Science.gov

Sample records for dendritic cell-mediated induction

  1. Dendritic cells mediate the induction of polyfunctional human IL17-producing cells (Th17-1 cells) enriched in the bone marrow of patients with myeloma

    PubMed Central

    Barbuto, Scott; Matthews, Phillip; Kukreja, Anjli; Mazumder, Amitabha; Vesole, David; Jagannath, Sundar; Dhodapkar, Madhav V.

    2008-01-01

    IL17-producing (Th17) cells are a distinct lineage of T helper cells that regulate immunity and inflammation. The role of antigen-presenting cells in the induction of Th17 cells in humans remains to be fully defined. Here, we show that human dendritic cells (DCs) are efficient inducers of Th17 cells in culture, including antigen-specific Th17 cells. Although most freshly isolated circulating human Th17 cells secrete IL17 alone or with IL2, those induced by DCs are polyfunctional and coexpress IL17 and IFNγ (Th17-1 cells). The capacity of DCs to expand Th17-1 cells is enhanced upon DC maturation, and mature DCs are superior to monocytes for the expansion of autologous Th17 cells. In myeloma, where tumors are infiltrated by DCs, Th17 cells are enriched in the bone marrow relative to circulation. Bone marrow from patients with myeloma contains a higher proportion of Th17-1 cells compared with the marrow in preneoplastic gammopathy (monoclonal gammopathy of undetermined significance [MGUS]). Uptake of apoptotic but not necrotic myeloma tumor cells by DCs leads to enhanced induction of Th17-1 cells. These data demonstrate the capacity of DCs to induce expansion of polyfunctional IL17-producing T cells in humans, and suggest a role for DCs in the enrichment of Th17-1 cells in the tumor bed. PMID:18669891

  2. Neonatal Fc receptor expression in dendritic cells mediates protective immunity against colorectal cancer.

    PubMed

    Baker, Kristi; Rath, Timo; Flak, Magdalena B; Arthur, Janelle C; Chen, Zhangguo; Glickman, Jonathan N; Zlobec, Inti; Karamitopoulou, Eva; Stachler, Matthew D; Odze, Robert D; Lencer, Wayne I; Jobin, Christian; Blumberg, Richard S

    2013-12-12

    Cancers arising in mucosal tissues account for a disproportionately large fraction of malignancies. Immunoglobulin G (IgG) and the neonatal Fc receptor for IgG (FcRn) have an important function in the mucosal immune system that we have now shown extends to the induction of CD8(+) T cell-mediated antitumor immunity. We demonstrate that FcRn within dendritic cells (DCs) was critical for homeostatic activation of mucosal CD8(+) T cells that drove protection against the development of colorectal cancers and lung metastases. FcRn-mediated tumor protection was driven by DCs activation of endogenous tumor-reactive CD8(+) T cells via the cross-presentation of IgG complexed antigens (IgG IC), as well as the induction of cytotoxicity-promoting cytokine secretion, particularly interleukin-12, both of which were independently triggered by the FcRn-IgG IC interaction in murine and human DCs. FcRn thus has a primary role within mucosal tissues in activating local immune responses that are critical for priming efficient anti-tumor immunosurveillance.

  3. Polypropylene Sulfide Nanoparticle p24 Vaccine Promotes Dendritic Cell-Mediated Specific Immune Responses against HIV-1.

    PubMed

    Caucheteux, Stephan M; Mitchell, John P; Ivory, Matthew O; Hirosue, Sachiko; Hakobyan, Svetlana; Dolton, Garry; Ladell, Kristin; Miners, Kelly; Price, David A; Kan-Mitchell, June; Sewell, Andrew K; Nestle, Frank; Moris, Arnaud; Karoo, Richard O; Birchall, James C; Swartz, Melody A; Hubbel, Jeffrey A; Blanchet, Fabien P; Piguet, Vincent

    2016-06-01

    Delivery of vaccine formulations into the dermis using antigen-coated microneedle patches is a promising and safe approach because of efficient antigen delivery and safety. We evaluated an intradermal vaccine using HIV-1 p24 Gag peptide-conjugated polypropylene sulfide nanoparticles to induce immunity against HIV-1. This peptide-conjugated polypropylene sulfide nanoparticle formulation did not accelerate the maturation of blood- or skin-derived subsets of dendritic cells, either generated in vitro or purified ex vivo, despite efficient uptake in the absence of adjuvant. Moreover, dendritic cell-mediated capture of particulate antigen in this form induced potent HIV-1-specific CD4(+) T-cell responses, as well as B-cell-mediated antibody production. Nanoparticle-based intradermal antigen delivery may therefore provide a new option in the global effort to develop an effective vaccine against HIV-1. PMID:26896775

  4. TWIST modulates prostate cancer cell-mediated bone cell activity and is upregulated by osteogenic induction.

    PubMed

    Yuen, Hiu-Fung; Kwok, Wai-Kei; Chan, Ka-Kui; Chua, Chee-Wai; Chan, Yuen-Piu; Chu, Ying-Ying; Wong, Yong-Chuan; Wang, Xianghong; Chan, Kwok-Wah

    2008-08-01

    TWIST, a helix-loop-helix transcription factor, is highly expressed in many types of human cancer. We have previously found that TWIST confers prostate cancer cells with an enhanced metastatic potential through promoting epithelial-mesenchymal transition (EMT) and a high TWIST expression in human prostate cancer is associated with an increased metastatic potential. The predilection of prostate cancer cells to metastasize to bone may be due to two interplaying mechanisms (i) by increasing the rate of bone remodeling and (ii) by undergoing osteomimicry. We further studied the role of TWIST in promoting prostate cancer to bone metastasis. TWIST expression in PC3, a metastatic prostate cancer cell line, was silenced by small interfering RNA and we found that conditioned medium from PC3 with lower TWIST expression had a lower activity on stimulating osteoclast differentiation and higher activity on stimulating osteoblast mineralization. In addition, we found that these effects were, at least partly, associated with TWIST-induced expression of dickkopf homolog 1 (DKK-1), a factor that promotes osteolytic metastasis. We also examined TWIST and RUNX2 expressions during osteogenic induction of an organ-confined prostate cancer cell, 22Rv1. We observed increased TWIST and RUNX2 expressions upon osteogenic induction and downregulation of TWIST through short hairpin RNA reduced the induction level of RUNX2. In summary, our results suggest that, in addition to EMT, TWIST may also promote prostate cancer to bone metastasis by modulating prostate cancer cell-mediated bone remodeling via regulating the expression of a secretory factor, DKK-1, and enhancing osteomimicry of prostate cancer cells, probably, via RUNX2.

  5. Dendritic cell based immunotherapy using tumor stem cells mediates potent antitumor immune responses.

    PubMed

    Dashti, Amir; Ebrahimi, Marzieh; Hadjati, Jamshid; Memarnejadian, Arash; Moazzeni, Seyed Mohammad

    2016-04-28

    Cancer stem cells (CSCs) are demonstrated to be usually less sensitive to conventional methods of cancer therapies, resulting in tumor relapse. It is well-known that an ideal treatment would be able to selectively target and kill CSCs, so as to avoid the tumor reversion. The aim of our present study was to evaluate the effectiveness of a dendritic cell (DC) based vaccine against CSCs in a mouse model of malignant melanoma. C57BL/6 mouse bone marrow derived DCs pulsed with a murine melanoma cell line (B16F10) or CSC lysates were used as a vaccine. Immunization of mice with CSC lysate-pulsed DCs was able to induce a significant prophylactic effect by a higher increase in lifespan and obvious depression of tumor growth in tumor bearing mice. The mice vaccinated with DCs loaded with CSC-lysate were revealed to produce specific cytotoxic responses to CSCs. The proliferation assay and cytokine (IFN-γ and IL-4) secretion of mice vaccinated with CSC lysate-pulsed DCs also showed more favorable results, when compared to those receiving B16F10 lysate-pulsed DCs. These findings suggest a potential strategy to improve the efficacy of DC-based immunotherapy of cancers. PMID:26803056

  6. In vitro enhancement of dendritic cell-mediated anti-glioma immune response by graphene oxide

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Li, Zhongjun; Duan, Jinhong; Wang, Chen; Fang, Ying; Yang, Xian-Da

    2014-06-01

    Malignant glioma has extremely poor prognosis despite combination treatments with surgery, radiation, and chemotherapy. Dendritic cell (DC)-based immunotherapy may potentially serve as an adjuvant treatment of glioma, but its efficacy generally needs further improvement. Here we explored whether graphene oxide (GO) nanosheets could modulate the DC-mediated anti-glioma immune response in vitro, using the T98G human glioma cell line as the study model. Pulsing DCs with a glioma peptide antigen (Ag) generated a limited anti-glioma response compared to un-pulsed DCs. Pulsing DCs with GO alone failed to produce obvious immune modulation effects. However, stimulating DCs with a mixture of GO and Ag (GO-Ag) significantly enhanced the anti-glioma immune reaction ( p < 0.05). The secretion of interferon gamma (IFN-γ) by the lymphocytes was also markedly boosted by GO-Ag. Additionally, the anti-glioma immune response induced by GO-Ag appeared to be target-specific. Furthermore, at the concentration used in this study, GO exhibited a negligible effect on the viability of the DCs. These results suggested that GO might have potential utility for boosting a DC-mediated anti-glioma immune response.

  7. Layers of dendritic cell-mediated T cell tolerance, their regulation and the prevention of autoimmunity

    PubMed Central

    Mayer, Christian T.; Berod, Luciana; Sparwasser, Tim

    2012-01-01

    The last decades of Nobel prize-honored research have unequivocally proven a key role of dendritic cells (DCs) at controlling both T cell immunity and tolerance. A tight balance between these opposing DC functions ensures immune homeostasis and host integrity. Its perturbation could explain pathological conditions such as the attack of self tissues, chronic infections, and tumor immune evasion. While recent insights into the complex DC network help to understand the contribution of individual DC subsets to immunity, the tolerogenic functions of DCs only begin to emerge. As these consist of many different layers, the definition of a “tolerogenic DC” is subjected to variation. Moreover, the implication of DCs and DC subsets in the suppression of autoimmunity are incompletely resolved. In this review, we point out conceptual controversies and dissect the various layers of DC-mediated T cell tolerance. These layers include central tolerance, Foxp3+ regulatory T cells (Tregs), anergy/deletion and negative feedback regulation. The mode and kinetics of antigen presentation is highlighted as an additional factor shaping tolerance. Special emphasis is given to the interaction between layers of tolerance as well as their differential regulation during inflammation. Furthermore, potential technical caveats of DC depletion models are considered. Finally, we summarize our current understanding of DC-mediated tolerance and its role for the suppression of autoimmunity. Understanding the mechanisms of DC-mediated tolerance and their complex interplay is fundamental for the development of selective therapeutic strategies, e.g., for the modulation of autoimmune responses or for the immunotherapy of cancer. PMID:22783257

  8. Interruption of dendritic cell-mediated TIM-4 signaling induces regulatory T cells and promotes skin allograft survival.

    PubMed

    Yeung, Melissa Y; McGrath, Martina M; Nakayama, Masafumi; Shimizu, Tetsunosuke; Boenisch, Olaf; Magee, Ciara N; Abdoli, Rozita; Akiba, Hisaya; Ueno, Takuya; Turka, Laurence A; Najafian, Nader

    2013-10-15

    Dendritic cells (DCs) are the central architects of the immune response, inducing inflammatory or tolerogenic immunity, dependent on their activation status. As such, DCs are highly attractive therapeutic targets and may hold the potential to control detrimental immune responses. TIM-4, expressed on APCs, has complex functions in vivo, acting both as a costimulatory molecule and a phosphatidylserine receptor. The effect of TIM-4 costimulation on T cell activation remains unclear. In this study, we demonstrate that Ab blockade of DC-expressed TIM-4 leads to increased induction of induced regulatory T cells (iTregs) from naive CD4(+) T cells, both in vitro and in vivo. iTreg induction occurs through suppression of IL-4/STAT6/Gata3-induced Th2 differentiation. In addition, blockade of TIM-4 on previously activated DCs still leads to increased iTreg induction. iTregs induced under TIM-4 blockade have equivalent potency to control and, upon adoptive transfer, significantly prolong skin allograft survival in vivo. In RAG(-/-) recipients of skin allografts adoptively transferred with CD4(+) T cells, we show that TIM-4 blockade in vivo is associated with a 3-fold prolongation in allograft survival. Furthermore, in this mouse model of skin transplantation, increased induction of allospecific iTregs and a reduction in T effector responses were observed, with decreased Th1 and Th2 responses. This enhanced allograft survival and protolerogenic skewing of the alloresponse is critically dependent on conversion of naive CD4(+) to Tregs in vivo. Collectively, these studies identify blockade of DC-expressed TIM-4 as a novel strategy that holds the capacity to induce regulatory immunity in vivo.

  9. INTERRUPTION OF DENDRITIC CELL-MEDIATED TIM-4 SIGNALING INDUCES REGULATORY T CELLS AND PROMOTES SKIN ALLOGRAFT SURVIVAL

    PubMed Central

    Yeung, Melissa Y.; McGrath, Martina M.; Nakayama, Masafumi; Shimizu, Tetsunosuke; Boenisch, Olaf; Magee, Ciara N.; Abdoli, Rozita; Akiba, Hisaya; Ueno, Takuya; Turka, Laurence A.; Najafian, Nader

    2013-01-01

    Dendritic cells (DCs) are the central architects of the immune response, inducing inflammatory or tolerogenic immunity, dependent upon their activation status. As such, DCs are highly attractive therapeutic targets and may hold the potential to control detrimental immune responses. TIM-4, expressed on antigen presenting cells, has complex functions in vivo, acting both as a costimulatory molecule and a phosphatidylserine (PS) receptor. The effect of TIM-4 costimulation on T cell activation remains unclear. Here, we demonstrate that antibody blockade of DC-expressed TIM-4 leads to increased induction of iTregs from naïve CD4+ T cells, both in vitro and in vivo. iTreg induction occurs through suppression of IL-4/STAT6/Gata3 induced Th2 differentiation. In addition, blockade of TIM-4 on previously activated DCs still leads to increased iTreg induction. iTregs induced under TIM-4 blockade have equivalent potency to control and upon adoptive transfer, significantly prolong skin allograft survival in vivo. In RAG−/− recipients of skin allografts adoptively transferred with CD4+ T cells, we show that TIM-4 blockade in vivo is associated with a three-fold prolongation in allograft survival. Furthermore, in this mouse model of skin transplantation, increased induction of allospecific iTregs and a reduction in T effector responses were observed, with decreased Th1 and Th2 responses. This enhanced allograft survival and pro-tolerogenic skewing of the alloresponse is critically dependent upon conversion of naïve CD4+ to Tregs in vivo. Collectively, these studies identify blockade of DC-expressed TIM-4 as a novel strategy which holds the capacity to induce regulatory immunity in vivo. PMID:24038092

  10. Platelet-derived RANK ligand enhances CCL17 secretion from dendritic cells mediated by thymic stromal lymphopoietin.

    PubMed

    Nakanishi, Takahisa; Inaba, Muneo; Inagaki-Katashiba, Noriko; Tanaka, Akihiro; Vien, Phan Thi Xuan; Kibata, Kayoko; Ito, Tomoki; Nomura, Shosaku

    2015-01-01

    Dendritic cells (DCs) play an integral role in cellular cascade that initiate and maintain Th2 responses in allergy. In this study, we examined the interaction between platelets and DCs to determine the role of platelets in the intervention of immune responses through modulation of DC functions. Blood-purified myeloid DCs, which had been stimulated with thymic stromal lymphopoietin (TSLP-DCs), formed aggregates with activated platelets. TSLP-DC maturation was induced after the interaction with TRAP6-activated platelets as indicated by an increase in the expression of CD86, CD40, and CD83. In addition, production of a Th2 cell-attracting chemokine, CCL17, was clearly upregulated by coculture of TSLP-DCs with TRAP6-activated platelets. We further found that an expression of RANK ligand (RANKL) on platelets was upregulated by the TRAP6 activation, and that, using the neutralizing antibody against RANKL, the platelet-derived RANKL induces the activation of TSLP-DCs. Thus, activated platelets can intervene in adaptive immune responses through induction of functional modulation of TSLP-DCs. Platelets have the ability to enhance the DC-mediated Th2 response and may contribute to the allergic inflammation. In conclusion, our study provides new insights in platelet functions and the possible mechanism of allergic responses that stem from DCs. PMID:24867354

  11. Induction and identification of rabbit peripheral blood derived dendritic cells

    NASA Astrophysics Data System (ADS)

    Zhou, Jing; Yang, FuYuan; Chen, WenLi

    2012-03-01

    Purpose: To study a method of the induction of dendritic cells (DCs) from rabbit peripheral blood. Methods: Peripheral blood cells were removed from rabbit, filtered through nylon mesh. Peripheral blood mononuclear cells (PBMC) were isolated from the blood cells by Ficoll-Hypaque centrifugation (density of 1.077g/cm3).To obtain DCs, PBMC were cultured in RPMI1640 medium containing 10% fetal calf serum, 50U/mL penicillin and streptomycin, referred to subsequently as complete medium, at 37°C in 5% CO2 atmosphere for 4 hours. Nonadherent cells were aspirated, adherent cells were continued incubated in complete medium, supplemented with granulocyte/macrophage colony-stimulating factor (GM-CSF, 50ng/ml),and interleukin 4 (IL-4, 50ng/ml) for 9 days. Fluorescein labeled antibodies(anti-CD14, anti-HLA-DR, anti-CD86) were used to sign cells cultured for 3,6,9 days respectively, Then flow cytometry was performed. Results: Ratio of anti-HLA-DR and anti-CD86 labeled cells increased with induction time extension, in contrast with anti-CD14. Conclusion: Dendritic cells can be effectively induced by the method of this experiment, cell maturation status increased with induction time extension.

  12. Tolerogenic Dendritic Cells for Regulatory T Cell Induction in Man

    PubMed Central

    Raker, Verena K.; Domogalla, Matthias P.; Steinbrink, Kerstin

    2015-01-01

    Dendritic cells (DCs) are highly specialized professional antigen-presenting cells that regulate immune responses, maintaining the balance between tolerance and immunity. Mechanisms via which they can promote central and peripheral tolerance include clonal deletion, the inhibition of memory T cell responses, T cell anergy, and induction of regulatory T cells (Tregs). These properties have led to the analysis of human tolerogenic DCs as a therapeutic strategy for the induction or re-establishment of tolerance. In recent years, numerous protocols for the generation of human tolerogenic DCs have been developed and their tolerogenic mechanisms, including induction of Tregs, are relatively well understood. Phase I trials have been conducted in autoimmune disease, with results that emphasize the feasibility and safety of treatments with tolerogenic DCs. Therefore, the scientific rationale for the use of tolerogenic DCs therapy in the fields of transplantation medicine and allergic and autoimmune diseases is strong. This review will give an overview on efforts and protocols to generate human tolerogenic DCs with focus on IL-10-modulated DCs as inducers of Tregs and discuss their clinical applications and challenges faced in further developing this form of immunotherapy. PMID:26617604

  13. Conventional and monocyte-derived CD11b(+) dendritic cells initiate and maintain T helper 2 cell-mediated immunity to house dust mite allergen.

    PubMed

    Plantinga, Maud; Guilliams, Martin; Vanheerswynghels, Manon; Deswarte, Kim; Branco-Madeira, Filipe; Toussaint, Wendy; Vanhoutte, Leen; Neyt, Katrijn; Killeen, Nigel; Malissen, Bernard; Hammad, Hamida; Lambrecht, Bart N

    2013-02-21

    Dendritic cells (DCs) are crucial for mounting allergic airway inflammation, but it is unclear which subset of DCs performs this task. By using CD64 and MAR-1 staining, we reliably separated CD11b(+) monocyte-derived DCs (moDCs) from conventional DCs (cDCs) and studied antigen uptake, migration, and presentation assays of lung and lymph node (LN) DCs in response to inhaled house dust mite (HDM). Mainly CD11b(+) cDCs but not CD103(+) cDCs induced T helper 2 (Th2) cell immunity in HDM-specific T cells in vitro and asthma in vivo. Studies in Flt3l(-/-) mice, lacking all cDCs, revealed that moDCs were also sufficient to induce Th2 cell-mediated immunity but only when high-dose HDM was given. The main function of moDCs was the production of proinflammatory chemokines and allergen presentation in the lung during challenge. Thus, we have identified migratory CD11b(+) cDCs as the principal subset inducing Th2 cell-mediated immunity in the LN, whereas moDCs orchestrate allergic inflammation in the lung.

  14. Dendritic Cell-Mediated T Cell Proliferation -A Functional Bioindicator of Inflammatory Source-Specific Particulate Matter

    EPA Science Inventory

    Previously we found that dendritic cells (DC) were sensitive functional bioindicators of ambient PM (APM) exposure mediating Th2-allergic inflammation in the draining lymph nodes. Here, the ability of bone-marrow-derived DC (DC) and putative BM-derived basophils (Ba) to present a...

  15. Cell-mediated immunity against herpes simplex induction of cytotoxic T lymphocytes.

    PubMed Central

    Lawman, M J; Rouse, B T; Courtney, R J; Walker, R D

    1980-01-01

    The conditions required for the induction of both primary cytotoxic T lymphocytes (CTL) in vivo and secondary CTL in vitro against herpes simplex virus type 1 (HSV-1)-infected cells were defined. Primary CTL responses occurred only in mice exposed to infectious HSV-1. These responses, which were shown to be mediated by T lymphocytes, peaked at 1 week and had disappeared by 2 weeks after infection. The level of primary cytotoxicity was enhanced by treatment of mice with cyclophosphamide before infection. Secondary in vitro CTL responses were more pronounced and were induced by some forms of inactivated virus as well as by infectious HSV-1. Thus, both ultraviolet light- and glutaraldehyde-inactivated preparations of HSV-1 induced CTL, but heat-inactivated and detergent-extracted antigens failed to do so. The reasons for the differing efficiency of infectious and noninfectious HSV-1 for induction of CTL are discussed. PMID:6244225

  16. Cytokine induction during T-cell-mediated clearance of mouse hepatitis virus from neurons in vivo.

    PubMed Central

    Pearce, B D; Hobbs, M V; McGraw, T S; Buchmeier, M J

    1994-01-01

    To investigate the mechanism by which viruses are cleared from neurons in the central nervous system, we have utilized a mouse model involving infection with a neurotropic variant of mouse hepatitis virus (OBLV60). After intranasal inoculation, OBLV60 grew preferentially in the olfactory bulbs of BALB/c mice. Using in situ hybridization, we found that viral RNA localized primarily in the outer layers of the olfactory bulb, including neurons of the mitral cell layer. Virus was cleared rapidly from the olfactory bulb between 5 and 11 days. Athymic nude mice failed to eliminate the virus, demonstrating a requirement for T lymphocytes. Immunosuppression of normal mice with cyclophosphamide also prevented clearance. Both CD4+ and CD8+ T-cell subsets were important, as depletion of either of these subsets delayed viral clearance. Gliosis and infiltrates of CD4+ and CD8+ cells were detected by immunohistochemical analysis at 6 days. The role of cytokines in clearance was investigated by using an RNase protection assay for interleukin-1 alpha (IL-1 alpha), IL-1 beta, IL-2, IL-3, IL-4, IL-5, IL-6, tumor necrosis factor alpha (TNF-alpha), TNF-beta, and gamma interferon (IFN-gamma). In immunocompetent mice there was upregulation of RNA for IL-1 alpha, IL-1 beta, IL-6, TNF-alpha, and IFN-gamma at the time of clearance. Nude mice had comparable increases in these cytokine messages, with the exception of IFN-gamma. Induction of major histocompatibility complex class I (MHC-I) molecules on cells in infected brains was demonstrated by immunohistochemical analyses in normal and nude mice, suggesting that IFN-gamma may not be necessary for induction of MHC-I on neural cells in vivo. Images PMID:8057431

  17. Human monocytes undergo functional re-programming during differentiation to dendritic cell mediated by human extravillous trophoblasts.

    PubMed

    Zhao, Lei; Shao, Qianqian; Zhang, Yun; Zhang, Lin; He, Ying; Wang, Lijie; Kong, Beihua; Qu, Xun

    2016-01-01

    Maternal immune adaptation is required for a successful pregnancy to avoid rejection of the fetal-placental unit. Dendritic cells within the decidual microenvironment lock in a tolerogenic profile. However, how these tolerogenic DCs are induced and the underlying mechanisms are largely unknown. In this study, we show that human extravillous trophoblasts redirect the monocyte-to-DC transition and induce regulatory dendritic cells. DCs differentiated from blood monocytes in the presence of human extravillous trophoblast cell line HTR-8/SVneo displayed a DC-SIGN(+)CD14(+)CD1a(-) phenotype, similar with decidual DCs. HTR8-conditioned DCs were unable to develop a fully mature phenotype in response to LPS, and altered the cytokine secretory profile significantly. Functionally, conditioned DCs poorly induced the proliferation and activation of allogeneic T cells, whereas promoted CD4(+)CD25(+)Foxp3(+) Treg cells generation. Furthermore, the supernatant from DC and HTR-8/SVneo coculture system contained significant high amount of M-CSF and MCP-1. Using neutralizing antibodies, we discussed the role of M-CSF and MCP-1 during monocyte-to-DCs differentiation mediated by extravillous trophoblasts. Our data indicate that human extravillous trophoblasts play an important role in modulating the monocyte-to-DC differentiation through M-CSF and MCP-1, which facilitate the establishment of a tolerogenic microenvironment at the maternal-fetal interface. PMID:26857012

  18. Human monocytes undergo functional re-programming during differentiation to dendritic cell mediated by human extravillous trophoblasts

    PubMed Central

    Zhao, Lei; Shao, Qianqian; Zhang, Yun; Zhang, Lin; He, Ying; Wang, Lijie; Kong, Beihua; Qu, Xun

    2016-01-01

    Maternal immune adaptation is required for a successful pregnancy to avoid rejection of the fetal–placental unit. Dendritic cells within the decidual microenvironment lock in a tolerogenic profile. However, how these tolerogenic DCs are induced and the underlying mechanisms are largely unknown. In this study, we show that human extravillous trophoblasts redirect the monocyte-to-DC transition and induce regulatory dendritic cells. DCs differentiated from blood monocytes in the presence of human extravillous trophoblast cell line HTR-8/SVneo displayed a DC-SIGN+CD14+CD1a− phenotype, similar with decidual DCs. HTR8-conditioned DCs were unable to develop a fully mature phenotype in response to LPS, and altered the cytokine secretory profile significantly. Functionally, conditioned DCs poorly induced the proliferation and activation of allogeneic T cells, whereas promoted CD4+CD25+Foxp3+ Treg cells generation. Furthermore, the supernatant from DC and HTR-8/SVneo coculture system contained significant high amount of M-CSF and MCP-1. Using neutralizing antibodies, we discussed the role of M-CSF and MCP-1 during monocyte-to-DCs differentiation mediated by extravillous trophoblasts. Our data indicate that human extravillous trophoblasts play an important role in modulating the monocyte-to-DC differentiation through M-CSF and MCP-1, which facilitate the establishment of a tolerogenic microenvironment at the maternal–fetal interface. PMID:26857012

  19. Activation of toll-like receptor-2 by endogenous matrix metalloproteinase-2 modulates dendritic-cell-mediated inflammatory responses.

    PubMed

    Godefroy, Emmanuelle; Gallois, Anne; Idoyaga, Juliana; Merad, Miriam; Tung, Navpreet; Monu, Ngozi; Saenger, Yvonne; Fu, Yichun; Ravindran, Rajesh; Pulendran, Bali; Jotereau, Francine; Trombetta, Sergio; Bhardwaj, Nina

    2014-12-11

    Matrix metalloproteinase-2 (MMP-2) is involved in several physiological mechanisms, including wound healing and tumor progression. We show that MMP-2 directly stimulates dendritic cells (DCs) to both upregulate OX40L on the cell surface and secrete inflammatory cytokines. The mechanism underlying DC activation includes physical association with Toll-like receptor-2 (TLR2), leading to NF-κB activation, OX40L upregulation on DCs, and ensuing TH2 differentiation. Significantly, MMP-2 polarizes T cells toward type 2 responses in vivo, in a TLR2-dependent manner. MMP-2-dependent type 2 polarization may represent a key immune regulatory mechanism for protection against a broad array of disorders, such as inflammatory, infectious, and autoimmune diseases, which can be hijacked by tumors to evade immunity.

  20. Activation of Toll-like receptor-2 by endogenous matrix metalloproteinase-2 modulates dendritic cell-mediated inflammatory responses

    PubMed Central

    Godefroy, Emmanuelle; Gallois, Anne; Idoyaga, Juliana; Merad, Miriam; Tung, Navpreet; Monu, Ngozi; Saenger, Yvonne; Fu, Yichun; Nair, Rajesh; Pulendran, Bali; Jotereau, Francine; Trombetta, Sergio; Bhardwaj, Nina

    2015-01-01

    SUMMARY Matrix metalloproteinase-2 (MMP-2) is involved in several physiological mechanisms, including wound healing and tumor progression. We show that MMP-2 directly stimulates dendritic cells (DCs) to both up-regulate OX40L on the cell surface and secrete inflammatory cytokines. The mechanism underlying DC activation includes physical association with Toll-like receptor-2 (TLR2), leading to NF-κB activation, OX40L up-regulation on DCs and ensuing TH2 differentiation. Significantly, MMP-2 polarizes T cells towards type-2 responses in vivo, in a TLR2-dependent manner. MMP-2-dependent type-2 polarization may represent a key immune regulatory mechanism to protect against a broad array of disorders, such as inflammatory, infectious and autoimmune diseases, which can be hijacked by tumors to evade immunity. PMID:25466255

  1. The TLR7 agonist induces tumor regression both by promoting CD4+T cells proliferation and by reversing T regulatory cell-mediated suppression via dendritic cells

    PubMed Central

    Wang, Xiaofeng; Wu, Xiongyan; Chen, Xuehua; Li, Jianfang; Zhu, Zhenggang; Liu, Bingya; Su, Liping

    2015-01-01

    Treg-induced immunosuppression is now recognized as a key element in enabling tumors to escape immune-mediated destruction. Although topical TLR7 therapies such as imiquimod have been proved successful in the treatment of dermatological malignancy and a number of conditions beyond the FDA-approved indications, the mechanism behind the effect of TLR7 on effector T cell and Treg cell function in cancer immunosurveillance is still not well understood. Here, we found that Loxoribin, one of the TLR7 ligands, could inhibit tumor growth in xenograft models of colon cancer and lung cancer, and these anti-tumor effects of Loxoribin were mediated by promoting CD4+T cell proliferation and reversing Treg-mediated suppression via dendritic cells (DCs). However, deprivation of IL-6 using a neutralizing antibody abrogated the ability of Loxoribin-treated DCs, which reversed the Treg cell-mediated suppression. Furthermore, adoptive transfer of Loxoribin-treated DCs inhibited the tumor growth in vivo. Thus, this study links TLR7 signaling to the functional control of effector T cells and Treg cells and identifies Loxoribin as a new therapeutic strategy in cancer treatment, which may offer new opportunities to improve the outcome of cancer immunotherapy. PMID:25593198

  2. C-Type Lectin-Like Receptor LOX-1 Promotes Dendritic Cell-Mediated Class-Switched B Cell Responses

    PubMed Central

    Joo, HyeMee; Li, Dapeng; Dullaers, Melissa; Kim, Tae-Whan; Duluc, Dorothee; Upchurch, Katherine; Xue, Yaming; Zurawski, Sandy; Le Grand, Roger; Liu, Yong-Jun; Kuroda, Marcelo; Zurawski, Gerard; Oh, SangKon

    2014-01-01

    SUMMARY Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is a pattern recognition receptor for a variety of endogenous and exogenous ligands. However, LOX-1 function in the host immune response is not fully understood. Here, we report that LOX-1 expressed on dendritic cells (DCs) and B cells promotes humoral responses. On B cells LOX-1 signaling upregulated CCR7, promoting cellular migration towards lymphoid tissues. LOX-1 signaling on DCs licensed the cells to promote B cell differentiation into class-switched plasmablasts, and led to downregulation of chemokine receptor CXCR5 and upregulation of chemokine receptor CCR10 on plasmablasts, which enabled their exit from germinal centers and migration towards local mucosa and skin. Finally, we found that targeting influenza hemagglutinin 1 (HA1) subunit to LOX-1 elicited HA1-specific protective antibody responses in rhesus macaques. Thus, LOX-1 expressed on B cells and DC cells has complementary functions to promote humoral immune responses. PMID:25308333

  3. C-type lectin Mermaid inhibits dendritic cell mediated HIV-1 transmission to CD4+ T cells.

    PubMed

    Nabatov, Alexey A; de Jong, Marein A W P; de Witte, Lot; Bulgheresi, Silvia; Geijtenbeek, Teunis B H

    2008-09-01

    Dendritic cells (DCs) are important in HIV-1 transmission; DCs capture invading HIV-1 through the interaction of the gp120 oligosaccharides with the C-type lectin DC-SIGN and migrate to the lymphoid tissues where HIV-1 is transmitted to T cells. Thus, the HIV-1 envelope glycoprotein gp120 is an attractive target to prevent interactions with DCs and subsequent viral transmission. Here, we have investigated whether the structural homologue of DC-SIGN, the nematode C-type lectin Mermaid can be used to prevent HIV-1 transmission by DCs. Our data demonstrate that Mermaid interacts with high mannose structures present on HIV-1 gp120 and thereby inhibits HIV-1 binding to DC-SIGN on DCs. Moreover, Mermaid inhibits DC-SIGN-mediated HIV-1 transmission from DC to T cells. We have identified Mermaid as a non-cytotoxic agent that shares the glycan specificity with DC-SIGN and inhibits DC-SIGN-gp120 interaction. The results are important for the anti-HIV-1 microbicide development directed at preventing DC-HIV-1 interactions. PMID:18597806

  4. Plasmacytoid dendritic cells mediate the regulation of inflammatory type T cell response for optimal immunity against respiratory Chlamydia pneumoniae infection.

    PubMed

    Joyee, Antony George; Yang, Xi

    2013-01-01

    Chlamydia pneumoniae (Cpn) infection is a leading cause for a variety of respiratory diseases and has been implicated in the pathogenesis of chronic inflammatory diseases. The regulatory mechanisms in host defense against Cpn infection are less understood. In this study, we investigated the role of plasmacytoid dendritic cells (pDCs) in immune regulation in Cpn respiratory tract infection. We found that in vivo depletion of pDCs increased the severity of infection and lung pathology. Mice depleted of pDC had greater body weight loss, higher lung bacterial burden and excessive tissue inflammation compared to the control mice. Analysis of specific T cell cytokine production pattern in the lung following Cpn infection revealed that pDC depleted mice produced significantly higher amounts of inflammatory cytokines, especially TNF-α, but lower IL-10 compared to the controls. In particular, pDC depleted mice showed pathogenic T cell responses characterized by inflammatory type-1 (CD8 and CD4) and inflammatory Th2 cell responses. Moreover, pDC depletion dramatically reduced CD4 regulatory T cells (Tregs) in the lungs and draining lymph nodes. Furthermore, pDC-T cell co-culture experiments showed that pDCs isolated from Cpn infected mice were potent in inducing IL-10 producing CD4 Tregs. Together, these findings provide in vivo evidence for a critical role of pDCs in homeostatic regulation of immunity during Cpn infection. Our findings highlight the importance of a 'balanced' immune response for host protective immunity and preventing detrimental immunopathology during microbial infections.

  5. Betamethasone, but Not Tacrolimus, Suppresses the Development of Th2 Cells Mediated by Langerhans Cell-Like Dendritic Cells.

    PubMed

    Matsui, Katsuhiko; Tamai, Saki; Ikeda, Reiko

    2016-01-01

    It is well known that Langerhans cells (LCs) work as the primary orchestrators in the polarization of the immune milieu towards a T helper type 1 (Th1) or T helper type 2 (Th2) response. In this study, we investigated the effects of tacrolimus and betamethasone, each used as topical applications in atopic dermatitis (AD), on Th2 cell development mediated by LCs. LC-like dendritic cells (LDCs) were generated from mouse bone marrow cells and used as substitutes for LCs. Mice were primed with ovalbumin (OVA) peptide-pulsed LDCs, which had been treated with tacrolimus or betamethasone, via the hind footpad. After 5 d, the cytokine response in the popliteal lymph nodes was investigated by enzyme-linked immunosorbent assay. The expression of cell surface molecules on LDCs was investigated via reverse transcriptase polymerase chain reaction. Administration of OVA peptide-pulsed LDCs, which had been treated with betamethasone, inhibited Th2 cell development, as represented by the down-regulation of interleukin-4 production, and also inhibited Th1 cell development, represented by the down-regulation of interferon-γ production. However, tacrolimus-treated LDCs did not induce such inhibition of the development of Th1 and Th2 cells. The inhibition of Th1 and Th2 cell development was associated with the suppression of CD40 and T-cell immunoglobulin, and mucin domain-containing protein (TIM)-4 expression, respectively, in LDCs. These results suggest that the topical application of betamethasone to skin lesions of patients with AD acts on epidermal LCs, and may inhibit the development of Th2 cells, thus being of benefit for the control of AD. PMID:27374298

  6. Polyinosinic-cytidylic acid as an adjuvant on natural killer- and dendritic cell-mediated antitumor activities.

    PubMed

    Huang, Yu-Kun; Zheng, Zhi; Qiu, Fu

    2013-06-01

    Previously, we demonstrated that treatment with E7(44-62) and the adjuvant polyinosinic-cytidylic acid (poly(I:C)) in a rodent model generates antitumor immune responses, but the effect of E7(44-62) with poly(I:C) on natural killer (NK)- and dendritic cell (DC)-mediated antitumor activities is still unclear. Our goal was to examine the antitumor effects of E7(44-62) with poly(I:C). We examined the ability of E7(44-62) with poly(I:C) to induce toll-like receptor 3 (TLR3) expression, tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ) mRNA expression, and tumor cell-killing activity in human NK cells as well as its ability to induce CD11c and CD86 expression and proliferation in human DCs. We found that E7(44-62) with poly(I:C) treatment markedly increased TLR3 expression and cytotoxicity against HeLa cells in human NK92 cells. Moreover, treatment with E7(44-62) and poly(I:C) markedly up-regulated IFN-γ and TNF-α mRNA expression in NK92 cells. Human patients with cervical cancer exhibited a marked decrease in the frequency of DCs; however, ex vivo treatment with E7(44-62) and poly(I:C) restored DC frequency. Stimulation of human DCs in patients with E7(44-62) and poly(I:C) led to high levels of CD11c and CD86 expression. Our data reveal the involvement of E7(44-62) combined with poly(I:C) in potentiating antitumor cytotoxicity and cytokine-producing activities in human NK92 cells and DCs.

  7. SLC gene-modified dendritic cells mediate T cell-dependent anti-gastric cancer immune responses in vitro.

    PubMed

    Xue, Gang; Cheng, Ying; Ran, Feng; Li, Xianhui; Huang, Tao; Yang, Yong; Zhang, Yanbiao

    2013-02-01

    Dendritic cells (DCs) are potent professional antigen-presenting cells (APCs) with the ability to prime naïve T cells, and play an important role in the initiation and regulation of immune responses. In this study, we constructed a recombinant adenovirus carrying the SLC gene (Ad-SLC), and detected the biological effects of Ad-SLC-modified DCs as an adjuvant for the initiation of gastric cancer immune responses. Human DCs were transfected with Ad-SLC and the recombinant adenovirus carrying the β-galactosidase gene, Ad-LacZ, respectively. Modified DCs were pulsed with the cell lysate antigen of SGC-7901 cells (a type of gastric cancer cell line) and co-cultured with autologous T cells. The T cells were harvested and incubated with SGC-7901 cells and the cytotoxic function of the T cells was detected. Based on the data, the expression of mature DC phenotypes CD83 and CCR7 was upregulated after transfection with Ad-SLC and the chemotaxis function of DCs was augmented after transfection with Ad-SLC. Moreover, the expression of RANTES in DCs was upregulated by Ad-SLC transfection, while expression levels of IL-12p70 and IL-10 were not significantly altered. When co-cultured with autologous T cells, DCs modified with the SLC gene and pulsed with SGC-7901 cell lysates significantly promoted the proliferation of autologous T cells and induced Th1 differentiation, and displayed a strong cytotoxicity to SGC-7901 cells. In conclusion, Ad-SLC promoted DC maturation, enhancing the ability of DCs for T-cell chemotaxis and T-cell stimulation, and induced specific anti-gastric cancer cellular immunity. Recombinant Ad-SLC-modified DCs may be used as an adjuvant to induce an effective anti-gastric cancer immune response.

  8. Helicobacter pylori Promotes the Production of Thymic Stromal Lymphopoietin by Gastric Epithelial Cells and Induces Dendritic Cell-Mediated Inflammatory Th2 Responses▿

    PubMed Central

    Kido, Masahiro; Tanaka, Junya; Aoki, Nobuhiro; Iwamoto, Satoru; Nishiura, Hisayo; Chiba, Tsutomu; Watanabe, Norihiko

    2010-01-01

    Helicobacter pylori colonizes the stomach and induces strong, specific local and systemic humoral and cell-mediated immunity, resulting in the development of chronic gastritis in humans. Although H. pylori-induced chronic atrophic gastritis is characterized by marked infiltration of T helper type 1 (Th1) cytokine-producing CD4+ T cells, almost all of the inflamed gastric mucosae also contain focal lymphoid aggregates with germinal centers. In addition, typical H. pylori-induced chronic gastritis in children, called follicular gastritis, is characterized by B-cell follicle formation in the gastric mucosa. The aim of this study was to examine whether thymic stromal lymphopoietin (TSLP), an epithelial-cell-derived cytokine inducing a dendritic cell (DC)-mediated inflammatory Th2 response, is involved in Th2 responses triggering B-cell activation in H. pylori-induced gastritis. Here, we show that H. pylori triggered human gastric epithelial cells to produce TSLP, together with the DC-attracting chemokine MIP-3α and the B-cell-activating factor BAFF. After DCs were incubated with supernatants from H. pylori-infected epithelial cells, the conditioned cells expressed high levels of costimulatory molecules, such as CD80, and triggered naïve CD4+ T cells to produce high levels of the Th2 cytokines interleukin-4 and interleukin-13 and of the inflammatory cytokines tumor necrosis factor alpha and gamma interferon. In contrast, after incubation of the supernatants with the neutralizing antibodies to TSLP, the conditioned DCs did not prime T cells to produce high levels of Th2 cytokines. These results, together with the finding that TSLP was expressed by the epithelial cells of human follicular gastritis, suggest that H. pylori can directly trigger epithelial cells to produce TSLP. It also suggests that TSLP-mediated DC activation may be involved in Th2 responses triggering B-cell activation in H. pylori-induced gastritis. PMID:19841072

  9. Computational implications of cooperative plasticity induction at nearby dendritic sites.

    PubMed

    Morita, Kenji

    2009-01-01

    Recent studies have revealed that plasticity is not regulated independently at individual synapses but rather that there is cooperativity or associativity between nearby synapses in the dendritic tree of individual cortical pyramidal cells. Here, I summarize experimental results regarding such cooperative plasticity and its underlying mechanisms and consider their computational implications. PMID:19126862

  10. Molecular Mechanisms of Induction of Tolerant and Tolerogenic Intestinal Dendritic Cells in Mice

    PubMed Central

    Steimle, Alex; Frick, Julia-Stefanie

    2016-01-01

    How does the host manage to tolerate its own intestinal microbiota? A simple question leading to complicated answers. In order to maintain balanced immune responses in the intestine, the host immune system must tolerate commensal bacteria in the gut while it has to simultaneously keep the ability to fight pathogens and to clear infections. If this tender equilibrium is disturbed, severe chronic inflammatory reactions can result. Tolerogenic intestinal dendritic cells fulfil a crucial role in balancing immune responses and therefore creating homeostatic conditions and preventing from uncontrolled inflammation. Although several dendritic cell subsets have already been characterized to play a pivotal role in this process, less is known about definite molecular mechanisms of how intestinal dendritic cells are converted into tolerogenic ones. Here we review how gut commensal bacteria interact with intestinal dendritic cells and why this bacteria-host cell interaction is crucial for induction of dendritic cell tolerance in the intestine. Hereby, different commensal bacteria can have distinct effects on the phenotype of intestinal dendritic cells and these effects are mainly mediated by impacting toll-like receptor signalling in dendritic cells. PMID:26981546

  11. Enhancement of tumor-specific T cell-mediated immunity in dendritic cell-based vaccines by Mycobacterium tuberculosis heat shock protein X.

    PubMed

    Jung, In Duk; Shin, Sung Jae; Lee, Min-Goo; Kang, Tae Heung; Han, Hee Dong; Lee, Seung Jun; Kim, Woo Sik; Kim, Hong Min; Park, Won Sun; Kim, Han Wool; Yun, Cheol-Heui; Lee, Eun Kyung; Wu, T-C; Park, Yeong-Min

    2014-08-01

    Despite the potential for stimulation of robust antitumor immunity by dendritic cells (DCs), clinical applications of DC-based immunotherapy are limited by the low potency in generating tumor Ag-specific T cell responses. Therefore, optimal conditions for generating potent immunostimulatory DCs that overcome tolerance and suppression are key factors in DC-based tumor immunotherapy. In this study, we demonstrate that use of the Mycobacterium tuberculosis heat shock protein X (HspX) as an immunoadjuvant in DC-based tumor immunotherapy has significant potential in therapeutics. In particular, the treatment aids the induction of tumor-reactive T cell responses, especially tumor-specific CTLs. The HspX protein induces DC maturation and proinflammatory cytokine production (TNF-α, IL-1β, IL-6, and IFN-β) through TLR4 binding partially mediated by both the MyD88 and the TRIF signaling pathways. We employed two models of tumor progression and metastasis to evaluate HspX-stimulated DCs in vivo. The administration of HspX-stimulated DCs increased the activation of naive T cells, effectively polarizing the CD4(+) and CD8(+) T cells to secrete IFN-γ, as well as enhanced the cytotoxicity of splenocytes against HPV-16 E7 (E7)-expressing TC-1 murine tumor cells in therapeutic experimental animals. Moreover, the metastatic capacity of B16-BL6 melanoma cancer cells toward the lungs was remarkably attenuated in mice that received HspX-stimulated DCs. In conclusion, the high therapeutic response rates with tumor-targeted Th1-type T cell immunity as a result of HspX-stimulated DCs in two models suggest that HspX harnesses the exquisite immunological power and specificity of DCs for the treatment of tumors.

  12. Induction of tibial dyschondroplasia and suppression of cell-mediated immunity in chickens by Fusarium oxysporum grown on sterile corn.

    PubMed

    Chu, Q; Wu, W; Cook, M E; Smalley, E B

    1995-01-01

    An isolate of Fusarium oxysporum from corn associated with Kaschin-Beck disease in humans was tested for its ability to induce tibial dyschondroplasia (TD) and toxicity in chicks. Both leghorn and broiler chicks were fed diets in which corn was replaced with varied amounts (0% to 50%) of the F. oxysporum culture grown on sterile corn, or with known TD-inducing agents. F. oxysporum did not affect body weight in either type of chicks. In leghorn chicks, neither F. oxysporum nor the known TD-inducing agents (F. equiseti, 4%; tetramethylthiuram disulfide [Thiram], 35 ppm) caused TD. However, F. oxysporum at high levels (50%) and the two known TD-inducing agents reduced interdigital cutaneous response to phytohemagglutinin-P challenge. In addition, Thiram also reduced body-weight gain by more than 17%. In female broiler chicks (Cornish Rock), F. oxysporum not only decreased cell-mediated cutaneous response to phytohemagglutinin-P but also increased TD incidence; these same effects were observed with F. equiseti and Thiram. Histological examinations revealed similar pathological changes among dyschondroplastic lesions induced by F. oxysporum, F. equiseti, and Thiram. Results of this experiment indicate that the isolate of F. oxysporum from the region in which Kaschin-Beck disease is endemic can induce TD in broiler chicks and that it is immunosuppressive.

  13. N-3-(oxododecanoyl)-L-homoserine lactone promotes the induction of regulatory T-cells by preventing human dendritic cell maturation

    PubMed Central

    Li, Youqiang; Zhou, Huayou; Zhang, Yunyan; Huang, Bin; Qu, Pinghua; Zeng, Jianming; E, Shunmei; Zhang, Xuan; Liu, Jianping

    2015-01-01

    N-3-(Oxododecanoyl)-L-homoserine lactone (C12) is a small bacterial signaling molecule secreted by Pseudomonas aeruginosa (PA), which activates mammalian cells through TLR4-independent mechanisms. C12 acts as an immunosuppressant and it has been shown to modulate murine bone marrow-derived dendritic cell-mediated T-helper 2 (Th2) cell polarizations in vitro. In the present study, we initially examined the impact of C12 on the maturation of human monocyte-derived dendritic cells (Mo-DCs) and the induction of regulatory T-cells (iTregs) in culture. Our findings demonstrate that C12-treated Mo-DCs failed to undergo lipopolysaccharide (LPS)-induced maturation. At the molecular level, C12 blocked the upregulation of surface molecules, including CD11c, HLA-DR, CD40, and CD80, and it switched to an interleukin (IL)-10high, IL-12p70low phenotype. Moreover, C12 selectively inhibited the capacity of Mo-DCs to stimulate the proliferation of allogeneic CD4+ T-cells. Otherwise, the C12-treated Mo-DCs promoted the generation of CD4+CD25+Foxp3+-induced regulatory T-cells (iTregs) and enhanced their IL-10 and transforming growth factor (TGF)-β production associated with reduced interferon (IFN)-γ and IL-12p70 production. These findings provide new insights towards understanding the persistence of chronic inflammation in PA infection. PMID:25749498

  14. Induction of primary, antiviral cytotoxic, and proliferative responses with antigens administered via dendritic cells.

    PubMed Central

    Nair, S; Babu, J S; Dunham, R G; Kanda, P; Burke, R L; Rouse, B T

    1993-01-01

    Cytotoxic T lymphocytes (CTL) play an essential role in recovery from viral infections, but induction of CTL responses with nonreplicating antigens is difficult to achieve. Exogenous antigens, such as viral proteins and peptides, normally induce CD4+ T-cell responses unless appropriately delivered to the major histocompatibility complex class I antigen presentation pathway. In vitro studies performed to address this issue revealed a similar scenario, and primary CTL induction with nonreplicating antigens has rarely been reported. This study demonstrated primary antiviral CTL induction in vitro with exogenous antigens delivered in vivo to dendritic cells. This study also evaluated the efficacy of glycoprotein B peptide (free or encapsulated in liposomes), peptide-tripalmitoyl-S-glyceryl cysteinyl conjugate (acylpeptide), and glycoprotein B protein encapsulated in pH-sensitive liposomes as antigen delivery vehicles. Our results show that higher levels of cytotoxicity against herpes simplex virus type 1 resulted from exposure of dendritic cells to peptide-tripalmitoyl-S-glyceryl cysteinyl in liposomes. Macrophages treated in a similar manner were not effective stimulators for primary CTL induction. Our data have relevance to the understanding of mechanisms of antigen processing and presentation and the design of antiviral vaccines. PMID:8510217

  15. Cord Blood Stem Cell-Mediated Induction of Apoptosis in Glioma Downregulates X-Linked Inhibitor of Apoptosis Protein (XIAP)

    PubMed Central

    Dasari, Venkata Ramesh; Velpula, Kiran Kumar; Kaur, Kiranpreet; Fassett, Daniel; Klopfenstein, Jeffrey D.; Dinh, Dzung H.; Gujrati, Meena; Rao, Jasti S.

    2010-01-01

    Background XIAP (X-linked inhibitor of apoptosis protein) is one of the most important members of the apoptosis inhibitor family. XIAP is upregulated in various malignancies, including human glioblastoma. It promotes invasion, metastasis, growth and survival of malignant cells. We hypothesized that downregulation of XIAP by human umbilical cord blood mesenchymal stem cells (hUCBSC) in glioma cells would cause them to undergo apoptotic death. Methodology/Principal Findings We observed the effect of hUCBSC on two malignant glioma cell lines (SNB19 and U251) and two glioma xenograft cell lines (4910 and 5310). In co-cultures of glioma cells with hUCBSC, proliferation of glioma cells was significantly inhibited. This is associated with increased cytotoxicity of glioma cells, which led to glioma cell death. Stem cells induced apoptosis in glioma cells, which was evaluated by TUNEL assay, FACS analyses and immunoblotting. The induction of apoptosis is associated with inhibition of XIAP in co-cultures of hUCBSC. Similar results were obtained by the treatment of glioma cells with shRNA to downregulate XIAP (siXIAP). Downregulation of XIAP resulted in activation of caspase-3 and caspase-9 to trigger apoptosis in glioma cells. Apoptosis is characterized by the loss of mitochondrial membrane potential and upregulation of mitochondrial apoptotic proteins Bax and Bad. Cell death of glioma cells was marked by downregulation of Akt and phospho-Akt molecules. We observed similar results under in vivo conditions in U251- and 5310-injected nude mice brains, which were treated with hUCBSC. Under in vivo conditions, Smac/DIABLO was found to be colocalized in the nucleus, showing that hUCBSC induced apoptosis is mediated by inhibition of XIAP and activation of Smac/DIABLO. Conclusions/Significance Our results indicate that downregulation of XIAP by hUCBSC treatment induces apoptosis, which led to the death of the glioma cells and xenograft cells. This study demonstrates the therapeutic

  16. Antibodies to P-selectin glycoprotein ligand-1 block dendritic cell-mediated enterovirus 71 transmission and prevent virus-induced cells death.

    PubMed

    Ren, Xiao-Xin; Li, Chuan; Xiong, Si-Dong; Huang, Zhong; Wang, Jian-Hua; Wang, Hai-Bo

    2015-01-01

    P-selectin glycoprotein ligand-1 (PSGL-1) has been proved to serve as the functional receptor for enterovirus 71 (EV71). We found the abundant expression of PSGL-1 on monocyte-derived dendritic cells (MDDCs). However, we have previously demonstrated that MDDCs did not support efficient replication of EV71. Dendritic cells (DCs) have been described to be subverted by various viruses including EV71 for viral dissemination, we thus explore the potential contribution of PSGL-1 on DC-mediated EV71 transmission. We found that the cell-surface-expressing PSGL-1 on MDDCs mediated EV71 binding, and intriguingly, these loaded-viruses on MDDCs could be transferred to encountered target cells; Prior-treatment with PSGL-1 antibodies or interference with PSGL-1 expression diminished MDDC-mediated EV71 transfer and rescued virus-induced cell death. Our data uncover a novel role of PSGL-1 in DC-mediated EV71 spread, and provide an insight into blocking primary EV71 infection.

  17. B cells activated in lymph nodes in response to ultraviolet irradiation or by interleukin-10 inhibit dendritic cell induction of immunity.

    PubMed

    Byrne, Scott N; Halliday, Gary M

    2005-03-01

    Ultraviolet (UV) radiation suppresses systemic immunity. We explored these cellular mechanisms by exposing mice to systemically immunosuppressive doses of UV radiation and then analyzing cell phenotype and function in the lymphoid organs. Although UV radiation increased total cell number in the draining lymph nodes (DLN), it did not alter the activation state of dendritic cells (DC). Rather, UV radiation selectively activated lymph node B cells, with these cells being larger and expressing higher levels of both anti-major histocompatibility complex II and B220 but not co-stimulatory molecules. This phenotype resembled that of a B cell geared toward immune tolerance. To test whether UV radiation-activated B cells were responsible for immunosuppression, DC and B cells were conjugated to antigen ex vivo and transferred into naive hosts. Although DC by themselves activated T cells, when the B cells from UV radiation-irradiated mice were co-injected with DC, they suppressed DC activation of immunity. Interleukin (IL)-10-activated B cells also suppressed DC induction of immunity, suggesting that IL-10 may be involved in this suppressive effect of UV radiation. These results demonstrate a new mechanism of UV radiation immunosuppression whereby UV radiation activates B cells in the skin-DLN that can suppress DC activation of T cell-mediated immunity. PMID:15737198

  18. Enhancement of dendritic cell-based vaccine potency by anti-apoptotic siRNAs targeting key pro-apoptotic proteins in cytotoxic CD8(+) T cell-mediated cell death.

    PubMed

    Kim, Jin Hee; Kang, Tae Heung; Noh, Kyung Hee; Bae, Hyun Cheol; Kim, Seok-Ho; Yoo, Young Do; Seong, Seung-Yong; Kim, Tae Woo

    2009-01-29

    Dendritic cells (DCs) have become an important measure for the treatment of malignancies. Current DC preparations, however, generate short-lived DCs because they are subject to cell death from various apoptotic pressures. Antigen-specific CD8(+) cytotoxic T lymphocytes (CTLs) is one of the main obstacles to limit the DC-mediated immune priming since CTLs can recognize the target antigen expressing DCs as target cells and kill the DCs. CTLs secret perforin and serine protease granzymes during CTL killing. Perforin and serine protease granzymes induce the release of a number of mitochondrial pro-apoptotic factors, which are controlled by members of the BCL-2 family, such as BAK, BAX and BIM. FasL linking to Fas on DCs triggers the activation of caspase-8, which eventually leads to mitochondria-mediated apoptosis via truncation of BID. In this study, we tried to enhance the DC priming capacity by prolonging DC survival using anti-apoptotic siRNA targeting these key pro-apoptotic molecules in CTL killing. Human papillomavirus (HPV)-16 E7 antigen presenting DCs that were transfected with these anti-apoptotic siRNAs showed increased resistance to T cell-mediated death, leading to enhanced E7-specific CD8(+) T cell activation in vitro and in vivo. Among them, siRNA targeting BIM (siBIM) generated strongest E7-specific E7-specific CD8(+) T cell immunity. More importantly, vaccination with E7 presenting DCs transfected with siBIM was capable of generating a marked therapeutic effect in vaccinated mice. Our data indicate that ex vivo manipulation of DCs with siBIM may represent a plausible strategy for enhancing dendritic cell-based vaccine potency.

  19. Induction of CD4+ Regulatory and Polarized Effector/helper T Cells by Dendritic Cells

    PubMed Central

    2016-01-01

    Dendritic cells (DCs) are considered to play major roles during the induction of T cell immune responses as well as the maintenance of T cell tolerance. Naive CD4+ T cells have been shown to respond with high plasticity to signals inducing their polarization into effector/helper or regulatory T cells. Data obtained from in vitro generated bone-marrow (BM)-derived DCs as well as genetic mouse models revealed an important but not exclusive role of DCs in shaping CD4+ T cell responses. Besides the specialization of some conventional DC subsets for the induction of polarized immunity, also the maturation stage, activation of specialized transcription factors and the cytokine production of DCs have major impact on CD4+ T cells. Since in vitro generated BM-DCs show a high diversity to shape CD4+ T cells and their high similarity to monocyte-derived DCs in vivo, this review reports data mainly on BM-DCs in this process and only touches the roles of transcription factors or of DC subsets, which have been discussed elsewhere. Here, recent findings on 1) the conversion of naive into anergic and further into Foxp3− regulatory T cells (Treg) by immature DCs, 2) the role of RelB in steady state migratory DCs (ssmDCs) for conversion of naive T cells into Foxp3+ Treg, 3) the DC maturation signature for polarized Th2 cell induction and 4) the DC source of IL-12 for Th1 induction are discussed. PMID:26937228

  20. Chemokine (C-C Motif) Ligand 5 is Involved in Tumor-Associated Dendritic Cell-Mediated Colon Cancer Progression Through Non-Coding RNA MALAT-1.

    PubMed

    Kan, Jung-Yu; Wu, Deng-Chyang; Yu, Fang-Jung; Wu, Cheng-Ying; Ho, Ya-Wen; Chiu, Yen-Jung; Jian, Shu-Fang; Hung, Jen-Yu; Wang, Jaw-Yuan; Kuo, Po-Lin

    2015-08-01

    Tumor micro-environment is a critical factor in the development of cancer. The aim of this study was to investigate the inflammatory cytokines secreted by tumor-associated dendritic cells (TADCs) that contribute to enhanced migration, invasion, and epithelial-to-mesenchymal transition (EMT) in colon cancer. The administration of recombinant human chemokine (C-C motif) ligand 5 (CCL5), which is largely expressed by colon cancer surrounding TADCs, mimicked the stimulation of TADC-conditioned medium on migration, invasion, and EMT in colon cancer cells. Blocking CCL5 by neutralizing antibodies or siRNA transfection diminished the promotion of cancer progression by TADCs. Tumor-infiltrating CD11c(+) DCs in human colon cancer specimens were shown to produce CCL5. The stimulation of colon cancer progression by TADC-derived CCL5 was associated with the up-regulation of non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT-1), which subsequently increased the expression of Snail. Blocking MALAT-1 significantly decreased the TADC-conditioned medium and CCL5-mediated migration and invasion by decreasing the enhancement of Snail, suggesting that the MALAT-1/Snail pathway plays a critical role in TADC-mediated cancer progression. In conclusion, the inhibition of CCL5 or CCL5-related signaling may be an attractive therapeutic target in colon cancer patients.

  1. Insulin-like growth factors inhibit dendritic cell-mediated anti-tumor immunity through regulating ERK1/2 phosphorylation and p38 dephosphorylation.

    PubMed

    Huang, Ching-Ting; Chang, Ming-Cheng; Chen, Yu-Li; Chen, Tsung-Ching; Chen, Chi-An; Cheng, Wen-Fang

    2015-04-01

    Insulin-like growth factors (IGFs) can promote tumorigenesis via inhibiting the apoptosis of cancer cells. The relationship between IGFs and dendritic cell (DC)-mediated immunity were investigated. Advanced-stage ovarian carcinoma patients were first evaluated to show higher IGF-1 and IGF-2 concentrations in their ascites than early-stage patients. IGFs could suppress DCs' maturation, antigen presenting abilities, and the ability to activate antigen-specific CD8(+) T cell. IGF-treated DCs also secreted higher concentrations of IL-10 and TNF-α. IGF-treated DCs showed decreased ERK1/2 phosphorylation and reduced p38 dephosphorylation. The percentages of matured DCs in the ascites were significantly lower in the IGF-1 or IGF-2 highly-expressing WF-3 tumor-bearing mice. The IGF1R inhibitor - NVP-AEW541, could block the effects of IGFs to rescue DCs' maturation and to restore DC-mediated antigen-specific immunity through enhancing ERK1/2 phosphorylation and p38 dephosphorylation. IGFs can inhibit DC-mediated anti-tumor immunity through suppressing maturation and function and the IGF1R inhibitor could restore the DC-mediated anti-tumor immunity. Blockade of IGFs could be a potential strategy for cancer immunotherapy.

  2. Induction of complete and molecular remissions in acute myeloid leukemia by Wilms’ tumor 1 antigen-targeted dendritic cell vaccination

    PubMed Central

    Van Tendeloo, Viggo F.; Van de Velde, Ann; Van Driessche, Ann; Cools, Nathalie; Anguille, Sébastien; Ladell, Kristin; Gostick, Emma; Vermeulen, Katrien; Pieters, Katrien; Nijs, Griet; Stein, Barbara; Smits, Evelien L.; Schroyens, Wilfried A.; Gadisseur, Alain P.; Vrelust, Inge; Jorens, Philippe G.; Goossens, Herman; de Vries, I. Jolanda; Price, David A.; Oji, Yusuke; Oka, Yoshihiro; Sugiyama, Haruo; Berneman, Zwi N.

    2010-01-01

    Active immunization using tumor antigen-loaded dendritic cells holds promise for the adjuvant treatment of cancer to eradicate or control residual disease, but so far, most dendritic cell trials have been performed in end-stage cancer patients with high tumor loads. Here, in a phase I/II trial, we investigated the effect of autologous dendritic cell vaccination in 10 patients with acute myeloid leukemia (AML). The Wilms’ tumor 1 protein (WT1), a nearly universal tumor antigen, was chosen as an immunotherapeutic target because of its established role in leukemogenesis and superior immunogenic characteristics. Two patients in partial remission after chemotherapy were brought into complete remission after intradermal administration of full-length WT1 mRNA-electroporated dendritic cells. In these two patients and three other patients who were in complete remission, the AML-associated tumor marker returned to normal after dendritic cell vaccination, compatible with the induction of molecular remission. Clinical responses were correlated with vaccine-associated increases in WT1-specific CD8+ T cell frequencies, as detected by peptide/HLA-A*0201 tetramer staining, and elevated levels of activated natural killer cells postvaccination. Furthermore, vaccinated patients showed increased levels of WT1-specific IFN-γ–producing CD8+ T cells and features of general immune activation. These data support the further development of vaccination with WT1 mRNA-loaded dendritic cells as a postremission treatment to prevent full relapse in AML patients. PMID:20631300

  3. Dendritic cell-mediated vaccination relies on interleukin-4 receptor signaling to avoid tissue damage after Leishmania major infection of BALB/c mice.

    PubMed

    Masic, Anita; Hurdayal, Ramona; Nieuwenhuizen, Natalie E; Brombacher, Frank; Moll, Heidrun

    2012-01-01

    Prevention of tissue damages at the site of Leishmania major inoculation can be achieved if the BALB/c mice are systemically given L. major antigen (LmAg)-loaded bone marrow-derived dendritic cells (DC) that had been exposed to CpG-containing oligodeoxynucleotides (CpG ODN). As previous studies allowed establishing that interleukin-4 (IL-4) is involved in the redirection of the immune response towards a type 1 profile, we were interested in further exploring the role of IL-4. Thus, wild-type (wt) BALB/c mice or DC-specific IL-4 receptor alpha (IL-4Rα)-deficient (CD11c(cre)IL-4Rα(-/lox)) BALB/c mice were given either wt or IL-4Rα-deficient LmAg-loaded bone marrow-derived DC exposed or not to CpG ODN prior to inoculation of 2×10⁵ stationary-phase L. major promastigotes into the BALB/c footpad. The results provide evidence that IL4/IL-4Rα-mediated signaling in the vaccinating DC is required to prevent tissue damage at the site of L. major inoculation, as properly conditioned wt DC but not IL-4Rα-deficient DC were able to confer resistance. Furthermore, uncontrolled L. major population size expansion was observed in the footpad and the footpad draining lymph nodes of CD11c(cre)IL-4Rα(-/lox) mice immunized with CpG ODN-exposed LmAg-loaded IL-4Rα-deficient DC, indicating the influence of IL-4Rα-mediated signaling in host DC to control parasite replication. In addition, no footpad damage occurred in BALB/c mice that were systemically immunized with LmAg-loaded wt DC doubly exposed to CpG ODN and recombinant IL-4. We discuss these findings and suggest that the IL4/IL4Rα signaling pathway could be a key pathway to trigger when designing vaccines aimed to prevent damaging processes in tissues hosting intracellular microorganisms.

  4. TLR5 mediates CD172α+ intestinal lamina propria dendritic cell induction of Th17 cells

    PubMed Central

    Liu, Han; Chen, Feidi; Wu, Wei; Cao, Anthony T; Xue, Xiaochang; Yao, Suxia; Evans-Marin, Heather L; Li, Yan-Qing; Cong, Yingzi

    2016-01-01

    Multiple mechanisms exist in regulation of host responses to massive challenges from microbiota to maintain immune homeostasis in the intestines. Among these is the enriched Th17 cells in the intestines, which regulates intestinal homeostasis through induction of antimicrobial peptides and secretory IgA among others. However, the means by which Th17 cells develop in response to microbiota is still not completely understood. Although both TLR5 and CD172α+ lamina propria dendritic cells (LPDC) have been shown to promote Th17 cell development, it is still unclear whether TLR5 mediates the CD172α+LPDC induction of Th17 cells. By using a microbiota antigen-specific T cell reporter mouse system, we demonstrated that microbiota antigen-specific T cells developed into Th17 cells in the intestinal LP, but not in the spleen when transferred into TCRβxδ−/− mice. LPDCs expressed high levels of TLR5, and most CD172α+LPDCs also co-expressed TLR5. LPDCs produced high levels of IL-23, IL-6 and TGFβ when stimulated with commensal flagellin and promoted Th17 cell development when cultured with full-length CBir1 flagellin but not CBir1 peptide. Wild-type CD172α+, but not CD172α−, LPDCs induced Th17 cells, whereas TLR5-deficient LPDC did not induce Th17 cells. Our data thereby demonstrated that TLR5 mediates CD172α+LPDC induction of Th17 cells in the intestines. PMID:26907705

  5. AIRE is not essential for the induction of human tolerogenic dendritic cells.

    PubMed

    Crossland, Katherine L; Abinun, Mario; Arkwright, Peter D; Cheetham, Timothy D; Pearce, Simon H; Hilkens, Catharien M U; Lilic, Desa

    2016-06-01

    Loss-of-function mutations of the Autoimmune Regulator (AIRE) gene results in organ-specific autoimmunity and disease Autoimmune Polyendocrinopathy type 1 (APS1)/Autoimmune Polyendocrinopathy Candidiasis Ectodermal Dystrophy (APECED). The AIRE protein is crucial in the induction of central tolerance, promoting ectopic expression of tissue-specific antigens in medullary thymic epithelial cells and enabling removal of self-reactive T-cells. AIRE expression has recently been detected in myeloid dendritic cells (DC), suggesting AIRE may have a significant role in peripheral tolerance. DC stimulation of T-cells is critical in determining the initiation or lack of an immune response, depending on the pattern of costimulation and cytokine production by DCs, defining immunogenic/inflammatory (inflDC) and tolerogenic (tolDC) DC. In AIRE-deficient patients and healthy controls, we validated the role of AIRE in the generation and function of monocyte-derived inflDC and tolDCs by determining mRNA and protein expression of AIRE and comparing activation markers (HLA-DR/DP/DQ,CD83,CD86,CD274(PDL-1),TLR-2), cytokine production (IL-12p70,IL-10,IL-6,TNF-α,IFN-γ) and T-cell stimulatory capacity (mixed lymphocyte reaction) of AIRE+ and AIRE- DCs. We show for the first time that: (1) tolDCs from healthy individuals express AIRE; (2) AIRE expression is not significantly higher in tolDC compared to inflDC; (3) tolDC can be generated from APECED patient monocytes and (4) tolDCs lacking AIRE retain the same phenotype and reduced T-cell stimulatory function. Our findings suggest that AIRE does not have a role in the induction and function of monocyte-derived tolerogenic DC in humans, but these findings do not exclude a role for AIRE in peripheral tolerance mediated by other cell types. PMID:26912174

  6. AIRE is not essential for the induction of human tolerogenic dendritic cells.

    PubMed

    Crossland, Katherine L; Abinun, Mario; Arkwright, Peter D; Cheetham, Timothy D; Pearce, Simon H; Hilkens, Catharien M U; Lilic, Desa

    2016-06-01

    Loss-of-function mutations of the Autoimmune Regulator (AIRE) gene results in organ-specific autoimmunity and disease Autoimmune Polyendocrinopathy type 1 (APS1)/Autoimmune Polyendocrinopathy Candidiasis Ectodermal Dystrophy (APECED). The AIRE protein is crucial in the induction of central tolerance, promoting ectopic expression of tissue-specific antigens in medullary thymic epithelial cells and enabling removal of self-reactive T-cells. AIRE expression has recently been detected in myeloid dendritic cells (DC), suggesting AIRE may have a significant role in peripheral tolerance. DC stimulation of T-cells is critical in determining the initiation or lack of an immune response, depending on the pattern of costimulation and cytokine production by DCs, defining immunogenic/inflammatory (inflDC) and tolerogenic (tolDC) DC. In AIRE-deficient patients and healthy controls, we validated the role of AIRE in the generation and function of monocyte-derived inflDC and tolDCs by determining mRNA and protein expression of AIRE and comparing activation markers (HLA-DR/DP/DQ,CD83,CD86,CD274(PDL-1),TLR-2), cytokine production (IL-12p70,IL-10,IL-6,TNF-α,IFN-γ) and T-cell stimulatory capacity (mixed lymphocyte reaction) of AIRE+ and AIRE- DCs. We show for the first time that: (1) tolDCs from healthy individuals express AIRE; (2) AIRE expression is not significantly higher in tolDC compared to inflDC; (3) tolDC can be generated from APECED patient monocytes and (4) tolDCs lacking AIRE retain the same phenotype and reduced T-cell stimulatory function. Our findings suggest that AIRE does not have a role in the induction and function of monocyte-derived tolerogenic DC in humans, but these findings do not exclude a role for AIRE in peripheral tolerance mediated by other cell types.

  7. Possible regulatory role of dendritic spikes in induction of long-term potentiation at hippocampal schaffer collateral-CA1 synapses.

    PubMed

    Isomura, Y; Kato, N

    2000-11-10

    The amplitude of backpropagating action potentials (BAPs) is attenuated, either activity- or neurotransmitter-dependently in the apical dendrite of hippocampal pyramidal neurons. To test the possibility that this BAP attenuation may contribute to regulating the inducibility of long-term potentiation (LTP), BAPs evoked by theta-burst stimulation (TBS), a standard protocol for LTP induction, to apical dendrite synapses were subjected to perturbation by conditioning stimuli to basal dendrite synapses. During this conditioned TBS (cTBS), the amplitude of BAPs was noticeably attenuated, but that of somatic action potentials was not. In the distal dendrite area, cTBS-induced LTP was much smaller than that induced by TBS. By contrast, no difference was observed between TBS- and cTBS-induced LTP in the proximal dendrite area. These findings suggest that the activity-dependent attenuation of BAPs, propagating along the apical dendrite, may serve to regulate hippocampal synaptic plasticity.

  8. Cell-Mediated Drugs Delivery

    PubMed Central

    Batrakova, Elena V.; Gendelman, Howard E.; Kabanov, Alexander V.

    2011-01-01

    INTRODUCTION Drug targeting to sites of tissue injury, tumor or infection with limited toxicity is the goal for successful pharmaceutics. Immunocytes (including mononuclear phagocytes (dendritic cells, monocytes and macrophages), neutrophils, and lymphocytes) are highly mobile; they can migrate across impermeable barriers and release their drug cargo at sites of infection or tissue injury. Thus immune cells can be exploited as trojan horses for drug delivery. AREAS COVERED IN THIS REVIEW This paper reviews how immunocytes laden with drugs can cross the blood brain or blood tumor barriers, to facilitate treatments for infectious diseases, injury, cancer, or inflammatory diseases. The promises and perils of cell-mediated drug delivery are reviewed, with examples of how immunocytes can be harnessed to improve therapeutic end points. EXPERT OPINION Using cells as delivery vehicles enables targeted drug transport, and prolonged circulation times, along with reductions in cell and tissue toxicities. Such systems for drug carriage and targeted release represent a novel disease combating strategy being applied to a spectrum of human disorders. The design of nanocarriers for cell-mediated drug delivery may differ from those used for conventional drug delivery systems; nevertheless, engaging different defense mechanisms into drug delivery may open new perspectives for the active delivery of drugs. PMID:21348773

  9. Classical dendritic cells are required for dietary antigen-mediated peripheral regulatory T cell and tolerance induction

    PubMed Central

    Esterházy, Daria; Loschko, Jakob; London, Mariya; Jove, Veronica; Oliveira, Thiago Y.; Mucida, Daniel

    2016-01-01

    Oral tolerance prevents pathological inflammatory responses towards innocuous foreign antigens via peripheral regulatory T cells (pTreg cells). However, whether a particular subset of antigen-presenting cells (APCs) is required during dietary antigen exposure to instruct naïve CD4+ T cells to differentiate into pTreg cells has not been defined. Using myeloid lineage-specific APC depletion in mice, we found that monocyte-derived APCs are dispensable, while classical dendritic cells (cDCs) are critical for pTreg cell induction and oral tolerance. CD11b− cDCs from the gut-draining lymph nodes efficiently induced pTreg cells, and conversely, loss of IRF8-dependent CD11b− cDCs impaired their polarization, although oral tolerance remained intact. These data reveal the hierarchy of cDC subsets in pTreg cell induction and their redundancy during oral tolerance development. PMID:27019226

  10. Induction of Indoleamine 2, 3-Dioxygenase in Human Dendritic Cells by a Cholera Toxin B Subunit—Proinsulin Vaccine

    PubMed Central

    Mbongue, Jacques C.; Nicholas, Dequina A.; Zhang, Kangling; Kim, Nan-Sun; Hamilton, Brittany N.; Larios, Marco; Zhang, Guangyu; Umezawa, Kazuo; Firek, Anthony F.; Langridge, William H. R.

    2015-01-01

    Dendritic cells (DC) interact with naïve T cells to regulate the delicate balance between immunity and tolerance required to maintain immunological homeostasis. In this study, immature human dendritic cells (iDC) were inoculated with a chimeric fusion protein vaccine containing the pancreatic β-cell auto-antigen proinsulin linked to a mucosal adjuvant the cholera toxin B subunit (CTB-INS). Proteomic analysis of vaccine inoculated DCs revealed strong up-regulation of the tryptophan catabolic enzyme indoleamine 2, 3-dioxygenase (IDO1). Increased biosynthesis of the immunosuppressive enzyme was detected in DCs inoculated with the CTB-INS fusion protein but not in DCs inoculated with proinsulin, CTB, or an unlinked combination of the two proteins. Immunoblot and PCR analyses of vaccine treated DCs detected IDO1mRNA by 3 hours and IDO1 protein synthesis by 6 hours after vaccine inoculation. Determination of IDO1 activity in vaccinated DCs by measurement of tryptophan degradation products (kynurenines) showed increased tryptophan cleavage into N-formyl kynurenine. Vaccination did not interfere with monocytes differentiation into DC, suggesting the vaccine can function safely in the human immune system. Treatment of vaccinated DCs with pharmacological NF-κB inhibitors ACHP or DHMEQ significantly inhibited IDO1 biosynthesis, suggesting a role for NF-κB signaling in vaccine up-regulation of dendritic cell IDO1. Heat map analysis of the proteomic data revealed an overall down-regulation of vaccinated DC functions, suggesting vaccine suppression of DC maturation. Together, our experimental data indicate that CTB-INS vaccine induction of IDO1 biosynthesis in human DCs may result in the inhibition of DC maturation generating a durable state of immunological tolerance. Understanding how CTB-INS modulates IDO1 activity in human DCs will facilitate vaccine efficacy and safety, moving this immunosuppressive strategy closer to clinical applications for prevention of type 1

  11. Cyclophosphamide synergizes with type I interferons through systemic dendritic cell reactivation and induction of immunogenic tumor apoptosis.

    PubMed

    Schiavoni, Giovanna; Sistigu, Antonella; Valentini, Mara; Mattei, Fabrizio; Sestili, Paola; Spadaro, Francesca; Sanchez, Massimo; Lorenzi, Silvia; D'Urso, Maria Teresa; Belardelli, Filippo; Gabriele, Lucia; Proietti, Enrico; Bracci, Laura

    2011-02-01

    Successful chemotherapy accounts for both tumor-related factors and host immune response. Compelling evidence suggests that some chemotherapeutic agents can induce an immunogenic type of cell death stimulating tumor-specific immunity. Here, we show that cyclophosphamide (CTX) exerts two types of actions relevant for the induction of antitumor immunity in vivo: (i) effect on dendritic cell (DC) homeostasis, mediated by endogenous type I interferons (IFN-I), leading to the preferential expansion of CD8α(+) DC, the main subset involved in the cross-presentation of cell-derived antigens; and (ii) induction of tumor cell death with clear-cut immunogenic features capable of stimulating tumor infiltration, engulfment of tumor apoptotic material, and CD8 T-cell cross-priming by CD8α(+) DC. Notably, the antitumor effects of CTX were efficiently amplified by IFN-I, the former providing a source of antigen and a "resetting" of the DC compartment and the latter supplying optimal costimulation for T-cell cross-priming, resulting in the induction of a strong antitumor response and tumor rejection. These results disclose new perspectives for the development of targeted and more effective chemoimmunotherapy treatments of cancer patients. PMID:21156650

  12. Exploring the induction of preproinsulin-specific Foxp3+ CD4+ Treg cells that inhibit CD8+ T cell-mediated autoimmune diabetes by DNA vaccination

    PubMed Central

    Stifter, Katja; Schuster, Cornelia; Schlosser, Michael; Boehm, Bernhard Otto; Schirmbeck, Reinhold

    2016-01-01

    DNA vaccination is a promising strategy to induce effector T cells but also regulatory Foxp3+ CD25+ CD4+ Treg cells and inhibit autoimmune disorders such as type 1 diabetes. Little is known about the antigen requirements that facilitate priming of Treg cells but not autoreactive effector CD8+ T cells. We have shown that the injection of preproinsulin (ppins)-expressing pCI/ppins vector into PD-1- or PD-L1-deficient mice induced Kb/A12-21-monospecific CD8+ T cells and autoimmune diabetes. A pCI/ppinsΔA12-21 vector (lacking the critical Kb/A12-21 epitope) did not induce autoimmune diabetes but elicited a systemic Foxp3+ CD25+ Treg cell immunity that suppressed diabetes induction by a subsequent injection of the diabetogenic pCI/ppins. TGF-β expression was significantly enhanced in the Foxp3+ CD25+ Treg cell population of vaccinated/ppins-primed mice. Ablation of Treg cells in vaccinated/ppins-primed mice by anti-CD25 antibody treatment abolished the protective effect of the vaccine and enabled diabetes induction by pCI/ppins. Adoptive transfer of Treg cells from vaccinated/ppins-primed mice into PD-L1−/− hosts efficiently suppressed diabetes induction by pCI/ppins. We narrowed down the Treg-stimulating domain to a 15-residue ppins76–90 peptide. Vaccine-induced Treg cells thus play a crucial role in the control of de novo primed autoreactive effector CD8+ T cells in this diabetes model. PMID:27406624

  13. Comparison of benzo(a)pyrene metabolism and mutation induction in CHO cells using rat liver homogenate (S9) or Syrian hamster embryonic cell-mediated activation systems

    SciTech Connect

    Chen, D.J.; Okinaka, R.T.; Strniste, G.F.

    1981-01-01

    Mutagenesis in CHO cells has been studied by the addition of an ezymatically active liver homogenate (S9) fraction. However, the metabolism of procarcinogens, such as benzo(a)pyrene (B(a)P), by rat liver homogenate differs from that in intact cellular activation systems. Consequently, B(a)P-induced mutation frequencies in mammalian cells may vary when different activation systems are used. This study attempts to compare B(a)P metabolism and conjugation in rat liver homogenate (S9 preparation) and in Syrian hamster embryonic (SHE) cells. Furthermore, a CHO mutation assay incorporating either of the activation systems is being used to measure the mutation induction frequency.

  14. Selective induction of cell-mediated immunity and protection of rhesus macaques from chronic SHIV{sub KU2} infection by prophylactic vaccination with a conserved HIV-1 envelope peptide-cocktail

    SciTech Connect

    Nehete, Pramod N.; Nehete, Bharti P.; Hill, Lori; Manuri, Pallavi R.; Baladandayuthapani, Veerabhadran; Feng Lei; Simmons, Johnny; Sastry, K. Jagannadha

    2008-01-05

    Infection of Indian-origin rhesus macaques by the simian human immunodeficiency virus (SHIV) is considered to be a suitable preclinical model for directly testing efficacy of vaccine candidates based on the HIV-1 envelope. We used this model for prophylactic vaccination with a peptide-cocktail comprised of highly conserved HIV-1 envelope sequences immunogenic/antigenic in macaques and humans. Separate groups of macaques were immunized with the peptide-cocktail by intravenous and subcutaneous routes using autologous dendritic cells (DC) and Freund's adjuvant, respectively. The vaccine elicited antigen specific IFN-{gamma}-producing cells and T-cell proliferation, but not HIV-neutralizing antibodies. The vaccinated animals also exhibited efficient cross-clade cytolytic activity against target cells expressing envelope proteins corresponding to HIV-1 strains representative of multiple clades that increased after intravenous challenge with pathogenic SHIV{sub KU2}. Virus-neutralizing antibodies were either undetectable or present only transiently at low levels in the control as well as vaccinated monkeys after infection. Significant control of plasma viremia leading to undetectable levels was achieved in majority of vaccinated monkeys compared to mock-vaccinated controls. Monkeys vaccinated with the peptide-cocktail using autologous DC, compared to Freund's adjuvant, and the mock-vaccinated animals, showed significantly higher IFN-{gamma} production, higher levels of vaccine-specific IFN-{gamma} producing CD4{sup +} cells and significant control of plasma viremia. These results support DC-based vaccine delivery and the utility of the conserved HIV-1 envelope peptide-cocktail, capable of priming strong cell-mediated immunity, for potential inclusion in HIV vaccination strategies.

  15. TLR3 Signaling Promotes the Induction of Unique Human BDCA-3 Dendritic Cell Populations

    PubMed Central

    Colletti, Nicholas J.; Liu, Hong; Gower, Adam C.; Alekseyev, Yuriy O.; Arendt, Christopher W.; Shaw, Michael H.

    2016-01-01

    Conventional and plasmacytoid dendritic cells (cDCs and pDCs) are the two populations of DCs that can be readily identified in human blood. Conventional DCs have been subdivided into CD1c+, or blood dendritic cells antigen (BDCA) 1 and CD141+, or BDCA-3, DCs, each having both unique gene expression profiles and functions. BDCA-3 DCs express high levels of toll-like receptor 3 and upon stimulation with Poly I:C secrete IFN-β, CXCL10, and IL-12p70. In this article, we show that activation of human BDCA-3 DCs with Poly I:C induces the expression of activation markers (CD40, CD80, and CD86) and immunoglobulin-like transcript (ILT) 3 and 4. This Poly I:C stimulation results in four populations identifiable by flow cytometry based on their expression of ILT3 and ILT4. We focused our efforts on profiling the ILT4− and ILT4+ DCs. These ILT-expressing BDCA-3 populations exhibit similar levels of activation as measured by CD40, CD80, and CD86; however, they exhibit differential cytokine secretion profiles, unique gene signatures, and vary in their ability to prime allogenic naïve T cells. Taken together, these data illustrate that within a pool of BDCA-3 DCs, there are cells poised to respond differently to a given input stimulus with unique output of immune functions. PMID:27014268

  16. TLR3 Signaling Promotes the Induction of Unique Human BDCA-3 Dendritic Cell Populations.

    PubMed

    Colletti, Nicholas J; Liu, Hong; Gower, Adam C; Alekseyev, Yuriy O; Arendt, Christopher W; Shaw, Michael H

    2016-01-01

    Conventional and plasmacytoid dendritic cells (cDCs and pDCs) are the two populations of DCs that can be readily identified in human blood. Conventional DCs have been subdivided into CD1c(+), or blood dendritic cells antigen (BDCA) 1 and CD141(+), or BDCA-3, DCs, each having both unique gene expression profiles and functions. BDCA-3 DCs express high levels of toll-like receptor 3 and upon stimulation with Poly I:C secrete IFN-β, CXCL10, and IL-12p70. In this article, we show that activation of human BDCA-3 DCs with Poly I:C induces the expression of activation markers (CD40, CD80, and CD86) and immunoglobulin-like transcript (ILT) 3 and 4. This Poly I:C stimulation results in four populations identifiable by flow cytometry based on their expression of ILT3 and ILT4. We focused our efforts on profiling the ILT4(-) and ILT4(+) DCs. These ILT-expressing BDCA-3 populations exhibit similar levels of activation as measured by CD40, CD80, and CD86; however, they exhibit differential cytokine secretion profiles, unique gene signatures, and vary in their ability to prime allogenic naïve T cells. Taken together, these data illustrate that within a pool of BDCA-3 DCs, there are cells poised to respond differently to a given input stimulus with unique output of immune functions.

  17. Prominent role for plasmacytoid dendritic cells in mucosal T cell-independent IgA induction.

    PubMed

    Tezuka, Hiroyuki; Abe, Yukiko; Asano, Jumpei; Sato, Taku; Liu, Jiajia; Iwata, Makoto; Ohteki, Toshiaki

    2011-02-25

    Although both conventional dendritic cells (cDCs) and plasmacytoid dendritic cells (pDCs) are present in the gut-associated lymphoid tissues (GALT), the roles of pDCs in the gut remain largely unknown. Here we show a critical role for pDCs in T cell-independent (TI) IgA production by B cells in the GALT. When pDCs of the mesenteric lymph nodes (MLNs) and Peyer's patches (PPs) (which are representative GALT) were cultured with naive B cells to induce TI IgA class switch recombination (CSR), IgA production was substantially higher than in cocultures of these cells with cDCs. IgA production was dependent on APRIL and BAFF production by pDCs. Importantly, pDC expression of APRIL and BAFF was dependent on stromal cell-derived type I IFN signaling under steady-state conditions. Our findings provide insight into the molecular basis of pDC conditioning to induce mucosal TI IgA production, which may lead to improvements in vaccination strategies and treatment for mucosal-related disorders. PMID:21333555

  18. Classical dendritic cells are required for dietary antigen-mediated induction of peripheral T(reg) cells and tolerance.

    PubMed

    Esterházy, Daria; Loschko, Jakob; London, Mariya; Jove, Veronica; Oliveira, Thiago Y; Mucida, Daniel

    2016-05-01

    Oral tolerance prevents pathological inflammatory responses to innocuous foreign antigens by peripheral regulatory T cells (pT(reg) cells). However, whether a particular subset of antigen-presenting cells (APCs) is required during dietary antigen exposure for the 'instruction' of naive CD4(+) T cells to differentiate into pT(reg) cells has not been defined. Using myeloid lineage-specific APC depletion in mice, we found that monocyte-derived APCs were dispensable, while classical dendritic cells (cDCs) were critical, for pT(reg) cell induction and oral tolerance. CD11b(-) cDCs from the gut-draining lymph nodes efficiently induced pT(reg) cells and, conversely, loss of transcription factor IRF8-dependent CD11b(-) cDCs impaired their polarization, although oral tolerance remained intact. These data reveal the hierarchy of cDC subsets in the induction of pT(reg) cells and their redundancy during the development of oral tolerance.

  19. HIV infection of dendritic cells subverts the IFN induction pathway via IRF-1 and inhibits type 1 IFN production

    PubMed Central

    Harman, Andrew N.; Lai, Joey; Turville, Stuart; Samarajiwa, Shamith; Gray, Lachlan; Marsden, Valerie; Mercier, Sarah; Jones, Kate; Nasr, Najla; Rustagi, Arjun; Cumming, Helen; Donaghy, Heather; Mak, Johnson; Gale, Michael; Churchill, Melissa; Hertzog, Paul

    2011-01-01

    Many viruses have developed mechanisms to evade the IFN response. Here, HIV-1 was shown to induce a distinct subset of IFN-stimulated genes (ISGs) in monocyte-derived dendritic cells (DCs), without detectable type I or II IFN. These ISGs all contained an IFN regulatory factor 1 (IRF-1) binding site in their promoters, and their expression was shown to be driven by IRF-1, indicating this subset was induced directly by viral infection by IRF-1. IRF-1 and -7 protein expression was enriched in HIV p24 antigen-positive DCs. A HIV deletion mutant with the IRF-1 binding site deleted from the long terminal repeat showed reduced growth kinetics. Early and persistent induction of IRF-1 was coupled with sequential transient up-regulation of its 2 inhibitors, IRF-8, followed by IRF-2, suggesting a mechanism for IFN inhibition. HIV-1 mutants with Vpr deleted induced IFN, showing that Vpr is inhibitory. However, HIV IFN inhibition was mediated by failure of IRF-3 activation rather than by its degradation, as in T cells. In contrast, herpes simplex virus type 2 markedly induced IFNβ and a broader range of ISGs to higher levels, supporting the hypothesis that HIV-1 specifically manipulates the induction of IFN and ISGs to enhance its noncytopathic replication in DCs. PMID:21411754

  20. From The Cover: Induction of antiviral immunity requires Toll-like receptor signaling in both stromal and dendritic cell compartments

    NASA Astrophysics Data System (ADS)

    Sato, Ayuko; Iwasaki, Akiko

    2004-11-01

    Pattern recognition by Toll-like receptors (TLRs) is known to be important for the induction of dendritic cell (DC) maturation. DCs, in turn, are critically important in the initiation of T cell responses. However, most viruses do not infect DCs. This recognition system poses a biological problem in ensuring that most viral infections be detected by pattern recognition receptors. Furthermore, it is unknown what, if any, is the contribution of TLRs expressed by cells that are infected by a virus, versus TLRs expressed by DCs, in the initiation of antiviral adaptive immunity. Here we address these issues using a physiologically relevant model of mucosal infection with herpes simplex virus type 2. We demonstrate that innate immune recognition of viral infection occurs in two distinct stages, one at the level of the infected epithelial cells and the other at the level of the noninfected DCs. Importantly, both TLR-mediated recognition events are required for the induction of effector T cells. Our results demonstrate that virally infected tissues instruct DCs to initiate the appropriate class of effector T cell responses and reveal the critical importance of the stromal cells in detecting infectious agents through their own pattern recognition receptors. mucosal immunity | pattern recognition | viral infection

  1. Anandamide Attenuates Th-17 Cell-Mediated Delayed-Type Hypersensitivity Response by Triggering IL-10 Production and Consequent microRNA Induction

    PubMed Central

    Jackson, Austin R.; Nagarkatti, Prakash; Nagarkatti, Mitzi

    2014-01-01

    Endogenous cannabinoids [endocannabinoids] are lipid signaling molecules that have been shown to modulate immune functions. However, their role in the regulation of Th17 cells has not been studied previously. In the current study, we used methylated Bovine Serum Albumin [mBSA]-induced delayed type hypersensitivity [DTH] response in C57BL/6 mice, mediated by Th17 cells, as a model to test the anti-inflammatory effects of endocannabinoids. Administration of anandamide [AEA], a member of the endocannabinoid family, into mice resulted in significant mitigation of mBSA-induced inflammation, including foot pad swelling, cell infiltration, and cell proliferation in the draining lymph nodes [LN]. AEA treatment significantly reduced IL-17 and IFN-γ production, as well as decreased RORγt expression while causing significant induction of IL-10 in the draining LNs. IL-10 was critical for the AEA-induced mitigation of DTH response inasmuch as neutralization of IL-10 reversed the effects of AEA. We next analyzed miRNA from the LN cells and found that 100 out of 609 miRNA species were differentially regulated in AEA-treated mice when compared to controls. Several of these miRNAs targeted proinflammatory mediators. Interestingly, many of these miRNA were also upregulated upon in vitro treatment of LN cells with IL-10. Together, the current study demonstrates that AEA may suppress Th-17 cell–mediated DTH response by inducing IL-10 which in turn triggers miRNA that target proinflammatory pathways. PMID:24699635

  2. Induction of T helper 3 regulatory cells by dendritic cells infected with porcine reproductive and respiratory syndrome virus

    SciTech Connect

    Silva-Campa, Erika; Flores-Mendoza, Lilian; Resendiz, Monica; Pinelli-Saavedra, Araceli; Mata-Haro, Veronica; Mwangi, Waithaka; Hernandez, Jesus

    2009-05-10

    Delayed development of virus-specific immune response has been observed in pigs infected with the porcine reproductive and respiratory syndrome virus (PRRSV). Several studies support the hypothesis that the PRRSV is capable of modulating porcine immune system, but the mechanisms involved are yet to be defined. In this study, we evaluated the induction of T regulatory cells by PRRSV-infected dendritic cells (DCs). Our results showed that PRRSV-infected DCs significantly increased Foxp3{sup +}CD25{sup +} T cells, an effect that was reversible by IFN-alpha treatment, and this outcome was reproducible using two distinct PRRSV strains. Analysis of the expressed cytokines suggested that the induction of Foxp3{sup +}CD25{sup +} T cells is dependent on TGF-beta but not IL-10. In addition, a significant up-regulation of Foxp3 mRNA, but not TBX21 or GATA3, was detected. Importantly, our results showed that the induced Foxp3{sup +}CD25{sup +} T cells were able to suppress the proliferation of PHA-stimulated PBMCs. The T cells induced by the PRRSV-infected DCs fit the Foxp3{sup +}CD25{sup +} T helper 3 (Th3) regulatory cell phenotype described in the literature. The induction of this cell phenotype depended, at least in part, on PRRSV viability because IFN-alpha treatment or virus inactivation reversed these effects. In conclusion, this data supports the hypothesis that the PRRSV succeeds to establish and replicate in porcine cells early post-infection, in part, by inducing Th3 regulatory cells as a mechanism of modulating the porcine immune system.

  3. Dectin-1-activated dendritic cells trigger potent antitumour immunity through the induction of Th9 cells

    PubMed Central

    Zhao, Yinghua; Chu, Xiao; Chen, Jintong; Wang, Ying; Gao, Sujun; Jiang, Yuxue; Zhu, Xiaoqing; Tan, Guangyun; Zhao, Wenjie; Yi, Huanfa; Xu, Honglin; Ma, Xingzhe; Lu, Yong; Yi, Qing; Wang, Siqing

    2016-01-01

    Dectin-1 signalling in dendritic cells (DCs) has an important role in triggering protective antifungal Th17 responses. However, whether dectin-1 directs DCs to prime antitumour Th9 cells remains unclear. Here, we show that DCs activated by dectin-1 agonists potently promote naive CD4+ T cells to differentiate into Th9 cells. Abrogation of dectin-1 in DCs completely abolishes their Th9-polarizing capability in response to dectin-1 agonist curdlan. Notably, dectin-1 stimulation of DCs upregulates TNFSF15 and OX40L, which are essential for dectin-1-activated DC-induced Th9 cell priming. Mechanistically, dectin-1 activates Syk, Raf1 and NF-κB signalling pathways, resulting in increased p50 and RelB nuclear translocation and TNFSF15 and OX40L expression. Furthermore, immunization of tumour-bearing mice with dectin-1-activated DCs induces potent antitumour response that depends on Th9 cells and IL-9 induced by dectin-1-activated DCs in vivo. Our results identify dectin-1-activated DCs as a powerful inducer of Th9 cells and antitumour immunity and may have important clinical implications. PMID:27492902

  4. Induction of Dendritic Cell Maturation and Activation by a Potential Adjuvant, 2-Hydroxypropyl-β-Cyclodextrin

    PubMed Central

    Kim, Sun Kyung; Yun, Cheol-Heui; Han, Seung Hyun

    2016-01-01

    2-Hydroxypropyl-β-cyclodextrin (HP-β-CD) is a chemically modified cyclic oligosaccharide produced from starch that is commonly used as an excipient. Although HP-β-CD has been suggested as a potential adjuvant for vaccines, its immunological properties and mechanism of action have yet to be characterized. In the present study, we investigated the maturation and activation of human dendritic cells (DCs) treated with HP-β-CD. We found that DCs stimulated with HP-β-CD exhibited a remarkable upregulation of costimulatory molecules, MHC proteins, and PD-L1/L2. In addition, the production of cytokines, such as TNF-α, IL-6, and IL-10, was modestly increased in DCs when treated with HP-β-CD. Furthermore, HP-β-CD-sensitized DCs markedly induced the proliferation and activation of autologous T lymphocytes. HP-β-CD also induced a lipid raft formation in DCs. In contrast, filipin, a lipid raft inhibitor, attenuated HP-β-CD-induced DC maturation, the cytokine expression, and the T lymphocyte-stimulating activities. To determine the in vivo relevance of the results, we investigated the adjuvanticity of HP-β-CD and the modulation of DCs in a mouse footpad immunization model. When mice were immunized with ovalbumin in the presence of HP-β-CD through a hind footpad, serum ovalbumin-specific antibodies were markedly elevated. Concomitantly, DC populations expressing CD11c and MHC class II were increased in the draining lymph nodes, and the expression of costimulatory molecules was upregulated. Collectively, our data suggest that HP-β-CD induces phenotypic and functional maturation of DCs mainly mediated through lipid raft formation, which might mediate the adjuvanticity of HP-β-CD. PMID:27812358

  5. Induction of maturation of human blood dendritic cell precursors by measles virus is associated with immunosuppression.

    PubMed

    Schnorr, J J; Xanthakos, S; Keikavoussi, P; Kämpgen, E; ter Meulen, V; Schneider-Schaulies, S

    1997-05-13

    As well as inducing a protective immune response against reinfection, acute measles is associated with a marked suppression of immune functions against superinfecting agents and recall antigens, and this association is the major cause of the current high morbidity and mortality rate associated with measles virus (MV) infections. Dendritic cells (DCs) are antigen-presenting cells crucially involved in the initiation of primary and secondary immune responses, so we set out to define the interaction of MV with these cells. We found that both mature and precursor human DCs generated from peripheral blood monocytic cells express the major MV protein receptor CD46 and are highly susceptible to infection with both MV vaccine (ED) and wild-type (WTF) strains, albeit with different kinetics. Except for the down-regulation of CD46, the expression pattern of functionally important surface antigens on mature DCs was not markedly altered after MV infection. However, precursor DCs up-regulated HLA-DR, CD83, and CD86 within 24 h of WTF infection and 72 h after ED infection, indicating their functional maturation. In addition, interleukin 12 synthesis was markedly enhanced after both ED and WTF infection in DCs. On the other hand, MV-infected DCs strongly interfered with mitogen-dependent proliferation of freshly isolated peripheral blood lymphocytes in vitro. These data indicate that the differentiation of effector functions of DCs is not impaired but rather is stimulated by MV infection. Yet, mature, activated DCs expressing MV surface antigens do give a negative signal to inhibit lymphocyte proliferation and thus contribute to MV-induced immunosuppression. PMID:9144236

  6. DNA vaccination strategy targets epidermal dendritic cells, initiating their migration and induction of a host immune response

    PubMed Central

    Smith, Trevor RF; Schultheis, Katherine; Kiosses, William B; Amante, Dinah H; Mendoza, Janess M; Stone, John C; McCoy, Jay R; Sardesai, Niranjan Y; Broderick, Kate E

    2014-01-01

    The immunocompetence and clinical accessibility of dermal tissue offers an appropriate and attractive target for vaccination. We previously demonstrated that pDNA injection into the skin in combination with surface electroporation (SEP), results in rapid and robust expression of the encoded antigen in the epidermis. Here, we demonstrate that intradermally EP-enhanced pDNA vaccination results in the rapid induction of a host humoral immune response. In the dermally relevant guinea pig model, we used high-resolution laser scanning confocal microscopy to observe direct dendritic cell (DC) transfections in the epidermis, to determine the migration kinetics of these cells from the epidermal layer into the dermis, and to follow them sequentially to the immediate draining lymph nodes. Furthermore, we delineate the relationship between the migration of directly transfected epidermal DCs and the generation of the host immune response. In summary, these data indicate that direct presentation of antigen to the immune system by DCs through SEP-based in vivo transfection in the epidermis, is related to the generation of a humoral immune response. PMID:26052522

  7. PD-L2 induction on dendritic cells exposed to Mycobacterium avium downregulates BCG-specific T cell response.

    PubMed

    Mendoza-Coronel, Elizabeth; Camacho-Sandoval, Rosa; Bonifaz, Laura C; López-Vidal, Yolanda

    2011-01-01

    The exposure to certain species of Nontuberculous Mycobacteria (NTM) can modulate the immune response induced by Mycobacterium bovis BCG. Mycobacterium avium has been postulated as a weak inducer of dendritic cell (DC) maturation. However, how the DC exposure to M. avium could contribute to the modulation of a BCG-specific CD4+ T cell response and the molecules involved remain unknown. Here, we exposed bone marrow-derived DCs (BMDCs) to M. avium either prior to exposure to BCG or as a unique stimulus. We found that M. avium induces high expression of PD-L2 (B7-DC) in BMDCs. This was dependent on IL-10 production through the TLR2-p38 MAPK signaling pathway. Exposure to M. avium prior to BCG results in BMDCs that do not express co-stimulatory molecules and pro-inflammatory cytokines, while the expression of PD-L2 and IL-10 was maintained. BMDCs exposed to M. avium impaired the activation of BCG-specific T cells through the PD-1: PD-L interaction. This suggests that a M. avium-induced phenotype in DCs might be implicated in the induction of mechanisms of tolerance that could impact the T cell response induced by BCG vaccination.

  8. Aire regulates the transfer of antigen from mTECs to dendritic cells for induction of thymic tolerance.

    PubMed

    Hubert, François-Xavier; Kinkel, Sarah A; Davey, Gayle M; Phipson, Belinda; Mueller, Scott N; Liston, Adrian; Proietto, Anna I; Cannon, Ping Z F; Forehan, Simon; Smyth, Gordon K; Wu, Li; Goodnow, Christopher C; Carbone, Francis R; Scott, Hamish S; Heath, William R

    2011-09-01

    To investigate the role of Aire in thymic selection, we examined the cellular requirements for generation of ovalbumin (OVA)-specific CD4 and CD8 T cells in mice expressing OVA under the control of the rat insulin promoter. Aire deficiency reduced the number of mature single-positive OVA-specific CD4(+) or CD8(+) T cells in the thymus, independent of OVA expression. Importantly, it also contributed in 2 ways to OVA-dependent negative selection depending on the T-cell type. Aire-dependent negative selection of OVA-specific CD8 T cells correlated with Aire-regulated expression of OVA. By contrast, for OVA-specific CD4 T cells, Aire affected tolerance induction by a mechanism that operated independent of the level of OVA expression, controlling access of antigen presenting cells to medullary thymic epithelial cell (mTEC)-expressed OVA. This study supports the view that one mechanism by which Aire controls thymic negative selection is by regulating the indirect presentation of mTEC-derived antigens by thymic dendritic cells. It also indicates that mTECs can mediate tolerance by direct presentation of Aire-regulated antigens to both CD4 and CD8 T cells.

  9. CD47 Blockade Triggers T cell-mediated Destruction of Immunogenic Tumors

    PubMed Central

    Liu, Xiaojuan; Pu, Yang; Cron, Kyle; Deng, Liufu; Kline, Justin; Frazier, William A.; Xu, Hairong; Peng, Hua; Fu, Yang-Xin; Xu, Meng Michelle

    2015-01-01

    Macrophage phagocytosis of tumor cells mediated by CD47-specific blocking antibodies has been proposed to be the major effector mechanism in xenograft models. Using syngeneic immunocompetent tumor models, we reveal that in the therapeutic effects of CD47 blockade depend on dendritic cell (DC) but not macrophage cross-priming of T cell responses in immunocompetent mice. The therapeutic effects of anti-CD47 antibody therapy were abrogated in T cell-deficient mice. In addition, the anti-tumor effects of CD47 blockade required expression of the cytosolic DNA sensor STING, but neither MyD88 nor TRIF, in CD11c+ cells, suggesting that cytosolic sensing of DNA from tumor cells is enhanced by anti-CD47 treatment, further bridging the innate and adaptive responses. Notably, the timing of administration of standard chemotherapy markedly impacted the induction of anti-tumor T cell responses by CD47 blockade. Together, our findings indicate that CD47 blockade drives T cell-mediated elimination of immunogenic tumors. PMID:26322579

  10. Serum amyloid A chemoattracts immature dendritic cells and indirectly provokes monocyte chemotaxis by induction of cooperating CC and CXC chemokines.

    PubMed

    Gouwy, Mieke; De Buck, Mieke; Pörtner, Noëmie; Opdenakker, Ghislain; Proost, Paul; Struyf, Sofie; Van Damme, Jo

    2015-01-01

    Serum amyloid A (SAA) is an acute phase protein that is upregulated in inflammatory diseases and chemoattracts monocytes, lymphocytes, and granulocytes via its G protein-coupled receptor formyl peptide receptor like 1/formyl peptide receptor 2 (FPRL1/FPR2). Here, we demonstrated that the SAA1α isoform also chemoattracts monocyte-derived immature dendritic cells (DCs) in the Boyden and μ-slide chemotaxis assay and that its chemotactic activity for monocytes and DCs was indirectly mediated via rapid chemokine induction. Indeed, SAA1 induced significant amounts (≥5 ng/mL) of macrophage inflammatory protein-1α/CC chemokine ligand 3 (MIP-1α/CCL3) and interleukin-8/CXC chemokine ligand 8 (IL-8/CXCL8) in monocytes and DCs in a dose-dependent manner within 3 h. However, SAA1 also directly activated monocytes and DCs for signaling and chemotaxis without chemokine interference. SAA1-induced monocyte migration was nevertheless significantly prevented (60-80% inhibition) in the constant presence of desensitizing exogenous MIP-1α/CCL3, neutralizing anti-MIP-1α/CCL3 antibody, or a combination of CC chemokine receptor 1 (CCR1) and CCR5 antagonists, indicating that this endogenously produced CC chemokine was indirectly contributing to SAA1-mediated chemotaxis. Further, anti-IL-8/CXCL8 antibody neutralized SAA1-induced monocyte migration, suggesting that endogenous IL-8/CXCL8 acted in concert with MIP-1α/CCL3. This explained why SAA1 failed to synergize with exogenously added MIP-1α/CCL3 or stromal cell-derived factor-1α (SDF-1α)/CXCL12 in monocyte and DC chemotaxis. In addition to direct leukocyte activation, SAA1 induces a chemotactic cascade mediated by expression of cooperating chemokines to prolong leukocyte recruitment to the inflammatory site.

  11. Gene expression profiles identify both MyD88-independent and MyD88-dependent pathways involved in the maturation of dendritic cells mediated by heparan sulfate: A novel adjuvant

    PubMed Central

    Wu, Meini; Wang, Haixuan; Shi, Jiandong; Sun, Jing; Duan, Zhiqing; Li, Yanhan; Li, Jianfang; Hu, Ningzhu; Wei, Yiju; Chen, Yang; Hu, Yunzhang

    2015-01-01

    The traditional vaccine adjuvant research is mainly based on the trial and error method, and the mechanisms underlying the immune system stimulation remaining largely unknown. We previously demonstrated that heparan sulfate (HS), a TLR-4 ligand and endogenous danger signal, effectively enhanced humoral and cellular immune responses in mice immunized by HBsAg. This study aimed to evaluate whether HS induces better humoral immune responses against inactivated Hepatitis A or Rabies Vaccines, respectively, compared with traditional adjuvants (e.g. Alum and complete Freund's adjuvant). In order to investigate the molecular mechanisms of its adjuvanticity, the gene expression pattern of peripheral blood monocytes derived DCs (dendritic cells) stimulated with HS was analyzed at different times points. Total RNA was hybridized to Agilent SurePrint G3 Human Gene Expression 8 × 60 K one-color oligo-microarray. Through intersection analysis of the microarray results, we found that the Toll-like receptor signaling pathway was significantly activated, and NF-kB, TRAF3 and IRF7 were activated as early as 12 h, and MyD88 was activated at 48 h post-stimulation. Furthermore, the expression of the surface marker CD83 and the co-stimulatory molecules CD80 and CD86 was up-regulated as early as 24 h. Therefore, we speculated that HS-induced human monocyte-derived DC maturation may occur through both MyD88-independent and dependent pathways, but primarily through the former (TRIF pathway). These data provide an important basis for understanding the mechanisms underlying HS enhancement of the immune response. PMID:25668674

  12. Biodegradable nanoparticle mediated antigen delivery to human cord blood derived dendritic cells for induction of primary T cell responses.

    PubMed

    Diwan, Manish; Elamanchili, Praveen; Lane, Helena; Gainer, Anita; Samuel, John

    2003-01-01

    Dendritic cells (DCs) in the peripheral tissues act as sentinels of the immune system. They detect and capture pathogens entering the body and present their antigens to T cells to trigger responses directed towards elimination of the pathogen. The induction of peripheral tolerance against self and certain foreign antigens is also believed to be mediated through DCs. The outcome of any immune response is largely controlled by the microenvironment of antigen capture, processing and presentation by DCs. The "context" of antigen delivery to DCs will directly influence the microenvironment of antigen presentation and hence the regulation of immune responses. We report here preliminary investigations describing the formulation of a pharmaceutically acceptable, biodegradable, and strategic nanoparticulate delivery system, and its application for efficient antigen loading of DCs to achieve antigen specific T cell activation. "Pathogen-mimicking" nanoparticles capable of interacting with DCs were fabricated by incorporating monophosphoryl lipid A (MPLA; toll-like receptor (TLR) 4 ligand) or CpG ODN (seq #2006; TLR9 ligand) in biodegradable copolymer, poly(D,L,-lactic-co-glycolic acid) (PLGA). The uptake of PLGA nanoparticles by human umbilical cord blood derived DCs (DCs propagated from CD34 progenitors) was conclusively demonstrated by scanning electron microscopy (SEM), fluorescence activated cell sorting (FACS) and confocal laser scanning microscopy (CLSM). Cell phenotype at day 12 of cultures was determined as immature DC using specific cell surface markers, i.e. CD11c (approximately 90%), MHC-II (approximately 70%), CD86 (approximately 20%), CD83 (approximately 5%), CD80 (approximately 40%), CD40 (approximately 40%), and CCR7 (approximately 5%). Tetanus toxoid (TT), a model antigen, was encapsulated in nanoparticles along with an immunomodulator, i.e. either MPLA or CpG ODN. DCs pulsed with various antigen formulations were co-cultured with autologous naïve T cells at

  13. Topical vaccination with functionalized particles targeting dendritic cells.

    PubMed

    Baleeiro, Renato B; Wiesmüller, Karl-Heinz; Reiter, Yoran; Baude, Barbara; Dähne, Lars; Patzelt, Alexa; Lademann, Jürgen; Barbuto, José A; Walden, Peter

    2013-08-01

    Needle-free vaccination, for reasons of safety, economy, and convenience, is a central goal in vaccine development, but it also needs to meet the immunological requirements for efficient induction of prophylactic and therapeutic immune responses. Combining the principles of noninvasive delivery to dendritic cells (DCs) through skin and the immunological principles of cell-mediated immunity, we developed microparticle-based topical vaccines. We show here that the microparticles are efficient carriers for coordinated delivery of the essential vaccine constituents to DCs for cross-presentation of the antigens and stimulation of T-cell responses. When applied to the skin, the microparticles penetrate into hair follicles and target the resident DCs, the immunologically most potent cells and site for induction of efficient immune responses. The microparticle vaccine principle can be applied to different antigen formats such as peptides and proteins, or nucleic acids coding for the antigens. PMID:23426134

  14. Topical vaccination with functionalized particles targeting dendritic cells.

    PubMed

    Baleeiro, Renato B; Wiesmüller, Karl-Heinz; Reiter, Yoran; Baude, Barbara; Dähne, Lars; Patzelt, Alexa; Lademann, Jürgen; Barbuto, José A; Walden, Peter

    2013-08-01

    Needle-free vaccination, for reasons of safety, economy, and convenience, is a central goal in vaccine development, but it also needs to meet the immunological requirements for efficient induction of prophylactic and therapeutic immune responses. Combining the principles of noninvasive delivery to dendritic cells (DCs) through skin and the immunological principles of cell-mediated immunity, we developed microparticle-based topical vaccines. We show here that the microparticles are efficient carriers for coordinated delivery of the essential vaccine constituents to DCs for cross-presentation of the antigens and stimulation of T-cell responses. When applied to the skin, the microparticles penetrate into hair follicles and target the resident DCs, the immunologically most potent cells and site for induction of efficient immune responses. The microparticle vaccine principle can be applied to different antigen formats such as peptides and proteins, or nucleic acids coding for the antigens.

  15. A Human Trypanosome Suppresses CD8+ T Cell Priming by Dendritic Cells through the Induction of Immune Regulatory CD4+ Foxp3+ T Cells.

    PubMed

    Ersching, Jonatan; Basso, Alexandre Salgado; Kalich, Vera Lucia Garcia; Bortoluci, Karina Ramalho; Rodrigues, Maurício M

    2016-06-01

    Although CD4+ Foxp3+ T cells are largely described in the regulation of CD4+ T cell responses, their role in the suppression of CD8+ T cell priming is much less clear. Because the induction of CD8+ T cells during experimental infection with Trypanosoma cruzi is remarkably delayed and suboptimal, we raised the hypothesis that this protozoan parasite actively induces the regulation of CD8+ T cell priming. Using an in vivo assay that eliminated multiple variables associated with antigen processing and dendritic cell activation, we found that injection of bone marrow-derived dendritic cells exposed to T. cruzi induced regulatory CD4+ Foxp3+ T cells that suppressed the priming of transgenic CD8+ T cells by peptide-loaded BMDC. This newly described suppressive effect on CD8+ T cell priming was independent of IL-10, but partially dependent on CTLA-4 and TGF-β. Accordingly, depletion of Foxp3+ cells in mice infected with T. cruzi enhanced the response of epitope-specific CD8+ T cells. Altogether, our data uncover a mechanism by which T. cruzi suppresses CD8+ T cell responses, an event related to the establishment of chronic infections. PMID:27332899

  16. A Human Trypanosome Suppresses CD8+ T Cell Priming by Dendritic Cells through the Induction of Immune Regulatory CD4+ Foxp3+ T Cells

    PubMed Central

    Ersching, Jonatan; Basso, Alexandre Salgado; Kalich, Vera Lucia Garcia; Bortoluci, Karina Ramalho

    2016-01-01

    Although CD4+ Foxp3+ T cells are largely described in the regulation of CD4+ T cell responses, their role in the suppression of CD8+ T cell priming is much less clear. Because the induction of CD8+ T cells during experimental infection with Trypanosoma cruzi is remarkably delayed and suboptimal, we raised the hypothesis that this protozoan parasite actively induces the regulation of CD8+ T cell priming. Using an in vivo assay that eliminated multiple variables associated with antigen processing and dendritic cell activation, we found that injection of bone marrow-derived dendritic cells exposed to T. cruzi induced regulatory CD4+ Foxp3+ T cells that suppressed the priming of transgenic CD8+ T cells by peptide-loaded BMDC. This newly described suppressive effect on CD8+ T cell priming was independent of IL-10, but partially dependent on CTLA-4 and TGF-β. Accordingly, depletion of Foxp3+ cells in mice infected with T. cruzi enhanced the response of epitope-specific CD8+ T cells. Altogether, our data uncover a mechanism by which T. cruzi suppresses CD8+ T cell responses, an event related to the establishment of chronic infections. PMID:27332899

  17. Induction of dendritic cell production of type I and type III interferons by wild-type and vaccine strains of measles virus: role of defective interfering RNAs.

    PubMed

    Shivakoti, Rupak; Siwek, Martina; Hauer, Debra; Schultz, Kimberly L W; Griffin, Diane E

    2013-07-01

    The innate immune response to viral infection frequently includes induction of type I interferons (IFN), but many viruses have evolved ways to block this response and increase virulence. In vitro studies of IFN production after infection of susceptible cells with measles virus (MeV) have often reported greater IFN synthesis after infection with vaccine than with wild-type strains of MeV. However, the possible presence in laboratory virus stocks of 5' copy-back defective interfering (DI) RNAs that induce IFN independent of the standard virus has frequently confounded interpretation of data from these studies. To further investigate MeV strain-dependent differences in IFN induction and the role of DI RNAs, monocyte-derived dendritic cells (moDCs) were infected with the wild-type Bilthoven strain and the vaccine Edmonston-Zagreb strain with and without DI RNAs. Production of type I IFN, type III IFN, and the interferon-stimulated genes (ISGs) Mx and ISG56 by infected cells was assessed with a flow cytometry-based IFN bioassay, quantitative reverse transcriptase PCR (RT-PCR), and immunoassays. Bilthoven infected moDCs less efficiently than Edmonston-Zagreb. Presence of DI RNAs in vaccine stocks resulted in greater maturation of moDCs, inhibition of virus replication, and induction of higher levels of IFN and ISGs. Production of type I IFN, type III IFN, and ISG mRNA and protein was determined by both the level of infection and the presence of DI RNAs. At the same levels of infection and in the absence of DI RNA, IFN induction was similar between wild-type and vaccine strains of MeV. PMID:23678166

  18. Induction of hippocampal long-term potentiation increases the morphological dynamics of microglial processes and prolongs their contacts with dendritic spines

    PubMed Central

    Pfeiffer, Thomas; Avignone, Elena; Nägerl, U. Valentin

    2016-01-01

    Recently microglia, the resident immune cells of the brain, have been recognized as multi-tasking talents that are not only essential in the diseased brain, but also actively contribute to synaptic circuit remodeling during normal brain development. It is well established that microglia dynamically scan their environment and thereby establish transient physical contacts with neuronal synapses, which may allow them to sense and influence synaptic function. However, it is unknown whether and how the morphological dynamics of microglia and their physical interactions with synapses are affected by the induction of synaptic plasticity in the adult brain. To this end, we characterized the morphological dynamics of microglia and their interactions with synapses before and after the induction of synaptic plasticity (LTP) in the hippocampus by time-lapse two-photon imaging and electrophysiological recordings in acute brain slices. We demonstrate that during hippocampal LTP microglia alter their morphological dynamics by increasing the number of their processes and by prolonging their physical contacts with dendritic spines. These effects were absent in the presence of an NMDA receptor antagonist. Taken together, this altered behavior could reflect an active microglial involvement in circuit remodeling during activity-dependent synaptic plasticity in the healthy adult brain. PMID:27604518

  19. Murine dendritic cell rapamycin-resistant and rictor-independent mTOR controls IL-10, B7-H1, and regulatory T-cell induction

    PubMed Central

    Rosborough, Brian R.; Raïch-Regué, Dàlia; Matta, Benjamin M.; Lee, Keunwook; Gan, Boyi; DePinho, Ronald A.; Hackstein, Holger; Boothby, Mark

    2013-01-01

    Mammalian target of rapamycin (mTOR) is an important, yet poorly understood integrative kinase that regulates immune cell function. mTOR functions in 2 independent complexes: mTOR complex (mTORC) 1 and 2. The immunosuppressant rapamycin (RAPA) inhibits mTORC1 but not mTORC2 and causes a paradoxical reduction in anti-inflammatory interleukin (IL) 10 and B7-homolog 1 (B7-H1) expression by dendritic cells (DCs). Using catalytic mTOR inhibitors and DCs lacking mTORC2, we show that restraint of signal transducer and activator of transcription 3–mediated IL-10 and B7-H1 expression during DC maturation involves a RAPA-insensitive and mTORC2-independent mTOR mechanism. Relatedly, catalytic mTOR inhibition promotes B7-H1–dependent and IL-1β–dependent DC induction of regulatory T cells (Tregs). Thus, we define an immunoregulatory pathway in which RAPA-sensitive mTORC1 in DCs promotes effector T-cell expansion and RAPA-insensitive mTORC1 restrains Treg induction. These findings identify the first known RAPA-insensitive mTOR pathway that is not mediated solely by mTORC2 and have implications for the use of catalytic mTOR inhibitors in inflammatory disease settings. PMID:23444404

  20. Induction of hippocampal long-term potentiation increases the morphological dynamics of microglial processes and prolongs their contacts with dendritic spines.

    PubMed

    Pfeiffer, Thomas; Avignone, Elena; Nägerl, U Valentin

    2016-01-01

    Recently microglia, the resident immune cells of the brain, have been recognized as multi-tasking talents that are not only essential in the diseased brain, but also actively contribute to synaptic circuit remodeling during normal brain development. It is well established that microglia dynamically scan their environment and thereby establish transient physical contacts with neuronal synapses, which may allow them to sense and influence synaptic function. However, it is unknown whether and how the morphological dynamics of microglia and their physical interactions with synapses are affected by the induction of synaptic plasticity in the adult brain. To this end, we characterized the morphological dynamics of microglia and their interactions with synapses before and after the induction of synaptic plasticity (LTP) in the hippocampus by time-lapse two-photon imaging and electrophysiological recordings in acute brain slices. We demonstrate that during hippocampal LTP microglia alter their morphological dynamics by increasing the number of their processes and by prolonging their physical contacts with dendritic spines. These effects were absent in the presence of an NMDA receptor antagonist. Taken together, this altered behavior could reflect an active microglial involvement in circuit remodeling during activity-dependent synaptic plasticity in the healthy adult brain. PMID:27604518

  1. Streptococcal preparation OK-432 promotes fusion efficiency and enhances induction of antigen-specific CTL by fusions of dendritic cells and colorectal cancer cells.

    PubMed

    Koido, Shigeo; Hara, Eiichi; Homma, Sadamu; Torii, Akira; Mitsunaga, Makoto; Yanagisawa, Satoru; Toyama, Yoichi; Kawahara, Hidejiro; Watanabe, Michiaki; Yoshida, Seiya; Kobayashi, Susumu; Yanaga, Katsuhiko; Fujise, Kiyotaka; Tajiri, Hisao

    2007-01-01

    Dendritic/tumor fusion cell (FC) vaccine is an effective approach for various types of cancer but has not yet been standardized. Antitumor activity can be modulated by different mechanisms such as dendritic cell (DC) maturation state. This study addressed optimal strategies for FC preparations to enhance Ag-specific CTL activity. We have created three types of FC preparations by alternating fusion cell partners: 1) immature DCs fused with autologous colorectal carcinoma cells (Imm-FCs); 2) Imm-FCs followed by stimulation with penicillin-inactivated Streptococcus pyogenes (OK-432) (Imm-FCs/OK); and 3) OK-432-stimulated DCs directly fused to autologous colorectal carcinoma cells (OK-FCs). Both OK-FCs and Imm-FCs/OK coexpressed the CEA, MUC1, and significantly higher levels of CD86, CD83, and IL-12 than those obtained with Imm-FCs. Short-term culture of fusion cell preparations promoted the fusion efficiency. Interestingly, OK-FCs were more efficient in stimulating CD4(+) and CD8(+) T cells capable of high levels of IFN-gamma production and cytolysis of autologous tumor or semiallogeneic targets. Moreover, OK-FCs are more effective inducer of CTL activation compared with Imm-FCs/OK on a per fusion cell basis. The pentameric assay confirmed that CEA- and MUC1-specific CTL was induced simultaneously by OK-FCs at high frequency. Furthermore, the cryopreserved OK-FCs retained stimulatory capacity for inducing antitumor immunity. These results suggest that OK-432 promotes fusion efficiency and induction of Ag-specific CTL by fusion cells. We conclude that DCs fused after stimulation by OK-432 may have the potential applicability to the field of antitumor immunotherapy and may provide a platform for adoptive immunotherapy in the clinical setting.

  2. Liver X receptors regulate dendritic cell phenotype and function through blocked induction of the actin-bundling protein fascin.

    PubMed

    Geyeregger, René; Zeyda, Maximilian; Bauer, Wolfgang; Kriehuber, Ernst; Säemann, Marcus D; Zlabinger, Gerhard J; Maurer, Dieter; Stulnig, Thomas M

    2007-05-15

    Liver X receptors (LXRs) are nuclear receptors regulating lipid and cholesterol metabolism. Recent data revealed a cross talk between LXR and Toll-like receptor signaling in macrophages, indicating a role in immunity. Here, we show that LXRalpha is expressed in human myeloid dendritic cells (DCs) and induced during differentiation of monocyte-derived DCs, whereas LXRbeta is expressed constitutively at a very low level. LXR activation by 2 different LXR agonists strongly interfered with lipopolysaccharide (LPS)-induced but not with CD40L-induced DC maturation by altering DC morphology and suppressing interleukin-12-but enhancing interleukin-10-secretion. LXR activation in DCs largely blocked their T-cell stimulatory ability despite essentially unaltered expression of various antigen-presenting and costimulatory molecules. Immunologic synapse formation was significantly inhibited by LXR activation along with a complete block in LPS- but not CD40L-induced expression of the actin-bundling protein fascin. Notably, overexpression of fascin in LXR agonist-treated DCs restored immunologic synapse formation and restored their ability to activate T cells. In conclusion, our data reveal LXR as a potent modulator of DC maturation and function mediated in part by blocking the expression of fascin. Due to the central position of DCs in immunity, LXRalpha could be a potential novel target for immunomodulation.

  3. Dendritic Cell-Specific Delivery of Flt3L by Coronavirus Vectors Secures Induction of Therapeutic Antitumor Immunity

    PubMed Central

    Nussbacher, Monika; Allgäuer, Eva; Cervantes-Barragan, Luisa; Züst, Roland; Ludewig, Burkhard

    2013-01-01

    Efficacy of antitumor vaccination depends to a large extent on antigen targeting to dendritic cells (DCs). Here, we assessed antitumor immunity induced by attenuated coronavirus vectors which exclusively target DCs in vivo and express either lymphocyte- or DC-activating cytokines in combination with a GFP-tagged model antigen. Tracking of in vivo transduced DCs revealed that vectors encoding for Fms-like tyrosine kinase 3 ligand (Flt3L) exhibited a higher capacity to induce DC maturation compared to vectors delivering IL-2 or IL-15. Moreover, Flt3L vectors more efficiently induced tumor-specific CD8+ T cells, expanded the epitope repertoire, and provided both prophylactic and therapeutic tumor immunity. In contrast, IL-2- or IL-15-encoding vectors showed a substantially lower efficacy in CD8+ T cell priming and failed to protect the host once tumors had been established. Thus, specific in vivo targeting of DCs with coronavirus vectors in conjunction with appropriate conditioning of the microenvironment through Flt3L represents an efficient strategy for the generation of therapeutic antitumor immunity. PMID:24312302

  4. TLR-independent induction of dendritic cell maturation and adaptive immunity by negative-strand RNA viruses.

    PubMed

    López, Carolina B; Moltedo, Bruno; Alexopoulou, Lena; Bonifaz, Laura; Flavell, Richard A; Moran, Thomas M

    2004-12-01

    TLR signaling leads to dendritic cell (DC) maturation and immunity to diverse pathogens. The stimulation of TLRs by conserved viral structures is the only described mechanism leading to DC maturation after a virus infection. In this report, we demonstrate that mouse myeloid DCs mature normally after in vivo and in vitro infection with Sendai virus (SeV) in the absence of TLR3, 7, 8, or 9 signaling. DC maturation by SeV requires virus replication not necessary for TLR-mediated triggering. Moreover, DCs deficient in TLR signaling efficiently prime for Th1 immunity after infection with influenza or SeV, generating IFN-gamma-producing T cells, CTLs and antiviral Abs. We have previously demonstrated that SeV induces DC maturation independently of the presence of type I IFN, which has been reported to mature DCs in a TLR-independent manner. The data presented here provide evidence for the existence of a novel intracellular pathway independent of TLR-mediated signaling responsible for live virus triggering of DC maturation and demonstrate its critical role in the onset of antiviral immunity. The revelation of this pathway should stimulate invigorating research into the mechanism for virus-induced DC maturation and immunity.

  5. Disruption of TIM-4 in dendritic cell ameliorates hepatic warm IR injury through the induction of regulatory T cells.

    PubMed

    Li, Ji; Zhao, Xin; Liu, Xiaoliang; Liu, Huanqiu

    2015-08-01

    Hepatic ischaemia reperfusion (IR) injury results from the infiltration of multiple immune cells especially dendritic cells (DC). T-cell immunoglobulin-domain and mucin-domain 4 (TIM-4) is a type I cell-surface glycoprotein which is extensively expressed on antigen presenting cells (APC) like DC and macrophages. TIM-4 has been demonstrated to be implicated in mucosal allergy, skin allograft rejection and tumour-immune tolerance. However, the role of TIM-4 expressed on DC in hepatic IR injury remains largely unknown. In the present study, we aimed to investigate whether and how DC expressed TIM-4 was involved in hepatic IR injury. With segmental hepatic warm ischaemia mice models, we demonstrated that promoted DC infiltration and increased TIM-4 expression were induced by hepatic IR. Blockade of TIM-4 by anti-TIM-4 mAb (0.35mg/mouse) markedly ameliorated hepatic injury and reduced inflammatory cytokine secretion. Furthermore, in a DC:CD4+ T cell co-culture system, blockade of TIM-4 on DC significantly inhibited T helper-2 cell differentiation and facilitated induced CD4+ CD25+ Foxp3+ T regulatory cell (iTreg) expansion. Interleukin-4 (IL-4)/signal transducer and activator of transcription 6 (Stat 6) signalling was shown to be impeded by TIM-4 blockade and involved in iTreg generation. Additionally, adoptive transfer of iTreg produced by TIM-4 blockade into hepatic IR mice models remarkably attenuated liver injury. We conclude that TIM-4 on DC play a critical role in hepatic IR injury and may be an efficient target for the prevention of liver or other organ IR injury.

  6. Induction of Protective Immunity against Eimeria tenella, Eimeria maxima, and Eimeria acervulina Infections Using Dendritic Cell-Derived Exosomes

    PubMed Central

    Gallego, Margarita; Lee, Sung Hyen; Lillehoj, Hyun Soon; Quilez, Joaquin; Lillehoj, Erik P.; Sánchez-Acedo, Caridad

    2012-01-01

    This study describes a novel immunization strategy against avian coccidiosis using exosomes derived from Eimeria parasite antigen (Ag)-loaded dendritic cells (DCs). Chicken intestinal DCs were isolated and pulsed in vitro with a mixture of sporozoite-extracted Ags from Eimeria tenella, E. maxima, and E. acervulina, and the cell-derived exosomes were isolated. Chickens were nonimmunized or immunized intramuscularly with exosomes and subsequently noninfected or coinfected with E. tenella, E. maxima, and E. acervulina oocysts. Immune parameters compared among the nonimmunized/noninfected, nonimmunized/infected, and immunized/infected groups were the numbers of cells secreting Th1 cytokines, Th2 cytokines, interleukin-16 (IL-16), and Ag-reactive antibodies in vitro and in vivo readouts of protective immunity against Eimeria infection. Cecal tonsils, Peyer's patches, and spleens of immunized and infected chickens had increased numbers of cells secreting the IL-16 and the Th1 cytokines IL-2 and gamma interferon, greater Ag-stimulated proliferative responses, and higher numbers of Ag-reactive IgG- and IgA-producing cells following in vitro stimulation with the sporozoite Ags compared with the nonimmunized/noninfected and nonimmunized/infected controls. In contrast, the numbers of cells secreting the Th2 cytokines IL-4 and IL-10 were diminished in immunized and infected chickens compared with the nonimmunized/noninfected and the nonimmunized/infected controls. Chickens immunized with Ag-loaded exosomes and infected in vivo with Eimeria oocysts had increased body weight gains, reduced feed conversion ratios, diminished fecal oocyst shedding, lessened intestinal lesion scores, and reduced mortality compared with the nonimmunized/infected controls. These results suggest that successful field vaccination against avian coccidiosis using exosomes derived from DCs incubated with Ags isolated from Eimeria species may be possible. PMID:22354026

  7. Hepatic stellate cells undermine the allostimulatory function of liver myeloid dendritic cells via STAT3-dependent induction of IDO

    PubMed Central

    Sumpter, Tina L.; Dangi, Anil; Matta, Benjamin M.; Huang, Chao; Stolz, Donna B.; Vodovotz, Yoram; Thomson, Angus W.; Gandhi, Chandrashekhar R.

    2012-01-01

    Hepatic stellate cells (HSCs) are critical for hepatic wound repair and tissue remodeling. They also produce cytokines and chemokines that may contribute to the maintenance of hepatic immune homeostasis and the inherent tolerogenicity of the liver. The functional relationship between HSCs and the professional migratory APCs in the liver, i.e. dendritic cells (DCs), has not been evaluated. Here, we report that murine liver DCs co-localize with HSCs in vivo under normal, steady-state conditions, and cluster with HSCs in vitro. In vitro, HSCs secrete high levels of DC chemoattractants, such as MIP1α and MCP-1, as well as cytokines that modulate DC activation, including TNFα, IL-6 and IL-1β. Culture of HSCs with conventional liver myeloid (m) DCs resulted in increased IL-6 and IL-10 secretion compared to that of either cell population alone. Co-culture also resulted in enhanced expression of co-stimulatory (CD80, CD86) and co-inhibitory (B7-H1) molecules on mDCs. HSC-induced mDC maturation required cell-cell contact and could be blocked, in part, by neutralizing MIP1α or MCP-1. HSC-induced mDC maturation was dependent on activation of STAT3 in mDCs and in part on HSC-secreted IL-6. Despite up-regulation of co-stimulatory molecules, mDCs conditioned by HSCs demonstrated impaired ability to induce allogeneic T cell proliferation, which was independent of B7-H1, but dependent upon HSC-induced STAT3 activation and subsequent up-regulation of IDO. In conclusion, by promoting IDO expression, HSCs may act as potent regulators of liver mDCs and function to maintain hepatic homeostasis and tolerogenicity. PMID:22962681

  8. CD8α+β− and CD8α+β+ plasmacytoid dendritic cells induce Foxp3+ regulatory T cells and prevent the induction of airway hyperreactivity

    PubMed Central

    Lombardi, Vincent; Speak, Anneliese O.; Kerzerho, Jérôme; Szely, Natacha; Akbari, Omid

    2012-01-01

    Dendritic cells (DCs) control the balance between protection against pathogens and tolerance to innocuous or self-antigens. Here, we demonstrate for the first time that mouse plasmacytoid DCs (pDCs) can be segregated into three distinct populations, exhibiting phenotypic and functional differences, according to their surface expression of CD8α or CD8β as CD8α−β−, CD8α+β− or CD8α+β+. In a mouse model of lung inflammation, adoptive transfer of CD8α+β− or CD8α+β+ pDCs prevents the development of airway hyperreactivity. The tolerogenic features of these subsets are associated with increased production of retinoic acid, which leads to the enhanced induction of Foxp3+ regulatory T cells compared to CD8α−β− pDCs. Our data thus identify subsets of pDCs with potent tolerogenic functions that may contribute to the maintenance of tolerance in mucosal sites such as the lungs. PMID:22472775

  9. The Vaccine Adjuvant Chitosan Promotes Cellular Immunity via DNA Sensor cGAS-STING-Dependent Induction of Type I Interferons.

    PubMed

    Carroll, Elizabeth C; Jin, Lei; Mori, Andres; Muñoz-Wolf, Natalia; Oleszycka, Ewa; Moran, Hannah B T; Mansouri, Samira; McEntee, Craig P; Lambe, Eimear; Agger, Else Marie; Andersen, Peter; Cunningham, Colm; Hertzog, Paul; Fitzgerald, Katherine A; Bowie, Andrew G; Lavelle, Ed C

    2016-03-15

    The cationic polysaccharide chitosan is an attractive candidate adjuvant capable of driving potent cell-mediated immunity, but the mechanism by which it acts is not clear. We show that chitosan promotes dendritic cell maturation by inducing type I interferons (IFNs) and enhances antigen-specific T helper 1 (Th1) responses in a type I IFN receptor-dependent manner. The induction of type I IFNs, IFN-stimulated genes and dendritic cell maturation by chitosan required the cytoplasmic DNA sensor cGAS and STING, implicating this pathway in dendritic cell activation. Additionally, this process was dependent on mitochondrial reactive oxygen species and the presence of cytoplasmic DNA. Chitosan-mediated enhancement of antigen specific Th1 and immunoglobulin G2c responses following vaccination was dependent on both cGAS and STING. These findings demonstrate that a cationic polymer can engage the STING-cGAS pathway to trigger innate and adaptive immune responses.

  10. The Vaccine Adjuvant Chitosan Promotes Cellular Immunity via DNA Sensor cGAS-STING-Dependent Induction of Type I Interferons.

    PubMed

    Carroll, Elizabeth C; Jin, Lei; Mori, Andres; Muñoz-Wolf, Natalia; Oleszycka, Ewa; Moran, Hannah B T; Mansouri, Samira; McEntee, Craig P; Lambe, Eimear; Agger, Else Marie; Andersen, Peter; Cunningham, Colm; Hertzog, Paul; Fitzgerald, Katherine A; Bowie, Andrew G; Lavelle, Ed C

    2016-03-15

    The cationic polysaccharide chitosan is an attractive candidate adjuvant capable of driving potent cell-mediated immunity, but the mechanism by which it acts is not clear. We show that chitosan promotes dendritic cell maturation by inducing type I interferons (IFNs) and enhances antigen-specific T helper 1 (Th1) responses in a type I IFN receptor-dependent manner. The induction of type I IFNs, IFN-stimulated genes and dendritic cell maturation by chitosan required the cytoplasmic DNA sensor cGAS and STING, implicating this pathway in dendritic cell activation. Additionally, this process was dependent on mitochondrial reactive oxygen species and the presence of cytoplasmic DNA. Chitosan-mediated enhancement of antigen specific Th1 and immunoglobulin G2c responses following vaccination was dependent on both cGAS and STING. These findings demonstrate that a cationic polymer can engage the STING-cGAS pathway to trigger innate and adaptive immune responses. PMID:26944200

  11. Loss of epidermal integrity by T cell-mediated attack induces long-term local resistance to subsequent attack. I. Induction of resistance correlates with increases in Thy-1+ epidermal cell numbers

    PubMed Central

    1990-01-01

    The cutaneous graft-versus-host disease (GVHD) lesions induced by intradermal injection of cloned autoreactive T cells have been shown to subside rapidly and the epidermis returns to normal 2 wk after injection. Those mice that had spontaneously recovered from the cutaneous GVHD became resistant to subsequent attempts to induce the cutaneous GVHD by the T cells while maintaining their activity to mount delayed-type hypersensitivity (DTH) responses and to induce the enlargement of the popliteal lymph nodes (PLN). The resistance appeared to be restricted to the epidermal structures of the injection sites, suggesting the involvement of locally acting suppression mechanisms. This local resistance was not specific for the clonotype used for the induction of the resistance. A loss of the epidermal integrity by an attack of T cells capable of producing cutaneous GVHD was a prerequisite for the induction of the resistance. By up to at least 8 mo after injection of the T cells, no mice became susceptible to the cutaneous GVHD again, provided that the T cells were injected into the same footpad sites that had initially received the T cells. This resistance correlated well with the great increase (20-30-fold) in Thy- 1+ EC number. The great increase in the number of Thy-1+ EC following destruction of epidermal structures may be important in protecting the epidermal integrity from an additional attack by T cells. PMID:1969918

  12. Oxaliplatin regulates expression of stress ligands in ovarian cancer cells and modulates their susceptibility to natural killer cell-mediated cytotoxicity.

    PubMed

    Siew, Yin-Yin; Neo, Soek-Ying; Yew, Hui-Chuing; Lim, Shun-Wei; Ng, Yi-Cheng; Lew, Si-Min; Seetoh, Wei-Guang; Seow, See-Voon; Koh, Hwee-Ling

    2015-12-01

    Selected cytotoxic chemicals can provoke the immune system to recognize and destroy malignant tumors. Most of the studies on immunogenic cell death are focused on the signals that operate on a series of receptors expressed by dendritic cells to induce tumor antigen-specific T-cell responses. Here, we explored the effects of oxaliplatin, an immunogenic cell death inducer, on the induction of stress ligands and promotion of natural killer (NK) cell-mediated cytotoxicity in human ovarian cancer cells. The results indicated that treatment of tumor cells with oxaliplatin induced the production of type I interferons and chemokines and enhanced the expression of major histocompatibility complex class I-related chains (MIC) A/B, UL16-binding protein (ULBP)-3, CD155 and TNF-related apoptosis-inducing ligand (TRAIL)-R1/R2. Furthermore, oxaliplatin but not cisplatin treatment enhanced susceptibility of ovarian cancer cells to NK cell-mediated cytolysis. In addition, activated NK cells completely abrogated the growth of cancer cells that were pretreated with oxaliplatin. However, cancer cells pretreated with the same concentration of oxaliplatin alone were capable of potentiating regrowth over a period of time. These results suggest an advantage in combining oxaliplatin and NK cell-based therapy in the treatment of ovarian cancer. Further investigation on such potential combination therapy is warranted.

  13. Identification of GLA/SE as an effective adjuvant for the induction of robust humoral and cell-mediated immune responses to EBV-gp350 in mice and rabbits.

    PubMed

    Heeke, Darren S; Lin, Rui; Rao, Eileen; Woo, Jennifer C; McCarthy, Michael P; Marshall, Jason D

    2016-05-17

    Childhood infection with Epstein-Barr virus (EBV) is often asymptomatic and may result in mild flu-like symptoms, but exposure during adolescence and young adulthood can lead to acute infectious mononucleosis (AIM) with a pathology characterized by swollen lymph nodes, sore throat, and severe fatigue lasting weeks or months. A vaccine targeting the envelope glycoprotein gp350 adjuvanted with aluminum hydroxide complexed with the TLR4 agonist monophosphoryl lipid A (MPLA) achieved a 78% reduction in AIM incidence in a small phase II trial of college-age individuals, but development of this vaccine was halted by the manufacturer. Here, we report the evaluation in mice and rabbits of an EBV-gp350 vaccine combined with an adjuvant composed of the synthetic TLR4 agonist glucopyranosyl lipid A (GLA) integrated into stable emulsion (SE). In mice, GLA/SE-adjuvanted gp350 generated high IgG titers (both IgG1 and IgG2a/c subtypes), elevated EBV-neutralizing antibody titers, and robust poly-functional anti-gp350 CD4(+) T cell responses. In addition, GLA/SE routinely demonstrated superior performance over aluminum hydroxide in all immunological readouts, including induction of durable neutralizing antibody titers out to at least 1 year post-vaccination. Both components of the GLA/SE adjuvant were found to be required to get optimal responses in both arms of the immune response: specifically, SE for neutralizing antibodies and GLA for induction of T cell responses. Furthermore, this vaccine also elicited high neutralizing antibody titers in a second species, rabbit. These promising results suggest that clinical development of a vaccine comprised of EBV-gp350 plus GLA/SE has the potential to prevent AIM in post-adolescents. PMID:27085175

  14. The NS1 protein of a human influenza virus inhibits type I interferon production and the induction of antiviral responses in primary human dendritic and respiratory epithelial cells.

    PubMed

    Haye, Kester; Burmakina, Svetlana; Moran, Thomas; García-Sastre, Adolfo; Fernandez-Sesma, Ana

    2009-07-01

    The NS1 protein of the influenza A virus is a potent virulence factor that inhibits type I interferon (IFN) synthesis, allowing the virus to overcome host defenses and replicate efficiently. However, limited studies have been conducted on NS1 function using human virus strains and primary human cells. We used NS1 truncated mutant influenza viruses derived from the human isolate influenza A/TX/91 (TX WT, where WT is wild type) to study the functions of NS1 in infected primary cells. Infection of primary differentiated human tracheo-bronchial epithelial cells with an NS1 truncated mutant demonstrated limited viral replication and enhanced type I IFN induction. Additionally, human dendritic cells (DCs) infected with human NS1 mutant viruses showed higher levels of activation and stimulated naïve T-cells better than TX WT virus-infected DCs. We also compared infections of DCs with TX WT and our previously characterized laboratory strain A/PR/8/34 (PR8) and its NS1 knockout strain, deltaNS1. TX WT-infected DCs displayed higher viral replication than PR8 but had decreased antiviral gene expression at late time points and reduced naïve T-cell stimulation compared to PR8 infections, suggesting an augmented inhibition of IFN production and human DC activation. Our findings show that human-derived influenza A viruses have a high capacity to inhibit the antiviral state in a human system, and here we have evaluated the possible mechanism of this inhibition. Lastly, C-terminal truncations in the NS1 protein of human influenza virus are sufficient to make the virus attenuated and more immunogenic, supporting its use as a live attenuated influenza vaccine in humans.

  15. Influenza virus-infected dendritic cells stimulate strong proliferative and cytolytic responses from human CD8+ T cells.

    PubMed Central

    Bhardwaj, N; Bender, A; Gonzalez, N; Bui, L K; Garrett, M C; Steinman, R M

    1994-01-01

    Antigen-specific, CD8+, cytolytic T lymphocytes (CTLs) could potentially provide resistance to several infectious and malignant diseases. However, the cellular requirements for the generation of specific CTLs in human lymphocyte cultures are not well defined, and repetitive stimulation with antigen is often required. We find that strong CD8+ CTL responses to influenza virus can be generated from freshly isolated blood T cells, as long as dendritic cells are used as antigen presenting cells (APCs). Small numbers of dendritic cells (APC:T cell ratio of 1:50-1:100) induce these CTL responses from most donors in 7 d of culture, but monocytes are weak or inactive. Whereas both dendritic cells and monocytes are infected with influenza virus, the former serve as effective APCs for the induction of CD8+ T cells while the latter act as targets for the CTLs that are induced. The strong CD8+ response to influenza virus-infected dendritic cells is accompanied by extensive proliferation of the CD8+ T cells, but the response can develop in the apparent absence of CD4+ helpers or exogenous lymphokines. CD4+ influenza virus-specific CTLs can also be induced by dendritic cells, but the cultures initially must be depleted of CD8+ cells. These findings should make it possible to use dendritic cells to generate human, antigen-specific, CD8+ CTLs to other targets. The results illustrate the principle that efficient T cell-mediated responses develop in two stages: an afferent limb in which dendritic cells are specialized APCs and an efferent limb in which the primed T cells carry out an immune response to many types of presenting cells. Images PMID:8040335

  16. Stimulation of dendritic cell maturation and induction of apoptosis in leukemia cells by a heat-stable extract from azuki bean (Vigna angularis), a promising immunopotentiating food and dietary supplement for cancer prevention.

    PubMed

    Nakaya, Kazuyasu; Nabata, Yuri; Ichiyanagi, Takashi; An, Wei Wei

    2012-01-01

    Non-toxic stimulation of dendritic cells (DCs), which are central immunomodulators, may aid the prevention of cancer. Furthermore, induction of apoptosis in cancer cells by anticancer agents contributes to the induction of DC maturation. We previously reported that extracts from Pinus parviflora Sieb. et Zucc pine cone and Mucuna seed induce differentiation of mouse bone marrow cells into mature dendritic cells and also induce apoptosis in various human cancer cell lines. In the present study, we screened 31 kinds of edible beans with biological activity similar to that of extracts from pine cone and Mucuna and found that the heat-stable extract from azuki bean (Vigna angula) stimulated differentiation of bone marrow cells into immature DCs with the greatest efficacy. The level of IL-6 produced by sequential treatment of DCs with azuki extract and lipopolysaccharide was the highest among the examined beans. Azuki extract also inhibited the growth of human leukemia U937 cells, leading to induction of apoptosis. These results suggest that azuki bean and its extract are immunopotentiating foods that can be used as a dietary supplement for cancer prevention and immunotherapy. PMID:22524832

  17. In vivo targeting of antigens to maturing dendritic cells via the DEC-205 receptor improves T cell vaccination.

    PubMed

    Bonifaz, Laura C; Bonnyay, David P; Charalambous, Anna; Darguste, Dara I; Fujii, Shin-Ichiro; Soares, Helena; Brimnes, Marie K; Moltedo, Bruno; Moran, Thomas M; Steinman, Ralph M

    2004-03-15

    The prevention and treatment of prevalent infectious diseases and tumors should benefit from improvements in the induction of antigen-specific T cell immunity. To assess the potential of antigen targeting to dendritic cells to improve immunity, we incorporated ovalbumin protein into a monoclonal antibody to the DEC-205 receptor, an endocytic receptor that is abundant on these cells in lymphoid tissues. Simultaneously, we injected agonistic alpha-CD40 antibody to mature the dendritic cells. We found that a single low dose of antibody-conjugated ovalbumin initiated immunity from the naive CD4+ and CD8+ T cell repertoire. Unexpectedly, the alphaDEC-205 antigen conjugates, given s.c., targeted to dendritic cells systemically and for long periods, and ovalbumin peptide was presented on MHC class I for 2 weeks. This was associated with stronger CD8+ T cell-mediated immunity relative to other forms of antigen delivery, even when the latter was given at a thousand times higher doses. In parallel, the mice showed enhanced resistance to an established rapidly growing tumor and to viral infection at a mucosal site. By better harnessing the immunizing functions of maturing dendritic cells, antibody-mediated antigen targeting via the DEC-205 receptor increases the efficiency of vaccination for T cell immunity, including systemic and mucosal resistance in disease models.

  18. Dengue-2 and yellow fever 17DD viruses infect human dendritic cells, resulting in an induction of activation markers, cytokines and chemokines and secretion of different TNF-α and IFN-α profiles.

    PubMed

    Gandini, Mariana; Reis, Sonia Regina Nogueira Ignacio; Torrentes-Carvalho, Amanda; Azeredo, Elzinandes Leal; Freire, Marcos da Silva; Galler, Ricardo; Kubelka, Claire Fernandes

    2011-08-01

    Flaviviruses cause severe acute febrile and haemorrhagic infections, including dengue and yellow fever and the pathogenesis of these infections is caused by an exacerbated immune response. Dendritic cells (DCs) are targets for dengue virus (DENV) and yellow fever virus (YF) replication and are the first cell population to interact with these viruses during a natural infection, which leads to an induction of protective immunity in humans. We studied the infectivity of DENV2 (strain 16681), a YF vaccine (YF17DD) and a chimeric YF17D/DENV2 vaccine in monocyte-derived DCs in vitro with regard to cell maturation, activation and cytokine production. Higher viral antigen positive cell frequencies were observed for DENV2 when compared with both vaccine viruses. Flavivirus-infected cultures exhibited dendritic cell activation and maturation molecules. CD38 expression on DCs was enhanced for both DENV2 and YF17DD, whereas OX40L expression was decreased as compared to mock-stimulated cells, suggesting that a T helper 1 profile is favoured. Tumor necrosis factor (TNF)-α production in cell cultures was significantly higher in DENV2-infected cultures than in cultures infected with YF17DD or YF17D/DENV. In contrast, the vaccines induced higher IFN-α levels than DENV2. The differential cytokine production indicates that DENV2 results in TNF induction, which discriminates it from vaccine viruses that preferentially stimulate interferon expression. These differential response profiles may influence the pathogenic infection outcome.

  19. Dendritic cells are stressed out in tumor.

    PubMed

    Maj, Tomasz; Zou, Weiping

    2015-09-01

    A recently paper published in Cell reports that dendritic cells (DCs) are dysfunctional in the tumor environment. Tumor impairs DC function through induction of endoplasmic reticulum stress response and subsequent disruption of lipid metabolic homeostasis.

  20. Excitatory synapses on dendritic shafts of the caudal basal amygdala exhibit elevated levels of GABAA receptor α4 subunits following the induction of activity-based anorexia.

    PubMed

    Wable, Gauri S; Barbarich-Marsteller, Nicole C; Chowdhury, Tara G; Sabaliauskas, Nicole A; Farb, Claudia R; Aoki, Chiye

    2014-01-01

    Anorexia nervosa (AN) is an eating disorder characterized by self-imposed severe starvation, excessive exercise, and anxiety. The onset of AN is most often at puberty, suggesting that gonadal hormonal fluctuations may contribute to AN vulnerability. Activity-based anorexia (ABA) is an animal model that reproduces some of the behavioral phenotypes of AN, including the paradoxical increase in voluntary exercise following food restriction. The basal amygdala as well as the GABAergic system regulate trait anxiety. We therefore examined the subcellular distribution of GABA receptors (GABARs) in the basal amygdala of female pubertal rats and specifically of their α4 subunits, because expression of α4-containing GABARs is regulated by gonadal hormone fluctuations. Moreover, because these GABARs reduce neuronal excitability through shunting of EPSPs, we quantified the frequency of occurrence of these GABARs adjacent to excitatory synapses. Electron microscopic immunoctychemistry revealed no change in the frequency of association of α4 subunits with excitatory synapses on dendritic spines, whether in the anterior (Bregma -2.8 mm) or caudal (Bregma -3.8 mm) portion of the basal amygdala. Sholl analysis of golgi-stained neurons also revealed no change in the extent of dendritic branching by these densely spiny, pyramidal-like neurons. However, there was an increase of membranous α4 subunits near excitatory synapses on dendritic shafts, specifically in the caudal basal amygdala, and this was accompanied by a rise of α4 subunits intracellularly. Because most dendritic shafts exhibiting excitatory synapses are GABAergic interneurons, the results predict disinhibition, which would increase excitability of the amygdaloid network, in turn augmenting ABA animals' anxiety.

  1. Cell-mediated Protection in Influenza Infection

    PubMed Central

    Thomas, Paul G.; Keating, Rachael; Hulse-Post, Diane J.

    2006-01-01

    Current vaccine strategies against influenza focus on generating robust antibody responses. Because of the high degree of antigenic drift among circulating influenza strains over the course of a year, vaccine strains must be reformulated specifically for each influenza season. The time delay from isolating the pandemic strain to large-scale vaccine production would be detrimental in a pandemic situation. A vaccine approach based on cell-mediated immunity that avoids some of these drawbacks is discussed here. Specifically, cell-mediated responses typically focus on peptides from internal influenza proteins, which are far less susceptible to antigenic variation. We review the literature on the role of CD4+ and CD8+ T cell–mediated immunity in influenza infection and the available data on the role of these responses in protection from highly pathogenic influenza infection. We discuss the advantages of developing a vaccine based on cell-mediated immune responses toward highly pathogenic influenza virus and potential problems arising from immune pressure. PMID:16494717

  2. [Production of a dialysable transfer factor of cell mediated immunity by lymphoblastoid cells in continuous proliferation].

    PubMed

    Goust, J M; Viza, D; Moulias, R; Trejdosiewicz, L; Lesourd, B; Marescot, M R; Prévot, A

    1975-01-20

    Four lymphoblastoid cell lines tested in this work contain normally a dialysable moiety having by ultraviolet spectroscopy, column chromatography (Biogel P 10) and chemically the same properties than human dialysable Transfer Factor (TFd), but unable to transfer cell mediated immune response against common antigens. Two of them are able to do so after incubation with minimal amounts of TFd. Production of a molecule identical to human TFd is possible in some lymphoblastoid cell lines after induction with TFd. PMID:808340

  3. Regulation of Th2 Cell Immunity by Dendritic Cells.

    PubMed

    Na, Hyeongjin; Cho, Minkyoung; Chung, Yeonseok

    2016-02-01

    Th2 cell immunity is required for host defense against helminths, but it is detrimental in allergic diseases in humans. Unlike Th1 cell and Th17 cell subsets, the mechanism by which dendritic cells modulate Th2 cell responses has been obscure, in part because of the inability of dendritic cells to provide IL-4, which is indispensable for Th2 cell lineage commitment. In this regard, immune cells other than dendritic cells, such as basophils and innate lymphoid cells, have been suggested as Th2 cell inducers. More recently, multiple independent researchers have shown that specialized subsets of dendritic cells mediate Th2 cell responses. This review will discuss the current understanding related to the regulation of Th2 cell responses by dendritic cells and other immune cells. PMID:26937227

  4. Dendrite inhibitor

    DOEpatents

    Miller, W.E.

    1988-06-07

    An apparatus for removing dendrites or other crystalline matter from the surface of a liquid in a matter transport process, and an electrolytic cell including such an apparatus. A notch may be provided to allow continuous exposure of the liquid surface, and a bore may be further provided to permit access to the liquid. 2 figs.

  5. Dendrite inhibitor

    DOEpatents

    Miller, William E.

    1989-01-01

    An apparatus for removing dendrites or other crystalline matter from the surface of a liquid in a matter transport process, and an electrolytic cell including such an apparatus. A notch may be provided to allow continuous exposure of the liquid surface, and a bore may be further provided to permit access to the liquid.

  6. Induction of interferon-γ from natural killer cells by immunostimulatory CpG DNA is mediated through plasmacytoid-dendritic-cell-produced interferon-α and tumour necrosis factor-α

    PubMed Central

    Marshall, Jason D; Heeke, Darren S; Abbate, Christi; Yee, Priscilla; Van Nest, Gary

    2006-01-01

    Immunostimulatory sequences (ISS) that contain CpG motifs have been demonstrated to exert antipathogen and antitumour immunity in animal models through several mechanisms, including the activation of natural killer (NK) cells to secrete interferon-γ (IFN-γ) and to exert lytic activity. Since NK cells lack the ISS receptor TLR9, the exact pathway by which NK cells are activated by ISS is unclear. We determined that ISS-induced IFN-γ from NK cells is primarily dependent upon IFN-α release from plasmacytoid dendritic cells (PDCs), which directly activates the NK cell. However, further analysis indicated that other PDC-released soluble factor(s) may contribute to IFN-γ induction. Indeed, tumour necrosis factor-α (TNF-α) was identified as a significant contributor to ISS-mediated activation of NK cells and was observed to act in an additive fashion with IFN-α in the induction of IFN-γ from NK cells and to up-regulate CD69 expression on NK cells. This activity of TNF-α, however, was dependent upon the presence of PDC-derived factors such as type I interferon. These results illustrate an important function for type I interferon in innate immunity, which is not only to activate effectors like NK cells directly, but also to prime them for enhanced activation by other factors such as TNF-α. PMID:16423039

  7. The transcription factor Spi-B regulates human plasmacytoid dendritic cell survival through direct induction of the antiapoptotic gene BCL2-A1.

    PubMed

    Karrich, Julien J; Balzarolo, Melania; Schmidlin, Heike; Libouban, Marion; Nagasawa, Maho; Gentek, Rebecca; Kamihira, Shimeru; Maeda, Takahiro; Amsen, Derk; Wolkers, Monika C; Blom, Bianca

    2012-05-31

    Plasmacytoid dendritic cells (pDCs) selectively express Toll-like receptor (TLR)-7 and TLR-9, which allow them to rapidly secrete massive amounts of type I interferons after sensing nucleic acids derived from viruses or bacteria. It is not completely understood how development and function of pDCs are controlled at the transcriptional level. One of the main factors driving pDC development is the ETS factor Spi-B, but little is known about its target genes. Here we demonstrate that Spi-B is crucial for the differentiation of hematopoietic progenitor cells into pDCs by controlling survival of pDCs and its progenitors. In search for Spi-B target genes, we identified the antiapoptotic gene Bcl2-A1 as a specific and direct target gene, thereby consolidating the critical role of Spi-B in cell survival.

  8. Uptake of synthetic naked RNA by skin-resident dendritic cells via macropinocytosis allows antigen expression and induction of T-cell responses in mice.

    PubMed

    Selmi, Abderraouf; Vascotto, Fulvia; Kautz-Neu, Kordula; Türeci, Özlem; Sahin, Ugur; von Stebut, Esther; Diken, Mustafa; Kreiter, Sebastian

    2016-09-01

    Intradermal administration of antigen-encoding RNA has entered clinical testing for cancer vaccination. However, insight into the underlying mechanism of RNA uptake, translation and antigen presentation is still limited. Utilizing pharmacologically optimized naked RNA, the dose-response kinetics revealed a rise in reporter signal with increasing RNA amounts and a prolonged RNA translation of reporter protein up to 30 days after intradermal injection. Dendritic cells (DCs) in the dermis were shown to engulf RNA, and the signal arising from the reporter RNA was significantly diminished after DC depletion. Macropinocytosis was relevant for intradermal RNA uptake and translation in vitro and in vivo. By combining intradermal RNA vaccination and inhibition of macropinocytosis, we show that effective priming of antigen-specific CD8(+) T-cells also relies on this uptake mechanism. This report demonstrates that direct antigen translation by dermal DCs after intradermal naked RNA vaccination is relevant for efficient priming of antigen-specific T-cells.

  9. Giardia duodenalis stimulates partial maturation of bovine dendritic cells associated with altered cytokine secretion and induction of T-cell proliferation.

    PubMed

    Grit, G H; Devriendt, B; Van Coppernolle, S; Geurden, T; Hope, J; Vercruysse, J; Cox, E; Geldhof, P; Claerebout, E

    2014-04-01

    Giardia duodenalis is an important intestinal parasite in animals and humans. The role of dendritic cells (DC) in the initiation of the immune response against G. duodenalis is poorly documented. The aim of this study was to test the hypothesis that G. duodenalis interferes with bovine DC function. Therefore, the effect of trophozoites and excretion/secretion products on bovine monocyte-derived dendritic cells (MoDC) was investigated. We assessed MoDC maturation and cytokine production of G. duodenalis-stimulated MoDC and the ability of these MoDC to take up antigen and induce lymphocyte proliferation. Little or no upregulation of maturation markers CD40 and CD80 was measured, but MHCII expression was increased after stimulation with low parasite concentrations. A dose-dependent decrease in ovalbumin uptake was observed in G. duodenalis-stimulated MoDC. In addition, stimulated MoDC induced proliferation of CD3(-) , γδ-T-cells and TCRαβ(+) CD4(+) and CD8(+) T-cells. Increased transcription of TGF-β was shown in CD4(+) T cells, and increased TNF-α, TGF-β, IL-10 and IL-4 were seen in γδ-T-cells. We found no evidence that G. duodenalis has a regulatory or inhibitory effect on bovine MoDC. MoDC stimulated with G. duodenalis are functionally active and able to induce proliferation of T cells that produce both pro- and anti-inflammatory cytokines.

  10. Dendrite Model

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Dr. Donald Gilles, the Discipline Scientist for Materials Science in NASA's Microgravity Materials Science and Applications Department, demonstrates to Carl Dohrman a model of dendrites, the branch-like structures found in many metals and alloys. Dohrman was recently selected by the American Society for Metals International as their 1999 ASM International Foundation National Merit Scholar. The University of Illinois at Urbana-Champaign freshman recently toured NASA's materials science facilities at the Marshall Space Flight Center.

  11. Cell-mediated immunity in anorexia nervosa.

    PubMed Central

    Cason, J; Ainley, C C; Wolstencroft, R A; Norton, K R; Thompson, R P

    1986-01-01

    Twelve patients with anorexia nervosa were studied for cell-mediated immunity in terms of delayed hypersensitivity reactions to recall antigens, lymphocyte transformation responses to T-cell mitogens, and numbers of circulating leucocytes and T-cell subpopulations. Compared to controls, all patients had reduced cutaneous reactions and four were anergic. There was a mild leucopenia in patients and both T4+ and T3+ numbers were slightly reduced. Mean peak transformation responses for patients were slightly lower than controls for phytohaemagglutinin, but not for concanavalin A; however, patients required greater doses of mitogens to elicit peak transformation responses. Plasmas from patients did not contain inhibitors of transformation responses. We conclude that there are functional cellular abnormalities associated with the under-nutrition of anorexia nervosa. PMID:3742879

  12. Mast Cell-Mediated Mechanisms of Nociception

    PubMed Central

    Aich, Anupam; Afrin, Lawrence B.; Gupta, Kalpna

    2015-01-01

    Mast cells are tissue-resident immune cells that release immuno-modulators, chemo-attractants, vasoactive compounds, neuropeptides and growth factors in response to allergens and pathogens constituting a first line of host defense. The neuroimmune interface of immune cells modulating synaptic responses has been of increasing interest, and mast cells have been proposed as key players in orchestrating inflammation-associated pain pathobiology due to their proximity to both vasculature and nerve fibers. Molecular underpinnings of mast cell-mediated pain can be disease-specific. Understanding such mechanisms is critical for developing disease-specific targeted therapeutics to improve analgesic outcomes. We review molecular mechanisms that may contribute to nociception in a disease-specific manner. PMID:26690128

  13. Protein Kinase M[Zeta] Is Essential for the Induction and Maintenance of Dopamine-Induced Long-Term Potentiation in Apical CA1 Dendrites

    ERIC Educational Resources Information Center

    Navakkode, Sheeja; Sajikumar, Sreedharan; Sacktor, Todd Charlton; Frey, Julietta U.

    2010-01-01

    Dopaminergic D1/D5-receptor-mediated processes are important for certain forms of memory as well as for a cellular model of memory, hippocampal long-term potentiation (LTP) in the CA1 region of the hippocampus. D1/D5-receptor function is required for the induction of the protein synthesis-dependent maintenance of CA1-LTP (L-LTP) through activation…

  14. Cell-mediated immunity in nutritional deficiency.

    PubMed

    McMurray, D N

    1984-01-01

    Dietary deficiencies of specific nutrients profoundly alter cell-mediated immune responses in man and experimental animals. Both moderate and severe deficiencies are associated with significant changes in immunocompetence. Diets with inadequate levels of protein, calories, vitamin A, pyridoxine, biotin and zinc result in loss of thymic cellularity. Secondary to thymic atrophy, the production of thymic hormones critical for the differentiation of T lymphocytes is reduced, especially in protein-calorie malnutrition and zinc deficiency. Confirmation of a T cell maturational defect in nutritional deprivation comes from the observations of decreased total (T3 and rosette-forming) T cells in the peripheral blood of children with kwashiorkor and marasmus, with preferential loss of helper/inducer (T4) T cell subsets. Reduced number and in vitro function of T cells have also been reported in experimental deficiencies of iron, zinc, copper, and vitamins A and E. Loss of cutaneous hypersensitivity to mitogens and antigens is a consistent sequela of dietary deficiencies of protein, vitamins A and C, pyridoxine, iron and zinc. Cell-mediated immunity directed against allogeneic histocompatibility antigens (e.g. mixed leukocyte cultures, graft versus host, skin graft rejection) may actually be enhanced by experimental protein and polyunsaturated fat deficiencies. Alternatively, pyridoxine, ascorbate and biotin deficiencies resulted in delayed rejection of skin allografts. Cytotoxic T lymphocyte (CTL) activity is impaired in zinc-, iron- and copper-deficient mice, as well as in scorbutic guinea pigs. Natural killer (NK) cell function may be either enhanced or depressed, depending upon the nutrient and its effects on interferon production. Several authors have demonstrated normal or enhanced macrophage activity in a variety of experimental deficiencies. The extrapolation of these observations to infectious disease resistance is not straightforward, and depends upon the nature of

  15. Uptake of synthetic naked RNA by skin-resident dendritic cells via macropinocytosis allows antigen expression and induction of T-cell responses in mice.

    PubMed

    Selmi, Abderraouf; Vascotto, Fulvia; Kautz-Neu, Kordula; Türeci, Özlem; Sahin, Ugur; von Stebut, Esther; Diken, Mustafa; Kreiter, Sebastian

    2016-09-01

    Intradermal administration of antigen-encoding RNA has entered clinical testing for cancer vaccination. However, insight into the underlying mechanism of RNA uptake, translation and antigen presentation is still limited. Utilizing pharmacologically optimized naked RNA, the dose-response kinetics revealed a rise in reporter signal with increasing RNA amounts and a prolonged RNA translation of reporter protein up to 30 days after intradermal injection. Dendritic cells (DCs) in the dermis were shown to engulf RNA, and the signal arising from the reporter RNA was significantly diminished after DC depletion. Macropinocytosis was relevant for intradermal RNA uptake and translation in vitro and in vivo. By combining intradermal RNA vaccination and inhibition of macropinocytosis, we show that effective priming of antigen-specific CD8(+) T-cells also relies on this uptake mechanism. This report demonstrates that direct antigen translation by dermal DCs after intradermal naked RNA vaccination is relevant for efficient priming of antigen-specific T-cells. PMID:27422115

  16. Influenza Virus–induced Dendritic Cell Maturation Is Associated with the Induction of Strong T Cell Immunity to a Coadministered, Normally Nonimmunogenic Protein

    PubMed Central

    Brimnes, Marie K.; Bonifaz, Laura; Steinman, Ralph M.; Moran, Thomas M.

    2003-01-01

    We evaluated the proposal that during microbial infection, dendritic cells (DCs) undergo maturation and present a mixture of peptides derived from the microbe as well as harmless environmental antigens. Mice were exposed to an aerosol of endotoxin free ovalbumin (OVA) in the absence or presence of influenza virus. In its absence, OVA failed to induce B and T cell responses and even tolerized, but with influenza, OVA-specific antibodies and CD8+ cytolytic T lymphocytes developed. With or without infection, OVA was presented selectively in the draining mediastinal lymph nodes, as assessed by the comparable proliferation of infused, CD8+ and CD4+, TCR transgenic T cells. In the absence of influenza, these OVA-specific T cells produced little IL-2, IL-4, IL-10, and IFN-γ, but with infection, both CD4+ and CD8+ T cells made high levels of IL-2 and IFN-γ. The OVA plus influenza-treated mice also showed accelerated recovery to a challenge with recombinant vaccinia OVA virus. CD11c+ DCs from the mediastinal lymph nodes of infected mice selectively stimulated both OVA- and influenza-specific T cells and underwent maturation, with higher levels of MHC class II, CD80, and CD86 molecules. The relatively slow (2–3 d) kinetics of maturation correlated closely to the time at which OVA inhalation elicited specific antibodies. Therefore respiratory infection can induce DC maturation and simultaneously B and T cell immunity to an innocuous antigen inhaled concurrently. PMID:12847140

  17. Poor ex vivo induction of T-cell responses to idiotype or tumor cell lysate-pulsed autologous dendritic cells in advanced pre-treated multiple myeloma.

    PubMed

    Garderet, Laurent; Mazurier, Christelle; Pellat-Deceunynck, Catherine; Karim, Abdul; Baudin, Bruno; Funck-Brentano, Christian; Bouchet, Sandrine; Geffroy, Alexandrine; Bataille, Régis; Gorin, Norbert-Claude; Lopez, Manuel

    2006-07-01

    This study evaluated the feasibility of using dendritic cells (DCs) to generate, ex vivo, anti-tumor cytotoxic T lymphocytes (CTL) in patients with stage III multiple myeloma (MM). Nucleated cells from eight patients who had received chemotherapy (three of whom had undergone autologous hemopoeitic stem cell transplantation) were collected by apheresis. Their monocytes were enriched using counter-current centrifugation, differentiated into DCs which were further co-cultured with autologous CD8 lymphocytes to induce CTL. The DCs were pulsed either with the idiotypic paraprotein (regarded as a tumor-specific antigen) or with autologous MM cell lysate before co-culture. Specific T-cell responses were measured in IFNgamma enzyme-linked immunospot and chromium release assays of autologous plasmocyte targets. A slight increase in IFNgamma secretion by T-cells was observed for two patients (DCs pulsed with idiotypic paraprotein for one, MM cell lysate for the other). No or weak specific lysis of plasmocyte targets was observed in the chromium release assays. In conclusion, the T-cell response to pulsed DCs was very weak or absent. There are clinical and technical reasons that could explain, in part, this lack of response.

  18. Immunomodulatory Effects of 1,25-Dihydroxyvitamin D3 on Dendritic Cells Promote Induction of T Cell Hyporesponsiveness to Myelin-Derived Antigens

    PubMed Central

    Willekens, Barbara; Cras, Patrick; Goossens, Herman; Martínez-Cáceres, Eva; Berneman, Zwi N.

    2016-01-01

    While emerging evidence indicates that dendritic cells (DC) play a central role in the pathogenesis of multiple sclerosis (MS), their modulation with immunoregulatory agents provides prospect as disease-modifying therapy. Our observations reveal that 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) treatment of monocyte-derived DC results in a semimature phenotype and anti-inflammatory cytokine profile as compared to conventional DC, in both healthy controls and MS patients. Importantly, 1,25(OH)2D3-treated DC induce T cell hyporesponsiveness, as demonstrated in an allogeneic mixed leukocyte reaction. Next, following a freeze-thaw cycle, 1,25(OH)2D3-treated immature DC could be recovered with a 78% yield and 75% viability. Cryopreservation did not affect the expression of membrane markers by 1,25(OH)2D3-treated DC nor their capacity to induce T cell hyporesponsiveness. In addition, the T cell hyporesponsiveness induced by 1,25(OH)2D3-treated DC is antigen-specific and robust since T cells retain their capacity to respond to an unrelated antigen and do not reactivate upon rechallenge with fully mature conventional DC, respectively. These observations underline the clinical potential of tolerogenic DC (tolDC) to correct the immunological imbalance in MS. Furthermore, the feasibility to cryopreserve highly potent tolDC will, ultimately, contribute to the large-scale production and the widely applicable use of tolDC. PMID:27703987

  19. Induction of CML28-specific cytotoxic T cell responses using co-transfected dendritic cells with CML28 DNA vaccine and SOCS1 small interfering RNA expression vector

    SciTech Connect

    Zhou Hongsheng; Zhang Donghua . E-mail: hanson2008@gmail.com; Wang Yaya; Dai Ming; Zhang Lu; Liu Wenli; Liu Dan; Tan Huo; Huang Zhenqian

    2006-08-18

    CML28 is an attractive target for antigen-specific immunotherapy. SOCS1 represents an inhibitory control mechanism for DC antigen presentation and the magnitude of adaptive immunity. In this study, we evaluated the potential for inducing CML28-specific cytotoxic T lymphocytes (CTL) responses by dendritic cells (DCs)-based vaccination. We constructed a CML28 DNA vaccine and a SOCS1 siRNA vector and then cotransfect monocyte-derived DCs. Flow cytometry analysis showed gene silencing of SOCS1 resulted in higher expressions of costimulative moleculars in DCs. Mixed lymphocyte reaction (MLR) indicated downregulation of SOCS1 stronger capability to stimulate proliferation of responder cell in DCs. The CTL assay revealed transfected DCs effectively induced autologous CML28-specific CTL responses and the lytic activities induced by SOCS1-silenced DCs were significantly higher compared with those induced by SOCS1-expressing DCs. These results in our study indicates gene silencing of SOCS1 remarkably enhanced the cytotoxicity efficiency of CML28 DNA vaccine in DCs.

  20. Candida albicans Is Phagocytosed, Killed, and Processed for Antigen Presentation by Human Dendritic Cells

    PubMed Central

    Newman, Simon L.; Holly, Angela

    2001-01-01

    Candida albicans is a component of the normal flora of the alimentary tract and also is found on the mucocutaneous membranes of the healthy host. Candida is the leading cause of invasive fungal disease in premature infants, diabetics, and surgical patients, and of oropharyngeal disease in AIDS patients. As the induction of cell-mediated immunity to Candida is of critical importance in host defense, we sought to determine whether human dendritic cells (DC) could phagocytose and degrade Candida and subsequently present Candida antigens to T cells. Immature DC obtained by culture of human monocytes in the presence of granulocyte-macrophage colony-stimulating factor and interleukin-4 phagocytosed unopsonized Candida in a time-dependent manner, and phagocytosis was not enhanced by opsonization of Candida in serum. Like macrophages (Mφ), DC recognized Candida by the mannose-fucose receptor. Upon ingestion, DC killed Candida as efficiently as human Mφ, and fungicidal activity was not enhanced by the presence of fresh serum. Although phagocytosis of Candida by DC stimulated the production of superoxide anion, inhibitors of the respiratory burst (or NO production) did not inhibit killing of Candida, even when phagocytosis was blocked by preincubation of DC with cytochalasin D. Further, although apparently only modest phagolysosomal fusion occurred upon DC phagocytosis of Candida, killing of Candida under anaerobic conditions was almost equivalent to killing under aerobic conditions. Finally, DC stimulated Candida-specific lymphocyte proliferation in a concentration-dependent manner after phagocytosis of both viable and heat-killed Candida cells. These data suggest that, in vivo, such interactions between DC and C. albicans may facilitate the induction of cell-mediated immunity. PMID:11598054

  1. Carbonic anhydrase enzymes regulate mast cell-mediated inflammation.

    PubMed

    Henry, Everett K; Sy, Chandler B; Inclan-Rico, Juan M; Espinosa, Vanessa; Ghanny, Saleena S; Dwyer, Daniel F; Soteropoulos, Patricia; Rivera, Amariliz; Siracusa, Mark C

    2016-08-22

    Type 2 cytokine responses are necessary for the development of protective immunity to helminth parasites but also cause the inflammation associated with allergies and asthma. Recent studies have found that peripheral hematopoietic progenitor cells contribute to type 2 cytokine-mediated inflammation through their enhanced ability to develop into mast cells. In this study, we show that carbonic anhydrase (Car) enzymes are up-regulated in type 2-associated progenitor cells and demonstrate that Car enzyme inhibition is sufficient to prevent mouse mast cell responses and inflammation after Trichinella spiralis infection or the induction of food allergy-like disease. Further, we used CRISPR/Cas9 technology and illustrate that genetically editing Car1 is sufficient to selectively reduce mast cell development. Finally, we demonstrate that Car enzymes can be targeted to prevent human mast cell development. Collectively, these experiments identify a previously unrecognized role for Car enzymes in regulating mast cell lineage commitment and suggest that Car enzyme inhibitors may possess therapeutic potential that can be used to treat mast cell-mediated inflammation. PMID:27526715

  2. Dendritic cell activation and T cell priming with adjuvant- and antigen-loaded oxidation-sensitive polymersomes.

    PubMed

    Scott, Evan A; Stano, Armando; Gillard, Morgane; Maio-Liu, Alexandra C; Swartz, Melody A; Hubbell, Jeffrey A

    2012-09-01

    While current subunit vaccines successfully induce humoral immune responses, a need exists for vaccine strategies to elicit strong cell-mediated immunity to address diseases such as cancer and chronic viral infection. Polymersomes are stable vesicles composed of self-assembling block copolymers with tunable degradation properties allowing delivery of both hydrophilic (within vesicle interior) or hydrophobic (within vesicle membrane) payload molecules. Here we apply oxidation-sensitive nanoscale polymersomes for both antigen and adjuvant delivery to dendritic cell (DC) endosomes. Calcein-loaded polymersomes were observed to release their payload initially in multiple DC endosomal compartments and subsequently within the cytosol. With either the Toll-like receptor agonists gardiquimod or R848 as payloads within the polymersomes, release resulted in DC activation, as indicated by induction of inflammatory cytokine expression and upregulation of DC maturation surface markers: for example, the ability of gardiquimod to induce IL-6 and IL-12 cytokine expression by DCs was enhanced 10-fold when loaded within polymersomes. With the model antigen ovalbumin as a payload, release resulted in CD8(+) T cell cross-priming by promoting protein antigen cross-presentation through MHC I, as indicated by activation of OT-I CD8(+) T cells. Our results demonstrate that oxidation-sensitive polymersomes can function as a vaccine delivery platform for inducing cell-mediated antigen-specific immune responses.

  3. Induction of antigen-specific immunity with a vaccine targeting NY-ESO-1 to the dendritic cell receptor DEC-205.

    PubMed

    Dhodapkar, Madhav V; Sznol, Mario; Zhao, Biwei; Wang, Ding; Carvajal, Richard D; Keohan, Mary L; Chuang, Ellen; Sanborn, Rachel E; Lutzky, Jose; Powderly, John; Kluger, Harriet; Tejwani, Sheela; Green, Jennifer; Ramakrishna, Venky; Crocker, Andrea; Vitale, Laura; Yellin, Michael; Davis, Thomas; Keler, Tibor

    2014-04-16

    Immune-based therapies for cancer are generating substantial interest because of the success of immune checkpoint inhibitors. This study aimed to enhance anticancer immunity by exploiting the capacity of dendritic cells (DCs) to initiate T cell immunity by efficient uptake and presentation of endocytosed material. Delivery of tumor-associated antigens to DCs using receptor-specific monoclonal antibodies (mAbs) in the presence of DC-activating agents elicits robust antigen-specific immune responses in preclinical models. DEC-205 (CD205), a molecule expressed on DCs, has been extensively studied for its role in antigen processing and presentation. CDX-1401 is a vaccine composed of a human mAb specific for DEC-205 fused to the full-length tumor antigen NY-ESO-1. This phase 1 trial assessed the safety, immunogenicity, and clinical activity of escalating doses of CDX-1401 with the Toll-like receptor (TLR) agonists resiquimod (TLR7/8) and Hiltonol (poly-ICLC, TLR3) in 45 patients with advanced malignancies refractory to available therapies. Treatment induced humoral and cellular immunity to NY-ESO-1 in patients with confirmed NY-ESO-1-expressing tumors across various dose levels and adjuvant combinations. No dose-limiting or grade 3 toxicities were reported. Thirteen patients experienced stabilization of disease, with a median duration of 6.7 months (range, 2.4+ to 13.4 months). Two patients had tumor regression (~20% shrinkage in target lesions). Six of eight patients who received immune-checkpoint inhibitors within 3 months after CDX-1401 administration had objective tumor regression. This first-in-human study of a protein vaccine targeting DCs demonstrates its feasibility, safety, and biological activity and provides rationale for combination immunotherapy strategies including immune checkpoint blockade. PMID:24739759

  4. Preferential induction of CD4+ T cell responses through in vivo targeting of antigen to dendritic cell-associated C-type lectin-1.

    PubMed

    Carter, Robert W; Thompson, Clare; Reid, Delyth M; Wong, Simon Y C; Tough, David F

    2006-08-15

    Targeting of Ags and therapeutics to dendritic cells (DCs) has immense potential for immunotherapy and vaccination. Because DCs are heterogeneous, optimal targeting strategies will require knowledge about functional specialization among DC subpopulations and identification of molecules for targeting appropriate DCs. We characterized the expression of a fungal recognition receptor, DC-associated C-type lectin-1 (Dectin-1), on mouse DC subpopulations and investigated the ability of an anti-Dectin-1 Ab to deliver Ag for the stimulation of immune responses. Dectin-1 was shown to be expressed on CD8alpha-CD4-CD11b+ DCs found in spleen and lymph nodes and dermal DCs present in skin and s.c. lymph nodes. Injection of Ag-anti-Dectin-1 conjugates induced CD4+ and CD8+ T cell and Ab responses at low doses where free Ag failed to elicit a response. Notably, qualitatively different immune responses were generated by targeting Ag to Dectin-1 vs CD205, a molecule expressed on CD8alpha+CD4-CD11b- DCs, dermal DCs, and Langerhans cells. Unlike anti-Dectin-1, anti-CD205 conjugates failed to elicit an Ab response. Moreover, when conjugates were injected i.v., anti-Dectin-1 stimulated a much stronger CD4+ T cell response and a much weaker CD8+ T cell response than anti-CD205. The results reveal Dectin-1 as a potential targeting molecule for immunization and have implications for the specialization of DC subpopulations. PMID:16887988

  5. Nocardia farcinica Activates Human Dendritic Cells and Induces Secretion of Interleukin-23 (IL-23) Rather than IL-12p70

    PubMed Central

    Eisenblätter, Martin; Buchal, Ariane; Gayum, Hermine; Jasny, Edith; Renner Viveros, Pablo; Ulrichs, Timo; Schneider, Thomas; Schumann, Ralf R.; Zweigner, Janine

    2012-01-01

    Studying the interaction of dendritic cells (DCs) with bacteria controlled by T-cell-mediated immune responses may reveal novel adjuvants for the induction of cellular immunity. Murine studies and the observation that nocardias infect predominantly immunosuppressed patients have suggested that these bacteria may possess an adjuvant potential. Moreover, adjuvants on the basis of the nocardial cell wall have been applied in clinical studies. Since the handling of adjuvants by DCs may determine the type of immune responses induced by a vaccine, the present study aimed at investigating the interaction of immature human monocyte-derived DCs with live or inactivated Nocardia farcinica in vitro and determining the cellular phenotypic changes as well as alterations in characteristic functions, such as phagocytosis, induction of T-cell proliferation, and cytokine secretion. Human DCs ingested N. farcinica and eradicated the bacterium intracellularly. DCs exposed to inactivated N. farcinica were activated, i.e., they developed a mature phenotype, downregulated their phagocytic capacity, and stimulated allogeneic T cells in mixed leukocyte reactions. Soluble factors were not involved in this process. To elucidate the potential adjuvant effect of N. farcinica on the induction of T-cell-mediated immune responses, we characterized the cytokines produced by nocardia-exposed DCs and detected substantial amounts of tumor necrosis factor alpha (TNF-α) and interleukin-12 p40 (IL-12p40). However, nocardia-treated DCs secreted only small amounts of IL-12p70, which were significantly smaller than the amounts of IL-23. Thus, N. farcinica activates DCs, but adjuvants based on this bacterium may have only a limited capacity to induce Th1 immune responses. PMID:22988018

  6. Induction of antigen-specific immunity by pH-sensitive carbonate apatite as a potent vaccine carrier.

    PubMed

    Hebishima, Takehisa; Tada, Seiichi; Takeshima, Shin-nosuke; Akaike, Toshihiro; Ito, Yoshihiro; Aida, Yoko

    2011-12-01

    The ability of carbonate apatite (CO(3)Ap) to enhance antigen-specific immunity was examined in vitro and in vivo to investigate its utility as a vaccine carrier. Murine bone marrow-derived dendritic cells took up ovalbumin (OVA) containing CO(3)Ap more effectively than free OVA. Interestingly, mice immunized with OVA-containing CO(3)Ap produced OVA-specific antibodies more effectively than mice immunized with free OVA. Furthermore, immunization of C57BL/6 mice with OVA-containing CO(3)Ap induced the proliferation and antigen-specific production of IFN-γ by splenocytes more strongly than immunization with free OVA. Moreover, no significant differences were detected in the induction of delayed-type hypersensitivity responses, an immune reaction involving an antigen-specific, cell-mediated immune response between OVA-containing CO(3)Ap and OVA-containing alumina salt (Alum), suggesting that CO(3)Ap induced cell-mediated immune response to the same degree as Alum, which is commonly used for clinical applications. This study is the first to demonstrate the induction of antigen-specific immune responses in vivo by CO(3)Ap.

  7. Classical dendritic cells mediate fibrosis directly via the retinoic acid pathway in severe eye allergy

    PubMed Central

    Ahadome, Sarah D.; Mathew, Rose; Reyes, Nancy J.; Mettu, Priyatham S.; Cousins, Scott W.; Calder, Virginia L.; Saban, Daniel R.

    2016-01-01

    Fibrosis is a shared end-stage pathway to lung, liver, and heart failure. In the ocular mucosa (conjunctiva), fibrosis leads to blindness in trachoma, pemphigoid, and allergy. The indirect fibrogenic role of DCs via T cell activation and inflammatory cell recruitment is well documented. However, here we demonstrate that DCs can directly induce fibrosis. In the mouse model of allergic eye disease (AED), classical CD11b+ DCs in the ocular mucosa showed increased activity of aldehyde dehydrogenase (ALDH), the enzyme required for retinoic acid synthesis. In vitro, CD11b+ DC–derived ALDH was associated with 9-cis-retinoic acid ligation to retinoid x receptor (RXR), which induced conjunctival fibroblast activation. In vivo, stimulating RXR led to rapid onset of ocular mucosal fibrosis, whereas inhibiting ALDH activity in DCs or selectively depleting DCs markedly reduced fibrosis. Collectively, these data reveal a profibrotic ALDH-dependent pathway by DCs and uncover a role for DC retinoid metabolism. PMID:27595139

  8. Dendritic cell mediated therapy for immunoregulation of type 1 diabetes mellitus.

    PubMed

    Phillips, Brett E; Giannoukakis, Nick; Trucco, Massimo

    2008-06-01

    Diabetes is a state of imbalance in insulin secretion and tissue sensitivity resulting in hyperglycemia and a host of other metabolic changes. Increased patient morbidity and mortality are caused in part by diabetic complications that include cardio-vascular complications, retinopathy, neuropathy, and nephropathy (1). The early onset of disease in type 1 diabetes mellitus increases the effects of these complications since the risk of development increases with disease duration. Clinical agents are currently available for type 2 diabetic patients to increase both secretion and sensitivity to insulin. These compounds are ineffective in type 1 diabetic patients due to the destruction of the insulin producing beta cells in the pancreatic islets of Langerhans, making type 1 and non-responsive type 2 diabetic patients dependent on insulin replacement therapy. Intensive insulin treatment delays onset of these complications, but does not eliminate them (1). Insulin replacement therapy is not a cure for type 1 diabetes; to establish a cure, the destruction of the beta cells themselves must be directly addressed. Here we will focus on immunoregulatory techniques to prevent beta cell loss due to the autoimmunity found in type 1 diabetes mellitus.

  9. Induction of an antitumor response using dendritic cells transfected with DNA constructs encoding the HLA-A*02:01-restricted epitopes of tumor-associated antigens in culture of mononuclear cells of breast cancer patients.

    PubMed

    Sennikov, Sergey Vital'evich; Shevchenko, Julia Alexandrovna; Kurilin, Vasilii Vasil'evich; Khantakova, Julia Nikolaevna; Lopatnikova, Julia Anatol'evna; Gavrilova, Elena Vasil'evna; Maksyutov, Rinat Amirovich; Bakulina, Anastasiya Yur'evna; Sidorov, Sergey Vasil'evich; Khristin, Alexander Alexandrovich; Maksyutov, Amir Zakievich

    2016-02-01

    Advances in oncoimmunology related to the definition of the basic mechanisms of the formation of antitumor immune response, as well as the opening of tumor-associated antigens recognized by immune cells, allowed to start developing ways to influence the effector cells of the immune system to generate effective antitumor cytotoxic response. We investigated the possibility to stimulate an antitumor response in a culture of mononuclear cells of breast cancer patients by dendritic cells transfected with HLA-A*02:01-restricted DNA constructs. We isolated dendritic cells from peripheral blood monocytes and delivered our constructs to these cells by magnetic transfection. Additionally, a series of experiments with loading of dendritic cells with autologous tumor cell lysate antigens was conducted. We have shown that dendritic cells transfected with the HLA-A*02:01-restricted DNA constructs are effective in inducing an antitumor response in a culture of mononuclear cells of breast cancer patients. Dendritic cells transfected with DNA constructor dendritic cells loaded with lysate antigens revealed a comparable stimulated cytotoxic response of mononuclear cells to these two ways of antigen delivery. We conclude that using DNA constructs in conjunction with patient stratification by HLA type allows the application of transfected DCs as an effective method to stimulate antitumor immunity in vitro.

  10. Dendritic microstructure in argon atomized superalloy powders

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Kumar, Mahundra

    1986-01-01

    The dendritic microstructure of atomized nickel base superalloy powders (Ni-20 pct Cr, NIMONIC-80A, ASTROALOY, and ZHS6-K) was studied. Prealloyed vacuum induction melted ingots were argon-atomized, the powders were cooled to room temperature, and various powder-size fractions were examined by optical metallography. Linear correlations were obtained for the powder size dependence of the secondary dendrite arm spacing, following the expected d-alpha (R) to the m power dependence on the particle size for all four superalloy compositions. However, the Ni-20 pct Cr alloy, which had much coarser arm spacing as compared to the other three alloys, had a much larger value of m.

  11. Isothermal Dendritic Growth Experiment - PVA Dendrites

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Isothermal Dendritic Growth Experiment (IDGE), flown on three Space Shuttle missions, is yielding new insights into virtually all industrially relevant metal and alloy forming operations. IDGE used transparent organic liquids that form dendrites (treelike structures) similar to those inside metal alloys. Comparing Earth-based and space-based dendrite growth velocity, tip size and shape provides a better understanding of the fundamentals of dentritic growth, including gravity's effects. Shalowgraphic images of pivalic acid (PVA) dendrites forming from the melt show the subtle but distinct effects of gravity-driven heat convection on dentritic growth. In orbit, the dendrite grows as its latent heat is liberated by heat conduction. This yields a blunt dendrite tip. On Earth, heat is carried away by both conduction and gravity-driven convection. This yields a sharper dendrite tip. In addition, under terrestrial conditions, the sidebranches growing in the direction of gravity are augmented as gravity helps carry heat out of the way of the growing sidebranches as opposed to microgravity conditions where no augmentation takes place. IDGE was developed by Rensselaer Polytechnic Institute and NASA/Glenn Research Center. Advanced follow-on experiments are being developed for flight on the International Space Station. Photo Credit: NASA/Glenn Research Center

  12. Critical role for syndecan-4 in dendritic cell migration during development of allergic airway inflammation.

    PubMed

    Polte, Tobias; Petzold, Susanne; Bertrand, Jessica; Schütze, Nicole; Hinz, Denise; Simon, Jan C; Lehmann, Irina; Echtermeyer, Frank; Pap, Thomas; Averbeck, Marco

    2015-07-13

    Syndecan-4 (SDC4), expressed on dendritic cells (DCs) and activated T cells, plays a crucial role in DC motility and has been shown as a potential target for activated T-cell-driven diseases. In the present study, we investigate the role of SDC4 in the development of T-helper 2 cell-mediated allergic asthma. Using SDC4-deficient mice or an anti-SDC4 antibody we show that the absence or blocking of SDC4 signalling in ovalbumin-sensitized mice results in a reduced asthma phenotype compared with control animals. Most importantly, even established asthma is significantly decreased using the anti-SDC4 antibody. The disturbed SDC4 signalling leads to an impaired motility and directional migration of antigen-presenting DCs and therefore, to a modified sensitization leading to diminished airway inflammation. Our results demonstrate that SDC4 plays an important role in asthma induction and indicate SDC4 as possible target for therapeutic intervention in this disease.

  13. Immunosuppressive human anti-CD83 monoclonal antibody depletion of activated dendritic cells in transplantation.

    PubMed

    Seldon, T A; Pryor, R; Palkova, A; Jones, M L; Verma, N D; Findova, M; Braet, K; Sheng, Y; Fan, Y; Zhou, E Y; Marks, J D; Munro, T; Mahler, S M; Barnard, R T; Fromm, P D; Silveira, P A; Elgundi, Z; Ju, X; Clark, G J; Bradstock, K F; Munster, D J; Hart, D N J

    2016-03-01

    Current immunosuppressive/anti-inflammatory agents target the responding effector arm of the immune response and their nonspecific action increases the risk of infection and malignancy. These effects impact on their use in allogeneic haematopoietic cell transplantation and other forms of transplantation. Interventions that target activated dendritic cells (DCs) have the potential to suppress the induction of undesired immune responses (for example, graft versus host disease (GVHD) or transplant rejection) and to leave protective T-cell immune responses intact (for example, cytomegalovirus (CMV) immunity). We developed a human IgG1 monoclonal antibody (mAb), 3C12, specific for CD83, which is expressed on activated but not resting DC. The 3C12 mAb and an affinity improved version, 3C12C, depleted CD83(+) cells by CD16(+) NK cell-mediated antibody-dependent cellular cytotoxicity, and inhibited allogeneic T-cell proliferation in vitro. A single dose of 3C12C prevented human peripheral blood mononuclear cell-induced acute GVHD in SCID mouse recipients. The mAb 3C12C depleted CMRF-44(+)CD83(bright) activated DC but spared CD83(dim/-) DC in vivo. It reduced human T-cell activation in vivo and maintained the proportion of CD4(+) FoxP3(+) CD25(+) Treg cells and also viral-specific CD8(+) T cells. The anti-CD83 mAb, 3C12C, merits further evaluation as a new immunosuppressive agent in transplantation.

  14. Regulatory Dendritic Cells for Immunotherapy in Immunologic Diseases

    PubMed Central

    Gordon, John R.; Ma, Yanna; Churchman, Laura; Gordon, Sara A.; Dawicki, Wojciech

    2013-01-01

    We recognize well the abilities of dendritic cells to activate effector T cell (Teff cell) responses to an array of antigens and think of these cells in this context as pre-eminent antigen-presenting cells, but dendritic cells are also critical to the induction of immunologic tolerance. Herein, we review our knowledge on the different kinds of tolerogenic or regulatory dendritic cells that are present or can be induced in experimental settings and humans, how they operate, and the diseases in which they are effective, from allergic to autoimmune diseases and transplant tolerance. The primary conclusions that arise from these cumulative studies clearly indicate that the agent(s) used to induce the tolerogenic phenotype and the status of the dendritic cell at the time of induction influence not only the phenotype of the dendritic cell, but also that of the regulatory T cell responses that they in turn mobilize. For example, while many, if not most, types of induced regulatory dendritic cells lead CD4+ naïve or Teff cells to adopt a CD25+Foxp3+ Treg phenotype, exposure of Langerhans cells or dermal dendritic cells to vitamin D leads in one case to the downstream induction of CD25+Foxp3+ regulatory T cell responses, while in the other to Foxp3− type 1 regulatory T cells (Tr1) responses. Similarly, exposure of human immature versus semi-mature dendritic cells to IL-10 leads to distinct regulatory T cell outcomes. Thus, it should be possible to shape our dendritic cell immunotherapy approaches for selective induction of different types of T cell tolerance or to simultaneously induce multiple types of regulatory T cell responses. This may prove to be an important option as we target diseases in different anatomic compartments or with divergent pathologies in the clinic. Finally, we provide an overview of the use and potential use of these cells clinically, highlighting their potential as tools in an array of settings. PMID:24550907

  15. Studying Signal Transduction in Single Dendritic Spines

    PubMed Central

    Yasuda, Ryohei

    2012-01-01

    Many forms of synaptic plasticity are triggered by biochemical signaling that occurs in small postsynaptic compartments called dendritic spines, each of which typically houses the postsynaptic terminal associated with a single glutamatergic synapse. Recent advances in optical techniques allow investigators to monitor biochemical signaling in single dendritic spines and thus reveal the signaling mechanisms that link synaptic activity and the induction of synaptic plasticity. This is mostly in the study of Ca2+-dependent forms of synaptic plasticity for which many of the steps between Ca2+ influx and changes to the synapse are now known. This article introduces the new techniques used to investigate signaling in single dendritic spines and the neurobiological insights that they have produced. PMID:22843821

  16. Detection of cell mediated immune response to avian influenza viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In birds, lymphomyeloid tissues develop from epithelial (Bursa of Fabricus or thymus) or mesenchymal tissue which are populated by heamatopoietic stem cells. These stem cells develop directly into immunologically competent B (bursa) and T (thymus) cells. Cell-mediated immunity (CMI) is a part of the...

  17. Free dendritic growth

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.

    1984-01-01

    Free dendritic growth refers to the unconstrained development of crystals within a supercooled melt, which is the classical 'dendrite problem'. Great strides have been taken in recent years in both the theoretical understanding of dendritic growth and its experimental status. The development of this field will be sketched, showing that transport theory and interfacial thermodynamics (capillarity theory) were sufficient ingredients to develop a truly predictive model of dendrite formation. The convenient, but incorrect, notion of 'maximum velocity' was used for many years to estimate the behavior of dendritic transformations until supplanted by modern dynamic stability theory. The proper combinations of transport theory and morphological stability seem to able to predict the salient aspects of dendritic growth, especially in the neighborhood of the tip. The overall development of cast microstructures, such as equiaxed zone formation, rapidly solidified microstructures, etc., also seems to contain additional non-deterministic features which lie outside the current theories discussed here.

  18. Dendritic polyurea polymers.

    PubMed

    Tuerp, David; Bruchmann, Bernd

    2015-01-01

    Dendritic polymers, subsuming dendrimers as well as hyperbranched or highly branched polymers are well established in the field of polymer chemistry. This review article focuses on urea based dendritic polymers and summarizes their synthetic routes through both isocyanate and isocyanate-free processes. Furthermore, this article highlights applications where dendritic polyureas show their specific chemical and physical potential. For these purposes scientific publications as well as patent literature are investigated to generate a comprehensive overview on this topic.

  19. The role of cell-mediated immunity in typhoid.

    PubMed

    Mabel, T J; Paniker, C K

    1979-06-01

    The cell-mediated immunity in typhoid was assessed by the leukocyte migration inhibition test and delayed hypersensitivity skin test in 60 clinical typhoid patients. The property of leukocyte migration inhibition appeared first and was positive in 28 of 60 (46.7%) patients on admission and 45 of 60 (75%) at the time of discharge. This difference was definitely more in blood culture positive patients. The delayed hypersensitivity appeared later and was positive in 18 of 60 (30%) on admission and 31 of 60 (51.7%) at the time of discharge. Patients with positive cellular-immune response against typhoid antigen did not develop relapse. On the whole cell-mediated immunity seems to play an important role in typoid. The control groups--the medical and surgical patients, doctors, clinical students and preclinical students--showed positive cellular immune response of 43.3 81.3, 40.7 and 25% respectively. The significance of these results is discussed.

  20. T-cell-mediated ganglionitis associated with acute sensory neuronopathy.

    PubMed

    Hainfellner, J A; Kristoferitsch, W; Lassmann, H; Bernheimer, H; Neisser, A; Drlicek, M; Beer, F; Budka, H

    1996-04-01

    A 67-year-old man presented with acute painful sensory loss, areflexia, ataxia, urinary retention, and severe constipation and became unable to walk within 2 weeks. He died suddenly 5 weeks after the onset of symptoms. Autopsy revealed widespread inflammation of sensory and autonomic ganglia with immunocytochemical evidence of a CD8+ T cell-mediated cytotoxic attack against ganglion neurons. This observation suggests a novel pathogenetic mechanism of immune-mediated human ganglion cell damage comparable to mechanisms operating in polymyositis.

  1. Cell-mediated immune responses to COPV early proteins.

    PubMed

    Jain, Suchitra; Moore, Richard A; Anderson, Davina M; Gough, Gerald W; Stanley, Margaret A

    Cell-mediated immunity plays a key role in the regression of papillomavirus-induced warts and intra-epithelial lesions but the target antigens that induce this response are not clear. Canine oral papillomavirus (COPV) infection of the oral cavity in dogs is a well-characterized model of mucosal papillomavirus infection that permits analysis of the immune events during the infectious cycle. In this study we show that during the COPV infectious cycle, systemic T cell responses to peptides of several early proteins particularly the E2 protein, as assayed by delayed type hypersensitivity, lymphoproliferation and IFN-gamma ELISPOT, can be detected. The maximal response occurs in a narrow time window that coincides with maximal viral DNA replication and wart regression: thereafter, systemic T cell responses to early proteins decline quite rapidly. Vaccination using particle-mediated immunotherapeutic delivery (PMID) of codon-modified COPV E2 and E1 genes induces strong antigen-specific cell-mediated immune responses in the vaccinated animals. These data show that therapeutic immunization by PMID with codon-modified E2 is completely effective, that to E1 is partially protective, that this correlates with the intensity of antigen-specific cell-mediated immune responses and, further, they emphasize the importance of these responses and the route of immunization in the generation of protective immunity. PMID:16949120

  2. Effect of space flight on cell-mediated immunity

    NASA Technical Reports Server (NTRS)

    Mandel, A. D.; Balish, E.

    1977-01-01

    The cell-mediated immune response to Listeria monocytogenes was studied in rats subjected to 20 days of flight aboard the Soviet biosatellite Kosmos 7820. Groups of rats were immunized with 1,000,000 formalin-killed Listeria suspended in Freunds Complete Adjuvant, 5 days prior to flight. Immunized rats subjected to the same environmental factors as the flight rats, except flight itself, and immunized and nonimmunized rats held in a normal animal colony served as controls. Following recovery, lymphocyte cultures were harvested from spleens of all rats, cultured in vitro in the presence of L. monocytogenes antigens, Phytohemagglutinin, Conconavlin A, or purified protein derivative (PPD), and measured for their uptake of H-3-thymidine. Although individual rats varied considerably, all flight and immunized control rats gave a blastogenic response to the Listeria antigens and PPD. With several mitogens, the lymphocytes of flight rats showed a significantly increased blastogenic response over the controls. The results of this study do not support a hypothesis of a detrimental effect of space flight on cell-mediated immunity. The data suggest a possible suppressive effect of stress and gravity on an in vitro correlate of cell-mediated immunity.

  3. The PD-L1/CD86 ratio is increased in dendritic cells co-infected with porcine circovirus type 2 and porcine reproductive and respiratory syndrome virus, and the PD-L1/PD-1 axis is associated with anergy, apoptosis, and the induction of regulatory T-cells in porcine lymphocytes.

    PubMed

    Richmond, O; Cecere, T E; Erdogan, E; Meng, X J; Piñeyro, P; Subramaniam, S; Todd, S M; LeRoith, T

    2015-11-18

    Porcine circovirus type 2 (PCV2) and porcine reproductive and respiratory syndrome virus (PRRSV) continue to have a negative economic impact on global swine production operations. Host immune modulations that potentiate disease during PCV2 and/or PRRSV infections are important areas of ongoing research. In this study, we evaluated the expression levels of PD-L1, CD86, and IL-10 in order to phenotype dendritic cells following viral infection with PCV2b and/or PRRSV. The results showed that the inhibitory marker PD-L1 was significantly increased in monocyte derived dendritic cells (MoDC) in both singular PCV2 infection and PCV2/PRRSV co-infections. MoDC expression of stimulatory marker CD86 was significantly increased during singular PCV2 infections, while it was significantly decreased in the treatment groups co-infected with both PCV2 and PRRSV. IL-10 production was highest among MoDCs that were co-infected with PCV2 and PRRSV. These results indicate that dendritic cells develop a regulatory phenotype following PCV2/PRRSV co-infections. We further investigated the role of the PD-L1/PD-1 axis in lymphocyte anergy, apoptosis, and the induction of regulatory T-cells in porcine mononuclear cell populations. Lymphocyte populations with normal PD-1 expression had higher percentages of anergic, apoptotic lymphocytes and CD4(+)CD25(HIGH)FoxP3(+) regulatory T-cells when compared to a PD-1 deficient lymphocyte population. These results implicate the PD-L1/PD-1 axis in negative regulation of lymphocyte responses in pigs. PMID:26446939

  4. Impairment in natural killer cells editing of immature dendritic cells by infection with a virulent Trypanosoma cruzi population.

    PubMed

    Batalla, Estela I; Pino Martínez, Agustina M; Poncini, Carolina V; Duffy, Tomás; Schijman, Alejandro G; González Cappa, Stella M; Alba Soto, Catalina D

    2013-01-01

    Early interactions between natural killer (NK) and dendritic cells (DC) shape the immune response at the frontier of innate and adaptive immunity. Activated NK cells participate in maturation or deletion of DCs that remain immature. We previously demonstrated that infection with a high virulence (HV) population of the protozoan parasite Trypanosoma cruzi downmodulates DC maturation and T-cell activation capacity. Here, we evaluated the role of NK cells in regulating the maturation level of DCs. Shortly after infection with HV T. cruzi, DCs in poor maturation status begin to accumulate in mouse spleen. Although infection induces NK cell cytotoxicity and cytokine production, NK cells from mice infected with HV T. cruzi exhibit reduced ability to lyse and fail to induce maturation of bone marrow-derived immature DCs (iDCs). NK-mediated lysis of iDCs is restored by in vitro blockade of the IL-10 receptor during NK-DC interaction or when NK cells are obtained from T. cruzi-infected IL-10 knockout mice. These results suggest that infection with a virulent T. cruzi strain alters NK cell-mediated regulation of the adaptive immune response induced by DCs. This regulatory circuit where IL-10 appears to participate might lead to parasite persistence but can also limit the induction of a vigorous tissue-damaging T-cell response.

  5. Molecular mechanisms of dendrite stability

    PubMed Central

    Koleske, Anthony J.

    2014-01-01

    In the developing brain, dendrite branches and dendritic spines form and turn over dynamically. By contrast, most dendrite arbors and dendritic spines in the adult brain are stable for months, years and possibly even decades. Emerging evidence reveals that dendritic spine and dendrite arbor stability have crucial roles in the correct functioning of the adult brain and that loss of stability is associated with psychiatric disorders and neurodegenerative diseases. Recent findings have provided insights into the molecular mechanisms that underlie long-term dendrite stabilization, how these mechanisms differ from those used to mediate structural plasticity and how they are disrupted in disease. PMID:23839597

  6. Cord blood T cells mediate enhanced antitumor effects compared with adult peripheral blood T cells.

    PubMed

    Hiwarkar, Prashant; Qasim, Waseem; Ricciardelli, Ida; Gilmour, Kimberly; Quezada, Sergio; Saudemont, Aurore; Amrolia, Persis; Veys, Paul

    2015-12-24

    Unrelated cord blood transplantation (CBT) without in vivo T-cell depletion is increasingly used to treat high-risk hematologic malignancies. Following T-replete CBT, naïve CB T cells undergo rapid peripheral expansion with memory-effector differentiation. Emerging data suggest that unrelated CBT, particularly in the context of HLA mismatch and a T-replete graft, may reduce leukemic relapse. To study the role of CB T cells in mediating graft-versus-tumor responses and dissect the underlying immune mechanisms for this, we compared the ability of HLA-mismatched CB and adult peripheral blood (PB) T cells to eliminate Epstein-Barr virus (EBV)-driven human B-cell lymphoma in a xenogeneic NOD/SCID/IL2rg(null) mouse model. CB T cells mediated enhanced tumor rejection compared with equal numbers of PB T cells, leading to improved survival in the CB group (P < .0003). Comparison of CB T cells that were autologous vs allogeneic to the lymphoma demonstrated that this antitumor effect was mediated by alloreactive rather than EBV-specific T cells. Analysis of tumor-infiltrating lymphocytes demonstrated that CB T cells mediated this enhanced antitumor effect by rapid infiltration of the tumor with CCR7(+)CD8(+) T cells and prompt induction of cytotoxic CD8(+) and CD4(+) T-helper (Th1) T cells in the tumor microenvironment. In contrast, in the PB group, this antilymphoma effect is impaired because of delayed tumoral infiltration of PB T cells and a relative bias toward suppressive Th2 and T-regulatory cells. Our data suggest that, despite being naturally programmed toward tolerance, reconstituting T cells after unrelated T-replete CBT may provide superior Tc1-Th1 antitumor effects against high-risk hematologic malignancies.

  7. Isothermal Dendritic Growth Experiment - SCN Dendrites

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Isothermal Dendritic Growth Experiment (IDGE), flown on three Space Shuttle missions, is yielding new insights into virtually all industrially relevant metal and alloy forming operations. IDGE used transparent organic liquids that form dendrites (treelike structures) similar to the crystals that form inside metal alloys. Comparing Earth-based and space-based dentrite growth velocity, tip size and shape provid a better understanding of the fundamentals of dentritic growth, including gravity's effects. These shadowgraphic images show succinonitrile (SCN) dentrites growing in a melt (liquid). The space-grown crystals also have cleaner, better defined sidebranches. IDGE was developed by Rensselaer Polytechnic Institude (RPI) and NASA/ Glenn Research Center(GRC). Advanced follow-on experiments are being developed for flight on the International Space Station. Photo gredit: NASA/Glenn Research Center

  8. On the dendrites and dendritic transitions in undercooled germanium

    SciTech Connect

    Lau, C.F.; Kui, H.W. . Dept. of Physics)

    1993-07-01

    Undercooled molten Ge was allowed to solidify at initial bulk undercoolings, [Delta]T, from 10 to 200C under dehydrated boron oxide flux. It turned out that in addition to the (211) twin dendrite found by Billig and the (100) twin-free dendrite discovered by Devaud and Turnbill, there is a third novel twin dendrite, the (110) twin dendrite. The twin planes in a (110) dendrite always appear in multiple numbers and the orientation is (111). These different kinds of dendrites exist at different initial interfacial undercoolings and the transition temperatures for (110) to (211), (211) to (100) are [Delta]T = 61 and 93C, respectively.

  9. Cell mediated autoimmune granulocytopenia in a case of Felty's syndrome.

    PubMed Central

    Slavin, S; Liang, M H

    1980-01-01

    A variety of mechanisms have been demonstrated or suggested to explain the neutropenia that accompanies Felty's syndrome. This case report presents with Felty's syndrome with recurrent infections with initially had a clinical response to splenectomy. Eleven years later profound neutropenia recurred. In-vitro evidence for cell mediated autosensitisation of peripheral blood lymphocytes to autologous bone marrow cells was found. The cellular abnormalities improved after high-dose corticosteroids but not lithium. However, there did not appear to be a reduction in the incidence of clinical infections. The finding suggests that granulocytopenia in some patients with Felty's syndrome may be an autoimmune phenomenon. PMID:7436567

  10. Optimization principles of dendritic structure

    PubMed Central

    Cuntz, Hermann; Borst, Alexander; Segev, Idan

    2007-01-01

    Background Dendrites are the most conspicuous feature of neurons. However, the principles determining their structure are poorly understood. By employing cable theory and, for the first time, graph theory, we describe dendritic anatomy solely on the basis of optimizing synaptic efficacy with minimal resources. Results We show that dendritic branching topology can be well described by minimizing the path length from the neuron's dendritic root to each of its synaptic inputs while constraining the total length of wiring. Tapering of diameter toward the dendrite tip – a feature of many neurons – optimizes charge transfer from all dendritic synapses to the dendritic root while housekeeping the amount of dendrite volume. As an example, we show how dendrites of fly neurons can be closely reconstructed based on these two principles alone. PMID:17559645

  11. The Exonuclease Domain of Lassa Virus Nucleoprotein Is Involved in Antigen-Presenting-Cell-Mediated NK Cell Responses

    PubMed Central

    Russier, Marion; Reynard, Stéphanie; Carnec, Xavier

    2014-01-01

    ABSTRACT Lassa virus is an Old World Arenavirus which causes Lassa hemorrhagic fever in humans, mostly in West Africa. Lassa fever is an important public health problem, and a safe and effective vaccine is urgently needed. The infection causes immunosuppression, probably due to the absence of activation of antigen-presenting cells (dendritic cells and macrophages), low type I interferon (IFN) production, and deficient NK cell function. However, a recombinant Lassa virus carrying D389A and G392A substitutions in the nucleoprotein that abolish the exonuclease activity and IFN activation loses its inhibitory activity and induces strong type I IFN production by dendritic cells and macrophages. We show here that during infection by this mutant Lassa virus, antigen-presenting cells trigger efficient human NK cell responses in vitro, including production of IFN-γ and cytotoxicity. NK cell activation involves close contact with both antigen-presenting cells and soluble factors. We report that infected dendritic cells and macrophages express the NKG2D ligands major histocompatibility complex (MHC) class I-related chains A and B and that they may produce interleukin-12 (IL-12), IL-15, and IL-18, all involved in NK cell functions. NK cell degranulation is significantly increased in cocultures, suggesting that NK cells seem to kill infected dendritic cells and macrophages. This work confirms the inhibitory function of Lassa virus nucleoprotein. Importantly, we demonstrate for the first time that Lassa virus nucleoprotein is involved in the inhibition of antigen-presenting cell-mediated NK cell responses. IMPORTANCE The pathogenesis and immune responses induced by Lassa virus are poorly known. Recently, an exonuclease domain contained in the viral nucleoprotein has been shown to be able to inhibit the type I IFN response by avoiding the recognition of viral RNA by cell sensors. Here, we studied the responses of NK cells to dendritic cells and macrophages infected with a

  12. Induction of antigen-specific immunity by pH-sensitive carbonate apatite as a potent vaccine carrier

    SciTech Connect

    Hebishima, Takehisa; Tada, Seiichi; Takeshima, Shin-nosuke; Akaike, Toshihiro; Ito, Yoshihiro; Aida, Yoko

    2011-12-02

    Highlights: Black-Right-Pointing-Pointer To develop effective vaccine, we examined the effects of CO{sub 3}Ap as an antigen carrier. Black-Right-Pointing-Pointer OVA contained in CO{sub 3}Ap was taken up by BMDCs more effectively than free OVA. Black-Right-Pointing-Pointer OVA-immunized splenocytes was activated by OVA contained in CO{sub 3}Ap effectively. Black-Right-Pointing-Pointer OVA contained in CO{sub 3}Ap induced strong OVA-specific immune responses to C57BL/6 mice. Black-Right-Pointing-Pointer CO{sub 3}Ap is promising antigen carrier for the achievement of effective vaccine. -- Abstract: The ability of carbonate apatite (CO{sub 3}Ap) to enhance antigen-specific immunity was examined in vitro and in vivo to investigate its utility as a vaccine carrier. Murine bone marrow-derived dendritic cells took up ovalbumin (OVA) containing CO{sub 3}Ap more effectively than free OVA. Interestingly, mice immunized with OVA-containing CO{sub 3}Ap produced OVA-specific antibodies more effectively than mice immunized with free OVA. Furthermore, immunization of C57BL/6 mice with OVA-containing CO{sub 3}Ap induced the proliferation and antigen-specific production of IFN-{gamma} by splenocytes more strongly than immunization with free OVA. Moreover, no significant differences were detected in the induction of delayed-type hypersensitivity responses, an immune reaction involving an antigen-specific, cell-mediated immune response between OVA-containing CO{sub 3}Ap and OVA-containing alumina salt (Alum), suggesting that CO{sub 3}Ap induced cell-mediated immune response to the same degree as Alum, which is commonly used for clinical applications. This study is the first to demonstrate the induction of antigen-specific immune responses in vivo by CO{sub 3}Ap.

  13. Sensitivity of Dendritic Cells to Microenvironment Signals

    PubMed Central

    Motta, Juliana Maria; Rumjanek, Vivian Mary

    2016-01-01

    Dendritic cells are antigen-presenting cells capable of either activating the immune response or inducing and maintaining immune tolerance. They do this by integrating stimuli from the environment and changing their functional status as a result of plasticity. The modifications suffered by these cells have consequences in the way the organism may respond. In the present work two opposing situations known to affect dendritic cells are analyzed: tumor growth, leading to a microenvironment that favors the induction of a tolerogenic profile, and organ transplantation, which leads to a proinflammatory profile. Lessons learned from these situations may help to understand the mechanisms of modulation resulting not only from the above circumstances, but also from other pathologies. PMID:27088097

  14. Lid for improved dendritic web growth

    DOEpatents

    Duncan, Charles S.; Kochka, Edgar L.; Piotrowski, Paul A.; Seidensticker, Raymond G.

    1992-03-24

    A lid for a susceptor in which a crystalline material is melted by induction heating to form a pool or melt of molten material from which a dendritic web of essentially a single crystal of the material is pulled through an elongated slot in the lid and the lid has a pair of generally round openings adjacent the ends of the slot and a groove extends between each opening and the end of the slot. The grooves extend from the outboard surface of the lid to adjacent the inboard surface providing a strip contiguous with the inboard surface of the lid to produce generally uniform radiational heat loss across the width of the dendritic web adjacent the inboard surface of the lid to reduce thermal stresses in the web and facilitate the growth of wider webs at a greater withdrawal rate.

  15. Cell-Mediated Immune Responses in Paraneoplastic Neurological Syndromes

    PubMed Central

    Zaborowski, Mikolaj Piotr

    2013-01-01

    Paraneoplastic neurological syndromes (PNS) are disorders of the nervous system that are associated with remote effects of malignancy. PNS are considered to have an autoimmune pathology. It has been suggested that immune antitumor responses are the origin of improved outcome in PNS. We describe cell-mediated immune responses in PNS and their potential contributions to antitumor reactions. Experimental and neuropathological studies have revealed infiltrates in nervous tissue and disturbances in lymphocyte populations in both cerebrospinal fluid and peripheral blood. A predominance of cytotoxic T lymphocytes (CTLs) over T helper cells has been observed. CTLs can be specifically aggressive against antigens shared by tumors and nervous tissue. Based on genetic studies, a common clonal origin of lymphocytes from blood, tumor, and nervous tissue is suggested. Suppressive regulatory T (Treg) lymphocytes are dysfunctional. Simultaneously, in tumor tissue, more intense cell-mediated immune responses are observed, which often coincide with a less aggressive course of neoplastic disease. An increased titer of onconeural antibodies is also related to better prognoses in patients without PNS. The evaluation of onconeural and neuronal surface antibodies was recommended in current guidelines. The link between PNS emergence and antitumor responses may result from more active CTLs and less functional Treg lymphocytes. PMID:24575143

  16. Cell-mediated destruction of cells grown on artificial capillaries.

    PubMed

    Zwilling, B S; Clayman, D A

    1978-11-01

    This investigation was designed to determine the conditions required to assess cell-mediated destruction of target L-cells grown on artificial capillaries. In control cultures that contained L-cells alone, solid nodules with a diameter of 1 mm as well as dense cellular growth could be visually observed by the 12th day of culture. Alloimmune spleen cells from both immunized and normal C57BL/10 mice were shown to be capable of destroying tritiated thymidine-labeled L-cells growing on artificial capillaries. The destruction of target cells grown as monolayers in capillary culture correlated well with monolayer cultures incubated in 16-mm plastic tissue culture wells. When target cells were grown in capillary culture for 5 days before the addition of effector cells, significant destruction by normal effector cells was not observed until the 15th day of culture whereas that mediated by immune cells was observed by the 7th day. The possible effects of cell-culturing conditions on the kinetics of cell-mediated destruction in capillary chambers are discussed.

  17. Human Dendritic Cell Activity against Histoplasma capsulatum Is Mediated via Phagolysosomal Fusion

    PubMed Central

    Gildea, Lucy A.; Ciraolo, Georgianne M.; Morris, Randal E.; Newman, Simon L.

    2005-01-01

    Histoplasma capsulatum is a fungal pathogen that requires the induction of cell-mediated immunity (CMI) for host survival. We have demonstrated that human dendritic cells (DC) phagocytose H. capsulatum yeasts and, unlike human macrophages (Mø) that are permissive for intracellular growth, DC killed and degraded the fungus. In the present study, we sought to determine whether the mechanism(s) by which DC kill Histoplasma is via lysosomal hydrolases, via the production of toxic oxygen metabolites, or both. Phagosome-lysosome fusion (PL-fusion) was quantified by using fluorescein isothiocyanate-dextran and phase and fluorescence microscopy and by electron microscopy with horseradish peroxidase colloidal gold to label lysosomes. Unlike Mφ, Histoplasma-infected DC exhibited marked PL-fusion. The addition of suramin to Histoplasma-infected DC inhibited PL-fusion and DC fungicidal activity. Incubation of Histoplasma-infected DC at 18°C also concomitantly reduced PL-fusion and decreased the capacity of DC to kill and degrade H. capsulatum yeasts. Further, culture of Histoplasma-infected DC in the presence of bafilomycin, an inhibitor of the vacuolar ATPase, did not block DC anti-Histoplasma activity, indicating that phagosome acidification was not required for lysosome enzyme activity. In contrast, culture of Histoplasma-infected DC in the presence of inhibitors of the respiratory burst or inhibitors of NO synthase had little to no effect on DC fungicidal activity. These data suggest that the major mechanism by which human DC mediate anti-Histoplasma activity is through the exposure of yeasts to DC lysosomal hydrolases. Thus, DC can override one of the strategies used by H. capsulatum yeasts to survive intracellularly within Mø. PMID:16177358

  18. Dendritic Polymers for Theranostics

    PubMed Central

    Ma, Yuan; Mou, Quanbing; Wang, Dali; Zhu, Xinyuan; Yan, Deyue

    2016-01-01

    Dendritic polymers are highly branched polymers with controllable structures, which possess a large population of terminal functional groups, low solution or melt viscosity, and good solubility. Their size, degree of branching and functionality can be adjusted and controlled through the synthetic procedures. These tunable structures correspond to application-related properties, such as biodegradability, biocompatibility, stimuli-responsiveness and self-assembly ability, which are the key points for theranostic applications, including chemotherapeutic theranostics, biotherapeutic theranostics, phototherapeutic theranostics, radiotherapeutic theranostics and combined therapeutic theranostics. Up to now, significant progress has been made for the dendritic polymers in solving some of the fundamental and technical questions toward their theranostic applications. In this review, we briefly summarize how to control the structures of dendritic polymers, the theranostics-related properties derived from their structures and their theranostics-related applications. PMID:27217829

  19. Lithium Dendrite Formation

    SciTech Connect

    2015-03-06

    Scientists at the Department of Energy’s Oak Ridge National Laboratory have captured the first real-time nanoscale images of lithium dendrite structures known to degrade lithium-ion batteries. The ORNL team’s electron microscopy could help researchers address long-standing issues related to battery performance and safety. Video shows annular dark-field scanning transmission electron microscopy imaging (ADF STEM) of lithium dendrite nucleation and growth from a glassy carbon working electrode and within a 1.2M LiPF6 EC:DM battery electrolyte.

  20. Establishment of Stable, Cell-Mediated Immunity that Makes "Susceptible" Mice Resistant to Leishmania major

    NASA Astrophysics Data System (ADS)

    Bretscher, Peter A.; Wei, Guojian; Menon, Juthika N.; Bielefeldt-Ohmann, Helle

    1992-07-01

    Cell-mediated, but not antibody-mediated, immune responses protect humans against certain pathogens that produce chronic diseases such as leishmaniasis. Effective vaccination against such pathogens must therefore produce an immunological "imprint" so that stable, cell-mediated immunity is induced in all individuals after natural infection. BALB/c mice "innately susceptible" to Leishmania major produce antibodies after substantial infection. In the present study, "susceptible" mice injected with a small number of parasites mounted a cell-mediated response and acquired resistance to a larger, normally pathogenic, challenge. This vaccination strategy may be applicable in diseases in which protection is dependent on cell-mediated immunity.

  1. Isothermal Dendritic Growth Experiment Video

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This video, captured during the Isothermal Dendritic Growth Experiment (IDGE) flown on STS-87 as a part of the fourth United States Microgravity payload, shows the growth of a dendrite, and the surface solidification that occurred on the front and back windows of the growth chamber. Dendrites are tiny, tree like structures that form as metals solidify.

  2. Cell-mediated immune reactions to clinical neuroblastoma.

    PubMed

    Okabe, I; Kurosu, Y; Morita, K

    1985-09-01

    Immunotherapy may be an effective treatment for neuroblastoma. It is of importance to delineate changes in various parameters of tumor immunity over an extended period, before and during the course of treatment, in any given case. In our patients with neuroblastoma, tumor-associated cell-mediated immune-reaction showed a good responsiveness before treatment. However, delayed cutaneous hypersensitivity reactions were shown to be negative in many cases, particularly in those with advanced tumor, and T gamma cells were enormously increased in some cases. During the course of therapy, the tumor-associated cellular immune responsiveness showed a tendency to become negative when the patient was tumor free or was in remission, but showed a tendency to become positive on regrowth, recurrence or metastasis of tumor. The T gamma cells showed much the same fluctuations as did the tumor-associated cellular immune responsiveness.

  3. Depressed cell-mediated immunity in coeliac disease.

    PubMed Central

    Scott, B B; Losowsky, M S

    1976-01-01

    Fourteen coeliac patients on a gluten free diet (GFD) and 10 on a normal diet were studied by lymphocyte transformation in response to PHA to assess the integrity of cell-mediated immunity (CMI). Transformation was depressed in the majority taking a normal diet, with improvement after a GFD. In some patients the depression may have been due to a serum factor, as transformation was more nearly normal when the lymphocytes were cultured in pooled AB serum than in their own serum. There was no correlation between transformation and nutritional deficiencies. Mantoux tests were performed in some of these and other coeliac patients and there was a very significant reduction in the incidence of positive tests compared with controls. These findings provide evidence of depressed CMI in coeliac patients taking a normal diet with improvement on a GFD and may be of relevance to the high risk of malignancy in coeliac disease, further strengthening the case for a strict GFD. PMID:1087262

  4. Cell mediated immunity in Antarctic wintering personnel; 1984-1992.

    PubMed

    Muller, H K; Lugg, D J; Quinn, D

    1995-08-01

    Cell-mediated immune responses were studied in 12 Antarctic and sub-Antarctic wintering groups at quarterly intervals over the period 1984-1992, using the cutaneous CMI Multitest. These populations are among the most isolated on earth. While the sub-Antarctic population at Macquarie Island had levels of responsiveness and hypoergy (9%) comparable to healthy populations in temperate zones, the Antarctic Continental group showed a level of hypoergy of 36%. There was no seasonal variation in the pattern of responses. It is concluded that the extreme and isolated environment and stress factors are responsible for the decreased immunological responsiveness but the mechanisms are presently unclear. On review, one factor appears to be perceived anxiety. The high rate of hypoergy in Antarctica, where medical care is limited, may have health implications. These groups provide an excellent analogue for immunological investigations in longer term space flight.

  5. Reactive oxygen species induced by therapeutic CD20 antibodies inhibit natural killer cell-mediated antibody-dependent cellular cytotoxicity against primary CLL cells.

    PubMed

    Werlenius, Olle; Aurelius, Johan; Hallner, Alexander; Akhiani, Ali A; Simpanen, Maria; Martner, Anna; Andersson, Per-Ola; Hellstrand, Kristoffer; Thorén, Fredrik B

    2016-05-31

    The antibody-dependent cellular cytotoxicity (ADCC) of natural killer (NK) cells is assumed to contribute to the clinical efficacy of monoclonal antibodies (mAbs) in chronic lymphocytic leukemia (CLL) and other hematopoietic malignancies of B cell origin. We sought to determine whether reactive oxygen species (ROS)-producing monocytes regulate the ADCC of NK cells against primary CLL cells using anti-CD20 as the linking antibody. The monoclonal CD20 antibodies rituximab and ofatumumab were found to trigger substantial release of ROS from monocytes. Antibody-exposed monocytes induced NK cell apoptosis and restricted NK cell-mediated ADCC against autologous CLL cells. The presence of inhibitors of ROS formation and scavengers of ROS preserved NK cell viability and restored NK cell-mediated ADCC against primary CLL cells. We propose that limiting the antibody-induced induction of immunosuppressive ROS may improve the anti-leukemic efficacy of anti-CD20 therapy in CLL. PMID:27097113

  6. The unfolded protein response is required for dendrite morphogenesis

    PubMed Central

    Wei, Xing; Howell, Audrey S; Dong, Xintong; Taylor, Caitlin A; Cooper, Roshni C; Zhang, Jianqi; Zou, Wei; Sherwood, David R; Shen, Kang

    2015-01-01

    Precise patterning of dendritic fields is essential for the formation and function of neuronal circuits. During development, dendrites acquire their morphology by exuberant branching. How neurons cope with the increased load of protein production required for this rapid growth is poorly understood. Here we show that the physiological unfolded protein response (UPR) is induced in the highly branched Caenorhabditis elegans sensory neuron PVD during dendrite morphogenesis. Perturbation of the IRE1 arm of the UPR pathway causes loss of dendritic branches, a phenotype that can be rescued by overexpression of the ER chaperone HSP-4 (a homolog of mammalian BiP/ grp78). Surprisingly, a single transmembrane leucine-rich repeat protein, DMA-1, plays a major role in the induction of the UPR and the dendritic phenotype in the UPR mutants. These findings reveal a significant role for the physiological UPR in the maintenance of ER homeostasis during morphogenesis of large dendritic arbors. DOI: http://dx.doi.org/10.7554/eLife.06963.001 PMID:26052671

  7. Role of stromal cell-mediated Notch signaling in CLL resistance to chemotherapy

    PubMed Central

    Kamdje, A H Nwabo; Bassi, G; Pacelli, L; Malpeli, G; Amati, E; Nichele, I; Pizzolo, G; Krampera, M

    2012-01-01

    Stromal cells are essential components of the bone marrow (BM) microenvironment that regulate and support the survival of different tumors, including chronic lymphocytic leukemia (CLL). In this study, we investigated the role of Notch signaling in the promotion of survival and chemoresistance of human CLL cells in coculture with human BM-mesenchymal stromal cells (hBM-MSCs) of both autologous and allogeneic origin. The presence of BM-MSCs rescued CLL cells from apoptosis both spontaneously and following induction with various drugs, including Fludarabine, Cyclophosphamide, Bendamustine, Prednisone and Hydrocortisone. The treatment with a combination of anti-Notch-1, Notch-2 and Notch-4 antibodies or γ-secretase inhibitor XII (GSI XII) reverted this protective effect by day 3, even in presence of the above-mentioned drugs. Overall, our findings show that stromal cell-mediated Notch-1, Notch-2 and Notch-4 signaling has a role in CLL survival and resistance to chemotherapy. Therefore, its blocking could be an additional tool to overcome drug resistance and improve the therapeutic strategies for CLL. PMID:22829975

  8. MHC-I expression renders catecholaminergic neurons susceptible to T-cell-mediated degeneration

    PubMed Central

    Cebrián, Carolina; Zucca, Fabio A.; Mauri, Pierluigi; Steinbeck, Julius A.; Studer, Lorenz; Scherzer, Clemens R.; Kanter, Ellen; Budhu, Sadna; Mandelbaum, Jonathan; Vonsattel, Jean P.; Zecca, Luigi; Loike, John D.; Sulzer, David

    2014-01-01

    Subsets of rodent neurons are reported to express major histocompatibilty complex class I (MHC-I), but such expression has not been reported in normal adult human neurons. Here we provide evidence from immunolabel, RNA expression, and mass spectrometry analysis of postmortem samples that human catecholaminergic substantia nigra and locus coeruleus neurons express MHC-I, and that this molecule is inducible in human stem cell derived dopamine (DA) neurons. Catecholamine murine cultured neurons are more responsive to induction of MHC-I by gamma-interferon than other neuronal populations. Neuronal MHC-I is also induced by factors released from microglia activated by neuromelanin or alpha-synuclein, or high cytosolic DA and/or oxidative stress. DA neurons internalize foreign ovalbumin and display antigen derived from this protein by MHC-I, which triggers DA neuronal death in the presence of appropriate cytotoxic T-cells. Thus, neuronal MHC-I can trigger antigenic response, and catecholamine neurons may be particularly susceptible to T cell-mediated cytotoxic attack. PMID:24736453

  9. Transport Processes in Dendritic Crystallization

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.

    1984-01-01

    Free dentritic growth refers to the unconstrained development of crystals within a supercooled melt, which is the classical dendrite problem. The development of theoretical understanding of dendritic growth and its experimental status is sketched showing that transport theory and interfacial thermodynamics (capillarity theory) are insufficient ingredients to develop a truly predictive model of dendrite formation. The convenient, but incorrect, notion of maximum velocity was used for many years to estimate the behavior of dendritic transformations until supplanted by modern dynamic stability theory. The proper combinations of transport theory and morphological stability seem to be able to predict the salient aspects of dendritic growth, especially in the neighborhood of the tip.

  10. Modification of dendritic development.

    PubMed

    Feria-Velasco, Alfredo; del Angel, Alma Rosa; Gonzalez-Burgos, Ignacio

    2002-01-01

    Since 1890 Ramón y Cajal strongly defended the theory that dendrites and their processes and spines had a function of not just nutrient transport to the cell body, but they had an important conductive role in neural impulse transmission. He extensively discussed and supported this theory in the Volume 1 of his extraordinary book Textura del Sistema Nervioso del Hombre y de los Vertebrados. Also, Don Santiago significantly contributed to a detailed description of the various neural components of the hippocampus and cerebral cortex during development. Extensive investigation has been done in the last Century related to the functional role of these complex brain regions, and their association with learning, memory and some limbic functions. Likewise, the organization and expression of neuropsychological qualities such as memory, exploratory behavior and spatial orientation, among others, depend on the integrity and adequate functional activity of the cerebral cortex and hippocampus. It is known that brain serotonin synthesis and release depend directly and proportionally on the availability of its precursor, tryptophan (TRY). By using a chronic TRY restriction model in rats, we studied their place learning ability in correlation with the dendritic spine density of pyramidal neurons in field CA1 of the hippocampus during postnatal development. We have also reported alterations in the maturation pattern of the ability for spontaneous alternation and task performance evaluating short-term memory, as well as adverse effects on the density of dendritic spines of hippocampal CA1 field pyramidal neurons and on the dendritic arborization and the number of dendritic spines of pyramidal neurons from the third layer of the prefrontal cortex using the same model of TRY restriction. The findings obtained in these studies employing a modified Golgi method, can be interpreted as a trans-synaptic plastic response due to understimulation of serotoninergic receptors located in the

  11. Diverse HLA-I Peptide Repertoires of the APC Lines MUTZ3-Derived Immature and Mature Dendritic Cells and THP1-Derived Macrophages.

    PubMed

    Nyambura, Lydon Wainaina; Jarmalavicius, Saulius; Baleeiro, Renato Brito; Walden, Peter

    2016-09-15

    Dendritic cells (DCs) and macrophages are specialized APCs that process and present self-Ags for induction of tolerance and foreign Ags to initiate T cell-mediated immunity. Related to differentiation states they have specific phenotypes and functions. However, the impact of these differentiations on Ag processing and presentation remains poorly defined. To gain insight into this, we analyzed and compared the HLA-I peptidomes of MUTZ3-derived human immature and mature DC lines and THP1-derived macrophages by liquid chromatography tandem mass spectrometry. We found that the HLA-I peptidomes were heterogeneous and individualized and were dominated by nonapeptides with similar HLA-I binding affinities and anchor residues. MUTZ3-derived DCs and THP1-derived macrophages were able to sample peptides from source proteins of almost all subcellular locations and were involved in various cellular functions in similar proportion, with preference to proteins involved in cell communication, signal transduction, protein metabolism, and transcription factor/regulator activity. PMID:27543614

  12. Tolerogenic nanoparticles inhibit T cell-mediated autoimmunity through SOCS2.

    PubMed

    Yeste, Ada; Takenaka, Maisa C; Mascanfroni, Ivan D; Nadeau, Meghan; Kenison, Jessica E; Patel, Bonny; Tukpah, Ann-Marcia; Babon, Jenny Aurielle B; DeNicola, Megan; Kent, Sally C; Pozo, David; Quintana, Francisco J

    2016-06-21

    Type 1 diabetes (T1D) is a T cell-dependent autoimmune disease that is characterized by the destruction of insulin-producing β cells in the pancreas. The administration to patients of ex vivo-differentiated FoxP3(+) regulatory T (Treg) cells or tolerogenic dendritic cells (DCs) that promote Treg cell differentiation is considered a potential therapy for T1D; however, cell-based therapies cannot be easily translated into clinical practice. We engineered nanoparticles (NPs) to deliver both a tolerogenic molecule, the aryl hydrocarbon receptor (AhR) ligand 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE), and the β cell antigen proinsulin (NPITE+Ins) to induce a tolerogenic phenotype in DCs and promote Treg cell generation in vivo. NPITE+Ins administration to 8-week-old nonobese diabetic mice suppressed autoimmune diabetes. NPITE+Ins induced a tolerogenic phenotype in DCs, which was characterized by a decreased ability to activate inflammatory effector T cells and was concomitant with the increased differentiation of FoxP3(+) Treg cells. The induction of a tolerogenic phenotype in DCs by NPs was mediated by the AhR-dependent induction of Socs2, which resulted in inhibition of nuclear factor κB activation and proinflammatory cytokine production (properties of tolerogenic DCs). Together, these data suggest that NPs constitute a potential tool to reestablish tolerance in T1D and potentially other autoimmune disorders.

  13. Follicular dendritic cell–dependent drug resistance of non-Hodgkin lymphoma involves cell adhesion–mediated Bim down-regulation through induction of microRNA-181a

    PubMed Central

    Lwin, Tint; Lin, Jianhong; Choi, Yong Sung; Zhang, Xinwei; Moscinski, Lynn C.; Wright, Kenneth L.; Sotomayor, Eduardo M.; Dalton, William S.

    2010-01-01

    Follicular dendritic cells (FDCs), an essential component of the lymph node microenvironment, regulate and support B-lymphocyte differentiation, survival, and lymphoma progression. Here, we demonstrate that adhesion of mantle cell lymphoma and other non-Hodgkin lymphoma cells to FDCs reduces cell apoptosis and is associated with decreased levels of the proapoptotic protein, Bim. Bim down-regulation is posttranscriptionally regulated via up-regulation of microRNA-181a (miR-181a). miR-181a overexpression decreases, whereas miR-181a inhibition increases Bim levels by directly targeting Bim. Furthermore, we found that cell adhesion–up-regulated miR-181a contributes to FDC-mediated cell survival through Bim down-regulation, implicating miR-181a as an upstream effector of the Bim-apoptosis signaling pathway. miR-181a inhibition and Bim upregulation significantly suppressed FDC-mediated protection against apoptosis in lymphoma cell lines and primary lymphoma cells. Thus, FDCs protect B-cell lymphoma cells against apoptosis, in part through activation of a miR-181a–dependent mechanism involving down-regulation of Bim expression. We demonstrate, for the first time, that cell-cell contact controls tumor cell survival and apoptosis via microRNA in mantle cell and other non-Hodgkin lymphomas. Regulation of microRNAs by B-cell–FDC interaction may support B-cell survival, representing a novel molecular mechanism for cell adhesion–mediated drug resistance and a potential therapeutic target in B-cell lymphomas. PMID:20841506

  14. A Truncated form of CD200 (CD200S) Expressed on Glioma Cells Prolonged Survival in a Rat Glioma Model by Induction of a Dendritic Cell-Like Phenotype in Tumor-Associated Macrophages12

    PubMed Central

    Kobayashi, Kana; Yano, Hajime; Umakoshi, Akihiro; Matsumoto, Shirabe; Mise, Ayano; Funahashi, Yu; Ueno, Yoshitomo; Kamei, Yoshiaki; Takada, Yasutsugu; Kumon, Yoshiaki; Ohnishi, Takanori; Tanaka, Junya

    2016-01-01

    CD200 induces immunosuppression in myeloid cells expressing its receptor CD200R, which may have consequences for tumor immunity. We found that human carcinoma tissues express not only full-length CD200 (CD200L) but also its truncated form, CD200S. Although CD200S is reported to antagonize the immunosuppressive actions of CD200L, the role of CD200S in tumor immunity has never been investigated. We established rat C6 glioma cell lines that expressed either CD200L or CD200S; the original C6 cell line did not express CD200 molecules. The cell lines showed no significant differences in growth. Upon transplantation into the neonatal Wistar rat forebrain parenchyma, rats transplanted with C6-CD200S cells survived for a significantly longer period than those transplanted with the original C6 and C6-CD200L cells. The C6-CD200S tumors were smaller than the C6-CD200L or C6-original tumors, and many apoptotic cells were found in the tumor cell aggregates. Tumor-associated macrophages (TAMs) in C6-CD200S tumors displayed dendritic cell (DC)-like morphology with multiple processes and CD86 expression. Furthermore, CD3+, CD4+ or CD8+ cells were more frequently found in C6-CD200S tumors, and the expression of DC markers, granzyme, and perforin was increased in C6-CD200S tumors. Isolated TAMs from original C6 tumors were co-cultured with C6-CD200S cells and showed increased expression of DC markers. These results suggest that CD200S activates TAMs to become DC-like antigen presenting cells, leading to the activation of CD8+ cytotoxic T lymphocytes, which induce apoptotic elimination of tumor cells. The findings on CD200S action may provide a novel therapeutic modality for the treatment of carcinomas. PMID:27108386

  15. Activation of dendritic cells and induction of T cell responses by HPV 16 L1/E7 chimeric virus-like particles are enhanced by CpG ODN or sorbitol.

    PubMed

    Freyschmidt, Eva-Jasmin; Alonso, Angel; Hartmann, Gunther; Gissmann, Lutz

    2004-08-01

    Chimeric human papillomavirus-like particles, consisting of human papillomavirus (HPV) 16 L1-E7 fusion proteins [HPV 16 L1/E7 chimeric virus-like particles (CVLP)], are a vaccine candidate for treatment and prevention of cervical cancer. Although in preclinical studies CVLPs were shown to induce neutralizing antibodies and L1- and E7-specific T cell responses, the results of a recent clinical trial emphasized the need of improved immunogenicity of CVLPs. Here we studied the interaction of HPV 16 L1/E7 CVLPs with mouse bone marrow-derived dendritic cells (BMDCs) activated with different immune adjuvants. We found that lipopolysaccharides (LPS), unmethylated CpG motifs (CpG ODN) and sorbitol enhanced CVLP-induced stimulation of C57BL/6 mouse BMDCs as revealed by increased levels of CD40, CD80, MHC II and CD54 at the cell surface. CpG ODN and sorbitol also enhanced the presentation of Db-restricted cytotoxic T lymphocyte epitopes to HPV 16 L1- or E7-specific T lymphocytes after loading of CVLPs onto BMDCs. Treatment of BMDCs with CpG ODN in combination with CVLPs improved in vitro priming of naive T lymphocytes by CVLP-loaded BMDCs. In vivo, CVLP-loaded BMDCs were more immunogenic as compared with injection of CVLPs alone. CpG ODN and sorbitol further enhanced priming of antigen-specific T cell responses. Our data demonstrate that CpG ODN- or sorbitol-activated BMDCs substantially increase the immunogenicity of CVLPs. Implementing our results in clinical trial protocols may lead to improved activity of therapeutic HPV vaccines for the treatment of HPV-induced cancer. PMID:15456078

  16. Dendritic Cells: Cellular Mediators for Immunological Tolerance

    PubMed Central

    Chung, Chun Yuen J.; Ysebaert, Dirk; Berneman, Zwi N.

    2013-01-01

    In general, immunological tolerance is acquired upon treatment with non-specific immunosuppressive drugs. This indiscriminate immunosuppression of the patient often causes serious side-effects, such as opportunistic infectious diseases. Therefore, the need for antigen-specific modulation of pathogenic immune responses is of crucial importance in the treatment of inflammatory diseases. In this perspective, dendritic cells (DCs) can have an important immune-regulatory function, besides their notorious antigen-presenting capacity. DCs appear to be essential for both central and peripheral tolerance. In the thymus, DCs are involved in clonal deletion of autoreactive immature T cells by presenting self-antigens. Additionally, tolerance is achieved by their interactions with T cells in the periphery and subsequent induction of T cell anergy, T cell deletion, and induction of regulatory T cells (Treg). Various studies have described, modulation of DC characteristics with the purpose to induce antigen-specific tolerance in autoimmune diseases, graft-versus-host-disease (GVHD), and transplantations. Promising results in animal models have prompted researchers to initiate first-in-men clinical trials. The purpose of current review is to provide an overview of the role of DCs in the immunopathogenesis of autoimmunity, as well as recent concepts of dendritic cell-based therapeutic opportunities in autoimmune diseases. PMID:23762100

  17. Normal Dendrite Growth in Drosophila Motor Neurons Requires the AP-1 Transcription Factor

    PubMed Central

    Hartwig, Cortnie L.; Worrell, Jason; Levine, Richard B.; Ramaswami, Mani; Sanyal, Subhabrata

    2009-01-01

    During learning and memory formation, information flow through networks is regulated significantly through structural alterations in neurons. Dendrites, sites of signal integration, are key targets of activity-mediated modifications. Although local mechanisms of dendritic growth ensure synapse-specific changes, global mechanisms linking neural activity to nuclear gene expression may have profound influences on neural function. Fos, being an immediate-early gene, is ideally suited to be an initial transducer of neural activity, but a precise role for the AP-1 transcription factor in dendrite growth remains to be elucidated. Here we measure changes in the dendritic fields of identified Drosophila motor neurons in vivo and in primary culture to investigate the role of the immediate-early transcription factor AP-1 in regulating endogenous and activity-induced dendrite growth. Our data indicate that (a) increased neural excitability or depolarization stimulates dendrite growth, (b) AP-1 (a Fos, Jun heterodimer) is required for normal motor neuron dendritic growth during development and in response to activity induction, and (c) neuronal Fos protein levels are rapidly but transiently induced in motor neurons following neural activity. Taken together, these results show that AP-1 mediated transcription is important for dendrite growth, and that neural activity influences global dendritic growth through a gene-expression dependent mechanism gated by AP-1. PMID:18548486

  18. Magnetic and dendritic catalysts.

    PubMed

    Wang, Dong; Deraedt, Christophe; Ruiz, Jaime; Astruc, Didier

    2015-07-21

    The recovery and reuse of catalysts is a major challenge in the development of sustainable chemical processes. Two methods at the frontier between homogeneous and heterogeneous catalysis have recently emerged for addressing this problem: loading the catalyst onto a dendrimer or onto a magnetic nanoparticle. In this Account, we describe representative examples of these two methods, primarily from our research group, and compare them. We then describe new chemistry that combines the benefits of these two methods of catalysis. Classic dendritic catalysis has involved either attaching the catalyst covalently at the branch termini or within the dendrimer core. We have used chelating pyridyltriazole ligands to insolubilize catalysts at the termini of dendrimers, providing an efficient, recyclable heterogeneous catalysts. With the addition of dendritic unimolecular micelles olefin metathesis reactions catalyzed by commercial Grubbs-type ruthenium-benzylidene complexes in water required unusually low amounts of catalyst. When such dendritic micelles include intradendritic ligands, both the micellar effect and ligand acceleration promote faster catalysis in water. With these types of catalysts, we could carry out azide alkyne cycloaddition ("click") chemistry with only ppm amounts of CuSO4·5H2O and sodium ascorbate under ambient conditions. Alternatively we can attach catalysts to the surface of superparamagnetic iron oxide nanoparticles (SPIONs), essentially magnetite (Fe3O4) or maghemite (γ-Fe2O3), offering the opportunity to recover the catalysts using magnets. Taking advantage of the merits of both of these strategies, we and others have developed a new generation of recyclable catalysts: dendritic magnetically recoverable catalysts. In particular, some of our catalysts with a γ-Fe2O3@SiO2 core and 1,2,3-triazole tethers and loaded with Pd nanoparticles generate strong positive dendritic effects with respect to ligand loading, catalyst loading, catalytic activity and

  19. Silicon dendritic web material

    NASA Technical Reports Server (NTRS)

    Meier, D. L.; Campbell, R. B.; Sienkiewicz, L. J.; Rai-Choudhury, P.

    1982-01-01

    The development of a low cost and reliable contact system for solar cells and the fabrication of several solar cell modules using ultrasonic bonding for the interconnection of cells and ethylene vinyl acetate as the potting material for module encapsulation are examined. The cells in the modules were made from dendritic web silicon. To reduce cost, the electroplated layer of silver was replaced with an electroplated layer of copper. The modules that were fabricated used the evaporated Ti, Pd, Ag and electroplated Cu (TiPdAg/Cu) system. Adherence of Ni to Si is improved if a nickel silicide can be formed by heat treatment. The effectiveness of Ni as a diffusion barrier to Cu and the ease with which nickel silicide is formed is discussed. The fabrication of three modules using dendritic web silicon and employing ultrasonic bonding for interconnecting calls and ethylene vinyl acetate as the potting material is examined.

  20. Isolation of dendritic cells.

    PubMed

    Inaba, K; Swiggard, W J; Steinman, R M; Romani, N; Schuler, G

    2001-05-01

    This unit presents two methods for preparing dendritic cells (DCs), a highly specialized type of antigen-presenting cell (APC). The first method involves the isolation of DCs from mouse spleen, resulting in a cell population that is highly enriched in accessory cell and APC function. A support protocol for collagenase digestion of splenocyte suspensions is described to increase the yield of dendritic cells. The second method involves generating large numbers of DCs from mouse bone marrow progenitor cells. In that technique, bone marrow cells are cultured in the presence of granulocyte/macrophage colony-stimulating factor (GM-CSF) to yield 5-10 10(6) cells, 60% of which express DC surface markers (e.g., B-7-2/CD86). Additional techniques for isolating DCs from mouse spleens or other mouse tissues, as well as from human tissues, are also discussed.

  1. Isolation of dendritic cells.

    PubMed

    Inaba, Kayo; Swiggard, William J; Steinman, Ralph M; Romani, Nikolaus; Schuler, Gerold; Brinster, Carine

    2009-08-01

    This unit presents two methods for preparing dendritic cells (DCs), a highly specialized type of antigen-presenting cell (APC). The first method involves the isolation of DCs from mouse spleen, resulting in a cell population that is highly enriched in accessory cell and APC function. A support protocol for collagenase digestion of splenocyte suspensions is described to increase the yield of dendritic cells. The second method involves generating large numbers of DCs from mouse bone marrow progenitor cells. In that technique, bone marrow cells are cultured in the presence of granulocyte/macrophage colony-stimulating factor (GM-CSF) to yield 5-10 x 10(6) cells, 60% of which express DC surface markers (e.g., B-7-2/CD86). Additional techniques for isolating DCs from mouse spleens or other mouse tissues, as well as from human tissues, are also discussed.

  2. Lung Regeneration: Endogenous and Exogenous Stem Cell Mediated Therapeutic Approaches.

    PubMed

    Akram, Khondoker M; Patel, Neil; Spiteri, Monica A; Forsyth, Nicholas R

    2016-01-19

    The tissue turnover of unperturbed adult lung is remarkably slow. However, after injury or insult, a specialised group of facultative lung progenitors become activated to replenish damaged tissue through a reparative process called regeneration. Disruption in this process results in healing by fibrosis causing aberrant lung remodelling and organ dysfunction. Post-insult failure of regeneration leads to various incurable lung diseases including chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis. Therefore, identification of true endogenous lung progenitors/stem cells, and their regenerative pathway are crucial for next-generation therapeutic development. Recent studies provide exciting and novel insights into postnatal lung development and post-injury lung regeneration by native lung progenitors. Furthermore, exogenous application of bone marrow stem cells, embryonic stem cells and inducible pluripotent stem cells (iPSC) show evidences of their regenerative capacity in the repair of injured and diseased lungs. With the advent of modern tissue engineering techniques, whole lung regeneration in the lab using de-cellularised tissue scaffold and stem cells is now becoming reality. In this review, we will highlight the advancement of our understanding in lung regeneration and development of stem cell mediated therapeutic strategies in combating incurable lung diseases.

  3. Natural Killer Cell Mediated Cytotoxic Responses in the Tasmanian Devil

    PubMed Central

    Brown, Gabriella K.; Kreiss, Alexandre; Lyons, A. Bruce; Woods, Gregory M.

    2011-01-01

    The Tasmanian devil (Sarcophilus harrisii), the world's largest marsupial carnivore, is under threat of extinction following the emergence of an infectious cancer. Devil facial tumour disease (DFTD) is spread between Tasmanian devils during biting. The disease is consistently fatal and devils succumb without developing a protective immune response. The aim of this study was to determine if Tasmanian devils were capable of forming cytotoxic antitumour responses and develop antibodies against DFTD cells and foreign tumour cells. The two Tasmanian devils immunised with irradiated DFTD cells did not form cytotoxic or humoral responses against DFTD cells, even after multiple immunisations. However, following immunisation with xenogenic K562 cells, devils did produce cytotoxic responses and antibodies against this foreign tumour cell line. The cytotoxicity appeared to occur through the activity of natural killer (NK) cells in an antibody dependent manner. Classical NK cell responses, such as innate killing of DFTD and foreign cancer cells, were not observed. Cells with an NK-like phenotype comprised approximately 4 percent of peripheral blood mononuclear cells. The results of this study suggest that Tasmanian devils have NK cells with functional cytotoxic pathways. Although devil NK cells do not directly recognise DFTD cancer cells, the development of antibody dependent cell-mediated cytotoxicity presents a potential pathway to induce cytotoxic responses against the disease. These findings have positive implications for future DFTD vaccine research. PMID:21957452

  4. Lung Regeneration: Endogenous and Exogenous Stem Cell Mediated Therapeutic Approaches.

    PubMed

    Akram, Khondoker M; Patel, Neil; Spiteri, Monica A; Forsyth, Nicholas R

    2016-01-01

    The tissue turnover of unperturbed adult lung is remarkably slow. However, after injury or insult, a specialised group of facultative lung progenitors become activated to replenish damaged tissue through a reparative process called regeneration. Disruption in this process results in healing by fibrosis causing aberrant lung remodelling and organ dysfunction. Post-insult failure of regeneration leads to various incurable lung diseases including chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis. Therefore, identification of true endogenous lung progenitors/stem cells, and their regenerative pathway are crucial for next-generation therapeutic development. Recent studies provide exciting and novel insights into postnatal lung development and post-injury lung regeneration by native lung progenitors. Furthermore, exogenous application of bone marrow stem cells, embryonic stem cells and inducible pluripotent stem cells (iPSC) show evidences of their regenerative capacity in the repair of injured and diseased lungs. With the advent of modern tissue engineering techniques, whole lung regeneration in the lab using de-cellularised tissue scaffold and stem cells is now becoming reality. In this review, we will highlight the advancement of our understanding in lung regeneration and development of stem cell mediated therapeutic strategies in combating incurable lung diseases. PMID:26797607

  5. Cell-mediated immunity caused by beryllium compounds.

    PubMed

    Sakaguchi, S; Sakaguchi, T; Nakamura, I; Kudo, Y

    1987-11-01

    Cells of spleen and lymph nodes were obtained from mice subcutaneously injected with BeCl2 once a week over a 6-week period. These cells were washed twice in cold phosphate-buffered saline and suspended at a final concentration of 2 x 10(7) cells in 1 ml of buffer. Subsequently, 0.5 ml of the suspension was injected into normal mice intravenously (passive transfer). The findings of the experiments using these mice are summarized as follows: (1) The footpad reaction test was performed 24 hrs after passive transfer. The mice receiving spleen cells or lymph node cells from mice sensitized with BeCl2 developed significant footpad swelling 24 and 48 hrs after challenge of BeCl2 as the antigen. (2) After passive transfer with sensitized spleen cells or lymph node cells the ears of the mice were painted with 7% BeCl2 in ethyl alcohol. Ears of these mice showed significant swelling as compared with those of controls. (3) The migration of peritoneal cells from mice receiving spleen or lymph node cells from sensitized mice was inhibited when tested in medium containing the antigen of BeCl2. From our present experiments, it was suggested that the beryllium sensitizing ability was related to active as well as passive cell-mediated immunity.

  6. Use of tetanus toxoid for testing cell-mediated immunity.

    PubMed

    Whittingham, S; Feery, B; Mackay, I R

    1982-10-01

    Tetanus toxoid was assessed as a skin test antigen for the measurement of cutaneous delayed-type hypersensitivity (DTH) by comparing the responses to intradermal injections of aqueous tetanus toxoid and an extract of Candida albicans in 50 randomly selected healthy adults and 10 adults with immunodeficiency. Of 42 healthy subjects previously immunised with tetanus toxoid, 33 (79%) reacted to tetanus toxoid and 33 (79%) reacted to Candida albicans. Of eight non-immunised subjects, none reacted to tetanus toxoid although five reacted to Candida albicans. Ten immunodeficient adults previously shown to be anergic to a standard panel of five skin test antigens including Candida albicans, and who had received primary immunisation and booster doses of tetanus toxoid, were anergic on current testing with tetanus toxoid and Candida albicans. Tetanus toxoid in previously immunised subjects has certain advantages as a "recall" DTH test antigen over the standard skin test antigens candidin, mumps, trichophyton, tuberculin and streptokinase-streptodornase used to diagnose cell-mediated immuno-deficiency. It is a sensitive measurement of DTH, it recalls a defined immunological event, it has a low incidence of side effects, and it produces a slight but beneficial boosting of serum antibody to tetanus toxoid.

  7. Lung Regeneration: Endogenous and Exogenous Stem Cell Mediated Therapeutic Approaches

    PubMed Central

    Akram, Khondoker M.; Patel, Neil; Spiteri, Monica A.; Forsyth, Nicholas R.

    2016-01-01

    The tissue turnover of unperturbed adult lung is remarkably slow. However, after injury or insult, a specialised group of facultative lung progenitors become activated to replenish damaged tissue through a reparative process called regeneration. Disruption in this process results in healing by fibrosis causing aberrant lung remodelling and organ dysfunction. Post-insult failure of regeneration leads to various incurable lung diseases including chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis. Therefore, identification of true endogenous lung progenitors/stem cells, and their regenerative pathway are crucial for next-generation therapeutic development. Recent studies provide exciting and novel insights into postnatal lung development and post-injury lung regeneration by native lung progenitors. Furthermore, exogenous application of bone marrow stem cells, embryonic stem cells and inducible pluripotent stem cells (iPSC) show evidences of their regenerative capacity in the repair of injured and diseased lungs. With the advent of modern tissue engineering techniques, whole lung regeneration in the lab using de-cellularised tissue scaffold and stem cells is now becoming reality. In this review, we will highlight the advancement of our understanding in lung regeneration and development of stem cell mediated therapeutic strategies in combating incurable lung diseases. PMID:26797607

  8. Silicon dendritic web growth

    NASA Technical Reports Server (NTRS)

    Duncan, S.

    1984-01-01

    Technological goals for a silicon dendritic web growth program effort are presented. Principle objectives for this program include: (1) grow long web crystals front continuously replenished melt; (2) develop temperature distribution in web and melt; (3) improve reproductibility of growth; (4) develop configurations for increased growth rates (width and speed); (5) develop new growth system components as required for improved growth; and (6) evaluate quality of web growth.

  9. Web-dendritic ribbon growth

    NASA Technical Reports Server (NTRS)

    Hilborn, R. B., Jr.; Faust, J. W., Jr.

    1976-01-01

    A web furnace was constructed for pulling dendritic-web samples. The effect of changes in the furnace thermal geometry on the growth of dendritic-web was studied. Several attempts were made to grow primitive dendrites for use as the dendritic seed crystals for web growth and to determine the optimum twin spacing in the dendritic seed crystal for web growth. Mathematical models and computer programs were used to determine the thermal geometries in the susceptor, crucible melt, meniscus, and web. Several geometries were determined for particular furnace geometries and growth conditions. The information obtained was used in conjunction with results from the experimental growth investigations in order to achieve proper conditions for sustained pulling of two dendrite web ribbons. In addition, the facilities for obtaining the following data were constructed: twin spacing, dislocation density, web geometry, resistivity, majority charge carrier type, and minority carrier lifetime.

  10. IDGE: Isothermal Dendritic Growth Experiment

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Isothermal Dendritic Growth Experiment (IDGE) flew on STS-62 to study the microscopic, tree-like structures (dendrites) that form within metals as they solidify from molten materials. The size, shape, and orientation of these dendrites affect the strength and usefulness of metals. Data from this experiment will be used to test and improve the mathematical models that support the industrial production of metals.

  11. Dendritic spine alterations in schizophrenia.

    PubMed

    Moyer, Caitlin E; Shelton, Micah A; Sweet, Robert A

    2015-08-01

    Schizophrenia is a chronic illness affecting approximately 0.5-1% of the world's population. The etiology of schizophrenia is complex, including multiple genes, and contributing environmental effects that adversely impact neurodevelopment. Nevertheless, a final common result, present in many subjects with schizophrenia, is impairment of pyramidal neuron dendritic morphology in multiple regions of the cerebral cortex. In this review, we summarize the evidence of reduced dendritic spine density and other dendritic abnormalities in schizophrenia, evaluate current data that informs the neurodevelopment timing of these impairments, and discuss what is known about possible upstream sources of dendritic spine loss in this illness.

  12. Dendrite development: a surprising origin.

    PubMed

    Ehlers, Michael D

    2005-08-15

    Neurons extend elaborate dendrites studded with spines. Unexpectedly, this cellular sculpting is regulated by the origin recognition complex -- the core machinery for initiating DNA replication. PMID:16103221

  13. Dendritic Alloy Solidification Experiment (DASE)

    NASA Technical Reports Server (NTRS)

    Beckermann, C.; Karma, A.; Steinbach, I.; deGroh, H. C., III

    2001-01-01

    A space experiment, and supporting ground-based research, is proposed to study the microstructural evolution in free dendritic growth from a supercooled melt of the transparent model alloy succinonitrile-acetone (SCN-ACE). The research is relevant to equiaxed solidification of metal alloy castings. The microgravity experiment will establish a benchmark for testing of equiaxed dendritic growth theories, scaling laws, and models in the presence of purely diffusive, coupled heat and solute transport, without the complicating influences of melt convection. The specific objectives are to: determine the selection of the dendrite tip operating state, i.e. the growth velocity and tip radius, for free dendritic growth of succinonitrile-acetone alloys; determine the growth morphology and sidebranching behavior for freely grown alloy dendrites; determine the effects of the thermal/solutal interactions in the growth of an assemblage of equiaxed alloy crystals; determine the effects of melt convection on the free growth of alloy dendrites; measure the surface tension anisotropy strength of succinon itrile -acetone alloys establish a theoretical and modeling framework for the experiments. Microgravity experiments on equiaxed dendritic growth of alloy dendrites have not been performed in the past. The proposed experiment builds on the Isothermal Dendritic Growth Experiment (IDGE) of Glicksman and coworkers, which focused on the steady growth of a single crystal from pure supercooled melts (succinonitrile and pivalic acid). It also extends the Equiaxed Dendritic Solidification Experiment (EDSE) of the present investigators, which is concerned with the interactions and transients arising in the growth of an assemblage of equiaxed crystals (succinonitrile). However, these experiments with pure substances are not able to address the issues related to coupled heat and solute transport in growth of alloy dendrites.

  14. The instructive role of dendritic cells on T-cell responses.

    PubMed

    Sallusto, Federica; Lanzavecchia, Antonio

    2002-01-01

    Immune responses are initiated in the T-cell areas of secondary lymphoid organs where naïve T lymphocytes encounter dendritic cells (DCs) that present antigens taken up in peripheral tissues. DCs represent the interface between the universe of foreign and tissue-specific antigens and T lymphocytes, and they are the key players in the regulation of cell-mediated immunity. We discuss how the nature of the DC maturation stimuli and the density and quality of DCs present in the T-cell areas of secondary lymphoid organs determine the magnitude and class of the T-cell response.

  15. Dendritic cell metabolism

    PubMed Central

    Pearce, Edward J.; Everts, Bart

    2015-01-01

    The past 15 years have seen enormous advances in our understanding of the receptor and signalling systems that allow dendritic cells (DCs) to respond to pathogens or other danger signals and initiate innate and adaptive immune responses. We are now beginning to appreciate that many of these pathways not only stimulate changes in the expression of genes that control DC immune functions, but also affect metabolic pathways, thereby integrating the cellular requirements of the activation process. In this Review, we focus on this relatively new area of research and attempt to describe an integrated view of DC immunometabolism. PMID:25534620

  16. Targeting Dendritic Cells in vivo for Cancer Therapy

    PubMed Central

    Caminschi, Irina; Maraskovsky, Eugene; Heath, William Ross

    2012-01-01

    Monoclonal antibodies that recognize cell surface molecules have been used deliver antigenic cargo to dendritic cells (DC) for induction of immune responses. The encouraging anti-tumor immunity elicited using this immunization strategy suggests its suitability for clinical trials. This review discusses the complex network of DC, the functional specialization of DC subsets, the immunological outcomes of targeting different DC subsets and their cell surface receptors, and the requirements for the induction of effective anti-tumor CD4 and CD8 T cell responses that can recognize tumor-specific antigens. Finally, we review preclinical experiments and the progress toward targeting human DC in vivo. PMID:22566899

  17. Micronutrient supplementation and T-cell mediated immune responses in patients with tuberculosis in Tanzania

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Limited studies exist regarding whether incorporating micronutrient supplements during tuberculosis (TB) treatment may improve cell-mediated immune response. We examine the effect of micronutrient supplementation on lymphocyte proliferation response to mycobacteria or T cell mitogens in a randomize...

  18. Induction of natural killer cell-dependent antitumor immunity by the Autographa californica multiple nuclear polyhedrosis virus.

    PubMed

    Kitajima, Masayuki; Abe, Takayuki; Miyano-Kurosaki, Naoko; Taniguchi, Masaru; Nakayama, Toshinori; Takaku, Hiroshi

    2008-02-01

    Wild-type Autographa californica multiple nuclear polyhedrosis virus (AcMNPV) infects a variety of mammalian cell types in vitro, but does not replicate in these cells. We investigated the effects of AcMNPV in the induction of the immune response and tumor metastasis in mice. After intravenous injection, AcMNPV was taken up by the liver and spleen, and preferentially infected dendritic cells (DCs) and B cells in the spleen; costimulatory molecules CD40, CD80, and CD86 were upregulated in the DCs. The hepatic mononuclear cells (MNCs) in these animals were highly cytotoxic to natural killer (NK)-sensitive YAC-1 and B16 melanoma cells, but not to NK-resistant EL4 cells. Intravenous injection of AcMNPV-induced NK cell proliferation in the liver and spleen, and enhanced antitumor immunity in mice with B16 liver metastases. Furthermore, such treatment increased the survival of C57BL/6, J alpha 281 (-/-), and interferon (IFN)-gamma (-/-) mice that were previously injected with B16 tumor cells. AcMNPV injection did not enhance the survival of NK cell-depleted mice. Moreover, one AcMNPV treatment effectively prolonged survival in a B16 liver metastasis model, and was equivalent to five treatments with recombinant interleukin-12 (IL-12) protein. These findings suggest that AcMNPV efficiently stimulates NK cell-mediated antitumor immunity. PMID:18059370

  19. Dendritic Growth Velocities in Microgravity

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.; Koss, M. B.; Winsa, E. A.

    1994-01-01

    We measured dendritic tip velocities in pure succinonitrile (SCN) in microgravity. using a sequence of telemetered binary images sent to Earth from the Space Shuttle Columbia (STS-62). Growth velocities were measured as a function of the supercooling over the range 0.05-1.5 K. Microgravity observations show that buoyancy-induced convection alters the growth kinetics of SCN dendrites at supercooling as high as 1.3 K. Also, the dendrite velocity data measured under microgravity agree well with the Ivantsov paraboloidal diffusion solution when coupled to a scaling constant of sigma(sup *) = 0.0157.

  20. Induction linacs

    SciTech Connect

    Keefe, D.

    1986-07-01

    The principle of linear induction acceleration is described, and examples are given of practical configurations for induction linacs. These examples include the Advanced Technology Accelerator, Long Pulse Induction Linac, Radial Line Accelerator (RADLAC), and Magnetically-Insulated Electron-Focussed Ion Linac. A related concept, the auto accelerator, is described in which the high-current electron-beam technology in the sub-10 MeV region is exploited to produce electron beams at energies perhaps as high as the 100 to 1000 MeV range. Induction linacs for ions are also discussed. The efficiency of induction linear acceleration is analyzed. (LEW)

  1. Tolerance Induction in Liver.

    PubMed

    Karimi, M H; Geramizadeh, B; Malek-Hosseini, S A

    2015-01-01

    Liver is an exclusive anatomical and immunological organ that displays a considerable tolerance effect. Liver allograft acceptance is shown to occur spontaneously within different species. Although in human transplant patients tolerance is rarely seen, the severity level and cellular mechanisms of transplant rejection vary. Non-paranchymal liver cells, including Kupffer cells, liver sinusoidal endothelial cells, hepatic stellate cells, and resident dendritic cells may participate in liver tolerogenicity. The mentioned cells secret anti-inflammatory cytokines such as TGF-β and IL-10 and express negative co-stimulatory molecules like PD-L1 to mediate immunosuppression. Other mechanisms such as microchimerism, soluble major histocompatibility complex and regulatory T cells may take part in tolerance induction. Understanding the mechanisms involved in liver transplant rejection/tolerance helps us to improve therapeutic options to induce hepatic tolerance. PMID:26082828

  2. Transient Dendritic Solidification Experiment (TDSE)

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Transient Dendritic Solidification Expepriment (TDSE) is being developed as a candidate for flight aboard the International Space Station. TDSE will study the growth of dendrites (treelike crystalline structures) in a transparent material (succinonitrile or SCN) that mimics the behavior of widely used iron-based metals. Basic work by three Space Shuttle missions of the Isothermal Dendritic Growth Expepriment (IDGE) is yielding new insights into virtually all industrially relevant metal and alloy forming operations. The TDSE is similar to IDGE, but will maintain a constant temperature while varying pressure on the dendrites. Shown here is an exploded view of major elements of TDSE. A similar view is available with labels. The principal investigator is Matthew Koss of College of the Holy Cross in Worcester, MA. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  3. Transient Dendritic Solidification Experiment (TDSE)

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Transient Dendritic Solidification Experiment (TDSE) is being developed as a candidate for flight aboard the International Space Station. TDSE will study the growth of dendrites (treelike crystalline structures) in a transparent material (succinonitrile or SCN) that mimics the behavior or widely used iron-based metals. Basic work by three Space Shuttle missions of the Isothermal Dendritic Growth Experiment (IDGE) is yielding new insights into virtually all industrially relevant metal and alloy forming operations. The TDSE is similar to IDGE, but will maintain a constant temperature while varying pressure on the dendrites. Shown here is an exploded view of major elements of the TDSE. A similar view is availble without labels. The principal investigator is Matthew Koss of College of the Holy Cross in Worcester, MA. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  4. Optimal Current Transfer in Dendrites

    PubMed Central

    Bird, Alex D.

    2016-01-01

    Integration of synaptic currents across an extensive dendritic tree is a prerequisite for computation in the brain. Dendritic tapering away from the soma has been suggested to both equalise contributions from synapses at different locations and maximise the current transfer to the soma. To find out how this is achieved precisely, an analytical solution for the current transfer in dendrites with arbitrary taper is required. We derive here an asymptotic approximation that accurately matches results from numerical simulations. From this we then determine the diameter profile that maximises the current transfer to the soma. We find a simple quadratic form that matches diameters obtained experimentally, indicating a fundamental architectural principle of the brain that links dendritic diameters to signal transmission. PMID:27145441

  5. Blastic plasmacytoid dendritic cell neoplasm: diagnostic criteria and therapeutical approaches.

    PubMed

    Pagano, Livio; Valentini, Caterina G; Grammatico, Sara; Pulsoni, Alessandro

    2016-07-01

    Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare haematological malignancy derived from the precursors of plamacytoid dendritic cells, with an aggressive clinical course and high frequency of cutaneous and bone marrow involvement. Neoplastic cells express CD4, CD43 (also termed SPN), CD45RA and CD56 (also termed NCAM1), as well as the plasmacytoid dendritic cell-associated antigens CD123 (also termed IL3RA), BDCA-2 (also termed CD303, CLEC4E) TCL1 and CTLA1 (also termed GZMB). The median survival is only a few months as the tumour exhibits a progressive course despite initial response to chemotherapy. The best modality of treatment remains to be defined. Generally, patients receive acute leukaemia-like induction, according to acute myeloid leukaemia (AML)-type or acute lymphoid leukaemia (ALL)-type regimens. The frequent neuromeningeal involvement indicates systematic pre-emptive intrathecal chemotherapy in addition to intensive chemotherapy. Allogeneic haematopoietic stem cell transplantation (HSCT), particularly when performed in first remission, may improve the survival. Preliminary data suggest a potential role for immunomodulatory agents and novel targeted drugs. Herein epidemiology, clinical manifestations, diagnosis and management of BPDCN will be presented. In detail, this review focuses on the therapeutic aspects of BPDCN, proposing a treatment algorithm for the management of the disease, including induction chemotherapy, allogeneic HSCT and intrathecal prophylaxis at different steps of treatment, according to compliance, biological and clinical characteristics of patients. PMID:27264021

  6. Paneth cell-mediated multiorgan dysfunction after acute kidney injury

    PubMed Central

    Park, Sang Won; Kim, Mihwa; Kim, Joo Yun; Ham, Ahrom; Brown, Kevin M.; Mori-Akiyama, Yuko; Ouellette, André J.; D’Agati, Vivette D.; Lee, H. Thomas

    2012-01-01

    Acute kidney injury (AKI) is frequently complicated by extra-renal multi-organ injury including intestinal and hepatic dysfunction. In this study, we hypothesized that a discrete intestinal source of pro-inflammatory mediators drives multi-organ injury in response to AKI. After induction of AKI in mice by renal ischemia-reperfusion or bilateral nephrectomy, small intestinal Paneth cells increased the synthesis and release of IL-17A in conjunction with severe intestinal apoptosis and inflammation. We also detected significantly increased IL-17A in portal and systemic circulation after AKI. Intestinal macrophages appear to transport released Paneth cell granule constituents induced by AKI, away from the base of the crypts into the liver. Genetic or pharmacologic depletion of Paneth cells decreased small intestinal IL-17A secretion and plasma IL-17A levels significantly and attenuated intestinal, hepatic, and renal injury after AKI. Similarly, portal delivery of IL-17A in macrophage depleted mice decreased markedly, and intestinal, hepatic, and renal injury following AKI was attenuated without affecting intestinal IL-17A generation. In conclusion, AKI induces IL-17A synthesis and secretion by Paneth cells to initiate intestinal and hepatic injury by hepatic and systemic delivery of IL-17A by macrophages. Modulation of Paneth cell dysregulation may have therapeutic implications by reducing systemic complications arising from AKI. PMID:23109723

  7. Siglecs as targets for therapy in immune cell mediated disease

    PubMed Central

    O’Reilly, Mary K.; Paulson, James C.

    2010-01-01

    The sialic acid-binding immunoglobulin-like lectins (siglecs) comprise a family of receptors that are differentially expressed on leukocytes and other immune cells. The restricted expression of several siglecs to one or a few cell types makes them attractive targets for cell-directed therapies. The anti-CD33 (Siglec-3) antibody Gemtuzumab (Mylotarg™) is approved for treatment of acute myeloid leukemia (AML), and antibodies targeting CD22 (Siglec-2) are currently in clinical trials for treatment of B cell non-Hodgkins lymphomas and autoimmune diseases. Because siglecs are endocytic receptors, they are well suited for a ‘Trojan horse’ strategy, whereby therapeutic agents conjugated to an antibody, or multimeric glycan ligand, bind to the siglec and are efficiently carried into the cell. Although the rapid internalization of unmodified siglec antibodies reduces their utility for induction of antibody-dependent cellular cytotoxicity (ADCC) or complement-mediated cytotoxicity (CDC), antibody binding of Siglec-8, Siglec-9, and CD22 have been demonstrated to induce apoptosis of eosinophils, neutrophils, and depletion of B cells, respectively. Here we review the properties of siglecs that make them attractive for cell-targeted therapies. PMID:19359050

  8. Suppression of cell-mediated immunity after infection with attenuated rubella virus.

    PubMed Central

    Ganguly, R; Cusumano, C L; Waldman, R H

    1976-01-01

    The effects of attenuated rubella virus infection upon cell-mediated immunity of human volunteers were studied. The volunteers received the vaccine either by nose drops or by the subcutaneous route. Changes in cell-mediated immunity in terms of delayed cutaneous sensitivity to recall antigens, phytohemagglutination stimulation, and spontaneous migration inhibitory factor-like activity were studied at various time periods after infection. Spontaneous migration inhibitory factor-like activity was studied on supernatants of the lymphocytes obtained from the volunteers and incubated for 72 h in the absence of any antigens. A significant proportion of the volunteers showed suppression of one or more parameters of cell-medicated immunity tested by week 2 of infection compared to the control; however, there was no correlation between suppression of the various parameters studied. No difference was noticed in the incidence of cell-mediated immunity suppression between nose drops and subcutaneous route groups. PMID:770329

  9. Temporal coherency between receptor expression, neural activity and AP-1-dependent transcription regulates Drosophila motoneuron dendrite development

    PubMed Central

    Vonhoff, Fernando; Kuehn, Claudia; Blumenstock, Sonja; Sanyal, Subhabrata; Duch, Carsten

    2013-01-01

    Neural activity has profound effects on the development of dendritic structure. Mechanisms that link neural activity to nuclear gene expression include activity-regulated factors, such as CREB, Crest or Mef2, as well as activity-regulated immediate-early genes, such as fos and jun. This study investigates the role of the transcriptional regulator AP-1, a Fos-Jun heterodimer, in activity-dependent dendritic structure development. We combine genetic manipulation, imaging and quantitative dendritic architecture analysis in a Drosophila single neuron model, the individually identified motoneuron MN5. First, Dα7 nicotinic acetylcholine receptors (nAChRs) and AP-1 are required for normal MN5 dendritic growth. Second, AP-1 functions downstream of activity during MN5 dendritic growth. Third, using a newly engineered AP-1 reporter we demonstrate that AP-1 transcriptional activity is downstream of Dα7 nAChRs and Calcium/calmodulin-dependent protein kinase II (CaMKII) signaling. Fourth, AP-1 can have opposite effects on dendritic development, depending on the timing of activation. Enhancing excitability or AP-1 activity after MN5 cholinergic synapses and primary dendrites have formed causes dendritic branching, whereas premature AP-1 expression or induced activity prior to excitatory synapse formation disrupts dendritic growth. Finally, AP-1 transcriptional activity and dendritic growth are affected by MN5 firing only during development but not in the adult. Our results highlight the importance of timing in the growth and plasticity of neuronal dendrites by defining a developmental period of activity-dependent AP-1 induction that is temporally locked to cholinergic synapse formation and dendritic refinement, thus significantly refining prior models derived from chronic expression studies. PMID:23293292

  10. A novel one-step, highly sensitive fluorometric assay to evaluate cell-mediated cytotoxicity.

    PubMed

    Nociari, M M; Shalev, A; Benias, P; Russo, C

    1998-04-15

    In this study, a fluorometric method using alamarBlue has been developed for detecting cell-mediated cytotoxicity in vitro. AlamarBlue is a non-toxic metabolic indicator of viable cells that becomes fluorescent upon mitochondrial reduction. Specific lysis of targets by effector cells is quantified by comparing the total number of viable cells in wells containing effector and targets together, with wells where target and effector cells were separately seeded. Cell-mediated cytotoxic activity by alloreactive T cells and natural killer cells has been detected using a novel application of the alamarBlue technique. The assay that we have developed to detect cell-mediated cytotoxicity is extremely sensitive and specific and requires a significant lower number of effector cells than the standard 51Cr assay. Since alamarBlue reagent is non-toxic to cells and the assay can be performed under sterile conditions, effector cells may be recovered at the end for further analysis or cell expansion, if desired. Direct comparison of cell-mediated cytotoxicity measured by the alamarBlue method with the standard 51Cr release assay revealed that the former method is as specific and more sensitive than the conventional assay. Moreover, very small inter and intra-assay variations have been observed for alamarBlue cytotoxicity assays. In conclusion, this study shows that the alamarBlue assay is an extremely sensitive, economical, simple and non-toxic procedure to evaluate cell-mediated cytotoxicity that yields accurate results using a limited number of effector cells. Furthermore, since this assay is a one-step procedure, and does not involve any risk for the personnel, it may be useful to analyze automatically cell-mediated cytotoxicity in a large number of samples.

  11. Assessing humoral and cell-mediated immune response in Hawaiian green turtles, Chelonia mydas

    USGS Publications Warehouse

    Work, T.M.; Balazs, G.H.; Rameyer, R.A.; Chang, S.P.; Berestecky, J.

    2000-01-01

    Seven immature green turtles, Chelonia mydas, captured from Kaneohe Bay on the island of Oahu were used to evaluate methods for assessing their immune response. Two turtles each were immunized intramuscularly with egg white lysozyme (EWL) in Freunda??s complete adjuvant, Gerbu, or ISA-70; a seventh turtle was immunized with saline only and served as a control. Humoral immune response was measured with an indirect enzyme linked immunosorbent assay (ELISA). Cell-mediated immune response was measured using in vitro cell proliferation assays (CPA) using whole blood or peripheral blood mononuclear cells (PBM) cultured with concanavalin A (ConA), phytohaemagglutinin (PHA), or soluble egg EWL antigen. All turtles, except for one immunized with Gerbu and the control, produced a detectable humoral immune response by 6 weeks which persisted for at least 14 weeks after a single immunization. All turtles produced an anamnestic humoral immune response after secondary immunization. Antigen specific cell-mediated immune response in PBM was seen in all turtles either after primary or secondary immunization, but it was not as consistent as humoral immune response; antigen specific cell-mediated immune response in whole blood was rarely seen. Mononuclear cells had significantly higher stimulation indices than whole blood regardless of adjuvant, however, results with whole blood had lower variability. Both Gerbu and ISA-70 appeared to potentiate the cell-mediated immune response when PBM or whole blood were cultured with PHA. This is the first time cell proliferation assays have been compared between whole blood and PBM for reptiles. This is also the first demonstration of antigen specific cell-mediated response in reptiles. Cell proliferation assays allowed us to evaluate the cell-mediated immune response of green turtles. However, CPA may be less reliable than ELISA for detecting antigen specific immune response. Either of the three adjuvants appears suitable to safely elicit a

  12. Integrin CD11b positively regulates TLR4-induced signalling pathways in dendritic cells but not in macrophages.

    PubMed

    Ling, Guang Sheng; Bennett, Jason; Woollard, Kevin J; Szajna, Marta; Fossati-Jimack, Liliane; Taylor, Philip R; Scott, Diane; Franzoso, Guido; Cook, H Terence; Botto, Marina

    2014-01-01

    Tuned and distinct responses of macrophages and dendritic cells to Toll-like receptor 4 (TLR4) activation induced by lipopolysaccharide (LPS) underpin the balance between innate and adaptive immunity. However, the molecule(s) that confer these cell-type-specific LPS-induced effects remain poorly understood. Here we report that the integrin α(M) (CD11b) positively regulates LPS-induced signalling pathways selectively in myeloid dendritic cells but not in macrophages. In dendritic cells, which express lower levels of CD14 and TLR4 than macrophages, CD11b promotes MyD88-dependent and MyD88-independent signalling pathways. In particular, in dendritic cells CD11b facilitates LPS-induced TLR4 endocytosis and is required for the subsequent signalling in the endosomes. Consistent with this, CD11b deficiency dampens dendritic cell-mediated TLR4-triggered responses in vivo leading to impaired T-cell activation. Thus, by modulating the trafficking and signalling functions of TLR4 in a cell-type-specific manner CD11b fine tunes the balance between adaptive and innate immune responses initiated by LPS. PMID:24423728

  13. Integrin CD11b positively regulates TLR4-induced signalling pathways in dendritic cells but not in macrophages

    NASA Astrophysics Data System (ADS)

    Ling, Guang Sheng; Bennett, Jason; Woollard, Kevin J.; Szajna, Marta; Fossati-Jimack, Liliane; Taylor, Philip R.; Scott, Diane; Franzoso, Guido; Cook, H. Terence; Botto, Marina

    2014-01-01

    Tuned and distinct responses of macrophages and dendritic cells to Toll-like receptor 4 (TLR4) activation induced by lipopolysaccharide (LPS) underpin the balance between innate and adaptive immunity. However, the molecule(s) that confer these cell-type-specific LPS-induced effects remain poorly understood. Here we report that the integrin αM (CD11b) positively regulates LPS-induced signalling pathways selectively in myeloid dendritic cells but not in macrophages. In dendritic cells, which express lower levels of CD14 and TLR4 than macrophages, CD11b promotes MyD88-dependent and MyD88-independent signalling pathways. In particular, in dendritic cells CD11b facilitates LPS-induced TLR4 endocytosis and is required for the subsequent signalling in the endosomes. Consistent with this, CD11b deficiency dampens dendritic cell-mediated TLR4-triggered responses in vivo leading to impaired T-cell activation. Thus, by modulating the trafficking and signalling functions of TLR4 in a cell-type-specific manner CD11b fine tunes the balance between adaptive and innate immune responses initiated by LPS.

  14. Analysis of cell-mediated immune responses in support of dengue vaccine development efforts.

    PubMed

    Rothman, Alan L; Currier, Jeffrey R; Friberg, Heather L; Mathew, Anuja

    2015-12-10

    Dengue vaccine development has made significant strides, but a better understanding of how vaccine-induced immune responses correlate with vaccine efficacy can greatly accelerate development, testing, and deployment as well as ameliorate potential risks and safety concerns. Advances in basic immunology knowledge and techniques have already improved our understanding of cell-mediated immunity of natural dengue virus infection and vaccination. We conclude that the evidence base is adequate to argue for inclusion of assessments of cell-mediated immunity as part of clinical trials of dengue vaccines, although further research to identify useful correlates of protective immunity is needed. PMID:26458801

  15. Analysis of cell-mediated immune responses in support of dengue vaccine development efforts.

    PubMed

    Rothman, Alan L; Currier, Jeffrey R; Friberg, Heather L; Mathew, Anuja

    2015-12-10

    Dengue vaccine development has made significant strides, but a better understanding of how vaccine-induced immune responses correlate with vaccine efficacy can greatly accelerate development, testing, and deployment as well as ameliorate potential risks and safety concerns. Advances in basic immunology knowledge and techniques have already improved our understanding of cell-mediated immunity of natural dengue virus infection and vaccination. We conclude that the evidence base is adequate to argue for inclusion of assessments of cell-mediated immunity as part of clinical trials of dengue vaccines, although further research to identify useful correlates of protective immunity is needed.

  16. The effect of stable macromolecular complexes of ionic polyphosphazene on HIV Gag antigen and on activation of human dendritic cells and presentation to T-cells.

    PubMed

    Palmer, Christine D; Ninković, Jana; Prokopowicz, Zofia M; Mancuso, Christy J; Marin, Alexander; Andrianov, Alexander K; Dowling, David J; Levy, Ofer

    2014-10-01

    Neonates and infants are susceptible to infection due to distinct immune responses in early life. Therefore, development of vaccine formulation and delivery systems capable of activating human newborn leukocytes is of global health importance. Poly[di(carboxylatophenoxy)phosphazene] (PCPP) belongs to a family of ionic synthetic polyphosphazene polyelectrolyte compounds that can form non-covalent interactions with protein antigens and demonstrate adjuvant activity in animals and in human clinical trials. However, little is known about their ability to activate human immune cells. In this study, we characterized the effects of PCPP alone or in combination with a model antigen (recombinant HIV-Gag (Gag)), on the maturation, activation and antigen presentation by human adult and newborn dendritic cells (DCs) in vitro. PCPP treatment induced DC activation as assessed by upregulation of co-stimulatory molecules and cytokine production. Studies benchmarking PCPP to Alum, the most commonly used vaccine adjuvant, demonstrated that both triggered cell death and release of danger signals in adult and newborn DCs. When complexed with Gag antigen, PCPP maintained its immunostimulatory characteristics while permitting internalization and presentation of Gag by DCs to HIV-Gag-specific CD4(+) T cell clones. The PCPP vaccine formulation outlined here has intrinsic adjuvant activity, can facilitate effective delivery of antigen to DCs, and may be advantageous for induction of beneficial T cell-mediated immunity. Moreover, polyphosphazenes can further reduce cost of vaccine production and distribution through their dose-sparing and antigen-stabilizing properties, thus potentially eliminating the need for cold chain distribution. PMID:25023392

  17. Dexamethasone and Monophosphoryl Lipid A-Modulated Dendritic Cells Promote Antigen-Specific Tolerogenic Properties on Naive and Memory CD4+ T Cells

    PubMed Central

    Maggi, Jaxaira; Schinnerling, Katina; Pesce, Bárbara; Hilkens, Catharien M.; Catalán, Diego; Aguillón, Juan C.

    2016-01-01

    Tolerogenic dendritic cells (DCs) are a promising tool to control T cell-mediated autoimmunity. Here, we evaluate the ability of dexamethasone-modulated and monophosphoryl lipid A (MPLA)-activated DCs [MPLA-tolerogenic DCs (tDCs)] to exert immunomodulatory effects on naive and memory CD4+ T cells in an antigen-specific manner. For this purpose, MPLA-tDCs were loaded with purified protein derivative (PPD) as antigen and co-cultured with autologous naive or memory CD4+ T cells. Lymphocytes were re-challenged with autologous PPD-pulsed mature DCs (mDCs), evaluating proliferation and cytokine production by flow cytometry. On primed-naive CD4+ T cells, the expression of regulatory T cell markers was evaluated and their suppressive ability was assessed in autologous co-cultures with CD4+ effector T cells and PPD-pulsed mDCs. We detected that memory CD4+ T cells primed by MPLA-tDCs presented reduced proliferation and proinflammatory cytokine expression in response to PPD and were refractory to subsequent stimulation. Naive CD4+ T cells were instructed by MPLA-tDCs to be hyporesponsive to antigen-specific restimulation and to suppress the induction of T helper cell type 1 and 17 responses. In conclusion, MPLA-tDCs are able to modulate antigen-specific responses of both naive and memory CD4+ T cells and might be a promising strategy to “turn off” self-reactive CD4+ effector T cells in autoimmunity.

  18. Dexamethasone and Monophosphoryl Lipid A-Modulated Dendritic Cells Promote Antigen-Specific Tolerogenic Properties on Naive and Memory CD4+ T Cells

    PubMed Central

    Maggi, Jaxaira; Schinnerling, Katina; Pesce, Bárbara; Hilkens, Catharien M.; Catalán, Diego; Aguillón, Juan C.

    2016-01-01

    Tolerogenic dendritic cells (DCs) are a promising tool to control T cell-mediated autoimmunity. Here, we evaluate the ability of dexamethasone-modulated and monophosphoryl lipid A (MPLA)-activated DCs [MPLA-tolerogenic DCs (tDCs)] to exert immunomodulatory effects on naive and memory CD4+ T cells in an antigen-specific manner. For this purpose, MPLA-tDCs were loaded with purified protein derivative (PPD) as antigen and co-cultured with autologous naive or memory CD4+ T cells. Lymphocytes were re-challenged with autologous PPD-pulsed mature DCs (mDCs), evaluating proliferation and cytokine production by flow cytometry. On primed-naive CD4+ T cells, the expression of regulatory T cell markers was evaluated and their suppressive ability was assessed in autologous co-cultures with CD4+ effector T cells and PPD-pulsed mDCs. We detected that memory CD4+ T cells primed by MPLA-tDCs presented reduced proliferation and proinflammatory cytokine expression in response to PPD and were refractory to subsequent stimulation. Naive CD4+ T cells were instructed by MPLA-tDCs to be hyporesponsive to antigen-specific restimulation and to suppress the induction of T helper cell type 1 and 17 responses. In conclusion, MPLA-tDCs are able to modulate antigen-specific responses of both naive and memory CD4+ T cells and might be a promising strategy to “turn off” self-reactive CD4+ effector T cells in autoimmunity. PMID:27698654

  19. Inducting Principals.

    ERIC Educational Resources Information Center

    Andrews, Carl

    1989-01-01

    Principal induction is the process by which new school principals make the transition from theoretical to operational leadership. Many approaches to induction have been tried, ranging from simply handing over the building keys to comprehensive career development programs. To exemplify ongoing research and development in educational administration…

  20. A suicidal DNA vaccine expressing the fusion protein of peste des petits ruminants virus induces both humoral and cell-mediated immune responses in mice.

    PubMed

    Wang, Yong; Yue, Xiaolin; Jin, Hongyan; Liu, Guangqing; Pan, Ling; Wang, Guijun; Guo, Hao; Li, Gang; Li, Yongdong

    2015-12-01

    Peste des petits ruminants (PPR), a highly contagious disease induced by PPR virus (PPRV), affects sheep and goats. PPRV fusion (F) protein is important for the induction of immune responses against PPRV. We constructed a Semliki Forest virus (SFV) replicon-vectored DNA vaccine ("suicidal DNA vaccine") and evaluated its immunogenicity in BALB/c mice. The F gene of PPRV was cloned and inserted into the SFV replicon-based vector pSCA1. The antigenicity of the resultant plasmid pSCA1/F was identified by indirect immunofluorescence and western blotting. BALB/c mice were then intramuscularly injected with pSCA1/F three times at 14-d intervals. Specific antibodies and virus-neutralizing antibodies against PPRV were quantified by indirect ELISA and microneutralization tests, respectively. Cell-mediated immune responses were examined by cytokine and lymphocyte proliferation assays. The pSCA1/F expressed F protein in vitro and induced specific and neutralizing antibody production, and lymphocyte proliferation in mice. Mice vaccinated with pSCA1/F had increased IL-2 and IL-10 levels after 24-h post first immunization. IFN-γ and TNF-α levels increased from that time point and gradually decreased thereafter. Thus, the Semliki Forest virus replicon-vectored DNA vaccine expressing the F protein of PPRV induced both humoral and cell-mediated immune responses in mice. This could be considered as a novel strategy for vaccine development against PPR. PMID:26343487

  1. A suicidal DNA vaccine expressing the fusion protein of peste des petits ruminants virus induces both humoral and cell-mediated immune responses in mice.

    PubMed

    Wang, Yong; Yue, Xiaolin; Jin, Hongyan; Liu, Guangqing; Pan, Ling; Wang, Guijun; Guo, Hao; Li, Gang; Li, Yongdong

    2015-12-01

    Peste des petits ruminants (PPR), a highly contagious disease induced by PPR virus (PPRV), affects sheep and goats. PPRV fusion (F) protein is important for the induction of immune responses against PPRV. We constructed a Semliki Forest virus (SFV) replicon-vectored DNA vaccine ("suicidal DNA vaccine") and evaluated its immunogenicity in BALB/c mice. The F gene of PPRV was cloned and inserted into the SFV replicon-based vector pSCA1. The antigenicity of the resultant plasmid pSCA1/F was identified by indirect immunofluorescence and western blotting. BALB/c mice were then intramuscularly injected with pSCA1/F three times at 14-d intervals. Specific antibodies and virus-neutralizing antibodies against PPRV were quantified by indirect ELISA and microneutralization tests, respectively. Cell-mediated immune responses were examined by cytokine and lymphocyte proliferation assays. The pSCA1/F expressed F protein in vitro and induced specific and neutralizing antibody production, and lymphocyte proliferation in mice. Mice vaccinated with pSCA1/F had increased IL-2 and IL-10 levels after 24-h post first immunization. IFN-γ and TNF-α levels increased from that time point and gradually decreased thereafter. Thus, the Semliki Forest virus replicon-vectored DNA vaccine expressing the F protein of PPRV induced both humoral and cell-mediated immune responses in mice. This could be considered as a novel strategy for vaccine development against PPR.

  2. Lysophosphatidic acid induces osteocyte dendrite outgrowth

    SciTech Connect

    Karagiosis, Sue A.; Karin, Norm J.

    2007-05-25

    A method was developed to measure dendrite formation in bone cells. Lysophosphatidic acid (LPA) was found to stimulate dendrite outgrowth. It is postulated that LPA plays a role in regulating the osteocyte network in vivo.

  3. Gravitational effects in dendritic growth

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.; Singh, N. B.; Chopra, M.

    1983-01-01

    The theories of diffusion-controlled dendritic crystallization will be reviewed briefly, along with recently published critical experiments on the kinetics and morphology of dendritic growth in pure substances. The influence of the gravitational body force on dendrite growth kinetics will be shown to be highly dependent on the growth orientation with respect to the gravity vector and on the level of the thermal supercooling. In fact, an abrupt transition occurs at a critical supercooling, above which diffusional transport dominates the growth process and below which convective transport dominates. Our most recent work on binary mixtures shows that dilute solute additions influence the crystallization process indirectly, by altering the interfacial stability, rather than by directly affecting the transport mode. Directions for future studies in this field will also be discussed.

  4. HIV is trapped and masked in the cytoplasm of lymph node follicular dendritic cells.

    PubMed Central

    Tacchetti, C.; Favre, A.; Moresco, L.; Meszaros, P.; Luzzi, P.; Truini, M.; Rizzo, F.; Grossi, C. E.; Ciccone, E.

    1997-01-01

    To gain further insight into the pathogenesis of human immunodeficiency virus (HIV) infection, lymph nodes from seven asymptomatic HIV+ subjects were analyzed during the latent phase of disease. Both ultrastructural and immunohistochemical analyses revealed that, in all of the cases, plasma cells producing IgM/gamma were present in germinal centers. Secreted immunoglobulins formed extracellular deposits mimicking the follicular dendritic cell network. Immunoglobulin produced by germinal center plasma cells are specific for HIV because they bind the HIV env protein gp 120. Plasma cells producing antibodies with the same specificity were also abundant in the extrafollicular regions of lymph nodes. During the latent phase of infection, the virus largely accumulates within the germinal centers. Therefore, extracellular immunoglobulin may form immune complexes, as shown by the presence of HIV-specific antibodies, HIV particles, and complement components C3c, C3d, and C1q in the interdendritic spaces. When the ultrastructural localization of HIV in germinal centers was analyzed, abundant virus particles were found in the interdendritic spaces. In addition to this extracellular localization of HIV, receptor-mediated endocytosis of viral particles by follicular dendritic cells was observed. Complete HIV particles were found within the endosomal compartment of the follicular dendritic cells and, as complete viral particles, free in the cytoplasm, indicating that the virus may escape from the endocytic compartment. As the virus is abundant in the cytoplasm, this event leads to formation of a hidden reservoir within follicular dendritic cells. In this location, HIV escapes recognition by cytotoxic T lymphocytes. In contrast, virus budding indicating a productive infection of follicular dendritic cells that would render them susceptible to T-cell-mediated lysis has been seldom observed. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:9033269

  5. Cell-Mediated Immune Function and Cytokine Regulation During Space Flight

    NASA Technical Reports Server (NTRS)

    Sams, Clarence F.; Pierson, Duane L.; Paloski, W. H. (Technical Monitor)

    2000-01-01

    The changes in immune function which occur during space flight potentially expose the crews to an increased risk for development of illness. Decreased cellular immune function has been repeatedly documented after space flight and confirmed during flight by in vivo delayed-type hypersensitivity testing. However, correlation of immune changes with a clinically significant risk factor has not yet been performed. Our hypothesis is that space flight induces a decrease in cell-mediated immune function accompanied by a shift from a type 1 cytokine pattern (favoring cell-mediated immunity) to a type 2 cytokine pattern (favoring humoral immunity). We further hypothesize that reactivation of latent viruses will occur during space flight in association with the decreased cellular immunity. To test these hypotheses, we will determine the effects of space flight on cell-mediated immunity and viral reactivation. We will utilize delayed-type hypersensitivity testing as an in vivo measure of integrated cell-mediated immune function. The production of cytokines and immunoregulatory factors by lymphocytes and monocytes will be measured to determine whether changes in cytokine patterns are associated with the space flight-induced immune dysregulation. Correlation of antigen-specific immune changes with reactivation of latent herpes viruses will be determined by measuring peripheral levels of viral (CMV, VZV, EBV) antigen-specific T cells and comparing to the levels of EBV-infected B-cells by fluorescence in situ hybridization and flow cytometry. A comparison of cell-mediated immune function, cytokine regulation and viral reactivation will provide new insights into crew member health risks during flight.

  6. Tick salivary cystatin sialostatin L2 suppresses IFN responses in mouse dendritic cells.

    PubMed

    Lieskovská, J; Páleníková, J; Širmarová, J; Elsterová, J; Kotsyfakis, M; Campos Chagas, A; Calvo, E; Růžek, D; Kopecký, J

    2015-02-01

    Type I interferon (IFN), mainly produced by dendritic cells (DCs), is critical in the host defence against tick-transmitted pathogens. Here, we report that salivary cysteine protease inhibitor from the hard tick Ixodes scapularis, sialostatin L2, affects IFN-β mediated immune reactions in mouse dendritic cells. Following IFN receptor ligation, the Janus activated kinases/signal transducer and activator of transcription (JAK/STAT) pathway is activated. We show that sialostatin L2 attenuates phosphorylation of STATs in spleen dendritic cells upon addition of recombinant IFN-β. LPS-stimulated dendritic cells release IFN-β which in turn leads to the induction of IFN-stimulated genes (ISG) through JAK/STAT pathway activation. The induction of two ISG, interferon regulatory factor 7 (IRF-7) and IP-10, was suppressed by sialostatin L2 in LPS-stimulated dendritic cells. Finally, the interference of sialostatin L2 with IFN action led to the enhanced replication of tick-borne encephalitis virus in DC. In summary, we present here that tick salivary cystatin negatively affects IFN-β responses which may consequently increase the pathogen load after transmission via tick saliva.

  7. Directing dendritic cell immunotherapy towards successful cancer treatment

    PubMed Central

    Sabado, Rachel Lubong; Bhardwaj, Nina

    2010-01-01

    The use of dendritic cells (DCs) for tumor immunotherapy represents a powerful approach for harnessing the patient's own immune system to eliminate tumor cells. However, suboptimal conditions for generating potent immunostimulatory DCs, as well as the induction of tolerance and suppression mediated by the tumors and its microenvironment have contributed to limited success. Combining DC vaccines with new approaches that enhance immunogenicity and overcome the regulatory mechanisms underlying peripheral tolerance may be the key to achieving effective and durable anti-tumor immune responses that translate to better clinical outcomes. PMID:20473346

  8. Induction voidmeter

    DOEpatents

    Anderson, Thomas T.; Roop, Conard J.; Schmidt, Kenneth J.; Brewer, John

    1986-01-01

    An induction voidmeter for detecting voids in a conductive fluid may comprise: a four arm bridge circuit having two adjustable circuit elements connected as opposite arms of said bridge circuit, an input branch, and an output branch; two induction coils, bifilarly wound together, connected as the remaining two opposing arms of said bridge circuit and positioned such that the conductive fluid passes through said coils; applying an AC excitation signal to said input branch; and detecting the output signal generated in response to said excitation signal across said output branch. The induction coils may be located outside or inside a non-magnetic pipe containing the conductive fluid.

  9. Induction voidmeter

    DOEpatents

    Anderson, T.T.; Roop, C.J.; Schmidt, K.J.; Brewer, J.

    1983-12-21

    An induction voidmeter for detecting voids in a conductive fluid may comprise: a four arm bridge circuit having two adjustable circuit elements connected as opposite arms of said bridge, an input branch, and an output branch; two induction coils, bifilarly wound together, connected as the remaining two opposing arms of said bridge circuit and positioned such that the conductive fluid passes through said coils; means for applying an AC excitation signal to said input branch; and means for detecting the output signal generated in response to said excitation signal across said output branch. The induction coils may be located outside or inside a non-magnetic pipe containing the conductive fluid.

  10. Dendritic polyglycerols for biomedical applications.

    PubMed

    Calderón, Marcelo; Quadir, Mohiuddin Abdul; Sharma, Sunil Kumar; Haag, Rainer

    2010-01-12

    The application of nanotechnology in medicine and pharmaceuticals is a rapidly advancing field that is quickly gaining acceptance and recognition as an independent area of research called "nanomedicine". Urgent needs in this field, however, are biocompatible and bioactive materials for antifouling surfaces and nanoparticles for drug delivery. Therefore, extensive attention has been given to the design and development of new macromolecular structures. Among the various polymeric architectures, dendritic ("treelike") polymers have experienced an exponential development due to their highly branched, multifunctional, and well-defined structures. This Review describes the diverse syntheses and biomedical applications of dendritic polyglycerols (PGs). These polymers exhibit good chemical stability and inertness under biological conditions and are highly biocompatible. Oligoglycerols and their fatty acid esters are FDA-approved and are already being used in a variety of consumer applications, e.g., cosmetics and toiletries, food industries, cleaning and softening agents, pharmaceuticals, polymers and polymer additives, printing photographing materials, and electronics. Herein, we present the current status of dendritic PGs as functional dendritic architectures with particular focus on their application in nanomedicine, in drug, dye, and gene delivery, as well as in regenerative medicine in the form of non-fouling surfaces and matrix materials.

  11. Advanced dendritic web growth development

    NASA Technical Reports Server (NTRS)

    Hopkins, R. H.

    1985-01-01

    A program to develop the technology of the silicon dendritic web ribbon growth process is examined. The effort is being concentrated on the area rate and quality requirements necessary to meet the JPL/DOE goals for terrestrial PV applications. Closed loop web growth system development and stress reduction for high area rate growth is considered.

  12. Wiring dendrites in layers and columns.

    PubMed

    Luo, Jiangnan; McQueen, Philip G; Shi, Bo; Lee, Chi-Hon; Ting, Chun-Yuan

    2016-06-01

    The most striking structure in the nervous system is the complex yet stereotyped morphology of the neuronal dendritic tree. Dendritic morphologies and the connections they make govern information flow and integration in the brain. The fundamental mechanisms that regulate dendritic outgrowth and branching are subjects of extensive study. In this review, we summarize recent advances in the molecular and cellular mechanisms for routing dendrites in layers and columns, prevalent organizational structures in the brain. We highlight how dendritic patterning influences the formation of synaptic circuits. PMID:27315108

  13. Dendritic solidification of alloys in low gravity

    NASA Astrophysics Data System (ADS)

    Curreri, P. A.; Lee, J. E.; Stefanescu, D. M.

    1988-11-01

    Gravity-driven convective flow influences dendrite morphology, interdendritic fluid flow, dendrite interface morphology, casting macrosegregation, formation of channel type casting defects, and casting grain structure. Dendritic solidification experiments during multiple parabolic aircraft maneuvers for iron-carbon type alloys and superalloys show increased dendritic spacing in low-gravity periods. Larger dendrite spacings for low-gravity solidification have also been reported for sounding rocket and space laboratory experiments for metal-model and binary alloys. Convection decreases local solidification time and increases the rate of interdendritic solute removal. The elimination of convection in low gravity is thus expected to increase dendritic spacing. Convection's effect on dendritic arm coarsening is expected to be dependent on the coarsening mechanism. Decreased coarsening in low gravity found for Al-Cu is indicative of coarsening predominately by arm coalescence.

  14. Recombinant Listeria monocytogenes as a Live Vaccine Vehicle for the Induction of Protective Anti-Viral Cell-Mediated Immunity

    NASA Astrophysics Data System (ADS)

    Shen, Hao; Slifka, Mark K.; Matloubian, Mehrdad; Jensen, Eric R.; Ahmed, Rafi; Miller, Jeff F.

    1995-04-01

    Listeria monocytogenes (LM) is a Gram-positive bacterium that is able to enter host cells, escape from the endocytic vesicle, multiply within the cytoplasm, and spread directly from cell to cell without encountering the extracellular milieu. The ability of LM to gain access to the host cell cytosol allows proteins secreted by the bacterium to efficiently enter the pathway for major histocompatibility complex class I antigen processing and presentation. We have established a genetic system for expression and secretion of foreign antigens by recombinant strains, based on stable site-specific integration of expression cassettes into the LM genome. The ability of LM recombinants to induce protective immunity against a heterologous pathogen was demonstrated with lymphocytic choriomeningitis virus (LCMV). LM strains expressing the entire LCMV nucleoprotein or an H-2L^d-restricted nucleoprotein epitope (aa 118-126) were constructed. Immunization of mice with LM vaccine strains conferred protection against challenge with virulent strains of LCMV that otherwise establish chronic infection in naive adult mice. In vivo depletion of CD8^+ T cells from vaccinated mice abrogated their ability to clear viral infection, showing that protective anti-viral immunity was due to CD8^+ T cells.

  15. Challenges and Opportunities for T-Cell-Mediated Strategies to Eliminate HIV Reservoirs

    PubMed Central

    Brockman, Mark A.; Jones, R. Brad; Brumme, Zabrina L.

    2015-01-01

    HIV’s ability to establish latent reservoirs of reactivation-competent virus is the major barrier to cure. “Shock and kill” methods consisting of latency-reversing agents (LRAs) followed by elimination of reactivating cells through cytopathic effects are under active development. However, the clinical efficacy of LRAs remains to be established. Moreover, recent studies indicate that reservoirs may not be reduced efficiently by either viral cytopathic or CD8+ T-cell-mediated mechanisms. In this perspective, we highlight challenges to T-cell-mediated elimination of HIV reservoirs, including characteristics of responding T cells, aspects of the cellular reservoirs, and properties of the latent virus itself. We also discuss potential strategies to overcome these challenges by targeting the antiviral activity of T cells toward appropriate viral antigens following latency. PMID:26483795

  16. Effect of microencapsulated ampicillin on cell-mediated immune responses in mice.

    PubMed

    Barsoum, I S; Kopydlowski, K M; Burge, J R; Setterstrom, J A

    1997-11-01

    The effects of free ampicillin, microencapsulated ampicillin anhydrate (MEAA) and antibiotic-free microspheres on the cell-mediated immune response in Balb/c mice were measured by lymphoproliferation assay, delayed-type hypersensitivity (DTH) and cytokine production. Injection into mice for seven consecutive days with equivalent subcutaneous doses of ampicillin, MEAA or placebo microspheres did not produce any consistent change in lymphocyte proliferation nor did it affect DTH responses or interleukin-2 production. Although the production of interleukin-4 in mice treated with ampicillin or MEAA increased compared with the control mice, this increase was not statistically significant. These results indicate that ampicillin and MEAA have similar effects on cell-mediated immunity in mice. PMID:9421323

  17. The Potential of Intralesional Rose Bengal to Stimulate T-Cell Mediated Anti-Tumor Responses

    PubMed Central

    Maker, Ajay V; Prabhakar, Bellur; Pardiwala, Krunal

    2015-01-01

    Rose Bengal (RB) is a red synthetic dye that was initially used in the garment industry and has been used safely for decades as a corneal stain by ophthalmologists. Antineoplastic properties of RB have also been observed, though the mechanism of action remained to be elucidated. Recently, interest in RB as a therapeutic cancer treatment has increased due to significant anti-tumor responses with direct tumor injection in human clinical trials for metastatic melanoma. In these patients, there has been the implication that RB may mount a T-cell mediated anti-tumor response and impart antigen-specific responses in distant bystander lesions. This article serves to evaluate the potential of intralesional rose bengal to stimulate T-cell mediated anti-tumor responses in in-vitro, pre-clinical, and clinical studies. PMID:26618054

  18. T-helper cell-mediated factors in drug-induced liver injury.

    PubMed

    Wang, Xinzhi; Zhang, Luyong; Jiang, Zhenzhou

    2015-07-01

    Drug-induced liver injury (DILI) leads to a large burden on the healthcare system due to its potential morbidity and mortality. The key for predicting and preventing DILI is to understand the underlying mechanisms. Hepatic inflammation is one of the most common features of DILI. The inflammation can be attributed to the innate immune response. The adaptive immune system is also affected by the innate immune response resulting in liver damage. T-helper cells are important regulators of acquired immunity. T-helper cell-mediated immune responses play pivotal roles in the pathogenesis of a variety of liver disorders. This review summarizes recent advances in the T-helper cell-mediated factors in DILI and potential mechanisms, which may lead to a better understanding of DILI. PMID:25752261

  19. Follicular dendritic cells in health and disease

    PubMed Central

    El Shikh, Mohey Eldin M.; Pitzalis, Costantino

    2012-01-01

    Follicular dendritic cells (FDCs) are unique immune cells that contribute to the regulation of humoral immune responses. These cells are located in the B-cell follicles of secondary lymphoid tissues where they trap and retain antigens (Ags) in the form of highly immunogenic immune complexes (ICs) consisting of Ag plus specific antibody (Ab) and/or complement proteins. FDCs multimerize Ags and present them polyvalently to B-cells in periodically arranged arrays that extensively crosslink the B-cell receptors for Ag (BCRs). FDC-FcγRIIB mediates IC periodicity, and FDC-Ag presentation combined with other soluble and membrane bound signals contributed by FDCs, like FDC-BAFF, -IL-6, and -C4bBP, are essential for the induction of the germinal center (GC) reaction, the maintenance of serological memory, and the remarkable ability of FDC-Ags to induce specific Ab responses in the absence of cognate T-cell help. On the other hand, FDCs play a negative role in several disease conditions including chronic inflammatory diseases, autoimmune diseases, HIV/AIDS, prion diseases, and follicular lymphomas. Compared to other accessory immune cells, FDCs have received little attention, and their functions have not been fully elucidated. This review gives an overview of FDC structure, and recapitulates our current knowledge on the immunoregulatory functions of FDCs in health and disease. A better understanding of FDCs should permit better regulation of Ab responses to suit the therapeutic manipulation of regulated and dysregulated immune responses. PMID:23049531

  20. Effects of intravenous immunoglobulins on T-cell mediated, concanavalin A-induced hepatitis in mice.

    PubMed

    Shirin, H; Bruck, R; Aeed, H; Hershkoviz, R; Lider, O; Kenet, G; Avni, Y; Halpern, Z

    1997-12-01

    Concanavalin A (ConA) activates T lymphocytes and causes T-cell mediated hepatic injury in mice. The intravenous administration of human immunoglobulins has beneficial effects in T-cell mediated diseases such as experimental autoimmune encephalomyelitis and adjuvant arthritis. In the present study, we examined the effects of intravenous immunoglobulins in a mouse model of T-cell mediated, acute liver injury induced by concanavalin A. Balb/c mice were inoculated with 12 mg/kg concanavalin A with or without intravenous immunoglobulins at doses of 0.4, 0.6, 0.8 g/kg body wt. The serum levels of liver enzymes, tumor necrosis factor-alpha, interferon-gamma and interleukin-6 were assayed 2, 6 and 24 h after concanavalin A administration. Intravenous immunoglobulins did not prevent concanavalin A-induced hepatitis, as manifested by elevation of serum aminotransferases and histopathological evaluation. The serum levels of tumor necrosis factor-alpha in mice pretreated with immunoglobulins, measured 2 h after ConA treatment were reduced, while interferon-gamma levels measured 6 h after ConA inoculation were 5-fold higher than control levels. There was no effect of intravenous immunoglobulins on the release of interleukin 6. In conclusion, these results indicate that intravenous immunoglobulin is not effective in preventing T-cell mediated concanavalin A-induced hepatitis. The increased secretion of interferon-gamma and the incomplete suppression of tumor necrosis factor-alpha release may explain the lack of efficacy of intravenous immunoglobulin in this experimental model. PMID:9455732

  1. RB mutation and RAS overexpression induce resistance to NK cell-mediated cytotoxicity in glioma cells.

    PubMed

    Orozco-Morales, Mario; Sánchez-García, Francisco Javier; Golán-Cancela, Irene; Hernández-Pedro, Norma; Costoya, Jose A; de la Cruz, Verónica Pérez; Moreno-Jiménez, Sergio; Sotelo, Julio; Pineda, Benjamín

    2015-01-01

    Several theories aim to explain the malignant transformation of cells, including the mutation of tumor suppressors and proto-oncogenes. Deletion of Rb (a tumor suppressor), overexpression of mutated Ras (a proto-oncogene), or both, are sufficient for in vitro gliomagenesis, and these genetic traits are associated with their proliferative capacity. An emerging hallmark of cancer is the ability of tumor cells to evade the immune system. Whether specific mutations are related with this, remains to be analyzed. To address this issue, three transformed glioma cell lines were obtained (Rb(-/-), Ras(V12), and Rb(-/-)/Ras(V12)) by in vitro retroviral transformation of astrocytes, as previously reported. In addition, Ras(V12) and Rb(-/-)/Ras(V12) transformed cells were injected into SCID mice and after tumor growth two stable glioma cell lines were derived. All these cells were characterized in terms of Rb and Ras gene expression, morphology, proliferative capacity, expression of MHC I, Rae1δ, and Rae1αβγδε, mult1, H60a, H60b, H60c, as ligands for NK cell receptors, and their susceptibility to NK cell-mediated cytotoxicity. Our results show that transformation of astrocytes (Rb loss, Ras overexpression, or both) induced phenotypical and functional changes associated with resistance to NK cell-mediated cytotoxicity. Moreover, the transfer of cell lines of transformed astrocytes into SCID mice increased resistance to NK cell-mediated cytotoxicity, thus suggesting that specific changes in a tumor suppressor (Rb) and a proto-oncogene (Ras) are enough to confer resistance to NK cell-mediated cytotoxicity in glioma cells and therefore provide some insight into the ability of tumor cells to evade immune responses.

  2. Loss of PTEN promotes resistance to T cell-mediated immunotherapy

    PubMed Central

    Peng, Weiyi; Chen, Jie Qing; Liu, Chengwen; Malu, Shruti; Creasy, Caitlin; Tetzlaff, Michael T; Xu, Chunyu; McKenzie, Jodi A; Zhang, Chunlei; Liang, Xiaoxuan; Williams, Leila J; Deng, Wanleng; Chen, Guo; Mbofung, Rina; Lazar, Alexander J; Torres-Cabala, Carlos A; Cooper, Zachary A; Chen, Pei-Ling; Tieu, Trang N; Spranger, Stefani; Yu, Xiaoxing; Bernatchez, Chantale; Forget, Marie-Andree; Haymaker, Cara; Amaria, Rodabe; McQuade, Jennifer L; Glitza, Isabella C; Cascone, Tina; Li, Haiyan S; Kwong, Lawrence N; Heffernan, Timothy P; Hu, Jianhua; Bassett, Roland L; Bosenberg, Marcus W; Woodman, Scott E; Overwijk, Willem W; Lizée, Gregory; Roszik, Jason; Gajewski, Thomas F; Wargo, Jennifer A; Gershenwald, Jeffrey E; Radvanyi, Laszlo; Davies, Michael A; Hwu, Patrick

    2015-01-01

    T cell-mediated immunotherapies are promising cancer treatments. However, most patients still fail to respond to these therapies. The molecular determinants of immune resistance are poorly understood. We show that loss of PTEN in tumor cells in preclinical models of melanoma inhibits T cell-mediated tumor killing and decreases T cell trafficking into tumors. In patients, PTEN loss correlates with decreased T cell infiltration at tumor sites, reduced likelihood of successful T cell expansion from resected tumors, and inferior outcomes with PD-1 inhibitor therapy. PTEN loss in tumor cells increased the expression of immunosuppressive cytokines, resulting in decreased T cell infiltration in tumors, and inhibited autophagy, which decreased T cell-mediated cell death. Treatment with a selective PI3Kβ inhibitor improved the efficacy of both anti-PD-1 and anti-CTLA4 antibodies in murine models. Together these findings demonstrate that PTEN loss promotes immune resistance and support the rationale to explore combinations of immunotherapies and PI3K-AKT pathway inhibitors. PMID:26645196

  3. Activation of cell-mediated immunity by Morinda citrifolia fruit extract and its constituents.

    PubMed

    Murata, Kazuya; Abe, Yumi; Futamura-Masudaa, Megumi; Uwaya, Akemi; Isami, Fumiyuki; Matsuda, Hideaki

    2014-04-01

    Morinda citrifolia, commonly known as noni, is a traditional natural medicine in French Polynesia and Hawaii. Functional foods derived from M. citrifolia fruit have been marketed to help prevent diseases and promote good health. The objective of this study was to assess the effects of M. citrifolia fruit on cell-mediated immunity. In the picryl chloride-induced contact dermatitis test, M. citrifolia fruit extract (Noni-ext) inhibited the suppression of cell-mediated immunity by immunosuppressive substances isolated from freeze-dried ascites of Ehrlich carcinoma-bearing mice (EC-sup). In addition, Noni-ext inhibited reduction of IL-2 production in EC-sup-treated mice and activated natural killer cells in normal mice. These results suggest that Noni-ext has multiple effects on the recovery of cell-mediated immunity. Furthermore, we investigated the active principles of Noni-ext and identified an iridoid glycoside, deacetylasperulosidic acid. Oral administration of deacetylasperulosidic acid inhibited the reduction of ear swelling, and also cancelled the suppression of IL-2 production along with the activation of natural killer cells in the same manner as that of Noni-ext.

  4. Microtubule nucleation and organization in dendrites.

    PubMed

    Delandre, Caroline; Amikura, Reiko; Moore, Adrian W

    2016-07-01

    Dendrite branching is an essential process for building complex nervous systems. It determines the number, distribution and integration of inputs into a neuron, and is regulated to create the diverse dendrite arbor branching patterns characteristic of different neuron types. The microtubule cytoskeleton is critical to provide structure and exert force during dendrite branching. It also supports the functional requirements of dendrites, reflected by differential microtubule architectural organization between neuron types, illustrated here for sensory neurons. Both anterograde and retrograde microtubule polymerization occur within growing dendrites, and recent studies indicate that branching is enhanced by anterograde microtubule polymerization events in nascent branches. The polarities of microtubule polymerization events are regulated by the position and orientation of microtubule nucleation events in the dendrite arbor. Golgi outposts are a primary microtubule nucleation center in dendrites and share common nucleation machinery with the centrosome. In addition, pre-existing dendrite microtubules may act as nucleation sites. We discuss how balancing the activities of distinct nucleation machineries within the growing dendrite can alter microtubule polymerization polarity and dendrite branching, and how regulating this balance can generate neuron type-specific morphologies. PMID:27097122

  5. Lipid dynamics at dendritic spines.

    PubMed

    Dotti, Carlos Gerardo; Esteban, Jose Antonio; Ledesma, María Dolores

    2014-01-01

    Dynamic changes in the structure and composition of the membrane protrusions forming dendritic spines underlie memory and learning processes. In recent years a great effort has been made to characterize in detail the protein machinery that controls spine plasticity. However, we know much less about the involvement of lipids, despite being major membrane components and structure determinants. Moreover, protein complexes that regulate spine plasticity depend on specific interactions with membrane lipids for proper function and accurate intracellular signaling. In this review we gather information available on the lipid composition at dendritic spine membranes and on its dynamics. We pay particular attention to the influence that spine lipid dynamism has on glutamate receptors, which are key regulators of synaptic plasticity.

  6. Convective flow during dendritic growth

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.; Huang, S. C.

    1979-01-01

    A review is presented of the major experimental findings obtained from recent ground-based research conducted under the SPAR program. Measurements of dendritic growth at small supercoolings indicate that below approximately 1.5 K a transition occurs from diffusive control to convective control in succinonitrile, a model system chosen for this study. The key theoretical ideas concerning diffusive and convective heat transport during dendritic growth are discussed, and it is shown that a transition in the transport control should occur when the characteristic length for diffusion becomes larger than the characteristic length for convection. The experimental findings and the theoretical ideas discussed suggest that the Fluid Experiment System could provide appropriate experimental diagnostics for flow field visualization and quantification of the fluid dynamical effects presented here.

  7. Method of inhibiting dislocation generation in silicon dendritic webs

    DOEpatents

    Spitznagel, John A.; Seidensticker, Raymond G.; McHugh, James P.

    1990-11-20

    A method of tailoring the heat balance of the outer edge of the dendrites adjacent the meniscus to produce thinner, smoother dendrites, which have substantially less dislocation sources contiguous with the dendrites, by changing the view factor to reduce radiation cooling or by irradiating the dendrites with light from a quartz lamp or a laser to raise the temperature of the dendrites.

  8. Transcranial magnetic stimulation (TMS) inhibits cortical dendrites.

    PubMed

    Murphy, Sean C; Palmer, Lucy M; Nyffeler, Thomas; Müri, René M; Larkum, Matthew E

    2016-03-18

    One of the leading approaches to non-invasively treat a variety of brain disorders is transcranial magnetic stimulation (TMS). However, despite its clinical prevalence, very little is known about the action of TMS at the cellular level let alone what effect it might have at the subcellular level (e.g. dendrites). Here, we examine the effect of single-pulse TMS on dendritic activity in layer 5 pyramidal neurons of the somatosensory cortex using an optical fiber imaging approach. We find that TMS causes GABAB-mediated inhibition of sensory-evoked dendritic Ca(2+) activity. We conclude that TMS directly activates fibers within the upper cortical layers that leads to the activation of dendrite-targeting inhibitory neurons which in turn suppress dendritic Ca(2+) activity. This result implies a specificity of TMS at the dendritic level that could in principle be exploited for investigating these structures non-invasively.

  9. Dendritic web silicon for solar cell application

    NASA Technical Reports Server (NTRS)

    Seidensticker, R. G.

    1977-01-01

    The dendritic web process for growing long thin ribbon crystals of silicon and other semiconductors is described. Growth is initiated from a thin wirelike dendrite seed which is brought into contact with the melt surface. Initially, the seed grows laterally to form a button at the melt surface; when the seed is withdrawn, needlelike dendrites propagate from each end of the button into the melt, and the web portion of the crystal is formed by the solidification of the liquid film supported by the button and the bounding dendrites. Apparatus used for dendritic web growth, material characteristics, and the two distinctly different mechanisms involved in the growth of a single crystal are examined. The performance of solar cells fabricated from dendritic web material is indistinguishable from the performance of cells fabricated from Czochralski grown material.

  10. Cell-intrinsic drivers of dendrite morphogenesis

    PubMed Central

    Puram, Sidharth V.; Bonni, Azad

    2013-01-01

    The proper formation and morphogenesis of dendrites is fundamental to the establishment of neural circuits in the brain. Following cell cycle exit and migration, neurons undergo organized stages of dendrite morphogenesis, which include dendritic arbor growth and elaboration followed by retraction and pruning. Although these developmental stages were characterized over a century ago, molecular regulators of dendrite morphogenesis have only recently been defined. In particular, studies in Drosophila and mammalian neurons have identified numerous cell-intrinsic drivers of dendrite morphogenesis that include transcriptional regulators, cytoskeletal and motor proteins, secretory and endocytic pathways, cell cycle-regulated ubiquitin ligases, and components of other signaling cascades. Here, we review cell-intrinsic drivers of dendrite patterning and discuss how the characterization of such crucial regulators advances our understanding of normal brain development and pathogenesis of diverse cognitive disorders. PMID:24255095

  11. Activation of bone marrow-resident memory T cells by circulating, antigen-bearing dendritic cells

    PubMed Central

    Cavanagh, Lois L.; Bonasio, Roberto; Mazo, Irina B.; Halin, Cornelia; Cheng, Guiying; van der Velden, Adrianus W. M.; Cariappa, Annaiah; Chase, Catherine; Russell, Paul; Starnbach, Michael N.; Koni, Pandelakis A.; Pillai, Shiv; Weninger, Wolfgang; von Andrian, Ulrich H.

    2006-01-01

    Dendritic cells (DC) carry antigen from peripheral tissues via lymphatics to lymph nodes (LN). We report that differentiated DC can also travel from the periphery into the blood. Circulating DC migrated to the spleen, liver and lung, but not LN. They also homed to the bone marrow (BM) where they were better retained than in most other tissues. DC homing to the BM depended on constitutively expressed VCAM-1 and endothelial selectins in BM microvessels. Two-photon intravital microscopy in BM cavities revealed that DC formed stable antigen-dependent contacts with BM-resident central memory T cells. Moreover, using this novel migratory pathway, antigen-pulsed DC could trigger central memory T cell-mediated recall responses in the BM. PMID:16155571

  12. A dendritic cell-stromal axis maintains immune responses in lymph nodes

    PubMed Central

    Kumar, Varsha; Dasoveanu, Dragos C.; Chyou, Susan; Tzeng, Te-Chen; Rozo, Cristina; Liang, Yong; Stohl, William; Fu, Yang-Xin; Ruddle, Nancy; Lu, Theresa T.

    2015-01-01

    Summary Within secondary lymphoid tissues, stromal reticular cells support lymphocyte function, and targeting reticular cells is a potential strategy for controlling pathogenic lymphocytes in disease. However, the mechanisms that regulate reticular cell function are not well understood. Here we found that during an immune response in lymph nodes, dendritic cells (DCs) maintain reticular cell survival in multiple compartments. DC-derived lymphotoxin beta receptor (LTβR) ligands were critical mediators, and LTβR signaling on reticular cells mediated cell survival by modulating podoplanin (PDPN). PDPN modulated integrin-mediated cell adhesion, which maintained cell survival. This DC-stromal axis maintained lymphocyte survival and the ongoing immune response. Our findings provide insight into the functions of DCs, LTβR, and PDPN and delineate a DC-stromal axis that can potentially be targeted in autoimmune or lymphoproliferative diseases. PMID:25902483

  13. The Equiaxed Dendritic Solidification Experiment (EDSE)

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The Equiaxed Dendritic Solidification Experiment (EDSE) is a material sciences investigation under the Formation of Microstructures/pattern formation discipline. The objective is to study the microstructural evolution of and thermal interactions between several equiaxed crystals growing dendritically in a supercooled melt of a pure and transparent substance under diffusion controlled conditions. Dendrites growing at .4 supercooling from a 2 stinger growth chamber for the EDSE in the Microgravity Development Lab (MDL).

  14. Renal dendritic cells sample blood-borne antigen and guide T-cell migration to the kidney by means of intravascular processes.

    PubMed

    Yatim, Karim M; Gosto, Minja; Humar, Rishab; Williams, Amanda L; Oberbarnscheidt, Martin H

    2016-10-01

    Bony fish are among the first vertebrates to possess an innate and adaptive immune system. In these species, the kidney has a dual function: filtering solutes similar to mammals and acting as a lymphoid organ responsible for hematopoiesis and antigen processing. Recent studies have shown that the mammalian kidney has an extensive network of mononuclear phagocytes, whose function is not fully understood. Here, we employed two-photon intravital microscopy of fluorescent reporter mice to demonstrate that renal dendritic cells encase the microvasculature in the cortex, extend dendrites into the peritubular capillaries, and sample the blood for antigen. We utilized a mouse model of systemic bacterial infection as well as immune complexes to demonstrate antigen uptake by renal dendritic cells. As a consequence, renal dendritic cells mediated T-cell migration into the kidney in an antigen-dependent manner in the setting of bacterial infection. Thus, renal dendritic cells may be uniquely positioned to play an important role not only in surveillance of systemic infection but also in local infection and autoimmunity.

  15. Dendrite preventing separator for secondary lithium batteries

    NASA Technical Reports Server (NTRS)

    Shen, David H. (Inventor); Surampudi, Subbarao (Inventor); Huang, Chen-Kuo (Inventor); Halpert, Gerald (Inventor)

    1993-01-01

    Dendrites are prevented from shorting a secondary lithium battery by use of a first porous separator, such as porous polypropylene, adjacent to the lithium anode that is unreactive with lithium and a second porous fluoropolymer separator between the cathode and the first separator, such as polytetrafluoroethylene, that is reactive with lithium. As the tip of a lithium dendrite contacts the second separator, an exothermic reaction occurs locally between the lithium dendrite and the fluoropolymer separator. This results in the prevention of the dendrite propagation to the cathode.

  16. Dendrite preventing separator for secondary lithium batteries

    NASA Technical Reports Server (NTRS)

    Shen, David H. (Inventor); Surampudi, Subbarao (Inventor); Huang, Chen-Kuo (Inventor); Halpert, Gerald (Inventor)

    1995-01-01

    Dendrites are prevented from shorting a secondary lithium battery by use of a first porous separator such as porous polypropylene adjacent the lithium anode that is unreactive with lithium and a second porous fluoropolymer separator between the cathode and the first separator such as polytetrafluoroethylene that is reactive with lithium. As the tip of a lithium dendrite contacts the second separator, an exothermic reaction occurs locally between the lithium dendrite and the fluoropolymer separator. This results in the prevention of the dendrite propagation to the cathode.

  17. Hierarchical assembly of diphenylalanine into dendritic nanoarchitectures.

    PubMed

    Han, Tae Hee; Oh, Jun Kyun; Lee, Gyoung-Ja; Pyun, Su-Il; Kim, Sang Ouk

    2010-09-01

    Highly ordered, multi-dimensional dendritic nanoarchitectures were created via self-assembly of diphenylalanine from an acidic buffer solution. The self-similarity of dendritic structures was characterized by examining their fractal dimensions with the box-counting method. The fractal dimension was determined to be 1.7, which demonstrates the fractal dimension of structures generated by diffusion limited aggregation on a two-dimensional substrate surface. By confining the dendritic assembly of diphenylalanine within PDMS microchannels, the self-similar dendritic growth could be hierarchically directed to create linearly assembled nanoarchitectures. Our approach offers a novel pathway for creating and directing hierarchical nanoarchitecture from biomolecular assembly. PMID:20605423

  18. Precipitation dendrites in turbulent pipe flows

    NASA Astrophysics Data System (ADS)

    Angheluta, Luiza; Hawkins, Christopher; Hammer, Øyvind; Jamtveit, Bjørn

    2013-04-01

    Surface precipitation in pipelines, as well as freezing in water pipes is of great concern in many industrial applications where scaling phenomena becomes a control problem of pipe-clogging or an efficiency reduction in transport. Flow blockage often occurs even when only a small fraction is deposited non-uniformly on the walls in the form of dendrites. Dendritic patterns are commonly encountered in surface precipitation from supersaturated solutions, e.g. calcite dendrites, as well as in solidification from undercooled liquids, e.g. freezing of water into ice dendrites. We explore the mathematical similarities between precipitation and freezing processes and, in particular, investigate the effect of fluid flow on the precipitation dendrites on pipe walls. We use a phase field approach to model surface growth coupled with a lattice Boltzmann method that simulates a channel flow at varying Reynolds number. The dendrites orientation and shape depend non-trivially on the ratio between advection and diffusion, i.e. the Peclet number, as well as the Reynolds number. Roughness induced vortices near growing dendrites at high flow rates further affect the branch splitting of dendrites. We show how the transport rate in a pipeline may depend on the different dendritic morphologies, and provide estimates for the flow conditions that correspond to most efficient transport regimes.

  19. Inflammatory Monocytes Are Critical for Induction of a Polysaccharide-Specific Antibody Response to an Intact Bacterium

    PubMed Central

    Chen, Quanyi

    2013-01-01

    Although inflammatory monocytes (IM) (CD11b+Ly6Chi cells) have been shown to play important roles in cell-mediated host protection against intracellular bacteria, protozoans, and fungi, their potential impact on humoral immune responses to extracellular bacteria are unknown. IM, localized largely to the splenic marginal zone of naive CD11b–diphtheria toxin (DT) receptor bone marrow–chimeric mice were selectively depleted following treatment with DT, including no reduction of CD11b+ peritoneal B cells. Depletion of IM resulted in a marked reduction in the polysaccharide (PS)-specific, T cell–independent IgM, and T cell–dependent IgG responses to intact, heat-killed Streptococcus pneumoniae with no effect on the associated S. pneumoniae protein–specific IgG response or on the PS- and protein-specific IgG responses to a soluble pneumococcal conjugate vaccine. IM acted largely within the first 48 h following the initiation of the immune response to S. pneumoniae to induce the subsequent production of PS-specific IgM and IgG. Adoptive transfer of highly purified IM from wild-type mice into DT-treated CD11b–DT receptor mice completely restored the defective PS-specific Ig response to S. pneumoniae. IM were phenotypically and functionally distinct from circulating CD11b+CD11clowLy6G/C cells (immature blood dendritic cells), previously described to play a role in Ig responses to S. pneumoniae, in that they were CD11c− as well as Ly6Chi and did not internalize injected S. pneumoniae during the early phase of the response. These data are the first, to our knowledge, to establish a critical role for IM in the induction of an Ig response to an intact extracellular bacterium. PMID:23269244

  20. Induction machine

    DOEpatents

    Owen, Whitney H.

    1980-01-01

    A polyphase rotary induction machine for use as a motor or generator utilizing a single rotor assembly having two series connected sets of rotor windings, a first stator winding disposed around the first rotor winding and means for controlling the current induced in one set of the rotor windings compared to the current induced in the other set of the rotor windings. The rotor windings may be wound rotor windings or squirrel cage windings.

  1. Ornamental comb colour predicts T-cell-mediated immunity in male red grouse Lagopus lagopus scoticus

    NASA Astrophysics Data System (ADS)

    Mougeot, Francois

    2008-02-01

    Sexual ornaments might reliably indicate the ability to cope with parasites and diseases, and a better ability to mount a primary inflammatory response to a novel challenge. Carotenoid-based ornaments are amongst the commonest sexual signals of birds and often influence mate choice. Because carotenoids are immuno-stimulants, signallers may trade-off allocating these to ornamental colouration or using them for immune responses, so carotenoid-based ornaments might be particularly useful as honest indicators of immuno-compentence. Tetraonid birds, such as the red grouse Lagopus lagopus scoticus, exhibit supra-orbital yellow red combs, a conspicuous ornament which functions in intra- and inter-sexual selection. The colour of combs is due to epidermal pigmentation by carotenoids, while their size is testosterone-dependent. In this study, I investigated whether comb characteristics, and in particular, comb colour, indicated immuno-competence in free-living male red grouse. I assessed T-cell-mediated immunity using a standardised challenge with phytohaemagglutinin. Red grouse combs reflect in the red and in the ultraviolet spectrum of light, which is not visible to humans but that grouse most likely see, so I measured comb colour across the whole bird visible spectrum (300 700 nm) using a reflectance spectrometer. I found that males with bigger and redder combs, but with less ultraviolet reflectance, had greater T-cell-mediated immune response. Comb colour predicted T-cell-mediated immune response better than comb size, indicating that the carotenoid-based colouration of this ornament might reliably signal this aspect of male quality.

  2. Immunomodulatory activity of mefenamic acid in mice models of cell-mediated and humoral immunity

    PubMed Central

    Shabbir, Arham; Arshad, Hafiza Maida; Shahzad, Muhammad; Shamsi, Sadia; Ashraf, Muhammad Imran

    2016-01-01

    Objectives: Previously, different nonsteroidal anti-inflammatory drugs (NSAIDs) have been evaluated for their potential immunomodulatory activities. Mefenamic acid is a well-known NSAID and is used in the treatment of musculoskeletal disorders, inflammation, fever, and pain. To the best of our knowledge, promising data regarding the immunomodulatory activity of mefenamic acid is scarce. Current study investigates the immunomodulatory activity of mefenamic acid in different models of cell-mediated and humoral immunity. Materials and Methods: Immunomodulatory effects on cell-mediated immunity were evaluated using dinitrochlorobenzene-induced delayed type hypersensitivity (DTH) and cyclophosphamide-induce myelosuppression assays. While effects on humoral immunity were evaluated using hemagglutination assay and mice lethality test. Results: Hematological analysis showed that mefenamic acid significantly reduced white blood cell count, red blood cell (RBC) count, hemoglobin content, lymphocytes levels, and neutrophils levels in healthy mice as compared with control, suggesting the immunosuppressive activity of mefenamic acid. Treatment with mefenamic acid also significantly reduced all the hematological parameters in cyclophosphamide-induced neutropenic mice, as compared with positive control group. We found that treatment with mefenamic acid significantly suppressed DTH after 24 h, 48 h, and 72 h, as compared with positive control group. Mefenamic acid treated groups showed a significant reduction in antibody titer against sheep RBCs as compared to control group, similar to the effect of cyclophosphamide. We also found increased mice lethality rate in mefenamic acid treated groups, as compared with positive control group. Conclusions: The results provided basic information of immunosuppression of mefenamic acid on both cell-mediated and humoral immunity. PMID:27127320

  3. The PHA Test Reflects Acquired T-Cell Mediated Immunocompetence in Birds

    PubMed Central

    Tella, José L.; Lemus, Jesús A.; Carrete, Martina; Blanco, Guillermo

    2008-01-01

    Background cological immunology requires techniques to reliably measure immunocompetence in wild vertebrates. The PHA-skin test, involving subcutaneous injection of a mitogen (phytohemagglutinin, PHA) and measurement of subsequent swelling as a surrogate of T-cell mediated immunocompetence, has been the test of choice due to its practicality and ease of use in the field. However, mechanisms involved in local immunological and inflammatory processes provoked by PHA are poorly known, and its use and interpretation as an acquired immune response is currently debated. Methodology Here, we present experimental work using a variety of parrot species, to ascertain whether PHA exposure produces larger secondary than primary responses as expected if the test reflects acquired immunocompetence. Moreover, we simultaneously quantified T-lymphocyte subsets (CD4+, CD5+ and CD8+) and plasma proteins circulating in the bloodstream, potentially involved in the immunological and inflammatory processes, through flow cytometry and electrophoresis. Principal Findings Our results showed stronger responses after a second PHA injection, independent of species, time elapsed and changes in body mass of birds between first and second injections, thus supporting the adaptive nature of this immune response. Furthermore, the concomitant changes in the plasma concentrations of T-lymphocyte subsets and globulins indicate a causal link between the activation of the T-cell mediated immune system and local tissue swelling. Conclusions/Significance These findings justify the widespread use of the PHA-skin test as a reliable evaluator of acquired T-cell mediated immunocompetence in diverse biological disciplines. Further experimental research should be aimed at evaluating the relative role of innate immunocompetence in wild conditions, where the access to dietary proteins varies more than in captivity, and to ascertain how PHA responses relate to particular host-parasite interactions. PMID:18820730

  4. Dehydroeffusol effectively inhibits human gastric cancer cell-mediated vasculogenic mimicry with low toxicity

    SciTech Connect

    Liu, Wenming; Meng, Mei; Zhang, Bin; Du, Longsheng; Pan, Yanyan; Yang, Ping; Gu, Zhenlun; Zhou, Quansheng Cao, Zhifei

    2015-09-01

    Accumulated data has shown that various vasculogenic tumor cells, including gastric cancer cells, are able to directly form tumor blood vessels via vasculogenic mimicry, supplying oxygen and nutrients to tumors, and facilitating progression and metastasis of malignant tumors. Therefore, tumor vasculogenic mimicry is a rational target for developing novel anticancer therapeutics. However, effective antitumor vasculogenic mimicry-targeting drugs are not clinically available. In this study, we purified 2,7-dihydroxyl-1-methyl-5-vinyl-phenanthrene, termed dehydroeffusol, from the traditional Chinese medicinal herb Juncus effusus L., and found that dehydroeffusol effectively inhibited gastric cancer cell-mediated vasculogenic mimicry in vitro and in vivo with very low toxicity. Dehydroeffusol significantly suppressed gastric cancer cell adhesion, migration, and invasion. Molecular mechanistic studies revealed that dehydroeffusol markedly inhibited the expression of a vasculogenic mimicry master gene VE-cadherin and reduced adherent protein exposure on the cell surface by inhibiting gene promoter activity. In addition, dehydroeffusol significantly decreased the expression of a key vasculogenic gene matrix metalloproteinase 2 (MMP2) in gastric cancer cells, and diminished MMP2 protease activity. Together, our results showed that dehydroeffusol effectively inhibited gastric cancer cell-mediated vasculogenic mimicry with very low toxicity, suggesting that dehydroeffusol is a potential drug candidate for anti-gastric cancer neovascularization and anti-gastric cancer therapy. - Highlights: • Dehydroeffusol markedly inhibits gastric cancer cell-mediated vasculogenic mimicry. • Dehydroeffusol suppresses the expression of vasculogenic mimicry key gene VE-cadherin. • Dehydroeffusol decreases the MMP2 expression and activity in gastric cancer cells. • Dehydroeffusol is a potential anti-cancer drug candidate with very low toxicity.

  5. Mode of dendrite growth in undercooled alloy melts

    SciTech Connect

    Li, J.; Yang, G.; Zhou, Y.

    1998-01-01

    The mode of dendrite growth in the undercooled Ni-50 at% Cu alloy was investigated. At lower undercoolings, the dendrite growth is mainly controlled by solute diffusion, and the formed dendritic morphologies are similar to those of the conventional as-cast equiaxed crystals, except that here the branches are much denser. At higher undercoolings, however, the severe solutal trapping that results from high dendrite growth velocity weakens the effect of solute diffusion on the dendrite growth. In this case, the dendrites branch in the bunching form. The dendrite spacings were measured, and the results were interpreted with the current dendrite growth theories.

  6. Monocyte-derived dendritic cells identified as booster of T follicular helper cell differentiation

    PubMed Central

    Fillatreau, Simon

    2014-01-01

    Adjuvants play an essential role in the induction of acquired immunity upon vaccination with protein antigen. In this issue of EMBO Molecular Medicine, a classical type of adjuvant made of DNA oligonucleotide containing CpG motifs, which has already been used in humans, is shown to boost humoral immunity primarily by acting on monocyte-derived dendritic cells. This study provides novel insight on the mode of action of adjuvant targeting Toll-like receptors. PMID:24803394

  7. HLA Associations and Clinical Implications in T-Cell Mediated Drug Hypersensitivity Reactions: An Updated Review

    PubMed Central

    Cheng, Chi-Yuan; Chen, Chi-Hua; Chen, Wei-Li; Deng, Shin-Tarng; Chung, Wen-Hung

    2014-01-01

    T-cell mediated drug hypersensitivity reactions may range from mild rash to severe fatal reactions. Among them, drug reaction with eosinophilia and systemic symptoms (DRESS) or drug-induced hypersensitivity syndrome (DIHS), Stevens-Johnson syndrome/ toxic epidermal necrolysis (SJS/TEN), are some of the most life-threatening severe cutaneous adverse reactions (SCARs). Recent advances in pharmacogenetic studies show strong genetic associations between human leukocyte antigen (HLA) alleles and susceptibility to drug hypersensitivity. This review summarizes the literature on recent progresses in pharmacogenetic studies and clinical application of pharmacogenetic screening based on associations between SCARs and specific HLA alleles to avoid serious conditions associated with drug hypersensitivity. PMID:24901010

  8. Essential oil of clove (Eugenia caryophyllata) augments the humoral immune response but decreases cell mediated immunity.

    PubMed

    Halder, Sumita; Mehta, Ashish K; Mediratta, Pramod K; Sharma, Krishna K

    2011-08-01

    The present study was undertaken to explore the effect of the essential oil isolated from the buds of Eugenia caryophyllata on some immunological parameters. Humoral immunity was assessed by measuring the hemagglutination titre to sheep red blood cells and delayed type hypersensitivity was assessed by measuring foot pad thickness. Clove oil administration produced a significant increase in the primary as well as secondary humoral immune response. In addition, it also produced a significant decrease in foot pad thickness compared with the control group. Thus, these results suggest that clove oil can modulate the immune response by augmenting humoral immunity and decreasing cell mediated immunity.

  9. Essential oil of clove (Eugenia caryophyllata) augments the humoral immune response but decreases cell mediated immunity.

    PubMed

    Halder, Sumita; Mehta, Ashish K; Mediratta, Pramod K; Sharma, Krishna K

    2011-08-01

    The present study was undertaken to explore the effect of the essential oil isolated from the buds of Eugenia caryophyllata on some immunological parameters. Humoral immunity was assessed by measuring the hemagglutination titre to sheep red blood cells and delayed type hypersensitivity was assessed by measuring foot pad thickness. Clove oil administration produced a significant increase in the primary as well as secondary humoral immune response. In addition, it also produced a significant decrease in foot pad thickness compared with the control group. Thus, these results suggest that clove oil can modulate the immune response by augmenting humoral immunity and decreasing cell mediated immunity. PMID:21796701

  10. In vivo dendrite regeneration after injury is different from dendrite development.

    PubMed

    Thompson-Peer, Katherine L; DeVault, Laura; Li, Tun; Jan, Lily Yeh; Jan, Yuh Nung

    2016-08-01

    Neurons receive information along dendrites and send signals along axons to synaptic contacts. The factors that control axon regeneration have been examined in many systems, but dendrite regeneration has been largely unexplored. Here we report that, in intact Drosophila larvae, a discrete injury that removes all dendrites induces robust dendritic growth that recreates many features of uninjured dendrites, including the number of dendrite branches that regenerate and responsiveness to sensory stimuli. However, the growth and patterning of injury-induced dendrites is significantly different from uninjured dendrites. We found that regenerated arbors cover much less territory than uninjured neurons, fail to avoid crossing over other branches from the same neuron, respond less strongly to mechanical stimuli, and are pruned precociously. Finally, silencing the electrical activity of the neurons specifically blocks injury-induced, but not developmental, dendrite growth. By elucidating the essential features of dendrites grown in response to acute injury, our work builds a framework for exploring dendrite regeneration in physiological and pathological conditions. PMID:27542831

  11. Early events in axon/dendrite polarization.

    PubMed

    Cheng, Pei-lin; Poo, Mu-ming

    2012-01-01

    Differentiation of axons and dendrites is a critical step in neuronal development. Here we review the evidence that axon/dendrite formation during neuronal polarization depends on the intrinsic cytoplasmic asymmetry inherited by the postmitotic neuron, the exposure of the neuron to extracellular chemical factors, and the action of anisotropic mechanical forces imposed by the environment. To better delineate the functions of early signals among a myriad of cellular components that were shown to influence axon/dendrite formation, we discuss their functions by distinguishing their roles as determinants, mediators, or modulators and consider selective degradation of these components as a potential mechanism for axon/dendrite polarization. Finally, we examine whether these early events of axon/dendrite formation involve local autocatalytic activation and long-range inhibition, as postulated by Alan Turing for the morphogenesis of patterned biological structure.

  12. Early events in axon/dendrite polarization.

    PubMed

    Cheng, Pei-lin; Poo, Mu-ming

    2012-01-01

    Differentiation of axons and dendrites is a critical step in neuronal development. Here we review the evidence that axon/dendrite formation during neuronal polarization depends on the intrinsic cytoplasmic asymmetry inherited by the postmitotic neuron, the exposure of the neuron to extracellular chemical factors, and the action of anisotropic mechanical forces imposed by the environment. To better delineate the functions of early signals among a myriad of cellular components that were shown to influence axon/dendrite formation, we discuss their functions by distinguishing their roles as determinants, mediators, or modulators and consider selective degradation of these components as a potential mechanism for axon/dendrite polarization. Finally, we examine whether these early events of axon/dendrite formation involve local autocatalytic activation and long-range inhibition, as postulated by Alan Turing for the morphogenesis of patterned biological structure. PMID:22715881

  13. Fas and its ligand in a general mechanism of T-cell-mediated cytotoxicity.

    PubMed Central

    Hanabuchi, S; Koyanagi, M; Kawasaki, A; Shinohara, N; Matsuzawa, A; Nishimura, Y; Kobayashi, Y; Yonehara, S; Yagita, H; Okumura, K

    1994-01-01

    To investigate the mechanisms of T-cell-mediated cytotoxicity, we estimated the involvement of apoptosis-inducing Fas molecule on the target cells and its ligand on the effector cells. When redirected by ConA or anti-CD3 monoclonal antibody, a CD4+ T-cell clone, BK1, could lyse the target cells expressing wild-type Fas molecule but not those expressing death signaling-deficient mutants. This indicates the involvement of Fas-mediated signal transduction in the target cell lysis by BK1. Anti-CD3-activated but not resting BK1 expressed Fas ligand as detected by binding of a soluble Fas-Ig fusion protein, and the BK1-mediated cytotoxicity was blocked by the addition of Fas-Ig, implicating the inducible Fas ligand in the BK1 cytotoxicity. Ability to exert the Fas-mediated cytotoxicity was not confined to BK1, but splenic CD4+ T cells and, to a lesser extent, CD8+ T cells could also exert the Fas-dependent target cell lysis. This indicates that the Fas-mediated target cell lytic pathway can be generally involved in the T-cell-mediated cytotoxicity. Interestingly, CD4+ T cells prepared from gld/gld mice did not mediate the Fas-mediated cytotoxicity, indicating defective expression of functional Fas ligand in gld mice. PMID:7515183

  14. Stephanthraniline A suppressed CD4(+) T cell-mediated immunological hepatitis through impairing PKCθ function.

    PubMed

    Chen, Feng-Yang; Zhou, Li-Fei; Li, Xiao-Yu; Zhao, Jia-Wen; Xu, Shi-Fang; Huang, Wen-Hai; Gao, Li-Juan; Hao, Shu-Juan; Ye, Yi-Ping; Sun, Hong-Xiang

    2016-10-15

    Stephanthraniline A (STA), a C21 steroid isolated from Stephanotis mucronata (Blanco) Merr., was previously shown to inhibit T cells activation and proliferation in vitro and in vivo. The purpose of this study was to further evaluate the in vivo immunosuppressive activity of STA and to elucidate its potential mechanisms. The results showed that pretreatment with STA significantly attenuated concanavalin A (Con A)-induced hepatitis and reduced CD4(+) T cells activation and aggregation in hepatic tissue in mice. STA directly suppressed the activation and proliferation of Con A-induced CD4(+) T cells, and inhibited NFAT, NFκB and MAPK signaling cascades in activated CD4(+) T cells in vitro. Moreover, it was proved that STA inhibited T cells activation and proliferation through proximal T cell-receptor (TCR) signaling- and Ca(2+) signaling-independent way. The molecular docking studies predicted that STA could tight bind to PKCθ via five hydrogen. The further findings indicated STA directly inhibited PKCθ kinase activity, and its phosphorylation in activated CD4(+) T cells in vitro. Collectively, the present study indicated that STA could protect against CD4(+) T cell-mediated immunological hepatitis in mice through PKCθ and its downstream NFAT, NFκB and MAPK signaling cascades. These results highlight the potential of STA as an effective leading compound for use in the treatment of CD4(+) T cell-mediated inflammatory and autoimmune diseases.

  15. DEPRESSED CELL-MEDIATED IMMUNITY IN PATIENTS WITH PRIMARY INTRACRANIAL TUMORS

    PubMed Central

    Brooks, William H.; Netsky, Martin G.; Normansell, David E.; Horwitz, David A.

    1972-01-01

    Tumor immunity in patients with primary intracranial tumors was assessed in relation to the general status of host immunocompetence. Lymphocyte sensitization to tumor-specific membrane antigens was demonstrated by the proliferative response of lymphocytes in the presence of autochthonous tumor cells. Paradoxically, one-half of the patients could not be sensitized to a primary antigen, dinitrochlorobenzene; existing delayed hypersensitivity was also depressed, as measured by skin tests and lymphocyte transformation in response to common antigens. A heat-stable factor in patients' sera blocked cell-mediated tumor immunity. In addition, these "enhancing" sera consistently suppressed the blastogenic response of autologous and homologous lymphocytes to phytohemagglutinin and to membrane antigens on allogeneic cells in the one-way mixed lymphocyte culture. When patients' leukocytes were washed and autologous plasma replaced with normal plasma, reactivity in the mixed lymphocyte culture increased to normal values. In vitro immunosuppressive activity in patients' plasma or sera correlated with depressed delayed hypersensitivity. After removal of the tumor, suppressor activity disappeared. IgG fractions of patient sera contained strong immunosuppressive activity. These data suggest that the suppressor factor may be an isoantibody elicited by the tumor that also binds to receptors on the lymphocyte membrane. In addition to specifically blocking cell-mediated tumor immunity, enhancing sera may broadly depress host immunocompetence. PMID:4345108

  16. Cordyceps militaris Enhances Cell-Mediated Immunity in Healthy Korean Men.

    PubMed

    Kang, Ho Joon; Baik, Hyun Wook; Kim, Sang Jung; Lee, Seong Gyu; Ahn, Hong Yup; Park, Ju Sang; Park, Sang Jong; Jang, Eun Jeong; Park, Sang Woon; Choi, Jin Young; Sung, Ji Hee; Lee, Seung Min

    2015-10-01

    Cordyceps militaris is a mushroom traditionally used for diverse pharmaceutical purposes in East Asia, including China, and has been found to be effective for enhancing immunity through various types of animal testing. The aim of this study is to determine the efficacy of C. militaris for enhancing cell-mediated immunity and its safety in healthy male adults. Healthy male adults were divided into the experimental group (n = 39), given 1.5 g/day of ethanol treated C. militaris in capsules, and the control group (n = 40), given the same number of identical placebo capsules filled with microcrystalline cellulose and lactose for 4 weeks from February 13 to March 14, 2012; the natural killer (NK) cell activity, lymphocyte proliferation index (PI), and T-helper cell 1 (Th1) cytokine cluster (interferon [IFN]-γ, interleukin [IL]-12, IL-2, and tumor necrosis factor [TNF]-α) were measured, along with stability test, at weeks 0, 2, and 4. The C. militaris group showed a statistically significant greater increase in NK200 (P = .0010), lymphocyte PI (P ≤ .0001), IL-2 (P = .0096), and IFN-γ (P = .0126), compared with the basal level, than the placebo group. There was no statistically significant adverse reaction. C. militaris enhanced the NK cell activity and lymphocyte proliferation and partially increased Th1 cytokine secretion. Therefore, C. militaris is safe and effective for enhancing cell-mediated immunity of healthy male adults. PMID:26284906

  17. Cell-mediated BMP-2 liberation promotes bone formation in a mechanically unstable implant environment.

    PubMed

    Hägi, Tobias T; Wu, Gang; Liu, Yuelian; Hunziker, Ernst B

    2010-05-01

    The flexible alloplastic materials that are used in bone-reconstruction surgery lack the mechanical stability that is necessary for sustained bone formation, even if this process is promoted by the application of an osteogenic agent, such as BMP-2. We hypothesize that if BMP-2 is delivered gradually, in a cell-mediated manner, to the surgical site, then the scaffolding material's lack of mechanical stability becomes a matter of indifference. Flexible discs of Ethisorb were functionalized with BMP-2, which was either adsorbed directly onto the material (rapid release kinetics) or incorporated into a calcium-phosphate coating (slow release kinetics). Unstabilized and titanium-plate-stabilized samples were implanted subcutaneously in rats and retrieved up to 14 days later for a histomorphometric analysis of bone and cartilage volumes. On day 14, the bone volume associated with titanium-plate-stabilized discs bearing an adsorbed depot of BMP-2 was 10-fold higher than that associated with their mechanically unstabilized counterparts. The bone volume associated with discs bearing a coating-incorporated depot of BMP-2 was similar in the mechanically unstabilized and titanium-plate-stabilized groups, and comparable to that associated with the titanium-plate-stabilized discs bearing an adsorbed depot of BMP-2. Hence, if an osteogenic agent is delivered in a cell-mediated manner (via coating degradation), ossification can be promoted even within a mechanically unstable environment.

  18. Human prealbumin fraction: effects on cell-mediated immunity and tumor rejection

    SciTech Connect

    Leung, K.H.; Ehrke, M.J.; Bercsenyi, K.; Mihich, E.

    1982-02-01

    The effect of human prealbumin fraction as allogeneic cell-mediated immunity in primary sensitization cultures of murine spleen cells was studied by 3H-thymidine uptake and specific 51Cr release assays. Prealbumin caused a dose-dependent augmentation of these responses. Human serum albumin, bovine serum albumin, and calf-thymosin fraction 5 had little effect. Prealbumin was active when added on day 0 or 1 but not thereafter. Prealbumin added to effector cells from immunized mice did not change their lytic activity. Prealbumin, but not human serum albumin or thymosin fraction 5, augmented secondary cell-mediated immunity in culture after primary immunization in mice. A slow growing mammary tumor line, which originated as a spontaneous mammary tumor in a DBA/2 HaDD breeder mouse, initially grows in 100% of DBA/2J mice but is then rejected in 10 to 20% of them. When prealbumin (59 microgram/day) was given subcutaneously for 2 weeks to DBA/2J mice and the tumor implanted 2 weeks later. 78% of the mice rejected the tumor and were then resistant to a rechallenge.

  19. Design strategies and applications of circulating cell-mediated drug delivery systems

    PubMed Central

    Kim, Gloria B.; Dong, Cheng; Yang, Jian

    2015-01-01

    Drug delivery systems, particularly nanomaterial-based drug delivery systems, possess a tremendous amount of potential to improve diagnostic and therapeutic effects of drugs. Controlled drug delivery targeted to a specific disease is designed to significantly improve the pharmaceutical effects of drugs and reduce their side effects. Unfortunately, only a few targeted drug delivery systems can achieve high targeting efficiency after intravenous injection, even with the development of numerous surface markers and targeting modalities. Thus, alternative drug and nanomedicine targeting approaches are desired. Circulating cells, such as erythrocytes, leukocytes, and stem cells, present innate disease sensing and homing properties. Hence, using living cells as drug delivery carriers has gained increasing interest in recent years. This review highlights the recent advances in the design of cell-mediated drug delivery systems and targeting mechanisms. The approaches of drug encapsulation/conjugation to cell-carriers, cell-mediated targeting mechanisms, and the methods of controlled drug release are elaborated here. Cell-based “live” targeting and delivery could be used to facilitate a more specific, robust, and smart payload distribution for the next-generation drug delivery systems. PMID:25984572

  20. Fasting suppresses T cell-mediated immunity in female Mongolian gerbils (Meriones unguiculatus).

    PubMed

    Xu, De-Li; Wang, De-Hua

    2010-01-01

    Immune defense is important for organisms' survival and fitness. Small mammals in temperate zone often face seasonal food shortages. Generally fasting can suppress immune function in laboratory rodents and little information is available for wild rodents. The present study tested the hypothesis that Mongolian gerbils (Meriones unguiculatus) could inhibit T cell-mediated immunity to adapt to acute fasting. Forty-two females were divided into the fed and fasted groups, in which the latter was deprived of food for 3days. After 66h fasting, half of the gerbils in each group were injected with phosphate buffered saline or phytohaemagglutinin (PHA) solution. T cell-mediated immunity assessed by PHA response was suppressed in the fasted gerbils compared with the fed gerbils. The fasted gerbils had lower body fat mass, wet and dry thymus mass, dry spleen mass, white blood cells, serum leptin and blood glucose concentrations, but higher corticosterone concentrations than those of the controls. Moreover, PHA response was positively correlated with body fat mass and serum leptin levels in the immunochallenged groups. Taken together, acute fasting leads to immunosuppression, which might be caused by low body fat mass and low serum leptin concentrations in female Mongolian gerbils.

  1. Ripe fruit of Rubus coreanus inhibits mast cell-mediated allergic inflammation.

    PubMed

    Kim, Hui-Hun; Choi, Phil Hyung; Yoo, Jin-Su; Jeon, Hoon; Chae, Byeong-Suk; Park, Jeong-Suk; Kim, Sang-Hyun; Shin, Tae-Yong

    2012-02-01

    In this study, we investigated the effect of a water extract of the ripe fruits of Rubus coreanus Miq. (Rosaceae) (RFRC) on mast cell-mediated allergic inflammation and studied the possible mechanism of action. Mast cell-mediated allergic disease is involved in many diseases such as anaphylaxis, rhinitis, asthma and atopic dermatitis. RFRC dose-dependently inhibited compound 48/80-induced systemic anaphylaxis and serum histamine release in mice. RFRC reduced the immunoglobulin E (IgE)-mediated local allergic reaction, passive cutaneous anaphylaxis. RFRC attenuated histamine release from rat peritoneal mast cells and human mast cells by the reduction of intracellular calcium. RFRC decreased the phorbol 12-myristate 13-acetate (PMA) and the calcium ionophore A23187 (PMACI)-stimulated expression and secretion of pro-inflammatory cytokines in human mast cells. The inhibitory effect of RFRC on cytokine production was nuclear factor (NF)-κB- and mitogen-activated protein kinase (MAPK)-dependent. In addition, RFRC suppressed the activation of caspase-1. Our findings provide evidence that RFRC inhibits mast cell-derived allergic inflammatory reactions, and for the involvement of calcium, NF-κB, MAPKs and caspase-1 in these effects. Furthermore, in vivo and in vitro anti-allergic inflammatory effects of RFRC provide affirmative proof of a possible therapeutic application of this agent in allergic inflammatory diseases. PMID:22075758

  2. Compromised NK Cell-Mediated Antibody-Dependent Cellular Cytotoxicity in Chronic SIV/SHIV Infection

    PubMed Central

    He, Xuan; Li, Dan; Luo, Zhenwu; Liang, Hua; Peng, Hong; Zhao, Yangyang; Wang, Nidan; Liu, Donghua; Qin, Chuan; Wei, Qiang; Yan, Huimin; Shao, Yiming

    2013-01-01

    Increasing evidence indicates that antibody-dependent cellular cytotoxicity (ADCC) contributes to the control of HIV/SIV infection. However, little is known about the ADCC function of natural killer (NK) cells in non-human primate model. Here we demonstrated that ADCC function of NK cells was significantly compromised in chronic SIV/SHIV infection, correlating closely with the expression of FcγRIIIa receptor (CD16) on NK cells. CD32, another class of IgG Fc receptors, was identified on NK cells with higher expression in the infected macaques and the blockade of CD32 impacted the ability of NK cells to respond to antibody-coated target cells. The inhibition of matrix metalloproteases (MMPs), a group of enzymes normally involved in tissue/receptor remodeling, could restore NK cell-mediated ADCC with increased CD16 expression on macaque NK cells. These data offer a clearer understanding of NK cell-mediated ADCC in rhesus macaques, which will allow us to evaluate the ADCC repertoire arising from preclinical vaccination studies in non-human primates and inform us in the future design of effective HIV vaccination strategies. PMID:23424655

  3. Dehydroeffusol effectively inhibits human gastric cancer cell-mediated vasculogenic mimicry with low toxicity.

    PubMed

    Liu, Wenming; Meng, Mei; Zhang, Bin; Du, Longsheng; Pan, Yanyan; Yang, Ping; Gu, Zhenlun; Zhou, Quansheng; Cao, Zhifei

    2015-09-01

    Accumulated data has shown that various vasculogenic tumor cells, including gastric cancer cells, are able to directly form tumor blood vessels via vasculogenic mimicry, supplying oxygen and nutrients to tumors, and facilitating progression and metastasis of malignant tumors. Therefore, tumor vasculogenic mimicry is a rational target for developing novel anticancer therapeutics. However, effective antitumor vasculogenic mimicry-targeting drugs are not clinically available. In this study, we purified 2,7-dihydroxyl-1-methyl-5-vinyl-phenanthrene, termed dehydroeffusol, from the traditional Chinese medicinal herb Juncus effusus L., and found that dehydroeffusol effectively inhibited gastric cancer cell-mediated vasculogenic mimicry in vitro and in vivo with very low toxicity. Dehydroeffusol significantly suppressed gastric cancer cell adhesion, migration, and invasion. Molecular mechanistic studies revealed that dehydroeffusol markedly inhibited the expression of a vasculogenic mimicry master gene VE-cadherin and reduced adherent protein exposure on the cell surface by inhibiting gene promoter activity. In addition, dehydroeffusol significantly decreased the expression of a key vasculogenic gene matrix metalloproteinase 2 (MMP2) in gastric cancer cells, and diminished MMP2 protease activity. Together, our results showed that dehydroeffusol effectively inhibited gastric cancer cell-mediated vasculogenic mimicry with very low toxicity, suggesting that dehydroeffusol is a potential drug candidate for anti-gastric cancer neovascularization and anti-gastric cancer therapy.

  4. Vitamin D₃ and monomethyl fumarate enhance natural killer cell lysis of dendritic cells and ameliorate the clinical score in mice suffering from experimental autoimmune encephalomyelitis.

    PubMed

    Al-Jaderi, Zaidoon; Maghazachi, Azzam A

    2015-11-01

    Experimental autoimmune encephalomyelitis (EAE) is a CD4⁺ T cell mediated inflammatory demyelinating disease that is induced in mice by administration of peptides derived from myelin proteins. We developed EAE in SJL mice by administration of PLP139-151 peptide. The effect of treating these mice with 1α,25-Dihydroxyvitamin D₃ (vitamin D₃), or with monomethyl fumarate (MMF) was then examined. We observed that both vitamin D₃ and MMF inhibited and/or prevented EAE in these mice. These findings were corroborated with isolating natural killer (NK) cells from vitamin D₃-treated or MMF-treated EAE mice that lysed immature or mature dendritic cells. The results support and extend other findings indicating that an important mechanism of action for drugs used to treat multiple sclerosis (MS) is to enhance NK cell lysis of dendritic cells.

  5. Vitamin D3 and Monomethyl Fumarate Enhance Natural Killer Cell Lysis of Dendritic Cells and Ameliorate the Clinical Score in Mice Suffering from Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Al-Jaderi, Zaidoon; Maghazachi, Azzam A.

    2015-01-01

    Experimental autoimmune encephalomyelitis (EAE) is a CD4+ T cell mediated inflammatory demyelinating disease that is induced in mice by administration of peptides derived from myelin proteins. We developed EAE in SJL mice by administration of PLP139–151 peptide. The effect of treating these mice with 1α,25-Dihydroxyvitamin D3 (vitamin D3), or with monomethyl fumarate (MMF) was then examined. We observed that both vitamin D3 and MMF inhibited and/or prevented EAE in these mice. These findings were corroborated with isolating natural killer (NK) cells from vitamin D3-treated or MMF-treated EAE mice that lysed immature or mature dendritic cells. The results support and extend other findings indicating that an important mechanism of action for drugs used to treat multiple sclerosis (MS) is to enhance NK cell lysis of dendritic cells. PMID:26580651

  6. Complement protein C1q bound to apoptotic cells suppresses human macrophage and dendritic cell-mediated Th17 and Th1 T cell subset proliferation

    PubMed Central

    Clarke, Elizabeth V.; Weist, Brian M.; Walsh, Craig M.; Tenner, Andrea J.

    2015-01-01

    A complete genetic deficiency of the complement protein C1q results in SLE with nearly 100% penetrance in humans, but the molecular mechanisms responsible for this association have not yet been fully determined. C1q opsonizes ACs for enhanced ingestion by phagocytes, such as Mϕ and iDCs, avoiding the extracellular release of inflammatory DAMPs upon loss of the membrane integrity of the dying cell. We previously showed that human monocyte-derived Mϕ and DCs ingesting autologous, C1q-bound LALs (C1q-polarized Mϕ and C1q-polarized DCs), enhance the production of anti-inflammatory cytokines, and reduce proinflammatory cytokines relative to Mϕ or DC ingesting LAL alone. Here, we show that C1q-polarized Mϕ have elevated PD-L1 and PD-L2 and suppressed surface CD40, and C1q-polarized DCs have higher surface PD-L2 and less CD86 relative to Mϕ or DC ingesting LAL alone, respectively. In an MLR, C1q-polarized Mϕ reduced allogeneic and autologous Th17 and Th1 subset proliferation and demonstrated a trend toward increased Treg proliferation relative to Mϕ ingesting LAL alone. Moreover, relative to DC ingesting AC in the absence of C1q, C1q-polarized DCs decreased autologous Th17 and Th1 proliferation. These data demonstrate that a functional consequence of C1q-polarized Mϕ and DC is the regulation of Teff activation, thereby “sculpting” the adaptive immune system to avoid autoimmunity, while clearing dying cells. It is noteworthy that these studies identify novel target pathways for therapeutic intervention in SLE and other autoimmune diseases. PMID:25381385

  7. Impact of dendritic size and dendritic topology on burst firing in pyramidal cells.

    PubMed

    van Elburg, Ronald A J; van Ooyen, Arjen

    2010-05-13

    Neurons display a wide range of intrinsic firing patterns. A particularly relevant pattern for neuronal signaling and synaptic plasticity is burst firing, the generation of clusters of action potentials with short interspike intervals. Besides ion-channel composition, dendritic morphology appears to be an important factor modulating firing pattern. However, the underlying mechanisms are poorly understood, and the impact of morphology on burst firing remains insufficiently known. Dendritic morphology is not fixed but can undergo significant changes in many pathological conditions. Using computational models of neocortical pyramidal cells, we here show that not only the total length of the apical dendrite but also the topological structure of its branching pattern markedly influences inter- and intraburst spike intervals and even determines whether or not a cell exhibits burst firing. We found that there is only a range of dendritic sizes that supports burst firing, and that this range is modulated by dendritic topology. Either reducing or enlarging the dendritic tree, or merely modifying its topological structure without changing total dendritic length, can transform a cell's firing pattern from bursting to tonic firing. Interestingly, the results are largely independent of whether the cells are stimulated by current injection at the soma or by synapses distributed over the dendritic tree. By means of a novel measure called mean electrotonic path length, we show that the influence of dendritic morphology on burst firing is attributable to the effect both dendritic size and dendritic topology have, not on somatic input conductance, but on the average spatial extent of the dendritic tree and the spatiotemporal dynamics of the dendritic membrane potential. Our results suggest that alterations in size or topology of pyramidal cell morphology, such as observed in Alzheimer's disease, mental retardation, epilepsy, and chronic stress, could change neuronal burst firing and

  8. Adenoviral-vector-mediated gene transfer to dendritic cells.

    PubMed

    Song, W; Crystal, R G

    2001-01-01

    Dendritic cells (DC) are the most potent antigen presenting cells capable of initiating T-cell-dependent immune responses (1-5). This biologic potential can be harnessed to elicit effective antigen-specific immune responses by transferring the relevant antigens to the DC. Once the DC have been mobilized and purified, the relevant antigens can be transferred to the DC as intact proteins, or as peptides representing specific epitopes, or with gene transfer using sequences of DNA or RNA coding for the pertinent antigen(s) (6-15). Theoretically, genetically modifying DC with genes coding for specific antigens has potential advantages over pulsing the DC with peptides repeating the antigen or antigen fragment. First, the genetically modified DC may present previously unknown epitopes in association with different MHC molecules. Second, gene transfer to DC ensures that the gene product is endogenously processed, leading to the generation of MHC class I-restricted cytotoxic T lymphocytes (CTL), the effector arm of cell-mediated immune responses. Finally, in addition to genes coding for the antigen(s), genetic modification of the DC can induce genes coding for mediators relevant to generation of the immune response to the antigen(s), further boosting host responses to the antigens presented by the modified DC. Different gene transfer approaches have been explored to genetically modify DC, including retroviral vectors (16-18), recombinant vaccinia virus vectors (19), and recombinant adenovirus (Ad) vectors (19-23). The focus of this chapter is on using recombinant Ad vectors to transfer genes to murine DC. We have used a similar strategy to transfer genes to human DC (24). As an example of the power of this technology, we will describe the use of Ad-vector-modified DC to suppress the growth of tumor cells modified to express a specific antigen.

  9. Undifferentiated Wharton's Jelly Mesenchymal Stem Cell Transplantation Induces Insulin-Producing Cell Differentiation and Suppression of T-Cell-Mediated Autoimmunity in Nonobese Diabetic Mice.

    PubMed

    Tsai, Pei-Jiun; Wang, Hwai-Shi; Lin, Gu-Jiun; Chou, Shu-Cheng; Chu, Tzu-Hui; Chuan, Wen-Ting; Lu, Ying-Jui; Weng, Zen-Chung; Su, Cheng-Hsi; Hsieh, Po-Shiuan; Sytwu, Huey-Kang; Lin, Chi-Hung; Chen, Tien-Hua; Shyu, Jia-Fwu

    2015-01-01

    Type 1 diabetes mellitus is caused by T-cell-mediated autoimmune destruction of pancreatic β-cells. Systemic administration of mesenchymal stem cells (MSCs) brings about their incorporation into a variety of tissues with immunosuppressive effects, resulting in regeneration of pancreatic islets. We previously showed that human MSCs isolated from Wharton's jelly (WJ-MSCs) represent a potential cell source to treat diabetes. However, the underlying mechanisms are unclear. The purpose of this study was to discern whether undifferentiated WJ-MSCs can differentiate into pancreatic insulin-producing cells (IPCs) and modify immunological responses in nonobese diabetic (NOD) mice. Undifferentiated WJ-MSCs underwent lentiviral transduction to express green fluorescent protein (GFP) and then were injected into the retro-orbital venous sinus of NOD mice. Seven days after transplantation, fluorescent islet-like cell clusters in the pancreas were apparent. WJ-MSC-GFP-treated NOD mice had significantly lower blood glucose and higher survival rates than saline-treated mice. Systemic and local levels of autoaggressive T-cells, including T helper 1 cells and IL-17-producing T-cells, were reduced, and regulatory T-cell levels were increased. Furthermore, anti-inflammatory cytokine levels were increased, and dendritic cells were decreased. At 23 days, higher human C-peptide and serum insulin levels and improved glucose tolerance were found. Additionally, WJ-MSCs-GFP differentiated into IPCs as shown by colocalization of human C-peptide and GFP in the pancreas. Significantly more intact islets and less severe insulitis were observed. In conclusion, undifferentiated WJ-MSCs can differentiate into IPCs in vivo with immunomodulatory effects and repair the destroyed islets in NOD mice.

  10. Generation of tumor immunity by bone marrow-derived dendritic cells correlates with dendritic cell maturation stage.

    PubMed

    Labeur, M S; Roters, B; Pers, B; Mehling, A; Luger, T A; Schwarz, T; Grabbe, S

    1999-01-01

    Bone marrow-derived dendritic cells (BmDC) are potent APC and can promote antitumor immunity in mice when pulsed with tumor Ag. This study aimed to define the culture conditions and maturation stages of BmDC that enable them to optimally function as APC in vivo. BmDC cultured under various conditions (granulocyte-macrophage CSF (GM-CSF) or GM-CSF plus IL-4 alone or in combination with Flt3 ligand, TNF-alpha, LPS, or CD40 ligand (CD40L)) were analyzed morphologically, phenotypically, and functionally and were tested for their ability to promote prophylactic and/or therapeutic antitumor immunity. Each of the culture conditions generated typical BmDC. Whereas cells cultured in GM-CSF alone were functionally immature, cells incubated with CD40L or LPS were mature BmDC, as evident by morphology, capacity to internalize Ag, migration into regional lymph nodes, IL-12 secretion, and alloantigen or peptide Ag presentation in vitro. The remaining cultures exhibited intermediate dendritic cell maturation. The in vivo Ag-presenting capacity of BmDC was compared with respect to induction of both protective tumor immunity and immunotherapy of established tumors, using the poorly immunogenic squamous cell carcinoma, KLN205. In correspondence to their maturation stage, BmDC cultured in the presence of CD40L exhibited the most potent immunostimulatory effects. In general, although not entirely, the capacity of BmDC to induce an antitumor immune response in vivo correlated to their degree of maturation. The present data support the clinical use of mature, rather than immature, tumor Ag-pulsed dendritic cells as cancer vaccines and identifies CD40L as a potent stimulus to enhance their in vivo Ag-presenting capacity.

  11. Dendritic Cells and Their Multiple Roles during Malaria Infection

    PubMed Central

    Amorim, Kelly N. S.; Chagas, Daniele C. G.; Sulczewski, Fernando B.

    2016-01-01

    Dendritic cells (DCs) play a central role in the initiation of adaptive immune responses, efficiently presenting antigens to T cells. This ability relies on the presence of numerous surface and intracellular receptors capable of sensing microbial components as well as inflammation and on a very efficient machinery for antigen presentation. In this way, DCs sense the presence of a myriad of pathogens, including Plasmodium spp., the causative agent of malaria. Despite many efforts to control this infection, malaria is still responsible for high rates of morbidity and mortality. Different groups have shown that DCs act during Plasmodium infection, and data suggest that the phenotypically distinct DCs subsets are key factors in the regulation of immunity during infection. In this review, we will discuss the importance of DCs for the induction of immunity against the different stages of Plasmodium, the outcomes of DCs activation, and also what is currently known about Plasmodium components that trigger such activation. PMID:27110574

  12. Designing vaccines based on biology of human dendritic cell subsets

    PubMed Central

    Palucka, Karolina; Banchereau, Jacques; Mellman, Ira

    2010-01-01

    The effective vaccines developed against a variety of infectious agents, including polio, measles and Hepatitis B, represent major achievements in medicine. These vaccines, usually composed of microbial antigens, are often associated with an adjuvant that activates dendritic cells (DCs). Many infectious diseases are still in need of an effective vaccine including HIV, malaria, hepatitis C and tuberculosis. In some cases, the induction of cellular rather than humoral responses may be more important as the goal is to control and eliminate the existing infection rather than to prevent it. Our increased understanding of the mechanisms of antigen presentation, particularly with the description of DC subsets with distinct functions, as well as their plasticity in responding to extrinsic signals, represent opportunities to develop novel vaccines. In addition, we foresee that this increased knowledge will permit us to design vaccines that will reprogram the immune system to intervene therapeutically in cancer, allergy and autoimmunity. PMID:21029958

  13. Humoral and Cell-Mediated Immune Responses to Alternate Booster Schedules of Anthrax Vaccine Adsorbed in Humans

    PubMed Central

    Sabourin, Carol L.; Schiffer, Jarad M.; Niemuth, Nancy A.; Semenova, Vera A.; Li, Han; Rudge, Thomas L.; Brys, April M.; Mittler, Robert S.; Ibegbu, Chris C.; Wrammert, Jens; Ahmed, Rafi; Parker, Scott D.; Babcock, Janiine; Keitel, Wendy; Poland, Gregory A.; Keyserling, Harry L.; El Sahly, Hana; Jacobson, Robert M.; Marano, Nina; Plikaytis, Brian D.; Wright, Jennifer G.

    2016-01-01

    Protective antigen (PA)-specific antibody and cell-mediated immune (CMI) responses to annual and alternate booster schedules of anthrax vaccine adsorbed (AVA; BioThrax) were characterized in humans over 43 months. Study participants received 1 of 6 vaccination schedules: a 3-dose intramuscular (IM) priming series (0, 1, and 6 months) with a single booster at 42 months (4-IM); 3-dose IM priming with boosters at 18 and 42 months (5-IM); 3-dose IM priming with boosters at 12, 18, 30, and 42 months (7-IM); the 1970 licensed priming series of 6 doses (0, 0.5, 1, 6, 12, and 18 months) and two annual boosters (30 and 42 months) administered either subcutaneously (SQ) (8-SQ) or IM (8-IM); or saline placebo control at all eight time points. Antibody response profiles included serum anti-PA IgG levels, subclass distributions, avidity, and lethal toxin neutralization activity (TNA). CMI profiles included frequencies of gamma interferon (IFN-γ)- and interleukin 4 (IL-4)-secreting cells and memory B cells (MBCs), lymphocyte stimulation indices (SI), and induction of IFN-γ, IL-2, IL-4, IL-6, IL-1β, and tumor necrosis factor alpha (TNF-α) mRNA. All active schedules elicited high-avidity PA-specific IgG, TNA, MBCs, and T cell responses with a mixed Th1-Th2 profile and Th2 dominance. Anti-PA IgG and TNA were highly correlated (e.g., month 7, r2 = 0.86, P < 0.0001, log10 transformed) and declined in the absence of boosters. Boosters administered IM generated the highest antibody responses. Increasing time intervals between boosters generated antibody responses that were faster than and superior to those obtained with the final month 42 vaccination. CMI responses to the 3-dose IM priming remained elevated up to 43 months. (This study has been registered at ClinicalTrials.gov under registration no. NCT00119067.) PMID:26865594

  14. Humoral and Cell-Mediated Immune Responses to Alternate Booster Schedules of Anthrax Vaccine Adsorbed in Humans.

    PubMed

    Quinn, Conrad P; Sabourin, Carol L; Schiffer, Jarad M; Niemuth, Nancy A; Semenova, Vera A; Li, Han; Rudge, Thomas L; Brys, April M; Mittler, Robert S; Ibegbu, Chris C; Wrammert, Jens; Ahmed, Rafi; Parker, Scott D; Babcock, Janiine; Keitel, Wendy; Poland, Gregory A; Keyserling, Harry L; El Sahly, Hana; Jacobson, Robert M; Marano, Nina; Plikaytis, Brian D; Wright, Jennifer G

    2016-04-01

    Protective antigen (PA)-specific antibody and cell-mediated immune (CMI) responses to annual and alternate booster schedules of anthrax vaccine adsorbed (AVA; BioThrax) were characterized in humans over 43 months. Study participants received 1 of 6 vaccination schedules: a 3-dose intramuscular (IM) priming series (0, 1, and 6 months) with a single booster at 42 months (4-IM); 3-dose IM priming with boosters at 18 and 42 months (5-IM); 3-dose IM priming with boosters at 12, 18, 30, and 42 months (7-IM); the 1970 licensed priming series of 6 doses (0, 0.5, 1, 6, 12, and 18 months) and two annual boosters (30 and 42 months) administered either subcutaneously (SQ) (8-SQ) or IM (8-IM); or saline placebo control at all eight time points. Antibody response profiles included serum anti-PA IgG levels, subclass distributions, avidity, and lethal toxin neutralization activity (TNA). CMI profiles included frequencies of gamma interferon (IFN-γ)- and interleukin 4 (IL-4)-secreting cells and memory B cells (MBCs), lymphocyte stimulation indices (SI), and induction of IFN-γ, IL-2, IL-4, IL-6, IL-1β, and tumor necrosis factor alpha (TNF-α) mRNA. All active schedules elicited high-avidity PA-specific IgG, TNA, MBCs, and T cell responses with a mixed Th1-Th2 profile and Th2 dominance. Anti-PA IgG and TNA were highly correlated (e.g., month 7,r(2)= 0.86,P< 0.0001, log10 transformed) and declined in the absence of boosters. Boosters administered IM generated the highest antibody responses. Increasing time intervals between boosters generated antibody responses that were faster than and superior to those obtained with the final month 42 vaccination. CMI responses to the 3-dose IM priming remained elevated up to 43 months. (This study has been registered at ClinicalTrials.gov under registration no. NCT00119067.). PMID:26865594

  15. EBI2 augments Tfh cell fate by promoting interaction with IL-2-quenching dendritic cells.

    PubMed

    Li, Jianhua; Lu, Erick; Yi, Tangsheng; Cyster, Jason G

    2016-05-01

    T follicular helper (Tfh) cells are a subset of T cells carrying the CD4 antigen; they are important in supporting plasma cell and germinal centre responses. The initial induction of Tfh cell properties occurs within the first few days after activation by antigen recognition on dendritic cells, although how dendritic cells promote this cell-fate decision is not fully understood. Moreover, although Tfh cells are uniquely defined by expression of the follicle-homing receptor CXCR5 (refs 1, 2), the guidance receptor promoting the earlier localization of activated T cells at the interface of the B-cell follicle and T zone has been unclear. Here we show that the G-protein-coupled receptor EBI2 (GPR183) and its ligand 7α,25-dihydroxycholesterol mediate positioning of activated CD4 T cells at the interface of the follicle and T zone. In this location they interact with activated dendritic cells and are exposed to Tfh-cell-promoting inducible co-stimulator (ICOS) ligand. Interleukin-2 (IL-2) is a cytokine that has multiple influences on T-cell fate, including negative regulation of Tfh cell differentiation. We demonstrate that activated dendritic cells in the outer T zone further augment Tfh cell differentiation by producing membrane and soluble forms of CD25, the IL-2 receptor α-chain, and quenching T-cell-derived IL-2. Mice lacking EBI2 in T cells or CD25 in dendritic cells have reduced Tfh cells and mount defective T-cell-dependent plasma cell and germinal centre responses. These findings demonstrate that distinct niches within the lymphoid organ T zone support distinct cell fate decisions, and they establish a function for dendritic-cell-derived CD25 in controlling IL-2 availability and T-cell differentiation.

  16. Double dendrite growth in solidification.

    PubMed

    Utter, Brian; Bodenschatz, E

    2005-07-01

    We present experiments on the doublon growth morphology in directional solidification. Samples used are succinonitrile with small amounts of poly(ethylene oxide), acetone, or camphor as the solute. Doublons, or symmetry-broken dendrites, are generic diffusion-limited growth structures expected at large undercooling and low anisotropy. Low anisotropy growth is achieved by selecting a grain near the {111} plane leading to either seaweed (dense branching morphology) or doublon growth depending on experimental parameters. We find selection of doublons to be strongly dependent on solute concentration and sample orientation. Doublons are selected at low concentrations (low solutal undercooling) in contrast to the prediction of doublons at large thermal undercooling in pure materials. Doublons also exhibit preferred growth directions and changing the orientation of a specific doublonic grain changes the character and stability of the doublons. We observe transitions between seaweed and doublon growth with changes in concentration and sample orientation.

  17. Dendritic cell immunotherapy: clinical outcomes

    PubMed Central

    Apostolopoulos, Vasso; Pietersz, Geoffrey A; Tsibanis, Anastasios; Tsikkinis, Annivas; Stojanovska, Lily; McKenzie, Ian FC; Vassilaros, Stamatis

    2014-01-01

    The use of tumour-associated antigens for cancer immunotherapy studies is exacerbated by tolerance to these self-antigens. Tolerance may be broken by using ex vivo monocyte-derived dendritic cells (DCs) pulsed with self-antigens. Targeting tumour-associated antigens directly to DCs in vivo is an alternative and simpler strategy. The identification of cell surface receptors on DCs, and targeting antigens to DC receptors, has become a popular approach for inducing effective immune responses against cancer antigens. Many years ago, we demonstrated that targeting the mannose receptor on macrophages using the carbohydrate mannan to DCs led to appropriate immune responses and tumour protection in animal models. We conducted Phase I, I/II and II, clinical trials demonstrating the effectiveness of oxidised mannan-MUC1 in patients with adenocarcinomas. Here we summarise DC targeting approaches and their efficacy in human clinical trials. PMID:25505969

  18. Myeloid dendritic cells frequencies are increased in children with autism spectrum disorder and associated with amygdala volume and repetitive behaviors

    PubMed Central

    Breece, Elizabeth; Paciotti, Brian; Nordahl, Christine Wu; Ozonoff, Sally; Van de Water, Judy A.; Rogers, Sally J.; Amaral, David; Ashwood, Paul

    2012-01-01

    The pathophysiology of Autism Spectrum Disorder (ASD) is not yet known; however, studies suggest that dysfunction of the immune system affects many children with ASD. Increasing evidence points to dysfunction of the innate immune system including activation of microglia and perivascular macrophages, increases in inflammatory cytokines/chemokines in brain tissue and CSF, and abnormal peripheral monocyte cell function. Dendritic cells are major players in innate immunity and have important functions in the phagocytosis of pathogens or debris, antigen presentation, activation of naïve T cells, induction of tolerance and cytokine/chemokine production. In this study, we assessed circulating frequencies of myeloid dendritic cells (defined as Lin-1−BDCA1+CD11c+ and Lin-1−BDCA3+CD123−) and plasmacytoid dendritic cells (Lin-1− BDCA2+CD123+ or Lin-1−BDCA4+ CD11c−) in 57 children with ASD, and 29 typically developing controls of the same age, all of who were enrolled as part of the Autism Phenome Project (APP). The frequencies of dendritic cells and associations with behavioral assessment and MRI measurements of amygdala volume were compared in the same participants. The frequencies of myeloid dendritic cells were significantly increased in children with ASD compared to typically developing controls (p < 0.03). Elevated frequencies of myeloid dendritic cells were positively associated with abnormal right and left amygdala enlargement, severity of gastrointestinal symptoms and increased repetitive behaviors. The frequencies of plasmacytoid dendritic cells were also associated with amygdala volumes as well as developmental regression in children with ASD. Dendritic cells play key roles in modulating immune responses and differences in frequencies or functions of these cells may result in immune dysfunction in children with ASD. These data further implicate innate immune cells in the complex pathophysiology of ASD. PMID:23063420

  19. Evidence for Eigenfrequencies in Dendritic Growth Dynamics

    NASA Astrophysics Data System (ADS)

    Lacombe, Jeffrey C.; Koss, Matthew B.; Giummarra, Cindie; Frei, Julie E.; Lupulescu, Afina O.; Glicksman, Martin E.

    Microgravity dendritic growth experiments, conducted aboard the space shuttle Columbia, are described. In-situ video images reveal that pivalic acid dendrites growing in the diffusion-controlled environment of low-earth orbit exhibit a range of transient or non-steady-state behaviors. The observed transient features of the growth process are being studied with the objective of understanding the mechanisms responsible for these behaviors. Included in these observations is possible evidence for characteristic frequencies or limit cycles in the growth behavior near the tip of the dendrites. These data, and their interpretations, will be discussed.

  20. Active dendrites support efficient initiation of dendritic spikes in hippocampal CA3 pyramidal neurons

    PubMed Central

    Kim, Sooyun; Guzman, Segundo J; Hu, Hua; Jonas, Peter

    2013-01-01

    CA3 pyramidal neurons are important for memory formation and pattern completion in the hippocampal network. It is generally thought that proximal synapses from the mossy fibers activate these neurons most efficiently, whereas distal inputs from the perforant path have a weaker modulatory influence. We used confocally targeted patch-clamp recording from dendrites and axons to map the activation of rat CA3 pyramidal neurons at the subcellular level. Our results reveal two distinct dendritic domains. In the proximal domain, action potentials initiated in the axon backpropagate actively with large amplitude and fast time course. In the distal domain, Na+ channel–mediated dendritic spikes are efficiently initiated by waveforms mimicking synaptic events. CA3 pyramidal neuron dendrites showed a high Na+-to-K+ conductance density ratio, providing ideal conditions for active backpropagation and dendritic spike initiation. Dendritic spikes may enhance the computational power of CA3 pyramidal neurons in the hippocampal network. PMID:22388958

  1. Cell-mediated fiber recruitment drives extracellular matrix mechanosensing in engineered fibrillar microenvironments

    PubMed Central

    Baker, Brendon M.; Trappmann, Britta; Wang, William Y.; Sakar, Mahmut S.; Kim, Iris L.; Shenoy, Vivek B.; Burdick, Jason A.; Chen, Christopher S.

    2015-01-01

    To investigate how cells sense stiffness in settings structurally similar to native extracellular matrices (ECM), we designed a synthetic fibrous material with tunable mechanics and user-defined architecture. In contrast to flat hydrogel surfaces, these fibrous materials recapitulated cell-matrix interactions observed with collagen matrices including stellate cell morphologies, cell-mediated realignment of fibers, and bulk contraction of the material. While increasing the stiffness of flat hydrogel surfaces induced mesenchymal stem cell spreading and proliferation, increasing fiber stiffness instead suppressed spreading and proliferation depending on network architecture. Lower fiber stiffness permitted active cellular forces to recruit nearby fibers, dynamically increasing ligand density at the cell surface and promoting the formation of focal adhesions and related signaling. These studies demonstrate a departure from the well-described relationship between material stiffness and spreading established with hydrogel surfaces, and introduce fiber recruitment as a novel mechanism by which cells probe and respond to mechanics in fibrillar matrices. PMID:26461445

  2. A non-surgical approach for male germ cell mediated gene transmission through transgenesis.

    PubMed

    Usmani, Abul; Ganguli, Nirmalya; Sarkar, Hironmoy; Dhup, Suveera; Batta, Suryaprakash R; Vimal, Manoj; Ganguli, Nilanjana; Basu, Sayon; Nagarajan, P; Majumdar, Subeer S

    2013-01-01

    Microinjection of foreign DNA in male pronucleus by in-vitro embryo manipulation is difficult but remains the method of choice for generating transgenic animals. Other procedures, including retroviral and embryonic stem cell mediated transgenesis are equally complicated and have limitations. Although our previously reported technique of testicular transgenesis circumvented several limitations, it involved many steps, including surgery and hemicastration, which carried risk of infection and impotency. We improved this technique further, into a two step non-surgical electroporation procedure, for making transgenic mice. In this approach, transgene was delivered inside both testes by injection and modified parameters of electroporation were used for in-vivo gene integration in germ cells. Using variety of constructs, germ cell integration of the gene and its transmission in progeny was confirmed by PCR, slot blot and immunohistochemical analysis. This improved technique is efficient, requires substantially less time and can be easily adopted by various biomedical researchers.

  3. Salmonella Modulates B Cell Biology to Evade CD8+ T Cell-Mediated Immune Responses

    PubMed Central

    Lopez-Medina, Marcela; Perez-Lopez, Araceli; Alpuche-Aranda, Celia; Ortiz-Navarrete, Vianney

    2014-01-01

    Although B cells and antibodies are the central effectors of humoral immunity, B cells can also produce and secrete cytokines and present antigen to helper T cells. The uptake of antigen is mainly mediated by endocytosis; thus, antigens are often presented by MHC-II molecules. However, it is unclear if B cells can present these same antigens via MHC-I molecules. Recently, Salmonella bacteria were found to infect B cells, allowing possible antigen cross-processing that could generate bacterial peptides for antigen presentation via MHC-I molecules. Here, we will discuss available knowledge regarding Salmonella antigen presentation by infected B cell MHC-I molecules and subsequent inhibitory effects on CD8+ T cells for bacterial evasion of cell-mediated immunity. PMID:25484884

  4. Micronutrient supplementation and T cell-mediated immune responses in patients with tuberculosis in Tanzania.

    PubMed

    Kawai, K; Meydani, S N; Urassa, W; Wu, D; Mugusi, F M; Saathoff, E; Bosch, R J; Villamor, E; Spiegelman, D; Fawzi, W W

    2014-07-01

    Limited studies exist regarding whether incorporating micronutrient supplements during tuberculosis (TB) treatment may improve cell-mediated immune response. We examined the effect of micronutrient supplementation on lymphocyte proliferation response to mycobacteria or T-cell mitogens in a randomized trial conducted on 423 patients with pulmonary TB. Eligible participants were randomly assigned to receive a daily dose of micronutrients (vitamins A, B-complex, C, E, and selenium) or placebo at the time of initiation of TB treatment. We found no overall effect of micronutrient supplements on lymphocyte proliferative responses to phytohaemagglutinin or purified protein derivatives in HIV-negative and HIV-positive TB patients. Of HIV-negative TB patients, the micronutrient group tended to show higher proliferative responses to concanavalin A than the placebo group, although the clinical relevance of this finding is not readily notable. The role of nutritional intervention in this vulnerable population remains an important area of future research. PMID:24093552

  5. Effects of reactive nitrogen scavengers on NK-cell-mediated killing of K562 cells.

    PubMed

    Zeng, Yili; Huang, Qinmiao; Zheng, Meizhu; Guo, Jianxin; Pan, Jingxin

    2012-01-01

    This study explored the effects of reactive nitrogen metabolites (RNMS) on natural-killer- (NK-) cell-mediated killing of K562 cells and the influence of RNM scavengers, such as tiopronin (TIP), glutamylcysteinylglycine (GSH), and histamine dihydrochloride (DHT), on reversing the suppressing effect of RNM. We administered exogenous and endogenous RNM in the NK + K562 culture system and then added RNM scavengers. The concentrations of RNM, TNF-β and IFN-γ, and NK-cell cytotoxicity (NCC) and the percentage of living NK cells were then examined. We found that both exogenous and endogenous RNM caused the KIR to decrease (P < 0.01); however, RNM scavengers such as TIP and GSH rescued this phenomenon dose dependently. In conclusion, our data suggests that RNM scavengers such as TIP and GSH enhance the antineoplasmic activity of NK cells.

  6. Female Iberian wall lizards prefer male scents that signal a better cell-mediated immune response

    PubMed Central

    López, Pilar; Martín, José

    2005-01-01

    In spite of the importance of chemoreception in sexual selection of lizards, only a few studies have examined the composition of chemical signals, and it is unknown whether and how chemicals provide honest information. Chemical signals might be honest if there were a trade-off between sexual advertisement and the immune system. Here, we show that proportions of cholesta-5,7-dien-3-ol in femoral secretions of male Iberian wall lizards (Podarcis hispanica) were related to their T-cell-mediated immune response. Thus, only males with a good immune system may allocate higher amounts of this chemical to signalling. Furthermore, females selected scents of males with higher proportions of cholesta-5,7-dien-3-ol and lower proportions of cholesterol. Thus, females might base their mate choice on the males' quality as indicated by the composition of their chemical signals. PMID:17148218

  7. Cell-Mediated Immunity in Elite Controllers Naturally Controlling HIV Viral Load.

    PubMed

    Genovese, Luca; Nebuloni, Manuela; Alfano, Massimo

    2013-01-01

    The natural course of human immunodeficiency virus (HIV) infection is characterized by high viral load, depletion of immune cells, and immunodeficiency, ultimately leading to acquired immunodeficiency syndrome phase and the occurrence of opportunistic infections and diseases. Since the discovery of HIV in the early 1980s a naturally selected population of infected individuals has been emerged in the last years, characterized by being infected for many years, with viremia constantly below detectable level and poor depletion of immune cells. These individuals are classified as "elite controllers (EC) or suppressors" and do not develop disease in the absence of anti-retroviral therapy. Unveiling host factors and immune responses responsible for the elite status will likely provide clues for the design of therapeutic vaccines and functional cures. Scope of this review was to examine and discuss differences of the cell-mediated immune responses between HIV+ individuals with disease progression and EC. PMID:23577012

  8. The cell-mediated immunity of Drosophila melanogaster: hemocyte lineages, immune compartments, microanatomy and regulation.

    PubMed

    Honti, Viktor; Csordás, Gábor; Kurucz, Éva; Márkus, Róbert; Andó, István

    2014-01-01

    In the animal kingdom, innate immunity is the first line of defense against invading pathogens. The dangers of microbial and parasitic attacks are countered by similar mechanisms, involving the prototypes of the cell-mediated immune responses, the phagocytosis and encapsulation. Work on Drosophila has played an important role in promoting an understanding of the basic mechanisms of phylogenetically conserved modules of innate immunity. The aim of this review is to survey the developments in the identification and functional definition of immune cell types and the immunological compartments of Drosophila melanogaster. We focus on the molecular and developmental aspects of the blood cell types and compartments, as well as the dynamics of blood cell development and the immune response. Further advances in the characterization of the innate immune mechanisms in Drosophila will provide basic clues to the understanding of the importance of the evolutionary conserved mechanisms of innate immune defenses in the animal kingdom. PMID:23800719

  9. Role of paracrine factors in stem and progenitor cell mediated cardiac repair and tissue fibrosis

    PubMed Central

    Burchfield, Jana S; Dimmeler, Stefanie

    2008-01-01

    A new era has begun in the treatment of ischemic disease and heart failure. With the discovery that stem cells from diverse organs and tissues, including bone marrow, adipose tissue, umbilical cord blood, and vessel wall, have the potential to improve cardiac function beyond that of conventional pharmacological therapy comes a new field of research aiming at understanding the precise mechanisms of stem cell-mediated cardiac repair. Not only will it be important to determine the most efficacious cell population for cardiac repair, but also whether overlapping, common mechanisms exist. Increasing evidence suggests that one mechanism of action by which cells provide tissue protection and repair may involve paracrine factors, including cytokines and growth factors, released from transplanted stem cells into the surrounding tissue. These paracrine factors have the potential to directly modify the healing process in the heart, including neovascularization, cardiac myocyte apoptosis, inflammation, fibrosis, contractility, bioenergetics, and endogenous repair. PMID:19014650

  10. T-cell-mediated drug hypersensitivity: immune mechanisms and their clinical relevance.

    PubMed

    Yun, James; Cai, Fenfen; Lee, Frederick J; Pichler, Werner J

    2016-04-01

    T-cell-mediated drug hypersensitivity represents a significant proportion of immune mediated drug hypersensitivity reactions. In the recent years, there has been an increase in understanding the immune mechanisms behind T-cell-mediated drug hypersensitivity. According to hapten mechanism, drug specific T-cell response is stimulated by drug-protein conjugate presented on major histocompatibility complex (MHC) as it is presented as a new antigenic determinant. On the other hand, p-i concept suggests that a drug can stimulate T cells via noncovalent direct interaction with T-cell receptor and/or peptide-MHC. The drug binding site is quite variable and this leads to several different mechanisms within p-i concept. Altered peptide repertoire can be regarded as an 'atypical' subset of p-i concept since the mode of the drug binding and the binding site are essentially identical to p-i concept. However, the intracellular binding of abacavir to HLA-B(*)57:01 additionally results in alteration in peptide repertoire. Furthermore the T-cell response to altered peptide repertoire model is only shown for abacavir and HLA-B(*)57:01 and therefore it may not be generalised to other drug hypersensitivity. Danger hypothesis has been postulated to play an important role in drug hypersensitivity by providing signal 2 but its experimental data is lacking at this point in time. Furthermore, the recently described allo-immune response suggests that danger signal may be unnecessary. Finally, in view of these new understanding, the classification and the definition of type B adverse drug reaction should be revised. PMID:27141480

  11. Mast cells mediate the immune suppression induced by dermal exposure to JP-8 jet fuel.

    PubMed

    Limón-Flores, Alberto Y; Chacón-Salinas, Rommel; Ramos, Gerardo; Ullrich, Stephen E

    2009-11-01

    Applying jet propulsion-8 (JP-8) jet fuel to the skin of mice induces immune suppression. Applying JP-8 to the skin of mice suppresses T-cell-mediated immune reactions including, contact hypersensitivity (CHS) delayed-type hypersensitivity and T-cell proliferation. Because dermal mast cells play an important immune regulatory role in vivo, we tested the hypothesis that mast cells mediate jet fuel-induced immune suppression. When we applied JP-8 to the skin of mast cell deficient mice CHS was not suppressed. Reconstituting mast cell deficient mice with wild-type bone marrow derived mast cells (mast cell "knock-in mice") restored JP-8-induced immune suppression. When, however, mast cells from prostaglandin E(2) (PGE(2))-deficient mice were used, the ability of JP-8 to suppress CHS was not restored, indicating that mast cell-derived PGE(2) was activating immune suppression. Examining the density of mast cells in the skin and lymph nodes of JP-8-treated mice indicated that jet fuel treatment caused an initial increase in mast cell density in the skin, followed by increased numbers of mast cells in the subcutaneous space and then in draining lymph nodes. Applying JP-8 to the skin increased mast cell expression of CXCR4, and increased the expression of CXCL12 by draining lymph node cells. Because CXCL12 is a chemoattractant for CXCR4+ mast cells, we treated JP-8-treated mice with AMD3100, a CXCR4 antagonist. AMD3100 blocked the mobilization of mast cells to the draining lymph node and inhibited JP-8-induced immune suppression. Our findings demonstrate the importance of mast cells in mediating jet fuel-induced immune suppression.

  12. Susceptibility to T cell-mediated liver injury is enhanced in asialoglycoprotein receptor-deficient mice.

    PubMed

    McVicker, Benita L; Thiele, Geoffrey M; Casey, Carol A; Osna, Natalia A; Tuma, Dean J

    2013-05-01

    T cell activation and associated pro-inflammatory cytokine production is a pathological feature of inflammatory liver disease. It is also known that liver injury is associated with marked impairments in the function of many hepatic proteins including a hepatocyte-specific binding protein, the asialoglycoprotein receptor (ASGPR). Recently, it has been suggested that hepatic ASGPRs may play an important role in the physiological regulation of T lymphocytes, leading to our hypothesis that ASGPR defects correlate with inflammatory-mediated events in liver diseases. Therefore, in this study we investigated whether changes in hepatocellular ASGPR expression were related to the dysregulation of intrahepatic T lymphocytes and correlate with the development of T-cell mediated hepatitis. Mice lacking functional ASGPRs (receptor-deficient, RD), and wild-type (WT) controls were intravenously injected with T-cell mitogens, Concanavalin A (Con A) or anti-CD3 antibody. As a result of T cell mitogen treatment, RD mice lacking hepatic ASGPRs displayed enhancements in liver pathology, transaminase activities, proinflammatory cytokine expression, and caspase activation compared to that observed in normal WT mice. Furthermore, FACS analysis demonstrated that T-cell mitogen administration resulted in a significant rise in the percentage of CD8+ lymphocytes present in the livers of RD animals versus WT mice. Since these two mouse strains differ only in whether they express the hepatic ASGPR, it can be concluded that proper ASGPR function exerts a protective effect against T cell mediated hepatitis and that impairments to this hepatic receptor could be related to the accumulation of cytotoxic T cells that are observed in inflammatory liver diseases.

  13. T-cell-mediated drug hypersensitivity: immune mechanisms and their clinical relevance

    PubMed Central

    Cai, Fenfen; Lee, Frederick J; Pichler, Werner J

    2016-01-01

    T-cell-mediated drug hypersensitivity represents a significant proportion of immune mediated drug hypersensitivity reactions. In the recent years, there has been an increase in understanding the immune mechanisms behind T-cell-mediated drug hypersensitivity. According to hapten mechanism, drug specific T-cell response is stimulated by drug-protein conjugate presented on major histocompatibility complex (MHC) as it is presented as a new antigenic determinant. On the other hand, p-i concept suggests that a drug can stimulate T cells via noncovalent direct interaction with T-cell receptor and/or peptide-MHC. The drug binding site is quite variable and this leads to several different mechanisms within p-i concept. Altered peptide repertoire can be regarded as an 'atypical' subset of p-i concept since the mode of the drug binding and the binding site are essentially identical to p-i concept. However, the intracellular binding of abacavir to HLA-B*57:01 additionally results in alteration in peptide repertoire. Furthermore the T-cell response to altered peptide repertoire model is only shown for abacavir and HLA-B*57:01 and therefore it may not be generalised to other drug hypersensitivity. Danger hypothesis has been postulated to play an important role in drug hypersensitivity by providing signal 2 but its experimental data is lacking at this point in time. Furthermore, the recently described allo-immune response suggests that danger signal may be unnecessary. Finally, in view of these new understanding, the classification and the definition of type B adverse drug reaction should be revised. PMID:27141480

  14. Functional impact of dendritic branch point morphology

    PubMed Central

    Ferrante, Michele; Migliore, Michele; Ascoli, Giorgio A.

    2013-01-01

    Cortical pyramidal cells store multiple features of complex synaptic input in individual dendritic branches and independently regulate the coupling between dendritic and somatic spikes. Branch points in apical trees exhibit wide ranges of sizes and shapes, and the large diameter ratio between trunk and oblique dendrites exacerbates impedance mismatch. The morphological diversity of dendritic bifurcations could thus locally tune neuronal excitability and signal integration. However, these aspects have never been investigated. Here, we first quantified the morphological variability of branch points from two-photon images of rat CA1 pyramidal neurons. We then investigated the geometrical features affecting spike initiation, propagation, and timing with a computational model validated by glutamate uncaging experiments. The results suggest that even subtle membrane readjustments at branch point could drastically alter the ability of synaptic input to generate, propagate, and time action potentials. PMID:23365251

  15. Dendritic spine dysgenesis in Autism Related Disorders

    PubMed Central

    Phillips, Mary; Pozzo-Miller, Lucas

    2015-01-01

    The activity-dependent structural and functional plasticity of dendritic spines has led to the long-standing belief that these neuronal compartments are the subcellular sites of learning and memory. Of relevance to human health, central neurons in several neuropsychiatric illnesses, including autism related disorders, have atypical numbers and morphologies of dendritic spines. These so-called dendritic spine dysgeneses found in individuals with autism related disorders are consistently replicated in experimental mouse models. Dendritic spine dysgenesis reflects the underlying synaptopathology that drives clinically relevant behavioral deficits in experimental mouse models, providing a platform for testing new therapeutic approaches. By examining molecular signaling pathways, synaptic deficits, and spine dysgenesis in experimental mouse models of autism related disorders we find strong evidence for mTOR to be a critical point of convergence and promising therapeutic target. PMID:25578949

  16. Dendritic Growth in Nematic Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Martin, Joshua; Garg, Shila

    2000-03-01

    The experimental study of the onset of electrohydrodynamic convection (EHC) through a dendritic growth is reported. If a magnetic Freedericksz-distorted liquid crystal of negative dielectric anisotropy is subjected to an electric field parallel to the magnetic field, EHC sets in through the nucleation of dendrites [1,2]. Measurements of tip speeds of the dendrites as a function of applied voltage at a fixed magnetic field are made. The goal is to explore the effect of the magnetic and electric fields on the dendritic growth. In addition, pattern dynamics is monitored once the final state of spatio-temporal chaos is reached by the system. [1] J. T. Gleeson, Nature 385, 511 (1997). [2] J. T. Gleeson, Physica A 239, 211 (1997). This research was supported by NSF grants DMR 9704579 and DMR 9619406.

  17. Dendritic spine dysgenesis in autism related disorders.

    PubMed

    Phillips, Mary; Pozzo-Miller, Lucas

    2015-08-01

    The activity-dependent structural and functional plasticity of dendritic spines has led to the long-standing belief that these neuronal compartments are the subcellular sites of learning and memory. Of relevance to human health, central neurons in several neuropsychiatric illnesses, including autism related disorders, have atypical numbers and morphologies of dendritic spines. These so-called dendritic spine dysgeneses found in individuals with autism related disorders are consistently replicated in experimental mouse models. Dendritic spine dysgenesis reflects the underlying synaptopathology that drives clinically relevant behavioral deficits in experimental mouse models, providing a platform for testing new therapeutic approaches. By examining molecular signaling pathways, synaptic deficits, and spine dysgenesis in experimental mouse models of autism related disorders we find strong evidence for mTOR to be a critical point of convergence and promising therapeutic target. PMID:25578949

  18. Dendritic spine dysgenesis in Rett syndrome

    PubMed Central

    Xu, Xin; Miller, Eric C.; Pozzo-Miller, Lucas

    2014-01-01

    Spines are small cytoplasmic extensions of dendrites that form the postsynaptic compartment of the majority of excitatory synapses in the mammalian brain. Alterations in the numerical density, size, and shape of dendritic spines have been correlated with neuronal dysfunction in several neurological and neurodevelopmental disorders associated with intellectual disability, including Rett syndrome (RTT). RTT is a progressive neurodevelopmental disorder associated with intellectual disability that is caused by loss of function mutations in the transcriptional regulator methyl CpG-binding protein 2 (MECP2). Here, we review the evidence demonstrating that principal neurons in RTT individuals and Mecp2-based experimental models exhibit alterations in the number and morphology of dendritic spines. We also discuss the exciting possibility that signaling pathways downstream of brain-derived neurotrophic factor (BDNF), which is transcriptionally regulated by MeCP2, offer promising therapeutic options for modulating dendritic spine development and plasticity in RTT and other MECP2-associated neurodevelopmental disorders. PMID:25309341

  19. Dendritic cells in autoimmune thyroid disease.

    PubMed

    Kabel, P J; Voorbij, H A; van der Gaag, R D; Wiersinga, W M; de Haan, M; Drexhage, H A

    1987-01-01

    Dendritic cells form a morphologically distinct class of cells characterized by shape, reniform nucleus, absent to weak acid-phosphatase activity and strong Class II MHC determinant positivity. Functionally they are the most efficient cells in antigen presentation to T-lymphocytes which indicates their role in the initiation of an immune response. Using immunehistochemical techniques we studied the presence of dendritic cells in normal Wistar rat and human thyroids, in thyroids of BBW rats developing thyroid autoimmunity and in Graves' goitres. Dendritic cells could be identified in all thyroids studied and were positioned underneath the thyrocytes in between the follicles. Skin dendritic cells travel via lymphatics to draining lymph nodes, thus forming an antigen presenting cell system. It is likely that a similar cell system exists on the level of the thyroid for dendritic cells have also been detected in thyroid draining lymph nodes. In normal thyroid tissue of both human and rat dendritic cells were relatively scarce. During the initial phases of the thyroid autoimmune response in the BBW rat (before the appearance of Tg-antibodies in the circulation) numbers of thyroid dendritic cells increased. Intrathyroidal T-helper cells, B-cells or plasma cells could not be found. The thyroid draining lymph node contained large numbers of plasma cells. During the later stages of the thyroid autoimmune response in the BB/W rat (after the appearance of Tg-antibodies in the circulation) and in Graves' goitres dendritic cells were not only present in high number, but 20-30% were seen in contact with now-present intrathyroidal T-helper lymphocytes.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3475920

  20. Non-synaptic dendritic spines in neocortex.

    PubMed

    Arellano, J I; Espinosa, A; Fairén, A; Yuste, R; DeFelipe, J

    2007-03-16

    A long-held assumption states that each dendritic spine in the cerebral cortex forms a synapse, although this issue has not been systematically investigated. We performed complete ultrastructural reconstructions of a large (n=144) population of identified spines in adult mouse neocortex finding that only 3.6% of the spines clearly lacked synapses. Nonsynaptic spines were small and had no clear head, resembling dendritic filopodia, and could represent a source of new synaptic connections in the adult cerebral cortex.

  1. Dendritic cells in autoimmune thyroid disease.

    PubMed

    Kabel, P J; Voorbij, H A; van der Gaag, R D; Wiersinga, W M; de Haan, M; Drexhage, H A

    1987-01-01

    Dendritic cells form a morphologically distinct class of cells characterized by shape, reniform nucleus, absent to weak acid-phosphatase activity and strong Class II MHC determinant positivity. Functionally they are the most efficient cells in antigen presentation to T-lymphocytes which indicates their role in the initiation of an immune response. Using immunehistochemical techniques we studied the presence of dendritic cells in normal Wistar rat and human thyroids, in thyroids of BBW rats developing thyroid autoimmunity and in Graves' goitres. Dendritic cells could be identified in all thyroids studied and were positioned underneath the thyrocytes in between the follicles. Skin dendritic cells travel via lymphatics to draining lymph nodes, thus forming an antigen presenting cell system. It is likely that a similar cell system exists on the level of the thyroid for dendritic cells have also been detected in thyroid draining lymph nodes. In normal thyroid tissue of both human and rat dendritic cells were relatively scarce. During the initial phases of the thyroid autoimmune response in the BBW rat (before the appearance of Tg-antibodies in the circulation) numbers of thyroid dendritic cells increased. Intrathyroidal T-helper cells, B-cells or plasma cells could not be found. The thyroid draining lymph node contained large numbers of plasma cells. During the later stages of the thyroid autoimmune response in the BB/W rat (after the appearance of Tg-antibodies in the circulation) and in Graves' goitres dendritic cells were not only present in high number, but 20-30% were seen in contact with now-present intrathyroidal T-helper lymphocytes.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Transcranial magnetic stimulation (TMS) inhibits cortical dendrites

    PubMed Central

    Murphy, Sean C; Palmer, Lucy M; Nyffeler, Thomas; Müri, René M; Larkum, Matthew E

    2016-01-01

    One of the leading approaches to non-invasively treat a variety of brain disorders is transcranial magnetic stimulation (TMS). However, despite its clinical prevalence, very little is known about the action of TMS at the cellular level let alone what effect it might have at the subcellular level (e.g. dendrites). Here, we examine the effect of single-pulse TMS on dendritic activity in layer 5 pyramidal neurons of the somatosensory cortex using an optical fiber imaging approach. We find that TMS causes GABAB-mediated inhibition of sensory-evoked dendritic Ca2+ activity. We conclude that TMS directly activates fibers within the upper cortical layers that leads to the activation of dendrite-targeting inhibitory neurons which in turn suppress dendritic Ca2+ activity. This result implies a specificity of TMS at the dendritic level that could in principle be exploited for investigating these structures non-invasively. DOI: http://dx.doi.org/10.7554/eLife.13598.001 PMID:26988796

  3. Mechanisms of mouse spleen dendritic cell function in the generation of influenza-specific, cytolytic T lymphocytes

    PubMed Central

    1992-01-01

    We have evaluated the capacity of dendritic cells to function as antigen-presenting cells (APCs) for influenza and have examined their mechanism of action. Virus-pulsed dendritic cells were 100 times more efficient than bulk spleen cells in stimulating cytotoxic T lymphocyte (CTL) formation. The induction of CTLs required neither exogenous lymphokines nor APCs in the responding T cell population. Infectious virus entered dendritic cells through intracellular acidic vacuoles and directed the synthesis of several viral proteins. If ultraviolet (UV)- inactivated or bromelain-treated viruses were used, viral protein synthesis could not be detected, and there was poor induction of CTLs. This indicated that dendritic cells were not capable of processing noninfectious virus onto major histocompatibility complex (MHC) class I molecules. However, UV-inactivated and bromelain-treated viruses were presented efficiently to class II-restricted CD4+ T cells. The CD4+ T cells crossreacted with different strains of influenza and markedly amplified CTL formation. Cell lines that lacked MHC class II, and consequently the capacity to stimulate CD4+ T cells, failed to induce CTLs unless helper lymphokines were added. Similarly, dendritic cells pulsed with the MHC class I-restricted nucleoprotein 147-155 peptide were poor stimulators in the absence of exogenous helper factors. We conclude that the function of dendritic cells as APCs for the generation of virus-specific CTLs in vitro depends measurably upon: (a) charging class I molecules with peptides derived from endogenously synthesized viral antigens, and (b) stimulating a strong CD4+ helper T cell response. PMID:1386874

  4. Architecture of apical dendrites in the murine neocortex: dual apical dendritic systems.

    PubMed

    Escobar, M I; Pimienta, H; Caviness, V S; Jacobson, M; Crandall, J E; Kosik, K S

    1986-04-01

    A monoclonal antibody (5F9) against microtubule-associated protein 2 is a selective and sensitive marker for neocortical dendrites in the mouse. The marker stains all dendrites. It affords a particularly comprehensive picture of the patterns of arrangements of apical dendrites which are most intensely stained with this antibody. Dual systems of apical dendrites arise from the polymorphic neurons of layer VI, on the one hand, and the pyramidal neurons of layers II-V, on the other. Terminal arborization of the former is concentrated principally at the interface of layers V and IV, while that of the latter is in the molecular layer. Apical dendrites of both systems are grouped into fascicles. In supragranular layers and in upper layer VI-lower layer V, where apical dendrites are most abundant, the fascicles coalesce into septa. These generate a honeycomb-like pattern, subdividing these cortical levels into columnar spaces of approximately 20-40 micron diameter. At the level of layer IV, where the number of apical dendrites is greatly reduced, the fascicles are isolated bundles. These bundles have the form of circular, elliptical or rectangular columns in the primary somatosensory, temporal and frontal regions, respectively. Those in the barrel field are preferentially concentrated in the sides of barrels and the interbarrel septa. The configurations of the dendritic fascicles, particularly the midcortical bundles, may conform to the spatial configuration of investing axons of interneurons.

  5. Neuroblastoma and dendritic cell function.

    PubMed

    Redlinger, Richard E; Mailliard, Robbie B; Barksdale, Edward M

    2004-02-01

    Neuroblastoma, the most common extracranial solid tumor of childhood, remains a challenge for clinicians and investigators in pediatric surgical oncology. The absence of effective conventional therapies for most patients with neuroblastoma justifies the application of novel, biology-based, experimental approaches to the treatment of this deadly disease. The observation that some aggressive neuroblastomas, particularly in infants, may spontaneously regress suggested that immune-mediated mechanisms may be important in the biology of this disease. Advances in the understanding of the cognate interactions between T cells, antigen-presenting cells and tumors have demonstrated the sentinel role of dendritic cells (DC), the most potent antigen presenting cells, in initiating the cellular immune response to cancer. Until recently the function of DC in pediatric solid tumors, especially neuroblastoma, had not been extensively studied. This review discusses the role of DC in initiating and coordinating the immune response against cancer, the ability of neuroblastoma to induce DC dysregulation at multiple levels by inhibiting DC maturation and function, and the current vaccine strategies being designed to employ the unique ability of DC to promote neuroblastoma regression.

  6. Targeting vaccines to dendritic cells.

    PubMed

    Foged, Camilla; Sundblad, Anne; Hovgaard, Lars

    2002-03-01

    Dendritic cells (DC) are specialized antigen presenting cells (APC) with a remarkable ability to take up antigens and stimulate major histocompatibility complex (MHC)-restricted specific immune responses. Recent discoveries have shown that their role in initiating primary immune responses seems to be far superior to that of B-cells and macrophages. DC are localized at strategic places in the body at sites used by pathogens to enter the organism, and are thereby in an optimal position to capture antigens. In general, vaccination strategies try to mimic the invasiveness of the pathogens. DC are considered to play a central role for the provocation of primary immune responses by vaccination. A rational way of improving the potency and safety of new and already existing vaccines could therefore be to direct vaccines specifically to DC. There is a need for developing multifunctional vaccine drug delivery systems (DDS) with adjuvant effect that target DC directly and induce optimal immune responses. This paper will review the current knowledge of DC physiology as well as the progress in the field of novel vaccination strategies that directly or indirectly aim at targeting DC.

  7. Dendritic cells and skin sensitization: Biological roles and uses in hazard identification

    SciTech Connect

    Ryan, Cindy A.; Kimber, Ian; Basketter, David A.; Pallardy, Marc; Gildea, Lucy A.; Gerberick, G. Frank . E-mail: gerberick.gf@pg.com

    2007-06-15

    Recent advances have been made in our understanding of the roles played by cutaneous dendritic cells (DCs) in the induction of contact allergy. A number of associated changes in epidermal Langerhans cell phenotype and function required for effective skin sensitization are providing the foundations for the development of cellular assays (using DC and DC-like cells) for skin sensitization hazard identification. These alternative approaches to the identification and characterization of skin sensitizing chemicals were the focus of a Workshop entitled 'Dendritic Cells and Skin Sensitization: Biological Roles and Uses in Hazard Identification' that was given at the annual Society of Toxicology meeting held March 6-9, 2006 in San Diego, California. This paper reports information that was presented during the Workshop.

  8. Perinatal opiate treatment delays growth of cortical dendrites.

    PubMed

    Ricalde, A A; Hammer, R P

    1990-07-31

    Basilar dendritic arborizations of layer II-III pyramidal neurons in primary somatosensory cortex of 5-day-old male rats were reconstructed following perinatal morphine, morphine/naltrexone, or saline vehicle administration. Morphine treatment was observed to reduce total dendritic length. This effect was limited to higher order dendritic branches, with terminal dendrites manifesting the greatest reduction of length. The action of morphine was presumably mediated by opiate receptors, since concurrent naltrexone administration completely reversed morphine effects on dendritic length and branching. These results suggest that opiates act during late ontogenesis to affect dendritic growth in cerebral cortex. PMID:2172870

  9. Dendritic crystal growth in pure /sup 4/He

    SciTech Connect

    Franck, J.P.; Jung, J.

    1986-08-01

    Dendritic crystal growth of pure hcp and fcc /sup 4/He was observed at pressures between 210 and 6500 bar. Dendrite morphology depends on fluid supercooling and crystal phase. At large supercooling, dendrites with side arms are observed, whereas at low supercooling dendrites grow without side arms. The morpholpogy of hcp /sup 4/He dendrites is strongly influenced by crystalline anisotropy. Comparison with present theories of dendrite growth show good agreement with the power law dependencies of velocity, tip radius, and Peclet number on supercooling. Numerically, theory predicts much larger velocities than are observed. The stability parameter sigma is found to be much smaller than theoretically predicted.

  10. Increased cell-mediated immune responses in patients with recurrent herpes simplex virus type 2 meningitis.

    PubMed

    Franzen-Röhl, Elisabeth; Schepis, Danika; Lagrelius, Maria; Franck, Kristina; Jones, Petra; Liljeqvist, Jan-Åke; Bergström, Tomas; Aurelius, Elisabeth; Kärre, Klas; Berg, Louise; Gaines, Hans

    2011-04-01

    The clinical picture of herpes simplex virus type 2 (HSV-2) infection includes genital blisters and less frequently meningitis, and some individuals suffer from recurrent episodes of these manifestations. We hypothesized that adaptive and/or innate immune functional deficiencies may be a major contributing factor in susceptibility to recurrent HSV-2 meningitis. Ten patients with recurrent HSV-2 meningitis were studied during clinical remission. For comparison, 10 patients with recurrent genital HSV infections as well as 21 HSV-seropositive and 19 HSV-seronegative healthy blood donors were included. HSV-specific T cell blasting and cytokine secretion were evaluated in whole blood cultures. HSV-2-induced NK cell gamma interferon production, dendritic cell Toll-like receptor (TLR) expression, and TLR agonist-induced alpha interferon secretion were analyzed. Patients with recurrent HSV-2 meningitis had elevated T cell blasting and Th1 and Th2 cytokine production in response to HSV antigens compared to those of patients with recurrent genital infections. A somewhat increased NK cell response, increased dendritic cell expression of TLR3 and -9, and increased TLR-induced alpha interferon responses were also noted. Contrary to our expectation, recurrent HSV-2 meningitis patients have increased HSV-specific adaptive and innate immune responses, raising the possibility of immune-mediated pathology in the development of recurrent HSV2 meningitis.

  11. CD8α+ Dendritic cells prime TCR-peptide-reactive regulatory CD4+FOXP3− T cells

    PubMed Central

    Smith, Trevor R. F.; Maricic, Igor; Ria, Francesco; Schneider, Susan; Kumar, Vipin

    2011-01-01

    Summary CD4+ T cells with immune regulatory function can be either FOXP3+ or FOXP3−. We have previously shown that priming of naturally occurring TCR-peptide-reactive regulatory CD4+FOXP3− T cells (Treg) specifically controls Vβ8.2+CD4+ T cells mediating experimental autoimmune encephalomyelitis (EAE). However, the mechanism by which these Treg are primed to recognize their cognate antigenic determinant, which is derived from the TCRVβ8.2-chain, is not known. In this study we show that antigen presenting cells (APC) derived from splenocytes of naïve mice are able to stimulate cloned CD4+ Treg in the absence of exogenous antigen, and their stimulation capacity is augmented during EAE. Among the APC populations DC were the most efficient in stimulating the Treg. Stimulation of CD4+ Treg was dependent upon processing and presentation of TCR peptides from ingested Vβ8.2TCR+ CD4+ T cells. Additionally, dendritic cells pulsed with TCR peptide or apoptotic Vβ8.2+ T cells are able to prime Treg in vivo and mediate protection from disease in a CD8-dependent fashion. These data highlight a novel mechanism for the priming of CD4+ Treg by CD8α+ DC, and suggest a pathway that can be exploited to prime antigen-specific regulation of T cell-mediated inflammatory disease. PMID:20394075

  12. Immunity to squamous carcinoma in mice immunized with dendritic cells transfected with genomic DNA from squamous carcinoma cells.

    PubMed

    O-Sullivan, InSug; Ng, Lauren K; Martinez, Don M; Kim, Tae S; Chopra, Amla; Cohen, Edward P

    2005-10-01

    Immunotherapy of squamous cell carcinoma (SCC) at an early stage of the disease increases the likelihood of success. We report a new vaccination strategy designed to prepare SCC vaccines from microgram amounts of tumor tissue, enabling the treatment of patients with minimal residual disease. The vaccine was prepared by transfer of sheared genomic DNA-fragments (25 kb) from KLN205 cells, an SCC cell line of DBA/2 mouse origin, into syngeneic bone marrow-derived mature dendritic cells (DCs). More than 90% of the transfected DCs took up DNA from the neoplasm and transferred genes were expressed as protein. The DCs expressed CD11c, CD11b, and the costimulatory molecules CD40, CD80 and CD86, characteristic of mature DCs. Syngeneic DBA/2J mice, highly susceptible to the growth of KLN205 cells, were injected intravenously (i.v.) with the transfected DCs, followed by a subcutaneous (s.c.) injection of the tumor cells. The strong immunogenic properties of the transfected cells were indicated by the finding that the survival of the tumor-bearing mice was prolonged (P<.001), relative to that of mice in various control groups. Enzyme-linked immuno spot (ELISPOT IFN-gamma) assays revealed the activation of cell-mediated immunity directed toward the SCC in mice immunized with the transfected DCs. Two independent in vitro cytotoxicity assays indicated the presence of robust cell-mediated immunity directed toward the SCC in mice immunized with the transfected cells.

  13. Cell-mediated and humoral immune responses to chlamydial antigens in guinea pigs infected ocularly with the agent of guinea pig inclusion conjunctivitis.

    PubMed

    Senyk, G; Kerlan, R; Stites, D P; Schanzlin, D J; Ostler, H B; Hanna, L; Keshishyan, H; Jawetz, E

    1981-04-01

    Cell-mediated immune response and humoral response to chlamydial antigens were investigated in guinea pigs infected with the agent of guinea pig inclusion conjunctivitis (GPIC). Pronounced cell-mediated immune response to the homologous antigen, as well as to two other chlamydial antigens, 6BC (Chlamydia psittaci) and LB-1 (C. trachomatis), occurred in all infected animals. Cell-mediated immune response to GPIC, and to a lesser extent to 6BC and LB-1 as well, was enhanced with time after infection even without the re-inoculation of the infectious agent. Extensive cross-reactions among the three chlamydial antigens during the cell-mediated immune response appeared to be due to shared species-specific and group-reactive antigens. Serum antibody response was pronounced and uniform to GPIC; it was less marked to 6BC and LB-1, with fewer cross-reactions than seen in tests for cell-mediated immunity.

  14. Effect of chronic microwave radiation on T cell-mediated immunity in the rabbit

    NASA Astrophysics Data System (ADS)

    Nageswari, K. Sri; Sarma, K. R.; Rajvanshi, V. S.; Sharan, R.; Sharma, Manju; Barathwal, Vinita; Singh, Vinod

    1991-06-01

    Experiments were conducted to elucidate the effects of chronic low power-level microwave radiation on the immunological systems of rabbits. Fourteen male Belgian white rabbits were exposed to microwave radiation at 5 mW/cm2, 2.1 GHz, 3 h daily, 6 days/week for 3 months in two batches of 7 each in specially designed miniature anechoicchambers. Seven rabbits were subjected to sham exposure for identical duration. The microwave energy was provided through S band standard gain horns connected to a 4K3SJ2 Klystron power amplifier. The first batch of animals were assessed for T lymphocyte-mediated cellular immune response mechanisms and the second batch of animals for B lymphocyte-mediated humoral immune response mechanisms. The peripheral blood samples collected monthly during microwave/sham exposure and during follow-up (5/14 days after termination of exposures, in the second batch animals only) were analysed for T lymphocyte numbers and their mitogen responsiveness to ConA and PHA. Significant suppression of T lymphocyte numbers was noted in the microwave group at 2 months ( P<0.01, Δ% 21.5%) and during follow-up ( P<0.01, Δ% 30.2%). The first batch animals were initially sensitised with BCG and challenged with tuberculin (0.03 ml) at the termination of microwave irradiation/sham exposure and the increase in foot pad thickness (Δ mm), which is a measure of T cell-mediated immunity (delayed type hypersensitivity response, DTH) was noted in both the groups. The microwave group revealed a better response than the control group (Δ%+12.4 vs.+7.54). The animals were sacrified and the tissue T lymphocyte counts (spleen and lymph node) were analysed. No significant variation was observed in the tissue T lymphocyte counts of microwave-irradiated rabbits. From these results it is speculated that the T lymphocytes are sequestered to various lymphoid organs under the influence of microwaves. A sub-population of T cells known as T helper cells (mediating DTH response) are

  15. Narcolepsy-Associated HLA Class I Alleles Implicate Cell-Mediated Cytotoxicity

    PubMed Central

    Tafti, Mehdi; Lammers, Gert J.; Dauvilliers, Yves; Overeem, Sebastiaan; Mayer, Geert; Nowak, Jacek; Pfister, Corinne; Dubois, Valérie; Eliaou, Jean-François; Eberhard, Hans-Peter; Liblau, Roland; Wierzbicka, Aleksandra; Geisler, Peter; Bassetti, Claudio L.; Mathis, Johannes; Lecendreux, Michel; Khatami, Ramin; Heinzer, Raphaël; Haba-Rubio, José; Feketeova, Eva; Baumann, Christian R.; Kutalik, Zoltán; Tiercy, Jean-Marie

    2016-01-01

    Study Objectives: Narcolepsy with cataplexy is tightly associated with the HLA class II allele DQB1*06:02. Evidence indicates a complex contribution of HLA class II genes to narcolepsy susceptibility with a recent independent association with HLA-DPB1. The cause of narcolepsy is supposed be an autoimmune attack against hypocretin-producing neurons. Despite the strong association with HLA class II, there is no evidence for CD4+ T-cell-mediated mechanism in narcolepsy. Since neurons express class I and not class II molecules, the final effector immune cells involved might include class I-restricted CD8+ T-cells. Methods: HLA class I (A, B, and C) and II (DQB1) genotypes were analyzed in 944 European narcolepsy with cataplexy patients and in 4,043 control subjects matched by country of origin. All patients and controls were DQB1*06:02 positive and class I associations were conditioned on DQB1 alleles. Results: HLA-A*11:01 (OR = 1.49 [1.18–1.87] P = 7.0*10−4), C*04:01 (OR = 1.34 [1.10–1.63] P = 3.23*10−3), and B*35:01 (OR = 1.46 [1.13–1.89] P = 3.64*10−3) were associated with susceptibility to narcolepsy. Analysis of polymorphic class I amino-acids revealed even stronger associations with key antigen-binding residues HLA-A-Tyr9 (OR = 1.32 [1.15–1.52] P = 6.95*10−5) and HLA-C-Ser11 (OR = 1.34 [1.15–1.57] P = 2.43*10−4). Conclusions: Our findings provide a genetic basis for increased susceptibility to infectious factors or an immune cytotoxic mechanism in narcolepsy, potentially targeting hypocretin neurons. Citation: Tafti M, Lammers GJ, Dauvilliers Y, Overeem S, Mayer G, Nowak J, Pfister C, Dubois V, Eliaou JF, Eberhard HP, Liblau R, Wierzbicka A, Geisler P, Bassetti CL, Mathis J, Lecendreux M, Khatami R, Heinzer R, Haba-Rubio J, Feketeova E, Baumann CR, Kutalik Z, Tiercy JM. Narcolepsy-associated HLA class I alleles implicate cell-mediated cytotoxicity. SLEEP 2016;39(3):581–587. PMID:26518595

  16. Protection against henipaviruses in swine requires both, cell-mediated and humoral immune response.

    PubMed

    Pickering, Brad S; Hardham, John M; Smith, Greg; Weingartl, Eva T; Dominowski, Paul J; Foss, Dennis L; Mwangi, Duncan; Broder, Christopher C; Roth, James A; Weingartl, Hana M

    2016-09-14

    Hendra virus (HeV) and Nipah virus (NiV) are members of the genus Henipavirus, within the family Paramyxoviridae. Nipah virus has caused outbreaks of human disease in Bangladesh, Malaysia, Singapore, India and Philippines, in addition to a large outbreak in swine in Malaysia in 1998/1999. Recently, NiV was suspected to be a causative agent of an outbreak in horses in 2014 in the Philippines, while HeV has caused multiple human and equine outbreaks in Australia since 1994. A swine vaccine able to prevent shedding of infectious virus is of veterinary and human health importance, and correlates of protection against henipavirus infection in swine need to be better understood. In the present study, three groups of animals were employed. Pigs vaccinated with adjuvanted recombinant soluble HeV G protein (sGHEV) and challenged with HeV, developed antibody levels considered to be protective prior to the challenge (titers of 320). However, activation of the cell-mediated immune response was not detected, and the animals were only partially protected against challenge with 5×10(5) PFU of HeV per animal. In the second group, cross-neutralizing antibody levels against NiV in the sGHEV vaccinated animals did not reach protective levels, and with no activation of cellular immune memory, these animals were not protected against NiV. Only pigs orally infected with 5×10(4) PFU of NiV per animal were protected against nasal challenge with 5×10(5) PFU of NiV per animal. This group of pigs developed protective antibody levels, as well as cell-mediated immune memory. Peripheral blood mononuclear cells restimulated with UV-inactivated NiV upregulated IFN-gamma, IL-10 and the CD25 activation marker on CD4(+)CD8(+) T memory helper cells and to lesser extent on CD4(-)CD8(+) T cells. In conclusion, both humoral and cellular immune responses were required for protection of swine against henipaviruses. PMID:27544586

  17. [Studies on the cell-mediated immunity in experimental Naegleria spp. infections].

    PubMed

    Lee, S G; Shin, H J; Im, K I

    1989-09-01

    Observations were made on the differences in cell-mediated immune responses in the mice infected with strongly pathogenic Naegleria fowleri ITMAP 359, weakly pathogenic Naegleria jadini 0400, or non-pathogenic Naegleria gruberi EGB, respectively. Variations in cell-mediated responses and changes in antibody titers according to the duration after infection were noted. Infections were done by dropping 5 microliters saline suspension containing 10 x 10(4) trophozoites cultured axenically in the CGVS medium into the right nasal cavity of ICR mice aging about 6-7 weeks, under the anesthesia by intraperitoneal injection of secobarbital. Following infection, delayed type hypersensitivity(DTH) responses in the footpad and blastogenic responses of the mouse spleen cells using [3H]-thymidine were observed on the day 1, 4, 7, 10 and 14 after infection. For the preparation of amoeba lysates, each of cultured trophozoites were homogenized with an ultrasonicator, and centrifugated at 20,000 g. The supernatants of amoeba lysates were used as the mitogen and antigen for ELISA. Concanavalin A(Con. A) and lipopolysaccharide(LPS) were also used as mitogens in the blastogenic response. 1. The mice infected with N. fowleri showed the mortality rate of 75.7%. The rate was 6.2% for the N. jadini infected group, while no dead mouse was observed for N. gruberi infections. 2. In regard to DTH responses in the N. fowleri infected mice, the level increased in comparison to the control group but declined after 7 days. An increase was also noted for the N. jadini group after 1 day, but gradual decreases were observed through the infection period. In addition, no difference was noted between the N. gruberi infected and control groups. 3. Concerning the blastogenic response of the splenocytes, it increased after 10 days in the experimental group of N. fowleri infection, but the differences were not statistically significant compared with control group. It was evident that N. jadini group was not

  18. Characteristic patterns of dendritic remodeling in early-stage glaucoma: evidence from genetically identified retinal ganglion cell types.

    PubMed

    El-Danaf, Rana N; Huberman, Andrew D

    2015-02-11

    Retinal ganglion cell (RGC) loss is a hallmark of glaucoma and the second leading cause of blindness worldwide. The type and timing of cellular changes leading to RGC loss in glaucoma remain incompletely understood, including whether specific RGC subtypes are preferentially impacted at early stages of this disease. Here we applied the microbead occlusion model of glaucoma to different transgenic mouse lines, each expressing green fluorescent protein in 1-2 specific RGC subtypes. Targeted filling, reconstruction, and subsequent comparison of the genetically identified RGCs in control and bead-injected eyes revealed that some subtypes undergo significant dendritic rearrangements as early as 7 d following induction of elevated intraocular pressure (IOP). By comparing specific On-type, On-Off-type and Off-type RGCs, we found that RGCs that target the majority of their dendritic arbors to the scleral half or "Off" sublamina of the inner plexiform layer (IPL) undergo the greatest changes, whereas RGCs with the majority of their dendrites in the On sublamina did not alter their structure at this time point. Moreover, M1 intrinsically photosensitive RGCs, which functionally are On RGCs but structurally stratify their dendrites in the Off sublamina of the IPL, also underwent significant changes in dendritic structure 1 week after elevated IOP. Thus, our findings reveal that certain RGC subtypes manifest significant changes in dendritic structure after very brief exposure to elevated IOP. The observation that RGCs stratifying most of their dendrites in the Off sublamina are first to alter their structure may inform the development of new strategies to detect, monitor, and treat glaucoma in humans.

  19. Candida mannan: chemistry, suppression of cell-mediated immunity, and possible mechanisms of action.

    PubMed Central

    Nelson, R D; Shibata, N; Podzorski, R P; Herron, M J

    1991-01-01

    The ability of Candida albicans to establish an infection involves multiple components of this fungal pathogen, but its ability to persist in host tissue may involve primarily the immunosuppressive property of a major cell wall glycoprotein, mannan. Mannan and oligosaccharide fragments of mannan are potent inhibitors of cell-mediated immunity and appear to reproduce the immune deficit of patients with the mucocutaneous form of candidiasis. However, neither the exact structures of these inhibitory species nor their mechanisms of action have yet been clearly defined. Different investigators have proposed that mannan or mannan catabolites act upon monocytes or suppressor T lymphocytes, but research from unrelated areas has provided still other possibilities for consideration. These include interference with cytokine activities, lymphocyte-monocyte interactions, and leukocyte homing. To stimulate further research of the immunosuppressive property of C. albicans mannan, we have reviewed (i) the relationship of mannan to other antigens and virulence factors of the fungus; (ii) the chemistry of mannan, together with methods for preparation of mannan and mannan fragments; and (iii) the historical evidence for immunosuppression by Candida mannan and the mechanisms currently proposed for this property; and (iv) we have speculated upon still other mechanisms by which mannan might influence host defense functions. It is possible that understanding the immunosuppressive effects of mannan will provide clues to novel therapies for candidiasis that will enhance the efficacy of both available and future anti-Candida agents. PMID:2004345

  20. Epstein-Barr Virus Reactivation Associated with Diminished Cell-Mediated Immunity in Antarctic Expeditioners

    NASA Technical Reports Server (NTRS)

    Pierson, Duane L.; Mehta, Satish K.; Cooley, Helen; Dubow, Robin; Lugg, Desmond

    1999-01-01

    Reactivation of Epstein-Barr virus (EBV) and cell-mediated immune (CMI) responses were followed in 16 Antarctic expeditioners during winter-over isolation at two Australian National Antarctic Research Expedition stations. Delayed-type hypersensitivity skin testing was used as an indicator of the CMI response, which was evaluated two times before winter isolation and three times during isolation. At all five evaluation times, 8 or more of the 16 subjects had a diminished. CMI response. Diminished CMI was observed on every test occasion in 4/16 subjects; only 2/16 subjects exhibited normal CMI responses for all five tests. A polymerase chain reaction (PCR) assay was used to detect EBV DNA in saliva specimens collected before, after, and during the winter isolation. EBV DNA was present in 17% (111/642) of the saliva specimens; all 16 subjects shed EBV in their saliva on at least one occasion. The probability of EBV shedding increased (p=0.013) from 6% before or after winter isolation to 13% during the winter period. EBV appeared in saliva during the winter isolation more frequently (p<0.0005) when CMI responsiveness was diminished than when CMI status was normal. The findings indicate that the psychosocial, physical, and other stresses associated with working and living in physical isolation during the Antarctic winter results in diminished CMI and an accompanying increased reactivation and shedding of latent viruses.

  1. Inhibitory effects of mast cell-mediated allergic reactions by cell cultured Siberian Ginseng.

    PubMed

    Jeong, H J; Koo, H N; Myung, N I; Shin, M K; Kim, J W; Kim, D K; Kim, K S; Kim, H M; Lee, Y M

    2001-02-01

    The crude drug "Siberian Ginseng (SG)" has long been used in empirical Oriental medicine for the nonspecific enhancement of resistance in humans and animals. In this study, we investigated the effect of cell cultured SG by oral administration in mast cell-mediated allergic reactions. SG dose-dependently inhibited compound 48/80-induced systemic allergy with doses of 10(-2) to 1 g/kg 1 h before oral administration. Of special note, SG inhibited systemic allergy with the dose of 1 g/kg by 25%. SG (1 g/kg) also inhibited passive cutaneous allergic reaction by 51%. SG dose-dependently inhibited histamine release from rat peritoneal mast cells. When SG (0.01 mg/ml) was added, the secretion of tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 in antidinitrophenyl (DNP) IgE antibody-stimulated mast cells was inhibited 39.5% and 23.3%, respectively. In addition, SG inhibited anti-DNP IgE antibody-stimulated TNF-alpha protein expression in mast cells. Our studies provide evidence that SG may be beneficial in the treatment of various types of allergic diseases.

  2. Cell mediated immune response of the Mediterranean sea urchin Paracentrotus lividus after PAMPs stimulation.

    PubMed

    Romero, A; Novoa, B; Figueras, A

    2016-09-01

    The Mediterranean sea urchin (Paracentrotus lividus) is of great ecological and economic importance for the European aquaculture. Yet, most of the studies regarding echinoderm's immunological defense mechanisms reported so far have used the sea urchin Strongylocentrotus purpuratus as a model, and information on the immunological defense mechanisms of Paracentrotus lividus and other sea urchins, is scarce. To remedy this gap in information, in this study, flow cytometry was used to evaluate several cellular immune mechanisms, such as phagocytosis, cell cooperation, and ROS production in P. lividus coelomocytes after PAMP stimulation. Two cell populations were described. Of the two, the amoeboid-phagocytes were responsible for the phagocytosis and ROS production. Cooperation between amoeboid-phagocytes and non-adherent cells resulted in an increased phagocytic response. Stimulation with several PAMPs modified the phagocytic activity and the production of ROS. The premise that the coelomocytes were activated by the bacterial components was confirmed by the expression levels of two cell mediated immune genes: LPS-Induced TNF-alpha Factor (LITAF) and macrophage migration inhibitory factor (MIF). These results have helped us understand the cellular immune mechanisms in P. lividus and their modulation after PAMP stimulation.

  3. Melatonin treatment prevents modulation of cell-mediated immune response induced by propoxur in rats.

    PubMed

    Suke, Sanvidhan G; Pathak, Rahul; Ahmed, Rafat S; Tripathi, A K; Banerjee, B D

    2008-08-01

    The effect of melatonin, a major secretory product of the pineal gland, in attenuation of propoxur (2-isopropoxy phenyl N-methyl carbamate)-induced modulation of cell-mediated immune (CMI) response was studied in rats. Male Wistar albino rats were exposed to propoxur (a widely used pesticide) orally (10 mg/kg) and/or melatonin (10 mg/kg) orally for 4 weeks. CMI was measured by delayed-type hypersensitivity (DTH), leucocyte and macrophage migration inhibition (LMI and MMI) responses and estimation of cytokines TNF-alpha and IFN-gamma levels. Rats exposed to propoxur for 4 weeks showed significant decrease in DTH, LMI and MMI responses. Propoxur also suppressed TNF-alpha and IFN-gamma production significantly. Administration of melatonin alone caused a significant increase in DTH response. Although there were no changes in the LMI and MMI response, the cytokine levels were significantly increased, as compared to control. Co-administration of melatonin along with propoxur significantly nullified the effect of the pesticide on the CMI response, except DTH and reversed levels of cytokines to near control/normal values. Thus, melatonin treatment considerably attenuated immunomodulation caused by sub-chronic treatment of propoxur in experimental animals.

  4. CD8+ T Cell-Mediated Neuronal Dysfunction and Degeneration in Limbic Encephalitis

    PubMed Central

    Ehling, Petra; Melzer, Nico; Budde, Thomas; Meuth, Sven G.

    2015-01-01

    Autoimmune inflammation of the limbic gray matter structures of the human brain has recently been identified as major cause of mesial temporal lobe epilepsy with interictal temporal epileptiform activity and slowing of the electroencephalogram, progressive memory disturbances, as well as a variety of other behavioral, emotional, and cognitive changes. Magnetic resonance imaging exhibits volume and signal changes of the amygdala and hippocampus, and specific anti-neuronal antibodies binding to either intracellular or plasma membrane neuronal antigens can be detected in serum and cerebrospinal fluid. While effects of plasma cell-derived antibodies on neuronal function and integrity are increasingly becoming characterized, potentially contributing effects of T cell-mediated immune mechanisms remain poorly understood. CD8+ T cells are known to directly interact with major histocompatibility complex class I-expressing neurons in an antigen-specific manner. Here, we summarize current knowledge on how such direct CD8+ T cell–neuron interactions may impact neuronal excitability, plasticity, and integrity on a single cell and network level and provide an overview on methods to further corroborate the in vivo relevance of these mechanisms mainly obtained from in vitro studies. PMID:26236280

  5. The 3 major types of innate and adaptive cell-mediated effector immunity.

    PubMed

    Annunziato, Francesco; Romagnani, Chiara; Romagnani, Sergio

    2015-03-01

    The immune system has tailored its effector functions to optimally respond to distinct species of microbes. Based on emerging knowledge on the different effector T-cell and innate lymphoid cell (ILC) lineages, it is clear that the innate and adaptive immune systems converge into 3 major kinds of cell-mediated effector immunity, which we propose to categorize as type 1, type 2, and type 3. Type 1 immunity consists of T-bet(+) IFN-γ-producing group 1 ILCs (ILC1 and natural killer cells), CD8(+) cytotoxic T cells (TC1), and CD4(+) TH1 cells, which protect against intracellular microbes through activation of mononuclear phagocytes. Type 2 immunity consists of GATA-3(+) ILC2s, TC2 cells, and TH2 cells producing IL-4, IL-5, and IL-13, which induce mast cell, basophil, and eosinophil activation, as well as IgE antibody production, thus protecting against helminthes and venoms. Type 3 immunity is mediated by retinoic acid-related orphan receptor γt(+) ILC3s, TC17 cells, and TH17 cells producing IL-17, IL-22, or both, which activate mononuclear phagocytes but also recruit neutrophils and induce epithelial antimicrobial responses, thus protecting against extracellular bacteria and fungi. On the other hand, type 1 and 3 immunity mediate autoimmune diseases, whereas type 2 responses can cause allergic diseases.

  6. Laminin: a possible role as a mediator of natural cell-mediated functions

    SciTech Connect

    Laybourn, K.A.

    1986-01-01

    Natural Cell-mediated cytotoxicity is clearly important in regulating host response during tumorgenicity. Natural killer (NK), and Natural Cytotoxic (NC) lymphocytes responsible for mediating cytolysis, are subpopulations of non-B, non-T, nonphagocytic, nonadherent lymphocytes capable of spontaneously lysing a variety of tumor targets. Evidence is presented that laminin, a high molecular weight glycoprotein, is present on the surface of murine NK cells. In addition, NK sensitive tumor targets are able to bind laminin. This suggest that laminin participates as a ligand in the binding of NK cells to their tumor targets. The saturable binding of laminin by NK and NC sensitive tumor targets was shown by laminin-induced cell-cell aggregation/adherence, and /sup 125/I-laminin binding studies. Exogenous laminin inhibited NK cytotoxicity but not CTL cytotoxicity in vitro. In comparison, NK-resistant tumor cells bound little, if any exogenous laminin. Modulating NK activity in vivo prior to challenging mice with an inoculation of a murine fibrosarcoma, showed that elimination or activation of NK activity resulted in an increase or decrease in pulmonary metastases, respectively.

  7. Epstein-Barr virus reactivation associated with diminished cell-mediated immunity in antarctic expeditioners

    NASA Technical Reports Server (NTRS)

    Mehta, S. K.; Pierson, D. L.; Cooley, H.; Dubow, R.; Lugg, D.

    2000-01-01

    Epstein-Barr virus (EBV) reactivation and cell-mediated immune (CMI) responses were followed in 16 Antarctic expeditioners during winter-over isolation at 2 Australian National Antarctic Research Expedition stations. Delayed-type hypersensitivity (DTH) skin testing was used as an indicator of the CMI response, that was evaluated 2 times before winter isolation and 3 times during isolation. At all 5 evaluation times, 8 or more of the 16 subjects had a diminished CMI response. Diminished DTH was observed on every test occasion in 4/16 subjects; only 2/16 subjects exhibited normal DTH responses for all 5 tests. A polymerase chain reaction (PCR) assay was used to detect EBV DNA in saliva specimens collected before, during, and after the winter isolation. EBV DNA was present in 17% (111/642) of the saliva specimens; all 16 subjects shed EBV in their saliva on at least 1 occasion. The probability of EBV shedding increased (P = 0.013) from 6% before or after winter isolation to 13% during the winter period. EBV appeared in saliva during the winter isolation more frequently (P < 0.0005) when DTH response was diminished than when DTH was normal. The findings indicate that the psychosocial, physical, and other stresses associated with working and living in physical isolation during the Antarctic winter result in diminished CMI and an accompanying increased reactivation and shedding of latent viruses.

  8. Srf-dependent paracrine signals produced by myofibers control satellite cell-mediated skeletal muscle hypertrophy.

    PubMed

    Guerci, Aline; Lahoute, Charlotte; Hébrard, Sophie; Collard, Laura; Graindorge, Dany; Favier, Maryline; Cagnard, Nicolas; Batonnet-Pichon, Sabrina; Précigout, Guillaume; Garcia, Luis; Tuil, David; Daegelen, Dominique; Sotiropoulos, Athanassia

    2012-01-01

    Adult skeletal muscles adapt their fiber size to workload. We show that serum response factor (Srf) is required for satellite cell-mediated hypertrophic muscle growth. Deletion of Srf from myofibers and not satellite cells blunts overload-induced hypertrophy, and impairs satellite cell proliferation and recruitment to pre-existing fibers. We reveal a gene network in which Srf within myofibers modulates interleukin-6 and cyclooxygenase-2/interleukin-4 expressions and therefore exerts a paracrine control of satellite cell functions. In Srf-deleted muscles, in vivo overexpression of interleukin-6 is sufficient to restore satellite cell proliferation but not satellite cell fusion and overall growth. In contrast cyclooxygenase-2/interleukin-4 overexpression rescue satellite cell recruitment and muscle growth without affecting satellite cell proliferation, identifying altered fusion as the limiting cellular event. These findings unravel a role for Srf in the translation of mechanical cues applied to myofibers into paracrine signals, which in turn will modulate satellite cell functions and support muscle growth.

  9. Cell-mediated immune responses to chlamydial antigens in guinea pigs injected with inactivated chlamydiae.

    PubMed

    Senyk, G; Sharp, M; Stites, D P; Hanna, L; Keshishyan, H; Jawetz, E

    1980-01-01

    Cell-mediated immunity (CMI) to chlamydial antigens was readily induced in guinea pigs by a single injection of Betaprone-inactivated chlamydiae in complete Freund adjuvant. The CMI was measured in vivo by delayed hypersensitivity skin tests, and in vitro by inhibition of migration of peritoneal exudate cells and by proliferation of lymph node lymphocytes. There was an overall correlation between in vivo and in vitro responses. Of the in vitro assays, migration inhibition reflected the state of sensitization, as judged by skin tests, more uniformly than lymphocyte stimulation. Extensive inter- and intra-species cross-reactivity was noted between LB-1, a strain of C. trachomatis, and three strains of C. psittaci, 6BC, GPIC, and 562F. Cross-reactivity between LB-1 and 6BC was one-way only, by all three parameters: LB-1 elicited strong cross-reactions in 6BC-immunized animals but not vice versa. Antichlamydial antibodies could not be demonstrated in any of the animals by microimmunofluorescence.

  10. Hepatic non-parenchymal cells and extracellular matrix participate in oval cell-mediated liver regeneration

    PubMed Central

    Zhang, Wei; Chen, Xiao-Ping; Zhang, Wan-Guang; Zhang, Feng; Xiang, Shuai; Dong, Han-Hua; Zhang, Lei

    2009-01-01

    AIM: To elucidate the interaction between non-parenchymal cells, extracellular matrix and oval cells during the restituting process of liver injury induced by partial hepatectomy (PH). METHODS: We examined the localization of oval cells, non-parenchymal cells, and the extracellular matrix components using immunohistochemical and double immunofluorescent analysis during the proliferation and differentiation of oval cells in N-2-acetylaminofluorene (2-AAF)/PH rat model. RESULTS: By day 2 after PH, small oval cells began to proliferate around the portal area. Most of stellate cells and laminin were present along the hepatic sinusoids in the periportal area. Kupffer cells and fibronectin markedly increased in the whole hepatic lobule. From day 4 to 9, oval cells spread further into hepatic parenchyma, closely associated with stellate cells, fibronectin and laminin. Kupffer cells admixed with oval cells by day 6 and then decreased in the periportal zone. From day 12 to 15, most of hepatic stellate cells (HSCs), laminin and fibronectin located around the small hepatocyte nodus, and minority of them appeared in the nodus. Kupffer cells were mainly limited in the pericentral sinusoids. After day 18, the normal liver lobule structures began to recover. CONCLUSION: Local hepatic microenvironment may participate in the oval cell-mediated liver regeneration through the cell-cell and cell-matrix interactions. PMID:19195056

  11. Is cell-mediated immunity related to the evolution of life-history strategies in birds?

    PubMed Central

    Tella, José L; Scheuerlein, Alex; Ricklefs, Robert E

    2002-01-01

    According to life-history theory, the development of immune function should be balanced through evolutionary optimization of the allocation of resources to reproduction and through mechanisms that promote survival. We investigated interspecific variability in cell-mediated immune response (CMI), as measured by the phytohaemagglutinin (PHA) assay, in relation to clutch size, longevity and other life-history traits in 50 species of birds. CMI exhibited significant repeatability within species, and PHA responses in chicks were consistently stronger than in adults. Univariate tests showed a variety of significant relationships between the CMI of both chicks and adults with respect to size, development period and lifespan, but not clutch size or prevalence of blood parasites in adults. Multivariate analyses confirmed these patterns but independent variables were too highly correlated to isolate unique influences on CMI. The positive relationship of chick CMI to nestling period is further complicated by a parallel relationship of chick CMI to the age at testing. However, multivariate analysis showed that chick CMI varies uniquely with length of the nestling period. Adult CMI was associated with a strong life-history axis of body size, development rate and longevity. Therefore, adult CMI may be associated with prevention and repair mechanisms related to long lifespan, but it also may be allometrically related to body size through other pathways. Neither chick CMI nor adult CMI was related to clutch size, contradicting previous results linking parasite-related mortality to CMI and the evolution of clutch size (reproductive investment) in birds. PMID:12028764

  12. Growth suppression of Leydig TM3 cells mediated by aryl hydrocarbon receptor

    SciTech Connect

    Iseki, Minoru; Ikuta, Togo; Kobayashi, Tetsuya; Kawajiri, Kaname . E-mail: kawajiri@cancer-c.pref.saitama.jp

    2005-06-17

    Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin induces developmental toxicity in reproductive organs. To elucidate the function of AhR, we generated stable transformants of TM3 cells overexpressing wild-type aryl hydrocarbon receptor (AhR) or its mutants which carried mutations in nuclear localization signal or nuclear export signal. In the presence of 3-methylcholanthrene (MC), proliferation of the cells transfected with wild-type AhR was completely suppressed, whereas cells expressing AhR mutants proliferated in a manner equivalent to control TM3 cells, suggesting AhR-dependent growth inhibition. The suppression was associated with up-regulation of cyclin-dependent kinase inhibitor p21{sup Cip1}, which was abolished by pretreatment with actinomycin D. A p38 MAPK specific inhibitor, SB203580, blocked the increase of p21{sup Cip1} mRNA in response to MC. Treatment with indigo, another AhR ligand, failed to increase of p21{sup Cip1} mRNA, although up-regulation of mRNA for CYP1A1 was observed. These data suggest AhR in Leydig cells mediates growth inhibition by inducing p21{sup Cip1}.

  13. Endogenous n-3 Polyunsaturated Fatty Acids Attenuate T Cell-Mediated Hepatitis via Autophagy Activation.

    PubMed

    Li, Yanli; Tang, Yuan; Wang, Shoujie; Zhou, Jing; Zhou, Jia; Lu, Xiao; Bai, Xiaochun; Wang, Xiang-Yang; Chen, Zhengliang; Zuo, Daming

    2016-01-01

    Omega-3 polyunsaturated fatty acids (n-3 PUFAs) exert anti-inflammatory effects in several liver disorders, including cirrhosis, acute liver failure, and fatty liver disease. To date, little is known about their role in immune-mediated liver diseases. In this study, we used fat-1 transgenic mice rich in endogenous n-3 PUFAs to examine the role of n-3 PUFAs in immune-mediated liver injury. Concanavalin A (Con A) was administered intravenously to wild-type (WT) and fat-1 transgenic mice to induce T cell-mediated hepatitis. Reduced liver damage was shown in Con A-administrated fat-1 transgenic mice, as evidenced by decreased mortality, attenuated hepatic necrosis, lessened serum alanine aminotransferase activity, and inhibited production of pro-inflammatory cytokines (e.g., TNF-α, IL-6, IL-17A, and IFN-γ). In vivo and in vitro studies demonstrated that n-3 PUFAs significantly inhibited the activation of hepatic T cells and the differentiation of Th1 cells after Con A challenge. Further studies showed that n-3 PUFAs markedly increased autophagy level in Con A-treated fat-1 T cells compared with the WT counterparts. Blocking hepatic autophagy activity with chloroquine diminished the differences in T cell activation and liver injury between Con A-injected WT and fat-1 transgenic mice. We conclude that n-3 PUFAs limit Con A-induced hepatitis via an autophagy-dependent mechanism and could be exploited as a new therapeutic approach for autoimmune hepatitis.

  14. Amacrine cell-mediated input to bipolar cells: variations on a common mechanistic theme.

    PubMed

    Grimes, William N

    2012-01-01

    Feedback is a ubiquitous feature of neural circuits in the mammalian central nervous system (CNS). Analogous to pure electronic circuits, neuronal feedback provides either a positive or negative influence on the output of upstream components/neurons. Although the particulars (i.e., connectivity, physiological encoding/processing/signaling) of circuits in higher areas of the brain are often unclear, the inner retina proves an excellent model for studying both the anatomy and physiology of feedback circuits within the functional context of visual processing. Inner retinal feedback to bipolar cells is almost entirely mediated by a single class of interneurons, the amacrine cells. Although this might sound like a simple circuit arrangement with an equally simple function, anatomical, molecular, and functional evidence suggest that amacrine cells represent an extremely diverse class of CNS interneurons that contribute to a variety of retinal processes. In this review, I classify the amacrine cells according to their anatomical output synapses and target cell(s) (i.e., bipolar cells, ganglion cells, and/or amacrine cells) and discuss specifically our current understandings of amacrine cell-mediated feedback and output to bipolar cells on the synaptic, cellular, and circuit levels, while drawing connections to visual processing.

  15. Cell mediated immune response of the Mediterranean sea urchin Paracentrotus lividus after PAMPs stimulation.

    PubMed

    Romero, A; Novoa, B; Figueras, A

    2016-09-01

    The Mediterranean sea urchin (Paracentrotus lividus) is of great ecological and economic importance for the European aquaculture. Yet, most of the studies regarding echinoderm's immunological defense mechanisms reported so far have used the sea urchin Strongylocentrotus purpuratus as a model, and information on the immunological defense mechanisms of Paracentrotus lividus and other sea urchins, is scarce. To remedy this gap in information, in this study, flow cytometry was used to evaluate several cellular immune mechanisms, such as phagocytosis, cell cooperation, and ROS production in P. lividus coelomocytes after PAMP stimulation. Two cell populations were described. Of the two, the amoeboid-phagocytes were responsible for the phagocytosis and ROS production. Cooperation between amoeboid-phagocytes and non-adherent cells resulted in an increased phagocytic response. Stimulation with several PAMPs modified the phagocytic activity and the production of ROS. The premise that the coelomocytes were activated by the bacterial components was confirmed by the expression levels of two cell mediated immune genes: LPS-Induced TNF-alpha Factor (LITAF) and macrophage migration inhibitory factor (MIF). These results have helped us understand the cellular immune mechanisms in P. lividus and their modulation after PAMP stimulation. PMID:27113124

  16. Paper-based bioactive scaffolds for stem cell-mediated bone tissue engineering.

    PubMed

    Park, Hyun-Ji; Yu, Seung Jung; Yang, Kisuk; Jin, Yoonhee; Cho, Ann-Na; Kim, Jin; Lee, Bora; Yang, Hee Seok; Im, Sung Gap; Cho, Seung-Woo

    2014-12-01

    Bioactive, functional scaffolds are required to improve the regenerative potential of stem cells for tissue reconstruction and functional recovery of damaged tissues. Here, we report a paper-based bioactive scaffold platform for stem cell culture and transplantation for bone reconstruction. The paper scaffolds are surface-engineered by an initiated chemical vapor deposition process for serial coating of a water-repellent and cell-adhesive polymer film, which ensures the long-term stability in cell culture medium and induces efficient cell attachment. The prepared paper scaffolds are compatible with general stem cell culture and manipulation techniques. An optimal paper type is found to provide structural, physical, and mechanical cues to enhance the osteogenic differentiation of human adipose-derived stem cells (hADSCs). A bioactive paper scaffold significantly enhances in vivo bone regeneration of hADSCs in a critical-sized calvarial bone defect. Stacking the paper scaffolds with osteogenically differentiated hADSCs and human endothelial cells resulted in vascularized bone formation in vivo. Our study suggests that paper possesses great potential as a bioactive, functional, and cost-effective scaffold platform for stem cell-mediated bone tissue engineering. To the best of our knowledge, this is the first study reporting the feasibility of a paper material for stem cell application to repair tissue defects.

  17. Hypothalamus-Pituitary-Adrenal cell-mediated immunity regulation in the Immune Restoration Inflammatory Syndrome

    PubMed Central

    Khakshooy, Allen; Chiappelli, Francesco

    2016-01-01

    Over one third of the patients sero-positive for the human immunodeficiency virus (HIV) with signs of the acquired immune deficiency syndrome (AIDS), and under treatment with anti-retroviral therapy (ART), develop the immune reconstitution inflammatory syndrome (IRIS). It is not clear what variables are that determine whether a patient with HIV/AIDS will develop ART-related IRIS, but the best evidence base thus far indicates that HIV/AIDS patients with low CD4 cell count, and HIV/AIDS patients whose CD4 count recovery shows a sharp slope, suggesting a particularly fast "immune reconstitution", are at greater risk of developing IRIS. Here, we propose the hypothesis that one important variable that can contribute to low CD4 cell count number and function in ART-treated HIV/AIDS patients is altered hypothalamic-pituitary-adrenal (HPA) cell-mediated immune (CMI) regulation. We discuss HPA-CMI deregulation in IRIS as the new frontier in comparative effectiveness research (CRE) for obtaining and utilizing the best evidence base for treatment of patients with HIV/AIDS in specific clinical settings. We propose that our hypothesis about altered HPA-CMI may extend to the pathologies observed in related viral infection, including Zika PMID:27212842

  18. Epistasis between microRNAs 155 and 146a during T cell-mediated antitumor immunity

    PubMed Central

    Huffaker, Thomas B.; Hu, Ruozhen; Runtsch, Marah C.; Bake, Erin; Chen, Xinjian; Zhao, Jimmy; Round, June L.; Baltimore, David; O’Connell, Ryan M.

    2012-01-01

    SUMMARY An increased understanding of antitumor immunity is necessary to improve cell-based immunotherapies against human cancers. Here, we investigated the roles of two immune system-expressed microRNAs (miRNAs), miR-155 and miR-146a, in the regulation of antitumor immune responses. Our results indicate that miR-155 promotes and miR-146a inhibits IFNγ responses by T cells and reduced solid tumor growth in vivo. Using a novel double knockout (DKO) mouse strain deficient in both miR-155 and miR-146a, we have also identified an epistatic relationship between these two miRNAs. DKO mice had defective T cell responses and tumor growth phenotypes similar to miR-155−/− mice. Further analysis of the T cell compartment revealed that miR-155 modulates IFNγ expression through a mechanism involving repression of Ship1. Our work reveals critical roles for miRNAs in the reciprocal regulation of CD4+ and CD8+ T cell-mediated antitumor immunity, and demonstrates the dominant nature of miR-155 during its promotion of immune responses. PMID:23200854

  19. Fibrocyte-like cells mediate acquired resistance to anti-angiogenic therapy with bevacizumab

    PubMed Central

    Mitsuhashi, Atsushi; Goto, Hisatsugu; Saijo, Atsuro; Trung, Van The; Aono, Yoshinori; Ogino, Hirokazu; Kuramoto, Takuya; Tabata, Sho; Uehara, Hisanori; Izumi, Keisuke; Yoshida, Mitsuteru; Kobayashi, Hiroaki; Takahashi, Hidefusa; Gotoh, Masashi; Kakiuchi, Soji; Hanibuchi, Masaki; Yano, Seiji; Yokomise, Hiroyasu; Sakiyama, Shoji; Nishioka, Yasuhiko

    2015-01-01

    Bevacizumab exerts anti-angiogenic effects in cancer patients by inhibiting vascular endothelial growth factor (VEGF). However, its use is still limited due to the development of resistance to the treatment. Such resistance can be regulated by various factors, although the underlying mechanisms remain incompletely understood. Here we show that bone marrow-derived fibrocyte-like cells, defined as alpha-1 type I collagen-positive and CXCR4-positive cells, contribute to the acquired resistance to bevacizumab. In mouse models of malignant pleural mesothelioma and lung cancer, fibrocyte-like cells mediate the resistance to bevacizumab as the main producer of fibroblast growth factor 2. In clinical specimens of lung cancer, the number of fibrocyte-like cells is significantly increased in bevacizumab-treated tumours, and correlates with the number of treatment cycles, as well as CD31-positive vessels. Our results identify fibrocyte-like cells as a promising cell biomarker and a potential therapeutic target to overcome resistance to anti-VEGF therapy. PMID:26635184

  20. NLRC5 shields T lymphocytes from NK-cell-mediated elimination under inflammatory conditions

    PubMed Central

    Ludigs, Kristina; Jandus, Camilla; Utzschneider, Daniel T.; Staehli, Francesco; Bessoles, Stéphanie; Dang, Anh Thu; Rota, Giorgia; Castro, Wilson; Zehn, Dietmar; Vivier, Eric; Held, Werner; Romero, Pedro; Guarda, Greta

    2016-01-01

    NLRC5 is a transcriptional regulator of MHC class I (MHCI), which maintains high MHCI expression particularly in T cells. Recent evidence highlights an important NK–T-cell crosstalk, raising the question on whether NLRC5 specifically modulates this interaction. Here we show that NK cells from Nlrc5-deficient mice exhibit moderate alterations in inhibitory receptor expression and responsiveness. Interestingly, NLRC5 expression in T cells is required to protect them from NK-cell-mediated elimination upon inflammation. Using T-cell-specific Nlrc5-deficient mice, we show that NK cells surprisingly break tolerance even towards ‘self' Nlrc5-deficient T cells under inflammatory conditions. Furthermore, during chronic LCMV infection, the total CD8+ T-cell population is severely decreased in these mice, a phenotype reverted by NK-cell depletion. These findings strongly suggest that endogenous T cells with low MHCI expression become NK-cell targets, having thus important implications for T-cell responses in naturally or therapeutically induced inflammatory conditions. PMID:26861112

  1. First Line of Defense: Innate Cell-Mediated Control of Pulmonary Aspergillosis

    PubMed Central

    Espinosa, Vanessa; Rivera, Amariliz

    2016-01-01

    Mycotic infections and their effect on the human condition have been widely overlooked and poorly surveilled by many health organizations even though mortality rates have increased in recent years. The increased usage of immunosuppressive and myeloablative therapies for the treatment of malignant as well as non-malignant diseases has contributed significantly to the increased incidence of fungal infections. Invasive fungal infections have been found to be responsible for at least 1.5 million deaths worldwide. About 90% of these deaths can be attributed to Cryptococcus, Candida, Aspergillus, and Pneumocystis. A better understanding of how the host immune system contains fungal infection is likely to facilitate the development of much needed novel antifungal therapies. Innate cells are responsible for the rapid recognition and containment of fungal infections and have been found to play essential roles in defense against multiple fungal pathogens. In this review we summarize our current understanding of host-fungi interactions with a focus on mechanisms of innate cell-mediated recognition and control of pulmonary aspergillosis. PMID:26973640

  2. IL-9 regulates intestinal barrier function in experimental T cell-mediated colitis.

    PubMed

    Gerlach, Katharina; McKenzie, Andrew N; Neurath, Markus F; Weigmann, Benno

    2015-01-01

    As previous studies suggested that IL-9 may control intestinal barrier function, we tested the role of IL-9 in experimental T cell-mediated colitis induced by the hapten reagent 2,4,6-trinitrobenzenesulfonic acid (TNBS). The deficiency of IL-9 suppressed TNBS-induced colitis and led to lower numbers of PU.1 expressing T cells in the lamia propria, suggesting a regulatory role for Th9 cells in the experimental TNBS colitis model. Since IL-9 is known to functionally alter intestinal barrier function in colonic inflammation, we assessed the expression of tight junction molecules in intestinal epithelial cells of TNBS-inflamed mice. Therefore we made real-time PCR analyses for tight junction molecules in the inflamed colon from wild-type and IL-9 KO mice, immunofluorescent stainings and investigated the expression of junctional proteins directly in intestinal epithelial cells of TNBS-inflamed mice by Western blot studies. The results demonstrated that sealing proteins like occludin were up regulated in the colon of inflamed IL-9 KO mice. In contrast, the tight junction protein Claudin1 showed lower expression levels when IL-9 is absent. Surprisingly, the pore-forming molecule Claudin2 revealed equal expression in TNBS-treated wild-type and IL-9-deficient animals. These results illustrate the pleiotropic functions of IL-9 in changing intestinal permeability in experimental colitis. Thus, modulation of IL-9 function emerges as a new approach for regulating barrier function in intestinal inflammation.

  3. Crosstalk between PKCζ and the IL4/Stat6 pathway during T-cell-mediated hepatitis

    PubMed Central

    Durán, Angeles; Rodriguez, Angelina; Martin, Pilar; Serrano, Manuel; Flores, Juana Maria; Leitges, Michael; Diaz-Meco, María T; Moscat, Jorge

    2004-01-01

    PKCζ is required for nuclear factor κ-B (NF-κB) activation in several cell systems. NF-κB is a suppressor of liver apoptosis during development and in concanavalin A (ConA)-induced T-cell-mediated hepatitis. Here we show that PKCζ−/− mice display inhibited ConA-induced NF-κB activation and reduced damage in liver. As the IL-4/Stat6 pathway is necessary for ConA-induced hepatitis, we addressed here the potential role of PKCζ in this cascade. Interestingly, the loss of PKCζ severely attenuated serum IL-5 and liver eotaxin-1 levels, two critical mediators of liver damage. Stat6 tyrosine phosphorylation and Jak1 activation were ablated in the liver of ConA-injected PKCζ−/− mice and in IL-4-stimulated PKCζ−/− fibroblasts. PKCζ interacts with and phosphorylates Jak1 and PKCζ activity is required for Jak1 function. In contrast, Par-4−/− mice have increased sensitivity to ConA-induced liver damage and IL-4 signaling. This unveils a novel and critical involvement of PKCζ in the IL-4/Stat6 signaling pathway in vitro and in vivo. PMID:15526032

  4. TRESK channel as a potential target to treat T-cell mediated immune dysfunction

    SciTech Connect

    Han, Jaehee; Kang, Dawon

    2009-12-25

    In this review, we propose that TRESK background K{sup +} channel could serve as a potential therapeutic target for T-cell mediated immune dysfunction. TRESK has many immune function-related properties. TRESK is abundantly expressed in the thymus, the spleen, and human leukemic T-lymphocytes. TRESK is highly activated by Ca{sup 2+}, calcineurin, acetylcholine, and histamine which induce hypertrophy, whereas TRESK is inhibited by immunosuppressants, such as cyclosporin A and FK506. Cyclosporine A and FK506 target the binding site of nuclear factor of activated T-cells (NFAT) to inhibit calcineurin. Interestingly, TRESK possesses an NFAT-like docking site that is present at its intracellular loop. Calcineurin has been found to interact with TRESK via specific NFAT-like docking site. When the T-cell is activated, calcineurin can bind to the NFAT-docking site of TRESK. The activation of both TRESK and NFAT via Ca{sup 2+}-calcineurin-NFAT/TRESK pathway could modulate the transcription of new genes in addition to regulating several aspects of T-cell function.

  5. Aire controls mesenchymal stem cell-mediated suppression in chronic colitis.

    PubMed

    Parekkadan, Biju; Fletcher, Anne L; Li, Matthew; Tjota, Melissa Y; Bellemare-Pelletier, Angelique; Milwid, Jack M; Lee, Je-Wook; Yarmush, Martin L; Turley, Shannon J

    2012-01-01

    Mesenchymal stem cells (MSCs) are emerging as a promising immunotherapeutic, based largely on their overt suppression of T lymphocytes under inflammatory and autoimmune conditions. While paracrine cross-talk between MSCs and T cells has been well-studied, an intrinsic transcriptional switch that programs MSCs for immunomodulation has remained undefined. Here we show that bone marrow-derived MSCs require the transcriptional regulator Aire to suppress T cell-mediated pathogenesis in a mouse model of chronic colitis. Surprisingly, Aire did not control MSC suppression of T cell proliferation in vitro. Instead, Aire reduced T cell mitochondrial reductase by negatively regulating a proinflammatory cytokine, early T cell activation factor (Eta)-1. Neutralization of Eta-1 enabled Aire(-/-) MSCs to ameliorate colitis, reducing the number of infiltrating effector T cells in the colon, and normalizing T cell reductase levels. We propose that Aire represents an early molecular switch imposing a suppressive MSC phenotype via regulation of Eta-1. Monitoring Aire expression in MSCs may thus be a critical parameter for clinical use.

  6. Effects of endosulfan on humoral and cell-mediated immune responses in rats

    SciTech Connect

    Banerjee, B.D.; Hussain, Q.Z.

    1987-03-01

    Endosulfan (6,7,8,9,10,10a-hexa-chloro-1,5,5a,6,9,9a-hexahydro, 6,9-methano-2,4,3-benzodioxathiepin-3-oxide), a polycyclic chlorinated hydrocarbon of cyclodien group, is a well known insecticide. Food is the main source of exposure of the general population to endosulfan. The physical, chemical as well as toxicological effects of endosulfan in experimental animals have been reported by various workers. However, the reports regarding the effect of endosulfan on immune system are not available. In view of its widespread use there is an urgent need to investigate the immunotoxicological effect of endosulfan in mammals for the safety evaluation of this insecticide. This has, therefore, prompted the authors to investigate the effect of endosulfan on immune system employing albino rats as the experimental animals. Included in this report are their preliminary findings on humoral and cell-mediated immune responses in rats exposed to sub-chronic doses of endosulfan.

  7. Anti-allergic effects of nilotinib on mast cell-mediated anaphylaxis like reactions.

    PubMed

    El-Agamy, Dina S

    2012-04-01

    Nilotinib is a new orally bioavailable potent tyrosine kinase inhibitor that is used for the treatment of BCR-ABL-positive chronic myelogenous leukemia. However, its effect on mast cell-mediated anaphylactic reaction is still not known. The present study aimed to investigate the effect of nilotinib on the anaphylactic allergic reaction and study its possible mechanism(s) of action. Nilotinib administration prevented systemic anaphylaxis in mice, mediated by compound 48/80, in a dose- and time-dependent manner. Also, nilotinib significantly inhibited (P<0.05) allergic paw edema in rats. Furthermore, nilotinib significantly decreased (P<0.05) the IgE-mediated passive cutaneous anaphylaxis in a dose dependent manner. In addition, nilotinib dose-dependently reduced histamine release from the rat peritoneal mast cells activated either by compound 48/80 or by ovalbumin. Moreover, nilotinib attenuated the secretion of pro-inflammatory cytokine, tumor necrosis factor (TNF)-α expression in the rat peritoneal mast cells. These findings provide evidence that nilotinib inhibits mast cell-derived immediate-type allergic reactions and so it could be a candidate as an anti-allergic agent.

  8. Endogenous n-3 Polyunsaturated Fatty Acids Attenuate T Cell-Mediated Hepatitis via Autophagy Activation

    PubMed Central

    Li, Yanli; Tang, Yuan; Wang, Shoujie; Zhou, Jing; Zhou, Jia; Lu, Xiao; Bai, Xiaochun; Wang, Xiang-Yang; Chen, Zhengliang; Zuo, Daming

    2016-01-01

    Omega-3 polyunsaturated fatty acids (n-3 PUFAs) exert anti-inflammatory effects in several liver disorders, including cirrhosis, acute liver failure, and fatty liver disease. To date, little is known about their role in immune-mediated liver diseases. In this study, we used fat-1 transgenic mice rich in endogenous n-3 PUFAs to examine the role of n-3 PUFAs in immune-mediated liver injury. Concanavalin A (Con A) was administered intravenously to wild-type (WT) and fat-1 transgenic mice to induce T cell-mediated hepatitis. Reduced liver damage was shown in Con A-administrated fat-1 transgenic mice, as evidenced by decreased mortality, attenuated hepatic necrosis, lessened serum alanine aminotransferase activity, and inhibited production of pro-inflammatory cytokines (e.g., TNF-α, IL-6, IL-17A, and IFN-γ). In vivo and in vitro studies demonstrated that n-3 PUFAs significantly inhibited the activation of hepatic T cells and the differentiation of Th1 cells after Con A challenge. Further studies showed that n-3 PUFAs markedly increased autophagy level in Con A-treated fat-1 T cells compared with the WT counterparts. Blocking hepatic autophagy activity with chloroquine diminished the differences in T cell activation and liver injury between Con A-injected WT and fat-1 transgenic mice. We conclude that n-3 PUFAs limit Con A-induced hepatitis via an autophagy-dependent mechanism and could be exploited as a new therapeutic approach for autoimmune hepatitis.

  9. Control of Ca2+ Influx and Calmodulin Activation by SK-Channels in Dendritic Spines

    PubMed Central

    Griffith, Thom; Tsaneva-Atanasova, Krasimira; Mellor, Jack R.

    2016-01-01

    The key trigger for Hebbian synaptic plasticity is influx of Ca2+ into postsynaptic dendritic spines. The magnitude of [Ca2+] increase caused by NMDA-receptor (NMDAR) and voltage-gated Ca2+ -channel (VGCC) activation is thought to determine both the amplitude and direction of synaptic plasticity by differential activation of Ca2+ -sensitive enzymes such as calmodulin. Ca2+ influx is negatively regulated by Ca2+ -activated K+ channels (SK-channels) which are in turn inhibited by neuromodulators such as acetylcholine. However, the precise mechanisms by which SK-channels control the induction of synaptic plasticity remain unclear. Using a 3-dimensional model of Ca2+ and calmodulin dynamics within an idealised, but biophysically-plausible, dendritic spine, we show that SK-channels regulate calmodulin activation specifically during neuron-firing patterns associated with induction of spike timing-dependent plasticity. SK-channel activation and the subsequent reduction in Ca2+ influx through NMDARs and L-type VGCCs results in an order of magnitude decrease in calmodulin (CaM) activation, providing a mechanism for the effective gating of synaptic plasticity induction. This provides a common mechanism for the regulation of synaptic plasticity by neuromodulators. PMID:27232631

  10. Activity affects dendritic shape and synapse elimination during steroid controlled dendritic retraction in Manduca sexta.

    PubMed

    Duch, Carsten; Mentel, Tim

    2004-11-01

    Insect metamorphosis is a compelling example for dendritic and synaptic remodeling as larval and adult behaviors place distinct demands on the CNS. During the metamorphosis of the moth, Manduca sexta, many larval motoneurons are remodeled to serve a new function in the adult. During late larval life, steroid hormones trigger axonal and dendritic regression as well as larval synapse elimination. These regressive events are accompanied by stereotypical changes in motor behavior during the so-called wandering stages. Both normally occurring changes in dendritic shape and in motor output have previously been analyzed quantitatively for the individually identified motoneuron MN5. This study tested whether activity affected steroid-induced dendritic regression and synapse disassembly in MN5 by means of chronically implanted extracellular electrodes. Stimulating MN5 in vivo in intact, normally developing animals during a developmental period when it usually shows no activity significantly slowed the regression of high-order dendrites. Both physiological and anatomical analysis demonstrated that reduced dendritic regression was accompanied by a significant reduction in larval synapse disassembly. Therefore, steroid-induced alterations of dendritic shape and synaptic connectivity are modified by activity-dependent mechanisms. This interaction might be a common mechanism for rapid adjustments of rigid, inflexible, hormonal programs.

  11. Successful Isothermal Dendritic Growth Experiment (IDGE) Proves Current Theories of Dendritic Solidification are Flawed

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The scientific objective of the Isothermal Dendritic Growth Experiment (IDGE) is to test fundamental assumptions about dendritic solidification of molten materials. "Dendrites"-- from the ancient Greek word for tree--are tiny branching structures that form inside molten metal alloys when they solidify during manufacturing. The size, shape, and orientation of the dendrites have a major effect on the strength, ductility (ability to be molded or shaped), and usefulness of an alloy. Nearly all of the cast metal alloys used in everyday products (such as automobiles and airplanes) are composed of thousands to millions of tiny dendrites. Gravity, present on Earth, causes convection currents in molten alloys that disturb dendritic solidification and make its precise study impossible. In space, gravity is negated by the orbiting of the space shuttle. Consequently, IDGE (which was conducted on the space shuttle) gathered the first precise data regarding undisturbed dendritic solidification. IDGE is a microgravity materials science experiment that uses an apparatus which was designed, built, tested, and operated by people from the NASA Lewis Research Center. This experiment was conceived by the principal investigator, Professor Martin E. Glicksman, from Rensselaer Polytechnic Institute in Troy, New York. The experiment was a team effort of Lewis civil servants, contractors from Aerospace Design & Fabrication Inc. (ADF), and personnel at Rensselaer.

  12. Suppression of zinc dendrites in zinc electrode power cells

    NASA Technical Reports Server (NTRS)

    Damjanovic, A.; Diggle, J. W.

    1970-01-01

    Addition of various tetraalkyl quarternary ammonium salts, to alkaline zincate electrolyte of cell, prevents formation of zinc dendrites during charging of zinc electrode. Electrode capacity is not impaired and elimination of dendrites prolongs cell life.

  13. Stimulation of dendritic cells enhances immune response after photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Mroz, Pawel; Castano, Ana P.; Hamblin, Michael R.

    2009-02-01

    Photodynamic therapy (PDT) involves the administration of photosensitizers followed by illumination of the primary tumor with red light producing reactive oxygen species that cause vascular shutdown and tumor cell necrosis and apoptosis. Anti-tumor immunity is stimulated after PDT due to the acute inflammatory response, priming of the immune system to recognize tumor-associated antigens (TAA). The induction of specific CD8+ Tlymphocyte cells that recognize major histocompatibility complex class I (MHC-I) restricted epitopes of TAAs is a highly desirable goal in cancer therapy. The PDT killed tumor cells may be phagocytosed by dendritic cells (DC) that then migrate to draining lymph nodes and prime naÃve T-cells that recognize TAA epitopes. This process is however, often sub-optimal, in part due to tumor-induced DC dysfunction. Instead of DC that can become mature and activated and have a potent antigen-presenting and immune stimulating phenotype, immature dendritic cells (iDC) are often found in tumors and are part of an immunosuppressive milieu including regulatory T-cells and immunosuppressive cytokines such as TGF-beta and IL10. We here report on the use of a potent DC activating agent, an oligonucleotide (ODN) that contains a non-methylated CpG motif and acts as an agonist of toll like receptor (TLR) 9. TLR activation is a danger signal to notify the immune system of the presence of invading pathogens. CpG-ODN (but not scrambled non-CpG ODN) increased bone-marrow DC activation after exposure to PDT-killed tumor cells, and significantly increased tumor response to PDT and mouse survival after peri-tumoral administration. CpG may be a valuable immunoadjuvant to PDT especially for tumors that produce DC dysfunction.

  14. Forward- and backpropagation in a silicon dendrite.

    PubMed

    Rasche, C; Douglas, R J

    2001-01-01

    We have developed an analog very-large-scale integrated (aVLSI) electronic circuit that emulates a compartmental model of a neuronal dendrite. The horizontal conductances of the compartmental model are implemented as a switched capacitor network. The transmembrane conductances are implemented as transconductance amplifiers. The electrotonic properties of our silicon cable are qualitatively similar to those of the ideal passive cable that is commonly used to model mathematically the electrotonic behavior of neurons. In particular the propagation of excitatory postsynaptic potentials is realistic, and we are easily able to emulate such classical synaptic integration models as direction selectivity. We are also able to emulate the backpropagation into the dendrite of single somatic spikes and bursts of spikes. Thus, this silicon dendrite is suitable for incorporation in detailed silicon neurons operating in real-time; in particular for the emulation of forward- and backpropagating electrical activities found in real neurons. PMID:18244392

  15. Dendritic Cells Stimulated by Cationic Liposomes.

    PubMed

    Vitor, Micaela Tamara; Bergami-Santos, Patrícia Cruz; Cruz, Karen Steponavicius Piedade; Pinho, Mariana Pereira; Barbuto, José Alexandre Marzagão; De La Torre, Lucimara Gaziola

    2016-01-01

    Immunotherapy of cancer aims to harness the immune system to detect and destroy cancer cells. To induce an immune response against cancer, activated dendritic cells (DCs) must present tumor antigens to T lymphocytes of patients. However, cancer patients' DCs are frequently defective, therefore, they are prone to induce rather tolerance than immune responses. In this context, loading tumor antigens into DCs and, at the same time, activating these cells, is a tempting goal within the field. Thus, we investigated the effects of cationic liposomes on the DCs differentiation/maturation, evaluating their surface phenotype and ability to stimulate T lymphocytes proliferation in vitro. The cationic liposomes composed by egg phosphatidylcholine, 1,2-dioleoyl-3-trimethylammonium propane and 1,2-dioleoylphosphatidylethanolamine (50/25/25% molar) were prepared by the thin film method followed by extrusion (65 nm, polydispersity of 0.13) and by the dehydration-rehydration method (95% of the population 107 nm, polydispersity of 0.52). The phenotypic analysis of dendritic cells and the analysis of T lymphocyte proliferation were performed by flow cytometry and showed that both cationic liposomes were incorporated and activated dendritic cells. Extruded liposomes were better incorporated and induced higher CD86 expression for dendritic cells than dehydrated-rehydrated vesicles. Furthermore, dendritic cells which internalized extruded liposomes also provided stronger T lymphocyte stimulation. Thus, cationic liposomes with a smaller size and polydispersity seem to be better incorporated by dendritic cells. Hence, these cationic liposomes could be used as a potential tool in further cancer immunotherapy strategies and contribute to new strategies in immunotherapy. PMID:27398454

  16. Convection Effects in Three-dimensional Dendritic Growth

    NASA Technical Reports Server (NTRS)

    Lu, Yili; Beckermann, C.; Karma, A.

    2003-01-01

    A phase-field model is developed to simulate free dendritic growth coupled with fluid flow for a pure material in three dimensions. The preliminary results presented here illustrate the strong influence of convection on the three-dimensional (3D) dendrite growth morphology. The detailed knowledge of the flow and temperature fields in the melt around the dendrite from the simulations allows for a detailed understanding of the convection effects on dendritic growth.

  17. Seaweed to dendrite transition in directional solidification.

    PubMed

    Provatas, Nikolas; Wang, Quanyong; Haataja, Mikko; Grant, Martin

    2003-10-10

    We simulate directional solidification using a phase-field model solved with adaptive mesh refinement. For small surface tension anisotropy directed at 45 degrees relative to the pulling direction we observe a crossover from a seaweed to a dendritic morphology as the thermal gradient is lowered, consistent with recent experimental findings. We show that the morphology of crystal structures can be unambiguously characterized through the local interface velocity distribution. We derive semiempirically an estimate for the crossover from seaweed to dendrite as a function of thermal gradient and pulling speed.

  18. Apparatus for growing a dendritic web

    DOEpatents

    Duncan, Charles S.; Piotrowski, Paul A.; Skutch, Maria E.; McHugh, James P.

    1983-06-21

    A melt system including a susceptor-crucible assembly having improved gradient control when melt replenishment is used during dendritic web growth. The improvement lies in the formation of a thermal barrier in the base of the receptor which is in the form of a vertical slot in the region of the susceptor underlying the crucible at the location of a compartmental separator dividing the crucible into a growth compartment and a melt replenishment compartment. The result achieved is a step change in temperature gradient in the melt thereby providing a more uniform temperature in the growth compartment from which the dendritic web is drawn.

  19. The Isothermal Dendritic Growth Experiment (IDGE)

    NASA Technical Reports Server (NTRS)

    Glicksman, Martin E.; Koss, M. B.; Lupulescu, A. O.; LaCombe, J. C.; Frei, J. E.; Malarik, D. C.

    1999-01-01

    The Isothermal Dendritic Growth Experiment (IDGE) constituted a series of three NASA-supported microgravity experiments, all of which flew aboard the space shuttle, Columbia. This experimental space flight series was designed and operated to grow and record dendrite solidification in the absence of gravity-induced convective heat transfer, and thereby produce a wealth of benchmark-quality data for testing solidification scaling laws. The data and analysis performed on the dendritic growth speed and tip size in Succinontrie (SCN) demonstrates that although the theory yields predictions that are reasonably in agreement with experiment, there are significant discrepancies. However, some of these discrepancies can be explained by accurately describing the diffusion of heat. The key finding involves recognition that the actual three-dimensional shape of dendrites includes time-dependent side-branching and a tip region that is not a paraboloid of revolution. Thus, the role of heat transfer in dendritic growth is validated, with the caveat that a more realistic model of the dendrite then a paraboloid is needed to account for heat flow in an experimentally observed dendrite. We are currently conducting additional analysis to further confirm and demonstrate these conclusions. The data and analyses for the growth selection physics remain much less definitive. From the first flight, the data indicated that the selection parameter, sigma*, is not exactly a constant, but exhibits a slight dependence on the supercooling. Additional data from the second flight are being examined to investigate the selection of a unique dendrite speed, tip size and shape. The IDGE flight series is now complete. We are currently completing analyses and moving towards final data archiving. It is gratifying to see that the IDGE published results and archived data sets are being used actively by other scientists and engineers. In addition, we are also pleased to report that the techniques and IDGE

  20. Silicon dendritic web growth thermal analysis task

    NASA Technical Reports Server (NTRS)

    Richter, R.; Bhandari, P.

    1985-01-01

    A thermal analysis model is presented which describes the dendritic ribbon process. The model uses a melt-dendrite interface which projects out of the bulk melt as the basic interpretation of the ribbon production process. This is a marked departure from the interpretations of the interface phenomena which were used previously. The model was extensively illustrated with diagrams and pictures of ribbon samples. This model should have great impact on the analyses of experimental data as well as on future design modifications of ribbon-pulling equipment.

  1. [Application of dendritic cells in clinical tumor therapy].

    PubMed

    Li, Yan; Xian, Li-jian

    2002-04-01

    The active immunotherapy of dendritic cells is hot in tumor therapy research area. This article is a review of the source of dendritic cells, loading antigen, immunotherapy pathway, clinical application, choice of patients, and so on. It makes preparation for further research of dendritic cells. PMID:12452029

  2. Local administration of granulocyte macrophage colony-stimulating factor induces local accumulation of dendritic cells and antigen-specific CD8+ T cells and enhances dendritic cell cross-presentation

    PubMed Central

    Lee, Sung-Jong; Song, Liwen; Yang, Ming-Cheh; Mao, Chih-Ping; Yang, Benjamin; Yang, Andrew; Jeang, Jessica; Peng, Shiwen; Wu, T.-C.; Hung, Chien-Fu

    2015-01-01

    Immunotherapy has emerged as a promising treatment strategy for the control of HPV-associated malignancies. Various therapeutic HPV vaccines have elicited potent antigen-specific CD8+ T cell mediated antitumor immune responses in preclinical models and are currently being tested in several clinical trials. Recent evidence indicates the importance of local immune activation, and higher number of immune cells in the site of lesion correlates with positive prognosis. Granulocyte macrophage colony-stimulating factor (GMCSF) has been reported to posses the ability to induce migration of antigen presentation cells and CD8+ T cells. Therefore, in the current study, we employ a combination of systemic therapeutic HPV DNA vaccination with local GMCSF application in the TC-1 tumor model. We show that intramuscular vaccination with CRT/E7 DNA followed by GMCSF intravaginal administration effectively controls cervicovaginal TC-1 tumors in mice. Furthermore, we observe an increase in the accumulation of E7-specific CD8+ T cells and dendritic cells in vaginal tumors following the combination treatment. In addition, we show that GMCSF induces activation and maturation in dendritic cells and promotes antigen cross-presentation. Our results support the clinical translation of the combination treatment of systemic therapeutic vaccination followed by local GMCSF administration as an effective strategy for tumor treatment. PMID:25701675

  3. Two sides of one coin: massive hepatic necrosis and progenitor cell-mediated regeneration in acute liver failure.

    PubMed

    Weng, Hong-Lei; Cai, Xiaobo; Yuan, Xiaodong; Liebe, Roman; Dooley, Steven; Li, Hai; Wang, Tai-Ling

    2015-01-01

    Massive hepatic necrosis is a key event underlying acute liver failure, a serious clinical syndrome with high mortality. Massive hepatic necrosis in acute liver failure has unique pathophysiological characteristics including extremely rapid parenchymal cell death and removal. On the other hand, massive necrosis rapidly induces the activation of liver progenitor cells, the so-called "second pathway of liver regeneration." The final clinical outcome of acute liver failure depends on whether liver progenitor cell-mediated regeneration can efficiently restore parenchymal mass and function within a short time. This review summarizes the current knowledge regarding massive hepatic necrosis and liver progenitor cell-mediated regeneration in patients with acute liver failure, the two sides of one coin.

  4. Two sides of one coin: massive hepatic necrosis and progenitor cell-mediated regeneration in acute liver failure

    PubMed Central

    Weng, Hong-Lei; Cai, Xiaobo; Yuan, Xiaodong; Liebe, Roman; Dooley, Steven; Li, Hai; Wang, Tai-Ling

    2015-01-01

    Massive hepatic necrosis is a key event underlying acute liver failure, a serious clinical syndrome with high mortality. Massive hepatic necrosis in acute liver failure has unique pathophysiological characteristics including extremely rapid parenchymal cell death and removal. On the other hand, massive necrosis rapidly induces the activation of liver progenitor cells, the so-called “second pathway of liver regeneration.” The final clinical outcome of acute liver failure depends on whether liver progenitor cell-mediated regeneration can efficiently restore parenchymal mass and function within a short time. This review summarizes the current knowledge regarding massive hepatic necrosis and liver progenitor cell-mediated regeneration in patients with acute liver failure, the two sides of one coin. PMID:26136687

  5. Evolving models of the immunopathogenesis of T-cell mediated drug allergy: the role of host, pathogens, and drug response

    PubMed Central

    White, Katie D.; Chung, Wen-Hung; Hung, Shuen-Iu; Mallal, Simon; Phillips, Elizabeth J.

    2015-01-01

    Immune-mediated adverse drug reactions (IM-ADRs) are an underrecognized source of preventable morbidity, mortality, and cost. Increasingly, genetic variation in the HLA loci is associated with risk of severe reactions, highlighting the importance of T-cell immune responses in the mechanisms of both B-cell mediated and primary T-cell mediated IM-ADRs. In this review, we summarize the role of host genetics, microbes and drugs in the development of IM-ADRs, expand upon the existing models of IM-ADR pathogenesis to address multiple unexplained observations, discuss the implications of this work in clinical practice today, and describe future applications for pre-clinical drug toxicity screening, drug design, and development. PMID:26254049

  6. Cell-mediated immune responses in owl monkeys (Aotus trivirgatus) with trachoma to soluble antigens of Chlamydia trachomatis.

    PubMed Central

    Sacks, D L; Todd, W J; Macdonald, A B

    1978-01-01

    The first temporal study of the cell-mediated immune responses (CMI) following ocular infections with Chlamydia trachomatis is presented. We examined the CMI of owl monkeys infected with trachoma to soluble antigens of C. trachomatis by leucocyte migration inhibition (LIF) and delayed hypersensitivity skin testing. Delayed hypersensitivity of a systemic nature developed after a local eye infection in owl monkeys; clearance of inclusions from conjunctival cells coincided with the onset of this response. The association of eye secretion and circulating antibodies with recovery from primary infection was not so striking. Both cellular and humoral immune responses persisted for at least 2 months, at which time all test animals were completely resistant to re-infection. The elicitation of cell-mediated immune reactions with solubilized chlamydial antigens may permit the isolation of specific antigens involved in the generation of protective immunity in the owl monkey model. PMID:101327

  7. Failed induction of labor.

    PubMed

    Schoen, Corina; Navathe, Reshama

    2015-10-01

    Induction of labor will affect almost a quarter of all pregnancies, but historically there has been no generally accepted definition of failed induction of labor. Only recently have studies analyzed the lengths of latent labor that are associated with successful labor induction ending in a vaginal delivery, and recommendations for uniformity in the diagnosis of failed induction have largely resulted from this data. This review assesses the most recent and inclusive definition for failed induction, risk factors associated with failure, complications, and special populations that may be at risk for a failed induction.

  8. Effect of Lactobacillus brevis KB290 on the cell-mediated cytotoxic activity of mouse splenocytes: a DNA microarray analysis.

    PubMed

    Fukui, Yuichiro; Sasaki, Erika; Fuke, Nobuo; Nakai, Yuji; Ishijima, Tomoko; Abe, Keiko; Yajima, Nobuhiro

    2013-11-14

    Lactic acid bacteria confer a variety of health benefits. Here, we investigate the mechanisms by which Lactobacillus brevis KB290 (KB290) enhances cell-mediated cytotoxic activity. Female BALB/c mice aged 9 weeks were fed a diet containing KB290 (3 × 10(9) colony-forming units/g) or starch for 1 d. The resulting cytotoxic activity of splenocytes against YAC-1 cells was measured using flow cytometry and analysed for gene expression using DNA microarray technology. KB290 enhanced the cell-mediated cytotoxic activity of splenocytes. DNA microarray analysis identified 327 up-regulated and 347 down-regulated genes that characterised the KB290 diet group. The up-regulated genes were significantly enriched in Gene Ontology terms related to immunity, and, especially, a positive regulation of T-cell-mediated cytotoxicity existed among these terms. Almost all the genes included in the term encoded major histocompatibility complex (MHC) class I molecules involved in the presentation of antigen to CD8(+) cytotoxic T cells. Marco and Signr1 specific to marginal zone macrophages (MZM), antigen-presenting cells, were also up-regulated. Flow cytometric analysis confirmed that the proportion of MZM was significantly increased by KB290 ingestion. Additionally, the over-represented Kyoto Encyclopedia of Genes and Genomes pathways among the up-regulated genes were those for natural killer (NK) cell-mediated cytotoxicity and antigen processing and presentation. The results for the selected genes associated with NK cells and CD8(+) cytotoxic T cells were confirmed by quantitative RT-PCR. These results suggest that enhanced cytotoxic activity could be caused by the activation of NK cells and/or of CD8(+) cytotoxic T cells stimulated via MHC class I presentation.

  9. Suppression of Th1-mediated autoimmunity by embryonic stem cell-derived dendritic cells.

    PubMed

    Ikeda, Tokunori; Hirata, Shinya; Takamatsu, Koutaro; Haruta, Miwa; Tsukamoto, Hirotake; Ito, Takaaki; Uchino, Makoto; Ando, Yukio; Nagafuchi, Seiho; Nishimura, Yasuharu; Senju, Satoru

    2014-01-01

    We herein demonstrate the immune-regulatory effect of embryonic stem cell-derived dendritic cells (ES-DCs) using two models of autoimmune disease, namely non-obese diabetic (NOD) mice and experimental autoimmune encephalomyelitis (EAE). Treatment of pre-diabetic NOD mice with ES-DCs exerted almost complete suppression of diabetes development during the observation period for more than 40 weeks. The prevention of diabetes by ES-DCs was accompanied with significant reduction of insulitis and decreased number of Th1 and Th17 cells in the spleen. Development of EAE was also inhibited by the treatment with ES-DCs, and the therapeutic effect was obtained even if ES-DCs were administrated after the onset of clinical symptoms. Treatment of EAE-induced mice with ES-DCs reduced the infiltration of inflammatory cells into the spinal cord and suppressed the T cell response to the myelin antigen. Importantly, the ES-DC treatment did not affect T cell response to an exogenous antigen. As the mechanisms underlying the reduction of the number of infiltrating Th1 cells, we observed the inhibition of differentiation and proliferation of Th1 cells by ES-DCs. Furthermore, the expression of VLA-4α on Th1 cells was significantly inhibited by ES-DCs. Considering the recent advances in human induced pluripotent stem cell-related technologies, these results suggest a clinical application for pluripotent stem cell-derived dendritic cells as a therapy for T cell-mediated autoimmune diseases. PMID:25522369

  10. Seasonal trade-offs in cell-mediated immunosenescence in ruffs (Philomachus pugnax).

    PubMed Central

    Lozano, George A; Lank, David B

    2003-01-01

    The immune system is an energetically expensive self-maintenance complex that, given the risks of parasitism, cannot be carelessly compromised. Life-history theory posits that trade-offs between fitness components, such as self-maintenance and reproduction, vary between genders and age classes depending on their expected residual lifetime reproductive success, and seasonally as energetic requirements change. Using ruff (Philomachus pugnax), a bird with two genetically distinct male morphs, we demonstrate here a decrease in male immunocompetence during the breeding season, greater variance in immune response among males than females, immunosenescence in both sexes and male morphs, and a seasonal shift in the age range required to detect senescence. Using a phytohaemagglutinin delayed hypersensitivity assay, we assessed cell-mediated immunity (CMI) of males of typical breeding age during the breeding and nonbreeding seasons, and of a larger sample that included females and birds of a greater age range during the non-breeding period. CMI was higher for breeding-aged males in May than in November, but the increase was not related to age or male morph. In November, mean CMI did not differ between the sexes, but the variance was higher for males than for females, and there were no differences in mean or variance between the two male morphs. For both sexes and male morphs, CMI was lower for young birds than for birds of typical breeding ages, and it declined again for older birds. In males, senescence was detected in the non-breeding season only when very old birds were included. These results, generally consistent with expectations from life-history theory, indicate that the immune system can be involved in multifarious trade-offs within a yearly cycle and along an individual's lifetime, and that specific predictions about means and variances in immune response should be considered in future immunoecological research. PMID:12816660

  11. Augmentation of antibody dependent cell mediated cytotoxicity following in vivo therapy with recombinant interleukin 2.

    PubMed

    Hank, J A; Robinson, R R; Surfus, J; Mueller, B M; Reisfeld, R A; Cheung, N K; Sondel, P M

    1990-09-01

    Monoclonal antibodies (mAB) with tumor specificity are able to enhance the immunological specificity of interleukin 2 (IL-2)-activated lymphokine activated killer (LAK) cells. Antibodies may also be used to broaden the range of tumor types susceptible to immune mediated cytotoxicity by the activated LAK cells. In these studies, mAB with relative tumor specificity were used to target immunologically activated effector cells in an in vitro antibody dependent cell mediated cytotoxicity (ADCC) assay. The mAB included: 3F8 and 14.G2a, which are both specific for neuroblastoma and melanoma and recognize ganglioside GD2, and mAB ING-1, a mouse-human chimeric antibody with constant regions from human IgG1 and kappa chains and variable regions from a mouse mAB that binds to a broad range of human adenocarcinomas. Each of these mAB was able to mediate ADCC with fresh effector cells and antibody binding targets. When peripheral blood mononuclear cells were obtained from cancer patients prior to and following in vivo therapy with interleukin 2, a significant increase was noted in ADCC activity by peripheral blood mononuclear cells obtained following IL-2 therapy. Inclusion of IL-2 in the medium during the cytotoxic assay with mAB further boosted ADCC. The total activity seen was often greater than the sum of the independent LAK activity and standard ADCC activity. The cells responsible for this ADCC had the CD16+ Fc receptor. Combining IL-2 with mAB in clinical tumor therapy may lead to a wider range of tumor types being responsive to immunotherapy and may also enhance the efficacy of therapy by specifically targeting activated effector cells to tumor cells recognized by mAB. Our results provide strong support for the testing of these hypotheses in clinical trials by combining in vivo treatment with IL-2 and mAB able to mediate ADCC.

  12. NK Cell-Mediated Antibody-Dependent Cellular Cytotoxicity in Cancer Immunotherapy.

    PubMed

    Wang, Wei; Erbe, Amy K; Hank, Jacquelyn A; Morris, Zachary S; Sondel, Paul M

    2015-01-01

    Natural killer (NK) cells play a major role in cancer immunotherapies that involve tumor-antigen targeting by monoclonal antibodies (mAbs). NK cells express a variety of activating and inhibitory receptors that serve to regulate the function and activity of the cells. In the context of targeting cells, NK cells can be "specifically activated" through certain Fc receptors that are expressed on their cell surface. NK cells can express FcγRIIIA and/or FcγRIIC, which can bind to the Fc portion of immunoglobulins, transmitting activating signals within NK cells. Once activated through Fc receptors by antibodies bound to target cells, NK cells are able to lyse target cells without priming, and secrete cytokines like interferon gamma to recruit adaptive immune cells. This antibody-dependent cell-mediated cytotoxicity (ADCC) of tumor cells is utilized in the treatment of various cancers overexpressing unique antigens, such as neuroblastoma, breast cancer, B cell lymphoma, and others. NK cells also express a family of receptors called killer immunoglobulin-like receptors (KIRs), which regulate the function and response of NK cells toward target cells through their interaction with their cognate ligands that are expressed on tumor cells. Genetic polymorphisms in KIR and KIR-ligands, as well as FcγRs may influence NK cell responsiveness in conjunction with mAb immunotherapies. This review focuses on current therapeutic mAbs, different strategies to augment the anti-tumor efficacy of ADCC, and genotypic factors that may influence patient responses to antibody-dependent immunotherapies.

  13. In vitro stimulation of cell-mediated cytotoxicity by acute leukaemias.

    PubMed Central

    Taylor, G. M.

    1981-01-01

    Acute leukaemias stimulated proliferative and cell-mediated cytotoxic (CMC) responses in vitro in normal (unprimed) lymphocytes. Proliferation was detected by increases in viable cell counts and [3H]dT incorporation in mixed lymphocyte-leukaemia-cell cultures. CMC detected on cultured cell-line targets (CCL) including K562 was generally much stronger than on fresh leukaemia cells, and correlated with stimulation of [3H]dT uptake in the responding lymphocytes. Leukaemias which were resistant as targets to CMC were able competitively to inhibit CMC on K562, though not as efficiently as blocking by K562 itself. With one leukaemia, blocking of CMC increased as the level of CMC on K562 was amplified by greater numbers of stimulating cells in the sensitization phase. This suggests that in certain cases blocking of effector cells by acute-leukaemia cells may depend upon the state of activation of the effector cells. Lymphocytes from a leukaemia patient in remission, treated with allogeneic leukaemia-cell immunotherapy and stimulated in vitro with immunizing leukaemia cells, developed strong anti-leukaemic CMC. A non-immunized patient's lymphocytes did not respond in this way, despite comparable levels of CMC on K562 in both patients. Dual stimulation of unprimed normal lymphocytes and remission lymphocytes with allogeneic or autologous leukaemias and various cell lines, amplified anti-leukaemic CMC, but did not markedly alter CMC or CCL. These data do not formally exclude the mediation of in vitro-stimulated anti-leukaemic CMC by NK-like cells, but suggest that such effector cells differ qualitatively from NK-like cells detected in the absence of anti-leukaemic CMC. PMID:6451236

  14. Effect of Chicoric Acid on Mast Cell-Mediated Allergic Inflammation in Vitro and in Vivo.

    PubMed

    Lee, Na Young; Chung, Kyung-Sook; Jin, Jong Sik; Bang, Keuk Soo; Eom, Ye-Jin; Hong, Chul-Hee; Nugroho, Agung; Park, Hee-Jun; An, Hyo-Jin

    2015-12-24

    Chicoric acid (dicaffeoyl-tartaric acid), is a natural phenolic compound found in a number of plants, such as chicory (Cichorium intybus) and Echinacea (Echinacea purpurea), which possesses antioxidant, anti-inflammatory, antiviral, and analgesic activities. Although these biological effects of chicoric acid have been investigated, there are no reports of its antiallergic-related anti-inflammatory effects in human mast cells (HMC)-1 or anaphylactic activity in a mouse model. Therefore, we investigated the antiallergic-related anti-inflammatory effect of chicoric acid and its underlying mechanisms of action using phorbol-12-myristate 13-acetate plus calcium ionophore A23187 (PMACI)-stimulated HMC-1 cells. Chicoric acid decreased the mRNA expression of pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β. We studied the inhibitory effects of chicoric acid on the nuclear translocation of nuclear factor kappa B (NF-κB) and activation of caspase-1. However, mitogen-activated protein kinase (MAPK) activation was not sufficient to abrogate the stimulus. In addition, we investigated the ability of chicoric acid to inhibit compound 48/80-induced systemic anaphylaxis in vivo. Oral administration of chicoric acid at 20 mg/kg inhibited histamine release and protected mice against compound 48/80-induced anaphylactic mortality. These results suggest that chicoric acid has an antiallergic-related anti-inflammatory effect that involves modulating mast cell-mediated allergic responses. Therefore, chicoric acid could be an efficacious agent for allergy-related inflammatory disorders. PMID:26593037

  15. Endogenous n-3 Polyunsaturated Fatty Acids Attenuate T Cell-Mediated Hepatitis via Autophagy Activation.

    PubMed

    Li, Yanli; Tang, Yuan; Wang, Shoujie; Zhou, Jing; Zhou, Jia; Lu, Xiao; Bai, Xiaochun; Wang, Xiang-Yang; Chen, Zhengliang; Zuo, Daming

    2016-01-01

    Omega-3 polyunsaturated fatty acids (n-3 PUFAs) exert anti-inflammatory effects in several liver disorders, including cirrhosis, acute liver failure, and fatty liver disease. To date, little is known about their role in immune-mediated liver diseases. In this study, we used fat-1 transgenic mice rich in endogenous n-3 PUFAs to examine the role of n-3 PUFAs in immune-mediated liver injury. Concanavalin A (Con A) was administered intravenously to wild-type (WT) and fat-1 transgenic mice to induce T cell-mediated hepatitis. Reduced liver damage was shown in Con A-administrated fat-1 transgenic mice, as evidenced by decreased mortality, attenuated hepatic necrosis, lessened serum alanine aminotransferase activity, and inhibited production of pro-inflammatory cytokines (e.g., TNF-α, IL-6, IL-17A, and IFN-γ). In vivo and in vitro studies demonstrated that n-3 PUFAs significantly inhibited the activation of hepatic T cells and the differentiation of Th1 cells after Con A challenge. Further studies showed that n-3 PUFAs markedly increased autophagy level in Con A-treated fat-1 T cells compared with the WT counterparts. Blocking hepatic autophagy activity with chloroquine diminished the differences in T cell activation and liver injury between Con A-injected WT and fat-1 transgenic mice. We conclude that n-3 PUFAs limit Con A-induced hepatitis via an autophagy-dependent mechanism and could be exploited as a new therapeutic approach for autoimmune hepatitis. PMID:27679638

  16. Curcuma oil reduces endothelial cell-mediated inflammation in postmyocardial ischemia/reperfusion in rats.

    PubMed

    Manhas, Amit; Khanna, Vivek; Prakash, Prem; Goyal, Dipika; Malasoni, Richa; Naqvi, Arshi; Dwivedi, Anil K; Dikshit, Madhu; Jagavelu, Kumaravelu

    2014-09-01

    Endothelial cells initiated inflammation persisting in postmyocardial infarction needs to be controlled and moderated for avoiding fatal complications. Curcuma oil (C.oil, Herbal Medicament), a standardized hexane soluble fraction of Curcuma longa has possessed neuroprotective effect. However, its effect on myocardial ischemia/reperfusion (MI/RP) and endothelial cells remains incompletely defined. Here, using in vivo rat MI/RP injury model and in vitro cellular approaches using EA.hy926 endothelial cells, enzyme-linked immunosorbent assay, real-time polymerase chain reaction, and myograph, we provide evidence that with effective regimen and preconditioning of rats with C.oil (250 mg/kg, PO), before and after MI/RP surgery protects rats from MI/RP-induced injury. C.oil treatment reduces left ventricular ischemic area and endothelial cell-induced inflammation, specifically in the ischemic region (*P < 0.0001) and improved endothelial function by reducing the expression of proinflammatory genes and adhesion factors on endothelial cells both in vitro and in vivo. Furthermore, mechanistic studies have revealed that C.oil reduced the expression of adhesion factors like E-selectin (#P = 0.0016) and ICAM-1 ($P = 0.0069) in initiating endothelial cells-induced inflammation. In line to the real-time polymerase chain reaction expression data, C.oil reduced the adhesion of inflammatory cells to endothelial cells as assessed by the interaction of THP-1 monocytes with the endothelial cells using flow-based adhesion and under inflammatory conditions. These studies provide evidence that salutary effect of C.oil on MI/RP could be achieved with pretreatment and posttreatment of rats, C.oil reduced MI/RP-induced injury by reducing the endothelial cell-mediated inflammation, specifically in the ischemic zone of MI/RP rat heart.

  17. Anti-allergic effects of Lycopus lucidus on mast cell-mediated allergy model

    SciTech Connect

    Shin, Tae-Yong . E-mail: tyshin@woosuk.ac.kr; Kim, Sang-Hyun; Suk, Kyoungho; Ha, Jeoung-Hee; Kim, InKyeom; Lee, Maan-Gee; Jun, Chang-Duk; Kim, Sang-Yong; Lim, Jong-Pil; Eun, Jae-Soon; Shin, Hye-Young; Kim, Hyung-Min

    2005-12-15

    The current study characterizes the mechanism by which the aqueous extract of Lycopus lucidus Turcz. (Labiatae) (LAE) decreases mast cell-mediated immediate-type allergic reaction. The immediate-type allergic reaction is involved in many allergic diseases such as asthma and allergic rhinitis. LAE has been used as a traditional medicine in Korea and is known to have an anti-inflammatory effect. However, its specific mechanism of action is still unknown. LAE was anally administered to mice for high and fast absorption. LAE inhibited compound 48/80-induced systemic reactions in mice. LAE decreased the local allergic reaction, passive cutaneous anaphylaxis, activated by anti-dinitrophenyl (DNP) IgE antibody. LAE dose-dependently reduced histamine release from rat peritoneal mast cells activated by compound 48/80 or anti-DNP IgE. Furthermore, LAE decreased the secretion of TNF-{alpha} and IL-6 in phorbol 12-myristate 13-acetate (PMA) plus calcium ionophore A23187-stimulated human mast cells. The inhibitory effect of LAE on the pro-inflammatory cytokine was p38 mitogen-activated protein kinase (MAPK) and nuclear factor-{kappa}B (NF-{kappa}B) dependent. LAE attenuated PMA plus A23187-induced degradation of I{kappa}B{alpha} and nuclear translocation of NF-{kappa}B, and specifically blocked activation of p38 MAPK, but not that of c-jun N-terminal kinase and extracellular signal-regulated kinase. Our findings provide evidence that LAE inhibits mast cell-derived immediate-type allergic reactions and involvement of pro-inflammatory cytokines, p38 MAPK, and NF-{kappa}B in these effects.

  18. Precision Subtypes of T Cell-Mediated Rejection Identified by Molecular Profiles

    PubMed Central

    Kadota, Paul Ostrom; Hajjiri, Zahraa; Finn, Patricia W.; Perkins, David L.

    2015-01-01

    Among kidney transplant recipients, the treatment of choice for acute T cell-mediated rejection (TCMR) with pulse steroids or antibody protocols has variable outcomes. Some rejection episodes are resistant to an initial steroid pulse, but respond to subsequent antibody protocols. The biological mechanisms causing the different therapeutic responses are not currently understood. Histological examination of the renal allograft is considered the gold standard in the diagnosis of acute rejection. The Banff Classification System was established to standardize the histopathological diagnosis and to direct therapy. Although widely used, it shows variability among pathologists and lacks criteria to guide precision individualized therapy. The analysis of the transcriptome in allograft biopsies, which we analyzed in this study, provides a strategy to develop molecular diagnoses that would have increased diagnostic precision and assist the development of individualized treatment. Our hypothesis is that the histological classification of TCMR contains multiple subtypes of rejection. Using R language algorithms to determine statistical significance, multidimensional scaling, and hierarchical, we analyzed differential gene expression based on microarray data from biopsies classified as TCMR. Next, we identified KEGG functions, protein–protein interaction networks, gene regulatory networks, and predicted therapeutic targets using the integrated database ConsesnsusPathDB (CPDB). Based on our analysis, two distinct clusters of biopsies termed TCMR01 and TCMR02 were identified. Despite having the same Banff classification, we identified 1933 differentially expressed genes between the two clusters. These genes were further divided into three major groups: a core group contained within both the TCMR01 and TCMR02 subtypes, as well as genes unique to TCMR01 or TCMR02. The subtypes of TCMR utilized different biological pathways, different regulatory networks and were predicted to

  19. Endogenous n-3 Polyunsaturated Fatty Acids Attenuate T Cell-Mediated Hepatitis via Autophagy Activation

    PubMed Central

    Li, Yanli; Tang, Yuan; Wang, Shoujie; Zhou, Jing; Zhou, Jia; Lu, Xiao; Bai, Xiaochun; Wang, Xiang-Yang; Chen, Zhengliang; Zuo, Daming

    2016-01-01

    Omega-3 polyunsaturated fatty acids (n-3 PUFAs) exert anti-inflammatory effects in several liver disorders, including cirrhosis, acute liver failure, and fatty liver disease. To date, little is known about their role in immune-mediated liver diseases. In this study, we used fat-1 transgenic mice rich in endogenous n-3 PUFAs to examine the role of n-3 PUFAs in immune-mediated liver injury. Concanavalin A (Con A) was administered intravenously to wild-type (WT) and fat-1 transgenic mice to induce T cell-mediated hepatitis. Reduced liver damage was shown in Con A-administrated fat-1 transgenic mice, as evidenced by decreased mortality, attenuated hepatic necrosis, lessened serum alanine aminotransferase activity, and inhibited production of pro-inflammatory cytokines (e.g., TNF-α, IL-6, IL-17A, and IFN-γ). In vivo and in vitro studies demonstrated that n-3 PUFAs significantly inhibited the activation of hepatic T cells and the differentiation of Th1 cells after Con A challenge. Further studies showed that n-3 PUFAs markedly increased autophagy level in Con A-treated fat-1 T cells compared with the WT counterparts. Blocking hepatic autophagy activity with chloroquine diminished the differences in T cell activation and liver injury between Con A-injected WT and fat-1 transgenic mice. We conclude that n-3 PUFAs limit Con A-induced hepatitis via an autophagy-dependent mechanism and could be exploited as a new therapeutic approach for autoimmune hepatitis. PMID:27679638

  20. Hepatitis B surface antigen-specific cell-mediated immune responses in human chronic hepatitis B surface antigen carriers.

    PubMed Central

    Beutner, K R; Tiku, M L; Ogra, P L

    1978-01-01

    The presence of hepatitis B surface antigen (HBsAg) and antibody (anti-HBs), hepatitis B e antigen (HBeAg) and antibody (anti-HBe), the nature of T-cell function, and specific cell-mediated immunity to HBsAg were determined and evaluated serially in groups of subjects with chronic HBsAg carrier states and in seronegative controls. The techniques of in vitro lymphocyte transformation, spontaneous rosette formation, radioimmunoassay, reverse passive hemagglutination, passive hemagglutination, rheophoresis, and liver function tests were employed for these studies. For the lymphocyte transformation assay, multiple concentrations of phytohemagglutinin and purified HBsAg were used as stimulants. Cell-mediated immunity to HBsAg was detectable in 50% of the chronic HBsAg carriers (responders) at one or more concentrations of HBsAg. The remaining carriers (nonresponders) and controls failed to manifest HBsAg-specific lymphocyte transformation activity. The profile of the responders was characterized by elevated serum glutamic pyruvic transaminase levels, the presence of anti-HBe, high HBsAg titers, and the conspicuous absence of HBeAg in the serum. The nonresponders were characterized by normal serum glutamic pyruvic transaminase levels, the presence of HBeAg and anti-HBe, and lower HBsAg titers. These observations demonstrate the presence of specific cell-mediated immunity to HBsAg in chronic HBsAg carriers who manifest biochemical evidence of liver disease. PMID:80380

  1. DPP6 establishes the A-type K(+) current gradient critical for the regulation of dendritic excitability in CA1 hippocampal neurons.

    PubMed

    Sun, Wei; Maffie, Jon K; Lin, Lin; Petralia, Ronald S; Rudy, Bernardo; Hoffman, Dax A

    2011-09-22

    Subthreshold-activating A-type K(+) currents are essential for the proper functioning of the brain, where they act to delay excitation and regulate firing frequency. In CA1 hippocampal pyramidal neuron dendrites, the density of A-type K(+) current increases with distance from the soma, playing an important role in synaptic integration and plasticity. The mechanism underlying this gradient has, however, remained elusive. Here, dendritic recordings from mice lacking the Kv4 transmembrane auxiliary subunit DPP6 revealed that this protein is critical for generating the A-current gradient. Loss of DPP6 led to a decrease in A-type current, specifically in distal dendrites. Decreased current density was accompanied by a depolarizing shift in the voltage dependence of channel activation. Together these changes resulted in hyperexcitable dendrites with enhanced dendritic AP back-propagation, calcium electrogenesis, and induction of synaptic long-term potentiation. Despite enhanced dendritic excitability, firing behavior evoked by somatic current injection was mainly unaffected in DPP6-KO recordings, indicating compartmentalized regulation of neuronal excitability.

  2. Chimeric Vaccine Stimulation of Human Dendritic Cell Indoleamine 2, 3-Dioxygenase Occurs via the Non-Canonical NF-κB Pathway.

    PubMed

    Kim, Nan-Sun; Mbongue, Jacques C; Nicholas, Dequina A; Esebanmen, Grace E; Unternaehrer, Juli J; Firek, Anthony F; Langridge, William H R

    2016-01-01

    A chimeric protein vaccine composed of the cholera toxin B subunit fused to proinsulin (CTB-INS) was shown to suppress type 1 diabetes onset in NOD mice and upregulate biosynthesis of the tryptophan catabolic enzyme indoleamine 2, 3-dioxygenase (IDO1) in human dendritic cells (DCs). Here we demonstrate siRNA inhibition of the NF-κB-inducing kinase (NIK) suppresses vaccine-induced IDO1 biosynthesis as well as IKKα phosphorylation. Chromatin immunoprecipitation (ChIP) analysis of CTB-INS inoculated DCs showed that RelB bound to NF-κB consensus sequences in the IDO1 promoter, suggesting vaccine stimulation of the non-canonical NF-κB pathway activates IDO1 expression in vivo. The addition of Tumor Necrosis Factor Associated Factors (TRAF) TRAF 2, 3 and TRAF6 blocking peptides to vaccine inoculated DCs was shown to inhibit IDO1 biosynthesis. This experimental outcome suggests vaccine activation of the TNFR super-family receptor pathway leads to upregulation of IDO1 biosynthesis in CTB-INS inoculated dendritic cells. Together, our experimental data suggest the CTB-INS vaccine uses a TNFR-dependent signaling pathway of the non-canonical NF-κB signaling pathway resulting in suppression of dendritic cell mediated type 1 diabetes autoimmunity. PMID:26881431

  3. Hyper-dendritic nanoporous zinc foam anodes

    SciTech Connect

    Chamoun, Mylad; Hertzberg, Benjamin J.; Gupta, Tanya; Davies, Daniel; Bhadra, Shoham; Van Tassell, Barry.; Erdonmez, Can; Steingart, Daniel A.

    2015-04-24

    The low cost, significant reducing potential, and relative safety of the zinc electrode is a common hope for a reductant in secondary batteries, but it is limited mainly to primary implementation due to shape change. In this work we exploit such shape change for the benefit of static electrodes through the electrodeposition of hyper-dendritic nanoporous zinc foam. Electrodeposition of zinc foam resulted in nanoparticles formed on secondary dendrites in a three-dimensional network with a particle size distribution of 54.1 - 96.0 nm. The nanoporous zinc foam contributed to highly oriented crystals, high surface area and more rapid kinetics in contrast to conventional zinc in alkaline mediums. The anode material presented had a utilization of ~ 88% at full depth-of-discharge at various rates indicating a superb rate-capability. The rechargeability of Zn⁰/Zn²⁺ showed significant capacity retention over 100 cycles at a 40% depth-of-discharge to ensure that the dendritic core structure was imperforated. The dendritic architecture was densified upon charge-discharge cycling and presented superior performance compared to bulk zinc electrodes.

  4. Hyper-dendritic nanoporous zinc foam anodes

    DOE PAGESBeta

    Chamoun, Mylad; Hertzberg, Benjamin J.; Gupta, Tanya; Davies, Daniel; Bhadra, Shoham; Van Tassell, Barry.; Erdonmez, Can; Steingart, Daniel A.

    2015-04-24

    The low cost, significant reducing potential, and relative safety of the zinc electrode is a common hope for a reductant in secondary batteries, but it is limited mainly to primary implementation due to shape change. In this work we exploit such shape change for the benefit of static electrodes through the electrodeposition of hyper-dendritic nanoporous zinc foam. Electrodeposition of zinc foam resulted in nanoparticles formed on secondary dendrites in a three-dimensional network with a particle size distribution of 54.1 - 96.0 nm. The nanoporous zinc foam contributed to highly oriented crystals, high surface area and more rapid kinetics in contrastmore » to conventional zinc in alkaline mediums. The anode material presented had a utilization of ~ 88% at full depth-of-discharge at various rates indicating a superb rate-capability. The rechargeability of Zn⁰/Zn²⁺ showed significant capacity retention over 100 cycles at a 40% depth-of-discharge to ensure that the dendritic core structure was imperforated. The dendritic architecture was densified upon charge-discharge cycling and presented superior performance compared to bulk zinc electrodes.« less

  5. Detecting Danger: The Dendritic Cell Algorithm

    NASA Astrophysics Data System (ADS)

    Greensmith, Julie; Aickelin, Uwe; Cayzer, Steve

    The "Dendritic Cell Algorithm" (DCA) is inspired by the function of the dendritic cells of the human immune system. In nature, dendritic cells are the intrusion detection agents of the human body, policing the tissue and organs for potential invaders in the form of pathogens. In this research, an abstract model of dendritic cell (DC) behavior is developed and subsequently used to form an algorithm—the DCA. The abstraction process was facilitated through close collaboration with laboratory-based immunologists, who performed bespoke experiments, the results of which are used as an integral part of this algorithm. The DCA is a population-based algorithm, with each agent in the system represented as an "artificial DC". Each DC has the ability to combine multiple data streams and can add context to data suspected as anomalous. In this chapter, the abstraction process and details of the resultant algorithm are given. The algorithm is applied to numerous intrusion detection problems in computer security including the detection of port scans and botnets, where it has produced impressive results with relatively low rates of false positives.

  6. Characterization of chicken dendritic cell markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Animal and Natural Resources Institute, ARS-USDA, Beltsville, MD, USA. New mouse monoclonal antibodies which detect CD80 and CD83 were developed to characterize chicken dendritic cells (DCs). The characteristics of these molecules have been studied in human, swine, ovine, feline, and canine but not ...

  7. Thermosolutal convection and macrosegregation in dendritic alloys

    NASA Technical Reports Server (NTRS)

    Poirier, David R.; Heinrich, J. C.

    1993-01-01

    A mathematical model of solidification, that simulates the formation of channel segregates or freckles, is presented. The model simulates the entire solidification process, starting with the initial melt to the solidified cast, and the resulting segregation is predicted. Emphasis is given to the initial transient, when the dendritic zone begins to develop and the conditions for the possible nucleation of channels are established. The mechanisms that lead to the creation and eventual growth or termination of channels are explained in detail and illustrated by several numerical examples. A finite element model is used for the simulations. It uses a single system of equations to deal with the all-liquid region, the dendritic region, and the all-solid region. The dendritic region is treated as an anisotropic porous medium. The algorithm uses the bilinear isoparametric element, with a penalty function approximation and a Petrov-Galerkin formulation. The major task was to develop the solidification model. In addition, other tasks that were performed in conjunction with the modeling of dendritic solidification are briefly described.

  8. Defect characterization of silicon dendritic web ribbons

    NASA Technical Reports Server (NTRS)

    Cheng, L. J.

    1985-01-01

    Progress made in the study of defect characterization of silicon dendritic web ribbon is presented. Chemical etching is used combined with optical microscopy, as well as the electron beam induced current (EBIC) technique. Thermal annealing effect on carrier lifetime is examined.

  9. Supramolecular dendritic polymers: from synthesis to applications.

    PubMed

    Dong, Ruijiao; Zhou, Yongfeng; Zhu, Xinyuan

    2014-07-15

    CONSPECTUS: Supramolecular dendritic polymers (SDPs), which perfectly combine the advantages of dendritic polymers with those of supramolecular polymers, are a novel class of non-covalently bonded, highly branched macromolecules with three-dimensional globular topology. Because of their dynamic/reversible nature, unique topological structure, and exceptional physical/chemical properties (e.g., low viscosity, high solubility, and a large number of functional terminal groups), SDPs have attracted increasing attention in recent years in both academic and industrial fields. In particular, the reversibility of non-covalent interactions endows SDPs with the ability to undergo dynamic switching of structure, morphology, and function in response to various external stimuli, such as pH, temperature, light, stress, and redox agents, which further provides a flexible and robust platform for designing and developing smart supramolecular polymeric materials and functional supramolecular devices. The existing SDPs can be systematically classified into the following six major types according to their topological features: supramolecular dendrimers, supramolecular dendronized polymers, supramolecular hyperbranched polymers, supramolecular linear-dendritic block copolymers, supramolecular dendritic-dendritic block copolymers, and supramolecular dendritic multiarm copolymers. These different types of SDPs possess distinct morphologies, unique architectures, and specific functions. Benefiting from their versatile topological structures as well as stimuli-responsive properties, SDPs have displayed not only unique characteristics or advantages in supramolecular self-assembly behaviors (e.g., controllable morphologies, specific performance, and facile functionalization) but also great potential to be promising candidates in various fields. In this Account, we summarize the recent progress in the synthesis, functionalization, and self-assembly of SDPs as well as their potential

  10. Transcriptomic Analysis of Persistent Infection with Foot-and-Mouth Disease Virus in Cattle Suggests Impairment of Apoptosis and Cell-Mediated Immunity in the Nasopharynx

    PubMed Central

    Stenfeldt, Carolina; Smoliga, George R.; Pacheco, Juan M.; Rodriguez, Luis L.; Li, Robert W.; Zhu, James; Arzt, Jonathan

    2016-01-01

    In order to investigate the mechanisms of persistent foot-and-mouth disease virus (FMDV) infection in cattle, transcriptome alterations associated with the FMDV carrier state were characterized using a bovine whole-transcriptome microarray. Eighteen cattle (8 vaccinated with a recombinant FMDV A vaccine, 10 non-vaccinated) were challenged with FMDV A24 Cruzeiro, and the gene expression profiles of nasopharyngeal tissues collected between 21 and 35 days after challenge were compared between 11 persistently infected carriers and 7 non-carriers. Carriers and non-carriers were further compared to 2 naïve animals that had been neither vaccinated nor challenged. At a controlled false-discovery rate of 10% and a minimum difference in expression of 50%, 648 genes were differentially expressed between FMDV carriers and non-carriers, and most (467) had higher expression in carriers. Among these, genes associated with cellular proliferation and the immune response–such as chemokines, cytokines and genes regulating T and B cells–were significantly overrepresented. Differential gene expression was significantly correlated between non-vaccinated and vaccinated animals (biological correlation +0.97), indicating a similar transcriptome profile across these groups. Genes related to prostaglandin E2 production and the induction of regulatory T cells were overexpressed in carriers. In contrast, tissues from non-carrier animals expressed higher levels of complement regulators and pro-apoptotic genes that could promote virus clearance. Based on these findings, we propose a working hypothesis for FMDV persistence in nasopharyngeal tissues of cattle, in which the virus may be maintained by an impairment of apoptosis and the local suppression of cell-mediated antiviral immunity by inducible regulatory T cells. PMID:27643611

  11. Transcriptomic Analysis of Persistent Infection with Foot-and-Mouth Disease Virus in Cattle Suggests Impairment of Apoptosis and Cell-Mediated Immunity in the Nasopharynx.

    PubMed

    Eschbaumer, Michael; Stenfeldt, Carolina; Smoliga, George R; Pacheco, Juan M; Rodriguez, Luis L; Li, Robert W; Zhu, James; Arzt, Jonathan

    2016-01-01

    In order to investigate the mechanisms of persistent foot-and-mouth disease virus (FMDV) infection in cattle, transcriptome alterations associated with the FMDV carrier state were characterized using a bovine whole-transcriptome microarray. Eighteen cattle (8 vaccinated with a recombinant FMDV A vaccine, 10 non-vaccinated) were challenged with FMDV A24 Cruzeiro, and the gene expression profiles of nasopharyngeal tissues collected between 21 and 35 days after challenge were compared between 11 persistently infected carriers and 7 non-carriers. Carriers and non-carriers were further compared to 2 naïve animals that had been neither vaccinated nor challenged. At a controlled false-discovery rate of 10% and a minimum difference in expression of 50%, 648 genes were differentially expressed between FMDV carriers and non-carriers, and most (467) had higher expression in carriers. Among these, genes associated with cellular proliferation and the immune response-such as chemokines, cytokines and genes regulating T and B cells-were significantly overrepresented. Differential gene expression was significantly correlated between non-vaccinated and vaccinated animals (biological correlation +0.97), indicating a similar transcriptome profile across these groups. Genes related to prostaglandin E2 production and the induction of regulatory T cells were overexpressed in carriers. In contrast, tissues from non-carrier animals expressed higher levels of complement regulators and pro-apoptotic genes that could promote virus clearance. Based on these findings, we propose a working hypothesis for FMDV persistence in nasopharyngeal tissues of cattle, in which the virus may be maintained by an impairment of apoptosis and the local suppression of cell-mediated antiviral immunity by inducible regulatory T cells. PMID:27643611

  12. Silibinin prevents prostate cancer cell-mediated differentiation of naïve fibroblasts into cancer-associated fibroblast phenotype by targeting TGF β2.

    PubMed

    Ting, Harold J; Deep, Gagan; Jain, Anil K; Cimic, Adela; Sirintrapun, Joseph; Romero, Lina M; Cramer, Scott D; Agarwal, Chapla; Agarwal, Rajesh

    2015-09-01

    Tumor microenvironment (TM) is an essential element in prostate cancer (PCA), offering unique opportunities for its prevention. TM includes naïve fibroblasts that are recruited by nascent neoplastic lesion and altered into 'cancer-associated fibroblasts' (CAFs) that promote PCA. A better understanding and targeting of interaction between PCA cells and fibroblasts and inhibiting CAF phenotype through non-toxic agents are novel approaches to prevent PCA progression. One well-studied cancer chemopreventive agent is silibinin, and thus, we examined its efficacy against PCA cells-mediated differentiation of naïve fibroblasts into a myofibroblastic-phenotype similar to that found in CAFs. Silibinin's direct inhibitory effect on the phenotype of CAFs derived directly from PCA patients was also assessed. Human prostate stromal cells (PrSCs) exposed to control conditioned media (CCM) from human PCA PC3 cells showed more invasiveness, with increased alpha-smooth muscle actin (α-SMA) and vimentin expression, and differentiation into a phenotype we identified in CAFs. Importantly, silibinin (at physiologically achievable concentrations) inhibited α-SMA expression and invasiveness in differentiated fibroblasts and prostate CAFs directly, as well as indirectly by targeting PCA cells. The observed increase in α-SMA and CAF-like phenotype was transforming growth factor (TGF) β2 dependent, which was strongly inhibited by silibinin. Furthermore, induction of α-SMA and CAF phenotype by CCM were also strongly inhibited by a TGFβ2-neutralizing antibody. The inhibitory effect of silibinin on TGFβ2 expression and CAF-like biomarkers was also observed in PC3 tumors. Together, these findings highlight the potential usefulness of silibinin in PCA prevention through targeting the CAF phenotype in the prostate TM.

  13. Silibinin Prevents Prostate Cancer Cell-Mediated Differentiation of Naïve Fibroblasts into Cancer-Associated Fibroblast Phenotype by Targeting TGF β2

    PubMed Central

    Ting, Harold; Deep, Gagan; Jain, Anil K.; Cimic, Adela; Sirintrapun, Joseph; Romero, Lina M.; Cramer, Scott D.; Agarwal, Chapla; Agarwal, Rajesh

    2014-01-01

    Tumor microenvironment is an essential element in prostate cancer (PCA), offering unique opportunities for its prevention. Tumor microenvironment includes naïve fibroblasts that are recruited by nascent neoplastic lesion and altered into ‘cancer-associated fibroblasts’ (CAFs) that promote PCA. A better understanding and targeting of interaction between PCA cells and fibroblasts and inhibiting CAF phenotype through non-toxic agents are novel approaches to prevent PCA progression. One well-studied cancer chemopreventive agent is silibinin, and thus, we examined its efficacy against PCA cells-mediated differentiation of naïve fibroblasts into a myofibroblastic-phenotype similar to that found in CAFs. Silibinin’s direct inhibitory effect on the phenotype of CAFs derived directly from PCA patients was also assessed. Human prostate stromal cells (PrSCs) exposed to control conditioned media (CCM) from human PCA PC3 cells showed more invasiveness, with increased α-SMA (alpha-smooth muscle actin) and vimentin expression, and differentiation into a phenotype we identified in CAFs. Importantly, silibinin (at physiologically-achievable concentrations) inhibited α-SMA expression and invasiveness in differentiated fibroblasts and prostate CAFs directly, as well as indirectly by targeting PCA cells. The observed increase in α-SMA and CAF-like phenotype was transforming growth factor (TGF) β2 dependent, which was strongly inhibited by silibinin. Furthermore, induction of ±-SMA and CAF phenotype by CCM were also strongly inhibited by a TGFβ2-neutralizing antibody. The inhibitory effect of silibinin on TGFβ2 expression and CAF-like biomarkers was also observed in PC3 tumors. Together, these findings highlight the potential usefulness of silibinin in PCA prevention through targeting the CAF phenotype in the prostate tumor microenvironment. PMID:24615813

  14. Neuronal Actin Dynamics, Spine Density and Neuronal Dendritic Complexity Are Regulated by CAP2.

    PubMed

    Kumar, Atul; Paeger, Lars; Kosmas, Kosmas; Kloppenburg, Peter; Noegel, Angelika A; Peche, Vivek S

    2016-01-01

    Actin remodeling is crucial for dendritic spine development, morphology and density. CAP2 is a regulator of actin dynamics through sequestering G-actin and severing F-actin. In a mouse model, ablation of CAP2 leads to cardiovascular defects and delayed wound healing. This report investigates the role of CAP2 in the brain using Cap2(gt/gt) mice. Dendritic complexity, the number and morphology of dendritic spines were altered in Cap2(gt/gt) with increased number of excitatory synapses. This was accompanied by increased F-actin content and F-actin accumulation in cultured Cap2(gt/gt) neurons. Moreover, reduced surface GluA1 was observed in mutant neurons under basal condition and after induction of chemical LTP. Additionally, we show an interaction between CAP2 and n-cofilin, presumably mediated through the C-terminal domain of CAP2 and dependent on cofilin Ser3 phosphorylation. In vivo, the consequences of this interaction were altered phosphorylated cofilin levels and formation of cofilin aggregates in the neurons. Thus, our studies identify a novel role of CAP2 in neuronal development and neuronal actin dynamics. PMID:27507934

  15. Neuronal Actin Dynamics, Spine Density and Neuronal Dendritic Complexity Are Regulated by CAP2

    PubMed Central

    Kumar, Atul; Paeger, Lars; Kosmas, Kosmas; Kloppenburg, Peter; Noegel, Angelika A.; Peche, Vivek S.

    2016-01-01

    Actin remodeling is crucial for dendritic spine development, morphology and density. CAP2 is a regulator of actin dynamics through sequestering G-actin and severing F-actin. In a mouse model, ablation of CAP2 leads to cardiovascular defects and delayed wound healing. This report investigates the role of CAP2 in the brain using Cap2gt/gt mice. Dendritic complexity, the number and morphology of dendritic spines were altered in Cap2gt/gt with increased number of excitatory synapses. This was accompanied by increased F-actin content and F-actin accumulation in cultured Cap2gt/gt neurons. Moreover, reduced surface GluA1 was observed in mutant neurons under basal condition and after induction of chemical LTP. Additionally, we show an interaction between CAP2 and n-cofilin, presumably mediated through the C-terminal domain of CAP2 and dependent on cofilin Ser3 phosphorylation. In vivo, the consequences of this interaction were altered phosphorylated cofilin levels and formation of cofilin aggregates in the neurons. Thus, our studies identify a novel role of CAP2 in neuronal development and neuronal actin dynamics. PMID:27507934

  16. Contact sensitizers specifically increase MHC class II expression on murine immature dendritic cells.

    PubMed

    Herouet, C; Cottin, M; LeClaire, J; Enk, A; Rousset, F

    2000-01-01

    Contact sensitivity is a T-cell-mediated immune disease that can occur when low-molecular-weight chemicals penetrate the skin. In vivo topical application of chemical sensitizers results in morphological modification of Langerhans cells (LC). Moreover, within 18 h, LC increase their major histocompatibility complex (MHC) class II antigens expression and migrate to lymph nodes where they present the sensitizer to T lymphocytes. We wanted to determine if such an effect could also be observed in vitro. However, because of the high genetic diversity encountered in humans, assays were performed with dendritic cells (DC) obtained from a Balb/c mouse strain. The capacity of a strong sensitizer, DNBS (2,4-dinitrobenzene sulfonic acid), to modulate the phenotype of bone marrow-derived DC in vitro, was investigated. A specific and marked increase of MHC class II molecules expression was observed within 18 h. To eliminate the use of animals in sensitization studies, the XS52 DC line was tested at an immature stage. A 30-min contact with the strong sensitizers DNBS and oxazolone, or the moderate mercaptobenzothiazole, resulted in upregulation of MHC class II molecules expression, analyzed after 18-h incubation. This effect was not observed with irritants (dimethyl sulfoxide and sodium lauryl sulfate) nor with a neutral molecule (sodium chloride). These data suggested the possibility of developing an in vitro model for the identification of the sensitizing potential of chemicals, using a constant and non animal-consuming material.

  17. The Role of Dendritic Cells in Fibrosis Progression in Nonalcoholic Fatty Liver Disease

    PubMed Central

    Almeda-Valdes, Paloma; Aguilar Olivos, Nancy E.; Barranco-Fragoso, Beatriz; Uribe, Misael; Méndez-Sánchez, Nahum

    2015-01-01

    Nonalcoholic fatty liver disease (NAFLD) is the most frequent cause of chronic liver disease. NAFLD encompasses a wide range of pathologies, from simple steatosis to steatosis with inflammation to fibrosis. The pathogenesis of NAFLD progression has not been completely elucidated, and different liver cells could be implicated. This review focuses on the current evidence of the role of liver dendritic cells (DCs) in the progression from NAFLD to fibrosis. Liver DCs are a heterogeneous population of hepatic antigen-presenting cells; their main function is to induce T-cell mediated immunity by antigen processing and presentation to T cells. During the steady state liver DCs are immature and tolerogenic. However, in an environment of chronic inflammation, DCs are transformed to potent inducers of immune responses. There is evidence about the role of DC in liver fibrosis, but it is not clearly understood. Interestingly, there might be a link between lipid metabolism and DC function, suggesting that immunogenic DCs are associated with liver lipid storage, representing a possible pathophysiological mechanism in NAFLD development. A better understanding of the interaction between inflammatory pathways and the different cell types and the effect on the progression of NAFLD is of great relevance. PMID:26339640

  18. A role for multidrug resistance protein 4 (MRP4; ABCC4) in human dendritic cell migration.

    PubMed

    van de Ven, Rieneke; Scheffer, George L; Reurs, Anneke W; Lindenberg, Jelle J; Oerlemans, Ruud; Jansen, Gerrit; Gillet, Jean-Pierre; Glasgow, Joel N; Pereboev, Alexander; Curiel, David T; Scheper, Rik J; de Gruijl, Tanja D

    2008-09-15

    The capacity of dendritic cells (DCs) to migrate from peripheral organs to lymph nodes (LNs) is important in the initiation of a T cell-mediated immune response. The ATP-binding cassette (ABC) transporters P-glycoprotein (P-gp; ABCB1) and the multidrug resistance protein 1 (MRP1; ABCC1) have been shown to play a role in both human and murine DC migration. Here we show that a more recently discovered family member, MRP4 (ABCC4), is expressed on both epidermal and dermal human skin DCs and contributes to the migratory capacity of DCs. Pharmacological inhibition of MRP4 activity or down-regulation through RNAi in DCs resulted in reduced migration of DCs from human skin explants and of in vitro generated Langerhans cells. The responsible MRP4 substrate remains to be identified as exogenous addition of MRP4's known substrates prostaglandin E(2), leukotriene B(4) and D(4), or cyclic nucleotides (all previously implicated in DC migration) could not restore migration. This notwithstanding, our data show that MRP4 is an important protein, significantly contributing to human DC migration toward the draining lymph nodes, and therefore relevant for the initiation of an immune response and a possible target for immunotherapy.

  19. Growing tumors induce a local STING dependent Type I IFN response in dendritic cells.

    PubMed

    Andzinski, Lisa; Spanier, Julia; Kasnitz, Nadine; Kröger, Andrea; Jin, Lei; Brinkmann, Melanie M; Kalinke, Ulrich; Weiss, Siegfried; Jablonska, Jadwiga; Lienenklaus, Stefan

    2016-09-15

    The importance of endogenous Type I IFNs in cancer immune surveillance is well established by now. Their role in polarization of tumor-associated neutrophilic granulocytes into anti-tumor effector cells has been recently demonstrated. Yet, the cellular source of Type I IFNs as well as the mode of induction is not clearly defined. Here, we demonstrate that IFN-β is induced by growing murine tumors. Induction is mainly mediated via STING-dependent signaling pathways, suggesting tumor derived DNA as trigger. Transcription factors IRF3 and IRF5 were activated under these conditions which is consistent with tumor infiltrating dendritic cells (DCs) being the major cellular source of IFN-β at the tumor site. Besides DCs, tumor cells themselves are induced to contribute to the production of IFN-β. Taken together, our data provide further information on immune surveillance by Type I IFNs and suggest novel potent cellular targets for future cancer therapy. PMID:27116225

  20. Cell mediated therapeutics for cancer treatment: Tumor homing cells as therapeutic delivery vehicles

    NASA Astrophysics Data System (ADS)

    Balivada, Sivasai

    Many cell types were known to have migratory properties towards tumors and different research groups have shown reliable results regarding cells as delivery vehicles of therapeutics for targeted cancer treatment. Present report discusses proof of concept for 1. Cell mediated delivery of Magnetic nanoparticles (MNPs) and targeted Magnetic hyperthermia (MHT) as a cancer treatment by using in vivo mouse cancer models, 2. Cells surface engineering with chimeric proteins for targeted cancer treatment by using in vitro models. 1. Tumor homing cells can carry MNPs specifically to the tumor site and tumor burden will decrease after alternating magnetic field (AMF) exposure. To test this hypothesis, first we loaded Fe/Fe3O4 bi-magnetic NPs into neural progenitor cells (NPCs), which were previously shown to migrate towards melanoma tumors. We observed that NPCs loaded with MNPs travel to subcutaneous melanoma tumors. After alternating magnetic field (AMF) exposure, the targeted delivery of MNPs by the NPCs resulted in a mild decrease in tumor size (Chapter-2). Monocytes/macrophages (Mo/Ma) are known to infiltrate tumor sites, and also have phagocytic activity which can increase their uptake of MNPs. To test Mo/Ma-mediated MHT we transplanted Mo/Ma loaded with MNPs into a mouse model of pancreatic peritoneal carcinomatosis. We observed that MNP-loaded Mo/Ma infiltrated pancreatic tumors and, after AMF treatment, significantly prolonged the lives of mice bearing disseminated intraperitoneal pancreatic tumors (Chapter-3). 2. Targeted cancer treatment could be achieved by engineering tumor homing cell surfaces with tumor proteases cleavable, cancer cell specific recombinant therapeutic proteins. To test this, Urokinase and Calpain (tumor specific proteases) cleavable; prostate cancer cell (CaP) specific (CaP1 targeting peptide); apoptosis inducible (Caspase3 V266ED3)- rCasp3V266ED3 chimeric protein was designed in silico. Hypothesized membrane anchored chimeric protein (rCasp3V

  1. Attenuated D2 16681-PDK53 vaccine: defining humoral and cell-mediated immunity.

    PubMed

    Rabablert, J; Yoksan, S

    2009-01-01

    Dengue viruses cause 50-100 million cases of acute febrile disease every year, including more than 500000 reported cases of the severe forms of the disease-dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Attempts to create conventional vaccines have been hampered by the lack of suitable experimental models, the need to provide protection against all four serotypes simultaneously and the possible involvement of virus-specific immune responses in severe disease. Live attenuated D2 16681-PDK53 vaccine was first developed from Mahidol University, Thailand. This vaccine induced both humoral and cell-mediated immunity and lack of reactogeneticity in humans. Infectious cDNA clones of the virulent D2 16681 virus and its attenuated D2 16681-PDK53 were constructed. The attenuated virus elicited neutralizing antibodies in mice and monkeys and developed viremia in monkeys. At molecular level, patterns of cytokines which are immunological mediators released from human mononuclear cells obtained from dengue naïve and immune donors infected with this attenuated virus compared with virulent virus were studied. In dengue naïve PBMC, the virulent and attenuated clones induced alternation in expression of 25 and 24 versus 13 and 18 genes out of 268 genes on day 1 and 3. In dengue immune PBMC, the virulent and attenuated clones induced alternation in expression of 33 and 38 versus 25 and 29 genes on days 1 and 3. Up-regulation of IL-1beta, IL-6, IL-8, IL-10, IFN-alpha, IFNgammaR, MIP-1alpha, MIP-1beta, MIP-2alpha, VEGF and down-regulation of IL-4, IL-4R, IL-RII, MIF, RANTES, IGF-1, GM-CSF-2 were shown. This review pointed out the infectious clones of the attenuated D2 16681-PDK53 was safe and induced both neutralizing antibodies in vivo and cytokine gene expression in vitro at molecular level. Furthermore, the phenotypic markers of ideal dengue vaccine could be included the alteration of cytokine gene expression and cytokine production in human mononuclear cells.

  2. Physiologic control of IDO competence in splenic dendritic cells.

    PubMed

    Baban, Babak; Chandler, Phillip R; Johnson, Burles A; Huang, Lei; Li, Minghui; Sharpe, Marlon L; Francisco, Loise M; Sharpe, Arlene H; Blazar, Bruce R; Munn, David H; Mellor, Andrew L

    2011-09-01

    Dendritic cells (DCs) competent to express the regulatory enzyme IDO in mice are a small but distinctive subset of DCs. Previously, we reported that a high-dose systemic CpG treatment to ligate TLR9 in vivo induced functional IDO exclusively in splenic CD19(+) DCs, which stimulated resting Foxp3-lineage regulatory T cells (Tregs) to rapidly acquire potent suppressor activity. In this paper, we show that IDO was induced in spleen and peripheral lymph nodes after CpG treatment in a dose-dependent manner. Induced IDO suppressed local T cell responses to exogenous Ags and inhibited proinflammatory cytokine expression in response to TLR9 ligation. IDO induction did not occur in T cell-deficient mice or in mice with defective B7 or programmed death (PD)-1 costimulatory pathways. Consistent with these findings, CTLA4 or PD-1/PD-ligand costimulatory blockade abrogated IDO induction and prevented Treg activation via IDO following high-dose CpG treatment. Consequently, CD4(+)CD25(+) T cells uniformly expressed IL-17 shortly after TLR9 ligation. These data support the hypothesis that constitutive interactions from activated T cells or Tregs and IDO-competent DCs via concomitant CTLA4→B7 and PD-1→PD-ligand signals maintain the default potential to regulate T cell responsiveness via IDO. Acute disruption of these nonredundant interactions abrogated regulation via IDO, providing novel perspectives on the proinflammatory effects of costimulatory blockade therapies. Moreover, interactions between IDO-competent DCs and activated T cells in lymphoid tissues may attenuate proinflammatory responses to adjuvants such as TLR ligands.

  3. Regulatory dendritic cells: there is more than just immune activation

    PubMed Central

    Schmidt, Susanne V.; Nino-Castro, Andrea C.; Schultze, Joachim L.

    2012-01-01

    The immune system exists in a delicate equilibrium between inflammatory responses and tolerance. This unique feature allows the immune system to recognize and respond to potential threats in a controlled but normally limited fashion thereby preventing a destructive overreaction against healthy tissues. While the adaptive immune system was the major research focus concerning activation vs. tolerance in the immune system more recent findings suggest that cells of the innate immune system are important players in the decision between effective immunity and induction of tolerance or immune inhibition. Among immune cells of the innate immune system dendritic cells (DCs) have a special function linking innate immune functions with the induction of adaptive immunity. DCs are the primary professional antigen presenting cells (APCs) initiating adaptive immune responses. They belong to the hematopoietic system and arise from CD34+ stem cells in the bone marrow. Particularly in the murine system two major subgroups of DCs, namely myeloid DCs (mDCs) and plasmacytoid DCs (pDCs) can be distinguished. DCs are important mediators of innate and adaptive immunity mostly due to their remarkable capacity to present processed antigens via major histocompatibility complexes (MHC) to T cells and B cells in secondary lymphoid organs. A large body of literature has been accumulated during the last two decades describing which role DCs play during activation of T cell responses but also during the establishment and maintenance of central tolerance (Steinman et al., 2003). While the concept of peripheral tolerance has been clearly established during the last years, the role of different sets of DCs and their particular molecular mechanisms of immune deviation has not yet fully been appreciated. In this review we summarize accumulating evidence about the role of regulatory DCs in situations where the balance between tolerance and immunogenicity has been altered leading to pathologic

  4. CD45 epitope mapping of human CD1a+ dendritic cells and peripheral blood dendritic cells.

    PubMed Central

    Wood, G. S.; Freudenthal, P. S.; Edinger, A.; Steinman, R. M.; Warnke, R. A.

    1991-01-01

    The authors studied the pattern of leukocyte common antigen (CD45) epitope expression on dendritic cells in sections of human epidermis, tonsillar epithelium, dermatopathic lymph nodes, and in isolates from blood. The monoclonal antibodies (MAb) used were specific for all known CD45 epitopes, including the seven different CD45 common epitopes as well as the four known CD45R epitopes (two CD45RA, one CD45RB, and one CD45RO). Dendritic cells in all sites were uniformly reactive for the CD45 common epitopes tested except 2B11, which may recognize a CD45R rather than CD45 epitope. By single-label immunoperoxidase and double-label immunofluorescence epitope mapping of CD1a+ dendritic cells in tissue sections, it was generally difficult or impossible to detect expression of CD45RA, CD45RB, CD45RO, or 2B11. In blood dendritic cells, however, low levels of these CD45R epitopes were detected consistently using single-label immunoperoxidase staining of cytocentrifuge preparations. Monocytes were similar to blood dendritic cells except that the staining with MAb to CD45RO and 2B11 was slightly stronger. The authors conclude that dendritic cells differ from most subpopulations of lymphocytes in that CD45 common epitopes are readily detectable but the existing RA, RB, and RO epitopes are either undetectable or expressed at relatively low levels. These studies raise the possibility that CD1a+ dendritic cells may express a novel dominant CD45 isoform. Images Figure 1 Figure 2 PMID:1711291

  5. Targeting dendritic cell function during systemic autoimmunity to restore tolerance.

    PubMed

    Mackern-Oberti, Juan P; Vega, Fabián; Llanos, Carolina; Bueno, Susan M; Kalergis, Alexis M

    2014-01-01

    Systemic autoimmune diseases can damage nearly every tissue or cell type of the body. Although a great deal of progress has been made in understanding the pathogenesis of autoimmune diseases, current therapies have not been improved, remain unspecific and are associated with significant side effects. Because dendritic cells (DCs) play a major role in promoting immune tolerance against self-antigens (self-Ags), current efforts are focusing at generating new therapies based on the transfer of tolerogenic DCs (tolDCs) during autoimmunity. However, the feasibility of this approach during systemic autoimmunity has yet to be evaluated. TolDCs may ameliorate autoimmunity mainly by restoring T cell tolerance and, thus, indirectly modulating autoantibody development. In vitro induction of tolDCs loaded with immunodominant self-Ags and subsequent cell transfer to patients would be a specific new therapy that will avoid systemic immunosuppression. Herein, we review recent approaches evaluating the potential of tolDCs for the treatment of systemic autoimmune disorders. PMID:25229821

  6. Dendritic-tumor fusion cells in cancer immunotherapy.

    PubMed

    Takakura, Kazuki; Kajihara, Mikio; Ito, Zensho; Ohkusa, Toshifumi; Gong, Jianlin; Koido, Shigeo

    2015-03-01

    A promising area of clinical investigation is the use of cancer immunotherapy to treat cancer patients. Dendritic cells (DCs) operate as professional antigen-presenting cells (APCs) and play a critical role in the induction of antitumor immune responses. Thus, DC-based cancer immunotherapy represents a powerful strategy. One DC-based cancer immunotherapy strategy that has been investigated is the administration of fusion cells generated with DCs and whole tumor cells (DC-tumor fusion cells). The DC-tumor fusion cells can process a broad array of tumor-associated antigens (TAAs), including unidentified molecules, and present them through major histocompatibility complex (MHC) class I and II pathways in the context of co-stimulatory signals. Improving the therapeutic efficacy of DC-tumor fusion cell-based cancer immunotherapy requires increased immunogenicity of DCs and whole tumor cells. We discuss the potential ability of DC-tumor fusion cells to activate antigen-specific T cells and strategies to improve the immunogenicity of DC-tumor fusion cells as anticancer vaccines.

  7. Dendritic-tumor fusion cells in cancer immunotherapy.

    PubMed

    Takakura, Kazuki; Kajihara, Mikio; Ito, Zensho; Ohkusa, Toshifumi; Gong, Jianlin; Koido, Shigeo

    2015-03-01

    A promising area of clinical investigation is the use of cancer immunotherapy to treat cancer patients. Dendritic cells (DCs) operate as professional antigen-presenting cells (APCs) and play a critical role in the induction of antitumor immune responses. Thus, DC-based cancer immunotherapy represents a powerful strategy. One DC-based cancer immunotherapy strategy that has been investigated is the administration of fusion cells generated with DCs and whole tumor cells (DC-tumor fusion cells). The DC-tumor fusion cells can process a broad array of tumor-associated antigens (TAAs), including unidentified molecules, and present them through major histocompatibility complex (MHC) class I and II pathways in the context of co-stimulatory signals. Improving the therapeutic efficacy of DC-tumor fusion cell-based cancer immunotherapy requires increased immunogenicity of DCs and whole tumor cells. We discuss the potential ability of DC-tumor fusion cells to activate antigen-specific T cells and strategies to improve the immunogenicity of DC-tumor fusion cells as anticancer vaccines. PMID:25828520

  8. T Cell Motility as Modulator of Interactions with Dendritic Cells

    PubMed Central

    Stein, Jens V.

    2015-01-01

    It is well established that the balance of costimulatory and inhibitory signals during interactions with dendritic cells (DCs) determines T cell transition from a naïve to an activated or tolerant/anergic status. Although many of these molecular interactions are well reproduced in reductionist in vitro assays, the highly dynamic motility of naïve T cells in lymphoid tissue acts as an additional lever to fine-tune their activation threshold. T cell detachment from DCs providing suboptimal stimulation allows them to search for DCs with higher levels of stimulatory signals, while storing a transient memory of short encounters. In turn, adhesion of weakly reactive T cells to DCs presenting peptides presented on major histocompatibility complex with low affinity is prevented by lipid mediators. Finally, controlled recruitment of CD8+ T cells to cognate DC–CD4+ T cell clusters shapes memory T cell formation and the quality of the immune response. Dynamic physiological lymphocyte motility therefore constitutes a mechanism to mitigate low avidity T cell activation and to improve the search for “optimal” DCs, while contributing to peripheral tolerance induction in the absence of inflammation. PMID:26579132

  9. Targeting Dendritic Cell Function during Systemic Autoimmunity to Restore Tolerance

    PubMed Central

    Mackern-Oberti, Juan P.; Vega, Fabián; Llanos, Carolina; Bueno, Susan M.; Kalergis, Alexis M.

    2014-01-01

    Systemic autoimmune diseases can damage nearly every tissue or cell type of the body. Although a great deal of progress has been made in understanding the pathogenesis of autoimmune diseases, current therapies have not been improved, remain unspecific and are associated with significant side effects. Because dendritic cells (DCs) play a major role in promoting immune tolerance against self-antigens (self-Ags), current efforts are focusing at generating new therapies based on the transfer of tolerogenic DCs (tolDCs) during autoimmunity. However, the feasibility of this approach during systemic autoimmunity has yet to be evaluated. TolDCs may ameliorate autoimmunity mainly by restoring T cell tolerance and, thus, indirectly modulating autoantibody development. In vitro induction of tolDCs loaded with immunodominant self-Ags and subsequent cell transfer to patients would be a specific new therapy that will avoid systemic immunosuppression. Herein, we review recent approaches evaluating the potential of tolDCs for the treatment of systemic autoimmune disorders. PMID:25229821

  10. Targeting dendritic cell function during systemic autoimmunity to restore tolerance.

    PubMed

    Mackern-Oberti, Juan P; Vega, Fabián; Llanos, Carolina; Bueno, Susan M; Kalergis, Alexis M

    2014-09-16

    Systemic autoimmune diseases can damage nearly every tissue or cell type of the body. Although a great deal of progress has been made in understanding the pathogenesis of autoimmune diseases, current therapies have not been improved, remain unspecific and are associated with significant side effects. Because dendritic cells (DCs) play a major role in promoting immune tolerance against self-antigens (self-Ags), current efforts are focusing at generating new therapies based on the transfer of tolerogenic DCs (tolDCs) during autoimmunity. However, the feasibility of this approach during systemic autoimmunity has yet to be evaluated. TolDCs may ameliorate autoimmunity mainly by restoring T cell tolerance and, thus, indirectly modulating autoantibody development. In vitro induction of tolDCs loaded with immunodominant self-Ags and subsequent cell transfer to patients would be a specific new therapy that will avoid systemic immunosuppression. Herein, we review recent approaches evaluating the potential of tolDCs for the treatment of systemic autoimmune disorders.

  11. Plasmacytoid dendritic cells: development, functions, and role in atherosclerotic inflammation

    PubMed Central

    Chistiakov, Dimitry A.; Orekhov, Alexander N.; Sobenin, Igor A.; Bobryshev, Yuri V.

    2014-01-01

    Plasmacytoid dendritic cells (pDCs) are a specialized subset of DCs that links innate and adaptive immunity. They sense viral and bacterial pathogens and release high levels of Type I interferons (IFN-I) in response to infection. pDCs were shown to contribute to inflammatory responses in the steady state and in pathology. In atherosclerosis, pDCs are involved in priming vascular inflammation and atherogenesis through production of IFN-I and chemokines that attract inflammatory cells to inflamed sites. pDCs also contribute to the proinflammatory activation of effector T cells, cytotoxic T cells, and conventional DCs. However, tolerogenic populations of pDCs are found that suppress atherosclerosis-associated inflammation through down-regulation of function and proliferation of proinflammatory T cell subsets and induction of regulatory T cells with potent immunomodulatory properties. Notably, atheroprotective tolerogenic DCs could be induced by certain self-antigens or bacterial antigens that suggests for great therapeutic potential of these DCs for development of DC-based anti-atherogenic vaccines. PMID:25120492

  12. CD83 and GRASP55 interact in human dendritic cells.

    PubMed

    Stein, Marcello F; Blume, Katja; Heilingloh, Christiane S; Kummer, Mirko; Biesinger, Brigitte; Sticht, Heinrich; Steinkasserer, Alexander

    2015-03-27

    CD83 is one of the best known surface markers for mature human dendritic cells (DCs). The full-length 45 kDa type-I membrane-bound form (mbCD83) is strongly glycosylated upon DCs maturation. As co-stimulatory properties of CD83 are attributed to mbCD83 surface expression is required for efficient T-cell stimulation by mature DCs. By yeast two-hybrid screening, we were able to identify GRASP55 as interaction partner of CD83. DCs maturation induces endogenous CD83 protein expression with simultaneous regulation of CD83 glycosylation, interaction and co-localization with GRASP55 and CD83 surface exposure. GRASP55 is especially known for its role in maintaining Golgi architecture, but also plays a role in Golgi transport of specific cargo proteins bearing a C-terminal valine residue. Here we additionally demonstrate that binding of CD83 and GRASP55 rely on the C-terminal TELV-motif of CD83. Mutation of this TELV-motif not only disrupted binding to GRASP55, but also altered the glycosylation pattern of CD83 and reduced its membrane expression. Here we show for the first time that GRASP55 interacts with CD83 shortly after induction of DC maturation and that this interaction plays a role in CD83 glycosylation as well as in surface expression of CD83 on DCs. PMID:25701785

  13. Dendritic cells and the malaria pre-erythrocytic stage.

    PubMed

    Mauduit, Marjorie; See, Peter; Peng, Kaitian; Rénia, Laurent; Ginhoux, Florent

    2012-09-01

    Malaria remains one of the main infectious diseases in intertropical regions. The malaria parasite has a complex life cycle in its mammalian host, switching between variable forms as it traverses through different tissues and anatomic locations, either intra- or intercellularly. During its journey, the parasite encounters and interacts with the host immune system, which functions to prevent infections and limit ensuing pathologies. One important component of the host immune system is the dendritic cells (DC) network. DC form a heterogeneous group of pathogen-sensing and antigen-presenting cells that play a crucial role in the initiation of adaptive immunity. Here, we review the known and unknown interactions between the malaria parasites and the DC system, starting from the inoculation of the parasite in the skin up to its exit from the liver, also known as the pre-erythrocytic stage of the infection, and discuss how deciphering these interactions may contribute to our understanding of the Plasmodium parasite biology as well as to the induction of immune protection via vaccination. PMID:22418726

  14. Lenalidomide, celecoxib, and azacitidine therapy for blastic plasmocytoid dendritic cell neoplasm: a case report

    PubMed Central

    Garcia-Recio, Marta; Martinez-Serra, Jordi; Bento, Leyre; Ramos, Rafael; Gines, Jordi; Daumal, Jaime; Sampol, Antonia; Gutierrez, Antonio

    2016-01-01

    Blastic plasmocytoid dendritic cell neoplasm is characterized by aggressive behavior with a tendency for systemic dissemination and a predilection for skin, lymph nodes, soft tissues, peripheral blood, or bone marrow. It usually occurs in elderly patients with a mean age between 60 and 70 years. Despite initial response to chemotherapy, the disease regularly relapses with a short median overall survival. Better outcomes have been reported with high-dose acute leukemia-like induction chemotherapy followed by consolidation with allogeneic hematopoietic stem cell transplantation. However, elderly patients are not candidates for intensive therapy or allogeneic stem cell transplantation. So, new active and tolerable drugs are needed. Our case illustrates that one cycle of lenalidomide and celecoxib provides at least a partial cutaneous and hematologic response, but this regimen was discontinued due to toxicity and followed by a consolidation/maintenance phase with azacitidine, thus achieving a final complete response with a much higher than expected progression-free and overall survival in an elderly patient with comorbidities. This information may be useful in the design of treatment approaches for elderly patients with blastic plasmocytoid dendritic cell neoplasm. However, it should be confirmed in clinical trials as well as by optimizing the induction and extending the consolidation/maintenance period to avoid early relapses after discontinuation and improve progression-free survival. PMID:27660468

  15. Lenalidomide, celecoxib, and azacitidine therapy for blastic plasmocytoid dendritic cell neoplasm: a case report.

    PubMed

    Garcia-Recio, Marta; Martinez-Serra, Jordi; Bento, Leyre; Ramos, Rafael; Gines, Jordi; Daumal, Jaime; Sampol, Antonia; Gutierrez, Antonio

    2016-01-01

    Blastic plasmocytoid dendritic cell neoplasm is characterized by aggressive behavior with a tendency for systemic dissemination and a predilection for skin, lymph nodes, soft tissues, peripheral blood, or bone marrow. It usually occurs in elderly patients with a mean age between 60 and 70 years. Despite initial response to chemotherapy, the disease regularly relapses with a short median overall survival. Better outcomes have been reported with high-dose acute leukemia-like induction chemotherapy followed by consolidation with allogeneic hematopoietic stem cell transplantation. However, elderly patients are not candidates for intensive therapy or allogeneic stem cell transplantation. So, new active and tolerable drugs are needed. Our case illustrates that one cycle of lenalidomide and celecoxib provides at least a partial cutaneous and hematologic response, but this regimen was discontinued due to toxicity and followed by a consolidation/maintenance phase with azacitidine, thus achieving a final complete response with a much higher than expected progression-free and overall survival in an elderly patient with comorbidities. This information may be useful in the design of treatment approaches for elderly patients with blastic plasmocytoid dendritic cell neoplasm. However, it should be confirmed in clinical trials as well as by optimizing the induction and extending the consolidation/maintenance period to avoid early relapses after discontinuation and improve progression-free survival. PMID:27660468

  16. Lenalidomide, celecoxib, and azacitidine therapy for blastic plasmocytoid dendritic cell neoplasm: a case report

    PubMed Central

    Garcia-Recio, Marta; Martinez-Serra, Jordi; Bento, Leyre; Ramos, Rafael; Gines, Jordi; Daumal, Jaime; Sampol, Antonia; Gutierrez, Antonio

    2016-01-01

    Blastic plasmocytoid dendritic cell neoplasm is characterized by aggressive behavior with a tendency for systemic dissemination and a predilection for skin, lymph nodes, soft tissues, peripheral blood, or bone marrow. It usually occurs in elderly patients with a mean age between 60 and 70 years. Despite initial response to chemotherapy, the disease regularly relapses with a short median overall survival. Better outcomes have been reported with high-dose acute leukemia-like induction chemotherapy followed by consolidation with allogeneic hematopoietic stem cell transplantation. However, elderly patients are not candidates for intensive therapy or allogeneic stem cell transplantation. So, new active and tolerable drugs are needed. Our case illustrates that one cycle of lenalidomide and celecoxib provides at least a partial cutaneous and hematologic response, but this regimen was discontinued due to toxicity and followed by a consolidation/maintenance phase with azacitidine, thus achieving a final complete response with a much higher than expected progression-free and overall survival in an elderly patient with comorbidities. This information may be useful in the design of treatment approaches for elderly patients with blastic plasmocytoid dendritic cell neoplasm. However, it should be confirmed in clinical trials as well as by optimizing the induction and extending the consolidation/maintenance period to avoid early relapses after discontinuation and improve progression-free survival.

  17. Immunomodulatory Effects of Streptococcus suis Capsule Type on Human Dendritic Cell Responses, Phagocytosis and Intracellular Survival

    PubMed Central

    Meijerink, Marjolein; Ferrando, Maria Laura; Lammers, Geraldine; Taverne, Nico; Smith, Hilde E.; Wells, Jerry M.

    2012-01-01

    Streptococcus suis is a major porcine pathogen of significant commercial importance worldwide and an emerging zoonotic pathogen of humans. Given the important sentinel role of mucosal dendritic cells and their importance in induction of T cell responses we investigated the effect of different S. suis serotype strains and an isogenic capsule mutant of serotype 2 on the maturation, activation and expression of IL-10, IL-12p70 and TNF-α in human monocyte-derived dendritic cells. Additionally, we compared phagocytosis levels and bacterial survival after internalization. The capsule of serotype 2, the most common serotype associated with infection in humans and pigs, was highly anti-phagocytic and modulated the IL-10/IL-12 and IL-10/TNF-α cytokine production in favor of a more anti-inflammatory profile compared to other serotypes. This may have consequences for the induction of effective immunity to S. suis serotype 2 in humans. A shielding effect of the capsule on innate Toll-like receptor signaling was also demonstrated. Furthermore, we showed that 24 h after phagocytosis, significant numbers of viable intracellular S. suis were still present intracellularly. This may contribute to the dissemination of S. suis in the body. PMID:22558240

  18. In Vivo Targeting of Antigens to Maturing Dendritic Cells via the DEC-205 Receptor Improves T Cell Vaccination

    PubMed Central

    Bonifaz, Laura C.; Bonnyay, David P.; Charalambous, Anna; Darguste, Dara I.; Fujii, Shin-Ichiro; Soares, Helena; Brimnes, Marie K.; Moltedo, Bruno; Moran, Thomas M.; Steinman, Ralph M.

    2004-01-01

    The prevention and treatment of prevalent infectious diseases and tumors should benefit from improvements in the induction of antigen-specific T cell immunity. To assess the potential of antigen targeting to dendritic cells to improve immunity, we incorporated ovalbumin protein into a monoclonal antibody to the DEC-205 receptor, an endocytic receptor that is abundant on these cells in lymphoid tissues. Simultaneously, we injected agonistic α-CD40 antibody to mature the dendritic cells. We found that a single low dose of antibody-conjugated ovalbumin initiated immunity from the naive CD4+ and CD8+ T cell repertoire. Unexpectedly, the αDEC-205 antigen conjugates, given s.c., targeted to dendritic cells systemically and for long periods, and ovalbumin peptide was presented on MHC class I for 2 weeks. This was associated with stronger CD8+ T cell–mediated immunity relative to other forms of antigen delivery, even when the latter was given at a thousand times higher doses. In parallel, the mice showed enhanced resistance to an established rapidly growing tumor and to viral infection at a mucosal site. By better harnessing the immunizing functions of maturing dendritic cells, antibody-mediated antigen targeting via the DEC-205 receptor increases the efficiency of vaccination for T cell immunity, including systemic and mucosal resistance in disease models. PMID:15024047

  19. Dendritic development of newly generated neurons in the adult brain.

    PubMed

    Ribak, Charles E; Shapiro, Lee A

    2007-10-01

    Ramon y Cajal described the fundamental morphology of the dendritic and axonal growth cones of neurons during development. However, technical limitations at the time prevented him from describing such growth cones from newborn neurons in the adult brain. The phenomenon of adult neurogenesis is briefly reviewed, and the structural description of dendritic and axonal outgrowth for these newly generated neurons in the adult brain is discussed. Axonal outgrowth into the hilus and CA3 region of the hippocampus occurs later than the outgrowth of dendrites into the molecular layer, and the ultrastructural analysis of axonal outgrowth has yet to be completed. In contrast, growth cones on dendrites from newborn neurons in the adult dentate gyrus have been described and this observation suggests that dendrites in adult brains grow in a similar way to those found in immature brains. However, dendrites in adult brains have to navigate through a denser neuropil and a more complex cell layer. Therefore, some aspects of dendritic outgrowth of neurons born in the adult dentate gyrus are different as compared to that found in development. These differences include the radial process of radial glial cells acting as a lattice to guide apical dendritic growth through the granule cell layer and a much thinner dendrite to grow through the neuropil of the molecular layer. Therefore, similarities and differences exist for dendritic outgrowth from newborn neurons in the developing and adult brain.

  20. Developmental mechanisms that regulate retinal ganglion cell dendritic morphology

    PubMed Central

    Tian, Ning

    2011-01-01

    One of the fundamental features of retinal ganglion cells (RGCs) is that dendrites of individual RGCs are confined to one or a few narrow strata within the inner plexiform layer (IPL), and each RGC synapses only with a small group of presynaptic bipolar and amacrine cells with axons/dendrites ramified in the same strata to process distinct visual features. The underlying mechanisms which control the development of this laminar-restricted distribution pattern of RGC dendrites have been extensively studied, and it is still an open question whether the dendritic pattern of RGCs is determined by molecular cues or by activity-dependent refinement. Accumulating evidence suggests that both molecular cues and activity-dependent refinement might regulate RGC dendrites in a cell subtype-specific manner. However, identification of morphological subtypes of RGCs before they have achieved their mature dendritic pattern is a major challenge in the study of RGC dendritic development. This problem is now being circumvented through the use of molecular markers in genetically engineered mouse lines to identify RGC subsets early during development. Another unanswered fundamental question in the study of activity-dependent refinement of RGC dendrites is how changes in synaptic activity lead to the changes in dendritic morphology. Recent studies have started to shed light on the molecular basis of activity-dependent dendritic refinement of RGCs by showing that some molecular cascades control the cytoskeleton reorganization of RGCs. PMID:21542137

  1. Dendritic growth tip velocities and radii of curvature in microgravity

    SciTech Connect

    Koss, M.B.; LaCombe, J.C.; Tennenhouse, L.A.; Glicksman, M.E.; Winsa, E.A.

    1999-12-01

    Dendritic growth is the common mode of solidification encountered when metals and alloys freeze under low thermal gradients. The growth of dendrites in pure melts depends on the transport of latent heat from the moving crystal-melt interface and the influence of weaker effects like the interfacial energy. Experimental data for critical tests of dendritic growth theories remained limited because dendritic growth can be complicated by convection. The Isothermal Dendritic Growth Experiment (IDGE) was developed specifically to test dendritic growth theories by performing measurements with succinonitrile (SCN) in microgravity, thus eliminating buoyancy-induced convection. The first flight of the IDGE in 1994 operated for 9 days at a mean quasi-static acceleration of 0.7 x 10{sup {minus}6} g{sub 0}. The velocity and radius data show that at supercoolings above approximately 0.4 K, dendritic growth in SCN under microgravity conditions is diffusion limited. By contrast, under terrestrial conditions, dendritic growth of SCN is dominated y convection for supercoolings below 1.7 K. The theoretical and experimental Peclet numbers exhibit modest disagreement, indicating that transport theories of dendritic solidification require some modification. Finally, the kinetic selection rule for dendritic growth, VR{sup 2} = constant, where V is the velocity of the tip and R is the radius of curvature at the tip, appears to be independent of the gravity environment, with a slight dependence on the supercooling.

  2. Action potential-induced dendritic calcium dynamics correlated with synaptic plasticity in developing hippocampal pyramidal cells.

    PubMed

    Isomura, Y; Kato, N

    1999-10-01

    In hippocampal CA1 pyramidal cells, intracellular calcium increases are required for induction of long-term potentiation (LTP), an activity-dependent synaptic plasticity. LTP is known to develop in magnitude during the second and third postnatal weeks in the rats. Little is known, however, about development of intracellular calcium dynamics during the same postnatal weeks. We investigated postnatal development of intracellular calcium dynamics in the proximal apical dendrites of CA1 pyramidal cells by whole cell patch-clamp recordings and calcium imaging with the Ca(2+) indicator fura-2. Dendritic calcium increases induced by intrasomatically evoked action potentials were slight during the first postnatal week but gradually became robust 3 to 6-fold during the second and third postnatal weeks. These calcium increases were blocked by application of 250 microM CdCl(2), a nonspecific blocker for high-threshold voltage-dependent calcium channels (VDCCs). Under the voltage-clamp condition, both calcium currents and dendritic calcium accumulations induced by depolarization were larger at the late developmental stage (P15-18) than the early stage (P4-7), indicating developmental enhancement of calcium influx mediated by high-threshold VDCCs. Moreover, theta-burst stimulation (TBS), a protocol for LTP induction, induced large intracellular calcium increases at the late developmental stage, in synchrony with maturation of TBS-induced LTP. These results suggest that developmental enhancement of intracellular calcium increases induced by action potentials may underlie maturation of calcium-dependent functions such as synaptic plasticity in hippocampal neurons.

  3. Modified vaccinia virus Ankara triggers type I IFN production in murine conventional dendritic cells via a cGAS/STING-mediated cytosolic DNA-sensing pathway.

    PubMed

    Dai, Peihong; Wang, Weiyi; Cao, Hua; Avogadri, Francesca; Dai, Lianpan; Drexler, Ingo; Joyce, Johanna A; Li, Xiao-Dong; Chen, Zhijian; Merghoub, Taha; Shuman, Stewart; Deng, Liang

    2014-04-01

    Modified vaccinia virus Ankara (MVA) is an attenuated poxvirus that has been engineered as a vaccine against infectious agents and cancers. Our goal is to understand how MVA modulates innate immunity in dendritic cells (DCs), which can provide insights to vaccine design. In this study, using murine bone marrow-derived dendritic cells, we assessed type I interferon (IFN) gene induction and protein secretion in response to MVA infection. We report that MVA infection elicits the production of type I IFN in murine conventional dendritic cells (cDCs), but not in plasmacytoid dendritic cells (pDCs). Transcription factors IRF3 (IFN regulatory factor 3) and IRF7, and the positive feedback loop mediated by IFNAR1 (IFN alpha/beta receptor 1), are required for the induction. MVA induction of type I IFN is fully dependent on STING (stimulator of IFN genes) and the newly discovered cytosolic DNA sensor cGAS (cyclic guanosine monophosphate-adenosine monophosphate synthase). MVA infection of cDCs triggers phosphorylation of TBK1 (Tank-binding kinase 1) and IRF3, which is abolished in the absence of cGAS and STING. Furthermore, intravenous delivery of MVA induces type I IFN in wild-type mice, but not in mice lacking STING or IRF3. Treatment of cDCs with inhibitors of endosomal and lysosomal acidification or the lysosomal enzyme Cathepsin B attenuated MVA-induced type I IFN production, indicating that lysosomal enzymatic processing of virions is important for MVA sensing. Taken together, our results demonstrate a critical role of the cGAS/STING-mediated cytosolic DNA-sensing pathway for type I IFN induction in cDCs by MVA. We present evidence that vaccinia virulence factors E3 and N1 inhibit the activation of IRF3 and the induction of IFNB gene in MVA-infected cDCs.

  4. Opposing Roles of Dectin-1 Expressed on Human Plasmacytoid Dendritic Cells and Myeloid Dendritic Cells in Th2 Polarization.

    PubMed

    Joo, HyeMee; Upchurch, Katherine; Zhang, Wei; Ni, Ling; Li, Dapeng; Xue, Yaming; Li, Xiao-Hua; Hori, Toshiyuki; Zurawski, Sandra; Liu, Yong-Jun; Zurawski, Gerard; Oh, SangKon

    2015-08-15

    Dendritic cells (DCs) can induce and control host immune responses. DC subset-dependent functional specialties and their ability to display functional plasticity, which is mainly driven by signals via pattern recognition receptors, identify DCs as immune orchestrators. A pattern recognition receptor, Dectin-1, is expressed on myeloid DCs and known to play important roles in Th17 induction and activation during fungal and certain bacterial infections. In this study, we first demonstrate that human plasmacytoid DCs express Dectin-1 in both mRNA and protein levels. More interestingly, Dectin-1-activated plasmacytoid DCs promote Th2-type T cell responses, whereas Dectin-1-activated myeloid DCs decrease Th2-type T cell responses. Such contrasting outcomes of Th2-type T cell responses by the two DC subsets are mainly due to their distinct abilities to control surface OX40L expression in response to β-glucan. This study provides new insights for the regulation of host immune responses by Dectin-1 expressed on DCs. PMID:26123355

  5. Evaluating Local Primary Dendrite Arm Spacing Characterization Techniques Using Synthetic Directionally Solidified Dendritic Microstructures

    NASA Astrophysics Data System (ADS)

    Tschopp, Mark A.; Miller, Jonathan D.; Oppedal, Andrew L.; Solanki, Kiran N.

    2015-10-01

    Microstructure characterization continues to play an important bridge to understanding why particular processing routes or parameters affect the properties of materials. This statement certainly holds true in the case of directionally solidified dendritic microstructures, where characterizing the primary dendrite arm spacing is vital to developing the process-structure-property relationships that can lead to the design and optimization of processing routes for defined properties. In this work, four series of simulations were used to examine the capability of a few Voronoi-based techniques to capture local microstructure statistics (primary dendrite arm spacing and coordination number) in controlled (synthetically generated) microstructures. These simulations used both cubic and hexagonal microstructures with varying degrees of disorder (noise) to study the effects of length scale, base microstructure, microstructure variability, and technique parameters on the local PDAS distribution, local coordination number distribution, bulk PDAS, and bulk coordination number. The Voronoi tesselation technique with a polygon-side-length criterion correctly characterized the known synthetic microstructures. By systematically studying the different techniques for quantifying local primary dendrite arm spacings, we have evaluated their capability to capture this important microstructure feature in different dendritic microstructures, which can be an important step for experimentally correlating with both processing and properties in single crystal nickel-based superalloys.

  6. Somato-dendritic Synaptic Plasticity and Error-backpropagation in Active Dendrites

    PubMed Central

    Schiess, Mathieu; Urbanczik, Robert; Senn, Walter

    2016-01-01

    In the last decade dendrites of cortical neurons have been shown to nonlinearly combine synaptic inputs by evoking local dendritic spikes. It has been suggested that these nonlinearities raise the computational power of a single neuron, making it comparable to a 2-layer network of point neurons. But how these nonlinearities can be incorporated into the synaptic plasticity to optimally support learning remains unclear. We present a theoretically derived synaptic plasticity rule for supervised and reinforcement learning that depends on the timing of the presynaptic, the dendritic and the postsynaptic spikes. For supervised learning, the rule can be seen as a biological version of the classical error-backpropagation algorithm applied to the dendritic case. When modulated by a delayed reward signal, the same plasticity is shown to maximize the expected reward in reinforcement learning for various coding scenarios. Our framework makes specific experimental predictions and highlights the unique advantage of active dendrites for implementing powerful synaptic plasticity rules that have access to downstream information via backpropagation of action potentials. PMID:26841235

  7. Simulation of dendritic growth reveals necessary and sufficient parameters to describe the shapes of dendritic trees

    NASA Astrophysics Data System (ADS)

    Trottier, Olivier; Ganguly, Sujoy; Bowne-Anderson, Hugo; Liang, Xin; Howard, Jonathon

    For the last 120 years, the development of neuronal shapes has been of great interest to the scientific community. Over the last 30 years, significant work has been done on the molecular processes responsible for dendritic development. In our ongoing research, we use the class IV sensory neurons of the Drosophila melanogaster larva as a model system to understand the growth of dendritic arbors. Our main goal is to elucidate the mechanisms that the neuron uses to determine the shape of its dendritic tree. We have observed the development of the class IV neuron's dendritic tree in the larval stage and have concluded that morphogenesis is defined by 3 distinct processes: 1) branch growth, 2) branching and 3) branch retraction. As the first step towards understanding dendritic growth, we have implemented these three processes in a computational model. Our simulations are able to reproduce the branch length distribution, number of branches and fractal dimension of the class IV neurons for a small range of parameters.

  8. A Genome-Wide Screen for Dendritically Localized RNAs Identifies Genes Required for Dendrite Morphogenesis.

    PubMed

    Misra, Mala; Edmund, Hendia; Ennis, Darragh; Schlueter, Marissa A; Marot, Jessica E; Tambasco, Janet; Barlow, Ida; Sigurbjornsdottir, Sara; Mathew, Renjith; Vallés, Ana Maria; Wojciech, Waldemar; Roth, Siegfried; Davis, Ilan; Leptin, Maria; Gavis, Elizabeth R

    2016-01-01

    Localizing messenger RNAs at specific subcellular sites is a conserved mechanism for targeting the synthesis of cytoplasmic proteins to distinct subcellular domains, thereby generating the asymmetric protein distributions necessary for cellular and developmental polarity. However, the full range of transcripts that are asymmetrically distributed in specialized cell types, and the significance of their localization, especially in the nervous system, are not known. We used the EP-MS2 method, which combines EP transposon insertion with the MS2/MCP in vivo fluorescent labeling system, to screen for novel localized transcripts in polarized cells, focusing on the highly branched Drosophila class IV dendritic arborization neurons. Of a total of 541 lines screened, we identified 55 EP-MS2 insertions producing transcripts that were enriched in neuronal processes, particularly in dendrites. The 47 genes identified by these insertions encode molecularly diverse proteins, and are enriched for genes that function in neuronal development and physiology. RNAi-mediated knockdown confirmed roles for many of the candidate genes in dendrite morphogenesis. We propose that the transport of mRNAs encoded by these genes into the dendrites allows their expression to be regulated on a local scale during the dynamic developmental processes of dendrite outgrowth, branching, and/or remodeling. PMID:27260999

  9. Asteroid core crystallization by inward dendritic growth

    NASA Technical Reports Server (NTRS)

    Haack, Henning; Scott, Edward R. D.

    1992-01-01

    The physics of the asteroid core crystallization process in metallic asteroids is investigated, with special attention given to the initial conditions for core crystallization, the manner of crystallization, the mechanisms acting in the stirring of the liquid, and the effects of elements such as sulfur on crystallization of Fe-Ni. On the basis of theoretical considerations and the published data on iron meteorites, it is suggested that the mode of crystallization in asteroid core was different from the apparent outward concentric crystallization of the earth core, in that the crystallization of asteroidal cores commenced at the base of the mantle and proceeded inward. The inward crystallization resulted in complex dendritic growth. These dendrites may have grown to lengths of hundreds of meters or perhaps even as large as the core radius, thereby dividing the core into separate magma chambers.

  10. Endoplasmic reticulum calcium stores in dendritic spines

    PubMed Central

    Segal, Menahem; Korkotian, Eduard

    2014-01-01

    Despite decades of research, the role of calcium stores in dendritic spines structure, function and plasticity is still debated. The reasons for this may have to do with the multitude of overlapping calcium handling machineries in the neuron, including stores, voltage and ligand gated channels, pumps and transporters. Also, different cells in the brain are endowed with calcium stores that are activated by different receptor types, and their differential compartmentalization in dendrites, spines and presynaptic terminals complicates their analysis. In the present review we address several key issues, including the role of calcium stores in synaptic plasticity, their role during development, in stress and in neurodegenerative diseases. Apparently, there is increasing evidence for a crucial role of calcium stores, especially of the ryanodine species, in synaptic plasticity and neuronal survival. PMID:25071469

  11. Culture and Identification of Mouse Bone Marrow-Derived Dendritic Cells and Their Capability to Induce T Lymphocyte Proliferation

    PubMed Central

    Wang, Wenguang; Li, Jia; Wu, Kun; Azhati, Baihetiya; Rexiati, Mulati

    2016-01-01

    Background The aim of this study was to establish a culture method for mouse dendritic cells (DCs) in vitro and observe their morphology at different growth stages and their ability to induce the proliferation of T lymphocytes. Material/Methods Granulocyte-macrophage colony stimulating factor (GM-CSF) and interleukin-4 (IL-4) were used in combination to induce differentiation of mouse bone marrow (BM) mononucleocytes into DCs. The derived DCs were then assessed for morphology, phenotype, and function. Results The mouse BM-derived mononucleocytes had altered cell morphology 3 days after induction by GM-CSF and IL-4 and grew into colonies. Typical dendrites appeared 8 days after induction. Many mature DCs were generated, with typical dendritic morphology observed under scanning electron microscopy. Expression levels of CD11c, a specific marker of BM-derived DCs, and of co-stimulatory molecules such as CD40, CD80, CD86, and MHC-II were elevated in the mature DCs. Furthermore, the mature DCs displayed a strong potency in stimulating the proliferation of syngenic or allogenic T lymphocytes. Conclusions Mouse BM-derived mononucleocytes cultured in vitro can produce a large number of DCs, as well as immature DCs, in high purity. The described in vitro culture method lays a foundation for further investigations of anti-tumor vaccines. PMID:26802068

  12. Dendritic Nonlinearities Reduce Network Size Requirements and Mediate ON and OFF States of Persistent Activity in a PFC Microcircuit Model

    PubMed Central

    Papoutsi, Athanasia; Sidiropoulou, Kyriaki; Poirazi, Panayiota

    2014-01-01

    Technological advances have unraveled the existence of small clusters of co-active neurons in the neocortex. The functional implications of these microcircuits are in large part unexplored. Using a heavily constrained biophysical model of a L5 PFC microcircuit, we recently showed that these structures act as tunable modules of persistent activity, the cellular correlate of working memory. Here, we investigate the mechanisms that underlie persistent activity emergence (ON) and termination (OFF) and search for the minimum network size required for expressing these states within physiological regimes. We show that (a) NMDA-mediated dendritic spikes gate the induction of persistent firing in the microcircuit. (b) The minimum network size required for persistent activity induction is inversely proportional to the synaptic drive of each excitatory neuron. (c) Relaxation of connectivity and synaptic delay constraints eliminates the gating effect of NMDA spikes, albeit at a cost of much larger networks. (d) Persistent activity termination by increased inhibition depends on the strength of the synaptic input and is negatively modulated by dADP. (e) Slow synaptic mechanisms and network activity contain predictive information regarding the ability of a given stimulus to turn ON and/or OFF persistent firing in the microcircuit model. Overall, this study zooms out from dendrites to cell assemblies and suggests a tight interaction between dendritic non-linearities and network properties (size/connectivity) that may facilitate the short-memory function of the PFC. PMID:25077940

  13. Cell mediated immune response after challenge in Omp25 liposome immunized mice contributes to protection against virulent Brucella abortus 544.

    PubMed

    Goel, Divya; Rajendran, Vinoth; Ghosh, Prahlad C; Bhatnagar, Rakesh

    2013-02-01

    Brucellosis is a disease affecting various domestic and wild life species, and is caused by a bacterium Brucella. Keeping in view the serious economic and medical consequences of brucellosis, efforts have been made to prevent the infection through the use of vaccines. Cell-mediated immune responses [CMI] involving interferon gamma and cytotoxic CD4(+) and CD8(+) T cells are required for removal of intracellular Brucella. Omp25 has been reported to be involved in virulence of Brucella melitensis, Brucella abortus and Brucella ovis. In our previous study, we have shown the protective efficacy of recombinant Omp25, when administered intradermally. In this study, the recombinant Omp25 was formulated in PC-PE liposomes and PLGA microparticles, to enhance the protective immunity generated by it. Significant protection was seen with prime and booster liposome immunization in Balb/c mice against virulent B. abortus 544 as it was comparable to B. abortus S-19 vaccine strain. However, microparticle prime and booster immunization failed to give better protection when compared to B. abortus S-19 vaccine strain. This difference can be attributed to the stimulation of cell mediated immune response in PC-PE liposome immunized mice even after challenge which converted to cytotoxicity seen in CD4(+) and CD8(+) enriched lymphocytes. However, in PLGA microparticle immunized mice, cell mediated immunity was not generated after challenge as observed by decreased cytotoxicity of CD4(+) and CD8(+) enriched lymphocytes. Our study emphasizes on the importance of liposome encapsulating Omp25 immunization in conferring protection against B. abortus 544 challenge in Balb/c mice with a single dose immunization regimen.

  14. The discovery of dendritic spines by Cajal.

    PubMed

    Yuste, Rafael

    2015-01-01

    Dendritic spines were considered an artifact of the Golgi method until a brash Spanish histologist, Santiago Ramón y Cajal, bet his scientific career arguing that they were indeed real, correctly deducing their key role in mediating synaptic connectivity. This article reviews the historical context of the discovery of spines and the reasons behind Cajal's obsession with them, all the way till his deathbed. PMID:25954162

  15. Role of Dendritic Cells in Immune Dysfunction

    NASA Technical Reports Server (NTRS)

    Savary, Cherylyn A.

    1997-01-01

    Specific aims include: (1) Application of the bioreactor to enhance cytokine-regulated proliferation and maturation of dendritic cells (DC); (2) Based on clues from spaceflight: compare the frequency and function of DC in normal donors and immunocompromised cancer patients; and (3) Initiate studies on the efficiency of cytokine therapy and DC-assisted immunotherapy (using bioreactor-expanded DC) in animal models of experimental fungal infections.

  16. Lymphocyte adhesion molecules in T cell-mediated lysis of human kidney cells.

    PubMed

    Suranyi, M G; Bishop, G A; Clayberger, C; Krensky, A M; Leenaerts, P; Aversa, G; Hall, B M

    1991-02-01

    The complementary adhesion molecules LFA-1 (CD11a, 18)/ICAM-1 (CD54) and LFA-2 (CD2)/LFA-3 (CD58) have been shown to be important in T cell interaction with lymphoid target cells. The role of these ligand pairs in cytotoxicity against somatic cells is less well established. While LFA-3 is expressed by all cells in the kidney, ICAM-1 expression is low in normal kidneys but is increased in allograft rejection. An in vitro cytotoxicity assay was used to examine the relative importance of the two adhesion ligands in immune damage against kidney cells in rejection. HLA-A2 specific cytotoxic T lymphocyte (CTL) recognition of cultured human kidney cells (HKC), of predominantly renal tubular cell origin, was studied. Immunofluorescence studies showed that both induced and uninduced HKC target cells expressed ICAM-1, MHC class I and LFA-3, but only MHC class I and class II antigens and ICAM-1 were significantly upregulated by cytokine induction. Effector cells expressed LFA-1 and LFA-2 but little or no ICAM-1 and LFA-3. Cytokine induction of ICAM-1 expression on HKC target cells increased their susceptibility to lysis. Monoclonal antibody against ICAM-1 or LFA-1 produced the greatest inhibition of HKC lysis, and their effects were not additive. Antibody against LFA-2 (CD2) or LFA-3 also produced significant inhibition, but to a lesser degree, and no additive effect was found.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1706002

  17. Epidermis-Derived Semaphorin Promotes Dendrite Self-Avoidance by Regulating Dendrite-Substrate Adhesion in Drosophila Sensory Neurons.

    PubMed

    Meltzer, Shan; Yadav, Smita; Lee, Jiae; Soba, Peter; Younger, Susan H; Jin, Peng; Zhang, Wei; Parrish, Jay; Jan, Lily Yeh; Jan, Yuh-Nung

    2016-02-17

    Precise patterning of dendritic arbors is critical for the wiring and function of neural circuits. Dendrite-extracellular matrix (ECM) adhesion ensures that the dendrites of Drosophila dendritic arborization (da) sensory neurons are properly restricted in a 2D space, and thereby facilitates contact-mediated dendritic self-avoidance and tiling. However, the mechanisms regulating dendrite-ECM adhesion in vivo are poorly understood. Here, we show that mutations in the semaphorin ligand sema-2b lead to a dramatic increase in self-crossing of dendrites due to defects in dendrite-ECM adhesion, resulting in a failure to confine dendrites to a 2D plane. Furthermore, we find that Sema-2b is secreted from the epidermis and signals through the Plexin B receptor in neighboring neurons. Importantly, we find that Sema-2b/PlexB genetically and physically interacts with TORC2 complex, Tricornered (Trc) kinase, and integrins. These results reveal a novel role for semaphorins in dendrite patterning and illustrate how epidermal-derived cues regulate neural circuit assembly.

  18. Synergistic action of dendritic mitochondria and creatine kinase maintains ATP homeostasis and actin dynamics in growing neuronal dendrites.

    PubMed

    Fukumitsu, Kansai; Fujishima, Kazuto; Yoshimura, Azumi; Wu, You Kure; Heuser, John; Kengaku, Mineko

    2015-04-01

    The distribution of mitochondria within mature, differentiated neurons is clearly adapted to their regional physiological needs and can be perturbed under various pathological conditions, but the function of mitochondria in developing neurons has been less well studied. We have studied mitochondrial distribution within developing mouse cerebellar Purkinje cells and have found that active delivery of mitochondria into their dendrites is a prerequisite for proper dendritic outgrowth. Even when mitochondria in the Purkinje cell bodies are functioning normally, interrupting the transport of mitochondria into their dendrites severely disturbs dendritic growth. Additionally, we find that the growth of atrophic dendrites lacking mitochondria can be rescued by activating ATP-phosphocreatine exchange mediated by creatine kinase (CK). Conversely, inhibiting cytosolic CKs decreases dendritic ATP levels and also disrupts dendrite development. Mechanistically, this energy depletion appears to perturb normal actin dynamics and enhance the aggregation of cofilin within growing dendrites, reminiscent of what occurs in neurons overexpressing the dephosphorylated form of cofilin. These results suggest that local ATP synthesis by dendritic mitochondria and ATP-phosphocreatine exchange act synergistically to sustain the cytoskeletal dynamics necessary for dendritic development.

  19. Optimization of natural killer T cell-mediated immunotherapy in cancer using cell-based and nanovector vaccines.

    PubMed

    Faveeuw, C; Trottein, F

    2014-03-15

    α-Galactosylceramide (α-GalCer) represents a new class of immune stimulators and vaccine adjuvants that activate type I natural killer T (NKT) cells to swiftly release cytokines and to exert helper functions for acquired immune responses. This unique property prompted clinicians to exploit the antitumor potential of NKT cells. Here, we review the effects of α-GalCer in (pre)clinics and discuss current and future strategies that aim to optimize NKT cell-mediated antitumor therapy, with a particular focus on cell-based and nanovector vaccines.

  20. Antibody-dependent cell-mediated virus inhibition (ADCVI) antibody activity does not correlate with risk of HIV-1 superinfection

    PubMed Central

    FORTHAL, Donald N.; LANDUCCI, Gary; CHOHAN, Bhavna; RICHARDSON, Barbra A.; MCCLELLAND, R. Scott; JAOKO, Walter; BLISH, Catherine; OVERBAUGH, Julie

    2013-01-01

    Previous studies of HIV-infected women with high risk behavior have indicated that neither neutralizing antibody nor cellular immunity elicited by an initial HIV-1 infection is associated with protection against superinfection with a different HIV-1 strain. Here, we measured antibody-dependent cell-mediated virus inhibition (ADCVI) antibody activity in the plasma of 12 superinfected cases and 36 singly infected matched controls against 2 heterologous viruses. We found no association between plasma ADCVI activity and superinfection status. ADCVI antibody activity against heterologous virus elicited by the original infection may not contribute to preventing a superinfecting HIV-1. PMID:23344546

  1. The skin test antigen stimulated killer (STAK) cell mediating NK like CMC is OKM1 positive and OKT3 negative.

    PubMed Central

    Tartof, D; Curran, J J; Levitt, D; Loken, M R

    1983-01-01

    Recently we demonstrated that candida antigen stimulated natural killer cell like cell-mediated cytolysis (NK like CMC) in peripheral blood mononuclear cells (PBMNC) isolated from normal individuals (Tartof et al., 1980). Utilizing monoclonal antibodies directed against human mononuclear cell subpopulations in conjunction with a fluorescence activated cell sorter (FACS) we determined that, similar to the previously described NK cell, the skin test antigen stimulated killer (STAK) cell is a larger OKM1 positive, OKT3 negative cell. We obtained similar results using two different skin test antigens. Thus, stimulation of NK like CMC in PBMNC by skin test antigens probably represents activation of NK or NK like cells. PMID:6360439

  2. Plasmacytoid dendritic cell role in cutaneous malignancies.

    PubMed

    Saadeh, Dana; Kurban, Mazen; Abbas, Ossama

    2016-07-01

    Plasmacytoid dendritic cells (pDCs) correspond to a specialized dendritic cell population that exhibit plasma cell morphology, express CD4, CD123, HLA-DR, blood-derived dendritic cell antigen-2 (BDCA-2), and Toll-like receptor (TLR)7 and TLR9 within endosomal compartments. Through their production of type I interferons (IFNs) and other pro-inflammatory cytokines, pDCs provide anti-viral resistance and link the innate and adaptive immunity by controlling the function of myeloid DCs, lymphocytes, and natural killer (NK) cells. While lacking from normal skin, pDCs are usually recruited to the skin in several cutaneous pathologies where they appear to be involved in the pathogenesis of several infectious, inflammatory/autoimmune, and neoplastic entities. Among the latter group, pDCs have the potential to induce anti-tumour immunity; however, the complex interaction of pDCs with tumor cells and their micro-environment appears to contribute to immunologic tolerance. In this review, we aim at highlighting the role played by pDCs in cutaneous malignancies with special emphasis on the underlying mechanisms.

  3. The Isothermal Dendritic Growth Experiment Archive

    NASA Astrophysics Data System (ADS)

    Koss, Matthew

    2009-03-01

    The growth of dendrites is governed by the interplay between two simple and familiar processes---the irreversible diffusion of energy, and the reversible work done in the formation of new surface area. To advance our understanding of these processes, NASA sponsored a project that flew on the Space Shuttle Columbia is 1994, 1996, and 1997 to record and analyze benchmark data in an apparent-microgravity ``laboratory.'' In this laboratory, energy transfer by gravity driven convection was essentially eliminated and one could test independently, for the first time, both components of dendritic growth theory. The analysis of this data shows that although the diffusion of energy can be properly accounted for, the results from interfacial physics appear to be in disagreement and alternate models should receive increased attention. Unfortunately, currently and for the foreseeable future, there is no access or financial support to develop and conduct additional experiments of this type. However, the benchmark data of 35mm photonegatives, video, and all supporting instrument data are now available at the IDGE Archive at the College of the Holy Cross. This data may still have considerable relevance to researchers working specifically with dendritic growth, and more generally those working in the synthesis, growth & processing of materials, multiscale computational modeling, pattern formation, and systems far from equilibrium.

  4. Distinct T cell dynamics in lymph nodes during the induction of tolerance and immunity.

    PubMed

    Hugues, Stéphanie; Fetler, Luc; Bonifaz, Laura; Helft, Julie; Amblard, François; Amigorena, Sebastian

    2004-12-01

    Induction of immunity and peripheral tolerance requires contacts between antigen-bearing dendritic cells (DCs) and cognate T cells. Using real-time two-photon microscopy, we have analyzed the dynamics of CD8(+) T cells in lymph nodes during the induction of antigen-specific immunity or tolerance. At 15-20 h after the induction of immunity, T cells stopped moving and established prolonged interactions with DCs. In tolerogenic conditions, despite effective initial T cell activation and proliferation, naive T cells remained motile and established serial brief contacts with multiple DCs. Thus, stable DC-T cell interactions occur during the induction of priming, whereas brief contacts may contribute to the induction of T cell tolerance.

  5. Location-dependent synaptic plasticity rules by dendritic spine cooperativity.

    PubMed

    Weber, Jens P; Andrásfalvy, Bertalan K; Polito, Marina; Magó, Ádám; Ujfalussy, Balázs B; Makara, Judit K

    2016-01-01

    Nonlinear interactions between coactive synapses enable neurons to discriminate between spatiotemporal patterns of inputs. Using patterned postsynaptic stimulation by two-photon glutamate uncaging, here we investigate the sensitivity of synaptic Ca(2+) signalling and long-term plasticity in individual spines to coincident activity of nearby synapses. We find a proximodistally increasing gradient of nonlinear NMDA receptor (NMDAR)-mediated amplification of spine Ca(2+) signals by a few neighbouring coactive synapses along individual perisomatic dendrites. This synaptic cooperativity does not require dendritic spikes, but is correlated with dendritic Na(+) spike propagation strength. Furthermore, we show that repetitive synchronous subthreshold activation of small spine clusters produces input specific, NMDAR-dependent cooperative long-term potentiation at distal but not proximal dendritic locations. The sensitive synaptic cooperativity at distal dendritic compartments shown here may promote the formation of functional synaptic clusters, which in turn can facilitate active dendritic processing and storage of information encoded in spatiotemporal synaptic activity patterns. PMID:27098773

  6. Special fractal growth of dendrite copper using a hydrothermal method

    NASA Astrophysics Data System (ADS)

    Zheng, Yan; Zhang, Zhejuan; Guo, Pingsheng; He, Pingang; Sun, Zhuo

    2011-08-01

    Special fractal dendrite Cu nanostructures have been synthesized through a simple hydrothermal method, and the effects of the volume ratio between glycerol and water and the concentration of H 3PO 3 on the morphologies of dendrite Cu have been studied in detail. The Field emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM) and X-ray diffraction (XRD) have been used to characterize these Cu products. The results indicate that rhombic diamond and different morphologies of fractal dendrite were prepared because of the accumulation of Cu nuclei based on the diffusion-limited aggregation (DLA) and the nucleation-limited aggregation (NLA) model. Fortunately, symmetrical leaf-like dendrite Cu nanostructures different from Cu dendrites reported before have been obtained. Additionally, an explanation for the growth of fractal dendrite Cu has been discussed carefully.

  7. Neural pattern formation in networks with dendritic structure

    NASA Astrophysics Data System (ADS)

    Bressloff, P. C.; De Souza, B.

    1998-04-01

    We present a detailed analysis of a recently proposed model of neural pattern formation that is based on the combined effect of diffusion along a neuron's dendritic tree and recurrent interactions along axo-dendritic synaptic connections. For concreteness, we consider a one-dimensional array of analog neurons with the dendritic tree idealized as a one-dimensional cable. Linear stability analysis and bifurcation theory together with numerical simulations are used to establish conditions for the onset of a Turing instability leading to the formation of stable spatial patterns of network output activity. It is shown that the presence of dendritic structure can induce dynamic (time-periodic) spatial pattern formation. Moreover, correlations between the dendritic location of a synapse and the relative positions of neurons in the network are shown to result in spatially oscillating patterns of activity along the dendrites of each neuron.

  8. Location-dependent synaptic plasticity rules by dendritic spine cooperativity

    PubMed Central

    Weber, Jens P.; Andrásfalvy, Bertalan K.; Polito, Marina; Magó, Ádám; Ujfalussy, Balázs B.; Makara, Judit K.

    2016-01-01

    Nonlinear interactions between coactive synapses enable neurons to discriminate between spatiotemporal patterns of inputs. Using patterned postsynaptic stimulation by two-photon glutamate uncaging, here we investigate the sensitivity of synaptic Ca2+ signalling and long-term plasticity in individual spines to coincident activity of nearby synapses. We find a proximodistally increasing gradient of nonlinear NMDA receptor (NMDAR)-mediated amplification of spine Ca2+ signals by a few neighbouring coactive synapses along individual perisomatic dendrites. This synaptic cooperativity does not require dendritic spikes, but is correlated with dendritic Na+ spike propagation strength. Furthermore, we show that repetitive synchronous subthreshold activation of small spine clusters produces input specific, NMDAR-dependent cooperative long-term potentiation at distal but not proximal dendritic locations. The sensitive synaptic cooperativity at distal dendritic compartments shown here may promote the formation of functional synaptic clusters, which in turn can facilitate active dendritic processing and storage of information encoded in spatiotemporal synaptic activity patterns. PMID:27098773

  9. Random positions of dendritic spines in human cerebral cortex.

    PubMed

    Morales, Juan; Benavides-Piccione, Ruth; Dar, Mor; Fernaud, Isabel; Rodríguez, Angel; Anton-Sanchez, Laura; Bielza, Concha; Larrañaga, Pedro; DeFelipe, Javier; Yuste, Rafael

    2014-07-23

    Dendritic spines establish most excitatory synapses in the brain and are located in Purkinje cell's dendrites along helical paths, perhaps maximizing the probability to contact different axons. To test whether spine helixes also occur in neocortex, we reconstructed >500 dendritic segments from adult human cortex obtained from autopsies. With Fourier analysis and spatial statistics, we analyzed spine position along apical and basal dendrites of layer 3 pyramidal neurons from frontal, temporal, and cingulate cortex. Although we occasionally detected helical positioning, for the great majority of dendrites we could not reject the null hypothesis of spatial randomness in spine locations, either in apical or basal dendrites, in neurons of different cortical areas or among spines of different volumes and lengths. We conclude that in adult human neocortex spine positions are mostly random. We discuss the relevance of these results for spine formation and plasticity and their functional impact for cortical circuits.

  10. Dendritic spine detection using curvilinear structure detector and LDA classifier.

    PubMed

    Zhang, Yong; Zhou, Xiaobo; Witt, Rochelle M; Sabatini, Bernardo L; Adjeroh, Donald; Wong, Stephen T C

    2007-06-01

    Dendritic spines are small, bulbous cellular compartments that carry synapses. Biologists have been studying the biochemical pathways by examining the morphological and statistical changes of the dendritic spines at the intracellular level. In this paper a novel approach is presented for automated detection of dendritic spines in neuron images. The dendritic spines are recognized as small objects of variable shape attached or detached to multiple dendritic backbones in the 2D projection of the image stack along the optical direction. We extend the curvilinear structure detector to extract the boundaries as well as the centerlines for the dendritic backbones and spines. We further build a classifier using Linear Discriminate Analysis (LDA) to classify the attached spines into valid and invalid types to improve the accuracy of the spine detection. We evaluate the proposed approach by comparing with the manual results in terms of backbone length, spine number, spine length, and spine density.

  11. Random Positions of Dendritic Spines in Human Cerebral Cortex

    PubMed Central

    Morales, Juan; Benavides-Piccione, Ruth; Dar, Mor; Fernaud, Isabel; Rodríguez, Angel; Anton-Sanchez, Laura; Bielza, Concha; Larrañaga, Pedro; DeFelipe, Javier

    2014-01-01

    Dendritic spines establish most excitatory synapses in the brain and are located in Purkinje cell's dendrites along helical paths, perhaps maximizing the probability to contact different axons. To test whether spine helixes also occur in neocortex, we reconstructed >500 dendritic segments from adult human cortex obtained from autopsies. With Fourier analysis and spatial statistics, we analyzed spine position along apical and basal dendrites of layer 3 pyramidal neurons from frontal, temporal, and cingulate cortex. Although we occasionally detected helical positioning, for the great majority of dendrites we could not reject the null hypothesis of spatial randomness in spine locations, either in apical or basal dendrites, in neurons of different cortical areas or among spines of different volumes and lengths. We conclude that in adult human neocortex spine positions are mostly random. We discuss the relevance of these results for spine formation and plasticity and their functional impact for cortical circuits. PMID:25057209

  12. Random positions of dendritic spines in human cerebral cortex.

    PubMed

    Morales, Juan; Benavides-Piccione, Ruth; Dar, Mor; Fernaud, Isabel; Rodríguez, Angel; Anton-Sanchez, Laura; Bielza, Concha; Larrañaga, Pedro; DeFelipe, Javier; Yuste, Rafael

    2014-07-23

    Dendritic spines establish most excitatory synapses in the brain and are located in Purkinje cell's dendrites along helical paths, perhaps maximizing the probability to contact different axons. To test whether spine helixes also occur in neocortex, we reconstructed >500 dendritic segments from adult human cortex obtained from autopsies. With Fourier analysis and spatial statistics, we analyzed spine position along apical and basal dendrites of layer 3 pyramidal neurons from frontal, temporal, and cingulate cortex. Although we occasionally detected helical positioning, for the great majority of dendrites we could not reject the null hypothesis of spatial randomness in spine locations, either in apical or basal dendrites, in neurons of different cortical areas or among spines of different volumes and lengths. We conclude that in adult human neocortex spine positions are mostly random. We discuss the relevance of these results for spine formation and plasticity and their functional impact for cortical circuits. PMID:25057209

  13. Sequential inductive learning

    SciTech Connect

    Gratch, J.

    1996-12-31

    This article advocates a new model for inductive learning. Called sequential induction, it helps bridge classical fixed-sample learning techniques (which are efficient but difficult to formally characterize), and worst-case approaches (which provide strong statistical guarantees but are too inefficient for practical use). Learning proceeds as a sequence of decisions which are informed by training data. By analyzing induction at the level of these decisions, and by utilizing the only enough data to make each decision, sequential induction provides statistical guarantees but with substantially less data than worst-case methods require. The sequential inductive model is also useful as a method for determining a sufficient sample size for inductive learning and as such, is relevant to learning problems where the preponderance of data or the cost of gathering data precludes the use of traditional methods.

  14. Galectin-1 Regulates Tissue Exit of Specific Dendritic Cell Populations*

    PubMed Central

    Thiemann, Sandra; Man, Jeanette H.; Chang, Margaret H.; Lee, Benhur; Baum, Linda G.

    2015-01-01

    During inflammation, dendritic cells emigrate from inflamed tissue across the lymphatic endothelium into the lymphatic vasculature and travel to regional lymph nodes to initiate immune responses. However, the processes that regulate dendritic cell tissue egress and migration across the lymphatic endothelium are not well defined. The mammalian lectin galectin-1 is highly expressed by vascular endothelial cells in inflamed tissue and has been shown to regulate immune cell tissue entry into inflamed tissue. Here, we show that galectin-1 is also highly expressed by human lymphatic endothelial cells, and deposition of galectin-1 in extracellular matrix selectively regulates migration of specific human dendritic cell subsets. The presence of galectin-1 inhibits migration of immunogenic dendritic cells through the extracellular matrix and across lymphatic endothelial cells, but it has no effect on migration of tolerogenic dendritic cells. The major galectin-1 counter-receptor on both dendritic cell populations is the cell surface mucin CD43; differential core 2 O-glycosylation of CD43 between immunogenic dendritic cells and tolerogenic dendritic cells appears to contribute to the differential effect of galectin-1 on migration. Binding of galectin-1 to immunogenic dendritic cells reduces phosphorylation and activity of the protein-tyrosine kinase Pyk2, an effect that may also contribute to reduced migration of this subset. In a murine lymphedema model, galectin-1−/− animals had increased numbers of migratory dendritic cells in draining lymph nodes, specifically dendritic cells with an immunogenic phenotype. These findings define a novel role for galectin-1 in inhibiting tissue emigration of immunogenic, but not tolerogenic, dendritic cells, providing an additional mechanism by which galectin-1 can dampen immune responses. PMID:26216879

  15. Evidence for tip velocity oscillations in dendritic solidification

    NASA Astrophysics Data System (ADS)

    Lacombe, J. C.; Koss, M. B.; Frei, J. E.; Giummarra, C.; Lupulescu, A. O.; Glicksman, M. E.

    2002-03-01

    Dendritic growth experiments were conducted in the reduced-convection environment aboard the space shuttle Columbia on STS-87. Spectral analysis was performed on 30-frame/s video data during growths of isothermal dendrites. Results indicate that pivalic acid dendrites exhibit a subtle oscillatory behavior of the axial growth velocity near the tip, with a frequency component that is associated with the sidebranch formation process.

  16. Evidence for tip velocity oscillations in dendritic solidification.

    PubMed

    LaCombe, J C; Koss, M B; Frei, J E; Giummarra, C; Lupulescu, A O; Glicksman, M E

    2002-03-01

    Dendritic growth experiments were conducted in the reduced-convection environment aboard the space shuttle Columbia on STS-87. Spectral analysis was performed on 30-frame/s video data during growths of isothermal dendrites. Results indicate that pivalic acid dendrites exhibit a subtle oscillatory behavior of the axial growth velocity near the tip, with a frequency component that is associated with the sidebranch formation process. PMID:11909070

  17. Microvesicle entry into marrow cells mediates tissue-specific changes in mRNA by direct delivery of mRNA and induction of transcription

    PubMed Central

    Aliotta, Jason M.; Pereira, Mandy; Johnson, Kevin W.; de Paz, Nicole; Dooner, Mark S.; Puente, Napoleon; Ayala, Carol; Brilliant, Kate; Berz, David; Lee, David; Ramratnam, Bharat; McMillan, Paul N.; Hixson, Douglas C.; Josic, Djuro; Quesenberry, Peter J.

    2010-01-01

    Objective Microvesicles have been shown to mediate intercellular communication. Previously, we have correlated entry of murine lung-derived microvesicles into murine bone marrow cells with expression of pulmonary epithelial cell-specific mRNA in these marrow cells. The present studies establish that entry of lung-derived microvesicles into marrow cells is a prerequisite for marrow expression of pulmonary epithelial cell-derived mRNA. Methods/Results Murine bone marrow cells co-cultured with rat lung, but separated from them using a cell-impermeable membrane (0.4 micron pore size), were analyzed using species-specific primers (for rat or mouse). These studies revealed that surfactant B and C mRNA produced by murine marrow cells were of both rat and mouse origin. Similar results were obtained using murine lung co-cultured with rat bone marrow cells or when bone marrow cells were analyzed for the presence of species-specific albumin mRNA after co-culture with rat or murine liver. These studies show that microvesicles both deliver mRNA to marrow cells and also mediate marrow cell transcription of tissue-specific mRNA. The latter likely underlies the longer term stable change in genetic phenotype which has been observed. We have also observed microRNA in lung-derived microvesicles and studies with RNase-treated microvesicles indicate that microRNA negatively modulates pulmonary epithelial cell-specific mRNA levels in co-cultured marrow cells. In addition, we have also observed tissue-specific expression of brain, heart and liver mRNA in co-cultured marrow cells suggesting that microvesicle-mediated cellular phenotype change is a universal phenomena. Conclusion These studies suggest that cellular systems are more phenotypically labile then previously considered. PMID:20079801

  18. Induction of Humoral and Cell-Mediated Immune Responses by Hepatitis B Virus Epitope Displayed on the Virus-Like Particles of Prawn Nodavirus

    PubMed Central

    Yong, Chean Yeah; Yeap, Swee Keong; Goh, Zee Hong; Ho, Kok Lian; Omar, Abdul Rahman

    2014-01-01

    Hepatitis B virus (HBV) is a deadly pathogen that has killed countless people worldwide. Saccharomyces cerevisiae-derived HBV vaccines based upon hepatitis B surface antigen (HBsAg) is highly effective. However, the emergence of vaccine escape mutants due to mutations on the HBsAg and polymerase genes has produced a continuous need for the development of new HBV vaccines. In this study, the “a” determinant within HBsAg was displayed on the recombinant capsid protein of Macrobrachium rosenbergii nodavirus (MrNV), which can be purified easily in a single step through immobilized metal affinity chromatography (IMAC). The purified protein self-assembled into virus-like particles (VLPs) when observed under a transmission electron microscope (TEM). Immunization of BALB/c mice with this chimeric protein induced specific antibodies against the “a” determinant. In addition, it induced significantly more natural killer and cytotoxic T cells, as well as an increase in interferon gamma (IFN-γ) secretion, which are vital for virus clearance. Collectively, these findings demonstrated that the MrNV capsid protein is a potential carrier for the HBV “a” determinant, which can be further extended to display other foreign epitopes. This paper is the first to report the application of MrNV VLPs as a novel platform to display foreign epitopes. PMID:25416760

  19. Induction of humoral and cell-mediated immune responses by hepatitis B virus epitope displayed on the virus-like particles of prawn nodavirus.

    PubMed

    Yong, Chean Yeah; Yeap, Swee Keong; Goh, Zee Hong; Ho, Kok Lian; Omar, Abdul Rahman; Tan, Wen Siang

    2015-02-01

    Hepatitis B virus (HBV) is a deadly pathogen that has killed countless people worldwide. Saccharomyces cerevisiae-derived HBV vaccines based upon hepatitis B surface antigen (HBsAg) is highly effective. However, the emergence of vaccine escape mutants due to mutations on the HBsAg and polymerase genes has produced a continuous need for the development of new HBV vaccines. In this study, the "a" determinant within HBsAg was displayed on the recombinant capsid protein of Macrobrachium rosenbergii nodavirus (MrNV), which can be purified easily in a single step through immobilized metal affinity chromatography (IMAC). The purified protein self-assembled into virus-like particles (VLPs) when observed under a transmission electron microscope (TEM). Immunization of BALB/c mice with this chimeric protein induced specific antibodies against the "a" determinant. In addition, it induced significantly more natural killer and cytotoxic T cells, as well as an increase in interferon gamma (IFN-γ) secretion, which are vital for virus clearance. Collectively, these findings demonstrated that the MrNV capsid protein is a potential carrier for the HBV "a" determinant, which can be further extended to display other foreign epitopes. This paper is the first to report the application of MrNV VLPs as a novel platform to display foreign epitopes. PMID:25416760

  20. Cutaneous sensitivity induced by immunization with irradiated Schistosoma mansoni cercariae. I. Induction, elicitation, and adoptive transfer analysis of cell-mediated cutaneous sensitivity

    SciTech Connect

    Ch'ang, L.Y.; Colley, D.G.

    1986-06-01

    Exposure of C57BL/6 mice to highly irradiated (50 kR) cercariae of Schistosoma mansoni leads to the development of partial resistance against subsequent challenge with unattenuated cercariae. We have analyzed the cellular immune responses that occur during the afferent and efferent phases of this protective sensitization. Mice were immunized by exposure to irradiated S. mansoni cercariae. After challenge with irradiated cercariae, delayed-type (18-72 hr) cutaneous sensitivity reaction sites were rich in mononuclear cells and eosinophils. This reactivity was established by 4 days after sensitization, reached its maximum between 7 and 14 days after sensitization, and was maintained for over 20 weeks. These challenge reactions could be abrogated by treatment with either 200 mg/kg cyclophosphamide or 5 mg of hydrocortisone. Syngeneic adoptive transfer of cutaneous sensitivity was accomplished with lymphoid cells from the draining lymph nodes or spleens of mice sensitized 7-14 days previously. Negative selection studies of nylon-wool non-adherent cells from sensitized donors demonstrated that the cells responsible for transferring this eosinophil-rich, delayed-type cutaneous sensitivity to S. mansoni irradiated cercariae were Thy/sup -1 +/, Lyt/sup 1 +/, Lyt/sup 2 -/, surface Ig/sup -/ lymphocytes.

  1. Dendritic integration in pyramidal neurons during network activity and disease.

    PubMed

    Palmer, Lucy M

    2014-04-01

    Neurons have intricate dendritic morphologies which come in an array of shapes and sizes. Not only do they give neurons their unique appearance, but dendrites also endow neurons with the ability to receive and transform synaptic inputs. We now have a wealth of information about the functioning of dendrites which suggests that the integration of synaptic inputs is highly dependent on both dendritic properties and neuronal input patterns. It has been shown that dendrites can perform non-linear processing, actively transforming synaptic input into Na(+) spikes, Ca(2+) plateau spikes and NMDA spikes. These membrane non-linearities can have a large impact on the neuronal output and have been shown to be regulated by numerous factors including synaptic inhibition. Many neuropathological diseases involve changes in how dendrites receive and package synaptic input by altering dendritic spine characteristics, ion channel expression and the inhibitory control of dendrites. This review focuses on the role of dendrites in integrating and transforming input and what goes wrong in the case of neuropathological diseases.

  2. Mapping homeostatic synaptic plasticity using cable properties of dendrites.

    PubMed

    Queenan, B N; Lee, K J; Tan, H; Huganir, R L; Vicini, S; Pak, D T S

    2016-02-19

    When chronically silenced, cortical and hippocampal neurons homeostatically upregulate excitatory synaptic function. However, the subcellular position of such changes on the dendritic tree is not clear. We exploited the cable-filtering properties of dendrites to derive a parameter, the dendritic filtering index (DFI), to map the spatial distribution of synaptic currents. Our analysis indicates that young rat cortical neurons globally scale AMPA receptor-mediated currents, while mature hippocampal neurons do not, revealing distinct homeostatic strategies between brain regions and developmental stages. The DFI presents a useful tool for mapping the dendritic origin of synaptic currents and the location of synaptic plasticity changes.

  3. The Evolution of Dendrite Morphology during Isothermal Coarsening

    NASA Technical Reports Server (NTRS)

    Alkemper, Jens; Mendoza, Roberto; Kammer, Dimitris; Voorhees, Peter W.

    2003-01-01

    Dendrite coarsening is a common phenomenon in casting processes. From the time dendrites are formed until the inter-dendritic liquid is completely solidified dendrites are changing shape driven by variations in interfacial curvature along the dendrite and resulting in a reduction of total interfacial area. During this process the typical length-scale of the dendrite can change by orders of magnitude and the final microstructure is in large part determined by the coarsening parameters. Dendrite coarsening is thus crucial in setting the materials parameters of ingots and of great commercial interest. This coarsening process is being studied in the Pb-Sn system with Sn-dendrites undergoing isothermal coarsening in a Pb-Sn liquid. Results are presented for samples of approximately 60% dendritic phase, which have been coarsened for different lengths of times. Presented are three-dimensional microstructures obtained by serial-sectioning and an analysis of these microstructures with regard to interface orientation and interfacial curvatures. These graphs reflect the evolution of not only the microstructure itself, but also of the underlying driving forces of the coarsening process. As a visualization of the link between the microstructure and the driving forces a three-dimensional microstructure with the interfaces colored according to the local interfacial mean curvature is shown.

  4. Actin in dendritic spines: connecting dynamics to function

    PubMed Central

    2010-01-01

    Dendritic spines are small actin-rich protrusions from neuronal dendrites that form the postsynaptic part of most excitatory synapses and are major sites of information processing and storage in the brain. Changes in the shape and size of dendritic spines are correlated with the strength of excitatory synaptic connections and heavily depend on remodeling of its underlying actin cytoskeleton. Emerging evidence suggests that most signaling pathways linking synaptic activity to spine morphology influence local actin dynamics. Therefore, specific mechanisms of actin regulation are integral to the formation, maturation, and plasticity of dendritic spines and to learning and memory. PMID:20457765

  5. Bent dendrite growth in undercooled Fe-B alloy melts

    NASA Astrophysics Data System (ADS)

    Karrasch, C.; Volkmann, T.; Valloton, J.; Kolbe, M.; Herlach, DM

    2016-03-01

    Dendritic growth is the main solidification mode in alloy casting. In order to control dendrite growth for materials design from the melt it is important to fully understand the influence of process conditions. This study stands as an experimental note observing bent dendrite growth in Fe-B alloys and suggesting possible explanations as induced by fluid flow, thermal, and concentrational diffusion or impurities. Electromagnetic levitation technique (EML) is used for containerless processing of undercooled melts under 1g and reduced gravity conditions in parabolic flight. Further investigations are needed to find a suitable explanation for the observed bent dendrite growth behaviour.

  6. BODIPY-labeled DC-SIGN-targeting glycodendrons efficiently internalize and route to lysosomes in human dendritic cells.

    PubMed

    Ribeiro-Viana, Renato; García-Vallejo, Juan J; Collado, Daniel; Pérez-Inestrosa, Ezequiel; Bloem, Karien; van Kooyk, Yvette; Rojo, Javier

    2012-10-01

    Glycodendrons bearing nine copies of mannoses or fucoses have been prepared by an efficient convergent strategy based on Cu(I) catalyzed azide-alkyne cycloaddition (CuAAC). These glycodendrons present a well-defined structure and have an adequate size and shape to interact efficiently with the C-type lectin DC-SIGN. We have selected a BODIPY derivative to label these glycodendrons due to its interesting physical and chemical properties as chromophore. These BODIPY-labeled glycodendrons were internalized into dendritic cells by mean of DC-SIGN. The internalized mannosylated and fucosylated dendrons are colocalized with LAMP1, which suggests routing to lysosomes. The interaction of these glycodendrons with DC-SIGN at the surface of dendritic cells did not induce maturation of the cells. Signaling analysis by checking different cytokines indicated also the lack of induction the expression of inflammatory and noninflammatory cytokines by these second generation glycodendrons. PMID:22920925

  7. Efficient generation of a monoclonal antibody against the human C-type lectin receptor DCIR by targeting murine dendritic cells

    PubMed Central

    Heidkamp, Gordon F.; Neubert, Kirsten; Haertel, Eric; Nimmerjahn, Falk; Nussenzweig, Michel C.; Dudziak, Diana

    2010-01-01

    1. Summary Dendritic cells (DCs) are very important for the generation of long lasting immune responses against pathogens or the induction of anti-tumor responses. Targeting antigen to dendritic cells via monoclonal antibodies specific for DC cell surface receptors such as DEC205 was shown to elicit potent cellular and humoral immune responses in vivo. Therefore we investigated whether this novel strategy might also be useful for the generation of new monoclonal antibodies against molecules of choice. We show, that by targeting the extracellular domain of the human C-type lectin receptor ClecSF6/DCIR/LLIR (hDCIR) to DEC205 on DCs in vivo, we were able to generate highly specific monoclonal antibodies against hDCIR. PMID:20566350

  8. Mosla punctulata Inhibits Mast Cell-mediated Allergic Reactions Through the Inhibition of Histamine Release and Inflammatory Cytokine Production

    PubMed Central

    Je, I. G.; Shin, T. Y.; Kim, S. H.

    2013-01-01

    Allergic inflammatory diseases such as food allergy, asthma, sinusitis and atopic dermatitis are increasing worldwide. This study examined the effects of aqueous extract of Mosla punctulata on mast cell-mediated allergic inflammation and studied the possible mechanism of action. Aqueous extract of Mosla punctulata inhibited compound 48/80-induced systemic and immunoglobulin E-mediated local anaphylaxis and it also reduced intracellular calcium level and down-streamed histamine release from mast cells. In addition, aqueous extract of Mosla punctulata decreased gene expression and secretion of tumour necrosis factor alpha, an important proinflammatory cytokine, in mast cells. The inhibitory effect on tumour necrosis factor alpha expression was nuclear factor kappa B dependent. The results indicate that aqueous extract of Mosla punctulata inhibited mast cell-mediated allergic inflammatory reaction by suppressing histamine release and expression of tumour necrosis factor alpha, and involvement of calcium and nuclear factor kappa B in these effects. Hence it can be concluded that, the aqueous extract of Mosla punctulata might be a possible therapeutic candidate for allergic inflammatory disorders. PMID:24591741

  9. Mosla dianthera inhibits mast cell-mediated allergic reactions through the inhibition of histamine release and inflammatory cytokine production

    SciTech Connect

    Lee, Dong-Hee; Kim, Sang-Hyun . E-mail: shkim72@knu.ac.kr; Eun, Jae-Soon; Shin, Tae-Yong . E-mail: tyshin@woosuk.ac.kr

    2006-11-01

    In this study, we investigated the effect of the aqueous extract of Mosla dianthera (Maxim.) (AEMD) on the mast cell-mediated allergy model and studied the possible mechanism of action. Mast cell-mediated allergic disease is involved in many diseases such as asthma, sinusitis and rheumatoid arthritis. The discovery of drugs for the treatment of allergic disease is an important subject in human health. AEMD inhibited compound 48/80-induced systemic reactions in mice. AEMD decreased immunoglobulin E-mediated local allergic reactions, passive cutaneous anaphylaxis. AEMD attenuated intracellular calcium level and release of histamine from rat peritoneal mast cells activated by compound 48/80. Furthermore, AEMD attenuated the phorbol 12-myristate 13-acetate (PMA) and calcium ionophore A23187-stimulated TNF-{alpha}, IL-8 and IL-6 secretion in human mast cells. The inhibitory effect of AEMD on the pro-inflammatory cytokines was nuclear factor-{kappa}B (NF-{kappa}B) dependent. AEMD decreased PMA and A23187-induced degradation of I{kappa}B{alpha} and nuclear translocation of NF-{kappa}B. Our findings provide evidence that AEMD inhibits mast cell-derived immediate-type allergic reactions and involvement of pro-inflammatory cytokines and NF-{kappa}B in these effects.

  10. Gamma-irradiated scrub typhus immunogens: development of cell-mediated immunity after vaccination of inbred mice

    SciTech Connect

    Jerrells, T.R.; Palmer, B.A.; Osterman, J.V.

    1983-01-01

    Mice immunized with three injections of gamma-irradiated Karp strain of Rickettsia tsutsugamushi were evaluated for the presence of cell-mediated immunity by using delayed-type hypersensitivity, antigen-induced lymphocyte proliferation, and antigen-induced lymphokine production. These animals also were evaluated for levels of circulating antibody after immunization as well as for the presence of rickettsemia after intraperitoneal challenge with viable Karp rickettsiae. After immunization with irradiated Karp rickettsiae, a demonstrable cell-mediated immunity was present as evidenced by delayed-type hypersensitivity responsiveness, lymphocyte proliferation, and production of migration inhibition factor and interferon by immune spleen lymphocytes. Also, a reduction in circulating rickettsiae was seen in mice immunized with irradiated rickettsiae after challenge with 1,000 50% mouse lethal doses of viable, homologous rickettsiae. All responses except antibody titer and reduction of rickettsemia were similar to the responses noted in mice immunized with viable organisms. Antibody levels were lower in mice immunized with irradiated rickettsiae than in mice immunized with viable rickettsiae. Furthermore, mice that were immunized with viable rickettsiae demonstrated markedly lower levels of rickettsemia after intraperitoneal challenge compared with either mice immunized with irradiated rickettsiae or nonimmunized mice.

  11. UV-B and the immune system. A review with special emphasis on T cell-mediated immunity.

    PubMed

    Goettsch, W; Garssen, J; de Gruijl, F R; van Loveren, H

    1993-03-01

    The immunosuppressive activity of ultraviolet light-B (UV-B) has become a major topic of interest, especially now that there are indications of an increased exposure to UV-B on the earth's surface, caused by a decreased thickness of the ozone layer. This review indicates that the thymus-dependent immune system is a prime target for damage by UV-B. Especially the systemic effects of UV-B on T cell mediated immunity are described and analyzed with respect to the mode of action. In summary, this review demonstrated that UV-B can alter T cell mediated immune responses by different pathways in which cytokines (e.g. TNF-alpha) and other soluble mediators (e.g. cis-urocanic acid) may play a role. Effects of UV-B on the location and morphology of different cells in the skin affect functionality of the immune system. Thus, UV-B may suppress local immunity against skin tumours and skin-associated infections as well as systemic immunity against non skin-associated infectious diseases and tumours.

  12. T-Cell-Mediated Inflammatory Myopathies in HIV-Positive Individuals: A Histologic Study of 19 Cases.

    PubMed

    Hiniker, Annie; Daniels, Brianne H; Margeta, Marta

    2016-03-01

    T cell-mediated inflammatory myopathies (polymyositis [PM] and inclusion body myositis [IBM]) sometimes arise in conjunction with HIV infection; however, it is not understood whether PM and IBM arising in the context of HIV (HIV-PM and HV-IBM) differ from PM and IBM arising sporadically in HIV-negative individuals (sPM and sIBM). Here, we report the largest series of T cell-mediated inflammatory myopathies from HIV-infected patients (19 biopsies from 15 subjects); 5 cases were pathologically classified as PM (HIV-PM) and 14 as IBM (HIV-IBM). As with sporadic cases, quantitative immunohistochemistry for LC3, p62, and TDP-43 showed significantly greater percentage of stained fibers (% FS) in HIV-IBM compared to HIV-PM samples; however, there was no significant difference in % FS for any of the three markers between HIV-associated and sporadic cases. Despite histologic similarities between HIV-IBM and sIBM but in concordance with prior case reports, patients with HIV-IBM were significantly younger at diagnosis than patients with sIBM; in contrast, the mean age of HIV-PM and sPM patients was not significantly different. In summary, HIV-PM and HIV-IBM are morphologically similar to sPM and sIBM; thus, it remains unclear why patients with HIV-IBM, in contrast to patients with sIBM, sometimes show clinical improvement in response to immunosuppressive therapy. PMID:26843609

  13. Effects of social manipulations and environmental enrichment on behavior and cell-mediated immune responses in rhesus macaques.

    PubMed

    Schapiro, Steven J

    2002-08-01

    This paper reviews a series of studies that have examined the effects of manipulations to the social and the inanimate environments on the behavior and cell-mediated immune responses of rhesus macaques of various ages living in different settings. In general, enrichment of the inanimate environment with toys, structures, foraging devices, and/or videotapes increased the amount of species-typical behavior expressed by the monkeys, but did not affect their immune responses. Housing monkeys socially, on the other hand, not only resulted in increased time spent in species-typical activities, but also resulted in (1) decreases in time spent in abnormal behavior and (2) changes in a number of immune parameters. Additionally, attempts to directly influence the affiliative interactions of socially housed adult rhesus have resulted in systematic changes in affiliative behavior, although anticipated accompanying systematic alterations to cell-mediated immune responses have yet to be realized. The data suggest that aspects of the physical and social environments influence behavioral and immunological parameters in captive macaques in the absence of other experimental manipulations. As such, these influences need to be appropriately managed and/or controlled in order to minimize potential confounds in experimental designs.

  14. T-cell-mediated suppression of anti-tumor immunity. An explanation for progressive growth of an immunogenic tumor

    PubMed Central

    1980-01-01

    The results of this paper are consistent with the hypothesis that progressive growth of the Meth A fibrosarcoma evokes the generation of a T-cell-mediated mechanism of immunosuppression that prevents this highly immunogenic tumor from being rejected by its immunocompetent host. It was shown that it is possible to cause the regression of large, established Meth A tumors by intravenous infusion of tumor- sensitized T cells from immune donors, but only if the tumors are growing in T-cell-deficient recipients. It was also shown that the adoptive T-cell-mediated regression of tumors in such recipients can be prevented by prior infusion of splenic T cells from T-cell-intact, tumor-bearing donors. The results leave little doubt that the presence of suppressor T cells in T-cell-intact, tumor-bearing mice is responsible for the loss of an earlier generated state of concomitant immunity, and for the inability of intravenously infused, sensitized T cells to cause tumor regression. Because the presence of suppressor T cells generated in response to the Meth A did not suppress the capacity of Meth A-bearing mice to generate and express immunity against a tumor allograft, it is obvious that they were not in a state of generalized immunosuppression. PMID:6444236

  15. Targeting of ribosomal protein S6 to dendritic spines by in vivo high frequency stimulation to induce long-term potentiation in the dentate gyrus

    PubMed Central

    Nihonmatsu, Itsuko; Ohkawa, Noriaki; Saitoh, Yoshito; Inokuchi, Kaoru

    2015-01-01

    ABSTRACT Late phase long-term potentiation (L-LTP) in the hippocampus is believed to be the cellular basis of long-term memory. Protein synthesis is required for persistent forms of synaptic plasticity, including L-LTP. Neural activity is thought to enhance local protein synthesis in dendrites, and one of the mechanisms required to induce or maintain the long-lasting synaptic plasticity is protein translation in the dendrites. One regulator of translational processes is ribosomal protein S6 (rpS6), a component of the small 40S ribosomal subunit. Although polyribosomes containing rpS6 are observed in dendritic spines, it remains unclear whether L-LTP induction triggers selective targeting of the translational machinery to activated synapses in vivo. Therefore, we investigated synaptic targeting of the translational machinery by observing rpS6 immunoreactivity during high frequency stimulation (HFS) for L-LTP induction in vivo. Immunoelectron microscopic analysis revealed a selective but transient increase in rpS6 immunoreactivity occurring as early as 15 min after the onset of HFS in dendritic spine heads at synaptic sites receiving HFS. Concurrently, levels of the rpS6 protein rapidly declined in somata of granule cells, as determined using immunofluorescence microscopy. These results suggest that the translational machinery is rapidly targeted to activated spines and that this targeting mechanism may contribute to the establishment of L-LTP. PMID:26432888

  16. Myosin II ATPase activity mediates the long-term potentiation-induced exodus of stable F-actin bound by drebrin A from dendritic spines.

    PubMed

    Mizui, Toshiyuki; Sekino, Yuko; Yamazaki, Hiroyuki; Ishizuka, Yuta; Takahashi, Hideto; Kojima, Nobuhiko; Kojima, Masami; Shirao, Tomoaki

    2014-01-01

    The neuronal actin-binding protein drebrin A forms a stable structure with F-actin in dendritic spines. NMDA receptor activation causes an exodus of F-actin bound by drebrin A (DA-actin) from dendritic spines, suggesting a pivotal role for DA-actin exodus in synaptic plasticity. We quantitatively assessed the extent of DA-actin localization to spines using the spine-dendrite ratio of drebrin A in cultured hippocampal neurons, and found that (1) chemical long-term potentiation (LTP) stimulation induces rapid DA-actin exodus and subsequent DA-actin re-entry in dendritic spines, (2) Ca(2+) influx through NMDA receptors regulates the exodus and the basal accumulation of DA-actin, and (3) the DA-actin exodus is blocked by myosin II ATPase inhibitor, but is not blocked by myosin light chain kinase (MLCK) or Rho-associated kinase (ROCK) inhibitors. These results indicate that myosin II mediates the interaction between NMDA receptor activation and DA-actin exodus in LTP induction. Furthermore, myosin II seems to be activated by a rapid actin-linked mechanism rather than slow MLC phosphorylation. Thus the myosin-II mediated DA-actin exodus might be an initial event in LTP induction, triggering actin polymerization and spine enlargement.

  17. Myosin II ATPase Activity Mediates the Long-Term Potentiation-Induced Exodus of Stable F-Actin Bound by Drebrin A from Dendritic Spines

    PubMed Central

    Mizui, Toshiyuki; Sekino, Yuko; Yamazaki, Hiroyuki; Ishizuka, Yuta; Takahashi, Hideto; Kojima, Nobuhiko; Kojima, Masami; Shirao, Tomoaki

    2014-01-01

    The neuronal actin-binding protein drebrin A forms a stable structure with F-actin in dendritic spines. NMDA receptor activation causes an exodus of F-actin bound by drebrin A (DA-actin) from dendritic spines, suggesting a pivotal role for DA-actin exodus in synaptic plasticity. We quantitatively assessed the extent of DA-actin localization to spines using the spine-dendrite ratio of drebrin A in cultured hippocampal neurons, and found that (1) chemical long-term potentiation (LTP) stimulation induces rapid DA-actin exodus and subsequent DA-actin re-entry in dendritic spines, (2) Ca2+ influx through NMDA receptors regulates the exodus and the basal accumulation of DA-actin, and (3) the DA-actin exodus is blocked by myosin II ATPase inhibitor, but is not blocked by myosin light chain kinase (MLCK) or Rho-associated kinase (ROCK) inhibitors. These results indicate that myosin II mediates the interaction between NMDA receptor activation and DA-actin exodus in LTP induction. Furthermore, myosin II seems to be activated by a rapid actin-linked mechanism rather than slow MLC phosphorylation. Thus the myosin-II mediated DA-actin exodus might be an initial event in LTP induction, triggering actin polymerization and spine enlargement. PMID:24465547

  18. Novel Song-Stimulated Dendritic Spine Formation and Arc/Arg 3.1 Expression in Zebra Finch Auditory Telencephalon are Disrupted by Cannabinoid Agonism

    PubMed Central

    Gilbert, Marcoita T; Soderstrom, Ken

    2013-01-01

    Cannabinoids are well-established to alter processes of sensory perception; however neurophysiological mechanisms responsible remain unclear. Arc, an immediate-early gene (IEG) product involved in dendritic spine dynamics and necessary for plasticity changes such as long-term potentiation, is rapidly induced within zebra finch caudal medial nidopallium (NCM) following novel song exposure, a response that habituates after repeated stimuli. Arc appears unique in its rapid postsynaptic dendritic expression following excitatory input. Previously, we found that vocal development-altering cannabinoid treatments are associated with elevated dendritic spine densities in motor- (HVC) and learning-related (Area X) song regions of zebra finch telencephalon. Given Arc’s dendritic morphological role, we hypothesized that cannabinoid-altered spine densities may involve Arc-related signaling. To test this, we examined the ability of the cannabinoid agonist WIN55212-2 (WIN) to: (1) acutely disrupt song-induced Arc expression; (2) interfere with habituation to auditory stimuli and; (3) alter dendritic spine densities in auditory regions. We found that WIN (3 mg/kg) acutely reduced Arc expression within both NCM and Field L2 in an antagonist-reversible manner. WIN did not alter Arc expression in thalamic auditory relay Nucleus Ovoidalis (Ov), suggesting cannabinoid signaling selectively alters responses to auditory stimulation. Novel song stimulation rapidly increased dendritic spine densities within auditory telencephalon, an effect blocked by WIN pretreatments. Taken together, cannabinoid inhibition of both Arc induction and its habituation to repeated stimuli, combined with prevention of rapid increases in dendritic spine densities, implicates cannabinoid signaling in modulation of physiological processes important to auditory responsiveness and memory. PMID:24134952

  19. Intrinsic Ca2+-dependent theta oscillations in apical dendrites of hippocampal CA1 pyramidal cells in vitro.

    PubMed

    Hansen, Allan Kjeldsen; Nedergaard, Steen; Andreasen, Mogens

    2014-08-01

    Behavior-associated theta-frequency oscillation in the hippocampal network involves a patterned activation of place cells in the CA1, which can be accounted for by a somatic-dendritic interference model predicting the existence of an intrinsic dendritic oscillator. Here we describe an intrinsic oscillatory mechanism in apical dendrites of in vitro CA1 pyramidal cells, which is induced by suprathreshold depolarization and consists of rhythmic firing of slow spikes in the theta-frequency band. The incidence of slow spiking (29%) increased to 78% and 100% in the presence of the β-adrenergic agonist isoproterenol (2 μM) or 4-aminopyridine (2 mM), respectively. Prior depolarization facilitated the induction of slow spiking. Applied electrical field polarization revealed a distal dendritic origin of slow spikes. The oscillations were largely insensitive to tetrodotoxin, but blocked by nimodipine (10 μM), indicating that they depend on activation of L-type Ca2+ channels. Antagonists of T-, R-, N-, and P/Q-type Ca2+ channels had no detectable effect. The slow spike dimension and frequency was sensitive to 4-aminopyridine (0.1-2 mM) and TEA (10 mM), suggesting the contribution from voltage-dependent K+ channels to the oscillation mechanism. α-Dendrotoxin (10 μM), stromatoxin (2 μM), iberiotoxin (0.2 μM), apamin (0.5 μM), linorpidine (30 μM), and ZD7288 (20 μM) were without effect. Oscillations induced by sine-wave current injection or theta-burst synaptic stimulation were voltage-dependently attenuated by nimodipine, indicating an amplifying function of L-type Ca2+ channels on imposed signals. These results show that the apical dendrites have intrinsic oscillatory properties capable of generating rhythmic voltage fluctuations in the theta-frequency band. PMID:25252335

  20. Induction: Making the Leap

    ERIC Educational Resources Information Center

    Ling, Lorraine M.

    2009-01-01

    This article provides a critical examination of a variety of approaches to induction focusing especially upon Australia and other Pacific Rim countries. The question of the purposes induction serves for graduate teachers, experienced teachers and education systems is addressed in terms of whether it is a technical exercise which preserves the…