Science.gov

Sample records for dendritic cell-based vaccination

  1. [Dendritic cell-based therapeutic cancer vaccines].

    PubMed

    Rizzo, Manglio; Alaniz, Laura; Mazzolini, Guillermo D

    In recent years immunotherapy has revolutionized the treatment of patients with advanced cancer. The increased knowledge in the tumor immune-biology has allowed developing rational treatments by manipulation of the immune system with significant clinical impact. This rapid development has significantly changed the prognosis of many tumors without treatment options up to date. Other strategies have explored the use of therapeutic vaccines based on dendritic cells (DC) by inducing antitumor immunity. DC are cells of hematopoietic origin, constitutively expressing molecules capable to present antigens, that are functionally the most potent inducers of the activation and proliferation of antigen specific T lymphocytes. The CD8+ T cells proliferate and acquire cytotoxic capacity after recognizing their specific antigen presented on the surface of DC, although only some types of DC can present antigens internalized from outside the cell to precursors of cytotoxic T lymphocytes (this function is called cross-presentation) requiring translocation mechanisms of complex antigens. The induction of an effective adaptive immune response is considered a good option given its specificity, and prolonged duration of response. The DC, thanks to its particular ability of antigen presentation and lymphocyte stimulation, are able to reverse the poor antitumor immune response experienced by patients with cancer. The DC can be obtained from various sources, using different protocols to generate differentiation and maturation, and are administered by various routes such as subcutaneous, intravenous or intranodal. The wide variety of protocols resulted in heterogeneous clinical responses.

  2. Immune modulation by dendritic-cell-based cancer vaccines.

    PubMed

    Kumar, Chaitanya; Kohli, Sakshi; Bapsy, Poonamalle Parthasarathy; Vaid, Ashok Kumar; Jain, Minish; Attili, Venkata Sathya Suresh; Sharan, Bandana

    2017-03-01

    The interplay between host immunity and tumour cells has opened the possibility of targeting tumour cells by modulation of the human immune system. Cancer immunotherapy involves the treatment of a tumour by utilizing the recombinant human immune system components to target the pro-tumour microenvironment or by revitalizing the immune system with the ability to kill tumour cells by priming the immune cells with tumour antigens. In this review, current immunotherapy approaches to cancer with special focus on dendritic cell (DC)-based cancer vaccines are discussed. Some of the DC-based vaccines under clinical trials for various cancer types are highlighted. Establishing tumour immunity involves a plethora of immune components and pathways; hence, combining chemotherapy, radiation therapy and various arms of immunotherapy, after analysing the benefits of individual therapeutic agents, might be beneficial to the patient.

  3. Dendritic cell based vaccines for HIV infection: the way ahead.

    PubMed

    García, Felipe; Plana, Montserrat; Climent, Nuria; León, Agathe; Gatell, Jose M; Gallart, Teresa

    2013-11-01

    Dendritic cells have a central role in HIV infection. On one hand, they are essential to induce strong HIV-specific CD4⁺ helper T-cell responses that are crucial to achieve a sustained and effective HIV-specific CD8⁺ cytotoxic T-lymphocyte able to control HIV replication. On the other hand, DCs contribute to virus dissemination and HIV itself could avoid a correct antigen presentation. As the efficacy of immune therapy and therapeutic vaccines against HIV infection has been modest in the best of cases, it has been hypothesized that ex vivo generated DC therapeutic vaccines aimed to induce effective specific HIV immune responses might overcome some of these problems. In fact, DC-based vaccine clinical trials have yielded the best results in this field. However, despite these encouraging results, functional cure has not been reached with this strategy in any patient. In this Commentary, we discuss new approaches to improve the efficacy and feasibility of this type of therapeutic vaccine.

  4. Using Magnetic Resonance Imaging to Evaluate Dendritic Cell-Based Vaccination

    PubMed Central

    Ferguson, Peter M.; Slocombe, Angela; Tilley, Richard D.; Hermans, Ian F.

    2013-01-01

    Cancer immunotherapy with antigen-loaded dendritic cell-based vaccines can induce clinical responses in some patients, but further optimization is required to unlock the full potential of this strategy in the clinic. Optimization is dependent on being able to monitor the cellular events that take place once the dendritic cells have been injected in vivo, and to establish whether antigen-specific immune responses to the tumour have been induced. Here we describe the use of magnetic resonance imaging (MRI) as a simple, non-invasive approach to evaluate vaccine success. By loading the dendritic cells with highly magnetic iron nanoparticles it is possible to assess whether the injected cells drain to the lymph nodes. It is also possible to establish whether an antigen-specific response is initiated by assessing migration of successive rounds of antigen-loaded dendritic cells; in the face of a successfully primed cytotoxic response, the bulk of antigen-loaded cells are eradicated on-route to the node, whereas cells without antigen can reach the node unchecked. It is also possible to verify the induction of a vaccine-induced response by simply monitoring increases in draining lymph node size as a consequence of vaccine-induced lymphocyte trapping, which is an antigen-specific response that becomes more pronounced with repeated vaccination. Overall, these MRI techniques can provide useful early feedback on vaccination strategies, and could also be used in decision making to select responders from non-responders early in therapy. PMID:23734246

  5. Clinical trials of dendritic cell-based cancer vaccines in hematologic malignancies

    PubMed Central

    Pyzer, Athalia R; Avigan, David E; Rosenblatt, Jacalyn

    2015-01-01

    The potential for the immune system to target hematological malignancies is demonstrated in the allogeneic transplant setting, where durable responses can be achieved. However, allogeneic transplantation is associated with significant morbidity and mortality related to graft versus host disease. Cancer immunotherapy has the capacity to direct a specific cytotoxic immune response against cancer cells, particularly residual cancer cells, in order to reduce the likelihood of disease relapse in a more targeted and tolerated manner. Ex vivo dendritic cells can be primed in various ways to present tumor associated antigen to the immune system, in the context of co-stimulatory molecules, eliciting a tumor specific cytotoxic response in patients. Several approaches to prime dendritic cells and overcome the immunosuppressive microenvironment have been evaluated in pre-clinical and early clinical trials with promising results. In this review, we summarize the clinical data evaluating dendritic cell based vaccines for the treatment of hematological malignancies. PMID:25625926

  6. Dendritic cell-based immunotherapy induces transient clinical response in advanced rat fibrosarcoma - comparison with preventive anti-tumour vaccination.

    PubMed

    Kucera, A; Pýcha, K; Pajer, P; Spísek, R; Skába, R

    2009-01-01

    In this study we present the models of preventive and therapeutic vaccination of sarcoma-bearing rats with dendritic cells that present tumour antigens from killed tumour cells. We present the characteristics of dendritic cell-based vaccine and its capacity to induce anti-tumour immune response both in vitro and in vivo. We show that preventive vaccination efficiently prevents tumour growth. On the other hand, vaccination of rats with established tumours did not lead to eradication of the tumours. Despite the induction of a vigorous immune response after administration of dendritic cell-based vaccine and transient decrease in tumour progression, tumours eventually resumed their growth and animals vaccinated with dendritic cells succumbed to cancer. In both settings, preventive and therapeutic, dendritic cell-based vaccination induced a vigorous tumour-specific T-cell response. These results argue for the timing of cancer immunotherapy to the stages of low tumour load. Immunotherapy initiated at the stage of minimal residual disease, after reduction of tumour load by other modalities, will have much better chance to offer a clinical benefit to cancer patients than the immunotherapy at the stage of metastatic disease.

  7. A Therapeutic Dendritic Cell-Based Vaccine for HIV-1 Infection

    PubMed Central

    Climent, Núria; Assoumou, Lambert; Gil, Cristina; González, Nuria; Alcamí, José; León, Agathe; Romeu, Joan; Dalmau, Judith; Martínez-Picado, Javier; Lifson, Jeff; Autran, Brigitte; Costagliola, Dominique; Clotet, Bonaventura; Gatell, Josep M; Plana, Montserrat; Gallart, Teresa

    2011-01-01

    A double-blinded, controlled study of vaccination of untreated patients with chronic human immunodeficiency virus type 1 (HIV-1) infection with 3 doses of autologous monocyte-derived dendritic cells (MD-DCs) pulsed with heat inactivated autologous HIV-1 was performed. Therapeutic vaccinations were feasible, safe, and well tolerated. At week 24 after first vaccination (primary end point), a modest significant decrease in plasma viral load was observed in vaccine recipients, compared with control subjects (P = .03). In addition, the change in plasma viral load after vaccination tended to be inversely associated with the increase in HIV-specific T cell responses in vaccinated patients but tended to be directly correlated with HIV-specific T cell responses in control subjects. Clinical trial.gov NCT00402142 PMID:21233310

  8. Prophylactic Dendritic Cell-Based Vaccines Efficiently Inhibit Metastases in Murine Metastatic Melanoma

    PubMed Central

    Sennikov, Sergey V.; Vlassov, Valentin V.; Zenkova, Marina A.

    2015-01-01

    Recent data on the application of dendritic cells (DCs) as anti-tumor vaccines has shown their great potential in therapy and prophylaxis of cancer. Here we report on a comparison of two treatment schemes with DCs that display the models of prophylactic and therapeutic vaccination using three different experimental tumor models: namely, Krebs-2 adenocarcinoma (primary tumor), melanoma (B16, metastatic tumor without a primary node) and Lewis lung carcinoma (LLC, metastatic tumor with a primary node). Dendritic cells generated from bone marrow-derived DC precursors and loaded with lysate of tumor cells or transfected with the complexes of total tumor RNA with cationic liposomes were used for vaccination. Lipofectamine 2000 and liposomes consisting of helper lipid DOPE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine) and cationic lipid 2D3 (1,26-Bis(1,2-de-O-tetradecyl-rac-glycerol)-7,11,16,20-tetraazahexacosan tetrahydrocloride) were used for RNA transfection. It was shown that DCs loaded with tumor lysate were ineffective in contrast to tumor-derived RNA. Therapeutic vaccination with DCs loaded by lipoplexes RNA/Lipofectamine 2000 was the most efficient for treatment of non-metastatic Krebs-2, where a 1.9-fold tumor growth retardation was observed. Single prophylactic vaccination with DCs loaded by lipoplexes RNA/2D3 was the most efficient to treat highly aggressive metastatic tumors LLC and B16, where 4.7- and 10-fold suppression of the number of lung metastases was observed, respectively. Antimetastatic effect of single prophylactic DC vaccination in metastatic melanoma model was accompanied by the reductions in the levels of Th2-specific cytokines however the change of the levels of Th1/Th2/Th17 master regulators was not found. Failure of double prophylactic vaccination is explained by Th17-response polarization associated with autoimmune and pro-inflammatory reactions. In the case of therapeutic DC vaccine the polarization of Th1-response was found nevertheless

  9. Prophylactic Dendritic Cell-Based Vaccines Efficiently Inhibit Metastases in Murine Metastatic Melanoma.

    PubMed

    Markov, Oleg V; Mironova, Nadezhda L; Sennikov, Sergey V; Vlassov, Valentin V; Zenkova, Marina A

    2015-01-01

    Recent data on the application of dendritic cells (DCs) as anti-tumor vaccines has shown their great potential in therapy and prophylaxis of cancer. Here we report on a comparison of two treatment schemes with DCs that display the models of prophylactic and therapeutic vaccination using three different experimental tumor models: namely, Krebs-2 adenocarcinoma (primary tumor), melanoma (B16, metastatic tumor without a primary node) and Lewis lung carcinoma (LLC, metastatic tumor with a primary node). Dendritic cells generated from bone marrow-derived DC precursors and loaded with lysate of tumor cells or transfected with the complexes of total tumor RNA with cationic liposomes were used for vaccination. Lipofectamine 2000 and liposomes consisting of helper lipid DOPE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine) and cationic lipid 2D3 (1,26-Bis(1,2-de-O-tetradecyl-rac-glycerol)-7,11,16,20-tetraazahexacosan tetrahydrocloride) were used for RNA transfection. It was shown that DCs loaded with tumor lysate were ineffective in contrast to tumor-derived RNA. Therapeutic vaccination with DCs loaded by lipoplexes RNA/Lipofectamine 2000 was the most efficient for treatment of non-metastatic Krebs-2, where a 1.9-fold tumor growth retardation was observed. Single prophylactic vaccination with DCs loaded by lipoplexes RNA/2D3 was the most efficient to treat highly aggressive metastatic tumors LLC and B16, where 4.7- and 10-fold suppression of the number of lung metastases was observed, respectively. Antimetastatic effect of single prophylactic DC vaccination in metastatic melanoma model was accompanied by the reductions in the levels of Th2-specific cytokines however the change of the levels of Th1/Th2/Th17 master regulators was not found. Failure of double prophylactic vaccination is explained by Th17-response polarization associated with autoimmune and pro-inflammatory reactions. In the case of therapeutic DC vaccine the polarization of Th1-response was found nevertheless

  10. Uric acid enhances the antitumor immunity of dendritic cell-based vaccine

    PubMed Central

    Wang, Yihan; Ma, Xuelei; Su, Chao; Peng, Bin; Du, Jing; Jia, Hongyuan; Luo, Min; Fang, Chunju; Wei, Yuquan

    2015-01-01

    Uric acid (UA) released from dying cells has been recognized by the immune system as a danger signal. In response to UA, dendritic cells (DC) in the immune system mature and enhance the T cell response to foreign antigens. It is conceivable that the antitumor immunity of a tumor vaccine could be promoted by the administration of UA. To test this concept, we applied UA as an adjuvant to a DC-based vaccine, and discovered that the administration of UA as an adjuvant significantly enhanced the ability of the tumor lysate-pulsed DC vaccine in delaying the tumor growth. The antitumor activity was achieved with adoptively transferred lymphocytes, and both CD8+ T cells and NK cells were required to achieve effective immunity. This resulted in an increased accumulation of activated CD8+ T cells and an elevated production of IFN-γ. Collectively, our study shows that the administration of UA enhances the antitumor activity of tumor lysate-pulsed DC vaccine, thus providing the preclinical rationale for the application of UA in DC-based vaccine strategies. PMID:26553557

  11. Dendritic Cell-Based Vaccination in Cancer: Therapeutic Implications Emerging from Murine Models

    PubMed Central

    Mac Keon, Soledad; Ruiz, María Sol; Gazzaniga, Silvina; Wainstok, Rosa

    2015-01-01

    Dendritic cells (DCs) play a pivotal role in the orchestration of immune responses, and are thus key targets in cancer vaccine design. Since the 2010 FDA approval of the first cancer DC-based vaccine (Sipuleucel-T), there has been a surge of interest in exploiting these cells as a therapeutic option for the treatment of tumors of diverse origin. In spite of the encouraging results obtained in the clinic, many elements of DC-based vaccination strategies need to be optimized. In this context, the use of experimental cancer models can help direct efforts toward an effective vaccine design. This paper reviews recent findings in murine models regarding the antitumoral mechanisms of DC-based vaccination, covering issues related to antigen sources, the use of adjuvants and maturing agents, and the role of DC subsets and their interaction in the initiation of antitumoral immune responses. The summary of such diverse aspects will highlight advantages and drawbacks in the use of murine models, and contribute to the design of successful DC-based translational approaches for cancer treatment. PMID:26042126

  12. Immune Evasion Pathways and the Design of Dendritic Cell-based Cancer Vaccines

    PubMed Central

    Hanks, Brent A.

    2016-01-01

    Emerging data is suggesting that the process of dendritic cell (DC) tolerization is an important step in tumorigenesis. Our understanding of the networks within the tumor microenvironment that functionally tolerize DC function is evolving while methods for genetically manipulating DC populations in situ continue to develop. A more intimate understanding of the paracrine signaling pathways which mediate immune evasion by subverting DC function promises to provide novel strategies for improving the clinical efficacy of DC-based cancer vaccines. This will likely require a better understanding of both the antigen expression profile and the immune evasion network of the tumor and its associated stromal tissues. PMID:27011049

  13. Dendritic cell-based vaccines in treating recurrent herpes labialis: Results of pilot clinical study.

    PubMed

    Leplina, Olga; Starostina, Nataliya; Zheltova, Olga; Ostanin, Alexandr; Shevela, Ekaterina; Chernykh, Elena

    2016-12-01

    Recurrent herpes simplex labialis caused predominantly with herpes simplexvirus 1(HSV-1) is a major problem, for which various treatments have minimal impact. Given the important role of the immune system in controlling virus infection, an activation of virus-specific immune responses, in particular,using dendritic cell (DCs) vaccines, seems to be a promising approach for the treatment of patients with frequent recurrences of herpes labialis. The current paper presents the results of a pilot study of the safety and efficacy of DC vaccines in 14 patients with recurrent HSV-1 infections. DCs were generated in presence of GM-CSF and IFN-alpha and were loaded with HSV-1 recombinant viral glycoprotein D (HSV1gD). DCs cells were injected subcutaneously as 2 courses of vaccination during 9 months. Immunotherapy with DCs did not induce any serious side effects and resulted in more than 2-fold reduction in the recurrence rate and significant enhancement of the inter-recurrent time during the 9 months of treatment and subsequent 6-month follow-up period. An obvious clinical improvement was accompanied with an induction of an antigen-specific response to HCV1gD and a normalization of reduced mitogenic responsiveness of mono-nuclear cells. According to long-term survey data (on average 48 months after the beginning of therapy), 87% of respondents reported the decreased incidence of recurrent infection. At this time, most patients (85.7%) responded to HCV1gD stimulation. The data obtained suggests that dendritic cell vaccines may be a promising new approach for the treatment of recurrent labial herpes.

  14. Evaluation of an α synuclein sensitized dendritic cell based vaccine in a transgenic mouse model of Parkinson disease.

    PubMed

    Ugen, Kenneth E; Lin, Xiaoyang; Bai, Ge; Liang, Zhanhua; Cai, Jianfeng; Li, Kunyun; Song, Shijie; Cao, Chuanhai; Sanchez-Ramos, Juan

    2015-01-01

    In order to develop a cell-based vaccine against the Parkinson disease (PD) associated protein α-synuclein (α-Syn) 3 peptides were synthesized based upon predicted B cell epitopes within the full length α-Syn protein sequence. These peptide fragments as well as the full length recombinant human α-Syn (rh- α-Syn) protein were used to sensitize mouse bone marrow-derived dendritic cells (DC) ex vivo, followed by intravenous delivery of these sensitized DCs into transgenic (Tg) mice expressing the human A53T variant of α-Syn. ELISA analysis and testing of behavioral locomotor function by rotometry were performed on all mice after the 5th vaccination as well as just prior to euthanasia. The results indicated that vaccination with peptide sensitized DCs (PSDC) as well as DCs sensitized by rh-α-Syn induced specific anti-α-Syn antibodies in all immunized mice. In terms of rotometry performance, a measure of locomotor activity correlated to brain dopamine levels, mice vaccinated with PSDC or rh- α-Syn sensitized DCs performed significantly better than non-vaccinated Tg control mice during the final assessment (i.e. at 17 months of age) before euthanasia. As well, measurement of levels of brain IL-1α, a cytokine hypothesized to be associated with neuroinflammation, demonstrated that this proinflammatory molecule was significantly reduced in the PSDC and rh- α-Syn sensitized DC vaccinated mice compared to the non-vaccinated Tg control group. Overall, α-Syn antigen-sensitized DC vaccination was effective in generating specific anti- α-Syn antibodies and improved locomotor function without eliciting an apparent general inflammatory response, indicating that this strategy may be a safe and effective treatment for PD.

  15. Glycyrrhiza uralensis water extract enhances dendritic cell maturation and antitumor efficacy of HPV dendritic cell-based vaccine.

    PubMed

    Aipire, Adila; Li, Jinyu; Yuan, Pengfei; He, Jiang; Hu, Yelang; Liu, Lu; Feng, Xiaoli; Li, Yijie; Zhang, Fuchun; Yang, Jianhua; Li, Jinyao

    2017-03-08

    Licorice has been used as herbal medicine and natural sweetener. Here, we prepared Glycyrrhiza uralensis water extract (GUWE) and investigated the effect of GUWE on the maturation and function of dendritic cells (DCs) and its adjuvant effect on DC-based vaccine. We observed that GUWE dose-dependently promoted DC maturation and cytokine secretion through TLR4 signaling pathway. The capacity of DC to stimulate allogenic splenocyte proliferation was also enhanced by GUWE treatment. Compared with control group, GUWE treated DCs pulsed with human papillomavirus (HPV)-16 E6/E7 peptides significantly inhibited the tumor growth in both early and late therapeutic groups. In early therapeutic group, the frequencies of induced regulatory T cells (iTregs: CD4(+)CD25(-)Fopx3(+)) and CD4(+) and CD8(+) T cells were significantly decreased and increased, respectively. HPV-16-specific CD8(+) T cell responses were significantly induced and negatively correlated with iTreg frequencies and tumor weight. These results indicated the immunoregulatory activities of licorice.

  16. Glycyrrhiza uralensis water extract enhances dendritic cell maturation and antitumor efficacy of HPV dendritic cell-based vaccine

    PubMed Central

    Aipire, Adila; Li, Jinyu; Yuan, Pengfei; He, Jiang; Hu, Yelang; Liu, Lu; Feng, Xiaoli; Li, Yijie; Zhang, Fuchun; Yang, Jianhua; Li, Jinyao

    2017-01-01

    Licorice has been used as herbal medicine and natural sweetener. Here, we prepared Glycyrrhiza uralensis water extract (GUWE) and investigated the effect of GUWE on the maturation and function of dendritic cells (DCs) and its adjuvant effect on DC-based vaccine. We observed that GUWE dose-dependently promoted DC maturation and cytokine secretion through TLR4 signaling pathway. The capacity of DC to stimulate allogenic splenocyte proliferation was also enhanced by GUWE treatment. Compared with control group, GUWE treated DCs pulsed with human papillomavirus (HPV)-16 E6/E7 peptides significantly inhibited the tumor growth in both early and late therapeutic groups. In early therapeutic group, the frequencies of induced regulatory T cells (iTregs: CD4+CD25−Fopx3+) and CD4+ and CD8+ T cells were significantly decreased and increased, respectively. HPV-16-specific CD8+ T cell responses were significantly induced and negatively correlated with iTreg frequencies and tumor weight. These results indicated the immunoregulatory activities of licorice. PMID:28272545

  17. Systemic Administration of Interleukin 2 Enhances the Therapeutic Efficacy of Dendritic Cell-Based Tumor Vaccines

    NASA Astrophysics Data System (ADS)

    Shimizu, K.; Fields, R. C.; Giedlin, M.; Mule, J. J.

    1999-03-01

    We have reported previously that murine bone marrow-derived dendritic cells (DC) pulsed with whole tumor lysates can mediate potent antitumor immune responses both in vitro and in vivo. Because successful therapy was dependent on host immune T cells, we have now evaluated whether the systemic administration of the T cell stimulatory/growth promoting cytokine interleukin-2 (IL-2) could enhance tumor lysate-pulsed DC-based immunizations to further promote protective immunity toward, and therapeutic rejection of, syngeneic murine tumors. In three separate approaches using a weakly immunogenic sarcoma (MCA-207), the systemic administration of non-toxic doses of recombinant IL-2 (20,000 and 40,000 IU/dose) was capable of mediating significant increases in the potency of DC-based immunizations. IL-2 could augment the efficacy of tumor lysate-pulsed DC to induce protective immunity to lethal tumor challenge as well as enhance splenic cytotoxic T lymphocyte activity and interferon-γ production in these treated mice. Moreover, treatment with the combination of tumor lysate-pulsed DC and IL-2 could also mediate regressions of established pulmonary 3-day micrometastases and 7-day macrometastases as well as established 14- and 28-day s.c. tumors, leading to either significant cure rates or prolongation in overall survival. Collectively, these findings show that nontoxic doses of recombinant IL-2 can potentiate the antitumor effects of tumor lysate-pulsed DC in vivo and provide preclinical rationale for the use of IL-2 in DC-based vaccine strategies in patients with advanced cancer.

  18. DNA is an efficient booster of dendritic cell-based vaccine.

    PubMed

    Li, Jinyao; Valentin, Antonio; Beach, Rachel Kelly; Alicea, Candido; Felber, Barbara K; Pavlakis, George N

    2015-01-01

    DC-based therapeutic vaccines as a promising strategy against chronic infections and cancer have been validated in several clinical trials. However, DC-based vaccines are complex and require many in vitro manipulations, which makes this a personalized and expensive therapeutic approach. In contrast, DNA-based vaccines have many practical advantages including simplicity, low cost of manufacturing and potent immunogenicity already proven in non-human primates and humans. In this study, we explored whether DC-based vaccines can be simplified by the addition of plasmid DNA as prime or boost to achieve robust CD8-mediated immune responses. We compared the cellular immunity induced in BALB/c and C57BL/6 mice by DC vaccines, loaded either with peptides or optimized SIV Env DNA, and plasmid DNA-based vaccines delivered by electroporation (EP). We found that mature DC loaded with peptides (P-mDC) induced the highest CD8(+) T cell responses in both strains of mice, but those responses were significantly higher in the C57BL/6 model. A heterologous prime-boost strategy (P-DC prime-DNA boost) induced CD8(+) T cell responses similar to those obtained by the P-DC vaccine. Importantly, this strategy elicited robust polyfunctional T cells as well as highest antigen-specific central memory CD8+ T cells in C57BL/6 mice, suggesting long-term memory responses. These results indicate that a DC-based vaccine in combination with DNA in a heterologous DC prime-DNA boost strategy has potential as a repeatedly administered vaccine.

  19. DNA is an efficient booster of dendritic cell-based vaccine

    PubMed Central

    Li, Jinyao; Valentin, Antonio; Beach, Rachel Kelly; Alicea, Candido; Felber, Barbara K; Pavlakis, George N

    2015-01-01

    DC-based therapeutic vaccines as a promising strategy against chronic infections and cancer have been validated in several clinical trials. However, DC-based vaccines are complex and require many in vitro manipulations, which makes this a personalized and expensive therapeutic approach. In contrast, DNA-based vaccines have many practical advantages including simplicity, low cost of manufacturing and potent immunogenicity already proven in non-human primates and humans. In this study, we explored whether DC-based vaccines can be simplified by the addition of plasmid DNA as prime or boost to achieve robust CD8-mediated immune responses. We compared the cellular immunity induced in BALB/c and C57BL/6 mice by DC vaccines, loaded either with peptides or optimized SIV Env DNA, and plasmid DNA-based vaccines delivered by electroporation (EP). We found that mature DC loaded with peptides (P-mDC) induced the highest CD8+ T cell responses in both strains of mice, but those responses were significantly higher in the C57BL/6 model. A heterologous prime-boost strategy (P-DC prime-DNA boost) induced CD8+ T cell responses similar to those obtained by the P-DC vaccine. Importantly, this strategy elicited robust polyfunctional T cells as well as highest antigen-specific central memory CD8+ T cells in C57BL/6 mice, suggesting long-term memory responses. These results indicate that a DC-based vaccine in combination with DNA in a heterologous DC prime-DNA boost strategy has potential as a repeatedly administered vaccine. PMID:26125100

  20. Vitamin E Succinate as an Adjuvant for Dendritic Cell Based Vaccines

    DTIC Science & Technology

    2006-07-01

    cancer cells by tocopherols and tocotrienols . Nutr Cancer, 33: 26-32, 1999. 33. Yu, W., Sanders, B. G., and Kline, K. RRR- alpha -tocopheryl succinate...DC vaccines with a chemotherapeutic drug, which may act as an adjuvant for DC vaccines. Vitamin E succinate or alpha tocopheryl succinate (α-TOS) is...residual disease setting, 3) identify the mechanism involved in mediating the anti-tumor response 15. SUBJECT TERMS Chemo-immunotherapy, alpha

  1. Maturation and trafficking of monocyte-derived dendritic cells in monkeys: implications for dendritic cell-based vaccines.

    PubMed

    Barratt-Boyes, S M; Zimmer, M I; Harshyne, L A; Meyer, E M; Watkins, S C; Capuano, S; Murphey-Corb, M; Falo, L D; Donnenberg, A D

    2000-03-01

    Human dendritic cells (DC) have polarized responses to chemokines as a function of maturation state, but the effect of maturation on DC trafficking in vivo is not known. We have addressed this question in a highly relevant rhesus macaque model. We demonstrate that immature and CD40 ligand-matured monocyte-derived DC have characteristic phenotypic and functional differences in vitro. In particular, immature DC express CC chemokine receptor 5 (CCR5) and migrate in response to macrophage inflammatory protein-1alpha (MIP-1alpha), whereas mature DC switch expression to CCR7 and respond exclusively to MIP-3beta and 6Ckine. Mature DC transduced to express a marker gene localized to lymph nodes after intradermal injection, constituting 1.5% of lymph node DC. In contrast, cutaneous DC transfected in situ via gene gun were detected in the draining lymph node at a 20-fold lower frequency. Unexpectedly, the state of maturation at the time of injection had no influence on the proportion of DC that localized to draining lymph nodes, as labeled immature and mature DC were detected in equal numbers. Immature DC that trafficked to lymph nodes underwent a significant up-regulation of CD86 expression indicative of spontaneous maturation. Moreover, immature DC exited completely from the dermis within 36 h of injection, whereas mature DC persisted in large numbers associated with a marked inflammatory infiltrate. We conclude that in vitro maturation is not a requirement for effective migration of DC in vivo and suggest that administration of Ag-loaded immature DC that undergo natural maturation following injection may be preferred for DC-based immunotherapy.

  2. T cell-derived IL-10 determines leishmaniasis disease outcome and is suppressed by a dendritic cell based vaccine.

    PubMed

    Schwarz, Tobias; Remer, Katharina A; Nahrendorf, Wiebke; Masic, Anita; Siewe, Lisa; Müller, Werner; Roers, Axel; Moll, Heidrun

    2013-01-01

    In the murine model of Leishmania major infection, resistance or susceptibility to the parasite has been associated with the development of a Th1 or Th2 type of immune response. Recently, however, the immunosuppressive effects of IL-10 have been ascribed a crucial role in the development of the different clinical correlates of Leishmania infection in humans. Since T cells and professional APC are important cellular sources of IL-10, we compared leishmaniasis disease progression in T cell-specific, macrophage/neutrophil-specific and complete IL-10-deficient C57BL/6 as well as T cell-specific and complete IL-10-deficient BALB/c mice. As early as two weeks after infection of these mice with L. major, T cell-specific and complete IL-10-deficient animals showed significantly increased lesion development accompanied by a markedly elevated secretion of IFN-γ or IFN-γ and IL-4 in the lymph nodes draining the lesions of the C57BL/6 or BALB/c mutants, respectively. In contrast, macrophage/neutrophil-specific IL-10-deficient C57BL/6 mice did not show any altered phenotype. During the further course of disease, the T cell-specific as well as the complete IL-10-deficient BALB/c mice were able to control the infection. Furthermore, a dendritic cell-based vaccination against leishmaniasis efficiently suppresses the early secretion of IL-10, thus contributing to the control of parasite spread. Taken together, IL-10 secretion by T cells has an influence on immune activation early after infection and is sufficient to render BALB/c mice susceptible to an uncontrolled Leishmania major infection.

  3. [Establishment of induced pluripotent stem cells from adipose tissue-derived stem cells for dendritic cell-based cancer vaccines].

    PubMed

    Matsushita, Norimasa; Kobayashi, Hajime; Aruga, Atsushi; Yamamoto, Masakazu

    2014-04-01

    Recently, studies on regenerative stem cell therapy are being encouraged, and efforts to generate dendritic cells, which play important roles in cancer immunotherapy, from stem cells are being made in the field of tumor immunology. Therapeutic acquisition of stem cells has important clinical applications. Studies on induced pluripotent stem(iPS)cells generated from somatic cells with pluripotent genes have advanced in recent years. Stem cells are reported to be found in adipose tissue (adipose-derived stem cells, ADSC). Our goal is to develop a new cancer vaccine by using dendritic cells generated from ADSC. In a preliminary study, we examined whether iPS cells can be generated from ADSC to serve as a source of dendritic cells.We introduced a plasmid with pluripotent genes(OCT3/4, KLF4, SOX2, L-MYC, LIN28, p53-shRNA)into an ADSC strain derived from adipose tissue by electroporation and subsequently cultured the cells for further examination. A colony sugges- tive of iPS cells from ADSC was observed. OCT3/4, KLF4, SOX2, L-MYC, and LIN28 mRNAs were expressed in the cultured cells, as confirmed by reverse transcriptase-polymerase chain reaction(RT-PCR). On the basis of these results, we confirmed that iPS cells were generated from ADSC. The method of inducing dendritic cells from iPS cells has already been reported, and the results of this study suggest that ADSC is a potential source of dendritic cells.

  4. Rapamycin Promotes Mouse 4T1 Tumor Metastasis that Can Be Reversed by a Dendritic Cell-Based Vaccine.

    PubMed

    Lin, Tien-Jen; Liang, Wen-Miin; Hsiao, Pei-Wen; M S, Pradeep; Wei, Wen-Chi; Lin, Hsin-Ting; Yin, Shu-Yi; Yang, Ning-Sun

    2015-01-01

    Suppression of tumor metastasis is a key strategy for successful cancer interventions. Previous studies indicated that rapamycin (sirolimus) may promote tumor regression activity or enhance immune response against tumor targets. However, rapamycin also exhibits immunosuppressant effects and is hence used clinically as an organ transplantation drug. We hypothesized that the immunosuppressive activities of rapamycin might also negatively mediate host immunity, resulting in promotion of tumor metastasis. In this study, the effects of rapamycin and phytochemical shikonin were investigated in vitro and in vivo in a 4T1 mouse mammary tumor model through quantitative assessment of immunogenic cell death (ICD), autophagy, tumor growth and metastasis. Tumor-bearing mice were immunized with test vaccines to monitor their effect on tumor metastasis. We found that intraperitoneal (ip) administration of rapamycin after a tumor-resection surgery drastically increased the metastatic activity of 4T1 tumors. Possible correlation of this finding to human cancers was suggested by epidemiological analysis of data from Taiwan's National Health Insurance Research Database (NHIRD). Since our previous studies showed that modified tumor cell lysate (TCL)-pulsed, dendritic cell (DC)-based cancer vaccines can effectively suppress metastasis in mouse tumor models, we assessed whether such vaccines may help offset this rapamycin-promoted metastasis. We observed that shikonin efficiently induced ICD of 4T1 cells in culture, and DC vaccines pulsed with shikonin-treated TCL (SK-TCL-DC) significantly suppressed rapamycin-enhanced metastasis and Treg cell expansion in test mice. In conclusion, rapamycin treatment in mice (and perhaps in humans) promotes metastasis and the effect may be offset by treatment with a DC-based cancer vaccine.

  5. Tumor endothelial marker 8 expression levels in dendritic cell-based cancer vaccines are related to clinical outcome.

    PubMed

    Venanzi, Franco Maria; Petrini, Massimiliano; Fiammenghi, Laura; Bolli, Elisabetta; Granato, Anna Maria; Ridolfi, Laura; Gabrielli, Federica; Barucca, Alessandra; Concetti, Antonio; Ridolfi, Ruggero; Riccobon, Angela

    2010-01-01

    Previous studies have shown that tumor endothelial markers (TEMs 1-9) are up modulated in immunosuppressive, pro-angiogenic dendritic cells (DCs) found in tumor microenvironments. We recently reported that monocyte-derived DCs used for vaccination trials may accumulate high levels of TEM8 gene transcripts. Here, we investigate whether TEM8 expression in DC preparations represents a specific tumor-associated change of potential clinical relevance. TEM8 expression at the mRNA and protein level was evaluated by quantitative real-time RT-PCR and cytofluorimetric analysis in human clinical grade DCs utilized for the therapeutic vaccination of 17 advanced cancer patients (13 melanoma and 4 renal cell carcinoma). The analyses revealed that DCs from patients markedly differ in their ability to up-modulate TEM8. Indeed, mDCs from eight non-progressing patients [median overall survival (OS) = 32 months, all positive to the delayed-type hypersensitivity test (DTH)], had similar TEM8 mRNA expression levels [mDCs vs. immature iDCs; mean fold increase (mfi) = 1.97] to those found in healthy donors (mfi = 2.7). Conversely, mDCs from nine progressing patients (OS < 5 months, all but one with negative DTH) showed an increase in TEM8 mRNA levels (mfi = 12.88, p = 0.0018). The present observations suggest that TEM8 expression levels in DC-based therapeutic vaccines would allow the selection of a subgroup of patients who are most likely to benefit from therapeutic vaccination.

  6. Generation of dendritic cell-based vaccine using high hydrostatic pressure for non-small cell lung cancer immunotherapy.

    PubMed

    Hradilova, Nada; Sadilkova, Lenka; Palata, Ondrej; Mysikova, Dagmar; Mrazkova, Hana; Lischke, Robert; Spisek, Radek; Adkins, Irena

    2017-01-01

    High hydrostatic pressure (HHP) induces immunogenic death of tumor cells which confer protective anti-tumor immunity in vivo. Moreover, DC pulsed with HHP-treated tumor cells induced therapeutic effect in mouse cancer model. In this study, we tested the immunogenicity, stability and T cell stimulatory activity of human monocyte-derived dendritic cell (DC)-based HHP lung cancer vaccine generated in GMP compliant serum free medium using HHP 250 MPa. DC pulsed with HHP-killed lung cancer cells and poly(I:C) enhanced DC maturation, chemotactic migration and production of pro-inflammatory cytokines after 24h. Moreover, DC-based HHP lung cancer vaccine showed functional plasticity after transfer into serum-containing media and stimulation with LPS or CD40L after additional 24h. LPS and CD40L stimulation further differentially enhanced the expression of costimulatory molecules and production of IL-12p70. DC-based HHP lung cancer vaccine decreased the number of CD4+CD25+Foxp3+ T regulatory cells and stimulated IFN-γ-producing tumor antigen-specific CD4+ and CD8+ T cells from non-small cell lung cancer (NSCLC) patients. Tumor antigen specific CD8+ and CD4+ T cell responses were detected in NSCLC patient's against a selected tumor antigens expressed by lung cancer cell lines used for the vaccine generation. We also showed for the first time that protein antigen from HHP-killed lung cancer cells is processed and presented by DC to CD8+ T cells. Our results represent important preclinical data for ongoing NSCLC Phase I/II clinical trial using DC-based active cellular immunotherapy (DCVAC/LuCa) in combination with chemotherapy and immune enhancers.

  7. Generation of dendritic cell-based vaccine using high hydrostatic pressure for non-small cell lung cancer immunotherapy

    PubMed Central

    Hradilova, Nada; Sadilkova, Lenka; Palata, Ondrej; Mysikova, Dagmar; Mrazkova, Hana; Lischke, Robert; Spisek, Radek; Adkins, Irena

    2017-01-01

    High hydrostatic pressure (HHP) induces immunogenic death of tumor cells which confer protective anti-tumor immunity in vivo. Moreover, DC pulsed with HHP-treated tumor cells induced therapeutic effect in mouse cancer model. In this study, we tested the immunogenicity, stability and T cell stimulatory activity of human monocyte-derived dendritic cell (DC)-based HHP lung cancer vaccine generated in GMP compliant serum free medium using HHP 250 MPa. DC pulsed with HHP-killed lung cancer cells and poly(I:C) enhanced DC maturation, chemotactic migration and production of pro-inflammatory cytokines after 24h. Moreover, DC-based HHP lung cancer vaccine showed functional plasticity after transfer into serum-containing media and stimulation with LPS or CD40L after additional 24h. LPS and CD40L stimulation further differentially enhanced the expression of costimulatory molecules and production of IL-12p70. DC-based HHP lung cancer vaccine decreased the number of CD4+CD25+Foxp3+ T regulatory cells and stimulated IFN-γ-producing tumor antigen-specific CD4+ and CD8+ T cells from non-small cell lung cancer (NSCLC) patients. Tumor antigen specific CD8+ and CD4+ T cell responses were detected in NSCLC patient’s against a selected tumor antigens expressed by lung cancer cell lines used for the vaccine generation. We also showed for the first time that protein antigen from HHP-killed lung cancer cells is processed and presented by DC to CD8+ T cells. Our results represent important preclinical data for ongoing NSCLC Phase I/II clinical trial using DC-based active cellular immunotherapy (DCVAC/LuCa) in combination with chemotherapy and immune enhancers. PMID:28187172

  8. Antitumor dendritic cell-based vaccines: lessons from 20 years of clinical trials and future perspectives.

    PubMed

    Constantino, João; Gomes, Célia; Falcão, Amílcar; Cruz, Maria T; Neves, Bruno M

    2016-02-01

    Dendritic cells (DCs) are versatile elements of the immune system and are best known for their unparalleled ability to initiate and modulate adaptive immune responses. During the past few decades, DCs have been the subject of numerous studies seeking new immunotherapeutic strategies against cancer. Despite the initial enthusiasm, disappointing results from early studies raised some doubts regarding the true clinical value of these approaches. However, our expanding knowledge of DC immunobiology and the definition of the optimal characteristics for antitumor immune responses have allowed a more rational development of DC-based immunotherapies in recent years. Here, after a brief overview of DC immunobiology, we sought to systematize the knowledge provided by 20 years of clinical trials, with a special emphasis on the diversity of approaches used to manipulate DCs and their consequent impact on vaccine effectiveness. We also address how new therapeutic concepts, namely the combination of DC vaccines with other anticancer therapies, are being implemented and are leveraging clinical outcomes. Finally, optimization strategies, new insights, and future perspectives on the field are also highlighted.

  9. Construction of stable producer cells to make high-titer lentiviral vectors for dendritic cell-based vaccination.

    PubMed

    Lee, Chi-Lin; Chou, Michael; Dai, Bingbing; Xiao, Liang; Wang, Pin

    2012-06-01

    Lentiviral vectors (LVs) enveloped with an engineered Sindbis virus glycoprotein can specifically bind to dendritic cells (DCs) through the surface receptor DC-SIGN and induce antigen expression, thus providing an efficient method for delivering DC-directed vaccines. In this study, we constructed a stable producer line (LV-MGFP) for synthesizing DC-SIGN-targeted HIV-1-based LVs (DC-LVs) encoding green fluorescent protein (GFP) by a concatemeric array transfection technique. We demonstrated that the established stable clones could routinely produce vector supernatants with titers above 10(7) transduction units per milliliter (TU/mL) during a continuous 3-month cell passage. The producer cells were also capable of generating similar titers of DC-LVs in serum-free medium. Moreover, the addition of 1-deoxymannojirimycin (DMJ) enabled the producer cells to manufacture DC-LVs with both improved titers and enhanced potency to evoke antigen-specific CD8(+) T cell responses in mice. The stable lines could accommodate the replacement of the internal murine stem cell virus (MSCV) promoter with the human ubiquitin-C (Ubi) promoter in the lentiviral backbone. The resulting DC-LVs bearing Ubi exhibited the enhanced potency to elicit vaccine-specific immunity. Based on accumulated evidence, our studies support the application of this production method in manufacturing DC-LVs for preclinical and clinical testing of novel DC-based immunization. Copyright © 2011 Wiley Periodicals, Inc.

  10. Dendritic Cell Based Vaccines that Utilize Myeloid Rather than Plasmacytoid Cells Offer a Superior Survival Advantage in Malignant Glioma

    PubMed Central

    Dey, Mahua; Chang, Alan L.; Miska, Jason; Wainwright, Derek A.; Ahmed, Atique U.; Balyasnikova, Irina V.; Pytel, Peter; Han, Yu; Tobias, Alex; Zhang, Lingjiao; Qiao, Jian; Lesniak, Maciej S.

    2015-01-01

    Dendritic cells (DC) are professional antigen presenting cells (APC) that are traditionally divided into two distinct subsets: myeloid DC (mDCs) and plasmacytoid DC (pDCs). pDCs are known for their ability to secrete large amount of IFN-α. Apart from IFN-α production, pDCs can also process antigen and induce T-cell immunity or tolerance. In several solid tumors, pDCs have been shown to play a critical role in promoting tumor immunosuppression. We investigated the role of pDCs in the process of glioma progression in the syngeneic murine model of glioma. We show that glioma-infiltrating pDCs are the major APC in glioma and are deficient in IFN-α secretion (p < 0.05). pDC depletion leads to increased survival of the mice bearing intracranial tumor by decreasing the number of regulatory T-cells (Treg) and by decreasing the suppressive capabilities of Tregs. We subsequently compared the ability of mDCs and pDCs to generate effective anti-glioma immunity in a GL261-OVA mouse model of glioma. Our data suggest that mature pDCs and mDCs isolated from naïve mice can be effectively activated and loaded with SIINFEKL antigen in vitro. Upon intra-dermal injection in the hind leg, a fraction of both types of DCs migrate to the brain and lymph nodes.. Compared to mice vaccinated with pDC or control mice, mice vaccinated with mDCs generated a robust Th1 type immune response, characterized by high frequency of CD4+Tbet+ T-cells and CD8+Siinfekel+ T-cells. This robust anti-tumor T-cell response resulted in tumor eradication and long-term survival in 60% of the animals (p<0.001). PMID:26026061

  11. Induction of strong and persistent MelanA/MART-1-specific immune responses by adjuvant dendritic cell-based vaccination of stage II melanoma patients.

    PubMed

    Tuettenberg, Andrea; Becker, Christian; Huter, Eva; Knop, Jürgen; Enk, Alexander H; Jonuleit, Helmut

    2006-05-15

    A significant percentage of stage II melanoma patients (tumor thickness>1 mm) remain at risk of tumor recurrence after primary tumor excision. In this study, we used tumor antigen-pulsed dendritic cells as an adjuvant for immunization of these "high-risk" melanoma patients after resection of the primary tumor. A total of 13 patients were included and vaccinated 6 times every 14 days with autologous dendritic cells pulsed with a MelanA/MART-1 peptide in combination with a recall antigen. Antigen-specific immune responses were monitored before, during and up to 1 year after the last vaccination. The majority of patients exhibited increased recall antigen-specific CD4+ T cell responses upon vaccination. MelanA/MART-1-specific CD8+ T cells were expanded in 9/13 patients resulting in increased frequencies of memory cells in these patients. CD8+ T cells acquired the capacity to secrete IFN-gamma, to proliferate in culture in response to the tumor antigen used for vaccination and postvaccine samples contained MelanA/MART-1-specific T cells that recognized also the natural MelanA/MART-1-antigen expressed by tumor cells. Moreover, vaccination induced a long-lived tumor antigen-specific DTH-reactivity in the majority of the patients, detectable even 12 months after the last immunization. These data demonstrate for the first time that vaccination with tumor antigen-pulsed dendritic cells in a clinically adjuvant setting induces strong and persistent antigen-specific T-cell responses in tumor-free stage II melanoma patients, suggesting that tumor protective T cell immunity can be achieved.

  12. [Clinical efficacy and relative factors of dendritic cell-based tumor vaccination for prostate cancer: a systematic review and meta-analysis].

    PubMed

    Wu, Kun; Meng, Jun-Song; Baihetiya, Azhati; Wang, Yu-Jie

    2013-06-01

    To evaluate the efficacy and safety of dendritic cell (DC)-based vaccines in the treatment of prostate cancer, and investigate the factors that influence the clinical benefit rate (CBR) of the vaccines. Based on pre-determined search criteria, we searched the Medline database for randomized controlled trials on DC-based vaccines immunotherapy of prostate cancer. We systematically analyzed the identified studies using RevMan 5.0 and SPSS 17.0 softwares. Ten randomized controlled trials involving 179 prostate cancer patients were identified and subjected to meta-analysis. The CBR of the DC vaccines for prostate cancer was 54.2% , and the objective response rate was 7.7%. Most adverse effects were local reactions at the injection site, fever and flu-like symptoms. The prostate cancer patients achieved cellular immune response (OR = 31.12, 95% CI = 5.52-175.6, P < 0.01) and reduction of log PSA slope (OR = 4.38, 95% CI = 1.17-16.35, P = 0.03) after administration of DC vaccines, which was positively correlated with CBR. The dose of DC vaccines had a significant correlation with CBR (OR = 5.98, 95% CI = 1.45-24.62, P = 0.01), but not the age of the patients (P = 0.53). Besides, density-enriched DCs achieved a higher CBR, while the route of administration had no effect on CBR. DC-based vaccines are effective, safe and well-tolerated in the treatment of prostate cancer. DC-mediated cellular immune response has a significant effect on CBR and can be used as an important index for the assessment of vaccines. More multi-centered randomized controlled trials of higher quality and larger sample size are needed to provide more valid evidence.

  13. Treatment with cyclophosphamide supported by various dendritic cell-based vaccines induces diversification in CD4⁺ T cell response against MC38 colon carcinoma.

    PubMed

    Wojas-Turek, Justyna; Szczygieł, Agnieszka; Kicielińska, Jagoda; Rossowska, Joanna; Piasecki, Egbert; Pajtasz-Piasecka, Elżbieta

    2016-02-01

    The present study shows that an application of cyclophosphamide (CY) supported by dendritic cell (DC)-based vaccines affected differentiation of the activity of CD4+ T cell subpopulations accompanied by an alteration in CD8+ cell number. Vaccines were composed of bone marrow-derived DCs activated with tumor cell lysate (BM-DC/TAgTNF-α) and/or genetically modified DCs of JAWS II line (JAWS II/Neo or JAWS II/IL-2 cells). Compared to untreated or CY-treated mice, the combined treatment of MC38 colon carcinoma-bearing mice resulted in significant tumor growth inhibition associated with an increase in influx of CD4+ and CD8+ T cells into tumor tissue. Whereas, the division of these cell population in spleen was not observed. Depending on the nature of DC-based vaccines and number of their applications, both tumor infiltrating cells and spleen cells were able to produce various amount of IFN-γ, IL-4 and IL-10 after mitogenic ex vivo stimulation. The administration of CY followed by BM-DC/TAgTNF-α and genetically modified JAWS II cells, increased the percentage of CD4+T-bet+ and CD4+GATA3+ cells and decreased the percentage of CD4+RORγt+ and CD4+FoxP3+ lymphocytes. However, the most intensive response against tumor was noted after the ternary treatment with CY + BM-DC/TAgTNF-α + JAWS II/IL-2 cells. Thus, the administration of various DC-based vaccines was responsible for generation of the diversified antitumor response. These findings demonstrate that the determination of the size of particular CD4+ T cell subpopulations may become a prognostic factor and be the basis for future development of anticancer therapy.

  14. SLA-PGN-primed dendritic cell-based vaccination induces Th17-mediated protective immunity against experimental visceral leishmaniasis: a crucial role of PKCβ.

    PubMed

    Jawed, Junaid Jibran; Majumder, Saikat; Bandyopadhyay, Syamdas; Biswas, Satabdi; Parveen, Shabina; Majumdar, Subrata

    2016-07-01

    Emergence of drug resistance during visceral leishmaniasis (VL) is a major obstacle imposed during successful therapy. An effective vaccine strategy against this disease is therefore necessary. Our present study exploited the SLA (soluble leishmanial antigen) and PGN (peptidoglycan) stimulated bone marrow-derived dendritic cells (DCs) as a suitable vaccine candidate during experimental VL. SLA-PGN-stimulated DCs showed a significant decrease in hepatic and splenic parasite burden, which were associated with increased production of nitric oxide and pro-inflammatory cytokines such as IL-12, IFN-γ and IL-17. Elevated level of IL-17 was accompanied with the generation of more Th17 cells. Further studies on DC provided the evidence that these SLA-PGN-stimulated DCs played an important role in providing necessary cytokines such as IL-6, IL-23 and TGF-β for the generation of Th17 cells. Interestingly, inhibition of protein kinase C-β (PKCβ) in DCs led to decreased production of Th17 polarizing cytokines, causing reduction of the Th17 population size. Altogether, our finding highlighted the important role of DC-based PKCβ in regulation of the function and generation of Th17 cells.

  15. The combination of Pleurotus ferulae water extract and CpG-ODN enhances the immune responses and antitumor efficacy of HPV peptides pulsed dendritic cell-based vaccine.

    PubMed

    Li, Jinyu; Li, Jinyao; Aipire, Adila; Luo, JiaoJiao; Yuan, Pengfei; Zhang, Fuchun

    2016-06-30

    Our previous study reported that the combination of Pleurotus ferulae water extract (PFWE) and CpG (PFWE+CpG) enhanced the maturation and function of dendritic cells (DCs). Here, we investigated the effects of PFWE+CpG on the immune responses and antitumor efficacy of DC-based vaccine. We observed that all of HPV E6 and E7 peptides pulsed DCs (HPV-immature DCs, HPV+PFWE-, +CpG- or +PFWE+CpG-DCs) induced antigen-specific CD8(+) T cell responses and HPV+PFWE+CpG-DCs induced highest level of CD8(+) T cell responses. The antitumor efficacy of HPV-DCs vaccines was evaluated in TC-1 tumor mouse model. The early therapeutic study showed that HPV+PFWE-, +CpG- and +PFWE+CpG-DCs greatly inhibited tumor growth. Moreover, HPV+PFWE+CpG-DCs controlled tumor growth at a faster rate compared to other groups. These three groups induced HPV-specific CD8(+) T cell responses and significantly decreased the frequencies of induced regulatory T cells (iTregs: CD4(+)CD25(-)Fopx3(+)). However, only HPV+PFWE+CpG-DCs significantly decreased the frequency of natural Tregs (nTregs: CD4(+)CD25(+)Fopx3(+)). Furthermore, HPV+PFWE+CpG-DCs also significantly inhibited tumor growth in the late therapeutic study. The results showed that PFWE+CpG enhanced the immune responses and antitumor efficacy of DC-based vaccine, suggesting that PFWE+CpG might be the potential candidate for the generation of clinical-grade mature DCs.

  16. In vivo immunogenicity of Tax(11-19) epitope in HLA-A2/DTR transgenic mice: implication for dendritic cell-based anti-HTLV-1 vaccine.

    PubMed

    Sagar, Divya; Masih, Shet; Schell, Todd; Jacobson, Steven; Comber, Joseph D; Philip, Ramila; Wigdahl, Brian; Jain, Pooja; Khan, Zafar K

    2014-05-30

    Viral oncoprotein Tax plays key roles in transformation of human T-cell leukemia virus (HTLV-1)-infected T cells leading to adult T-cell leukemia (ATL), and is the key antigen recognized during HTLV-associated myelopathy (HAM). In HLA-A2+ asymptomatic carriers as well as ATL and HAM patients, Tax(11-19) epitope exhibits immunodominance. Here, we evaluate CD8 T-cell immune response against this epitope in the presence and absence of dendritic cells (DCs) given the recent encouraging observations made with Phase 1 DC-based vaccine trial for ATL. To facilitate these studies, we first generated an HLA-A2/DTR hybrid mouse strain carrying the HLA-A2.1 and CD11c-DTR genes. We then studied CD8 T-cell immune response against Tax(11-19) epitope delivered in the absence or presence of Freund's adjuvant and/or DCs. Overall results demonstrate that naturally presented Tax epitope could initiate an antigen-specific CD8T cell response in vivo but failed to do so upon DC depletion. Presence of adjuvant potentiated Tax(11-19)-specific response. Elevated serum IL-6 levels coincided with depletion of DCs whereas decreased TGF-β was associated with adjuvant use. Thus, Tax(11-19) epitope is a potential candidate for the DC-based anti-HTLV-1 vaccine and the newly hybrid mouse strain could be used for investigating DC involvement in human class-I-restricted immune responses.

  17. In vivo immunogenicity of Tax 11-19 epitope in HLA-A2/DTR transgenic mice: implication for dendritic cell-based anti-HTLV-1 vaccine

    PubMed Central

    Sagar, Divya; Masih, Shet; Schell, Todd; Jacobson, Steven; Comber, Joseph D.; Philip, Ramila; Wigdahl, Brian; Jain, Pooja; Khan, Zafar K.

    2014-01-01

    Viral oncoprotein Tax plays key roles in transformation of human T-cell leukemia virus (HTLV-1)-infected T cells leading to adult T-cell leukemia (ATL), and is the key antigen recognized during HTLV-associated myelopathy (HAM). In HLA-A2+ asymptomatic carriers as well as ATL and HAM patients, Tax(11-19) epitope exhibits immunodominance. Here, we evaluate CD8 T-cell immune response against this epitope in the presence and absence of dendritic cells (DCs) given the recent encouraging observations made with Phase 1 DC-based vaccine trial for ATL. To facilitate these studies, we first generated an HLA-A2/DTR hybrid mouse strain carrying the HLA-A2.1 and CD11c-DTR genes. We then studied CD8 T-cell immune response against Tax(11-19) epitope delivered in the absence or presence of Freund’s adjuvant and/or DCs. Overall results demonstrate that naturally presented Tax epitope could initiate an antigen-specific CD8 T cell response in vivo but failed to do so upon DC depletion. Presence of adjuvant potentiated Tax(11-19)-specific response. Elevated serum IL-6 levels coincided with depletion of DCs whereas decreased TGF-β was associated with adjuvant use. Thus, Tax(11-19) epitope is a potential candidate for the DC-based anti-HTLV-1 vaccine and the newly hybrid mouse strain could be used for investigating DC involvement in human class-I-restricted immune responses. PMID:24739247

  18. Enhancement of dendritic cell-based vaccine potency by anti-apoptotic siRNAs targeting key pro-apoptotic proteins in cytotoxic CD8(+) T cell-mediated cell death.

    PubMed

    Kim, Jin Hee; Kang, Tae Heung; Noh, Kyung Hee; Bae, Hyun Cheol; Kim, Seok-Ho; Yoo, Young Do; Seong, Seung-Yong; Kim, Tae Woo

    2009-01-29

    Dendritic cells (DCs) have become an important measure for the treatment of malignancies. Current DC preparations, however, generate short-lived DCs because they are subject to cell death from various apoptotic pressures. Antigen-specific CD8(+) cytotoxic T lymphocytes (CTLs) is one of the main obstacles to limit the DC-mediated immune priming since CTLs can recognize the target antigen expressing DCs as target cells and kill the DCs. CTLs secret perforin and serine protease granzymes during CTL killing. Perforin and serine protease granzymes induce the release of a number of mitochondrial pro-apoptotic factors, which are controlled by members of the BCL-2 family, such as BAK, BAX and BIM. FasL linking to Fas on DCs triggers the activation of caspase-8, which eventually leads to mitochondria-mediated apoptosis via truncation of BID. In this study, we tried to enhance the DC priming capacity by prolonging DC survival using anti-apoptotic siRNA targeting these key pro-apoptotic molecules in CTL killing. Human papillomavirus (HPV)-16 E7 antigen presenting DCs that were transfected with these anti-apoptotic siRNAs showed increased resistance to T cell-mediated death, leading to enhanced E7-specific CD8(+) T cell activation in vitro and in vivo. Among them, siRNA targeting BIM (siBIM) generated strongest E7-specific E7-specific CD8(+) T cell immunity. More importantly, vaccination with E7 presenting DCs transfected with siBIM was capable of generating a marked therapeutic effect in vaccinated mice. Our data indicate that ex vivo manipulation of DCs with siBIM may represent a plausible strategy for enhancing dendritic cell-based vaccine potency.

  19. Dendritic Cell-Targeted Vaccines

    PubMed Central

    Cohn, Lillian; Delamarre, Lélia

    2014-01-01

    Despite significant effort, the development of effective vaccines inducing strong and durable T-cell responses against intracellular pathogens and cancer cells has remained a challenge. The initiation of effector CD8+ T-cell responses requires the presentation of peptides derived from internalized antigen on class I major histocompatibility complex molecules by dendritic cells (DCs) in a process called cross-presentation. A current strategy to enhance the effectiveness of vaccination is to deliver antigens directly to DCs. This is done via selective targeting of antigen using monoclonal antibodies directed against endocytic receptors on the surface of the DCs. In this review, we will discuss considerations relevant to the design of such vaccines: the existence of DC subsets with specialized functions, the impact of the antigen intracellular trafficking on cross-presentation, and the influence of maturation signals received by DCs on the outcome of the immune response. PMID:24910635

  20. Eliciting cytotoxic T lymphocytes against acute myeloid leukemia-derived antigens: evaluation of dendritic cell-leukemia cell hybrids and other antigen-loading strategies for dendritic cell-based vaccination.

    PubMed

    Galea-Lauri, Joanna; Darling, David; Mufti, Ghulam; Harrison, Phillip; Farzaneh, Farzin

    2002-08-01

    Dendritic cells (DC) have been successfully used in clinical pilot studies to induce tumor-specific immunity as well as clinical response in selected patients. However, DC-based immunotherapy remains a challenge and several parameters need to be examined in order to optimize the induction of anti-tumor immune responses. This study focuses on DC vaccination for leukemia and evaluates the in vitro efficacy of three different strategies for generating antigen-loaded DC-based vaccines for the induction of major histocompatibility complex (MHC) class I-restricted anti-leukemia cytotoxic T lymphocyte (CTL) responses. These included direct fusion of DC with leukemia cells to generate DC-leukemia cell hybrids, and DC pulsed with either apoptotic leukemia cell fragments or whole tumor cell lysates. Using either the U937 cell line or primary human acute myeloid leukemia blasts (AML), DC-leukemia cell hybrids were found to be the most potent in vitro inducers of CTL activity. DC pulsed with apoptotic tumor cell fragments were less efficient, but induced a more potent CTL response compared to tumor lysate-pulsed DC. The CTL responses were both MHC class I-restricted and antigen-specific, as shown by the inability of the CTL to lyse other control targets. The data presented here suggest that the method of antigen loading onto DC may be critical in the design of tumor vaccines.

  1. Development of cell-based tuberculosis vaccines: genetically modified dendritic cell vaccine is a much more potent activator of CD4 and CD8 T cells than peptide- or protein-loaded counterparts.

    PubMed

    Malowany, Janet I; McCormick, Sarah; Santosuosso, Michael; Zhang, Xizhong; Aoki, Naoko; Ngai, Patricia; Wang, Jun; Leitch, Jaina; Bramson, Jonathan; Wan, Yonghong; Xing, Zhou

    2006-04-01

    Genetically modified dendritic cell (DC)-based vaccines have not been explored for immunization against tuberculosis. A gene-modified DC vaccine expressing Mycobacterium tuberculosis (M.tb) antigen 85A (Ag85A) was developed by using a recombinant replication-deficient adenoviral gene transfer vector (AdAg85A). AdAg85A-transduced DC vaccine (AdAg85/DC) expressed higher levels of IL-12 and was much more immunogenic than Ag85 protein-loaded (pro/DC) or CD4/CD8 T cell peptide-loaded (pep/DC) DC vaccines. Compared to pro/DC or pep/DC, AdAg85/DC elicited a remarkably higher level of ex vivo IFN-gamma production by CD4 and CD8 T cells at weeks 2, 6, and 12 postimmunization, which was coupled with higher frequencies of antigen-specific T cells. By an in vivo CD8 or CD4 T cell cytotoxicity (CTL) assay, AdAg85/DC was shown to provoke much higher and more sustained levels of CD8 and CD4 CTL activity up to 12 weeks postimmunization. Intramuscular (im) AdAg85/DC immunization was more potent than the iv route of AdAg85/DC immunization. Such stronger immunogenicity of im AdAg85/DC vaccination was corroborated with better protection from M.tb challenge. Our results thus suggest that genetically modified DC-based TB vaccine is superior to subunit DC vaccines and has the potential for therapeutic applications.

  2. [Melanoma immunotherapy: dendritic cell vaccines].

    PubMed

    Lozada-Requena, Ivan; Núñez, César; Aguilar, José Luis

    2015-01-01

    This is a narrative review that shows accessible information to the scientific community about melanoma and immunotherapy. Dendritic cells have the ability to participate in innate and adaptive immunity, but are not unfamiliar to the immune evasion of tumors. Knowing the biology and role has led to generate in vitro several prospects of autologous cell vaccines against diverse types of cancer in humans and animal models. However, given the low efficiency they have shown, we must implement strategies to enhance their natural capacity either through the coexpression of key molecules to activate or reactivate the immune system, in combination with biosimilars or chemotherapeutic drugs. The action of natural products as alternative or adjuvant immunostimulant should not be ruled out. All types of immunotherapy should measure the impact of myeloid suppressor cells, which can attack the immune system and help tumor progression, respectively. This can reduce the activity of cellular vaccines and/or their combinations, that could be the difference between success or not of the immunotherapy. Although for melanoma there exist biosimilars approved by the Food and Drug Administration (FDA), not all have the expected success. Therefore it is necessary to evaluate other strategies including cellular vaccines loaded with tumor antigenic peptides expressed exclusively or antigens from tumor extracts and their respective adjuvants.

  3. Dendritic cell-based immunotherapy in mesothelioma.

    PubMed

    Cornelissen, Robin; Lievense, Lysanne A; Heuvers, Marlies E; Maat, Alexander P; Hendriks, Rudi W; Hoogsteden, Henk C; Hegmans, Joost P; Aerts, Joachim G

    2012-10-01

    Mesothelioma is a rare thoracic malignancy with a dismal prognosis. Current treatment options are scarce and clinical outcomes are rather disappointing. Due to the immunogenic nature of mesothelioma, several studies have investigated immunotherapeutic strategies to improve the prognosis of patients with mesothelioma. In the last decade, progress in knowledge of the modulation of the immune system to attack the tumor has been remarkable, but the optimal strategy for immunotherapy has yet to be unraveled. Because of their potent antigen-presenting capacity, dendritic cells are acknowledged as a promising agent in immunotherapeutic approaches in a number of malignancies. This review gives an update and provides a future perspective in which immunotherapy may improve the outcome of mesothelioma therapy.

  4. Inhibition of the Protein Tyrosine Phosphatase, SHP-1, in Dendritic Cells to Enhance their Efficacy as Cell-Based Prostate Cancer Vaccines

    DTIC Science & Technology

    2008-05-01

    hypothesis that the Src homology region 2 domain-containing phosphatase-1 (SHP-1), is a global inhibitor of DC activation and that by blocking SHP-1 in... inhibitor of DC function and that its inhibition in DCs enhances the strength of immune responses. Finally, using 2 ectopic mouse tumor models (B16 melanoma...enhance function and to overcome the limitations of the "first-generation vaccines". Our specific approach is to inhibit inhibitors of DC function

  5. Active specific T-cell-based immunotherapy for cancer: nucleic acids, peptides, whole native proteins, recombinant viruses, with dendritic cell adjuvants or whole tumor cell-based vaccines. Principles and future prospects.

    PubMed

    Fernandez, N; Duffour, M T; Perricaudet, M; Lotze, M T; Tursz, T; Zitvogel, L

    1998-03-01

    Whereas tumor cells are poor immunogens, recombinant tumor cells or dendritic cells as well as engineered viruses have been demonstrated to elicit specific antitumor immune responses leading to tumor growth suppression and long-lasting immunity in mouse tumor models. Single cytotoxic T lymphocyte-defined epitope-based strategies have proved useful for immunization in tumor-bearing mice. This strategy is under investigation in human melanoma, along with adjuvants such as cytokines or dendritic cells. Flt3L is an in vivo dendritic-cell growth factor that offers new prospects in the field of active specific immunotherapy. These immunotherapeutic approaches are being tested in clinical trials, and may open up novel avenues for disease-free patients with poor prognostic factors.

  6. Optimizing dendritic cell-based immunotherapy for cancer.

    PubMed

    Zhong, Hua; Shurin, Michael R; Han, Baohui

    2007-06-01

    Dendritic cells (DCs) are the most powerful professional antigen-presenting cells and are unique in their capability to initiate, maintain and regulate the intensity of primary immune responses, including specific antitumor responses. Development of practical procedures to prepare sufficient numbers of functional human DCs in culture from the peripheral blood precursors, paved the way for clinical trials to evaluate various DC-based strategies in patients with malignant diseases. However, no definite conclusions regarding the clinical and even immunological efficacy of DC vaccination can be stated, despite the fact that 12 years have passed since the first clinical trial utilizing DCs in cancer patients. Many unanswered questions hamper the development of DC-based vaccines, including the source of DC preparation and protocols for DC generation, activation and loading with tumor antigens, source of tumor antigens, route of vaccine administration and methods of immunomonitoring. Fortunately, in spite of the many obstacles, DC vaccines continue to hold promise for cancer therapy.

  7. Optimizing Dendritic Cell-Based Approaches for Cancer Immunotherapy

    PubMed Central

    Datta, Jashodeep; Terhune, Julia H.; Lowenfeld, Lea; Cintolo, Jessica A.; Xu, Shuwen; Roses, Robert E.; Czerniecki, Brian J.

    2014-01-01

    Dendritic cells (DC) are professional antigen-presenting cells uniquely suited for cancer immunotherapy. They induce primary immune responses, potentiate the effector functions of previously primed T-lymphocytes, and orchestrate communication between innate and adaptive immunity. The remarkable diversity of cytokine activation regimens, DC maturation states, and antigen-loading strategies employed in current DC-based vaccine design reflect an evolving, but incomplete, understanding of optimal DC immunobiology. In the clinical realm, existing DC-based cancer immunotherapy efforts have yielded encouraging but inconsistent results. Despite recent U.S. Federal and Drug Administration (FDA) approval of DC-based sipuleucel-T for metastatic castration-resistant prostate cancer, clinically effective DC immunotherapy as monotherapy for a majority of tumors remains a distant goal. Recent work has identified strategies that may allow for more potent “next-generation” DC vaccines. Additionally, multimodality approaches incorporating DC-based immunotherapy may improve clinical outcomes. PMID:25506283

  8. Advances in inducing adaptive immunity using cell-based cancer vaccines: Clinical applications in pancreatic cancer

    PubMed Central

    Kajihara, Mikio; Takakura, Kazuki; Kanai, Tomoya; Ito, Zensho; Matsumoto, Yoshihiro; Shimodaira, Shigetaka; Okamoto, Masato; Ohkusa, Toshifumi; Koido, Shigeo

    2016-01-01

    The incidence of pancreatic ductal adenocarcinoma (PDA) is on the rise, and the prognosis is extremely poor because PDA is highly aggressive and notoriously difficult to treat. Although gemcitabine- or 5-fluorouracil-based chemotherapy is typically offered as a standard of care, most patients do not survive longer than 1 year. Therefore, the development of alternative therapeutic approaches for patients with PDA is imperative. As PDA cells express numerous tumor-associated antigens that are suitable vaccine targets, one promising treatment approach is cancer vaccines. During the last few decades, cell-based cancer vaccines have offered encouraging results in preclinical studies. Cell-based cancer vaccines are mainly generated by presenting whole tumor cells or dendritic cells to cells of the immune system. In particular, several clinical trials have explored cell-based cancer vaccines as a promising therapeutic approach for patients with PDA. Moreover, chemotherapy and cancer vaccines can synergize to result in increased efficacies in patients with PDA. In this review, we will discuss both the effect of cell-based cancer vaccines and advances in terms of future strategies of cancer vaccines for the treatment of PDA patients. PMID:27182156

  9. Hematologic neoplasms: Dendritic cells vaccines in motion.

    PubMed

    Galati, Domenico; Zanotta, Serena

    2017-09-11

    Dendritic cells (DCs) are bone-marrow-derived immune cells accounted for a key role in cancer vaccination as potent antigen-presenting cells within the immune system. Cancer microenvironment can modulate DCs maturation resulting in their accumulation into functional states associated with a reduced antitumor immune response. In this regard, a successful cancer vaccine needs to mount a potent antitumor immune response able to overcome the immunosuppressive tumor milieu. As a consequence, DCs-based approaches are a safe and promising strategy for improving the therapeutic efficacy in hematological malignancies, particularly in combinations with additional treatments. This review summarizes the most significant evidence about the immunotherapeutic strategies performed to target hematologic neoplasms including the tumoral associated antigens (TAA) pulsed on DCs, whole tumor cell vaccines or leukemia-derived DCs. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. New generation of dendritic cell vaccines.

    PubMed

    Radford, Kristen J; Caminschi, Irina

    2013-02-01

    Dendritic cells (DC) play a pivotal role in the induction and regulation of immune responses, including the induction of cytotoxic T lymphocytes (CTL) responses. These are essential for the eradication of cancers and pathogens including HIV and malaria, for which there are currently no effective vaccines. New developments in our understanding of DC biology have identified the key DC subset responsible for CTL induction, which is now an attractive candidate to target for vaccination. These DC are characterized by expression of novel markers Clec9A and XCR1, and a specialized capacity to cross-present antigen (Ag) from tumors and pathogens that do not directly infect DC. New generation DC vaccines that specifically target the cross-presenting DC in vivo have already demonstrated potential in preclinical animal models but the challenge remains to translate these findings into clinically efficacous vaccines in man. This has been greatly facilitated by the recent identification of the equivalent Clec9A(+) XCR1(+) cross-presenting DC in human lymphoid tissues and peripheral tissues that are key sites for vaccination administration. These findings combined with further studies on DC subset biology have important implications for the design of new CTL-mediated vaccines.

  11. Glycogen Synthase Kinase-3β (GSK-3β) Inhibition Enhances Dendritic Cell-based Cancer Vaccine Potency via Suppression of Interferon-γ-induced Indoleamine 2,3-Dioxygenase Expression.

    PubMed

    Noh, Kyung Tae; Son, Kwang Hee; Jung, In Duk; Kang, Tae Heung; Choi, Chang Hun; Park, Yeong-Min

    2015-05-08

    Indoleamine 2,3-dioxygenase (IDO) functions as a crucial mediator of tumor-mediated immune tolerance by causing T-cell suppression via tryptophan starvation in a tumor environment. Glycogen synthase kinase-3β (GSK-3β) is also involved in immune and anti-tumor responses. However, the relativity of these proteins has not been as well defined. Here, we found that GSK-3β-dependent IDO expression in the dendritic cell (DC) plays a role in anti-tumor activity via the regulation of CD8(+) T-cell polarization and cytotoxic T lymphocyte activity. By the inhibition of GSK-3β, attenuated IDO expression and impaired JAK1/2-Stat signaling crucial for IDO expression were observed. Protein kinase Cδ (PKCδ) activity and the interaction between JAK1/2 and Stat3, which are important for IDO expression, were also reduced by GSK-3β inhibition. CD8(+) T-cell proliferation mediated by OVA-pulsed DC was blocked by interferon (IFN)-γ-induced IDO expression via GSK-3β activity. Specific cytotoxic T lymphocyte activity mediated by OVA-pulsed DC against OVA-expressing EG7 thymoma cells but not OVA-nonexpressing EL4 thymoma cells was also attenuated by the expressed IDO via IFN-γ-induced activation of GSK-3β. Furthermore, tumor growth that was suppressed with OVA-pulsed DC vaccination was restored by IDO-expressing DC via IFN-γ-induced activation of GSK-3β in an OVA-expressing murine EG7 thymoma model. Taken together, DC-based immune response mediated by interferon-γ-induced IDO expression via GSK-3β activity not only regulates CD8(+) T-cell proliferation and cytotoxic T lymphocyte activity but also modulates OVA-pulsed DC vaccination against EG7 thymoma.

  12. Harnessing Dendritic Cells to Generate Cancer Vaccines

    PubMed Central

    Palucka, Karolina; Ueno, Hideki; Fay, Joseph; Banchereau, Jacques

    2009-01-01

    Passive immunotherapy of cancer, i.e., transfer of T cells or antibodies, can lead to some objective clinical responses, thus demonstrating that the immune system can reject tumors. However, passive immunotherapy is not expected to yield memory T cells that might control tumor outgrowth. Active immunotherapy with dendritic cell (DCs) vaccines has the potential to induce tumor-specific effector and memory T cells. Clinical trials testing first generation DC vaccines pulsed with tumor antigens provided a proof-of-principle that therapeutic immunity can be elicited. Newer generation DC vaccines are build on the increased knowledge of the DC system including the existence of distinct DC subsets and their plasticity all leading to generation of distinct types of immunity. Rather than the quantity of IFN-γ secreting CD8+ T cells, we should aim at generating high quality high avidity poly-functional effector CD8+ T cells able to reject tumors and long-lived memory CD8+ T cells able to prevent relapse. PMID:19769741

  13. Dendritic cell vaccination in acute myeloid leukemia.

    PubMed

    Anguille, Sébastien; Willemen, Yannick; Lion, Eva; Smits, Evelien L; Berneman, Zwi N

    2012-07-01

    The prognosis of patients with acute myeloid leukemia (AML) remains dismal, with a 5-year overall survival rate of only 5.2% for the continuously growing subgroup of AML patients older than 65 years. These patients are generally not considered eligible for intensive chemotherapy and/or allogeneic hematopoietic stem cell transplantation because of high treatment-related morbidity and mortality, emphasizing the need for novel, less toxic, treatment alternatives. It is within this context that immunotherapy has gained attention in recent years. In this review, we focus on the use of dendritic cell (DC) vaccines for immunotherapy of AML. DC are central orchestrators of the immune system, bridging innate and adaptive immunity and critical to the induction of anti-leukemic immunity. We discuss the rationale and basic principles of DC-based therapy for AML and review the clinical experience that has been obtained so far with this form of immunotherapy for patients with AML.

  14. Dendritic cell vaccination of patients with metastatic colorectal cancer.

    PubMed

    Burgdorf, Stefan K

    2010-09-01

    Colorectal cancer is with more than 4000 new cases every year the third most common cancer in Denmark. Metastases are most often found in the liver, and 20-25% of the patients have synchronous metastases to the liver at time of primary diagnosis. Other frequent sites for metastases are lungs and lymph nodes. Without treatment the median survival for patients with metastatic colorectal cancer is 7-9 months. Patients receiving systemic or regional chemotherapy now have a median survival of approximately 20 months. Up to 40% of the patients undergoing intended curative surgery subsequently relapse with local or distant disease, and approximately 80% of the relapses appear within the first 3 years. If the cancer metastasises, and the chances of radical surgery are eliminated, the prognosis is poor. The aim of the present study was to evaluate the clinical and immunological effects of treating patients with disseminated colorectal cancer with a dendritic cell based cancer vaccine (MelCancerVac). The vaccine consisted of dendritic cells generated from autologous mononuclear cells pulsed with an allogeneic tumor cell lysate, selected for its high expression of cancer associated antigens. A clinical phase I study evaluating tolerability and toxicity of the treatment was established. Six patients with progressive disease were included and the analysis revealed that the treatment was well tolerated and not associated with toxicity. A subsequent clinical phase II study evaluating the activity of the treatment with CT-scan based measurements of tumors (RECIST), self reported quality of life (SF-36), and clinical evaluation was established. Out of twenty included patients with progressive disease, seventeen received intervention with the vaccine. Stable disease was achieved in four patients and two of these remained stable throughout the entire study period. Quality of life remained for most parameters included in the evaluation high and stable. The immunological consequences

  15. A multifunctional core-shell nanoparticle for dendritic cell-based cancer immunotherapy

    NASA Astrophysics Data System (ADS)

    Cho, Nam-Hyuk; Cheong, Taek-Chin; Min, Ji Hyun; Wu, Jun Hua; Lee, Sang Jin; Kim, Daehong; Yang, Jae-Seong; Kim, Sanguk; Kim, Young Keun; Seong, Seung-Yong

    2011-10-01

    Dendritic cell-based cancer immunotherapy requires tumour antigens to be delivered efficiently into dendritic cells and their migration to be monitored in vivo. Nanoparticles have been explored as carriers for antigen delivery, but applications have been limited by the toxicity of the solvents used to make nanoparticles, and by the need to use transfection agents to deliver nanoparticles into cells. Here we show that an iron oxide-zinc oxide core-shell nanoparticle can deliver carcinoembryonic antigen into dendritic cells while simultaneously acting as an imaging agent. The nanoparticle-antigen complex is efficiently taken up by dendritic cells within one hour and can be detected in vitro by confocal microscopy and in vivo by magnetic resonance imaging. Mice immunized with dendritic cells containing the nanoparticle-antigen complex showed enhanced tumour antigen specific T-cell responses, delayed tumour growth and better survival than controls.

  16. A dendritic cell-based assay for measuring memory T cells specific to dengue envelope proteins in human peripheral blood.

    PubMed

    Sun, Peifang; Beckett, Charmagne; Danko, Janine; Burgess, Timothy; Liang, Zhaodong; Kochel, Tadeusz; Porter, Kevin

    2011-05-01

    Dengue envelope (E) protein is a dominant immune inducer and E protein-based vaccines elicited partial to complete protection in non-human primates. To study the immunogenicity of these vaccines in humans, an enzyme linked immunospot (ELISPOT) assay for measuring interferon gamma (IFN-γ) production was developed. Cells from two subject groups, based on dengue-exposure, were selected for assay development. The unique feature of the IFN-γ ELISPOT assay is the utilization of dendritic cells pulsed with E proteins as antigen presenting cells. IFN-γ production, ranging from 53-513 spot forming units per million peripheral blood mononuclear cells (PBMCs), was observed in dengue-exposed subjects as compared to 0-45 IFN-γ spot forming units in dengue-unexposed subjects. Further, both CD4(+) and CD8(+) T cells, and cells bearing CD45RO memory marker, were the major sources of IFN-γ production. The assay allowed quantification of E-specific IFN-γ-secreting memory T cells in subjects 9 years after exposure to a live-attenuated virus vaccine and live-virus challenge. Results suggested that the dendritic cell-based IFN-γ assay is a useful tool for assessing immunological memory for clinical research.

  17. Current Status of Autologous Breast Tumor Cell-based Vaccines

    PubMed Central

    Kurtz, Samantha L.; Ravindranathan, Sruthi; Zaharoff, David A.

    2015-01-01

    Summary Approximately 9 of 10 breast cancer-related deaths are attributable to metastasis. Yet, less than 4% of breast cancer patients are initially diagnosed with metastatic cancer. Therefore, the majority of breast cancer-related deaths are due to recurrence and progression of nonmetastatic disease. There is tremendous clinical opportunity for novel adjuvant strategies, such as immunotherapies, that have the potential to prevent progressive recurrences. In particular, autologous tumor cell-based vaccines can train a patient's immune system to recognize and eliminate occult disease. Autologous tumor cell-based vaccines have several advantages including safety, multivalency and patient specificity. Furthermore, because lumpectomy or mastectomy is indicated for the vast majority of breast cancer patients, resected tumors offer a readily available, patient-specific source of tumor antigen. Disadvantages of autologous tumor cell-based vaccines include poor immunogenicity and production inconsistencies. This review summarizes recent progress in the development of autologous breast tumor vaccines and offers insight for overcoming existing limitations. PMID:25308888

  18. Dendritic cell-based immunotherapy for cancer and relevant challenges for transfusion medicine.

    PubMed

    Voss, Ching Y; Albertini, Mark R; Malter, James S

    2004-07-01

    The encouraging results from dendritic cell-related cancer immunotherapy have created tremendous interest for its broad clinical application. Dendritic cells are the most potent antigen-presenting cells. In cancer patients, dendritic cell production and function along with other antitumor immune defenses are compromised. Autologous dendritic cells enriched and sensitized in vitro with tumor-associated antigens can effectively elicit host cellular immunity against cancer and result in clinical antitumor responses through either direct injection or ex vivo generation of antitumor T lymphocytes. In small group studies, clinical response rates have reached 50% in patients with advanced stage of cancer. These cellular products caused minimal side effects and were well tolerated. The isolation and preparation of clinical grade dendritic cells have been driven by transfusion medicine specialists who are well versed in similar processes for hematopoietic stem-cell preparation. The purpose of this article is to review the mechanisms of tumor immune surveillance and the biology of dendritic cells relevant to tumor antigen presentation, sensitization, and T-lymphocyte stimulation. Information on tumor-associated antigens and clinical trial results with dendritic cell-based cancer immunotherapy are summarized. The potential challenges for blood banking/transfusion medicine involving both technical and regulatory issues are discussed.

  19. Trial watch: Dendritic cell-based anticancer therapy

    PubMed Central

    Bloy, Norma; Pol, Jonathan; Aranda, Fernando; Eggermont, Alexander; Cremer, Isabelle; Fridman, Wolf Hervé; Fučíková, Jitka; Galon, Jérôme; Tartour, Eric; Spisek, Radek; Dhodapkar, Madhav V.; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2014-01-01

    The use of patient-derived dendritic cells (DCs) as a means to elicit therapeutically relevant immune responses in cancer patients has been extensively investigated throughout the past decade. In this context, DCs are generally expanded, exposed to autologous tumor cell lysates or loaded with specific tumor-associated antigens (TAAs), and then reintroduced into patients, often in combination with one or more immunostimulatory agents. As an alternative, TAAs are targeted to DCs in vivo by means of monoclonal antibodies, carbohydrate moieties or viral vectors specific for DC receptors. All these approaches have been shown to (re)activate tumor-specific immune responses in mice, often mediating robust therapeutic effects. In 2010, the first DC-based preparation (sipuleucel-T, also known as Provenge®) has been approved by the US Food and Drug Administration (FDA) for use in humans. Reflecting the central position occupied by DCs in the regulation of immunological tolerance and adaptive immunity, the interest in harnessing them for the development of novel immunotherapeutic anticancer regimens remains high. Here, we summarize recent advances in the preclinical and clinical development of DC-based anticancer therapeutics. PMID:25941593

  20. Dendritic Cell-Based Immunotherapy for Myeloid Leukemias

    PubMed Central

    Schürch, Christian M.; Riether, Carsten; Ochsenbein, Adrian F.

    2013-01-01

    Acute and chronic myeloid leukemia (AML, CML) are hematologic malignancies arising from oncogene-transformed hematopoietic stem/progenitor cells known as leukemia stem cells (LSCs). LSCs are selectively resistant to various forms of therapy including irradiation or cytotoxic drugs. The introduction of tyrosine kinase inhibitors has dramatically improved disease outcome in patients with CML. For AML, however, prognosis is still quite dismal. Standard treatments have been established more than 20 years ago with only limited advances ever since. Durable remission is achieved in less than 30% of patients. Minimal residual disease (MRD), reflected by the persistence of LSCs below the detection limit by conventional methods, causes a high rate of disease relapses. Therefore, the ultimate goal in the treatment of myeloid leukemia must be the eradication of LSCs. Active immunotherapy, aiming at the generation of leukemia-specific cytotoxic T cells (CTLs), may represent a powerful approach to target LSCs in the MRD situation. To fully activate CTLs, leukemia antigens have to be successfully captured, processed, and presented by mature dendritic cells (DCs). Myeloid progenitors are a prominent source of DCs under homeostatic conditions, and it is now well established that LSCs and leukemic blasts can give rise to “malignant” DCs. These leukemia-derived DCs can express leukemia antigens and may either induce anti-leukemic T cell responses or favor tolerance to the leukemia, depending on co-stimulatory or -inhibitory molecules and cytokines. This review will concentrate on the role of DCs in myeloid leukemia immunotherapy with a special focus on their generation, application, and function and how they could be improved in order to generate highly effective and specific anti-leukemic CTL responses. In addition, we discuss how DC-based immunotherapy may be successfully integrated into current treatment strategies to promote remission and potentially cure myeloid leukemias

  1. Dendritic cell-based immunotherapy for myeloid leukemias.

    PubMed

    Schürch, Christian M; Riether, Carsten; Ochsenbein, Adrian F

    2013-12-31

    Acute and chronic myeloid leukemia (AML, CML) are hematologic malignancies arising from oncogene-transformed hematopoietic stem/progenitor cells known as leukemia stem cells (LSCs). LSCs are selectively resistant to various forms of therapy including irradiation or cytotoxic drugs. The introduction of tyrosine kinase inhibitors has dramatically improved disease outcome in patients with CML. For AML, however, prognosis is still quite dismal. Standard treatments have been established more than 20 years ago with only limited advances ever since. Durable remission is achieved in less than 30% of patients. Minimal residual disease (MRD), reflected by the persistence of LSCs below the detection limit by conventional methods, causes a high rate of disease relapses. Therefore, the ultimate goal in the treatment of myeloid leukemia must be the eradication of LSCs. Active immunotherapy, aiming at the generation of leukemia-specific cytotoxic T cells (CTLs), may represent a powerful approach to target LSCs in the MRD situation. To fully activate CTLs, leukemia antigens have to be successfully captured, processed, and presented by mature dendritic cells (DCs). Myeloid progenitors are a prominent source of DCs under homeostatic conditions, and it is now well established that LSCs and leukemic blasts can give rise to "malignant" DCs. These leukemia-derived DCs can express leukemia antigens and may either induce anti-leukemic T cell responses or favor tolerance to the leukemia, depending on co-stimulatory or -inhibitory molecules and cytokines. This review will concentrate on the role of DCs in myeloid leukemia immunotherapy with a special focus on their generation, application, and function and how they could be improved in order to generate highly effective and specific anti-leukemic CTL responses. In addition, we discuss how DC-based immunotherapy may be successfully integrated into current treatment strategies to promote remission and potentially cure myeloid leukemias.

  2. Targeting human dendritic cells in situ to improve vaccines.

    PubMed

    Sehgal, Kartik; Dhodapkar, Kavita M; Dhodapkar, Madhav V

    2014-11-01

    Dendritic cells (DCs) provide a critical link between innate and adaptive immunity. The potent antigen presenting properties of DCs makes them a valuable target for the delivery of immunogenic cargo. Recent clinical studies describing in situ DC targeting with antibody-mediated targeting of DC receptor through DEC-205 provide new opportunities for the clinical application of DC-targeted vaccines. Further advances with nanoparticle vectors which can encapsulate antigens and adjuvants within the same compartment and be targeted against diverse DC subsets also represent an attractive strategy for targeting DCs. This review provides a brief summary of the rationale behind targeting dendritic cells in situ, the existing pre-clinical and clinical data on these vaccines and challenges faced by the next generation DC-targeted vaccines. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Targeting dendritic cells for improved HIV-1 vaccines.

    PubMed

    Smed-Sörensen, Anna; Loré, Karin

    2013-01-01

    As dendritic cells (DCs) have the unique capacity to activate antigen-naive T cells they likely play a critical role in eliciting immune responses to vaccines. DCs are therefore being explored as attractive targets for vaccines, but understanding the interaction of DCs and clinically relevant vaccine antigens and adjuvants is a prerequisite. The HIV-1/AIDS epidemic continues to be a significant health problem, and despite intense research efforts over the past 30 years a protective vaccine has not yet been developed. A common challenge in vaccine design is to find a vaccine formulation that best shapes the immune response to protect against and/or control the given pathogen. Here, we discuss the importance of understanding the diversity, anatomical location and function of different human DC subsets in order to identify the optimal target cells for an HIV-1 vaccine. We review human DC interactions with some of the HIV-1 vaccine antigen delivery vehicles and adjuvants currently utilized in preclinical and clinical studies. Specifically, the effects of distinctly different vaccine adjuvants in terms of activation of DCs and improving DC function and vaccine efficacy are discussed. The susceptibility and responses of DCs to recombinant adenovirus vectors are reviewed, as well as the strategy of directly targeting DCs by using DC marker-specific monoclonal antibodies coupled to an antigen.

  4. Topical vaccination with functionalized particles targeting dendritic cells.

    PubMed

    Baleeiro, Renato B; Wiesmüller, Karl-Heinz; Reiter, Yoran; Baude, Barbara; Dähne, Lars; Patzelt, Alexa; Lademann, Jürgen; Barbuto, José A; Walden, Peter

    2013-08-01

    Needle-free vaccination, for reasons of safety, economy, and convenience, is a central goal in vaccine development, but it also needs to meet the immunological requirements for efficient induction of prophylactic and therapeutic immune responses. Combining the principles of noninvasive delivery to dendritic cells (DCs) through skin and the immunological principles of cell-mediated immunity, we developed microparticle-based topical vaccines. We show here that the microparticles are efficient carriers for coordinated delivery of the essential vaccine constituents to DCs for cross-presentation of the antigens and stimulation of T-cell responses. When applied to the skin, the microparticles penetrate into hair follicles and target the resident DCs, the immunologically most potent cells and site for induction of efficient immune responses. The microparticle vaccine principle can be applied to different antigen formats such as peptides and proteins, or nucleic acids coding for the antigens.

  5. Designing vaccines based on biology of human dendritic cell subsets

    PubMed Central

    Palucka, Karolina; Banchereau, Jacques; Mellman, Ira

    2010-01-01

    The effective vaccines developed against a variety of infectious agents, including polio, measles and Hepatitis B, represent major achievements in medicine. These vaccines, usually composed of microbial antigens, are often associated with an adjuvant that activates dendritic cells (DCs). Many infectious diseases are still in need of an effective vaccine including HIV, malaria, hepatitis C and tuberculosis. In some cases, the induction of cellular rather than humoral responses may be more important as the goal is to control and eliminate the existing infection rather than to prevent it. Our increased understanding of the mechanisms of antigen presentation, particularly with the description of DC subsets with distinct functions, as well as their plasticity in responding to extrinsic signals, represent opportunities to develop novel vaccines. In addition, we foresee that this increased knowledge will permit us to design vaccines that will reprogram the immune system to intervene therapeutically in cancer, allergy and autoimmunity. PMID:21029958

  6. New generation of oral mucosal vaccines targeting dendritic cells.

    PubMed

    Owen, Jennifer L; Sahay, Bikash; Mohamadzadeh, Mansour

    2013-12-01

    As most infectious organisms gain entry at mucosal surfaces, there is a great deal of interest in developing vaccines that elicit effective mucosal immune responses against pathogen challenge. Targeted vaccination is one of the most effective methods available to prevent and control infectious diseases. Mucosal vaccines can offer lower costs, better accessibility, needle free delivery, and a higher capacity for mass immunizations during pandemics. Both local mucosal immunity and robust systemic responses can be achieved through mucosal vaccination. Recent progress in understanding the molecular and cellular components of the mucosal immune system have allowed for the development of a novel mucosal vaccine platform utilizing specific dendritic cell-targeting peptides and orally administered lactobacilli to elicit efficient antigen specific immune responses against infections, including Bacillus anthracis in experimental models of disease.

  7. Dendritic Cells in Anti-Fungal Immunity and Vaccine Design

    PubMed Central

    Roy, René M.; Klein, Bruce S.

    2012-01-01

    Life-threatening fungal infections have increased in recent years while treatment options remain limited. The development of vaccines against fungal pathogens represents a key advance sorely needed to combat the increasing fungal disease threat. Dendritic cells (DC) are uniquely able to shape anti-fungal immunity by initiating and modulating naive T cell responses. Targeting DC may allow for the generation of potent vaccines against fungal pathogens. In the context of anti-fungal vaccine design, we describe the characteristics of the varied DC subsets, how DC recognize fungi, their function in immunity against fungal pathogens, and how DC can be targeted in order to create new anti-fungal vaccines. Ongoing studies continue to highlight the critical role of DC in anti-fungal immunity and will help guide DC-based vaccine strategies. PMID:22607797

  8. New generation of oral mucosal vaccines targeting dendritic cells

    PubMed Central

    Owen, Jennifer L.; Sahay, Bikash; Mohamadzadeh, Mansour

    2013-01-01

    As most infectious organisms gain entry at mucosal surfaces, there is a great deal of interest in developing vaccines that elicit effective mucosal immune responses against pathogen challenge. Targeted vaccination is one of the most effective methods available to prevent and control infectious diseases. Mucosal vaccines can offer lower costs, better accessibility, needle free delivery, and a higher capacity for mass immunizations during pandemics. Both local mucosal immunity and robust systemic responses can be achieved through mucosal vaccination. Recent progress in understanding the molecular and cellular components of the mucosal immune system have allowed for the development of a novel mucosal vaccine platform utilizing specific dendritic cell-targeting peptides and orally administered lactobacilli to elicit efficient antigen specific immune responses against infections, including B. anthracis in experimental models of disease. PMID:23835515

  9. Building on Dendritic Cell Subsets to Improve Cancer Vaccines

    PubMed Central

    Palucka, Karolina; Ueno, Hideki; Zurawski, Gerard; Fay, Joseph; Banchereau, Jacques

    2010-01-01

    SUMMARY T cells can reject established tumors when adoptively transferred into patients, thereby demonstrating that the immune system can be harnessed for cancer therapy. However, such passive immunotherapy is unlikely to maintain memory T cells that might control tumor outgrowth on the long term. Active immunotherapy with vaccines has the potential to induce tumor-specific effector and memory T cells. Vaccines act through dendritic cells (DCs) which induce, regulate and maintain T cell immunity. Clinical trials testing first generation DC vaccines pulsed with tumor antigens provided a proof-of-principle that therapeutic immunity can be elicited. The increased knowledge of the DC system, including the existence of distinct DC subsets is leading to new trials which aim at improved immune and clinical outcomes. PMID:20226644

  10. Dendritic-cell-based technology landscape: Insights from patents and citation networks

    PubMed Central

    Kong, Xiangjun; Hu, Yuanjia; Cai, Zhifang; Yang, Fengqing; Zhang, Qianru

    2015-01-01

    As the most potent antigen-presenting cells, dendritic cells (DCs) are pivotal players in regulating immune responses. DC-based technologies have generated a series of typical and promising therapeutic options, especially after the first DC-based cancer vaccine was approved by US. Food and Drug Administration (US. FDA). In this context, this paper employs patents and citation networks to conduct a fundamental analysis in order to show overall landscape of DC-based technologies. The results in this research can be used as references for decision-making in developing efficacious DC therapeutic products. PMID:25714961

  11. Dendritic-cell-based technology landscape: Insights from patents and citation networks.

    PubMed

    Kong, Xiangjun; Hu, Yuanjia; Cai, Zhifang; Yang, Fengqing; Zhang, Qianru

    2015-01-01

    As the most potent antigen-presenting cells, dendritic cells (DCs) are pivotal players in regulating immune responses. DC-based technologies have generated a series of typical and promising therapeutic options, especially after the first DC-based cancer vaccine was approved by US. Food and Drug Administration (US. FDA). In this context, this paper employs patents and citation networks to conduct a fundamental analysis in order to show overall landscape of DC-based technologies. The results in this research can be used as references for decision-making in developing efficacious DC therapeutic products.

  12. Dendritic cell-based immunotherapy for the treatment of hematological malignancies.

    PubMed

    Büchler, Tomas; Michalek, Jaroslav; Kovarova, Lucie; Musilova, Romana; Hajek, Roman

    2003-04-01

    Dendritic cells (DCs) are professional antigen-presenting cells and are frequently used in current immunotherapy protocols. The administration of DCs loaded with tumor-associated proteins or peptides results in the induction of immune responses against different types of malignant cells. Methods for large-scale generation of DCs in a sufficient quality and quantity have permitted their use in clinical experiments. DC-based vaccines have already shown promise in follicular non-Hodgkin's lymphoma, and to some extent, in other hematological malignancies. Several strategies have been developed to boost their potency as a new and relatively non-toxic treatment modality. Our review focuses on clinical trials using DCs in the treatment of hematologic malignancies and on recent studies of the immunophenotype, development, and maturation of DCs may have an important impact on designing DC-based antitumor vaccines.

  13. Dendritic cell-based immunization ameliorates pulmonary infection with highly virulent Cryptococcus gattii.

    PubMed

    Ueno, Keigo; Kinjo, Yuki; Okubo, Yoichiro; Aki, Kyoko; Urai, Makoto; Kaneko, Yukihiro; Shimizu, Kiminori; Wang, Dan-Ni; Okawara, Akiko; Nara, Takuya; Ohkouchi, Kayo; Mizuguchi, Yuki; Kawamoto, Susumu; Kamei, Katsuhiko; Ohno, Hideaki; Niki, Yoshihito; Shibuya, Kazutoshi; Miyazaki, Yoshitsugu

    2015-04-01

    Cryptococcosis due to a highly virulent fungus, Cryptococcus gattii, emerged as an infectious disease on Vancouver Island in Canada and surrounding areas in 1999, causing deaths among immunocompetent individuals. Previous studies indicated that C. gattii strain R265 isolated from the Canadian outbreak had immune avoidance or immune suppression capabilities. However, protective immunity against C. gattii has not been identified. In this study, we used a gain-of-function approach to investigate the protective immunity against C. gattii infection using a dendritic cell (DC)-based vaccine. Bone marrow-derived dendritic cells (BMDCs) efficiently engulfed acapsular C. gattii (Δcap60 strain), which resulted in their expression of costimulatory molecules and inflammatory cytokines. This was not observed for BMDCs that were cultured with encapsulated strains. When Δcap60 strain-pulsed BMDCs were transferred to mice prior to intratracheal R265 infection, significant amelioration of pathology, fungal burden, and the survival rate resulted compared with those in controls. Multinucleated giant cells (MGCs) that engulfed fungal cells were significantly increased in the lungs of immunized mice. Interleukin 17A (IL-17A)-, gamma interferon (IFN-γ)-, and tumor necrosis factor alpha (TNF-α)-producing lymphocytes were significantly increased in the spleens and lungs of immunized mice. The protective effect of this DC vaccine was significantly reduced in IFN-γ knockout mice. These results demonstrated that an increase in cytokine-producing lymphocytes and the development of MGCs that engulfed fungal cells were associated with the protection against pulmonary infection with highly virulent C. gattii and suggested that IFN-γ may have been an important mediator for this vaccine-induced protection.

  14. Targeted antigen delivery and activation of dendritic cells in vivo: steps towards cost effective vaccines.

    PubMed

    Tacken, Paul J; Figdor, Carl G

    2011-02-01

    During the past decade, the immunotherapeutic potential of ex vivo generated professional antigen presenting dendritic cells (DCs) has been explored in the clinic. Albeit safe, clinical results have thus far been limited. A major disadvantage of current cell-based dendritic cell (DC) therapies, preventing universal implementation of this form of immunotherapy, is the requirement that vaccines need to be tailor made for each individual. Targeted delivery of antigens to DC surface receptors in vivo would circumvent this laborious and expensive ex vivo culturing steps involved with these cell-based therapies. In addition, the opportunity to target natural and often rare DC subsets in vivo might have advantages over loading more artificial ex vivo cultured DCs. Preclinical studies show targeting antigens to DCs effectively induces humoral responses, while cellular responses are induced provided a DC maturation or activation stimulus is co-administered. Here, we discuss strategies to target antigens to distinct DC subsets and to simultaneously employ adjuvants to activate these cells to induce immunity.

  15. Targeting Skin Dendritic Cells to Improve Intradermal Vaccination

    PubMed Central

    Romani, N.; Flacher, V.; Tripp, C. H.; Sparber, F.; Ebner, S.; Stoitzner, P.

    2014-01-01

    Vaccinations in medicine are typically administered into the muscle beneath the skin or into the subcutaneous fat. As a consequence, the vaccine is immunologically processed by antigen-presenting cells of the skin or the muscle. Recent evidence suggests that the clinically seldom used intradermal route is effective and possibly even superior to the conventional subcutaneous or intramuscular route. Several types of professional antigen-presenting cells inhabit the healthy skin. Epidermal Langerhans cells (CD207/langerin+), dermal langerinneg, and dermal langerin+ dendritic cells (DC) have been described, the latter subset so far only in mouse skin. In human skin langerinneg dermal DC can be further classified based on their reciprocal expression of CD1a and CD14. The relative contributions of these subsets to the generation of immunity or tolerance are still unclear. Yet, specializations of these different populations have become apparent. Langerhans cells in human skin appear to be specialized for induction of cytotoxic T lymphocytes; human CD14+ dermal DC can promote antibody production by B cells. It is currently attempted to rationally devise and improve vaccines by harnessing such specific properties of skin DC. This could be achieved by specifically targeting functionally diverse skin DC subsets. We discuss here advances in our knowledge on the immunological properties of skin DC and strategies to significantly improve the outcome of vaccinations by applying this knowledge. PMID:21253784

  16. Genetic Adjuvantation of a Cell-Based Therapeutic Vaccine for Amelioration of Chagasic Cardiomyopathy.

    PubMed

    Konduri, Vanaja; Halpert, Matthew M; Liang, Dan; Levitt, Jonathan M; Cruz-Chan, Julio Vladimir; Zhan, Bin; Bottazzi, Maria Elena; Hotez, Peter J; Jones, Kathryn M; Decker, William K

    2017-09-01

    Chagas disease, caused by infection with the protozoan parasite Trypanosoma cruzi, is a leading cause of heart disease ("chagasic cardiomyopathy") in Latin America, disproportionately affecting people in resource-poor areas. The efficacy of currently approved pharmaceutical treatments is limited mainly to acute infection, and there are no effective treatments for the chronic phase of the disease. Preclinical models of Chagas disease have demonstrated that antigen-specific CD8(+) gamma interferon (IFN-γ)-positive T-cell responses are essential for reducing parasite burdens, increasing survival, and decreasing cardiac pathology in both the acute and chronic phases of Chagas disease. In the present study, we developed a genetically adjuvanted, dendritic cell-based immunotherapeutic for acute Chagas disease in an attempt to delay or prevent the cardiac complications that eventually result from chronic T. cruzi infection. Dendritic cells transduced with the adjuvant, an adenoviral vector encoding a dominant negative isoform of Src homology region 2 domain-containing tyrosine phosphatase 1 (SHP-1) along with the T. cruzi Tc24 antigen and trans-sialidase antigen 1 (TSA1), induced significant numbers of antigen-specific CD8(+) IFN-γ-positive cells following injection into BALB/c mice. A vaccine platform transduced with the adenoviral vector and loaded in tandem with the recombinant protein reduced parasite burdens by 76% to >99% in comparison to a variety of different controls and significantly reduced cardiac pathology in a BALB/c mouse model of live Chagas disease. Although no statistical differences in overall survival rates among cohorts were observed, the data suggest that immunotherapeutic strategies for the treatment of acute Chagas disease are feasible and that this approach may warrant further study. Copyright © 2017 American Society for Microbiology.

  17. Dendritic cell based PSMA immunotherapy for prostate cancer using a CD40-targeted adenovirus vector.

    PubMed

    Williams, Briana Jill; Bhatia, Shilpa; Adams, Lisa K; Boling, Susan; Carroll, Jennifer L; Li, Xiao-Lin; Rogers, Donna L; Korokhov, Nikolay; Kovesdi, Imre; Pereboev, Alexander V; Curiel, David T; Mathis, J Michael

    2012-01-01

    Human prostate tumor vaccine and gene therapy trials using ex vivo methods to prime dendritic cells (DCs) with prostate specific membrane antigen (PSMA) have been somewhat successful, but to date the lengthy ex vivo manipulation of DCs has limited the widespread clinical utility of this approach. Our goal was to improve upon cancer vaccination with tumor antigens by delivering PSMA via a CD40-targeted adenovirus vector directly to DCs as an efficient means for activation and antigen presentation to T-cells. To test this approach, we developed a mouse model of prostate cancer by generating clonal derivatives of the mouse RM-1 prostate cancer cell line expressing human PSMA (RM-1-PSMA cells). To maximize antigen presentation in target cells, both MHC class I and TAP protein expression was induced in RM-1 cells by transduction with an Ad vector expressing interferon-gamma (Ad5-IFNγ). Administering DCs infected ex vivo with CD40-targeted Ad5-huPSMA, as well as direct intraperitoneal injection of the vector, resulted in high levels of tumor-specific CTL responses against RM-1-PSMA cells pretreated with Ad5-IFNγ as target cells. CD40 targeting significantly improved the therapeutic antitumor efficacy of Ad5-huPSMA encoding PSMA when combined with Ad5-IFNγ in the RM-1-PSMA model. These results suggest that a CD-targeted adenovirus delivering PSMA may be effective clinically for prostate cancer immunotherapy.

  18. Dendritic Cell Based PSMA Immunotherapy for Prostate Cancer Using a CD40-Targeted Adenovirus Vector

    PubMed Central

    Williams, Briana Jill; Bhatia, Shilpa; Adams, Lisa K.; Boling, Susan; Carroll, Jennifer L.; Li, Xiao-Lin; Rogers, Donna L.; Korokhov, Nikolay; Kovesdi, Imre; Pereboev, Alexander V.; Curiel, David T.; Mathis, J. Michael

    2012-01-01

    Human prostate tumor vaccine and gene therapy trials using ex vivo methods to prime dendritic cells (DCs) with prostate specific membrane antigen (PSMA) have been somewhat successful, but to date the lengthy ex vivo manipulation of DCs has limited the widespread clinical utility of this approach. Our goal was to improve upon cancer vaccination with tumor antigens by delivering PSMA via a CD40-targeted adenovirus vector directly to DCs as an efficient means for activation and antigen presentation to T-cells. To test this approach, we developed a mouse model of prostate cancer by generating clonal derivatives of the mouse RM-1 prostate cancer cell line expressing human PSMA (RM-1-PSMA cells). To maximize antigen presentation in target cells, both MHC class I and TAP protein expression was induced in RM-1 cells by transduction with an Ad vector expressing interferon-gamma (Ad5-IFNγ). Administering DCs infected ex vivo with CD40-targeted Ad5-huPSMA, as well as direct intraperitoneal injection of the vector, resulted in high levels of tumor-specific CTL responses against RM-1-PSMA cells pretreated with Ad5-IFNγ as target cells. CD40 targeting significantly improved the therapeutic antitumor efficacy of Ad5-huPSMA encoding PSMA when combined with Ad5-IFNγ in the RM-1-PSMA model. These results suggest that a CD-targeted adenovirus delivering PSMA may be effective clinically for prostate cancer immunotherapy. PMID:23056548

  19. The current state of therapeutic and T cell-based vaccines against human papillomaviruses.

    PubMed

    Yang, Andrew; Farmer, Emily; Lin, John; Wu, T-C; Hung, Chien-Fu

    2017-03-02

    Human papillomavirus (HPV) is known to be a necessary factor for many gynecologic malignancies and is also associated with a subset of head and neck malignancies. This knowledge has created the opportunity to control these HPV-associated cancers through vaccination. However, despite the availability of prophylactic HPV vaccines, HPV infections remain extremely common worldwide. In addition, while prophylactic HPV vaccines have been effective in preventing infection, they are ineffective at clearing pre-existing HPV infections. Thus, there is an urgent need for therapeutic and T cell-based vaccines to treat existing HPV infections and HPV-associated lesions and cancers. Unlike prophylactic vaccines, which generate neutralizing antibodies, therapeutic, and T cell-based vaccines enhance cell-mediated immunity against HPV antigens. Our review will cover various therapeutic and T cell-based vaccines in development for the treatment of HPV-associated diseases. Furthermore, we review the strategies to enhance the efficacy of therapeutic vaccines and the latest clinical trials on therapeutic and T cell-based HPV vaccines.

  20. Evaluation of Immune Responses Mediated by Listeria-Stimulated Human Dendritic Cells: Implications for Cancer Vaccine Therapy

    DTIC Science & Technology

    2014-07-01

    by Listeria -Stimulated Human Dendritic Cells: Implications for Cancer Vaccine Therapy PRINCIPAL INVESTIGATOR: David J. Chung, MD, PhD...5a. CONTRACT NUMBER Evaluation of Immune Responses Mediated by Listeria -Stimulated Human Dendritic Cells: Implications for Cancer Vaccine...ABSTRACT The purpose of this project is to study the immunomodulatory effect of Listeria on human dendritic cells (DCs) to optimize Listeria - based

  1. Asymptomatic Changes in Cardiac Function Can Occur in DCIS Patients Following Treatment with HER-2/neu Pulsed Dendritic Cell Vaccines

    PubMed Central

    Bahl, Susan; Roses, Robert; Sharma, Anupama; Koldovsky, Ursula; Xu, Shuwen; Weinstein, Susan; Nisenbaum, Harvey; Fox, Kevin; Pasha, Theresa; Zhang, Paul; Araujo, Louis; Carver, Joseph; Czerniecki, Brian J

    2009-01-01

    Background Targeting HER-2/neu with Trastuzumab has been associated with development of cardiac toxicity. Methods Twenty-seven patients with ductal carcinoma in situ (DCIS) of the breast completed an IRB approved clinical trial of a HER-2/neu targeted dendritic cell based vaccine. Four weekly vaccinations were administered prior to surgical resection. All subjects underwent pre- and post-vaccine cardiac monitoring by MUGA/ECHO scanning allowing for a comparison of cardiac function. Results In 3 of 27 vaccinated patients (11%) transient asymptomatic decrements in ejection fraction of greater than 15% were noted after vaccination. Notably, evidence of circulating anti-HER-2/neu antibody was found prior to vaccination in all three patients, but cardiac toxicity was not noted until induction of cellular mediated immune responses. Conclusions This is the first description of HER-2/neu targeted vaccination associated with an incidence of cardiac changes, and the induction of cellular immune responses combined with antibody may contribute to changes in cardiac function. PMID:19800453

  2. Dendritic cell targeting vaccine for HPV-associated cancer

    PubMed Central

    Yin, Wenjie; Duluc, Dorothée; Joo, HyeMee; Oh, SangKon

    2017-01-01

    Dendritic cells (DCs) are major antigen presenting cells that can efficiently prime and activate cellular immune responses. Delivering antigens to in vivo DCs has thus been considered as a promising strategy that could allow us to mount T cell-mediated therapeutic immunity against cancers in patients. Successful development of such types of cancer vaccines that can target in vivo DCs, however, requires a series of outstanding questions that need to be addressed. These include the proper selection of which DC surface receptors, specific DC subsets and DC activators that can further enhance the efficacy of vaccines by promoting effector T cell infiltration and retention in tumors and their actions against tumors. Supplementing these areas of research with additional strategies that can counteract tumor immune evasion mechanisms is also expected to enhance the efficacy of such therapeutic vaccines against cancers. After more than a decade of study, we have concluded that antigen targeting to DCs via CD40 to evoke cellular responses is more efficient than targeting antigens to the same types of DCs via eleven other DC surface receptors tested. In recent work, we have further demonstrated that a prototype vaccine (anti-CD40-HPV16.E6/7, a recombinant fusion protein of anti-human CD40 and HPV16.E6/7 protein) for HPV16-associated cancers can efficiently activate HPV16.E6/7-specific T cells, particularly CD8+ T cells, from the blood of HPV16+ head-and-neck cancer patients. Moreover, anti-CD40-HPV16.E6/7 plus poly(I:C) can mount potent therapeutic immunity against TC-1 tumor expressing HPV16.E6/7 protein in human CD40 transgenic mice. In this manuscript, we thus highlight our recent findings for the development of novel CD40 targeting immunotherapeutic vaccines for HPV16-associated malignancies. In addition, we further discuss several of key questions that still remain to be addressed for enhancing therapeutic immunity elicited by our prototype vaccine against HPV16

  3. Polymer nanoparticles containing tumor lysates as antigen delivery vehicles for dendritic cell-based antitumor immunotherapy.

    PubMed

    Prasad, Shashi; Cody, Virginia; Saucier-Sawyer, Jennifer K; Saltzman, W Mark; Sasaki, Clarence T; Edelson, Richard L; Birchall, Martin A; Hanlon, Douglas J

    2011-02-01

    Encapsulation of tumor-associated antigens in polymer nanoparticles (NP) is a promising approach to enhance efficiency of antigen delivery for anti-tumor vaccines. Head and neck squamous carcinoma (HNSCC) cell lines were initially used to generate tumor-associated antigens (TAA)-containing poly (lactic-co-glycolic acid) (PLGA) NP; encapsulation efficiency and release kinetics were profiled. Findings were adopted to entrap fresh tumor lysate from five patients with advanced HNSCC. To test the hypothesis that NP enhance antigen presentation, dendritic cell (DC) produced from patient blood monocyte precursors were loaded with either the un-encapsulated or NP-encapsulated versions of tumor lysates. These were used to stimulate freshly-isolated autologous CD8+ T cells. In four of five patients, anti-tumor CD8+ T cells showed significantly increased immunostimulatory IFN-γ (p=0.071) or decreased immmunoinhibitory IL-10 production (p=0.0004) associated with NP-mediated antigen delivery. The observations represent an enabling step in the production of clinically-translatable, inexpensive, highly-efficient, and personalized polymer-based immunotherapy for solid organ malignancies. Enhancing the antigen presentation may be a viable approach to increase the efficiency of tumor cell directed cytotoxicity via immune mechanisms. This study presents an example for this using head and neck cancer cell lines and nanotechnology-based encapsulated antigen presentation to dendritic cells. The observed CD8+ T-cell response was significantly enhanced. This method may pave the way to a highly efficient cancer cell elimination method with minimal to no toxicity. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Clinical Trials Using Adenovirus Encoding Tyrosinase/MART-1/MAGEA6-transduced Autologous Dendritic Cell Vaccine

    Cancer.gov

    NCI supports clinical trials that test new and more effective ways to treat cancer. Find clinical trials studying adenovirus encoding tyrosinase/mart-1/magea6-transduced autologous dendritic cell vaccine.

  5. Dendritic cells and vaccine design for sexually-transmitted diseases.

    PubMed

    Duluc, Dorothee; Gannevat, Julien; Joo, Hyemee; Ni, Ling; Upchurch, Katherine; Boreham, Muriel; Carley, Michael; Stecher, Jack; Zurawski, Gerard; Oh, Sangkon

    2013-05-01

    Dendritic cells (DCs) are major antigen presenting cells (APCs) that can initiate and control host immune responses toward either immunity or tolerance. These features of DCs, as immune orchestrators, are well characterized by their tissue localizations as well as by their subset-dependent functional specialties and plasticity. Thus, the level of protective immunity to invading microbial pathogens can be dependent on the subsets of DCs taking up microbial antigens and their functional plasticity in response to microbial products, host cellular components and the cytokine milieu in the microenvironment. Vaccines are the most efficient and cost-effective preventive medicine against infectious diseases. However, major challenges still remain for the diseases caused by sexually-transmitted pathogens, including HIV, HPV, HSV and Chlamydia. We surmise that the establishment of protective immunity in the female genital mucosa, the major entry and transfer site of these pathogens, will bring significant benefit for the protection against sexually-transmitted diseases. Recent progresses made in DC biology suggest that vaccines designed to target proper DC subsets may permit us to establish protective immunity in the female genital mucosa against sexually-transmitted pathogens. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Th17 cell based vaccines in mucosal immunity.

    PubMed

    Kumar, Pawan; Chen, Kong; Kolls, Jay K

    2013-06-01

    Vaccination is proven to be effective in controlling many infections including small pox, influenza and hepatitis, but strain-specific factors may limit vaccine efficacy. All of these vaccines work through the generation of neutralizing antibodies but for some pathogens there may be roles for serotype-independent immunity. Recently several groups using murine vaccine models have shown that induced T helper cell responses including Th17 responses have shown the potential for CD4+ T-cell dependent vaccine responses. Th17 mediated protective responses involve the recruitment of neutrophils, release of anti-microbial peptides and IL-17-driven Th1 immunity. These effector mechanisms provide immunity against a range of pathogens including the recently described antibiotic-resistant metallo-beta-lactamase 1 Klebsiella pneumoniae. Continued elucidation of the mechanism of Th17 responses and identification of effective adjuvants for inducing robust non pathogenic Th17 responses may lead to successful Th17 based vaccines. Here we summarize the recent advances in understanding the role of Th17 in vaccine induced immunity. We also discuss the current status and future challenges in Th17-based mucosal vaccine development.

  7. Dendritic cell targeted vaccines: Recent progresses and challenges

    PubMed Central

    Chen, Pengfei; Liu, Xinsheng; Sun, Yuefeng; Zhou, Peng; Wang, Yonglu; Zhang, Yongguang

    2016-01-01

    ABSTRACT Dendritic cells (DCs) are known to be a set of morphology, structure and function of heterogeneous professional antigen presenting cells (APCs), as well as the strongest functional antigen presenting cells, which can absorb, process and present antigens. As the key regulators of innate and adaptive immune responses, DCs are at the center of the immune system and capable of interacting with both B cells and T cells, thereby manipulating the humoral and cellular immune responses. DCs provide an essential link between the innate and adaptive immunity, and the strong immune activation function of DCs and their properties of natural adjuvants, make them a valuable target for antigen delivery. Targeting antigens to DC-specific endocytic receptors in combination with the relevant antibodies or ligands along with immunostimulatory adjuvants has been recently recognized as a promising strategy for designing an effective vaccine that elicits a strong and durable T cell response against intracellular pathogens and cancer. This opinion article provides a brief summary of the rationales, superiorities and challenges of existing DC-targeting approaches. PMID:26513200

  8. Cell-Based Systems Biology Analysis of Human AS03-Adjuvanted H5N1 Avian Influenza Vaccine Responses: A Phase I Randomized Controlled Trial

    PubMed Central

    Samir, Parimal; Galassie, Allison; Allos, Tara M.; Niu, Xinnan; Gordy, Laura E.; Creech, C. Buddy; Prasad, Nripesh; Jensen, Travis L.; Hill, Heather; Levy, Shawn E.; Joyce, Sebastian; Link, Andrew J.; Edwards, Kathryn M.

    2017-01-01

    Background Vaccine development for influenza A/H5N1 is an important public health priority, but H5N1 vaccines are less immunogenic than seasonal influenza vaccines. Adjuvant System 03 (AS03) markedly enhances immune responses to H5N1 vaccine antigens, but the underlying molecular mechanisms are incompletely understood. Objective and Methods We compared the safety (primary endpoint), immunogenicity (secondary), gene expression (tertiary) and cytokine responses (exploratory) between AS03-adjuvanted and unadjuvanted inactivated split-virus H5N1 influenza vaccines. In a double-blinded clinical trial, we randomized twenty adults aged 18–49 to receive two doses of either AS03-adjuvanted (n = 10) or unadjuvanted (n = 10) H5N1 vaccine 28 days apart. We used a systems biology approach to characterize and correlate changes in serum cytokines, antibody titers, and gene expression levels in six immune cell types at 1, 3, 7, and 28 days after the first vaccination. Results Both vaccines were well-tolerated. Nine of 10 subjects in the adjuvanted group and 0/10 in the unadjuvanted group exhibited seroprotection (hemagglutination inhibition antibody titer > 1:40) at day 56. Within 24 hours of AS03-adjuvanted vaccination, increased serum levels of IL-6 and IP-10 were noted. Interferon signaling and antigen processing and presentation-related gene responses were induced in dendritic cells, monocytes, and neutrophils. Upregulation of MHC class II antigen presentation-related genes was seen in neutrophils. Three days after AS03-adjuvanted vaccine, upregulation of genes involved in cell cycle and division was detected in NK cells and correlated with serum levels of IP-10. Early upregulation of interferon signaling-related genes was also found to predict seroprotection 56 days after first vaccination. Conclusions Using this cell-based systems approach, novel mechanisms of action for AS03-adjuvanted pandemic influenza vaccination were observed. Trial Registration ClinicalTrials.gov NCT

  9. Cell-Based Systems Biology Analysis of Human AS03-Adjuvanted H5N1 Avian Influenza Vaccine Responses: A Phase I Randomized Controlled Trial.

    PubMed

    Howard, Leigh M; Hoek, Kristen L; Goll, Johannes B; Samir, Parimal; Galassie, Allison; Allos, Tara M; Niu, Xinnan; Gordy, Laura E; Creech, C Buddy; Prasad, Nripesh; Jensen, Travis L; Hill, Heather; Levy, Shawn E; Joyce, Sebastian; Link, Andrew J; Edwards, Kathryn M

    2017-01-01

    Vaccine development for influenza A/H5N1 is an important public health priority, but H5N1 vaccines are less immunogenic than seasonal influenza vaccines. Adjuvant System 03 (AS03) markedly enhances immune responses to H5N1 vaccine antigens, but the underlying molecular mechanisms are incompletely understood. We compared the safety (primary endpoint), immunogenicity (secondary), gene expression (tertiary) and cytokine responses (exploratory) between AS03-adjuvanted and unadjuvanted inactivated split-virus H5N1 influenza vaccines. In a double-blinded clinical trial, we randomized twenty adults aged 18-49 to receive two doses of either AS03-adjuvanted (n = 10) or unadjuvanted (n = 10) H5N1 vaccine 28 days apart. We used a systems biology approach to characterize and correlate changes in serum cytokines, antibody titers, and gene expression levels in six immune cell types at 1, 3, 7, and 28 days after the first vaccination. Both vaccines were well-tolerated. Nine of 10 subjects in the adjuvanted group and 0/10 in the unadjuvanted group exhibited seroprotection (hemagglutination inhibition antibody titer > 1:40) at day 56. Within 24 hours of AS03-adjuvanted vaccination, increased serum levels of IL-6 and IP-10 were noted. Interferon signaling and antigen processing and presentation-related gene responses were induced in dendritic cells, monocytes, and neutrophils. Upregulation of MHC class II antigen presentation-related genes was seen in neutrophils. Three days after AS03-adjuvanted vaccine, upregulation of genes involved in cell cycle and division was detected in NK cells and correlated with serum levels of IP-10. Early upregulation of interferon signaling-related genes was also found to predict seroprotection 56 days after first vaccination. Using this cell-based systems approach, novel mechanisms of action for AS03-adjuvanted pandemic influenza vaccination were observed. ClinicalTrials.gov NCT01573312.

  10. Evaluation of Immune Responses Mediated by Listeria-Stimulated Human Dendritic Cells: Implications for Cancer Vaccine Therapy

    DTIC Science & Technology

    2012-07-01

    Mediated by Listeria -Stimulated Human Dendritic Cells: Implications for Cancer Vaccine Therapy PRINCIPAL INVESTIGATOR: David J. Chung, M D , Ph D...CONTRACT NUMBER Evaluation of Immune Responses Mediated by Listeria -Stimulated Human Dendritic Cells: Implications for Cancer Vaccine Therapy 5b...Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The purpose of this project is to study the immunomodulatory effect of Listeria on

  11. Rationalizing the use of functionalized poly-lactic-co-glycolic acid nanoparticles for dendritic cell-based targeted anticancer therapy.

    PubMed

    Kokate, Rutika A; Chaudhary, Pankaj; Sun, Xiangle; Thamake, Sanjay I; Maji, Sayantan; Chib, Rahul; Vishwanatha, Jamboor K; Jones, Harlan P

    2016-01-01

    Delivery of PLGA (poly [D, L-lactide-co-glycolide])-based biodegradable nanoparticles (NPs) to antigen presenting cells, particularly dendritic cells, has potential for cancer immunotherapy. Using a PLGA NP vaccine construct CpG-NP-Tag (CpG-ODN-coated tumor antigen [Tag] encapsulating NP) prepared using solvent evaporation technique we tested the efficacy of ex vivo and in vivo use of this construct as a feasible platform for immune-based therapy. CpG-NP-Tag NPs were avidly endocytosed and localized in the endosomal compartment of bone marrow-derived dendritic cells. Bone marrow-derived dendritic cells exposed to CpG-NP-Tag NPs exhibited an increased maturation (higher CD80/86 expression) and activation status (enhanced IL-12 secretion levels). In vivo results demonstrated attenuation of tumor growth and angiogenesis as well as induction of potent cytotoxic T-lymphocyte responses. Collectively, results validate dendritic cells stimulatory response to CpG-NP-Tag NPs (ex vivo) and CpG-NP-Tag NPs' tumor inhibitory potential (in vivo) for therapeutic applications, respectively.

  12. Evaluation of Immune Responses Mediated by Listeria-Stimulated Human Dendritic Cells: Implications for Cancer Vaccine Therapy

    DTIC Science & Technology

    2015-09-01

    Award Number: W81XWH-11-1-0384 TITLE: Evaluation of Immune Responses Mediated by Listeria-Stimulated Human Dendritic Cells: Implications for...Immune Responses Mediated by Listeria-Stimulated Human Dendritic Cells: Implications for Cancer Vaccine Therapy 5b. GRANT NUMBER CA100463 5c...Listeria monocytogenes (Lm) on human dendritic cells (DCs) to optimize Lm-based DC cancer vaccines. The project aims are: 1) Compare the activation and

  13. HIV-1 Reservoir Dynamics after Vaccination and Antiretroviral Therapy Interruption Are Associated with Dendritic Cell Vaccine-Induced T Cell Responses

    PubMed Central

    Andrés, Cristina; Plana, Montserrat; Guardo, Alberto C.; Alvarez-Fernández, Carmen; Climent, Nuria; Gallart, Teresa; León, Agathe; Clotet, Bonaventura; Autran, Brigitte; Chomont, Nicolas; Gatell, Josep M.; Sánchez-Palomino, Sonsoles

    2015-01-01

    . The development of therapeutic vaccines aimed at enhancing immune-mediated clearance of virus-producing cells is of high priority. Few therapeutic vaccine clinical trials have investigated the role of therapeutic vaccines as a strategy to safely eliminate or control viral reservoirs. We recently reported that a dendritic cell-based therapeutic vaccine was able to significantly decrease the viral set point in vaccinated patients, with a concomitant increase in HIV-1-specific T cell responses. The HIV-1-specific T cell immune responses elicited by this therapeutic dendritic cell vaccine drove changes in the viral reservoir after vaccinations and significantly delayed the replenishment of integrated HIV-1 DNA after cART interruption. These data help in understanding how an immunization could shift the virus-host balance and are instrumental for better design of strategies to reach a functional cure of HIV-1 infection. PMID:26109727

  14. HIV-1 Reservoir Dynamics after Vaccination and Antiretroviral Therapy Interruption Are Associated with Dendritic Cell Vaccine-Induced T Cell Responses.

    PubMed

    Andrés, Cristina; Plana, Montserrat; Guardo, Alberto C; Alvarez-Fernández, Carmen; Climent, Nuria; Gallart, Teresa; León, Agathe; Clotet, Bonaventura; Autran, Brigitte; Chomont, Nicolas; Gatell, Josep M; Sánchez-Palomino, Sonsoles; García, Felipe

    2015-09-01

    therapeutic vaccines aimed at enhancing immune-mediated clearance of virus-producing cells is of high priority. Few therapeutic vaccine clinical trials have investigated the role of therapeutic vaccines as a strategy to safely eliminate or control viral reservoirs. We recently reported that a dendritic cell-based therapeutic vaccine was able to significantly decrease the viral set point in vaccinated patients, with a concomitant increase in HIV-1-specific T cell responses. The HIV-1-specific T cell immune responses elicited by this therapeutic dendritic cell vaccine drove changes in the viral reservoir after vaccinations and significantly delayed the replenishment of integrated HIV-1 DNA after cART interruption. These data help in understanding how an immunization could shift the virus-host balance and are instrumental for better design of strategies to reach a functional cure of HIV-1 infection. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. Can dendritic cells improve whole cancer cell vaccines based on immunogenically killed cancer cells?

    PubMed

    Cicchelero, Laetitia; Denies, Sofie; Devriendt, Bert; de Rooster, Hilde; Sanders, Niek N

    2015-12-01

    Immunogenic cell death (ICD) offers interesting opportunities in cancer cell (CC) vaccine manufacture, as it increases the immunogenicity of the dead CC. Furthermore, fusion of CCs with dendritic cells (DCs) is considered a superior method for generating whole CC vaccines. Therefore, in this work, we determined in naive mice whether immunogenically killed CCs per se (CC vaccine) elicit an antitumoral immune response different from the response observed when immunogenically killed CCs are associated with DCs through fusion (fusion vaccine) or through co-incubation (co-incubation vaccine). After tumor inoculation, the type of immune response in the prophylactically vaccinated mice differed between the groups. In more detail, fusion vaccines elicited a humoral anticancer response, whereas the co-incubation and CC vaccine mainly induced a cellular response. Despite these differences, all three approaches offered a prophylactic protection against tumor development in the murine mammary carcinoma model. In summary, it can be concluded that whole CC vaccines based on immunogenically killed CCs may not necessarily require association with DCs to elicit a protective anticancer immune response. If this finding can be endorsed in other cancer models, the manufacture of CC vaccines would greatly benefit from this new insight, as production of DC-based vaccines is laborious, time-consuming and expensive.

  16. Can dendritic cells improve whole cancer cell vaccines based on immunogenically killed cancer cells?

    PubMed Central

    Cicchelero, Laetitia; Denies, Sofie; Devriendt, Bert; de Rooster, Hilde; Sanders, Niek N

    2015-01-01

    Immunogenic cell death (ICD) offers interesting opportunities in cancer cell (CC) vaccine manufacture, as it increases the immunogenicity of the dead CC. Furthermore, fusion of CCs with dendritic cells (DCs) is considered a superior method for generating whole CC vaccines. Therefore, in this work, we determined in naive mice whether immunogenically killed CCs per se (CC vaccine) elicit an antitumoral immune response different from the response observed when immunogenically killed CCs are associated with DCs through fusion (fusion vaccine) or through co-incubation (co-incubation vaccine). After tumor inoculation, the type of immune response in the prophylactically vaccinated mice differed between the groups. In more detail, fusion vaccines elicited a humoral anticancer response, whereas the co-incubation and CC vaccine mainly induced a cellular response. Despite these differences, all three approaches offered a prophylactic protection against tumor development in the murine mammary carcinoma model. In summary, it can be concluded that whole CC vaccines based on immunogenically killed CCs may not necessarily require association with DCs to elicit a protective anticancer immune response. If this finding can be endorsed in other cancer models, the manufacture of CC vaccines would greatly benefit from this new insight, as production of DC-based vaccines is laborious, time-consuming and expensive. PMID:26587315

  17. Active immunotherapy for cancer patients using tumor lysate pulsed dendritic cell vaccine: a safety study.

    PubMed

    Ovali, E; Dikmen, T; Sonmez, M; Yilmaz, M; Unal, A; Dalbasti, T; Kuzeyli, K; Erturk, M; Omay, S B

    2007-06-01

    Cancer vaccine therapy represents a promising therapeutical option. Consistently, with these new treatment strategies, the use of dendritic cell vaccines is becoming increasingly widespread and currently in the forefront for cancer treatment. The purpose of this study was to evaluate the feasibility and safety of tumor lysate-pulsed dendritic cell (DC) vaccine in patients with advanced cancers. For this purpose, eighteen patients with relapsed or refractory cancer were vaccinated with peripheral monocyte-derived DCs generated with GM-CSF and IL-4, and pulsed consequently with 100 microg/ml of tumor lysate before maturation in culture in the presence of IL-1beta, PGE2 and TNF alpha for two days. The first two vaccinations were given intradermally every two weeks while further injections were given monthly. Tumor lysate-pulsed dendritic cell injections were well-tolerated in all patients with no more than grade 1 injection-related toxicity. Local inflammatory response was mainly erythematous which subsided in 48 hrs time. No end organ toxicity or autoimmune toxicity was identified. Clinical responses observed in our study were satisfactory for a phase I clinical study. We observed 4 (22%) objective clinical responses. These responses are significantly correlated with delayed type hypersensitivity testing (DTH) (p < 0.01). The results showed that this active immunotherapy is feasible, safe, and may be capable of eliciting immune responses against cancer.

  18. An autologous dendritic cell canine mammary tumor hybrid-cell fusion vaccine.

    PubMed

    Bird, R Curtis; Deinnocentes, Patricia; Church Bird, Allison E; van Ginkel, Frederik W; Lindquist, Joni; Smith, Bruce F

    2011-01-01

    Mammary cancer is among the most prevalent canine tumors and frequently resulting in death due to metastatic disease that is highly homologous to human breast cancer. Most canine tumors fail to raise effective immune reactions yet, some spontaneous remissions do occur. Hybrid canine dendritic cell-tumor cell fusion vaccines were designed to enhance antigen presentation and tumor immune recognition. Peripheral blood-derived autologous dendritic cell enriched populations were isolated from dogs based on CD11c(+) expression and fused with canine mammary tumor (CMT) cells for vaccination of laboratory Beagles. These hybrid cells were injected into popliteal lymph nodes of normal dogs, guided by ultrasound, and included CpG-oligonucleotide adjuvants. Three rounds of vaccination were delivered. Significant IgG responses were observed in all vaccinated dogs compared to vehicle-injected controls. Canine IgG antibodies recognized shared CMT antigens as was demonstrated by IgG-recognition of three unrelated/independently derived CMT cell lines, and recognition of freshly isolated, unrelated, primary biopsy-derived CMT cells. A bias toward an IgG2 isotype response was observed after two vaccinations in most dogs. Neither significant cytotoxic T cell responses were detected, nor adverse or side-effects due to vaccination or due to the induced immune responses noted. These data provide proof-of-principle for this cancer vaccine strategy and demonstrate the presence of shared CMT antigens that promote immune recognition of mammary cancer.

  19. Vaccines, adjuvants and dendritic cell activators – Current Status and Future Challenges

    PubMed Central

    Obeid, Joseph M.; Hu, Yinin; Slingluff, Craig L.

    2015-01-01

    Cancer vaccines offer a low-toxicity approach to induce anticancer immune responses. They have shown promise for clinical benefit with one cancer vaccine approved in the U.S. for advanced prostate cancer. As other immune therapies are now clearly effective for treatment of advanced cancers of many histologies, there is renewed enthusiasm for optimizing cancer vaccines for use to prevent recurrence in early stage cancers and/or to combine with other immune therapies for therapy of advanced cancers. Future advancements in vaccine therapy will involve the identification and selection of effective antigen formulations, optimization of adjuvants, dendritic cell activation, and combination therapies. In this summary we present the current practice, the broad collection of challenges, and the promising future directions of vaccine therapy for cancer. PMID:26320060

  20. High-throughput identification and dendritic cell-based functional validation of MHC class I-restricted Mycobacterium tuberculosis epitopes

    PubMed Central

    Nair, Smita K.; Tomaras, Georgia D.; Sales, Ana Paula; Boczkowski, David; Chan, Cliburn; Plonk, Kelly; Cai, Yongting; Dannull, Jens; Kepler, Thomas B.; Pruitt, Scott K.; Weinhold, Kent J.

    2014-01-01

    Emergence of drug-resistant strains of the pathogen Mycobacterium tuberculosis (Mtb) and the ineffectiveness of BCG in curtailing Mtb infection makes vaccine development for tuberculosis an important objective. Identifying immunogenic CD8+ T cell peptide epitopes is necessary for peptide-based vaccine strategies. We present a three-tiered strategy for identifying and validating immunogenic peptides: first, identify peptides that form stable complexes with class I MHC molecules; second, determine whether cytotoxic T lymphocytes (CTLs) raised against the whole protein antigen recognize and lyse target cells pulsed with peptides that passed step 1; third, determine whether peptides that passed step 2, when administered in vivo as a vaccine in HLA-A2 transgenic mice, elicit CTLs that lyse target cells expressing the whole protein antigen. Our innovative approach uses dendritic cells transfected with Mtb antigen-encoding mRNA to drive antigen expression. Using this strategy, we have identified five novel peptide epitopes from the Mtb proteins Apa, Mtb8.4 and Mtb19. PMID:24755960

  1. Extended protection capabilities of an immature dendritic-cell targeting malaria sporozoite vaccine.

    PubMed

    Luo, Kun; Zavala, Fidel; Gordy, James; Zhang, Hong; Markham, Richard B

    2017-03-22

    Mouse studies evaluating candidate malaria vaccines have typically examined protective efficacy over the relatively short time frames of several weeks after the final of multiple immunizations. The current study examines the protective ability in a mouse model system of a novel protein vaccine construct in which the adjuvant polyinosinic polycytidilic acid (poly(I:C)) is used in combination with a vaccine in which the immature dendritic cell targeting chemokine, macrophage inflammatory protein 3 alpha (MIP3α), is fused to the circumsporozoite protein (CSP) of Plasmodium falciparum (P. falciparum). Two vaccinations, three weeks apart, elicited extraordinarily high, MIP3α-dependent antibody responses. MIP3α was able to target the vaccine to the CCR6 receptor found predominantly on immature dendritic cells and significantly enhanced the cellular influx at the vaccination site. At three and 23 weeks after the final of two immunizations, mice were challenged by intravenous injection of 5×10(3) transgenic Plasmodium berghei sporozoites expressing P. falciparum CSP, a challenge dose approximately one order of magnitude greater than that which is encountered after mosquito bite in the clinical setting. A ninety-seven percent reduction in liver sporozoite load was observed at both time points, 23 weeks being the last time point tested.

  2. A Light Responsive Nanoparticle-Based Delivery System Using Pheophorbide A Graft Polyethylenimine for Dendritic Cell-Based Cancer Immunotherapy.

    PubMed

    Zhang, Chuangnian; Zhang, Ju; Shi, Gaona; Song, Huijuan; Shi, Shengbin; Zhang, Xiuyuan; Huang, Pingsheng; Wang, Zhihong; Wang, Weiwei; Wang, Chun; Kong, Deling; Li, Chen

    2017-03-28

    In this study, the photochemical internalization (PCI) technique was adopted in a nanoparticle-based antigen delivery system to enhance antigen-specific CD8(+) T cell immune response for cancer immunotherapy. Pheophorbide A, a hydrophobic photosensitizer, grafted with polyethylenimine (PheoA-PEI) with endosome escape activity and near-infrared imaging capability was prepared. A model antigen ovalbumin (OVA) was then complexed with PheoA-PEI to form PheoA-PEI/OVA nanoparticles (PheoA-PEI/OVA NPs) that are responsive to light. Flow cytometry analysis revealed increased endocytosis in a murine dendritic cell line (DC2.4) that was treated with PheoA-PEI/OVA NPs compared to free OVA. Generation of reactive oxygen species (ROS) in DC2.4 cells was also confirmed quantitatively and qualitatively using 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA). Confocal laser scanning microscopy (CLSM) further demonstrated that the PheoA-PEI/OVA NPs enhanced cytosolic antigen release after light stimulation. Moreover, PheoA-PEI/OVA NP treated DC2.4 cells exhibited enhanced cross-presentation to B3Z T cell hybridoma in vitro after light irradiation, substantially increased compared to those treated with free OVA. Consistently, in vivo results revealed upregulation of CD3(+)CD8(+)T lymphocytes in tumors of mice treated with dendritic cells plus PheoA-PEI/OVA NPs and light irradiation. The activated T cell response is partly responsible for the inhibitory effect on E.G7 tumor growth in mice immunized with dendritic cells plus PheoA-PEI/OVA NPs and light irradiation. Our results demonstrate the feasibility to enhance antigen-specific CD8(+) T cell immune response by light-responsive nanoparticle-based vaccine delivery for cancer immunotherapy.

  3. Fusions of Breast Carcinoma and Dendritic Cells as a Vaccine for the Treatment of Metastatic Breast Cancer

    DTIC Science & Technology

    2005-07-01

    regulate the development of anti-tumor immune responses . Importantly, our results show that, compared to unfused DC and tumor cells, the DC/ breast tumor...AD Award Number: DAMD17-03-1-0487 TITLE: Fusions of Breast Carcinoma and Dendritic Cells as a Vaccine for the Treatment of Metastatic Breast Cancer ...4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Fusions of Breast Carcinoma and Dendritic Cells as a Vaccine for the Treatment of Metastatic Breast Cancer

  4. Development of an epitope-based HIV-1 vaccine strategy from HIV-1 lipopeptide to dendritic-based vaccines.

    PubMed

    Surenaud, Mathieu; Lacabaratz, Christine; Zurawski, Gérard; Lévy, Yves; Lelièvre, Jean-Daniel

    2017-10-01

    Development of a safe, effective and globally affordable Human Immunodeficiency Virus strain 1 (HIV-1) vaccine offers the best hope for future control of the HIV-1 pandemic. However, with the exception of the recent RV144 trial, which elicited a modest level of protection against infection, no vaccine candidate has shown efficacy in preventing HIV-1 infection or in controlling virus replication in humans. There is also a great need for a successful immunotherapeutic vaccine since combination antiretroviral therapy (cART) does not eliminate the reservoir of HIV-infected cells. But to date, no vaccine candidate has proven to significantly alter the natural history of an individual with HIV-1 infection. Areas covered: For over 25 years, the ANRS (France Recherche Nord&Sud Sida-HIV hépatites) has been committed to an original program combining basic science and clinical research developing an epitope-based vaccine strategy to induce a multiepitopic cellular response against HIV-1. This review describes the evolution of concepts, based on strategies using HIV-1 lipopeptides towards the use of dendritic cell (DC) manipulation. Expert commentary: Understanding the crucial role of DCs in immune responses allowed moving from the non-specific administration of HIV-1 sequences with lipopeptides to DC-based vaccines. These DC-targeting strategies should improve HIV-1 vaccine efficacy.

  5. Development of an in vitro dendritic cell-based test for skin sensitizer identification.

    PubMed

    Neves, Bruno Miguel; Rosa, Susana Carvalho; Martins, João Demétrio; Silva, Ana; Gonçalo, Margarida; Lopes, Maria Celeste; Cruz, Maria Teresa

    2013-03-18

    The sensitizing potential of chemicals is currently assessed using animal models. However, ethical and economic concerns and the recent European legislative framework triggered intensive research efforts in the development and validation of alternative methods. Therefore, the aim of this study was to develop an in vitro predictive test based on the analysis and integration of gene expression and intracellular signaling profiles of chemical-exposed skin-derived dendritic cells. Cells were treated with four known sensitizers and two nonsensitizers, and the effects on the expression of 20 candidate genes and the activation of MAPK, PI3K/Akt, and NF-κB signaling pathways were analyzed by real-time reverse transcription polymerase chain reaction and Western blotting, respectively. Genes Trxr1, Hmox1, Nqo1, and Cxcl10 and the p38 MAPK and JNK signaling pathways were identified as good predictor variables and used to construct a dichotomous classifier. For validation of the model, 12 new chemicals were then analyzed in a blind assay, and from these, 11 were correctly classified. Considering the total of 18 compounds tested here, 17 were correctly classified, representing a concordance of 94%, with a sensitivity of 92% (12 of 13 sensitizers identified) and a specificity of 100% (5 of 5 nonsensitizers identified). Additionally, we tested the ability of our model to discriminate sensitizers from nonallergenic but immunogenic compounds such as lipopolysaccharide (LPS). LPS was correctly classified as a nonsensitizer. Overall, our results indicate that the analysis of proposed gene and signaling pathway signatures in a mouse fetal skin-derived dendritic cell line represents a valuable model to be integrated in a future in vitro test platform.

  6. Dendritic Cells The Tumor Microenvironment and the Challenges for an Effective Antitumor Vaccination

    PubMed Central

    Benencia, Fabian; Sprague, Leslee; McGinty, John; Pate, Michelle; Muccioli, Maria

    2012-01-01

    Many clinical trials have been carried out or are in progress to assess the therapeutic potential of dendritic-cell- (DC-) based vaccines on cancer patients, and recently the first DC-based vaccine for human cancer was approved by the FDA. Herewith, we describe the general characteristics of DCs and different strategies to generate effective antitumor DC vaccines. In recent years, the relevance of the tumor microenvironment in the progression of cancer has been highlighted. It has been shown that the tumor microenvironment is capable of inactivating various components of the immune system responsible for tumor clearance. In particular, the effect of the tumor microenvironment on antigen-presenting cells, such as DCs, does not only render these immune cells unable to induce specific immune responses, but also turns them into promoters of tumor growth. We also describe strategies likely to increase the efficacy of DC vaccines by reprogramming the immunosuppressive nature of the tumor microenvironment. PMID:22505809

  7. Strategies for recruiting and targeting dendritic cells for optimizing HIV vaccines.

    PubMed

    Ahlers, Jeffrey D; Belyakov, Igor M

    2009-06-01

    The natural immune response against HIV and other pathogens that cause chronic infection is insufficient for protection. Novel vaccine design and delivery strategies for optimization of HIV vaccines are urgently needed. These will require a better understanding of a number of factors including: the interplay between dendritic cells (DCs) and multiple cell types in linking innate signals that orchestrate subsequent adaptive immune responses; the regulation of DC function by viral and bacterial vectors, adjuvants and immunomodulatory molecules; and the temporal and synergistic relationships between C-type lectins, Toll-like receptors, NOD-like receptors and RIG-1-like receptors, chemokines and cytokines in enhancing immune responses. Here, we discuss current vaccine strategies for optimizing the induction of immune responses by the recruitment of DCs and the targeting of vaccine antigens to DCs.

  8. Self-Amplifying Replicon RNA Vaccine Delivery to Dendritic Cells by Synthetic Nanoparticles.

    PubMed

    McCullough, Kenneth C; Milona, Panagiota; Thomann-Harwood, Lisa; Démoulins, Thomas; Englezou, Pavlos; Suter, Rolf; Ruggli, Nicolas

    2014-10-16

    Dendritic cells (DC) play essential roles determining efficacy of vaccine delivery with respect to immune defence development and regulation. This renders DCs important targets for vaccine delivery, particularly RNA vaccines. While delivery of interfering RNA oligonucleotides to the appropriate intracellular sites for RNA-interference has proven successful, the methodologies are identical for RNA vaccines, which require delivery to RNA translation sites. Delivery of mRNA has benefitted from application of cationic entities; these offer value following endocytosis of RNA, when cationic or amphipathic properties can promote endocytic vesicle membrane perturbation to facilitate cytosolic translocation. The present review presents how such advances are being applied to the delivery of a new form of RNA vaccine, replicons (RepRNA) carrying inserted foreign genes of interest encoding vaccine antigens. Approaches have been developed for delivery to DCs, leading to the translation of the RepRNA and encoded vaccine antigens both in vitro and in vivo. Potential mechanisms favouring efficient delivery leading to translation are discussed with respect to the DC endocytic machinery, showing the importance of cytosolic translocation from acidifying endocytic structures. The review relates the DC endocytic pathways to immune response induction, and the potential advantages for these self-replicating RNA vaccines in the near future.

  9. Targeting dendritic cells to accelerate T-cell activation overcomes a bottleneck in tuberculosis vaccine efficacy

    PubMed Central

    Griffiths, Kristin L.; Ahmed, Mushtaq; Das, Shibali; Gopal, Radha; Horne, William; Connell, Terry D.; Moynihan, Kelly D.; Kolls, Jay K.; Irvine, Darrell J.; Artyomov, Maxim N.; Rangel-Moreno, Javier; Khader, Shabaana A.

    2016-01-01

    The development of a tuberculosis (TB) vaccine that induces sterilizing immunity to Mycobacterium tuberculosis infection has been elusive. Absence of sterilizing immunity induced by TB vaccines may be due to delayed activation of mucosal dendritic cells (DCs), and subsequent delay in antigen presentation and activation of vaccine-induced CD4+ T-cell responses. Here we show that pulmonary delivery of activated M. tuberculosis antigen-primed DCs into vaccinated mice, at the time of M. tuberculosis exposure, can overcome the delay in accumulation of vaccine-induced CD4+ T-cell responses. In addition, activating endogenous host CD103+ DCs and the CD40–CD40L pathway can similarly induce rapid accumulation of vaccine-induced lung CD4+ T-cell responses and limit early M. tuberculosis growth. Thus, our study provides proof of concept that targeting mucosal DCs can accelerate vaccine-induced T-cell responses on M. tuberculosis infection, and provide insights to overcome bottlenecks in TB vaccine efficacy. PMID:28004802

  10. Administration route-dependent vaccine efficiency of murine dendritic cells pulsed with antigens

    PubMed Central

    Okada, N; Tsujino, M; Hagiwara, Y; Tada, A; Tamura, Y; Mori, K; Saito, T; Nakagawa, S; Mayumi, T; Fujita, T; Yamamoto, A

    2001-01-01

    Dendritic cells (DCs) loaded with tumour antigens have been successfully used to induce protective tumour immunity in murine models and human trials. However, it is still unclear which DC administration route elicits a superior therapeutic effect. Herein, we investigated the vaccine efficiency of DC2.4 cells, a murine dendritic cell line, pulsed with ovalbumin (OVA) in the murine E.G7-OVA tumour model after immunization via various routes. After a single vaccination using 1 × 106OVA-pulsed DC2.4 cells, tumour was completely rejected in the intradermally (i.d.; three of four mice), subcutaneously (s.c.; three of four mice), and intraperitoneally (i.p.; one of four mice) immunized groups. Double vaccinations enhanced the anti-tumour effect in all groups except the intravenous (i.v.) group, which failed to achieve complete rejection. The anti-tumour efficacy of each immunization route was correlated with the OVA-specific cytotoxic T lymphocyte (CTL) activity evaluated on day 7 post-vaccination. Furthermore, the accumulation of DC2.4 cells in the regional lymph nodes was detected only in the i.d.-and s.c.-injected groups. These results demonstrate that the administration route of antigen-loaded DCs affects the migration of DCs to lymphoid tissues and the magnitude of antigen-specific CTL response. Furthermore, the immunization route affects vaccine efficiency. © 2001 Cancer Research Campaign http://www.bjcancer.com PMID:11384109

  11. Induction of Immunological Tolerance to Adenoviral Vectors by Using a Novel Dendritic Cell-Based Strategy

    PubMed Central

    Kushwah, Rahul; Oliver, Jordan R.; Duan, Rongqi; Zhang, Li; Keshavjee, Shaf

    2012-01-01

    The success of helper-dependent adenoviral (HD-Ad) vector-mediated lung gene therapy is hampered by the host immune response, which limits pulmonary transgene expression following multiple rounds of vector readminstration. Here, we show that HD-Ad-mediated pulmonary gene expression is sustained even upon three rounds of readministration to immunodeficient mice, highlighting the need to suppress the adaptive immune response for sustained gene expression following vector readministration. Therefore, we devised a dendritic cell (DC)-based strategy for induction of immunological tolerance toward HD-Ad vectors. DCs derived in the presence of interleukin-10 (IL-10) are refractory to HD-Ad-induced maturation and instead facilitate generation of IL-10-producing Tr1 regulatory T cells which suppress HD-Ad-induced T cell proliferation. Delivery of HD-Ad-pulsed, IL-10-modified DCs to mice induces long-lasting immunological tolerance to HD-Ad vectors, whereby pulmonary DC maturation, the T cell response, and antibody response to HD-Ad vectors are suppressed even after three rounds of pulmonary HD-Ad readministration. Moreover, sustained transgene expression is also observed in the lungs of mice immunized with HD-Ad-pulsed, IL-10-modified DCs even after three rounds of pulmonary HD-Ad delivery. Taken together, these studies identify the use of DCs generated in the presence of IL-10 as a novel strategy to induce long-lasting immune tolerance to HD-Ad vectors. PMID:22258241

  12. Anti-Tumor Effects From Dendritic Cell-Based Cancer Immunotherapy Using Liposomal Bubbles and Ultrasound

    NASA Astrophysics Data System (ADS)

    Oda, Yusuke; Suzuki, Ryo; Hirata, Keiichi; Nomura, Tetsuya; Utoguchi, Naoki; Maruyama, Kazuo

    2011-09-01

    Dendritic cell (DC)-based cancer immunotherapy has the potential to be a minimally invasive therapy that could prevent cancer metastasis and recurrence. Recently, in order to induce effective anti-tumor immunity, we developed a novel antigen delivery system for DCs by the combination of ultrasound (US) and liposomal bubbles (Bubble Liposomes: BLs) with entrapped perfluoropropane gas. In this study, we investigated the induction of antigen specific immune responses in vivo and the anti-tumor effect caused by immunization of DCs treated with BLs and US. For the immunization of DCs which had delivered antigen, using BLs and US, the mice induced antigen specific cytotoxic T lymphocytes (CTLs) were found to be the main effector cells in DC-based cancer immunotherapy. In addition, immunization with DCs that had been pulsed with antigen using BLs and US completely suppressed tumor growth Therefore, immunization of DCs with this antigen delivery system has promise for the efficient induction of anti-tumor immune responses.

  13. Ipilimumab administered to metastatic melanoma patients who progressed after dendritic cell vaccination

    PubMed Central

    Boudewijns, Steve; Koornstra, Rutger H. T.; Westdorp, Harm; Schreibelt, Gerty; van den Eertwegh, Alfons J. M.; Geukes Foppen, Marnix H.; Haanen, John B.; de Vries, I. Jolanda M.; Figdor, Carl G.; Bol, Kalijn F.; Gerritsen, Winald R.

    2016-01-01

    ABSTRACT Background: Ipilimumab has proven to be effective in metastatic melanoma patients. The purpose of this study was to determine the efficacy of ipilimumab in advanced melanoma patients who showed progressive disease upon experimental dendritic cell (DC) vaccination. Methods: Retrospective analysis of 48 stage IV melanoma patients treated with ipilimumab after progression upon DC vaccination earlier in their treatment. DC vaccination was given either as adjuvant treatment for stage III disease (n = 18) or for stage IV disease (n = 30). Ipilimumab (3 mg/kg) was administered every 3 weeks for up to 4 cycles. Results: Median time between progression upon DC vaccination and first gift of ipilimumab was 5.4 mo. Progression-free survival (PFS) rates for patients that received ipilimumab after adjuvant DC vaccination, and patients that received DC vaccination for stage IV melanoma, were 35% and 7% at 1 y and 35% and 3% at 2 y, while the median PFS was 2.9 mo and 3.1 mo, respectively. Median overall survival of patients pre-treated with adjuvant DC vaccination for stage III melanoma was not reached versus 8.0 mo (95% CI, 5.2–10.9) in the group pre-treated with DC vaccination for stage IV disease (HR of death, 0.36; p = 0.017). Grade 3 immune-related adverse events occurred in 19% of patients and one death (2%) was related to ipilimumab. Conclusions: Clinical responses to ipilimumab were found in a considerable number of advanced melanoma patients with progression after adjuvant DC vaccination for stage III disease, while the effect was very limited in patients who showed progression after DC vaccination for stage IV disease. PMID:27622070

  14. Duality at the gate: Skin dendritic cells as mediators of vaccine immunity and tolerance

    PubMed Central

    Nirschl, Christopher J; Anandasabapathy, Niroshana

    2016-01-01

    Since Edward Jenner's discovery that intentional exposure to cowpox could provide lifelong protection from smallpox, vaccinations have been a major focus of medical research. However, while the protective benefits of many vaccines have been successfully translated into the clinic, the cellular and molecular mechanisms that differentiate effective vaccines from sub-optimal ones are not well understood. Dendritic cells (DCs) are the gatekeepers of the immune system, and are ultimately responsible for the generation of adaptive immunity and lifelong protective memory through interactions with T cells. In addition to lymph node and spleen resident DCs, a number of tissue resident DC populations have been identified at barrier tissues, such as the skin, which migrate to the local lymph node (migDC). These populations have unique characteristics, and play a key role in the function of cutaneous vaccinations by shuttling antigen from the vaccination site to the draining lymph node, rapidly capturing freely draining antigens in the lymph node, and providing key stimuli to T cells. However, while migDCs are responsible for the generation of immunity following exposure to certain pathogens and vaccines, recent work has identified a tolerogenic role for migDCs in the steady state as well as during protein immunization. Here, we examine the roles and functions of skin DC populations in the generation of protective immunity, as well as their role as regulators of the immune system. PMID:26836327

  15. Efficiency of Dendritic Cell Vaccination against B16 Melanoma Depends on the Immunization Route

    PubMed Central

    Edele, Fanny; Dudda, Jan C.; Bachtanian, Eva; Jakob, Thilo; Pircher, Hanspeter; Martin, Stefan F.

    2014-01-01

    Dendritic cells (DC) presenting tumor antigens are crucial to induce potent T cell-mediated anti-tumor immune responses. Therefore DC-based cancer vaccines have been established for therapy, however clinical outcomes are often poor and need improvement. Using a mouse model of B16 melanoma, we found that the route of preventive DC vaccination critically determined tumor control. While repeated DC vaccination did not show an impact of the route of DC application on the prevention of tumor growth, a single DC vaccination revealed that both the imprinting of skin homing receptors and an enhanced proliferation state of effector T cells was seen only upon intracutaneous but not intravenous or intraperitoneal immunization. Tumor growth was prevented only by intracutaneous DC vaccination. Our results indicate that under suboptimal conditions the route of DC vaccination crucially determines the efficiency of tumor defense. DC-based strategies for immunotherapy of cancer should take into account the immunization route in order to optimize tissue targeting of tumor antigen specific T cells. PMID:25121970

  16. [Experimental study on activating antileukemic T cells by vaccination with dendritic cells pulsed with survivin].

    PubMed

    Zhang, Xiao-Hui; Xia, Ling-Hui; Liu, Zhong-Ping; Wei, Wen-Ning; Hu, Yu; Song, Shan-Jun

    2003-02-01

    The objective of this study is to investigate the effect of vaccination with dendritic cells pulsed with survivin antigen on activation of antileukemic T cells, and inhibiting proliferation of leukemic cells. The expression of survivin on acute leukemic cells were detected by cofocal microscopy and immunoprecipitation-Western blot. DCs collected from peripheral blood mononuclear cells were pulsed with survivin purified proteins. Stimulation index (SI) and antileukemia CTL induction were analyzed with (3)H-TdR incorporation and (51)Cr releasing assay, respectively. The phenotype of T cells and DCs were identified by flow cytometry. By immunofluorescence of bone marrow and peripheral blood mononuclear cells, survivin expression was detected in 16 out of 19 AML cases (84.2%). The results showed that survivin fluorescence distribution was in cytoplasm. DCs from peripheral blood mononuclear cells were successfully induced, with typical DC morphologic characteristic. The vaccination with dendritic cells pulsed with survivin antigen dramatically stimulated the proliferation of T cells. The DCs loading survivin activated T cells with higher CD4(+) T(H) ratio as compared with DCs group, T cells activated with DCs expressed CD8 and CD56. Survivin DCs significantly inhibited the growth of leukemic cells in vitro. In conclusion, survivin antigen expressed in the cytoplasm of leukemic cells, leukemic vaccination with DCs pulsed with survivin antigen in vitro inhibited the proliferation of leukemic cells, that may be a pathway for therapy of leukemia.

  17. Induction of Indoleamine 2, 3-Dioxygenase in Human Dendritic Cells by a Cholera Toxin B Subunit—Proinsulin Vaccine

    PubMed Central

    Mbongue, Jacques C.; Nicholas, Dequina A.; Zhang, Kangling; Kim, Nan-Sun; Hamilton, Brittany N.; Larios, Marco; Zhang, Guangyu; Umezawa, Kazuo; Firek, Anthony F.; Langridge, William H. R.

    2015-01-01

    Dendritic cells (DC) interact with naïve T cells to regulate the delicate balance between immunity and tolerance required to maintain immunological homeostasis. In this study, immature human dendritic cells (iDC) were inoculated with a chimeric fusion protein vaccine containing the pancreatic β-cell auto-antigen proinsulin linked to a mucosal adjuvant the cholera toxin B subunit (CTB-INS). Proteomic analysis of vaccine inoculated DCs revealed strong up-regulation of the tryptophan catabolic enzyme indoleamine 2, 3-dioxygenase (IDO1). Increased biosynthesis of the immunosuppressive enzyme was detected in DCs inoculated with the CTB-INS fusion protein but not in DCs inoculated with proinsulin, CTB, or an unlinked combination of the two proteins. Immunoblot and PCR analyses of vaccine treated DCs detected IDO1mRNA by 3 hours and IDO1 protein synthesis by 6 hours after vaccine inoculation. Determination of IDO1 activity in vaccinated DCs by measurement of tryptophan degradation products (kynurenines) showed increased tryptophan cleavage into N-formyl kynurenine. Vaccination did not interfere with monocytes differentiation into DC, suggesting the vaccine can function safely in the human immune system. Treatment of vaccinated DCs with pharmacological NF-κB inhibitors ACHP or DHMEQ significantly inhibited IDO1 biosynthesis, suggesting a role for NF-κB signaling in vaccine up-regulation of dendritic cell IDO1. Heat map analysis of the proteomic data revealed an overall down-regulation of vaccinated DC functions, suggesting vaccine suppression of DC maturation. Together, our experimental data indicate that CTB-INS vaccine induction of IDO1 biosynthesis in human DCs may result in the inhibition of DC maturation generating a durable state of immunological tolerance. Understanding how CTB-INS modulates IDO1 activity in human DCs will facilitate vaccine efficacy and safety, moving this immunosuppressive strategy closer to clinical applications for prevention of type 1

  18. CCR7-CCL19/CCL21-regulated dendritic cells are responsible for effectiveness of sublingual vaccination.

    PubMed

    Song, Joo-Hye; Kim, Jung-Im; Kwon, Hyung-Joon; Shim, Doo-Hee; Parajuli, Nirmala; Cuburu, Nicolas; Czerkinsky, Cecil; Kweon, Mi-Na

    2009-06-01

    Our previous studies demonstrated the potential of the sublingual (s.l.) route for delivering vaccines capable of inducing mucosal as well as systemic immune responses. Those findings prompted us to attempt to identify possible inductive mechanism of s.l. vaccination for immune responses. Within 2 h after s.l. administration with cholera toxin (CT), significantly higher numbers of MHC class II(+) cells accumulated in the s.l. mucosa. Of note, there were brisk expression levels of both CCL19 and CCL21 in cervical lymph nodes (CLN) 24 h after s.l. vaccination with CT. In reconstitution experiments using OVA-specific CD4(+) or CD8(+) T cells, s.l. vaccination elicited strong Ag-specific T cell proliferation mainly in CLN. Interestingly, Ag-specific T cell proliferation completely disappeared in CD11c-depleted and CCR7(-/-) mice but not in Langerin-depleted, macrophage-depleted, and CCR6(-/-) mice. Similar to CD4(+) T cell responses, induction of Ag-specific IgG (systemic) and IgA (mucosal) Ab responses were significantly reduced in CD11c-depleted and CCR7(-/-) mice after s.l. vaccination with OVA plus CT. Although CD8alpha(-) dendritic cells ferried Ag from the s.l. mucosa, both migratory CD8alpha(-) and resident CD8alpha(+) dendritic cells were essential to prime CD4(+) T cells in the CLN. On the basis of these findings, we believe that CCR7 expressed CD8alpha(-)CD11c(+) cells ferry Ag in the s.l. mucosa, migrate into the CLN, and share the Ag with resident CD8alpha(+)CD11c(+) cells for the initiation of Ag-specific T and B cell responses following s.l. challenge. We propose that the s.l. mucosa is one of the effective mucosal inductive sites regulated by the CCR7-CCL19/CCL21 pathway.

  19. Study on biological characters of SGC7901 gastric cancer cell-dendritic cell fusion vaccines

    PubMed Central

    Zhang, Kun; Gao, Peng-Fen; Yu, Pei-Wu; Rao, Yun; Zhou, Li-Xin

    2006-01-01

    AIM: To detect the biological characters of the SGC7901 gastric cancer cell-dendritic cell fusion vaccines. METHODS: The suspending living SGC7901 gastric cancer cells and dendritic cells were induced to be fusioned by polyethylene glycol. Pure fusion cells were obtained by selective culture with the HAT/HT culture systems. The fusion cells were counted at different time points of culture and their growth curves were drawn to reflect their proliferative activities. The fusion cells were also cultured in culture medium to investigate whether they could grow into cell clones. MTT method was used to test the stimulating abilities of the fusion cells on T lymphocytes’ proliferations. Moreover, the fusion cells were planted into nude mice to observe whether they could grow into new planted tumors in this kind of immunodeficiency animals. RESULTS: The fusion cells had weaker proliferative activity and clone abilities than their parental cells. When they were cultured, the counts of cells did not increase remarkably, nor could they grow into cell clones in culture medium. The fusion cells could not grow into new planted tumors after planted into nude mice. The stimulating abilities of the fusion cells on T lymphocytes’ proliferations were remarkably increased than their parental dendritic cells. CONCLUSION: The SGC7901 gastric cancer cell-dendritic cell fusion vaccines have much weaker proliferative abilities than their parental cells, but they keep strong abilities to irritate the T lymphocytes and have no abilities to grow into new planted tumors in immunodeficiency animals. These are the biological basis for their anti-tumor biotherapies. PMID:16733866

  20. Exposure to nicotine adversely affects the dendritic cell system and compromises host response to vaccination.

    PubMed

    Nouri-Shirazi, Mahyar; Guinet, Elisabeth

    2012-03-01

    The magnitude of Th1 cells response to vaccination is a critical factor in determining protection from clinical disease. Our previous in vitro studies suggested that exposure to the nicotine component of cigarette smoke skews the differentiation of both human and mouse dendritic cell (DC) precursors into atypical DCs (DCs differentiated ex vivo in the presence of nicotine) lacking parameters essential for the development of Th1-mediated immunity. In this study, we determined the causal relationship between nicotine-induced DC alterations and host response to vaccines. We show that animals exposed to nicotine failed to develop and maintain Ag-specific effector memory Th1 cells and Ab production to protein-based vaccine formulated with Th1 adjuvants. Accordingly, both prophylactic and therapeutic vaccines failed to protect and cure the nicotine-exposed mice from disease. More importantly, we demonstrate the nicotine-induced defects in the biological activities of in vivo DCs as an underlying mechanism. Indeed, i.v. administration of DCs differentiated in the presence of nicotine preferentially promoted the development of Ag-specific IL-4-producing effector cells in the challenged mice. In addition, DC subsets isolated from mice exposed to nicotine produced significantly less cytokines in response to Th1 adjuvants and inadequately supported the development of Ag-specific Th1 cells. Collectively, our studies suggest that nicotine-induced defects in the DC system compromises vaccine efficacy in smokers.

  1. Tetanus toxoid and CCL3 improve dendritic cell vaccines in mice and glioblastoma patients.

    PubMed

    Mitchell, Duane A; Batich, Kristen A; Gunn, Michael D; Huang, Min-Nung; Sanchez-Perez, Luis; Nair, Smita K; Congdon, Kendra L; Reap, Elizabeth A; Archer, Gary E; Desjardins, Annick; Friedman, Allan H; Friedman, Henry S; Herndon, James E; Coan, April; McLendon, Roger E; Reardon, David A; Vredenburgh, James J; Bigner, Darell D; Sampson, John H

    2015-03-19

    After stimulation, dendritic cells (DCs) mature and migrate to draining lymph nodes to induce immune responses. As such, autologous DCs generated ex vivo have been pulsed with tumour antigens and injected back into patients as immunotherapy. While DC vaccines have shown limited promise in the treatment of patients with advanced cancers including glioblastoma, the factors dictating DC vaccine efficacy remain poorly understood. Here we show that pre-conditioning the vaccine site with a potent recall antigen such as tetanus/diphtheria (Td) toxoid can significantly improve the lymph node homing and efficacy of tumour-antigen-specific DCs. To assess the effect of vaccine site pre-conditioning in humans, we randomized patients with glioblastoma to pre-conditioning with either mature DCs or Td unilaterally before bilateral vaccination with DCs pulsed with Cytomegalovirus phosphoprotein 65 (pp65) RNA. We and other laboratories have shown that pp65 is expressed in more than 90% of glioblastoma specimens but not in surrounding normal brain, providing an unparalleled opportunity to subvert this viral protein as a tumour-specific target. Patients given Td had enhanced DC migration bilaterally and significantly improved survival. In mice, Td pre-conditioning also enhanced bilateral DC migration and suppressed tumour growth in a manner dependent on the chemokine CCL3. Our clinical studies and corroborating investigations in mice suggest that pre-conditioning with a potent recall antigen may represent a viable strategy to improve anti-tumour immunotherapy.

  2. Evaluation of Immune Responses Mediated by Listeria-Stimulated Human Dendritic Cells: Implications for Cancer Vaccine Therapy

    DTIC Science & Technology

    2013-07-01

    by Listeria -Stimulated Human Dendritic Cells: Implications for Cancer Vaccine Therapy PRINCIPAL INVESTIGATOR: David J. Chung, MD, PhD...2013 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-11-1-0384 Evaluation of Immune Responses Mediated by Listeria -Stimulated Human Dendritic...Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The purpose of this project is to study the immunomodulatory effect of Listeria on human

  3. Adenovirus MART-1-engineered autologous dendritic cell vaccine for metastatic melanoma.

    PubMed

    Butterfield, Lisa H; Comin-Anduix, Begonya; Vujanovic, Lazar; Lee, Yohan; Dissette, Vivian B; Yang, Jin-Quan; Vu, Hong T; Seja, Elizabeth; Oseguera, Denise K; Potter, Douglas M; Glaspy, John A; Economou, James S; Ribas, Antoni

    2008-04-01

    We performed a phase 1/2 trial testing the safety, toxicity, and immune response of a vaccine consisting of autologous dendritic cells (DCs) transduced with a replication-defective adenovirus (AdV) encoding the full-length melanoma antigen MART-1/Melan-A (MART-1). This vaccine was designed to activate MART-1-specific CD+8 and CD4+ T cells. Metastatic melanoma patients received 3 injections of 10(6) or 10(7) DCs, delivered intradermally. Cell surface phenotype and cytokine production of the DCs used for the vaccines were tested, and indicated intermediate maturity. CD8+ T-cell responses to MART-1 27-35 were assessed by both major histocompatibility complex class I tetramer and interferon (IFN)-gamma enzyme-linked immunosorbent spot (ELISPOT) before, during, and after each vaccine and CD4+ T-cell responses to MART-1 51-73 were followed by IFN-gamma ELISPOT. We also measured antigen response breadth. Determinant spreading from the immunizing antigen MART-1 to other melanoma antigens [gp100, tyrosinase, human melanoma antigen-A3 (MAGE-A3)] was assessed by IFN-gamma ELISPOT. Twenty-three patients were enrolled and 14 patients received all 3 scheduled DC vaccines. Significant CD8+ and/or CD4+ MART-1-specific T-cell responses were observed in 6/11 and 2/4 patients evaluated, respectively, indicating that the E1-deleted adenovirus encoding the cDNA for MART-1/Melan-A (AdVMART1)/DC vaccine activated both helper and killer T cells in vivo. Responses in CD8+ and CD4+ T cells to additional antigens were noted in 2 patients. The AdVMART1-transduced DC vaccine was safe and immunogenic in patients with metastatic melanoma.

  4. Adenovirus MART-1–engineered Autologous Dendritic Cell Vaccine for Metastatic Melanoma

    PubMed Central

    Butterfield, Lisa H.; Comin-Anduix, Begonya; Vujanovic, Lazar; Lee, Yohan; Dissette, Vivian B.; Yang, Jin-Quan; Vu, Hong T.; Seja, Elizabeth; Oseguera, Denise K.; Potter, Douglas M.; Glaspy, John A.; Economou, James S.; Ribas, Antoni

    2013-01-01

    Summary We performed a phase 1/2 trial testing the safety, toxicity, and immune response of a vaccine consisting of autologous dendritic cells (DCs) transduced with a replication-defective adenovirus (AdV) encoding the full-length melanoma antigen MART-1/Melan-A (MART-1). This vaccine was designed to activate MART-1–specific CD8+ and CD4+ T cells. Metastatic melanoma patients received 3 injections of 106 or 107 DCs, delivered intradermally. Cell surface phenotype and cytokine production of the DCs used for the vaccines were tested, and indicated intermediate maturity. CD8+ T-cell responses to MART-127-35 were assessed by both major histocompatibility complex class I tetramer and interferon (IFN)-γ enzyme-linked immunosorbent spot (ELISPOT) before, during, and after each vaccine and CD4+ T-cell responses to MART-151-73 were followed by IFN-γ ELISPOT. We also measured antigen response breadth. Determinant spreading from the immunizing antigen MART-1 to other melanoma antigens [gp100, tyrosinase, human melanoma antigen-A3 (MAGE-A3)] was assessed by IFN-γ ELISPOT. Twenty-three patients were enrolled and 14 patients received all 3 scheduled DC vaccines. Significant CD8+ and/or CD4+ MART-1–specific T-cell responses were observed in 6/11 and 2/4 patients evaluated, respectively, indicating that the E1-deleted adeno-virus encoding the cDNA for MART-1/Melan-A (AdV-MART1)/DC vaccine activated both helper and killer T cells in vivo. Responses in CD8+ and CD4+ T cells to additional antigens were noted in 2 patients. The AdVMART1-transduced DC vaccine was safe and immunogenic in patients with metastatic melanoma. PMID:18317358

  5. Modeling dendritic cell vaccination for influenza prophylaxis: potential applications for niche populations.

    PubMed

    Konduri, Vanaja; Decker, William K; Halpert, Matthew M; Gilbert, Brian; Safdar, Amar

    2013-06-01

    Cancer patients can exhibit negligible responses to prophylactic vaccinations, including influenza vaccination. To help address this issue, we developed in vitro and in vivo models of dendritic cell (DC) immunotherapy for the prevention of influenza virus infection. Human cord blood (CB)-derived or mouse splenocyte-derived DCs were loaded with purified recombinant hemagglutinin (rHA). T-cell responses to HA-loaded CB-derived DCs were determined by ELISpot. Protective efficacy was determined by vaccination of BALB/c mice with a single injection of 10(6) autologous DCs. DC migration to peripheral lymphoid organs was verified by carboxyfluorescein succinimidyl ester staining, and HA-specific antibody titers were determined by enzyme-linked immunosorbent assay. Mice were then challenged intranasally with BALB/c-adapted A/New Caledonia influenza virus derived from four consecutive lung pool passages. Antigen-presenting cell (APC) dysfunction was modeled using the MAFIA transgenic system, in which the Csf1r promoter conditionally drives AP20178-inducible Fas. CB-derived human DCs were able to generate de novo T-cell responses against rHA, as determined by a system of rigorous controls. Mice vaccinated intraperitoneally developed HA titers detectable at serum dilutions of >1:1000. HA seroconverters survived virus challenge, whereas unvaccinated controls and vaccinated nonseroconverters lost weight and died. Furthermore, use of a model of APC-specific immunosuppression revealed that DC vaccination could generate HA-specific antibody titers under conditions in which protein vaccination could not. The model demonstrates that DC immunotherapy for the prevention of influenza is feasible, and studies are underway to determine whether populations of immunosuppressed individuals might ultimately benefit from the procedure.

  6. DNA vaccines targeting the encoded antigens to dendritic cells induce potent antitumor immunity in mice.

    PubMed

    Cao, Jun; Jin, Yiqi; Li, Wei; Zhang, Bin; He, Yang; Liu, Hongqiang; Xia, Ning; Wei, Huafeng; Yan, Jian

    2013-08-14

    Although DNA vaccine holds a great potential for cancer immunotherapy, effective long-lasting antitumoral immunity sufficient to induce durable responses in cancer patients remains to be achieved. Considering the pivotal role of dendritic cells (DC) in the antigen processing and presentation, we prepared DC-targeting DNA vaccines by fusing tumor-associated antigen HER2/neu ectodomain to single chain antibody fragment (scFv) from NLDC-145 antibody specific for DC-restricted surface molecule DEC-205 (scFvNLDC-145), and explored its antitumoral efficacy and underlying mechanisms in mouse breast cancer models. In vivo targeting assay demonstrated that scFvNLDC-145 specifically delivered DNA vaccine-encoded antigen to DC. Compared with untargeted HER2/neu DNA vaccines, vaccination with scFvNLDC-145-HER2/neu markedly promoted the HER2/neu-specific cellular and humoral immune responses with long-lasting immune memory, resulting in effective protection against challenge of HER2/neu-positive D2F2/E2 breast tumor while ineffective in parental HER2/neu-negative D2F2 breast tumor. More importantly, in combination with temporary depletion of regulatory T cells (Treg) by low-dose cyclophosphamide, vaccination with scFvNLDC-145-HER2/neu induced the regression of established D2F2/E2 breast tumor and significantly retarded the development of spontaneous mammary carcinomas in transgenic BALB-neuT mice. Our findings demonstrate that DC-targeted DNA vaccines for in vivo direct delivery of tumor antigens to DC could induce potent antigen-specific cellular and humoral immune responses and, if additional combination with systemic Treg depletion, was able to elicit an impressively therapeutic antitumoral activity, providing a rationale for further development of this approach for cancer treatment.

  7. Targeting of antigens to skin dendritic cells: possibilities to enhance vaccine efficacy

    PubMed Central

    Romani, Nikolaus; Thurnher, Martin; Idoyaga, Juliana; Steinman, Ralph M; Flacher, Vincent

    2010-01-01

    Vaccinations in medicine are commonly administered through the skin. Therefore, the vaccine is immunologically processed by antigen-presenting cells of the skin. There is recent evidence that the clinically less often used intradermal route is effective; in cases even superior to the conventional subcutaneous or intramuscular route. Professional antigen-presenting cells of the skin comprise epidermal Langerhans cells (CD207/langerin+), dermal langerin− and dermal langerin+ dendritic cells (DCs). In human skin, langerin− dermal DCs can be further subdivided on the basis of their reciprocal CD1a and CD14 expression. The relative contributions of these subsets to the generation of immunity or tolerance are still unclear. Langerhans cells in human skin seem to be specialized for induction of cytotoxic T lymphocytes. Likewise, mouse Langerhans cells are capable of cross-presentation and of protecting against experimental tumours. It is desirable to harness these properties for immunotherapy. A promising strategy to dramatically improve the outcome of vaccinations is ‘antigen targeting’. Thereby, the vaccine is delivered directly and selectively to defined types of skin DCs. Targeting is achieved by means of coupling antigen to antibodies that recognize cell surface receptors on DCs. This approach is being widely explored. Little is known, however, about the events that take place in the skin and the DCs subsets involved therein. This topic will be discussed in this article. PMID:20368713

  8. Progress on the development of human in vitro dendritic cell based assays for assessment of the sensitizing potential of a compound

    SciTech Connect

    Galvao dos Santos, G.; Reinders, J.; Ouwehand, K.; Rustemeyer, T.; Scheper, R.J.; Gibbs, S.

    2009-05-01

    Allergic contact dermatitis is the result of an adaptive immune response of the skin to direct exposure to an allergen. Since many chemicals are also allergens, European regulations require strict screening of all ingredients in consumer products. Until recently, identifying a potential allergen has completely relied on animal testing (e.g.: Local Lymph Node Assay). In addition to the ethical problems, both the 7th Amendment to the Cosmetics Directive and REACH have stimulated the development of alternative tests for the assessment of potential sensitizers. This review is aimed at summarising the progress on cell based assays, in particular dendritic cell based assays, being developed as animal alternatives. Primary cells (CD34{sup +} derived dendritic cells, monocyte derived dendritic cells) as well as dendritic cell-like cell lines (THP-1, U-937, MUTZ-3, KG-1, HL-60, and K562) are extensively described along with biomarkers such as cell surface markers, cytokines, chemokines and kinases. From this review, it can be concluded that no single cell based assay nor single marker is yet able to distinguish all sensitizers from non-sensitizers in a test panel of chemicals, nor is it possible to rank the sensitizing potential of the test chemicals. This suggests that sensitivity and specificity may be increased by a tiered assay approach. Only a limited number of genomic and proteomic studies have been completed until now. Such studies have the potential to identify novel biomarkers for inclusion in future assay development. Although progress is promising, this review suggests that it may be difficult to meet the up and coming European regulatory deadlines.

  9. The use of dendritic cells for peptide-based vaccination in cancer immunotherapy.

    PubMed

    Salem, Mohamed L

    2014-01-01

    Effective antitumor immunity requires the generation and persistence of functional tumor-specific T-cell responses. Among the critical factors that often control these responses is how the antigen is delivered and presented to T cells. The use of peptide-based vaccination has been found to be a promising means to induce antitumor T-cell responses but with limited effects even if the peptide is co-delivered with a potent adjuvant. This limited response could be due to cancer-induced dysfunction in dendritic cells (DC), which play a central role in shaping the quantity and quality of antitumor immunity. Therefore, DC-based peptide delivery of tumor antigen is becoming a potential approach in cancer immunotherapy. In this approach, autologous DC are generated from their precursors in bone marrow or peripheral blood mononuclear cells, loaded with tumor antigen(s) and then infused back to the tumor-bearing host in about 7 days. This DC-based vaccination can act as an antigen delivery vehicle as well as a potent adjuvant, resulting in measurable antitumor immunity in several cancer settings in preclinical and clinical studies. This chapter focuses on DC-based vaccination and how this approach can be more efficacious in cancer immunotherapy.Effective antitumor immunity requires the generation and persistence of functional tumor-specific T-cell responses. Among the critical factors that often control these responses is how the antigen is delivered and presented to T cells. The use of peptide-based vaccination has been found to be a promising means to induce antitumor T-cell responses but with limited effects even if the peptide is co-delivered with a potent adjuvant. This limited response could be due to cancer-induced dysfunction in dendritic cells (DC), which play a central role in shaping the quantity and quality of antitumor immunity. Therefore, DC-based peptide delivery of tumor antigen is becoming a potential approach in cancer immunotherapy. In this approach

  10. Dendritic Cell-Based Immunotherapies to Fight HIV: How Far from a Success Story? A Systematic Review and Meta-Analysis.

    PubMed

    Coelho, Antonio Victor Campos; de Moura, Ronald Rodrigues; Kamada, Anselmo Jiro; da Silva, Ronaldo Celerino; Guimarães, Rafael Lima; Brandão, Lucas André Cavalcanti; de Alencar, Luiz Cláudio Arraes; Crovella, Sergio

    2016-11-26

    The scientific community still faces the challenge of developing strategies to cure HIV-1. One of these pursued strategies is the development of immunotherapeutic vaccines based on dendritic cells (DCs), pulsed with the virus, that aim to boost HIV-1 specific immune response. We aimed to review DCs-based therapeutic vaccines reports and critically assess evidence to gain insights for the improvement of these strategies. We performed a systematic review, followed by meta-analysis and meta-regression, of clinical trial reports. Twelve studies were selected for meta-analysis. The experimental vaccines had low efficiency, with an overall success rate around 38% (95% confidence interval = 26.7%-51.3%). Protocols differed according to antigen choice, DC culture method, and doses, although multivariate analysis did not show an influence of any of them on overall success rate. The DC-based vaccines elicited at least some immunogenicity, that was sometimes associated with plasmatic viral load transient control. The protocols included both naïve and antiretroviral therapy (ART)-experienced individuals, and used different criteria for assessing vaccine efficacy. Although the vaccines did not work as expected, they are proof of concept that immune responses can be boosted against HIV-1. Protocol standardization and use of auxiliary approaches, such as latent HIV-1 reservoir activation and patient genomics are paramount for fine-tuning future HIV-1 cure strategies.

  11. Dendritic Cell-Based Immunotherapies to Fight HIV: How Far from a Success Story? A Systematic Review and Meta-Analysis

    PubMed Central

    Coelho, Antonio Victor Campos; de Moura, Ronald Rodrigues; Kamada, Anselmo Jiro; da Silva, Ronaldo Celerino; Guimarães, Rafael Lima; Brandão, Lucas André Cavalcanti; de Alencar, Luiz Cláudio Arraes; Crovella, Sergio

    2016-01-01

    The scientific community still faces the challenge of developing strategies to cure HIV-1. One of these pursued strategies is the development of immunotherapeutic vaccines based on dendritic cells (DCs), pulsed with the virus, that aim to boost HIV-1 specific immune response. We aimed to review DCs-based therapeutic vaccines reports and critically assess evidence to gain insights for the improvement of these strategies. We performed a systematic review, followed by meta-analysis and meta-regression, of clinical trial reports. Twelve studies were selected for meta-analysis. The experimental vaccines had low efficiency, with an overall success rate around 38% (95% confidence interval = 26.7%–51.3%). Protocols differed according to antigen choice, DC culture method, and doses, although multivariate analysis did not show an influence of any of them on overall success rate. The DC-based vaccines elicited at least some immunogenicity, that was sometimes associated with plasmatic viral load transient control. The protocols included both naïve and antiretroviral therapy (ART)-experienced individuals, and used different criteria for assessing vaccine efficacy. Although the vaccines did not work as expected, they are proof of concept that immune responses can be boosted against HIV-1. Protocol standardization and use of auxiliary approaches, such as latent HIV-1 reservoir activation and patient genomics are paramount for fine-tuning future HIV-1 cure strategies. PMID:27898045

  12. Preclinical Evaluation of Novel Dendritic Cell-Based Prostate Cancer Vaccines

    DTIC Science & Technology

    2008-01-01

    negative selection using the Pan-T Cell Isolation kit ( Miltenyi Biotec, Auburn, CA) and mixed with DCs at a DC:T cell ratio of 1:5. Cells will be...resulting immature DCs were MHC class Ihi, MHC class IIhi, CD40lo, CD80lo, CD83lo, CD86lo. The immature DCs were CD14 ! and contained ɛ% contaminating...genotyped using FASTYPE HLA-DNA SSP typing kit; BioSynthesis) were isolated by negative selection using naı̈ve CD4+ T-cell isolation kit ( Miltenyi

  13. Vitamin E Succinate as an Adjuvant for Dendritic Cell-Based Vaccines

    DTIC Science & Technology

    2005-07-01

    effect on DC using supernatant fluid derived from Va-TOS-treated lewis lung (3LL) carcinoma cells. Previously it has been shown that heat shock...Andera, L., Lahm, H., Gellert, N., Fariss, M. W., Korinek, V., Sattler, W., Ucker, D. S., Terman , A., Schroder, A., Erl, W., Brunk, U. T., Coffey, R

  14. Dendrite

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Researchers have found that as melted metals and alloys (combinations of metals) solidify, they can form with different arrangements of atoms, called microstructures. These microstructures depend on the shape of the interface (boundary) between the melted metal and the solid crystal it is forming. There are generally three shapes that the interface can take: planar, or flat; cellular, which looks like the cells of a beehive; and dendritic, which resembles tiny fir trees. Convection at this interface can affect the interface shape and hide the other phenomena (physical events). To reduce the effects of convection, researchers conduct experiments that examine and control conditions at the interface in microgravity. Microgravity also helps in the study of alloys composed of two metals that do not mix. On Earth, the liquid mixtures of these alloys settle into different layers due to gravity. In microgravity, the liquid metals do not settle, and a solid more uniform mixture of both metals can be formed.

  15. Dendritic Cell Targeting Effectively Boosts T Cell Responses Elicited by an HIV Multiepitope DNA Vaccine

    PubMed Central

    Apostólico, Juliana de Souza; Lunardelli, Victória Alves Santos; Yamamoto, Marcio Massao; Souza, Higo Fernando Santos; Cunha-Neto, Edecio; Boscardin, Silvia Beatriz; Rosa, Daniela Santoro

    2017-01-01

    Despite several efforts in the last decades, an efficacious HIV-1 vaccine is still not available. Different approaches have been evaluated, such as recombinant proteins, viral vectors, DNA vaccines, and, most recently, dendritic cell (DC) targeting. This strategy is based on DC features that place them as central for induction of immunity. Targeting is accomplished by the use of chimeric monoclonal antibodies directed to DC surface receptors fused to the antigen of interest. In this work, we targeted eight promiscuous HIV-derived CD4+ T cell epitopes (HIVBr8) to the DEC205+ DCs by fusing the multiepitope immunogen to the heavy chain of αDEC205 (αDECHIVBr8), in the presence of the TLR3 agonist poly (I:C). In addition, we tested a DNA vaccine encoding the same epitopes using homologous or heterologous prime-boost regimens. Our results showed that mice immunized with αDECHIVBr8 presented higher CD4+ and CD8+ T cell responses when compared to mice that received the DNA vaccine (pVAXHIVBr8). In addition, pVAXHIVBr8 priming followed by αDECHIVBr8 boosting induced higher polyfunctional proliferative and cytokine-producing T cell responses to HIV-1 peptides than homologous DNA immunization or heterologous αDEC prime/DNA boost. Based on these results, we conclude that homologous prime-boost and heterologous boosting immunization strategies targeting CD4+ epitopes to DCs are effective to improve HIV-specific cellular immune responses when compared to standalone DNA immunization. Moreover, our results indicate that antigen targeting to DC is an efficient strategy to boost immunity against a multiepitope immunogen, especially in the context of DNA vaccination. PMID:28223987

  16. Dendritic Cell Targeting Effectively Boosts T Cell Responses Elicited by an HIV Multiepitope DNA Vaccine.

    PubMed

    Apostólico, Juliana de Souza; Lunardelli, Victória Alves Santos; Yamamoto, Marcio Massao; Souza, Higo Fernando Santos; Cunha-Neto, Edecio; Boscardin, Silvia Beatriz; Rosa, Daniela Santoro

    2017-01-01

    Despite several efforts in the last decades, an efficacious HIV-1 vaccine is still not available. Different approaches have been evaluated, such as recombinant proteins, viral vectors, DNA vaccines, and, most recently, dendritic cell (DC) targeting. This strategy is based on DC features that place them as central for induction of immunity. Targeting is accomplished by the use of chimeric monoclonal antibodies directed to DC surface receptors fused to the antigen of interest. In this work, we targeted eight promiscuous HIV-derived CD4(+) T cell epitopes (HIVBr8) to the DEC205(+) DCs by fusing the multiepitope immunogen to the heavy chain of αDEC205 (αDECHIVBr8), in the presence of the TLR3 agonist poly (I:C). In addition, we tested a DNA vaccine encoding the same epitopes using homologous or heterologous prime-boost regimens. Our results showed that mice immunized with αDECHIVBr8 presented higher CD4(+) and CD8(+) T cell responses when compared to mice that received the DNA vaccine (pVAXHIVBr8). In addition, pVAXHIVBr8 priming followed by αDECHIVBr8 boosting induced higher polyfunctional proliferative and cytokine-producing T cell responses to HIV-1 peptides than homologous DNA immunization or heterologous αDEC prime/DNA boost. Based on these results, we conclude that homologous prime-boost and heterologous boosting immunization strategies targeting CD4(+) epitopes to DCs are effective to improve HIV-specific cellular immune responses when compared to standalone DNA immunization. Moreover, our results indicate that antigen targeting to DC is an efficient strategy to boost immunity against a multiepitope immunogen, especially in the context of DNA vaccination.

  17. Vaccination with Leishmania histone H1-pulsed dendritic cells confers protection in murine visceral leishmaniasis.

    PubMed

    Agallou, Maria; Smirlis, Despina; Soteriadou, Ketty P; Karagouni, Evdokia

    2012-07-20

    Visceral leishmaniasis is the most severe form of leishmaniases affecting millions of people worldwide often resulting in death despite optimal therapy. Thus, there is an urgent need for the development of effective anti-infective vaccine(s). In the present study, we evaluated the prophylactic value of bone marrow-derived dendritic cells (BM-DCs) pulsed with the Leishmania (L.) infantum histone H1. We developed fully mature BM-DCs characterized by enhanced capacity of IL-12 production after ex vivo pulsing with GST-LeishH1. Intravenous administration of these BM-DCs in naive BALB/c mice resulted in antigen-specific spleenocyte proliferation and IgG1 isotype antibody production and conferred protection against experimental challenge with L. infantum independently of CpG oligonucleotides (ODNs) co-administration. Protection was associated with a pronounced enhancement of parasite-specific IFNγ-producing cells and reduction of cells producing IL-10, whereas IL-4 production was comparable in protected and non-protected mice. The polarization of immune responses to Th1 type was further confirmed by the elevation of parasite-specific IgG2a/IgG1 ratio in protected mice. The above data indicate the immunostimulatory capacity of Leishmania histone H1 and further support its exploitation as a candidate protein for vaccine development against leishmaniasis.

  18. Exploiting the Immunogenic Potential of Cancer Cells for Improved Dendritic Cell Vaccines

    PubMed Central

    Vandenberk, Lien; Belmans, Jochen; Van Woensel, Matthias; Riva, Matteo; Van Gool, Stefaan W.

    2016-01-01

    Cancer immunotherapy is currently the hottest topic in the oncology field, owing predominantly to the discovery of immune checkpoint blockers. These promising antibodies and their attractive combinatorial features have initiated the revival of other effective immunotherapies, such as dendritic cell (DC) vaccinations. Although DC-based immunotherapy can induce objective clinical and immunological responses in several tumor types, the immunogenic potential of this monotherapy is still considered suboptimal. Hence, focus should be directed on potentiating its immunogenicity by making step-by-step protocol innovations to obtain next-generation Th1-driving DC vaccines. We review some of the latest developments in the DC vaccination field, with a special emphasis on strategies that are applied to obtain a highly immunogenic tumor cell cargo to load and to activate the DCs. To this end, we discuss the effects of three immunogenic treatment modalities (ultraviolet light, oxidizing treatments, and heat shock) and five potent inducers of immunogenic cell death [radiotherapy, shikonin, high-hydrostatic pressure, oncolytic viruses, and (hypericin-based) photodynamic therapy] on DC biology and their application in DC-based immunotherapy in preclinical as well as clinical settings. PMID:26834740

  19. Induction of protective CTL immunity against peptide transporter TAP-deficient tumors through dendritic cell vaccination.

    PubMed

    Chambers, Benedict; Grufman, Per; Fredriksson, Vanoohi; Andersson, Kenth; Roseboom, Marjet; Laban, Sandra; Camps, Marcel; Wolpert, Elisabeth Z; Wiertz, Emmanuel J H J; Offringa, Rienk; Ljunggren, Hans-Gustaf; van Hall, Thorbald

    2007-09-15

    A large proportion of human cancers show deficiencies in the MHC class I antigen-processing machinery. Such defects render tumors resistant to immune eradication by tumoricidal CTLs. We recently identified a unique population of CTL that selectively targets tumor immune-escape variants through recognition of MHC-presented peptides, termed TEIPP (T cell epitopes associated with impaired peptide processing), expressed on cells lacking functional TAP-peptide transporters. Previously, we showed that vaccination with TEIPP peptides mediates protection against TAP-deficient tumors. Here, we further explored the concept of TEIPP-targeted therapy using a dendritic cell (DC)-based cellular vaccine. Impairment of TAP function in DC induced the presentation of endogenous TEIPP antigens by MHC class I molecules, and immunization with these DCs protected mice against the outgrowth of TAP-deficient lymphomas and fibrosarcomas. Immune analysis of vaccinated mice revealed strong TEIPP-specific CTL responses, and a crucial role for CD8(+) cells in tumor resistance. Finally, we show that TEIPP antigens could be successfully induced in wild-type DC by introducing the viral TAP inhibitor UL49.5. Our results imply that immune intervention strategies with TAP-inhibited DC could be developed for the treatment of antigen processing-deficient cancers in humans.

  20. Immature dendritic cell-derived exosomes: a promise subcellular vaccine for autoimmunity.

    PubMed

    Yin, Weifan; Ouyang, Song; Li, Yi; Xiao, Bo; Yang, Huan

    2013-02-01

    Exosomes, 60-90-nm-sized vesicles, are produced by a large number of cell types, including tumor cells, neurons, astrocytes, hemocytes, intestinal epithelial cells, and so on. Dendritic cell (DC), the most potent professional antigen-presenting cell in the immune system, produces exosomes in the course of maturation. Mature DCs produce exosomes with the ability to elicit potent immunoactivation, resulting in tumor eradication and bacterial or virus elimination. Given the notion that exosomes are stable and easy to be modified artificially, autologous mature DC-derived exosomes have been vaccinated into patients with malignant diseases. In clinical trials utilizing exosomes as therapeutic approaches, researchers observed considerable curative effect with little side effect. However, immature or suppressive DC-derived exosomes harbor anti-inflammatory properties distinct from mature DC-derived exosomes. In murine models of autoimmune disease and transplantation, immature DC-derived exosomes reduced T cell-dependent immunoactivation, relieved clinical manifestation of autoimmune disease, and prolonged survival time of transplantation. Although the exact mechanism of how immature DC-derived exosomes function in vivo is still unclear, and there are no clinical trials regarding application of exosome vaccine into patients with autoimmune disease, we will analyze the promise of immature DC-derived exosomes as a subcellular vaccine in autoimmunity in this review.

  1. Massive expansion of regulatory T-cells following interleukin 2 treatment during a phase I-II dendritic cell-based immunotherapy of metastatic renal cancer.

    PubMed

    Lemoine, François M; Cherai, Mustapha; Giverne, Camille; Dimitri, Dalia; Rosenzwajg, Michelle; Trebeden-Negre, Helene; Chaput, Nathalie; Barrou, Benoit; Thioun, Nicolas; Gattegnio, Bernard; Selles, Frederic; Six, Alain; Azar, Nabih; Lotz, Jean Pierre; Buzyn, Agnes; Sibony, Mathilde; Delcourt, Annick; Boyer, Olivier; Herson, Serge; Klatzmann, David; Lacave, Roger

    2009-09-01

    Cytotoxic chemotherapy is ineffective in metastatic renal cancer. However, systemic administration of interleukin 2 (IL-2) or infusion of dendritic cells (DCs) loaded with tumor extracts can lead to some response rates with concomitant survival improvements. We report the results of a phase I-II pilot study combining DCs and IL-2 where six patients were included. DCs were derived from bone marrow CD34+ cells and loaded with autologous tumor extracts. CD34-DC vaccines were infused subcutaneously at day 45, 52, 59, 90 and 120 following surgery in combination with IL-2, that was subsequently administrated after the 3rd and 4th DC vaccinations. Preparation of tumor extracts and CD34-DCs were satisfactory in all patients but one. Due to rapid tumor progression, one patient was excluded before vaccination. In the 4 remaining patients, two received 3 vaccinations, while the 2 others received 5 vaccinations and the full IL-2 treatment. No adverse effect due to the vaccinations was observed. A specific immune response against autologous tumor cells was observed in the 2 patients who completed the treatment. Interestingly, these 2 patients had a more prolonged survival than the patients receiving 3 vaccinations. Importantly, a transient and massive increase of circulating natural regulatory T-cells (nTregs) was evidenced in 3 patients following IL-2 administration. Overall, the use of CD34-DC vaccines is feasible, safe and non-toxic. A specific anti-tumor immune response can be detected. However, our data highlights that IL-2 is a potent inducer of nTregs in vivo and as such may have a negative impact on cancer immunotherapy.

  2. Paradigm Shift in Dendritic Cell-Based Immunotherapy: From in vitro Generated Monocyte-Derived DCs to Naturally Circulating DC Subsets

    PubMed Central

    Wimmers, Florian; Schreibelt, Gerty; Sköld, Annette E.; Figdor, Carl G.; De Vries, I. Jolanda M.

    2014-01-01

    Dendritic cell (DC)-based immunotherapy employs the patients’ immune system to fight neoplastic lesions spread over the entire body. This makes it an important therapy option for patients suffering from metastatic melanoma, which is often resistant to chemotherapy. However, conventional cellular vaccination approaches, based on monocyte-derived DCs (moDCs), only achieved modest response rates despite continued optimization of various vaccination parameters. In addition, the generation of moDCs requires extensive ex vivo culturing conceivably hampering the immunogenicity of the vaccine. Recent studies, thus, focused on vaccines that make use of primary DCs. Though rare in the blood, these naturally circulating DCs can be readily isolated and activated thereby circumventing lengthy ex vivo culture periods. The first clinical trials not only showed increased survival rates but also the induction of diversified anti-cancer immune responses. Upcoming treatment paradigms aim to include several primary DC subsets in a single vaccine as pre-clinical studies identified synergistic effects between various antigen-presenting cells. PMID:24782868

  3. A cell-based systems biology assessment of human blood to monitor immune responses after influenza vaccination.

    PubMed

    Hoek, Kristen L; Samir, Parimal; Howard, Leigh M; Niu, Xinnan; Prasad, Nripesh; Galassie, Allison; Liu, Qi; Allos, Tara M; Floyd, Kyle A; Guo, Yan; Shyr, Yu; Levy, Shawn E; Joyce, Sebastian; Edwards, Kathryn M; Link, Andrew J

    2015-01-01

    Systems biology is an approach to comprehensively study complex interactions within a biological system. Most published systems vaccinology studies have utilized whole blood or peripheral blood mononuclear cells (PBMC) to monitor the immune response after vaccination. Because human blood is comprised of multiple hematopoietic cell types, the potential for masking responses of under-represented cell populations is increased when analyzing whole blood or PBMC. To investigate the contribution of individual cell types to the immune response after vaccination, we established a rapid and efficient method to purify human T and B cells, natural killer (NK) cells, myeloid dendritic cells (mDC), monocytes, and neutrophils from fresh venous blood. Purified cells were fractionated and processed in a single day. RNA-Seq and quantitative shotgun proteomics were performed to determine expression profiles for each cell type prior to and after inactivated seasonal influenza vaccination. Our results show that transcriptomic and proteomic profiles generated from purified immune cells differ significantly from PBMC. Differential expression analysis for each immune cell type also shows unique transcriptomic and proteomic expression profiles as well as changing biological networks at early time points after vaccination. This cell type-specific information provides a more comprehensive approach to monitor vaccine responses.

  4. A Cell-Based Systems Biology Assessment of Human Blood to Monitor Immune Responses after Influenza Vaccination

    PubMed Central

    Hoek, Kristen L.; Samir, Parimal; Howard, Leigh M.; Niu, Xinnan; Prasad, Nripesh; Galassie, Allison; Liu, Qi; Allos, Tara M.; Floyd, Kyle A.; Guo, Yan; Shyr, Yu; Levy, Shawn E.; Joyce, Sebastian; Edwards, Kathryn M.; Link, Andrew J.

    2015-01-01

    Systems biology is an approach to comprehensively study complex interactions within a biological system. Most published systems vaccinology studies have utilized whole blood or peripheral blood mononuclear cells (PBMC) to monitor the immune response after vaccination. Because human blood is comprised of multiple hematopoietic cell types, the potential for masking responses of under-represented cell populations is increased when analyzing whole blood or PBMC. To investigate the contribution of individual cell types to the immune response after vaccination, we established a rapid and efficient method to purify human T and B cells, natural killer (NK) cells, myeloid dendritic cells (mDC), monocytes, and neutrophils from fresh venous blood. Purified cells were fractionated and processed in a single day. RNA-Seq and quantitative shotgun proteomics were performed to determine expression profiles for each cell type prior to and after inactivated seasonal influenza vaccination. Our results show that transcriptomic and proteomic profiles generated from purified immune cells differ significantly from PBMC. Differential expression analysis for each immune cell type also shows unique transcriptomic and proteomic expression profiles as well as changing biological networks at early time points after vaccination. This cell type-specific information provides a more comprehensive approach to monitor vaccine responses. PMID:25706537

  5. Lysosome-Dependent Activation of Human Dendritic Cells by the Vaccine Adjuvant QS-21

    PubMed Central

    Welsby, Iain; Detienne, Sophie; N’Kuli, Francisca; Thomas, Séverine; Wouters, Sandrine; Bechtold, Viviane; De Wit, Dominique; Gineste, Romain; Reinheckel, Thomas; Elouahabi, Abdelatif; Courtoy, Pierre J.; Didierlaurent, Arnaud M.; Goriely, Stanislas

    2017-01-01

    The adjuvant properties of the saponin QS-21 have been known for decades. It is a component of the Adjuvant System AS01 that is used in several vaccine candidates. QS-21 strongly potentiates both cellular and humoral immune responses to purified antigens, yet how it activates immune cells is largely unknown. Here, we report that QS-21 directly activated human monocyte-derived dendritic cells (moDCs) and promoted a pro-inflammatory transcriptional program. Cholesterol-dependent QS-21 endocytosis followed by lysosomal destabilization and Syk kinase activation were prerequisites for this response. Cathepsin B, a lysosomal cysteine protease, was essential for moDC activation in vitro and contributed to the adjuvant effects of QS-21 in vivo. Collectively, these findings provide new insights into the pathways involved in the direct activation of antigen-presenting cells by a clinically relevant QS-21 formulation. PMID:28105029

  6. Activation of dendritic cell function by soypeptide lunasin as a novel vaccine adjuvant.

    PubMed

    Tung, Chun-Yu; Lewis, David E; Han, Ling; Jaja, Morayo; Yao, Shuyu; Li, Fang; Robertson, Michael J; Zhou, Baohua; Sun, Jie; Chang, Hua-Chen

    2014-09-22

    The addition of an appropriate adjuvant that activates the innate immunity is essential to subsequent development of the adaptive immunity specific to the vaccine antigens. Thus, any innovation capable of improving the immune responses may lead to a more efficacious vaccine. We recently identified a novel immune modulator using a naturally occurring seed peptide called lunasin. Lunasin was originally isolated from soybeans, and it is a small peptide containing 43 amino acids. Our studies revealed stimulatory effects of lunasin on innate immune cells by regulating expression of a number of genes that are important for immune responses. The objective was to define the effectiveness of lunasin as an adjuvant that enhances immune responses. The immune modulating functions of lunasin were characterized in dendritic cells (DCs) from human peripheral blood mononuclear cells (PBMCs). Lunasin-treated conventional DCs (cDCs) not only expressed elevated levels of co-stimulatory molecules (CD86, CD40) but also exhibited up-regulation of cytokines (IL1B, IL6) and chemokines (CCL3, CCL4). Lunasin-treated cDCs induced higher proliferation of allogeneic CD4+ T cells when comparing with medium control treatment in the mixed leukocyte reaction (MLR). Immunization of mice with ovalbumin (OVA) and lunasin inhibited the growth of OVA-expressing A20 B-lymphomas, which was correlated with OVA-specific CD8+ T cells. In addition, lunasin was an effective adjuvant for immunization with OVA, which together improved animal survival against lethal challenge with influenza virus expressing the MHC class I OVA peptide SIINFEKL (PR8-OTI). These results suggest that lunasin may function as a vaccine adjuvant by promoting DC maturation, which in turn enhances the development of protective immune responses to the vaccine antigens. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Dendritic cell vaccination for metastatic melanoma: a 14-year monoinstitutional experience.

    PubMed

    de Rosa, Francesco; Ridolfi, Laura; Fiammenghi, Laura; Petrini, Massimiliano; Granato, Anna M; Ancarani, Valentina; Pancisi, Elena; Soldati, Valentina; Cassan, Serena; Bulgarelli, Jenny; Framarini, Massimo; Tauceri, Francesca; Migliori, Giuseppe; Brolli, Claudia; Gentili, Giorgia; Petracci, Elisabetta; Nanni, Oriana; Riccobon, Angela; Ridolfi, Ruggero; Guidoboni, Massimo

    2017-08-01

    Although immunomodulating antibodies are highly effective in metastatic melanoma, their toxicity, related to the activation of T lymphocytes, can be severe. Anticancer vaccines promote a fairly specific response and are very well tolerated, but their effectiveness has yet to be demonstrated. We have been treating patients with advanced melanoma with an autologous dendritic cell vaccine since 2001; to better characterize the safety and efficacy of our product, we designed a retrospective study on all of our patients treated with the vaccine to date. We retrospectively reviewed both case report forms of patients included in clinical trials and medical records of those treated within a compassionate use program. Response was assessed according to the Response Evaluation Criteria In Solid Tumors criteria and toxicity has been graded according to CTCAE 4.0. Although the response rate has been rather low, the median overall survival of 11.4 months and the 1-year survival rate of 46.9% are encouraging, especially considering the fact that data were obtained in a heavily pretreated population and only about one quarter of the patients had received ipilimumab and/or BRAF inhibitors. Multivariate analysis confirmed that the development of an immune response was significantly correlated with a better prognosis (hazard ratio 0.54; P=0.019). The adverse events observed were generally mild and self-limiting. Our analysis confirms the excellent tolerability of our vaccine, making it a potential candidate for combination therapies. As efficacy seems largely restricted to immunoresponsive patients, future strategies should aim to increase the number of these patients.

  8. Efficient generation of canine bone marrow-derived dendritic cells.

    PubMed

    Isotani, Mayu; Katsuma, Kensuke; Tamura, Kyoichi; Yamada, Misato; Yagihara, Hiroko; Azakami, Daigo; Ono, Kenichiro; Washizu, Tsukimi; Bonkobara, Makoto

    2006-08-01

    Because of their unsurpassed potency in presenting antigens to naive T cells, dendritic cells are considered to be an important candidate in the development of immunotherapeutic strategies. Despite the high potential of dendritic cell-based immunotherapy, as a so-called dendritic cell vaccination, few clinical approaches using dendritic cell vaccination have been performed in the dog because of very limited information regarding the generation of canine dendritic cells and their functional properties. We therefore established a protocol for the efficient generation of dendritic cells from canine bone marrow cells using recombinant feline granulocyte-macrophage colony-stimulating factor and canine interleukin-4. Dendritic cells were generated efficiently: a yield of 1-9 x 10(6) cells per approximately 0.5 ml of canine bone marrow aspiration was achieved. These dendritic cells showed features shared with mouse and human dendritic cells: dendrite morphology, expression of surface markers MHC class II and CD11c, and up-regulation of molecules related to antigen presentation (MHC class II, B7-1, and B7-2) by activation with lipopolysaccharide. Moreover, the dendritic cells demonstrated phagocytic activity, processing activity of pinocytosed proteins, and activation of allogeneic T cells far more potent than that by macrophages. Our findings suggest that the bone marrow-derived dendritic cells are functional for the capturing and processing of antigens and the initiation of T cell responses.

  9. Langerhans cells and dermal dendritic cells capture protein antigens in the skin: Possible targets for vaccination through the skin

    PubMed Central

    Sparber, Florian; Tripp, Christoph H.; Hermann, Martin; Romani, Nikolaus; Stoitzner, Patrizia

    2010-01-01

    Dendritic cells capture and process antigen and present it to T lymphocytes in the lymphoid organs. Dendritic cells of the skin, including epidermal Langerhans cells, langerin+ and langerinnegative dermal dendritic cells are ideally positioned to take up pathogens that enter the body through the skin or vaccines that are administered into (intradermal) or onto (epicutaneous) the skin. The antigen uptake properties of skin dendritic cells have not thoroughly been studied yet. We therefore investigated the uptake of the fluorochrome-conjugated model antigen ovalbumin (OVA) by skin dendritic cells in the mouse. OVA was readily taken up by immature Langerhans cells both in situ and in cell suspensions. When offered to Langerhans cells in situ either by “bathing” skin explants in OVA-containing culture medium or by intradermal injection they retained the captured OVA for at least 2–3 days when migrating into the culture medium and, importantly, into the draining lymph nodes. Also langerin+ and – to a larger extent – langerinnegative skin dendritic cells took up and transported OVA to the lymph nodes. Interestingly, mature Langerhans cells were still capable of ingesting substantial amounts of OVA, indicating that predominantly receptor-mediated endocytosis is operative in these cells. Unlike macropinocytosis, this pathway of endocytosis is not shut down upon dendritic cell maturation. These observations indicate that in intradermal vaccination schemes, Langerhans cells from the epidermis are prominently involved. They were recently shown to possess the capacity to induce functional cytotoxic T lymphocytes. Furthermore, the potential to markedly enhance antigen uptake and processing by targeting antigen to c-type lectin receptors on Langerhans cells was also recently demonstrated. Our data provide a rationale and an incentive to explore in more detail antigen targeting to Langerhans cells with the aim of harnessing it for immunotherapy. PMID:20599290

  10. Clinical testing of a dendritic cell targeted therapeutic vaccine in patients with chronic hepatitis C virus infection

    PubMed Central

    Zabaleta, Aintzane; D’Avola, Delia; Echeverria, Itziar; Llopiz, Diana; Silva, Leyre; Villanueva, Lorea; Riezu-Boj, José Ignacio; Larrea, Esther; Pereboev, Alexander; Lasarte, Juan José; Rodriguez-Lago, Iago; Iñarrairaegui, Mercedes; Sangro, Bruno; Prieto, Jesús; Sarobe, Pablo

    2015-01-01

    The lack of antiviral cellular immune responses in patients with chronic hepatitis C virus (HCV) infection suggests that T-cell vaccines may provide therapeutic benefit. Due to the central role that dendritic cells (DC) play in the activation of T-cell responses, our aim was to carry out a therapeutic vaccination clinical trial in HCV patients using DC. Five patients with chronic HCV infection were vaccinated with three doses of 5 × 106 or 107 autologous DC transduced with a recombinant adenovirus encoding NS3 using the adapter protein CFh40L, which facilitates DC transduction and maturation. No significant adverse effects were recorded after vaccination. Treatment caused no changes in serum liver enzymes nor in viral load. Vaccination induced weak but consistent expansion of T-cell responses against NS3 and adenoviral antigens. Patients’ DC, as opposed to murine DC or DC from healthy subjects, secreted high IL-10 levels after transduction, inducing the activation of IL-10–producing T cells. IL-10 blockade during vaccine preparation restored its ability to stimulate anti-NS3 Th1 responses. Thus, vaccination with adenovirus-transduced DC is safe and induces weak antiviral immune responses. IL-10 associated with vaccine preparation may be partly responsible for these effects, suggesting that future vaccines should consider concomitant inhibition of this cytokine. PMID:26029717

  11. Potential role of dendritic cell vaccination with MAGE peptides in gastrointestinal carcinomas.

    PubMed

    Tanaka, Fumiaki; Haraguchi, Naotsugu; Isikawa, Kenji; Inoue, Hiroshi; Mori, Masaki

    2008-11-01

    Dendritic cells (DCs) loaded with tumor antigens have been emerging as a new strategy in cancer treatment. The MAGE genes are selectively expressed in a variety of cancer tissues such as melanoma or gastrointestinal carcinomas. However, no expression is observed in normal tissues except testis. There are several reports on clinical trials with these immunogenic peptides including MAGE gene-derived, which were shown to be effective for some patients with carcinomas. We previously reported a clinical trial treating gastrointestinal carcinoma patients with immature DC and MAGE peptides via intravenous injection. Autologous DCs were generated ex vivo and were pulsed with MAGE-3 peptide, depending on the patient's HLA haplotype (HLA-A02 or A24). In this study, patients were immunized with mature DCs pulsed with the MAGE-3 peptide four times every 2 weeks via s.c. injection close to the axilla and inguinal lymph nodes. Twenty-eight patients with advanced gastrointestinal carcinoma were treated and no toxic side effects were observed. Peptide-specific CTL responses, improvement in performance status, tumor marker decrease and minor tumor regressions after vaccination were observed in some patients. These results suggested that DC vaccination with the MAGE-3 peptide would be safe and can exhibit antitumor effects even in the patients with advanced gastrointestinal carcinoma who were previously treated with chemotherapy or radiation therapy.

  12. Dendritic cell vaccination with MAGE peptide is a novel therapeutic approach for gastrointestinal carcinomas.

    PubMed

    Sadanaga, N; Nagashima, H; Mashino, K; Tahara, K; Yamaguchi, H; Ohta, M; Fujie, T; Tanaka, F; Inoue, H; Takesako, K; Akiyoshi, T; Mori, M

    2001-08-01

    The MAGE gene is selectively expressed in cancer tissues such as melanoma or gastrointestinal carcinomas, whereas no expression is observed in normal tissues except testis. There are several reports of successful induction of HLA class I-restricted antitumor CTLs using MAGE peptides, and some clinical trials with these immunogenic peptides were reported as effective for some patients with malignant melanoma. However, there are no similar studies in gastrointestinal carcinomas, which are important neoplasms. Autologous dendritic cells (DCs) were generated ex vivo and were pulsed with MAGE-3 peptide, depending on the patient's HLA haplotype (HLA-A2 or A24). Patients were immunized with DC pulsed with MAGE-3 peptide every 3 weeks at four times. Twelve patients with advanced gastrointestinal carcinoma (six stomach, three esophagus, and three colon) were treated, and no toxic side effects were observed. Peptide-specific CTL responses after vaccination were observed in four of eight patients. Improvement in performance status was recognized in four patients. Tumor markers decreased in seven patients. In addition, minor tumor regressions evidenced by imaging studies were seen in three patients. These results suggested that DC vaccination with MAGE-3 peptide is a safe and promising approach in the treatment of gastrointestinal carcinomas.

  13. Vpx-containing Dendritic Cell Vaccine Vectors Induce CTLs and Reactivate Latent HIV-1 in vitro

    PubMed Central

    Norton, Thomas D.; Miller, Elizabeth A.; Bhardwaj, Nina; Landau, Nathaniel R.

    2015-01-01

    Eradication of HIV-1 from an infected individual requires a means of inducing production of virus from latently infected cells and stimulating an immune response against the infected cells. We report the development of lentiviral vectors that transduce dendritic cells (DCs) to both induce production of virus from latently infected cells and stimulate antigen-specific CTLs. The vectors package Vpx, a lentiviral accessory protein that counteracts the SAMHD1-mediated block to DC transduction, allowing for long-term expression of vector-encoded proteins. The vectors encode influenza or HIV-1-derived epitopes fused via a self-cleaving peptide to CD40L that releases the peptide into the endoplasmic reticulum for entry into the antigen presentation pathway. Expression of CD40L caused transduced DCs to mature and produce Th1-skewing cytokines. The DCs presented antigen to CD8 T cells, enhancing antigen-specific CTLs. Coculture of the transduced DCs with latently infected cells induced high level virus production, an effect that was mediated by TNF-α. The ability of a DC vaccine to reactivate latent HIV-1 and stimulate an adaptive immune response provides a means to reduce the size of the latent reservoir in patients. This strategy can also be applied to develop DC vaccines for other diseases. PMID:25567537

  14. [State of the art about new therapeutic vaccines in prostate cancer: dendritic cells, engineered tumor cells and recombinant virus].

    PubMed

    Eymard, Jean-Christophe; Gervais, Alban; Jarcau, Rosana; Bernard, Jacky

    2007-07-01

    Therapeutic vaccines for prostate cancer were initially reported as limited with low immunological responses and uncertain clinical benefit. Recently, new methods become available, such preparations of well-characterized autologous dendritic cells, and use of gene therapy tools to increase whole-tumor cells or host tissue immunogenicity. These are able to enhance and diversify therapeutic options. Indeed, several vaccinal approaches are being investigated, including optimized mature dendritic cells, allogeneic genetically modified tumor cells, or viral vectors. Due to the description of immunological and clinical responses, large phase III randomized trials are now conducted. After summarizing the mechanistic basis for these approaches, this review describes the experience with the most recent and promising clinical studies and introduces short-term perspectives that could lead to improvement in healthcare offer for prostate cancer patients.

  15. Autologous lysate-pulsed dendritic cell vaccination followed by adoptive transfer of vaccine-primed ex vivo co-stimulated T cells in recurrent ovarian cancer.

    PubMed

    Kandalaft, Lana E; Powell, Daniel J; Chiang, Cheryl L; Tanyi, Janos; Kim, Sarah; Bosch, Marnix; Montone, Kathy; Mick, Rosemarie; Levine, Bruce L; Torigian, Drew A; June, Carl H; Coukos, George

    2013-01-01

    Novel strategies for the therapy of recurrent ovarian cancer are warranted. We report a study of a combinatorial approach encompassing dendritic cell (DC)-based autologous whole tumor vaccination and anti-angiogenesis therapy, followed by the adoptive transfer of autologous vaccine-primed CD3/CD28-co-stimulated lymphocytes. Recurrent ovarian cancer patients for whom tumor lysate was available from prior cytoreductive surgery underwent conditioning with intravenous bevacizumab and oral metronomic cyclophosphamide, sequentially followed by (1) bevacizumab plus vaccination with DCs pulsed with autologous tumor cell lysate supernatants, (2) lymphodepletion and (3) transfer of 5 × 10(9) autologous vaccine-primed T-cells in combination with the vaccine. Feasibility, safety as well as immunological and clinical efficacy were evaluated. Six subjects received this vaccination. Therapy was feasible, well tolerated, and elicited antitumor immune responses in four subjects, who also experienced clinical benefits. Of these, three patients with residual measurable disease received outpatient lymphodepletion and adoptive T-cell transfer, which was well tolerated and resulted in a durable reduction of circulating regulatory T cells and increased CD8(+) lymphocyte counts. The vaccine-induced restoration of antitumor immunity was achieved in two subjects, who also demonstrated clinical benefits, including one complete response. Our findings indicate that combinatorial cellular immunotherapy for the treatment of recurrent ovarian cancer is well tolerated and warrants further investigation. Several modifications of this approach can be envisioned to optimize immunological and clinical outcomes.

  16. Vaccination with melanoma lysate-pulsed dendritic cells, of patients with advanced colorectal carcinoma: report from a phase I study.

    PubMed

    Burgdorf, S K; Fischer, A; Claesson, M H; Kirkin, A F; Dzhandzhugazyan, K N; Rosenberg, J

    2006-06-01

    Immune therapy have shown new and exciting perspectives for cancer treatment. Aim of our study was to evaluate toxicity and possible adverse effects from vaccination of patients with advanced colorectal cancer with autologous dendritic cells (DC) pulsed with lysate from a newly developed melanoma cell line, DDM-1.13. Six patients were enrolled in the phase I trial. Autologous DCs were generated in vitro from peripheral blood monocytes in the presence of granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-4 (IL-4). DCs were pulsed with melanoma cell lysate from a cloned and selected melanoma cell line enriched in expression of MAGE-A antigens and deficient in expression of melanoma differentiation antigens: tyrosinase, MART-1 and gp100. Vaccinations were administered intradermally on the proximal thigh with a total of five given vaccines at 2 weeks intervals. Each vaccine contained 3-5 x 10(6) DCs. Five of the six patients received all five vaccines. The treatment was well tolerated in all patients without any observed vaccine-correlated adverse effects. Treatment with this DC-based cancer vaccine proved safe and non-toxic.

  17. Genetic Immunization With In Vivo Dendritic Cell-targeting Liposomal DNA Vaccine Carrier Induces Long-lasting Antitumor Immune Response

    PubMed Central

    Garu, Arup; Moku, Gopikrishna; Gulla, Suresh Kumar; Chaudhuri, Arabinda

    2016-01-01

    A major limiting factor retarding the clinical success of dendritic cell (DC)-based genetic immunizations (DNA vaccination) is the scarcity of biologically safe and effective carrier systems for targeting the antigen-encoded DNA vaccines to DCs under in vivo settings. Herein, we report on a potent, mannose receptor selective in vivo DC-targeting liposomes of a novel cationic amphiphile with mannose-mimicking shikimoyl head-group. Flow cytometric experiments with cells isolated from draining lymph nodes of mice s.c. immunized with lipoplexes of pGFP plasmid (model DNA vaccine) using anti-CD11c antibody-labeled magnetic beads revealed in vivo DC-targeting properties of the presently described liposomal DNA vaccine carrier. Importantly, s.c. immunizations of mice with electrostatic complex of the in vivo DC-targeting liposome and melanoma antigen-encoded DNA vaccine (p-CMV-MART1) induced long-lasting antimelanoma immune response (100 days post melanoma tumor challenge) with remarkable memory response (more than 6 months after the second tumor challenge). The presently described direct in vivo DC-targeting liposomal DNA vaccine carrier is expected to find future exploitations toward designing effective vaccines for various infectious diseases and cancers. PMID:26666450

  18. Exceptional antineoplastic activity of a dendritic-cell-targeted vaccine loaded with a Listeria peptide proposed against metastatic melanoma

    PubMed Central

    Calderon-Gonzalez, Ricardo; Bronchalo-Vicente, Lucia; Freire, Javier; Frande-Cabanes, Elisabet; Alaez-Alvarez, Lidia; Gomez-Roman, Javier; Yañez-Diaz, Sonsóles; Alvarez-Dominguez, Carmen

    2016-01-01

    Vaccination with dendritic cells (DCs) is proposed to induce lasting responses against melanoma but its survival benefit in patients needs to be demonstrated. We propose a DC-targeted vaccine loaded with a Listeria peptide with exceptional anti-tumour activity to prevent metastasis of melanoma. Mice vaccinated with vaccines based on DCs loaded with listeriolysin O peptide (91–99) (LLO91–99) showed clear reduction of metastatic B16OVA melanoma size and adhesion, prevention of lung metastasis, enhanced survival, and reversion of immune tolerance. Robust innate and specific immune responses explained the efficiency of DC-LLO91–99 vaccines against B16OVA melanoma. The noTable features of this vaccine related to melanoma reduction were: expansion of immune-dominant LLO91–99-specific CD8 T cells that helped to expand melanoma-specific CD8+ T cells; high numbers of tumour-infiltrating lymphocytes with a cytotoxic phenotype; and a decrease in CD4+CD25high regulatory T cells. This vaccine might be a useful alternative treatment for advanced melanoma, alone or in combination with other therapies. PMID:26942874

  19. Immunogenic Properties of a BCG Adjuvanted Chitosan Nanoparticle-Based Dengue Vaccine in Human Dendritic Cells

    PubMed Central

    Hunsawong, Taweewun; Sunintaboon, Panya; Warit, Saradee; Thaisomboonsuk, Butsaya; Jarman, Richard G.; Yoon, In-Kyu; Ubol, Sukathida; Fernandez, Stefan

    2015-01-01

    Dengue viruses (DENVs) are among the most rapidly and efficiently spreading arboviruses. WHO recently estimated that about half of the world’s population is now at risk for DENV infection. There is no specific treatment or vaccine available to treat or prevent DENV infections. Here, we report the development of a novel dengue nanovaccine (DNV) composed of UV-inactivated DENV-2 (UVI-DENV) and Mycobacterium bovis Bacillus Calmette-Guerin cell wall components (BCG-CWCs) loaded into chitosan nanoparticles (CS-NPs). CS-NPs were prepared by an emulsion polymerization method prior to loading of the BCG-CWCs and UVI-DENV components. Using a scanning electron microscope and a zetasizer, DNV was determined to be of spherical shape with a diameter of 372.0 ± 11.2 nm in average and cationic surface properties. The loading efficacies of BCG-CWCs and UVI-DENV into the CS-NPs and BCG-CS-NPs were up to 97.2 and 98.4%, respectively. THP-1 cellular uptake of UVI-DENV present in the DNV was higher than soluble UVI-DENV alone. DNV stimulation of immature dendritic cells (iDCs) resulted in a significantly higher expression of DCs maturation markers (CD80, CD86 and HLA-DR) and induction of various cytokine and chemokine productions than in UVI-DENV-treated iDCs, suggesting a potential use of BCG- CS-NPs as adjuvant and delivery system for dengue vaccines. PMID:26394138

  20. Antitumor efficacy of argon-helium cryoablation-generated dendritic cell vaccine in glioma.

    PubMed

    Yin, Zhilin; Lu, Guohui; Xiao, Zhenyong; Liu, Tianzhu; He, Xiaozheng; Wang, Qifu; Lin, Chunnan; Zhang, Shizhong

    2014-03-05

    Dendritic cells (DCs) are potent antigen-presenting cells that play a critical role in priming tumor immune responses. We investigated the mechanisms of antitumor efficacy of DCs pulsed with argon-helium-cryotreated glioma cells. There was significant upregulation of maturation markers (CD80, CD86, MHC-I, and MHC-II) in argon-helium freeze-thawed lysate-pulsed DCs. The concentration of interleukin-6 (IL-6), IL-1β, tumor necrosis factor-α, and IL-12 secreted by lysate-pulsed DCs was increased. The concentration of interferon-γ secreted by T cells stimulated by lysate-pulsed DCs was increased. The cytotoxicity assay showed that T cells stimulated by lysate-pulsed DCs could kill glioma cells significantly more effectively. Our results suggest that argon-helium freeze-thawed lysate-pulsed DCs in vitro can promote DC maturation and enhance DC antigen-presenting function, and induce cytotoxic T lymphocytes to kill tumor cells. Therefore, the combination of argon-helium cryoablation and DC vaccine may represent a novel treatment method for glioma.

  1. Dendritic cell preactivation impairs MHC class II presentation of vaccines and endogenous viral antigens

    PubMed Central

    Young, Louise J.; Wilson, Nicholas S.; Schnorrer, Petra; Mount, Adele; Lundie, Rachel J.; La Gruta, Nicole L.; Crabb, Brendan S.; Belz, Gabrielle T.; Heath, William R.; Villadangos, Jose A.

    2007-01-01

    When dendritic cells (DCs) encounter signals associated with infection or inflammation, they become activated and undergo maturation. Mature DCs are very efficient at presenting antigens captured in association with their activating signal but fail to present subsequently encountered antigens, at least in vitro. Such impairment of MHC class II (MHC II) antigen presentation has generally been thought to be a consequence of down-regulation of endocytosis, so it might be expected that antigens synthesized by the DCs themselves (for instance, viral antigens) would still be presented by mature DCs. Here, we show that DCs matured in vivo could still capture and process soluble antigens, but were unable to present peptides derived from these antigens. Furthermore, presentation of viral antigens synthesized by the DCs themselves was also severely impaired. Indeed, i.v. injection of pathogen mimics, which caused systemic DC activation in vivo, impaired the induction of CD4 T cell responses against subsequently encountered protein antigens. This immunosuppressed state could be reversed by adoptive transfer of DCs loaded exogenously with antigens, demonstrating that impairment of CD4 T cell responses was due to lack of antigen presentation rather than to overt suppression of T cell activation. The biochemical mechanism underlying this phenomenon was the down-regulation of MHC II–peptide complex formation that accompanied DC maturation. These observations have important implications for the design of prophylactic and therapeutic DC vaccines and contribute to the understanding of the mechanisms causing immunosuppression during systemic blood infections. PMID:17978177

  2. Dendritic cell-derived exosomes as cell-free peptide-based vaccines.

    PubMed

    Taïeb, Julien; Chaput, Nathalie; Zitvogel, Laurence

    2005-01-01

    Dendritic cells (DC) are professional antigen-presenting cells and the only ones capable of inducing primary cytotoxic immune responses both in vivo and in vitro. DCs secrete a 60-100 nm membrane vesicle population of endocytic origin, called exosomes. The lipid and protein composition of DC-derived exosomes (DEX) is now well characterized. Besides MHC and costimulatory molecules, DEX bear several adhesion proteins, which are probably involved in their specific targeting. DEX also accumulate several cytosolic factors, most likely involved in exosome's biogenesis in late endosomes. In 1998, we reported that DEX are immunogenic in mice and lead to tumor rejection. These findings have renewed the interest in DEX. The current challenge consists of understanding the mechanisms and the physiological relevance of DEX, which could contribute to the design of the optimal DEX-based vaccination. In this review, we focus on the biological features of DEX and their immunostimulatory functions in mice and humans, and we discuss their potential clinical implementation in the immunotherapy of cancer.

  3. Trans-nodal migration of resident dendritic cells into medullary interfollicular regions initiates immunity to influenza vaccine

    PubMed Central

    Woodruff, Matthew C.; Heesters, Balthasar A.; Herndon, Caroline N.; Groom, Joanna R.; Thomas, Paul G.; Luster, Andrew D.; Turley, Shannon J.

    2014-01-01

    Dendritic cells (DCs) are well established as potent antigen-presenting cells critical to adaptive immunity. In vaccination approaches, appropriately stimulating lymph node–resident DCs (LNDCs) is highly relevant to effective immunization. Although LNDCs have been implicated in immune response, their ability to directly drive effective immunity to lymph-borne antigen remains unclear. Using an inactive influenza vaccine model and whole node imaging approaches, we observed surprising responsiveness of LNDC populations to vaccine arrival resulting in a transnodal repositioning into specific antigen collection sites within minutes after immunization. Once there, LNDCs acquired viral antigen and initiated activation of viral specific CD4+ T cells, resulting in germinal center formation and B cell memory in the absence of skin migratory DCs. Together, these results demonstrate an unexpected stimulatory role for LNDCs where they are capable of rapidly locating viral antigen, driving early activation of T cell populations, and independently establishing functional immune response. PMID:25049334

  4. Compartmental models of rat cerebellar Purkinje cells based on simultaneous somatic and dendritic patch-clamp recordings

    PubMed Central

    Roth, Arnd; Häusser, Michael

    2001-01-01

    Simultaneous dendritic and somatic patch-clamp recordings were made from Purkinje cells in cerebellar slices from 12- to 21-day-old rats. Voltage responses to current impulses injected via either the dendritic or the somatic pipette were obtained in the presence of the selective Ih blocker ZD 7288 and blockers of spontaneous synaptic input. Neurons were filled with biocytin for subsequent morphological reconstruction. Four neurons were reconstructed and converted into detailed compartmental models. The specific membrane capacitance (Cm), specific membrane resistance (Rm) and intracellular resistivity (Ri) were optimized by direct fitting of the model responses to the electrophysiological data from the same cell. Mean values were: Cm, 0.77 ± 0.17 μF cm−2 (mean ±s.d.; range, 0.64-1.00 μF cm−2), Rm, 122 ± 18 kΩ cm2 (98-141 kΩ cm2) and Ri, 115 ± 20 Ω cm (93-142 Ω cm). The steady-state electrotonic architecture of these cells was compact under the experimental conditions used. However, somatic voltage-clamp recordings of parallel fibre and climbing fibre synaptic currents were substantially filtered and attenuated. The detailed models were compared with a two-compartment model of Purkinje cells. The range of synaptic current kinetics that can be faithfully recorded using somatic voltage clamp is predicted fairly well by the two-compartment model, even though some of its underlying assumptions are violated. A model of Ih was constructed based on voltage-clamp data, and inserted into the passive compartmental models. Somatic EPSP amplitude was substantially attenuated compared to the amplitude of dendritic EPSPs at their site of generation. However, synaptic efficacy of the same quantal synaptic conductance, as measured by the somatic EPSP amplitude, was only weakly dependent on synaptic location on spiny branchlets. The passive electrotonic structure of Purkinje cells is unusual in that the steady-state architecture is very compact, while voltage transients

  5. High-yield production of a stable Vero cell-based vaccine candidate against the highly pathogenic avian influenza virus H5N1

    SciTech Connect

    Zhou, Fangye; Zhou, Jian; Ma, Lei; Song, Shaohui; Zhang, Xinwen; Li, Weidong; Jiang, Shude; Wang, Yue; Liao, Guoyang

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer Vero cell-based HPAI H5N1 vaccine with stable high yield. Black-Right-Pointing-Pointer Stable high yield derived from the YNVa H3N2 backbone. Black-Right-Pointing-Pointer H5N1/YNVa has a similar safety and immunogenicity to H5N1delta. -- Abstract: Highly pathogenic avian influenza (HPAI) viruses pose a global pandemic threat, for which rapid large-scale vaccine production technology is critical for prevention and control. Because chickens are highly susceptible to HPAI viruses, the supply of chicken embryos for vaccine production might be depleted during a virus outbreak. Therefore, developing HPAI virus vaccines using other technologies is critical. Meeting vaccine demand using the Vero cell-based fermentation process has been hindered by low stability and yield. In this study, a Vero cell-based HPAI H5N1 vaccine candidate (H5N1/YNVa) with stable high yield was achieved by reassortment of the Vero-adapted (Va) high growth A/Yunnan/1/2005(H3N2) (YNVa) virus with the A/Anhui/1/2005(H5N1) attenuated influenza vaccine strain (H5N1delta) using the 6/2 method. The reassorted H5N1/YNVa vaccine maintained a high hemagglutination (HA) titer of 1024. Furthermore, H5N1/YNVa displayed low pathogenicity and uniform immunogenicity compared to that of the parent virus.

  6. HPV vaccine stimulates cytotoxic activity of killer dendritic cells and natural killer cells against HPV-positive tumour cells.

    PubMed

    Van den Bergh, Johan M J; Guerti, Khadija; Willemen, Yannick; Lion, Eva; Cools, Nathalie; Goossens, Herman; Vorsters, Alex; Van Tendeloo, Viggo F I; Anguille, Sébastien; Van Damme, Pierre; Smits, Evelien L J M

    2014-07-01

    Cervarix™ is approved as a preventive vaccine against infection with the human papillomavirus (HPV) strains 16 and 18, which are causally related to the development of cervical cancer. We are the first to investigate in vitro the effects of this HPV vaccine on interleukin (IL)-15 dendritic cells (DC) as proxy of a naturally occurring subset of blood DC, and natural killer (NK) cells, two innate immune cell types that play an important role in antitumour immunity. Our results show that exposure of IL-15 DC to the HPV vaccine results in increased expression of phenotypic maturation markers, pro-inflammatory cytokine production and cytotoxic activity against HPV-positive tumour cells. These effects are mediated by the vaccine adjuvant, partly through Toll-like receptor 4 activation. Next, we demonstrate that vaccine-exposed IL-15 DC in turn induce phenotypic activation of NK cells, resulting in a synergistic cytotoxic action against HPV-infected tumour cells. Our study thus identifies a novel mode of action of the HPV vaccine in boosting innate immunity, including killing of HPV-infected cells by DC and NK cells.

  7. Alphaviral Vector-Transduced Dendritic Cells are Successful Therapeutic Vaccines against neu-Overexpressing Tumors in Wild-Type Mice

    PubMed Central

    Moran, Timothy P.; Burgents, Joseph E.; Long, Brian; Ferrer, Ivana; Jaffee, Elizabeth M.; Tisch, Roland M.; Johnston, Robert E.; Serody, Jonathan S.

    2009-01-01

    While dendritic cell (DC) vaccines can protect hosts from tumor challenge, their ability to effectively inhibit the growth of established tumors remains indeterminate. Previously, we have shown that human DCs transduced with Venezuelan equine encephalitis virus replicon particles (VRPs) were potent stimulators of antigen-specific T cells in vitro. Therefore, we investigated the ability of VRP-transduced DCs (VRP-DCs) to induce therapeutic immunity in vivo against tumors overexpressing the neu oncoprotein. Transduction of murine DCs with VRPs resulted in high-level transgene expression, DC maturation and secretion of proinflammatory cytokines. Vaccination with VRP-transduced DCs (VRP-DCs) expressing a truncated neu oncoprotein induced robust neu-specific CD8+ T cell and anti-neu IgG responses. Furthermore, a single vaccination with VRP-DCs induced the regression of large established tumors in wild-type mice. Interestingly, depletion of CD4+, but not CD8+, T cells completely abrogated inhibition of tumor growth following vaccination. Taken together, our results demonstrate that VRP-DC vaccines induce potent immunity against established tumors, and emphasize the importance of the generation of both CD4+ T cell and B cell responses for efficient tumor inhibition. These findings provide the rationale for future evaluation VRP-DC vaccines in the clinical setting. PMID:17675184

  8. HPV vaccine stimulates cytotoxic activity of killer dendritic cells and natural killer cells against HPV-positive tumour cells

    PubMed Central

    Van den Bergh, Johan M J; Guerti, Khadija; Willemen, Yannick; Lion, Eva; Cools, Nathalie; Goossens, Herman; Vorsters, Alex; Van Tendeloo, Viggo F I; Anguille, Sébastien; Van Damme, Pierre; Smits, Evelien L J M

    2014-01-01

    Cervarix™ is approved as a preventive vaccine against infection with the human papillomavirus (HPV) strains 16 and 18, which are causally related to the development of cervical cancer. We are the first to investigate in vitro the effects of this HPV vaccine on interleukin (IL)-15 dendritic cells (DC) as proxy of a naturally occurring subset of blood DC, and natural killer (NK) cells, two innate immune cell types that play an important role in antitumour immunity. Our results show that exposure of IL-15 DC to the HPV vaccine results in increased expression of phenotypic maturation markers, pro-inflammatory cytokine production and cytotoxic activity against HPV-positive tumour cells. These effects are mediated by the vaccine adjuvant, partly through Toll-like receptor 4 activation. Next, we demonstrate that vaccine-exposed IL-15 DC in turn induce phenotypic activation of NK cells, resulting in a synergistic cytotoxic action against HPV-infected tumour cells. Our study thus identifies a novel mode of action of the HPV vaccine in boosting innate immunity, including killing of HPV-infected cells by DC and NK cells. PMID:24979331

  9. Alphaviral vector-transduced dendritic cells are successful therapeutic vaccines against neu-overexpressing tumors in wild-type mice.

    PubMed

    Moran, Timothy P; Burgents, Joseph E; Long, Brian; Ferrer, Ivana; Jaffee, Elizabeth M; Tisch, Roland M; Johnston, Robert E; Serody, Jonathan S

    2007-09-04

    While dendritic cell (DC) vaccines can protect hosts from tumor challenge, their ability to effectively inhibit the growth of established tumors remains indeterminate. Previously, we have shown that human DCs transduced with Venezuelan equine encephalitis virus replicon particles (VRPs) were potent stimulators of antigen-specific T cells in vitro. Therefore, we investigated the ability of VRP-transduced DCs (VRP-DCs) to induce therapeutic immunity in vivo against tumors overexpressing the neu oncoprotein. Transduction of murine DCs with VRPs resulted in high-level transgene expression, DC maturation and secretion of proinflammatory cytokines. Vaccination with VRP-DCs expressing a truncated neu oncoprotein induced robust neu-specific CD8(+) T cell and anti-neu IgG responses. Furthermore, a single vaccination with VRP-DCs induced the regression of large established tumors in wild-type mice. Interestingly, depletion of CD4(+), but not CD8(+), T cells completely abrogated inhibition of tumor growth following vaccination. Taken together, our results demonstrate that VRP-DC vaccines induce potent immunity against established tumors, and emphasize the importance of the generation of both CD4(+) T cell and B cell responses for efficient tumor inhibition. These findings provide the rationale for future evaluation of VRP-DC vaccines in the clinical setting.

  10. Dendritic cell based genetic immunization stimulates potent tumor protection dependent on CD8 CTL cells in the absence of autoimmunity.

    PubMed

    Zhang, Sheng; Huang, Weiyi

    2008-09-01

    Although antibodies (Abs) produced by B cells can treat cancer in certain models, T cells have been accountable for the major effector to control cancer. Immune recognition toward tyrosinase-related protein-1 (TRP-1), a melanoma associated antigen up-regulated on the surface of B16F10 melanomas, generally leads to tumor protection mediated by Abs. In this study, immunization with dendritic cells ex vivo transduced with adenovirus encoding TRP-1 stimulates immune activation and potent tumor protection mediated by CD8 T cells in the absence of autoimmune consequence. Transfer of CD8 T cells from immunized mice also leads to tumor protection. The immune activation and CD8 T cell mediated tumor protection rely on the CD4 T cell help. Thus DC based genetic immunization targeting TRP-1, an antigen usually causes Ab predominant immune recognition, is capable of stimulating potent tumor protection dependent on CD8 T cells in the absence of autoimmunity.

  11. In vivo targeting of antigens to maturing dendritic cells via the DEC-205 receptor improves T cell vaccination.

    PubMed

    Bonifaz, Laura C; Bonnyay, David P; Charalambous, Anna; Darguste, Dara I; Fujii, Shin-Ichiro; Soares, Helena; Brimnes, Marie K; Moltedo, Bruno; Moran, Thomas M; Steinman, Ralph M

    2004-03-15

    The prevention and treatment of prevalent infectious diseases and tumors should benefit from improvements in the induction of antigen-specific T cell immunity. To assess the potential of antigen targeting to dendritic cells to improve immunity, we incorporated ovalbumin protein into a monoclonal antibody to the DEC-205 receptor, an endocytic receptor that is abundant on these cells in lymphoid tissues. Simultaneously, we injected agonistic alpha-CD40 antibody to mature the dendritic cells. We found that a single low dose of antibody-conjugated ovalbumin initiated immunity from the naive CD4+ and CD8+ T cell repertoire. Unexpectedly, the alphaDEC-205 antigen conjugates, given s.c., targeted to dendritic cells systemically and for long periods, and ovalbumin peptide was presented on MHC class I for 2 weeks. This was associated with stronger CD8+ T cell-mediated immunity relative to other forms of antigen delivery, even when the latter was given at a thousand times higher doses. In parallel, the mice showed enhanced resistance to an established rapidly growing tumor and to viral infection at a mucosal site. By better harnessing the immunizing functions of maturing dendritic cells, antibody-mediated antigen targeting via the DEC-205 receptor increases the efficiency of vaccination for T cell immunity, including systemic and mucosal resistance in disease models.

  12. In Vivo Targeting of Antigens to Maturing Dendritic Cells via the DEC-205 Receptor Improves T Cell Vaccination

    PubMed Central

    Bonifaz, Laura C.; Bonnyay, David P.; Charalambous, Anna; Darguste, Dara I.; Fujii, Shin-Ichiro; Soares, Helena; Brimnes, Marie K.; Moltedo, Bruno; Moran, Thomas M.; Steinman, Ralph M.

    2004-01-01

    The prevention and treatment of prevalent infectious diseases and tumors should benefit from improvements in the induction of antigen-specific T cell immunity. To assess the potential of antigen targeting to dendritic cells to improve immunity, we incorporated ovalbumin protein into a monoclonal antibody to the DEC-205 receptor, an endocytic receptor that is abundant on these cells in lymphoid tissues. Simultaneously, we injected agonistic α-CD40 antibody to mature the dendritic cells. We found that a single low dose of antibody-conjugated ovalbumin initiated immunity from the naive CD4+ and CD8+ T cell repertoire. Unexpectedly, the αDEC-205 antigen conjugates, given s.c., targeted to dendritic cells systemically and for long periods, and ovalbumin peptide was presented on MHC class I for 2 weeks. This was associated with stronger CD8+ T cell–mediated immunity relative to other forms of antigen delivery, even when the latter was given at a thousand times higher doses. In parallel, the mice showed enhanced resistance to an established rapidly growing tumor and to viral infection at a mucosal site. By better harnessing the immunizing functions of maturing dendritic cells, antibody-mediated antigen targeting via the DEC-205 receptor increases the efficiency of vaccination for T cell immunity, including systemic and mucosal resistance in disease models. PMID:15024047

  13. Discovery of BVDU as a promising Drug for autoimmune diseases Therapy by Dendritic-cell-based functional screening.

    PubMed

    Chen, Shuai; Zhou, Jinfeng; Cai, Yingying; Zheng, Xinyuan; Xie, Sirong; Liao, Yuhan; Zhu, Yu; Qin, Chaoyan; Lai, Weiming; Yang, Cuixia; Xie, Xin; Du, Changsheng

    2017-03-08

    Dendritic cells (DCs) play a critical role in the pathogenesis of autoimmune diseases including multiple sclerosis, and targeting DCs' cytokines production is an important strategy for autoimmune diseases treatment. By establishing a high-throughput screening system, we analyzed LOPAC drug library to identify drugs that control the secretion of IL-6 by DCs, we selected the most likely candidate drug, BVDU, and found that it affected not only IL-6 production, but also that of IL-12, IL-1β during the DCs differentiation and maturation. The mechanism studies showed that BVDU treatment restricted the phosphorylation of MAP kinase, which played an important role in DC cytokine production. We further assessed the in vivo therapeutic potentials of BVDU on mouse models including EAE and STZ-induced T1D, and found that BVDU treated EAE mice exhibited significantly lower EAE clinical scores, decreased leukocyte infiltration in central nervous system lesions, and reduced demyelination. As in T1D mice, BVDU treatment also showed promising therapeutic effects based on both alleviated disease symptoms and tissue pathogenesis. More interestingly, the modulating effect of BVDU on IL-6 production was further verified in human primary DCs. The above data supported the promising application of our screen model, and also the potential of BVDU for autoimmune diseases therapy.

  14. T cell-dependent antitumor immunity mediated by secondary lymphoid tissue chemokine: augmentation of dendritic cell-based immunotherapy.

    PubMed

    Kirk, C J; Hartigan-O'Connor, D; Nickoloff, B J; Chamberlain, J S; Giedlin, M; Aukerman, L; Mule, J J

    2001-03-01

    Secondary lymphoid tissue chemokine (SLC) is a CC chemokine that is selective in its recruitment of naive T cells and dendritic cells (DCs). In the lymph node, SLC is believed to play an important role in the initiation of an immune response by colocalizing naive T cells with DC-presenting antigen. Here, we used SLC as a treatment for tumors established from the poorly immunogenic B16 melanoma. Intratumoral injections of SLC inhibited tumor growth in a CD8+, T cell-dependent manner. SLC elicited a substantial infiltration of DCs and T cells into the tumor, coincident with the antitumor response. We next used SLC gene-modified DCs as a treatment of established tumors. Intratumoral injections of SLC-expressing DCs resulted in tumor growth inhibition that was significantly better than either control DCs or SLC alone. Distal site immunization of tumor-bearing mice with SLC gene-modified DCs pulsed with tumor lysate elicited an antitumor response whereas control DCs did not. We also found that s.c. injection of lysate-pulsed DCs expressing SLC promoted the migration of T cells to the immunization site. This report demonstrates that SLC can both induce antitumor responses and enhance the antitumor immunity elicited by DCs.

  15. Discovery of BVDU as a promising Drug for autoimmune diseases Therapy by Dendritic-cell-based functional screening

    PubMed Central

    Chen, Shuai; Zhou, Jinfeng; Cai, Yingying; Zheng, Xinyuan; Xie, Sirong; Liao, Yuhan; Zhu, Yu; Qin, Chaoyan; Lai, Weiming; Yang, Cuixia; Xie, Xin; Du, Changsheng

    2017-01-01

    Dendritic cells (DCs) play a critical role in the pathogenesis of autoimmune diseases including multiple sclerosis, and targeting DCs’ cytokines production is an important strategy for autoimmune diseases treatment. By establishing a high-throughput screening system, we analyzed LOPAC drug library to identify drugs that control the secretion of IL-6 by DCs, we selected the most likely candidate drug, BVDU, and found that it affected not only IL-6 production, but also that of IL-12, IL-1β during the DCs differentiation and maturation. The mechanism studies showed that BVDU treatment restricted the phosphorylation of MAP kinase, which played an important role in DC cytokine production. We further assessed the in vivo therapeutic potentials of BVDU on mouse models including EAE and STZ-induced T1D, and found that BVDU treated EAE mice exhibited significantly lower EAE clinical scores, decreased leukocyte infiltration in central nervous system lesions, and reduced demyelination. As in T1D mice, BVDU treatment also showed promising therapeutic effects based on both alleviated disease symptoms and tissue pathogenesis. More interestingly, the modulating effect of BVDU on IL-6 production was further verified in human primary DCs. The above data supported the promising application of our screen model, and also the potential of BVDU for autoimmune diseases therapy. PMID:28272439

  16. The interaction of fungi with dendritic cells: implications for Th immunity and vaccination.

    PubMed

    Claudia, Montagnoli; Bacci, Angela; Silvia, Bozza; Gaziano, Roberta; Spreca, Antonio; Romani, Luigina

    2002-09-01

    Human beings are continuously exposed to fungi, yet they rarely get fungal diseases. The delicate balance between the host and these otherwise harmless pathogens may turn into a parasitic relationship, resulting in the development of severe infections. The ability to reversibly switch between unicellular and filamentous forms, all of which can be found in infected tissues, is thought to be important for virulence. Efficient responses to the different forms of fungi require different mechanisms of immunity. Dendritic cells (DC) are uniquely able at decoding the fungus-associated information and translating it in qualitatively different T helper (Th) immune responses, in vitro and in vivo. Myeloid DC phagocytosed yeasts and hyphae of Candida albicans and conidia and hyphae of Aspergillus fumigatus, both in vitro and in vivo. Phagocytosis occurred through distinct phagocytic morphologies, involving the engagement and cooperativity of distinct recognition receptors. However, receptor engagement and cooperativity were greatly modified by opsonization. The engagement of distinct receptors translated into disparate downstream signaling events, ultimately affecting cytokine production and costimulation. In vivo studies confirmed that the choice of receptor and mode of entry of fungi into DC was responsible for Th polarization and patterns of susceptibility or resistance to infection. Adoptive transfer of different types of DC activated protective, nonprotective and regulatory T cells, ultimately affecting the outcome of infection. The conclusions are that the selective exploitation of receptors and mode of entry into DC may determine the full range of host's immune relationships with fungi and have important implications in the design of vaccine-based strategies.

  17. Xenogeneic cell-based vaccine therapy for stage III melanoma: safety, immune-mediated responses and survival benefits.

    PubMed

    Seledtsova, Galina V; Shishkov, Alexey A; Kaschenko, Erika A; Goncharov, Andrey G; Gazatova, Natalya D; Seledtsov, Victor I

    2016-04-01

    New therapies for melanoma have yielded promising results, but their application is limited because of serious side-effects and only moderate impact on patient survival. Vaccine therapies may offer some hope by targeting tumor-specific responses, considering the immunogenic nature of melanomas. To investigate the safety profile and efficiency of a xenogeneic cell-based vaccine therapy in stage III melanoma patients and evaluate the survival rate in treated patients. Twenty-seven stage III melanoma patients were immunized with a lyophilized xenogeneic polyantigenic vaccine (XPV) prepared from murine melanoma B16 and carcinoma LLC cells. Neither grade III/IV toxicities, nor clinically significant changes in blood and biochemical parameters were noted after an induction course of 10 XPV subcutaneous immunizations. No laboratory or clinical signs of systemic autoimmunity were documented. Following 10 vaccinations, a relative increase in the numbers of circulating memory CD4+CD45RO+ T cells (but not CD8+ CD45RO+ T cells) was observed. Peripheral blood mononuclear cells obtained from XPV-treated patients demonstrated increased proliferative responses to human BRO melanoma-associated antigens and marked increases in serum levels of IFN-γ and IL-8. Serum levels of TNF-α, IL-4 and IL-6 were not affected. The overall five-year survival rate in the treated patients was significantly higher than that in 27 control patients with matched clinical and prognostic characteristics (55% vs 18%). XPV-based immunotherapy could be maximally effective when started as early as possible before or after surgical excision of the primary tumor and local metastases, i.e. when tumor-mediated suppressive effects on immunity are minimal.

  18. Effect of HSV-IL12 Loaded Tumor Cell-Based Vaccination in a Mouse Model of High-Grade Neuroblastoma

    PubMed Central

    Pereboeva, Larisa; Gillespie, G. Yancey; Cloud, Gretchen A.; Langford, Catherine

    2016-01-01

    We designed multimodal tumor vaccine that consists of irradiated tumor cells infected with the oncolytic IL-12-expressing HSV-1 virus, M002. This vaccine was tested against the syngeneic neuroblastoma mouse model Neuro 2a injected into the right caudate nucleus of the immunocompetent A/J mice. Mice were vaccinated via intramuscular injection of multimodal vaccine or uninfected irradiated tumor cells at seven and 14 days after tumor establishment. While there was no survival difference between groups vaccinated with cell-based vaccine applied following tumor injection, a premunition prime/boost vaccination strategy produced a significant survival advantage in both groups and sustained immune response to an intracranial rechallenge of the same tumor. The syngeneic but unrelated H6 hepatocellular tumor cell line grew unrestricted in vaccinated mice, indicative of vaccine-mediated specific immunity to Neuro 2a tumors. Longitudinal analyses of tumor-infiltrating lymphocytes revealed a primary adaptive T cell response involving both CD4+ and CD8+ T cell subsets. Spleen cell mononuclear preparations from vaccinated mice were significantly more cytotoxic to Neuro 2a tumor cells than spleen cells from control mice as demonstrated in a four-hour in vitro cytotoxicity assay. These results strongly suggest that an irradiated whole cell tumor vaccine incorporating IL-12-expressing M002 HSV can produce a durable, specific immunization in a murine model of intracranial tumor. PMID:27610392

  19. Effect of HSV-IL12 Loaded Tumor Cell-Based Vaccination in a Mouse Model of High-Grade Neuroblastoma.

    PubMed

    Bauer, David F; Pereboeva, Larisa; Gillespie, G Yancey; Cloud, Gretchen A; Elzafarany, Osama; Langford, Catherine; Markert, James M; Lamb, Lawrence S

    2016-01-01

    We designed multimodal tumor vaccine that consists of irradiated tumor cells infected with the oncolytic IL-12-expressing HSV-1 virus, M002. This vaccine was tested against the syngeneic neuroblastoma mouse model Neuro 2a injected into the right caudate nucleus of the immunocompetent A/J mice. Mice were vaccinated via intramuscular injection of multimodal vaccine or uninfected irradiated tumor cells at seven and 14 days after tumor establishment. While there was no survival difference between groups vaccinated with cell-based vaccine applied following tumor injection, a premunition prime/boost vaccination strategy produced a significant survival advantage in both groups and sustained immune response to an intracranial rechallenge of the same tumor. The syngeneic but unrelated H6 hepatocellular tumor cell line grew unrestricted in vaccinated mice, indicative of vaccine-mediated specific immunity to Neuro 2a tumors. Longitudinal analyses of tumor-infiltrating lymphocytes revealed a primary adaptive T cell response involving both CD4+ and CD8+ T cell subsets. Spleen cell mononuclear preparations from vaccinated mice were significantly more cytotoxic to Neuro 2a tumor cells than spleen cells from control mice as demonstrated in a four-hour in vitro cytotoxicity assay. These results strongly suggest that an irradiated whole cell tumor vaccine incorporating IL-12-expressing M002 HSV can produce a durable, specific immunization in a murine model of intracranial tumor.

  20. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes.

    PubMed

    Zitvogel, L; Regnault, A; Lozier, A; Wolfers, J; Flament, C; Tenza, D; Ricciardi-Castagnoli, P; Raposo, G; Amigorena, S

    1998-05-01

    Dendritic cells (DCs) are professional antigen presenting cells with the unique capacity to induce primary and secondary immune responses in vivo. Here, we show that DCs secrete antigen presenting vesicles, called exosomes, which express functional Major Histocompatibility Complex class I and class II, and T-cell costimulatory molecules. Tumor peptide-pulsed DC-derived exosomes prime specific cytotoxic T lymphocytes in vivo and eradicate or suppress growth of established murine tumors in a T cell-dependent manner. Exosome-based cell-free vaccines represent an alternative to DC adoptive therapy for suppressing tumor growth.

  1. Immunogenic Cell Death Induced by Ginsenoside Rg3: Significance in Dendritic Cell-based Anti-tumor Immunotherapy.

    PubMed

    Son, Keum-Joo; Choi, Ki Ryung; Lee, Seog Jae; Lee, Hyunah

    2016-02-01

    Cancer is one of the leading causes of morbidity and mortality worldwide; therefore there is a need to discover new therapeutic modules with improved efficacy and safety. Immune-(cell) therapy is a promising therapeutic strategy for the treatment of intractable cancers. The effectiveness of certain chemotherapeutics in inducing immunogenic tumor cell death thus promoting cancer eradication has been reported. Ginsenoside Rg3 is a ginseng saponin that has antitumor and immunomodulatory activity. In this study, we treated tumor cells with Rg3 to verify the significance of inducing immunogenic tumor cell death in antitumor therapy, especially in DC-based immunotherapy. Rg3 killed the both immunogenic (B16F10 melanoma cells) and non-immunogenic (LLC: Lewis Lung Carcinoma cells) tumor cells by inducing apoptosis. Surface expression of immunogenic death markers including calreticulin and heat shock proteins and the transcription of relevant genes were increased in the Rg3-dying tumor. Increased calreticulin expression was directly related to the uptake of dying tumor cells by dendritic cells (DCs): the proportion of CRT(+) CD11c(+) cells was increased in the Rg3-treated group. Interestingly, tumor cells dying by immunogenic cell death secreted IFN-γ, an effector molecule for antitumor activity in T cells. Along with the Rg3-induced suppression of pro-angiogenic (TNF-α) and immunosuppressive cytokine (TGF-β) secretion, IFN-γ production from the Rg3-treated tumor cells may also indicate Rg3 as an effective anticancer immunotherapeutic strategy. The data clearly suggests that Rg3-induced immunogenic tumor cell death due its cytotoxic effect and its ability to induce DC function. This indicates that Rg3 may be an effective immunotherapeutic strategy.

  2. Overcoming nutrient limitations for cell-based production of influenza vaccine.

    PubMed

    Liu, Xu-Ping; Huang, Ding; Tan, Wen-Song; Luo, Jian; Chen, Ze

    2015-01-01

    Metabolic analysis for medium optimization represents a very useful strategy in the process development of production of vaccines in cells. During influenza vaccine production, viruses hijack host cells and take advantage of host's metabolism. As a consequence, the nutritional demand of host cells should undergo a profound change, and usually more nutrients such as glucose and amino acids should be consumed. As such, the maintaining media used in virus production processes often cannot provide sufficient nutrients, and novel methods are urged to be established to address this severe issue of nutritional limitation. A detailed study on impacts of influenza virus on cell death and metabolism, with a profound analysis of nutritional requirements during virus production process, followed by a rational medium optimization is expected to be the most straightfoward and effective strategy. This would ensure a balanced and adequate nutritional supply, which should minimize cell death and improve both cell-specific virus yield and total influenza virus production. Such a metabolic analysis-based medium optimization would lay a solid foundation for the development of cell culture technology in influenza vaccine production.

  3. Toll-like receptor ligands synergize through distinct dendritic cell pathways to induce T cell responses: Implications for vaccines

    PubMed Central

    Zhu, Qing; Egelston, Colt; Vivekanandhan, Aravindhan; Uematsu, Satoshi; Akira, Shizuo; Klinman, Dennis M.; Belyakov, Igor M.; Berzofsky, Jay A.

    2008-01-01

    Toll-like receptors (TLRs) may need to cooperate with each other to be effective in detecting imminent infection and trigger immune responses. Understanding is still limited about the intracellular mechanism of this cooperation. We found that when certain TLRs are involved, dendritic cells (DCs) establish unidirectional intracellular cross-talk, in which the MyD88-independent TRIF-dependent pathway amplifies the MyD88-dependent DC function through a JNK-dependent mechanism. The amplified MyD88-dependent DC function determines the induction of the T cell response to a given vaccine in vivo. Therefore, our study revealed an underlying TLR mechanism governing the functional, nonrandom interplay among TLRs for recognition of combinatorial ligands that may be dangerous to the host, providing important guidance for design of novel synergistic molecular vaccine adjuvants. PMID:18845682

  4. Mucosal poly IC improves protection elicited by replicating influenza vaccines via enhanced dendritic cell function and T cell immunity

    PubMed Central

    Pérez-Girón, José V.; Belicha-Villanueva, Alan; Hassan, Ebrahim; Gómez-Medina, Sergio; Cruz, Jazmina L.G.; Lüdtke, Anja; Ruibal, Paula; Albrecht, Randy A.; García-Sastre, Adolfo; Muñoz-Fontela, César

    2014-01-01

    Live-attenuated influenza vaccines (LAIV) have the potential to generate CD8 T cell immunity that may limit the virulence of an antigenically shifted influenza strain in a population lacking protective antibodies. However, current LAIVs exert limited T cell immunity restricted to the vaccine strains. One approach to improve LAIV-induced T cell responses could be to use specific adjuvants to enhance T cell priming by respiratory dendritic cells (rDCs), but this hypothesis has not been addressed. Here we studied the effect of the toll-like receptor (TLR)-3 ligand poly IC on CD8 T cell immunity and protection elicited by LAIVs. Mucosal treatment with poly IC shortly after vaccination enhanced rDC function, CD8 T cell formation, and production of neutralizing antibodies. This adjuvant effect of poly IC was dependent on amplification of TLR3 signaling by non-hematopoietic radio-resistant cells, and enhanced mouse protection to homosubtypic as well as heterosubtypic virus challenge. Our findings indicate that mucosal TLR3 ligation may be utilized to improve CD8 T cell responses to replicating vaccines, which has implications for protection in the absence of pre-existing antibody immunity. PMID:24958904

  5. Insight into the immunobiology of human skin and functional specialization of skin dendritic cell subsets to innovate intradermal vaccination design.

    PubMed

    Teunissen, M B M; Haniffa, M; Collin, M P

    2012-01-01

    Dendritic cells (DC) are the key initiators and regulators of any immune response which determine the outcome of CD4(+) and CD8(+) T-cell responses. Multiple distinct DC subsets can be distinguished by location, phenotype, and function in the homeostatic and inflamed human skin. The function of steady-state cutaneous DCs or recruited inflammatory DCs is influenced by the surrounding cellular and extracellular skin microenvironment. The skin is an attractive site for vaccination given the extended local network of DCs and the easy access to the skin-draining lymph nodes to generate effector T cells and immunoglobulin-producing B cells for long-term protective immunity. In the context of intradermal vaccination we describe in this review the skin-associated immune system, the characteristics of the different skin DC subsets, the mechanism of antigen uptake and presentation, and how the properties of DCs can be manipulated. This knowledge is critical for the development of intradermal vaccine strategies and supports the concept of intradermal vaccination as a superior route to the conventional intramuscular or subcutaneous methods.

  6. Signal transduction profile of chemical sensitisers in dendritic cells: An endpoint to be included in a cell-based in vitro alternative approach to hazard identification?

    SciTech Connect

    Neves, Bruno Miguel; Goncalo, Margarida; Figueiredo, Americo; Duarte, Carlos B.; Lopes, Maria Celeste; Cruz, Maria Teresa

    2011-01-15

    The development of non-animal testing methods for the assessment of skin sensitisation potential is an urgent challenge within the framework of existing and forthcoming legislation. Efforts have been made to replace current animal tests, but so far no alternative methods have been developed. It is widely recognised that alternatives to animal testing cannot be accomplished with a single approach, but rather will require the integration of results obtained from different in vitro and in silico assays. The argument subjacent to the development of in vitro dendritic cell (DC)-based assays is that sensitiser-induced changes in the DC phenotype can be differentiated from those induced by irritants. This assumption is derived from the unique capacity of DC to convert environmental signals encountered at the skin into a receptor expression pattern (MHC class II molecules, co-stimulatory molecules, chemokine receptors) and a soluble mediator release profile that will stimulate T lymphocytes. Since signal transduction cascades precede changes in surface marker expression and cytokine/chemokine secretion, these phenotypic modifications are a consequence of a signal transduction profile that is specifically triggered by sensitisers and not by irritants. A limited number of studies have addressed this subject and the present review attempts to summarise and highlight all of the signalling pathways modulated by skin sensitisers and irritants. Furthermore, we conclude this review by focusing on the most promising strategies suitable for inclusion into a cell-based in vitro alternative approach to hazard identification.

  7. A Mammalian Cell Based FACS-Panning Platform for the Selection of HIV-1 Envelopes for Vaccine Development

    PubMed Central

    Bruun, Tim-Henrik; Mühlbauer, Katharina; Benen, Thomas; Kliche, Alexander; Wagner, Ralf

    2014-01-01

    An increasing number of broadly neutralizing monoclonal antibodies (bnMAb) against the HIV-1 envelope (Env) protein has been discovered recently. Despite this progress, vaccination efforts with the aim to re-elicit bnMAbs that provide protective immunity have failed so far. Herein, we describe the development of a mammalian cell based FACS-panning method in which bnMAbs are used as tools to select surface-exposed envelope variants according to their binding affinity. For that purpose, an HIV-1 derived lentiviral vector was developed to infect HEK293T cells at low multiplicity of infection (MOI) in order to link Env phenotype and genotype. For proof of principle, a gp145 Env model-library was established in which the complete V3 domain was substituted by five strain specific V3 loop sequences with known binding affinities to nMAb 447-52D, respectively. Env genes were recovered from selected cells by PCR, subcloned into a lentiviral vector (i) to determine and quantify the enrichment nMAb binders and (ii) to generate a new batch of transduction competent particles. After 2 selection cycles the Env variant with highest affinity was enriched 20-fold and represented 80% of the remaining Env population. Exploiting the recently described bnMAbs, this procedure might prove useful in selecting Env proteins from large Env libraries with the potential to elicit bnMAbs when used as vaccine candidates. PMID:25279768

  8. A mammalian cell based FACS-panning platform for the selection of HIV-1 envelopes for vaccine development.

    PubMed

    Bruun, Tim-Henrik; Mühlbauer, Katharina; Benen, Thomas; Kliche, Alexander; Wagner, Ralf

    2014-01-01

    An increasing number of broadly neutralizing monoclonal antibodies (bnMAb) against the HIV-1 envelope (Env) protein has been discovered recently. Despite this progress, vaccination efforts with the aim to re-elicit bnMAbs that provide protective immunity have failed so far. Herein, we describe the development of a mammalian cell based FACS-panning method in which bnMAbs are used as tools to select surface-exposed envelope variants according to their binding affinity. For that purpose, an HIV-1 derived lentiviral vector was developed to infect HEK293T cells at low multiplicity of infection (MOI) in order to link Env phenotype and genotype. For proof of principle, a gp145 Env model-library was established in which the complete V3 domain was substituted by five strain specific V3 loop sequences with known binding affinities to nMAb 447-52D, respectively. Env genes were recovered from selected cells by PCR, subcloned into a lentiviral vector (i) to determine and quantify the enrichment nMAb binders and (ii) to generate a new batch of transduction competent particles. After 2 selection cycles the Env variant with highest affinity was enriched 20-fold and represented 80% of the remaining Env population. Exploiting the recently described bnMAbs, this procedure might prove useful in selecting Env proteins from large Env libraries with the potential to elicit bnMAbs when used as vaccine candidates.

  9. Toll-like receptor 3-induced immune response by poly(d,l-lactide-co-glycolide) nanoparticles for dendritic cell-based cancer immunotherapy

    PubMed Central

    Han, Hee Dong; Byeon, Yeongseon; Kang, Tae Heung; Jung, In Duk; Lee, Jeong-Won; Shin, Byung Cheol; Lee, Young Joo; Sood, Anil K; Park, Yeong-Min

    2016-01-01

    Dendritic cells (DCs) are potent professional antigen-presenting cells that are capable of initiating a primary immune response and activating T cells, and they play a pivotal role in the immune responses of the host to cancer. Prior to antigen presentation, efficient antigen and adjuvant uptake by DCs is necessary to induce their maturation and cytokine generation. Nanoparticles (NPs) are capable of intracellular delivery of both antigen and adjuvant to DCs. Here, we developed an advanced poly(d,l-lactide-co-glycolide) (PLGA)-NP encapsulating both ovalbumin (OVA) as a model antigen and polyinosinic-polycytidylic acid sodium salt (Toll-like receptor 3 ligand) as an adjuvant to increase intracellular delivery and promote DC maturation. The PLGA-NPs were taken up by DCs, and their uptake greatly facilitated major histocompatibility class I antigen presentation in vitro. Moreover, vaccination with PLGA-NP-treated DCs led to the generation of ovalbumin-specific CD8+ T cells, and the resulting antitumor efficacy was significantly increased in EG.7 and TC-1 tumor-bearing mice compared to control mice (P<0.01). Taken together, these findings demonstrated that the PLGA-NP platform may be an effective method for delivering tumor-specific antigens or adjuvants to DCs. PMID:27843314

  10. Transcriptional specialization of human dendritic cell subsets in response to microbial vaccines.

    PubMed

    Banchereau, Romain; Baldwin, Nicole; Cepika, Alma-Martina; Athale, Shruti; Xue, Yaming; Yu, Chun I; Metang, Patrick; Cheruku, Abhilasha; Berthier, Isabelle; Gayet, Ingrid; Wang, Yuanyuan; Ohouo, Marina; Snipes, LuAnn; Xu, Hui; Obermoser, Gerlinde; Blankenship, Derek; Oh, Sangkon; Ramilo, Octavio; Chaussabel, Damien; Banchereau, Jacques; Palucka, Karolina; Pascual, Virginia

    2014-10-22

    The mechanisms by which microbial vaccines interact with human APCs remain elusive. Herein, we describe the transcriptional programs induced in human DCs by pathogens, innate receptor ligands and vaccines. Exposure of DCs to influenza, Salmonella enterica and Staphylococcus aureus allows us to build a modular framework containing 204 transcript clusters. We use this framework to characterize the responses of human monocytes, monocyte-derived DCs and blood DC subsets to 13 vaccines. Different vaccines induce distinct transcriptional programs based on pathogen type, adjuvant formulation and APC targeted. Fluzone, Pneumovax and Gardasil, respectively, activate monocyte-derived DCs, monocytes and CD1c+ blood DCs, highlighting APC specialization in response to vaccines. Finally, the blood signatures from individuals vaccinated with Fluzone or infected with influenza reveal a signature of adaptive immunity activation following vaccination and symptomatic infections, but not asymptomatic infections. These data, offered with a web interface, may guide the development of improved vaccines.

  11. Characterization of Chicken Splenic-Derived Dendritic Cells Following Vaccine and Very Virulent Strains of Infectious Bursal Disease Virus Infection.

    PubMed

    Yasmin, A R; Yeap, S K; Hair-Bejo, M; Omar, A R

    2016-12-01

    Studies have shown that infectious bursal disease virus (IBDV) infects lymphoid cells, mainly B cells and macrophages. This study was aimed to examine the involvement of chicken splenic-derived dendritic cells (ch-sDCs) in specific-pathogen-free chickens following inoculation with IBDV vaccine strain (D78) and a very virulent (vv) strain (UPM0081). Following IBDV infection, enriched activated ch-sDCs were collected by using the negative selection method and were examined based on morphology and immunophenotyping to confirm the isolation method for dendritic cells (DCs). The presence of IBDV on enriched activated ch-sDCs was analyzed based on the immunofluorescence antibody test (IFAT), flow cytometry, and quantitative real-time PCR (RT-qPCR) while the mRNAs of several cytokines were detected using RT-qPCR. The isolated ch-sDCs resembled typical DC morphologies found in mammals by having a veiled shape and they grew in clusters. Meanwhile, the expression of DC maturation markers, namely CD86 and MHCII, were increased at day 2 and day 3 following vvIBDV and vaccine strain inoculation, respectively, ranging from 10% to 40% compared to the control at 2.55% (P < 0.05). At day 3 postinfection, IBDV VP3 proteins colocalized with CD86 were readily detected via IFAT and flow cytometry in both vaccine and vvIBDV strains. In addition, enriched activated ch-sDCs were also detected as positive based on the VP4 gene by RT-qPCR; however, a higher viral load was detected on vvIBDV compared to the vaccine group. Infection with vaccine and vvIBDV strains induced the enriched activated ch-sDCs to produce proinflammatory cytokines and Th1-like cytokines from day 3 onward; however, the expressions were higher in the vvIBDV group (P < 0.05). These data collectively suggest that enriched activated ch-sDCs were permissive to IBDV infection and produced a strong inflammatory and Th1-like cytokine response following vvIBDV infection as compared to the vaccine strain.

  12. Enhanced immunogenicity of a tricomponent mannan tetanus toxoid conjugate vaccine targeted to dendritic cells via Dectin-1 by incorporating β-glucan.

    PubMed

    Lipinski, Tomasz; Fitieh, Amira; St Pierre, Joëlle; Ostergaard, Hanne L; Bundle, David R; Touret, Nicolas

    2013-04-15

    In a previous attempt to generate a protective vaccine against Candida albicans, a β-mannan tetanus toxoid conjugate showed poor immunogenicity in mice. To improve the specific activation toward the fungal pathogen, we aimed to target Dectin-1, a pattern-recognition receptor expressed on monocytes, macrophages, and dendritic cells. Laminarin, a β-glucan ligand of Dectin-1, was incorporated into the original β-mannan tetanus toxoid conjugate providing a tricomponent conjugate vaccine. A macrophage cell line expressing Dectin-1 was employed to show binding and activation of Dectin-1 signal transduction pathway by the β-glucan-containing vaccine. Ligand binding to Dectin-1 resulted in the following: 1) activation of Src family kinases and Syk revealed by their recruitment and phosphorylation in the vicinity of bound conjugate and 2) translocation of NF-κB to the nucleus. Treatment of immature bone marrow-derived dendritic cells (BMDCs) with tricomponent or control vaccine confirmed that the β-glucan-containing vaccine exerted its enhanced activity by virtue of dendritic cell targeting and uptake. Immature primary cells stimulated by the tricomponent vaccine, but not the β-mannan tetanus toxoid vaccine, showed activation of BMDCs. Moreover, treated BMDCs secreted increased levels of several cytokines, including TGF-β and IL-6, which are known activators of Th17 cells. Immunization of mice with the novel type of vaccine resulted in improved immune response manifested by high titers of Ab recognizing C. albicans β-mannan Ag. Vaccine containing laminarin also affected distribution of IgG subclasses, showing that vaccine targeting to Dectin-1 receptor can benefit from augmentation and immunomodulation of the immune response.

  13. Chimeric Vaccine Stimulation of Human Dendritic Cell Indoleamine 2, 3-Dioxygenase Occurs via the Non-Canonical NF-κB Pathway.

    PubMed

    Kim, Nan-Sun; Mbongue, Jacques C; Nicholas, Dequina A; Esebanmen, Grace E; Unternaehrer, Juli J; Firek, Anthony F; Langridge, William H R

    2016-01-01

    A chimeric protein vaccine composed of the cholera toxin B subunit fused to proinsulin (CTB-INS) was shown to suppress type 1 diabetes onset in NOD mice and upregulate biosynthesis of the tryptophan catabolic enzyme indoleamine 2, 3-dioxygenase (IDO1) in human dendritic cells (DCs). Here we demonstrate siRNA inhibition of the NF-κB-inducing kinase (NIK) suppresses vaccine-induced IDO1 biosynthesis as well as IKKα phosphorylation. Chromatin immunoprecipitation (ChIP) analysis of CTB-INS inoculated DCs showed that RelB bound to NF-κB consensus sequences in the IDO1 promoter, suggesting vaccine stimulation of the non-canonical NF-κB pathway activates IDO1 expression in vivo. The addition of Tumor Necrosis Factor Associated Factors (TRAF) TRAF 2, 3 and TRAF6 blocking peptides to vaccine inoculated DCs was shown to inhibit IDO1 biosynthesis. This experimental outcome suggests vaccine activation of the TNFR super-family receptor pathway leads to upregulation of IDO1 biosynthesis in CTB-INS inoculated dendritic cells. Together, our experimental data suggest the CTB-INS vaccine uses a TNFR-dependent signaling pathway of the non-canonical NF-κB signaling pathway resulting in suppression of dendritic cell mediated type 1 diabetes autoimmunity.

  14. In vivo targeting of dendritic cells for activation of cellular immunity using vaccine carriers based on pH-responsive microparticles

    NASA Astrophysics Data System (ADS)

    Kwon, Young Jik; James, Edward; Shastri, Nilabh; Fréchet, Jean M. J.

    2005-12-01

    Activating the immune system to trigger a specific response is a major challenge in vaccine development. In particular, activating sufficient cytotoxic T lymphocyte-mediated cellular immunity, which is crucial for the treatment of many diseases including cancer and AIDS, has proven to be especially challenging. In this study, antigens were encapsulated in acid-degradable polymeric particle carriers to cascade cytotoxic T lymphocyte activation. To target dendritic cells, the most potent antigen-presenting cells, the particle carriers, were further conjugated with monoclonal antibodies. A series of ex vivo and in vivo studies have shown increased receptor-mediated uptake of antibody-conjugated particles by dendritic cells as well as migration of particle-carrying dendritic cells to lymph nodes and stimulation of naïve T cells leading to enhanced cellular immune response as confirmed by specific cell lysis and IFN- secretion. acid-degradable particle | drug delivery | targeted vaccine

  15. Recombinant invasive Lactococcus lactis can transfer DNA vaccines either directly to dendritic cells or across an epithelial cell monolayer.

    PubMed

    de Azevedo, Marcela; Meijerink, Marjolein; Taverne, Nico; Pereira, Vanessa Bastos; LeBlanc, Jean Guy; Azevedo, Vasco; Miyoshi, Anderson; Langella, Philippe; Wells, Jerry M; Chatel, Jean-Marc

    2015-09-11

    Lactococcus lactis (L. lactis), a generally regarded as safe (GRAS) bacterium has recently been investigated as a mucosal delivery vehicle for DNA vaccines. Because of its GRAS status, L. lactis represents an attractive alternative to attenuated pathogens. Previous studies showed that eukaryotic expression plasmids could be delivered into intestinal epithelial cells (IECs) by L. lactis, or recombinant invasive strains of L. lactis, leading to heterologous protein expression. Although expression of antigens in IECs might lead to vaccine responses, it would be of interest to know whether uptake of L. lactis DNA vaccines by dendritic cells (DCs) could lead to antigen expression as they are unique in their ability to induce antigen-specific T cell responses. To test this, we incubated mouse bone marrow-derived DCs (BMDCs) with invasive L. lactis strains expressing either Staphylococcus aureus Fibronectin Binding Protein A (LL-FnBPA+), or Listeria monocytogenes mutated Internalin A (LL-mInlA+), both strains carrying a plasmid DNA vaccine (pValac) encoding for the cow milk allergen β-lactoglobulin (BLG). We demonstrated that they can transfect BMDCs, inducing the secretion of the pro-inflammatory cytokine IL-12. We also measured the capacity of strains to invade a polarized monolayer of IECs, mimicking the situation encountered in the gastrointestinal tract. Gentamycin survival assay in these cells showed that LL-mInlA+ is 100 times more invasive than L. lactis. The cross-talk between differentiated IECs, BMDCs and bacteria was also evaluated using an in vitro transwell co-culture model. Co-incubation of strains in this model showed that DCs incubated with LL-mInlA+ containing pValac:BLG could express significant levels of BLG. These results suggest that DCs could sample bacteria containing the DNA vaccine across the epithelial barrier and express the antigen.

  16. Enhancing whole-tumor cell vaccination by engaging innate immune system through NY-ESO-1/dendritic cell interactions.

    PubMed

    Xu, Le; Zheng, Junying; Nguyen, David H; Luong, Quang T; Zeng, Gang

    2013-10-01

    NY-ESO-1 is a cancer/germline antigen (Ag) with distinctively strong immunogenicity. We have previously demonstrated that NY-ESO-1 serves as an endogenous adjuvant by engaging dendritic cell (DC)-surface receptors of calreticulin (CRT) and toll-like receptor (TLR) 4. In the present study, NY-ESO-1 was investigated for its immunomodulatory roles as a molecular adjuvant in whole-tumor cell vaccines using the Renca kidney cancer model. Renca cells were genetically engineered to express NY-ESO-1 on the cell surface to enhance direct interactions with DC. The effect of ectopic cell-surface expression of NY-ESO-1 was investigated on tumor immunogenicity, DC activation, cytotoxic T lymphocytes against model tumor-associated Ags, and the effectiveness of the modified tumor cells as a therapeutic whole-cell vaccine. Cell-surface expression of NY-ESO-1 was able to reduce the tumor growth of Renca cells in BALB/c mice, although the modification did not alter cell proliferation rate in vitro. Directly engaging the innate immune system through NY-ESO-1 facilitated the interaction of tumor cells with DC, leading to enhanced DC activation and subsequent tumor-specific T-cell priming. When used as a therapeutic whole-cell vaccine, Renca cells with NY-ESO-1 on the surface mediated stronger inhibitory effects on tumor growth and metastasis compared with parental Renca or Renca cells expressing a control protein GFP on the surface. Augmented antitumor efficacy correlated with increased CD8 T-cell infiltration into tumors and decreased myeloid-derived suppressor cells and regulatory T cells in the spleen. As a cancer/germline Ag and as an immunomodulatory adjuvant through engaging innate immune receptors, NY-ESO-1 offers a unique opportunity for improved whole-tumor cell vaccinations upon the classic GM-CSF-engineered cell vaccines.

  17. Gene expression profile correlates with T cell infiltration and relative survival in glioblastoma patients vaccinated with dendritic cell immunotherapy

    PubMed Central

    Prins, Robert M.; Soto, Horacio; Konkankit, Vera; Odesa, Sylvia K.; Eskin, Ascia; Yong, William H.; Nelson, Stanley F.; Liau, Linda M.

    2010-01-01

    Purpose To assess the feasibility, safety, and toxicity of autologous tumor lysate-pulsed dendritic cell (DC) vaccination and toll-like receptor (TLR) agonists in patients with newly diagnosed and recurrent glioblastoma. Clinical and immune responses were monitored and correlated with tumor gene expression profiles. Experimental Design Twenty-three patients with glioblastoma (WHO grade IV) were enrolled in this dose-escalation study and received three biweekly injections of glioma lysate-pulsed DCs followed by booster vaccinations with either imiquimod or poly-ICLC adjuvant every three months until tumor progression. Gene expression profiling, IHC, FACS, and cytokine bead arrays were performed on patient tumors and PBMC. Results DC vaccinations are safe and not associated with any dose-limiting toxicity. The median overall survival from the time of initial surgical diagnosis of glioblastoma was 31.4 months, with a one-, two-, and three-year survival rate of 91%, 55% and 47%, respectively. Patients whose tumors had mesenchymal gene expression signatures exhibited increased survival following DC vaccination compared to historical controls of the same genetic subtype. Tumor samples with a mesenchymal gene expression signature had a higher number of CD3+ and CD8+ tumor infiltrating lymphocytes (TILs) compared with glioblastomas of other gene expression signatures (p = 0.006). Conclusion Autologous tumor lysate-pulsed DC vaccination in conjunction with TLR agonists is safe as adjuvant therapy in newly diagnosed and recurrent glioblastoma patients. Our results suggest that the mesenchymal gene expression profile may identify an immunogenic subgroup of glioblastoma that may be more responsive to immune-based therapies. PMID:21135147

  18. Adjuvant dendritic cell vaccination induces tumor-specific immune responses in the majority of stage III melanoma patients

    PubMed Central

    Boudewijns, Steve; Bol, Kalijn F.; Schreibelt, Gerty; Westdorp, Harm; Textor, Johannes C.; van Rossum, Michelle M.; Scharenborg, Nicole M.; de Boer, Annemiek J.; van de Rakt, Mandy W. M. M.; Pots, Jeanne M.; van Oorschot, Tom G. M.; Duiveman-de Boer, Tjitske; Olde Nordkamp, Michel A.; van Meeteren, Wilmy S. E. C.; van der Graaf, Winette T. A.; Bonenkamp, Johannes J.; de Wilt, Johannes H. W.; Aarntzen, Erik H. J. G.; Punt, Cornelis J. A.; Gerritsen, Winald R.; Figdor, Carl G.; de Vries, I. Jolanda M.

    2016-01-01

    ABSTRACT Purpose: To determine the effectiveness of adjuvant dendritic cell (DC) vaccination to induce tumor-specific immunological responses in stage III melanoma patients. Experimental design: Retrospective analysis of stage III melanoma patients, vaccinated with autologous monocyte-derived DC loaded with tumor-associated antigens (TAA) gp100 and tyrosinase after radical lymph node dissection. Skin-test infiltrating lymphocytes (SKILs) obtained from delayed-type hypersensitivity skin-test biopsies were analyzed for the presence of TAA-specific CD8+ T cells by tetrameric MHC-peptide complexes and by functional TAA-specific T cell assays, defined by peptide-recognition (T2 cells) and/or tumor-recognition (BLM and/or MEL624) with specific production of Th1 cytokines and no Th2 cytokines. Results: Ninety-seven patients were analyzed: 21 with stage IIIA, 34 with stage IIIB, and 42 had stage IIIC disease. Tetramer-positive CD8+ T cells were present in 68 patients (70%), and 24 of them showed a response against all 3 epitopes tested (gp100:154–162, gp100:280–288, and tyrosinase:369–377) at any point during vaccinations. A functional T cell response was found in 62 patients (64%). Rates of peptide-recognition of gp100:154–162, gp100:280–288, and tyrosinase:369–377 were 40%, 29%, and 45%, respectively. Median recurrence-free survival and distant metastasis-free survival of the whole study population were 23.0 mo and 36.8 mo, respectively. Conclusions: DC vaccination induces a functional TAA-specific T cell response in the majority of stage III melanoma patients, indicating it is more effective in stage III than in stage IV melanoma patients. Furthermore, performing multiple cycles of vaccinations enhances the chance of a broader immune response. PMID:27622047

  19. [Cancer vaccine therapy using genetically modified induced pluripotent stem cell-derived dendritic cells expressing the TAA gene].

    PubMed

    Iwamoto, Hiromitsu; Ojima, Toshiyasu; Nakamori, Mikihito; Nakamura, Masaki; Hayata, Keiji; Katsuda, Masahiro; Iida, Takeshi; Miyazawa, Motoki; Iwahashi, Makoto; Yamaue, Hiroki

    2013-11-01

    It is generally accepted that the difficulty in obtaining a sufficient number of functional dendritic cells (DCs) poses a serious problem in DC-based immunotherapy. Therefore, we used induced pluripotent stem (iPS) cell-derived DCs (iPSDCs) instead. If the therapeutic efficacy of iPSDCs was equivalent to that of bone marrow-derived DCs( BMDCs), then the above-mentioned problems may be solved. In this study, we generated iPSDCs from iPS cells and compared their capacity to mature and migrate to the regional lymph nodes with that of BMDCs. We adenovirally transduced the hgp100 gene, which codes for a natural tumor antigen, into the DCs and immunized the mice with these genetically modified DCs. The cytotoxic activity of CD8( +) cytotoxic T lymphocytes( CTLs) was assayed using a 51Cr-release assay. The therapeutic efficacy of the vaccination was examined in a subcutaneous tumor model. Our results demonstrated that iPSDCs equaled BMDCs in terms of their maturation and migration capacity. Furthermore, hgp100-specific CTLs were generated in mice that were immunized with the genetically modified iPSDCs. These CTLs exhibited a high level of cytotoxicity against B16 cells, which is similar to that exhibited by CTLs generated in BMDCs immunized mice. Moreover, vaccination with genetically modified iPSDCs elicited a high level of therapeutic efficacy equaling that of vaccination with BMDCs. This study clarified experimentally that genetically modified iPSDCs are equivalent to BMDCs in terms of tumor-associated antigen-specific therapeutic antitumor immunity. This vaccination strategy may therefore be useful for future clinical application as a cancer vaccine.

  20. Whole tumor antigen vaccination using dendritic cells: Comparison of RNA electroporation and pulsing with UV-irradiated tumor cells

    PubMed Central

    Benencia, Fabian; Courrèges, Maria C; Coukos, George

    2008-01-01

    Because of the lack of full characterization of tumor associated antigens for solid tumors, whole antigen use is a convenient approach to tumor vaccination. Tumor RNA and apoptotic tumor cells have been used as a source of whole tumor antigen to prepare dendritic cell (DC) based tumor vaccines, but their efficacy has not been directly compared. Here we compare directly RNA electroporation and pulsing of DCs with whole tumor cells killed by ultraviolet (UV) B radiation using a convenient tumor model expressing human papilloma virus (HPV) E6 and E7 oncogenes. Although both approaches led to DCs presenting tumor antigen, electroporation with tumor cell total RNA induced a significantly higher frequency of tumor-reactive IFN-gamma secreting T cells, and E7-specific CD8+ lymphocytes compared to pulsing with UV-irradiated tumor cells. DCs electroporated with tumor cell RNA induced a larger tumor infiltration by T cells and produced a significantly stronger delay in tumor growth compared to DCs pulsed with UV-irradiated tumor cells. We conclude that electroporation with whole tumor cell RNA and pulsing with UV-irradiated tumor cells are both effective in eliciting antitumor immune response, but RNA electroporation results in more potent tumor vaccination under the examined experimental conditions. PMID:18445282

  1. Protein-bound polysaccharide activates dendritic cells and enhances OVA-specific T cell response as vaccine adjuvant

    PubMed Central

    Engel, Abbi L.; Sun, Guan-Cheng; Gad, Ekram; Rastetter, Lauren R.; Strobe, Katie; Yang, Yi; Dang, Yushe; Disis, Mary L; Lu, Hailing

    2013-01-01

    Protein-bound polysaccharide-K (PSK) is a hot water extract from Trametes versicolor mushroom. It has been used traditionally in Asian countries for its immune stimulating and anti-cancer effects. We have recently found that PSK can activate toll-like receptor 2 (TLR2). TLR2 is highly expressed on dendritic cells (DC), so the currently study was undertaken to evaluate the effect of PSK on DC activation and the potential of using PSK as a vaccine adjuvant. In vitro experiments using mouse bone marrow-derived DC (BMDC) demonstrated that PSK induces DC maturation as shown by dose-dependent increase in the expression of CD80, CD86, MHCII, and CD40. PSK also induces the production of multiple inflammatory cytokines by DC, including IL-12, TNF-α, and IL-6, at both mRNA and protein levels. In vivo experiments using PSK as an adjuvant to OVAp323-339 vaccine showed that PSK as adjuvant leads to enlarged draining lymph nodes with higher number of activated DC. PSK also stimulates proliferation of OVA-specific T cells, and induces T cells that produce multiple cytokines, IFN-γ, IL-2, and TNF-α. Altogether, these results demonstrate the ability of PSK to activate DC in vitro and in vivo and the potential of using PSK as a novel vaccine adjuvant. PMID:23735481

  2. Mature autologous dendritic cell vaccines in advanced non-small cell lung cancer: a phase I pilot study

    PubMed Central

    2011-01-01

    Background Overall therapeutic outcomes of advanced non-small-cell lung cancer (NSCLC) are poor. The dendritic cell (DC) immunotherapy has been developed as a new strategy for the treatment of lung cancer. The purpose of this study was to evaluate the feasibility, safety and immunologic responses in use in mature, antigen-pulsed autologous DC vaccine in NSCLC patients. Methods Five HLA-A2 patients with inoperable stage III or IV NSCLC were selected to receive two doses of 5 × 107 DC cells administered subcutaneous and intravenously two times at two week intervals. The immunologic response, safety and tolerability to the vaccine were evaluated by the lymphoproliferation assay and clinical and laboratorial evolution, respectively. Results The dose of the vaccine has shown to be safe and well tolerated. The lymphoproliferation assay showed an improvement in the specific immune response after the immunization, with a significant response after the second dose (p = 0.005). This response was not long lasting and a tendency to reduction two weeks after the second dose of the vaccine was observed. Two patients had a survival almost twice greater than the expected average and were the only ones that expressed HER-2 and CEA together. Conclusion Despite the small sample size, the results on the immune response, safety and tolerability, combined with the results of other studies, are encouraging to the conduction of a large clinical trial with multiples doses in patients with early lung cancer who underwent surgical treatment. Trial Registration Current Controlled Trials: ISRCTN45563569 PMID:21682877

  3. Adoptive transfer of MART-1 T cell receptor transgenic lymphocytes and dendritic cell vaccination in patients with metastatic melanoma

    PubMed Central

    Chodon, Thinle; Comin-Anduix, Begonya; Chmielowski, Bartosz; Koya, Richard C; Wu, Zhongqi; Auerbach, Martin; Ng, Charles; Avramis, Earl; Seja, Elizabeth; Villanueva, Arturo; McCannel, Tara A.; Ishiyama, Akira; Czernin, Johannes; Radu, Caius G.; Wang, Xiaoyan; Gjertson, David W.; Cochran, Alistair J.; Cornetta, Kenneth; Wong, Deborah J.L.; Kaplan-lefko, Paula; Hamid, Omid; Samlowski, Wolfram; Cohen, Peter A.; Daniels, Gregory A.; Mukherji, Bijay; Yang, Lili; Zack, Jerome A.; Kohn, Donald B.; Heath, James R.; Glaspy, John A.; Witte, Owen N.; Baltimore, David; Economou, James S.; Ribas, Antoni

    2014-01-01

    Purpose It has been demonstrated that large numbers of tumor-specific T cells for adoptive cell transfer (ACT) can be manufactured by retroviral genetic engineering of autologous peripheral blood lymphocytes and expanding them over several weeks. In mouse models, this therapy is optimized when administered with dendritic cell (DC) vaccination. We developed a short one-week manufacture protocol to determine the feasibility, safety and antitumor efficacy of this double cell therapy. Experimnetal Design A clinical trial (NCT00910650) adoptively transferring MART-1 T cell receptor (TCR) transgenic lymphocytes together with MART-1 peptide pulsed DC vaccination in HLA-A2.1 patients with metastatic melanoma. Autologous TCR transgenic cells were manufactured in 6 to 7 days using retroviral vector gene transfer, and re-infused with (n = 10) or without (n = 3) prior cryopreservation. Results 14 patients with metastatic melanoma were enrolled and nine out of 13 treated patients (69%) showed evidence of tumor regression. Peripheral blood reconstitution with MART-1-specific T cells peaked within two weeks of ACT indicating rapid in vivo expansion. Administration of freshly manufactured TCR transgenic T cells resulted in a higher persistence of MART-1-specific T cells in the blood as compared to cryopreserved. Evidence that DC vaccination could cause further in vivo expansion was only observed with ACT using non-cryopreserved T cells. Conclusion Double cell therapy with ACT of TCR engineered T cells with a very short ex vivo manipulation and DC vaccines is feasible and results in antitumor activity, but improvements are needed to maintain tumor responses. PMID:24634374

  4. Overcoming dendritic cell tardiness to triumph over IL-13 receptor: a strategy for the development of effective pediatric vaccines.

    PubMed

    Hoeman, Christine; Dhakal, Mermagya; Zaghouani, Habib

    2010-06-01

    Neonatal exposure to antigen gives rise to a primary response comprising both T helper 1 (Th1) and T helper 2 (Th2) lymphocytes. However, re-encounter with the same antigen yields an indubitably biased response with minimal Th1 but excessive Th2 cells. Since Th1 cells combat microbes while Th2 cells react to allergens, the neonate faces susceptibility to both microbial infections and allergic reactions. The Th1/Th2 imbalance of neonatal immunity stems from a delayed maturation of dendritic cells that yields limited IL-12 cytokine during the neonatal stage. Th1 cells developing under these circumstances up-regulate the IL-13Ralpha1 chain that physically associates with the IL-4Ralpha chain, forming a potentially hazardous heteroreceptor. During re-challenge with antigen, IL-4 from Th2 cells utilizes the heteroreceptor to signal the death of Th1 cells, leading to the Th2 bias of neonatal immunity. Our view to overcome Th1 deficiency is to supplement neonatal immunizations with toll-like receptor ligands that could stimulate maturation of dendritic cells and augment IL-12 production to counter IL-13Ralpha1 up-regulation. This regimen would yield Th1 cells devoid of the heteroreceptor and resistant to IL-4-induced apoptosis. Accordingly, the neonate would have balanced Th1/Th2 immunity and withstand both microbes and allergens. Such approaches could open new avenues for better pediatric vaccines and allergy therapies.

  5. A novel recombinant protein of ephrinA1-PE38/GM-CSF activate dendritic cells vaccine in rats with glioma.

    PubMed

    Li, Ming; Wang, Bin; Wu, Zhonghua; Zhang, Jiadong; Shi, Xiwen; Cheng, Wenlan; Han, Shuangyin

    2015-07-01

    Dendritic cells loaded with tumor-associated antigens can effectively stimulate the antitumor immune response of cytotoxic T lymphocytes in the body, which facilitates the development of novel and effective treatments for cancer. In this study, the adenovirus-mediated ephrinA1-PE38/GM-CSF was successfully constructed using the overlap extension method, and verified with sequencing analysis. HEK293 cells were infected with the adenovirus and the cellular expression of ephrinA1-PE38/GM-CSF was measured with an enzyme-linked immunosorbent assay. The recombinant adenovirus was then delivered into the tumor-bearing rats and the results showed that such treatment significantly reduced the volumes of gliomas and improved the survival of the transplanted rats. The results from immunohistochemistry and flow cytometry suggested that this immunomodulatory agent cause activation of dendritic cells. The findings that ephrinA1-PE38/GM-CSF had a high efficacy in the activation of the dendritic cells would facilitate the development of in vivo dendritic-cell vaccines for the treatment of gliomas in rats. Our new method of DC vaccine production induces not only a specific local antitumor immune response but also a systemic immunotherapeutic effect. In addition, this method completely circumvents the risk of contamination related to the in vitro culture of DCs, thus greatly improving the safety and feasibility of clinical application of the DC vaccines in glioma.

  6. Microencapsulation of inorganic nanocrystals into PLGA microsphere vaccines enables their intracellular localization in dendritic cells by electron and fluorescence microscopy.

    PubMed

    Schliehe, Christopher; Schliehe, Constanze; Thiry, Marc; Tromsdorf, Ulrich I; Hentschel, Joachim; Weller, Horst; Groettrup, Marcus

    2011-05-10

    Biodegradable poly-(D,L-lactide-co-glycolide) microspheres (PLGA-MS) are approved as a drug delivery system in humans and represent a promising antigen delivery device for immunotherapy against cancer. Immune responses following PLGA-MS vaccination require cross-presentation of encapsulated antigen by professional antigen presenting cells (APCs). While the potential of PLGA-MS as vaccine formulations is well established, the intracellular pathway of cross-presentation following phagocytosis of PLGA-MS is still under debate. A part of the controversy stems from the difficulty in unambiguously identifying PLGA-MS within cells. Here we show a novel strategy for the efficient encapsulation of inorganic nanocrystals (NCs) into PLGA-MS as a tool to study their intracellular localization. We microencapsulated NCs as an electron dense marker to study the intracellular localization of PLGA-MS by transmission electron microscopy (TEM) and as fluorescent labels for confocal laser scanning microscopy. Using this method, we found PLGA-MS to be rapidly taken up by dendritic cells and macrophages. Co-localization with the lysosomal marker LAMP1 showed a lysosomal storage of PLGA-MS for over two days after uptake, long after the initiation of cross-presentation had occurred. Our data argue against an escape of PLGA-MS from the endosome as has previously been suggested as a mechanism to facilitate cross-presentation of PLGA-MS encapsulated antigen.

  7. The role of surface charge density in cationic liposome-promoted dendritic cell maturation and vaccine-induced immune responses

    NASA Astrophysics Data System (ADS)

    Ma, Yifan; Zhuang, Yan; Xie, Xiaofang; Wang, Ce; Wang, Fei; Zhou, Dongmei; Zeng, Jianqiang; Cai, Lintao

    2011-05-01

    Cationic liposomes have emerged as a novel adjuvant and antigen delivery system to enhance vaccine efficacy. However, the role of surface charge density in cationic liposome-regulated immune responses has not yet been elucidated. In the present study, we prepared a series of DOTAP/DOPC cationic liposomes with different surface densities by incorporating varying amounts of DOPC (a neutral lipid) into DOTAP (a cationic lipid). The results showed that DOTAP/DOPC cationic liposome-regulated immune responses relied on the surface charge density, and might occur through ROS signaling. The liposomes with a relatively high charge density, such as DOTAP/DOPC 5 : 0 and 4 : 1 liposomes, potently enhanced dendritic cell maturation, ROS generaion, antigen uptake, as well as the production of OVA-specific IgG2a and IFN-γ. In contrast, low-charge liposomes, such as DOTAP/DOPC 1 : 4 liposome, failed to promote immune responses even at high concentrations, confirming that the immunoregulatory effect of cationic liposomes is mostly attributable to their surface charge density. Moreover, the DOTAP/DOPC 1 : 4 liposome suppressed anti-OVA antibody responses in vivo. Overall, maintaining an appropriate surface charge is crucial for optimizing the adjuvant effect of cationic liposomes and enhancing the efficacy of liposome-based vaccines.

  8. Targeting breast cancer stem cells by dendritic cell vaccination in humanized mice with breast tumor: preliminary results

    PubMed Central

    Pham, Phuc Van; Le, Hanh Thi; Vu, Binh Thanh; Pham, Viet Quoc; Le, Phong Minh; Phan, Nhan Lu-Chinh; Trinh, Ngu Van; Nguyen, Huyen Thi-Lam; Nguyen, Sinh Truong; Nguyen, Toan Linh; Phan, Ngoc Kim

    2016-01-01

    Background Breast cancer (BC) is one of the leading cancers in women. Recent progress has enabled BC to be cured with high efficiency. However, late detection or metastatic disease often renders the disease untreatable. Additionally, relapse is the main cause of death in BC patients. Breast cancer stem cells (BCSCs) are considered to cause the development of BC and are thought to be responsible for metastasis and relapse. This study aimed to target BCSCs using dendritic cells (DCs) to treat tumor-bearing humanized mice models. Materials and methods NOD/SCID mice were used to produce the humanized mice by transplantation of human hematopoietic stem cells. Human BCSCs were injected into the mammary fat pad to produce BC humanized mice. Both hematopoietic stem cells and DCs were isolated from the human umbilical cord blood, and immature DCs were produced from cultured mononuclear cells. DCs were matured by BCSC-derived antigen incubation for 48 hours. Mature DCs were vaccinated to BC humanized mice with a dose of 106 cells/mice, and the survival percentage was monitored in both treated and untreated groups. Results The results showed that DC vaccination could target BCSCs and reduce the tumor size and prolong survival. Conclusion These results suggested that targeting BCSCs with DCs is a promising therapy for BC. PMID:27499638

  9. Dendritic cell targeted liposomes-protamine-DNA complexes mediated by synthetic mannosylated cholestrol as a potential carrier for DNA vaccine

    NASA Astrophysics Data System (ADS)

    Li, Pan; Chen, Simu; Jiang, Yuhong; Jiang, Jiayu; Zhang, Zhirong; Sun, Xun

    2013-07-01

    To construct mannosylated liposomes/protamine/DNA (LPD) carriers for DNA vaccine targeting to dendritic cells (DCs), a mannosylated cholesterol derivative (Man-C6-Chol) was synthesized via simple ester linkage and amide bonds. Then, the Man-C6-Chol was applied to LPD formulation as a synthetic ligand. The physicochemical properties of mannosylated LPD (Man-LPD) were first evaluated, including the size and zeta potential, morphology and the ability to protect DNA against DNase I degradation. Man-LPD showed a small size with a stable viral-like structure. In comparison to non-mannose liposomes/LPD (Man-free liposomes/LPD), mannosylated liposomes/LPD (Man-liposomes/Man-LPD) exhibited higher efficiency in both intracellular uptake (2.3-fold) and transfection (4.5-fold) in vitro. Subsequent MTT assays indicated that the LPD carriers had low toxicity on the tested cells. Afterwards, the investigation into the maturation activation on primary bone marrow-derived DCs (BMDCs) showed that both Man-LPD and Man-free LPD induced remarkable up-regulation of CD80, CD86 and CD40 on BMDCs. Inspired by these studies, we can conclude that the synthetic mannosylated LPD targeting to DCs was a potential carrier for DNA vaccine.

  10. DNA vaccination strategy targets epidermal dendritic cells, initiating their migration and induction of a host immune response

    PubMed Central

    Smith, Trevor RF; Schultheis, Katherine; Kiosses, William B; Amante, Dinah H; Mendoza, Janess M; Stone, John C; McCoy, Jay R; Sardesai, Niranjan Y; Broderick, Kate E

    2014-01-01

    The immunocompetence and clinical accessibility of dermal tissue offers an appropriate and attractive target for vaccination. We previously demonstrated that pDNA injection into the skin in combination with surface electroporation (SEP), results in rapid and robust expression of the encoded antigen in the epidermis. Here, we demonstrate that intradermally EP-enhanced pDNA vaccination results in the rapid induction of a host humoral immune response. In the dermally relevant guinea pig model, we used high-resolution laser scanning confocal microscopy to observe direct dendritic cell (DC) transfections in the epidermis, to determine the migration kinetics of these cells from the epidermal layer into the dermis, and to follow them sequentially to the immediate draining lymph nodes. Furthermore, we delineate the relationship between the migration of directly transfected epidermal DCs and the generation of the host immune response. In summary, these data indicate that direct presentation of antigen to the immune system by DCs through SEP-based in vivo transfection in the epidermis, is related to the generation of a humoral immune response. PMID:26052522

  11. Galactosylated liposome as a dendritic cell-targeted mucosal vaccine for inducing protective anti-tumor immunity.

    PubMed

    Jiang, Ping-Lun; Lin, Hung-Jun; Wang, Hsiao-Wen; Tsai, Wen-Yu; Lin, Shen-Fu; Chien, Mei-Yin; Liang, Pi-Hui; Huang, Yi-You; Liu, Der-Zen

    2015-01-01

    Mucosal surfaces contain specialized dendritic cells (DCs) that are able to recognize foreign pathogens and mount protective immunity. We previously demonstrated that intranasal administration of targeted galactosylated liposomes can elicit mucosal and systemic antibody responses. In the present study, we assessed whether galactosylated liposomes could act as an effective DC-targeted mucosal vaccine that would be capable of inducing systemic anti-tumor immunity as well as antibody responses. We show that targeted galactosylated liposomes effectively facilitated antigen uptake by DCs beyond that mediated by unmodified liposomes both in vitro and in vivo. Targeted galactosylated liposomes induced higher levels of pro-inflammatory cytokines than unmodified liposomes in vitro. C57BL/6 mice thrice immunized intranasally with ovalbumin (OVA)-encapsulated galactosylated liposomes produced high levels of OVA-specific IgG antibodies in their serum. Spleen cells from mice receiving galactosylated liposomes were restimulated with OVA and showed significantly augmented levels of IFN-γ, IL-4, IL-5 and IL-6. In addition, intranasal administration of OVA-encapsulated beta-galactosylated liposomes resulted in complete protection against EG7 tumor challenge in C57BL/6 mice. Taken together, these results indicate that nasal administration of a galactosylated liposome vaccine mediates the development of an effective immunity against tumors and might be useful for further clinical anti-tumoral applications.

  12. Co-transfection gene delivery of dendritic cells induced effective lymph node targeting and anti-tumor vaccination.

    PubMed

    Chen, Yu-Zhe; Ruan, Gui-Xin; Yao, Xing-Lei; Li, Li-Ming; Hu, Ying; Tabata, Yasuhiko; Gao, Jian-Qing

    2013-06-01

    Successful genetically engineered Dendritic Cell (DC) can enhance DC's antigen presentation and lymph node migration. The present study aims to genetically engineer a DC using an efficient non-viral gene delivery vector to induce a highly efficient antigen presentation and lymph node targeting in vivo. Spermine-dextran (SD), a cationic polysaccharide vector, was used to prepare a gene delivery system for DC engineering. Transfection efficiency, nuclear trafficking, and safety of the SD/DNA complex were evaluated. A vaccine prepared by engineering DC with SD/gp100, a plasmid encoding melanoma-associated antigen, was injected subcutaneously into mice to evaluate the tumor suppression. The migration of the engineered DCs was also evaluated in vitro and in vivo. SD/DNA complex has a better transfection behavior in vitro than commercially purchased reagents. The DC vaccine co-transfected with plasmid coding CCR7, a chemokine receptor essential for DC migration, and plasmid coding gp100 displayed superior tumor suppression than that with plasmid coding gp100 alone. Migration assay demonstrated that DC transfected with SD/CCR7 can promote DC migration capacity. The study is the first to report the application of nonviral vector SD to co-transfect DC with gp100 and CCR7-coding plasmid to induce both the capacity of antigen presentation and lymph node targeting.

  13. High-density sub-100-nm peptide-gold nanoparticle complexes improve vaccine presentation by dendritic cells in vitro

    NASA Astrophysics Data System (ADS)

    Lin, Adam Yuh; Lunsford, Jessica; Bear, Adham Sean; Young, Joseph Keith; Eckels, Phillip; Luo, Laureen; Foster, Aaron Edward; Drezek, Rebekah Anna

    2013-02-01

    Nanocarriers have been explored to improve the delivery of tumor antigens to dendritic cells (DCs). Gold nanoparticles are attractive nanocarriers because they are inert, non-toxic, and can be readily endocytosed by DCs. Here, we designed novel gold-based nanovaccines (AuNVs) using a simple self-assembling bottom-up conjugation method to generate high-peptide density delivery and effective immune responses with limited toxicity. AuNVs were synthesized using a self-assembling conjugation method and optimized using DC-to-splenocyte interferon-γ enzyme-linked immunosorbent spot assays. The AuNV design has shown successful peptide conjugation with approximately 90% yield while remaining smaller than 80 nm in diameter. DCs uptake AuNVs with minimal toxicity and are able to process the vaccine peptides on the particles to stimulate cytotoxic T lymphocytes (CTLs). These high-peptide density AuNVs can stimulate CTLs better than free peptides and have great potential as carriers for various vaccine types.

  14. Fusion of antigen to a dendritic cell targeting chemokine combined with adjuvant yields a malaria DNA vaccine with enhanced protective capabilities.

    PubMed

    Luo, Kun; Zhang, Hong; Zavala, Fidel; Biragyn, Arya; Espinosa, Diego A; Markham, Richard B

    2014-01-01

    Although sterilizing immunity to malaria can be elicited by irradiated sporozoite vaccination, no clinically practical subunit vaccine has been shown to be capable of preventing the approximately 600,000 annual deaths attributed to this infection. DNA vaccines offer several potential advantages for a disease that primarily affects the developing world, but new approaches are needed to improve the immunogenicity of these vaccines. By using a novel, lipid-based adjuvant, Vaxfectin, to attract immune cells to the immunization site, in combination with an antigen-chemokine DNA construct designed to target antigen to immature dendritic cells, we elicited a humoral immune response that provided sterilizing immunity to malaria challenge in a mouse model system. The chemokine, MIP3αCCL20, did not significantly enhance the cellular infiltrate or levels of cytokine or chemokine expression at the immunization site but acted with Vaxfectin to reduce liver stage malaria infection by orders of magnitude compared to vaccine constructs lacking the chemokine component. The levels of protection achieved were equivalent to those observed with irradiated sporozoites, a candidate vaccine undergoing development for further large scale clinical trial. Only vaccination with the combined regimen of adjuvant and chemokine provided 80-100% protection against the development of bloodstream infection. Treating the immunization process as requiring the independent steps of 1) attracting antigen-presenting cells to the site of immunization and 2) specifically directing vaccine antigen to the immature dendritic cells that initiate the adaptive immune response may provide a rational strategy for the development of a clinically applicable malaria DNA vaccine.

  15. Fusion of Antigen to a Dendritic Cell Targeting Chemokine Combined with Adjuvant Yields a Malaria DNA Vaccine with Enhanced Protective Capabilities

    PubMed Central

    Luo, Kun; Zhang, Hong; Zavala, Fidel; Biragyn, Arya; Espinosa, Diego A.; Markham, Richard B.

    2014-01-01

    Although sterilizing immunity to malaria can be elicited by irradiated sporozoite vaccination, no clinically practical subunit vaccine has been shown to be capable of preventing the approximately 600,000 annual deaths attributed to this infection. DNA vaccines offer several potential advantages for a disease that primarily affects the developing world, but new approaches are needed to improve the immunogenicity of these vaccines. By using a novel, lipid-based adjuvant, Vaxfectin, to attract immune cells to the immunization site, in combination with an antigen-chemokine DNA construct designed to target antigen to immature dendritic cells, we elicited a humoral immune response that provided sterilizing immunity to malaria challenge in a mouse model system. The chemokine, MIP3αCCL20, did not significantly enhance the cellular infiltrate or levels of cytokine or chemokine expression at the immunization site but acted with Vaxfectin to reduce liver stage malaria infection by orders of magnitude compared to vaccine constructs lacking the chemokine component. The levels of protection achieved were equivalent to those observed with irradiated sporozoites, a candidate vaccine undergoing development for further large scale clinical trial. Only vaccination with the combined regimen of adjuvant and chemokine provided 80–100% protection against the development of bloodstream infection. Treating the immunization process as requiring the independent steps of 1) attracting antigen-presenting cells to the site of immunization and 2) specifically directing vaccine antigen to the immature dendritic cells that initiate the adaptive immune response may provide a rational strategy for the development of a clinically applicable malaria DNA vaccine. PMID:24599116

  16. Differential Cultivation of Francisella tularensis Induces Changes in the Immune Response to and Protective Efficacy of Whole Cell-Based Inactivated Vaccines

    PubMed Central

    Kumar, Sudeep; Sunagar, Raju; Pham, Giang; Franz, Brian J.; Rosa, Sarah J.; Hazlett, Karsten R. O.; Gosselin, Edmund J.

    2017-01-01

    Francisella tularensis (Ft) is a category A biothreat agent for which there is no Food and Drug Administration-approved vaccine. Ft can survive in a variety of habitats with a remarkable ability to adapt to changing environmental conditions. Furthermore, Ft expresses distinct sets of antigens (Ags) when inside of macrophages (its in vivo host) as compared to those grown in vitro with Mueller Hinton Broth (MHB). However, in contrast to MHB-grown Ft, Ft grown in Brain-Heart Infusion (BHI) more closely mimics the antigenic profile of macrophage-grown Ft. Thus, we anticipated that when used as a vaccine, BHI-grown Ft would provide better protection compared to MHB-grown Ft, primarily due to its greater antigenic similarity to Ft circulating inside the host (macrophages) during natural infection. Our investigation, however, revealed that inactivated Ft (iFt) grown in MHB (iFt-MHB) exhibited superior protective activity when used as a vaccine, as compared to iFt grown in BHI (iFt-BHI). The superior protection afforded by iFt-MHB compared to that of iFt-BHI was associated with significantly lower bacterial burden and inflammation in the lungs and spleens of vaccinated mice. Moreover, iFt-MHB also induced increased levels of Ft-specific IgG. Further evaluation of early immunological cues also revealed that iFt-MHB exhibits increased engagement of Ag-presenting cells including increased iFt binding to dendritic cells, increased expression of costimulatory markers, and increased secretion of pro-inflammatory cytokines. Importantly, these studies directly demonstrate that Ft growth conditions strongly impact Ft vaccine efficacy and that the growth medium used to produce whole cell vaccines to Ft must be a key consideration in the development of a tularemia vaccine. PMID:28119692

  17. Differential Cultivation of Francisella tularensis Induces Changes in the Immune Response to and Protective Efficacy of Whole Cell-Based Inactivated Vaccines.

    PubMed

    Kumar, Sudeep; Sunagar, Raju; Pham, Giang; Franz, Brian J; Rosa, Sarah J; Hazlett, Karsten R O; Gosselin, Edmund J

    2016-01-01

    Francisella tularensis (Ft) is a category A biothreat agent for which there is no Food and Drug Administration-approved vaccine. Ft can survive in a variety of habitats with a remarkable ability to adapt to changing environmental conditions. Furthermore, Ft expresses distinct sets of antigens (Ags) when inside of macrophages (its in vivo host) as compared to those grown in vitro with Mueller Hinton Broth (MHB). However, in contrast to MHB-grown Ft, Ft grown in Brain-Heart Infusion (BHI) more closely mimics the antigenic profile of macrophage-grown Ft. Thus, we anticipated that when used as a vaccine, BHI-grown Ft would provide better protection compared to MHB-grown Ft, primarily due to its greater antigenic similarity to Ft circulating inside the host (macrophages) during natural infection. Our investigation, however, revealed that inactivated Ft (iFt) grown in MHB (iFt-MHB) exhibited superior protective activity when used as a vaccine, as compared to iFt grown in BHI (iFt-BHI). The superior protection afforded by iFt-MHB compared to that of iFt-BHI was associated with significantly lower bacterial burden and inflammation in the lungs and spleens of vaccinated mice. Moreover, iFt-MHB also induced increased levels of Ft-specific IgG. Further evaluation of early immunological cues also revealed that iFt-MHB exhibits increased engagement of Ag-presenting cells including increased iFt binding to dendritic cells, increased expression of costimulatory markers, and increased secretion of pro-inflammatory cytokines. Importantly, these studies directly demonstrate that Ft growth conditions strongly impact Ft vaccine efficacy and that the growth medium used to produce whole cell vaccines to Ft must be a key consideration in the development of a tularemia vaccine.

  18. Novel plant virus-based vaccine induces protective cytotoxic T-lymphocyte-mediated antiviral immunity through dendritic cell maturation.

    PubMed

    Lacasse, Patrick; Denis, Jérôme; Lapointe, Réjean; Leclerc, Denis; Lamarre, Alain

    2008-01-01

    Currently used vaccines protect mainly through the production of neutralizing antibodies. However, antibodies confer little or no protection for a majority of chronic viral infections that require active involvement of cytotoxic T lymphocytes (CTLs). Virus-like particles (VLPs) have been shown to be efficient inducers of cell-mediated immune responses, but administration of an adjuvant is generally required. We recently reported the generation of a novel VLP system exploiting the self-assembly property of the papaya mosaic virus (PapMV) coat protein. We show here that uptake of PapMV-like particles by murine splenic dendritic cells (DCs) in vivo leads to their maturation, suggesting that they possess intrinsic adjuvant-like properties. DCs pulsed with PapMV-like particles displaying the lymphocytic choriomeningitis virus (LCMV) p33 immunodominant CTL epitope (PapMV-p33) efficiently process and cross-present the viral epitope to p33-specific transgenic T cells. Importantly, the CTL epitope is also properly processed and presented in vivo, since immunization of p33-specific T-cell receptor transgenic mice with PapMV-p33 induces the activation of large numbers of specific CTLs. C57BL/6 mice immunized with PapMV-p33 VLPs in the absence of adjuvant develop p33-specific effector CTLs that rapidly expand following LCMV challenge and protect vaccinated mice against LCMV infection in a dose-dependent manner. These results demonstrate the efficiency of this novel plant virus-based vaccination platform in inducing DC maturation leading to protective CTL responses.

  19. Genetic vaccines to potentiate the effective CD103+ dendritic cell-mediated cross-priming of antitumor immunity.

    PubMed

    Zhang, Yi; Chen, Guo; Liu, Zuqiang; Tian, Shenghe; Zhang, Jiying; Carey, Cara D; Murphy, Kenneth M; Storkus, Walter J; Falo, Louis D; You, Zhaoyang

    2015-06-15

    The development of effective cancer vaccines remains an urgent, but as yet unmet, clinical need. This deficiency is in part due to an incomplete understanding of how to best invoke dendritic cells (DC) that are crucial for the induction of tumor-specific CD8(+) T cells capable of mediating durable protective immunity. In this regard, elevated expression of the transcription factor X box-binding protein 1 (XBP1) in DC appears to play a decisive role in promoting the ability of DC to cross-present Ags to CD8(+) T cells in the therapeutic setting. Delivery of DNA vaccines encoding XBP1 and tumor Ag to skin DC resulted in increased IFN-α production by plasmacytoid DC (pDC) from skin/tumor draining lymph nodes and the cross-priming of Ag-specific CD8(+) T cell responses associated with therapeutic benefit. Antitumor protection was dependent on cross-presenting Batf3(+) DC, pDC, and CD8(+) T cells. CD103(+) DC from the skin/tumor draining lymph nodes of the immunized mice appeared responsible for activation of Ag-specific naive CD8(+) T cells, but were dependent on pDC for optimal effectiveness. Similarly, human XBP1 improved the capacity of human blood- and skin-derived DC to activate human T cells. These data support an important intrinsic role for XBP1 in DC for effective cross-priming and orchestration of Batf3(+) DC-pDC interactions, thereby enabling effective vaccine induction of protective antitumor immunity.

  20. Dynamic interplay among monocyte-derived, dermal, and resident lymph node dendritic cells during the generation of vaccine immunity to fungi.

    PubMed

    Ersland, Karen; Wüthrich, Marcel; Klein, Bruce S

    2010-06-25

    Early innate events that enable priming of antifungal CD4 T cells are poorly understood. We engineered an attenuated fungal vaccine with a model epitope, EalphaRFP, to track vaccine immunity to Blastomyces dermatitidis during yeast recognition, antigen presentation, and priming of naive T cells. After subcutaneous injection of the vaccine, monocyte-derived inflammatory dendritic cells (DCs) are the earliest and largest population that associates with yeast, carrying them into the draining lymph nodes. Despite marked association with yeast, these DCs fail to display surface peptide:MHC complexes or prime naive T cells. Instead, the ability to display antigen and prime CD4 T cells resides with lymph node-resident DCs after antigen transfer from immigrant DCs and with skin migratory DCs. Our work reveals the dynamic interplay among distinct DC subsets that prime naive CD4 T cells after yeast are injected in the skin and discloses the cellular elements underlying vaccine-induced immunity to fungi.

  1. Naive helper T cells from BCG-vaccinated volunteers produce IFN-gamma and IL-5 to mycobacterial antigen-pulsed dendritic cells.

    PubMed

    Kowalewicz-Kulbat, Magdalena; Kaźmierczak, Dominik; Donevski, Stefan; Biet, Franck; Pestel, Joël; Rudnicka, Wiesława

    2008-01-01

    Mycobacterium bovis bacillus Calmette-Guérin (BCG) is a live vaccine that has been used in routine vaccination against tuberculosis for nearly 80 years. However, its efficacy is controversial. The failure of BCG vaccination may be at least partially explained by the induction of poor or inappropriate host responses. Dendritic cells (DCs) are likely to play a key role in the induction of immune response to mycobacteria by polarizing the reactivity of T lymphocytes toward a Th1 profile, contributing to the generation of protective cellular immunity against mycobacteria. In this study we aimed to investigate the production of Th1 and Th2 cytokines by naive CD4+ T cells to mycobacterial antigen-pulsed DCs in the group of young, healthy BCG vaccinated volunteers. The response of naive helper T cells was compared with the response of total blood lymphocytes. Our present results clearly showed that circulating naive CD45RA+CD4+ lymphocytes from BCG-vaccinated subjects can become effector helper cells producing IFN-gamma and IL-5 under the stimulation by autologous dendritic cells presenting mycobacterial protein antigen-PPD or infected with live M. bovis BCG bacilli.

  2. Cytokine response to the RSV antigen delivered by dendritic cell-directed vaccination in congenic chicken lines.

    PubMed

    Mucksová, Jitka; Plachý, Jiří; Staněk, Ondřej; Hejnar, Jiří; Kalina, Jiří; Benešová, Barbora; Trefil, Pavel

    2017-04-05

    Systems of antigen delivery into antigen-presenting cells represent an important novel strategy in chicken vaccine development. In this study, we verified the ability of Rous sarcoma virus (RSV) antigens fused with streptavidin to be targeted by specific biotinylated monoclonal antibody (anti-CD205) into dendritic cells and induce virus-specific protective immunity. The method was tested in four congenic lines of chickens that are either resistant or susceptible to the progressive growth of RSV-induced tumors. Our analyses confirmed that the biot-anti-CD205-SA-FITC complex was internalized by chicken splenocytes. In the cytokine expression profile, several significant differences were evident between RSV-challenged progressor and regressor chicken lines. A significant up-regulation of IL-2, IL-12, IL-15, and IL-18 expression was detected in immunized chickens of both regressor and progressor groups. Of these cytokines, IL-2 and IL-12 were most up-regulated 14 days post-challenge (dpc), while IL-15 and IL-18 were most up-regulated at 28 dpc. On the contrary, IL-10 expression was significantly down-regulated in all immunized groups of progressor chickens at 14 dpc. We detected significant up-regulation of IL-17 in the group of immunized progressors. LITAF down-regulation with iNOS up-regulation was especially observed in the progressor group of immunized chickens that developed large tumors. Based on the increased expression of cytokines specific for activated dendritic cells, we conclude that our system is able to induce partial stimulation of specific cell types involved in cell-mediated immunity.

  3. Response of MUTZ-3 dendritic cells to the different components of the Haemophilus influenzae type B conjugate vaccine: towards an in vitro assay for vaccine immunogenicity.

    PubMed

    Hoefnagel, Marcel H N; Vermeulen, Jolanda P; Scheper, Rik J; Vandebriel, Rob J

    2011-07-18

    Potency testing is mandatory for vaccine registration and batch release. Due to various limitations to in vivo potency testing, there is need for relevant in vitro alternatives. These alternative tests should preferably comprise cells from the target (human) species. The whole suite of immune responses to vaccination that occur in vivo in humans cannot be tested in vitro using a single cell type. Even so, dendritic cells (DC) form an important candidate cell type since they are pivotal in inducing and orchestrating immune responses. Cell lines are preferred over ex vivo cells for reasons of safety, accessibility, and reproducibility. In this first feasibility study we used the human cell line MUTZ-3, because it most closely resembles ex vivo human DC, and compared its response to monocyte-derived DC (moDC). Haemophilus influenzae type B (HiB) vaccine was chosen because its components exert different effects in vivo: while the HiB antigen, polyribosyl ribitol phosphate (PRP) fails to induce sufficient protection in children below 2 years of age, conjugation of this polysaccharide antigen to outer membrane protein (OMP) of Neisseria meningitides, results in sufficient protection. Effects of PRP, OMP, conjugated PRP-OMP, and adjuvanted vaccine (PedVax HiB), on cytokine production and surface marker expression were established. PRP induced no effects on cytokine production and the effect on surface marker expression was limited to a minor decrease in CD209 (DC-SIGN). In both MUTZ-3 and moDC, OMP induced the strongest response both in cytokine production and surface marker expression. Compared to OMP alone conjugated PRP-OMP generally induced a weaker response in cytokine production and surface marker expression. The effects of PedVax HiB were comparable to conjugated PRP-OMP. While moDC showed a larger dynamic range than MUTZ-3 DC, these cells also showed considerable variability between donors, with MUTZ-3 DC showing a consistent response between the replicate assays

  4. Prophylactic and therapeutic vaccination with dendritic cells against hepatitis C virus infection

    PubMed Central

    Encke, J; Findeklee, J; Geib, J; Pfaff, E; Stremmel, W

    2005-01-01

    Antigen uptake and presentation capacities enable DC to prime and activate T cells. Recently, several studies demonstrated a diminished DC function in hepatitis C virus (HCV) infected patients showing impaired abilities to stimulate allogenic T cells and to produce IFN-γ in HCV infected patients. Moreover, DC of patients who have resolved HCV infection behave like DC from healthy donors responding to maturation stimuli, decrease antigen uptake, up-regulate expression of appropriate surface marker, and are potent stimulators of allogenic T cells. A number of studies have demonstrated in tumour models and models of infectious diseases strong induction of immune responses after DC vaccination. Because DC are essential for T-cell activation and since viral clearance in HCV infected patients is associated with a vigorous T-cell response, we propose a new type of HCV vaccine based on ex vivo stimulated and matured DC loaded with HCV specific antigens. This vaccine circumvents the impaired DC maturation and the down regulated DC function of HCV infected patients in vivo by giving the necessary maturation stimuli and the HCV antigens in a different setting and location ex vivo. Strong humoral and cellular immune responses were detected after HCV core DC vaccination. Furthermore, DC vaccination shows partial protection in a therapeutic and prophylactic model of HCV infection. In conclusion, mice immunized with HCV core pulsed DC generated a specific antiviral response in a mouse HCV challenge model. Our results indicate that HCV core pulsed DC may serve as a new modality for immunotherapy of HCV especially in chronically infected patients. PMID:16232225

  5. Dendritic cell-derived interleukin-15 is crucial for therapeutic cancer vaccine potency

    PubMed Central

    Zhang, Yi; Tian, Shenghe; Liu, Zuqiang; Zhang, Jiying; Zhang, Meili; Bosenberg, Marcus W; Kedl, Ross M; Waldmann, Thomas A; Storkus, Walter J; Falo, Louis D; You, Zhaoyang

    2014-01-01

    IL-15 supports improved antitumor immunity. How to best incorporate IL-15 into vaccine formulations for superior cancer immunotherapy remains a challenge. DC-derived IL-15 (DCIL-15) notably has the capacity to activate DC, to substitute for CD4+ Th and to potentiate vaccine efficacy making IL-15-based therapies attractive treatment options. We observed in transplantable melanoma, glioma and metastatic breast carcinoma models that DCIL-15-based DNA vaccines in which DC specifically express IL-15 and simultaneously produce tumor Aghsp70 were able to mediate potent therapeutic efficacy that required both host Batf3+ DC and CD8+ T cells. In an inducible BrafV600E/Pten-driven murine melanoma model, DCIL-15 (not rIL-15)-based DNA vaccines elicited durable therapeutic CD8+ T cell-dependent antitumor immunity. DCIL-15 was found to be superior to rIL-15 in “licensing” both mouse and human DC, and for activating CD8+ T cells. Such activation occurred even in the presence of Treg, without a need for CD4+ Th, but was IL-15/IL-15Rα-dependent. A single low-dose of DCIL-15 (not rIL-15)-based DC vaccines induced therapeutic antitumor immunity. CD14+ DC emigrating from human skin explants genetically-immunized by IL-15 and Aghsp70 were more effective than similar DC emigrating from the explants genetically-immunized by Aghsp70 in the presence of rIL-15 in expressing membrane-bound IL-15/IL-15Rα and activating CD8+ T cells. These results support future clinical use of DCIL-15 as a therapeutic agent in battling cancer. PMID:25941586

  6. A changing world for DCvax: a PSMA loaded autologous dendritic cell vaccine for prostate cancer.

    PubMed

    Fishman, Mayer

    2009-12-01

    Northwest Therapeutics' DCvax-prostate consists of autologous dendritic cells (DCs) loaded with prostate-specific membrane antigen (PSMA) peptides, administered intravenously. Phase I-II testing, a decade ago, showed clinical benefit and immunological response in some patients. More recently DCvax brain, a product using a similar DC platform showed encouraging Phase I-II results and sipleucel-T, a prostatic acid phosphatase (PAP)-directed DC immunotherapy had positive Phase III results. Features of the clinical setting into which a new immunotherapy could be introduced are discussed, to refine a perspective on DCvax-prostate in the context of evolving prostate cancer therapeutics. PSMA-directed therapeutics and immune anticancer technologies are reviewed, and the clinical and immunological correlative testing of DCvax-prostate is discussed. Clinical and preclinical data from peer-reviewed literature, meetings proceedings and manufacturer-provided information are considered. DCvax-prostate had encouraging early-phase trial results, but development and testing had stalled. As a more detailed understanding of patient-selection for capacity for anticancer immune response, the quantitation of immunological correlates, and the changing marketplace develop, it is appealing to consider a well tolerated, PSMA-directed autologous dendritic cell therapeutic product. Further clinical trial development of DCvax-prostate is warranted, and required if it is to find a relevant clinical application.

  7. Ex vivo generation of interstitial and Langerhans cell-like dendritic cell subset-based vaccines for hematological malignancies.

    PubMed

    Hutten, Tim; Thordardottir, Soley; Hobo, Willemijn; Hübel, Jessica; van der Waart, Anniek B; Cany, Jeannette; Dolstra, Harry; Hangalapura, Basav N

    2014-06-01

    Autologous, patient-specific, monocyte-derived dendritic cell (MoDC) vaccines have been successfully applied in the clinical studies so far. However, the routine application of this strategy has been hampered by the difficulties in generating sufficient numbers of DC and the poor DC vaccine quality because of pathology or prior treatment received by the patients. The immunotherapeutic potential of other subsets of DC has not been thoroughly investigated because of their rarity in tissues and difficulties associated with their ex vivo generation. The high expansion and differentiation potential of CD34 hematopoietic progenitor cells (HPC), isolated from umbilical cord blood (UCB), into different DC subsets make them an attractive alternative DC source for cancer immunotherapy. Therefore, the aim of this study was to generate a large number of different DC subsets from CD34 HPC and evaluate their functionality in comparison with MoDC. Our culture protocol generated a clinically relevant number of mature CD1a myeloid DC and CD207 Langerhans cells (LC)-like DC subsets from CD34 HPC with >95% purity. Both DC subsets exhibited a cytokine profile that favors cytotoxic T-cell responses. Furthermore, UCB-DC and UCB-LC demonstrated superior induction of proliferation of both allogeneic as well as viral antigen-specific CD8 T cells, both in vitro and in vivo. Additional studies revealed that UCC-DC and UCB-LC can efficiently expand minor histocompatibility antigen (MiHA) HA-1-specific cytotoxic T cells in the peripheral blood of leukemia patients and prime MiHA HA-1-specific and HA-2-specific cytotoxic T cells in vitro. These preclinical findings support the pharmaceutical development of the described culture protocol for clinical evaluation.

  8. Route of administration modulates the induction of dendritic cell vaccine-induced antigen-specific T cells in advanced melanoma patients.

    PubMed

    Lesterhuis, W Joost; de Vries, I Jolanda M; Schreibelt, Gerty; Lambeck, Annechien J A; Aarntzen, Erik H J G; Jacobs, Joannes F M; Scharenborg, Nicole M; van de Rakt, Mandy W M M; de Boer, Annemiek J; Croockewit, Sandra; van Rossum, Michelle M; Mus, Roel; Oyen, Wim J G; Boerman, Otto C; Lucas, Sophie; Adema, Gosse J; Punt, Cornelis J A; Figdor, Carl G

    2011-09-01

    It is unknown whether the route of administration influences dendritic cell (DC)-based immunotherapy. We compared the effect of intradermal versus intranodal administration of a DC vaccine on induction of immunologic responses in melanoma patients and examined whether concomitant administration of interleukin (IL)-2 increases the efficacy of the DC vaccine. HLA-A2.1(+) melanoma patients scheduled for regional lymph node dissection were vaccinated four times biweekly via intradermal or intranodal injection with 12 × 10⁶ to 17 × 10⁶ mature DCs loaded with tyrosinase and gp100 peptides together with keyhole limpet hemocyanin (KLH). Half of the patients also received low-dose IL-2 (9 MIU daily for 7 days starting 3 days after each vaccination). KLH-specific B- and T-cell responses were monitored in blood. gp100- and tyrosinase-specific T-cell responses were monitored in blood by tetramer analysis and in biopsies from delayed-type hypersensitivity (DTH) skin tests by tetramer and functional analyses with (51)Cr release assays or IFNγ release, following coculture with peptide-pulsed T2 cells or gp100- or tyrosinase-expressing tumor cells. In 19 of 43 vaccinated patients, functional tumor antigen-specific T cells could be detected. Although significantly more DCs migrated to adjacent lymph nodes upon intranodal vaccination, this was also highly variable with a complete absence of migration in 7 of 24 intranodally vaccinated patients. Intradermal vaccinations proved superior in inducing functional tumor antigen-specific T cells. Coadministration of IL-2 did not further augment the antigen-specific T-cell response but did result in higher regulatory T-cell frequencies. Intradermal vaccination resulted in superior antitumor T-cell induction when compared with intranodal vaccination. No advantage of additional IL-2 treatment could be shown. ©2011 AACR.

  9. Infection of nonhost species dendritic cells in vitro with an attenuated myxoma virus induces gene expression that predicts its efficacy as a vaccine vector.

    PubMed

    Top, S; Foulon, E; Pignolet, B; Deplanche, M; Caubet, C; Tasca, C; Bertagnoli, S; Meyer, G; Foucras, G

    2011-12-01

    Recombinant myxoma virus (MYXV) can be produced without a loss of infectivity, and its highly specific host range makes it an ideal vaccine vector candidate, although careful examination of its interaction with the immune system is necessary. Similar to rabbit bone marrow-derived dendritic cells (BM-DCs), ovine dendritic cells can be infected by SG33, a MYXV vaccine strain, and support recombinant antigen expression. The frequency of infected cells in the nonhost was lower and the virus cycle was abortive in these cell types. Among BM-DC subpopulations, Langerhans cell-like DCs were preferentially infected at low multiplicities of infection. Interestingly, ovine BM-DCs remained susceptible to MYXV after maturation, although apoptosis occurred shortly after infection as a function of the virus titer. When gene expression was assessed in infected BM-DC cultures, type I interferon (IFN)-related and inflammatory genes were strongly upregulated. DC gene expression profiles were compared with the profiles produced by other poxviruses in interaction with DCs, but very few commonalities were found, although genes that were previously shown to predict vaccine efficacy were present. Collectively, these data support the idea that MYXV permits efficient priming of adaptive immune responses and should be considered a promising vaccine vector along with other poxviruses.

  10. Clinically feasible approaches to potentiating cancer cell-based immunotherapies.

    PubMed

    Seledtsov, V I; Goncharov, A G; Seledtsova, G V

    2015-01-01

    The immune system exerts both tumor-destructive and tumor-protective functions. Mature dendritic cells (DCs), classically activated macrophages (M1), granulocytes, B lymphocytes, aβ and ɣδ T lymphocytes, natural killer T (NKT) cells, and natural killer (NK) cells may be implicated in antitumor immunoprotection. Conversely, tolerogenic DCs, alternatively activated macrophages (M2), myeloid-derived suppressor cells (MDSCs), and regulatory T (Tregs) and B cells (Bregs) are capable of suppressing antitumor immune responses. Anti-cancer vaccination is a useful strategy to elicit antitumor immune responses, while overcoming immunosuppressive mechanisms. Whole tumor cells or lysates derived thereof hold more promise as cancer vaccines than individual tumor-associated antigens (TAAs), because vaccinal cells can elicit immune responses to multiple TAAs. Cancer cell-based vaccines can be autologous, allogeneic or xenogeneic. Clinical use of xenogeneic vaccines is advantageous in that they can be most effective in breaking the preexisting immune tolerance to TAAs. To potentiate immunotherapy, vaccinations can be combined with other modalities that target different immune pathways. These modalities include 1) genetic or chemical modification of cell-based vaccines; 2) cross-priming TAAs to T cells by engaging dendritic cells; 3) T-cell adoptive therapy; 4) stimulation of cytotoxic inflammation by non-specific immunomodulators, toll-like receptor (TLR) agonists, cytokines, chemokines or hormones; 5) reduction of immunosuppression and/or stimulation of antitumor effector cells using antibodies, small molecules; and 6) various cytoreductive modalities. The authors envisage that combined immunotherapeutic strategies will allow for substantial improvements in clinical outcomes in the near future.

  11. Phase I/II randomized trial of dendritic cell vaccination with or without cyclophosphamide for consolidation therapy of advanced ovarian cancer in first or second remission.

    PubMed

    Chu, Christina S; Boyer, Jean; Schullery, Daniel S; Gimotty, Phyllis A; Gamerman, Victoria; Bender, James; Levine, Bruce L; Coukos, George; Rubin, Stephen C; Morgan, Mark A; Vonderheide, Robert H; June, Carl H

    2012-05-01

    In spite of increased rates of complete response to initial chemotherapy, most patients with advanced ovarian cancer relapse and succumb to progressive disease. Immunotherapy may have potential for consolidation therapy. This randomized open-label phase I/II trial evaluated responses of patients with advanced ovarian cancer in remission for vaccination with monocyte-derived dendritic cells (DC) loaded with Her2/neu, hTERT, and PADRE peptides, with or without low-dose intravenous cyclophosphamide. All patients also received pneumococcal vaccine and were randomized to cyclophosphamide 2 days prior to first vaccination. Blood samples were analyzed by ELISPOT and flow cytometry. Of 11 patients, 2 recurred during vaccination. Nine received all 4 doses: 3 patients recurred at 6, 17, and 26 months, respectively, and 6 have no evidence of disease at 36 months. No grade 3/4 vaccine-related toxicities were noted. The 3-year overall survival was 90%. Patients receiving cyclophosphamide showed a non-significant improvement in survival over controls. Patients receiving cyclophosphamide had a transient reduction in neutrophils, but no change in total lymphocytes or regulatory T cells. Modest T-cell responses to Her2/neu and hTERT were seen post-vaccine by IFN-γ ELISPOT. Patients demonstrated below normal responses to the diphtheria conjugate protein CRM197, a component of the pneumococcal vaccine. In this setting, peptide-loaded DC vaccination elicits modest immune responses, but survival is promising. Pneumococcal vaccination revealed substantial immune suppression, even in patients in remission. Rational design of consolidative strategies for ovarian cancer will need to overcome tolerance and immunosuppression.

  12. Development of a successful antitumor therapeutic model combining in vivo dendritic cell vaccination with tumor irradiation and intratumoral GM-CSF delivery.

    PubMed

    Driessens, Gregory; Nuttin, Lise; Gras, Alain; Maetens, Julie; Mievis, Stephane; Schoore, Marylène; Velu, Thierry; Tenenbaum, Liliane; Préat, Véronique; Bruyns, Catherine

    2011-02-01

    Vaccination of dendritic cells (DC) combined with GM-CSF secreting tumor cells has shown good therapeutic efficacy in several tumor models. Nevertheless, the engineering of GM-CSF secreting tumor cell line could represent a tedious step limiting its application for treatment in patients. We therefore developed in rats, an "all in vivo" strategy of combined vaccination using an in vivo local irradiation of the tumor as a source of tumor antigens for DC vaccines and an exogenous source of GM-CSF. We report here that supplying recombinant mGM-CSF by local injections or surgical implantation of osmotic pumps did not allow reproducing the therapeutic efficacy observed with in vitro prepared combined vaccines. To bypass this limitation possibly due to the short half-life of recombinant GM-CSF, we have generated adeno-associated virus coding for mGM-CSF and tested their efficacy to transduce tumor cells in vitro and in vivo. The in vivo vaccines combining local irradiation and AAV2/1-mGM-CSF vectors showed high therapeutic efficacy allowing to cure 60% of the rats with pre-implanted tumors, as previously observed with in vitro prepared vaccines. Same efficacy has been observed with a second generation of vaccines combining DC, local tumor irradiation, and the controlled supply of recombinant mGM-CSF in poloxamer 407, a biocompatible thermoreversible hydrogel. By generating a successful "all in vivo" vaccination protocol combining tumor radiotherapy with DC vaccines and a straightforward supply of GM-CSF, we have developed a therapeutic strategy easily translatable to clinic that could become accessible to a much bigger number of cancer patients.

  13. A DNA vaccine against tuberculosis based on the 65 kDa heat-shock protein differentially activates human macrophages and dendritic cells

    PubMed Central

    Franco, Luís H; Wowk, Pryscilla F; Silva, Célio L; Trombone, Ana PF; Coelho-Castelo, Arlete AM; Oliver, Constance; Jamur, Maria C; Moretto, Edson L; Bonato, Vânia LD

    2008-01-01

    Background A number of reports have demonstrated that rodents immunized with DNA vaccines can produce antibodies and cellular immune responses presenting a long-lasting protective immunity. These findings have attracted considerable interest in the field of DNA vaccination. We have previously described the prophylactic and therapeutic effects of a DNA vaccine encoding the Mycobacterium leprae 65 kDa heat shock protein (DNA-HSP65) in a murine model of tuberculosis. As DNA vaccines are often less effective in humans, we aimed to find out how the DNA-HSP65 stimulates human immune responses. Methods To address this question, we analysed the activation of both human macrophages and dendritic cells (DCs) cultured with DNA-HSP65. Then, these cells stimulated with the DNA vaccine were evaluated regarding the expression of surface markers, cytokine production and microbicidal activity. Results It was observed that DCs and macrophages presented different ability to uptake DNA vaccine. Under DNA stimulation, macrophages, characterized as CD11b+/CD86+/HLA-DR+, produced high levels of TNF-alpha, IL-6 (pro-inflammatory cytokines), and IL-10 (anti-inflammatory cytokine). Besides, they also presented a microbicidal activity higher than that observed in DCs after infection with M. tuberculosis. On the other hand, DCs, characterized as CD11c+/CD86+/CD123-/BDCA-4+/IFN-alpha-, produced high levels of IL-12 and low levels of TNF-alpha, IL-6 and IL-10. Finally, the DNA-HSP65 vaccine was able to induce proliferation of peripheral blood lymphocytes. Conclusion Our data suggest that the immune response is differently activated by the DNA-HSP65 vaccine in humans. These findings provide important clues to the design of new strategies for using DNA vaccines in human immunotherapy. PMID:18208592

  14. Prophylactic vaccines are potent activators of monocyte-derived dendritic cells and drive effective anti-tumor responses in melanoma patients at the cost of toxicity.

    PubMed

    Bol, Kalijn F; Aarntzen, Erik H J G; Pots, Jeanette M; Olde Nordkamp, Michel A M; van de Rakt, Mandy W M M; Scharenborg, Nicole M; de Boer, Annemiek J; van Oorschot, Tom G M; Croockewit, Sandra A J; Blokx, Willeke A M; Oyen, Wim J G; Boerman, Otto C; Mus, Roel D M; van Rossum, Michelle M; van der Graaf, Chantal A A; Punt, Cornelis J A; Adema, Gosse J; Figdor, Carl G; de Vries, I Jolanda M; Schreibelt, Gerty

    2016-03-01

    Dendritic cell (DC)-based immunotherapy is explored worldwide in cancer patients, predominantly with DC matured with pro-inflammatory cytokines and prostaglandin E2. We studied the safety and efficacy of vaccination with monocyte-derived DC matured with a cocktail of prophylactic vaccines that contain clinical-grade Toll-like receptor ligands (BCG, Typhim, Act-HIB) and prostaglandin E2 (VAC-DC). Stage III and IV melanoma patients were vaccinated via intranodal injection (12 patients) or combined intradermal/intravenous injection (16 patients) with VAC-DC loaded with keyhole limpet hemocyanin (KLH) and mRNA encoding tumor antigens gp100 and tyrosinase. Tumor antigen-specific T cell responses were monitored in blood and skin-test infiltrating-lymphocyte cultures. Almost all patients mounted prophylactic vaccine- or KLH-specific immune responses. Both after intranodal injection and after intradermal/intravenous injection, tumor antigen-specific immune responses were detected, which coincide with longer overall survival in stage IV melanoma patients. VAC-DC induce local and systemic CTC grade 2 and 3 toxicity, which is most likely caused by BCG in the maturation cocktail. The side effects were self-limiting or resolved upon a short period of systemic steroid therapy. We conclude that VAC-DC can induce functional tumor-specific responses. Unfortunately, toxicity observed after vaccination precludes the general application of VAC-DC, since in DC maturated with prophylactic vaccines BCG appears to be essential in the maturation cocktail.

  15. A novel dendritic-cell-targeting DNA vaccine for hepatitis B induces T cell and humoral immune responses and potentiates the antivirus activity in HBV transgenic mice.

    PubMed

    Yu, Debin; Liu, Hong; Shi, Shuai; Dong, Liwei; Wang, Hongge; Wu, Nuoting; Gao, Hui; Cheng, Zhaojun; Zheng, Qun; Cai, Jiaojiao; Zou, Libo; Zou, Zhihua

    2015-12-01

    Strategies for inducing an effective immune response following vaccination have focused on targeting antigens to dendritic cells (DCs) through the DC-specific surface molecule DEC-205. The immunogenicity and efficacy of DNA vaccination can also be enhanced by fusing the encoded antigen to single-chain antibodies directed against DEC-205. Here, we investigated this promising approach for its enhancement of hepatitis B virus (HBV)-specific cellular and humoral immune responses and its antiviral effects in HBV transgenic mice. A plasmid DNA vaccine encoding mouse DEC-205 single-chain fragment variable (mDEC-205-scFv) linked with the hepatitis B surface antigen (HBsAg) was constructed. Vaccination with this fusion DNA vaccine in HBV transgenic mice induced robust antiviral T cell and antibody immunity against HBsAg. The levels of serum-circulating HBsAg and the HBV DNA copy number were downregulated by the induction of a higher HBsAg-specific response. Thus, in this study, we demonstrated the therapeutic efficacy of the novel mDEC-205-scFv-fused DNA vaccine in a mouse model of immune-tolerant, chronic HBV infection.

  16. Tolerogenic dendritic cells and negative vaccination in transplantation: from rodents to clinical trials

    PubMed Central

    Moreau, Aurélie; Varey, Emilie; Bériou, Gaëlle; Hill, Marcelo; Bouchet-Delbos, Laurence; Segovia, Mercedes; Cuturi, Maria-Cristina

    2012-01-01

    The use of immunosuppressive (IS) drugs to treat transplant recipients has markedly reduced the incidence of acute rejection and early graft loss. However, such treatments have numerous adverse side effects and fail to prevent chronic allograft dysfunction. In this context, therapies based on the adoptive transfer of regulatory cells are promising strategies to induce indefinite transplant survival. The use of tolerogenic dendritic cells (DC) has shown great potential, as preliminary experiments in rodents have demonstrated that administration of tolerogenic DC prolongs graft survival. Recipient DC, Donor DC, or Donor Ag-pulsed recipient DC have been used in preclinical studies and administration of these cells with suboptimal immunosuppression increases their tolerogenic potential. We have demonstrated that autologous unpulsed tolerogenic DC injected in the presence of suboptimal immunosuppression are able to induce Ag-specific allograft tolerance. We derived similar tolerogenic DC in different animal models (mice and non-human primates) and confirmed their protective abilities in vitro and in vivo. The mechanisms involved in the tolerance induced by autologous tolerogenic DC were also investigated. With the aim of using autologous DC in kidney transplant patients, we have developed and characterized tolerogenic monocyte-derived DC in humans. In this review, we will discuss the preclinical studies and describe our recent results from the generation and characterization of tolerogenic monocyte-derived DC in humans for a clinical application. We will also discuss the limits and difficulties in translating preclinical experiments to theclinic. PMID:22908013

  17. Dendritic Cell Vaccination Combined with CTLA4 Blockade in Patients with Metastatic Melanoma

    PubMed Central

    Ribas, Antoni; Comin-Anduix, Begoña; Chmielowski, Bartosz; Jalil, Jason; de la Rocha, Pilar; McCannel, Tara A.; Ochoa, Maria Teresa; Seja, Elizabeth; Villanueva, Arturo; Oseguera, Denise K.; Straatsma, Bradley R.; Cochran, Alistair J.; Glaspy, John A.; Hui, Liu; Marincola, Francesco M.; Wang, Ena; Economou, James S.; Gomez-Navarro, Jesus

    2009-01-01

    Purpose Tumor antigen-loaded dendritic cells (DC) are believed to activate antitumor immunity by stimulating T cells, and cytotoxic T lymphocyte-associated antigen 4 (CTLA4)-blocking antibodies should release a key negative regulatory pathway on T cells. The combination was tested in a phase 1 clinical trial in patients with advanced melanoma. Experimental Design Autologous DC were pulsed with MART-126-35 peptide and administered with a dose escalation of the CTLA4 blocking antibody tremelimumab. Sixteen patients were accrued to 5 dose levels. Primary endpoints were safety and immune effects; clinical efficacy was a secondary endpoint. Results Dose-limiting toxicities (DLTs) of grade 3 diarrhea and grade 2 hypophysitis developed in 2 out of 3 patients receiving tremelimumab at 10 mg/kg monthly. Four patients had an objective tumor response, two partial responses (PR) and two complete responses (CR), all melanoma-free between 2 and 4 years after study initiation. There was no difference in immune monitoring results between patients with an objective tumor response and those without a response. Exploratory gene expression analysis suggested that immune-related gene signatures, in particular for B cell function, may be important in predicting response. Conclusion The combination of MART-1 peptide-pulsed DC and tremelimumab results in objective and durable tumor responses at the higher range of the expected response rate with either agent alone. PMID:19789309

  18. IFN{gamma} markedly cooperates with intratumoral dendritic cell vaccine in dog tumor models.

    PubMed

    Mito, Kai; Sugiura, Kikuya; Ueda, Kana; Hori, Takako; Akazawa, Takashi; Yamate, Jyoji; Nakagawa, Hiroshi; Hatoya, Shingo; Inaba, Muneo; Inoue, Norimitsu; Ikehara, Susumu; Inaba, Toshio

    2010-09-15

    Dendritic cell (DC)-based immunotherapy can trigger effective immune responses against cancer in human patients. Although accompanied by little toxicity, further improvements are needed to optimize immune responses for fully satisfactory clinical outcomes. IFNγ, a potent inducer of T helper type 1 immune responses, is considered an important tool to realize improvements. In this study, we sought to clarify the effect of IFNγ on the maturation and activation of DCs and the clinical outcome of DC-based cancer therapy in dogs. In vitro experiments indicated that IFNγ significantly enhanced the expression of immune stimulatory molecules and interleukin-12 by DCs derived from canine monocytes. IFNγ also significantly strengthened DC-mediated growth suppression against tumor cell lines. DC inoculation with concomitant delivery of IFNγ into primary or recurrent tumors elicited significant clinical responses, including four complete responses and two partial responses against malignant tumors, also eliciting partial responses against benign but actively growing tumors. Together, our results indicate that combining IFNγ and DCs could induce strong immune responses against tumors, significantly improving clinical outcomes. The present study of dogs bearing common types of cancer in humans offers a unique line of support for the development of human cancer therapies. ©2010 AACR.

  19. Tolerogenic dendritic cell vaccines to treat autoimmune diseases: can the unattainable dream turn into reality?

    PubMed

    Van Brussel, Ilse; Lee, Wai Ping; Rombouts, Miche; Nuyts, Amber H; Heylen, Marthe; De Winter, Benedicte Y; Cools, Nathalie; Schrijvers, Dorien M

    2014-02-01

    Autoimmune diseases affect about one in 15 individuals in developed countries and are characterized by a breakdown in immune tolerance. Current therapeutic approaches against destructive immune responses in autoimmune diseases are based on non-specific agents systemically suppressing the function of many immune effector cells. This indiscriminate immunosuppression, however, often causes serious and sometimes life-threatening side effects. Therefore, the need for more specific treatments resulting in lower toxicity and longer-term solutions is high. Because of the established role of dendritic cells (DCs) in maintaining the balance between immunity and tolerance, tolerogenic (tol)DCs might be novel therapeutic targets to prevent undesirable (auto-)immune responses. The idea behind tolDC therapy is that it is a highly targeted, antigen-specific treatment that only affects the auto-reactive inflammatory response. The therapeutic potential of tolDCs has already been proven in experimental animal models of different autoimmune disorders as well as with in vitro experiments using ex vivo generated human tolDCs, thus the challenge remains in bringing tolDC therapy to the clinic, although first clinical trials have been conducted. In this review, we will extensively discuss the use of tolDCs for induction of antigen-specific tolerance in several autoimmune disease settings, from bench to bedside, including currently applied strategies to generate tolDCs as well as technical difficulties and challenges in the field. © 2013 Elsevier B.V. All rights reserved.

  20. Liposomes containing NY‑ESO‑1/tetanus toxoid and adjuvant peptides targeted to human dendritic cells via the Fc receptor for cancer vaccines.

    PubMed

    Cruz, Luis J; Rueda, Felix; Simón, Lorena; Cordobilla, Begoña; Albericio, Fernando; Domingo, Joan C

    2014-04-01

    To improve the immunological response against tumors, a vaccine based on nanoliposomes targeted to the Fcg-receptor was developed to enhance the immunogenicity of tumor-associated antigens (TAAs). Using human dendritic cells in vitro, a fragment of the TAA NY-ESO-1 combined with a T-helper peptide from the tetanus toxoid encapsulated in nanoliposomes was evaluated. In addition, peptides Palm-IL-1 and MAP-IFN-g were coadministered as adjuvants to enhance the immunological response. Coadministration of Palm-IL-1 or MAP-IFN-g peptide adjuvants and the hybrid NY-ESO-1-tetanus toxoid (soluble or encapsulated in nanoliposomes without targeting) increased immunogenicity. However, the most potent immunological response was obtained when the peptide adjuvants were encapsulated in liposomes targeted to human dendritic cells via the Fc receptor. This targeted vaccine strategy is a promising tool to activate and deliver antigens to dendritic cells, thus improving immunotherapeutic response in situations in which the immune system is frequently compromised, as in advanced cancers.

  1. Dendritic cells primed with a chimeric plasmid containing HIV-1-gag associated with lysosomal-associated protein-1 (LAMP/gag) is a potential therapeutic vaccine against HIV.

    PubMed

    Lucas, Carolina G D O; Matassoli, Flavio L; Peçanha, Ligia M T; Santillo, Bruna Tereso; Oliveira, Luanda Mara da Silva; Oshiro, Telma Miyuki; Marques, Ernesto T D A; Oxenius, Annette; de Arruda, Luciana B

    2016-08-01

    The decline in number and function of T cells is a hallmark of HIV infection, and preservation or restoration of HIV-specific cellular immune response is a major goal of AIDS treatment. Dendritic cells (DCs) play a key role in the initiation and maintenance of the immune response, and their use as a vaccine vehicle is a promising strategy for enhancing vaccine efficacy. We evaluated the potential of DC-mediated immunization with a DNA vaccine consisting of HIV-1-p55gag (gag, group-specific antigen) associated to lysosomal associated protein (LAMP) sequence (LAMP/gag vaccine). Immunization of mice with mouse DCs transfected with LAMP/gag (Lg-mDCs) stimulated more potent B- and T-cell responses than naked DNA or DCs pulsed with inactivated HIV. Anti-Gag antibody levels were sustained for at least 3 mo after immunization, and recall T-cell responses were also strongly detected at this time point. Human DCs transfected with LAMP/gag (Lg-hDCs) were also activated and able to stimulate greater T-cell response than native gag-transfected DCs. Coculture between Lg-hDCs and T lymphocytes obtained from patients with HIV resulted in upregulation of CD38, CD69, HLA-DR, and granzyme B by CD4(+) and CD8(+) T cells, and increased IFN-γ and TNF-α production. These results indicate that the use of LAMP/gag-DC may be an efficient strategy for enhancing immune function in patients with HIV.-Lucas, C. G. D. O., Matassoli, F. L., Peçanha, L. M. T., Santillo, B. T., Oliveira, L. M. D. S., Oshiro, T. M., Marques, E. T. D. A., Jr., Oxenius, A., de Arruda, L. B. Dendritic cells primed with a chimeric plasmid containing HIV-1-gag associated with lysosomal-associated protein-1 (LAMP/gag) is a potential therapeutic vaccine against HIV.

  2. Lung cancer patients’ CD4+ T cells are activated in vitro by MHC II cell-based vaccines despite the presence of myeloid-derived suppressor cells

    PubMed Central

    Srivastava, Minu K.; Bosch, Jacobus J.; Thompson, James A.; Ksander, Bruce R.; Edelman, Martin J.

    2009-01-01

    Background Advanced non-small cell lung cancer (NSCLC) remains an incurable disease. Immunotherapies that activate patients’ T cells against resident tumor cells are being developed; however, these approaches may not be effective in NSCLC patients due to tumor-induced immune suppression. A major cause of immune suppression is myeloid-derived suppressor cells (MDSC). Because of the strategic role of CD4+ T lymphocytes in the activation of cytotoxic CD8+ T cells and immune memory, we are developing cell-based vaccines that activate tumor-specific CD4+ T cells in the presence of MDSC. The vaccines are NSCLC cell lines transfected with costimulatory (CD80) plus major histocompatibility complex class II (MHC II) genes that are syngeneic to the recipient. The absence of invariant chain promotes the presentation of endogenously synthesized tumor antigens, and the activation of MHC II-restricted, tumor-antigen-specific CD4+ T cells. Methods Potential vaccine efficacy was tested in vitro by priming and boosting peripheral blood mononuclear cells from ten NSCLC patients who had varying levels of MDSC. CD4+ T cell activation was quantified by measuring Type 1 and Type 2 cytokine release. Results The vaccines activated CD4+ T cells from all ten patients, despite the presence of CD33+CD11b+ MDSC. Activated CD4+ T cells were specific for NSCLC and did not cross-react with tumor cells derived from non-lung tissue or normal lung fibroblasts. Conclusions The NSCLC vaccines activate tumor-specific CD4+ T cells in the presence of potent immune suppression, and may be useful for the treatment of patients with NSCLC. PMID:18322683

  3. Lung cancer patients' CD4(+) T cells are activated in vitro by MHC II cell-based vaccines despite the presence of myeloid-derived suppressor cells.

    PubMed

    Srivastava, Minu K; Bosch, Jacobus J; Thompson, James A; Ksander, Bruce R; Edelman, Martin J; Ostrand-Rosenberg, Suzanne

    2008-10-01

    Advanced non-small cell lung cancer (NSCLC) remains an incurable disease. Immunotherapies that activate patients' T cells against resident tumor cells are being developed; however, these approaches may not be effective in NSCLC patients due to tumor-induced immune suppression. A major cause of immune suppression is myeloid-derived suppressor cells (MDSC). Because of the strategic role of CD4(+) T lymphocytes in the activation of cytotoxic CD8(+) T cells and immune memory, we are developing cell-based vaccines that activate tumor-specific CD4(+) T cells in the presence of MDSC. The vaccines are NSCLC cell lines transfected with costimulatory (CD80) plus major histocompatibility complex class II (MHC II) genes that are syngeneic to the recipient. The absence of invariant chain promotes the presentation of endogenously synthesized tumor antigens, and the activation of MHC II-restricted, tumor-antigen-specific CD4(+) T cells. Potential vaccine efficacy was tested in vitro by priming and boosting peripheral blood mononuclear cells from ten NSCLC patients who had varying levels of MDSC. CD4(+) T cell activation was quantified by measuring Type 1 and Type 2 cytokine release. The vaccines activated CD4(+) T cells from all ten patients, despite the presence of CD33(+)CD11b(+) MDSC. Activated CD4(+) T cells were specific for NSCLC and did not cross-react with tumor cells derived from non-lung tissue or normal lung fibroblasts. The NSCLC vaccines activate tumor-specific CD4(+) T cells in the presence of potent immune suppression, and may be useful for the treatment of patients with NSCLC.

  4. The adjuvant effects of high-molecule-weight polysaccharides purified from Antrodia cinnamomea on dendritic cell function and DNA vaccines.

    PubMed

    Lin, Chi-Chen; Pan, I-Hong; Li, Yi-Rong; Pan, Yi-Gen; Lin, Ming-Kuem; Lu, Yi-Huang; Wu, Hsin-Chieh; Chu, Ching-Liang

    2015-01-01

    The biological activity of the edible basidiomycete Antrodia cinnamomea (AC) has been studied extensively. Many effects, such as anti-cancer, anti-inflammatory, and antioxidant activities, have been reported from either crude extracts or compounds isolated from AC. However, research addressing the function of AC in enhancing immunity is rare. The aim of the present study is to investigate the active components and the mechanism involved in the immunostimulatory effect of AC. We found that polysaccharides (PS) in the water extract of AC played a major role in dendritic cell (DC) activation, which is a critical leukocyte in initiating immune responses. We further size purified and identified that the high-molecular weight PS fraction (greater than 100 kDa) exhibited the activating effect. The AC high-molecular weight PSs (AC hmwPSs) promoted pro-inflammatory cytokine production by DCs and the maturation of DCs. In addition, DC-induced antigen-specific T cell activation and Th1 differentiation were increased by AC hmwPSs. In studying the molecular mechanism, we confirmed the activation of the MAPK and NF-κB pathways in DCs after AC hmwPSs treatment. Furthermore, we demonstrated that TLR2 and TLR4 are required for the stimulatory activity of AC hmwPSs on DCs. In a mouse tumor model, we demonstrated that AC hmwPSs enhanced the anti-tumor efficacy of the HER-2/neu DNA vaccine by facilitating specific Th1 responses. Thus, we conclude that hmwPSs are the major components of AC that stimulate DCs via the TLR2/TLR4 and NF-κB/MAPK signaling pathways. The AC hmwPSs have potential to be applied as adjuvants.

  5. Rabies Virus Expressing Dendritic Cell-Activating Molecules Enhances the Innate and Adaptive Immune Response to Vaccination

    PubMed Central

    Wen, Yongjun; Wang, Hualei; Wu, Hua; Yang, Fuhe; Tripp, Ralph A.; Hogan, Robert J.; Fu, Zhen F.

    2011-01-01

    Our previous studies indicated that recruitment and/or activation of dendritic cells (DCs) is important in enhancing the protective immune responses against rabies virus (RABV) (L. Zhao, H. Toriumi, H. Wang, Y. Kuang, X. Guo, K. Morimoto, and Z. F. Fu, J. Virol. 84:9642-9648). To address the importance of DC activation for RABV vaccine efficacy, the genes for several DC recruitment and/or activation molecules, e.g., granulocyte-macrophage colony-stimulating factor (GM-CSF), macrophage-derived chemokine (MDC), and macrophage inflammatory protein 1α (MIP-1α), were individually cloned into RABV. The ability of these recombinant viruses to activate DCs was determined in vitro and in vivo. Infection of mouse bone marrow-derived DCs with each of the recombinant viruses resulted in DC activation, as shown by increased surface expression of CD11c and CD86 as well as an increased level of alpha interferon (IFN-α) production compared to levels observed after infection with the parent virus. Intramuscular infection of mice with each of the viruses recruited and/or activated more DCs and B cells in the periphery than infection with the parent virus, leading to the production of higher levels of virus-neutralizing antibodies. Furthermore, a single immunization with recombinant RABV expressing GM-CSF or MDC protected significantly more mice against intracerebral challenge with virulent RABV than did immunization with the parental virus. Yet, these viruses did not show more virulence than the parent virus, since direct intracerebral inoculation with each virus at up to 1 × 107 fluorescent focus units each did not induce any overt clinic symptom, such as abnormal behavior, or any neurological signs. Together, these data indicate that recombinant RABVs expressing these molecules activate/recruit DCs and enhance protective immune responses. PMID:21106736

  6. The Adjuvant Effects of High-Molecule-Weight Polysaccharides Purified from Antrodia cinnamomea on Dendritic Cell Function and DNA Vaccines

    PubMed Central

    Lin, Chi-Chen; Pan, I-Hong; Li, Yi-Rong; Pan, Yi-Gen; Lin, Ming-Kuem; Lu, Yi-Huang; Wu, Hsin-Chieh; Chu, Ching-Liang

    2015-01-01

    The biological activity of the edible basidiomycete Antrodia cinnamomea (AC) has been studied extensively. Many effects, such as anti-cancer, anti-inflammatory, and antioxidant activities, have been reported from either crude extracts or compounds isolated from AC. However, research addressing the function of AC in enhancing immunity is rare. The aim of the present study is to investigate the active components and the mechanism involved in the immunostimulatory effect of AC. We found that polysaccharides (PS) in the water extract of AC played a major role in dendritic cell (DC) activation, which is a critical leukocyte in initiating immune responses. We further size purified and identified that the high-molecular weight PS fraction (greater than 100 kDa) exhibited the activating effect. The AC high-molecular weight PSs (AC hmwPSs) promoted pro-inflammatory cytokine production by DCs and the maturation of DCs. In addition, DC-induced antigen-specific T cell activation and Th1 differentiation were increased by AC hmwPSs. In studying the molecular mechanism, we confirmed the activation of the MAPK and NF-κB pathways in DCs after AC hmwPSs treatment. Furthermore, we demonstrated that TLR2 and TLR4 are required for the stimulatory activity of AC hmwPSs on DCs. In a mouse tumor model, we demonstrated that AC hmwPSs enhanced the anti-tumor efficacy of the HER-2/neu DNA vaccine by facilitating specific Th1 responses. Thus, we conclude that hmwPSs are the major components of AC that stimulate DCs via the TLR2/TLR4 and NF-κB/MAPK signaling pathways. The AC hmwPSs have potential to be applied as adjuvants. PMID:25723174

  7. A randomized therapeutic vaccine trial of canarypox-HIV-pulsed dendritic cells vs. canarypox-HIV alone in HIV-1-infected patients on antiretroviral therapy☆,☆☆

    PubMed Central

    Gandhi, Rajesh T.; O'Neill, David; Bosch, Ronald J.; Chan, Ellen S.; Bucy, R. Pat; Shopis, Janet; Baglyos, Lynn; Adams, Elizabeth; Fox, Lawrence; Purdue, Lynette; Marshak, Ann; Flynn, Theresa; Masih, Reena; Schock, Barbara; Mildvan, Donna; Schlesinger, Sarah J.; Marovich, Mary A.; Bhardwaj, Nina; Jacobson, Jeffrey M.

    2010-01-01

    Targeting canarypox (CP)-HIV vaccine to dendritic cells (DCs) elicits anti-HIV-1 immune responses in vitro. We conducted a phase I/II clinical trial to evaluate whether adding DC to a CP-HIV vaccine improved virologic control during analytic treatment interruption (ATI) in HIV-1-infected subjects. Twenty-nine subjects on suppressive antiretroviral therapy were randomized to vaccination with autologous DCs infected with CP-HIV + keyhole limpet hemocyanin (KLH) (arm A, n = 14) or CP-HIV + KLH alone (arm B, n = 15). The mean viral load (VL) setpoint during ATI did not differ between subjects in arms A and B. A higher percentage of subjects in the DC group had a VL setpoint <5000 c/mL during ATI (4/13 or 31% in arm A compared with 0/13 in arm B, p = 0.096), but virologic control was transient. Subjects in arm A had a greater increase in KLH lymphoproliferative response than subjects in arm B; however, summed ELISPOT responses to HIV-1 antigens did not differ by treatment arm. We conclude that a DC-CP-HIV vaccine is well-tolerated in HIV-1-infected patients, but does not lower VL setpoint during ATI compared with CP-HIV alone. New methods to enhance the immunogenicity and antiviral efficacy of DC-based vaccines for HIV-1 infection are needed. PMID:19450647

  8. Clinical outcomes of a novel therapeutic vaccine with Tax peptide-pulsed dendritic cells for adult T cell leukaemia/lymphoma in a pilot study.

    PubMed

    Suehiro, Youko; Hasegawa, Atsuhiko; Iino, Tadafumi; Sasada, Amane; Watanabe, Nobukazu; Matsuoka, Masao; Takamori, Ayako; Tanosaki, Ryuji; Utsunomiya, Atae; Choi, Ilseung; Fukuda, Tetsuya; Miura, Osamu; Takaishi, Shigeo; Teshima, Takanori; Akashi, Koichi; Kannagi, Mari; Uike, Naokuni; Okamura, Jun

    2015-05-01

    Adult T cell leukaemia/lymphoma (ATL) is a human T cell leukaemia virus type-I (HTLV-I)-infected T cell malignancy with poor prognosis. We herein developed a novel therapeutic vaccine designed to augment an HTLV-I Tax-specific cytotoxic T lymphocyte (CTL) response that has been implicated in anti-ATL effects, and conducted a pilot study to investigate its safety and efficacy. Three previously treated ATL patients, classified as intermediate- to high-risk, were subcutaneously administered with the vaccine, consisting of autologous dendritic cells (DCs) pulsed with Tax peptides corresponding to the CTL epitopes. In all patients, the performance status improved after vaccination without severe adverse events, and Tax-specific CTL responses were observed with peaks at 16-20 weeks. Two patients achieved partial remission in the first 8 weeks, one of whom later achieved complete remission, maintaining their remission status without any additional chemotherapy 24 and 19 months after vaccination, respectively. The third patient, whose tumour cells lacked the ability to express Tax at biopsy, obtained stable disease in the first 8 weeks and later developed slowly progressive disease although additional therapy was not required for 14 months. The clinical outcomes of this pilot study indicate that the Tax peptide-pulsed DC vaccine is a safe and promising immunotherapy for ATL.

  9. Carthamus tinctorius Enhances the Antitumor Activity of Dendritic Cell Vaccines via Polarization toward Th1 Cytokines and Increase of Cytotoxic T Lymphocytes

    PubMed Central

    Chang, Jia-Ming; Hung, Le-Mei; Chyan, Yau-Jan; Cheng, Chun-Ming; Wu, Rey-Yuh

    2011-01-01

    Carthamus tinctorius (CT), also named safflower, is a traditional Chinese medicine widely used to improve blood circulation. CT also has been studied for its antitumor activity in certain cancers. To investigate the effects of CT on the dendritic cell (DC)-based vaccine in cancer treatment, cytokine secretion of mouse splenic T lymphocytes and the maturation of DCs in response to CT were analyzed. To assess the antitumor activity of CT extract on mouse CD117+ (c-kit)-derived DCs pulsed with JC mammal tumor antigens, the JC tumor was challenged by the CT-treated DC vaccine in vivo. CT stimulated IFN-γ and IL-10 secretion of splenic T lymphocytes and enhanced the maturation of DCs by enhancing immunological molecule expression. When DC vaccine was pulsed with tumor antigens along with CT extract, the levels of TNF-α and IL-1β were dramatically increased with a dose-dependent response and more immunologic and co-stimulatory molecules were expressed on the DC surface. In addition, CT-treated tumor lysate-pulsed DC vaccine reduced the tumor weight in tumor-bearing mice by 15.3% more than tumor lysate-pulsed DC vaccine without CT treatment. CT polarized cytokine secretion toward the Th1 pathway and also increased the population of cytotoxic T lymphocytes ex vivo. In conclusion, CT activates DCs might promote the recognition of antigens and facilitate antigen presentation to Th1 immune responses. PMID:19001481

  10. Comprehensive immunological analyses of colorectal cancer patients in the phase I/II study of quickly matured dendritic cell vaccine pulsed with carcinoembryonic antigen peptide.

    PubMed

    Sakakibara, Mitsuru; Kanto, Tatsuya; Hayakawa, Michiyo; Kuroda, Shoko; Miyatake, Hideki; Itose, Ichiyo; Miyazaki, Masanori; Kakita, Naruyasu; Higashitani, Koyo; Matsubara, Tokuhiro; Hiramatsu, Naoki; Kasahara, Akinori; Takehara, Tetsuo; Hayashi, Norio

    2011-11-01

    Dendritic cell (DC) vaccine has been used to treat patients with advanced colorectal cancer (CRC). The results of vaccine-induced clinical responses have not always been satisfactory partially because of DC incompetence. In order to evaluate the feasibility of novel mature DCs for therapeutic adjuvants against CRC, we conducted clinical trials with carcinoembryonic antigen (CEA) peptide-loaded DC quickly generated with a combination of OK432 (Streptococcuspyogenes preparation), prostanoid, and interferon-α (OPA-DC). In the ten patients enrolled in this study, the OPA-DC vaccine was well tolerated and administered four times every 2 weeks except for two patients, who were switched to other treatments due to disease progression. Among the eight evaluable patients, one displayed stable disease (SD), while the remaining seven showed progressive disease (PD). In the SD patient, natural killer (NK) cell frequency and cytolytic activity were increased. In the same patient, the frequency of CEA-specific cytotoxic T cells (CTLs) increased stepwise with repetitive vaccinations; however, most of the CTLs exhibited central memory phenotype. In those with PD, NK cells proliferated well regardless of failure of response, whereas CTLs failed to do so. We concluded that the OPA-DC vaccine is well tolerated and has immune-stimulatory capacity in patients with CRC. Additional modulation is needed to attain significant clinical impact.

  11. Collaborative study for the standardisation of the histamine sensitizing test in mice and the CHO cell-based assay for the residual toxicity testing of acellular pertussis vaccines.

    PubMed

    Xing, D; Maes, A; Behr-Gross, M-E; Costanzo, A; Daas, A; Buchheit, K-H

    2010-04-01

    The European Pharmacopoeia (Ph. Eur.) and the World Health Organisation (WHO) require the performance of extensive quality and safety control testing before the release on the market of vaccine products for human use. Safety testing with regard to residual pertussis toxin (PT) in acellular pertussis combination vaccines is performed through assessment of fatal sensitisation of mice to histamine challenge by the vaccine product under test. Currently, use of different in-house procedures and no requirement for the inclusion of a standard reference in each assay render comparisons of results obtained for identical vaccine batches between different control laboratories very difficult. At the initiative of the European Directorate for the Quality of Medicines and HealthCare (EDQM), an international collaborative study was organised for the standardization of the Histamine Sensitizing Test (HIST) in mice and the Chinese Hamster Ovary (CHO)-cell-based assay (performed at the bulk product level) for the residual toxicity testing of acellular pertussis vaccines or acellular pertussis-based combination vaccines. The study was run under the aegis of the Biological Standardisation Programme, jointly supported by the Council of Europe and the European Commission under the project code BSP076. Ten (10) laboratories participated in the study and were requested to perform 3 independent Histamine Sensitizing Tests in mice and to report results of the lethal end-point measurement as prescribed by the Ph. Eur. monographs. Some of them also reported data from an in-house validated CHO-cell-based assay. In addition, some of the laboratories reported concomitantly data obtained by measurement of the drop in temperature induced after the histamine challenge, a method currently under investigation to be added as an alternative end-point for the HIST in the Ph. Eur. monographs for acellular pertussis-based combination vaccines in order to alleviate animal suffering (in application of the 3

  12. Genetic targeting of the active transcription factor XBP1s to dendritic cells potentiates vaccine-induced prophylactic and therapeutic antitumor immunity.

    PubMed

    Tian, Shenghe; Liu, Zuqiang; Donahue, Cara; Falo, Louis D; You, Zhaoyang

    2012-02-01

    In vivo dendritic cells (DC) targeting is an attractive approach with potential advantages in vaccine efficacy, cost, and availability. Identification of molecular adjuvants to in vivo "modulate " DC to coordinately render improved Th1 and CD8 T cell immunity, and attenuated deleterious Treg effects, is a critical challenge. Here, we report that in vivo genetic targeting of the active transcription factor XBP1s to DC (XBP1s/DC) potentiated vaccine-induced prophylactic and therapeutic antitumor immunity in multiple tumor models. This immunization strategy is based on a genetic vaccine encoding both cytomegalovirus (CMV)-driven vaccine Aghsp70 and DC-specific CD11c-driven XBP1s. The novel targeted vaccine induced durable Th1 and CD8 T cell responses to poorly immunogenic self/tumor antigen (Ag) and attenuated tumor-associated Treg suppressive function. Bone marrow (BM)-derived DC genetically modified to simultaneously overexpress XBP1s and express Aghsp70 upregulated CD40, CD70, CD86, interleukin (IL)-15, IL-15Rα, and CCR7 expression, and increased IL-6, IL-12, and tumor necrosis factor (TNF)-α production in vitro. XBP1s/DC elevated functional DEC205(+)CD8α(+)DC in the draining lymph nodes (DLN). The data suggest a novel role for XBP1s in modulating DC to potentiate tumor vaccine efficacy via overcoming two major obstacles to tumor vaccines (i.e., T cell hyporesponsiveness against poorly immunologic self/tumor Ag and tumor-associated Treg-mediated suppression) and improving DEC205(+)CD8α(+)DC.

  13. Dendritic cell-mediated, DNA-based vaccination against hepatitis C induces the multi-epitope-specific response of humanized, HLA transgenic mice.

    PubMed

    Mishra, Sasmita; Lavelle, Bianca J; Desrosiers, Joe; Ardito, Matt T; Terry, Frances; Martin, William D; De Groot, Anne S; Gregory, Stephen H

    2014-01-01

    Hepatitis C virus (HCV) is the etiologic agent of chronic liver disease, hepatitis C. Spontaneous resolution of viral infection is associated with vigorous HLA class I- and class II-restricted T cell responses to multiple viral epitopes. Unfortunately, only 20% of patients clear infection spontaneously, most develop chronic disease and require therapy. The response to chemotherapy varies, however; therapeutic vaccination offers an additional treatment strategy. To date, therapeutic vaccines have demonstrated only limited success. Vector-mediated vaccination with multi-epitope-expressing DNA constructs alone or in combination with chemotherapy offers an additional treatment approach. Gene sequences encoding validated HLA-A2- and HLA-DRB1-restricted epitopes were synthesized and cloned into an expression vector. Dendritic cells (DCs) derived from humanized, HLA-A2/DRB1 transgenic (donor) mice were transfected with these multi-epitope-expressing DNA constructs. Recipient HLA-A2/DRB1 mice were vaccinated s.c. with transfected DCs; control mice received non-transfected DCs. Peptide-specific IFN-γ production by splenic T cells obtained at 5 weeks post-immunization was quantified by ELISpot assay; additionally, the production of IL-4, IL-10 and TNF-α were quantified by cytokine bead array. Splenocytes derived from vaccinated HLA-A2/DRB1 transgenic mice exhibited peptide-specific cytokine production to the vast majority of the vaccine-encoded HLA class I- and class II-restricted T cell epitopes. A multi-epitope-based HCV vaccine that targets DCs offers an effective approach to inducing a broad immune response and viral clearance in chronic, HCV-infected patients.

  14. Synthetic virus seeds for improved vaccine safety: Genetic reconstruction of poliovirus seeds for a PER.C6 cell based inactivated poliovirus vaccine.

    PubMed

    Sanders, Barbara P; Edo-Matas, Diana; Papic, Natasa; Schuitemaker, Hanneke; Custers, Jerome H H V

    2015-10-13

    Safety of vaccines can be compromised by contamination with adventitious agents. One potential source of adventitious agents is a vaccine seed, typically derived from historic clinical isolates with poorly defined origins. Here we generated synthetic poliovirus seeds derived from chemically synthesized DNA plasmids encoding the sequence of wild-type poliovirus strains used in marketed inactivated poliovirus vaccines. The synthetic strains were phenotypically identical to wild-type polioviruses as shown by equivalent infectious titers in culture supernatant and antigenic content, even when infection cultures are scaled up to 10-25L bioreactors. Moreover, the synthetic seeds were genetically stable upon extended passaging on the PER.C6 cell culture platform. Use of synthetic seeds produced on the serum-free PER.C6 cell platform ensures a perfectly documented seed history and maximum control over starting materials. It provides an opportunity to maximize vaccine safety which increases the prospect of a vaccine end product that is free from adventitious agents.

  15. Developing an effective breast cancer vaccine.

    PubMed

    Soliman, Hatem

    2010-07-01

    Harnessing the immune response in treating breast cancer would potentially offer a less toxic, more targeted approach to eradicating residual disease. Breast cancer vaccines are being developed to effectively train cytotoxic T cells to recognize and kill transformed cells while sparing normal ones. However, achieving this goal has been problematic due to the ability of established cancers to suppress and evade the immune response. A review of the literature on vaccines and breast cancer treatment was conducted, specifically addressing strategies currently available, as well as appropriate settings, paradigms for vaccine development and response monitoring, and challenges with immunosuppression. Multiple issues need to be addressed in order to optimize the benefits offered by breast cancer vaccines. Primary issues include the following: (1) cancer vaccines will likely work better in a minimal residual disease state, (2) clinical trial design for immunotherapy should incorporate recommendations from expert groups such as the Cancer Vaccine Working Group and use standardized immune response measurements, (3) the presently available cancer vaccine approaches, including dendritic cell-based, tumor-associated antigen peptide-based, and whole cell-based, have various pros and cons, (4) to date, no one approach has been shown to be superior to another, and (5) vaccines will need to be combined with immunoregulatory agents to overcome tumor-related immunosuppression. Combining a properly optimized cancer vaccine with novel immunomodulating agents that overcome tumor-related immunosuppression in a well-designed clinical trial offers the best hope for developing an effective breast cancer vaccine strategy.

  16. Comparative assessment of lipid based nano-carrier systems for dendritic cell based targeting of tumor re-initiating cells in gynecological cancers.

    PubMed

    Bhargava, Arpit; Mishra, Dinesh K; Jain, Subodh K; Srivastava, Rupesh K; Lohiya, Nirmal K; Mishra, Pradyumna K

    2016-11-01

    We aimed to identify an optimum nano-carrier system to deliver tumor antigen to dendritic cells (DCs) for efficient targeting of tumor reinitiating cells (TRICs) in gynecological malignancies. Different lipid based nano-carrier systems i.e. liposomes, ethosomes and solid lipid nanoparticles (SLNPs) were examined for their ability to activate DCs in allogeneic settings. Out of these three, the most optimized formulation was subjected for cationic and mannosylated surface modification and pulsed with DCs for specific targeting of tumor cells. In both allogeneic and autologous trials, SLNPs showed a strong ability to activate DCs and orchestrate specific immune responses for targeting TRICs in gynecological malignancies. Our findings suggest that the mannosylated form of SLNPs is a suitable molecular vector for DC based therapeutics. DCs pulsed with mannosylated SLNPs may be utilized as adjuvant therapy for specific removal of TRICs to benefit patients from tumor recurrence.

  17. A correlation of measles specific antibodies and the number of plasmacytoid dendritic cells is observed after measles vaccination in 9 month old infants

    PubMed Central

    García-León, Miguel L; Bonifaz, Laura C; Espinosa-Torres, Bogart; Hernández-Pérez, Brenda; Cardiel-Marmolejo, Lino; Santos-Preciado, José I; Wong-Chew, Rosa M

    2015-01-01

    Measles virus (MeV) represents one of the main causes of death among young children, particularly in developing countries. Upon infection, MeV controls both interferon induction (IFN) and the interferon signaling pathway which results in a severe host immunosuppression that can persists for up to 6 mo after infection. Despite the global biology of MeV infection is well studied, the role of the plasmacytoid dendritic cells (pDCs) during the host innate immune response after measles vaccination remains largely uncharacterized. Here we investigated the role of pDCs, the major producers of interferon in response to viral infections, in the development of adaptive immune response against MeV vaccine. We report that there is a strong correlation between pDCs population and the humoral immune response to Edmonston Zagreb (EZ) measles vaccination in 9-month-old mexican infants. Five infants were further evaluated after vaccination, showing a clear increase in pDCs at baseline, one week and 3 months after immunization. Three months postvaccination they showed increase in memory T-cells and pDCs populations, high induction of adaptive immunity and also observed a correlation between pDCs number and the humoral immune response. These findings suggest that the development and magnitude of the adaptive immune response following measles immunization is directly dependent on the number of pDCs of the innate immune response. PMID:26075901

  18. A correlation of measles specific antibodies and the number of plasmacytoid dendritic cells is observed after measles vaccination in 9 month old infants.

    PubMed

    García-León, Miguel L; Bonifaz, Laura C; Espinosa-Torres, Bogart; Hernández-Pérez, Brenda; Cardiel-Marmolejo, Lino; Santos-Preciado, José I; Wong-Chew, Rosa M

    2015-01-01

    Measles virus (MeV) represents one of the main causes of death among young children, particularly in developing countries. Upon infection, MeV controls both interferon induction (IFN) and the interferon signaling pathway which results in a severe host immunosuppression that can persists for up to 6 mo after infection. Despite the global biology of MeV infection is well studied, the role of the plasmacytoid dendritic cells (pDCs) during the host innate immune response after measles vaccination remains largely uncharacterized. Here we investigated the role of pDCs, the major producers of interferon in response to viral infections, in the development of adaptive immune response against MeV vaccine. We report that there is a strong correlation between pDCs population and the humoral immune response to Edmonston Zagreb (EZ) measles vaccination in 9-month-old mexican infants. Five infants were further evaluated after vaccination, showing a clear increase in pDCs at baseline, one week and 3 months after immunization. Three months postvaccination they showed increase in memory T-cells and pDCs populations, high induction of adaptive immunity and also observed a correlation between pDCs number and the humoral immune response. These findings suggest that the development and magnitude of the adaptive immune response following measles immunization is directly dependent on the number of pDCs of the innate immune response.

  19. Induction of Cytomegalovirus-Specific T Cell Responses in Healthy Volunteers and Allogeneic Stem Cell Recipients Using Vaccination With Messenger RNA–Transfected Dendritic Cells

    PubMed Central

    Van Craenenbroeck, Amaryllis H.; Smits, Evelien L.J.; Anguille, Sébastien; Van de Velde, Ann; Stein, Barbara; Braeckman, Tessa; Van Camp, Kirsten; Nijs, Griet; Ieven, Margareta; Goossens, Herman; Berneman, Zwi N.; Van Tendeloo, Viggo F.I.; Verpooten, Gert A.; Van Damme, Pierre; Cools, Nathalie

    2015-01-01

    Background Infection with human cytomegalovirus (CMV) is a significant cause of morbidity and mortality in solid organ and hematopoietic stem cell transplant (HSCT) recipients. Methods The present study explored the safety, feasibility, and immunogenicity of CMV pp65 messenger RNA–loaded autologous monocyte-derived dendritic cells (DC) as a cellular vaccine for active immunization in healthy volunteers and allogeneic HSCT recipients. Four CMV-seronegative healthy volunteers and three allogeneic HSCT recipients were included in the study. Four clinical-grade autologous monocyte-derived DC vaccines were prepared after a single leukapheresis procedure and administered intradermally at a weekly interval. Results De novo induction of CMV-specific T-cell responses was detected in three of four healthy volunteers without serious adverse events. Of the HSCT recipients, none developed CMV disease and one of two patients displayed a remarkable threefold increase in CMV pp65-specific T cells on completion of the DC vaccination trial. Conclusion In conclusion, our DC vaccination strategy induced or expanded a CMV-specific cellular response in four of six efficacy-evaluable study subjects, providing a base for its further exploration in larger cohorts. PMID:25050468

  20. Langerin negative dendritic cells promote potent CD8+ T-cell priming by skin delivery of live adenovirus vaccine microneedle arrays

    PubMed Central

    Bachy, Veronique; Hervouet, Catherine; Becker, Pablo D.; Chorro, Laurent; Carlin, Leo M.; Herath, Shanthi; Papagatsias, Timos; Barbaroux, Jean-Baptiste; Oh, Sea-Jin; Benlahrech, Adel; Athanasopoulos, Takis; Dickson, George; Patterson, Steven; Kwon, Sung-Yun; Geissmann, Frederic; Klavinskis, Linda S.

    2013-01-01

    Stabilization of virus protein structure and nucleic acid integrity is challenging yet essential to preserve the transcriptional competence of live recombinant viral vaccine vectors in the absence of a cold chain. When coupled with needle-free skin delivery, such a platform would address an unmet need in global vaccine coverage against HIV and other global pathogens. Herein, we show that a simple dissolvable microneedle array (MA) delivery system preserves the immunogenicity of vaccines encoded by live recombinant human adenovirus type 5 (rAdHu5). Specifically, dried rAdHu5 MA immunization induced CD8+ T-cell expansion and multifunctional cytokine responses equipotent with conventional injectable routes of immunization. Intravital imaging demonstrated MA cargo distributed both in the epidermis and dermis, with acquisition by CD11c+ dendritic cells (DCs) in the dermis. The MA immunizing properties were attributable to CD11c+ MHCIIhi CD8αneg epithelial cell adhesion molecule (EpCAMneg) CD11b+ langerin (Lang; CD207)neg DCs, but neither Langerhans cells nor Lang+ DCs were required for CD8+ T-cell priming. This study demonstrates an important technical advance for viral vaccine vectors progressing to the clinic and provides insights into the mechanism of CD8+ T-cell priming by live rAdHu5 MAs. PMID:23386724

  1. Interleukin-15 and its Receptor Augment Dendritic Cell Vaccination Against the neu Oncogene Through the Induction of Antibodies Partially Independent of CD4-help

    PubMed Central

    Steel, Jason C.; Ramlogan, Charmaine A.; Yu, Ping; Sakai, Yoshio; Forni, Guido; Waldmann, Thomas A.; Morris, John C.

    2009-01-01

    Interleukin-15 (IL-15) stimulates the differentiation and proliferation of T, B and NK cells, enhances CD8+ cytolytic T cell activity, helps maintain CD44hiCD8+ memory T cells, and stimulates immunoglobulin synthesis by B cells. IL-15 is trans-presented to effector cells by its receptor, IL-15Rα, expressed on dendritic cells (DC) and monocytes. We examined the anti-tumor effect of adenoviral-mediated gene transfer of IL-15 and IL-15Rα to augment a DC vaccine directed against the NEU (ErbB2) oncoprotein. Transgenic BALB-neuT mice vaccinated in late stage tumor development with a DC vaccine expressing a truncated NEU antigen, IL-15 and its receptor (DCAd.Neu+Ad.mIL-15+Ad.mIL-15Rα) were protected from mammary carcinomas with 70% of animals tumor-free at 30 weeks compared to none of the animals vaccinated with NEU alone (DCAd.Neu). The combination of neu, IL-15 and IL-15Rα gene transfer lead to a significantly greater anti-NEU antibody response compared to mice treated with DCAd.Neu, or DCAd.Neu combined with either IL-15 (DCAd.Neu+Ad.mIL-15), or IL-15Rα (DCAd.Neu+Ad.mIL-15Rα). The anti-tumor effect was antibody mediated and involved modulation of NEU expression and signaling. Depletion of CD4+ cells did not abrogate the anti-tumor effect of the vaccine, nor did it inhibit the induction of anti-NEU antibodies. Co-expression of IL-15 and IL-15Rα in an anticancer vaccine enhanced immune responses against the NEU antigen and may overcome impaired CD4+ T-helper function. PMID:20086176

  2. Immune response and long-term clinical outcome in advanced melanoma patients vaccinated with tumor-mRNA-transfected dendritic cells.

    PubMed

    Kyte, Jon Amund; Aamdal, Steinar; Dueland, Svein; Sæbøe-Larsen, Stein; Inderberg, Else Marit; Madsbu, Ulf Erik; Skovlund, Eva; Gaudernack, Gustav; Kvalheim, Gunnar

    2016-01-01

    The most effective anticancer immune responses are probably directed against patient-specific neoantigens. We have developed a melanoma vaccine targeting this individual mutanome based on dendritic cells (DCs) loaded with autologous tumor-mRNA. Here, we report a phase I/II trial evaluating toxicity, immune response and clinical outcome in 31 metastatic melanoma patients. The first cohort (n = 22) received the vaccine without any adjuvant; the next cohort (n = 9) received adjuvant IL2. Each subject received four weekly intranodal or intradermal injections, followed by optional monthly vaccines. Immune response was evaluated by delayed-type hypersensitivity (DTH), T cell proliferation and cytokine assays. Data were collected for 10 y after inclusion of the last patient. No serious adverse events were detected. In the intention-to-treat-cohort, we demonstrated significantly superior survival compared to matched controls from a benchmark meta-analysis (1 y survival 43% vs. 24%, 2 y 23% vs. 6.6%). A tumor-specific immune response was demonstrated in 16/31 patients. The response rate was higher after intradermal than intranodal vaccination (80% vs. 38%). Immune responders had improved survival compared to non-responders (median 14 mo vs. 6 mo; p = 0.030), and all eight patients surviving >20 mo were immune responders. In addition to the tumor-specific response, most patients developed a response against autologous DC antigens. The cytokine profile was polyfunctional and did not follow a Th1/Th2 dichotomy. We conclude that the favorable safety profile and evidence of a possible survival benefit warrant further studies of the RNA/DC vaccine. The vaccine appears insufficient as monotherapy, but there is a strong rationale for combination with checkpoint modulators.

  3. Herpes Simplex Virus Glycoprotein D Targets a Specific Dendritic Cell Subset and Improves the Performance of Vaccines to Human Papillomavirus-Associated Tumors.

    PubMed

    Porchia, Bruna F M M; Moreno, Ana Carolina R; Ramos, Rodrigo N; Diniz, Mariana O; de Andrade, Laís Helena T M; Rosa, Daniela S; Barbuto, José Alexandre M; Boscardin, Silvia B; Ferreira, Luís Carlos S

    2017-09-01

    Cervical cancer is a major public health problem and one of the leading causes of cancer deaths in women. Virtually all cases of cervical cancer, as well as a growing share of anal and head/neck tumors, are associated with human papillomavirus (HPV) infection. Despite the effectiveness, the available prophylactic vaccines do not benefit women with cervical lesions or cancer. Therefore, the search of new immunotherapeutic approaches to treat HPV-induced tumors is still a priority. The present study characterizes a therapeutic antitumor vaccine based on the genetic fusion of the Herpes simplex virus-1 (HSV-1) glycoprotein D (gD) with the E7 oncoprotein from HPV-16 (gDE7). Two subcutaneous doses of gDE7, admixed with poly (I:C), conferred complete and long-lasting therapeutic antitumor protection on mice previously challenged with tumor cells expressing the HPV-16 oncoproteins. The vaccine induced multifunctional E7-specific CD8(+) T cells with cytotoxic activity and effector memory phenotype (CD44(+) CD62L(low)). In addition, gDE7 admixed with poly (I:C) vaccination controlled the expansion of tumor-induced regulatory T cells and myeloid-derived suppressor cells. More importantly, gDE7 activated mouse CD11c(+) CD8α(+) and human BDCA3(+) dendritic cells (DC), specialized in antigen cross-presentation to CD8(+) T cells, under in vitro conditions. These results indicated that the activation of a specific DC population, mediated by gD, improved the antigen-specific immune responses and the therapeutic performance induced by antitumor vaccines. These results open perspectives for the clinical testing of gDE7-based vaccines under the concept of active immunization as a tool for the therapeutic control of cancer. Mol Cancer Ther; 16(9); 1922-33. ©2017 AACR. ©2017 American Association for Cancer Research.

  4. Irradiation of necrotic cancer cells, employed for pulsing dendritic cells (DCs), potentiates DC vaccine-induced antitumor immunity against high-grade glioma

    PubMed Central

    Vandenberk, Lien; Garg, Abhishek D.; Verschuere, Tina; Koks, Carolien; Belmans, Jochen; Beullens, Monique; Agostinis, Patrizia; De Vleeschouwer, Steven; Van Gool, Stefaan W.

    2016-01-01

    ABSTRACT Dendritic cell (DC)-based immunotherapy has yielded promising results against high-grade glioma (HGG). However, the efficacy of DC vaccines is abated by HGG-induced immunosuppression and lack of attention toward the immunogenicity of the tumor lysate/cells used for pulsing DCs. A literature analysis of DC vaccination clinical trials in HGG patients delineated the following two most predominantly applied methods for tumor lysate preparation: freeze-thaw (FT)-induced necrosis or FT-necrosis followed by X-ray irradiation. However, from the available clinical evidence, it is unclear which of both methodologies has superior immunogenic potential. Using an orthotopic HGG murine model (GL261-C57BL/6), we observed that prophylactic vaccination with DCs pulsed with irradiated FT-necrotic cells (compared to FT-necrotic cells only) prolonged overall survival by increasing tumor rejection in glioma-challenged mice. This was associated, both in prophylactic and curative vaccination setups, with an increase in brain-infiltrating Th1 cells and cytotoxic T lymphocytes (CTL), paralleled by a reduced accumulation of regulatory T cells, tumor-associated macrophages (TAM) and myeloid-derived suppressor cells (MDSC). Further analysis showed that irradiation treatment of FT-necrotic cells considerably increased the levels of carbonylated proteins — a surrogate-marker of oxidation-associated molecular patterns (OAMPs). Through further application of antioxidants and hydrogen peroxide, we found a striking correlation between the amount of lysate-associated protein carbonylation/OAMPs and DC vaccine-mediated tumor rejection capacity thereby suggesting for the first time a role for protein carbonylation/OAMPs in at least partially mediating antitumor immunity. Together, these data strongly advocate the use of protein oxidation-inducing modalities like irradiation for increasing the immunogenicity of tumor lysate/cells used for pulsing DC vaccines. PMID:27057467

  5. Delayed-type hypersensitivity (DTH) immune response related with EBV-DNA in nasopharyngeal carcinoma treated with autologous dendritic cell vaccination after radiotherapy.

    PubMed

    Li, Feng; Song, Dan; Lu, Yue; Zhu, Huanfeng; Chen, Zhenzhang; He, Xia

    2013-04-01

    The aim of this work was to investigate the outcome of an autologous dendritic cell (DC) vaccination in patients with stage II/III nasopharyngeal carcinomas (NPC). From 38 patients with stage II/III Epstein-Barr virus (EBV)-associated NPCs after a radiotherapy, 16 human leukocyte antigen-A2 (HLA-A2)-positive patients were enrolled and medicated with autologous DCs, which were pulsed with HLA-A2-restricted EBV-encoded latent membrane protein 2A (LMP2A) peptides. The lymphocyte subsets, serum cytokines, and EBV-DNA levels as well as the delayed-type hypersensitivity (DTH) responses were determined after vaccination combined with a radiotherapy/chemotherapy. The serum levels of interleukin-2 and interferon-γ (P<0.05) as well as the percentage of natural killer and CD4+T cells increased significantly (P<0.05) after the vaccination. Nine of 16 (56.25%) patients showed a positive skin response to the HLA-A2 restricted EBV LMP2A peptides in a DTH test. The serum EBV-DNA level decreased significantly from 1519 ± 384 to 1214 ± 211 copies/mL in the 9 DTH-positive patients (P=0.0310). No unanticipated or serious toxicity was observed and the vaccine was well tolerated. In conclusion, in NPC patients vaccinated after radiotherapy with autologous DCs, which were pulsed with EBV LMP2A peptides, Th1-specific immune responses were elicited particularly in DTH test positive individuals. The clinical results obtained are encouraging and the EBV-specific HLA-A2-restricted DC vaccination is a promising treatment for EBV-related NPCs.

  6. [Experimental study on the immune response of fusion tumor vaccine of HepG2 and dendritic cells in vitro].

    PubMed

    Pang, Y B; Cui, B Y; He, J; Huang, X P; Liang, W; Li, L Q; Luo, X L

    2017-02-21

    Objective: To estimate the immune response of HepG2/dendritic cell (DC) fusion cells vaccines against HepG2 cells in vitro. Methods: Peripheral blood mononuclear cells (PBMCs) were isolated from healthy donors by Ficoll-Hypaque density-gradient centrifugation.Then DC were obtain from PBMCs by culturing in medium containing granulocyte macrophage colony-stimulating factor (GM-CSF) and interleukin-4 (IL-4) for 5 days.DC and HepG2 fusion cells were induced by polythyleneglycol (PEG). The fusion cells were examined under fluorescence microscope by labeling DCs and HepG2 with green and red fluorescein, respectively, and then the fusion rates were analyzed by flow cytometry.The capacity of fusion cells to secrete interleukin (IL)-12 and stimulate the proliferation of T lymphocyte was assessed by ELISA and Flow cytometry, respectively.ELISPOT was used to assess the interferon gamma (IFN-γ) produced by cytotoxicity T lymphocyte (CTL), and the specific killing ability of fusion cells induce-CTL targeting HepG2 was estimated. Results: The fusion rate of HepG2/DC was 54.5%, and the fusion cells expressed a higher levels of DC mature marker CD80 and costimulatory molecules CD83, CD86 and MHC-Ⅰ, MHC-Ⅱ molecules HLA-ABC and HLA-DR than those in immature DCs (P<0.01). HepG2/DC showed a greater capacity to secrete high level of IL-12 (P<0.05) and activate proliferation of lymphocytes in vitro, as compared with DCs alone and DCs mix HepG2 (P<0.01). The HepG2/DC -activated CTL generated higher IFN-γ level and had a specific killing ability against HepG2 cells at the effecter/target ratio 30∶1 (31.4%±2.4%) and 100∶1 (57.6%±7.3%) (P<0.01). Conclusions: HepG2/DC fusion cells could efficiently stimulate T lymphocytes to generate specific CTL targeting HepG2 cells.It might be a promising strategy of immunotherapy for HCC.

  7. Phase I/II clinical trial of dendritic-cell based immunotherapy (DCVAC/PCa) combined with chemotherapy in patients with metastatic, castration-resistant prostate cancer

    PubMed Central

    Becht, Etienne; Rozkova, Daniela; Bilkova, Pavla; Sochorova, Klara; Hromadkova, Hana; Kayserova, Jana; Vavrova, Katerina; Lastovicka, Jan; Vrabcova, Petra; Kubackova, Katerina; Gasova, Zdenka; Jarolim, Ladislav; Babjuk, Marek; Spisek, Radek; Bartunkova, Jirina; Fucikova, Jitka

    2015-01-01

    Purpose We conducted an open-label, single-arm Phase I/II clinical trial in metastatic CRPC (mCRPC) patients eligible for docetaxel combined with treatment with autologous mature dendritic cells (DCs) pulsed with killed LNCaP prostate cancer cells (DCVAC/PCa). The primary and secondary endpoints were safety and immune responses, respectively. Overall survival (OS), followed as a part of the safety evaluation, was compared to the predicted OS according to the Halabi and MSKCC nomograms. Experimental design Twenty-five patients with progressive mCRPC were enrolled. Treatment comprised of initial 7 days administration of metronomic cyclophosphamide 50 mg p.o. DCVAC/PCa treatment consisted of a median twelve doses of 1 × 107 dendritic cells per dose injected s.c. (Aldara creme was applied at the site of injection) during a one-year period. The initial 2 doses of DCVAC/PCa were administered at a 2-week interval, followed by the administration of docetaxel (75 mg/m2) and prednisone (5 mg twice daily) given every 3 weeks until toxicity or intolerance was observed. The DCVAC/PCa was then injected every 6 weeks up to the maximum number of doses manufactured from one leukapheresis. Results No serious DCVAC/PCa-related adverse events have been reported. The median OS was 19 months, whereas the predicted median OS was 11.8 months with the Halabi nomogram and 13 months with the MSKCC nomogram. Kaplan-Meier analyses showed that patients had a lower risk of death compared with both MSKCC (Hazard Ratio 0.26, 95% CI: 0.13–0.51) and Halabi (Hazard Ratio 0.33, 95% CI: 0.17–0.63) predictions. We observed a significant decrease in Tregs in the peripheral blood. The long-term administration of DCVAC/PCa led to the induction and maintenance of PSA specific T cells. We did not identify any immunological parameter that significantly correlated with better OS. Conclusions In patients with mCRPC, the combined chemoimmunotherapy with DCVAC/PCa and docetaxel was safe and resulted in

  8. Role of heterogeneous cell population on modulation of dendritic cell phenotype and activation of CD8 T cells for use in cell-based immunotherapies.

    PubMed

    Frizzell, Hannah; Park, Jaehyung; Comandante Lou, Natacha; Woodrow, Kim A

    2017-01-01

    Dendritic cell (DC)-based immunotherapies have much utility in their ability to prime antigen-specific adaptive immune responses. However, there does not yet exist a consensus standard to how DCs should be primed. In this study, we aimed to determine the role of heterogeneous co-cultures, composed of both CD11c+ (DCs) and CD11c- cells, in combination with monophosphoryl lipid A (MPLA) stimulation on DC phenotype and function. Upon DC priming in different co-culture ratios, we observed reduced expression of MHCII and CD86 and increased antigen uptake among CD11c+ cells in a CD11c- dependent manner. DCs from all culture conditions were induced to mature by MPLA treatment, as determined by secretion of pro-inflammatory cytokines IL-12 and TNF-α. Antigen-specific stimulation of CD4+ T cells was not modulated by co-culture composition, in terms of proliferation nor levels of IFN-γ. However, the presence of CD11c- cells enhanced cross-presentation to CD8+ T cells compared to purified CD11c+ cells, resulting in increased cell proliferation along with higher IFN-γ production. These findings demonstrate the impact of cell populations present during DC priming, and point to the use of heterogeneous cultures of DCs and innate immune cells to enhance cell-mediated immunity. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Dendritic cell-based assays, but not mannosylation of antigen, improves detection of T-cell responses to proinsulin in type 1 diabetes

    PubMed Central

    Narendran, Parth; Elsegood, Kathryn; Leech, Nicola J; Macindoe, Wallace M; Boons, Geert-Jan; Dayan, Colin M

    2004-01-01

    In vitro detection of T-cell responses to autoantigens in type 1 diabetes is recognized as being technically challenging. We aimed to accurately measure cellular responses to proinsulin in patients with diabetes, and speculated that presentation of antigen by dendritic cells (DCs) would enhance the sensitivity of the peripheral blood assay. Antigen was mannosylated to facilitate uptake through DC surface mannose receptors to further improve the assay. Whole proinsulin, as well as mannosylated peptides of proinsulin, were combined with peripheral T cells and autologous immature DCs in a proliferative assay in a panel of newly diagnosed type 1 diabetic patients. The DC-based assay detected responses to proinsulin in five of 15 diabetic patients compared to one of 15 diabetic patients detected using the standard mononuclear cell assay. When the results of all patients were combined, the DC assay, but not the mononuclear cell assay, had a proinsulin response that was significantly higher than background (P < 0·001). The DC assay was, however, associated with high autologous mixed lymphocyte reactions that possibly masked responses in individual patients. Mannosylated antigen was taken up in larger quantities than non-mannosylated antigen, but not presented any more powerfully. Our data suggest that autologous DC-based assays are more powerful than standard peripheral blood mononuclear cell assays. However, they are compromised by high autologous mixed lymphocyte reactions and this requires addressing before they can be used as a routine readout of in vitro peripheral T-cell responses. PMID:15056379

  10. Novel vaccines targeting dendritic cells by coupling allergoids to nonoxidized mannan enhance allergen uptake and induce functional regulatory T cells through programmed death ligand 1.

    PubMed

    Sirvent, Sofía; Soria, Irene; Cirauqui, Cristina; Cases, Bárbara; Manzano, Ana I; Diez-Rivero, Carmen M; Reche, Pedro A; López-Relaño, Juan; Martínez-Naves, Eduardo; Cañada, F Javier; Jiménez-Barbero, Jesús; Subiza, Javier; Casanovas, Miguel; Fernández-Caldas, Enrique; Subiza, José Luis; Palomares, Oscar

    2016-08-01

    Allergen immunotherapy (AIT) is the only curative treatment for allergy. AIT faces pitfalls related to efficacy, security, duration, and patient compliance. Novel vaccines overcoming such inconveniences are in demand. We sought to study the immunologic mechanisms of action for novel vaccines targeting dendritic cells (DCs) generated by coupling glutaraldehyde-polymerized grass pollen allergoids to nonoxidized mannan (PM) compared with glutaraldehyde-polymerized allergoids (P) or native grass pollen extracts (N). Skin prick tests and basophil activation tests with N, P, or PM were performed in patients with grass pollen allergy. IgE-blocking experiments, flow cytometry, confocal microscopy, cocultures, suppression assays, real-time quantitative PCR, ELISAs, and ELISpot assays were performed to assess allergen capture by human DCs and T-cell responses. BALB/c mice were immunized with PM, N, or P. Antibody levels, cytokine production by splenocytes, and splenic forkhead box P3 (FOXP3)(+) regulatory T (Treg) cells were quantified. Experiments with oxidized PM were also performed. PM displays in vivo hypoallergenicity, induces potent blocking antibodies, and is captured by human DCs much more efficiently than N or P by mechanisms depending on mannose receptor- and dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin-mediated internalization. PM endorses human DCs to generate functional FOXP3(+) Treg cells through programmed death ligand 1. Immunization of mice with PM induces a shift to nonallergic responses and increases the frequency of splenic FOXP3(+) Treg cells. Mild oxidation impairs these effects in human subjects and mice, demonstrating the essential role of preserving the carbohydrate structure of mannan. Allergoids conjugated to nonoxidized mannan represent suitable vaccines for AIT. Our findings might also be of the utmost relevance to development of therapeutic interventions in other immune tolerance-related diseases. Copyright

  11. Poly-(lactic-co-glycolic-acid)-based particulate vaccines: particle uptake by dendritic cells is a key parameter for immune activation.

    PubMed

    Silva, A L; Rosalia, R A; Varypataki, E; Sibuea, S; Ossendorp, F; Jiskoot, W

    2015-02-11

    Poly(lactic-co-glycolic acid) (PLGA) particles have been extensively studied as biodegradable delivery system to improve the potency and safety of protein-based vaccines. In this study we analyzed how the size of PLGA particles, and hence their ability to be engulfed by dendritic cells (DC), affects the type and magnitude of the immune response in comparison to sustained release from a local depot. PLGA microparticles (MP, volume mean diameter≈112 μm) and nanoparticles (NP, Z-average diameter≈350 nm) co-encapsulating ovalbumin (OVA) and poly(I:C), with comparable antigen (Ag) release characteristics, were prepared and characterized. The immunogenicity of these two distinct particulate vaccines was evaluated in vitro and in vivo. NP were efficiently taken up by DC and greatly facilitated MHC I Ag presentation in vitro, whereas DC cultured in the presence of MP failed to internalize significant amounts of Ag and hardly showed MHC I Ag presentation. Vaccination of mice with NP resulted in significantly better priming of Ag-specific CD8(+) T cells compared to MP and OVA emulsified with incomplete Freund's adjuvant (IFA). Moreover, NP induced a balanced TH1/TH2-type antibody response, compared to vaccinations with IFA which stimulated a predominant TH2-type response, whereas MP failed to increase antibody titers. In conclusion, we postulate that particle internalization is of crucial importance and therefore particulate vaccines should be formulated in the nano- but not micro-size range to achieve efficient uptake, significant MHC class I cross-presentation and effective T and B cell responses.

  12. Dendritic cell vaccines based on immunogenic cell death elicit danger signals and T cell-driven rejection of high-grade glioma.

    PubMed

    Garg, Abhishek D; Vandenberk, Lien; Koks, Carolien; Verschuere, Tina; Boon, Louis; Van Gool, Stefaan W; Agostinis, Patrizia

    2016-03-02

    The promise of dendritic cell (DC)-based immunotherapy has been established by two decades of translational research. Of the four malignancies most targeted with clinical DC immunotherapy, high-grade glioma (HGG) has shown the highest susceptibility. HGG-induced immunosuppression is a roadblock to immunotherapy, but may be overcome by the application of T helper 1 (T(H)1) immunity-biased, next-generation, DC immunotherapy. To this end, we combined DC immunotherapy with immunogenic cell death (ICD; a modality shown to induce T(H)1 immunity) induced by hypericin-based photodynamic therapy. In an orthotopic HGG mouse model involving prophylactic/curative setups, both biologically and clinically relevant versions of ICD-based DC vaccines provided strong anti-HGG survival benefit. We found that the ability of DC vaccines to elicit HGG rejection was significantly blunted if cancer cell-associated reactive oxygen species and emanating danger signals were blocked either singly or concomitantly, showing hierarchical effect on immunogenicity, or if DCs, DC-associated MyD88 signal, or the adaptive immune system (especially CD8(+) T cells) were depleted. In a curative setting, ICD-based DC vaccines synergized with standard-of-care chemotherapy (temozolomide) to increase survival of HGG-bearing mice by ~300%, resulting in ~50% long-term survivors. Additionally, DC vaccines also induced an immunostimulatory shift in the brain immune contexture from regulatory T cells to T(H)1/cytotoxic T lymphocyte/T(H)17 cells. Analysis of the The Cancer Genome Atlas glioblastoma cohort confirmed that increased intratumor prevalence of T(H)1/cytotoxic T lymphocyte/T(H)17 cells linked genetic signatures was associated with good patient prognosis. Therefore, pending final preclinical checks, ICD-based vaccines can be clinically translated for glioma treatment.

  13. hTERT mRNA dendritic cell vaccination: complete response in a pancreatic cancer patient associated with response against several hTERT epitopes.

    PubMed

    Suso, Else M Inderberg; Dueland, Svein; Rasmussen, Anne-Marie; Vetrhus, Turid; Aamdal, Steinar; Kvalheim, Gunnar; Gaudernack, Gustav

    2011-06-01

    Immunotherapy targeting the hTERT subunit of telomerase has been shown to induce robust immune responses in cancer patients after vaccination with single hTERT peptides. Vaccination with dendritic cells (DCs) transfected with hTERT mRNA has the potential to induce strong immune responses to multiple hTERT epitopes and is therefore an attractive approach to more potent immunotherapy. Blood samples from such patients provide an opportunity for identification of new, in vivo processed T-cell epitopes that may be clinically relevant. A 62-year-old female patient underwent radical surgery for a pancreatic adenocarcinoma. After relapse, she obtained stable disease on gemcitabine treatment. Due to severe neutropenia, the chemotherapy was terminated. The patient has subsequently been treated with autologous DCs loaded with hTERT mRNA for 3 years. Immunomonitoring was performed at regular intervals following start of vaccination and clinical outcome measured by CT and PET/CT evaluation. The patient developed an immune response against several hTERT-derived Th and CTL epitopes. She presently shows no evidence of active disease based on PET/CT scans. No serious adverse events were experienced and the patient continues to receive regular booster injections. We here provide evidence for the induction of hTERT-specific immune responses following vaccination of a pancreas cancer patient with DCs loaded with hTERT mRNA. These responses are associated with complete remission. A thorough analysis of this patient immune response has provided a unique opportunity to identify novel epitopes, associated with clinical effects. These will be included in future hTERT vaccines.

  14. Gene silencing of TGF-β1 enhances antitumor immunity induced with a dendritic cell vaccine by reducing tumor-associated regulatory T cells.

    PubMed

    Conroy, Helen; Galvin, Karen C; Higgins, Sarah C; Mills, Kingston H G

    2012-03-01

    Active immunotherapy and cancer vaccines that promote host antitumor immune responses promise to be effective and less toxic alternatives to current cytotoxic drugs for the treatment of cancer. However, the success of tumor immunotherapeutics and vaccines is dependent on identifying approaches for circumventing the immunosuppressive effects of regulatory T (Treg) cells induced by the growing tumor and by immunotherapeutic molecules, including Toll-like receptor (TLR) agonists. Here, we show that tumors secrete high concentrations of active TGF-β1, a cytokine that can convert naive T cells into Foxp3+ Treg cells. Silencing TGF-β1 mRNA using small interfering RNA (siRNA) in tumor cells inhibited active TGF-β1 production in vitro and restrained their growth in vivo. Prophylactic but not therapeutic administration of TGF-β1 siRNA reduced the growth of CT26 tumors in vivo. Furthermore, suppressing TGF-β1 expression at the site of a tumor, using siRNA before, during and after therapeutic administration of a TLR-activated antigen-pulsed dendritic cell vaccine significantly reduced the growth of B16 melanoma in mice. The protective effect of co-administering TGF-β1 siRNA with the DC vaccine was associated with suppression of CD25+ Foxp3+ and CD25+ IL-10+ T cells and enhancement of tumor infiltrating CD4 and CD8 T cells. Our findings suggest that transient suppression of TGF-β1 may be a promising approach for enhancing the efficacy of tumor vaccines in humans.

  15. Targeting a mimotope vaccine to activating Fcgamma receptors empowers dendritic cells to prime specific CD8+ T cell responses in tumor-bearing mice.

    PubMed

    Gil, Margaret; Bieniasz, Magdalena; Wierzbicki, Andrzej; Bambach, Barbara J; Rokita, Hanna; Kozbor, Danuta

    2009-11-15

    A major challenge for inducing antitumor immune responses with native or modified tumor/self-Ags in tumor-bearing hosts relates to achieving efficient uptake and processing by dendritic cells (DCs) to activate immune effector cells and limit the generation of regulatory T cell activity. We analyzed the ability of therapeutic DC vaccines expressing a CD166 cross-reactive mimotope of the GD2 ganglioside, 47-LDA, to selectively expand adoptively transferred, tumor-specific T cells in NXS2 neuroblastoma tumor-bearing syngeneic mice. Before the adoptive cell transfer and DC vaccination, the tumor-bearing mice were lymphodepleted by nonmyeloablative total body irradiation or a myeloablative regimen that required bone marrow transplantation. The 47-LDA mimotope was presented to DCs either as a linear polypeptide in conjunction with universal Th epitopes or as a fusion protein with the murine IgG2a Fc fragment (47-LDA-Fcgamma2a) to deliver the antigenic cassette to the activating Fcgamma receptors. We demonstrate that immunization of adoptively transferred T cells in tumor-bearing mice with the 47-LDA mimotope expressed in the context of the activating Fc fusion protein induced higher levels of antitumor immune responses and protection than the 47-LDA polypeptide-DC vaccine. The antitumor efficacy of the therapeutic 47-LDA-Fcgamma2a-DC vaccine was comparable to that achieved by a virotherapy-associated cancer vaccine using a recombinant oncolytic vaccinia virus expressing the 47-LDA-Fcgamma2a fusion protein. The latter treatment, however, did not require total body irradiation or adoptive cell transfer and resulted in induction of antitumor immune responses in the setting of established tolerance, paving the way for testing novel anticancer treatment strategies.

  16. A novel cancer immunotherapy based on the combination of a synthetic carbohydrate-pulsed dendritic cell vaccine and glycoengineered cancer cells

    PubMed Central

    Yu, Shichong; Wang, Qianli; Li, Yinghua; Hu, Zhenlin; Wu, Qiuye; Guo, Zhongwu; Zhang, Junping

    2015-01-01

    Immune tolerance to tumor-associated carbohydrate antigens (TACAs) has severely restricted the usefulness of most TACAs. To overcome this problem, we selected a sialylated trisaccharide TACA, GM3, as a target antigen, and tested a new immunotherapeutic strategy by combining metabolic bioengineering with dendritic cell (DC) vaccination. We engineered cancer cells to express an artificial structure, N-phenylacetyl-D-neuraminic acid, in place of the natural N-acetyl-D-neuraminic acid of GM3 by using N-phenylacetyl-D-mannosamine (ManNPhAc) as a biosynthetic precursor. Next, we selectively targeted the bioengineered cancer cells by vaccination with DCs pulsed with the GM3 N-phenylacetyl derivative. Vaccination with GM3NPhAc-KLH-loaded DCs elicited robust GM3NPhAc-specific T cell-dependent immunity. The results showed that this strategy could significantly inhibit FBL3 tumor growth and prolong the survival of tumor-bearing mice; B16F10 lung metastases could also be reduced. These findings lay out a new strategy for overcoming immune tolerance to TACAs, such as GM3, for the development of effective tumor immunotherapies. PMID:25760071

  17. A novel cancer immunotherapy based on the combination of a synthetic carbohydrate-pulsed dendritic cell vaccine and glycoengineered cancer cells.

    PubMed

    Qiu, Lei; Li, Jie; Yu, Shichong; Wang, Qianli; Li, Yinghua; Hu, Zhenlin; Wu, Qiuye; Guo, Zhongwu; Zhang, Junping

    2015-03-10

    Immune tolerance to tumor-associated carbohydrate antigens (TACAs) has severely restricted the usefulness of most TACAs. To overcome this problem, we selected a sialylated trisaccharide TACA, GM3, as a target antigen, and tested a new immunotherapeutic strategy by combining metabolic bioengineering with dendritic cell (DC) vaccination. We engineered cancer cells to express an artificial structure, N-phenylacetyl-D-neuraminic acid, in place of the natural N-acetyl-D-neuraminic acid of GM3 by using N-phenylacetyl-D-mannosamine (ManNPhAc) as a biosynthetic precursor. Next, we selectively targeted the bioengineered cancer cells by vaccination with DCs pulsed with the GM3 N-phenylacetyl derivative. Vaccination with GM3NPhAc-KLH-loaded DCs elicited robust GM3NPhAc-specific T cell-dependent immunity. The results showed that this strategy could significantly inhibit FBL3 tumor growth and prolong the survival of tumor-bearing mice; B16F10 lung metastases could also be reduced. These findings lay out a new strategy for overcoming immune tolerance to TACAs, such as GM3, for the development of effective tumor immunotherapies.

  18. Efficacy of host-dendritic cell vaccinations with or without minor histocompatibility antigen loading, combined with donor lymphocyte infusion in multiple myeloma patients.

    PubMed

    Oostvogels, R; Kneppers, E; Minnema, M C; Doorn, R C; Franssen, L E; Aarts, T; Emmelot, M E; Spierings, E; Slaper-Cortenbach, I; Westinga, K; Goulmy, E; Lokhorst, H M; Mutis, T

    2017-02-01

    Donor lymphocyte infusions (DLI) can induce durable remissions in multiple myeloma (MM) patients, but this occurs rather infrequently. As the graft-versus-tumor (GvT) effect of DLI depends on the presence of host-dendritic cells (DCs), we tested in a phase I/II trial whether the efficacy of DLI could be improved by simultaneous vaccination with host-DCs. We also analyzed the possibility of further improving the GvT effect by loading the DCs with peptides of mismatched hematopoietic cell-specific minor histocompatibility antigens (mHags). Fifteen MM patients not responding to a first DLI were included. Eleven patients could be treated with a second equivalent dose DLI combined with DC vaccinations, generated from host monocytes (moDC). For four patients, the DC products did not meet the quality criteria. In four of the treated patients the DCs were loaded with host mHag peptides. Toxicity was limited and no acute GvHD occurred. Most patients developed objective anti-host T-cell responses and in one patient a distinct mHag-specific T-cell response accompanied a temporary clinical response. These findings confirm that DLI combined with host-DC vaccination, either unloaded or loaded with mHag peptides, is feasible, safe and capable of inducing host-specific T-cell responses. The limited clinical effects may be improved by developing more immunogenic DC products or by combining this therapy with immune potentiating modalities like checkpoint inhibitors.

  19. Porcine Dendritic Cells as an In Vitro Model to Assess the Immunological Behaviour of Streptococcus suis Subunit Vaccine Formulations and the Polarizing Effect of Adjuvants

    PubMed Central

    Martelet, Léa; Lacouture, Sonia; Goyette-Desjardins, Guillaume; Beauchamp, Guy; Surprenant, Charles; Gottschalk, Marcelo; Segura, Mariela

    2017-01-01

    An in vitro porcine bone marrow-derived dendritic cell (DC) culture was developed as a model for evaluating immune polarization induced by adjuvants when administered with immunogens that may become vaccine candidates if appropriately formulated. The swine pathogen Streptococcus suis was chosen as a prototype to evaluate proposed S. suis vaccine candidates in combination with the adjuvants Poly I:C, Quil A ®, Alhydrogel ®, TiterMax Gold ® and Stimune ®. The toll-like receptor ligand Poly I:C and the saponin Quil A ® polarized swine DC cytokines towards a type 1 phenotype, with preferential production of IL-12 and TNF-α. The water-in-oil adjuvants TiterMax Gold ® and Stimune ® favoured a type 2 profile as suggested by a marked IL-6 release. In contrast, Alhydrogel ® induced a type 1/type 2 mixed cytokine profile. The antigen type differently modified the magnitude of the adjuvant effect, but overall polarization was preserved. This is the first comparative report on swine DC immune activation by different adjuvants. Although further swine immunization studies would be required to better characterize the induced responses, the herein proposed in vitro model is a promising approach that helps assessing behaviour of the vaccine formulation rapidly at the pre-screening stage and will certainly reduce numbers of animals used while advancing vaccinology science. PMID:28327531

  20. CD40-independent natural killer-cell help promotes dendritic cell vaccine-induced T-cell immunity against endogenous B-cell lymphoma.

    PubMed

    Hömberg, Nadine; Adam, Christian; Riedel, Tanja; Brenner, Christoph; Flatley, Andrew; Röcken, Martin; Mocikat, Ralph

    2014-12-15

    It is well established that an interplay between natural killer (NK) cells and dendritic cells (DCs) gives rise to their reciprocal activation and provides a Th1-biased cytokine milieu that fosters antitumor T-cell responses. Ex vivo-differentiated DCs transferred into mice strongly stimulate endogenous NK cells to produce interferon (IFN)-γ and initiate a cascade that eventually leads to cytotoxic T-lymphocyte responses. We show that the ability of exogenous DCs to trigger this pathway obviates CD40 signaling and CD4(+) T-cell help and depends on a preceding maturation step. Importantly, this mechanism was also effective in endogenously arising tumors where IFN-γ production is compromised in contrast to transplantable tumors. In c-myc-transgenic mice developing spontaneous lymphomas, injection of unpulsed DCs caused NK-cell activation and induced CD8(+) T cells capable of recognizing the lymphoma cells. Animals treated with unpulsed DCs showed a survival benefit compared to untreated myc mice. Hence, tumor immunity induced by DC-based vaccines not only depends on specific antigens loaded on the DCs. Rather, DC vaccines generate broader immune responses, because endogenous DCs presenting tumor antigens may also become stimulated by NK cells that were activated by exogenous DCs. Thus, the DC/NK-cell/cytotoxic T lymphocyte axis may commonly have relevance for DC-based vaccination protocols in clinical settings. © 2014 UICC.

  1. Induction of CML28-specific cytotoxic T cell responses using co-transfected dendritic cells with CML28 DNA vaccine and SOCS1 small interfering RNA expression vector

    SciTech Connect

    Zhou Hongsheng; Zhang Donghua . E-mail: hanson2008@gmail.com; Wang Yaya; Dai Ming; Zhang Lu; Liu Wenli; Liu Dan; Tan Huo; Huang Zhenqian

    2006-08-18

    CML28 is an attractive target for antigen-specific immunotherapy. SOCS1 represents an inhibitory control mechanism for DC antigen presentation and the magnitude of adaptive immunity. In this study, we evaluated the potential for inducing CML28-specific cytotoxic T lymphocytes (CTL) responses by dendritic cells (DCs)-based vaccination. We constructed a CML28 DNA vaccine and a SOCS1 siRNA vector and then cotransfect monocyte-derived DCs. Flow cytometry analysis showed gene silencing of SOCS1 resulted in higher expressions of costimulative moleculars in DCs. Mixed lymphocyte reaction (MLR) indicated downregulation of SOCS1 stronger capability to stimulate proliferation of responder cell in DCs. The CTL assay revealed transfected DCs effectively induced autologous CML28-specific CTL responses and the lytic activities induced by SOCS1-silenced DCs were significantly higher compared with those induced by SOCS1-expressing DCs. These results in our study indicates gene silencing of SOCS1 remarkably enhanced the cytotoxicity efficiency of CML28 DNA vaccine in DCs.

  2. Secretory heat-shock protein as a dendritic cell-targeting molecule: a new strategy to enhance the potency of genetic vaccines.

    PubMed

    Hauser, H; Shen, L; Gu, Q-L; Krueger, S; Chen, S-Y

    2004-06-01

    DNA vaccines are an appealing strategy for inducing cytotoxic T-lymphocyte and antibody responses against tumor cells as well as infectious agents. Dendritic cells (DCs) play a critical role in inducing immune responses, but their potential is not fully utilized in the DNA vaccine setting since they take up only a minor fraction of the injected DNA. Here we describe a novel DNA vaccination strategy based on the targeting of a modified tumor-associated antigen, the human papilloma virus (HPV) type 16 E7 protein, to DCs by a heat-shock protein (HSP) to enhance antigen presentation and immune responses. Specifically, a chimerical HPV-E7 and HSP70 fusion gene preceded with a leader sequence was constructed. When mice were immunized with this construct, the DNA is taken up by various types of cells, which then produce and secrete an HPV-E7-HSP70 fusion protein that is targeted to DCs by the HSP70 portion of the chimerical molecule for antigen presentation. In studies to test the efficacy of this strategy, we demonstrated that DNA vaccination with this secretory HPV-E7-HSP70 construct strongly enhanced an antigen-specific CD8+ T-cell response as well as a specific B-cell response in mice. Furthermore, this immunization approach not only protected mice against lethal challenge with an HPV E7-expressing tumor line (TC-1), but also showed a therapeutic effect against established tumors. The results of this study indicate that secretory HSPs can be broadly used to target tumor-associated antigens to DCs to enhance antigen-specific immune responses.

  3. Low-dose temozolomide before dendritic-cell vaccination reduces (specifically) CD4+CD25++Foxp3+ regulatory T-cells in advanced melanoma patients

    PubMed Central

    2013-01-01

    Background In cancer immunotherapy, dendritic cells (DCs) play a fundamental role in the dialog between innate and adaptive immune response, but several immunosuppressive mechanisms remain to be overcome. For example, a high number of CD4+CD25++Foxp3+ regulatory T-cells (Foxp3+Tregs) have been observed in the peripheral blood and tumor microenvironment of cancer patients. On the basis of this, we conducted a study on DC-based vaccination in advanced melanoma, adding low-dose temozolomide to obtain lymphodepletion. Methods Twenty-one patients were entered onto our vaccination protocol using autologous DCs pulsed with autologous tumor lysate and keyhole limpet hemocyanin. Patients received low-dose temozolomide before vaccination and 5 days of low-dose interleukin-2 (IL-2) after vaccination. Circulating Foxp3+Tregs were evaluated before and after temozolomide, and after IL-2. Results Among the 17 evaluable patients we observed 1 partial response (PR), 6 stable disease (SD) and 10 progressive disease (PD). The disease control rate (PR+SD = DCR) was 41% and median overall survival was 10 months. Temozolomide reduced circulating Foxp3+Treg cells in all patients. A statistically significant reduction of 60% was observed in Foxp3+Tregs after the first cycle, whereas the absolute lymphocyte count decreased by only 14%. Conversely, IL-2 increased Foxp3+Treg cell count by 75.4%. Of note the effect of this cytokine, albeit not statistically significant, on the DCR subgroup led to a further 33.8% reduction in Foxp3+Treg cells. Conclusions Our results suggest that the combined immunological therapy, at least as far as the DCR subgroup is concerned, effectively reduced the number of Foxp3+Treg cells, which exerted a blunting effect on the growth-stimulating effect of IL-2. However, this regimen, with its current modality, would not seem to be capable of improving clinical outcome. PMID:23725550

  4. Efficient nontoxic delivery of PD-L1 and PD-L2 siRNA into dendritic cell vaccines using the cationic lipid SAINT-18.

    PubMed

    Roeven, Mieke W H; Hobo, Willemijn; van der Voort, Robbert; Fredrix, Hanny; Norde, Wieger J; Teijgeler, Kasper; Ruiters, Marcel H J; Schaap, Nicolaas; Dolstra, Harry

    2015-05-01

    Dendritic cell (DC)-based vaccination is an appealing strategy to boost graft-versus-tumor immunity after allogeneic stem cell transplantation (allo-SCT), and thereby prevent or counteract tumor recurrence. By exploiting minor histocompatibility antigens (MiHA) presented on hematopoietic cells, donor CD8 T-cell immunity can be selectively targeted to patient's hematological tumor cells without the risk of inducing graft-versus-host disease. Previously, we demonstrated that silencing RNA (siRNA) of programmed death-ligand 1 (PD-L1) and PD-L2 on DCs markedly augments the expansion and function of MiHA-specific CD8 T cells. However, previously applied methods based on electroporation or lipid nanoparticles were either incompatible with target antigen mRNA delivery or required complex manufacturing compliant to Good Manufacturing Practice. Here, we investigated whether transfection using lipoplexes composed of PD-L1 and PD-L2 siRNAs plus SAINT-18:DOPE (ie, SAINT-RED) is an effective and feasible clinical-grade method in DC vaccine manufacturing. We observed that a single siRNA/SAINT-RED transfection resulted in efficient and long-term knockdown of the PD-1 ligands without affecting DC maturation or viability. Furthermore, we demonstrated that SAINT-RED can be heat sterilized without loss of function, facilitating its use in aseptic DC vaccine production. Finally, we showed that the established transfection method can be combined with target antigen mRNA or peptide loading to efficiently stimulate MiHA-specific T-cell expansion and cytokine production. Together, these findings indicate that the developed PD-L siRNA/SAINT-RED transfection protocol in combination with MiHA mRNA or peptide loading can be applied in the generation of clinical-grade DC vaccines to boost antitumor immunity after allo-SCT.

  5. Effect of the hepatitis B virus S‑ecdCD40L vaccine therapy in HBV transgenic mice: A vaccine‑induced activation of antigen presenting dendritic cells.

    PubMed

    Guan, Huaqin; Lan, Songsong; Wu, Jinming; Tang, Binbin; Xu, Yin

    2017-08-22

    The classical hepatitis B virus (HBV) DNA vaccination plasmid only encodes for a single viral antigen, either the S or the PreS2/S antigen. Many strategies have been employed to improve the effect of these DNA vaccines. Our previous study identified that the fusion gene, HBV S‑ecd cluster of differentiation 40 ligand (CD40L), may promote the activation of dendritic cells (DCs) and enhance their function in vitro. In the current study, the effect of HBV S‑ecdCD40L vaccine therapy on liver DCs was investigated, and its therapeutic potential in HBV transgenic (HBV‑Tg) mice was evaluated. The eukaryotic expression plasmid, pcDNA3.1‑S‑ecdCD40L, was constructed by inserting the HBV S gene and mouse CD40L gene into the vector, pcDNA3.1 (+). HBV‑Tg mice were immunized with pcDNA3.1‑S‑ecdCD40L, pcDNA3.1‑S, pcDNA3.1 or PBS. Following this, immunophenotyping, cytokine production and T‑cell activation were analyzed in the CD11c‑enriched DC population obtained from the liver. Vaccine efficacy was further assessed by the detection of serological and biochemical parameters. When comparing with other control groups, DCs from HBV‑Tg mice immunized with pcDNA3.1‑S‑ecdCD40L exhibited increased expression of immunologically important cell molecules (CD86 and major histocompatibility complex class II), pro‑inflammatory cytokines (interleukin‑12), and enhanced capacity to promote allogeneic T‑cell proliferation. Furthermore, the HBV S‑ecdCD40L vaccine resulted in a significant inhibition of HBV DNA replication and downregulation of the hepatitis B virus surface antigen (HBsAg) in HBV‑Tg mice, without obvious liver injury. In conclusion, the HBV S‑ecdCD40L vaccine may be a feasible strategy for chronic HBV immunotherapy via promoting DC activation and function.

  6. The dominant roles of ICAM-1-encoding gene in DNA vaccination against Japanese encephalitis virus are the activation of dendritic cells and enhancement of cellular immunity.

    PubMed

    Zhai, Yong-Zhen; Zhou, Yan; Ma, Li; Feng, Guo-He

    2013-01-01

    We investigated the cellular immune responses elicited by a plasmid DNA vaccine encoding prM-E protein from the Japanese encephalitis (JE) virus (JEV) with or without various forms of intercellular adhesion molecule (ICAM)-1 gene to maximize the immune responses evoked by the JE DNA vaccine. We observed that co-immunization with the construct containing murine ICAM-1 gene (pICAM-1) resulted in a significant increase in the percentage of CD4(+)T cells, high level of JEV-specific cytotoxic T lymphocyte response, and high production of T helper 1 (Th1)-type cytokines in splenic T cells. Furthermore, the co-expression of ICAM-1 and DNA immunogens was found to be more effective in generating T cell-mediated immune responses than those induced by immunization with pJME in combination with pICAM-1. Our results suggested that ICAM-1 enhanced T cell receptor signaling and activated Th1 immune responses in the JEV model system by increasing the induction of CD4(+)Th1 cell subset and activating dendritic cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Comparison of the Serum Tumor Markers S100 and Melanoma-inhibitory Activity (MIA) in the Monitoring of Patients with Metastatic Melanoma Receiving Vaccination Immunotherapy with Dendritic Cells.

    PubMed

    Uslu, Ugur; Schliep, Stefan; Schliep, Klaus; Erdmann, Michael; Koch, Hans-Uwe; Parsch, Hans; Rosenheinrich, Stina; Anzengruber, Doris; Bosserhoff, Anja Katrin; Schuler, Gerold; Schuler-Thurner, Beatrice

    2017-09-01

    In patients with melanoma, early dissemination via lymphatic and hematogenous routes is frequently seen. Thus, besides clinical follow-up examination and imaging, reliable melanoma-specific serological tumor markers are needed. We retrospectively compared two serum markers for melanoma, S100 and melanoma-inhibitory activity (MIA), for monitoring of patients with metastatic melanoma under either adjuvant or therapeutic vaccination immunotherapy with dendritic cells (DC). Serum was obtained from a total of 100 patients (28 patients in stage III and 72 patients in stage IV, according to the American Joint Committee on Cancer 2002) at regular intervals during therapy, accompanied by follow-up imaging. When relapse was detected, both markers often remained within normal range. In contrast, in patients with metastatic measurable disease receiving therapeutic and not adjuvant DC vaccination, an increase of both markers was a strong indicator for disease progression. When comparing both markers in the whole study population, MIA showed a superior sensitivity to detect disease progression. S100 and MIA are highly sensitive tumor markers for monitoring of patients with melanoma with current metastases, but less sensitive for monitoring of tumor-free patients. In the current study, MIA had a slightly superior sensitivity to detect progressive disease compared to S100 and seems to be more useful in monitoring of patients with metastatic melanoma receiving immunotherapy. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  8. Immune-related Adverse Events of Dendritic Cell Vaccination Correlate With Immunologic and Clinical Outcome in Stage III and IV Melanoma Patients

    PubMed Central

    Boudewijns, Steve; Westdorp, Harm; Koornstra, Rutger H.T.; Aarntzen, Erik H.J.G.; Schreibelt, Gerty; Creemers, Jeroen H.A.; Punt, Cornelis J.A.; Figdor, Carl G.; Gerritsen, Winald R.; Bol, Kalijn F.

    2016-01-01

    The purpose of this study was to determine the toxicity profile of dendritic cell (DC) vaccination in stage III and IV melanoma patients, and to evaluate whether there is a correlation between side effects and immunologic and clinical outcome. This is a retrospective analysis of 82 stage III and 137 stage IV melanoma patients, vaccinated with monocyte-derived or naturally circulating autologous DCs loaded with tumor-associated antigens gp100 and tyrosinase. Median follow-up time was 54.3 months in stage III patients and 12.9 months in stage IV patients. Treatment-related adverse events occurred in 84% of patients; grade 3 toxicity was present in 3% of patients. Most common adverse events were flu-like symptoms (67%) and injection site reactions (50%), and both correlated with the presence of tetramer-positive CD8+ T cells (both P<0.001). In stage III melanoma patients experiencing flu-like symptoms, median overall survival (OS) was not reached versus 32.3 months in patients without flu-like symptoms (P=0.009); median OS in patients with an injection site reaction was not reached versus 53.7 months in patients without an injection site reaction (P<0.05). In stage IV melanoma patients (primary uveal and mucosal melanomas excluded), median OS in patients with or without flu-like symptoms was 13.1 versus 8.9 months, respectively (P=0.03); median OS in patients with an injection site reaction was 15.7 months versus 9.8 months in patients without an injection site reaction (P=0.003). In conclusion, DC vaccination is safe and tolerable and the occurrence of the immune-related side effects, such as flu-like symptoms and injection site reactions, correlates with immunologic and clinical outcome. PMID:27227325

  9. E2 multimeric scaffold for vaccine formulation: immune response by intranasal delivery and transcriptome profile of E2-pulsed dendritic cells.

    PubMed

    Trovato, Maria; Maurano, Francesco; D'Apice, Luciana; Costa, Valerio; Sartorius, Rossella; Cuccaro, Fausta; McBurney, Sean P; Krebs, Shelly J; Prisco, Antonella; Ciccodicola, Alfredo; Rossi, Mauro; Haigwood, Nancy L; De Berardinis, Piergiuseppe

    2016-07-16

    The E2 multimeric scaffold represents a powerful delivery system able to elicit robust humoral and cellular immune responses upon systemic administrations. Here recombinant E2 scaffold displaying the third variable loop of HIV-1 Envelope gp120 glycoprotein was administered via mucosa, and the mucosal and systemic immune responses were analysed. To gain further insights into the molecular mechanisms that orchestrate the immune response upon E2 vaccination, we analysed the transcriptome profile of dendritic cells (DCs) exposed to the E2 scaffold with the aim to define a specific gene expression signature for E2-primed immune responses. The in vivo immunogenicity and the potential of E2 scaffold as a mucosal vaccine candidate were investigated in BALB/c mice vaccinated via the intranasal route. Fecal and systemic antigen-specific IgA antibodies, cytokine-producing CD4(+) and CD8(+) cells were induced assessing the immunogenicity of E2 particles via intranasal administration. The cytokine analysis identified a mixed T-helper cell response, while the systemic antibody response showed a prevalence of IgG1 isotype indicative of a polarized Th2-type immune response. RNA-Sequencing analysis revealed that E2 scaffold up-regulates in DCs transcriptional regulators of the Th2-polarizing cell response, defining a type 2 DC transcriptomic signature. The current study provides experimental evidence to the possible application of E2 scaffold as antigen delivery system for mucosal immunization and taking advantages of genome-wide approach dissects the type of response induced by E2 particles.

  10. Combinatorial therapy for liver metastatic colon cancer: dendritic cell vaccine and low-dose agonistic anti-4-1BB antibody co-stimulatory signal.

    PubMed

    Lee, Hyunah; Park, Hae-Jung; Sohn, Hye-Jin; Kim, Jong Man; Kim, Sung Joo

    2011-07-01

    The combination of dendritic cell (DC) vaccine and 4-1BB ligation may be a suitable choice of immunotherapy for incurable cancer. However, at anti-tumor effector doses over 100 μg, 4-1BB Ab ligation is toxic to CD4(+) T cells, thus limiting its therapeutic use. A liver metastatic colon cancer model was established by hepatic injection of CT26 cells into Balb/c mice. Intraperitoneal administration of 1 × 10(6)/200 μL/mouse therapeutic-DCs (tumor lysate pulsed-DCs, P-DCs) began on d 7 after tumor cell inoculation. A P-DC injection was performed twice within a 1-wk interval. Agonistic anti 4-1BB Ab was intraperitoneally injected on d 7, 9, and 11 after tumor cell inoculation. Animals were sacrificed on d 21, and tumor growth was determined by weighing the liver with the tumor. In the 20 μg 4-1BB ligation group, significant induction of CD3(+)CD8(+) T cells was observed without toxicity to CD3(+)CD4(+) T cells. DC vaccine treatment induced tumor antigen-specific Th1 cytokine (IL-2 and IFN-γ) secretion from the splenic lymphocytes. Ligation of 4-1BB reduced the DC vaccine-related IL-10 secretion and regulatory T cell population. Compared with anti-tumor effect of DC vaccine or 20 μg 4-1BB Ab alone, the combination therapy significantly increased the tumor rejection power to the level observed with higher doses of 4-1BB Ab alone. The combination therapy did not induce high-dose 4-1BB-related toxicity with CD4(+) T cell reduction, but did significantly induce tumor antigen-specific IFN-γ secreting effector CD8(+) cytotoxic T cells. The data from our study reveal the value of using a DC vaccine combined with as little as 20 μg 4-1BB Ab as an improved immunotherapeutic for cancer. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Fusions of Breast Carcinoma and Dendritic Cells as a Vaccine for the Treatment of Metatastic Breast Cancer.

    DTIC Science & Technology

    2013-07-01

    elicited by peptide vaccination . J Immunol, 171:5931-5939, 2003. (9) Ercolini AM, Ladle BH, manning EA, Pfannenstiel LW, Armstrong TD, Machiels JP...composed of four HLA MHC class 1 molecules each bound to MUC1-specific epitopes M1.2 (MUC112–20) LLLLTVLTV (47). An A*0201 irrelevant peptide MHC...Immunol. 168: 1212–1218. 27. Stern, B. V., B. O. Boehm, and M. Tary-Lehmann. 2002. Vaccination with tumor peptide in CpG adjuvant protects via IFN

  12. Fusion of Breast Carcinoma and Dendritic Cells as a Vaccine for the Treatment of Metastatic Breast Cancer. Addendum

    DTIC Science & Technology

    2011-08-01

    tetanus toxoid (10 μg/mL) or media alone. After 5 days of coculture, expression of IFN-γ by CD4+ and CD8+ populations was determined by intracellular FACS...Vaccine potency and Phytohemagglutinin and tetanus -induced induced T-cell proliferation As a measure of potency of the generated vaccine as antigen...well U-bottomed plates for 4 days with 4 μg/ml PHA and tetanus toxoid (10 μg/mL (Figure 2, below). Proliferation was determined by measuring

  13. Understanding MHC Class I Presentation of Viral Antigens by Human Dendritic Cells as a Basis for Rational Design of Therapeutic Vaccines

    PubMed Central

    van Montfoort, Nadine; van der Aa, Evelyn; Woltman, Andrea M.

    2014-01-01

    Effective viral clearance requires the induction of virus-specific CD8+ cytotoxic T lymphocytes (CTL). Since dendritic cells (DC) have a central role in initiating and shaping virus-specific CTL responses, it is important to understand how DC initiate virus-specific CTL responses. Some viruses can directly infect DC, which theoretically allow direct presentation of viral antigens to CTL, but many viruses target other cells than DC and thus the host depends on the cross-presentation of viral antigens by DC to activate virus-specific CTL. Research in mouse models has highly enhanced our understanding of the mechanisms underlying cross-presentation and the dendritic cells (DC) subsets involved, however, these results cannot be readily translated toward the role of human DC in MHC class I-antigen presentation of human viruses. Here, we summarize the insights gained in the past 20 years on MHC class I presentation of viral antigen by human DC and add to the current debate on the capacities of different human DC subsets herein. Furthermore, possible sources of viral antigens and essential DC characteristics for effective induction of virus-specific CTL are evaluated. We conclude that cross-presentation is not only an efficient mechanism exploited by DC to initiate immunity to viruses that do not infect DC but also to viruses that do infect DC, because cross-presentation has many conceptual advantages and bypasses direct immune modulatory effects of the virus on its infected target cells. Since knowledge on the mechanism of viral antigen presentation and the preferred DC subsets is crucial for rational vaccine design, the obtained insights are very instrumental for the development of effective anti-viral immunotherapy. PMID:24795724

  14. Understanding MHC class I presentation of viral antigens by human dendritic cells as a basis for rational design of therapeutic vaccines.

    PubMed

    van Montfoort, Nadine; van der Aa, Evelyn; Woltman, Andrea M

    2014-01-01

    Effective viral clearance requires the induction of virus-specific CD8(+) cytotoxic T lymphocytes (CTL). Since dendritic cells (DC) have a central role in initiating and shaping virus-specific CTL responses, it is important to understand how DC initiate virus-specific CTL responses. Some viruses can directly infect DC, which theoretically allow direct presentation of viral antigens to CTL, but many viruses target other cells than DC and thus the host depends on the cross-presentation of viral antigens by DC to activate virus-specific CTL. Research in mouse models has highly enhanced our understanding of the mechanisms underlying cross-presentation and the dendritic cells (DC) subsets involved, however, these results cannot be readily translated toward the role of human DC in MHC class I-antigen presentation of human viruses. Here, we summarize the insights gained in the past 20 years on MHC class I presentation of viral antigen by human DC and add to the current debate on the capacities of different human DC subsets herein. Furthermore, possible sources of viral antigens and essential DC characteristics for effective induction of virus-specific CTL are evaluated. We conclude that cross-presentation is not only an efficient mechanism exploited by DC to initiate immunity to viruses that do not infect DC but also to viruses that do infect DC, because cross-presentation has many conceptual advantages and bypasses direct immune modulatory effects of the virus on its infected target cells. Since knowledge on the mechanism of viral antigen presentation and the preferred DC subsets is crucial for rational vaccine design, the obtained insights are very instrumental for the development of effective anti-viral immunotherapy.

  15. Vaccines

    MedlinePlus Videos and Cool Tools

    Vaccinations are injections of antigens into the body. Once the antigens enter the blood, they circulate along ... suppressor T cells stop the attack. After a vaccination, the body will have a memory of an ...

  16. Dendritic Cells Exposed to MVA-Based HIV-1 Vaccine Induce Highly Functional HIV-1-Specific CD8+ T Cell Responses in HIV-1-Infected Individuals

    PubMed Central

    Climent, Núria; Guerra, Susana; García, Felipe; Rovira, Cristina; Miralles, Laia; Gómez, Carmen Elena; Piqué, Núria; Gil, Cristina; Gatell, José María; Esteban, Mariano; Gallart, Teresa

    2011-01-01

    Currently, MVA virus vectors carrying HIV-1 genes are being developed as HIV-1/AIDS prophylactic/therapeutic vaccines. Nevertheless, little is known about the impact of these vectors on human dendritic cells (DC) and their capacity to present HIV-1 antigens to human HIV-specific T cells. This study aimed to characterize the interaction of MVA and MVA expressing the HIV-1 genes Env-Gag-Pol-Nef of clade B (referred to as MVA-B) in human monocyte-derived dendritic cells (MDDC) and the subsequent processes of HIV-1 antigen presentation and activation of memory HIV-1-specific T lymphocytes. For these purposes, we performed ex vivo assays with MDDC and autologous lymphocytes from asymptomatic HIV-infected patients. Infection of MDDC with MVA-B or MVA, at the optimal dose of 0.3 PFU/MDDC, induced by itself a moderate degree of maturation of MDDC, involving secretion of cytokines and chemokines (IL1-ra, IL-7, TNF-α, IL-6, IL-12, IL-15, IL-8, MCP-1, MIP-1α, MIP-1β, RANTES, IP-10, MIG, and IFN-α). MDDC infected with MVA or MVA-B and following a period of 48 h or 72 h of maturation were able to migrate toward CCL19 or CCL21 chemokine gradients. MVA-B infection induced apoptosis of the infected cells and the resulting apoptotic bodies were engulfed by the uninfected MDDC, which cross-presented HIV-1 antigens to autologous CD8+ T lymphocytes. MVA-B-infected MDDC co-cultured with autologous T lymphocytes induced a highly functional HIV-specific CD8+ T cell response including proliferation, secretion of IFN-γ, IL-2, TNF-α, MIP-1β, MIP-1α, RANTES and IL-6, and strong cytotoxic activity against autologous HIV-1-infected CD4+ T lymphocytes. These results evidence the adjuvant role of the vector itself (MVA) and support the clinical development of prophylactic and therapeutic anti-HIV vaccines based on MVA-B. PMID:21625608

  17. Virus-Like Particle Vaccine Containing the F Protein of Respiratory Syncytial Virus Confers Protection without Pulmonary Disease by Modulating Specific Subsets of Dendritic Cells and Effector T Cells.

    PubMed

    Kim, Ki-Hye; Lee, Young-Tae; Hwang, Hye Suk; Kwon, Young-Man; Kim, Min-Chul; Ko, Eun-Ju; Lee, Jong Seok; Lee, Youri; Kang, Sang-Moo

    2015-11-01

    There is no licensed vaccine against respiratory syncytial virus (RSV) since the failure of formalin-inactivated RSV (FI-RSV) due to its vaccine-enhanced disease. We investigated immune correlates conferring protection without causing disease after intranasal immunization with virus-like particle vaccine containing the RSV fusion protein (F VLP) in comparison to FI-RSV and live RSV. Upon RSV challenge, FI-RSV immune mice showed severe weight loss, eosinophilia, and histopathology, and RSV reinfection also caused substantial RSV disease despite their viral clearance. In contrast, F VLP immune mice showed least weight loss and no sign of histopathology and eosinophilia. High levels of interleukin-4-positive (IL-4(+)) and tumor necrosis factor alpha-positive (TNF-α(+)) CD4(+) T cells were found in FI-RSV immune mice, whereas gamma interferon-positive (IFN-γ(+)) and TNF-α(+) CD4(+) T cells were predominantly detected in live RSV-infected mice. More importantly, in contrast to FI-RSV and live RSV that induced higher levels of CD11b(+) dendritic cells, F VLP immunization induced CD8α(+) and CD103(+) dendritic cells, as well as F-specific IFN-γ(+) and TNF-α(+) CD8(+) T cells. These results suggest that F VLP can induce protection without causing pulmonary RSV disease by inducing RSV neutralizing antibodies, as well as modulating specific subsets of dendritic cells and CD8 T cell immunity. It has been a difficult challenge to develop an effective and safe vaccine against respiratory syncytial virus (RSV), a leading cause of respiratory disease. Immune correlates conferring protection but preventing vaccine-enhanced disease remain poorly understood. RSV F virus-like particle (VLP) would be an efficient vaccine platform conferring protection. Here, we investigated the protective immune correlates without causing disease after intranasal immunization with RSV F VLP in comparison to FI-RSV and live RSV. In addition to inducing RSV neutralizing antibodies responsible for

  18. A multi-trimeric fusion of CD40L and gp100 tumor antigen activates dendritic cells and enhances survival in a B16-F10 melanoma DNA vaccine model.

    PubMed

    Gupta, Sachin; Termini, James M; Rivas, Yaelis; Otero, Miguel; Raffa, Francesca N; Bhat, Vikas; Farooq, Amjad; Stone, Geoffrey W

    2015-09-11

    Vaccination with tumor-associated antigens can induce cancer-specific CD8+ T cells. A recent improvement has been the targeting of antigen to dendritic cells (DC) using antibodies that bind DC surface molecules. This study explored the use of multi-trimers of CD40L to target the gp100 melanoma tumor antigen to DC. The spontaneously-multimerizing gene Surfactant Protein D (SPD) was used to fuse gp100 tumor antigen and CD40L, creating the recombinant protein SPD-gp100-CD40L. This "third generation" DC-targeting vaccine was designed to both target antigen to DC and optimally activate dendritic cells by aggregating CD40 trimers on the DC membrane surface. SPD-gp100-CD40L expressed as a 110kDa protein. Analytical light scattering analysis gave elution data corresponding to 4-trimer and multi-trimer SPD-gp100-CD40L oligomers. The protein was biologically active on dendritic cells and induced CD40-mediated NF-κB signaling. DNA vaccination with SPD-gp100-CD40L plasmid, together with plasmids encoding IL-12p70 and GM-CSF, significantly enhanced survival and inhibited tumor growth in a B16-F10 melanoma model. Expression of gp100 and SPD-CD40L as separate molecules did not enhance survival, highlighting the requirement to encode gp100 within SPD-CD40L for optimal vaccine activity. These data support a model where DNA vaccination with SPD-gp100-CD40L targets gp100 to DC in situ, induces activation of these DC, and generates a protective anti-tumor response when given in combination with IL-12p70 and GM-CSF plasmids.

  19. Autologous aldrithiol-2-inactivated HIV-1 combined with polyinosinic-polycytidylic acid-poly-L-lysine carboxymethylcellulose as a vaccine platform for therapeutic dendritic cell immunotherapy.

    PubMed

    Miller, Elizabeth; Spadaccia, Meredith; Sabado, Rachel; Chertova, Elena; Bess, Julian; Trubey, Charles Mac; Holman, Rose Marie; Salazar, Andres; Lifson, Jeffrey; Bhardwaj, Nina

    2015-01-03

    Therapeutic interventions for HIV-1 that successfully augment adaptive immunity to promote killing of infected cells may be a requisite component of strategies to reduce latent cellular reservoirs. Adoptive immunotherapies utilizing autologous monocyte-derived dendritic cells (DCs) that have been activated and antigen loaded ex vivo may serve to circumvent defects in DC function that are present during HIV infection in order to enhance adaptive immune responses. Here we detail the clinical preparation of DCs loaded with autologous aldrithiol-2 (AT-2)-inactivated HIV that have been potently activated with the viral mimic, Polyinosinic-polycytidylic acid-poly-l-lysine carboxymethylcellulose (Poly-ICLC). HIV is first propagated from CD4+ T cells from HIV-infected donors and then rendered non-replicative by chemical inactivation with aldrithiol-2 (AT-2), purified, and quantified. Viral inactivation is confirmed through measurement of Tat-regulated β-galactosidase reporter gene expression following infection of TZM-bl cells. In-process testing for sterility, mycoplasma, LPS, adventitious agents, and removal of AT-2 is performed on viral preparations. Autologous DCs are generated and pulsed with autologous AT-2-inactivated virus and simultaneously stimulated with Poly-ICLC to constitute the final DC vaccine product. Phenotypic identity, maturation, and induction of HIV-specific adaptive immune responses are confirmed via flow cytometric analysis of DCs and cocultured autologous CD4+ and CD8+ T cells. Lot release criteria for the DC vaccine have been defined in accordance with Good Manufacturing Practice (GMP) guidelines. The demonstrated feasibility of this approach has resulted in approval by the FDA for investigational use in antiretroviral (ART) suppressed individuals. We discuss how this optimized DC formulation may enhance the quality of anti-HIV adaptive responses beyond what has been previously observed during DC immunotherapy trials for HIV infection. Copyright

  20. A pancreatic tumor-specific biomarker characterized in humans and mice as an immunogenic onco-glycoprotein is efficient in dendritic cell vaccination

    PubMed Central

    Collignon, Aurélie; Perles-Barbacaru, Adriana Teodora; Robert, Stéphane; Silvy, Françoise; Martinez, Emmanuelle; Crenon, Isabelle; Germain, Sébastien; Garcia, Stéphane; Viola, Angèle; Lombardo, Dominique

    2015-01-01

    Oncofetal fucose-rich glycovariants of the pathological bile salt-dependent lipase (pBSDL) appear during human pancreatic oncogenesis and are detected by themonoclonal antibody J28 (mAbJ28). We aimed to identify murine counterparts onpancreatic ductal adenocarcinoma (PDAC) cells and tissue and investigate the potential of dendritic cells (DC) loaded with this unique pancreatic tumor antigen to promote immunotherapy in preclinical trials. Pathological BSDLs purified from pancreatic juices of patients with PDAC were cleaved to generate glycosylated C-terminal moieties (C-ter) containing mAbJ28-reactive glycoepitopes. Immunoreactivity of the murine PDAC line Panc02 and tumor tissue to mAbJ28 was detected by immunohistochemistry and flow cytometry. C-ter-J28+ immunization promoted Th1-dominated immune responses. In vitro C-ter-J28+-loaded DCskewed CD3+ T-cells toward Th1 polarization. C-ter-J28+-DC-vaccinations selectively enhanced cell immunoreactivity to Panc02, as demonstrated by CD4+- and CD8+-T-cell activation, increased percentages of CD4+- and CD8+-T-cells and NK1.1+ cells expressing granzyme B, and T-cell cytotoxicity. Prophylactic and therapeutic C-ter-J28+-DC-vaccinations reduced ectopic Panc02-tumor growth, provided long-lasting protection from Panc02-tumor development in 100% of micebut not from melanoma, and attenuated progression of orthotopic tumors as revealed by MRI. Thusmurine DC loaded with pancreatic tumor-specific glycoepitope C-ter-J28+ induce efficient anticancer adaptive immunity and represent a potential adjuvant therapy for patients afflicted with PDAC. PMID:26405163

  1. Fusions of Breast Carcinoma and Dendritic Cells as a Vaccine for the Treatment of Metatastic Breast Cancer

    DTIC Science & Technology

    2010-07-31

    well as the stimulatory cytokines, IL-12 and IFNγ. In addition, fusion cells expressed CCR7 necessary for the migration of cells to sites of T cell...a marked expansion of anti-tumor effector cells. Body Our clinical protocol had received approval by the FDA, NCI/CTEP (distributor of IL...followed at the Dana-Farber Cancer Institute, and was receiving chemotherapy for metastatic disease. She was seen by our vaccine group on 3/23/10 to

  2. In vivo dendritic cell targeting cellular vaccine induces CD4+ Tfh cell-dependent antibody against influenza virus

    PubMed Central

    Yamasaki, Satoru; Shimizu, Kanako; Kometani, Kohei; Sakurai, Maki; Kawamura, Masami; Fujii, Shin-ichiro

    2016-01-01

    An induction of long-term cellular and humoral immunity is for the goal of vaccines, but the combination of antigens and adjuvant remain unclear. Here, we show, using a cellular vaccine carrying foreign protein antigen plus iNKT cell glycolipid antigen, designated as artificial adjuvant vector cells (aAVCs), that mature XCR1− DCs in situ elicit not only ordinal antigen-specific CD4+T cells, but also CD4+ Tfh and germinal center, resulted in inducing long-term antibody production. As a mechanism for leading the long-term antibody production by aAVC, memory CD4+ Tfh cells but not iNKTfh cells played an important role in a Bcl6 dependent manner. To develop it for influenza infection, we established influenza hemagglutinin-carrying aAVC (aAVC-HA) and found that all the mice vaccinated with aAVC-HA were protected from life-threatening influenza infection. Thus, the in vivo DC targeting therapy by aAVC would be useful for protection against viral infection. PMID:27739478

  3. Inhibition of the Protein Tyrosine Phosphatase, SHP-1, in Dendritic Cells to Enhance their Efficacy as Cell-Based Prostate Cancer Vaccines

    DTIC Science & Technology

    2009-05-01

    inhibitor of DC activation and that by blocking SHP-1in DC would induce stronger anti-tumor immunity. Our results demonstrate that inhibition of SHP...observations suggest that SHP-1 is a pleiotropic inhibitor ofDC function and that its inhibition in DCs enhances the strength of immune responses...approach is to inhibit inhibitors of DC function that normally serve to regulate the initiation of immune responses. We hypothesized that the Src

  4. The Identification and Distribution of Cattle XCR1 and XCL1 among Peripheral Blood Cells: New Insights into the Design of Dendritic Cells Targeted Veterinary Vaccine.

    PubMed

    Li, Kun; Wei, Guoyan; Cao, Yimei; Li, Dong; Li, Pinghua; Zhang, Jing; Bao, Huifang; Chen, Yingli; Fu, Yuanfang; Sun, Pu; Bai, Xingwen; Ma, Xueqing; Lu, Zengjun; Liu, Zaixin

    2017-01-01

    The chemokine (C motif) receptor 1 (XCR1) and its ligandXCL1 have been intensively studied in the mouse and human immune systems. Here, we determined the molecular characteristics of cattle XCR1 and XCL1 and their distribution among peripheral blood cells. Cattle XCR1 mRNA expression was mainly restricted to CD26+CADM1+CD205+MHCII+CD11b- cells in blood that were otherwise lineage marker negative (lin-); these represented a subset of classic dendritic cells (DCs), not plasmacytoid DCs. Some of these DCs expressed CD11a, CD44, CD80 and CD86, but they did not express CD4, CD8, CD163 or CD172a. Cattle XCL1 was expressed in quiescent NK cells and in activated CD8+ T cells. Cattle XCR1+ DCs migrated chemotactically in response to mouse, but not to human, XCL1. The distribution characters of cattle XCR1 and XCL1 suggested a vital role in regulation of acquired immune responses and indicated a potential for a DC targeted veterinary vaccine in cattle using XCL1 fused antigens.

  5. Rapid Induction of Tumor-specific Type 1 T Helper Cells in Metastatic Melanoma Patients by Vaccination with Mature, Cryopreserved, Peptide-loaded Monocyte-derived Dendritic Cells

    PubMed Central

    Schuler-Thurner, Beatrice; Schultz, Erwin S.; Berger, Thomas G.; Weinlich, Georg; Ebner, Susanne; Woerl, Petra; Bender, Armin; Feuerstein, Bernadette; Fritsch, Peter O.; Romani, Nikolaus; Schuler, Gerold

    2002-01-01

    There is consensus that an optimized cancer vaccine will have to induce not only CD8+ cytotoxic but also CD4+ T helper (Th) cells, particularly interferon (IFN)-γ–producing, type 1 Th cells. The induction of strong, ex vivo detectable type 1 Th cell responses has not been reported to date. We demonstrate now that the subcutaneous injection of cryopreserved, mature, antigen-loaded, monocyte-derived dendritic cells (DCs) rapidly induces unequivocal Th1 responses (ex vivo detectable IFN-γ–producing effectors as well as proliferating precursors) both to the control antigen KLH and to major histocompatibility complex (MHC) class II–restricted tumor peptides (melanoma-antigen [Mage]-3.DP4 and Mage-3.DR13) in the majority of 16 evaluable patients with metastatic melanoma. These Th1 cells recognized not only peptides, but also DCs loaded with Mage-3 protein, and in case of Mage-3DP4–specific Th1 cells IFN-γ was released even after direct recognition of viable, Mage-3–expressing HLA-DP4+ melanoma cells. The capacity of DCs to rapidly induce Th1 cells should be valuable to evaluate whether Th1 cells are instrumental in targeting human cancer and chronic infections. PMID:12021308

  6. The Identification and Distribution of Cattle XCR1 and XCL1 among Peripheral Blood Cells: New Insights into the Design of Dendritic Cells Targeted Veterinary Vaccine

    PubMed Central

    Li, Kun; Wei, Guoyan; Cao, Yimei; Li, Dong; Li, Pinghua; Zhang, Jing; Bao, Huifang; Chen, Yingli; Fu, Yuanfang; Sun, Pu; Bai, Xingwen; Ma, Xueqing; Lu, Zengjun; Liu, Zaixin

    2017-01-01

    The chemokine (C motif) receptor 1 (XCR1) and its ligandXCL1 have been intensively studied in the mouse and human immune systems. Here, we determined the molecular characteristics of cattle XCR1 and XCL1 and their distribution among peripheral blood cells. Cattle XCR1 mRNA expression was mainly restricted to CD26+CADM1+CD205+MHCII+CD11b- cells in blood that were otherwise lineage marker negative (lin-); these represented a subset of classic dendritic cells (DCs), not plasmacytoid DCs. Some of these DCs expressed CD11a, CD44, CD80 and CD86, but they did not express CD4, CD8, CD163 or CD172a. Cattle XCL1 was expressed in quiescent NK cells and in activated CD8+ T cells. Cattle XCR1+ DCs migrated chemotactically in response to mouse, but not to human, XCL1. The distribution characters of cattle XCR1 and XCL1 suggested a vital role in regulation of acquired immune responses and indicated a potential for a DC targeted veterinary vaccine in cattle using XCL1 fused antigens. PMID:28129380

  7. A short hairpin RNA-based adjuvant targeting NF-κB repressor IκBα promotes migration of dermal dendritic cells to draining lymph nodes and antitumor CTL responses induced by DNA vaccination.

    PubMed

    Gálvez-Cancino, Felipe; Roco, Jonathan; Rojas-Colonelli, Nicole; Flores, Camila; Murgas, Paola; Cruz-Gómez, Sebastián; Oyarce, César; Varas-Godoy, Manuel; Sauma, Daniela; Lladser, Alvaro

    2017-07-24

    DNA vaccination is an attractive approach to elicit tumor-specific cytotoxic CD8(+) T lymphocytes (CTL), which can mediate protective immunity against tumors. To initiate CTL responses, antigen-encoding plasmids employed for DNA vaccination need to activate dendritic cells (DC) through the stimulation of DNA-sensing innate immune receptors that converge in the activation of the master transcription factor NF-κB. To this end, NF-κB repressor IκBα needs to be degraded, allowing NF-κB to translocate to the nucleus and transcribe proinflammatory target genes, as well as its repressor IκBα. Therefore, NF-κB activation is self-limited by de novo synthesis of IκBa, which sequesters NF-κB in the cytosol. Hence, we tested whether co-delivering a shRNA-based adjuvant able to silence IκBα expression would further promote DNA-induced NFκB activation, DC activation and tumor-protective CTL responses induced by DNA vaccination in a preclinical model. First, an IκBα-targeting shRNA plasmid (shIκBα) was shown to reduce IκBα expression and promote NFκB-driven transcription in vitro, as well as up-regulate inflammatory target genes in vivo. Then, we showed that intradermal DNA electroporation induced the migration of skin migratory dendritic cells to draining lymph nodes and maturation of dermal dendritic cells (dDC). Interestingly, shIκBα further promoted the migration of mature skin migratory dendritic cells, in particular dDC, which are specialized in antigen cross-presentation and activation of CD8(+) T cells. Consistently, mice vaccinated with a plasmid encoding the melanoma-associated antigen tyrosinase-related protein 2 (TRP2) in combination with shIκBα enhanced TRP2-specific CTL responses and reduced the number of lung melanoma foci in mice challenged with intravenous injection of B16F10 cells. Moreover, therapeutic vaccination with pTRP2 and shIκBα delayed the growth of B16F10 melanoma subcutaneous tumors. Our data suggest that adjuvants promoting

  8. Dendritic Cell Activity Driven by Recombinant Mycobacterium bovis BCG Producing Human IL-18, in Healthy BCG Vaccinated Adults.

    PubMed

    Szpakowski, Piotr; Biet, Franck; Locht, Camille; Paszkiewicz, Małgorzata; Rudnicka, Wiesława; Druszczyńska, Magdalena; Allain, Fabrice; Fol, Marek; Pestel, Joël; Kowalewicz-Kulbat, Magdalena

    2015-01-01

    Tuberculosis remains an enormous global burden, despite wide vaccination coverage with the Bacillus Calmette-Guérin (BCG), the only vaccine available against this disease, indicating that BCG-driven immunity is insufficient to protect the human population against tuberculosis. In this study we constructed recombinant BCG producing human IL-18 (rBCGhIL-18) and investigated whether human IL-18 produced by rBCGhIL-18 modulates DC functions and enhances Th1 responses to mycobacterial antigens in humans. We found that the costimulatory CD86 and CD80 molecules were significantly upregulated on rBCGhIL-18-infected DCs, whereas the stimulation of DCs with nonrecombinant BCG was less effective. In contrast, both BCG strains decreased the DC-SIGN expression on human DCs. The rBCGhIL-18 increased IL-23, IL-10, and IP-10 production by DCs to a greater extent than nonrecombinant BCG. In a coculture system of CD4(+) T cells and loaded DCs, rBCGhIL-18 favoured strong IFN-γ but also IL-10 production by naive T cells but not by memory T cells. This was much less the case for nonrecombinant BCG. Thus the expression of IL-18 by recombinant BCG increases IL-23, IP-10, and IL-10 expression by human DCs and enhances their ability to induce IFN-γ and IL-10 expression by naive T cells, without affecting the maturation phenotype of the DCs.

  9. Dendritic Cell Activity Driven by Recombinant Mycobacterium bovis BCG Producing Human IL-18, in Healthy BCG Vaccinated Adults

    PubMed Central

    Biet, Franck; Rudnicka, Wiesława; Druszczyńska, Magdalena; Fol, Marek; Pestel, Joël

    2015-01-01

    Tuberculosis remains an enormous global burden, despite wide vaccination coverage with the Bacillus Calmette-Guérin (BCG), the only vaccine available against this disease, indicating that BCG-driven immunity is insufficient to protect the human population against tuberculosis. In this study we constructed recombinant BCG producing human IL-18 (rBCGhIL-18) and investigated whether human IL-18 produced by rBCGhIL-18 modulates DC functions and enhances Th1 responses to mycobacterial antigens in humans. We found that the costimulatory CD86 and CD80 molecules were significantly upregulated on rBCGhIL-18-infected DCs, whereas the stimulation of DCs with nonrecombinant BCG was less effective. In contrast, both BCG strains decreased the DC-SIGN expression on human DCs. The rBCGhIL-18 increased IL-23, IL-10, and IP-10 production by DCs to a greater extent than nonrecombinant BCG. In a coculture system of CD4+ T cells and loaded DCs, rBCGhIL-18 favoured strong IFN-γ but also IL-10 production by naive T cells but not by memory T cells. This was much less the case for nonrecombinant BCG. Thus the expression of IL-18 by recombinant BCG increases IL-23, IP-10, and IL-10 expression by human DCs and enhances their ability to induce IFN-γ and IL-10 expression by naive T cells, without affecting the maturation phenotype of the DCs. PMID:26339658

  10. Immunologically augmented skin flap as a novel dendritic cell vaccine against head and neck cancer in a rat model.

    PubMed

    Inoue, Keita; Saegusa, Noriko; Omiya, Maho; Ashizawa, Tadashi; Miyata, Haruo; Komiyama, Masaru; Iizuka, Akira; Kume, Akiko; Sugino, Takashi; Yamaguchi, Ken; Kiyohara, Yoshio; Nakagawa, Masahiro; Akiyama, Yasuto

    2015-02-01

    Local recurrence is a major clinical issue following surgical resection in head and neck cancer, and the dissemination and lymph node metastasis of minimal residual disease is relatively difficult to treat due to the lack of suitable therapeutic approaches. In the present study, we developed and evaluated a novel immunotherapy using a skin flap transfer treated with sensitized dendritic cells (DC), termed the "immuno-flap," in a rat tumor model. After the local round area of skin was resected, SCC-158 cells (a rat head and neck cancer cell line) were inoculated into the muscle surface; lastly, the groin skin flap injected with mature DC was overlaid. Two weeks after the second DC injection, systemic immunological reactions and tumor size were measured. The DC-treated group showed a significant reduction in tumor size compared with the control. Although the induction of CTL activity in spleen cells was marginal, Th1 cytokines such as interleukin-2 and interferon-γ were elevated in the DC-treated group. These results suggest that a novel immunotherapy based on the immuno-flap method has the potential for clinical application to prevent the local recurrence of head and neck cancer patients. © 2014 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  11. Magnetic Enrichment of Dendritic Cell Vaccine in Lymph Node with Fluorescent-Magnetic Nanoparticles Enhanced Cancer Immunotherapy

    PubMed Central

    Jin, Honglin; Qian, Yuan; Dai, Yanfeng; Qiao, Sha; Huang, Chuan; Lu, Lisen; Luo, Qingming; Chen, Jing; Zhang, Zhihong

    2016-01-01

    Dendritic cell (DC) migration to the lymph node is a key component of DC-based immunotherapy. However, the DC homing rate to the lymphoid tissues is poor, thus hindering the DC-mediated activation of antigen-specific T cells. Here, we developed a system using fluorescent magnetic nanoparticles (α-AP-fmNPs; loaded with antigen peptide, iron oxide nanoparticles, and indocyanine green) in combination with magnetic pull force (MPF) to successfully manipulate DC migration in vitro and in vivo. α-AP-fmNPs endowed DCs with MPF-responsiveness, antigen presentation, and simultaneous optical and magnetic resonance imaging detectability. We showed for the first time that α-AP-fmNP-loaded DCs were sensitive to MPF, and their migration efficiency could be dramatically improved both in vitro and in vivo through MPF treatment. Due to the enhanced migration of DCs, MPF treatment significantly augmented antitumor efficacy of the nanoparticle-loaded DCs. Therefore, we have developed a biocompatible approach with which to improve the homing efficiency of DCs and subsequent anti-tumor efficacy, and track their migration by multi-modality imaging, with great potential applications for DC-based cancer immunotherapy. PMID:27698936

  12. [Vaccination].

    PubMed

    Graubner, U B; Liese, J; Belohradsky, B H

    2001-09-01

    Vaccination has been an important part of antiinfectious prophylaxis in pediatric oncology comprising immunizations with special indication like varicella vaccine and follow-up of routine immunizations after chemotherapy and bone marrow transplantation (BMT). Studies from the last decade demonstrate a loss of long term immunity to immunization preventable disease in most patients with chemotherapy and BMT who had received appropriate immunization before. So far routine vaccination programs following intensive chemotherapy have not been studied prospectively. Immunization programs following BMT have shown that immunizations with tetanus toxoid, diphtheria toxoid, inactivated poliovirus vaccine and influenza vaccine - given at least 12 months after transplantation - are safe and effective. Vaccination with live attenuated trivalent vaccine against measles, mumps and rubella in patients without chronic "graft versus host disease" (GVHD) and without ongoing immunosuppressive therapy, performed 24 months after transplantation, proved to be safe too. Recommendations have been published by 5 different official groups: (1.) "Ständige Impfkommission" (STIKO) and (2.) "Deutsche Gesellschaft für pädiatrische Infektiologie" (DGPI) recommend varicella vaccine für children with leukemia in remission for at least 12 months, for children with solid tumors and for patients getting an organ transplantation. Both societies do not comment on the schedule of booster vaccinations (with live attenuated vaccines) after the end of chemotherapy and after BMT. (3.) "Qualitätssicherungsgruppe" der "Gesellschaft für pädiatrische Onkologie und Hämatologie" (QS-GPOH) recommends immunization with nonliving vaccines when the patient is off therapy for at least 3 months and immunization with live attenuated vaccines when he is off therapy for at least 6 months. This group does not comment on varicella vaccine which has been controversial among pediatric oncologists. (4.) The " Infectious

  13. Vaccination with dendritic cells pulsed with peptides of myelin basic protein promotes functional recovery from spinal cord injury.

    PubMed

    Hauben, Ehud; Gothilf, Amalia; Cohen, Avi; Butovsky, Oleg; Nevo, Uri; Smirnov, Igor; Yoles, Eti; Akselrod, Solange; Schwartz, Michal

    2003-09-24

    Injury-induced self-destructive processes cause significant functional loss after incomplete spinal cord injury (SCI). Cellular elements of both the innate (macrophage) and the adaptive (T-cell) immune response can, if properly activated and controlled, promote post-traumatic regrowth and protection after SCI. Dendritic cells (DCs) trigger activation of effector and regulatory T-cells, providing a link between the functions of the innate and the adaptive immune systems. They also initiate and control the body's response to pathogenic agents and regulate immune responses to both foreign and self-antigens. Here we show that post-injury injection of bone marrow-derived DCs pulsed with encephalitogenic or nonencephalitogenic peptides derived from myelin basic protein, when administered (either systemically or locally by injection into the lesion site) up to 12 d after the injury, led to significant and pronounced recovery from severe incomplete SCI. No significant protection was seen in DC recipients deprived of mature T-cells. Flow cytometry, RT-PCR, and proliferation assays indicated that the DCs prepared and used here were mature and immunogenic. Taken together, the results suggest that the DC-mediated neuroprotection was achieved via the induction of a systemic T-cell-dependent immune response. Better preservation of neural tissue and diminished formation of cysts and scar tissue accompanied the improved functional recovery in DC-treated rats. The use of antigen-specific DCs may represent an effective way to obtain, via transient induction of an autoimmune response, the maximal benefit of immune-mediated repair and maintenance as well as protection against self-destructive compounds.

  14. Dendritic cell vaccine and cytokine-induced killer cell therapy for the treatment of advanced non-small cell lung cancer

    PubMed Central

    ZHANG, LIHONG; YANG, XUEJING; SUN, ZHEN; LI, JIALI; ZHU, HUI; LI, JING; PANG, YAN

    2016-01-01

    The present study aimed to evaluate the survival time, immune response and safety of a dendritic cell (DC) vaccine and cytokine-induced killer (CIK) cell therapy (DC-CIK) in advanced non-small cell lung cancer (NSCLC). The present retrospective study enrolled 507 patients with advanced NSCLC; 99 patients received DC-CIK [immunotherapy group (group I)] and 408 matched patients did not receive DC-CIK, and acted as the control [non-immunotherapy group (group NI)]. Delayed-type hypersensitivity (DTH), quality of life (QOL) and safety were analyzed in group I. The follow-up period for the two groups was 489.2±160.4 days. The overall survival (OS) time was calculated using the Kaplan-Meier method. DTH was observed in 59 out of 97 evaluated patients (60.8%) and 67 out of 98 evaluated patients (68.4%) possessed an improved QOL. Fever and a skin rash occurred in 36 out of 98 patients (36.7%) and 7 out of 98 patients (7.1%) in group I. DTH occurred more frequently in patients with squamous cell carcinoma compared with patients with adenocarcinoma (77.1 vs. 40.4%; P=0.0013). Radiotherapy was not associated with DC-CIK-induced DTH (72.7 vs. 79.6%; P=0.18), but chemotherapy significantly reduced the rate of DTH (18.2 vs. 79.6%; P=0.00). The OS time was significantly increased in group I compared with group NI (P=0.03). In conclusion, DC-CIK may induce an immune response against NSCLC, improve the QOL, and prolong the OS time of patients, without adverse effects. Therefore, the present study recommends DC-CIK for the treatment of patients with advanced NSCLC. PMID:27073525

  15. Mechanism of chimeric vaccine stimulation of indoleamine 2,3-dioxygenase biosynthesis in human dendritic cells is independent of TGF-β signaling.

    PubMed

    Esebanmen, Grace E; Langridge, William H R

    2017-09-01

    Cholera toxin B subunit fusion to autoantigens such as proinsulin (CTB-INS) down regulate dendritic cell (DC) activation and stimulate synthesis of DC immunosuppressive cytokines. Recent studies of CTB-INS induction of immune tolerance in human DCs indicate that increased biosynthesis of indoleamine 2,3-dioxygenase (IDO1) may play an important role in CTB-INS vaccine suppression of DC activation. Studies in murine models suggest a role for transforming growth factor beta (TGF-β) in the stimulation of IDO1 biosynthesis, for the induction of tolerance in DCs. Here, we investigated the contribution of TGF-β superfamily proteins to CTB-INS induction of IDO1 biosynthesis in human monocyte-derived DCs (moDCs). We show that CTB-INS upregulates the level of TGF-β1, activin-A and the TGF-β activator, integrin αvβ8 in human DCs. However, inhibition of endogenous TGF-β, activin-A or addition of biologically active TGF-β1, and activin-A, did not inhibit or stimulate IDO1 biosynthesis in human DCs treated with CTB-INS. While inhibition with the kinase inhibitor, RepSox, blocked SMAD2/3 phosphorylation and diminished IDO1 biosynthesis in a concentration dependent manner. Specific blocking of the TGF-β type 1 kinase receptor with SB-431542 did not arrest IDO1 biosynthesis, suggesting the involvement of a different kinase pathway other than TGF-β type 1 receptor kinase in CTB-INS induction of IDO1 in human moDCs. Together, our experimental findings identify additional immunoregulatory proteins induced by the CTB-INS fusion protein, suggesting CTB-INS may utilize multiple mechanisms in the induction of tolerance in human moDCs. Copyright © 2017. Published by Elsevier Inc.

  16. Synthesis of a 1,3 β-glucan hexasaccharide designed to target vaccines to the dendritic cell receptor, Dectin-1.

    PubMed

    Elsaidi, Hassan R H; Paszkiewicz, Eugenia; Bundle, David R

    2015-05-18

    Transformation of 3-O-benzyl-1,2:5,6-di-O-isopropylidene-α-D-glucofuranose into 2,4,6-tri-O-benzoyl-3-O-benzyl glucopyranosyl imidate proceeded efficiently via crystalline benzyl and per-benzoylated derivatives. This imidate glycosylated di-O-isopropylidene-α-D-glucofuranose in high yield and glycosylation of the disaccharide after removal of the 3'-O-benzyl ether afforded the β1,3 linked trisaccharide in excellent yield. Di- and trisaccharides imidates were readily prepared from the furanose terminated glycosylation products but both were unreactive in glycosylation reaction with the debenzylated di- and trisaccharide alcohols. The 3'-O-benzyl perbenzoylated disaccharide pyranose derivative could be selectively debenzoylated and converted to the corresponding perbenzoylated 4,6:4',6'-di-O-benzylidene derivative. Lewis acid catalyzed glycosidation gave the selectively protected disaccharide ethylthioglycoside in good overall yield. Glycosidation of this thioglycoside donor with 5-methoxycarbonylpentanol gave the disaccharide tether glycoside and after catalytic removal of benzyl ether the resulting disaccharide alcohol was glycosylated by the thioglycoside in a 2+2 reaction to yield a tetrasaccharide. Repetition of selective deprotection of the terminal 3-O-benzyl ether followed by glycosylation by the disaccharide thioglycoside gave a protected hexasaccharide. Hydrogenolysis of this hexasaccharide followed by transesterification and second hydrogenolysis to remove a residual benzyl group gave the target hexasaccharide glycoside 1 as a Dectin-1 ligand functionalized to permit covalent attachment to glycoconjugate vaccines and thereby facilitate improved antigen processing by dendritic cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Addition of anti-estrogen therapy to anti-HER2 dendritic cell vaccination improves regional nodal immune response and pathologic complete response rate in patients with ER(pos)/HER2(pos) early breast cancer.

    PubMed

    Lowenfeld, Lea; Zaheer, Salman; Oechsle, Crystal; Fracol, Megan; Datta, Jashodeep; Xu, Shuwen; Fitzpatrick, Elizabeth; Roses, Robert E; Fisher, Carla S; McDonald, Elizabeth S; Zhang, Paul J; DeMichele, Angela; Mick, Rosemarie; Koski, Gary K; Czerniecki, Brian J

    2017-01-01

    HER2-directed therapies are less effective in patients with ER(pos) compared to ER(neg) breast cancer, possibly reflecting bidirectional activation between HER2 and estrogen signaling pathways. We investigated dual blockade using anti-HER2 vaccination and anti-estrogen therapy in HER2(pos)/ER(pos) early breast cancer patients. In pre-clinical studies of HER2(pos) breast cancer cell lines, ER(pos) cells were partially resistant to CD4(+) Th1 cytokine-induced metabolic suppression compared with ER(neg) cells. The addition of anti-estrogen treatment significantly enhanced cytokine sensitivity in ER(pos), but not ER(neg), cell lines. In two pooled phase-I clinical trials, patients with HER2(pos) early breast cancer were treated with neoadjuvant anti-HER2 dendritic cell vaccination; HER2(pos)/ER(pos) patients were treated with or without concurrent anti-estrogen therapy. The anti-HER2 Th1 immune response measured in the peripheral blood significantly increased following vaccination, but was similar across the three treatment groups (ER(neg) vaccination alone, ER(pos) vaccination alone, ER(pos) vaccination + anti-estrogen therapy). In the sentinel lymph nodes, however, the anti-HER2 Th1 immune response was significantly higher in ER(pos) patients treated with combination anti-HER2 vaccination plus anti-estrogen therapy compared to those treated with anti-HER2 vaccination alone. Similar rates of pathologic complete response (pCR) were observed in vaccinated ER(neg) patients and vaccinated ER(pos) patients treated with concurrent anti-estrogen therapy (31.4% vs. 28.6%); both were significantly higher than the pCR rate in vaccinated ER(pos) patients who did not receive anti-estrogen therapy (4.0%, p = 0.03). Since pCR portends long-term favorable outcomes, these results support additional clinical investigations using HER2-directed vaccines in combination with anti-estrogen treatments for ER(pos)/HER2(pos) DCIS and invasive breast cancer.

  18. Translational Mini-Review Series on Vaccines: Monitoring of human papillomavirus vaccination

    PubMed Central

    Dillner, J; Arbyn, M; Dillner, L

    2007-01-01

    ARTICLES PUBLISHED IN THIS MINI-REVIEW SERIES ON VACCINES Peptide vaccines for myeloid leukaemias. Clin Exp Immunol 2007; 148: doi:10.1111/j.1365-2249.2007.03383.x The Edward Jenner Museum and the history of vaccination. Clin Exp Immunol 2007; 147: doi:10.1111/j.1365-2249.2007.03304.x Dendritic cell-based vaccines in renal cancer. Clin Exp Immunol 2007; 147: doi:10.1111/j.1365-2249.2007.03305.xDevelopment and evaluation of improved vaccines against tuberculosis. Clin Exp Immunol 2007; 147: doi:10.1111/j.1365-2249.2007.03306.x Persistent infection with oncogenic human papillomavirus (HPV) is a necessary cause of cervical cancer. Moreover, HPV type 16 (and to a lesser degree HPV type 18) is linked with more rare cancers, namely cancer of the vulva, vagina, penis, anus, oropharynx and larynx. Effective prophylactic vaccines have been developed. In this review, we briefly address immunological aspects of HPV infection and the results of HPV vaccination trials. Internationally standardized monitoring and evaluation of prophylactic HPV vaccination programmes will be essential for arriving at the most (cost-)effective strategies for cancer control. PMID:17437418

  19. Vaccinations

    MedlinePlus

    ... be spread from animals to people. For example, rabies is a serious, often fatal, disease that can ... animals to people. By vaccinating your pets for rabies, you are protecting your family as well as ...

  20. Aging affect the anti-tumor potential of dendritic cell vaccination, but it can be overcome by co-stimulation with anti-OX40 or anti-4-1BB.

    PubMed

    Sharma, Sanjay; Dominguez, Ana Lucia; Lustgarten, Joseph

    2006-01-01

    It has been well established that there is a decline in immune function with age resulting in a diminished capacity to respond to infections or tumors. Although many studies have demonstrated the efficacy of autologous dendritic cells (DC) vaccines in stimulating an anti-tumor immune response in the young, almost none of these reports consider the effect that aging has on the immune system or test whether DC-vaccination is effective in old hosts. In this study we compared the efficacy of DC-vaccination in young and old mice. Our results showed that DC-vaccination in young animals induced an anti-tumor response resulting in approximately 60% tumor growth inhibition, while minimal protection was observed in old animals. DC vaccination plus rIL-2 further enhanced the anti-tumor response in young animals (approximately 70-75% inhibition), while ineffective in old animals. In contrast, co-administration of anti-OX-40 or anti-4-1BB mAbs vigorously enhanced the anti-tumor immune response in both young (approximately 85-90% inhibition) and old mice (approximately 70-75% inhibition). Our data indicate that although old mice have a decline in immune function, they have the capacity to develop strong anti-tumor responses as long as they are provided with efficient co-stimulation.

  1. Influence of Immunotherapy with Autologous Dendritic Cells on Innate and Adaptive Immune Response in Cancer

    PubMed Central

    Matias, Bruna F.; de Oliveira, Tânia M.; Rodrigues, Cláudia M.; Abdalla, Douglas R.; Montes, Letícia; Murta, Eddie F.C.; Michelin, Márcia A.

    2013-01-01

    The objective of this study was to evaluate some of the mechanisms involved in the activation of the immune system in patients with advanced-stage cancer (n = 7) who received an autologous dendritic cell vaccine. We examined the immune response mediated by macrophages (CD14+), natural killer cells (CD56+), and B lymphocytes (CD19+) by flow cytometry and assessed the expression of Th1 (IFN-γ, TNF-α, IL-2, and IL-12), Th2 (IL-4), and Treg (TGF-β) cytokines by flow cytometry and an enzyme-linked immunosorbent assay. The CD14+ TNF-α+ population was significantly increased (P < 0.04) when patients received the vaccine; IL-2 expression in both NK cells and in B lymphocytes was increased after a transient initial increase showed a nearly significant decrease (P < 0.07 and P < 0.06 respectively), whereas the CD19+ and CD56+ populations did not show significant changes. Dendritic cell-based immunotherapy led to increased secretion of IFN-γ and IL-12 and reduced secretion of TGF-β. In conclusion, it is likely that the autologous dendritic cell vaccine stimulated the immune cells from the peripheral blood of patients with cancer and generally increased the production of Th1 cytokines, which are related to immunomodulatory responses against cancer. PMID:23926442

  2. HIV-1 evolution in patients undergoing immunotherapy with Tat, Rev, and Nef expressing dendritic cells followed by treatment interruption.

    PubMed

    de Goede, Anna L; van Deutekom, Hanneke W M; Vrancken, Bram; Schutten, Martin; Allard, Sabine D; van Baalen, Carel A; Osterhaus, Albert D M E; Thielemans, Kris; Aerts, Joeri L; Keşmir, Can; Lemey, Philippe; Gruters, Rob A

    2013-11-13

    This study aimed to evaluate HIV sequence evolution in whole genes and in CD8 T-cell epitope regions following immunotherapy and subsequent analytical treatment interruption (ATI). A second objective of this study was to analyze associations between vaccine-specific immune responses and epitope mutation rates. HIV-1-infected patients on combined antiretroviral therapy (cART) were subjected to immunotherapy by the administration of an autologous dendritic cell-based therapeutic vaccine expressing Tat, Rev, and Nef and subsequent ATI. HIV-1 genes were amplified and sequenced from plasma RNA obtained before initiation of cART as well as during ATI. Control sequences for virus evolution in untreated HIV-1-infected individuals were obtained from the HIV Sequence Database (Los Alamos). CD8 T-cell epitope regions were defined based on literature data and prediction models. HIV-1-specific immune responses were evaluated to analyze their impact on sequence evolution. Viral sequence evolution in the tat, rev, and nef genes of vaccinated patients was similar to that of controls. The number of mutations observed inside and outside CD8 T-cell epitopes was comparable for vaccine-targeted and nontargeted proteins. We found no evidence for an impact of vaccine-induced or enhanced immune responses on the number of mutations inside or outside epitopes. Therapeutic vaccination of HIV-1-infected patients with a dendritic cell-based vaccine targeting Tat, Rev, and Nef did not affect virus evolution at the whole gene level nor at the CD8 T-cell epitope level.

  3. Dacarbazine (DTIC) versus vaccination with autologous peptide-pulsed dendritic cells (DC) in first-line treatment of patients with metastatic melanoma: a randomized phase III trial of the DC study group of the DeCOG.

    PubMed

    Schadendorf, D; Ugurel, S; Schuler-Thurner, B; Nestle, F O; Enk, A; Bröcker, E-B; Grabbe, S; Rittgen, W; Edler, L; Sucker, A; Zimpfer-Rechner, C; Berger, T; Kamarashev, J; Burg, G; Jonuleit, H; Tüttenberg, A; Becker, J C; Keikavoussi, P; Kämpgen, E; Schuler, G

    2006-04-01

    This randomized phase III trial was designed to demonstrate the superiority of autologous peptide-loaded dendritic cell (DC) vaccination over standard dacarbazine (DTIC) chemotherapy in stage IV melanoma patients. DTIC 850 mg/m2 intravenously was applied in 4-week intervals. DC vaccines loaded with MHC class I and II-restricted peptides were applied subcutaneously at 2-week intervals for the first five vaccinations and every 4 weeks thereafter. The primary study end point was objective response (OR); secondary end points were toxicity, overall (OS) and progression-free survival (PFS). At the time of the first interim analysis 55 patients had been enrolled into the DTIC and 53 into the DC-arm (ITT). OR was low (DTIC: 5.5%, DC: 3.8%), but not significantly different in the two arms. The Data Safety & Monitoring Board recommended closure of the study. Unscheduled subset analyses revealed that patients with normal serum LDH and/or stage M1a/b survived longer in both arms than those with elevated serum LDH and/or stage M1c. Only in the DC-arm did those patients with (i) an initial unimpaired general health status (Karnofsky = 100) or (ii) an HLA-A2+/HLA-B44- haplotype survive significantly longer than patients with a Karnofsky index <100 (P = 0.007 versus P = 0.057 in the DTIC-arm) or other HLA haplotypes (P = 0.04 versus P = 0.57 in DTIC-treated patients). DC vaccination could not be demonstrated to be more effective than DTIC chemotherapy in stage IV melanoma patients. The observed association of overall performance status and HLA haplotype with overall survival for patients treated by DC vaccination should be tested in future trials employing DC vaccines.

  4. Development and identification of a new Vero cell-based live attenuated influenza B vaccine by a modified classical reassortment method.

    PubMed

    Yang, Fan; Ma, Lei; Zhou, Jian; Wu, Yinjie; Gao, Jingxia; Song, Shaohui; Geng, Xingliang; Guo, Qi; Li, Zhuofan; Li, Weidong; Liao, Guoyang; Li, Yufeng

    2017-08-01

    It was to generate a new Vero and cold-adapted live attenuated influenza B vaccine with enough safety and immunogenicity. According to modified classical reassortment method, the donor strain was B/Yunnan/2/2005Vca(B), and the parental virus strain was B/Brisbane/60/2008wt. After co-infection in Vero cells, the prepared antibody serum inhibited the donor strain growth, and screening conditions inhibited the parental virus growth, which induced the growth of the new reassortant virus B/Brisbane/60/2008Vca(B) grow. Through intraperitoneal injection (i.j.) and intranasal injection (n.j.) we evaluated the safety and immunogenicity of the vaccine. A high-yield of the reassortant virus was produced in Vero cells at 25°C, similar to the donor strains. After sequencing, it was found that B/Brisbane/60/2008Vca(B) Hemagglutinin (HA) and Neuraminidase (NA) gene fragments were from B/Brisbane/60/2008wt, while the other 6 gene fragments were from B/Yunnan/2/2005Vca(B). The n.j. immune pathway experiments showed no significant differences between the treatment and the PBS control group with respect to weight changes (P > 0.5). Furthermore, the new strain had a sufficient geometric mean titter (GMT) against B/Brisbane/60/2008wt. The new reassortant live attenuated influenza B vaccine was safe and having enough immune stimulating ability.

  5. Enhancement of antigen acquisition by dendritic cells and MHC class II-restricted epitope presentation to CD4+ T cells using VP22 DNA vaccine vectors that promote intercellular spreading following initial transfection.

    PubMed

    Mwangi, Waithaka; Brown, Wendy C; Splitter, Gary A; Zhuang, Yan; Kegerreis, Kimberly; Palmer, Guy H

    2005-08-01

    Induction of immune responses against microbial antigens using DNA is an attractive strategy to mimic the immunity induced by live vaccines. Although DNA vaccines are efficacious in murine models, the requirement for multiple immunizations using high doses in outbred animals and humans has hindered deployment. This requirement is, in part, a result of poor vaccine spreading and suboptimal DC transfection efficiency. Incorporation of a signal that directs intercellular spreading of a DNA-encoded antigen is proposed to mimic live vaccine spreading and increase dendritic cell (DC) presentation. Bovine herpes virus 1 tegument protein, BVP22, is capable of trafficking to surrounding cells. To test the hypothesis that BVP22 enhances spreading and antigen presentation to CD4+ T cells, a DNA construct containing BVP22, fused in-frame to a sequence encoding a T cell epitope of Anaplasma marginale, was generated. A construct with reversed BVP22 sequence served as a negative control. Immunocytometric analysis of transfected primary keratinocytes, human embryonic kidney 293, COS-7, and Chinese hamster ovary cells showed that BVP22 enhanced intercellular spreading by > or = 150-fold. Flow cytometric analysis of antigen-presenting cells (APCs) positively selected from cocultures of transfected cells and APCs showed that 5% of test APCs were antigen-positive, compared with 0.6% of control APCs. Antigen-specific CD4+ T cell proliferation demonstrated that BVP22 enhanced DC antigen presentation by > or = 20-fold. This first report of the ability of BVP22 to increase DNA-encoded antigen acquisition by DCs and macrophages, with subsequent enhancement of major histocompatibility complex class II-restricted CD4+ T cell responses, supports incorporating a spreading motif in a DNA vaccine to target CD4+ T cell-dependent immunity in outbred animals.

  6. In vivo anti-tumor effect of hybrid vaccine of dendritic cells and esophageal carcinoma cells on esophageal carcinoma cell line 109 in mice with severe combined immune deficiency

    PubMed Central

    Guo, Guang-Hua; Chen, Su-Zuan; Yu, Jing; Zhang, Juan; Luo, Li-Li; Xie, Li-Hua; Su, Zhong-Jing; Dong, Hong-Mei; Xu, Hong; Wu, Li-Biao

    2008-01-01

    AIM: To develop a fusion vaccine of esophageal carcinoma cells and dendritic cells (DC) and observe its protective and therapeutic effect against esophageal carcinoma cell line 109 (EC109). METHODS: The fusion vaccine was produced by fusing traditional polyethyleneglycol (PEG), inducing cytokine, sorting CD34+ magnetic microbead marker and magnetic cell system (MACS). The liver, spleen and lung were pathologically tested after injection of the fusion vaccine. To study the therapeutic and protective effect of the fusion vaccine against tumor EC109, mice were divided immune group and therapeutic group. The immune group was divided into P, E, D and ED subgroups, immunized by phosphate buffered solution (PBS), inactivated EC109, DC and the fusion vaccine respectively, and attacked by EC109 cells. The tumor size, weight, latent period and mouse survival period were recorded and statistically analyzed. The therapeutic group was divided into four subgroups: P, inactivated EC109, D and ED subgroups, which were attacked by EC109 and then treated with PBS, inactivated EC109, DC, and EC109-DC respectively. Pathology and flow cytometry were also used to study the therapeutic effect of the fusion vaccine against EC109 cells. RESULTS: Flow cytometry showed that the expression of folate receptor (FR), EC109 (C), DCs (D) in human nasopharyngeal carcinoma cell line (HNE1) (B) was 78.21%, 89.50%, and 0.18%, respectively. The fusion cells (C) were highly expressed. No tumor was found in the spleen, lung and liver after injection of the fusion vaccine. Human IgG was tested in peripheral blood lymphocytes (PBL). In the immune group, the latent period was longer in EC109-DC subgroup than in other subgroups, while the tumor size and weight were also smaller than those in ED subgroup. In the therapeutic group, the tumor size and weight were smaller in ED subgroup than in P, inactivated EC109 and DC subgroups. CONCLUSION: Fusion cells are highly expressed not only in FR but also in CD80

  7. Bubble-Assisted Ultrasound: Application in Immunotherapy and Vaccination.

    PubMed

    Escoffre, Jean-Michel; Deckers, Roel; Bos, Clemens; Moonen, Chrit

    2016-01-01

    Bubble-assisted ultrasound is a versatile technology with great potential in immunotherapy and vaccination. This technology involves the exposure of immune cells (i.e., dendritic cells, lymphocytes) in-vitro or diseased tissues (i.e., brain, tumor) in-vivo to ultrasound treatment with gas bubbles. Bubble destruction leads to physical forces that induce the direct delivery of weakly permeant immuno-stimulatory molecules either into the cytoplasm of immune cells, or through the endothelial barrier of diseased tissues. Hence, therapeutic antibodies (i.e., antibody-based immunotherapy) and cytokine-encoding nucleic acids (i.e., cytokine gene therapy) can be successfully delivered into diseased tissues, thus improving immune responses. In addition, protein antigens, as well as antigen-encoding nucleic acids (pDNA, mRNA), can be delivered into dendritic cells (i.e., dendritic cell-based vaccines), thus leading to a long-lasting prophylactic or therapeutic immunization. This chapter focuses on the state-of-the-art of bubble-assisted ultrasound in the field of immunotherapy and vaccination.

  8. Cyclooxygenase-2 inhibitor enhances the efficacy of a breast cancer vaccine: role of IDO.

    PubMed

    Basu, Gargi D; Tinder, Teresa L; Bradley, Judy M; Tu, Tony; Hattrup, Christine L; Pockaj, Barbara A; Mukherjee, Pinku

    2006-08-15

    We report that administration of celecoxib, a specific cyclooxygenase-2 (COX-2) inhibitor, in combination with a dendritic cell-based cancer vaccine significantly augments vaccine efficacy in reducing primary tumor burden, preventing metastasis, and increasing survival. This combination treatment was tested in MMTV-PyV MT mice that develop spontaneous mammary gland tumors with metastasis to the lungs and bone marrow. Improved vaccine potency was associated with an increase in tumor-specific CTLs. Enhanced CTL activity was attributed to a significant decrease in levels of tumor-associated IDO, a negative regulator of T cell activity. We present data suggesting that inhibiting COX-2 activity in vivo regulates IDO expression within the tumor microenvironment; this is further corroborated in the MDA-MB-231 human breast cancer cell line. Thus, a novel mechanism of COX-2-induced immunosuppression via regulation of IDO has emerged that may have implications in designing future cancer vaccines.

  9. Priming with two DNA vaccines expressing hepatitis C virus NS3 protein targeting dendritic cells elicits superior heterologous protective potential in mice.

    PubMed

    Guan, Jie; Deng, Yao; Chen, Hong; Yin, Xiao; Yang, Yang; Tan, Wenjie

    2015-10-01

    Development an effective vaccine may offer an alternative preventive and therapeutic strategy against HCV infection. DNA vaccination has been shown to induce robust humoral and cellular immunity and overcome many problems associated with conventional vaccines. In this study, mice were primed with either conventional pVRC-based or suicidal pSC-based DNA vaccines carrying DEC-205-targeted NS3 antigen (DEC-NS3) and boosted with type 5 adenoviral vectors encoding the partial NS3 and core antigens (C44P). The prime boost regimen induced a marked increase in antigen-specific humoral and T-cell responses in comparison with either rAd5-based vaccines or DEC-205-targeted DNA immunization in isolation. The protective effect against heterogeneous challenge was correlated with high levels of anti-NS3 IgG and T-cell-mediated immunity against NS3 peptides. Moreover, priming with a suicidal DNA vaccine (pSC-DEC-NS3), which elicited increased TNF-α-producing CD4+ and CD8+ T-cells against NS3-2 peptides (aa 1245-1461), after boosting, showed increased heterogeneous protective potential compared with priming with a conventional DNA vaccine (pVRC-DEC-NS3). In conclusion, a suicidal DNA vector (pSC-DEC-NS3) expressing DEC-205-targeted NS3 combined with boosting using an rAd5-based HCV vaccine (rAd5-C44P) is a good candidate for a safe and effective vaccine against HCV infection.

  10. Dendrite inhibitor

    DOEpatents

    Miller, William E.

    1989-01-01

    An apparatus for removing dendrites or other crystalline matter from the surface of a liquid in a matter transport process, and an electrolytic cell including such an apparatus. A notch may be provided to allow continuous exposure of the liquid surface, and a bore may be further provided to permit access to the liquid.

  11. Dendrite inhibitor

    DOEpatents

    Miller, W.E.

    1988-06-07

    An apparatus for removing dendrites or other crystalline matter from the surface of a liquid in a matter transport process, and an electrolytic cell including such an apparatus. A notch may be provided to allow continuous exposure of the liquid surface, and a bore may be further provided to permit access to the liquid. 2 figs.

  12. IL-6 and IL-10 induction from dendritic cells in response to Mycobacterium tuberculosis is predominantly dependent on TLR2-mediated recognition.

    PubMed

    Jang, Sihyug; Uematsu, Satoshi; Akira, Shizuo; Salgame, Padmini

    2004-09-01

    The initial TLR-mediated interaction between Mycobacterium tuberculosis and dendritic cells is critical, since the cytokine production that ensues can greatly influence the class of adaptive immunity that is generated to the pathogen. In this study, we therefore determined the dependency on TLR2 and TLR4 for M. tuberculosis-induced cytokine production by murine dendritic cells. A key new finding of this study is that production of IL-6 and IL-10 from dendritic cells in response to M. tuberculosis is principally dependent on TLR2. The study also indicates that M. tuberculosis can induce IL-12 production in the absence of either TLR2 or TLR4, suggesting redundancy or possibly involvement of other receptors in IL-12 production. In addition, the data also reveal that lack of TLR2 or TLR4 does not impact on dendritic cell maturation or on their ability to influence the polarity of differentiating naive T cells. Collectively, data presented here provide a mechanistic insight for the contribution of TLR2 and TLR4 to tuberculosis disease progression and offer strategies for regulating IL-6 and IL-10 production in dendritic cell-based vaccine strategies.

  13. Ex vivo production of autologous whole inactivated HIV-1 for clinical use in therapeutic vaccines.

    PubMed

    Gil, Cristina; Climent, Núria; García, Felipe; Hurtado, Carmen; Nieto-Márquez, Sara; León, Agathe; García, M Teresa; Rovira, Cristina; Miralles, Laia; Dalmau, Judith; Pumarola, Tomás; Almela, Manel; Martinez-Picado, Javier; Lifson, Jeffrey D; Zamora, Laura; Miró, José M; Brander, Christian; Clotet, Bonaventura; Gallart, Teresa; Gatell, José M

    2011-08-05

    This study provides a detailed description and characterization of the preparation of individualized lots of autologous heat inactivated HIV-1 virions used as immunogen in a clinical trial designed to test an autologous dendritic-cell-based therapeutic HIV-1 vaccine (Clinical Trial DCV-2, NCT00402142). For each participant, ex vivo isolation and expansion of primary virus were performed by co-culturing CD4-enriched PBMCs from the HIV-1-infected patient with PBMC from HIV-seronegative unrelated healthy volunteer donors. The viral supernatants were heat-inactivated and concentrated to obtain 1 mL of autologous immunogen, which was used to load autologous dendritic cells of each patient. High sequence homology was found between the inactivated virus immunogen and the HIV-1 circulating in plasma at the time of HIV-1 isolation. Immunogens contained up to 10⁹ HIV-1 RNA copies/mL showed considerably reduced infectivity after heat inactivation (median of 5.6 log₁₀), and were free of specified adventitious agents. The production of individualized lots of immunogen based on autologous inactivated HIV-1 virus fulfilling clinical-grade good manufacturing practice proved to be feasible, consistent with predetermined specifications, and safe for use in a clinical trial designed to test autologous dendritic cell-based therapeutic HIV-1 vaccine.

  14. β-glucan restores tumor-educated dendritic cell maturation to enhance antitumor immune responses.

    PubMed

    Ning, Yongling; Xu, Dongqin; Zhang, Xiaohang; Bai, Yu; Ding, Jun; Feng, Tongbao; Wang, Shizhong; Xu, Ning; Qian, Keqing; Wang, Yong; Qi, Chunjian

    2016-06-01

    Tumors can induce the generation and accumulation of immunosuppressive cells such as myeloid-derived suppressor cells (MDSCs) in a tumor microenvironment, contributing to tumor escape from immunological attack. Although dendritic cell-based cancer vaccines can initiate antitumor immune responses, tumor-educated dendritic cells (TEDCs) involved in the tolerance induction have attracted much attention recently. In this study, we investigated the effect of β-glucan on TEDCs and found that β-glucan treatment could promote the maturation and migration of TEDCs and that the suppressive function of TEDCs was significantly decreased. Treatment with β-glucan drastically decreased the levels of regulatory T (Treg) cells but increased the infiltration of macrophages, granulocytes and DCs in tumor masses, thus elicited Th1 differentiation and cytotoxic T-lymphocyte responses and led to a delay in tumor progression. These findings reveal that β-glucan can inhibit the regulatory function of TEDCs, therefore revealing a novel function for β-glucan in immunotherapy and suggesting its potential clinical benefit. β-Glucan directly abrogated tumor-educated dendritic cells-associated immune suppression, promoted Th1 differentiation and cytotoxic T-lymphocyte priming and improved antitumor responses. © 2016 UICC.

  15. Recovery from cyclophosphamide-induced lymphopenia results in expansion of immature dendritic cells which can mediate enhanced prime-boost vaccination antitumor responses in vivo when stimulated with the TLR3 agonist poly(I:C).

    PubMed

    Salem, Mohamed L; Díaz-Montero, C Marcela; Al-Khami, Amir A; El-Naggar, Sabry A; Naga, Osama; Montero, Alberto J; Khafagy, Ahmed; Cole, David J

    2009-02-15

    Recent preclinical studies suggest that vaccination following adoptive transfer of CD8(+) T cells into a lymphopenic host can augment the therapeutic antitumor responses of the transferred cells. However, the mechanism by which the lymphopenic microenvironment benefits Ag-specific CD8(+) T cell responses remains elusive. We show herein that induction of lymphodepletion by a single 4 mg cyclophosphamide (CTX) treatment induces a marked expansion of immature dendritic cells (DCs) in the peripheral blood on days 8-16 post-CTX (termed restoration phase). In vitro, these DCs were functional, because they showed normal phagocytosis and effective Ag presentation capability upon activation. In vivo, administration of the TLR3 agonist poly(I:C) at the peak of DC expansion (day 12 postlymphopenia) induced inflammatory cytokine production and increases in the number of activated DCs in lymph nodes. Importantly, boosting with gp100(25-33) melanoma peptide combined with poly(I:C) 12 days after an initial priming with the same regimen significantly increased the expansion and the antitumor efficacy of adoptively transferred pmel-1 CD8(+) T cells. These responses were abrogated after depletion of activated DCs during Ag boosting. In conclusion, our data show that CTX treatment induces, during the restoration phase, expansion of immature DCs, which are functional and can be exploited in vivo to foster more effective antitumor adoptive immunotherapy strategies.

  16. Clinical trials of antitumor vaccination with an autologous tumor cell vaccine modified by virus infection: improvement of patient survival based on improved antitumor immune memory.

    PubMed

    Schirrmacher, Volker

    2005-06-01

    For active specific immunotherapy of cancer patients, we designed the autologous virus-modified tumor cell vaccine ATV-NDV. The rationale of this vaccine is to link multiple tumor-associated antigens (TAAs) from individual patient-derived tumor cells with multiple danger signals (DS) derived from virus infection (dsRNA, HN, IFN-alpha). This allows activation of multiple innate immune responses (monocytes, dendritic cells, and NK cells) as well as adaptive immune responses (CD4 and CD8 memory T cells). Preexisting antitumor memory T cells from cancer patients could be activated by antitumor vaccination with ATV-NDV as seen by augmentation of antitumor memory delayed-type hypersensitivity (DTH) responses. In a variety of phase II vaccination studies, an optimal formulation of this vaccine could improve long-term survival beyond what is seen in conventional standard therapies. A new concept is presented which proposes that a certain threshold of antitumor immune memory plays an important role (1) in the control of residual tumor cells which remain after most therapies and (2) for long-term survival of treated cancer patients. This immune memory is T-cell based and most likely maintained by persisting TAAs from residual dormant tumor cells. Such immune memory was prominent in the bone marrow in animal tumor models as well as in cancer patients. Immunization with a tumor vaccine in which individual TAAs are combined with DS from virus infection appears to have a positive effect on antitumor immune memory and on patient survival.

  17. [Regulatory requirements regarding cell-based medicinal products for human and veterinary use - a comparison].

    PubMed

    Kuhlmann-Gottke, Johanna; Duchow, Karin

    2015-11-01

    At present, there is no separate regulatory framework for cell-based medicinal products (CBMP) for veterinary use at the European or German level. Current European and national regulations exclusively apply to the corresponding medicinal products for human use. An increasing number of requests for the regulatory classification of CBMP for veterinary use, such as allogeneic stem cell preparations and dendritic cell-based autologous tumour vaccines, and a rise in scientific advice for companies developing these products, illustrate the need for adequate legislation. Currently, advice is given and decisions are made on a case-by-case basis regarding the regulatory classification and authorisation requirements.Since some of the CBMP - in particular in the area of stem-cell products - are developed in parallel for human and veterinary use, there is an urgent need to create specific legal definitions, regulations, and guidelines for these complex innovative products in the veterinary sector as well. Otherwise, there is a risk that that the current legal grey area regarding veterinary medicinal products will impede therapeutic innovations in the long run. A harmonised EU-wide approach is desirable. Currently the European legislation on veterinary medicinal products is under revision. In this context, veterinary therapeutics based on allogeneic cells and tissues will be defined and regulated. Certainly, the legal framework does not have to be as comprehensive as for human CBMP; a leaner solution is conceivable, similar to the special provisions for advanced-therapy medicinal products laid down in the German Medicines Act.

  18. Cell-based Immunotherapy for Colorectal Cancer with Cytokine-induced Killer Cells

    PubMed Central

    Kim, Ji Sung; Kim, Yong Guk; Park, Eun Jae; Kim, Boyeong; Lee, Hong Kyung; Hong, Jin Tae; Kim, Youngsoo

    2016-01-01

    Colorectal cancer is the third leading cancer worldwide. Although incidence and mortality of colorectal cancer are gradually decreasing in the US, patients with metastatic colorectal cancer have poor prognosis with an estimated 5-year survival rate of less than 10%. Over the past decade, advances in combination chemotherapy regimens for colorectal cancer have led to significant improvement in progression-free and overall survival. However, patients with metastatic disease gain little clinical benefit from conventional therapy, which is associated with grade 3~4 toxicity with negative effects on quality of life. In previous clinical studies, cell-based immunotherapy using dendritic cell vaccines and sentinel lymph node T cell therapy showed promising therapeutic results for metastatic colorectal cancer. In our preclinical and previous clinical studies, cytokine-induced killer (CIK) cells treatment for colorectal cancer showed favorable responses without toxicities. Here, we review current treatment options for colorectal cancer and summarize available clinical studies utilizing cell-based immunotherapy. Based on these studies, we recommend the use CIK cell therapy as a promising therapeutic strategy for patients with metastatic colorectal cancer. PMID:27162526

  19. A phase I clinical study of vaccination of melanoma patients with dendritic cells loaded with allogeneic apoptotic/necrotic melanoma cells. Analysis of toxicity and immune response to the vaccine and of IL-10 -1082 promoter genotype as predictor of disease progression

    PubMed Central

    von Euw, Erika M; Barrio, María M; Furman, David; Levy, Estrella M; Bianchini, Michele; Peguillet, Isabelle; Lantz, Olivier; Vellice, Alejandra; Kohan, Abraham; Chacón, Matías; Yee, Cassian; Wainstok, Rosa; Mordoh, José

    2008-01-01

    Background Sixteen melanoma patients (1 stage IIC, 8 stage III, and 7 stage IV) were treated in a Phase I study with a vaccine (DC/Apo-Nec) composed of autologous dendritic cells (DCs) loaded with a mixture of apoptotic/necrotic allogeneic melanoma cell lines (Apo-Nec), to evaluate toxicity and immune responses. Also, IL-10 1082 genotype was analyzed in an effort to predict disease progression. Methods PBMC were obtained after leukapheresis and DCs were generated from monocytes cultured in the presence of GM-CSF and IL-4 in serum-free medium. Immature DCs were loaded with gamma-irradiated Apo-Nec cells and injected id without adjuvant. Cohorts of four patients were given four vaccines each with 5, 10, 15, or 20 × 106 DC/Apo-Nec cell per vaccine, two weeks apart. Immune responses were measured by ELISpot and tetramer analysis. Il-10 genotype was measured by PCR and corroborated by IL-10 production by stimulated PBMC. Results Immature DCs efficiently phagocytosed melanoma Apo-Nec cells and matured after phagocytosis as evidenced by increased expression of CD83, CD80, CD86, HLA class I and II, and 75.2 ± 16% reduction in Dextran-FITC endocytosis. CCR7 was also up-regulated upon Apo-Nec uptake in DCs from all patients, and accordingly DC/Apo-Nec cells were able to migrate in vitro toward MIP-3 beta. The vaccine was well tolerated in all patients. The DTH score increased significantly in all patients after the first vaccination (Mann-Whitney Test, p < 0.05). The presence of CD8+T lymphocytes specific to gp100 and Melan A/MART-1 Ags was determined by ELISpot and tetramer analysis in five HLA-A*0201 patients before and after vaccination; one patient had stable elevated levels before and after vaccination; two increased their CD8 + levels, one had stable moderate and one had negligible levels. The analysis of IL-10 promoter -1082 polymorphism in the sixteen patients showed a positive correlation between AA genotype, accompanied by lower in vitro IL-10 production by

  20. Dendritic Cell-Based Genetic Immunotherapy for Ovarian Cancer

    DTIC Science & Technology

    2007-12-01

    a gamma-counter. Maximum and spontaneous release of 51 Cr was obtained from the supernatants of the target cells in 1% Nonidet P-40 and in...16: 1045-9. 7. Piazzolla, G., C. Tortorella, G. Fiore, M. Fanelli, A. Pisconti, and S. Antonaci, Interleukin-12 p40 /p70 ratio and in vivo

  1. Dendritic Cell-Based Genetic Immunotherapy for Ovarian Cancer

    DTIC Science & Technology

    2008-12-01

    post-infection. The concentrations of IL-1A, IL-1B, IL-2, IL-3, IL-4, IL-6, IL-12 ( p40 ), IL-12 (p70), IL-13, IL-17, TNF-α, KC and MCP-1 were analyzed...chemokines whose secretion was up regulated was mixed, and included the Th-1 type cytokines, IL-1α, IL-1β, IL-3, IL-12 ( p40 ), IL-12 (p70), IL-17 and TNF-α...were maximally secreted at 48 h post-infection, and IL-6, IL-12 ( p40 ), IL-12 (p70) and KC were maximally secreted by the DCs at 72 h post-infection

  2. Development of oral cancer vaccine using recombinant Bifidobacterium displaying Wilms' tumor 1 protein.

    PubMed

    Kitagawa, Koichi; Oda, Tsugumi; Saito, Hiroki; Araki, Ayame; Gonoi, Reina; Shigemura, Katsumi; Hashii, Yoshiko; Katayama, Takane; Fujisawa, Masato; Shirakawa, Toshiro

    2017-06-01

    Several types of vaccine-delivering tumor-associated antigens (TAAs) have been developed in basic and clinical research. Wilms' tumor 1 (WT1), identified as a gene responsible for pediatric renal neoplasm, is one of the most promising TAA for cancer immunotherapy. Peptide and dendritic cell-based WT1 cancer vaccines showed some therapeutic efficacy in clinical and pre-clinical studies but as yet no oral WT1 vaccine can be administrated in a simple and easy way. In the present study, we constructed a novel oral cancer vaccine using a recombinant Bifidobacterium longum displaying WT1 protein. B. longum 420 was orally administered into mice inoculated with WT1-expressing tumor cells for 4 weeks to examine anti-tumor effects. To analyze the WT1-specific cellular immune responses to oral B. longum 420, mice splenocytes were isolated and cytokine production and cytotoxic activities were determined. Oral administrations of B. longum 420 significantly inhibited WT1-expressing tumor growth and prolonged survival in mice. Immunohistochemical study and immunological assays revealed that B. longum 420 substantially induced tumor infiltration of CD4(+)T and CD8(+)T cells, systemic WT1-specific cytokine production, and cytotoxic activity mediated by WT1-epitope specific cytotoxic T lymphocytes, with no apparent adverse effects. Our novel oral cancer vaccine safely induced WT1-specific cellular immunity via activation of the gut mucosal immune system and achieved therapeutic efficacy with several practical advantages over existing non-oral vaccines.

  3. Dendritic spikes veto inhibition.

    PubMed

    Stuart, Greg J

    2012-09-06

    How inhibition regulates dendritic excitability is critical to an understanding of the way neurons integrate the many thousands of synaptic inputs they receive. In this issue of Neuron, Müller et al. (2012) show that inhibition blocks the generation of weak dendritic spikes, leaving strong dendritic spikes intact. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Dendritic-tumor fusion cells in cancer immunotherapy.

    PubMed

    Takakura, Kazuki; Kajihara, Mikio; Ito, Zensho; Ohkusa, Toshifumi; Gong, Jianlin; Koido, Shigeo

    2015-03-01

    A promising area of clinical investigation is the use of cancer immunotherapy to treat cancer patients. Dendritic cells (DCs) operate as professional antigen-presenting cells (APCs) and play a critical role in the induction of antitumor immune responses. Thus, DC-based cancer immunotherapy represents a powerful strategy. One DC-based cancer immunotherapy strategy that has been investigated is the administration of fusion cells generated with DCs and whole tumor cells (DC-tumor fusion cells). The DC-tumor fusion cells can process a broad array of tumor-associated antigens (TAAs), including unidentified molecules, and present them through major histocompatibility complex (MHC) class I and II pathways in the context of co-stimulatory signals. Improving the therapeutic efficacy of DC-tumor fusion cell-based cancer immunotherapy requires increased immunogenicity of DCs and whole tumor cells. We discuss the potential ability of DC-tumor fusion cells to activate antigen-specific T cells and strategies to improve the immunogenicity of DC-tumor fusion cells as anticancer vaccines.

  5. Isothermal Dendritic Growth Experiment - PVA Dendrites

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Isothermal Dendritic Growth Experiment (IDGE), flown on three Space Shuttle missions, is yielding new insights into virtually all industrially relevant metal and alloy forming operations. IDGE used transparent organic liquids that form dendrites (treelike structures) similar to those inside metal alloys. Comparing Earth-based and space-based dendrite growth velocity, tip size and shape provides a better understanding of the fundamentals of dentritic growth, including gravity's effects. Shalowgraphic images of pivalic acid (PVA) dendrites forming from the melt show the subtle but distinct effects of gravity-driven heat convection on dentritic growth. In orbit, the dendrite grows as its latent heat is liberated by heat conduction. This yields a blunt dendrite tip. On Earth, heat is carried away by both conduction and gravity-driven convection. This yields a sharper dendrite tip. In addition, under terrestrial conditions, the sidebranches growing in the direction of gravity are augmented as gravity helps carry heat out of the way of the growing sidebranches as opposed to microgravity conditions where no augmentation takes place. IDGE was developed by Rensselaer Polytechnic Institute and NASA/Glenn Research Center. Advanced follow-on experiments are being developed for flight on the International Space Station. Photo Credit: NASA/Glenn Research Center

  6. Dendritic cell therapy for oncology roundtable conference

    PubMed Central

    2011-01-01

    2-3 September 2010, Brussels, Belgium The Dendritic Cell Therapy for Oncology Roundtable Conference was organized by Reliable Cancer Therapies and moderated by Prof. Dr. Steven De Vleeschouwer. The organizer, Reliable Cancer Therapies, is a Swiss non-profit organization that provides information on evidence-based cancer treatments and funding for the development of a selection of promising cancer therapies. In order to be able to give valuable information about dendritic cell (DC) therapy to patients and physicians, the organizing committee felt it necessary to organize this conference to get an up-to-date status of the academic DC therapy field, collect ideas to guide patients towards clinical trials and to induce cross-fertilization for protocol optimization. In total, 31 experts participated to an in-depth discussion about the status and the future development path for dendritic cell vaccines. The conference started with general presentations about cancer immunotherapy, followed by comprehensive overview presentations about the progress in DC vaccine development achieved by each speaker. At the end of the meeting, a thorough general discussion focused on key questions about what is needed to improve DC vaccines. This report does not cover all presentations, but aims to highlight selected points of interest, particularly relating to possible limitations and potential approaches to improvement of DC therapies specifically, and also immunotherapeutic interventions in general terms. PMID:21226916

  7. Free dendritic growth

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.

    1984-01-01

    Free dendritic growth refers to the unconstrained development of crystals within a supercooled melt, which is the classical 'dendrite problem'. Great strides have been taken in recent years in both the theoretical understanding of dendritic growth and its experimental status. The development of this field will be sketched, showing that transport theory and interfacial thermodynamics (capillarity theory) were sufficient ingredients to develop a truly predictive model of dendrite formation. The convenient, but incorrect, notion of 'maximum velocity' was used for many years to estimate the behavior of dendritic transformations until supplanted by modern dynamic stability theory. The proper combinations of transport theory and morphological stability seem to able to predict the salient aspects of dendritic growth, especially in the neighborhood of the tip. The overall development of cast microstructures, such as equiaxed zone formation, rapidly solidified microstructures, etc., also seems to contain additional non-deterministic features which lie outside the current theories discussed here.

  8. Free dendritic growth

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.

    1984-01-01

    Free dendritic growth refers to the unconstrained development of crystals within a supercooled melt, which is the classical 'dendrite problem'. Great strides have been taken in recent years in both the theoretical understanding of dendritic growth and its experimental status. The development of this field will be sketched, showing that transport theory and interfacial thermodynamics (capillarity theory) were sufficient ingredients to develop a truly predictive model of dendrite formation. The convenient, but incorrect, notion of 'maximum velocity' was used for many years to estimate the behavior of dendritic transformations until supplanted by modern dynamic stability theory. The proper combinations of transport theory and morphological stability seem to able to predict the salient aspects of dendritic growth, especially in the neighborhood of the tip. The overall development of cast microstructures, such as equiaxed zone formation, rapidly solidified microstructures, etc., also seems to contain additional non-deterministic features which lie outside the current theories discussed here.

  9. Dendritic polyurea polymers.

    PubMed

    Tuerp, David; Bruchmann, Bernd

    2015-01-01

    Dendritic polymers, subsuming dendrimers as well as hyperbranched or highly branched polymers are well established in the field of polymer chemistry. This review article focuses on urea based dendritic polymers and summarizes their synthetic routes through both isocyanate and isocyanate-free processes. Furthermore, this article highlights applications where dendritic polyureas show their specific chemical and physical potential. For these purposes scientific publications as well as patent literature are investigated to generate a comprehensive overview on this topic.

  10. Targeting dendritic cells--why bother?

    PubMed

    Kreutz, Martin; Tacken, Paul J; Figdor, Carl G

    2013-04-11

    Vaccination is among the most efficient forms of immunotherapy. Although sometimes inducing lifelong protective B-cell responses, T-cell-mediated immunity remains challenging. Targeting antigen to dendritic cells (DCs) is an extensively explored concept aimed at improving cellular immunity. The identification of various DC subsets with distinct functional characteristics now allows for the fine-tuning of targeting strategies. Although some of these DC subsets are regarded as superior for (cross-) priming of naive T cells, controversies still remain about which subset represents the best target for immunotherapy. Because targeting the antigen alone may not be sufficient to obtain effective T-cell responses, delivery systems have been developed to target multiple vaccine components to DCs. In this Perspective, we discuss the pros and cons of targeting DCs: if targeting is beneficial at all and which vaccine vehicles and immunization routes represent promising strategies to reach and activate DCs.

  11. Cancer Vaccines: A Brief Overview.

    PubMed

    Thomas, Sunil; Prendergast, George C

    2016-01-01

    Vaccine approaches for cancer differ from traditional vaccine approaches for infectious disease in tending to focus on clearing active disease rather than preventing disease. In this review, we provide a brief overview of different types of vaccines and adjuvants that have been investigated for the purpose of controlling cancer burdens in patients, some of which are approved for clinical use or in late-stage clinical trials, such as the personalized dendritic cell vaccine sipuleucel-T (Provenge) and the recombinant viral prostate cancer vaccine PSA-TRICOM (Prostvac-VF). Vaccines against human viruses implicated in the development and progression of certain cancers, such as human papillomavirus in cervical cancer, are not considered here. Cancers express "altered self" antigens that tend to induce weaker responses than the "foreign" antigens expressed by infectious agents. Thus, immune stimulants and adjuvant approaches have been explored widely. Vaccine types considered include autologous patient-derived immune cell vaccines, tumor antigen-expressing recombinant virus vaccines, peptide vaccines, DNA vaccines, and heterologous whole-cell vaccines derived from established human tumor cell lines. Opportunities to develop effective cancer vaccines may benefit from seminal recent advances in understanding how immunosuppressive barricades are erected by tumors to mediate immune escape. In particular, targeted ablation of these barricades with novel agents, such as the immune checkpoint drug ipilimumab (anti-CTLA-4) approved recently for clinical use, may offer significant leverage to vaccinologists seeking to control and prevent malignancy.

  12. Cells with dendritic cell morphology and immunophenotype, binuclear morphology, and immunosuppressive function in dendritic cell cultures.

    PubMed

    Dong, Rong; Moulding, Dale; Himoudi, Nourredine; Adams, Stuart; Bouma, Gerben; Eddaoudi, Ayad; Basu, B Piku; Derniame, Sophie; Chana, Prabhjoat; Duncan, Andrew; Anderson, John

    2011-01-01

    Culturing of human peripheral blood CD14 positive monocytes is a method for generation of dendritic cells (DCs) for experimental purposes or for use in clinical grade vaccines. When culturing human DCs in this manner for clinical vaccine production, we noticed that 5-10% of cells within the bulk culture were binuclear or multiple nuclear, but had typical dendritic cell morphology and immunophenotype. We refer to the cells as binuclear cells in dendritic cell cultures (BNiDCs). By using single cell PCR analysis of mitochondrial DNA polymorphisms we demonstrated that approximately 20-25% of cells in DC culture undergo a fusion event. Flow sorted BNiDC express low HLA-DR and IL-12p70, but high levels of IL-10. In mixed lymphocyte reactions, purified BNiDC suppressed lymphocyte proliferation. Blockade of dendritic cell-specific transmembrane protein (DC-STAMP) decreased the number of binuclear cells in DC cultures. BNiDC represent a potentially tolerogenic population within DC preparations for clinical use.

  13. Natural killer T cell based Immunotherapy

    PubMed Central

    Subrahmanyam, Priyanka B.; Sun, Wenji; East, James E.; Li, Junxin; Webb, Tonya J.

    2013-01-01

    Natural killer T (NKT) cells play an important immunoregulatory role and are thought to bridge the innate and adaptive immune responses. Following activation through cognate interactions with lipid antigen presented in the context of CD1d molecules, NKT cells rapidly produce a plethora of cytokines and can also mediate cytotoxicity. Due to their potent effector functions, extensive research has been performed to increase our understanding on how to effectively modulate these cells. In fact, NKT cell agonists have been used as vaccine adjuvants to enhance antigen specific T and B cell responses to infections and malignancy. In this review, we will focus on recent advances in NKT cell-based vaccination strategies. Given the role that NKT cells play in autoimmune disease, infectious diseases, cancer, transplant immunology and dermatology, it is important to understand how to effectively guide their effector functions in order to develop novel immunotherapeutic strategies. PMID:24089657

  14. Direct Transfection of Dendritic Cells in the Epidermis After Plasmid Delivery Enhanced by Surface Electroporation

    PubMed Central

    Amante, Dinah H.; Smith, Trevor R.F.; Kiosses, Bill B.; Sardesai, Niranjan Y.; Humeau, Laurent M.P.F.

    2014-01-01

    Abstract The skin is rich in antigen-presenting cells and as such is an excellent target tissue for vaccination strategies. Electroporation is a physical delivery method that potentiates the uptake of DNA vaccines into target cells. Intradermal electroporation offers a minimally invasive solution to DNA delivery in the clinic. Here we describe the direct transfection of dendritic cells in the epidermis, using a surface dermal electroporation device, and specifically show a dendritic cell transfected with plasmid expressing green fluorescent protein. The dendritic cell has used its motile capabilities after transfection to move from the epidermis into the dermis, making its way to the lymphatic system. PMID:25470335

  15. DENDRITIC CELLS: ARE THEY CLINICALLY RELEVANT?

    PubMed Central

    Palucka, Karolina; Ueno, Hideki; Roberts, Lee; Fay, Joseph; Banchereau, Jacques

    2010-01-01

    Cancer vaccines have undergone a renaissance due to recent clinical trials showing promising immunological data and some clinical benefit to patients. Current trials exploiting dendritic cells (DCs) as vaccines have shown durable tumor regressions in a fraction of patients. Clinical efficacy of current vaccines is hampered by myeloid-derived suppressor cells, inflammatory type 2 T cells and regulatory T cells (Tregs), all of which prevent the generation of effector cells. To improve the clinical efficacy of DC vaccines, we need to design novel and improved strategies that can boost adaptive immunity to cancer, help overcome Tregs and allow the breakdown of the immunosuppressive tumor microenvironment. This can be achieved by exploiting the fast increasing knowledge about the DC system, including the existence of distinct DC subsets. Critical to the design of better vaccines is the concept of distinct DC subsets and distinct DC activation pathways, all contributing to the generation of unique adaptive immune responses. Such novel DC vaccines will be used as monotherapy in patients with resected disease and in combination with antibodies and/or drugs targeting suppressor pathways and modulation of the tumor environment in patients with metastatic disease. PMID:20693842

  16. Dendritic Cells, New Tools for Vaccination

    DTIC Science & Technology

    2003-01-01

    understanding of the plasticity of DC function and its major role in maintaining homeostasis through the induction of protective immune responses against...when used as a mucosal adjuvant [17]. Alternatively, DCs may be activated through TLR9 by oligodeoxynucleotides containing unmethylated CpG motifs or...mune diseases. 3. PAMPs, (e.g. CpG oligonucleotides that signal via TLR9 , or peptidoglycan and the outer membrane pro- tein A of Klebsiella pneumoniae

  17. Therapeutic Anti-Tumor Vaccines: From Tumor Inhibition to Enhancement

    PubMed Central

    Chiarella, Paula; Reffo, Verónica; Bruzzo, Juan; Bustuoabad, Oscar D.; Ruggiero, Raúl A.

    2008-01-01

    Numerous immunization trials have proved successful in preventing the growth of experimental animal tumors and human hepatocarcinomas induced by hepatitis B virus. These results have prompted researchers and physicians to use vaccines in a therapeutic mode but the results have, in general, been disappointing even when strongly immunogenic murine tumors were concerned. Data presented herein suggest that immunotherapy induced by a single dose of a dendritic cell-based vaccine against a murine established tumor or against residual tumor cells after debulking the primary tumor, can render not only inhibitory or null but also stimulatory effects on tumor growth. These different effects might be dependent on where the system is located in the immune response curve that relates the quantity of the immune response to the quantity of target tumor cells. We suggest that high ratios render tumor inhibition, medium and very low ratios render null effects and low ratios—between medium and very low ones—render tumor stimulation. Since the magnitude of these ratios would depend on the antigenic profile of the tumor, the immunogenic strength of the vaccine used and the immunological state of the host, studies aimed to determine the magnitude of these variables in each particular case, seem to be necessary as a pre-condition to design rational immunotherapeutic approaches to cancer. In contrast, if these studies are neglected, the worst thing that an immunotherapist could face is not merely a null effect but enhancement of tumor growth. PMID:21892285

  18. Glatiramer acetate fights against Alzheimer’s disease by inducing dendritic-like microglia expressing insulin-like growth factor 1

    PubMed Central

    Butovsky, Oleg; Koronyo-Hamaoui, Maya; Kunis, Gilad; Ophir, Eran; Landa, Gennady; Cohen, Hagit; Schwartz, Michal

    2006-01-01

    Alzheimer’s disease (AD) is characterized by plaque formation, neuronal loss, and cognitive decline. The functions of the local and systemic immune response in this disease are still controversial. Using AD double-transgenic (APP/PS1) mice, we show that a T cell-based vaccination with glatiramer acetate, given according to a specific regimen, resulted in decreased plaque formation and induction of neurogenesis. It also reduced cognitive decline, assessed by performance in a Morris water maze. The vaccination apparently exerted its effect by causing a phenotype switch in brain microglia to dendritic-like (CD11c) cells producing insulin-like growth factor 1. In vitro findings showed that microglia activated by aggregated β-amyloid, and characterized as CD11b+/CD11c−/MHC class II−/TNF-α+ cells, impeded neurogenesis from adult neural stem/progenitor cells, whereas CD11b+/CD11c+/MHC class II+/TNF-α− microglia, a phenotype induced by IL-4, counteracted the adverse β-amyloid-induced effect. These results suggest that dendritic-like microglia, by facilitating the necessary adjustment, might contribute significantly to the brain’s resistance to AD and argue against the use of antiinflammatory drugs. PMID:16864778

  19. Dendritic cells and immunotherapy for cancer.

    PubMed

    Chang, David H; Dhodapkar, Madhav V

    2003-06-01

    Dendritic cells, nature's adjuvant, are antigen-presenting cells specialized to initiate and regulate immunity. Their potent antigen-presenting function has encouraged targeting of dendritic cells (DCs) for harnessing the immune system against cancer. DCs are efficient at activating not only CD4+ helper T-cells and CD8+ killer T-cells but also B-cells and innate effectors such as natural killer and natural killer T-cells. Early studies of adoptive transfer of tumor antigen-loaded DCs have shown promise. However, DC vaccination is at an early stage, and several parameters still need to be established. The complexity of the DC system brings about the necessity for its rational manipulation for achieving protective and therapeutic immunity in patients.

  20. Partial Protection against Porcine Influenza A Virus by a Hemagglutinin-Expressing Virus Replicon Particle Vaccine in the Absence of Neutralizing Antibodies

    PubMed Central

    Ricklin, Meret E.; Vielle, Nathalie J.; Python, Sylvie; Brechbühl, Daniel; Zumkehr, Beatrice; Posthaus, Horst; Zimmer, Gert; Summerfield, Artur

    2016-01-01

    This work was initiated by previous reports demonstrating that mismatched influenza A virus (IAV) vaccines can induce enhanced disease, probably mediated by antibodies. Our aim was, therefore, to investigate if a vaccine inducing opsonizing but not neutralizing antibodies against the hemagglutinin (HA) of a selected heterologous challenge virus would enhance disease or induce protective immune responses in the pig model. To this end, we immunized pigs with either whole inactivated virus (WIV)-vaccine or HA-expressing virus replicon particles (VRP) vaccine based on recombinant vesicular stomatitis virus (VSV). Both types of vaccines induced virus neutralizing and opsonizing antibodies against homologous virus as shown by a highly sensitive plasmacytoid dendritic cell-based opsonization assay. Opsonizing antibodies showed a broader reactivity against heterologous IAV compared with neutralizing antibodies. Pigs immunized with HA-recombinant VRP vaccine were partially protected from infection with a mismatched IAV, which was not neutralized but opsonized by the immune sera. The VRP vaccine reduced lung lesions, lung inflammatory cytokine responses, serum IFN-α responses, and viral loads in the airways. Only the VRP vaccine was able to prime IAV-specific IFNγ/TNFα dual secreting CD4+ T cells detectable in the peripheral blood. In summary, this work demonstrates that with the virus pair selected, a WIV vaccine inducing opsonizing antibodies against HA which lack neutralizing activity, is neither protective nor does it induce enhanced disease in pigs. In contrast, VRP-expressing HA is efficacious vaccines in swine as they induced both potent antibodies and T-cell immunity resulting in a broader protective value. PMID:27446083

  1. Partial Protection against Porcine Influenza A Virus by a Hemagglutinin-Expressing Virus Replicon Particle Vaccine in the Absence of Neutralizing Antibodies.

    PubMed

    Ricklin, Meret E; Vielle, Nathalie J; Python, Sylvie; Brechbühl, Daniel; Zumkehr, Beatrice; Posthaus, Horst; Zimmer, Gert; Summerfield, Artur

    2016-01-01

    This work was initiated by previous reports demonstrating that mismatched influenza A virus (IAV) vaccines can induce enhanced disease, probably mediated by antibodies. Our aim was, therefore, to investigate if a vaccine inducing opsonizing but not neutralizing antibodies against the hemagglutinin (HA) of a selected heterologous challenge virus would enhance disease or induce protective immune responses in the pig model. To this end, we immunized pigs with either whole inactivated virus (WIV)-vaccine or HA-expressing virus replicon particles (VRP) vaccine based on recombinant vesicular stomatitis virus (VSV). Both types of vaccines induced virus neutralizing and opsonizing antibodies against homologous virus as shown by a highly sensitive plasmacytoid dendritic cell-based opsonization assay. Opsonizing antibodies showed a broader reactivity against heterologous IAV compared with neutralizing antibodies. Pigs immunized with HA-recombinant VRP vaccine were partially protected from infection with a mismatched IAV, which was not neutralized but opsonized by the immune sera. The VRP vaccine reduced lung lesions, lung inflammatory cytokine responses, serum IFN-α responses, and viral loads in the airways. Only the VRP vaccine was able to prime IAV-specific IFNγ/TNFα dual secreting CD4(+) T cells detectable in the peripheral blood. In summary, this work demonstrates that with the virus pair selected, a WIV vaccine inducing opsonizing antibodies against HA which lack neutralizing activity, is neither protective nor does it induce enhanced disease in pigs. In contrast, VRP-expressing HA is efficacious vaccines in swine as they induced both potent antibodies and T-cell immunity resulting in a broader protective value.

  2. Dendrite Model Explained

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Angie Jackman, a NASA project manager in microgravity research, explains a model of a dendrite to a visitor to the NASA exhibit at AirVenture 2000 sponsored by the Experimental Aircraft Association in Oshkosh, WI. The model depicts microscopic dendrites that grow as molten metals solidify. NASA sponsored three experiments aboard the Space Shuttle that used the microgravity environment to study the formation of large (1 to 4 mm) dendrites without Earth's gravity disrupting their growth. Three advanced follow-on experiments, managed by Jackman, are being developed for the International Space Station (ISS).

  3. HPV vaccine

    MedlinePlus

    ... HPV; Gardasil; HPV2; HPV4; Vaccine to prevent cervical cancer; Genital warts - HPV vaccine; Cervical dysplasia - HPV vaccine; Cervical cancer - HPV vaccine; Cancer of the cervix - HPV vaccine; ...

  4. Nanoparticle Drug Delivery Systems Designed to Improve Cancer Vaccines and Immunotherapy

    PubMed Central

    Fan, Yuchen; Moon, James J.

    2015-01-01

    Recent studies have demonstrated great therapeutic potential of educating and unleashing our own immune system for cancer treatment. However, there are still major challenges in cancer immunotherapy, including poor immunogenicity of cancer vaccines, off-target side effects of immunotherapeutics, as well as suboptimal outcomes of adoptive T cell transfer-based therapies. Nanomaterials with defined physico-biochemical properties are versatile drug delivery platforms that may address these key technical challenges facing cancer vaccines and immunotherapy. Nanoparticle systems have been shown to improve targeted delivery of tumor antigens and therapeutics against immune checkpoint molecules, amplify immune activation via the use of new stimuli-responsive or immunostimulatory materials, and augment the efficacy of adoptive cell therapies. Here, we review the current state-of-the-art in nanoparticle-based strategies designed to potentiate cancer immunotherapies, including cancer vaccines with subunit antigens (e.g., oncoproteins, mutated neo-antigens, DNA and mRNA antigens) and whole-cell tumor antigens, dendritic cell-based vaccines, artificial antigen-presenting cells, and immunotherapeutics based on immunogenic cell death, immune checkpoint blockade, and adoptive T-cell therapy. PMID:26350600

  5. Dendritic Cell Targeting of Bacillus anthracis Protective Antigen Expressed by Lactobacillus acidophilus Protects Mice from Lethal Challenge

    DTIC Science & Technology

    2008-10-28

    Dendritic cell targeting of Bacillus anthracis protective antigen expressed by Lactobacillus acidophilus protects mice from lethal challenge M...lethal chal- lenge. A vaccine strategy was established by using Lactobacillus acidophilus to deliver Bacillus anthracis protective antigen (PA) via...4. TITLE AND SUBTITLE Dendritic cell targeting of Bacillus anthracis protective antigen expressed by Lactobacillus acidophilus protects mice

  6. Dendritic Growth Investigators

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Representatives of NASA materials science experiments supported the NASA exhibit at the Rernselaer Polytechnic Institute's Space Week activities, April 5 through 11, 1999. From left to right are: Angie Jackman, project manager at NASA's Marshall Space Flight Center for dendritic growth experiments; Dr. Martin Glicksman of Rennselaer Polytechnic Instutute, Troy, NY, principal investigator on the Isothermal Dendritic Growth Experiment (IDGE) that flew three times on the Space Shuttle; and Dr. Matthew Koss of College of the Holy Cross in Worcester, MA, a co-investigator on the IDGE and now principal investigator on the Transient Dendritic Solidification Experiment being developed for the International Space Station (ISS). The image at far left is a dendrite grown in Glicksman's IDGE tests aboard the Shuttle. Glicksman is also principal investigator for the Evolution of Local Microstructures: Spatial Instabilities of Coarsening Clusters.

  7. Dendritic cells during Epstein Barr virus infection

    PubMed Central

    Christian, Münz

    2014-01-01

    Epstein Barr virus (EBV) causes persistent infection in more than 90% of the human adult population and is associated with 2% of all tumors in humans. This γ-herpes virus infects primarily human B and epithelial cells, but it has been reported to be sensed by dendritic cells (DCs) during primary infection. These activated DCs are thought to contribute to innate restriction of EBV infection and initiate EBV-specific adaptive immune responses via cross-priming. The respective evidence and their potential importance for EBV-specific vaccine development will be discussed in this review. PMID:24999343

  8. Dendritic Immunotherapy Improvement for an Optimal Control Murine Model

    PubMed Central

    Chimal-Eguía, J. C.; Castillo-Montiel, E.

    2017-01-01

    Therapeutic protocols in immunotherapy are usually proposed following the intuition and experience of the therapist. In order to deduce such protocols mathematical modeling, optimal control and simulations are used instead of the therapist's experience. Clinical efficacy of dendritic cell (DC) vaccines to cancer treatment is still unclear, since dendritic cells face several obstacles in the host environment, such as immunosuppression and poor transference to the lymph nodes reducing the vaccine effect. In view of that, we have created a mathematical murine model to measure the effects of dendritic cell injections admitting such obstacles. In addition, the model considers a therapy given by bolus injections of small duration as opposed to a continual dose. Doses timing defines the therapeutic protocols, which in turn are improved to minimize the tumor mass by an optimal control algorithm. We intend to supplement therapist's experience and intuition in the protocol's implementation. Experimental results made on mice infected with melanoma with and without therapy agree with the model. It is shown that the dendritic cells' percentage that manages to reach the lymph nodes has a crucial impact on the therapy outcome. This suggests that efforts in finding better methods to deliver DC vaccines should be pursued. PMID:28912828

  9. Dendritic Immunotherapy Improvement for an Optimal Control Murine Model.

    PubMed

    Rangel-Reyes, J C; Chimal-Eguía, J C; Castillo-Montiel, E

    2017-01-01

    Therapeutic protocols in immunotherapy are usually proposed following the intuition and experience of the therapist. In order to deduce such protocols mathematical modeling, optimal control and simulations are used instead of the therapist's experience. Clinical efficacy of dendritic cell (DC) vaccines to cancer treatment is still unclear, since dendritic cells face several obstacles in the host environment, such as immunosuppression and poor transference to the lymph nodes reducing the vaccine effect. In view of that, we have created a mathematical murine model to measure the effects of dendritic cell injections admitting such obstacles. In addition, the model considers a therapy given by bolus injections of small duration as opposed to a continual dose. Doses timing defines the therapeutic protocols, which in turn are improved to minimize the tumor mass by an optimal control algorithm. We intend to supplement therapist's experience and intuition in the protocol's implementation. Experimental results made on mice infected with melanoma with and without therapy agree with the model. It is shown that the dendritic cells' percentage that manages to reach the lymph nodes has a crucial impact on the therapy outcome. This suggests that efforts in finding better methods to deliver DC vaccines should be pursued.

  10. Therapeutic HPV DNA vaccines

    PubMed Central

    Lin, Ken; Roosinovich, Elena; Ma, Barbara; Hung, Chien-Fu

    2010-01-01

    It is now well established that most cervical cancers are causally associated with HPV infection. This realization has led to efforts to control HPV-associated malignancy through prevention or treatment of HPV infection. Currently, commercially available HPV vaccines are not designed to control established HPV infection and associated premalignant and malignant lesions. To treat and eradicate pre-existing HPV infections and associated lesions which remain prevalent in the U.S. and worldwide, effective therapeutic HPV vaccines are needed. DNA vaccination has emerged as a particularly promising form of therapeutic HPV vaccines due to its safety, stability and ability to induce antigen-specific immunity. This review focuses on improving the potency of therapeutic HPV vaccines through modification of dendritic cells (DCs) by [1] increasing the number of antigen-expressing/antigen-loaded DCs, [2] improving HPV antigen expression, processing and presentation in DCs, and [3] enhancing DC and T cell interaction. Continued improvement in therapeutic HPV DNA vaccines may ultimately lead to an effective DNA vaccine for the treatment of HPV-associated malignancies. PMID:20066511

  11. Polyvalent AIDS Vaccines

    PubMed Central

    Lu, Shan; Grimes Serrano, Jill M.; Wang, Shixia

    2013-01-01

    A major hurdle in the development of a global HIV-1 vaccine is viral diversity. For close to three decades, HIV vaccine development has focused on either the induction of T cell immune responses or antibody responses, and only rarely on both components. After the failure of the STEP trial, the scientific community concluded that a T cell-based vaccine would likely not be protective if the T cell immune responses were elicited against only a few dominant epitopes. Similarly, for vaccines focusing on antibody responses, one of the main criticisms after VaxGen’s failed Phase III trials was on the limited antigen breadth included in the two formulations used. The successes of polyvalent vaccine approaches against other antigenically variable pathogens encourage implementation of the same approach for the design of HIV-1 vaccines. A review of the existing HIV-1 vaccination approaches based on the polyvalent principle is included here to provide a historical perspective for the current effort of developing a polyvalent HIV-1 vaccine. Results summarized in this review provide a clear indication that the polyvalent approach is a viable one for the future development of an effective HIV vaccine. PMID:21054250

  12. Isothermal Dendritic Growth Experiment - SCN Dendrites

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Isothermal Dendritic Growth Experiment (IDGE), flown on three Space Shuttle missions, is yielding new insights into virtually all industrially relevant metal and alloy forming operations. IDGE used transparent organic liquids that form dendrites (treelike structures) similar to the crystals that form inside metal alloys. Comparing Earth-based and space-based dentrite growth velocity, tip size and shape provid a better understanding of the fundamentals of dentritic growth, including gravity's effects. These shadowgraphic images show succinonitrile (SCN) dentrites growing in a melt (liquid). The space-grown crystals also have cleaner, better defined sidebranches. IDGE was developed by Rensselaer Polytechnic Institude (RPI) and NASA/ Glenn Research Center(GRC). Advanced follow-on experiments are being developed for flight on the International Space Station. Photo gredit: NASA/Glenn Research Center

  13. Laser vaccine adjuvants

    PubMed Central

    Kashiwagi, Satoshi; Brauns, Timothy; Gelfand, Jeffrey; Poznansky, Mark C

    2014-01-01

    Immunologic adjuvants are essential for current vaccines to maximize their efficacy. Unfortunately, few have been found to be sufficiently effective and safe for regulatory authorities to permit their use in vaccines for humans and none have been approved for use with intradermal vaccines. The development of new adjuvants with the potential to be both efficacious and safe constitutes a significant need in modern vaccine practice. The use of non-damaging laser light represents a markedly different approach to enhancing immune responses to a vaccine antigen, particularly with intradermal vaccination. This approach, which was initially explored in Russia and further developed in the US, appears to significantly improve responses to both prophylactic and therapeutic vaccines administered to the laser-exposed tissue, particularly the skin. Although different types of lasers have been used for this purpose and the precise molecular mechanism(s) of action remain unknown, several approaches appear to modulate dendritic cell trafficking and/or activation at the irradiation site via the release of specific signaling molecules from epithelial cells. The most recent study, performed by the authors of this review, utilized a continuous wave near-infrared laser that may open the path for the development of a safe, effective, low-cost, simple-to-use laser vaccine adjuvant that could be used in lieu of conventional adjuvants, particularly with intradermal vaccines. In this review, we summarize the initial Russian studies that have given rise to this approach and comment upon recent advances in the use of non-tissue damaging lasers as novel physical adjuvants for vaccines. PMID:25424797

  14. Dendritic cells and immunity against cancer

    PubMed Central

    Palucka, Karolina; Ueno, Hideki; Fay, Joseph; Banchereau, Jacques

    2010-01-01

    SUMMARY T cells can reject established tumors when adoptively transferred into patients, thereby demonstrating the power of the immune system for cancer therapy. However, it has proven difficult to maintain adoptively transferred T cells in the long term. Vaccines have the potential to induce tumor-specific effector and memory T cells. However, clinical efficacy of current vaccines is limited, possibly because tumors skew the immune system by means of myeloid-derived suppressor cells, inflammatory type 2 T cells and regulatory T cells (Tregs), all of which prevent the generation of effector cells. To improve the clinical efficacy of cancer vaccines in patients with metastatic disease, we need to design novel and improved strategies that can boost adaptive immunity to cancer, help overcome Tregs and allow the breakdown of the immunosuppressive tumor microenvironment. This can be achieved by exploiting the fast increasing knowledge about the dendritic cell (DC) system, including the existence of distinct DC subsets which respond differentially to distinct activation signals, (functional plasticity), both contributing to the generation of unique adaptive immune responses. We foresee that these novel cancer vaccines will be used as monotherapy in patients with resected disease, and in combination with drugs targeting regulatory/suppressor pathways in patients with metastatic disease. PMID:21158979

  15. Active properties of neuronal dendrites.

    PubMed

    Johnston, D; Magee, J C; Colbert, C M; Cristie, B R

    1996-01-01

    Dendrites of neurons in the central nervous system are the principal sites for excitatory synaptic input. Although little is known about their function, two disparate perspectives have arisen to describe the activity patterns inherent to these diverse tree-like structures. Dendrites are thus considered either passive or active in their role in integrating synaptic inputs. This review follows the history of dendritic research from before the turn of the century to the present, with a primary focus on the hippocampus. A number of recent techniques, including high-speed fluorescence imaging and dendritic patch clamping, have provided new information and perspectives about the active properties of dendrites. The results support previous notions about the dendritic propagation of action potentials and also indicate which types of voltage-gated sodium and calcium channels are expressed and functionally active in dendrites. Possible roles for the active properties of dendrites in synaptic plasticity and integration are also discussed.

  16. Dendritic Polymers for Theranostics

    PubMed Central

    Ma, Yuan; Mou, Quanbing; Wang, Dali; Zhu, Xinyuan; Yan, Deyue

    2016-01-01

    Dendritic polymers are highly branched polymers with controllable structures, which possess a large population of terminal functional groups, low solution or melt viscosity, and good solubility. Their size, degree of branching and functionality can be adjusted and controlled through the synthetic procedures. These tunable structures correspond to application-related properties, such as biodegradability, biocompatibility, stimuli-responsiveness and self-assembly ability, which are the key points for theranostic applications, including chemotherapeutic theranostics, biotherapeutic theranostics, phototherapeutic theranostics, radiotherapeutic theranostics and combined therapeutic theranostics. Up to now, significant progress has been made for the dendritic polymers in solving some of the fundamental and technical questions toward their theranostic applications. In this review, we briefly summarize how to control the structures of dendritic polymers, the theranostics-related properties derived from their structures and their theranostics-related applications. PMID:27217829

  17. Dendritic Release of Neurotransmitters.

    PubMed

    Ludwig, Mike; Apps, David; Menzies, John; Patel, Jyoti C; Rice, Margaret E

    2016-12-06

    Release of neuroactive substances by exocytosis from dendrites is surprisingly widespread and is not confined to a particular class of transmitters: it occurs in multiple brain regions, and includes a range of neuropeptides, classical neurotransmitters, and signaling molecules, such as nitric oxide, carbon monoxide, ATP, and arachidonic acid. This review is focused on hypothalamic neuroendocrine cells that release vasopressin and oxytocin and midbrain neurons that release dopamine. For these two model systems, the stimuli, mechanisms, and physiological functions of dendritic release have been explored in greater detail than is yet available for other neurons and neuroactive substances. © 2017 American Physiological Society. Compr Physiol 7:235-252, 2017.

  18. Lithium Dendrite Formation

    SciTech Connect

    2015-03-06

    Scientists at the Department of Energy’s Oak Ridge National Laboratory have captured the first real-time nanoscale images of lithium dendrite structures known to degrade lithium-ion batteries. The ORNL team’s electron microscopy could help researchers address long-standing issues related to battery performance and safety. Video shows annular dark-field scanning transmission electron microscopy imaging (ADF STEM) of lithium dendrite nucleation and growth from a glassy carbon working electrode and within a 1.2M LiPF6 EC:DM battery electrolyte.

  19. Isothermal Dendritic Growth Experiment Video

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This video, captured during the Isothermal Dendritic Growth Experiment (IDGE) flown on STS-87 as a part of the fourth United States Microgravity payload, shows the growth of a dendrite, and the surface solidification that occurred on the front and back windows of the growth chamber. Dendrites are tiny, tree like structures that form as metals solidify.

  20. HPV Vaccine

    MedlinePlus

    ... Surgery? A Week of Healthy Breakfasts Shyness HPV Vaccine KidsHealth > For Teens > HPV Vaccine A A A ... starting at age 9. continue How Does the Vaccine Work? The HPV vaccine is approved for people ...

  1. Polio Vaccine

    MedlinePlus

    ... staff Home Family Health Infants and Toddlers Polio Vaccine Polio Vaccine Share Print Polio Vaccine What is polio? Poliomyelitis (polio) is a serious ... each year. Fortunately, the use of the polio vaccine has made the disease very rare in most ...

  2. An optimized peptide vaccine strategy capable of inducing multivalent CD8+ T cell responses with potent antitumor effects

    PubMed Central

    Cho, Hyun-Il; Jung, Soo-Hyun; Sohn, Hyun-Jung; Celis, Esteban; Kim, Tai-Gyu

    2015-01-01

    Therapeutic cancer vaccines are an attractive alternative to conventional therapies for treating malignant tumors, and successful tumor eradication depends primarily on obtaining high numbers of long-lasting tumor-reactive CD8+ T cells. Dendritic cell (DC)-based vaccines constitute a promising approach for treating cancer, but in most instances low immune responses and suboptimal therapeutic effects are achieved indicating that further optimization is required. We describe here a novel vaccination strategy with peptide-loaded DCs followed by a mixture of synthetic peptides, polyinosine-polycytidylic acid (poly-IC) and anti-CD40 antibodies (TriVax) for improving the immunogenicity and therapeutic efficacy of DC-based vaccines in a melanoma mouse model. TriVax immunization 7–12 d after priming with antigen-loaded DCs generated large numbers of long-lasting multiple antigen-specific CD8+ T cells capable of recognizing tumor cells. These responses were far superior to those generated by homologous immunizations with either TriVax or DCs. CD8+ T cells but not CD4+ T cells or NK cells mediated the therapeutic efficacy of this heterologous prime-boost strategy. Moreover, combinations of this vaccination regimen with programmed cell death-1 (PD-1) blockade or IL2 anti-IL2 antibody complexes led to complete disease eradication and survival enhancement in melanoma-bearing mice. The overall results suggest that similar strategies would be applicable for the design of effective therapeutic vaccination for treating viral diseases and various cancers, which may circumvent current limitations of cell-based cancer vaccines. PMID:26451316

  3. [Vaccine therapies against digestive-system cancers].

    PubMed

    Sakakibara, Mitsuru; Kanto, Tatsuya

    2011-09-01

    Cancer vaccine is a promising tool to achieve therapeutic responses in patients by inducing anti-tumor immunity. Several cancer vaccine trials have been performed in patients with digestive-system cancers. Two major candidates are peptide vaccine and dendritic cell (DC) vaccine. Since their clinical impacts are still limited, extensive studies are underway in order to identify more effective antigens or to potentiate DC functions. We developed a novel DC possessing potent stimulating activity for Th1, CTL, and NK cells, which are desirable for clinical DC vaccines. We performed the clinical trial using such DC for the treatment of colorectal cancer. In some of vaccinated patients, the capacity of NK cells and CTLs was successfully enhanced. Thus, cancer vaccines could be a therapeutic option for digestive-system cancers.

  4. Transport Processes in Dendritic Crystallization

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.

    1984-01-01

    Free dentritic growth refers to the unconstrained development of crystals within a supercooled melt, which is the classical dendrite problem. The development of theoretical understanding of dendritic growth and its experimental status is sketched showing that transport theory and interfacial thermodynamics (capillarity theory) are insufficient ingredients to develop a truly predictive model of dendrite formation. The convenient, but incorrect, notion of maximum velocity was used for many years to estimate the behavior of dendritic transformations until supplanted by modern dynamic stability theory. The proper combinations of transport theory and morphological stability seem to be able to predict the salient aspects of dendritic growth, especially in the neighborhood of the tip.

  5. Molecular mechanisms of dendrite morphogenesis

    PubMed Central

    Arikkath, Jyothi

    2012-01-01

    Dendrites are key integrators of synaptic information in neurons and play vital roles in neuronal plasticity. Hence, it is necessary that dendrite arborization is precisely controlled and coordinated with synaptic activity to ensure appropriate functional neural network integrity. In the past several years, it has become increasingly clear that several cell intrinsic and extrinsic mechanisms contribute to dendritic arborization. In this review, we will discuss some of the molecular mechanisms that regulate dendrite morphogenesis, particularly in cortical and hippocampal pyramidal neurons and some of the implications of aberrant dendritic morphology for human disease. Finally, we will discuss the current challenges and future directions in the field. PMID:23293584

  6. Vaccines (immunizations) - overview

    MedlinePlus

    Vaccinations; Immunizations; Immunize; Vaccine shots; Prevention - vaccine ... component) of the vaccine. VACCINE SCHEDULE The recommended vaccination (immunization) schedule is updated every 12 months by ...

  7. DNA vaccination as a treatment for chronic kidney disease.

    PubMed

    Wang, Yuan Min; Alexander, Stephen I

    2014-01-01

    Chronic kidney disease is one of the major health problems worldwide. DNA vaccination delivers plasmid DNA encoding the target gene to induce both humoral and cellular immune responses. Here, we describe the methods of CD40 DNA vaccine enhanced by dendritic cell (DC) targeting on the development of Heymann nephritis (HN), a rat model of human membranous nephropathy.

  8. Modification of dendritic development.

    PubMed

    Feria-Velasco, Alfredo; del Angel, Alma Rosa; Gonzalez-Burgos, Ignacio

    2002-01-01

    Since 1890 Ramón y Cajal strongly defended the theory that dendrites and their processes and spines had a function of not just nutrient transport to the cell body, but they had an important conductive role in neural impulse transmission. He extensively discussed and supported this theory in the Volume 1 of his extraordinary book Textura del Sistema Nervioso del Hombre y de los Vertebrados. Also, Don Santiago significantly contributed to a detailed description of the various neural components of the hippocampus and cerebral cortex during development. Extensive investigation has been done in the last Century related to the functional role of these complex brain regions, and their association with learning, memory and some limbic functions. Likewise, the organization and expression of neuropsychological qualities such as memory, exploratory behavior and spatial orientation, among others, depend on the integrity and adequate functional activity of the cerebral cortex and hippocampus. It is known that brain serotonin synthesis and release depend directly and proportionally on the availability of its precursor, tryptophan (TRY). By using a chronic TRY restriction model in rats, we studied their place learning ability in correlation with the dendritic spine density of pyramidal neurons in field CA1 of the hippocampus during postnatal development. We have also reported alterations in the maturation pattern of the ability for spontaneous alternation and task performance evaluating short-term memory, as well as adverse effects on the density of dendritic spines of hippocampal CA1 field pyramidal neurons and on the dendritic arborization and the number of dendritic spines of pyramidal neurons from the third layer of the prefrontal cortex using the same model of TRY restriction. The findings obtained in these studies employing a modified Golgi method, can be interpreted as a trans-synaptic plastic response due to understimulation of serotoninergic receptors located in the

  9. Synopsis of the 6th Walker's Cay Colloquium on Cancer Vaccines and Immunotherapy.

    PubMed

    Kast, W Martin; Levitsky, Hyam; Marincola, Francesco M

    2004-06-22

    The 6th annual Cancer Vaccines and Immunotherapy Colloquium at Walker's Cay was held under the auspices of the Albert B. Sabin Vaccine Institute on March 10-13, 2004. The Colloquium consisted of a select group of 34 scientists representing academia, biotechnology and pharmaceutical industry. The main goal of this gathering was to promote in a peaceful and comfortable environment exchanges between basic and clinical science. The secondary benefit was to inspire novel bench to bedside ventures and at the same time provide feed back about promising and/or disappointing clinical results that could help re-frame some scientific question or guide the design of future trials. Several topics were covered that included tumor antigen discovery and validation, platforms for vaccine development, tolerance, immune suppression and tumor escape mechanisms, adoptive T cell therapy and dendritic cell-based therapies, clinical trials and assessment of response. Here we report salient points raised by speakers or by the audience during animated discussion that followed each individual presentation.

  10. Vaccine hesitancy

    PubMed Central

    Dubé, Eve; Laberge, Caroline; Guay, Maryse; Bramadat, Paul; Roy, Réal; Bettinger, Julie A.

    2013-01-01

    Despite being recognized as one of the most successful public health measures, vaccination is perceived as unsafe and unnecessary by a growing number of individuals. Lack of confidence in vaccines is now considered a threat to the success of vaccination programs. Vaccine hesitancy is believed to be responsible for decreasing vaccine coverage and an increasing risk of vaccine-preventable disease outbreaks and epidemics. This review provides an overview of the phenomenon of vaccine hesitancy. First, we will characterize vaccine hesitancy and suggest the possible causes of the apparent increase in vaccine hesitancy in the developed world. Then we will look at determinants of individual decision-making about vaccination. PMID:23584253

  11. Cancer therapy and vaccination.

    PubMed

    Aly, Hamdy A A

    2012-08-31

    Cancer remains one of the leading causes of death worldwide, both in developed and in developing nations. It may affect people at all ages, even fetuses, but the risk for most varieties increases with age. Current therapeutic approaches which include surgery, chemotherapy and radiotherapy are associated with adverse side effects arising from lack of specificity for tumors. The goal of any therapeutic strategy is to impact on the target tumor cells with limited detrimental effect to normal cell function. Immunotherapy is cancer specific and can target the disease with minimal impact on normal tissues. Cancer vaccines are capable of generating an active tumor-specific immune response and serve as an ideal treatment due to their specificity for tumor cells and long lasting immunological memory that may safeguard against recurrences. Cancer vaccines are designed to either prevent (prophylactic) or treat established cancer (therapeutic). Identification of tumor-associated antigens (TAAs) and tumor-specific antigens (TSAs) has led to increased efforts to develop vaccination strategies. Vaccines may be composed of whole cells or cell extracts, genetically modified tumor cells to express costimulatory molecules, dendritic cells (DCs) loaded with TAAs, immunization with soluble proteins or synthetic peptides, recombinant viruses or bacteria encoding tumor-associated antigens, and plasmid DNA encoding TSAs or TAAs in conjunction with appropriate immunomodulators. All of these antitumor vaccination approaches aim to induce specific immunological responses and localized to TAAs, destroying tumor cells alone and leaving the vast majority of other healthy cells of the body untouched.

  12. B cell and T cell immunity in the female genital tract: potential of distinct mucosal routes of vaccination and role of tissue-associated dendritic cells and natural killer cells.

    PubMed

    Anjuère, F; Bekri, S; Bihl, F; Braud, V M; Cuburu, N; Czerkinsky, C; Hervouet, C; Luci, C

    2012-10-01

    The female genital mucosa constitutes the major port of entry of sexually transmitted infections. Most genital microbial pathogens represent an enormous challenge for developing vaccines that can induce genital immunity that will prevent their transmission. It is now established that long-lasting protective immunity at mucosal surfaces has to involve local B-cell and T-cell effectors as well as local memory cells. Mucosal immunization constitutes an attractive way to generate systemic and genital B-cell and T-cell immune responses that can control early infection by sexually transmitted pathogens. Nevertheless, no mucosal vaccines against sexually transmitted infections are approved for human use. The mucosa-associated immune system is highly compartmentalized and the selection of any particular route or combinations of routes of immunization is critical when defining vaccine strategies against genital infections. Furthermore, mucosal surfaces are complex immunocompetent tissues that comprise antigen-presenting cells and also innate immune effectors and non-immune cells that can act as 'natural adjuvants' or negative immune modulators. The functions of these cells have to be taken into account when designing tissue-specific antigen-delivery systems and adjuvants. Here, we will discuss data that compare different mucosal routes of immunization to generate B-cell and T-cell responses in the genital tract, with a special emphasis on the newly described sublingual route of immunization. We will also summarize data on the understanding of the effector and induction mechanisms of genital immunity that may influence the development of vaccine strategies against genital infections. © 2012 The Authors. Clinical Microbiology and Infection © 2012 European Society of Clinical Microbiology and Infectious Diseases.

  13. Engineering Dendritic Cells to Enhance Cancer Immunotherapy

    PubMed Central

    Boudreau, Jeanette E; Bonehill, Aude; Thielemans, Kris; Wan, Yonghong

    2011-01-01

    Cancer immunotherapy aims to establish immune-mediated control of tumor growth by priming T-cell responses to target tumor-associated antigens. Three signals are required for T-cell activation: (i) presentation of cognate antigen in self MHC molecules; (ii) costimulation by membrane-bound receptor-ligand pairs; and (iii) soluble factors to direct polarization of the ensuing immune response. The ability of dendritic cells (DCs) to provide all three signals required for T-cell activation makes them an ideal cancer vaccine platform. Several strategies have been developed to enhance and control antigen presentation, costimulation, and cytokine production. In this review, we discuss progress toward developing DC-based cancer vaccines by genetic modification using RNA, DNA, and recombinant viruses. Furthermore, the ability of DC-based vaccines to activate natural killer (NK) and B-cells, and the impact of gene modification strategies on these populations is described. Clinical trials using gene-modified DCs have shown modest results, therefore, further considerations for DC manipulation to enhance their clinical efficacy are also discussed. PMID:21468005

  14. Dendritic Spikes in Sensory Perception.

    PubMed

    Manita, Satoshi; Miyakawa, Hiroyoshi; Kitamura, Kazuo; Murayama, Masanori

    2017-01-01

    What is the function of dendritic spikes? One might argue that they provide conditions for neuronal plasticity or that they are essential for neural computation. However, despite a long history of dendritic research, the physiological relevance of dendritic spikes in brain function remains unknown. This could stem from the fact that most studies on dendrites have been performed in vitro. Fortunately, the emergence of novel techniques such as improved two-photon microscopy, genetically encoded calcium indicators (GECIs), and optogenetic tools has provided the means for vital breakthroughs in in vivo dendritic research. These technologies enable the investigation of the functions of dendritic spikes in behaving animals, and thus, help uncover the causal relationship between dendritic spikes, and sensory information processing and synaptic plasticity. Understanding the roles of dendritic spikes in brain function would provide mechanistic insight into the relationship between the brain and the mind. In this review article, we summarize the results of studies on dendritic spikes from a historical perspective and discuss the recent advances in our understanding of the role of dendritic spikes in sensory perception.

  15. Dendritic Spikes in Sensory Perception

    PubMed Central

    Manita, Satoshi; Miyakawa, Hiroyoshi; Kitamura, Kazuo; Murayama, Masanori

    2017-01-01

    What is the function of dendritic spikes? One might argue that they provide conditions for neuronal plasticity or that they are essential for neural computation. However, despite a long history of dendritic research, the physiological relevance of dendritic spikes in brain function remains unknown. This could stem from the fact that most studies on dendrites have been performed in vitro. Fortunately, the emergence of novel techniques such as improved two-photon microscopy, genetically encoded calcium indicators (GECIs), and optogenetic tools has provided the means for vital breakthroughs in in vivo dendritic research. These technologies enable the investigation of the functions of dendritic spikes in behaving animals, and thus, help uncover the causal relationship between dendritic spikes, and sensory information processing and synaptic plasticity. Understanding the roles of dendritic spikes in brain function would provide mechanistic insight into the relationship between the brain and the mind. In this review article, we summarize the results of studies on dendritic spikes from a historical perspective and discuss the recent advances in our understanding of the role of dendritic spikes in sensory perception. PMID:28261060

  16. Carbon nanotubes as vaccine scaffolds

    PubMed Central

    Scheinberg, David A.; McDevitt, Michael R.; Dao, Tao; Mulvey, Justin J.; Feinberg, Evan; Alidori, Simone

    2013-01-01

    Carbon nanotubes display characteristics that are potentially useful in their development as scaffolds for vaccine compositions. These features include stability in vivo, lack of intrinsic immunogenicity, low toxicity, and the ability to be appended with multiple copies of antigens. In addition, the particulate nature of carbon nanotubes and their unusual properties of rapid entry into antigen-presenting cells, such as dendritic cells, make them especially useful as carriers of antigens. Early attempts demonstrating carbon nanotube-based vaccines can be used in both infectious disease settings and cancer are promising. PMID:23899863

  17. New vaccines against influenza virus

    PubMed Central

    Lee, Young-Tae; Kim, Ki-Hye; Ko, Eun-Ju; Lee, Yu-Na; Kim, Min-Chul; Kwon, Young-Man; Tang, Yinghua; Cho, Min-Kyoung; Lee, Youn-Jeong

    2014-01-01

    Vaccination is one of the most effective and cost-benefit interventions that prevent the mortality and reduce morbidity from infectious pathogens. However, the licensed influenza vaccine induces strain-specific immunity and must be updated annually based on predicted strains that will circulate in the upcoming season. Influenza virus still causes significant health problems worldwide due to the low vaccine efficacy from unexpected outbreaks of next epidemic strains or the emergence of pandemic viruses. Current influenza vaccines are based on immunity to the hemagglutinin antigen that is highly variable among different influenza viruses circulating in humans and animals. Several scientific advances have been endeavored to develop universal vaccines that will induce broad protection. Universal vaccines have been focused on regions of viral proteins that are highly conserved across different virus subtypes. The strategies of universal vaccines include the matrix 2 protein, the hemagglutinin HA2 stalk domain, and T cell-based multivalent antigens. Supplemented and/or adjuvanted vaccination in combination with universal target antigenic vaccines would have much promise. This review summarizes encouraging scientific advances in the field with a focus on novel vaccine designs. PMID:24427759

  18. Self-Adjuvanting Glycopeptide Conjugate Vaccine against Disseminated Candidiasis

    PubMed Central

    Xin, Hong; Cartmell, Jonathan; Bailey, Justin J.; Dziadek, Sebastian; Bundle, David R.; Cutler, Jim E.

    2012-01-01

    Our research on pathogenesis of disseminated candidiasis led to the discovery that antibodies specific for Candida albicans cell surface β-1, 2–mannotriose [β-(Man)3] protect mice. A 14 mer peptide Fba, which derived from the N-terminal portion of the C. albicans cytosolic/cell surface protein fructose-bisphosphate aldolase, was used as the glycan carrier and resulted in a novel synthetic glycopeptide vaccine β-(Man)3-Fba. By a dendritic cell-based immunization approach, this conjugate induced protective antibody responses against both the glycan and peptide parts of the vaccine. In this report, we modified the β-(Man)3-Fba conjugate by coupling it to tetanus toxoid (TT) in order to improve immunogenicity and allow for use of an adjuvant suitable for human use. By new immunization procedures entirely compatible with human use, the modified β-(Man)3-Fba-TT was administered either alone or as a mixture made with alum or monophosphoryl lipid A (MPL) adjuvants and given to mice by a subcutaneous (s.c.) route. Mice vaccinated with or, surprisingly, without adjuvant responded well by making robust antibody responses. The immunized groups showed a high degree of protection against a lethal challenge with C. albicans as evidenced by increased survival times and reduced kidney fungal burden as compared to control groups that received only adjuvant or DPBS buffer prior to challenge. To confirm that induced antibodies were protective, sera from mice immunized against the β-(Man)3-Fba-TT conjugate transferred protection against disseminated candidiasis to naïve mice, whereas C. albicans-absorbed immune sera did not. Similar antibody responses and protection induced by the β-(Man)3-Fba-TT vaccine was observed in inbred BALB/c and outbred Swiss Webster mice. We conclude that addition of TT to the glycopeptide conjugate results in a self-adjuvanting vaccine that promotes robust antibody responses without the need for additional adjuvant, which is novel and represents a

  19. Magnetic and dendritic catalysts.

    PubMed

    Wang, Dong; Deraedt, Christophe; Ruiz, Jaime; Astruc, Didier

    2015-07-21

    The recovery and reuse of catalysts is a major challenge in the development of sustainable chemical processes. Two methods at the frontier between homogeneous and heterogeneous catalysis have recently emerged for addressing this problem: loading the catalyst onto a dendrimer or onto a magnetic nanoparticle. In this Account, we describe representative examples of these two methods, primarily from our research group, and compare them. We then describe new chemistry that combines the benefits of these two methods of catalysis. Classic dendritic catalysis has involved either attaching the catalyst covalently at the branch termini or within the dendrimer core. We have used chelating pyridyltriazole ligands to insolubilize catalysts at the termini of dendrimers, providing an efficient, recyclable heterogeneous catalysts. With the addition of dendritic unimolecular micelles olefin metathesis reactions catalyzed by commercial Grubbs-type ruthenium-benzylidene complexes in water required unusually low amounts of catalyst. When such dendritic micelles include intradendritic ligands, both the micellar effect and ligand acceleration promote faster catalysis in water. With these types of catalysts, we could carry out azide alkyne cycloaddition ("click") chemistry with only ppm amounts of CuSO4·5H2O and sodium ascorbate under ambient conditions. Alternatively we can attach catalysts to the surface of superparamagnetic iron oxide nanoparticles (SPIONs), essentially magnetite (Fe3O4) or maghemite (γ-Fe2O3), offering the opportunity to recover the catalysts using magnets. Taking advantage of the merits of both of these strategies, we and others have developed a new generation of recyclable catalysts: dendritic magnetically recoverable catalysts. In particular, some of our catalysts with a γ-Fe2O3@SiO2 core and 1,2,3-triazole tethers and loaded with Pd nanoparticles generate strong positive dendritic effects with respect to ligand loading, catalyst loading, catalytic activity and

  20. Silicon dendritic web material

    NASA Technical Reports Server (NTRS)

    Meier, D. L.; Campbell, R. B.; Sienkiewicz, L. J.; Rai-Choudhury, P.

    1982-01-01

    The development of a low cost and reliable contact system for solar cells and the fabrication of several solar cell modules using ultrasonic bonding for the interconnection of cells and ethylene vinyl acetate as the potting material for module encapsulation are examined. The cells in the modules were made from dendritic web silicon. To reduce cost, the electroplated layer of silver was replaced with an electroplated layer of copper. The modules that were fabricated used the evaporated Ti, Pd, Ag and electroplated Cu (TiPdAg/Cu) system. Adherence of Ni to Si is improved if a nickel silicide can be formed by heat treatment. The effectiveness of Ni as a diffusion barrier to Cu and the ease with which nickel silicide is formed is discussed. The fabrication of three modules using dendritic web silicon and employing ultrasonic bonding for interconnecting calls and ethylene vinyl acetate as the potting material is examined.

  1. Novel Immune Modulating Cellular Vaccine for Prostate Cancer

    DTIC Science & Technology

    2014-10-01

    AWARD NUMBER: W81XWH-13-1-0423 TITLE: Novel immune modulating cellular vaccine for prostate cancer PRINCIPAL INVESTIGATOR: Smita Nair...2014 2. REPORT TYPE Annual 3. DATES COVERED 30 Sept 2013 to 29 Sept 2014 4. TITLE AND SUBTITLE Novel immune modulating cellular vaccine for...that will safely enhance vaccine -mediated immunity. This lead cellular therapy, called DC-PAPvac-C, consists of dendritic cells (DCs) co-transfected

  2. [Travelers' vaccines].

    PubMed

    Ouchi, Kazunobu

    2011-09-01

    The number of Japanese oversea travelers has gradually increased year by year, however they usually pay less attention to the poor physical condition at the voyage place. Many oversea travelers caught vaccine preventable diseases in developing countries. The Vaccine Guideline for Oversea Travelers 2010 published by Japanese Society of Travel Health will be helpful for spreading the knowledge of travelers' vaccine and vaccine preventable diseases in developing countries. Many travelers' vaccines have not licensed in Japan. I hope these travelers' vaccines, such as typhoid vaccine, meningococcal vaccine, cholera vaccine and so on will be licensed in the near future.

  3. Dendritic Materials Systems

    DTIC Science & Technology

    2003-09-22

    2-hydroxyethyl)-e-caprolactone,” Macromolecules, 32, 6881-4, (1999). Yu, D.; Vladimirov, N.; Fréchet, J.M.J. “ MALDI - TOF in the Characterization of...Mat Sci. Eng., (1999). Yu, D.; Vladimirov, N.; Fréchet, J. M. J. “ MALDI - TOF Mass Spectrometry in the Characterization of Dendritic-Linear Block and...with long endgroups capable of chain entanglements providing uniform continuous films. We found that the surface properties of polyetherimide ( PEI

  4. Human dendritic cell subsets

    PubMed Central

    Collin, Matthew; McGovern, Naomi; Haniffa, Muzlifah

    2013-01-01

    Summary Dendritic cells are highly adapted to their role of presenting antigen and directing immune responses. Developmental studies indicate that DCs originate independently from monocytes and tissue macrophages. Emerging evidence also suggests that distinct subsets of DCs have intrinsic differences that lead to functional specialisation in the generation of immunity. Comparative studies are now allowing many of these properties to be more fully understood in the context of human immunology. PMID:23621371

  5. Silicon dendritic web growth

    NASA Technical Reports Server (NTRS)

    Duncan, S.

    1984-01-01

    Technological goals for a silicon dendritic web growth program effort are presented. Principle objectives for this program include: (1) grow long web crystals front continuously replenished melt; (2) develop temperature distribution in web and melt; (3) improve reproductibility of growth; (4) develop configurations for increased growth rates (width and speed); (5) develop new growth system components as required for improved growth; and (6) evaluate quality of web growth.

  6. Web-dendritic ribbon growth

    NASA Technical Reports Server (NTRS)

    Hilborn, R. B., Jr.; Faust, J. W., Jr.

    1976-01-01

    A web furnace was constructed for pulling dendritic-web samples. The effect of changes in the furnace thermal geometry on the growth of dendritic-web was studied. Several attempts were made to grow primitive dendrites for use as the dendritic seed crystals for web growth and to determine the optimum twin spacing in the dendritic seed crystal for web growth. Mathematical models and computer programs were used to determine the thermal geometries in the susceptor, crucible melt, meniscus, and web. Several geometries were determined for particular furnace geometries and growth conditions. The information obtained was used in conjunction with results from the experimental growth investigations in order to achieve proper conditions for sustained pulling of two dendrite web ribbons. In addition, the facilities for obtaining the following data were constructed: twin spacing, dislocation density, web geometry, resistivity, majority charge carrier type, and minority carrier lifetime.

  7. IDGE: Isothermal Dendritic Growth Experiment

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Isothermal Dendritic Growth Experiment (IDGE) flew on STS-62 to study the microscopic, tree-like structures (dendrites) that form within metals as they solidify from molten materials. The size, shape, and orientation of these dendrites affect the strength and usefulness of metals. Data from this experiment will be used to test and improve the mathematical models that support the industrial production of metals.

  8. Leptospirosis vaccines

    PubMed Central

    Wang, Zhijun; Jin, Li; Węgrzyn, Alicja

    2007-01-01

    Leptospirosis is a serious infection disease caused by pathogenic strains of the Leptospira spirochetes, which affects not only humans but also animals. It has long been expected to find an effective vaccine to prevent leptospirosis through immunization of high risk humans or animals. Although some leptospirosis vaccines have been obtained, the vaccination is relatively unsuccessful in clinical application despite decades of research and millions of dollars spent. In this review, the recent advancements of recombinant outer membrane protein (OMP) vaccines, lipopolysaccharide (LPS) vaccines, inactivated vaccines, attenuated vaccines and DNA vaccines against leptospirosis are reviewed. A comparison of these vaccines may lead to development of new potential methods to combat leptospirosis and facilitate the leptospirosis vaccine research. Moreover, a vaccine ontology database was built for the scientists working on the leptospirosis vaccines as a starting tool. PMID:18072968

  9. Rotavirus Vaccine

    MedlinePlus

    ... have had a type of bowel blockage called "intussusception" should not get rotavirus vaccine. Babies who are ... of rotavirus vaccine.Severe problems following rotavirus vaccine:Intussusception is a type of bowel blockage that is ...

  10. Evaluation of a multisubunit recombinant polymorphic membrane protein and major outer membrane protein T cell vaccine against Chlamydia muridarum genital infection in three strains of mice.

    PubMed

    Yu, Hong; Karunakaran, Karuna P; Jiang, Xiaozhou; Brunham, Robert C

    2014-08-06

    An efficacious vaccine is needed to control Chlamydia trachomatis infection. In the murine model of Chlamydia muridarum genital infection, multifunctional mucosal CD4 T cells are the foundation for protective immunity, with antibody playing a secondary role. We previously identified four Chlamydia outer membrane proteins (PmpE, PmpF, PmpG and PmpH) as CD4 T cell vaccine candidates using a dendritic cell-based immunoproteomic approach. We also demonstrated that these four polymorphic membrane proteins (Pmps) individually conferred protection as measured by accelerated clearance of Chlamydia infection in the C57BL/6 murine genital tract model. The major outer membrane protein, MOMP is also a well-studied protective vaccine antigen in this system. In the current study, we tested immunogenicity and protection of a multisubunit recombinant protein vaccine consisting of the four Pmps (PmpEFGH) with or without the major outer membrane protein (MOMP) formulated with a Th1 polarizing adjuvant in C57BL/6, Balb/c and C3H mice. We found that C57BL/6 mice vaccinated with PmpEFGH+MOMP elicited more robust cellular immune responses than mice immunized with individual protein antigens. Pmps elicited more variable cellular immune responses than MOMP among the three strains of mice. The combination vaccine accelerated clearance in the three strains of mice although at different rates. We conclude that the recombinant outer membrane protein combination constitutes a promising first generation Chlamydia vaccine construct that should provide broad immunogenicity in an outbred population. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Harnessing Human Dendritic Cell Subsets for Medicine

    PubMed Central

    Ueno, Hideki; Schmitt, Nathalie; Klechevsky, Eynav; Pedroza-Gonzales, Alexander; Matsui, Toshimichi; Zurawski, Gerard; Oh, SangKon; Fay, Joseph; Pascual, Virginia; Banchereau, Jacques; Palucka, Karolina

    2010-01-01

    Summary Immunity results from a complex interplay between the antigen-nonspecific innate immune system and the antigen-specific adaptive immune system. The cells and molecules of the innate system employ non-clonal recognition receptors including lectins, Toll-like receptors, NOD-like receptors and helicases. B and T lymphocytes of the adaptive immune system employ clonal receptors recognizing antigens or their derived peptides in a highly specific manner. An essential link between innate and adaptive immunity is provided by dendritic cells (DCs). DCs can induce such contrasting states as immunity and tolerance. The recent years have brought a wealth of information on the biology of DCs revealing the complexity of this cell system. Indeed, DC plasticity and subsets are prominent determinants of the type and quality of elicited immune responses. Here we summarize our recent studies aimed at a better understanding of the DC system to unravel the pathophysiology of human diseases and design novel human vaccines. PMID:20193020

  12. [Reversion of the immunological eclipse and therapeutic vaccination against cancer in an experimental model].

    PubMed

    Chiarella, Paula; Vulcano, Marisa; Laborde, Evangelina; Vermeulen, Monica; Bruzzo, Juan; Rearte, Barbara; Bustuoabad, Oscar D; Ruggiero, Raul A

    2007-01-01

    Although animals can be prophylactically immunized against the growth of tumor implants, most of the attempts to use immunotherapy to cause the regression of animal and human tumors once they become established have been unsuccessful. To understand the nature of this refractoriness we have studied a methylcholanthrene-induced and strongly immunogenic murine fibrosarcoma. In our model, the onset of this refractoriness was associated with the beginning of an immunosuppressive state known as "immunological eclipse" characterized by a loss of the antitumor immune response when tumor grows beyond a critical size. This immunological eclipse was accompanied by the emergence of a systemic inflammatory condition. Treatment of tumor-bearing mice with a single dose of a synthetic corticosteroid, dexamethasone (DX), reduced significantly all parameters of systemic inflammation and simultaneously reversed the immunological eclipse. The reversion of the eclipse upon DX treatment was not curative itself, but allowed an immunological therapy based in dendritic cells pulsed with tumor antigens, which was itself absolutely ineffective, to exert a significant inhibitory effect against an established growing tumor. The two-step schedule using an anti-inflammatory treatment to reverse the immunological eclipse plus a dendritic cell-based vaccination strategy aimed to stimulate the antitumor immune response, could serve eventually as a model of immunotherapy against animal and human tumors.

  13. Vaccine Hesitancy.

    PubMed

    Jacobson, Robert M; St Sauver, Jennifer L; Finney Rutten, Lila J

    2015-11-01

    Vaccine refusal received a lot of press with the 2015 Disneyland measles outbreak, but vaccine refusal is only a fraction of a much larger problem of vaccine delay and hesitancy. Opposition to vaccination dates back to the 1800 s, Edward Jenner, and the first vaccine ever. It has never gone away despite the public's growing scientific sophistication. A variety of factors contribute to modern vaccine hesitancy, including the layperson's heuristic thinking when it comes to balancing risks and benefits as well as a number of other features of vaccination, including falling victim to its own success. Vaccine hesitancy is pervasive, affecting a quarter to a third of US parents. Clinicians report that they routinely receive requests to delay vaccines and that they routinely acquiesce. Vaccine rates vary by state and locale and by specific vaccine, and vaccine hesitancy results in personal risk and in the failure to achieve or sustain herd immunity to protect others who have contraindications to the vaccine or fail to generate immunity to the vaccine. Clinicians should adopt a variety of practices to combat vaccine hesitancy, including a variety of population health management approaches that go beyond the usual call to educate patients, clinicians, and the public. Strategies include using every visit to vaccinate, the creation of standing orders or nursing protocols to provide vaccination without clinical encounters, and adopting the practice of stating clear recommendations. Up-to-date, trusted resources exist to support clinicians' efforts in adopting these approaches to reduce vaccine hesitancy and its impact.

  14. Vaccine Delivery Methods into the Future

    PubMed Central

    Apostolopoulos, Vasso

    2016-01-01

    Several modes of vaccine delivery have been developed in the last 25 years, which induce strong immune responses in pre-clinical models and in human clinical trials. Some modes of delivery include, adjuvants (aluminum hydroxide, Ribi formulation, QS21), liposomes, nanoparticles, virus like particles, immunostimulatory complexes (ISCOMs), dendrimers, viral vectors, DNA delivery via gene gun, electroporation or Biojector 2000, cell penetrating peptides, dendritic cell receptor targeting, toll-like receptors, chemokine receptors and bacterial toxins. There is an enormous amount of information and vaccine delivery methods available for guiding vaccine and immunotherapeutics development against diseases. PMID:27043641

  15. The thyroid hormone triiodothyronine reinvigorates dendritic cells and potentiates anti-tumor immunity.

    PubMed

    Alamino, V A; Montesinos, M M; Rabinovich, G A; Pellizas, C G

    Dendritic cell (DC) cancer vaccines have shown limited clinical benefit. Thus, the identification of signals and molecular pathways that potentiate the immunogenicity of DCs has become a major challenge in cancer research. Our studies demonstrate that triiodothyronine endows DCs with enhanced ability to stimulate cytotoxic T-cell responses with implications in DC-based immunotherapy.

  16. The thyroid hormone triiodothyronine reinvigorates dendritic cells and potentiates anti-tumor immunity

    PubMed Central

    Alamino, V.A.; Montesinos, M.M.; Rabinovich, G.A.; Pellizas, C.G.

    2016-01-01

    ABSTRACT Dendritic cell (DC) cancer vaccines have shown limited clinical benefit. Thus, the identification of signals and molecular pathways that potentiate the immunogenicity of DCs has become a major challenge in cancer research. Our studies demonstrate that triiodothyronine endows DCs with enhanced ability to stimulate cytotoxic T-cell responses with implications in DC-based immunotherapy. PMID:26942081

  17. Transcriptome analysis of human immune responses following Live Vaccine Strain (LVS) Francisella Tularensis vaccination

    PubMed Central

    Fuller, Claudette L.; Brittingham, Katherine C.; Porter, Mark W.; Hepburn, Matthew J.; Petitt, Patricia L.; Pittman, Phillip R.; Bavari, Sina

    2007-01-01

    The live vaccine strain (LVS) of Francisella tularensis is the only vaccine against tularemia available for humans, yet its mechanism of protection remains unclear. We probed human immunological responses to LVS vaccination with transcriptome analysis using PBMC samples from volunteers at timepoints pre- and post-vaccination. Gene modulation was highly uniform across all time points, implying commonality of vaccine responses. Principal components analysis revealed three highly distinct principal groupings: pre-vaccination (−144 h), early (+18 and +48 h), and late post-vaccination (+192 and +336 h). The most significant changes in gene expression occurred at early post-vaccination timepoints (≤48 h), specifically in the induction of pro-inflammatory- and innate immunity-related genes. Evidence supporting modulation of innate effector function, specifically antigen processing and presentation by dendritic cells, was especially apparent. Our data indicate that the LVS strain of F. tularensis invokes a strong early response upon vaccination. This pattern of gene regulation may provide insightful information regarding both vaccine efficacy and immunopathogenesis that may provide insight into infection with virulent strains of F. tularensis. Additionally, we obtained valuable information that should prove useful in evaluation of vaccine lots as well as efficacy testing of new anti- F. tularensis vaccines. PMID:17349694

  18. Developing dendrites demonstrate unexpected specificity.

    PubMed

    Chalupa, Leo M

    2006-11-22

    Our knowledge of how developing dendrites attain their mature state is still rudimentary. In this issue of Neuron, Mumm et al. rely on time-lapsed analysis of ingrowing dendrites of retinal ganglion cells in transgenic zebrafish to show that this process is much more specific than has been suspected.

  19. Effect of glycoamphiphiles on the solubilization and dendritic cell uptake of a lipopeptide: a preliminary study.

    PubMed

    Bonnet, Dominique; Angyalosi, Gerhild; Demory, Alexandra; Santraine, Valérie; Boulet, Arnaud; Spriet, Corentin; Héliot, Laurent; Gras-Masse, Hélène; Grandjean, Cyrille

    2005-01-01

    The selective delivery of antigens to professional antigen-presenting cells represents a promising approach to improve vaccine efficacy. Addition of a glycoamphiphile to a lipopeptide, whose interest for vaccination is now well-established, greatly favors its solubilization in aqueous solutions through the formation of mixed vesicles. Flow cytometry experiments indicate that this formulation does not diminish the uptake of the lipopeptide by the dendritic cells (DCs). These preliminary results suggest a possible straightforward, noncovalent targeting of cocktail-lipopeptide vaccines to the DCs via carbohydrate receptor-mediated endocytosis.

  20. Dendritic cells in cancer immunotherapy clinical trials: are we making progress?

    PubMed

    Butterfield, Lisa H

    2013-12-13

    Dendritic cells (DC) have been tested in cancer immunotherapy clinical trials for two decades. Over this time, the methods of DC culture (or manufacture) have evolved, the approaches for antigen loading have broadened, the maturation signals have varied and different sites of administration have been tested. The post-vaccination immunologic questions asked have also varied between trials and over time. In this review, I will consider multiple aspects of DC-based vaccines tested in cancer patients, including the cell culture, antigen loading, maturation, and delivery, as well as what we have learned from testing immune responses in vaccinated patients who have benefited clinically, and those who have not measurably benefited.

  1. Edible vaccines.

    PubMed

    Meloen, R H; Hamilton, W D; Casal, J I; Dalsgaard, K; Langeveld, J P

    1998-01-01

    The ultimate vaccine is an oral vaccine which given once protects against a multitude of diseases. Furthermore this ultimate vaccine needs to be very stable and inexpensive to produce. Probably this latter condition can be met only if the vaccines are produced in plants. Such vaccines are called 'edible vaccines'. Edible vaccines can be produced in plants in many ways. Using recombinant plantvirus, CPMV, it was shown that plants can produce massive amounts of chimaeric virus particles which protect after a single injection the target animal against disease. The final step, oral administration, is being addressed at present. Preliminary experiments by others suggest that this step may be solved sooner than expected.

  2. Phenotype and function of nasal dendritic cells

    PubMed Central

    Lee, Haekyung; Ruane, Darren; Law, Kenneth; Ho, Yan; Garg, Aakash; Rahman, Adeeb; Esterházy, Daria; Cheong, Cheolho; Goljo, Erden; Sikora, Andrew G.; Mucida, Daniel; Chen, Benjamin; Govindraj, Satish; Breton, Gaëlle; Mehandru, Saurabh

    2015-01-01

    Intranasal vaccination generates immunity across local, regional and distant sites. However, nasal dendritic cells (DC), pivotal for the induction of intranasal vaccine- induced immune responses, have not been studied in detail. Here, using a variety of parameters, we define nasal DCs in mice and humans. Distinct subsets of “classical” DCs, dependent on the transcription factor zbtb46 were identified in the murine nose. The murine nasal DCs were FLT3 ligand-responsive and displayed unique phenotypic and functional characteristics including the ability to present antigen, induce an allogeneic T cell response and migrate in response to LPS or live bacterial pathogens. Importantly, in a cohort of human volunteers, BDCA-1+ DCs were observed to be the dominant nasal DC population at steady state. During chronic inflammation, the frequency of both BDCA-1+ and BDCA-3hi DCs was reduced in the nasal tissue, associating the loss of these immune sentinels with chronic nasal inflammation. The present study is the first detailed description of the phenotypic, ontogenetic and functional properties of nasal DCs and will inform the design of preventative immunization strategies as well as therapeutic modalities against chronic rhinosinusitis. PMID:25669151

  3. Peripheral blood lymphocytes from low-grade squamous intraepithelial lesions patients recognize vaccine antigens in the presence of activated dendritic cells, and produced high levels of CD8 + IFNγ + T cells and low levels of IL-2 when induced to proliferate

    PubMed Central

    2012-01-01

    Background Most infections with human papillomavirus (HPV) are resolved without clinical intervention, but a minority evolves into chronic lesions of distinct grades, including cervical-uterine cancer. It is known that in most cases the immune system mediates elimination of HPV infection. However, the mechanism of immune evasion leading to HPV persistence and development of early cervical lesions is not fully understood. The aim of the present work was to evaluate the potential of peripheral blood leukocytes (PBL) from low-grade squamous intraepithelial lesions (LSIL) patients to be activated ex-vivo by vaccine antigens, the participation of cytotoxic lymphocytes and regulatory T cells, and to determine the secretion of Th1 and Th2 cytokines mediated by stimulation of T cell receptors. Results We found that PBL from LSIL patients showed a significantly lower proliferation rate to vaccine antigens as compared to that of healthy donors, even though there was not a difference in the presence of antibodies to those antigens in sera from both groups. We did not find differences in either the frequency of CD4 + CD25 + FoxP3+ in PBL, or the levels of IL-4, IL-5 and IL-10 in plasma or conditioned media from PBL incubated with TcR agonists in vitro, between the two groups. However, we detected a lower production of IL-2 and a higher proportion of CD8 + IFNγ + cells in PBL from LSIL patients as compared with PBL from normal donors. We also observed that PBL from patients infected by HPV-16 and −18 were not able to proliferate in the presence of soluble HPV antigens added to the culture; however, a high level of proliferation was attained when these antigens were presented by activated dendritic cells. Conclusions Our results suggest that the immunodeficiency reported in LSIL patients could be due to the inability of specific cytotoxic T lymphocytes that for some unknown reason are present but unable to mount a response when challenged with their antigens

  4. RECENT DEVELOPMENTS IN CANCER VACCINES1

    PubMed Central

    Palucka, Karolina; Ueno, Hideki; Banchereau, Jacques

    2011-01-01

    SUMMARY The adoptive transfer of cancer antigen-specific effector T cells in patients can result in tumor rejection, thereby illustrating the immune system potential for cancer therapy. Ideally, one would like to directly induce efficient tumor-specific effector and memory T cells through vaccination. Therapeutic vaccines have two objectives: priming antigen-specific T cells and reprogramming memory T cells, i.e., a transformation from one type of immunity to another (e.g., regulatory to cytotoxic). Recent successful phase III clinical trials showing benefit to the patients revived cancer vaccines. Dendritic cells (DCs) are essential in generation of immune responses and as such represent targets and vectors for vaccination. We have learned that different DC subsets elicit different T cells. Similarly, different activation methods result in DCs able to elicit distinct T cells. We contend that a careful manipulation of activated DCs will allow cancer immunotherapists to produce the next generation of highly efficient cancer vaccines. PMID:21248270

  5. Edible vaccines.

    PubMed

    Artnzen, C J

    1997-01-01

    Vaccines were the result of trial and error research until molecular biology and genetic engineering made possible the creation of of many new and improved vaccines. New vaccines need to be inexpensive, easily administered, and capable of being stored and transported without refrigeration; without these characteristics, developing countries find it difficult to adopt vaccination as the central strategy for preventing their most devastating diseases. The authors describe a promising approach to inexpensive and effective vaccines: producing them in plants we commonly consume.

  6. [Cell based therapy for COPD].

    PubMed

    Kubo, Hiroshi

    2007-04-01

    To develop a new cell based therapy for chronic obstructive pulmonary disease (COPD), we need to understand 1) the role of tissue-specific and bone marrow-derived stem cells, 2) extracellular matrix, and 3) growth factors. Recently, bronchioalveolar stem cells were identified in murine distal lungs. Impairment of these stem cells may cause improper lung repair after inflammation, resulting in pulmonary emphysema. Bone marrow-derived cells are necessary to repair injured lungs. However, the long term role of these cells is not understood yet. Although we need more careful analysis and additional experiments, growth factors, such as hepatocyte growth factor, are good candidates for the new cell based therapy for COPD. Lung was believed as a non-regenerative organ. Based on these recent reports about lung regeneration and stem cells, however, new strategies to treat COPD and a new point of view to understand the pathophysiology of COPD are rising.

  7. Equiaxed Dendritic Solidification Experiment (EDSE)

    NASA Technical Reports Server (NTRS)

    Beckermann, C.; Steinbach, I.; Karma, A.; deGroh, H. C., III

    1999-01-01

    The objective of the research is to quantitatively determine and understand the fundamental mechanisms that control the microstructural evolution during solidification of an assemblage of equiaxed dendritic crystals. A microgravity experiment will be conducted to obtain benchmark data on the transient growth and interaction of up to four equiaxed crystals of a pure and transparent metal analog (succinonitrile, SCN) under strictly diffusion dominated conditions. Of interest in the experiment are the transient evolution of the primary and secondary dendrite tip speeds, the dendrite morphology (i.e., tip radii, branch spacings, etc.) and solid fraction, the tip selection criterion, and the temperature field in the melt for a range of initial supercoolings and, thus, interaction "strengths" between the crystals. The experiment thus extends the microgravity measurements of Glicksman and coworkers for steady growth of a single dendrite [Isothermal Dendritic Growth Experiment (IDGE), first flown on USMP-2] to a case where growth transients are introduced due to thermal interactions between neighboring dendrites - a situation more close to actual casting conditions. Corresponding earth-based experiments will be conducted to ascertain the influence of melt convection. The experiments are supported by a variety of analytical models and numerical simulations. The data will primarily be used to develop and test theories of transient dendritic growth and the solidification of multiple interacting equiaxed crystals in a supercooled melt.

  8. Equiaxed Dendritic Solidification Experiment (EDSE)

    NASA Technical Reports Server (NTRS)

    Beckermann, C.; Karma, A.; Steinbach, I.; deGroh, H. C., III

    2001-01-01

    The objective of the research is to quantitatively determine and understand the fundamental mechanisms that control the microstructural evolution during equiaxed dendritic solidification. A microgravity experiment will be conducted to obtain benchmark data on the transient growth and interaction of up to four equiaxed crystals of a pure and transparent metal analog (succinonitrile, SCN) under strictly diffusion-dominated conditions. Of interest in the experiment are the transient evolution of the primary and secondary dendrite tip speeds, the dendrite morphology and solid fraction, the tip selection criterion, and the temperature field in the melt for a range of interaction "strengths" between the crystals. The experiment extends the microgravity measurements of Glicksman and co-workers isothermal dendritic growth experiment (IDGE) for steady growth of a single dendrite to a case where growth transients are introduced due to thermal interactions between neighboring dendrites - a situation closer to actual casting conditions. Corresponding Earth-based experiments will be conducted to ascertain the influence of melt convection. The experiments are supported by a variety of analytical models and numerical simulations. The data will be used to develop and test theories of transient dendritic growth and the solidification of multiple interacting equiaxed crystals in a supercooled melt.

  9. Vaccine safety.

    PubMed

    Jacobson, Robert M

    2003-11-01

    Rates of reported adverse events are remarkably low. VAERS identifies an adverse event rate approximating 11.4 reports per 100,000 vaccine doses. Approximately 15% of these reports represent SAEs, but less than 2% involve death; in most cases, reviews have shown no causal relation between the events and the vaccine. Across the spectrum of vaccines in use (including those directed against influenza and hepatitis B virus), many claims of adverse events regarding vaccines represent typical reactions to vaccinations. These reactions can be thought of as foreign-body reactions and predominate among the inactivated vaccines. In controlled studies, the adverse event rates that occur with vaccination resemble those that occur with placebo injections. Typical reactions associated with live viral and bacterial vaccines, such as MMR and varicella vaccines, may resemble attenuated forms of the disease for which the vaccine is directed. Other claims against vaccines represent chance-coincidence or misunderstood data; further studies of claims have vindicated the overall safety of the vaccines in most cases. Two documented safety concerns with vaccines, however, have demonstrated that vaccines (like other biologics and pharmacologic) can result in harm (eg, rotavirus and OPV vaccines). The denouement with these vaccines indicates the broad postmarketing data collection and evaluation that extends efforts made with prelicensure study to balance the benefits from vaccination with the risk for harm. Overall, measures including prelicensure study and postlicensure surveillance, such as VAERS, the Vaccine Safety Datalink Project, and the Clinical Immunization Safety Assessment Centers, have resulted in an exceptional safety profile for the vaccines in use.

  10. Dendritic Growth Velocities in Microgravity

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.; Koss, M. B.; Winsa, E. A.

    1994-01-01

    We measured dendritic tip velocities in pure succinonitrile (SCN) in microgravity. using a sequence of telemetered binary images sent to Earth from the Space Shuttle Columbia (STS-62). Growth velocities were measured as a function of the supercooling over the range 0.05-1.5 K. Microgravity observations show that buoyancy-induced convection alters the growth kinetics of SCN dendrites at supercooling as high as 1.3 K. Also, the dendrite velocity data measured under microgravity agree well with the Ivantsov paraboloidal diffusion solution when coupled to a scaling constant of sigma(sup *) = 0.0157.

  11. Dendritic Growth Velocities in Microgravity

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.; Koss, M. B.; Winsa, E. A.

    1994-01-01

    We measured dendritic tip velocities in pure succinonitrile (SCN) in microgravity. using a sequence of telemetered binary images sent to Earth from the Space Shuttle Columbia (STS-62). Growth velocities were measured as a function of the supercooling over the range 0.05-1.5 K. Microgravity observations show that buoyancy-induced convection alters the growth kinetics of SCN dendrites at supercooling as high as 1.3 K. Also, the dendrite velocity data measured under microgravity agree well with the Ivantsov paraboloidal diffusion solution when coupled to a scaling constant of sigma(sup *) = 0.0157.

  12. Beyond empiricism: informing vaccine development through innate immunity research.

    PubMed

    Levitz, Stuart M; Golenbock, Douglas T

    2012-03-16

    Although a great public heath success, vaccines provide suboptimal protection in some patient populations and are not available to protect against many infectious diseases. Insights from innate immunity research have led to a better understanding of how existing vaccines work and have informed vaccine development. New adjuvants and delivery systems are being designed based upon their capacity to stimulate innate immune sensors and target antigens to dendritic cells, the cells responsible for initiating adaptive immune responses. Incorporating these adjuvants and delivery systems in vaccines can beneficially alter the quantitative and qualitative nature of the adaptive immune response, resulting in enhanced protection.

  13. Rotavirus vaccines

    PubMed Central

    Yen, Catherine; Tate, Jacqueline E; Hyde, Terri B; Cortese, Margaret M; Lopman, Benjamin A; Jiang, Baoming; Glass, Roger I; Parashar, Umesh D

    2016-01-01

    Rotavirus is the leading cause of severe diarrhea among children <5 years worldwide. Currently licensed rotavirus vaccines have been efficacious and effective, with many countries reporting substantial declines in diarrheal and rotavirus-specific morbidity and mortality. However, the full public health impact of these vaccines has not been realized. Most countries, including those with the highest disease burden, have not yet introduced rotavirus vaccines into their national immunization programs. Research activities that may help inform vaccine introduction decisions include (1) establishing effectiveness, impact, and safety for rotavirus vaccines in low-income settings; (2) identifying potential strategies to improve performance of oral rotavirus vaccines in developing countries, such as zinc supplementation; and (3) pursuing alternate approaches to oral vaccines, such as parenteral immunization. Policy- and program-level barriers, such as financial implications of new vaccine introductions, should be addressed to ensure that countries are able to make informed decisions regarding rotavirus vaccine introduction. PMID:24755452

  14. Dendritic oligoguanidines as intracellular translocators.

    PubMed

    Chung, Hyun-Ho; Harms, Guido; Seong, Churl Min; Choi, Byung Hyune; Min, Changhee; Taulane, Joseph P; Goodman, Murray

    2004-01-01

    A series of polyguanidylated dendritic structures that can be used as molecular translocators have been designed and synthesized based on nonpeptide units. The dendritic oligoguanidines conjugated with fluorescein or with a green fluorescent protein (GFP) mutant as cargos were isolated and characterized. Quantification and time-course analyses of the cellular uptake of the conjugates using HeLa S3 and human cervical carcinoma cells reveal that the polyguanidylated dendrimers have comparable translocation efficiency to the Tat(49-57) peptide. Furthermore, the deconvolution microscopy image analysis shows that they are located inside the cells. These results clearly show that nonlinear, branched dendritic oligoguanidines are capable of translocation through the cell membrane. This work also demonstrates the potential of these nonpeptidic dendritic oligoguanidines as carriers for intracellular delivery of small molecule drugs, bioactive peptides, and proteins. Copyright 2004 Wiley Periodicals, Inc. Biopolymers (Pept Sci), 2004

  15. Optimal Current Transfer in Dendrites

    PubMed Central

    Bird, Alex D.

    2016-01-01

    Integration of synaptic currents across an extensive dendritic tree is a prerequisite for computation in the brain. Dendritic tapering away from the soma has been suggested to both equalise contributions from synapses at different locations and maximise the current transfer to the soma. To find out how this is achieved precisely, an analytical solution for the current transfer in dendrites with arbitrary taper is required. We derive here an asymptotic approximation that accurately matches results from numerical simulations. From this we then determine the diameter profile that maximises the current transfer to the soma. We find a simple quadratic form that matches diameters obtained experimentally, indicating a fundamental architectural principle of the brain that links dendritic diameters to signal transmission. PMID:27145441

  16. Can dendritic cells see light?

    NASA Astrophysics Data System (ADS)

    Chen, Aaron C.-H.; Huang, Ying-Ying; Sharma, Sulbha K.; Hamblin, Michael R.

    2010-02-01

    There are many reports showing that low-level light/laser therapy (LLLT) can enhance wound healing, upregulate cell proliferation and has anti-apoptotic effects by activating intracellular protective genes. In the field of immune response study, it is not known with any certainty whether light/laser is proinflammatory or anti-inflammatory. Increasingly in recent times dendritic cells have been found to play an important role in inflammation and the immunological response. In this study, we try to look at the impact of low level near infrared light (810-nm) on murine bone-marrow derived dendritic cells. Changes in surface markers, including MHC II, CD80 and CD11c and the secretion of interleukins induced by light may provide additional evidence to reveal the mystery of how light affects the maturation of dendritic cells as well how these light-induced mature dendritic cells would affect the activation of adaptive immune response.

  17. DENGUE VACCINES.

    PubMed

    Thisyakorn, Usa; Thisyakorn, Chule

    2015-01-01

    The uniqueness of the dengue viruses (DENVs) and the spectrum of disease resulting from infection have made dengue vaccine development difficult. Several vaccine candidates are currently being evaluated in clinical studies. The candidate currently at the most advanced clinical development stage, a live-attenuated tetravalent vaccine based on the chimeric yellow fever-dengue virus (CYD-TDV), has progressed to Phase 3 efficacy studies. Several other live-attenuated vaccines, as well as subunit, DNA, and purified inactivated vaccine candidates are at earlier stages of clinical development. Additional technological approaches, such as virus-vectored and Virus-Like Particles (VLP)-based vaccines are under evaluation in preclinical studies.

  18. Exogenous addition of arachidonic acid to the culture media enhances the functionality of dendritic cells for their possible use in cancer immunotherapy.

    PubMed

    Kumar, Jeetendra; Gurav, Rupali; Kale, Vaijayanti; Limaye, Lalita

    2014-01-01

    The development of dendritic cell based vaccines is a promising approach in cancer immunotherapy. For their successful use in the clinics, the propagation and functionality of DCs is crucial. We earlier established a two-step method for the large scale generation of DCs from umbilical cord blood derived MNCs/CD34(+) cells. This work aims at improving their functionality based on the following observations: in vitro generated DCs can be less efficient in migration and other functional activities due to lower eicosanoid levels. The production of eicosanoids from Arachidonic Acid (AA) can be hampered due to suppression of the enzyme phospholipase A2 by IL-4, an essential cytokine required for the differentiation of DCs. We hypothesized that exogenous addition of AA to the culture media during DC generation may result in DCs with improved functionality. DCs were generated with and without AA. The two DC sets were compared by phenotypic analysis, morphology and functional assays like antigen uptake, MLR, CTL assay and in vitro and in vivo migration. Though there were no differences between the two types of DCs in terms of morphology, phenotype and antigen uptake, AA(+) DCs exhibited an enhanced in vitro and in vivo migration, T cell stimulatory capacity, CTL activity and significantly higher transcript levels of COX-2. AA(+) DCs also show a favorable Th1 cytokine profile than AA- DCs. Thus addition of AA to the culture media is skewing the DCs towards the secretion of more IL-12 and less of IL-10 along with the restoration of eicosanoids levels in a COX-2 mediated pathway thereby enhancing the functionality of these cells to be used as a potent cellular vaccine. Taken together, these findings will be helpful in the better contriving of DC based vaccines for cancer immunotherapy.

  19. Directing dendritic cell immunotherapy towards successful cancer treatment

    PubMed Central

    Sabado, Rachel Lubong; Bhardwaj, Nina

    2010-01-01

    The use of dendritic cells (DCs) for tumor immunotherapy represents a powerful approach for harnessing the patient's own immune system to eliminate tumor cells. However, suboptimal conditions for generating potent immunostimulatory DCs, as well as the induction of tolerance and suppression mediated by the tumors and its microenvironment have contributed to limited success. Combining DC vaccines with new approaches that enhance immunogenicity and overcome the regulatory mechanisms underlying peripheral tolerance may be the key to achieving effective and durable anti-tumor immune responses that translate to better clinical outcomes. PMID:20473346

  20. The Isothermal Dendritic Growth Experiment

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.; Koss, M. B.; Malarik, D. C.

    1998-01-01

    The growth of dendrites is one of the commonly observed forms of solidification encountered when metals and alloys freeze under low thermal gradients, as occurs in most casting and welding processes. In engineering alloys, the details of the dendritic morphology directly relates to important material responses and properties. Of more generic interest, dendritic growth is also an archetypical problem in morphogenesis, where a complex pattern evolves from simple starting conditions. Thus, the physical understanding and mathematical description of how dendritic patterns emerge during the growth process are of interest to both scientists and engineers. The Isothermal Dendritic Growth Experiment (IDGE) is a basic science experiment designed to measure, for a fundamental test of theory, the kinetics and morphology of dendritic growth without complications induced by gravity-driven convection. The IDGE, a collaboration between Rensselaer Polytechnic Institute, in Troy NY, and NASA's Lewis Research Center (LeRC) was developed over a ten year period from a ground-based research program into a space flight experiment. Important to the success of this flight experiment was provision of in situ near-real-time teleoperations during the spaceflight experiment.

  1. Safe and Reproducible Preparation of Functional Dendritic Cells for Immunotherapy in Glioblastoma Patients

    PubMed Central

    Lisini, Daniela; Pogliani, Simona; Dossena, Marta; Bersano, Anna; Pellegatta, Serena; Parati, Eugenio; Finocchiaro, Gaetano; Frigerio, Simona

    2015-01-01

    final product. This article summarizes the results of the quality controls on 54 batches, to demonstrate the feasibility of producing a therapeutic cell-based vaccine via a well-controlled Good Manufacturing Practices (GMP)-compliant production process. The findings may be of scientific interest to those working in the field of preparation of GMP-compliant products for cell-therapy applications. PMID:26273063

  2. Safe and Reproducible Preparation of Functional Dendritic Cells for Immunotherapy in Glioblastoma Patients.

    PubMed

    Nava, Sara; Lisini, Daniela; Pogliani, Simona; Dossena, Marta; Bersano, Anna; Pellegatta, Serena; Parati, Eugenio; Finocchiaro, Gaetano; Frigerio, Simona

    2015-10-01

    . This article summarizes the results of the quality controls on 54 batches, to demonstrate the feasibility of producing a therapeutic cell-based vaccine via a well-controlled Good Manufacturing Practices (GMP)-compliant production process. The findings may be of scientific interest to those working in the field of preparation of GMP-compliant products for cell-therapy applications. ©AlphaMed Press.

  3. How advances in immunology provide insight into improving vaccine efficacy

    PubMed Central

    Slifka, Mark K.; Amanna, Ian

    2014-01-01

    Vaccines represent one of the most compelling examples of how biomedical research has improved society by saving lives and dramatically reducing the burden of infectious disease. Despite the importance of vaccinology, we are still in the early stages of understanding how the best vaccines work and how we can achieve better protective efficacy through improved vaccine design. Most successful vaccines have been developed empirically, but recent advances in immunology are beginning to shed new light on the mechanisms of vaccine-mediated protection and development of long-term immunity. Although natural infection will often elicit lifelong immunity, almost all current vaccines require booster vaccination in order to achieve durable protective humoral immune responses, regardless of whether the vaccine is based on infection with replicating live-attenuated vaccine strains of the specific pathogen or whether they are derived from immunization with inactivated, non-replicating vaccines or subunit vaccines. The form of the vaccine antigen (e.g., soluble or particulate/aggregate) appears to play an important role in determining immunogenicity and the interactions between dendritic cells, B cells and T cells in the germinal center are likely to dictate the magnitude and duration of protective immunity. By learning how to optimize these interactions, we may be able to elicit more effective and long-lived immunity with fewer vaccinations. PMID:24709587

  4. Vaccine Safety

    MedlinePlus

    ... FAQs about Vaccine Safety Research Publications HDM Reports ISO Scientific Agenda Ensuring Safety History Understanding Side Effects ... Datalink Publications Emergency Preparedness Vaccine Safety Partners About ISO File Formats Help: How do I view different ...

  5. Human Neural Cell-Based Biosensor

    DTIC Science & Technology

    2011-06-11

    astrocytes using defined medium conditions, (3) cell-based methods to detect botulinum toxin, and (4) HTS amenable assays for proliferation...progenitors into dopaminergic neurons, motoneurons and astrocytes using defined medium conditions, (3) cell-based methods to detect botulinum toxin...cell line developed for potential commercial distribution. (3) Development of cell based methods to detect botulinum toxin There has been

  6. Dendritic cell immunotherapy versus bevacizumab plus irinotecan in recurrent malignant glioma patients: a survival gain analysis

    PubMed Central

    Artene, Stefan-Alexandru; Turcu-Stiolica, Adina; Hartley, Richard; Ciurea, Marius Eugen; Daianu, Oana; Brindusa, Corina; Alexandru, Oana; Tataranu, Ligia Gabriela; Purcaru, Stefana Oana; Dricu, Anica

    2016-01-01

    Background The bevacizumab and irinotecan protocol is considered a standard treatment regimen for recurrent malignant glioma. Recent advances in immunotherapy have hinted that vaccination with dendritic cells could become an alternative salvage therapy for the treatment of recurrent malignant glioma. Methods A search was performed on PubMed, Cochrane Library, Web of Science, ScienceDirect, and Embase in order to identify studies with patients receiving bevacizumab plus irinotecan or dendritic cell therapy for recurrent malignant gliomas. The data obtained from these studies were used to perform a systematic review and survival gain analysis. Results Fourteen clinical studies with patients receiving either bevacizumab plus irinotecan or dendritic cell vaccination were identified. Seven studies followed patients that received bevacizumab plus irinotecan (302 patients) and seven studies included patients that received dendritic cell immunotherapy (80 patients). For the patients who received bevacizumab plus irinotecan, the mean reported median overall survival was 7.5 (95% confidence interval [CI] 4.84–10.16) months. For the patients who received dendritic cell immunotherapy, the mean reported median overall survival was 17.9 (95% CI 11.34–24.46) months. For irinotecan + bevacizumab group, the mean survival gain was −0.02±2.00, while that for the dendritic cell immunotherapy group was −0.01±4.54. Conclusion For patients with recurrent malignant gliomas, dendritic cell immunotherapy treatment does not have a significantly different effect when compared with bevacizumab and irinotecan in terms of survival gain (P=0.535) and does not improve weighted survival gain (P=0.620). PMID:27877052

  7. Therapeutic vaccination based on side population cells transduced by the granulocyte-macrophage colony-stimulating factor gene elicits potent antitumor immunity.

    PubMed

    Sakamoto, C; Kohara, H; Inoue, H; Narusawa, M; Ogawa, Y; Hirose-Yotsuya, L; Miyamoto, S; Matsumura, Y; Yamada, K; Takahashi, A; Tani, K

    2017-04-01

    Among cancer immunotherapies, granulocyte-macrophage colony-stimulating factor (GM-CSF) gene-transduced tumor cell vaccine (GVAX) therapies appear promising and have been shown to be safe and effective in multiple clinical trials. However, the antitumor efficacies of GVAX therapy alone are in some cases limited. Here we showed that GVAX therapy targeting cancer stem cells (CSCs) substantially suppressed tumor development in syngeneic immunocompetent mice recapitulating normal immune systems. CSCs were isolated as side population (SP) cells from 4T1 murine breast carcinoma cell line and transduced with GM-CSF gene delivered by non-transmissible Sendai virus (4T1-SP/GM). Impaired tumorigenicity of subcutaneously injected 4T1-SP/GM depended on CD8(+) T cells in concert with CD4(+) T cells and natural killer cells. Mice therapeutically vaccinated with irradiated 4T1-SP/GM cells had markedly suppressed tumor development of subcutaneously transplanted 4T1-SP cells compared with those treated with irradiated cells of non-transduced 4T1-SP cells or non-SP (4T1-NSP/GM) cells. Tumor suppression was accompanied by the robust accumulation of mature dendritic cells at vaccination sites and T-helper type 1-skewed systemic cellular immunity. Our results suggested that CSC cell-based GVAX immunotherapy might be clinically useful for inducing potent tumor-specific antitumor immunity.

  8. Dendritic cells pulsed with tumor cells killed by high hydrostatic pressure induce strong immune responses and display therapeutic effects both in murine TC-1 and TRAMP-C2 tumors when combined with docetaxel chemotherapy

    PubMed Central

    MIKYŠKOVÁ, ROMANA; ŠTĚPÁNEK, IVAN; INDROVÁ, MARIE; BIEBLOVÁ, JANA; ŠÍMOVÁ, JANA; TRUXOVÁ, IVA; MOSEROVÁ, IRENA; FUČÍKOVÁ, JITKA; BARTŮŇKOVÁ, JIŘINA; ŠPÍŠEK, RADEK; REINIŠ, MILAN

    2016-01-01

    High hydrostatic pressure (HHP) has been shown to induce immunogenic cell death of cancer cells, facilitating their uptake by dendritic cells (DC) and subsequent presentation of tumor antigens. In the present study, we demonstrated immunogenicity of the HHP-treated tumor cells in mice. HHP was able to induce immunogenic cell death of both TC-1 and TRAMP-C2 tumor cells, representing murine models for human papilloma virus-associated tumors and prostate cancer, respectively. HHP-treated cells induced stronger immune responses in mice immunized with these tumor cells, documented by higher spleen cell cytotoxicity and increased IFNγ production as compared to irradiated tumor cells, accompanied by suppression of tumor growth in vivo in the case of TC-1 tumors, but not TRAMP-C2 tumors. Furthermore, HHP-treated cells were used for DC-based vaccine antigen pulsing. DC co-cultured with HHP-treated tumor cells and matured by a TLR 9 agonist exhibited higher cell surface expression of maturation markers and production of IL-12 and other cytokines, as compared to the DC pulsed with irradiated tumor cells. Immunization with DC cell-based vaccines pulsed with HHP-treated tumor cells induced high immune responses, detected by increased spleen cell cytotoxicity and elevated IFNγ production. The DC-based vaccine pulsed with HHP-treated tumor cells combined with docetaxel chemotherapy significantly inhibited growth of both TC-1 and TRAMP-C2 tumors. Our results indicate that DC-based vaccines pulsed with HHP-inactivated tumor cells can be a suitable tool for chemoimmunotherapy, particularly with regard to the findings that poorly immunogenic TRAMP-C2 tumors were susceptible to this treatment modality. PMID:26718011

  9. Reconsideration of macrophage and dendritic cell classification.

    PubMed

    Kadowaki, Takeshi; Shimada, Misato; Inagawa, Hiroyuki; Kohchi, Chie; Hirashima, Mitsuomi; Soma, Gen-Ichiro

    2012-06-01

    It is well known that the activation of innate immune cells, especially antigen-presenting cells such as macrophages and dendritic cells, can ameliorate or exacerbate various diseases, including cancer. Currently, the macrophages and dendritic cells are categorized into several groups by their cell surface and intracellular molecules. However, the detailed classification of the differences between macrophages and dendritic cells has still not been established. Here, we summarized and reviewed the previous studies on the classification of macrophages and dendritic cells. In addition, the previous classification of monocytes, macrophages and dendritic cells is discussed based on our findings of macrophage activation, which has both conventional and plasmacytoid dendritic cell phenotype.

  10. Cell-based chondral restoration.

    PubMed

    Giuliani, Jeffrey R; Pickett, Adam

    2015-12-01

    As our patients become more physically active at all ages, the incidence of injuries to articular cartilage is increasing and is causing patients significant pain and disability at a younger age. The intrinsic healing response of articular cartilage is poor, because of its limited vascular supply and capacity for chondrocyte division. Nonsurgical management for the focal cartilage lesion is successful in the majority of patients. Those patients that fail conservative management may be candidates for a cartilage reparative or reconstructive procedure. The type of treatment available depends on a multitude of lesion-specific and patient-specific variables. First-line therapies for isolated cartilage lesions have demonstrated good clinical results in the correct patient but typically repair cartilage with fibrocartilage, which has inferior stiffness, inferior resilience, and poorer wear characteristics. Advances in cell-based cartilage restoration have provided the surgeon a means to address focal cartilage lesions utilizing mesenchymal stem cells, chondrocytes, and biomimetic scaffolds to restore hyaline cartilage.

  11. Edible vaccines.

    PubMed Central

    Artnzen, C J

    1997-01-01

    Vaccines were the result of trial and error research until molecular biology and genetic engineering made possible the creation of of many new and improved vaccines. New vaccines need to be inexpensive, easily administered, and capable of being stored and transported without refrigeration; without these characteristics, developing countries find it difficult to adopt vaccination as the central strategy for preventing their most devastating diseases. The authors describe a promising approach to inexpensive and effective vaccines: producing them in plants we commonly consume. Images p190-a p191-a p193-a p196-a PMID:9182305

  12. Homophilic Dscam interactions control complex dendrite morphogenesis

    PubMed Central

    Hughes, Michael E.; Bortnick, Rachel; Tsubouchi, Asako; Bäumer, Philipp; Kondo, Masahiro; Uemura, Tadashi; Schmucker, Dietmar

    2007-01-01

    Summary The morphogenesis of complex dendritic fields requires highly specific patterning and dendrite-dendrite recognition mechanisms. Alternative splicing of the Drosophila cell surface receptor Dscam results in up to 38,016 different receptor isoforms and in vitro binding studies suggested that sequence variability in immunoglobulin-like ecto-domains determines the specificity of strictly homophilic interactions. We report that diverse Dscam receptors play an important role in controlling cell-intrinsic aspects of dendrite guidance. We examined the function of Dscam during morphogenesis of dendrite arborization neurons (“da” neurons) and found that loss of Dscam in single neurons causes abnormal dendritic fasciculation and a strong increase in self-crossing of dendritic branches of da neurons. Restriction of dendritic fields of neighboring class III neurons appeared intact in Dscam deficient neurons suggesting that dendritic self-avoidance but not hetero-neuronal tiling may depend on Dscam function. Over-expression of the same Dscam isoforms in two da neurons with normally overlapping dendritic fields forced a spatial segregation of the two dendritic fields. Taken together, our results suggest that dendritic branches of all four classes of da neurons use isoform-specific homophilic interactions of Dscam to ensure minimal overlap of dendrites. The large pool of Dscam’s extracellular recognition domains may allow the same ‘core’ repulsion mechanism to be used in every da neuron without interfering with hetero-neuronal interactions. PMID:17481395

  13. Recent Advances in Subunit Vaccine Carriers

    PubMed Central

    Vartak, Abhishek; Sucheck, Steven J.

    2016-01-01

    The lower immunogenicity of synthetic subunit antigens, compared to live attenuated vaccines, is being addressed with improved vaccine carriers. Recent reports indicate that the physio-chemical properties of these carriers can be altered to achieve optimal antigen presentation, endosomal escape, particle bio-distribution, and cellular trafficking. The carriers can be modified with various antigens and ligands for dendritic cells targeting. They can also be modified with adjuvants, either covalently or entrapped in the matrix, to improve cellular and humoral immune responses against the antigen. As a result, these multi-functional carrier systems are being explored for use in active immunotherapy against cancer and infectious diseases. Advancing technology, improved analytical methods, and use of computational methodology have also contributed to the development of subunit vaccine carriers. This review details recent breakthroughs in the design of nano-particulate vaccine carriers, including liposomes, polymeric nanoparticles, and inorganic nanoparticles. PMID:27104575

  14. Gold nanorod vaccine for respiratory syncytial virus

    NASA Astrophysics Data System (ADS)

    Stone, John W.; Thornburg, Natalie J.; Blum, David L.; Kuhn, Sam J.; Wright, David W.; Crowe, James E., Jr.

    2013-07-01

    Respiratory syncytial virus (RSV) is a major cause of pneumonia and wheezing in infants and the elderly, but to date there is no licensed vaccine. We developed a gold nanorod construct that displayed the major protective antigen of the virus, the fusion protein (F). Nanorods conjugated to RSV F were formulated as a candidate vaccine preparation by covalent attachment of viral protein using a layer-by-layer approach. In vitro studies using ELISA, electron microscopy and circular dichroism revealed that conformation-dependent epitopes were maintained during conjugation, and transmission electron microscopy studies showed that a dispersed population of particles could be achieved. Human dendritic cells treated with the vaccine induced immune responses in primary human T cells. These results suggest that this vaccine approach may be a potent method for immunizing against viruses such as RSV with surface glycoproteins that are targets for the human immune response.

  15. Revving Up Dendritic Cells while Braking PD-L1 to Jump-Start the Cancer-Immunity Cycle Motor.

    PubMed

    Coffelt, Seth B; de Visser, Karin E

    2016-04-19

    Although it is successful for some, most melanoma patients are refractory to T cell checkpoint inhibition. In this issue of Immunity, Merad and colleagues (2016) describe a dendritic-cell-based strategy to heighten the efficacy of therapeutic anti-PD-L1 and BRAF inhibitors in mouse melanoma models.

  16. [Antiviral vaccines].

    PubMed

    Girard, M

    1999-01-01

    Vaccination has been successful in controlling numerous diseases in man and animals. Smallpox has been eradicated and poliomyelitis is on the verge of being eradicated. The traditional immunization arsenal includes vaccines using live, attenuated, and inactivated organisms. DNA recombinant technology has added two new types of vaccines, i.e. subunit vaccines based on purified antigens produced by genetic engineering in bacterial, yeast, or animal-cell cultures and live recombinant vaccines based on attenuated bacterial or viral vectors. Currently the best known examples of these new vaccines are those using poxvirus vectors (vaccinia virus, canarypox virus, or fowlpox virus) but new vectors are under development. Another application for genetic engineering in the field of vaccinology is the development of DNA vaccines using naked plasmid DNA. This technique has achieved remarkable results in small rodents but its efficacy, safety, and feasibility in man has yet to be demonstrated. Numerous studies are now under way to improve the process. In the field of synthetic vaccines, lipopeptides have shown promise for induction of cell immune response. Development of vaccines for administration by the oral or nasal route may one day revolutionize vaccination techniques. However, effective vaccines against hepatitis C and HIV have stalled in the face of the complexity and pathophysiology of these diseases. These are the greatest challenges confronting scientists at the dawn of the new millennium.

  17. DNA vaccines

    NASA Astrophysics Data System (ADS)

    Gregersen, Jens-Peter

    2001-12-01

    Immunization by genes encoding immunogens, rather than with the immunogen itself, has opened up new possibilities for vaccine research and development and offers chances for new applications and indications for future vaccines. The underlying mechanisms of antigen processing, immune presentation and regulation of immune responses raise high expectations for new and more effective prophylactic or therapeutic vaccines, particularly for vaccines against chronic or persistent infectious diseases and tumors. Our current knowledge and experience of DNA vaccination is summarized and critically reviewed with particular attention to basic immunological mechanisms, the construction of plasmids, screening for protective immunogens to be encoded by these plasmids, modes of application, pharmacokinetics, safety and immunotoxicological aspects. DNA vaccines have the potential to accelerate the research phase of new vaccines and to improve the chances of success, since finding new immunogens with the desired properties is at least technically less demanding than for conventional vaccines. However, on the way to innovative vaccine products, several hurdles have to be overcome. The efficacy of DNA vaccines in humans appears to be much less than indicated by early studies in mice. Open questions remain concerning the persistence and distribution of inoculated plasmid DNA in vivo, its potential to express antigens inappropriately, or the potentially deleterious ability to insert genes into the host cell's genome. Furthermore, the possibility of inducing immunotolerance or autoimmune diseases also needs to be investigated more thoroughly, in order to arrive at a well-founded consensus, which justifies the widespread application of DNA vaccines in a healthy population.

  18. Coding and decoding with dendrites.

    PubMed

    Papoutsi, Athanasia; Kastellakis, George; Psarrou, Maria; Anastasakis, Stelios; Poirazi, Panayiota

    2014-02-01

    Since the discovery of complex, voltage dependent mechanisms in the dendrites of multiple neuron types, great effort has been devoted in search of a direct link between dendritic properties and specific neuronal functions. Over the last few years, new experimental techniques have allowed the visualization and probing of dendritic anatomy, plasticity and integrative schemes with unprecedented detail. This vast amount of information has caused a paradigm shift in the study of memory, one of the most important pursuits in Neuroscience, and calls for the development of novel theories and models that will unify the available data according to some basic principles. Traditional models of memory considered neural cells as the fundamental processing units in the brain. Recent studies however are proposing new theories in which memory is not only formed by modifying the synaptic connections between neurons, but also by modifications of intrinsic and anatomical dendritic properties as well as fine tuning of the wiring diagram. In this review paper we present previous studies along with recent findings from our group that support a key role of dendrites in information processing, including the encoding and decoding of new memories, both at the single cell and the network level. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Novel chemotactic-antigen DNA vaccine against cancer.

    PubMed

    Zhang, Shuren; Zhang, Youhui

    2008-04-01

    Dendritic cells play a pivotal role in immune induction. Dendritic cells perform antigen uptake, processing and presentation to T cells only when they are matured and in the fun