartir Thimerosal is ... harm. Thimerosal prevents the growth of bacteria in vaccines. Thimerosal is added to vials of vaccine that ...

  11. Childhood Vaccine Schedule

    MedlinePlus

    ... Navigation Bar Home Current Issue Past Issues Childhood Vaccine Schedule Past Issues / Spring 2008 Table of Contents ... please turn Javascript on. When to Vaccinate What Vaccine Why Birth (or any age if not previously ...

  12. Meningococcal Vaccine (For Parents)

    MedlinePlus

    ... Your 1- to 2-Year-Old Your Child's Immunizations: Meningococcal Vaccines KidsHealth > For Parents > Your Child's Immunizations: ... who are at increased risk for meningococcal disease. Immunization Schedule Vaccination with meningococcal conjugate vaccine is recommended: ...

  13. Human Papillomavirus (HPV) Vaccine

    MedlinePlus

    Why get vaccinated?HPV vaccine prevents infection with human papillomavirus (HPV) types that are associated with cause ... at http://www.cdc.gov/hpv. HPV Vaccine (Human Papillomavirus) Information Statement. U.S. Department of Health and ...

  14. Vaccinations during Pregnancy

    MedlinePlus

    ... get is safe. Make sure your vaccinations are up to date before you get pregnant. What is a vaccination? ... are recommended before pregnancy? It’s best to be up to date on all your routine adult vaccinations before you ...

  15. Comparison of dendritic cell-mediated immune responses among canine malignant cells.

    PubMed

    Tamura, Kyoichi; Arai, Hiroyoshi; Ueno, Emi; Saito, Chie; Yagihara, Hiroko; Isotani, Mayu; Ono, Kenichiro; Washizu, Tsukimi; Bonkobara, Makoto

    2007-09-01

    Dendritic cell (DC) vaccination is one of the most attractive immunotherapies for malignancies in dogs. To examine the differences in DC-mediated immune responses from different types of malignancies in dogs, we vaccinated dogs using autologous DCs pulsed with keyhole limpet hemocyanin (KLH) and cell lysate prepared from squamous cell carcinoma SCC2/88 (SCC-KLH-DC), histiocytic sarcoma CHS-5 (CHS-KLH-DC), or B cell leukemia GL-1 (GL-KLH-DC) in vitro. In vivo inductions of immune responses against these tumor cells were compared by the delayed-type hypersensitivity (DTH) skin test. The DTH response against SCC2/88 cells were observed in dogs vaccinated with autologous SCC-KLH-DC, while the response was undetectable against CHS-5 and GL-1 cells in dogs vaccinated with autologous CHS-KLH-DC and GL-KLH-DC. Skin biopsies taken from DTH challenge sites were then examined for immunohistochemistry, and recruitment of CD8 and CD4 T cells was detected at the site where SCC2/88 cells were inoculated in dogs vaccinated with SCC-KLH-DC. By contrast, neither CD8 nor CD4 T cell infiltration was found at the DTH challenge site in the dogs vaccinated with CHS-KLH-DC or GL-KLH-DC. These findings may reflect that the efficacy of immune induction by DC vaccination varies among tumor types and that immune responses could be inducible in squamous cell carcinoma. Our results encouraged further investigation of therapeutic vaccination for dogs with advanced squamous cell carcinoma in clinical trials.

  16. Vaccine-Preventable Disease Photos

    MedlinePlus

    Home | About | A-Z | Contact | Follow Vaccine Information You Need VACCINE BASICS Evaluating Online Health Information FAQs How Vaccines Work Importance of Vaccines Paying for Vaccines State Immunization Programs ...

  17. Subviral Particle as Vaccine and Vaccine Platform

    PubMed Central

    Tan, Ming; Jiang, Xi

    2014-01-01

    Recombinant subvirual particles retain similar antigenic features of their authentic viral capsids and thus have been applied as nonreplicating subunit vaccines against viral infection and illness. Additionally, the self-assembled, polyvalent subviral particles are excellent platforms to display foreign antigens for immune enhancement for vaccine development. These subviral particle-based vaccines are noninfectious and thus safer than the conventional live attenuated and inactivated vaccines. While several VLP vaccines are available in the markets, numerous others, including dual vaccines against more than one pathogen, are under clinical or preclinical development. This article provides an update of these efforts. PMID:24662314

  18. [Vaccination against mouse pox].

    PubMed

    Mahnel, H

    1985-01-01

    Attenuated MVA-strain of vaccinia virus has been efficient in the control of enzootic mousepox and in prophylactic vaccination. The virus has been used as a live vaccine for prophylactic and emergency vaccinations as well as for sanitation of populations. More than 100 000 vaccinations were carried out safely. Even after suspension of the obligatory vaccination of humans against smallpox the MVA-vaccine can be employed without risk and danger.

  19. Engineered human vaccines

    SciTech Connect

    Sandhu, J.S. . Div. of Immunology and Neurobiology)

    1994-01-01

    The limitations of human vaccines in use at present and the design requirements for a new generation of human vaccines are discussed. The progress in engineering of human vaccines for bacteria, viruses, parasites, and cancer is reviewed, and the data from human studies with the engineered vaccines are discussed, especially for cancer and AIDS vaccines. The final section of the review deals with the possible future developments in the field of engineered human vaccines and the requirement for effective new human adjuvants.

  20. Human Vaccines & Immunotherapeutics

    PubMed Central

    Riedmann, Eva M

    2014-01-01

    Measles vaccination: Targeted and non-targeted benefits CDC reports: 2-dose regimen of chickenpox vaccine is a success Positive preliminary results from the CAPiTA study Seasonal flu vaccine associate with reduced stroke risk HPV vaccine shown to halve cervical abnormalities Global prize for mobile mast vaccine storage project Developmental pathway of potent HIV-neutralizing antibodies Burkholderia vaccine: US Dep of Defense collaborates with Bavarian Nordic

  1. Leukemia-derived immature dendritic cells differentiate into functionally competent mature dendritic cells that efficiently stimulate T cell responses.

    PubMed

    Cignetti, Alessandro; Vallario, Antonella; Roato, Ilaria; Circosta, Paola; Allione, Bernardino; Casorzo, Laura; Ghia, Paolo; Caligaris-Cappio, Federico

    2004-08-15

    Primary acute myeloid leukemia cells can be induced to differentiate into dendritic cells (DC). In the presence of GM-CSF, TNF-alpha, and/or IL-4, leukemia-derived DC are obtained that display features of immature DC (i-DC). The aim of this study was to determine whether i-DC of leukemic origin could be further differentiated into mature DC (m-DC) and to evaluate the possibility that leukemic m-DC could be effective in vivo as a tumor vaccine. Using CD40L as maturating agent, we show that leukemic i-DC can differentiate into cells that fulfill the phenotypic criteria of m-DC and, compared with normal counterparts, are functionally competent in vitro in terms of: 1) production of cytokines that support T cell activation and proliferation and drive Th1 polarization; 2) generation of autologous CD8(+) CTLs and CD4(+) T cells that are MHC-restricted and leukemia-specific; 3) migration from tissues to lymph nodes; 4) amplification of Ag presentation by monocyte attraction; 5) attraction of naive/resting and activated T cells. Irradiation of leukemic i-DC after CD40L stimulation did not affect their differentiating and functional capacity. Our data indicate that acute myeloid leukemia cells can fully differentiate into functionally competent m-DC and lay the ground for testing their efficacy as a tumor vaccine.

  2. Hepatitis B Vaccine

    MedlinePlus

    ... a combination product containing Haemophilus influenzae type b, Hepatitis B Vaccine) ... combination product containing Diphtheria, Tetanus Toxoids, Acellular Pertussis, Hepatitis B, Polio Vaccine)

  3. Probe dendritic functions through poking and peeking

    NASA Astrophysics Data System (ADS)

    Xiong, Wenhui; Zhou, Zhishang; Zeng, Shaoqun; Chen, Wei R.

    2003-12-01

    Several photonic approaches have been utilized to study functional dynamics of olfactory bulb dendrites, which plays a critical role in odor discrimination and recognition. Firstly, with infrared differential interference contrast (DIC) video microscopy, we can visualize living nerve cells in an olfactory bulb slice preparation and target glass electrodes to different dendritic locations for direct electrical measurement. This furnishes a high temporal resolution of signal recording from dendrites. Secondly, by using a cooled CCD camera and loading calcium-sensitive dyes into neurons, we have explored the spatial distribution and propagation of spike signals within complex dendritic trees. Thirdly, two-photon microscope enables us to analyze active properties of very tiny dendritic structures such as dendritic spines. Lastly, by using UV light pulse to release calcium ions from caged compounds, we have examined the mechanisms for signal communication between two dendrites with reciprocal synaptic connections. Our research highlights an important contribution of optical imaging methods to functional dissection of neuronal circuitry in the brain.

  4. Dendritic potassium channels in hippocampal pyramidal neurons

    PubMed Central

    Johnston, Daniel; Hoffman, Dax A; Magee, Jeffrey C; Poolos, Nicholas P; Watanabe, Shigeo; Colbert, Costa M; Migliore, Michele

    2000-01-01

    Potassium channels located in the dendrites of hippocampal CA1 pyramidal neurons control the shape and amplitude of back-propagating action potentials, the amplitude of excitatory postsynaptic potentials and dendritic excitability. Non-uniform gradients in the distribution of potassium channels in the dendrites make the dendritic electrical properties markedly different from those found in the soma. For example, the influence of a fast, calcium-dependent potassium current on action potential repolarization is progressively reduced in the first 150 μm of the apical dendrites, so that action potentials recorded farther than 200 μm from the soma have no fast after-hyperpolarization and are wider than those in the soma. The peak amplitude of back-propagating action potentials is also progressively reduced in the dendrites because of the increasing density of a transient potassium channel with distance from the soma. The activation of this channel can be reduced by the activity of a number of protein kinases as well as by prior depolarization. The depolarization from excitatory postsynaptic potentials (EPSPs) can inactivate these A-type K+ channels and thus lead to an increase in the amplitude of dendritic action potentials, provided the EPSP and the action potentials occur within the appropriate time window. This time window could be in the order of 15 ms and may play a role in long-term potentiation induced by pairing EPSPs and back-propagating action potentials. PMID:10811726

  5. Dendritic potassium channels in hippocampal pyramidal neurons.

    PubMed

    Johnston, D; Hoffman, D A; Magee, J C; Poolos, N P; Watanabe, S; Colbert, C M; Migliore, M

    2000-05-15

    Potassium channels located in the dendrites of hippocampal CA1 pyramidal neurons control the shape and amplitude of back-propagating action potentials, the amplitude of excitatory postsynaptic potentials and dendritic excitability. Non-uniform gradients in the distribution of potassium channels in the dendrites make the dendritic electrical properties markedly different from those found in the soma. For example, the influence of a fast, calcium-dependent potassium current on action potential repolarization is progressively reduced in the first 150 micrometer of the apical dendrites, so that action potentials recorded farther than 200 micrometer from the soma have no fast after-hyperpolarization and are wider than those in the soma. The peak amplitude of back-propagating action potentials is also progressively reduced in the dendrites because of the increasing density of a transient potassium channel with distance from the soma. The activation of this channel can be reduced by the activity of a number of protein kinases as well as by prior depolarization. The depolarization from excitatory postsynaptic potentials (EPSPs) can inactivate these A-type K+ channels and thus lead to an increase in the amplitude of dendritic action potentials, provided the EPSP and the action potentials occur within the appropriate time window. This time window could be in the order of 15 ms and may play a role in long-term potentiation induced by pairing EPSPs and back-propagating action potentials.

  6. A balanced review of the status T cell-based therapy against cancer

    PubMed Central

    Marincola, Francesco M

    2005-01-01

    A recent commentary stirred intense controversy over the status of anti-cancer immunotherapy. The commentary suggested moving beyond current anti-cancer vaccines since active-specific immunization failed to match expectations toward a more aggressive approach involving the adoptive transfer of in vitro expanded tumor antigen-specific T cells. Although the same authors clarified their position in response to others' rebuttal more discussion needs to be devoted to the current status of T cell-based anti-cancer therapy. The accompanying publications review the status of adoptive transfer of cancer vaccines on one hand and active-specific immunization on the other. Hopefully, reading these articles will offer a balanced view of the current status of antigen-specific ant-cancer therapies and suggest future strategies to foster unified efforts to complement either approach with the other according to specific biological principles. PMID:15831096

  7. Active dendrites support efficient initiation of dendritic spikes in hippocampal CA3 pyramidal neurons

    PubMed Central

    Kim, Sooyun; Guzman, Segundo J; Hu, Hua; Jonas, Peter

    2013-01-01

    CA3 pyramidal neurons are important for memory formation and pattern completion in the hippocampal network. It is generally thought that proximal synapses from the mossy fibers activate these neurons most efficiently, whereas distal inputs from the perforant path have a weaker modulatory influence. We used confocally targeted patch-clamp recording from dendrites and axons to map the activation of rat CA3 pyramidal neurons at the subcellular level. Our results reveal two distinct dendritic domains. In the proximal domain, action potentials initiated in the axon backpropagate actively with large amplitude and fast time course. In the distal domain, Na+ channel–mediated dendritic spikes are efficiently initiated by waveforms mimicking synaptic events. CA3 pyramidal neuron dendrites showed a high Na+-to-K+ conductance density ratio, providing ideal conditions for active backpropagation and dendritic spike initiation. Dendritic spikes may enhance the computational power of CA3 pyramidal neurons in the hippocampal network. PMID:22388958

  8. Toll-like receptor-4 agonist in post-haemorrhage pneumonia: role of dendritic and natural killer cells.

    PubMed

    Roquilly, Antoine; Broquet, Alexis; Jacqueline, Cedric; Gautreau, Laetitia; Segain, Jean Pierre; de Coppet, Pierre; Caillon, Jocelyne; Altare, Frédéric; Josien, Regis; Asehnoune, Karim

    2013-11-01

    Haemorrhage-induced immunosuppression has been linked to nosocomial infections. We assessed the impact of monophosphoryl lipid A, a Toll/interleukin-1 receptor-domain-containing adaptor protein inducing interferon-biased Toll-like receptor-4 agonist currently used as a vaccine adjuvant in humans, on post-haemorrhage susceptibility to infection. We used a mouse model of post-haemorrhage pneumonia induced by methicillin-susceptible Staphylococcus aureus. Monophosphoryl lipid A was administered intravenously after haemorrhage and before pneumonia onset. Haemorrhage altered survival rate, increased lung damage (neutrophil accumulation, oedema and cytokine release) and altered the functions of dendritic and natural killer cells. Here, we show that monophosphoryl lipid A decreased systemic dissemination of S. aureus and dampened inflammatory lung lesions. Monophosphoryl lipid A partially restored the capacity for antigen presentation and the transcriptional activity in dendritic cells. Monophosphoryl lipid A did not restore the interferon-γ mRNA but prevented interleukin-10 mRNA overexpression in natural killer cells compared with untreated mice. Ex vivo monophosphoryl lipid A-stimulated dendritic cells or natural killer cells harvested from haemorrhaged animals were adoptively transferred into mice undergoing post-haemorrhage pneumonia. Stimulated dendritic cells (but not stimulated natural killer cells) improved the survival rate compared with mice left untreated. In vivo depletion of natural killer cells decreased survival rate of monophosphoryl lipid A-treated mice. Dendritic and natural killer cells are critically involved in the beneficial effects of monophosphoryl lipid A within post-haemorrhage pneumonia.

  9. Fractional Cable Models for Spiny Neuronal Dendrites

    NASA Astrophysics Data System (ADS)

    Henry, B. I.; Langlands, T. A. M.; Wearne, S. L.

    2008-03-01

    Cable equations with fractional order temporal operators are introduced to model electrotonic properties of spiny neuronal dendrites. These equations are derived from Nernst-Planck equations with fractional order operators to model the anomalous subdiffusion that arises from trapping properties of dendritic spines. The fractional cable models predict that postsynaptic potentials propagating along dendrites with larger spine densities can arrive at the soma faster and be sustained at higher levels over longer times. Calibration and validation of the models should provide new insight into the functional implications of altered neuronal spine densities, a hallmark of normal aging and many neurodegenerative disorders.

  10. Solidification under microgravity conditions - Dendritic growth

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.; Hahn, R. C.; Lograsso, T. A.; Rubinstein, E. R.; Winsa, E.

    1987-01-01

    The experimental approach and apparatus of a zero-gravity active crystal growth experiment to test dendritic growth theory at low supercoolings are discussed. The experiment consists of 20 experimental cycles. Estimates have been made as to how low gravitational accelerations would have to be reduced to observe convection-free dendritic growth at supercoolings from 0.01-1.0 K. The experiment requires temperature control of + or - 2 mK and photographic resolution of a few microns with a depth of field of + or - 6 mm. The thermostatic bath and temperature control system, photographic system, growth chamber, and dendrite detection system are described in detail.

  11. Clinical evaluation of CpG oligonucleotides as adjuvants for vaccines targeting infectious diseases and cancer.

    PubMed

    Scheiermann, Julia; Klinman, Dennis M

    2014-11-12

    Synthetic oligonucleotides (ODN) that express unmethylated "CpG motifs" trigger cells that express Toll-like receptor 9. In humans this includes plasmacytoid dendritic cells and B cells. CpG ODN induce an innate immune response characterized by the production of Th1 and pro-inflammatory cytokines. Their utility as vaccine adjuvants was evaluated in a number of clinical trials. Results indicate that CpG ODN improve antigen presentation and the generation of vaccine-specific cellular and humoral responses. This work provides an up-to-date overview of the utility of CpG ODN as adjuvants for vaccines targeting infectious agents and cancer.

  12. Clinical evaluation of CpG oligonucleotides as adjuvants for vaccines targeting infectious diseases and cancer

    PubMed Central

    Scheiermann, Julia; Klinman, Dennis M.

    2014-01-01

    Synthetic oligonucleotides (ODN) that express unmethylated “CpG motifs” trigger cells that express Toll-like receptor 9. In humans this includes plasmacytoid dendritic cells and B cells. CpG ODN induce an innate immune response characterized by the production of Th1 and pro-inflammatory cytokines. Their utility as vaccine adjuvants was evaluated in a number of clinical trials. Results indicate that CpG ODN improve antigen presentation and the generation of vaccine-specific cellular and humoral responses. This work provides an up-to-date overview of the utility of CpG ODN as adjuvants for vaccines targeting infectious agents and cancer. PMID:24975812

  13. [Exosomes derived from dendritic cells].

    PubMed

    Amigorena, S

    2001-01-01

    Dendritic cells (DC) are potent antigen presenting cells and the only ones capable of inducing primary cytotoxic immune responses both in vivo and vitro. DCs secrete a 60-80 nm membrane vesicle population of endocytic origin, called exosomes. The protein composition of exosomes was analyzed using a systematic proteomic approach. Besides MHC and costimulatory molecules, exosomes bear several adhesion proteins, probably involved in their specific targeting. Exosomes also accumulate several cytosolic factors, most likely involved in exoxome's biogenesis in late endosomes. Like DCs, exosomes induce potent anti tumor immune responses in vivo. Indeed, a single injection of DC-derived exosomes sensitized with tumor peptides induced the eradication of established mouse tumors. Tumor-specific cytotoxic T lymphocytes were found in the spleen of exosome treated mice, and depletion of CD8+ T cells in vivo inhibited the anti tumor effect of exosomes. These results strongly support the implementation of human DC-derived exosomes for cancer immunotherapy.

  14. Tumor Targeting, Trifunctional Dendritic Wedge

    PubMed Central

    2015-01-01

    We report in vitro and in vivo evaluation of a newly designed trifunctional theranostic agent for targeting solid tumors. This agent combines a dendritic wedge with high boron content for boron neutron capture therapy or boron MRI, a monomethine cyanine dye for visible-light fluorescent imaging, and an integrin ligand for efficient tumor targeting. We report photophysical properties of the new agent, its cellular uptake and in vitro targeting properties. Using live animal imaging and intravital microscopy (IVM) techniques, we observed a rapid accumulation of the agent and its retention for a prolonged period of time (up to 7 days) in fully established animal models of human melanoma and murine mammary adenocarcinoma. This macromolecular theranostic agent can be used for targeted delivery of high boron load into solid tumors for future applications in boron neutron capture therapy. PMID:25350602

  15. Vaccines and vaccinations. The strategic issues.

    PubMed

    Ford, R B

    2001-05-01

    The rapid proliferation of companion animal vaccines, advances in diagnostic and vaccine technology, and concerns over vaccine safety are clearly among the most important issues practicing veterinarians face as we enter the 21st century. Although many would argue that these are already issues, the future promises to be especially challenging as the vaccines we currently use and the protocols we recommend undergo unprecedented review.

  16. Avian influenza vaccines and vaccination for poultry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vaccines against avian influenza (AI) have had more limited use in poultry than vaccines against other poultry diseases such as Newcastle disease (ND) and infectious bronchitis, and have been used more commonly in the developing world. Over the past 40 years, AI vaccines have been primarily based o...

  17. Neurotensin promotes the dendrite elongation and the dendritic spine maturation of the cerebral cortex in vitro.

    PubMed

    Gandou, Chihiro; Ohtani, Akiko; Senzaki, Kouji; Shiga, Takashi

    2010-03-01

    We examined roles of neurotensin in the dendrite formation and the maturation of dendritic spines in the rat cerebral cortex. Embryonic day (E) 18 cortical neurons were cultured for 2 or 4 days in the presence of neurotensin. The chronic treatment of cortical neurons with neurotensin for 4 days increased the dendritic length of non-GABAergic neurons. In addition, the acute treatment of cortical neurons for 24h at 3 days in vitro also increased the dendritic length of non-GABAergic neurons similarly but more strongly than the chronic treatment. In contrast, the acute treatment for 4h had no effects on the dendrite formation. Next, we examined the effects of neurotensin on the maturation of dendritic spines. E16 cortical neurons were cultured for 10 or 14 days in a basal medium and then treated with neurotensin for 24h. At 11 days in vitro, neurotensin increased the postsynaptic density (PSD) 95-positive dendritic protrusions (filopodia, puncta and spines) together with the increase of spine density and the decrease of puncta density. At 15 days in vitro, neurotensin decreased the puncta density. In addition, the immunohistochemical localization of neurotensin type 1 and type 3 receptors in cultured neurons suggested the differential contribution of the receptors in these effects. These findings suggest that neurotensin promotes the dendrite outgrowth and the maturation of dendritic spines of cultured cortical neurons, although further studies are needed to conclude that these roles of neurotensin are also the case in vivo.

  18. A magnetic cell-based sensor.

    PubMed

    Wang, Hua; Mahdavi, Alborz; Tirrell, David A; Hajimiri, Ali

    2012-11-07

    Cell-based sensing represents a new paradigm for performing direct and accurate detection of cell- or tissue-specific responses by incorporating living cells or tissues as an integral part of a sensor. Here we report a new magnetic cell-based sensing platform by combining magnetic sensors implemented in the complementary metal-oxide-semiconductor (CMOS) integrated microelectronics process with cardiac progenitor cells that are differentiated directly on-chip. We show that the pulsatile movements of on-chip cardiac progenitor cells can be monitored in a real-time manner. Our work provides a new low-cost approach to enable high-throughput screening systems as used in drug development and hand-held devices for point-of-care (PoC) biomedical diagnostic applications.

  19. Cell-based therapy in ischemic stroke

    PubMed Central

    2009-01-01

    Cell-based therapy for stroke represents a third wave of therapeutics for stroke and one focused on restorative processes with a longer time window of opportunity than neuroprotective therapies. An early time window, within the first week after stroke, is an opportunity for intravenously delivered bone-marrow and perinatally-derived cells that can home to areas of tissue injury and target brain remodeling. Allogeneic cells will likely be the most scalable and commercially viable product. Later time windows, months after stroke, may be opportunities for intracerebral transplantation of neuronally-differentiated cell types. An integrated approach of cell-based therapy with early phase clinical trials and continued pre-clinical work with focus on mechanisms of action is needed. PMID:18671663

  20. Cell-based bioassays in microfluidic systems

    NASA Astrophysics Data System (ADS)

    Itle, Laura J.; Zguris, Jeanna C.; Pishko, Michael V.

    2004-12-01

    The development of cell-based bioassays for high throughput drug screening or the sensing of biotoxins is contingent on the development of whole cell sensors for specific changes in intracellular conditions and the integration of those systems into sample delivery devices. Here we show the feasibility of using a 5-(and-6)-carboxy SNARF-1, acetoxymethyl ester, acetate, a fluorescent dye capable of responding to changes in intracellular pH, as a detection method for the bacterial endotoxin, lipopolysaccharide. We used photolithography to entrap cells with this dye within poly(ethylene) glyocol diacrylate hydrogels in microfluidic channels. After 18 hours of exposure to lipopolysaccharide, we were able to see visible changes in the fluorescent pattern. This work shows the feasibility of using whole cell based biosensors within microfluidic networks to detect cellular changes in response to exogenous agents.

  1. Human Neural Cell-Based Biosensor

    DTIC Science & Technology

    2010-12-10

    botulinum toxin, and (4) development of fluorescence based assays for proliferation, mitochondrial function and reactive oxygen species generation as sensor...dopaminergic neurons, motoneurons and astrocytes using defined medium conditions, (3) development of cell-based methods to detect botulinum toxin, and...neurons are the target cell type for botulinum toxin and would be a useful cell type for the detection of this potential bioterrorism agent. Astrocytes

  2. Ontology for cell-based geographic information

    NASA Astrophysics Data System (ADS)

    Zheng, Bin; Huang, Lina; Lu, Xinhai

    2009-10-01

    Inter-operability is a key notion in geographic information science (GIS) for the sharing of geographic information (GI). That requires a seamless translation among different information sources. Ontology is enrolled in GI discovery to settle the semantic conflicts for its natural language appearance and logical hierarchy structure, which are considered to be able to provide better context for both human understanding and machine cognition in describing the location and relationships in the geographic world. However, for the current, most studies on field ontology are deduced from philosophical theme and not applicable for the raster expression in GIS-which is a kind of field-like phenomenon but does not physically coincide to the general concept of philosophical field (mostly comes from the physics concepts). That's why we specifically discuss the cell-based GI ontology in this paper. The discussion starts at the investigation of the physical characteristics of cell-based raster GI. Then, a unified cell-based GI ontology framework for the recognition of the raster objects is introduced, from which a conceptual interface for the connection of the human epistemology and the computer world so called "endurant-occurrant window" is developed for the better raster GI discovery and sharing.

  3. Mammalian Cell-Based Sensor System

    NASA Astrophysics Data System (ADS)

    Banerjee, Pratik; Franz, Briana; Bhunia, Arun K.

    Use of living cells or cellular components in biosensors is receiving increased attention and opens a whole new area of functional diagnostics. The term "mammalian cell-based biosensor" is designated to biosensors utilizing mammalian cells as the biorecognition element. Cell-based assays, such as high-throughput screening (HTS) or cytotoxicity testing, have already emerged as dependable and promising approaches to measure the functionality or toxicity of a compound (in case of HTS); or to probe the presence of pathogenic or toxigenic entities in clinical, environmental, or food samples. External stimuli or changes in cellular microenvironment sometimes perturb the "normal" physiological activities of mammalian cells, thus allowing CBBs to screen, monitor, and measure the analyte-induced changes. The advantage of CBBs is that they can report the presence or absence of active components, such as live pathogens or active toxins. In some cases, mammalian cells or plasma membranes are used as electrical capacitors and cell-cell and cell-substrate contact is measured via conductivity or electrical impedance. In addition, cytopathogenicity or cytotoxicity induced by pathogens or toxins resulting in apoptosis or necrosis could be measured via optical devices using fluorescence or luminescence. This chapter focuses mainly on the type and applications of different mammalian cell-based sensor systems.

  4. Dendritic spine dysgenesis in Rett syndrome

    PubMed Central

    Xu, Xin; Miller, Eric C.; Pozzo-Miller, Lucas

    2014-01-01

    Spines are small cytoplasmic extensions of dendrites that form the postsynaptic compartment of the majority of excitatory synapses in the mammalian brain. Alterations in the numerical density, size, and shape of dendritic spines have been correlated with neuronal dysfunction in several neurological and neurodevelopmental disorders associated with intellectual disability, including Rett syndrome (RTT). RTT is a progressive neurodevelopmental disorder associated with intellectual disability that is caused by loss of function mutations in the transcriptional regulator methyl CpG-binding protein 2 (MECP2). Here, we review the evidence demonstrating that principal neurons in RTT individuals and Mecp2-based experimental models exhibit alterations in the number and morphology of dendritic spines. We also discuss the exciting possibility that signaling pathways downstream of brain-derived neurotrophic factor (BDNF), which is transcriptionally regulated by MeCP2, offer promising therapeutic options for modulating dendritic spine development and plasticity in RTT and other MECP2-associated neurodevelopmental disorders. PMID:25309341

  5. Podosomes of dendritic cells facilitate antigen sampling

    PubMed Central

    Reinieren-Beeren, Inge; Cambi, Alessandra; Figdor, Carl G.; van den Bogaart, Geert

    2014-01-01

    Summary Dendritic cells sample the environment for antigens and play an important role in establishing the link between innate and acquired immunity. Dendritic cells contain mechanosensitive adhesive structures called podosomes that consist of an actin-rich core surrounded by integrins, adaptor proteins and actin network filaments. They facilitate cell migration via localized degradation of extracellular matrix. Here we show that podosomes of human dendritic cells locate to spots of low physical resistance in the substrate (soft spots) where they can evolve into protrusive structures. Pathogen recognition receptors locate to these protrusive structures where they can trigger localized antigen uptake, processing and presentation to activate T-cells. Our data demonstrate a novel role in antigen sampling for podosomes of dendritic cells. PMID:24424029

  6. Podosomes of dendritic cells facilitate antigen sampling.

    PubMed

    Baranov, Maksim V; Ter Beest, Martin; Reinieren-Beeren, Inge; Cambi, Alessandra; Figdor, Carl G; van den Bogaart, Geert

    2014-03-01

    Dendritic cells sample the environment for antigens and play an important role in establishing the link between innate and acquired immunity. Dendritic cells contain mechanosensitive adhesive structures called podosomes that consist of an actin-rich core surrounded by integrins, adaptor proteins and actin network filaments. They facilitate cell migration via localized degradation of extracellular matrix. Here, we show that podosomes of human dendritic cells locate to spots of low physical resistance in the substrate (soft spots) where they can evolve into protrusive structures. Pathogen recognition receptors locate to these protrusive structures where they can trigger localized antigen uptake, processing and presentation to activate T-cells. Our data demonstrate a novel role in antigen sampling for the podosomes of dendritic cells.

  7. Dendritic spine dysgenesis in Autism Related Disorders

    PubMed Central

    Phillips, Mary; Pozzo-Miller, Lucas

    2015-01-01

    The activity-dependent structural and functional plasticity of dendritic spines has led to the long-standing belief that these neuronal compartments are the subcellular sites of learning and memory. Of relevance to human health, central neurons in several neuropsychiatric illnesses, including autism related disorders, have atypical numbers and morphologies of dendritic spines. These so-called dendritic spine dysgeneses found in individuals with autism related disorders are consistently replicated in experimental mouse models. Dendritic spine dysgenesis reflects the underlying synaptopathology that drives clinically relevant behavioral deficits in experimental mouse models, providing a platform for testing new therapeutic approaches. By examining molecular signaling pathways, synaptic deficits, and spine dysgenesis in experimental mouse models of autism related disorders we find strong evidence for mTOR to be a critical point of convergence and promising therapeutic target. PMID:25578949

  8. History of vaccination

    PubMed Central

    Plotkin, Stanley

    2014-01-01

    Vaccines have a history that started late in the 18th century. From the late 19th century, vaccines could be developed in the laboratory. However, in the 20th century, it became possible to develop vaccines based on immunologic markers. In the 21st century, molecular biology permits vaccine development that was not possible before. PMID:25136134

  9. History of vaccination.

    PubMed

    Plotkin, Stanley

    2014-08-26

    Vaccines have a history that started late in the 18th century. From the late 19th century, vaccines could be developed in the laboratory. However, in the 20th century, it became possible to develop vaccines based on immunologic markers. In the 21st century, molecular biology permits vaccine development that was not possible before.

  10. Local administration of granulocyte macrophage colony-stimulating factor induces local accumulation of dendritic cells and antigen-specific CD8+ T cells and enhances dendritic cell cross-presentation.

    PubMed

    Lee, Sung-Jong; Song, Liwen; Yang, Ming-Chieh; Mao, Chih-Ping; Yang, Benjamin; Yang, Andrew; Jeang, Jessica; Peng, Shiwen; Wu, T-C; Hung, Chien-Fu

    2015-03-24

    Immunotherapy has emerged as a promising treatment strategy for the control of HPV-associated malignancies. Various therapeutic HPV vaccines have elicited potent antigen-specific CD8+ T cell mediated antitumor immune responses in preclinical models and are currently being tested in several clinical trials. Recent evidence indicates the importance of local immune activation, and higher number of immune cells in the site of lesion correlates with positive prognosis. Granulocyte macrophage colony-stimulating factor (GMCSF) has been reported to posses the ability to induce migration of antigen presentation cells and CD8+ T cells. Therefore, in the current study, we employ a combination of systemic therapeutic HPV DNA vaccination with local GMCSF application in the TC-1 tumor model. We show that intramuscular vaccination with CRT/E7 DNA followed by GMCSF intravaginal administration effectively controls cervicovaginal TC-1 tumors in mice. Furthermore, we observe an increase in the accumulation of E7-specific CD8+ T cells and dendritic cells in vaginal tumors following the combination treatment. In addition, we show that GMCSF induces activation and maturation in dendritic cells and promotes antigen cross-presentation. Our results support the clinical translation of the combination treatment of systemic therapeutic vaccination followed by local GMCSF administration as an effective strategy for tumor treatment.

  11. Non-synaptic dendritic spines in neocortex.

    PubMed

    Arellano, J I; Espinosa, A; Fairén, A; Yuste, R; DeFelipe, J

    2007-03-16

    A long-held assumption states that each dendritic spine in the cerebral cortex forms a synapse, although this issue has not been systematically investigated. We performed complete ultrastructural reconstructions of a large (n=144) population of identified spines in adult mouse neocortex finding that only 3.6% of the spines clearly lacked synapses. Nonsynaptic spines were small and had no clear head, resembling dendritic filopodia, and could represent a source of new synaptic connections in the adult cerebral cortex.

  12. Transcranial magnetic stimulation (TMS) inhibits cortical dendrites

    PubMed Central

    Murphy, Sean C; Palmer, Lucy M; Nyffeler, Thomas; Müri, René M; Larkum, Matthew E

    2016-01-01

    One of the leading approaches to non-invasively treat a variety of brain disorders is transcranial magnetic stimulation (TMS). However, despite its clinical prevalence, very little is known about the action of TMS at the cellular level let alone what effect it might have at the subcellular level (e.g. dendrites). Here, we examine the effect of single-pulse TMS on dendritic activity in layer 5 pyramidal neurons of the somatosensory cortex using an optical fiber imaging approach. We find that TMS causes GABAB-mediated inhibition of sensory-evoked dendritic Ca2+ activity. We conclude that TMS directly activates fibers within the upper cortical layers that leads to the activation of dendrite-targeting inhibitory neurons which in turn suppress dendritic Ca2+ activity. This result implies a specificity of TMS at the dendritic level that could in principle be exploited for investigating these structures non-invasively. DOI: http://dx.doi.org/10.7554/eLife.13598.001 PMID:26988796

  13. Synaptic Control of Secretory Trafficking in Dendrites

    PubMed Central

    Hanus, Cyril; Kochen, Lisa; Dieck, Susanne tom; Racine, Victor; Sibarita, Jean-Baptiste; Schuman, Erin M.; Ehlers, Michael D.

    2016-01-01

    Summary Localized signaling in neuronal dendrites requires tight spatial control of membrane composition. Upon initial synthesis, nascent secretory cargo in dendrites exits the endoplasmic reticulum (ER) from local zones of ER complexity that are spatially coupled to post-ER compartments. Although newly synthesized membrane proteins can be processed locally, the mechanisms that control the spatial range of secretory cargo transport in dendritic segments are unknown. Here, we monitored the dynamics of nascent membrane proteins in dendritic post-ER compartments under regimes of low or increased neuronal activity. In response to activity blockade, post-ER carriers are highly mobile and are transported over long distances. Conversely, increasing synaptic activity dramatically restricts the spatial scale of post-ER trafficking along dendrites. This activity-induced confinement of secretory cargo requires site-specific phosphorylation of the kinesin motor KIF17 by Ca2+/calmodulin-dependent protein kinases (CaMK). Thus, the length scales of early secretory trafficking in dendrites are tuned by activity-dependent regulation of microtubule-dependent transport. PMID:24931613

  14. Fast Kalman filtering on quasilinear dendritic trees.

    PubMed

    Paninski, Liam

    2010-04-01

    Optimal filtering of noisy voltage signals on dendritic trees is a key problem in computational cellular neuroscience. However, the state variable in this problem-the vector of voltages at every compartment-is very high-dimensional: realistic multicompartmental models often have on the order of N = 10(4) compartments. Standard implementations of the Kalman filter require O(N (3)) time and O(N (2)) space, and are therefore impractical. Here we take advantage of three special features of the dendritic filtering problem to construct an efficient filter: (1) dendritic dynamics are governed by a cable equation on a tree, which may be solved using sparse matrix methods in O(N) time; and current methods for observing dendritic voltage (2) provide low SNR observations and (3) only image a relatively small number of compartments at a time. The idea is to approximate the Kalman equations in terms of a low-rank perturbation of the steady-state (zero-SNR) solution, which may be obtained in O(N) time using methods that exploit the sparse tree structure of dendritic dynamics. The resulting methods give a very good approximation to the exact Kalman solution, but only require O(N) time and space. We illustrate the method with applications to real and simulated dendritic branching structures, and describe how to extend the techniques to incorporate spatially subsampled, temporally filtered, and nonlinearly transformed observations.

  15. Vaccines today, vaccines tomorrow: a perspective

    PubMed Central

    2013-01-01

    Vaccines are considered as one of the major contributions of the 20th century and one of the most cost effective public health interventions. The International Vaccine Institute has as a mission to discover, develop and deliver new and improved vaccines against infectious diseases that affects developing nations. If Louis Pasteur is known across the globe, vaccinologists like Maurice Hilleman, Jonas Salk and Charles Mérieux are known among experts only despite their contribution to global health. Thanks to a vaccine, smallpox has been eradicated, polio has nearly disappeared, Haemophilus influenzae B, measles and more recently meningitis A are controlled in many countries. While a malaria vaccine is undergoing phase 3, International Vaccine Institute, in collaboration with an Indian manufacturer has brought an oral inactivated cholera vaccine to pre-qualification. The field of vaccinology has undergone major changes thanks to philanthropists such as Bill and Melinda Gates, initiatives like the Decade of Vaccines and public private partnerships. Current researches on vaccines have more challenging targets like the dengue viruses, malaria, human immunodeficiency virus, the respiratory syncytial virus and nosocomial diseases. Exciting research is taking place on new adjuvants, nanoparticles, virus like particles and new route of administration. An overcrowded infant immunization program, anti-vaccine groups, immunizing a growing number of elderlies and delivering vaccines to difficult places are among challenges faced by vaccinologists and global health experts. PMID:23596584

  16. Vaccine Policy Issues

    DTIC Science & Technology

    2005-05-19

    evidence “favors rejection” of the idea that either the measles- mumps-rubella vaccine or thimerosal-containing vaccines cause autism (IOM...Immunization Safety Review: Vaccines and Autism , Washington, D.C., National Academies Press, 2004). 46ACIP’s rotavirus vaccine fact sheet is at [http...that the vaccines or preservatives or packaging might cause autism and other neurodevelopmental disorders. One focus has been on thimerosal, a mercury

  17. Injectable Cryogel-based Whole Cell Cancer Vaccines

    PubMed Central

    Bencherif, Sidi A.; Sands, R. Warren; Ali, Omar A.; Li, Weiwei A.; Lewin, Sarah A.; Braschler, Thomas M.; Shih, Ting-Y.S.; Verbeke, Catia S.; Bhatta, Deen; Dranoff, Glenn; Mooney, David J.

    2016-01-01

    A biomaterial-based vaccination system that uses minimal extracorporeal manipulation could provide in situ enhancement of dendritic cell (DC) numbers, a physical space where DCs interface with transplanted tumor cells, and an immunogenic context. Here we encapsulate GM-CSF, serving as a DC enhancement factor, and CpG ODN, serving as a DC activating factor, into sponge-like macroporous cryogels. These cryogels are injected subcutaneously into mice to localize transplanted tumor cells and deliver immunomodulatory factors in a controlled spatio-temporal manner. These vaccines elicit local infiltrates composed of conventional and plasmacytoid DCs, with the subsequent induction of potent, durable, and specific anti-tumor T cell responses in a melanoma model. These cryogels can be delivered in a minimally invasive manner, bypass the need for genetic modification of transplanted cancer cells, and provide sustained release of immunomodulators. Altogether, these findings indicate the potential for cryogels to serve as a platform for cancer cell vaccinations. PMID:26265369

  18. Emerging cancer vaccines: the promise of genetic vectors.

    PubMed

    Aurisicchio, Luigi; Ciliberto, Gennaro

    2011-09-22

    Therapeutic vaccination against cancer is an important approach which, when combined with other therapies, can improve long-term control of cancer. In fact, the induction of adaptive immune responses against Tumor Associated Antigens (TAAs) as well as innate immunity are important factors for tumor stabilization/eradication. A variety of immunization technologies have been explored in last decades and are currently under active evaluation, such as cell-based, protein, peptide and heat-shock protein-based cancer vaccines. Genetic vaccines are emerging as promising methodologies to elicit immune responses against a wide variety of antigens, including TAAs. Amongst these, Adenovirus (Ad)-based vectors show excellent immunogenicity profile and have achieved immunological proof of concept in humans. In vivo electroporation of plasmid DNA (DNA-EP) is also a desirable vaccine technology for cancer vaccines, as it is repeatable several times, a parameter required for the long-term maintenance of anti-tumor immunity. Recent findings show that combinations of different modalities of immunization (heterologous prime/boost) are able to induce superior immune reactions as compared to single-modality vaccines. In this review, we will discuss the challenges and requirements of emerging cancer vaccines, particularly focusing on the genetic cancer vaccines currently under active development and the promise shown by Ad and DNA-EP heterologous prime-boost.

  19. Emerging Cancer Vaccines: The Promise of Genetic Vectors

    PubMed Central

    Aurisicchio, Luigi; Ciliberto, Gennaro

    2011-01-01

    Therapeutic vaccination against cancer is an important approach which, when combined with other therapies, can improve long-term control of cancer. In fact, the induction of adaptive immune responses against Tumor Associated Antigens (TAAs) as well as innate immunity are important factors for tumor stabilization/eradication. A variety of immunization technologies have been explored in last decades and are currently under active evaluation, such as cell-based, protein, peptide and heat-shock protein-based cancer vaccines. Genetic vaccines are emerging as promising methodologies to elicit immune responses against a wide variety of antigens, including TAAs. Amongst these, Adenovirus (Ad)-based vectors show excellent immunogenicity profile and have achieved immunological proof of concept in humans. In vivo electroporation of plasmid DNA (DNA-EP) is also a desirable vaccine technology for cancer vaccines, as it is repeatable several times, a parameter required for the long-term maintenance of anti-tumor immunity. Recent findings show that combinations of different modalities of immunization (heterologous prime/boost) are able to induce superior immune reactions as compared to single-modality vaccines. In this review, we will discuss the challenges and requirements of emerging cancer vaccines, particularly focusing on the genetic cancer vaccines currently under active development and the promise shown by Ad and DNA-EP heterologous prime-boost. PMID:24212974

  20. Current Advances in Virus-Like Particles as a Vaccination Approach against HIV Infection

    PubMed Central

    Zhao, Chongbo; Ao, Zhujun; Yao, Xiaojian

    2016-01-01

    HIV-1 virus-like particles (VLPs) are promising vaccine candidates against HIV-1 infection. They are capable of preserving the native conformation of HIV-1 antigens and priming CD4+ and CD8+ T cell responses efficiently via cross presentation by both major histocompatibility complex (MHC) class I and II molecules. Progress has been achieved in the preclinical research of HIV-1 VLPs as prophylactic vaccines that induce broadly neutralizing antibodies and potent T cell responses. Moreover, the progress in HIV-1 dendritic cells (DC)-based immunotherapy provides us with a new vision for HIV-1 vaccine development. In this review, we describe updates from the past 5 years on the development of HIV-1 VLPs as a vaccine candidate and on the combined use of HIV particles with HIV-1 DC-based immunotherapy as efficient prophylactic and therapeutic vaccination strategies. PMID:26805898

  1. Challenges and advances towards the rational design of mRNA vaccines.

    PubMed

    Pollard, Charlotte; De Koker, Stefaan; Saelens, Xavier; Vanham, Guido; Grooten, Johan

    2013-12-01

    In recent years, mRNA vaccines have emerged as a safe and potent approach for the induction of cellular immune responses. Whereas initial studies were limited to the ex vivo loading of dendritic cells (DCs) with antigen-encoding mRNA, recent progress has led to the development of improved mRNA vaccines that enable direct in vivo targeting of DCs. Although preclinical studies demonstrated their potency in inducing antitumor immunity, several bottlenecks hinder the broader application of mRNA vaccines. In this review, we discuss the challenges associated with mRNA-based vaccination strategies, the technological advances that have been made to overcome these limitations, and the hurdles that remain to be tackled for the development of an optimal mRNA vaccine.

  2. Trial watch: Peptide vaccines in cancer therapy.

    PubMed

    Vacchelli, Erika; Martins, Isabelle; Eggermont, Alexander; Fridman, Wolf Hervé; Galon, Jerome; Sautès-Fridman, Catherine; Tartour, Eric; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2012-12-01

    Prophylactic vaccination constitutes one of the most prominent medical achievements of history. This concept was first demonstrated by the pioneer work of Edward Jenner, dating back to the late 1790s, after which an array of preparations that confer life-long protective immunity against several infectious agents has been developed. The ensuing implementation of nation-wide vaccination programs has de facto abated the incidence of dreadful diseases including rabies, typhoid, cholera and many others. Among all, the most impressive result of vaccination campaigns is surely represented by the eradication of natural smallpox infection, which was definitively certified by the WHO in 1980. The idea of employing vaccines as anticancer interventions was first theorized in the 1890s by Paul Ehrlich and William Coley. However, it soon became clear that while vaccination could be efficiently employed as a preventive measure against infectious agents, anticancer vaccines would have to (1) operate as therapeutic, rather than preventive, interventions (at least in the vast majority of settings), and (2) circumvent the fact that tumor cells often fail to elicit immune responses. During the past 30 y, along with the recognition that the immune system is not irresponsive to tumors (as it was initially thought) and that malignant cells express tumor-associated antigens whereby they can be discriminated from normal cells, considerable efforts have been dedicated to the development of anticancer vaccines. Some of these approaches, encompassing cell-based, DNA-based and purified component-based preparations, have already been shown to exert conspicuous anticancer effects in cohorts of patients affected by both hematological and solid malignancies. In this Trial Watch, we will summarize the results of recent clinical trials that have evaluated/are evaluating purified peptides or full-length proteins as therapeutic interventions against cancer.

  3. Architecture of apical dendrites in the murine neocortex: dual apical dendritic systems.

    PubMed

    Escobar, M I; Pimienta, H; Caviness, V S; Jacobson, M; Crandall, J E; Kosik, K S

    1986-04-01

    A monoclonal antibody (5F9) against microtubule-associated protein 2 is a selective and sensitive marker for neocortical dendrites in the mouse. The marker stains all dendrites. It affords a particularly comprehensive picture of the patterns of arrangements of apical dendrites which are most intensely stained with this antibody. Dual systems of apical dendrites arise from the polymorphic neurons of layer VI, on the one hand, and the pyramidal neurons of layers II-V, on the other. Terminal arborization of the former is concentrated principally at the interface of layers V and IV, while that of the latter is in the molecular layer. Apical dendrites of both systems are grouped into fascicles. In supragranular layers and in upper layer VI-lower layer V, where apical dendrites are most abundant, the fascicles coalesce into septa. These generate a honeycomb-like pattern, subdividing these cortical levels into columnar spaces of approximately 20-40 micron diameter. At the level of layer IV, where the number of apical dendrites is greatly reduced, the fascicles are isolated bundles. These bundles have the form of circular, elliptical or rectangular columns in the primary somatosensory, temporal and frontal regions, respectively. Those in the barrel field are preferentially concentrated in the sides of barrels and the interbarrel septa. The configurations of the dendritic fascicles, particularly the midcortical bundles, may conform to the spatial configuration of investing axons of interneurons.

  4. Typhoid fever vaccination strategies.

    PubMed

    Date, Kashmira A; Bentsi-Enchill, Adwoa; Marks, Florian; Fox, Kimberley

    2015-06-19

    Typhoid vaccination is an important component of typhoid fever prevention and control, and is recommended for public health programmatic use in both endemic and outbreak settings. We reviewed experiences with various vaccination strategies using the currently available typhoid vaccines (injectable Vi polysaccharide vaccine [ViPS], oral Ty21a vaccine, and injectable typhoid conjugate vaccine [TCV]). We assessed the rationale, acceptability, effectiveness, impact and implementation lessons of these strategies to inform effective typhoid vaccination strategies for the future. Vaccination strategies were categorized by vaccine disease control strategy (preemptive use for endemic disease or to prevent an outbreak, and reactive use for outbreak control) and vaccine delivery strategy (community-based routine, community-based campaign and school-based). Almost all public health typhoid vaccination programs used ViPS vaccine and have been in countries of Asia, with one example in the Pacific and one experience using the Ty21a vaccine in South America. All vaccination strategies were found to be acceptable, feasible and effective in the settings evaluated; evidence of impact, where available, was strongest in endemic settings and in the short- to medium-term. Vaccination was cost-effective in high-incidence but not low-incidence settings. Experience in disaster and outbreak settings remains limited. TCVs have recently become available and none are WHO-prequalified yet; no program experience with TCVs was found in published literature. Despite the demonstrated success of several typhoid vaccination strategies, typhoid vaccines remain underused. Implementation lessons should be applied to design optimal vaccination strategies using TCVs which have several anticipated advantages, such as potential for use in infant immunization programs and longer duration of protection, over the ViPS and Ty21a vaccines for typhoid prevention and control.

  5. Obesity vaccines.

    PubMed

    Monteiro, Mariana P

    2014-01-01

    Obesity is one of the largest and fastest growing public health problems in the world. Last century social changes have set an obesogenic milieu that calls for micro and macro environment interventions for disease prevention, while treatment is mandatory for individuals already obese. The cornerstone of overweight and obesity treatment is diet and physical exercise. However, many patients find lifestyle modifications difficult to comply and prone to failure in the long-term; therefore many patients consider anti-obesity drugs an important adjuvant if not a better alternative to behavioral approach or obesity surgery. Since the pharmacological options for obesity treatment remain quite limited, this is an exciting research area, with new treatment targets and strategies on the horizon. This review discusses the development of innovative therapeutic agents, focusing in energy homeostasis regulation and the use of molecular vaccines, targeting hormones such as somatostatin, GIP and ghrelin, to reduce body weight.

  6. The bHLH-PAS protein Spineless is necessary for the diversification of dendrite morphology of Drosophila dendritic arborization neurons

    PubMed Central

    Kim, Michael D.; Jan, Lily Yeh; Jan, Yuh Nung

    2006-01-01

    Dendrites exhibit a wide range of morphological diversity, and their arborization patterns are critical determinants of proper neural connectivity. How different neurons acquire their distinct dendritic branching patterns during development is not well understood. Here we report that Spineless (Ss), the Drosophila homolog of the mammalian aryl hydrocarbon (dioxin) receptor (Ahr), regulates dendrite diversity in the dendritic arborization (da) sensory neurons. In loss-of-function ss mutants, class I and II da neurons, which are normally characterized by their simple dendrite morphologies, elaborate more complex arbors, whereas the normally complex class III and IV da neurons develop simpler dendritic arbors. Consequently, different classes of da neurons elaborate dendrites with similar morphologies. In its control of dendritic diversity among da neurons, ss likely acts independently of its known cofactor tango and through a regulatory program distinct from those involving cut and abrupt. These findings suggest that one evolutionarily conserved role for Ahr in neuronal development concerns the diversification of dendrite morphology. PMID:17015425

  7. Molecules and mechanisms of dendrite development in Drosophila.

    PubMed

    Corty, Megan M; Matthews, Benjamin J; Grueber, Wesley B

    2009-04-01

    Neurons are one of the most morphologically diverse cell types, in large part owing to their intricate dendrite branching patterns. Dendrites are structures that are specialized to receive and process inputs in neurons, thus their specific morphologies reflect neural connectivity and influence information flow through circuits. Recent studies in Drosophila on the molecular basis of dendrite diversity, dendritic guidance, the cell biology of dendritic branch patterning and territory formation have identified numerous intrinsic and extrinsic cues that shape diverse features of dendrites. As we discuss in this review, many of the mechanisms that are being elucidated show conservation in diverse systems.

  8. Cell-Based Therapy for Silicosis

    PubMed Central

    Lopes-Pacheco, Miquéias; Bandeira, Elga; Morales, Marcelo M.

    2016-01-01

    Silicosis is the most common pneumoconiosis globally, with higher prevalence and incidence in developing countries. To date, there is no effective treatment to halt or reverse the disease progression caused by silica-induced lung injury. Significant advances have to be made in order to reduce morbidity and mortality related to silicosis. In this review, we have highlighted the main mechanisms of action that cause lung damage by silica particles and summarized the data concerning the therapeutic promise of cell-based therapy for silicosis. PMID:27066079

  9. Optimization and Characterization of Candidate Strain for Coxsackievirus A16 Inactivated Vaccine

    PubMed Central

    Li, Jingliang; Liu, Guanchen; Liu, Xin; Yang, Jiaxin; Chang, Junliang; Zhang, Wenyan; Yu, Xiao-Fang

    2015-01-01

    Coxsackievirus A16 (CA16) and enterovirus 71 (EV71), both of which can cause hand, foot and mouth disease (HFMD), are responsible for large epidemics in Asian and Pacific areas. Although inactivated EV71 vaccines have completed testing in phase III clinical trials in Mainland China, CA16 vaccines are still under development. A Vero cell-based inactivated CA16 vaccine was developed by our group. Screening identified a CA16 vaccine strain (CC024) isolated from HFMD patients, which had broad cross-protective abilities and satisfied all requirements for vaccine production. Identification of the biological characteristics showed that the CA16CC024 strain had the highest titer (107.5 CCID50/mL) in Vero cells, which would benefit the development of an EV71/CA16 divalent vaccine. A potential vaccine manufacturing process was established, including the selection of optimal time for virus harvesting, membrane for diafiltration and concentration, gel-filtration chromatography for the down-stream virus purification and virus inactivation method. Altogether, the analyses suggested that the CC-16, a limiting dilution clone of the CC024 strain, with good genetic stability, high titer and broad-spectrum immunogenicity, would be the best candidate strain for a CA16 inactivated vaccine. Therefore, our study provides valuable information for the development of a Vero cell-based CA16 or EV71-CA16 divalent inactivated vaccine. PMID:26193302

  10. Characterization of chicken epidermal dendritic cells

    PubMed Central

    Igyártó, Botond-Zoltán; Lackó, Erzsébet; Oláh, Imre; Magyar, Attila

    2006-01-01

    It has been known for 15 years that the chicken epidermis contains ATPase+ and major histocompatibility complex class II-positive (MHCII+) dendritic cells. These cells were designated as Langerhans cells but neither their detailed phenotype nor their function was further investigated. In the present paper we demonstrate a complete overlapping of ATPase, CD45 and vimentin staining in all dendritic cells of the chicken epidermis. The CD45+ ATPase+ vimentin+ dendritic cells could be divided into three subpopulations: an MHCII+ CD3– KUL01+ and 68.1+ (monocyte-macrophage subpopulation markers) subpopulation, an MHCII– CD3– KUL01– and 68.1– subpopulation and an MHCII– CD3+ KUL01– and 68.1– subpopulation. The first population could be designated as chicken Langerhans cells. The last population represents CD4– CD8– T-cell receptor-αβ– and -γδ– natural killer cells with cytoplasmic CD3 positivity. The epidermal dendritic cells have a low proliferation rate as assessed by bromodeoxyuridine incorporation. Both in vivo and in vitro experiments showed that dendritic cells could be mobilized from the epidermis. Hapten treatment of epidermis resulted in the decrease of the frequency of epidermal dendritic cells and hapten-loaded dendritic cells appeared in the dermis or in in vitro culture of isolated epidermis. Hapten-positive cells were also found in the so-called dermal lymphoid nodules. We suggest that these dermal nodules are responsible for some regional immunological functions similar to the mammalian lymph nodes. PMID:16889640

  11. Dendritic spine dysgenesis in neuropathic pain.

    PubMed

    Tan, Andrew M; Waxman, Stephen G

    2015-08-05

    Neuropathic pain is a significant unmet medical need in patients with variety of injury or disease insults to the nervous system. Neuropathic pain often presents as a painful sensation described as electrical, burning, or tingling. Currently available treatments have limited effectiveness and narrow therapeutic windows for safety. More powerful analgesics, e.g., opioids, carry a high risk for chemical dependence. Thus, a major challenge for pain research is the elucidation of the mechanisms that underlie neuropathic pain and developing targeted strategies to alleviate pathological pain. The mechanistic link between dendritic spine structure and circuit function could explain why neuropathic pain is difficult to treat, since nociceptive processing pathways are adversely "hard-wired" through the reorganization of dendritic spines. Several studies in animal models of neuropathic pain have begun to reveal the functional contribution of dendritic spine dysgenesis in neuropathic pain. Previous reports have demonstrated three primary changes in dendritic spine structure on nociceptive dorsal horn neurons following injury or disease, which accompany chronic intractable pain: (I) increased density of dendritic spines, particularly mature mushroom-spine spines, (II) redistribution of spines toward dendritic branch locations close to the cell body, and (III) enlargement of the spine head diameter, which generally presents as a mushroom-shaped spine. Given the important functional implications of spine distribution, density, and shape for synaptic and neuronal function, the study of dendritic spine abnormality may provide a new perspective for investigating pain, and the identification of specific molecular players that regulate spine morphology may guide the development of more effective and long-lasting therapies.

  12. DNA Vaccination in Chickens.

    PubMed

    Gupta, Shishir Kumar; Dey, Sohini; Chellappa, Madhan Mohan

    2016-01-01

    Robust and sustainable development of poultry industry requires prevention of deadly infectious diseases. Vigorous vaccination of the birds is a routine practice; however, the live and inactivated vaccines that are used have inherent disadvantages. New-generation vaccines such as DNA vaccines offer several advantages over conventional vaccines. DNA vaccines, which encode an antigen of interest or multiple antigens in the target host, are stable, easy to produce and administer, do not require cold chain maintenance, and are not affected by the maternal antibodies. In addition, DNA vaccines can also be administered in ovo, and thus, mass vaccination and early induction of immune response can effectively be achieved. In this chapter, we focus on the development of DNA vaccines against important infectious viral as well as parasitic diseases of poultry.

  13. Neurologic complications of vaccinations.

    PubMed

    Miravalle, Augusto A; Schreiner, Teri

    2014-01-01

    This chapter reviews the most common neurologic disorders associated with common vaccines, evaluates the data linking the disorder with the vaccine, and discusses the potential mechanism of disease. A literature search was conducted in PubMed using a combination of the following terms: vaccines, vaccination, immunization, and neurologic complications. Data were also gathered from publications of the American Academy of Pediatrics Committee on Infectious Diseases, the World Health Organization, the US Centers for Disease Control and Prevention, and the Vaccine Adverse Event Reporting System. Neurologic complications of vaccination are rare. Many associations have been asserted without objective data to support a causal relationship. Rarely, patients with a neurologic complication will have a poor outcome. However, most patients recover fully from the neurologic complication. Vaccinations have altered the landscape of infectious disease. However, perception of risk associated with vaccinations has limited the success of disease eradication measures. Neurologic complications can be severe, and can provoke fear in potential vaccines. Evaluating whether there is causal link between neurologic disorders and vaccinations, not just temporal association, is critical to addressing public misperception of risk of vaccination. Among the vaccines available today, the cost-benefit analysis of vaccinations and complications strongly argues in favor of vaccination.

  14. Sipuleucel-T: APC 8015, APC-8015, prostate cancer vaccine--Dendreon.

    PubMed

    2006-01-01

    Sipuleucel-T [APC 8015, Provenge] is an autologous, dendritic cell-based vaccine under development with Dendreon Corporation for the treatment of androgen-independent and androgen-dependent prostate cancer. It was generated using the company's active immunotherapy platform to stimulate a patient's own immune system to specifically target and destroy cancer cells, while leaving healthy cells unharmed. This approach could provide patients with a meaningful survival benefit and an improved tolerability profile over existing anticancer therapies. Sipuleucel-T selectively targets the prostate-specific antigen (PSA) known as prostatic acid phosphatase (PAP) that is expressed in approximately 95% of prostate cancers. It is produced by ex vivo exposure of dendritic cell precursors to PA 2024, a recombinant fusion protein composed of the PAP target fused to granulocyte-macrophage colony-stimulating factor (GM-CSF) and incorporated into Dendreon's proprietary Antigen Delivery Cassette. Patients are typically administered three intravenous (IV)-infusions of the vaccine over a 1-month period as a complete course of therapy. It is undergoing late-stage clinical evaluation among patients with early and advanced prostate cancer. In November 2003, Kirin Brewery returned to Dendreon the full rights to Sipuleucel-T for Asia. In exchange, Dendreon licensed patent rights relating to the use of certain HLA-DR antibodies to Kirin for $US20 million. This amended agreement enables Dendreon to complete ongoing discussions for a worldwide marketing and sales partnership for Sipuleucel-T. Similarly, Kirin is able to develop its HLA-DR monoclonal antibodies free of potential infringement claims arising from Dendreon's patent rights to HLA-DR. The licensing agreement relates to patent rights owned by Dendreon relating to monoclonal antibodies against the HLA-DR antigen. In addition, Dendreon retains rights to develop and commercialise its two existing HLA-DR monoclonal antibodies, DN 1921 and

  15. Vaccinations for Adults with Diabetes

    MedlinePlus

    Vaccinations for Adults with Diabetes The table below shows which vaccinations you should have to protect your health if ... sure you and your healthcare provider keep your vaccinations up to date. Vaccine Do you need it? ...

  16. Diabetes and Hepatitis B Vaccination

    MedlinePlus

    ... monitoring in close succession. CDC now recommends the hepatitis B vaccine for adults with diabetes. What is the recommendation ... As with other vaccines, the effectiveness of the hepatitis B vaccine decreases with age. Decisions to vaccinate should include ...

  17. Nasal spray flu vaccine (image)

    MedlinePlus

    The flu vaccine can also be administered as a nasal spray instead of the usual injection method. It can be ... the recombinant influenza vaccine (RIV). The nasal spray flu vaccine (live attenuated influenza vaccine or LAIV) should not ...

  18. Improvement of DC vaccine with ALA-PDT induced immunogenic apoptotic cells for skin squamous cell carcinoma.

    PubMed

    Ji, Jie; Fan, Zhixia; Zhou, Feifan; Wang, Xiaojie; Shi, Lei; Zhang, Haiyan; Wang, Peiru; Yang, Degang; Zhang, Linglin; Chen, Wei R; Wang, Xiuli

    2015-07-10

    Dendritic cell (DC) based vaccines have emerged as a promising immunotherapy for cancers. However, most DC vaccines so far have achieved only limited success in cancer treatment. Photodynamic therapy (PDT), an established cancer treatment strategy, can cause immunogenic apoptosis to induce an effective antitumor immune response. In this study, we developed a DC-based cancer vaccine using immunogenic apoptotic tumor cells induced by 5-aminolevulinic acid (ALA) mediated PDT. The maturation of DCs induced by PDT-treated apoptotic cells was evaluated using electron microscopy, FACS, and ELISA. The anti-tumor immunity of ALA-PDT-DC vaccine was tested with a mouse model. We observed the maturations of DCs potentiated by ALA-PDT treated tumor cells, including morphology maturation (enlargement of dendrites and increase of lysosomes), phenotypic maturation (upregulation of surface expression of MHC-II, DC80, and CD86), and functional maturation (enhanced capability to secrete IFN-γ and IL-12, and to induce T cell proliferation). Most interestingly, PDT-induced apoptotic tumor cells are more capable of potentiating maturation of DCs than PDT-treated or freeze/thaw treated necrotic tumor cells. ALA-PDT-DC vaccine mediated by apoptotic cells provided protection against tumors in mice, far stronger than that of DC vaccine obtained from freeze/thaw treated tumor cells. Our results indicate that immunogenic apoptotic tumor cells can be more effective in enhancing a DC-based cancer vaccine, which could improve the clinical application of PDT-DC vaccines.

  19. In Vivo Dendritic Cell Tracking Using Fluorescence Lifetime Imaging and Near-Infrared-Emissive Polymersomes

    PubMed Central

    Christian, Natalie A.; Benencia, Fabian; Milone, Michael C.; Li, Guizhi; Frail, Paul R.; Therien, Michael J.; Coukos, George; Hammer, Daniel A.

    2009-01-01

    Purpose: Noninvasive in vivo cell-tracking techniques are necessary to advance the field of cellular-based therapeutics as well as to elucidate mechanisms governing in vivo cell biology. Fluorescence is commonly used for in vitro and postmortem biomedical studies but has been limited by autofluorescence at the whole-animal level. Procedures: In this report, we demonstrate the ability of in vivo fluorescent lifetime imaging to remove autofluorescence and thereby enable in vivo dendritic cell tracking in naïve mice. Specifically, we track mature dendritic cells (DCs) labeled internally with near-infrared-emissive polymersomes (NIR-DCs). Results: We establish the ability to detect labeled cells in vivo and image NIR-DC trafficking after both intravenous and subcutaneous delivery. In addition, we demonstrate the longitudinal capacity of this method by characterizing NIR-DC migration kinetics in the popliteal lymph node. Conclusions: This work provides a tool to evaluate dendritic-cell-based immunotherapy and generates novel opportunities for in vivo fluorescence imaging. PMID:19194761

  20. DENDRITIC CELL SUBSETS AS VECTORS AND TARGETS FOR IMPROVED CANCER THERAPY

    PubMed Central

    Palucka, Karolina; Ueno, Hideki; Roberts, Lee; Fay, Joseph; Banchereau, Jacques

    2010-01-01

    SUMMARY Current active immunotherapy trials have shown durable tumor regressions in a fraction of patients. However, clinical efficacy of current vaccines is limited, possibly because tumors skew the immune system by means of myeloid-derived suppressor cells, inflammatory type 2 T cells and regulatory T cells (Tregs), all of which prevent the generation of effector cells. To improve the clinical efficacy of cancer vaccines in patients with metastatic disease, we need to design novel and improved strategies that can boost adaptive immunity to cancer, help overcome Tregs and allow the breakdown of the immunosuppressive tumor microenvironment. This can be achieved by exploiting the fast increasing knowledge about the dendritic cell (DC) system, including the existence of distinct DC subsets. Critical to the design of better vaccines is the concept of distinct DC subsets and distinct DC activation pathways, all contributing to the generation of unique adaptive immune responses. Such novel DC vaccines will be used as monotherapy in patients with resected disease and in combination with antibodies and/or drugs targeting suppressor pathways and modulation of the tumor environment in patients with metastatic disease. PMID:20490776

  1. Molecular and Cellular Mechanisms of Antitumor Immune Response Activation by Dendritic Cells

    PubMed Central

    Markov, O. V.; Mironova, N. L.; Vlasov, V. V.; Zenkova, M. A.

    2016-01-01

    Dendritic cells (DCs) play a crucial role in the initiation and regulation of the antitumor immune response. Already , DC-based antitumor vaccines have been thoroughly explored both in animal tumor models and in clinical trials. DC-based vaccines are commonly produced from DC progenitors isolated from peripheral blood or bone marrow by culturing in the presence of cytokines, followed by loading the DCs with tumor-specific antigens, such as DNA, RNA, viral vectors, or a tumor cell lysate. However, the efficacy of DC-based vaccines remains low. Undoubtedly, a deeper understanding of the molecular mechanisms by which DCs function would allow us to enhance the antitumor efficacy of DC-based vaccines in clinical applications. This review describes the origin and major subsets of mouse and human DCs, as well as the differences between them. The cellular mechanisms of presentation and cross-presentation of exogenous antigens by DCs to T cells are described. We discuss intracellular antigen processing in DCs, cross-dressing, and the acquisition of the antigen cross-presentation function. A particular section in the review describes the mechanisms of tumor escape from immune surveillance through the suppression of DCs functions. PMID:27795841

  2. Immunotherapy for Lewis lung carcinoma utilizing dendritic cells infected with CK19 gene recombinant adenoviral vectors

    PubMed Central

    SUN, Q.F.; ZHAO, X.N.; PENG, C.L.; HAO, Y.T.; ZHAO, Y.P.; JIANG, N.; XUE, H.; GUO, J.Z.; YUN, C.H.; CONG, B.; ZHAO, X.G.

    2015-01-01

    Dendritic cells (DCs) as 'professional' antigen-presenting cells (APCs) initiate and regulate immune responses to various antigens. DC-based vaccines have become a promising modality in cancer immunotherapy. Cytokeratin 19 (CK19) protein is expressed at high levels in lung cancer and many other tumor cells, suggesting CK19 as a potential tumor-specific target for cancer immune therapy. We constructed a recombinant adenoviral vector containing the CK19 gene (rAd-CK19). DCs transfected with rAd-CK19 were used to vaccinate C57BL/6 mice bearing xenografts derived from Lewis lung carcinoma (LLC) cells. The transfected DCs gave rise to potent CK19-specific cytotoxic T lymphocytes (CTLs) capable of lysing LLC cells. Mice immunized with the rAd-CK19-DCs exhibited significantly attenuated tumor growth (including tumor volume and weight) when compared to the tumor growth of mice immunized with rAd-c DCs or DCs during the 24-day observation period (P<0.05). The results revealed that the mice vaccinated with the rAd-CK19-DCs exhibited a potent protective and therapeutic antitumor immunity to LLC cells in the subcutaneous model along with an inhibitive effect on tumor growth compared to the mice vaccinated with the rAd-c DCs or DCs alone. The present study proposes a meaningful mode of action utilizing rAd-CK19 DCs in lung cancer immunotherapy. PMID:26323510

  3. Thimerosal compromises human dendritic cell maturation, IL-12 production, chemokine release, and T-helper polarization.

    PubMed

    Loison, Emily; Gougeon, Marie-Lise

    2014-01-01

    Thimerosal is a preservative used in multidose vials of vaccine formulations to prevent bacterial and fungal contamination. We recently reported that nanomolar concentrations of thimerosal induce cell cycle arrest of human T cells activated via the TCR and inhibition of proinflammatory cytokine production, thus interfering with T-cell functions. Given the essential role of dendritic cells (DCs) in T-cell polarization and vaccine immunity, we studied the influence of non-toxic concentrations of thimerosal on DC maturation and functions. Ex-vivo exposure of human monocyte-derived DCs to nanomolar concentrations of thimerosal prevented LPS-induced DC maturation, as evidenced by the inhibition of morphological changes and a decreased expression of the maturation markers CD86 and HLA-DR. In addition thimerosal dampened their proinflammatory response, in particular the production of the Th1 polarizing cytokine IL-12, as well as TNF-α and IL-6. DC-dependent T helper polarization was altered, leading to a decreased production of IFN-γ IP10 and GM-CSF and increased levels of IL-8, IL-9, and MIP-1α. Although multi-dose vials of vaccines containing thimerosal remain important for vaccine delivery, our results alert about the ex-vivo immunomodulatory effects of thimerosal on DCs, a key player for the induction of an adaptive response.

  4. Human parainfluenza virus type 2 vector induces dendritic cell maturation without viral RNA replication/transcription.

    PubMed

    Hara, Kenichiro; Fukumura, Masayuki; Ohtsuka, Junpei; Kawano, Mitsuo; Nosaka, Tetsuya

    2013-07-01

    The dendritic cell (DC), a most potent antigen-presenting cell, plays a key role in vaccine therapy against infectious diseases and malignant tumors. Although advantages of viral vectors for vaccine therapy have been reported, potential risks for adverse effects prevent them from being licensed for clinical use. Human parainfluenza virus type 2 (hPIV2), one of the members of the Paramyxoviridae family, is a nonsegmented and negative-stranded RNA virus. We have developed a reverse genetics system for the production of infectious hPIV2 lacking the F gene (hPIV2ΔF), wherein various advantages for vaccine therapy exist, such as cytoplasmic replication/transcription, nontransmissible infectivity, and extremely high transduction efficacy in various types of target cells. Here we demonstrate that hPIV2ΔF shows high transduction efficiency in human DCs, while not so high in mouse DCs. In addition, hPIV2ΔF sufficiently induces maturation of both human and murine DCs, and the maturation state of both human and murine DCs is almost equivalent to that induced by lipopolysaccharide. Moreover, alkylating agent β-propiolactone-inactivated hPIV2ΔF (BPL-hPIV2ΔF) elicits DC maturation without viral replication/transcription. These results suggest that hPIV2ΔF may be a useful tool for vaccine therapy as a novel type of paramyxoviral vector, which is single-round infectious vector and has potential adjuvant activity.

  5. Pancreatic adenocarcinoma upregulated factor serves as adjuvant by activating dendritic cells through stimulation of TLR4

    PubMed Central

    Yang, Benjamin; Lee, Je-Jung; Lee, Hyun-Ju; Lee, Jaemin; Jung, In Duk; Han, Hee Dong; Lee, Seung-Hyun; Koh, Sang Seok; Wu, T.-C.; Park, Yeong-Min

    2015-01-01

    Dendritic cell (DC) based cancer vaccines represent a promising immunotherapeutic strategy against cancer. To enhance the modest immunogenicity of DC vaccines, various adjuvants are often incorporated. Particularly, most of the common adjuvants are derived from bacteria. In the current study, we evaluate the use of a human pancreatic cancer derived protein, pancreatic adenocarcinoma upregulated factor (PAUF), as a novel DC vaccine adjuvant. We show that PAUF can induce activation and maturation of DCs and activate NFkB by stimulating the Toll-like receptor signaling pathway. Furthermore, vaccination with PAUF treated DCs pulsed with E7 or OVA peptides leads to generation of E7 or OVA-specific CD8+ T cells and memory T cells, which correlate with long term tumor protection and antitumor effects against TC-1 and EG.7 tumors in mice. Finally, we demonstrated that PAUF mediated DC activation and immune stimulation are dependent on TLR4. Our data provides evidence supporting PAUF as a promising adjuvant for DC based therapies, which can be applied in conjunction with other cancer therapies. Most importantly, our results serve as a reference for future investigation of human based adjuvants. PMID:26336989

  6. Vaccine-induced but not tumor-derived Interleukin-10 dictates the efficacy of Interleukin-10 blockade in therapeutic vaccination.

    PubMed

    Llopiz, Diana; Aranda, Fernando; Díaz-Valdés, Nancy; Ruiz, Marta; Infante, Stefany; Belsúe, Virginia; Lasarte, Juan José; Sarobe, Pablo

    2016-02-01

    Blocking antibodies against immunosuppressive molecules have shown promising results in cancer patients. However, there are not enough data to define those conditions dictating treatment efficacy. In this scenario, IL-10 is a cytokine with controversial effects on tumor growth. Thus, our aim was to characterize in which setting IL-10 blockade may potentiate the beneficial effects of a therapeutic vaccine In the IL-10-expressing B16-OVA and TC-1 P3 (A15) tumor models, therapeutic vaccination with tumor antigens plus the TLR7 ligand Imiquimod increased IL-10 production. Although blockade of IL-10 signal with anti-IL-10R antibodies did not inhibit tumor growth, when combined with vaccination it enhanced tumor rejection, associated with stronger innate and adaptive immune responses. Interestingly, a similar enhancement on immune responses was observed after simultaneous vaccination and IL-10 blockade in naive mice. However, when using vaccines containing as adjuvants the TLR3 ligand poly(I:C) or anti-CD40 agonistic antibodies, despite tumor IL-10 expression, anti-IL-10R antibodies did not provide any beneficial effect on tumor growth and antitumor immune responses. Of note, as opposed to Imiquimod, vaccination with this type of adjuvants did not induce IL-10 and correlated with a lack of in vitro IL-10 production by dendritic cells (DC). Finally, in B16-OVA-bearing mice, blockade of IL-10 during therapeutic vaccination with a multiple adjuvant combination (MAC) with potent immunostimulatory properties but still inducing IL-10 led to superior antitumor immunity and complete tumor rejection. These results suggest that for therapeutic antitumor vaccination, blockade of vaccine-induced IL-10 is more relevant than tumor-associated IL-10.

  7. 42 CFR 410.57 - Pneumococcal vaccine and flu vaccine.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 2 2012-10-01 2012-10-01 false Pneumococcal vaccine and flu vaccine. 410.57... § 410.57 Pneumococcal vaccine and flu vaccine. (a) Medicare Part B pays for pneumococcal vaccine and its administration when reasonable and necessary for the prevention of disease, if the vaccine is ordered by a...

  8. 42 CFR 410.57 - Pneumococcal vaccine and flu vaccine.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 2 2013-10-01 2013-10-01 false Pneumococcal vaccine and flu vaccine. 410.57... § 410.57 Pneumococcal vaccine and flu vaccine. (a) Medicare Part B pays for pneumococcal vaccine and its administration when reasonable and necessary for the prevention of disease, if the vaccine is ordered by a...

  9. 42 CFR 410.57 - Pneumococcal vaccine and flu vaccine.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 2 2014-10-01 2014-10-01 false Pneumococcal vaccine and flu vaccine. 410.57... § 410.57 Pneumococcal vaccine and flu vaccine. (a) Medicare Part B pays for pneumococcal vaccine and its administration when reasonable and necessary for the prevention of disease, if the vaccine is ordered by a...

  10. 42 CFR 410.57 - Pneumococcal vaccine and flu vaccine.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 2 2011-10-01 2011-10-01 false Pneumococcal vaccine and flu vaccine. 410.57... § 410.57 Pneumococcal vaccine and flu vaccine. (a) Medicare Part B pays for pneumococcal vaccine and its administration when reasonable and necessary for the prevention of disease, if the vaccine is ordered by a...

  11. 42 CFR 410.57 - Pneumococcal vaccine and flu vaccine.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false Pneumococcal vaccine and flu vaccine. 410.57... § 410.57 Pneumococcal vaccine and flu vaccine. (a) Medicare Part B pays for pneumococcal vaccine and its administration when reasonable and necessary for the prevention of disease, if the vaccine is ordered by a...

  12. Vaccines against poverty

    PubMed Central

    MacLennan, Calman A.; Saul, Allan

    2014-01-01

    With the 2010s declared the Decade of Vaccines, and Millennium Development Goals 4 and 5 focused on reducing diseases that are potentially vaccine preventable, now is an exciting time for vaccines against poverty, that is, vaccines against diseases that disproportionately affect low- and middle-income countries (LMICs). The Global Burden of Disease Study 2010 has helped better understand which vaccines are most needed. In 2012, US$1.3 billion was spent on research and development for new vaccines for neglected infectious diseases. However, the majority of this went to three diseases: HIV/AIDS, malaria, and tuberculosis, and not neglected diseases. Much of it went to basic research rather than development, with an ongoing decline in funding for product development partnerships. Further investment in vaccines against diarrheal diseases, hepatitis C, and group A Streptococcus could lead to a major health impact in LMICs, along with vaccines to prevent sepsis, particularly among mothers and neonates. The Advanced Market Commitment strategy of the Global Alliance for Vaccines and Immunisation (GAVI) Alliance is helping to implement vaccines against rotavirus and pneumococcus in LMICs, and the roll out of the MenAfriVac meningococcal A vaccine in the African Meningitis Belt represents a paradigm shift in vaccines against poverty: the development of a vaccine primarily targeted at LMICs. Global health vaccine institutes and increasing capacity of vaccine manufacturers in emerging economies are helping drive forward new vaccines for LMICs. Above all, partnership is needed between those developing and manufacturing LMIC vaccines and the scientists, health care professionals, and policy makers in LMICs where such vaccines will be implemented. PMID:25136089

  13. Vaccines against poverty.

    PubMed

    MacLennan, Calman A; Saul, Allan

    2014-08-26

    With the 2010s declared the Decade of Vaccines, and Millennium Development Goals 4 and 5 focused on reducing diseases that are potentially vaccine preventable, now is an exciting time for vaccines against poverty, that is, vaccines against diseases that disproportionately affect low- and middle-income countries (LMICs). The Global Burden of Disease Study 2010 has helped better understand which vaccines are most needed. In 2012, US$1.3 billion was spent on research and development for new vaccines for neglected infectious diseases. However, the majority of this went to three diseases: HIV/AIDS, malaria, and tuberculosis, and not neglected diseases. Much of it went to basic research rather than development, with an ongoing decline in funding for product development partnerships. Further investment in vaccines against diarrheal diseases, hepatitis C, and group A Streptococcus could lead to a major health impact in LMICs, along with vaccines to prevent sepsis, particularly among mothers and neonates. The Advanced Market Commitment strategy of the Global Alliance for Vaccines and Immunisation (GAVI) Alliance is helping to implement vaccines against rotavirus and pneumococcus in LMICs, and the roll out of the MenAfriVac meningococcal A vaccine in the African Meningitis Belt represents a paradigm shift in vaccines against poverty: the development of a vaccine primarily targeted at LMICs. Global health vaccine institutes and increasing capacity of vaccine manufacturers in emerging economies are helping drive forward new vaccines for LMICs. Above all, partnership is needed between those developing and manufacturing LMIC vaccines and the scientists, health care professionals, and policy makers in LMICs where such vaccines will be implemented.

  14. Raman Spectroscopy Cell-based Biosensors

    PubMed Central

    Notingher, Ioan

    2007-01-01

    One of the main challenges faced by biodetection systems is the ability to detect and identify a large range of toxins at low concentrations and in short times. Cell-based biosensors rely on detecting changes in cell behaviour, metabolism, or induction of cell death following exposure of live cells to toxic agents. Raman spectroscopy is a powerful technique for studying cellular biochemistry. Different toxic chemicals have different effects on living cells and induce different time-dependent biochemical changes related to cell death mechanisms. Cellular changes start with membrane receptor signalling leading to cytoplasmic shrinkage and nuclear fragmentation. The potential advantage of Raman spectroscopy cell-based systems is that they are not engineered to respond specifically to a single toxic agent but are free to react to many biologically active compounds. Raman spectroscopy biosensors can also provide additional information from the time-dependent changes of cellular biochemistry. Since no cell labelling or staining is required, the specific time dependent biochemical changes in the living cells can be used for the identification and quantification of the toxic agents. Thus, detection of biochemical changes of cells by Raman spectroscopy could overcome the limitations of other biosensor techniques, with respect to detection and discrimination of a large range of toxic agents. Further developments of this technique may also include integration of cellular microarrays for high throughput in vitro toxicological testing of pharmaceuticals and in situ monitoring of the growth of engineered tissues.

  15. Biotoxin Detection Using Cell-Based Sensors

    PubMed Central

    Banerjee, Pratik; Kintzios, Spyridon; Prabhakarpandian, Balabhaskar

    2013-01-01

    Cell-based biosensors (CBBs) utilize the principles of cell-based assays (CBAs) by employing living cells for detection of different analytes from environment, food, clinical, or other sources. For toxin detection, CBBs are emerging as unique alternatives to other analytical methods. The main advantage of using CBBs for probing biotoxins and toxic agents is that CBBs respond to the toxic exposures in the manner related to actual physiologic responses of the vulnerable subjects. The results obtained from CBBs are based on the toxin-cell interactions, and therefore, reveal functional information (such as mode of action, toxic potency, bioavailability, target tissue or organ, etc.) about the toxin. CBBs incorporate both prokaryotic (bacteria) and eukaryotic (yeast, invertebrate and vertebrate) cells. To create CBB devices, living cells are directly integrated onto the biosensor platform. The sensors report the cellular responses upon exposures to toxins and the resulting cellular signals are transduced by secondary transducers generating optical or electrical signals outputs followed by appropriate read-outs. Examples of the layout and operation of cellular biosensors for detection of selected biotoxins are summarized. PMID:24335754

  16. Sensitive-cell-based fish chromatophore biosensor

    NASA Astrophysics Data System (ADS)

    Plant, Thomas K.; Chaplen, Frank W.; Jovanovic, Goran; Kolodziej, Wojtek; Trempy, Janine E.; Willard, Corwin; Liburdy, James A.; Pence, Deborah V.; Paul, Brian K.

    2004-07-01

    A sensitive biosensor (cytosensor) has been developed based on color changes in the toxin-sensitive colored living cells of fish. These chromatophores are highly sensitive to the presence of many known and unknown toxins produced by microbial pathogens and undergo visible color changes in a dose-dependent manner. The chromatophores are immobilized and maintained in a viable state while potential pathogens multiply and fish cell-microbe interactions are monitored. Low power LED lighting is used to illuminate the chromatophores which are magnified using standard optical lenses and imaged onto a CCD array. Reaction to toxins is detected by observing changes is the total area of color in the cells. These fish chromatophores are quite sensitive to cholera toxin, Staphococcus alpha toxin, and Bordatella pertussis toxin. Numerous other toxic chemical and biological agents besides bacterial toxins also cause readily detectable color effects in chromatophores. The ability of the chromatophore cell-based biosensor to distinguish between different bacterial pathogens was examined. Toxin producing strains of Salmonella enteritis, Vibrio parahaemolyticus, and Bacillus cereus induced movement of pigmented organelles in the chromatophore cells and this movement was measured by changes in the optical density over time. Each bacterial pathogen elicited this measurable response in a distinctive and signature fashion. These results suggest a chromatophore cell-based biosensor assay may be applicable for the detection and identification of virulence activities associated with certain air-, food-, and water-borne bacterial pathogens.

  17. Controlling T-Cell Activation with Synthetic Dendritic Cells Using the Multivalency Effect

    PubMed Central

    2017-01-01

    Artificial antigen-presenting cells (aAPCs) have recently gained a lot of attention. They efficiently activate T cells and serve as powerful replacements for dendritic cells in cancer immunotherapy. Focusing on a specific class of polymer-based aAPCs, so-called synthetic dendritic cells (sDCs), we have investigated the importance of multivalent binding on T-cell activation. Using antibody-functionalized sDCs, we have tested the influence of polymer length and antibody density. Increasing the multivalent character of the antibody-functionalized polymer lowered the effective concentration required for T-cell activation. This was evidenced for both early and late stages of activation. The most important effect observed was the significantly prolonged activation of the stimulated T cells, indicating that multivalent sDCs sustain T-cell signaling. Our results highlight the importance of multivalency for the design of aAPCs and will ultimately allow for better mimics of natural dendritic cells that can be used as vaccines in cancer treatment. PMID:28393131

  18. Vaccines and Immunization Practice.

    PubMed

    Hogue, Michael D; Meador, Anna E

    2016-03-01

    Vaccines are among most cost-effective public health strategies. Despite effective vaccines for many bacterial and viral illnesses, tens of thousands of adults and hundreds of children die each year in the United States from vaccine-preventable diseases. Underutilization of vaccines requires rethinking the approach to incorporating vaccines into practice. Arguably, immunizations could be a part all health care encounters. Shared responsibility is paramount if deaths are to be reduced. This article reviews the available vaccines in the US market, as well as practice recommendations of the Centers for Disease Control and Prevention's Advisory Committee on Immunization Practices.

  19. Clinical applications of natural killer T cell-based immunotherapy for cancer.

    PubMed

    Motohashi, Shinichiro; Nakayama, Toshinori

    2008-04-01

    Human invariant V alpha 24 natural killer T (NKT) cells are a novel, distinct lymphocyte population, characterized by an invariant T-cell receptor V alpha 24 chain paired with V beta 11. V alpha 24 NKT cells are activated by a specific glicolipid ligand, alpha-GalCer, and rapidly produce a large amount of Th1 and Th2 cytokines, thereby modulating other immune cells such as antigen-specific CD4 and CD8 T cells, NK cells, and dendritic cells. Recent studies have shown that NKT cells play pivotal regulatory roles in many immune responses, including antitumor immunity. We herein review the quantitative alteration and functional deterioration of circulating V alpha 24 NKT cells in various cancer-bearing patients. We also summarize the recent progress in the clinical studies of NKT cell-based tumor immunotherapy. Novel immunological results including the increased peripheral blood V alpha 24 NKT cells and IFN-producing cells after the immunotherapy were revealed. The details of the safety profile and the antitumor responses were also disclosed. Although the objective clinical responses still remain unclear, some encouraging results have emerged. Therefore, NKT cell-based immunotherapy may potentially be an effective strategy for the treatment of cancer patients.

  20. The Isothermal Dendritic Growth Experiment (IDGE)

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.; Koss, M. B.; LaCombe, J. C.; Lupulescu, A. O.; Frei, J. E.; Guimarra, C.; Malarik, D. C.

    2001-01-01

    Dendritic solidification is one of the simplest examples of pattern formation where a structureless melt evolves into a ramified crystalline microstructure; it is a common mode of solidification in many materials, but especially so in metals and alloys. There is considerable engineering interest in dendrites because of the role dendrites play in the determination of microstructure, and thereby in influencing the physical properties of cast metals and alloys. Dendritic solidification provides important examples of non-equilibrium physics, pattern formation dynamics, and models for computational condensed matter and material physics. Current theories of dendritic growth generally couple diffusion effects in the melt with the physics introduced by the interface. Unfortunately, in terrestrial based experiments, convective effects in the melt alter the growth process in such a manner as to prevent definitive analysis of convective, diffusive or interfacial effects. Thus, the effective elimination of convection in the melt by operating experiments on orbit were required to produce high-fidelity data needed for achieving further progress. This simple fact comprised the scientific justification for the IDGE.