Science.gov

Sample records for dendritic cells localized

  1. Atypical protein kinase C regulates primary dendrite specification of cerebellar Purkinje cells by localizing Golgi apparatus.

    PubMed

    Tanabe, Koji; Kani, Shuichi; Shimizu, Takashi; Bae, Young-Ki; Abe, Takaya; Hibi, Masahiko

    2010-12-15

    Neurons have highly polarized structures that determine what parts of the soma elaborate the axon and dendrites. However, little is known about the mechanisms that establish neuronal polarity in vivo. Cerebellar Purkinje cells extend a single primary dendrite from the soma that ramifies into a highly branched dendritic arbor. We used the zebrafish cerebellum to investigate the mechanisms by which Purkinje cells acquire these characteristics. To examine dendritic morphogenesis in individual Purkinje cells, we marked the cell membrane using a Purkinje cell-specific promoter to drive membrane-targeted fluorescent proteins. We found that zebrafish Purkinje cells initially extend multiple neurites from the soma and subsequently retract all but one, which becomes the primary dendrite. In addition, the Golgi apparatus specifically locates to the root of the primary dendrite, and its localization is already established in immature Purkinje cells that have multiple neurites. Inhibiting secretory trafficking through the Golgi apparatus reduces dendritic growth, suggesting that the Golgi apparatus is involved in the dendritic morphogenesis. We also demonstrated that in a mutant of an atypical protein kinase C (aPKC), Prkci, Purkinje cells retain multiple primary dendrites and show disrupted localization of the Golgi apparatus. Furthermore, a mosaic inhibition of Prkci in Purkinje cells recapitulates the aPKC mutant phenotype. These results suggest that the aPKC cell autonomously controls the Golgi localization and thereby regulates the specification of the primary dendrite of Purkinje cells.

  2. Endogenous Galectin-3 Is Localized in Membrane Lipid Rafts and Regulates Migration of Dendritic Cells

    PubMed Central

    Hsu, Daniel K.; Chernyavsky, Alexander I.; Chen, Huan-Yuan; Yu, Lan; Grando, Sergei A.; Liu, Fu-Tong

    2008-01-01

    This study reveals a function of endogenous galectin-3, an animal lectin recognizing β-galactosides, in regulating dendritic cell motility both in vitroand in vivo,which to our knowledge is unreported. First, galectin-3-deficient (gal3−/−) bone marrow-derived dendritic cells exhibited defective chemotaxis compared to gal3+/+ cells. Second, cutaneous dendritic cells in gal3−/− mice displayed reduced migration to draining lymph nodes upon hapten stimulation compared to gal3+/+ mice. Moreover, gal3−/− mice were impaired in the development of contact hypersensitivity relative to gal3+/+ mice in response to a hapten, a process in which dendritic cell trafficking to lymph nodes is critical. In addition, defective signaling was detected in gal3−/− cells upon chemokine receptor activation. By immunofluorescence microscopy, we observed that galectin-3 is localized in membrane ruffles and lamellipodia in stimulated dendritic cells and macrophages. Furthermore, galectin-3 was enriched in lipid raft domains under these conditions. Finally, we determined that ruffles on gal3−/− cells contained structures with lower complexity compared to gal3+/+ cells. In view of the participation of membrane ruffles in signal transduction and cell motility, we conclude that galectin-3 regulates cell migration by functioning at these structures. PMID:18843294

  3. Local Activation of Dendritic Cells Alters the Pathogenesis of Autoimmune Disease In the Retina1

    PubMed Central

    Heuss, Neal D.; Lehmann, Ute; Norbury, Christopher C.; McPherson, Scott W.; Gregerson, Dale S.

    2011-01-01

    Interest in the identities, properties, functions and origins of local antigen presenting cells (APC) in CNS tissues is growing. We recently reported that dendritic cells (DC) distinct from microglia were present in quiescent retina, and rapidly responded to injured neurons. In this study, the disease-promoting and regulatory contributions of these APC in experimental autoimmune uveoretinitis (EAU) were examined. Local delivery of purified, exogenous DC or monocytes from bone marrow substantially increased the incidence and severity of EAU induced by adoptive transfer of activated, autoreactive CD4 or CD8 T cells that was limited to the manipulated eye. In vitro assays of antigen presenting cell activity of DC from quiescent retina showed that they promoted generation of Foxp3+ T cells, and inhibited activation of naive T cells by splenic DC and antigen. Conversely, in vitro assays of DC purified from injured retina revealed an enhanced ability to activate T cells, and reduced induction of Foxp3+ T cells. These findings were supported by the observation that in situ activation of DC prior to adoptive transfer of β-galactosidase-specific T cells dramatically increased severity and incidence of EAU. Recruitment of T cells into retina by local delivery of antigen in vivo showed that quiescent retina promoted development of parenchymal Foxp3+ T cells, but assays of pre-injured retina did not. Together, these results demonstrated that local conditions in the retina determined APC function, and affected the pathogenesis of EAU by both CD4 and CD8 T cells. PMID:22219322

  4. Monocyte Differentiation in Localized Juvenile Periodontitis Is Skewed toward the Dendritic Cell Phenotype

    PubMed Central

    Barbour, Suzanne E.; Ishihara, Yuichi; Fakher, Mohammed; Al-Darmaki, Salma; Caven, Timothy H.; Shelburne, C. P.; Best, Al M.; Schenkein, Harvey A.; Tew, John G.

    2002-01-01

    Several lines of evidence indicate that the monocytes of subjects with localized juvenile periodontitis (LJP) are functionally distinct from cells of age- and race-matched nonperiodontitis (NP) subjects. Among the abnormalities are the propensity to secrete large amounts of prostaglandin E2 and the induction of immunoglobulin G2 (IgG2) antibodies. The experiments described here were performed to further characterize the LJP monocytes and to determine if these cells mature differently than NP monocytes. When adherent monocytes from LJP subjects were cultured in the presence of human serum, both macrophages and cells with the morphology of immature monocyte-derived dendritic cells (MDDC) were observed. Within 4 days the prevalence of the immature MDDC was approximately twofold higher in LJP cultures than in NP cultures. In addition to their dendritic morphology, these cells were CD11c+ and CD14− or CD14low and stimulated potent autologous mixed leukocyte reactions, consistent with differentiation to the MDDC phenotype. Like LJP monocytes, cultures of MDDC generated with interleukin-4 and granulocyte-macrophage colony-stimulating factor selectively induced IgG2 in cultures of pokeweed mitogen-stimulated NP leukocytes. Together, these data suggest that the monocytes of LJP subjects have a propensity to differentiate into MDDC and that this differentiation may be related to the high levels of IgG2 that are observed in the sera of LJP subjects. As high levels of circulating IgG2 are correlated with less severe disease, the propensity of LJP monocytes to differentiate into MDDC may have important implications for both the host response against oral pathogens and the progression of LJP. PMID:12010963

  5. Monocyte differentiation in localized juvenile periodontitis is skewed toward the dendritic cell phenotype.

    PubMed

    Barbour, Suzanne E; Ishihara, Yuichi; Fakher, Mohammed; Al-Darmaki, Salma; Caven, Timothy H; Shelburne, C P; Best, Al M; Schenkein, Harvey A; Tew, John G

    2002-06-01

    Several lines of evidence indicate that the monocytes of subjects with localized juvenile periodontitis (LJP) are functionally distinct from cells of age- and race-matched nonperiodontitis (NP) subjects. Among the abnormalities are the propensity to secrete large amounts of prostaglandin E(2) and the induction of immunoglobulin G2 (IgG2) antibodies. The experiments described here were performed to further characterize the LJP monocytes and to determine if these cells mature differently than NP monocytes. When adherent monocytes from LJP subjects were cultured in the presence of human serum, both macrophages and cells with the morphology of immature monocyte-derived dendritic cells (MDDC) were observed. Within 4 days the prevalence of the immature MDDC was approximately twofold higher in LJP cultures than in NP cultures. In addition to their dendritic morphology, these cells were CD11c(+) and CD14(-) or CD14(low) and stimulated potent autologous mixed leukocyte reactions, consistent with differentiation to the MDDC phenotype. Like LJP monocytes, cultures of MDDC generated with interleukin-4 and granulocyte-macrophage colony-stimulating factor selectively induced IgG2 in cultures of pokeweed mitogen-stimulated NP leukocytes. Together, these data suggest that the monocytes of LJP subjects have a propensity to differentiate into MDDC and that this differentiation may be related to the high levels of IgG2 that are observed in the sera of LJP subjects. As high levels of circulating IgG2 are correlated with less severe disease, the propensity of LJP monocytes to differentiate into MDDC may have important implications for both the host response against oral pathogens and the progression of LJP.

  6. CD4+ CD25+ regulatory T cells prevent type 1 diabetes preceded by dendritic cell-dominant invasive insulitis by affecting chemotaxis and local invasiveness of dendritic cells.

    PubMed

    Lee, Mi-Heon; Lee, Wen-Hui; Todorov, Ivan; Liu, Chih-Pin

    2010-08-15

    Development of type 1 diabetes (T1D) is preceded by invasive insulitis. Although CD4(+)CD25(+) regulatory T cells (nTregs) induce tolerance that inhibits insulitis and T1D, the in vivo cellular mechanisms underlying this process remain largely unclear. Using an adoptive transfer model and noninvasive imaging-guided longitudinal analyses, we found nTreg depletion did not affect systemic trafficking and tissue localization of diabetogenic CD4(+) BDC2.5 T (BDC) cells in recipient mice prior to development of T1D. In addition, neither the initial expansion/activation of BDC cells nor the number of CD11c(+) or NK cells in islets and pancreatic lymph nodes were altered. Unexpectedly, our results showed nTreg depletion led to accelerated invasive insulitis dominated by CD11c(+) dendritic cells (ISL-DCs), not BDC cells, which stayed in the islet periphery. Compared with control mice, the phenotype of ISL-DCs and their ability to stimulate BDC cells did not change during invasive insulitis development. However, ISL-DCs from nTreg-deficient recipient mice showed increased in vitro migration toward CCL19 and CCL21. These results demonstrated invasive insulitis dominated by DCs, not CD4(+) T cells, preceded T1D onset in the absence of nTregs, and suggested a novel in vivo function of nTregs in T1D prevention by regulating local invasiveness of DCs into islets, at least partly, through regulation of DC chemotaxis toward CCL19/CCL21 produced by the islets.

  7. Human cytomegalovirus alters localization of MHC class II and dendrite morphology in mature Langerhans cells.

    PubMed

    Lee, Andrew W; Hertel, Laura; Louie, Ryan K; Burster, Timo; Lacaille, Vashti; Pashine, Achal; Abate, Davide A; Mocarski, Edward S; Mellins, Elizabeth D

    2006-09-15

    Hemopoietic stem cell-derived mature Langerhans-type dendritic cells (LC) are susceptible to productive infection by human CMV (HCMV). To investigate the impact of infection on this cell type, we examined HLA-DR biosynthesis and trafficking in mature LC cultures exposed to HCMV. We found decreased surface HLA-DR levels in viral Ag-positive as well as in Ag-negative mature LC. Inhibition of HLA-DR was independent of expression of unique short US2-US11 region gene products by HCMV. Indeed, exposure to UV-inactivated virus, but not to conditioned medium from infected cells, was sufficient to reduce HLA-DR on mature LC, implicating particle binding/penetration in this effect. Reduced surface levels reflected an altered distribution of HLA-DR because total cellular HLA-DR was not diminished. Accumulation of HLA-DR was not explained by altered cathepsin S activity. Mature, peptide-loaded HLA-DR molecules were retained within cells, as assessed by the proportion of SDS-stable HLA-DR dimers. A block in egress was implicated, as endocytosis of surface HLA-DR was not increased. Immunofluorescence microscopy corroborated the intracellular retention of HLA-DR and revealed markedly fewer HLA-DR-positive dendritic projections in infected mature LC. Unexpectedly, light microscopic analyses showed a dramatic loss of the dendrites themselves and immunofluorescence revealed that cytoskeletal elements crucial for the formation and maintenance of dendrites are disrupted in viral Ag-positive cells. Consistent with these dendrite effects, HCMV-infected mature LC exhibit markedly reduced chemotaxis in response to lymphoid chemokines. Thus, HCMV impedes MHC class II molecule trafficking, dendritic projections, and migration of mature LC. These changes likely contribute to the reduced activation of CD4+ T cells by HCMV-infected mature LC.

  8. Local administration of granulocyte macrophage colony-stimulating factor induces local accumulation of dendritic cells and antigen-specific CD8+ T cells and enhances dendritic cell cross-presentation.

    PubMed

    Lee, Sung-Jong; Song, Liwen; Yang, Ming-Chieh; Mao, Chih-Ping; Yang, Benjamin; Yang, Andrew; Jeang, Jessica; Peng, Shiwen; Wu, T-C; Hung, Chien-Fu

    2015-03-24

    Immunotherapy has emerged as a promising treatment strategy for the control of HPV-associated malignancies. Various therapeutic HPV vaccines have elicited potent antigen-specific CD8+ T cell mediated antitumor immune responses in preclinical models and are currently being tested in several clinical trials. Recent evidence indicates the importance of local immune activation, and higher number of immune cells in the site of lesion correlates with positive prognosis. Granulocyte macrophage colony-stimulating factor (GMCSF) has been reported to posses the ability to induce migration of antigen presentation cells and CD8+ T cells. Therefore, in the current study, we employ a combination of systemic therapeutic HPV DNA vaccination with local GMCSF application in the TC-1 tumor model. We show that intramuscular vaccination with CRT/E7 DNA followed by GMCSF intravaginal administration effectively controls cervicovaginal TC-1 tumors in mice. Furthermore, we observe an increase in the accumulation of E7-specific CD8+ T cells and dendritic cells in vaginal tumors following the combination treatment. In addition, we show that GMCSF induces activation and maturation in dendritic cells and promotes antigen cross-presentation. Our results support the clinical translation of the combination treatment of systemic therapeutic vaccination followed by local GMCSF administration as an effective strategy for tumor treatment.

  9. Clusterin in human gut-associated lymphoid tissue, tonsils, and adenoids: localization to M cells and follicular dendritic cells.

    PubMed

    Verbrugghe, Phebe; Kujala, Pekka; Waelput, Wim; Peters, Peter J; Cuvelier, Claude A

    2008-03-01

    The follicle-associated epithelium (FAE) overlying the follicles of mucosa-associated lymphoid tissue is a key player in the initiation of mucosal immune responses. We recently reported strong clusterin expression in the FAE of murine Peyer's patches. In this study, we examined the expression of clusterin in the human gut-associated lymphoid tissue (GALT) and Waldeyer's ring. Immunohistochemistry for clusterin in human Peyer's patches, appendix and colon lymphoid follicles revealed expression in M cells and in follicular dendritic cells (FDCs). Using cryo-immunogold electron microscopy in Peyer's patches, we observed cytosolic immunoreactivity in M cells and labeling in the ER/Golgi biosynthetic pathway in FDCs. In palatine tonsils and adenoids, we demonstrated clusterin expression in germinal centers and in the lymphoepithelium in the crypts where M cells are localized. In conclusion, clusterin is expressed in M cells and follicular dendritic cells at inductive sites of human mucosa-associated lymphoid tissue suggesting a role for this protein in innate immune responses. Moreover, the use of clusterin as a human M cell marker could prove to be a valuable tool in future M cell research.

  10. Nak regulates localization of clathrin sites in higher-order dendrites to promote local dendrite growth.

    PubMed

    Yang, Wei-Kang; Peng, Yu-Huei; Li, Hsun; Lin, Hsiu-Chen; Lin, Yu-Ching; Lai, Tzu-Ting; Suo, Hsien; Wang, Chien-Hsiang; Lin, Wei-Hsiang; Ou, Chan-Yen; Zhou, Xin; Pi, Haiwei; Chang, Henry C; Chien, Cheng-Ting

    2011-10-20

    During development, dendrites arborize in a field several hundred folds of their soma size, a process regulated by intrinsic transcription program and cell adhesion molecule (CAM)-mediated interaction. However, underlying cellular machineries that govern distal higher-order dendrite extension remain largely unknown. Here, we show that Nak, a clathrin adaptor-associated kinase, promotes higher-order dendrite growth through endocytosis. In nak mutants, both the number and length of higher-order dendrites are reduced, which are phenocopied by disruptions of clathrin-mediated endocytosis. Nak interacts genetically with components of the endocytic pathway, colocalizes with clathrin puncta, and is required for dendritic localization of clathrin puncta. More importantly, these Nak-containing clathrin structures preferentially localize to branching points and dendritic tips that are undergoing active growth. We present evidence that the Drosophila L1-CAM homolog Neuroglian is a relevant cargo of Nak-dependent internalization, suggesting that localized clathrin-mediated endocytosis of CAMs facilitates the extension of nearby higher-order dendrites. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Localization of Neurensin1 in cerebellar Purkinje cells of the developing chick and its possible function in dendrite formation.

    PubMed

    Kiyonaga-Endou, Keiko; Oshima, Manabu; Sugimoto, Kazuya; Thomas, Mervyn; Taketani, Shigeru; Araki, Masasuke

    2016-03-15

    Neurensin1 (Nrsn1) gene, highly specific to neurons, has been considered to play a role in neurite growth during neuronal development and regeneration in mice. Intense expression of Nrsn1 was found particularly in projecting neurons like retinal ganglion cells and spinal motor neurons, suggesting that Neurensin1 is needed for active neurite growth. In the present study we cloned chick Nrsn1 gene and produced an antibody against cNrsn1 to examine Nrsn1 localization in the chick brain, since the chick is a suitable animal model for the study of developmental neurobiology. We found that there are neurons intensely stained for Nrsn1 antibody localized in the optic tectum, the cerebellum and the brain stem. These neurons are large in size and considered to be projecting neurons. In the cerebellum, Purkinje cells are the only one type of neurons stained for Nrsn1. During Purkinje cell development the arborized dendrites and axons become intensely stained at stages E17-18. A siRNA gene knock down was applied to the cultured embryonic cerebellar tissues and the result showed that Nrsn1 has an important role in dendrite formation of Purkinje cells. These findings suggest that Neurensin1 is also involved in neural development in the chick brain and that the embryonic chick brain is a good model to disclose the molecular and physiological functions of Nrsn1.

  12. Metastasis to sentinel lymph nodes in breast cancer is associated with maturation arrest of dendritic cells and poor co-localization of dendritic cells and CD8+ T cells.

    PubMed

    Mansfield, Aaron Scott; Heikkila, Paivi; von Smitten, Karl; Vakkila, Jukka; Leidenius, Marjut

    2011-10-01

    The regional immune systems of patients with breast cancer are immunosuppressed. Dendritic cells are professional antigen-presenting cells and present cancer-associated antigens to the adaptive immune system in sentinel lymph nodes. Dendritic cells may promote, or inhibit, an adaptive immune response to specific antigens. Our aim was to assess whether dendritic cells were associated with nodal metastasis in patients with breast cancer. Sentinel lymph nodes of 47 patients with breast cancer with varying degrees of nodal disease and ten controls were evaluated using immunohistochemistry for the accumulation of dendritic cells in general (CD1a(+)), mature dendritic cells (CD208(+)), and plasmacytoid dendritic cells (CD123(+)). Cytotoxic T cell and regulatory T cell accumulation were also evaluated. Sentinel lymph nodes with macrometastases demonstrated fewer mature dendritic cells than sentinel lymph nodes without metastasis (p = 0.028), but not controls. There were fewer mature dendritic cells to cytotoxic T cells in sentinel lymph nodes with metastasis than those without (p = 0.033). Also, there were more regulatory T cells to mature dendritic cells in sentinel lymph nodes with metastasis than those without (p = 0.02). In conclusion, our study suggests that sentinel lymph nodes with metastasis have arrest of maturation of dendritic cells, fewer mature dendritic cell interactions with cytotoxic T cells, and more regulatory T cells than sentinel lymph nodes without metastasis in patients with breast cancer. These findings extend our understanding of regional immunosuppression and suggest that most regional immunosuppressive changes are associated with nodal metastasis in breast cancer.

  13. Human dendritic cell subsets

    PubMed Central

    Collin, Matthew; McGovern, Naomi; Haniffa, Muzlifah

    2013-01-01

    Summary Dendritic cells are highly adapted to their role of presenting antigen and directing immune responses. Developmental studies indicate that DCs originate independently from monocytes and tissue macrophages. Emerging evidence also suggests that distinct subsets of DCs have intrinsic differences that lead to functional specialisation in the generation of immunity. Comparative studies are now allowing many of these properties to be more fully understood in the context of human immunology. PMID:23621371

  14. Podosomes of dendritic cells facilitate antigen sampling

    PubMed Central

    Reinieren-Beeren, Inge; Cambi, Alessandra; Figdor, Carl G.; van den Bogaart, Geert

    2014-01-01

    Summary Dendritic cells sample the environment for antigens and play an important role in establishing the link between innate and acquired immunity. Dendritic cells contain mechanosensitive adhesive structures called podosomes that consist of an actin-rich core surrounded by integrins, adaptor proteins and actin network filaments. They facilitate cell migration via localized degradation of extracellular matrix. Here we show that podosomes of human dendritic cells locate to spots of low physical resistance in the substrate (soft spots) where they can evolve into protrusive structures. Pathogen recognition receptors locate to these protrusive structures where they can trigger localized antigen uptake, processing and presentation to activate T-cells. Our data demonstrate a novel role in antigen sampling for podosomes of dendritic cells. PMID:24424029

  15. Podosomes of dendritic cells facilitate antigen sampling.

    PubMed

    Baranov, Maksim V; Ter Beest, Martin; Reinieren-Beeren, Inge; Cambi, Alessandra; Figdor, Carl G; van den Bogaart, Geert

    2014-03-01

    Dendritic cells sample the environment for antigens and play an important role in establishing the link between innate and acquired immunity. Dendritic cells contain mechanosensitive adhesive structures called podosomes that consist of an actin-rich core surrounded by integrins, adaptor proteins and actin network filaments. They facilitate cell migration via localized degradation of extracellular matrix. Here, we show that podosomes of human dendritic cells locate to spots of low physical resistance in the substrate (soft spots) where they can evolve into protrusive structures. Pathogen recognition receptors locate to these protrusive structures where they can trigger localized antigen uptake, processing and presentation to activate T-cells. Our data demonstrate a novel role in antigen sampling for the podosomes of dendritic cells.

  16. Microencapsulation of inorganic nanocrystals into PLGA microsphere vaccines enables their intracellular localization in dendritic cells by electron and fluorescence microscopy.

    PubMed

    Schliehe, Christopher; Schliehe, Constanze; Thiry, Marc; Tromsdorf, Ulrich I; Hentschel, Joachim; Weller, Horst; Groettrup, Marcus

    2011-05-10

    Biodegradable poly-(D,L-lactide-co-glycolide) microspheres (PLGA-MS) are approved as a drug delivery system in humans and represent a promising antigen delivery device for immunotherapy against cancer. Immune responses following PLGA-MS vaccination require cross-presentation of encapsulated antigen by professional antigen presenting cells (APCs). While the potential of PLGA-MS as vaccine formulations is well established, the intracellular pathway of cross-presentation following phagocytosis of PLGA-MS is still under debate. A part of the controversy stems from the difficulty in unambiguously identifying PLGA-MS within cells. Here we show a novel strategy for the efficient encapsulation of inorganic nanocrystals (NCs) into PLGA-MS as a tool to study their intracellular localization. We microencapsulated NCs as an electron dense marker to study the intracellular localization of PLGA-MS by transmission electron microscopy (TEM) and as fluorescent labels for confocal laser scanning microscopy. Using this method, we found PLGA-MS to be rapidly taken up by dendritic cells and macrophages. Co-localization with the lysosomal marker LAMP1 showed a lysosomal storage of PLGA-MS for over two days after uptake, long after the initiation of cross-presentation had occurred. Our data argue against an escape of PLGA-MS from the endosome as has previously been suggested as a mechanism to facilitate cross-presentation of PLGA-MS encapsulated antigen.

  17. Synaptogenesis and synaptic protein localization in the postnatal development of rod bipolar cell dendrites in mouse retina.

    PubMed

    Anastassov, Ivan A; Wang, Weiwei; Dunn, Felice A

    2017-05-25

    Retinal responses to photons originate in rod photoreceptors and are transmitted to the ganglion cell output of the retina through the primary rod bipolar pathway. At the first synapse of this pathway, input from multiple rods is pooled into individual rod bipolar cells. This architecture is called convergence. Convergence serves to improve sensitivity of rod vision when photons are sparse. Establishment of convergence depends on the development of a proper complement of dendritic tips and transduction proteins in rod bipolar cells. How the dendrites of rod bipolar cells develop and contact the appropriate number of rods is unknown. To answer this question we visualized individual rod bipolar cells in mouse retina during postnatal development and quantified the number of dendritic tips, as well as the expression of transduction proteins within dendrites. Our findings show that the number of dendritic tips in rod bipolar cells increases monotonically during development. The number of tips at P21, P30, and P82 exceeds the previously reported rod convergence ratios, and the majority of these tips are proximal to a presynaptic rod release site, suggesting more rods provide input to a rod bipolar cell. We also show that dendritic transduction cascade members mGluR6 and TRPM1 appear in tips with different timelines. These finding suggest that (a) rod bipolar cell dendrites elaborate without pruning during development, (b) the convergence ratio between rods and rod bipolar cells may be higher than previously reported, and (c) mGluR6 and TRPM1 are trafficked independently during development. © 2017 Wiley Periodicals, Inc.

  18. Early responding dendritic cells direct the local natural killer response to control HSV-1 infection within the cornea

    PubMed Central

    Frank, Gregory M.; Buela, Kristine-Ann; Maker, Dawn M.; Harvey, Steven A.; Hendricks, Robert L.

    2011-01-01

    Dendritic cells (DCs) regulate both innate and adaptive immune responses. Here we exploit the unique avascularity of the cornea to examine a role for local or very early infiltrating DCs in regulating the migration of blood-derived innate immune cells towards herpes simplex virus type 1 (HSV-1) lesions. A single systemic diphtheria toxin (DT) treatment 2 days before HSV-1 corneal infection transiently depleted CD11c+DCs from both the cornea and lymphoid organs of CD11c-DTR bone marrow chimeric mice for up to 24 hours after infection. Transient DC depletion significantly delayedHSV-1 clearance from the corneathrough 6 days post infection(dpi). No further compromise of viral clearance was observed when DCs were continuously depleted throughout the first week of infection. DC depletion did not influenceextravasation of NK cells, inflammatory monocytes, orneutrophils into the peripheral cornea,but did significantly reduce migration of NK cells and inflammatory monocytes, but not neutrophils towards the HSV-1 lesion in the central cornea. Depletion of NK cells resulted in similar loss of viral control to transient DC ablation. Our findings demonstrate resident corneal DC and/or those that infiltrate the cornea during the first 24 hours after HSV-1 infection contribute to the migration of NK cells and inflammatory monocytes into the central cornea, and are consistent with a role for NK cells and possibly inflammatory monocytes, but not PMN in the clearing HSV-1 from the infected cornea. PMID:22210909

  19. Human immune response to pneumococcal polysaccharides: complement-mediated localization preferentially on CD21-positive splenic marginal zone B cells and follicular dendritic cells.

    PubMed

    Peset Llopis, M J; Harms, G; Hardonk, M J; Timens, W

    1996-04-01

    A functionally intact spleen with a marginal zone, containing B cells with high density of surface C3d-receptors (CD21), is essential for the ability to induce a primary immune response to thymus-independent type 2 (TI-2) antigens. Main representatives of natural TI-2 antigens are capsular pneumococcal polysaccharides (PPSs). In this study the localization of different types of PPS antigen is determined in human spleen tissue. Our findings indicate that a main type of TI-2 antigen, PPS, localizes preferentially in the marginal zone. PPSs show co-localization with C3, presumably C3d, at the surface of strongly CD21+ B cells equipped for rapid activation. This enables a rapid primary humoral response. The other main PPS localization at follicular dendritic cells in germinal centers, relevant for isotype switching of anti-PPS antibodies, does not seem to be dependent on the presence of specific immunoglobulin. This may explain the finding of specific IgG in an early stage after antigenic challenge. It seems likely that complement C3 fragments (likely C3d), bound to PPSs, enable PPS localization at B-cell and follicular dendritic cell surfaces by binding to CD21, the C3d receptor.

  20. Development of a dendritic cell-targeting lipopeptide as an immunoadjuvant that inhibits tumor growth without inducing local inflammation.

    PubMed

    Akazawa, Takashi; Ohashi, Toshimitsu; Nakajima, Hiroko; Nishizawa, Yasuko; Kodama, Ken; Sugiura, Kikuya; Inaba, Toshio; Inoue, Norimitsu

    2014-12-15

    Materials used for the past 30 years as immunoadjuvants induce suboptimal antitumor immune responses and often cause undesirable local inflammation. Some bacterial lipopeptides that act as Toll-like receptor (TLR) 2 ligands activate immune cells as immunoadjuvants and induce antitumor effects. Here, we developed a new dendritic cell (DC)-targeting lipopeptide, h11c (P2C-ATPEDNGRSFS), which uses the CD11c-binding sequence of intracellular adhesion molecule-1 to selectively and efficiently activate DCs but not other immune cells. Although the h11c lipopeptide activated DCs similarly to an artificial lipopeptide, P2C-SKKKK (P2CSK4), via TLR2 in vitro, h11c induced more effective tumor inhibition than P2CSK4 at low doses in vivo with tumor antigens. Even without tumor antigens, h11c lipopeptide significantly inhibited tumor growth and induced tumor-specific cytotoxic T cells. P2CSK4 was retained subcutaneously at the vaccination site and induced severe local inflammation in in vivo experiments. In contrast, h11c was not retained at the vaccination site and was transported into the tumor within 24 hr. The recruitment of DCs into the tumor was induced by h11c more effectively, while P2CSK4 induced the accumulation of neutrophils leading to severe inflammation at the vaccination site. Because CD11b+ cells, but not CD11c+ cells, produced neutrophil chemotactic factors such as macrophage inflammatory protein (MIP)-2 in response to stimulation with TLR2 ligands, the DC-targeting lipopeptide h11c induced less MIP-2 production by splenocytes than P2CSK4. In this study, we succeeded in developing a novel immunoadjuvant, h11c, which effectively induces antitumor activity without adverse effects such as local inflammation via the selective activation of DCs.

  1. Pulmonary infections in swine induce altered porcine surfactant protein D expression and localization to dendritic cells in bronchial-associated lymphoid tissue

    PubMed Central

    Soerensen, Charlotte M; Holmskov, Uffe; Aalbaek, Bent; Boye, Mette; Heegaard, Peter M; Nielsen, Ole L

    2005-01-01

    Surfactant protein D (SP-D) is a pattern-recognition molecule of the innate immune system that recognizes various microbial surface-specific carbohydrate and lipid patterns. In vitro data has suggested that this binding may lead to increased microbial association with macrophages and dendritic cells. The aim of the present in vivo study was to study the expression of porcine SP-D (pSP-D) in the lung during different pulmonary bacterial infections, and the effect of the routes of infection on this expression was elucidated. Furthermore, the aim was to study the in vivo spatial relationship among pSP-D, pathogens, phagocytic cells and dendritic cells. Lung tissue was collected from experimental and natural bronchopneumonias caused by Actinobacillus pleuropneumoniae or Staphylococcus aureus, and from embolic and diffuse interstitial pneumonia, caused by Staph. aureus or Arcanobacterium pyogenes and Streptococcus suis serotype 2, respectively. By comparing normal and diseased lung tissue from the same lungs, increased diffuse pSP-D immunoreactivity was seen in the surfactant in both acute and chronic bronchopneumonias, while such increased expression of pSP-D was generally not present in the interstitial pneumonias. Co-localization of pSP-D, alveolar macrophages and bacteria was demonstrated, and pSP-D showed a patchy distribution on the membranes of alveolar macrophages. SP-D immunoreactivity was intracellular in dendritic cells. The dendritic cells were identified by their morphology, the absence of macrophage marker immunoreactivity and the presence of dendritic cell marker immunoreactivity. Increased expression of pSP-D in the surfactant coincided with presence of pSP-D-positive dendritic cells in bronchus-associated lymphoid tissue (BALT), indicating a possible transport of pSP-D through the specialized M cells overlying (BALT). In conclusion, we have shown that pSP-D expression in the lung surfactant is induced by bacterial infection by an aerogenous route rather

  2. Monocyte-Derived Dendritic Cells Are Essential for CD8+ T Cell Activation and Antitumor Responses After Local Immunotherapy

    PubMed Central

    Kuhn, Sabine; Yang, Jianping; Ronchese, Franca

    2015-01-01

    Tumors harbor several populations of dendritic cells (DCs) with the ability to prime tumor-specific T cells. However, these T cells mostly fail to differentiate into armed effectors and are unable to control tumor growth. We have previously shown that treatment with immunostimulatory agents at the tumor site can activate antitumor immune responses and is associated with the appearance of a population of monocyte-derived DCs (moDCs) in the tumor and tumor-draining lymph node (dLN). Here, we use depletion of DCs or monocytes and monocyte transfer to show that these moDCs are critical to the activation of antitumor immune responses. Treatment with the immunostimulatory agents monosodium urate crystals and Mycobacterium smegmatis induced the accumulation of monocytes in the dLN, their upregulation of CD11c and MHCII, and expression of iNOS, TNFα, and IL12p40. Blocking monocyte entry into the lymph node and tumor through neutralization of the chemokine CCL2 or inhibition of colony-stimulating factor-1 receptor signaling prevented the generation of moDCs, the infiltration of tumor-specific T cells into the tumor, and antitumor responses. In a reciprocal fashion, monocytes transferred into mice depleted of CD11c+ cells were sufficient to rescue CD8+ T cell priming in lymph node and delay tumor growth. Thus, monocytes exposed to the appropriate conditions become powerful activators of tumor-specific CD8+ T cells and antitumor immunity. PMID:26635798

  3. LRIT3 is essential to localize TRPM1 to the dendritic tips of depolarizing bipolar cells and may play a role in cone synapse formation

    PubMed Central

    Neuillé, Marion; Morgans, Catherine W.; Cao, Yan; Orhan, Elise; Michiels, Christelle; Sahel, José-Alain; Audo, Isabelle; Duvoisin, Robert M.; Martemyanov, Kirill A.; Zeitz, Christina

    2016-01-01

    Mutations in LRIT3 lead to complete congenital stationary night blindness (cCSNB). The exact role of LRIT3 in ON-bipolar cell signaling cascade remains to be elucidated. Recently, we have characterized a novel mouse model lacking Lrit3 (no b-wave 6, (Lrit3nob6/nob6)), which displays similar abnormalities as patients with cCSNB with LRIT3 mutations. Here we compare the localization of components of the ON-bipolar cell signaling cascade in wild-type and Lrit3nob6/nob6 retinal sections by immunofluorescence confocal microscopy. An anti-LRIT3 antibody was generated. Immunofluorescent staining of LRIT3 in wild-type mice revealed a specific punctate labeling in the outer plexiform layer (OPL), which was absent in Lrit3nob6/nob6 mice. LRIT3 did not colocalize with ribeye or calbindin but colocalized with mGluR6. TRPM1 staining was severely decreased at the dendritic tips of all depolarizing bipolar cells in Lrit3nob6/nob6 mice. mGluR6, GPR179, RGS7, RGS11 and Gβ5 immunofluorescence was absent at the dendritic tips of cone ON-bipolar cells in Lrit3nob6/nob6 mice, while it was present at the dendritic tips of rod bipolar cells. Furthermore, PNA labeling was severely reduced in the OPL in Lrit3nob6/nob6 mice. This study confirmed the localization of LRIT3 at the dendritic tips of depolarizing bipolar cells in mouse retina and demonstrated the dependence of TRPM1 localization on the presence of LRIT3. Since tested components of the ON-bipolar cell signaling cascade and PNA revealed disrupted localization, an additional function of LRIT3 in cone synapse formation is suggested. These results point to a possibly different regulation of the mGluR6 signaling cascade between rod and cone ON-bipolar cells. PMID:25997951

  4. Can dendritic cells see light?

    NASA Astrophysics Data System (ADS)

    Chen, Aaron C.-H.; Huang, Ying-Ying; Sharma, Sulbha K.; Hamblin, Michael R.

    2010-02-01

    There are many reports showing that low-level light/laser therapy (LLLT) can enhance wound healing, upregulate cell proliferation and has anti-apoptotic effects by activating intracellular protective genes. In the field of immune response study, it is not known with any certainty whether light/laser is proinflammatory or anti-inflammatory. Increasingly in recent times dendritic cells have been found to play an important role in inflammation and the immunological response. In this study, we try to look at the impact of low level near infrared light (810-nm) on murine bone-marrow derived dendritic cells. Changes in surface markers, including MHC II, CD80 and CD11c and the secretion of interleukins induced by light may provide additional evidence to reveal the mystery of how light affects the maturation of dendritic cells as well how these light-induced mature dendritic cells would affect the activation of adaptive immune response.

  5. A Genome-Wide Screen for Dendritically Localized RNAs Identifies Genes Required for Dendrite Morphogenesis

    PubMed Central

    Misra, Mala; Edmund, Hendia; Ennis, Darragh; Schlueter, Marissa A.; Marot, Jessica E.; Tambasco, Janet; Barlow, Ida; Sigurbjornsdottir, Sara; Mathew, Renjith; Vallés, Ana Maria; Wojciech, Waldemar; Roth, Siegfried; Davis, Ilan; Leptin, Maria; Gavis, Elizabeth R.

    2016-01-01

    Localizing messenger RNAs at specific subcellular sites is a conserved mechanism for targeting the synthesis of cytoplasmic proteins to distinct subcellular domains, thereby generating the asymmetric protein distributions necessary for cellular and developmental polarity. However, the full range of transcripts that are asymmetrically distributed in specialized cell types, and the significance of their localization, especially in the nervous system, are not known. We used the EP-MS2 method, which combines EP transposon insertion with the MS2/MCP in vivo fluorescent labeling system, to screen for novel localized transcripts in polarized cells, focusing on the highly branched Drosophila class IV dendritic arborization neurons. Of a total of 541 lines screened, we identified 55 EP-MS2 insertions producing transcripts that were enriched in neuronal processes, particularly in dendrites. The 47 genes identified by these insertions encode molecularly diverse proteins, and are enriched for genes that function in neuronal development and physiology. RNAi-mediated knockdown confirmed roles for many of the candidate genes in dendrite morphogenesis. We propose that the transport of mRNAs encoded by these genes into the dendrites allows their expression to be regulated on a local scale during the dynamic developmental processes of dendrite outgrowth, branching, and/or remodeling. PMID:27260999

  6. A Genome-Wide Screen for Dendritically Localized RNAs Identifies Genes Required for Dendrite Morphogenesis.

    PubMed

    Misra, Mala; Edmund, Hendia; Ennis, Darragh; Schlueter, Marissa A; Marot, Jessica E; Tambasco, Janet; Barlow, Ida; Sigurbjornsdottir, Sara; Mathew, Renjith; Vallés, Ana Maria; Wojciech, Waldemar; Roth, Siegfried; Davis, Ilan; Leptin, Maria; Gavis, Elizabeth R

    2016-08-09

    Localizing messenger RNAs at specific subcellular sites is a conserved mechanism for targeting the synthesis of cytoplasmic proteins to distinct subcellular domains, thereby generating the asymmetric protein distributions necessary for cellular and developmental polarity. However, the full range of transcripts that are asymmetrically distributed in specialized cell types, and the significance of their localization, especially in the nervous system, are not known. We used the EP-MS2 method, which combines EP transposon insertion with the MS2/MCP in vivo fluorescent labeling system, to screen for novel localized transcripts in polarized cells, focusing on the highly branched Drosophila class IV dendritic arborization neurons. Of a total of 541 lines screened, we identified 55 EP-MS2 insertions producing transcripts that were enriched in neuronal processes, particularly in dendrites. The 47 genes identified by these insertions encode molecularly diverse proteins, and are enriched for genes that function in neuronal development and physiology. RNAi-mediated knockdown confirmed roles for many of the candidate genes in dendrite morphogenesis. We propose that the transport of mRNAs encoded by these genes into the dendrites allows their expression to be regulated on a local scale during the dynamic developmental processes of dendrite outgrowth, branching, and/or remodeling.

  7. Reconsideration of macrophage and dendritic cell classification.

    PubMed

    Kadowaki, Takeshi; Shimada, Misato; Inagawa, Hiroyuki; Kohchi, Chie; Hirashima, Mitsuomi; Soma, Gen-Ichiro

    2012-06-01

    It is well known that the activation of innate immune cells, especially antigen-presenting cells such as macrophages and dendritic cells, can ameliorate or exacerbate various diseases, including cancer. Currently, the macrophages and dendritic cells are categorized into several groups by their cell surface and intracellular molecules. However, the detailed classification of the differences between macrophages and dendritic cells has still not been established. Here, we summarized and reviewed the previous studies on the classification of macrophages and dendritic cells. In addition, the previous classification of monocytes, macrophages and dendritic cells is discussed based on our findings of macrophage activation, which has both conventional and plasmacytoid dendritic cell phenotype.

  8. Localization of collagen modifying enzymes on fibroblastic reticular cells and follicular dendritic cells in non-neoplastic and neoplastic lymphoid tissues.

    PubMed

    Ohe, Rintaro; Aung, Naing Ye; Meng, Hongxue; Kabasawa, Takanobu; Suto, Aya; Tamazawa, Nobuyuki; Yang, Suran; Kato, Tomoya; Yamakawa, Mitsunori

    2016-07-01

    The aim of this study was to evaluate the localization of collagen modifying enzymes (CMEs) on fibroblastic reticular cells (FRCs) and follicular dendritic cells (FDCs) in non-neoplastic lymphoid tissues and various malignant lymphomas. The expression of prolyl 4-hydroxylase 1 (P4H1), lysyl hydroxylase 3 (LH3), and protein disulfide isomerase (PDI) was frequently observed on FRCs and FDCs in the germinal center (GC), except for the mantle zone. The expression of CMEs was lower in most lymphomas than in their respective postulated normal counterparts. The ratio of transglutaminase II(+) FRCs/CD35(+) FDCs was also lower in follicular lymphomas (FL) than in other lymphomas. The mRNAs of some CMEs (P4H1, prolyl 4-hydroxylase 3, LH3, and heat shock protein 47) were confirmed in almost all lymphomas. These results indicate that lymphoma cell proliferation suppresses/decreases the number of CMEs expressing FRCs and FDCs in most lymphomas.

  9. Localization of collagen modifying enzymes on fibroblastic reticular cells and follicular dendritic cells in non-neoplastic and neoplastic lymphoid tissues

    PubMed Central

    Ohe, Rintaro; Aung, Naing Ye; Meng, Hongxue; Kabasawa, Takanobu; Suto, Aya; Tamazawa, Nobuyuki; Yang, Suran; Kato, Tomoya; Yamakawa, Mitsunori

    2016-01-01

    Abstract The aim of this study was to evaluate the localization of collagen modifying enzymes (CMEs) on fibroblastic reticular cells (FRCs) and follicular dendritic cells (FDCs) in non-neoplastic lymphoid tissues and various malignant lymphomas. The expression of prolyl 4-hydroxylase 1 (P4H1), lysyl hydroxylase 3 (LH3), and protein disulfide isomerase (PDI) was frequently observed on FRCs and FDCs in the germinal center (GC), except for the mantle zone. The expression of CMEs was lower in most lymphomas than in their respective postulated normal counterparts. The ratio of transglutaminase II+ FRCs/CD35+ FDCs was also lower in follicular lymphomas (FL) than in other lymphomas. The mRNAs of some CMEs (P4H1, prolyl 4-hydroxylase 3, LH3, and heat shock protein 47) were confirmed in almost all lymphomas. These results indicate that lymphoma cell proliferation suppresses/decreases the number of CMEs expressing FRCs and FDCs in most lymphomas. PMID:26700650

  10. LRIT3 is essential to localize TRPM1 to the dendritic tips of depolarizing bipolar cells and may play a role in cone synapse formation.

    PubMed

    Neuillé, Marion; Morgans, Catherine W; Cao, Yan; Orhan, Elise; Michiels, Christelle; Sahel, José-Alain; Audo, Isabelle; Duvoisin, Robert M; Martemyanov, Kirill A; Zeitz, Christina

    2015-08-01

    Mutations in LRIT3 lead to complete congenital stationary night blindness (cCSNB). The exact role of LRIT3 in ON-bipolar cell signaling cascade remains to be elucidated. Recently, we have characterized a novel mouse model lacking Lrit3 [no b-wave 6, (Lrit3(nob6/nob6) )], which displays similar abnormalities to patients with cCSNB with LRIT3 mutations. Here we compare the localization of components of the ON-bipolar cell signaling cascade in wild-type and Lrit3(nob6/nob6) retinal sections by immunofluorescence confocal microscopy. An anti-LRIT3 antibody was generated. Immunofluorescent staining of LRIT3 in wild-type mice revealed a specific punctate labeling in the outer plexiform layer (OPL), which was absent in Lrit3(nob6/nob6) mice. LRIT3 did not co-localize with ribeye or calbindin but co-localized with mGluR6. TRPM1 staining was severely decreased at the dendritic tips of all depolarizing bipolar cells in Lrit3(nob6/nob6) mice. mGluR6, GPR179, RGS7, RGS11 and Gβ5 immunofluorescence was absent at the dendritic tips of cone ON-bipolar cells in Lrit3(nob6/nob6) mice, while it was present at the dendritic tips of rod bipolar cells. Furthermore, peanut agglutinin (PNA) labeling was severely reduced in the OPL in Lrit3(nob6/nob6) mice. This study confirmed the localization of LRIT3 at the dendritic tips of depolarizing bipolar cells in mouse retina and demonstrated the dependence of TRPM1 localization on the presence of LRIT3. As tested components of the ON-bipolar cell signaling cascade and PNA revealed disrupted localization, an additional function of LRIT3 in cone synapse formation is suggested. These results point to a possibly different regulation of the mGluR6 signaling cascade between rod and cone ON-bipolar cells.

  11. Bone marrow-derived dendritic cells.

    PubMed

    Roney, Kelly

    2013-01-01

    While much is understood about dendritic cells and their role in the immune system, the study of these cells is critical to gain a more complete understanding of their function. Dendritic cell isolation from mouse body tissues can be difficult and the number of cells isolated small. This protocol describes the growth of large number of dendritic cells from the culture of mouse bone marrow cells. The dendritic cells grown in culture facilitate experiments that may require large number of dendritic cells without great expense or use of large number of mice.

  12. Anomalous diffusion in Purkinje cell dendrites caused by spines

    PubMed Central

    Santamaria, Fidel; Wils, Stefan; De Schutter, Erik; Augustine, George J.

    2007-01-01

    We combined local photolysis of caged compounds with fluorescence imaging to visualize molecular diffusion within dendrites of cerebellar Purkinje cells. Diffusion of a volume marker, fluorescein dextran, within spiny dendrites was remarkably slow in comparison to its diffusion in smooth dendrites. Computer simulations indicate that this retardation is due to a transient trapping of molecules within dendritic spines, yielding anomalous diffusion. We considered the influence of spine trapping on the diffusion of calcium ions (Ca2+) and inositol-1,4,5-triphospate (IP3), two synaptic second messengers. Diffusion of IP3 was strongly influenced by the presence of dendritic spines while Ca2+ was removed so rapidly that it could not diffuse far enough to be trapped. We conclude that an important function of dendritic spines may be to trap chemical signals and thereby create slowed anomalous diffusion within dendrites. PMID:17114048

  13. Synaptically activated Ca2+ waves and NMDA spikes locally suppress voltage-dependent Ca2+ signalling in rat pyramidal cell dendrites

    PubMed Central

    Manita, Satoshi; Miyazaki, Kenichi; Ross, William N

    2011-01-01

    Abstract Postsynaptic [Ca2+]i changes contribute to several kinds of plasticity in pyramidal neurons. We examined the effects of synaptically activated Ca2+ waves and NMDA spikes on subsequent Ca2+ signalling in CA1 pyramidal cell dendrites in hippocampal slices. Tetanic synaptic stimulation evoked a localized Ca2+ wave in the primary apical dendrites. The [Ca2+]i increase from a backpropagating action potential (bAP) or subthreshold depolarization was reduced if it was generated immediately after the wave. The suppression had a recovery time of 30–60 s. The suppression only occurred where the wave was generated and was not due to a change in bAP amplitude or shape. The suppression also could be generated by Ca2+ waves evoked by uncaging IP3, showing that other signalling pathways activated by the synaptic tetanus were not required. The suppression was proportional to the amplitude of the [Ca2+]i change of the Ca2+ wave and was not blocked by a spectrum of kinase or phosphatase inhibitors, consistent with suppression due to Ca2+-dependent inactivation of Ca2+ channels. The waves also reduced the frequency and amplitude of spontaneous, localized Ca2+ release events in the dendrites by a different mechanism, probably by depleting the stores at the site of wave generation. The same synaptic tetanus often evoked NMDA spike-mediated [Ca2+]i increases in the oblique dendrites where Ca2+ waves do not propagate. These NMDA spikes suppressed the [Ca2+]i increase caused by bAPs in those regions. [Ca2+]i increases by Ca2+ entry through voltage-gated Ca2+ channels also suppressed the [Ca2+]i increases from subsequent bAPs in regions where the voltage-gated [Ca2+]i increases were largest, showing that all ways of raising [Ca2+]i could cause suppression. PMID:21844002

  14. Immunopathological features of palatine tonsil characteristic of IgA nephropathy: IgA1 localization in follicular dendritic cells.

    PubMed

    Kusakari, C; Nose, M; Takasaka, T; Yuasa, R; Kato, M; Miyazono, K; Fujita, T; Kyogoku, M

    1994-01-01

    IgA nephropathy (IgAN) is generally thought to be mediated by the glomerular deposition of circulating immune complexes containing IgA as the major antibody component. Upper respiratory infections and tonsillitis often precede IgAN, and in some cases tonsillectomy is effective for the treatment of IgAN. Thus, the tonsil seems to be a unique organ causing initial and/or progressive events to generate nephritogenic immune complexes in IgAN. In this study we focused on the analysis of immunopathological features of the palatine tonsil characteristic of IgAN patients by using an immunohistochemical technique. The IgA1 subclass was demonstrated in follicular dendritic cells (FDC) of the tonsil of IgAN patients, but not in FDC of non-IgAN controls. On the other hand, IgA2, IgG, IgM and C3 did not show any differences in distribution between the two groups. Moreover, the expression of decay-accelerating factor (DAF), an inhibitor of homologous complement activation, and transforming growth factor-beta 1 (TGF-beta 1), an inducer of antibody-producing cells to IgA class switching, in FDC and interdigitating dendritic cells of the tonsil, respectively, which was also clarified in this study for the first time, was found to be identically distributed in the two groups. These findings may support the idea that IgA1, possibly in an immune complex form, is trapped by FDC and plays an important role in the persistent activation of particular B cell repertoires responsible for the onset and/or progression of IgAN.

  15. Immunopathological features of palatine tonsil characteristic of IgA nephropathy: IgA1 localization in follicular dendritic cells.

    PubMed Central

    Kusakari, C; Nose, M; Takasaka, T; Yuasa, R; Kato, M; Miyazono, K; Fujita, T; Kyogoku, M

    1994-01-01

    IgA nephropathy (IgAN) is generally thought to be mediated by the glomerular deposition of circulating immune complexes containing IgA as the major antibody component. Upper respiratory infections and tonsillitis often precede IgAN, and in some cases tonsillectomy is effective for the treatment of IgAN. Thus, the tonsil seems to be a unique organ causing initial and/or progressive events to generate nephritogenic immune complexes in IgAN. In this study we focused on the analysis of immunopathological features of the palatine tonsil characteristic of IgAN patients by using an immunohistochemical technique. The IgA1 subclass was demonstrated in follicular dendritic cells (FDC) of the tonsil of IgAN patients, but not in FDC of non-IgAN controls. On the other hand, IgA2, IgG, IgM and C3 did not show any differences in distribution between the two groups. Moreover, the expression of decay-accelerating factor (DAF), an inhibitor of homologous complement activation, and transforming growth factor-beta 1 (TGF-beta 1), an inducer of antibody-producing cells to IgA class switching, in FDC and interdigitating dendritic cells of the tonsil, respectively, which was also clarified in this study for the first time, was found to be identically distributed in the two groups. These findings may support the idea that IgA1, possibly in an immune complex form, is trapped by FDC and plays an important role in the persistent activation of particular B cell repertoires responsible for the onset and/or progression of IgAN. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7507015

  16. Dendritic cells in Graves' disease.

    PubMed

    Purnamasari, Dyah; Soewondo, Pradana; Djauzi, Samsuridjal

    2015-01-01

    Dendritic cells are major antigen-presenting cells (APC) that stimulate naive T cells, which induce adaptive immune responses. Graves' disease (GD) is an autoimmune disease characterized by the presence of autoantibodies against Thyroid Stimulating Hormone Receptor (TSHR). The autoantibodies bind with TSHR and stimulate thyroid hormone production. Dendritic cells are still the major APC in GD immune response although thyrocytes in GD can also express Major Histocompatibility Class (MHC) class II molecule. Studies about DC in GD have been conducted by isolating intra-thyroid DC or DC in peripheral circulation. Results of DC studies in GD are still controversial. Changes in number and profile of DC are found, which indicate altered immune response activity and defects of regulator T cell (Treg) in GD.

  17. Activated myeloid dendritic cells accumulate and co-localize with CD3+ T cells in coronary artery lesions in patients with Kawasaki disease.

    PubMed

    Yilmaz, Atilla; Rowley, Anne; Schulte, Danica J; Doherty, Terence M; Schröder, Nicolas W J; Fishbein, Michael C; Kalelkar, Mitra; Cicha, Iwona; Schubert, Katja; Daniel, Werner G; Garlichs, Christoph D; Arditi, Moshe

    2007-08-01

    Emerging evidence implicating the participation of dendritic cells (DCs) and T cells in various vascular inflammatory diseases such as giant cell arteritis, Takayasu's arteritis, and atherosclerosis led us to hypothesize that they might also participate in the pathogenesis of coronary arteritis in Kawasaki disease (KD). Coronary artery specimens from 4 patients with KD and 6 control patients were obtained. Immunohistochemical and computer-assisted histomorphometric analyses were performed to detect all myeloid DCs (S-100(+), fascin(+)), all plasmacytoid DCs (CD123(+)) as well as specific DC subsets (mature myeloid DCs [CD83(+)], myeloid [BDCA-1(+)] and plasmacytoid DC precursors [BDCA-2(+)]), T cells (CD3(+)), and all antigen-presenting cells (HLA-DR(+)). Co-localization of DCs with T cells was assessed using double immunostaining. Significantly more myeloid DCs at a precursor, immature or mature stage were found in coronary lesions of KD patients than in controls. Myeloid DC precursors were distributed equally in the intima and adventitia. Mature myeloid DCs were particularly abundant in the adventitia. There was a significant correlation between mature DCs and HLA-DR expression. Double immunostaining demonstrated frequent contacts between myeloid DCs and T cells in the outer media and adventitia. Plasmacytoid DC precursors were rarely found in the adventitia. In conclusion, coronary artery lesions of KD patients contain increased numbers of mature myeloid DCs with high HLA-DR expression and frequent T cell contacts detected immunohistochemically. This suggests that mature arterial myeloid DCs might be activating T cells in situ and may be a significant factor in the pathogenesis of coronary arteritis in KD.

  18. Local not systemic modulation of dendritic cell S1P receptors in lung blunts virus-specific immune responses to influenza

    PubMed Central

    Marsolais, David; Hahm, Bumsuk; Edelmann, Kurt H.; Walsh, Kevin B.; Guerrero, Miguel; Hatta, Yasuko; Kawaoka, Yoshihiro; Roberts, Edward; Oldstone, Michael B. A.; Rosen, Hugh

    2008-01-01

    The mechanism by which locally delivered sphingosine analogs regulate host response to localized viral infection has never been addressed. In this report, we show that intra-tracheal (i.t.) delivery of chiral sphingosine analog AAL-R or its phosphate ester inhibits the T cell response to influenza-virus infection. In contrast, neither intra-peritoneal (i.p.) delivery of AAL-R nor i.t. instillation of the non-phosphorylable stereoisomer AAL-S suppressed virus-specific T cell response, indicating that in vivo phosphorylation of AAL-R and S1P receptor modulation in lungs are essential for immunomodulation. I.t. delivery of water soluble S1P1 receptor agonist at doses sufficient to induce systemic lymphopenia did not inhibit virus-specific T cell response indicating that S1P1 is not involved in the immunosuppressive activities of AAL-R and that immunosuppression acts independently of naïve lymphocyte recirculation. Accumulation of dendritic cells (DCs) in draining lymph nodes was inhibited by i.t. but not i.p. delivery of AAL-R. Direct modulation of DCs is demonstrated by the impaired ability of virus-infected bone-marrow derived DCs treated in vitro with AAL-R to trigger in vivo T cell response after adoptive transfer to the airways. Thus, our results suggest that locally delivered sphingosine analogs induce immunosuppression by modulating S1P receptors other than S1P1 or S1P2 on dendritic cells in the lungs after influenza virus infection. PMID:18577684

  19. Dendritic cell analysis in primary immunodeficiency

    PubMed Central

    Bigley, Venetia; Barge, Dawn; Collin, Matthew

    2016-01-01

    Purpose of review Dendritic cells are specialized antigen-presenting cells which link innate and adaptive immunity, through recognition and presentation of antigen to T cells. Although the importance of dendritic cells has been demonstrated in many animal models, their contribution to human immunity remains relatively unexplored in vivo. Given their central role in infection, autoimmunity, and malignancy, dendritic cell deficiency or dysfunction would be expected to have clinical consequences. Recent findings Human dendritic cell deficiency disorders, related to GATA binding protein 2 (GATA2) and interferon regulatory factor 8 (IRF8) mutations, have highlighted the importance of dendritic cells and monocytes in primary immunodeficiency diseases and begun to shed light on their nonredundant roles in host defense and immune regulation in vivo. The contribution of dendritic cell and monocyte dysfunction to the pathogenesis of primary immunodeficiency disease phenotypes is becoming increasingly apparent. However, dendritic cell analysis is not yet a routine part of primary immunodeficiency disease workup. Summary Widespread uptake of dendritic cell/monocyte screening in clinical practice will facilitate the discovery of novel dendritic cell and monocyte disorders as well as advancing our understanding of human dendritic cell biology in health and disease. PMID:27755182

  20. Rapid dendritic cell recruitment to the bronchial mucosa of patients with atopic asthma in response to local allergen challenge

    PubMed Central

    Jahnsen, F; Moloney, E; Hogan, T; Upham, J; Burke, C; Holt, P

    2001-01-01

    BACKGROUND—Airway dendritic cells (DC) play an important role in chronic allergic airway inflammation in experimental animals, but a similar role for DC in human allergic asthma has been difficult to define. This pilot study was undertaken to elucidate the role of DC in allergic asthma by examining their potential to migrate to the lower airways in response to bronchial challenge with specific allergen.
METHODS—Bronchial biopsy specimens were obtained from seven patients with allergic asthma before and 4-5 hours after allergen challenge. Multicolour immunofluorescence staining was performed on mucosal cryosections to identify changes in the number and phenotypes of DC.
RESULTS—A dramatic increase in the number of CD1c+HLA-DR+ DC were observed in the lamina propria after challenge compared with baseline (22.4 v 7.8 cells/mm2). The rapid accumulation (within 4-5 hours) of these cells strongly suggests that they were directly recruited from peripheral blood.
CONCLUSION—We have shown for the first time that a specific DC subset rapidly emigrates into the human bronchial mucosa during allergic inflammation. While this study is based on relatively few patients, the consistency of the overall results strongly suggests that the rapid population dynamics of human airway DC closely parallel those in animal models of acute inflammation. These findings support suggestions that DC have an important role in human airway allergy.

 PMID:11641504

  1. Homophilic Protocadherin Cell-Cell Interactions Promote Dendrite Complexity.

    PubMed

    Molumby, Michael J; Keeler, Austin B; Weiner, Joshua A

    2016-05-03

    Growth of a properly complex dendrite arbor is a key step in neuronal differentiation and a prerequisite for neural circuit formation. Diverse cell surface molecules, such as the clustered protocadherins (Pcdhs), have long been proposed to regulate circuit formation through specific cell-cell interactions. Here, using transgenic and conditional knockout mice to manipulate γ-Pcdh repertoire in the cerebral cortex, we show that the complexity of a neuron's dendritic arbor is determined by homophilic interactions with other cells. Neurons expressing only one of the 22 γ-Pcdhs can exhibit either exuberant or minimal dendrite complexity, depending only on whether surrounding cells express the same isoform. Furthermore, loss of astrocytic γ-Pcdhs, or disruption of astrocyte-neuron homophilic matching, reduces dendrite complexity cell non-autonomously. Our data indicate that γ-Pcdhs act locally to promote dendrite arborization via homophilic matching, and they confirm that connectivity in vivo depends on molecular interactions between neurons and between neurons and astrocytes.

  2. Isolation and generation of human dendritic cells.

    PubMed

    Nair, Smita; Archer, Gerald E; Tedder, Thomas F

    2012-11-01

    Dendritic cells are highly specialized antigen-presenting cells (APC), which may be isolated or generated from human blood mononuclear cells. Although mature blood dendritic cells normally represent ∼0.2% of human blood mononuclear cells, their frequency can be greatly increased using the cell enrichment methods described in this unit. More highly purified dendritic cell preparations can be obtained from these populations by sorting of fluorescence-labeled cells. Alternatively, dendritic cells can be generated from monocytes by culture with the appropriate cytokines, as described here. In addition, a negative selection approach is provided that may be employed to generate cell preparations that have been depleted of dendritic cells to be used for comparison in functional studies.

  3. The renal microenvironment modifies dendritic cell phenotype.

    PubMed

    Chessa, Federica; Mathow, Daniel; Wang, Shijun; Hielscher, Thomas; Atzberger, Ann; Porubsky, Stefan; Gretz, Norbert; Burgdorf, Sven; Gröne, Hermann-Josef; Popovic, Zoran V

    2016-01-01

    Renal dendritic cells are a major component of the renal mononuclear phagocytic system. In the renal interstitium, these cells are exposed to an osmotic gradient, mainly sodium, whose concentration progressively increases towards inner medulla. Renal allograft rejection affects predominantly the cortex, suggesting a protective role of the renal medullary micromilieu. Whether osmolar variations can modulate the function of renal dendritic cells is currently undefined. Considering the central role of dendritic cells in promoting allorejection, we tested whether the biophysical micromilieu, particularly the interstitial osmotic gradient, influences their alloreactivity. There was a progressive depletion of leukocytes towards the medulla of homeostatic kidney. Only macrophages opposed this tendency. Flow cytometry of homeostatic and post-transplant medullary dendritic cells revealed a switch towards a macrophage-like phenotype. Similarly, bone marrow-derived dendritic cells developed ex vivo in sodium chloride-enriched medium acquired a M2-like signature. Microarray analysis of allotransplant dendritic cells posed a medullary downregulation of genes mainly involved in alloantigen recognition. Gene expression profiles of both medullary dendritic cells and bone marrow-derived dendritic cells matured in hyperosmolar medium had an overlap with the macrophage M2 signature. Thus, the medullary environment inhibits an alloimmune response by modulating the phenotype and function of dendritic cells.

  4. Infection Rate and Tissue Localization of Murine IL-12p40-Producing Monocyte-Derived CD103+ Lung Dendritic Cells during Pulmonary Tuberculosis

    PubMed Central

    Leepiyasakulchai, Chaniya; Taher, Chato; Chuquimia, Olga D.; Mazurek, Jolanta; Söderberg-Naucler, Cecilia; Fernández, Carmen; Sköld, Markus

    2013-01-01

    Non-hematopoietic cells, including lung epithelial cells, influence host immune responses. By co-culturing primary alveolar epithelial cells and monocytes from naïve donor mice, we show that alveolar epithelial cells support monocyte survival and differentiation in vitro, suggesting a role for non-hematopoietic cells in monocyte differentiation during the steady state in vivo. CD103+ dendritic cells (αE-DC) are present at mucosal surfaces. Using a murine primary monocyte adoptive transfer model, we demonstrate that αE-DC in the lungs and pulmonary lymph nodes are monocyte-derived during pulmonary tuberculosis. The tissue localization may influence the functional potential of αE-DC that accumulate in Mycobacterium tuberculosis-infected lungs. Here, we confirm the localization of αE-DC in uninfected mice beneath the bronchial epithelial cell layer and near the vascular wall, and show that αE-DC have a similar distribution in the lungs during pulmonary tuberculosis and are detected in the bronchoalveolar lavage fluid from infected mice. Lung DC can be targeted by M. tuberculosis in vivo and play a role in bacterial dissemination to the draining lymph node. In contrast to other DC subsets, only a fraction of lung αE-DC are infected with the bacterium. We also show that virulent M. tuberculosis does not significantly alter cell surface expression levels of MHC class II on infected cells in vivo and that αE-DC contain the highest frequency of IL-12p40+ cells among the myeloid cell subsets in infected lungs. Our results support a model in which inflammatory monocytes are recruited into the M. tuberculosis-infected lung tissue and, depending on which non-hematopoietic cells they interact with, differentiate along different paths to give rise to multiple monocyte-derived cells, including DC with a distinctive αE-DC phenotype. PMID:23861965

  5. Cell-intrinsic drivers of dendrite morphogenesis.

    PubMed

    Puram, Sidharth V; Bonni, Azad

    2013-12-01

    The proper formation and morphogenesis of dendrites is fundamental to the establishment of neural circuits in the brain. Following cell cycle exit and migration, neurons undergo organized stages of dendrite morphogenesis, which include dendritic arbor growth and elaboration followed by retraction and pruning. Although these developmental stages were characterized over a century ago, molecular regulators of dendrite morphogenesis have only recently been defined. In particular, studies in Drosophila and mammalian neurons have identified numerous cell-intrinsic drivers of dendrite morphogenesis that include transcriptional regulators, cytoskeletal and motor proteins, secretory and endocytic pathways, cell cycle-regulated ubiquitin ligases, and components of other signaling cascades. Here, we review cell-intrinsic drivers of dendrite patterning and discuss how the characterization of such crucial regulators advances our understanding of normal brain development and pathogenesis of diverse cognitive disorders.

  6. Lung dendritic cells and the inflammatory response.

    PubMed

    Grayson, Mitchell H

    2006-05-01

    To discuss the role of conventional and plasmacytoid dendritic cells in inducing and modulating immune responses in the lung. The primary literature and selected review articles studying the role of dendritic cells in both rodent and human lungs as identified via a PubMed/MEDLINE search using the keywords dendritic cell, antigen-presenting cell, viral airway disease, asthma, allergy, and atopy. The author's knowledge of the field was used to identify studies that were relevant to the stated objective. Dendritic cells are well positioned in the respiratory tract and other mucosal surfaces to respond to any foreign protein. These cells are crucial to the initiation of the adaptive immune response through induction of antigen specific T-cell responses. These cells also play an important role in the regulation of developing and ongoing immune responses, an area that is currently under intense investigation. This review discusses the various subsets of human and rodent dendritic cells and the pathways involved in antigen processing and subsequent immune regulation by dendritic cells in the lung using both viral and nonviral allergenic protein exposure as examples. Conventional and plasmacytoid dendritic cells are uniquely situated in the immune cascade to not only initiate but also modulate immune responses. Therapeutic interventions in allergic and asthmatic diseases will likely be developed to take advantage of this exclusive position of the dendritic cell.

  7. [Disseminated interdigitating dendritic cell sarcoma].

    PubMed

    Santarelli, Ignacio M; Veltri, Mariano; Manzella, Diego J; Avagnina, María Alejandra; Pereyra, Pablo M; Chavín, Hernán C

    2017-01-01

    A 70 year-old woman was admitted to our hospital with a 3-month history of abdominal pain, weight loss and night sweats. On physical examination, she presented with a 5 cm diameter abdominal mass extended from epigastrium to the left flank, and at least three bilateral supraclavicular adenopathies. A disseminated interdigitating dendritic cell sarcoma was diagnosed through a biopsy of the abdominal mass. After that, a CHOP regime (cyclophosphamide, doxorubicin, vincristine and prednisone) was iniciated. She died after completion of the first cycle of treatment, six months after diagnosis.

  8. Dendritic Cell-Targeted Vaccines

    PubMed Central

    Cohn, Lillian; Delamarre, Lélia

    2014-01-01

    Despite significant effort, the development of effective vaccines inducing strong and durable T-cell responses against intracellular pathogens and cancer cells has remained a challenge. The initiation of effector CD8+ T-cell responses requires the presentation of peptides derived from internalized antigen on class I major histocompatibility complex molecules by dendritic cells (DCs) in a process called cross-presentation. A current strategy to enhance the effectiveness of vaccination is to deliver antigens directly to DCs. This is done via selective targeting of antigen using monoclonal antibodies directed against endocytic receptors on the surface of the DCs. In this review, we will discuss considerations relevant to the design of such vaccines: the existence of DC subsets with specialized functions, the impact of the antigen intracellular trafficking on cross-presentation, and the influence of maturation signals received by DCs on the outcome of the immune response. PMID:24910635

  9. [Exosomes derived from dendritic cells].

    PubMed

    Amigorena, S

    2001-01-01

    Dendritic cells (DC) are potent antigen presenting cells and the only ones capable of inducing primary cytotoxic immune responses both in vivo and vitro. DCs secrete a 60-80 nm membrane vesicle population of endocytic origin, called exosomes. The protein composition of exosomes was analyzed using a systematic proteomic approach. Besides MHC and costimulatory molecules, exosomes bear several adhesion proteins, probably involved in their specific targeting. Exosomes also accumulate several cytosolic factors, most likely involved in exoxome's biogenesis in late endosomes. Like DCs, exosomes induce potent anti tumor immune responses in vivo. Indeed, a single injection of DC-derived exosomes sensitized with tumor peptides induced the eradication of established mouse tumors. Tumor-specific cytotoxic T lymphocytes were found in the spleen of exosome treated mice, and depletion of CD8+ T cells in vivo inhibited the anti tumor effect of exosomes. These results strongly support the implementation of human DC-derived exosomes for cancer immunotherapy.

  10. Dendritic web silicon for solar cell application

    NASA Technical Reports Server (NTRS)

    Seidensticker, R. G.

    1977-01-01

    The dendritic web process for growing long thin ribbon crystals of silicon and other semiconductors is described. Growth is initiated from a thin wirelike dendrite seed which is brought into contact with the melt surface. Initially, the seed grows laterally to form a button at the melt surface; when the seed is withdrawn, needlelike dendrites propagate from each end of the button into the melt, and the web portion of the crystal is formed by the solidification of the liquid film supported by the button and the bounding dendrites. Apparatus used for dendritic web growth, material characteristics, and the two distinctly different mechanisms involved in the growth of a single crystal are examined. The performance of solar cells fabricated from dendritic web material is indistinguishable from the performance of cells fabricated from Czochralski grown material.

  11. Dendritic web silicon for solar cell application

    NASA Technical Reports Server (NTRS)

    Seidensticker, R. G.

    1977-01-01

    The dendritic web process for growing long thin ribbon crystals of silicon and other semiconductors is described. Growth is initiated from a thin wirelike dendrite seed which is brought into contact with the melt surface. Initially, the seed grows laterally to form a button at the melt surface; when the seed is withdrawn, needlelike dendrites propagate from each end of the button into the melt, and the web portion of the crystal is formed by the solidification of the liquid film supported by the button and the bounding dendrites. Apparatus used for dendritic web growth, material characteristics, and the two distinctly different mechanisms involved in the growth of a single crystal are examined. The performance of solar cells fabricated from dendritic web material is indistinguishable from the performance of cells fabricated from Czochralski grown material.

  12. A Dual Role for Corneal Dendritic Cells in Herpes Simplex Keratitis: Local Suppression of Corneal Damage and Promotion of Systemic Viral Dissemination

    PubMed Central

    Hu, Kai; Harris, Deshea L.; Yamaguchi, Takefumi; von Andrian, Ulrich H.; Hamrah, Pedram

    2015-01-01

    The cornea is the shield to the foreign world and thus, a primary site for peripheral infections. However, transparency and vision are incompatible with inflammation and scarring that may result from infections. Thus, the cornea is required to perform a delicate balance between fighting infections and preserving vision. To date, little is known about the specific role of antigen-presenting cells in viral keratitis. In this study, utilizing an established murine model of primary acute herpes simplex virus (HSV)-1 keratitis, we demonstrate that primary HSV keratitis results in increased conventional dendritic cells (cDCs) and macrophages within 24 hours after infection. Local depletion of cDCs in CD11c-DTR mice by subconjuntival diphtheria toxin injections, led to increased viral proliferation, and influx of inflammatory cells, resulting in increased scarring and clinical keratitis. In addition, while HSV infection resulted in significant corneal nerve destruction, local depletion of cDCs resulted in a much more severe loss of corneal nerves. Further, local cDC depletion resulted in decreased corneal nerve infection, and subsequently decreased and delayed systemic viral transmission in the trigeminal ganglion and draining lymph node, resulting in decreased mortality of mice. In contrast, sham depletion or depletion of macrophages through local injection of clodronate liposomes had neither a significant impact on the cornea, nor an effect on systemic viral transmission. In conclusion, we demonstrate that corneal cDCs may play a primary role in local corneal defense during viral keratitis and preserve vision, at the cost of inducing systemic viral dissemination, leading to increased mortality. PMID:26332302

  13. A Dual Role for Corneal Dendritic Cells in Herpes Simplex Keratitis: Local Suppression of Corneal Damage and Promotion of Systemic Viral Dissemination.

    PubMed

    Hu, Kai; Harris, Deshea L; Yamaguchi, Takefumi; von Andrian, Ulrich H; Hamrah, Pedram

    2015-01-01

    The cornea is the shield to the foreign world and thus, a primary site for peripheral infections. However, transparency and vision are incompatible with inflammation and scarring that may result from infections. Thus, the cornea is required to perform a delicate balance between fighting infections and preserving vision. To date, little is known about the specific role of antigen-presenting cells in viral keratitis. In this study, utilizing an established murine model of primary acute herpes simplex virus (HSV)-1 keratitis, we demonstrate that primary HSV keratitis results in increased conventional dendritic cells (cDCs) and macrophages within 24 hours after infection. Local depletion of cDCs in CD11c-DTR mice by subconjuntival diphtheria toxin injections, led to increased viral proliferation, and influx of inflammatory cells, resulting in increased scarring and clinical keratitis. In addition, while HSV infection resulted in significant corneal nerve destruction, local depletion of cDCs resulted in a much more severe loss of corneal nerves. Further, local cDC depletion resulted in decreased corneal nerve infection, and subsequently decreased and delayed systemic viral transmission in the trigeminal ganglion and draining lymph node, resulting in decreased mortality of mice. In contrast, sham depletion or depletion of macrophages through local injection of clodronate liposomes had neither a significant impact on the cornea, nor an effect on systemic viral transmission. In conclusion, we demonstrate that corneal cDCs may play a primary role in local corneal defense during viral keratitis and preserve vision, at the cost of inducing systemic viral dissemination, leading to increased mortality.

  14. Recombinant Sj16 from Schistosoma japonicum contains a functional N-terminal nuclear localization signal necessary for nuclear translocation in dendritic cells and interleukin-10 production.

    PubMed

    Sun, Xi; Yang, Fan; Shen, Jia; Liu, Zhen; Liang, Jinyi; Zheng, Huanqin; Fung, Mingchiu; Wu, Zhongdao

    2016-12-01

    Sj16 is a Schistosoma japonicum-derived protein (16 kDa in molecular weight) that has been identified as an immune modulation molecule, but the mechanisms of modulation of immune responses are not known. In this report, we aimed to investigate the host immune regulation mechanism by recombinant Sj16 (rSj16) and thus illuminate the molecular mechanism of immune evasion by S. japonicum. The effect of rSj16 and rSj16 mutants on the biology of dendritic cells (DCs) was assessed by examining DC maturation, cytokine production, and expression of surface markers by flow cytometry and enzyme-linked immunosorbent assay. We found that rSj16 significantly stimulated interleukin (IL)-10 production and inhibited LPS-induced bone marrow-derived dendrite cell (BMDC) maturation in a dose-dependent manner. By using antibody neutralization experiments and IL-10-deficient (knockout) mice, we confirmed that the inhibitory effect of rSj16 on LPS-induced BMDCs is due to its induction of IL-10 production. To understand how rSj16 induces the production of IL-10, we analyzed the protein sequence and revealed two potential nuclear localization signals (NLS) in Sj16. The N-terminal NLS (NLS1) is both necessary and sufficient for translocation of rSj16 to the nucleus of BMDCs and is important for subsequent induction of IL-10 production and the inhibition of BMDC maturation by rSj16. The results of our study concluded that the ability of rSj16 to inhibit DC functions is IL-10 dependent which is operated by IL-10R signal pathway. This study also confirmed that NLS is an important domain associated with increased production of IL-10. Our findings will extend the current understanding on host-schistosome relationship and provide insight about bottleneck of parasitic control.

  15. Dendritic cells in hematological malignancies.

    PubMed

    Galati, Domenico; Corazzelli, Gaetano; De Filippi, Rosaria; Pinto, Antonio

    2016-12-01

    Dendritic cells (DCs) are bone-marrow-derived immune cells accounted for a crucial role in initiating and modulating the adaptive immune response and supporting the innate immune response independently from T cells. While functioning as the most effective antigen-presenting cells within the immune system, DCs can otherwise induce tolerance in central and peripheral lymphoid organs acting therefore as suppressors rather than stimulators of the immune response. Within mechanisms regulating antitumor immunity, DCs can capture antigens from viable or damaged tumor cells and present the processed peptides to T-cells to prompt the generation and maintenance of an effective tumor-specific T-cell response. Upon a complex cross-talk with other cellular components of the tumor microenvironment, DCs can, on the other hand, exert a potent antigen-dependent and -independent tolerogenic function by favoring the process of tumor immune evasion. Due to this dual-role in balancing antitumor immunity and tolerance, possibly linked to distinct developmental stages and functional subsets, several studies have addressed the regulatory significance of DCs in different types of malignancies. This review summarizes the most significant pieces of evidence highlighting the critical relevance of bone marrow-derived DCs within the immune pathways regulating pathogenesis and progression of hemopoietic tumors. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Isolation and characterization of dendritic cells from adenoids of children with otitis media with effusion.

    PubMed Central

    van Nieuwkerk, E B; van der Baan, S; Richters, C D; Kamperdijk, E W

    1992-01-01

    Dendritic cells were enriched from adenoids of children with otitis media with effusion (OME) by density gradient centrifugation and culture techniques. An enrichment of 40-140-fold was obtained for dendritic cells. These cells were identified using morphology, enzyme cytochemistry, immunocytochemistry and functional criteria. Dendritic cells could be easily distinguished from macrophages. It appeared that the MoAb EBM11 (CD68) discriminated between dendritic cells and macrophages; in dendritic cells this activity was localized in a spot, whereas in macrophages it was found throughout the whole cytoplasm. The fractions enriched with dendritic cells showed a strong stimulatory effect on allogeneic T cells. These responses were MHC class II dependent since they could be blocked by anti-HLA-DR/DQ MoAbs. The data clearly show that dendritic cells from adenoids of children with OME still have functional capacities. Images Fig. 1 Fig. 2 Fig. 3 PMID:1572100

  17. Characterization of murine lung dendritic cells: similarities to Langerhans cells and thymic dendritic cells

    PubMed Central

    1990-01-01

    Dendritic cells (DC) are potent accessory cells (AC) for the initiation of primary immune responses. Although murine lymphoid DC and Langerhans cells have been extensively characterized, DC from murine lung have been incompletely described. We isolated cells from enzyme-digested murine lungs and bronchoalveolar lavages that were potent stimulators of a primary mixed lymphocyte response (MLR). The AC had a low buoyant density, were loosely adherent and nonphagocytic. AC function was unaffected by depletion of cells expressing the splenic DC marker, 33D1. In addition, antibody and complement depletion of cells bearing the macrophage marker F4/80, or removal of phagocytic cells with silica also failed to decrease AC activity. In contrast, AC function was decreased by depletion of cells expressing the markers J11d and the low affinity interleukin 2 receptor (IL-2R), both present on thymic and skin DC. AC function was approximately equal in FcR+ and FcR- subpopulations, indicating there was heterogeneity within the AC population. Consistent with the functional data, a combined two-color immunofluorescence and latex bead uptake technique revealed that lung cells high in AC activity were enriched in brightly Ia+ dendritic- shaped cells that (a) were nonphagocytic, (b) lacked specific T and B lymphocyte markers and the macrophage marker F4/80, but (c) frequently expressed C3biR, low affinity IL-2R, FcRII, and the markers NLDC-145 and J11d. Taken together, the functional and phenotypic data suggest the lung cells that stimulate resting T cells in an MLR and that might be important in local pulmonary immune responses are DC that bear functional and phenotypic similarity to other tissues DC, such as Langerhans cells and thymic DC. PMID:2162904

  18. Combining Carbon Ion Radiotherapy and Local Injection of {alpha}-Galactosylceramide-Pulsed Dendritic Cells Inhibits Lung Metastases in an In Vivo Murine Model

    SciTech Connect

    Ohkubo, Yu; Iwakawa, Mayumi; Seino, Ken-Ichiro; Nakawatari, Miyako; Wada, Haruka; Kamijuku, Hajime; Nakamura, Etsuko; Nakano, Takashi; Imai, Takashi

    2010-12-01

    Purpose: Our previous report indicated that carbon ion beam irradiation upregulated membrane-associated immunogenic molecules, underlining the potential clinical application of radioimmunotherapy. The antimetastatic efficacy of local combination therapy of carbon ion radiotherapy and immunotherapy was examined by use of an in vivo murine model. Methods and Materials: Tumors of mouse squamous cell carcinoma (NR-S1) cells inoculated in the legs of C3H/HeSlc mice were locally irradiated with a single 6-Gy dose of carbon ions (290 MeV/nucleon, 6-cm spread-out Bragg peak). Thirty-six hours after irradiation, {alpha}-galactosylceramide-pulsed dendritic cells (DCs) were injected into the leg tumor. We investigated the effects on distant lung metastases by counting the numbers of lung tumor colonies, making pathologic observations, and assessing immunohistochemistry. Results: The mice with no treatment (control) presented with 168 {+-} 53.8 metastatic nodules in the lungs, whereas the mice that received the combination therapy of carbon ion irradiation and DCs presented with 2.6 {+-} 1.9 (P = 0.009) at 2 weeks after irradiation. Immunohistochemistry showed that intracellular adhesion molecule 1, which activates DCs, increased from 6 h to 36 h after irradiation in the local tumors of the carbon ion-irradiated group. The expression of S100A8 in lung tissue, a marker of the lung pre-metastatic phase, was decreased only in the group with a combination of carbon ions and DCs. Conclusions: The combination of carbon ion radiotherapy with the injection of {alpha}-galactosylceramide-pulsed DCs into the primary tumor effectively inhibited distant lung metastases.

  19. Modelling plasticity in dendrites: from single cells to networks.

    PubMed

    Bono, Jacopo; Wilmes, Katharina A; Clopath, Claudia

    2017-09-07

    One of the key questions in neuroscience is how our brain self-organises to efficiently process information. To answer this question, we need to understand the underlying mechanisms of plasticity and their role in shaping synaptic connectivity. Theoretical neuroscience typically investigates plasticity on the level of neural networks. Neural network models often consist of point neurons, completely neglecting neuronal morphology for reasons of simplicity. However, during the past decades it became increasingly clear that inputs are locally processed in the dendrites before they reach the cell body. Dendritic properties enable local interactions between synapses and location-dependent modulations of inputs, rendering the position of synapses on dendrites highly important. These insights changed our view of neurons, such that we now think of them as small networks of nearly independent subunits instead of a simple point. Here, we propose that understanding how the brain processes information strongly requires that we consider the following properties: which plasticity mechanisms are present in the dendrites and how do they enable the self-organisation of synapses across the dendritic tree for efficient information processing? Ultimately, dendritic plasticity mechanisms can be studied in networks of neurons with dendrites, possibly uncovering unknown mechanisms that shape the connectivity in our brains. Copyright © 2017. Published by Elsevier Ltd.

  20. [Melanoma immunotherapy: dendritic cell vaccines].

    PubMed

    Lozada-Requena, Ivan; Núñez, César; Aguilar, José Luis

    2015-01-01

    This is a narrative review that shows accessible information to the scientific community about melanoma and immunotherapy. Dendritic cells have the ability to participate in innate and adaptive immunity, but are not unfamiliar to the immune evasion of tumors. Knowing the biology and role has led to generate in vitro several prospects of autologous cell vaccines against diverse types of cancer in humans and animal models. However, given the low efficiency they have shown, we must implement strategies to enhance their natural capacity either through the coexpression of key molecules to activate or reactivate the immune system, in combination with biosimilars or chemotherapeutic drugs. The action of natural products as alternative or adjuvant immunostimulant should not be ruled out. All types of immunotherapy should measure the impact of myeloid suppressor cells, which can attack the immune system and help tumor progression, respectively. This can reduce the activity of cellular vaccines and/or their combinations, that could be the difference between success or not of the immunotherapy. Although for melanoma there exist biosimilars approved by the Food and Drug Administration (FDA), not all have the expected success. Therefore it is necessary to evaluate other strategies including cellular vaccines loaded with tumor antigenic peptides expressed exclusively or antigens from tumor extracts and their respective adjuvants.

  1. Dendritic Kv3.3 potassium channels in cerebellar purkinje cells regulate generation and spatial dynamics of dendritic Ca2+ spikes.

    PubMed

    Zagha, Edward; Manita, Satoshi; Ross, William N; Rudy, Bernardo

    2010-06-01

    Purkinje cell dendrites are excitable structures with intrinsic and synaptic conductances contributing to the generation and propagation of electrical activity. Voltage-gated potassium channel subunit Kv3.3 is expressed in the distal dendrites of Purkinje cells. However, the functional relevance of this dendritic distribution is not understood. Moreover, mutations in Kv3.3 cause movement disorders in mice and cerebellar atrophy and ataxia in humans, emphasizing the importance of understanding the role of these channels. In this study, we explore functional implications of this dendritic channel expression and compare Purkinje cell dendritic excitability in wild-type and Kv3.3 knockout mice. We demonstrate enhanced excitability of Purkinje cell dendrites in Kv3.3 knockout mice, despite normal resting membrane properties. Combined data from local application pharmacology, voltage clamp analysis of ionic currents, and assessment of dendritic Ca(2+) spike threshold in Purkinje cells suggest a role for Kv3.3 channels in opposing Ca(2+) spike initiation. To study the physiological relevance of altered dendritic excitability, we measured [Ca(2+)](i) changes throughout the dendritic tree in response to climbing fiber activation. Ca(2+) signals were specifically enhanced in distal dendrites of Kv3.3 knockout Purkinje cells, suggesting a role for dendritic Kv3.3 channels in regulating propagation of electrical activity and Ca(2+) influx in distal dendrites. These findings characterize unique roles of Kv3.3 channels in dendrites, with implications for synaptic integration, plasticity, and human disease.

  2. Localization and expression pattern of amelotin, odontogenic ameloblast-associated protein and follicular dendritic cell-secreted protein in the junctional epithelium of inflamed gingiva.

    PubMed

    Nakayama, Yohei; Kobayashi, Ryoki; Matsui, Sari; Matsumura, Hiroyoshi; Iwai, Yasunobu; Noda, Keisuke; Yamazaki, Mizuho; Kurita-Ochiai, Tomoko; Yoshimura, Atsutoshi; Shinomura, Tamayuki; Ganss, Bernhard; Ogata, Yorimasa

    2016-11-02

    The purpose of this study is to elucidate the localization of amelotin (AMTN), odontogenic ameloblast-associated protein (ODAM) and follicular dendritic cell-secreted protein (FDC-SP) at the junctional epithelium (JE) in Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans infected mice and inflamed and non-inflamed human gingiva. We performed immunostaining to determine the localization and expression pattern of AMTN, ODAM and FDC-SP. AMTN, ODAM and FDC-SP in A. actinomycetemcomitans infected mice did not change dramatically compared with non-infected mice. AMTN and FDC-SP expressions were observed stronger in P. gingivalis infected mice at early stage. However, at the following stage, the coronal part of the AMTN expression disappeared from the JE, and FDC-SP expression decreased due to severe inflammation by P. gingivalis. ODAM expressed internal and external basal lamina, and the expression increased not only at early stage but also at the following stage in the inflammatory JE induced by P. gingivalis. In the human gingival tissues, AMTN was detected at the surface of the sulcular epithelium and JE in the non-inflamed and inflamed gingiva, and the localization did not change the process of inflammation. ODAM and FDC-SP were more widely detected at the sulcular epithelium and JE in the non-inflamed gingiva. In the inflamed gingiva, localization of ODAM and FDC-SP was spread into the gingival epithelium, compared to AMTN. These studies demonstrated that the expression pattern of AMTN, ODAM and FDC-SP at the JE were changed during inflammation process and these three proteins might play an important role in the resistance to inflammation.

  3. High-resolution in vivo imaging of regenerating dendrites of Drosophila sensory neurons during metamorphosis: local filopodial degeneration and heterotypic dendrite-dendrite contacts.

    PubMed

    Satoh, Daisuke; Suyama, Ritsuko; Kimura, Ken-ichi; Uemura, Tadashi

    2012-12-01

    Neuronal circuits that are formed in early development are reorganized at later developmental stages to support a wide range of adult behaviors. At Drosophila pupal stages, one example of this reorganization is dendritic remodeling of multidendritic neurons, which is accomplished by pruning and subsequent regeneration of branches in environments quite distinct from those in larval life. Here, we used long-term in vivo time-lapse recordings at high spatiotemporal resolution and analyzed the dynamics of two adjacent cell types that remodel dendritic arbors, which eventually innervate the lateral plate of the adult abdomen. These neurons initially exhibited dynamic extension, withdrawal and local degeneration of filopodia that sprouted from all along the length of regenerating branches. At a midpupal stage, branches extending from the two cell types started fasciculating with each other, which prompted us to test the hypothesis that this heterotypic contact may serve as a guiding scaffold for shaping dendritic arbors. Unexpectedly, our cell ablation study gave only marginal effects on the branch length and the arbor shape. This result suggests that the arbor morphology of the adult neurons in this study can be specified mostly in the absence of the dendrite-dendrite contact.

  4. Dendritic cell control of tolerogenic responses

    PubMed Central

    Manicassamy, Santhakumar; Pulendran, Bali

    2011-01-01

    Summary One of the most fundamental problems in immunology is the seemingly schizophrenic ability of the immune system to launch robust immunity against pathogens, while acquiring and maintaining a state of tolerance to the body’s own tissues and the trillions of commensal microorganisms and food antigens that confront it every day. A fundamental role for the innate immune system, particularly dendritic cells (DCs), in orchestrating immunological tolerance has been appreciated, but emerging studies have highlighted the nature of the innate receptors and the signaling pathways that program DCs to a tolerogenic state. Furthermore, several studies have emphasized the major role played by cellular interactions, and the microenvironment in programming tolerogenic DCs. Here we review these studies and suggest that the innate control of tolerogenic responses can be viewed as different hierarchies of organization, in which DCs, their innate receptors and signaling networks, and their interactions with other cells and local microenvironments represent different levels of the hierarchy. PMID:21488899

  5. Characterization of chicken epidermal dendritic cells

    PubMed Central

    Igyártó, Botond-Zoltán; Lackó, Erzsébet; Oláh, Imre; Magyar, Attila

    2006-01-01

    It has been known for 15 years that the chicken epidermis contains ATPase+ and major histocompatibility complex class II-positive (MHCII+) dendritic cells. These cells were designated as Langerhans cells but neither their detailed phenotype nor their function was further investigated. In the present paper we demonstrate a complete overlapping of ATPase, CD45 and vimentin staining in all dendritic cells of the chicken epidermis. The CD45+ ATPase+ vimentin+ dendritic cells could be divided into three subpopulations: an MHCII+ CD3– KUL01+ and 68.1+ (monocyte-macrophage subpopulation markers) subpopulation, an MHCII– CD3– KUL01– and 68.1– subpopulation and an MHCII– CD3+ KUL01– and 68.1– subpopulation. The first population could be designated as chicken Langerhans cells. The last population represents CD4– CD8– T-cell receptor-αβ– and -γδ– natural killer cells with cytoplasmic CD3 positivity. The epidermal dendritic cells have a low proliferation rate as assessed by bromodeoxyuridine incorporation. Both in vivo and in vitro experiments showed that dendritic cells could be mobilized from the epidermis. Hapten treatment of epidermis resulted in the decrease of the frequency of epidermal dendritic cells and hapten-loaded dendritic cells appeared in the dermis or in in vitro culture of isolated epidermis. Hapten-positive cells were also found in the so-called dermal lymphoid nodules. We suggest that these dermal nodules are responsible for some regional immunological functions similar to the mammalian lymph nodes. PMID:16889640

  6. Local GM-CSF-Dependent Differentiation and Activation of Pulmonary Dendritic Cells and Macrophages Protect against Progressive Cryptococcal Lung Infection in Mice.

    PubMed

    Chen, Gwo-Hsiao; Teitz-Tennenbaum, Seagal; Neal, Lori M; Murdock, Benjamin J; Malachowski, Antoni N; Dils, Anthony J; Olszewski, Michal A; Osterholzer, John J

    2016-02-15

    Patients with acquired deficiency in GM-CSF are susceptible to infections with Cryptococcus neoformans and other opportunistic fungi. We previously showed that GM-CSF protects against progressive fungal disease using a murine model of cryptococcal lung infection. To better understand the cellular and molecular mechanisms through which GM-CSF enhances antifungal host defenses, we investigated temporal and spatial relationships between myeloid and lymphoid immune responses in wild-type C57BL/6 mice capable of producing GM-CSF and GM-CSF-deficient mice infected with a moderately virulent encapsulated strain of C. neoformans (strain 52D). Our data demonstrate that GM-CSF deficiency led to a reduction in: 1) total lung leukocyte recruitment; 2) Th2 and Th17 responses; 3) total numbers of CD11b(+) dendritic cells (DC) and CD11b(-) and CD11b(+) macrophages (Mϕ); 4) DC and Mϕ activation; and 5) localization of DC and Mϕ to the microanatomic sites of alveolar infection. In contrast, GM-CSF deficiency resulted in increased accumulation of DC and Mϕ precursors, namely Ly-6C(high) monocytes, in the blood and lungs of infected mice. Collectively, these results show that GM-CSF promotes the local differentiation, accumulation, activation, and alveolar localization of lung DC and Mϕ in mice with cryptococcal lung infection. These findings identify GM-CSF as central to the protective immune response that prevents progressive fungal disease and thus shed new light on the increased susceptibility to these infections observed in patients with acquired GM-CSF deficiency.

  7. Active subthreshold dendritic conductances shape the local field potential

    PubMed Central

    Ness, Torbjørn V.; Remme, Michiel W. H.

    2016-01-01

    Key points The local field potential (LFP), the low‐frequency part of extracellular potentials recorded in neural tissue, is often used for probing neural circuit activity. Interpreting the LFP signal is difficult, however.While the cortical LFP is thought mainly to reflect synaptic inputs onto pyramidal neurons, little is known about the role of the various subthreshold active conductances in shaping the LFP.By means of biophysical modelling we obtain a comprehensive qualitative understanding of how the LFP generated by a single pyramidal neuron depends on the type and spatial distribution of active subthreshold currents.For pyramidal neurons, the h‐type channels probably play a key role and can cause a distinct resonance in the LFP power spectrum.Our results show that the LFP signal can give information about the active properties of neurons and imply that preferred frequencies in the LFP can result from those cellular properties instead of, for example, network dynamics. Abstract The main contribution to the local field potential (LFP) is thought to stem from synaptic input to neurons and the ensuing subthreshold dendritic processing. The role of active dendritic conductances in shaping the LFP has received little attention, even though such ion channels are known to affect the subthreshold neuron dynamics. Here we used a modelling approach to investigate the effects of subthreshold dendritic conductances on the LFP. Using a biophysically detailed, experimentally constrained model of a cortical pyramidal neuron, we identified conditions under which subthreshold active conductances are a major factor in shaping the LFP. We found that, in particular, the hyperpolarization‐activated inward current, I h, can have a sizable effect and cause a resonance in the LFP power spectral density. To get a general, qualitative understanding of how any subthreshold active dendritic conductance and its cellular distribution can affect the LFP, we next performed a systematic

  8. LTP is accompanied by an enhanced local excitability of pyramidal neuron dendrites.

    PubMed

    Frick, Andreas; Magee, Jeffrey; Johnston, Daniel

    2004-02-01

    The propagation and integration of signals in the dendrites of pyramidal neurons is regulated, in part, by the distribution and biophysical properties of voltage-gated ion channels. It is thus possible that any modification of these channels in a specific part of the dendritic tree might locally alter these signaling processes. Using dendritic and somatic whole-cell recordings, combined with calcium imaging in rat hippocampal slices, we found that the induction of long-term potentiation (LTP) was accompanied by a local increase in dendritic excitability that was dependent on the activation of NMDA receptors. These changes favored the back-propagation of action potentials into this dendritic region with a subsequent boost in the Ca(2+) influx. Dendritic cell-attached patch recordings revealed a hyperpolarized shift in the inactivation curve of transient, A-type K(+) currents that can account for the enhanced excitability. These results suggest an important mechanism associated with LTP for shaping signal processing and controlling dendritic function.

  9. Localization of Distinct Peyer's Patch Dendritic Cell Subsets and Their Recruitment by Chemokines Macrophage Inflammatory Protein (Mip)-3α, Mip-3β, and Secondary Lymphoid Organ Chemokine

    PubMed Central

    Iwasaki, Akiko; Kelsall, Brian L.

    2000-01-01

    We describe the anatomical localization of three distinct dendritic cell (DC) subsets in the murine Peyer's patch (PP) and explore the role of chemokines in their recruitment. By two-color in situ immunofluorescence, CD11b+ myeloid DCs were determined to be present in the subepithelial dome (SED) region, whereas CD8α+ lymphoid DCs are present in the T cell–rich interfollicular region (IFR). DCs that lack expression of CD8α or CD11b (double negative) are present in both the SED and IFR. By in situ hybridization, macrophage inflammatory protein (MIP)-3α mRNA was dramatically expressed only by the follicle-associated epithelium overlying the SED, while its receptor, CCR6, was concentrated in the SED. In contrast, CCR7 was expressed predominantly in the IFR. Consistent with these findings, reverse transcriptase polymerase chain reaction analysis and in vitro chemotaxis assays using freshly isolated DCs revealed that CCR6 was functionally expressed only by DC subsets present in the SED, while all subsets expressed functional CCR7. Moreover, none of the splenic DC subsets migrated toward MIP-3α. These data support a distinct role for MIP-3α/CCR6 in recruitment of CD11b+ DCs toward the mucosal surfaces and for MIP-3β/CCR7 in attraction of CD8α+ DCs to the T cell regions. Finally, we demonstrated that all DC subsets expressed an immature phenotype when freshly isolated and maintained expression of subset markers upon maturation in vitro. In contrast, CCR7 expression by myeloid PP DCs was enhanced with maturation in vitro. In addition, this subset disappeared from the SED and appeared in the IFR after microbial stimulation in vivo, suggesting that immature myeloid SED DCs capture antigens and migrate to IFR to initiate T cell responses after mucosal microbial infections. PMID:10770804

  10. Despite Increased Type 1 IFN, Autoimmune Nonobese Diabetic Mice Display Impaired Dendritic Cell Response to CpG and Decreased Nuclear Localization of IFN-Activated STAT1

    PubMed Central

    Rahman, M. Jubayer; Rahir, Gwendoline; Dong, Matthew B.; Zhao, Yongge; Rodrigues, Kameron B.; Hotta-Iwamura, Chie; Chen, Ye; Guerrero, Alan; Tarbell, Kristin V.

    2016-01-01

    Innate immune signals help break self-tolerance to initiate autoimmune diseases such as type 1 diabetes, but innate contributions to subsequent regulation of disease progression are less clear. Most studies have measured in vitro innate responses of GM-CSF dendritic cells (DCs) that are functionally distinct from conventional DCs (cDCs) and do not reflect in vivo DC subsets. To determine whether autoimmune NOD mice have alterations in type 1 IFN innate responsiveness, we compared cDCs from prediabetic NOD and control C57BL/6 (B6) mice stimulated in vivo with the TLR9 ligand CpG, a strong type 1 IFN inducer. In response to CpG, NOD mice produce more type 1 IFN and express higher levels of CD40, and NOD monocyte DCs make more TNF. However, the overall CpG-induced transcriptional response is muted in NOD cDCs. Of relevance the costimulatory proteins CD80/CD86, signals needed for regulatory T cell homeostasis, are upregulated less on NOD cDCs. Interestingly, NOD Rag1−/− mice also display a defect in CpG-induced CD86 upregulation compared with B6 Rag1−/−, indicating this particular innate alteration precedes adaptive autoimmunity. The impaired response in NOD DCs is likely downstream of the IFN-α/β receptor because DCs from NOD and B6 mice show similar CpG-induced CD86 levels when anti–IFN-α/β receptor Ab is added. IFN-α–induced nuclear localization of activated STAT1 is markedly reduced in NOD CD11c+ cells, consistent with lower type 1 IFN responsiveness. In conclusion, NOD DCs display altered innate responses characterized by enhanced type 1 IFN and activation of monocyte-derived DCs but diminished cDC type 1 IFN response. PMID:26826238

  11. Identification and isolation of synovial dendritic cells.

    PubMed

    Pettit, Allison R; Cavanagh, Lois; Boyce, Amanda; Padmanabha, Jagadish; Peng, Judy; Thomas, Ranjeny

    2007-01-01

    In rheumatoid arthritis patients, three compartments need to be considered: peripheral blood, synovial fluid, and synovial tissue. Dendritic cells characterized from each compartment have different properties. The methods given are based on cell sorting for isolation of cells, and flow cytometry and immunohistochemical staining for analysis of cells in these compartments.

  12. Immune activation: death, danger and dendritic cells.

    PubMed

    Pulendran, Bali

    2004-01-06

    Dendritic cells are critical for host immunity, and sense microbes with pathogen recognition receptors. New evidence indicates that these cells also sense uric acid crystals in dead cells, suggesting that the immune system is conscious not only of pathogens, but also of death and danger.

  13. Macrophages and Dendritic Cells: Partners in Atherogenesis.

    PubMed

    Cybulsky, Myron I; Cheong, Cheolho; Robbins, Clinton S

    2016-02-19

    Atherosclerosis is a complex chronic disease. The accumulation of myeloid cells in the arterial intima, including macrophages and dendritic cells (DCs), is a feature of early stages of disease. For decades, it has been known that monocyte recruitment to the intima contributes to the burden of lesion macrophages. Yet, this paradigm may require reevaluation in light of recent advances in understanding of tissue macrophage ontogeny, their capacity for self-renewal, as well as observations that macrophages proliferate throughout atherogenesis and that self-renewal is critical for maintenance of macrophages in advanced lesions. The rate of atherosclerotic lesion formation is profoundly influenced by innate and adaptive immunity, which can be regulated locally within atherosclerotic lesions, as well as in secondary lymphoid organs, the bone marrow and the blood. DCs are important modulators of immunity. Advances in the past decade have cemented our understanding of DC subsets, functions, hematopoietic origin, gene expression patterns, transcription factors critical for differentiation, and provided new tools for study of DC biology. The functions of macrophages and DCs overlap to some extent, thus it is important to reassess the contributions of each of these myeloid cells taking into account strict criteria of cell identification, ontogeny, and determine whether their key roles are within atherosclerotic lesions or secondary lymphoid organs. This review will highlight key aspect of macrophage and DC biology, summarize how these cells participate in different stages of atherogenesis and comment on complexities, controversies, and gaps in knowledge in the field.

  14. Localized direction selective responses in the dendrites of visual interneurons of the fly

    PubMed Central

    2010-01-01

    Background The various tasks of visual systems, including course control, collision avoidance and the detection of small objects, require at the neuronal level the dendritic integration and subsequent processing of many spatially distributed visual motion inputs. While much is known about the pooled output in these systems, as in the medial superior temporal cortex of monkeys or in the lobula plate of the insect visual system, the motion tuning of the elements that provide the input has yet received little attention. In order to visualize the motion tuning of these inputs we examined the dendritic activation patterns of neurons that are selective for the characteristic patterns of wide-field motion, the lobula-plate tangential cells (LPTCs) of the blowfly. These neurons are known to sample direction-selective motion information from large parts of the visual field and combine these signals into axonal and dendro-dendritic outputs. Results Fluorescence imaging of intracellular calcium concentration allowed us to take a direct look at the local dendritic activity and the resulting local preferred directions in LPTC dendrites during activation by wide-field motion in different directions. These 'calcium response fields' resembled a retinotopic dendritic map of local preferred directions in the receptive field, the layout of which is a distinguishing feature of different LPTCs. Conclusions Our study reveals how neurons acquire selectivity for distinct visual motion patterns by dendritic integration of the local inputs with different preferred directions. With their spatial layout of directional responses, the dendrites of the LPTCs we investigated thus served as matched filters for wide-field motion patterns. PMID:20384983

  15. Direct depolarization and antidromic action potentials transiently suppress dendritic IPSPs in hippocampal CA1 pyramidal cells.

    PubMed

    Morishita, W; Alger, B E

    2001-01-01

    Whole-cell current-clamp recordings were made from distal dendrites of rat hippocampal CA1 pyramidal cells. Following depolarization of the dendritic membrane by direct injection of current pulses or by back-propagating action potentials elicited by antidromic stimulation, evoked gamma-aminobutyric acid-A (GABA(A)) receptor-mediated inhibitory postsynaptic potentials (IPSPs) were transiently suppressed. This suppression had properties similar to depolarization-induced suppression of inhibition (DSI): it was enhanced by carbachol, blocked by dendritic hyperpolarization sufficient to prevent action potential invasion, and reduced by 4-aminopyridine (4-AP) application. Thus DSI or a DSI-like process can be recorded in CA1 distal dendrites. Moreover, localized application of TTX to stratum pyramidale blocked somatic action potentials and somatic IPSPs, but not dendritic IPSPs or DSI induced by direct dendritic depolarization, suggesting DSI is expressed in part in the dendrites. These data extend the potential physiological roles of DSI.

  16. ISOLATION OF CHICKEN FOLLICULAR DENDRITIC CELLS

    USDA-ARS?s Scientific Manuscript database

    The aim of the present study was to isolate chicken follicular dendritic cells (FDC). A combination of methods involving panning, iodixanol density gradient centrifugation, and magnetic cell separation technology made it possible to obtain functional FDC from the cecal tonsils from chickens, which h...

  17. Cells with dendritic cell morphology and immunophenotype, binuclear morphology, and immunosuppressive function in dendritic cell cultures.

    PubMed

    Dong, Rong; Moulding, Dale; Himoudi, Nourredine; Adams, Stuart; Bouma, Gerben; Eddaoudi, Ayad; Basu, B Piku; Derniame, Sophie; Chana, Prabhjoat; Duncan, Andrew; Anderson, John

    2011-01-01

    Culturing of human peripheral blood CD14 positive monocytes is a method for generation of dendritic cells (DCs) for experimental purposes or for use in clinical grade vaccines. When culturing human DCs in this manner for clinical vaccine production, we noticed that 5-10% of cells within the bulk culture were binuclear or multiple nuclear, but had typical dendritic cell morphology and immunophenotype. We refer to the cells as binuclear cells in dendritic cell cultures (BNiDCs). By using single cell PCR analysis of mitochondrial DNA polymorphisms we demonstrated that approximately 20-25% of cells in DC culture undergo a fusion event. Flow sorted BNiDC express low HLA-DR and IL-12p70, but high levels of IL-10. In mixed lymphocyte reactions, purified BNiDC suppressed lymphocyte proliferation. Blockade of dendritic cell-specific transmembrane protein (DC-STAMP) decreased the number of binuclear cells in DC cultures. BNiDC represent a potentially tolerogenic population within DC preparations for clinical use.

  18. Septin 6 localizes to microtubules in neuronal dendrites.

    PubMed

    Moon, Il Soo; Lee, Hyunsook; Walikonis, Randall S

    2013-03-01

    In neuronal dendrites, septins localize to the base of the spine, a unique position which is sandwiched between the microtubule (MT)-rich dendritic shaft and the actin filament-rich spine. Here, we provide evidence for the association of SEPT6 with MTs in cultured rat hippocampal neurons. In normal cultures, SEPT6 clusters localized to MTs, but not to actin clusters. Only MT-disrupting agents (vincristine and nocodazole), but not microfilament-disrupting one (latrunculin A), induced the redistribution of SEPT6 to the disrupted MTs. The nascent MT fibers that were recovered from vincristine or nocodazole treatments also accompanied SEPT6. Blocking MT disruption by Taxol prevented such phenomena, proving that the redistribution of SEPT6 was due to the MT disruption. Our results indicate that SEPT6 complexes at the base of the dendritic spine are associated with MTs.

  19. Efficient generation of canine bone marrow-derived dendritic cells.

    PubMed

    Isotani, Mayu; Katsuma, Kensuke; Tamura, Kyoichi; Yamada, Misato; Yagihara, Hiroko; Azakami, Daigo; Ono, Kenichiro; Washizu, Tsukimi; Bonkobara, Makoto

    2006-08-01

    Because of their unsurpassed potency in presenting antigens to naive T cells, dendritic cells are considered to be an important candidate in the development of immunotherapeutic strategies. Despite the high potential of dendritic cell-based immunotherapy, as a so-called dendritic cell vaccination, few clinical approaches using dendritic cell vaccination have been performed in the dog because of very limited information regarding the generation of canine dendritic cells and their functional properties. We therefore established a protocol for the efficient generation of dendritic cells from canine bone marrow cells using recombinant feline granulocyte-macrophage colony-stimulating factor and canine interleukin-4. Dendritic cells were generated efficiently: a yield of 1-9 x 10(6) cells per approximately 0.5 ml of canine bone marrow aspiration was achieved. These dendritic cells showed features shared with mouse and human dendritic cells: dendrite morphology, expression of surface markers MHC class II and CD11c, and up-regulation of molecules related to antigen presentation (MHC class II, B7-1, and B7-2) by activation with lipopolysaccharide. Moreover, the dendritic cells demonstrated phagocytic activity, processing activity of pinocytosed proteins, and activation of allogeneic T cells far more potent than that by macrophages. Our findings suggest that the bone marrow-derived dendritic cells are functional for the capturing and processing of antigens and the initiation of T cell responses.

  20. The multifaceted biology of plasmacytoid dendritic cells

    PubMed Central

    Swiecki, Melissa; Colonna, Marco

    2015-01-01

    Plasmacytoid dendritic cells (pDCs) are a unique dendritic cell subset that specializes in the production of type I interferons (IFNs). pDCs promote antiviral immune responses and have been implicated in the pathogenesis of autoimmune diseases characterized by a type I IFN signature. However, pDCs can also induce tolerogenic immune responses. Here, we review recent progress from the field of pDC biology, focusing on: the molecular mechanisms that regulate pDC development and functions; the pathways involved in their sensing of pathogens and endogenous nucleic acids; the function of pDCs at mucosal sites; and their roles in infections, autoimmunity and cancer. PMID:26160613

  1. Functional specializations of intestinal dendritic cell and macrophage subsets that control Th17 and regulatory T cell responses are dependent on the T cell/APC ratio, source of mouse strain, and regional localization.

    PubMed

    Denning, Timothy L; Norris, Brian A; Medina-Contreras, Oscar; Manicassamy, Santhakumar; Geem, Duke; Madan, Rajat; Karp, Christopher L; Pulendran, Bali

    2011-07-15

    Although several subsets of intestinal APCs have been described, there has been no systematic evaluation of their phenotypes, functions, and regional localization to date. In this article, we used 10-color flow cytometry to define the major APC subsets in the small and large intestine lamina propria. Lamina propria APCs could be subdivided into CD11c(+)CD11b(-), CD11c(+)CD11b(+), and CD11c(dull)CD11b(+) subsets. CD11c(+)CD11b(-) cells were largely CD103(+)F4/80(-) dendritic cells (DCs), whereas the CD11c(+)CD11b(+) subset comprised CD11c(+)CD11b(+)CD103(+)F4/80(-) DCs and CD11c(+)CD11b(+)CD103(-)F4/80(+) macrophage-like cells. The majority of CD11c(dull)CD11b(+) cells were CD103(-)F4/80(+) macrophages. Although macrophages were more efficient at inducing Foxp3(+) regulatory T (T(reg)) cells than DCs, at higher T cell/APC ratios, all of the DC subsets efficiently induced Foxp3(+) T(reg) cells. In contrast, only CD11c(+)CD11b(+)CD103(+) DCs efficiently induced Th17 cells. Consistent with this, the regional distribution of CD11c(+)CD11b(+)CD103(+) DCs correlated with that of Th17 cells, with duodenum > jejunum > ileum > colon. Conversely, CD11c(+)CD11b(-)CD103(+) DCs, macrophages, and Foxp3(+) T(reg) cells were most abundant in the colon and scarce in the duodenum. Importantly, however, the ability of DC and macrophage subsets to induce Foxp3(+) T(reg) cells versus Th17 cells was strikingly dependent on the source of the mouse strain. Thus, DCs from C57BL/6 mice from Charles River Laboratories (that have segmented filamentous bacteria, which induce robust levels of Th17 cells in situ) were more efficient at inducing Th17 cells and less efficient at inducing Foxp3(+) T(reg) cells than DCs from B6 mice from The Jackson Laboratory. Thus, the functional specializations of APC subsets in the intestine are dependent on the T cell/APC ratio, regional localization, and source of the mouse strain.

  2. S100-positive dendritic cells in squamous cell laryngeal cancer.

    PubMed

    Diaconescu, Daniela Eugenia; Dima, Lorena; Marinescu, Daniela Maria; Ţânţu, Marilena Monica; Rogozea, Liliana Marcela

    2014-01-01

    Dendritic cells (DC) are the most potent antigen-presenting cells, and induce antigen-specific immune responses. DC are believed to evolve into tumor-antigen pulsed cells and then to migrate to local lymph nodes, where they activate anti-tumor immune responses. This theory is supported by studies showing that high DC densities are associated with favorable prognosis in some tumor types. In the present study, we evaluated 40 primary and metastatic laryngeal carcinomas for the presence of DC, using immunohistochemistry with the anti-S100 protein antibody. We analyzed the relationship between the degree of infiltration by S100-positive (S100+) DC and prognostic factors, including histological subtype, histological grade, peritumor inflammatory infiltration, and stromal desmoplasia. The results show that in all evaluated laryngeal cancers S100-positive cells were significantly more frequent in the tumor stroma. Primary tumors with nodal metastases showed more significant differences in intraepithelial and stromal DC distribution than tumors without nodal metastases. A significant higher S100+ DC was also noticed in the desmoplasic stroma of lymph nodes. The subtype with keratinization had a significant higher S100-positive cells infiltration than the adenoid÷transitional subtype. The infiltration rate of intraepithelial S100+ DC was much higher in well-differentiated (G1) tumors. No significant correlation between S100-positive cells and peritumoral inflammatory infiltration and stromal desmoplasia was found. In conclusion, dendritic cells need multiple, much more complex investigations. This work should be regarded as a preliminary investigation.

  3. Suppression of zinc dendrites in zinc electrode power cells

    NASA Technical Reports Server (NTRS)

    Damjanovic, A.; Diggle, J. W.

    1970-01-01

    Addition of various tetraalkyl quarternary ammonium salts, to alkaline zincate electrolyte of cell, prevents formation of zinc dendrites during charging of zinc electrode. Electrode capacity is not impaired and elimination of dendrites prolongs cell life.

  4. Differentiation of apical and basal dendrites in pyramidal cells and granule cells in dissociated hippocampal cultures.

    PubMed

    Wu, You Kure; Fujishima, Kazuto; Kengaku, Mineko

    2015-01-01

    Hippocampal pyramidal cells and dentate granule cells develop morphologically distinct dendritic arbors, yet also share some common features. Both cell types form a long apical dendrite which extends from the apex of the cell soma, while short basal dendrites are developed only in pyramidal cells. Using quantitative morphometric analyses of mouse hippocampal cultures, we evaluated the differences in dendritic arborization patterns between pyramidal and granule cells. Furthermore, we observed and described the final apical dendrite determination during dendritic polarization by time-lapse imaging. Pyramidal and granule cells in culture exhibited similar dendritic patterns with a single principal dendrite and several minor dendrites so that the cell types were not readily distinguished by appearance. While basal dendrites in granule cells are normally degraded by adulthood in vivo, cultured granule cells retained their minor dendrites. Asymmetric growth of a single principal dendrite harboring the Golgi was observed in both cell types soon after the onset of dendritic growth. Time-lapse imaging revealed that up until the second week in culture, final principal dendrite designation was not stabilized, but was frequently replaced by other minor dendrites. Before dendritic polarity was stabilized, the Golgi moved dynamically within the soma and was repeatedly repositioned at newly emerging principal dendrites. Our results suggest that polarized growth of the apical dendrite is regulated by cell intrinsic programs, while regression of basal dendrites requires cue(s) from the extracellular environment in the dentate gyrus. The apical dendrite designation is determined from among multiple growing dendrites of young developing neurons.

  5. Dendritic cells and immunotherapy for cancer.

    PubMed

    Chang, David H; Dhodapkar, Madhav V

    2003-06-01

    Dendritic cells, nature's adjuvant, are antigen-presenting cells specialized to initiate and regulate immunity. Their potent antigen-presenting function has encouraged targeting of dendritic cells (DCs) for harnessing the immune system against cancer. DCs are efficient at activating not only CD4+ helper T-cells and CD8+ killer T-cells but also B-cells and innate effectors such as natural killer and natural killer T-cells. Early studies of adoptive transfer of tumor antigen-loaded DCs have shown promise. However, DC vaccination is at an early stage, and several parameters still need to be established. The complexity of the DC system brings about the necessity for its rational manipulation for achieving protective and therapeutic immunity in patients.

  6. Differential distribution of NCX1 contributes to spine–dendrite compartmentalization in CA1 pyramidal cells

    PubMed Central

    Lőrincz, Andrea; Rózsa, Balázs; Katona, Gergely; Vizi, E. Sylvester; Tamás, Gábor

    2007-01-01

    Compartmentalization of Ca2+ between dendritic spines and shafts is governed by diffusion barriers and a range of Ca2+ extrusion mechanisms. The distinct contribution of different Ca2+ clearance systems to Ca2+ compartmentalization in dendritic spines versus shafts remains elusive. We applied a combination of ultrastructural and functional imaging methods to assess the subcellular distribution and role of NCX1 in rat CA1 pyramidal cells. Quantitative electron microscopic analysis of preembedding immunogold reactions revealed uniform densities of NCX1 along the shafts of apical and basal dendrites, but densities in dendritic shafts were approximately seven times higher than in dendritic spines. In line with these results, two-photon imaging of synaptically activated Ca2+ transients during NCX blockade showed preferential action localized to the dendritic shafts for NCXs in regulating spine–dendrite coupling. PMID:17215351

  7. Phenotype and function of nasal dendritic cells

    PubMed Central

    Lee, Haekyung; Ruane, Darren; Law, Kenneth; Ho, Yan; Garg, Aakash; Rahman, Adeeb; Esterházy, Daria; Cheong, Cheolho; Goljo, Erden; Sikora, Andrew G.; Mucida, Daniel; Chen, Benjamin; Govindraj, Satish; Breton, Gaëlle; Mehandru, Saurabh

    2015-01-01

    Intranasal vaccination generates immunity across local, regional and distant sites. However, nasal dendritic cells (DC), pivotal for the induction of intranasal vaccine- induced immune responses, have not been studied in detail. Here, using a variety of parameters, we define nasal DCs in mice and humans. Distinct subsets of “classical” DCs, dependent on the transcription factor zbtb46 were identified in the murine nose. The murine nasal DCs were FLT3 ligand-responsive and displayed unique phenotypic and functional characteristics including the ability to present antigen, induce an allogeneic T cell response and migrate in response to LPS or live bacterial pathogens. Importantly, in a cohort of human volunteers, BDCA-1+ DCs were observed to be the dominant nasal DC population at steady state. During chronic inflammation, the frequency of both BDCA-1+ and BDCA-3hi DCs was reduced in the nasal tissue, associating the loss of these immune sentinels with chronic nasal inflammation. The present study is the first detailed description of the phenotypic, ontogenetic and functional properties of nasal DCs and will inform the design of preventative immunization strategies as well as therapeutic modalities against chronic rhinosinusitis. PMID:25669151

  8. Characterization of chicken dendritic cell markers

    USDA-ARS?s Scientific Manuscript database

    Animal and Natural Resources Institute, ARS-USDA, Beltsville, MD, USA. New mouse monoclonal antibodies which detect CD80 and CD83 were developed to characterize chicken dendritic cells (DCs). The characteristics of these molecules have been studied in human, swine, ovine, feline, and canine but not ...

  9. Immune heterogeneity in neuroinflammation: dendritic cells in the brain.

    PubMed

    Colton, Carol A

    2013-03-01

    Dendritic cells (DC) are critical to an integrated immune response and serve as the key link between the innate and adaptive arms of the immune system. Under steady state conditions, brain DC's act as sentinels, continually sampling their local environment. They share this function with macrophages derived from the same basic hemopoietic (bone marrow-derived) precursor and with parenchymal microglia that arise from a unique non-hemopoietic origin. While multiple cells may serve as antigen presenting cells (APCs), dendritic cells present both foreign and self-proteins to naïve T cells that, in turn, carry out effector functions that serve to protect or destroy. The resulting activation of the adaptive response is a critical step to resolution of injury or infection and is key to survival. In this review we will explore the critical roles that DCs play in the brain's response to neuroinflammatory disease with emphasis on how the brain's microenvironment impacts these actions.

  10. Nectin-1 spots as a novel adhesion apparatus that tethers mitral cell lateral dendrites in a dendritic meshwork structure of the developing mouse olfactory bulb.

    PubMed

    Inoue, Takahito; Fujiwara, Takeshi; Rikitake, Yoshiyuki; Maruo, Tomohiko; Mandai, Kenji; Kimura, Kazushi; Kayahara, Tetsuro; Wang, Shujie; Itoh, Yu; Sai, Kousyoku; Mori, Masahiro; Mori, Kensaku; Mizoguchi, Akira; Takai, Yoshimi

    2015-08-15

    Mitral cells project lateral dendrites that contact the lateral and primary dendrites of other mitral cells and granule cell dendrites in the external plexiform layer (EPL) of the olfactory bulb. These dendritic structures are critical for odor information processing, but it remains unknown how they are formed. In immunofluorescence microscopy, the immunofluorescence signal for the cell adhesion molecule nectin-1 was concentrated on mitral cell lateral dendrites in the EPL of the developing mouse olfactory bulb. In electron microscopy, the immunogold particles for nectin-1 were symmetrically localized on the plasma membranes at the contacts between mitral cell lateral dendrites, which showed bilateral darkening without dense cytoskeletal undercoats characteristic of puncta adherentia junctions. We named the contacts where the immunogold particles for nectin-1 were symmetrically accumulated "nectin-1 spots." The nectin-1 spots were 0.21 μm in length on average and the distance between the plasma membranes was 20.8 nm on average. In 3D reconstruction of serial sections, clusters of the nectin-1 spots formed a disc-like structure. In the mitral cell lateral dendrites of nectin-1-knockout mice, the immunogold particles for nectin-1 were undetectable and the plasma membrane darkening was electron-microscopically normalized, but the plasma membranes were partly separated from each other. The nectin-1 spots were further identified between mitral cell lateral and primary dendrites and between mitral cell lateral dendrites and granule cell dendritic spine necks. These results indicate that the nectin-1 spots constitute a novel adhesion apparatus that tethers mitral cell dendrites in a dendritic meshwork structure of the developing mouse olfactory bulb.

  11. Dendritic spine geometry can localize GTPase signaling in neurons

    PubMed Central

    Ramirez, Samuel A.; Raghavachari, Sridhar; Lew, Daniel J.

    2015-01-01

    Dendritic spines are the postsynaptic terminals of most excitatory synapses in the mammalian brain. Learning and memory are associated with long-lasting structural remodeling of dendritic spines through an actin-mediated process regulated by the Rho-family GTPases RhoA, Rac, and Cdc42. These GTPases undergo sustained activation after synaptic stimulation, but whereas Rho activity can spread from the stimulated spine, Cdc42 activity remains localized to the stimulated spine. Because Cdc42 itself diffuses rapidly in and out of the spine, the basis for the retention of Cdc42 activity in the stimulated spine long after synaptic stimulation has ceased is unclear. Here we model the spread of Cdc42 activation at dendritic spines by means of reaction-diffusion equations solved on spine-like geometries. Excitable behavior arising from positive feedback in Cdc42 activation leads to spreading waves of Cdc42 activity. However, because of the very narrow neck of the dendritic spine, wave propagation is halted through a phenomenon we term geometrical wave-pinning. We show that this can account for the localization of Cdc42 activity in the stimulated spine, and, of interest, retention is enhanced by high diffusivity of Cdc42. Our findings are broadly applicable to other instances of signaling in extreme geometries, including filopodia and primary cilia. PMID:26337387

  12. Democracy-Independence Trade-Off in Oscillating Dendrites and Its Implications for Grid Cells

    PubMed Central

    Remme, Michiel W.H.; Lengyel, Máté; Gutkin, Boris S.

    2010-01-01

    Summary Dendritic democracy and independence have been characterized for near-instantaneous processing of synaptic inputs. However, a wide class of neuronal computations requires input integration on long timescales. As a paradigmatic example, entorhinal grid fields have been thought to be generated by the democratic summation of independent dendritic oscillations performing direction-selective path integration. We analyzed how multiple dendritic oscillators embedded in the same neuron integrate inputs separately and determine somatic membrane voltage jointly. We found that the interaction of dendritic oscillations leads to phase locking, which sets an upper limit on the timescale for independent input integration. Factors that increase this timescale also decrease the influence that the dendritic oscillations exert on somatic voltage. In entorhinal stellate cells, interdendritic coupling dominates and causes these cells to act as single oscillators. Our results suggest a fundamental trade-off between local and global processing in dendritic trees integrating ongoing signals. PMID:20471355

  13. Democracy-independence trade-off in oscillating dendrites and its implications for grid cells.

    PubMed

    Remme, Michiel W H; Lengyel, Máté; Gutkin, Boris S

    2010-05-13

    Dendritic democracy and independence have been characterized for near-instantaneous processing of synaptic inputs. However, a wide class of neuronal computations requires input integration on long timescales. As a paradigmatic example, entorhinal grid fields have been thought to be generated by the democratic summation of independent dendritic oscillations performing direction-selective path integration. We analyzed how multiple dendritic oscillators embedded in the same neuron integrate inputs separately and determine somatic membrane voltage jointly. We found that the interaction of dendritic oscillations leads to phase locking, which sets an upper limit on the timescale for independent input integration. Factors that increase this timescale also decrease the influence that the dendritic oscillations exert on somatic voltage. In entorhinal stellate cells, interdendritic coupling dominates and causes these cells to act as single oscillators. Our results suggest a fundamental trade-off between local and global processing in dendritic trees integrating ongoing signals.

  14. Dendritic cells in systemic lupus erythematosus.

    PubMed

    Seitz, Heather M; Matsushima, Glenn K

    2010-04-01

    Systemic lupus erythematosus (SLE) persists as a chronic inflammatory autoimmune disease and is characterized by the production of autoantibodies and immune complexes that affect multiple organs. The underlying mechanism that triggers and sustains disease are complex and involve certain susceptibility genes and environmental factors. There have been several immune mediators linked to SLE including cytokines and chemokines that have been reviewed elsewhere [ 1-3 ]. A number of articles have reviewed the role of B cells and T cells in SLE [ 4-10 ]. Here, we focus on the role of dendritic cells (DC) and innate immune factors that may regulate autoreactive B cells.

  15. Role of Dendritic Cells in Immune Dysfunction

    NASA Technical Reports Server (NTRS)

    Savary, Cherylyn A.

    1997-01-01

    Specific aims include: (1) Application of the bioreactor to enhance cytokine-regulated proliferation and maturation of dendritic cells (DC); (2) Based on clues from spaceflight: compare the frequency and function of DC in normal donors and immunocompromised cancer patients; and (3) Initiate studies on the efficiency of cytokine therapy and DC-assisted immunotherapy (using bioreactor-expanded DC) in animal models of experimental fungal infections.

  16. Human dendritic cells - stars in the skin.

    PubMed

    Klechevsky, Eynav

    2013-12-01

    "A properly functioning adaptive immune system signifies the best features of life. It is diverse beyond compare, tolerant without fail, and capable of behaving appropriately with a myriad of infections and other challenges. Dendritic cells (DCs) are required to explain how this remarkable system is energized and directed." This is a quote by one of the greatest immunologists our community has ever known, and the father of dendritic cells, Ralph Steinman. Steinman's discovery of DCs in 1973 and his subsequent research opened a new field of study within immunology: DC biology and in particular the role of DCs in immune regulation in health and disease. Here, I review themes from our work and others on the complex network of dendritic cells in the skin and discuss the significance of skin DCs in understanding aspects of host defense against infections, the pathology of inflammatory skin diseases, and speculate on the future effective immune-based therapies. © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Dendritic cell therapy for oncology roundtable conference

    PubMed Central

    2011-01-01

    2-3 September 2010, Brussels, Belgium The Dendritic Cell Therapy for Oncology Roundtable Conference was organized by Reliable Cancer Therapies and moderated by Prof. Dr. Steven De Vleeschouwer. The organizer, Reliable Cancer Therapies, is a Swiss non-profit organization that provides information on evidence-based cancer treatments and funding for the development of a selection of promising cancer therapies. In order to be able to give valuable information about dendritic cell (DC) therapy to patients and physicians, the organizing committee felt it necessary to organize this conference to get an up-to-date status of the academic DC therapy field, collect ideas to guide patients towards clinical trials and to induce cross-fertilization for protocol optimization. In total, 31 experts participated to an in-depth discussion about the status and the future development path for dendritic cell vaccines. The conference started with general presentations about cancer immunotherapy, followed by comprehensive overview presentations about the progress in DC vaccine development achieved by each speaker. At the end of the meeting, a thorough general discussion focused on key questions about what is needed to improve DC vaccines. This report does not cover all presentations, but aims to highlight selected points of interest, particularly relating to possible limitations and potential approaches to improvement of DC therapies specifically, and also immunotherapeutic interventions in general terms. PMID:21226916

  18. Adherent cells in granulocyte-macrophage colony-stimulating factor-induced bone marrow-derived dendritic cell culture system are qualified dendritic cells.

    PubMed

    Li, Gong-Bo; Lu, Guang-Xiu

    2010-01-01

    A widely-used method for generating dendritic cell (DC) is to culture bone marrow cells in granulocyte-macrophage colony-stimulating factor (GM-CSF)-containing medium for 6-10 days. Usually, non-adherent cells are used as qualified dendritic cells while the adherent ones are discarded as "non-dendritic cells" or macrophages. In this study, we show that the adherent cells are nearly identical to the non-adherent cells in both dendritic cell surface markers expression and main dendritic cell-related functions, hence to prove that these "junk cells" are actually qualified dendritic cells.

  19. Inducible expression of endomorphins in murine dendritic cells.

    PubMed

    Yang, Xiaohuai; Xia, Hui; Chen, Yong; Liu, Xiaofen; Zhou, Cheng; Gao, Qin; Li, Zhenghong

    2012-12-15

    Bone marrow precursor cells were extracted from C57BL/6J mice aged 7-8 weeks, and dendritic cells were purified using anti-CD11c (a specific marker for dendritic cells) antibody-coated magnetic beads. Immunofluorescence staining revealed that the expression levels of endomorphin-1 and endomorphin-2 were upregulated in dendritic cells activated by lipopolysaccharide. An enzyme immunoassay showed that lipopolysaccharide and other Toll-like receptor ligands promoted the secretion of endomorphin-1 and endomorphin-2 from activated dendritic cells. [(3)H]-thymidine incorporation demonstrated that endomorphin-1 and endomorphin-2 both inhibited the proliferation of T lymphocyte induced by activated dendritic cells. Furthermore, this immunosuppressive effect was blocked by CTOP, a specific antagonist of µ-opioid receptors. Our experimental findings indicate that activated dendritic cells can induce the expression and secretion of endomorphins, and that endomorphins suppress T lymphocyte proliferation through activation of µ-opioid receptors.

  20. Generation of regulatory dendritic cells after treatment with paeoniflorin.

    PubMed

    Chen, Dan; Li, Yingxi; Wang, Xiaodong; Li, Keqiu; Jing, Yaqing; He, Jinghua; Qiang, Zhaoyan; Tong, Jingzhi; Sun, Ke; Ding, Wen; Kang, Yi; Li, Guang

    2016-08-01

    Regulatory dendritic cells are a potential therapeutic tool for assessing a variety of immune overreaction diseases. Paeoniflorin, a bioactive glucoside extracted from the Chinese herb white paeony root, has been shown to be effective at inhibiting the maturation and immunostimulatory function of murine bone marrow-derived dendritic cells. However, whether paeoniflorin can program conventional dendritic cells toward regulatory dendritic cells and the underlying mechanism remain unknown. Here, our study demonstrates that paeoniflorin can induce the production of regulatory dendritic cells from human peripheral blood monocyte-derived immature dendritic cells in the absence or presence of lipopolysaccharide (LPS) but not from mature dendritic cells, thereby demonstrating the potential of paeoniflorin as a specific immunosuppressive drug with fewer complications and side effects. These regulatory dendritic cells treated with paeoniflorin exhibited high CD11b/c and low CD80, CD86 and CD40 expression levels as well as enhanced abilities to capture antigen and promote the proliferation of CD4(+)CD25(+) T cells and reduced abilities to migrate and promote the proliferation of CD4(+) T cells, which is associated with the upregulation of endogenous transforming growth factor (TGF)-β-mediated indoleamine 2,3-dioxygenase (IDO) expression. Collectively, paeoniflorin could program immature dendritic cells (imDCs) and imDCs stimulated with LPS toward a regulatory DC fate by upregulating the endogenous TGF-β-mediated IDO expression level, thereby demonstrating its potential as a specific immunosuppressive drug.

  1. Immunometabolism governs dendritic cell and macrophage function

    PubMed Central

    2016-01-01

    Recent studies on intracellular metabolism in dendritic cells (DCs) and macrophages provide new insights on the functioning of these critical controllers of innate and adaptive immunity. Both cell types undergo profound metabolic reprogramming in response to environmental cues, such as hypoxia or nutrient alterations, but importantly also in response to danger signals and cytokines. Metabolites such as succinate and citrate have a direct impact on the functioning of macrophages. Immunogenicity and tolerogenicity of DCs is also determined by anabolic and catabolic processes, respectively. These findings provide new prospects for therapeutic manipulation in inflammatory diseases and cancer. PMID:26694970

  2. Dendritic cells during Epstein Barr virus infection

    PubMed Central

    Christian, Münz

    2014-01-01

    Epstein Barr virus (EBV) causes persistent infection in more than 90% of the human adult population and is associated with 2% of all tumors in humans. This γ-herpes virus infects primarily human B and epithelial cells, but it has been reported to be sensed by dendritic cells (DCs) during primary infection. These activated DCs are thought to contribute to innate restriction of EBV infection and initiate EBV-specific adaptive immune responses via cross-priming. The respective evidence and their potential importance for EBV-specific vaccine development will be discussed in this review. PMID:24999343

  3. Dendritic Arborization Patterns of Small Juxtaglomerular Cell Subtypes within the Rodent Olfactory Bulb

    PubMed Central

    Bywalez, Wolfgang G.; Ona-Jodar, Tiffany; Lukas, Michael; Ninkovic, Jovica; Egger, Veronica

    2017-01-01

    Within the glomerular layer of the rodent olfactory bulb, numerous subtypes of local interneurons contribute to early processing of incoming sensory information. Here we have investigated dopaminergic and other small local juxtaglomerular cells in rats and mice and characterized their dendritic arborization pattern with respect to individual glomeruli by fluorescent labeling via patching and reconstruction of dendrites and glomerular contours from two-photon imaging data. Dopaminergic neurons were identified in a transgenic mouse line where the expression of dopamine transporter (DAT) was labeled with GFP. Among the DAT+ cells we found a small short-axon cell (SAC) subtype featuring hitherto undescribed dendritic specializations. These densely ramifying structures clasped mostly around somata of other juxtaglomerular neurons, which were also small, non-dopaminergic and to a large extent non-GABAergic. Clasping SACs were observed also in wild-type mice and juvenile rats. In DAT+ SAC dendrites, single backpropagating action potentials evoked robust calcium entry throughout both clasping and non-clasping compartments. Besides clasping SACs, most other small neurons either corresponded to the classical periglomerular cell type (PGCs), which was never DAT+, or were undersized cells with a small dendritic tree and low excitability. Aside from the presence of clasps in SAC dendrites, many descriptors of dendritic morphology such as the number of dendrites and the extent of branching were not significantly different between clasping SACs and PGCs. However, a detailed morphometric analysis in relation to glomerular contours revealed that the dendrites of clasping SACs arborized mostly in the juxtaglomerular space and never entered more than one glomerulus (if at all), whereas most PGC dendrites were restricted to their parent glomerulus, similar to the apical tufts of mitral cells. These complementary arborization patterns might underlie a highly complementary functional

  4. Olfactory Sensory Neurons Control Dendritic Complexity of Mitral Cells via Notch Signaling

    PubMed Central

    Saito, Tetsuichiro

    2016-01-01

    Mitral cells (MCs) of the mammalian olfactory bulb have a single primary dendrite extending into a single glomerulus, where they receive odor information from olfactory sensory neurons (OSNs). Molecular mechanisms for controlling dendritic arbors of MCs, which dynamically change during development, are largely unknown. Here we found that MCs displayed more complex dendritic morphologies in mouse mutants of Maml1, a crucial gene in Notch signaling. Similar phenotypes were observed by conditionally misexpressing a dominant negative form of MAML1 (dnMAML1) in MCs after their migration. Conversely, conditional misexpression of a constitutively active form of Notch reduced their dendritic complexity. Furthermore, the intracellular domain of Notch1 (NICD1) was localized to nuclei of MCs. These findings suggest that Notch signaling at embryonic stages is involved in the dendritic complexity of MCs. After the embryonic misexpression of dnMAML1, many MCs aberrantly extended dendrites to more than one glomerulus at postnatal stages, suggesting that Notch signaling is essential for proper formation of olfactory circuits. Moreover, dendrites in cultured MCs were shortened by Jag1-expressing cells. Finally, blocking the activity of Notch ligands in OSNs led to an increase in dendritic complexity as well as a decrease in NICD1 signals in MCs. These results demonstrate that the dendritic complexity of MCs is controlled by their presynaptic partners, OSNs. PMID:28027303

  5. [Dendritic cells in cancer immunotherapy].

    PubMed

    Gato, M; Liechtenstein, T; Blanco-Luquín, I; Zudaire, M I; Kochan, G; Escors, D

    2015-01-01

    Since the beginning of the 20th century, biomedical scientists have tried to take advantage of the natural anti-cancer activities of the immune system. However, all the scientific and medical efforts dedicated to this have not resulted in the expected success. In fact, classical antineoplastic treatments such as surgery, radio and chemotherapy are still first line treatments. Even so, there is a quantity of experimental evidence demonstrating that cancer cells are immunogenic. However, the effective activation of anti-cancer T cell responses closely depends on an efficient antigen presentation carried out by professional antigen presenting cells such as DC. Although there are a number of strategies to strengthen antigen presentation by DC, anti-cancer immunotherapy is not as effective as we would expect according to preclinical data accumulated in recent decades. We do not aim to make an exhaustive review of DC immunotherapy here, which is an extensive research subject already dealt with in many specialised reviews. Instead, we present the experimental approaches undertaken by our group over the last decade, by modifying DC to improve their anti-tumour capacities.

  6. Reduced Purkinje cell dendritic arborization and loss of dendritic spines in essential tremor.

    PubMed

    Louis, Elan D; Lee, Michelle; Babij, Rachel; Ma, Karen; Cortés, Etty; Vonsattel, Jean-Paul G; Faust, Phyllis L

    2014-12-01

    Based on accumulating post-mortem evidence of abnormalities in Purkinje cell biology in essential tremor, we hypothesized that regressive changes in dendritic morphology would be apparent in the Purkinje cell population in essential tremor cases versus age-matched controls. Cerebellar cortical tissue from 27 cases with essential tremor and 27 age-matched control subjects was processed by the Golgi-Kopsch method. Purkinje cell dendritic anatomy was quantified using a Neurolucida microscopic system interfaced with a motorized stage. In all measures, essential tremor cases demonstrated significant reductions in dendritic complexity compared with controls. Median values in essential tremor cases versus controls were: 5712.1 versus 10 403.2 µm (total dendrite length, P=0.01), 465.9 versus 592.5 µm (branch length, P=0.01), 22.5 versus 29.0 (maximum branch order, P=0.001), and 165.3 versus 311.7 (number of terminations, P=0.008). Furthermore, the dendritic spine density was reduced in essential tremor cases (medians=0.82 versus 1.02 µm(-1), P=0.03). Our demonstration of regressive changes in Purkinje cell dendritic architecture and spines in essential tremor relative to control brains provides additional evidence of a pervasive abnormality of Purkinje cell biology in this disease, which affects multiple neuronal cellular compartments including their axon, cell body, dendrites and spines.

  7. Dlg5 Regulates Dendritic Spine Formation and Synaptogenesis by Controlling Subcellular N-Cadherin Localization

    PubMed Central

    Wang, Shih-Hsiu J.; Celic, Ivana; Choi, Se-Young; Riccomagno, Martin; Wang, Qiang; Sun, Lu O.; Mitchell, Sarah P.; Vasioukhin, Valera; Huganir, Richard L.

    2014-01-01

    Most excitatory synapses in the mammalian brain are formed on dendritic spines, and spine density has a profound impact on synaptic transmission, integration, and plasticity. Membrane-associated guanylate kinase (MAGUK) proteins are intracellular scaffolding proteins with well established roles in synapse function. However, whether MAGUK proteins are required for the formation of dendritic spines in vivo is unclear. We isolated a novel disc large-5 (Dlg5) allele in mice, Dlg5LP, which harbors a missense mutation in the DLG5 SH3 domain, greatly attenuating its ability to interact with the DLG5 GUK domain. We show here that DLG5 is a MAGUK protein that regulates spine formation, synaptogenesis, and synaptic transmission in cortical neurons. DLG5 regulates synaptogenesis by enhancing the cell surface localization of N-cadherin, revealing a key molecular mechanism for regulating the subcellular localization of this cell adhesion molecule during synaptogenesis. PMID:25232112

  8. Dendritic planarity of Purkinje cells is independent of Reelin signaling.

    PubMed

    Kim, Jinkyung; Park, Tae-Ju; Kwon, Namseop; Lee, Dongmyeong; Kim, Seunghwan; Kohmura, Yoshiki; Ishikawa, Tetsuya; Kim, Kyong-Tai; Curran, Tom; Je, Jung Ho

    2015-07-01

    The dendritic planarity of Purkinje cells is critical for cerebellar circuit formation. In the absence of Crk and CrkL, the Reelin pathway does not function resulting in partial Purkinje cell migration and defective dendritogenesis. However, the relationships among Purkinje cell migration, dendritic development and Reelin signaling have not been clearly delineated. Here, we use synchrotron X-ray microscopy to obtain 3-D images of Golgi-stained Purkinje cell dendrites. Purkinje cells that failed to migrate completely exhibited conical dendrites with abnormal 3-D arborization and reduced dendritic complexity. Furthermore, their spines were fewer in number with a distorted morphology. In contrast, Purkinje cells that migrated successfully displayed planar dendritic and spine morphologies similar to normal cells, despite reduced dendritic complexity. These results indicate that, during cerebellar formation, Purkinje cells migrate into an environment that supports development of dendritic planarity and spine formation. While Reelin signaling is important for the migration process, it does not make a direct major contribution to dendrite formation.

  9. Targeting dendritic cells--why bother?

    PubMed

    Kreutz, Martin; Tacken, Paul J; Figdor, Carl G

    2013-04-11

    Vaccination is among the most efficient forms of immunotherapy. Although sometimes inducing lifelong protective B-cell responses, T-cell-mediated immunity remains challenging. Targeting antigen to dendritic cells (DCs) is an extensively explored concept aimed at improving cellular immunity. The identification of various DC subsets with distinct functional characteristics now allows for the fine-tuning of targeting strategies. Although some of these DC subsets are regarded as superior for (cross-) priming of naive T cells, controversies still remain about which subset represents the best target for immunotherapy. Because targeting the antigen alone may not be sufficient to obtain effective T-cell responses, delivery systems have been developed to target multiple vaccine components to DCs. In this Perspective, we discuss the pros and cons of targeting DCs: if targeting is beneficial at all and which vaccine vehicles and immunization routes represent promising strategies to reach and activate DCs.

  10. Macrophages, dendritic cells, and regression of atherosclerosis

    PubMed Central

    Feig, Jonathan E.; Feig, Jessica L.

    2012-01-01

    Atherosclerosis is the number one cause of death in the Western world. It results from the interaction between modified lipoproteins and cells such as macrophages, dendritic cells (DCs), T cells, and other cellular elements present in the arterial wall. This inflammatory process can ultimately lead to the development of complex lesions, or plaques, that protrude into the arterial lumen. Ultimately, plaque rupture and thrombosis can occur leading to the clinical complications of myocardial infarction or stroke. Although each of the cell types plays roles in the pathogenesis of atherosclerosis, the focus of this review will be primarily on the macrophages and DCs. The role of these two cell types in atherosclerosis is discussed, with a particular emphasis on their involvement in atherosclerosis regression. PMID:22934038

  11. Probiotics, dendritic cells and bladder cancer.

    PubMed

    Feyisetan, Oladapo; Tracey, Christopher; Hellawell, Giles O

    2012-06-01

    What's known on the subject? and What does the study add? The suppressor effect of probiotics on superficial bladder cancer is an observed phenomenon but the specific mechanism is poorly understood. The evidence strongly suggests natural killer (NK) cells are the anti-tumour effector cells involved and NK cell activity correlates with the observed anti-tumour effect in mice. It is also known that dendritic cells (DC) cells are responsible for the recruitment and mobilization of NK cells so therefore it may be inferred that DC cells are most likely to be the interphase point at which probiotics act. In support of this, purification of NK cells was associated with a decrease in NK cells activity. The current use of intravesical bacille Calmette-Guérin in the management of superficial bladder cancer is based on the effect of a localised immune response. In the same way, understanding the mechanism of action of probiotics and the role of DC may potentially offer another avenue via which the immune system may be manipulated to resist bladder cancer. Probiotic foods have been available in the UK since 1996 with the arrival of the fermented milk drink (Yakult) from Japan. The presence of live bacterial ingredients (usually lactobacilli species) may confer health benefits when present in sufficient numbers. The role of probiotics in colo-rectal cancer may be related in part to the suppression of harmful colonic bacteria but other immune mechanisms are involved. Anti-cancer effects outside the colon were suggested by a Japanese report of altered rates of bladder tumour recurrence after ingestion of a particular probiotic. Dendritic cells play a central role to the general regulation of the immune response that may be modified by probiotics. The addition of probiotics to the diet may confer benefit by altering rates of bladder tumour recurrence and also alter the response to immune mechanisms involved with the application of intravesical treatments (bacille Calmette-Guérin).

  12. Metamaterial absorber with random dendritic cells

    NASA Astrophysics Data System (ADS)

    Zhu, Weiren; Zhao, Xiaopeng

    2010-05-01

    The metamaterial absorber composed of random dendritic cells has been investigated at microwave frequencies. It is found that the absorptivities come to be weaker and the resonant frequency get red shift as the disordered states increasing, however, the random metamaterial absorber still presents high absorptivity more than 95%. The disordered structures can help understanding of the metamaterial absorber and may be employed for practical design of infrared metamaterial absorber, which may play important roles in collection of radiative heat energy and directional transfer enhancement.

  13. WASp-dependent actin cytoskeleton stability at the dendritic cell immunological synapse is required for extensive, functional T cell contacts

    PubMed Central

    Malinova, Dessislava; Fritzsche, Marco; Nowosad, Carla R.; Armer, Hannah; Munro, Peter M. G.; Blundell, Michael P.; Charras, Guillaume; Tolar, Pavel; Bouma, Gerben; Thrasher, Adrian J.

    2016-01-01

    The immunological synapse is a highly structured and molecularly dynamic interface between communicating immune cells. Although the immunological synapse promotes T cell activation by dendritic cells, the specific organization of the immunological synapse on the dendritic cell side in response to T cell engagement is largely unknown. In this study, confocal and electron microscopy techniques were used to investigate the role of dendritic cell actin regulation in immunological synapse formation, stabilization, and function. In the dendritic cell-restricted absence of the Wiskott-Aldrich syndrome protein, an important regulator of the actin cytoskeleton in hematopoietic cells, the immunological synapse contact with T cells occupied a significantly reduced surface area. At a molecular level, the actin network localized to the immunological synapse exhibited reduced stability, in particular, of the actin-related protein-2/3-dependent, short-filament network. This was associated with decreased polarization of dendritic cell-associated ICAM-1 and MHC class II, which was partially dependent on Wiskott-Aldrich syndrome protein phosphorylation. With the use of supported planar lipid bilayers incorporating anti-ICAM-1 and anti-MHC class II antibodies, the dendritic cell actin cytoskeleton organized into recognizable synaptic structures but interestingly, formed Wiskott-Aldrich syndrome protein-dependent podosomes within this area. These findings demonstrate that intrinsic dendritic cell cytoskeletal remodeling is a key regulatory component of normal immunological synapse formation, likely through consolidation of adhesive interaction and modulation of immunological synapse stability. PMID:26590149

  14. WASp-dependent actin cytoskeleton stability at the dendritic cell immunological synapse is required for extensive, functional T cell contacts.

    PubMed

    Malinova, Dessislava; Fritzsche, Marco; Nowosad, Carla R; Armer, Hannah; Munro, Peter M G; Blundell, Michael P; Charras, Guillaume; Tolar, Pavel; Bouma, Gerben; Thrasher, Adrian J

    2016-05-01

    The immunological synapse is a highly structured and molecularly dynamic interface between communicating immune cells. Although the immunological synapse promotes T cell activation by dendritic cells, the specific organization of the immunological synapse on the dendritic cell side in response to T cell engagement is largely unknown. In this study, confocal and electron microscopy techniques were used to investigate the role of dendritic cell actin regulation in immunological synapse formation, stabilization, and function. In the dendritic cell-restricted absence of the Wiskott-Aldrich syndrome protein, an important regulator of the actin cytoskeleton in hematopoietic cells, the immunological synapse contact with T cells occupied a significantly reduced surface area. At a molecular level, the actin network localized to the immunological synapse exhibited reduced stability, in particular, of the actin-related protein-2/3-dependent, short-filament network. This was associated with decreased polarization of dendritic cell-associated ICAM-1 and MHC class II, which was partially dependent on Wiskott-Aldrich syndrome protein phosphorylation. With the use of supported planar lipid bilayers incorporating anti-ICAM-1 and anti-MHC class II antibodies, the dendritic cell actin cytoskeleton organized into recognizable synaptic structures but interestingly, formed Wiskott-Aldrich syndrome protein-dependent podosomes within this area. These findings demonstrate that intrinsic dendritic cell cytoskeletal remodeling is a key regulatory component of normal immunological synapse formation, likely through consolidation of adhesive interaction and modulation of immunological synapse stability. © The Author(s).

  15. Hematologic neoplasms: Dendritic cells vaccines in motion.

    PubMed

    Galati, Domenico; Zanotta, Serena

    2017-09-11

    Dendritic cells (DCs) are bone-marrow-derived immune cells accounted for a key role in cancer vaccination as potent antigen-presenting cells within the immune system. Cancer microenvironment can modulate DCs maturation resulting in their accumulation into functional states associated with a reduced antitumor immune response. In this regard, a successful cancer vaccine needs to mount a potent antitumor immune response able to overcome the immunosuppressive tumor milieu. As a consequence, DCs-based approaches are a safe and promising strategy for improving the therapeutic efficacy in hematological malignancies, particularly in combinations with additional treatments. This review summarizes the most significant evidence about the immunotherapeutic strategies performed to target hematologic neoplasms including the tumoral associated antigens (TAA) pulsed on DCs, whole tumor cell vaccines or leukemia-derived DCs. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Mycobacterium-Infected Dendritic Cells Disseminate Granulomatous Inflammation.

    PubMed

    Harding, Jeffrey S; Rayasam, Aditya; Schreiber, Heidi A; Fabry, Zsuzsanna; Sandor, Matyas

    2015-10-30

    The disappearance and reformation of granulomas during tuberculosis has been described using PET/CT/X-ray in both human clinical settings and animal models, but the mechanisms of granuloma reformation during active disease remains unclear. Granulomas can recruit inflammatory dendritic cells (iDCs) that can regulate local T-cell responses and can carry bacteria into the lymph nodes, which is crucial for generating systemic T-cell responses against mycobacteria. Here, we report that a subset of mycobacterium-infected iDCs are associated with bacteria-specific T-cells in infected tissue, outside the granuloma, and that this results in the formation of new and/or larger multi-focal lesions. Mycobacterium-infected iDCs express less CCR7 and migrate less efficiently compared to the non-infected iDCs, which may support T-cell capture in granulomatous tissue. Capture may reduce antigen availability in the lymph node, thereby decreasing systemic priming, resulting in a possible regulatory loop between systemic T-cell responses and granuloma reformation. T-cell/infected iDCs clusters outside the granuloma can be detected during the acute and chronic phase of BCG and Mtb infection. Our studies suggest a direct role for inflammatory dendritic cells in the dissemination of granulomatous inflammation.

  17. Mycobacterium-Infected Dendritic Cells Disseminate Granulomatous Inflammation

    PubMed Central

    Harding, Jeffrey S.; Rayasam, Aditya; Schreiber, Heidi A.; Fabry, Zsuzsanna; Sandor, Matyas

    2015-01-01

    The disappearance and reformation of granulomas during tuberculosis has been described using PET/CT/X-ray in both human clinical settings and animal models, but the mechanisms of granuloma reformation during active disease remains unclear. Granulomas can recruit inflammatory dendritic cells (iDCs) that can regulate local T-cell responses and can carry bacteria into the lymph nodes, which is crucial for generating systemic T-cell responses against mycobacteria. Here, we report that a subset of mycobacterium-infected iDCs are associated with bacteria-specific T-cells in infected tissue, outside the granuloma, and that this results in the formation of new and/or larger multi-focal lesions. Mycobacterium-infected iDCs express less CCR7 and migrate less efficiently compared to the non-infected iDCs, which may support T-cell capture in granulomatous tissue. Capture may reduce antigen availability in the lymph node, thereby decreasing systemic priming, resulting in a possible regulatory loop between systemic T-cell responses and granuloma reformation. T-cell/infected iDCs clusters outside the granuloma can be detected during the acute and chronic phase of BCG and Mtb infection. Our studies suggest a direct role for inflammatory dendritic cells in the dissemination of granulomatous inflammation. PMID:26515292

  18. Regulation of Neonatal Development of Retinal Ganglion Cell Dendrites by Neurotrophin-3 Overexpression

    PubMed Central

    Liu, Xiaorong; Robinson, Michael L.; Schreiber, Ann Marie; Wu, Vincent; LaVail, Matthew M.; Cang, Jianhua; Copenhagen, David R.

    2009-01-01

    The morphology of dendrites constrains and reflects the nature of synaptic inputs to neurons. The visual system has served as a useful model to show how visual function is determined by the arborization patterns of neuronal processes. In retina, light ON and light OFF responding ganglion cells selectively elaborate their dendritic arbors in distinct sublamina, where they receive, respectively, inputs from ON and OFF bipolar cells. During neonatal maturation, the bi-laminarly distributed dendritic arbors of ON-OFF RGCs are refined to more narrowly localized monolaminar structures characteristic of ON or OFF RGCs. Recently, brain-derived neurotrophic factor (BDNF) has been shown to regulate this laminar refinement, and, additionally, to enhance the development of dendritic branches selectively of ON RGCs. Although other related neurotrophins are known to regulate neuronal process formation in the central nervous system, little is known about their action in maturing retina. Here, we report that overexpression of neurotrophin-3 (NT-3) in the eye accelerates RGC laminar refinement before eye opening. Furthermore, NT-3 overexpression increases dendritic branch number but reduces dendritic elongation preferentially in ON-OFF RGCs, a process that also occurs before eye opening. NT-3 overexpression does affect dendritic maturation in ON RGCs, but to a much less degree. Taken together, our results suggest that NT-3 and BDNF exhibit overlapping effects in laminar refinement but distinct RGC-cell-type specific effects in shaping dendritic arborization during postnatal development. PMID:19350645

  19. Dendrite

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Researchers have found that as melted metals and alloys (combinations of metals) solidify, they can form with different arrangements of atoms, called microstructures. These microstructures depend on the shape of the interface (boundary) between the melted metal and the solid crystal it is forming. There are generally three shapes that the interface can take: planar, or flat; cellular, which looks like the cells of a beehive; and dendritic, which resembles tiny fir trees. Convection at this interface can affect the interface shape and hide the other phenomena (physical events). To reduce the effects of convection, researchers conduct experiments that examine and control conditions at the interface in microgravity. Microgravity also helps in the study of alloys composed of two metals that do not mix. On Earth, the liquid mixtures of these alloys settle into different layers due to gravity. In microgravity, the liquid metals do not settle, and a solid more uniform mixture of both metals can be formed.

  20. Harnessing Human Dendritic Cell Subsets for Medicine

    PubMed Central

    Ueno, Hideki; Schmitt, Nathalie; Klechevsky, Eynav; Pedroza-Gonzales, Alexander; Matsui, Toshimichi; Zurawski, Gerard; Oh, SangKon; Fay, Joseph; Pascual, Virginia; Banchereau, Jacques; Palucka, Karolina

    2010-01-01

    Summary Immunity results from a complex interplay between the antigen-nonspecific innate immune system and the antigen-specific adaptive immune system. The cells and molecules of the innate system employ non-clonal recognition receptors including lectins, Toll-like receptors, NOD-like receptors and helicases. B and T lymphocytes of the adaptive immune system employ clonal receptors recognizing antigens or their derived peptides in a highly specific manner. An essential link between innate and adaptive immunity is provided by dendritic cells (DCs). DCs can induce such contrasting states as immunity and tolerance. The recent years have brought a wealth of information on the biology of DCs revealing the complexity of this cell system. Indeed, DC plasticity and subsets are prominent determinants of the type and quality of elicited immune responses. Here we summarize our recent studies aimed at a better understanding of the DC system to unravel the pathophysiology of human diseases and design novel human vaccines. PMID:20193020

  1. Regulation of AMPA and NMDA receptor-mediated EPSPs in dendritic trees of thalamocortical cells

    PubMed Central

    Lajeunesse, Francis; Kröger, Helmut

    2013-01-01

    Two main excitatory synapses are formed at the dendritic arbor of first-order nuclei thalamocortical (TC) neurons. Ascending sensory axons primarily establish contacts at large proximal dendrites, whereas descending corticothalamic fibers form synapses on thin distal dendrites. With the use of a multicomparment computational model based on fully reconstructed TC neurons from the ventroposterolateral nucleus of the cat, we compared local responses at the site of stimulation as well as somatic responses induced by both α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)- and N-methyl-d-aspartate receptor (NMDAR)-mediated currents. We found that AMPAR-mediated responses, when synapses were located at proximal dendrites, induced a larger depolarization at the level of soma, whereas NMDAR-mediated responses were more efficient for synapses located at distal dendrites. The voltage transfer and transfer impedance were higher for NMDAR than for AMPAR activation at any location. For both types of synaptic current and for both input locations at the dendritic arbor, somatic responses were characterized by a low variability despite the large variability found in local responses in dendrites. The large neurons had overall smaller somatic responses than small neurons, but this relation was not found in local dendritic responses. We conclude that in TC cells, the dendritic location of small synaptic inputs does not play a major role in the amplitude of a somatic response, but the size of the neuron does. The variability of response amplitude between cells was much larger than the variability within cells. This suggests possible functional segregation of TC neurons of different size. PMID:23100131

  2. Dendritic cell vaccination in acute myeloid leukemia.

    PubMed

    Anguille, Sébastien; Willemen, Yannick; Lion, Eva; Smits, Evelien L; Berneman, Zwi N

    2012-07-01

    The prognosis of patients with acute myeloid leukemia (AML) remains dismal, with a 5-year overall survival rate of only 5.2% for the continuously growing subgroup of AML patients older than 65 years. These patients are generally not considered eligible for intensive chemotherapy and/or allogeneic hematopoietic stem cell transplantation because of high treatment-related morbidity and mortality, emphasizing the need for novel, less toxic, treatment alternatives. It is within this context that immunotherapy has gained attention in recent years. In this review, we focus on the use of dendritic cell (DC) vaccines for immunotherapy of AML. DC are central orchestrators of the immune system, bridging innate and adaptive immunity and critical to the induction of anti-leukemic immunity. We discuss the rationale and basic principles of DC-based therapy for AML and review the clinical experience that has been obtained so far with this form of immunotherapy for patients with AML.

  3. Alarmins Link Neutrophils and Dendritic Cells

    PubMed Central

    Yang, De; de la Rosa, Gonzalo; Tewary, Poonam; Oppenheim, Joost J.

    2009-01-01

    Neutrophils are the first major population of leukocyte to infiltrate infected or injured tissues and are crucial for initiating host innate defense and adaptive immunity. Although the contribution of neutrophils to innate immune defense is mediated predominantly by phagocytosis and killing of microorganisms, neutrophils also participate in the induction of adaptive immune responses. At sites of infection and/or injury, neutrophils release numerous mediators upon degranulation or death, among these are alarmins which have a characteristic dual capacity to mobilize and activate antigen-presenting cells. We describe here how alarmins released by neutrophil degranulation and/or death can link neutrophils to dendritic cells by promoting their recruitment and activation, resulting in the augmentation of innate and adaptive immune responses. PMID:19699678

  4. Transcriptional Control of Dendritic Cell Development

    PubMed Central

    Murphy, Theresa L.; Grajales-Reyes, Gary E.; Wu, Xiaodi; Tussiwand, Roxane; Briseño, Carlos G.; Iwata, Arifumi; Kretzer, Nicole M.; Durai, Vivek; Murphy, Kenneth M.

    2016-01-01

    The dendritic cells (DCs) of the immune system function in innate and adaptive responses by directing activity of various effector cells rather than serving as effectors themselves. DCs and closely related myeloid lineages share expression of many surface receptors, presenting a challenge in distinguishing their unique in vivo functions. Recent work has taken advantage of unique transcriptional programs to identify and manipulate murine DCs in vivo. This work has assigned several nonredundant in vivo functions to distinct DC lineages, consisting of plasmacytoid DCs and several subsets of classical DCs that promote different immune effector modules in response to pathogens. In parallel, a correspondence between human and murine DC subsets has emerged, underlying structural similarities for the DC lineages between these species. Recent work has begun to unravel the transcriptional circuitry that controls the development and diversification of DCs from common progenitors in the bone marrow. PMID:26735697

  5. Dendritic cells: sentinels of immunity and tolerance.

    PubMed

    Kubach, Jan; Becker, Christian; Schmitt, Edgar; Steinbrink, Kerstin; Huter, Eva; Tuettenberg, Andrea; Jonuleit, Helmut

    2005-04-01

    The induction of effective antigen-specific T-cell immunity to pathogens without the initiation of autoimmunity has evolved as a sophisticated and highly balanced immunoregulatory mechanism. This mechanism assures the generation of antigen-specific effector cells as well as the induction and maintenance of antigen-specific tolerance to self-structures of the body. As professional antigen-presenting cells of the immune system, dendritic cells (DC) are ideally positioned throughout the entire body and equipped with a unique capability to transport antigens from the periphery to lymphoid tissues. There is growing evidence that DC, besides their well-known immunostimulatory properties, also induce and regulate T-cell tolerance in the periphery. This regulatory function of DC is strictly dependent on their different stages of maturation and activation. Additionally, immunosuppressive agents and cytokines further influence the functions of maturing DC. The regulatory properties of DC include induction of T-cell anergy, apoptosis, and the generation of T-cells with regulatory capacities. This brief review summarizes the current knowledge about the immunoregulatory role of DC as guardians for the induction of T-cell immunity and tolerance.

  6. Dendritic cells and immunity against cancer

    PubMed Central

    Palucka, Karolina; Ueno, Hideki; Fay, Joseph; Banchereau, Jacques

    2010-01-01

    SUMMARY T cells can reject established tumors when adoptively transferred into patients, thereby demonstrating the power of the immune system for cancer therapy. However, it has proven difficult to maintain adoptively transferred T cells in the long term. Vaccines have the potential to induce tumor-specific effector and memory T cells. However, clinical efficacy of current vaccines is limited, possibly because tumors skew the immune system by means of myeloid-derived suppressor cells, inflammatory type 2 T cells and regulatory T cells (Tregs), all of which prevent the generation of effector cells. To improve the clinical efficacy of cancer vaccines in patients with metastatic disease, we need to design novel and improved strategies that can boost adaptive immunity to cancer, help overcome Tregs and allow the breakdown of the immunosuppressive tumor microenvironment. This can be achieved by exploiting the fast increasing knowledge about the dendritic cell (DC) system, including the existence of distinct DC subsets which respond differentially to distinct activation signals, (functional plasticity), both contributing to the generation of unique adaptive immune responses. We foresee that these novel cancer vaccines will be used as monotherapy in patients with resected disease, and in combination with drugs targeting regulatory/suppressor pathways in patients with metastatic disease. PMID:21158979

  7. Follicular dendritic cells in health and disease

    PubMed Central

    El Shikh, Mohey Eldin M.; Pitzalis, Costantino

    2012-01-01

    Follicular dendritic cells (FDCs) are unique immune cells that contribute to the regulation of humoral immune responses. These cells are located in the B-cell follicles of secondary lymphoid tissues where they trap and retain antigens (Ags) in the form of highly immunogenic immune complexes (ICs) consisting of Ag plus specific antibody (Ab) and/or complement proteins. FDCs multimerize Ags and present them polyvalently to B-cells in periodically arranged arrays that extensively crosslink the B-cell receptors for Ag (BCRs). FDC-FcγRIIB mediates IC periodicity, and FDC-Ag presentation combined with other soluble and membrane bound signals contributed by FDCs, like FDC-BAFF, -IL-6, and -C4bBP, are essential for the induction of the germinal center (GC) reaction, the maintenance of serological memory, and the remarkable ability of FDC-Ags to induce specific Ab responses in the absence of cognate T-cell help. On the other hand, FDCs play a negative role in several disease conditions including chronic inflammatory diseases, autoimmune diseases, HIV/AIDS, prion diseases, and follicular lymphomas. Compared to other accessory immune cells, FDCs have received little attention, and their functions have not been fully elucidated. This review gives an overview of FDC structure, and recapitulates our current knowledge on the immunoregulatory functions of FDCs in health and disease. A better understanding of FDCs should permit better regulation of Ab responses to suit the therapeutic manipulation of regulated and dysregulated immune responses. PMID:23049531

  8. GATA2 regulates dendritic cell differentiation

    PubMed Central

    Onodera, Koichi; Fujiwara, Tohru; Onishi, Yasushi; Itoh-Nakadai, Ari; Okitsu, Yoko; Fukuhara, Noriko; Ishizawa, Kenichi; Shimizu, Ritsuko; Yamamoto, Masayuki

    2016-01-01

    Dendritic cells (DCs) are critical immune response regulators; however, the mechanism of DC differentiation is not fully understood. Heterozygous germ line GATA2 mutations induce GATA2-deficiency syndrome, characterized by monocytopenia, a predisposition to myelodysplasia/acute myeloid leukemia, and a profoundly reduced DC population, which is associated with increased susceptibility to viral infections, impaired phagocytosis, and decreased cytokine production. To define the role of GATA2 in DC differentiation and function, we studied Gata2 conditional knockout and haploinsufficient mice. Gata2 conditional deficiency significantly reduced the DC count, whereas Gata2 haploinsufficiency did not affect this population. GATA2 was required for the in vitro generation of DCs from Lin−Sca-1+Kit+ cells, common myeloid-restricted progenitors, and common dendritic cell precursors, but not common lymphoid-restricted progenitors or granulocyte-macrophage progenitors, suggesting that GATA2 functions in the myeloid pathway of DC differentiation. Moreover, expression profiling demonstrated reduced expression of myeloid-related genes, including mafb, and increased expression of T-lymphocyte–related genes, including Gata3 and Tcf7, in Gata2-deficient DC progenitors. In addition, GATA2 was found to bind an enhancer element 190-kb downstream region of Gata3, and a reporter assay exhibited significantly reduced luciferase activity after adding this enhancer region to the Gata3 promoter, which was recovered by GATA sequence deletion within Gata3 +190. These results suggest that GATA2 plays an important role in cell-fate specification toward the myeloid vs T-lymphocyte lineage by regulating lineage-specific transcription factors in DC progenitors, thereby contributing to DC differentiation. PMID:27259979

  9. GATA2 regulates dendritic cell differentiation.

    PubMed

    Onodera, Koichi; Fujiwara, Tohru; Onishi, Yasushi; Itoh-Nakadai, Ari; Okitsu, Yoko; Fukuhara, Noriko; Ishizawa, Kenichi; Shimizu, Ritsuko; Yamamoto, Masayuki; Harigae, Hideo

    2016-07-28

    Dendritic cells (DCs) are critical immune response regulators; however, the mechanism of DC differentiation is not fully understood. Heterozygous germ line GATA2 mutations induce GATA2-deficiency syndrome, characterized by monocytopenia, a predisposition to myelodysplasia/acute myeloid leukemia, and a profoundly reduced DC population, which is associated with increased susceptibility to viral infections, impaired phagocytosis, and decreased cytokine production. To define the role of GATA2 in DC differentiation and function, we studied Gata2 conditional knockout and haploinsufficient mice. Gata2 conditional deficiency significantly reduced the DC count, whereas Gata2 haploinsufficiency did not affect this population. GATA2 was required for the in vitro generation of DCs from Lin(-)Sca-1(+)Kit(+) cells, common myeloid-restricted progenitors, and common dendritic cell precursors, but not common lymphoid-restricted progenitors or granulocyte-macrophage progenitors, suggesting that GATA2 functions in the myeloid pathway of DC differentiation. Moreover, expression profiling demonstrated reduced expression of myeloid-related genes, including mafb, and increased expression of T-lymphocyte-related genes, including Gata3 and Tcf7, in Gata2-deficient DC progenitors. In addition, GATA2 was found to bind an enhancer element 190-kb downstream region of Gata3, and a reporter assay exhibited significantly reduced luciferase activity after adding this enhancer region to the Gata3 promoter, which was recovered by GATA sequence deletion within Gata3 +190. These results suggest that GATA2 plays an important role in cell-fate specification toward the myeloid vs T-lymphocyte lineage by regulating lineage-specific transcription factors in DC progenitors, thereby contributing to DC differentiation.

  10. RORα Regulates Multiple Aspects of Dendrite Development in Cerebellar Purkinje Cells In Vivo.

    PubMed

    Takeo, Yukari H; Kakegawa, Wataru; Miura, Eriko; Yuzaki, Michisuke

    2015-09-09

    The establishment of cell-type-specific dendritic arbors is fundamental for proper neural circuit formation. Here, using temporal- and cell-specific knock-down, knock-out, and overexpression approaches, we show that multiple aspects of the dendritic organization of cerebellar Purkinje cells (PCs) are controlled by a single transcriptional factor, retinoic acid-related orphan receptor-alpha (RORα), a gene defective in staggerer mutant mice. As reported earlier, RORα was required for regression of primitive dendrites before postnatal day 4 (P4). RORα was also necessary for PCs to form a single Purkinje layer from P0 to P4. The knock-down of RORα from P4 impaired the elimination of perisomatic dendrites and maturation of single stem dendrites in PCs at P8. Filopodia and spines were also absent in these PCs. The knock-down of RORα from P8 impaired the formation and maintenance of terminal dendritic branches of PCs at P14. Finally, even after dendrite formation was completed at P21, RORα was required for PCs to maintain dendritic complexity and functional synapses, but their mature innervation pattern by single climbing fibers was unaffected. Interestingly, overexpression of RORα in PCs at various developmental stages did not facilitate dendrite development, but had specific detrimental effects on PCs. Because RORα deficiency during development is closely related to the severity of spinocerebellar ataxia type 1, delineating the specific roles of RORα in PCs in vivo at different time windows during development and throughout adulthood would facilitate our understanding of the pathogenesis of cerebellar disorders. Significance statement: The genetic programs by which each neuron subtype develops and maintains dendritic arbors have remained largely unclear. This is partly because dendrite development is modulated dynamically by neuronal activities and interactions with local environmental cues in vivo. In addition, dendrites are formed and maintained by the

  11. Triggering of dendritic cell apoptosis by xanthohumol.

    PubMed

    Xuan, Nguyen Thi; Shumilina, Ekaterina; Gulbins, Erich; Gu, Shuchen; Götz, Friedrich; Lang, Florian

    2010-07-01

    Xanthohumol, a flavonoid from beer with anticancer activity is known to trigger apoptosis in a variety of tumor cells. Xanthohumol further has anti-inflammatory activity. However, little is known about the effect of xanthohumol on survival and function of immune cells. The present study thus addressed the effect of xanthohumol on dendritic cells (DCs), key players in the regulation of innate and adaptive immunity. To this end, mouse bone marrow-derived DCs were treated with xanthohumol with subsequent assessment of enzymatic activity of acid sphingomyelinase (Asm), ceramide formation determined with anti-ceramide antibodies in FACS and immunohistochemical analysis, caspase activity utilizing FITC conjugated anti-active caspase 8 or caspase 3 antibodies in FACS and by Western blotting, DNA fragmentation by determining the percentage of cells in the sub-G1 phase and cell membrane scrambling by annexin V binding in FACS analysis. As a result, xanthohumol stimulated Asm, enhanced ceramide formation, activated caspases 8 and 3, triggered DNA fragmentation and led to cell membrane scrambling, all effects virtually absent in DCs from gene targeted mice lacking functional Asm or in wild-type cells treated with sphingomyelinase inhibitor amitriptyline. In conclusion, xanthohumol stimulated Asm leading to caspase activation and apoptosis of bone marrow-derived DCs.

  12. Harnessing Dendritic Cells to Generate Cancer Vaccines

    PubMed Central

    Palucka, Karolina; Ueno, Hideki; Fay, Joseph; Banchereau, Jacques

    2009-01-01

    Passive immunotherapy of cancer, i.e., transfer of T cells or antibodies, can lead to some objective clinical responses, thus demonstrating that the immune system can reject tumors. However, passive immunotherapy is not expected to yield memory T cells that might control tumor outgrowth. Active immunotherapy with dendritic cell (DCs) vaccines has the potential to induce tumor-specific effector and memory T cells. Clinical trials testing first generation DC vaccines pulsed with tumor antigens provided a proof-of-principle that therapeutic immunity can be elicited. Newer generation DC vaccines are build on the increased knowledge of the DC system including the existence of distinct DC subsets and their plasticity all leading to generation of distinct types of immunity. Rather than the quantity of IFN-γ secreting CD8+ T cells, we should aim at generating high quality high avidity poly-functional effector CD8+ T cells able to reject tumors and long-lived memory CD8+ T cells able to prevent relapse. PMID:19769741

  13. Leukotrienes modulate cytokine release from dendritic cells.

    PubMed

    Jozefowski, Szczepan; Biedroń, Rafał; Bobek, Malgorzata; Marcinkiewicz, Janusz

    2005-12-01

    Leukotriene B(4) (LTB(4)) and cysteinyl leukotrienes (CysLTs) are known as potent mediators of inflammation, whereas their role in the regulation of adaptive immunity remains poorly characterized. Dendritic cells (DCs) are specialized antigen-presenting cells, uniquely capable to initiate primary immune responses. We have found that zymosan, but not lipopolysaccharide (LPS) stimulates murine bone marrow-derived dendritic cells (BM-DCs) to produce large amounts of CysLTs and LTB(4) from endogenous substrates. A selective inhibitor of leukotriene synthesis MK886 as well as an antagonist of the high affinity LTB(4) receptor (BLT(1)) U-75302 slightly inhibited zymosan-, but not LPS-stimulated interleukin (IL)-10 release from BM-DCs. In contrast, U-75302 increased zymosan-stimulated release of IL-12 p40 by approximately 23%. Pre-treatment with transforming growth factor-beta1 enhanced both stimulated leukotriene synthesis and the inhibitory effect of U-75302 and MK886 on IL-10 release from DCs. Consistent with the effects of leukotriene antagonists, exogenous LTB(4) enhanced LPS-stimulated IL-10 release by approximately 39% and inhibited IL-12 p40 release by approximately 22%. Both effects were mediated by the BLT(1) receptor. Ligands of the high affinity CysLTs receptor (CysLT(1)), MK-571 and LTD(4) had little or no effect on cytokine release. Agonists of the nuclear LTB(4) receptor peroxisome proliferator-activated receptor-alpha, 8(S)-hydroxyeicosatetraenoic acid and 5,8,11,14-eicosatetraynoic acid, inhibited release of both IL-12 p40 and IL-10. Our results indicate that both autocrine and paracrine leukotrienes may modulate cytokine release from DCs, in a manner that is consistent with previously reported T helper 2-polarizing effects of leukotrienes.

  14. Leukotrienes modulate cytokine release from dendritic cells

    PubMed Central

    Jozefowski, Szczepan; Biedroń, Rafał; Bobek, Malgorzata; Marcinkiewicz, Janusz

    2005-01-01

    Leukotriene B4 (LTB4) and cysteinyl leukotrienes (CysLTs) are known as potent mediators of inflammation, whereas their role in the regulation of adaptive immunity remains poorly characterized. Dendritic cells (DCs) are specialized antigen-presenting cells, uniquely capable to initiate primary immune responses. We have found that zymosan, but not lipopolysaccharide (LPS) stimulates murine bone marrow-derived dendritic cells (BM-DCs) to produce large amounts of CysLTs and LTB4 from endogenous substrates. A selective inhibitor of leukotriene synthesis MK886 as well as an antagonist of the high affinity LTB4 receptor (BLT1) U-75302 slightly inhibited zymosan-, but not LPS-stimulated interleukin (IL)-10 release from BM-DCs. In contrast, U-75302 increased zymosan-stimulated release of IL-12 p40 by ∼23%. Pre-treatment with transforming growth factor-β1 enhanced both stimulated leukotriene synthesis and the inhibitory effect of U-75302 and MK886 on IL-10 release from DCs. Consistent with the effects of leukotriene antagonists, exogenous LTB4 enhanced LPS-stimulated IL-10 release by ∼39% and inhibited IL-12 p40 release by ∼22%. Both effects were mediated by the BLT1 receptor. Ligands of the high affinity CysLTs receptor (CysLT1), MK-571 and LTD4 had little or no effect on cytokine release. Agonists of the nuclear LTB4 receptor peroxisome proliferator-activated receptor-α, 8(S)-hydroxyeicosatetraenoic acid and 5,8,11,14-eicosatetraynoic acid, inhibited release of both IL-12 p40 and IL-10. Our results indicate that both autocrine and paracrine leukotrienes may modulate cytokine release from DCs, in a manner that is consistent with previously reported T helper 2-polarizing effects of leukotrienes. PMID:16313356

  15. Cell migration and antigen capture are antagonistic processes coupled by myosin II in dendritic cells

    PubMed Central

    Chabaud, Mélanie; Heuzé, Mélina L.; Bretou, Marine; Vargas, Pablo; Maiuri, Paolo; Solanes, Paola; Maurin, Mathieu; Terriac, Emmanuel; Le Berre, Maël; Lankar, Danielle; Piolot, Tristan; Adelstein, Robert S.; Zhang, Yingfan; Sixt, Michael; Jacobelli, Jordan; Bénichou, Olivier; Voituriez, Raphaël; Piel, Matthieu; Lennon-Duménil, Ana-Maria

    2015-01-01

    The immune response relies on the migration of leukocytes and on their ability to stop in precise anatomical locations to fulfil their task. How leukocyte migration and function are coordinated is unknown. Here we show that in immature dendritic cells, which patrol their environment by engulfing extracellular material, cell migration and antigen capture are antagonistic. This antagonism results from transient enrichment of myosin IIA at the cell front, which disrupts the back-to-front gradient of the motor protein, slowing down locomotion but promoting antigen capture. We further highlight that myosin IIA enrichment at the cell front requires the MHC class II-associated invariant chain (Ii). Thus, by controlling myosin IIA localization, Ii imposes on dendritic cells an intermittent antigen capture behaviour that might facilitate environment patrolling. We propose that the requirement for myosin II in both cell migration and specific cell functions may provide a general mechanism for their coordination in time and space. PMID:26109323

  16. Cell-surface marker analysis of rat thymic dendritic cells.

    PubMed Central

    Bañuls, M P; Alvarez, A; Ferrero, I; Zapata, A; Ardavin, C

    1993-01-01

    Rat thymic dendritic cells have been isolated by collagenase digestion, separation of the low-density cell fraction by centrifugation on metrizamide, and differential adherence. The resulting dendritic cell preparation had a purity of > 90%, and has been analysed by flow cytometry (FCM) using a large panel of monoclonal antibodies (mAb). Dendritic cells expressed major histocompatibility (MHC) class I and class II molecules, the leucocyte common antigen CD45, the rat leucocyte antigen OX44, the rat macrophage marker ED1, and the adhesion molecules Mac-1, LFA-1 and ICAM-1. They were negative for the T- and B-cell-specific forms of CD45, CD45R and B220, and the B-cell marker OX12. Concerning T-cell marker expression, they were negative for T-cell receptor (TcR) and OX40, but they expressed CD2, CD4 and CD8, and interestingly, 50% of DC were CD5+, 50% expressed the alpha-chain of interleukin-2 receptor (IL-2R), and 80% were positive for the T-cell activation antigen recognized by the mAb OX48. Moreover, 60% of DC expressed high levels of Thy-1, whereas 40% displayed intermediate levels of this T-cell marker. PMID:8102122

  17. Dendritic cell-based immunotherapy in mesothelioma.

    PubMed

    Cornelissen, Robin; Lievense, Lysanne A; Heuvers, Marlies E; Maat, Alexander P; Hendriks, Rudi W; Hoogsteden, Henk C; Hegmans, Joost P; Aerts, Joachim G

    2012-10-01

    Mesothelioma is a rare thoracic malignancy with a dismal prognosis. Current treatment options are scarce and clinical outcomes are rather disappointing. Due to the immunogenic nature of mesothelioma, several studies have investigated immunotherapeutic strategies to improve the prognosis of patients with mesothelioma. In the last decade, progress in knowledge of the modulation of the immune system to attack the tumor has been remarkable, but the optimal strategy for immunotherapy has yet to be unraveled. Because of their potent antigen-presenting capacity, dendritic cells are acknowledged as a promising agent in immunotherapeutic approaches in a number of malignancies. This review gives an update and provides a future perspective in which immunotherapy may improve the outcome of mesothelioma therapy.

  18. Role of Dendritic Cells in Immune Dysfunction

    NASA Technical Reports Server (NTRS)

    Savary, Cherylyn A.

    1998-01-01

    The specific aims of the project were: (1) Application of the NASA bioreactor to enhance cytokine-regulated proliferation and maturation of dendritic cells (DC). (2) Compare the frequency and function of DC in normal donors and immunocompromised cancer patients. (3) Analyze the effectiveness of cytokine therapy and DC-assisted immunotherapy (using bioreactor-expanded DC) in a murine model of experimental fungal disease. Our investigations have provided new insight into DC immunobiology and have led to the development of methodology to evaluate DC in blood of normal donors and patients. Information gained from these studies has broadened our understanding of possible mechanisms involved in the immune dysfunction of space travelers and earth-bound cancer patients, and could contribute to the design of novel therapies to restore/preserve immunity in these individuals. Several new avenues of investigation were also revealed. The results of studies completed during Round 2 are summarized.

  19. DENDRITIC CELLS: ARE THEY CLINICALLY RELEVANT?

    PubMed Central

    Palucka, Karolina; Ueno, Hideki; Roberts, Lee; Fay, Joseph; Banchereau, Jacques

    2010-01-01

    Cancer vaccines have undergone a renaissance due to recent clinical trials showing promising immunological data and some clinical benefit to patients. Current trials exploiting dendritic cells (DCs) as vaccines have shown durable tumor regressions in a fraction of patients. Clinical efficacy of current vaccines is hampered by myeloid-derived suppressor cells, inflammatory type 2 T cells and regulatory T cells (Tregs), all of which prevent the generation of effector cells. To improve the clinical efficacy of DC vaccines, we need to design novel and improved strategies that can boost adaptive immunity to cancer, help overcome Tregs and allow the breakdown of the immunosuppressive tumor microenvironment. This can be achieved by exploiting the fast increasing knowledge about the DC system, including the existence of distinct DC subsets. Critical to the design of better vaccines is the concept of distinct DC subsets and distinct DC activation pathways, all contributing to the generation of unique adaptive immune responses. Such novel DC vaccines will be used as monotherapy in patients with resected disease and in combination with antibodies and/or drugs targeting suppressor pathways and modulation of the tumor environment in patients with metastatic disease. PMID:20693842

  20. Engineering Dendritic Cells to Enhance Cancer Immunotherapy

    PubMed Central

    Boudreau, Jeanette E; Bonehill, Aude; Thielemans, Kris; Wan, Yonghong

    2011-01-01

    Cancer immunotherapy aims to establish immune-mediated control of tumor growth by priming T-cell responses to target tumor-associated antigens. Three signals are required for T-cell activation: (i) presentation of cognate antigen in self MHC molecules; (ii) costimulation by membrane-bound receptor-ligand pairs; and (iii) soluble factors to direct polarization of the ensuing immune response. The ability of dendritic cells (DCs) to provide all three signals required for T-cell activation makes them an ideal cancer vaccine platform. Several strategies have been developed to enhance and control antigen presentation, costimulation, and cytokine production. In this review, we discuss progress toward developing DC-based cancer vaccines by genetic modification using RNA, DNA, and recombinant viruses. Furthermore, the ability of DC-based vaccines to activate natural killer (NK) and B-cells, and the impact of gene modification strategies on these populations is described. Clinical trials using gene-modified DCs have shown modest results, therefore, further considerations for DC manipulation to enhance their clinical efficacy are also discussed. PMID:21468005

  1. Immunohistochemical detection of dendritic cell markers in cattle.

    PubMed

    Romero-Palomo, F; Risalde, M A; Molina, V; Sánchez-Cordón, P J; Pedrera, M; Gómez-Villamandos, J C

    2013-11-01

    Dendritic cells (DCs) are "professional" antigen-presenting cells with a critical role in the regulation of innate and adaptive immune responses and thus have been considered of great interest in the study of a variety of infectious diseases. The objective of this investigation was to characterize the in vivo distribution of DCs in bovine tissues by using potential DC markers to establish a basis for the study of DCs in diseased tissues. Markers evaluated included MHCII, CD208, CD1b, CD205, CNA.42, and S100 protein, the latter 2 being expressed by follicular dendritic cells whose origin and role are different from the rest of hematopoietic DCs. Paraffin wax-embedded tissues from 6 healthy Friesian calves were subjected to the avidin-biotin-peroxidase method, and the most appropriate fixatives, dilutions, and antigen retrieval pretreatments were studied for each of the primary antibodies. The most significant results included the localization of CD208-positive cells not only in the T zone of lymphoid organs but also within lymphoid follicles; CD1b-positive cells were mainly found in thymus and interfollicular areas of some lymph nodes; cells stained with anti-CD205 antibody were scarce, and their location was mainly in nonlymphoid tissues; and CNA.42- and S100 protein-positive cells localized in primary lymphoid follicles and light zones of germinal centers, although showing differences in the staining pattern. Furthermore, MHCII was established as one of the most sensitive markers for any DC of hematopoietic origin. These results increase our understanding of DC immunolabeling and will help in future DC studies of both healthy and diseased tissues.

  2. Actin and myosin-dependent localization of mRNA to dendrites.

    PubMed

    Balasanyan, Varuzhan; Arnold, Don B

    2014-01-01

    The localization of mRNAs within axons and dendrites allows neurons to manipulate protein levels in a time and location dependent manner and is essential for processes such as synaptic plasticity and axon guidance. However, an essential step in the process of mRNA localization, the decision to traffic to dendrites and/or axons, remains poorly understood. Here we show that Myosin Va and actin filaments are necessary for the dendritic localization of the mRNA binding protein Staufen 1 and of mRNA encoding the microtubule binding protein Map2. Blocking the function or expression of Myosin Va or depolymerizing actin filaments leads to localization of Staufen 1 and of Map2 mRNA in both axons and dendrites. Furthermore, interaction with Myosin Va plays an instructive role in the dendritic localization of Hermes 1, an RNA binding protein. Wild-type Hermes 1 localizes to both axons and dendrites, whereas Hermes 1 fused with a Myosin Va binding peptide, localizes specifically to dendrites. Thus, our results suggest that targeting of mRNAs to the dendrites is mediated by a mechanism that is dependent on actin and Myosin Va.

  3. Dendritic Cells Are the Major Antigen Presenting Cells in Inflammatory Lesions of Murine Mycoplasma Respiratory Disease

    PubMed Central

    Sun, Xiangle; Jones, Harlan P.; Dobbs, Nicole; Bodhankar, Sheetal; Simecka, Jerry W.

    2013-01-01

    Mycoplasmas cause chronic respiratory diseases in animals and humans, and to date, development of vaccines have been problematic. Using a murine model of mycoplasma pneumonia, lymphocyte responses, specifically T cells, were shown to confer protection as well as promote immunopathology in mycoplasma disease. Because T cells play such a critical role, it is important to define the role of antigen presenting cells (APC) as these cells may influence either exacerbation of mycoplasma disease pathogenesis or enhancement of protective immunity. The roles of APC, such as dendritic cells and/or macrophages, and their ability to modulate adaptive immunity in mycoplasma disease are currently unknown. Therefore, the purpose of this study was to identify individual pulmonary APC populations that may contribute to the activation of T cell responses during mycoplasma disease pathogenesis. The present study indeed demonstrates increasing numbers of CD11c− F4/80+ cells, which contain macrophages, and more mature/activated CD11c+ F4/80− cells, containing DC, in the lungs after infection. CD11c− F4/80+ macrophage-enriched cells and CD11c+ F4/80− dendritic cell-enriched populations showed different patterns of cytokine mRNA expression, supporting the idea that these cells have different impacts on immunity in response to infection. In fact, DC containing CD11c+ F4/80− cell populations from the lungs of infected mice were most capable of stimulating mycoplasma-specific CD4+ Th cell responses in vitro. In vivo, these CD11c+F4/80− cells were co-localized with CD4+ Th cells in inflammatory infiltrates in the lungs of mycoplasma-infected mice. Thus, CD11c+F4/80− dendritic cells appear to be the major APC population responsible for pulmonary T cell stimulation in mycoplasma-infected mice, and these dendritic cells likely contribute to responses impacting disease pathogenesis. PMID:23390557

  4. Stromal fibroblasts support dendritic cells to maintain IL-23/Th17 responses after exposure to ionizing radiation

    PubMed Central

    Malecka, Anna; Wang, Qunwei; Shah, Sabaria; Sutavani, Ruhcha V.; Spendlove, Ian; Ramage, Judith M.; Greensmith, Julie; Franks, Hester A.; Gough, Michael J.; Saalbach, Anja; Patel, Poulam M.; Jackson, Andrew M.

    2016-01-01

    Dendritic cell function is modulated by stromal cells, including fibroblasts. Although poorly understood, the signals delivered through this crosstalk substantially alter dendritic cell biology. This is well illustrated with release of TNF-α/IL-1β from activated dendritic cells, promoting PGE2 secretion from stromal fibroblasts. This instructs dendritic cells to up-regulate IL-23, a key Th17-polarizing cytokine. We previously showed that ionizing radiation inhibited IL-23 production by human dendritic cells in vitro. In the present study, we investigated the hypothesis that dendritic cell-fibroblast crosstalk overcomes the suppressive effect of ionizing radiation to support appropriately polarized Th17 responses. Radiation (1–6 Gy) markedly suppressed IL-23 secretion by activated dendritic cells (P < 0.0001) without adversely impacting their viability and consequently, inhibited the generation of Th17 responses. Cytokine suppression by ionizing radiation was selective, as there was no effect on IL-1β, -6, -10, and -27 or TNF-α and only a modest (11%) decrease in IL-12p70 secretion. Coculture with fibroblasts augmented IL-23 secretion by irradiated dendritic cells and increased Th17 responses. Importantly, in contrast to dendritic cells, irradiated fibroblasts maintained their capacity to respond to TNF-α/IL-1β and produce PGE2, thus providing the key intermediary signals for successful dendritic cell-fibroblasts crosstalk. In summary, stromal fibroblasts support Th17-polarizing cytokine production by dendritic cells that would otherwise be suppressed in an irradiated microenvironment. This has potential ramifications for understanding the immune response to local radiotherapy. These findings underscore the need to account for the impact of microenvironmental factors, including stromal cells, in understanding the control of immunity. PMID:27049023

  5. Lipopolysaccharide-pretreated plasmacytoid dendritic cells ameliorate experimental chronic kidney disease.

    PubMed

    Zheng, Dong; Cao, Qi; Lee, Vincent W S; Wang, Ya; Zheng, Guoping; Wang, YuanMin; Tan, Thian Kui; Wang, Changqi; Alexander, Stephen I; Harris, David C H; Wang, Yiping

    2012-05-01

    Plasmacytoid dendritic cells play important roles in inducing immune tolerance, preventing allograft rejection, and regulating immune responses in both autoimmune disease and graft-versus-host disease. In order to evaluate a possible protective effect of plasmacytoid dendritic cells against renal inflammation and injury, we purified these cells from mouse spleens and adoptively transferred lipopolysaccharide (LPS)-treated cells, modified ex vivo, into mice with adriamycin nephropathy. These LPS-treated cells localized to the kidney cortex and the lymph nodes draining the kidney, and protected the kidney from injury during adriamycin nephropathy. Glomerulosclerosis, tubular atrophy, interstitial expansion, proteinuria, and creatinine clearance were significantly reduced in mice with adriamycin nephropathy subsequently treated with LPS-activated plasmacytoid dendritic cells as compared to the kidney injury in mice given naive plasmacytoid dendritic cells. In addition, LPS-pretreated cells, but not naive plasmacytoid dendritic cells, convert CD4+CD25- T cells into Foxp3+ regulatory T cells and suppress the proinflammatory cytokine production of endogenous renal macrophages. This may explain their ability to protect against renal injury in adriamycin nephropathy.

  6. Clinical View on the Importance of Dendritic Cells in Asthma

    PubMed Central

    Gaurav, Rohit; Agrawal, Devendra K.

    2015-01-01

    Summary Allergic asthma is characterized by airway hyperresponsiveness and inflammation and may lead to airway remodeling in uncontrolled cases. Genetic predisposition to an atopic phenotype plays a major component in the pathophysiology of asthma. However, with tremendous role of epigenetic factors and environmental stimuli in precipitating an immune response, the underlying pathophysiological mechanisms are complicated. Dendritic cells are principal antigen presenting cells and initiators of the immune response in allergic asthma. Their phenotype, guided by multiple factors may dictate the immune reaction to an allergic or tolerogenic response. Involvement of the local cytokine milieu, microbiome and interplay between immune cells add dimension to the fate of immune response. In addition to allergen exposure, these factors modulate DC phenotype and function. In this article, integration of many factors and pathways associated with the recruitment and activation of DCs in the pathophysiology of allergic asthma is presented in a clinical and translational manner. PMID:24128155

  7. Role of dendritic cells in cardiovascular diseases

    PubMed Central

    Zhang, Yi; Zhang, Cuihua

    2010-01-01

    Dendritic cells (DCs) are potent antigen-presenting cells that bridge innate and adaptive immune responses. Recent work has elucidated the DC life cycle, including several important stages such as maturation, migration and homeostasis, as well as DC classification and subsets/locations, which provided etiological insights on the role of DCs in disease processes. DCs have a close relationship to endothelial cells and they interact with each other to maintain immunity. DCs are deposited in the atherosclerotic plaque and contribute to the pathogenesis of atherosclerosis. In addition, the necrotic cardiac cells induced by ischemia activate DCs by Toll-like receptors, which initiate innate and adaptive immune responses to renal, hepatic and cardiac ischemia reperfusion injury (IRI). Furthermore, DCs are involved in the acute/chronic rejection of solid organ transplantation and mediate transplant tolerance as well. Advancing our knowledge of the biology of DCs will aid development of new approaches to treat many cardiovascular diseases, including atherosclerosis, cardiac IRI and transplantation. PMID:21179302

  8. [Dendritic cell-based therapeutic cancer vaccines].

    PubMed

    Rizzo, Manglio; Alaniz, Laura; Mazzolini, Guillermo D

    In recent years immunotherapy has revolutionized the treatment of patients with advanced cancer. The increased knowledge in the tumor immune-biology has allowed developing rational treatments by manipulation of the immune system with significant clinical impact. This rapid development has significantly changed the prognosis of many tumors without treatment options up to date. Other strategies have explored the use of therapeutic vaccines based on dendritic cells (DC) by inducing antitumor immunity. DC are cells of hematopoietic origin, constitutively expressing molecules capable to present antigens, that are functionally the most potent inducers of the activation and proliferation of antigen specific T lymphocytes. The CD8+ T cells proliferate and acquire cytotoxic capacity after recognizing their specific antigen presented on the surface of DC, although only some types of DC can present antigens internalized from outside the cell to precursors of cytotoxic T lymphocytes (this function is called cross-presentation) requiring translocation mechanisms of complex antigens. The induction of an effective adaptive immune response is considered a good option given its specificity, and prolonged duration of response. The DC, thanks to its particular ability of antigen presentation and lymphocyte stimulation, are able to reverse the poor antitumor immune response experienced by patients with cancer. The DC can be obtained from various sources, using different protocols to generate differentiation and maturation, and are administered by various routes such as subcutaneous, intravenous or intranodal. The wide variety of protocols resulted in heterogeneous clinical responses.

  9. Reovirus activates human dendritic cells to promote innate antitumor immunity.

    PubMed

    Errington, Fiona; Steele, Lynette; Prestwich, Robin; Harrington, Kevin J; Pandha, Hardev S; Vidal, Laura; de Bono, Johann; Selby, Peter; Coffey, Matt; Vile, Richard; Melcher, Alan

    2008-05-01

    Oncolytic viruses can exert their antitumor activity via direct oncolysis or activation of antitumor immunity. Although reovirus is currently under clinical investigation for the treatment of localized or disseminated cancer, any potential immune contribution to its efficacy has not been addressed. This is the first study to investigate the ability of reovirus to activate human dendritic cells (DC), key regulators of both innate and adaptive immune responses. Reovirus induced DC maturation and stimulated the production of the proinflammatory cytokines IFN-alpha, TNF-alpha, IL-12p70, and IL-6. Activation of DC by reovirus was not dependent on viral replication, while cytokine production (but not phenotypic maturation) was inhibited by blockade of PKR and NF-kappaB signaling. Upon coculture with autologous NK cells, reovirus-activated DC up-regulated IFN-gamma production and increased NK cytolytic activity. Moreover, short-term coculture of reovirus-activated DC with autologous T cells also enhanced T cell cytokine secretion (IL-2 and IFN-gamma) and induced non-Ag restricted tumor cell killing. These data demonstrate for the first time that reovirus directly activates human DC and that reovirus-activated DC stimulate innate killing by not only NK cells, but also T cells, suggesting a novel potential role for T cells in oncolytic virus-induced local tumor cell death. Hence reovirus recognition by DC may trigger innate effector mechanisms to complement the virus's direct cytotoxicity, potentially enhancing the efficacy of reovirus as a therapeutic agent.

  10. The dendritic cell side of the immunological synapse.

    PubMed

    Verboogen, Danielle R J; Dingjan, Ilse; Revelo, Natalia H; Visser, Linda J; ter Beest, Martin; van den Bogaart, Geert

    2016-02-01

    Immune responses are initiated by the interactions between antigen-presenting cells (APCs), such as dendritic cells (DCs), with responder cells, such as T cells, via a tight cellular contact interface called the immunological synapse. The immunological synapse is a highly organized subcellular structure that provides a platform for the presentation of antigen in major histocompatibility class I and II complexes (MHC class I and II) on the surface of the APC to receptors on the surface of the responder cells. In T cells, these contacts lead to highly polarized membrane trafficking that results in the local release of lytic granules and in the delivery and recycling of T cell receptors at the immunological synapse. Localized trafficking also occurs at the APC side of the immunological synapse, especially in DCs where antigen loaded in MHC class I and II is presented and cytokines are released specifically at the synapse. Whereas the molecular mechanisms underlying polarized membrane trafficking at the T cell side of the immunological synapse are increasingly well understood, these are still very unclear at the APC side. In this review, we discuss the organization of the APC side of the immunological synapse. We focus on the directional trafficking and release of membrane vesicles carrying MHC molecules and cytokines at the immunological synapses of DCs. We hypothesize that the specific delivery of MHC and the release of cytokines at the immunological synapse mechanistically resemble that of lytic granule release from T cells.

  11. Metabolism Is Central to Tolerogenic Dendritic Cell Function

    PubMed Central

    Sim, Wen Jing; Ahl, Patricia Jennifer; Connolly, John Edward

    2016-01-01

    Immunological tolerance is a fundamental tenant of immune homeostasis and overall health. Self-tolerance is a critical component of the immune system that allows for the recognition of self, resulting in hyporeactivity instead of immunogenicity. Dendritic cells are central to the establishment of dominant immune tolerance through the secretion of immunosuppressive cytokines and regulatory polarization of T cells. Cellular metabolism holds the key to determining DC immunogenic or tolerogenic cell fate. Recent studies have demonstrated that dendritic cell maturation leads to a shift toward a glycolytic metabolic state and preferred use of glucose as a carbon source. In contrast, tolerogenic dendritic cells favor oxidative phosphorylation and fatty acid oxidation. This dichotomous metabolic reprogramming of dendritic cells drives differential cellular function and plays a role in pathologies, such as autoimmune disease. Pharmacological alterations in metabolism have promising therapeutic potential. PMID:26980944

  12. Transcriptional profiling of dendritic cells matured in different osmolarities.

    PubMed

    Chessa, Federica; Hielscher, Thomas; Mathow, Daniel; Gröne, Hermann-Josef; Popovic, Zoran V

    2016-03-01

    Tissue-specific microenvironments shape the fate of mononuclear phagocytes [1-3]. Interstitial osmolarity is a tissue biophysical parameter which considerably modulates the phenotype and function of dendritic cells [4]. In the present report we provide a detailed description of our experimental workflow and bioinformatic analysis applied to our gene expression dataset (GSE72174), aiming to investigate the influence of different osmolarity conditions on the gene expression signature of bone marrow-derived dendritic cells. We established a cell culture system involving murine bone marrow cells, cultured under different NaCl-induced osmolarity conditions in the presence of the dendritic cell growth factor GM-CSF. Gene expression analysis was applied to mature dendritic cells (day 7) developed in different osmolarities, with and without prior stimulation with the TLR2/4 ligand LPS.

  13. Follicular dendritic cell sarcoma of the abdomen: the imaging findings.

    PubMed

    Kang, Tae Wook; Lee, Soon Jin; Song, Hye Jong

    2010-01-01

    Follicular dendritic cell sarcoma is a rare neoplasm that originates from follicular dendritic cells in lymphoid follicles. This disease usually involves the lymph nodes, and especially the head and neck area. Rarely, extranodal sites may be affected, including tonsil, the oral cavity, liver, spleen and the gastrointestinal tract. We report here on the imaging findings of follicular dendritic cell sarcoma of the abdomen that involved the retroperitoneal lymph nodes and colon. It shows as a well-defined, enhancing homogenous mass with internal necrosis and regional lymphadenopathy.

  14. Impulse encoding across the dendritic morphologies of retinal ganglion cells.

    PubMed

    Sheasby, B W; Fohlmeister, J F

    1999-04-01

    Nerve impulse entrainment and other excitation and passive phenomena are analyzed for a morphologically diverse and exhaustive data set (n = 57) of realistic (3-dimensional computer traced) soma-dendritic tree structures of ganglion cells in the tiger salamander (Ambystoma tigrinum) retina. The neurons, including axon and an anatomically specialized thin axonal segment that is observed in every ganglion cell, were supplied with five voltage- or ligand-gated ion channels (plus leakage), which were distributed in accordance with those found in a recent study that employed an equivalent dendritic cylinder. A wide variety of impulse-entrainment responses was observed, including regular low-frequency firing, impulse doublets, and more complex patterns involving impulse propagation failures (or aborted spikes) within the encoder region, all of which have been observed experimentally. The impulse-frequency response curves of the cells fell into three groups called FAST, MEDIUM, and SLOW in approximate proportion as seen experimentally. In addition to these, a new group was found among the traced cells that exhibited an impulse-frequency response twice that of the FAST category. The total amount of soma-dendritic surface area exhibited by a given cell is decisive in determining its electrophysiological classification. On the other hand, we found only a weak correlation between the electrophysiological group and the morphological classification of a given cell, which is based on the complexity of dendritic branching and the physical reach or "receptive field" area of the cell. Dendritic morphology determines discharge patterns to dendritic (synaptic) stimulation. Orthodromic impulses can be initiated on the axon hillock, the thin axonal segment, the soma, or even the proximal axon beyond the thin segment, depending on stimulus magnitude, soma-dendritic membrane area, channel distribution, and state within the repetitive impulse cycle. Although a sufficiently high dendritic

  15. Dendritic Cell Interactions with Lymphatic Endothelium

    PubMed Central

    Russo, Erica; Nitschké, Maximilian

    2013-01-01

    Abstract Afferent lymphatic vessels fulfill essential immune functions by transporting leukocytes and lymph-borne antigen to draining lymph nodes (dLNs). An important cell type migrating through lymphatic vessels are dendritic cells (DCs). DCs reside in peripheral tissues like the skin, where they take up antigen and transport it via the lymphatic vascular network to dLNs for subsequent presentation to T cells. As such, DCs play a key role in the induction of adaptive immune responses during infection and vaccination, but also for the maintenance of tolerance. Although the migratory pattern of DCs has been known for long time, interactions between DCs and lymphatic vessels are only now starting to be unraveled at the cellular level. In particular, new tools for visualizing lymphatic vessels in combination with time-lapse microscopy have recently generated valuable insights into the process of DC migration to dLNs. In this review we summarize and discuss current approaches for visualizing DCs and lymphatic vessels in tissues for imaging applications. Furthermore, we review the current state of knowledge about DC migration towards, into and within lymphatic vessels, particularly focusing on the cellular interactions that take place between DCs and the lymphatic endothelium. PMID:24044757

  16. Tumor's other immune targets: dendritic cells.

    PubMed

    Esche, C; Lokshin, A; Shurin, G V; Gastman, B R; Rabinowich, H; Watkins, S C; Lotze, M T; Shurin, M R

    1999-08-01

    The induction of apoptosis in T cells is one of several mechanisms by which tumors escape immune recognition. We have investigated whether tumors induce apoptosis in dendritic cells (DC) by co-culture of murine or human DC with different tumor cell lines for 4-48 h. Analysis of DC morphological features, JAM assay, TUNEL, caspase-3-like and transglutaminase activity, Annexin V binding, and DNA fragmentation assays revealed a time- and dose-dependent induction of apoptosis in DC by tumor-derived factors. This finding is both effector and target specific. The mechanism of tumor-induced DC apoptosis involved regulation of Bcl-2 and Bax expression. Double staining of both murine and human tumor tissues confirmed that tumor-associated DC undergo apoptotic death in vivo. DC isolated from tumor tissue showed significantly higher levels of apoptosis as determined by TUNEL assay when compared with DC isolated from spleen. These findings demonstrate that tumors induce apoptosis in DC and suggest a new mechanism of tumor escape from immune recognition. DC protection from apoptosis will lead to improvement of DC-based immunotherapies for cancer and other immune diseases.

  17. Neuroimmune interactions: dendritic cell modulation by the sympathetic nervous system.

    PubMed

    Takenaka, Maisa C; Guereschi, Marcia G; Basso, Alexandre S

    2017-02-01

    Dendritic cells are of paramount importance bridging innate and adaptive immune responses. Depending on the context, after sensing environmental antigens, commensal microorganisms, pathogenic agents, or antigens from the diet, dendritic cells may drive either different effector adaptive immune responses or tolerance, avoiding tissue damage. Although the plasticity of the immune response and the capacity to regulate itself are considered essential to orchestrate appropriate physiological responses, it is known that the nervous system plays a relevant role controlling immune cell function. Dendritic cells present in the skin, the intestine, and lymphoid organs, besides expressing adrenergic receptors, can be reached by neurotransmitters released by sympathetic fibers innervating these tissues. These review focus on how neurotransmitters from the sympathetic nervous system can modulate dendritic cell function and how this may impact the immune response and immune-mediated disorders.

  18. Use and abuse of dendritic cells by Toxoplasma gondii

    PubMed Central

    Sanecka, Anna; Frickel, Eva-Maria

    2012-01-01

    The ubiquitous apicomplexan parasite Toxoplasma gondii stimulates its host’s immune response to achieve quiescent chronic infection. Central to this goal are host dendritic cells. The parasite exploits dendritic cells to disseminate through the body, produce pro-inflammatory cytokines, present its antigens to the immune system and yet at the same time subvert their signaling pathways in order to evade detection. This carefully struck balance by Toxoplasma makes it the most successful parasite on this planet. Recent progress has highlighted specific parasite and host molecules that mediate some of these processes particularly in dendritic cells and in other cells of the innate immune system. Critically, there are several important factors that need to be taken into consideration when concluding how the dendritic cells and the immune system deal with a Toxoplasma infection, including the route of administration, parasite strain and host genotype. PMID:23221473

  19. Dendritic cell interactions with Histoplasma and Paracoccidioides

    PubMed Central

    Thind, Sharanjeet K; Taborda, Carlos P; Nosanchuk, Joshua D

    2015-01-01

    Fungi are among the most common microbes encountered by humans. More than 100, 000 fungal species have been described in the environment to date, however only a few species cause disease in humans. Fungal infections are of particular importance to immunocompromised hosts in whom disease is often more severe, especially in those with impaired cell-mediated immunity such as individuals with HIV infection, hematologic malignancies, or those receiving TNF-α inhibitors. Nevertheless, environmental disturbances through natural processes or as a consequence of deforestation or construction can expose immunologically competent people to a large number of fungal spores resulting in asymptomatic acquisition to life-threatening disease. In recent decades, the significance of the innate immune system and more importantly the role of dendritic cells (DC) have been found to play a fundamental role in the resolution of fungal infections, such as in dimorphic fungi like Histoplasma and Paracoccidioides. In this review article the general role of DCs will be illustrated as the bridge between the innate and adaptive immune systems, as well as their specific interactions with these 2 dimorphic fungi. PMID:25933034

  20. Mycobacterium avium subspecies impair dendritic cell maturation.

    PubMed

    Basler, Tina; Brumshagen, Christina; Beineke, Andreas; Goethe, Ralph; Bäumer, Wolfgang

    2013-10-01

    Mycobacterium avium ssp. paratuberculosis (MAP) causes Johne's disease, a chronic, granulomatous enteritis of ruminants. Dendritic cells (DC) of the gut are ideally placed to combat invading mycobacteria; however, little is known about their interaction with MAP. Here, we investigated the interaction of MAP and the closely related M. avium ssp. avium (MAA) with murine DC and the effect of infected macrophages on DC maturation. The infection of DC with MAP or MAA induced DC maturation, which differed to that of LPS as maturation was accompanied by higher production of IL-10 and lower production of IL-12. Treatment of maturing DC with supernatants from mycobacteria-infected macrophages resulted in impaired DC maturation, leading to a semi-mature, tolerogenic DC phenotype expressing low levels of MHCII, CD86 and TNF-α after LPS stimulation. Though the cells were not completely differentiated they responded with an increased IL-10 and a decreased IL-12 production. Using recombinant cytokines we provide evidence that the semi-mature DC phenotype results from a combination of secreted cytokines and released antigenic mycobacterial components of the infected macrophage. Our results indicate that MAP and MAA are able to subvert DC function directly by infecting and indirectly via the milieu created by infected macrophages.

  1. Dendritic cell interactions with Histoplasma and Paracoccidioides.

    PubMed

    Thind, Sharanjeet K; Taborda, Carlos P; Nosanchuk, Joshua D

    2015-01-01

    Fungi are among the most common microbes encountered by humans. More than 100, 000 fungal species have been described in the environment to date, however only a few species cause disease in humans. Fungal infections are of particular importance to immunocompromised hosts in whom disease is often more severe, especially in those with impaired cell-mediated immunity such as individuals with HIV infection, hematologic malignancies, or those receiving TNF-α inhibitors. Nevertheless, environmental disturbances through natural processes or as a consequence of deforestation or construction can expose immunologically competent people to a large number of fungal spores resulting in asymptomatic acquisition to life-threatening disease. In recent decades, the significance of the innate immune system and more importantly the role of dendritic cells (DC) have been found to play a fundamental role in the resolution of fungal infections, such as in dimorphic fungi like Histoplasma and Paracoccidioides. In this review article the general role of DCs will be illustrated as the bridge between the innate and adaptive immune systems, as well as their specific interactions with these 2 dimorphic fungi.

  2. Kidney dendritic cells in acute and chronic renal disease.

    PubMed

    Hochheiser, Katharina; Tittel, André; Kurts, Christian

    2011-06-01

    Dendritic cells are not only the master regulators of adaptive immunity, but also participate profoundly in innate immune responses. Much has been learned about their basic immunological functions and their roles in various diseases. Comparatively little is still known about their role in renal disease, despite their obvious potential to affect immune responses in the kidney, and immune responses that are directed against renal components. Kidney dendritic cells form an abundant network in the renal tubulointerstitium and constantly survey the environment for signs of injury or infection, in order to alert the immune system to the need to initiate defensive action. Recent studies have identified a role for dendritic cells in several murine models of acute renal injury and chronic nephritis. Here we summarize the current knowledge on the role of kidney dendritic cells that has been obtained from the study of murine models of renal disease. © 2010 The Authors. Journal compilation © 2010 Blackwell Publishing Ltd.

  3. [Dendritic cells and gliomas: a hope in immunotherapy?].

    PubMed

    Jouanneau, E; Poujol, D; Caux, C; Belin, M-F; Blay, J-Y; Puisieux, I

    2006-12-01

    Immunotherapy has been explored for several decades to try to improve the prognosis of gliomas, but until recently no therapeutic benefit has been achieved. The discovery of dendritic cells, the most potent professional antigen presenting cells to initiate specific immune response, and the possibility of producing them ex vivo gave rise to new protocols of active immunotherapy. In oncology, promising experimental and clinical therapeutic results were obtained using these dendritic cells loaded with tumor antigen. Patients bearing gliomas have deficit antigen presentation making this approach rational. In several experimental glioma models, independent research teams have showed specific antitumor responses using these dendritic cells. Phase I/II clinical trials have demonstrated the feasibility and the tolerance of this immunotherapeutic approach. In neuro-oncology, the efficiency of such an approach remains to be established, similarly in oncology where positive phase III studies are missing. Nevertheless, dendritic cells comprise a complex network which is only partially understood and capable of generating either immunotolerance or immune response. Numerous parameters remain to be explored before any definitive conclusion about their utility as an anticancer weapon can be drawn. It seems however logical that immunotherapy with dendritic cells could prevent or delay tumor recurrence in patients with minor active disease. A review on glioma and dendritic cells is presented.

  4. Production of interferons by dendritic cells, plasmacytoid cells, natural killer cells, and interferon-producing killer dendritic cells.

    PubMed

    Vremec, David; O'Keeffe, Meredith; Hochrein, Hubertus; Fuchsberger, Martina; Caminschi, Irina; Lahoud, Mireille; Shortman, Ken

    2007-02-01

    The capacity of mouse spleen conventional dendritic cells (cDCs) and plasmacytoid dendritic cells (pDCs) to produce interferon-gamma (IFN-gamma) or IFN-alpha was assessed, and compared with that of natural killer (NK) cells and the recently identified interferon-producing killer dendritic cells (IKDCs), both of which are frequent contaminants in DC preparations. Fully developed cDCs or pDCs, if free of NK cells or IKDCs, showed little capacity for IFN-gamma production. However, an early developmental form of the CD4-8+ cDC subtype, and the Ly6C- Ly49Q- pDC subtype, both were able to produce moderate amounts of IFN-gamma, although less than IKDCs. In response to toll-like receptor 9 stimuli, both the Ly6C+ Ly49Q+ and the Ly6C- Ly49Q- pDC subtypes were effective producers of IFN-alpha. However, IKDCs, which efficiently produced IFN-gamma and showed immediate cytotoxicity on NK target cells, did not produce IFN-alpha under these conditions.

  5. Plexin-A4-dependent retrograde semaphorin 3A signalling regulates the dendritic localization of GluA2-containing AMPA receptors.

    PubMed

    Yamashita, Naoya; Usui, Hiroshi; Nakamura, Fumio; Chen, Sandy; Sasaki, Yukio; Hida, Tomonobu; Suto, Fumikazu; Taniguchi, Masahiko; Takei, Kohtaro; Goshima, Yoshio

    2014-03-06

    The dendritic targeting of neurotransmitter receptors is vital for dendritic development and function. However, how such localization is established remains unclear. Here we show that semaphorin 3A (Sema3A) signalling at the axonal growth cone is propagated towards the cell body by retrograde axonal transport and drives AMPA receptor GluA2 to the distal dendrites, which regulates dendritic development. Sema3A enhances glutamate receptor interacting protein 1-dependent localization of GluA2 in dendrites, which is blocked by knockdown of cytoplasmic dynein heavy chain. PlexinA (PlexA), a receptor component for Sema3A, interacts with GluA2 at the immunoglobulin-like Plexin-transcription-factor domain (PlexA-IPT) in somatodendritic regions. Overexpression of PlexA-IPT suppresses dendritic localization of GluA2 and induces aproximal bifurcation phenotype in the apical dendrites of CA1 hippocampal neurons. Thus, we propose a control mechanism by which retrograde Sema3A signalling regulates the glutamate receptor localization through trafficking of cis-interacting PlexA with GluA2 along dendrites.

  6. Functional polarity of dendrites and axons of primate A1 amacrine cells

    PubMed Central

    Davenport, Christopher M.; Detwiler, Peter B.; Dacey, Dennis M.

    2011-01-01

    The A1 cell is an axon-bearing amacrine cell of the primate retina with a diffusely stratified, moderately branched dendritic tree (~400 µm diameter). Axons arise from proximal dendrites forming a second concentric, larger arborization (>4 mm diameter) of thin processes with bouton-like swellings along their length. A1 cells are ON-OFF transient cells that fire a brief high frequency burst of action potentials in response to light (Stafford & Dacey, 1997). It has been hypothesized that A1 cells receive local input to their dendrites, with action potentials propagating output via the axons across the retina, serving a global inhibitory function. To explore this hypothesis we recorded intracellularly from A1 cells in an in vitro macaque monkey retina preparation. A1 cells have an antagonistic center-surround receptive field structure for the ON and OFF components of the light response. Blocking the ON pathway with L-AP4 eliminated ON center responses but not OFF center responses or ON or OFF surround responses. Blocking GABAergic inhibition with picrotoxin increased response amplitudes without affecting receptive field structure. TTX abolished action potentials, with little effect on the sub-threshold light response or basic receptive field structure. We also used multi-photon laser scanning microscopy to record light-induced calcium transients in morphologically identified dendrites and axons of A1 cells. TTX completely abolished such calcium transients in the axons but not in the dendrites. Together these results support the current model of A1 function, whereby the dendritic tree receives synaptic input that determines the center-surround receptive field; and action potentials arise in the axons, which propagate away from the dendritic field across the retina. PMID:17550636

  7. New generation of dendritic cell vaccines.

    PubMed

    Radford, Kristen J; Caminschi, Irina

    2013-02-01

    Dendritic cells (DC) play a pivotal role in the induction and regulation of immune responses, including the induction of cytotoxic T lymphocytes (CTL) responses. These are essential for the eradication of cancers and pathogens including HIV and malaria, for which there are currently no effective vaccines. New developments in our understanding of DC biology have identified the key DC subset responsible for CTL induction, which is now an attractive candidate to target for vaccination. These DC are characterized by expression of novel markers Clec9A and XCR1, and a specialized capacity to cross-present antigen (Ag) from tumors and pathogens that do not directly infect DC. New generation DC vaccines that specifically target the cross-presenting DC in vivo have already demonstrated potential in preclinical animal models but the challenge remains to translate these findings into clinically efficacous vaccines in man. This has been greatly facilitated by the recent identification of the equivalent Clec9A(+) XCR1(+) cross-presenting DC in human lymphoid tissues and peripheral tissues that are key sites for vaccination administration. These findings combined with further studies on DC subset biology have important implications for the design of new CTL-mediated vaccines.

  8. Dendritic Cells and Macrophages: Sentinels in the Kidney

    PubMed Central

    Weisheit, Christina K.; Engel, Daniel R.

    2015-01-01

    The mononuclear phagocytes (dendritic cells and macrophages) are closely related immune cells with central roles in anti-infectious defense and maintenance of organ integrity. The canonical function of dendritic cells is the activation of T cells, whereas macrophages remove apoptotic cells and microbes by phagocytosis. In the kidney, these cell types form an intricate system of mononuclear phagocytes that surveys against injury and infection and contributes to organ homeostasis and tissue repair but may also promote progression of CKD. This review summarizes the general functions and classification of dendritic cells and macrophages in the immune system and recapitulates why overlapping definitions and historically separate research have created controversy about their tasks. Their roles in acute kidney disease, CKD, and renal transplantation are described, and therapeutic strategy to modify these cells for therapeutic purposes is discussed. PMID:25568218

  9. The effect of dendritic cells on the retinal cell transplantation

    SciTech Connect

    Oishi, Akio; Nagai, Takayuki; Mandai, Michiko Takahashi, Masayo; Yoshimura, Nagahisa

    2007-11-16

    The potential of bone marrow cell-derived immature dendritic cells (myeloid iDCs) in modulating the efficacy of retinal cell transplantation therapy was investigated. (1) In vitro, myeloid iDCs but not BMCs enhanced the survival and proliferation of embryonic retinal cells, and the expression of various neurotrophic factors by myeloid iDCs was confirmed with RT-PCR. (2) In subretinal transplantation, neonatal retinal cells co-transplanted with myeloid iDCs showed higher survival rate compared to those transplanted without myeloid iDCs. (3) CD8 T-cells reactive against donor retinal cells were significantly increased in the mice with transplantation of retinal cells alone. These results suggested the beneficial effects of the use of myeloid iDCs in retinal cell transplantation therapy.

  10. The role of dendritic cells in CNS autoimmunity

    PubMed Central

    Zozulya, Alla L.; Clarkson, Benjamin D.; Ortler, Sonja; Fabry, Zsuzsanna

    2010-01-01

    Multiple sclerosis (MS) is a chronic immune-mediated, central nervous system (CNS) demyelinating disease. Clinical and histopathological features suggest an inflammatory etiology involving resident CNS innate cells as well as invading adaptive immune cells. Encephalitogenic myelin-reactive T cells have been implicated in the initiation of an inflammatory cascade, eventually resulting in demyelination and axonal damage (the histological hallmarks of MS). Dendritic cells (DC) have recently emerged as key modulators of this immunopathological cascade, as supported by studies in humans and experimental disease models. In one such model, experimental autoimmune encephalomyelitis (EAE), CNS microvessel-associated DC have been shown to be essential for local antigen recognition by myelin-reactive T cells. Moreover, the functional state and compartmental distribution of DC derived from CNS and associated lymphatics seem to be limiting factors in both the induction and effector phases of EAE. Moreover, DC modulate and balance the recruitment of encephalitogenic and regulatory T cells into CNS tissue. This capacity is critically influenced by DC surface expression of co-stimulatory or co-inhibitory molecules. The fact that DC accumulate in the CNS before T cells and can direct T-cell responses suggests that they are key determinants of CNS autoimmune outcomes. Here we provide a comprehensive review of recent advances in our understanding of CNS-derived DC and their relevance to neuroinflammation. PMID:20217033

  11. Dendritic cell-nerve clusters are sites of T cell proliferation in allergic airway inflammation.

    PubMed

    Veres, Tibor Z; Shevchenko, Marina; Krasteva, Gabriela; Spies, Emma; Prenzler, Frauke; Rochlitzer, Sabine; Tschernig, Thomas; Krug, Norbert; Kummer, Wolfgang; Braun, Armin

    2009-03-01

    Interactions between T cells and dendritic cells in the airway mucosa precede secondary immune responses to inhaled antigen. The purpose of this study was to identify the anatomical locations where dendritic cell-T cell interactions occur, resulting in T cells activation by dendritic cells. In a mouse model of allergic airway inflammation, we applied whole-mount immunohistology and confocal microscopy to visualize dendritic cells and T cells together with nerves, epithelium, and smooth muscle in three dimensions. Proliferating T cells were identified by the detection of the incorporation of the nucleotide analogue 5-ethynyl-2'-deoxyuridine into the DNA. We developed a novel quantification method that enabled the accurate determination of cell-cell contacts in a semi-automated fashion. Dendritic cell-T cell interactions occurred beneath the smooth muscle layer, but not in the epithelium. Approximately 10% of the dendritic cells were contacted by nerves, and up to 4% of T cells formed clusters with these dendritic cells. T cells that were clustered with nerve-contacting dendritic cells proliferated only in the airways of mice with allergic inflammation but not in the airways of negative controls. Taken together, these results suggest that during the secondary immune response, sensory nerves influence dendritic cell-driven T cell activation in the airway mucosa.

  12. Organization of pyramidal cell apical dendrites and composition of dendritic clusters in the mouse: emphasis on primary motor cortex.

    PubMed

    Lev, D L; White, E L

    1997-02-01

    It has been proposed that neurons in sensory cortices are organized into modules that centre on clusters of apical dendrites belonging to layer V pyramidal neurons. In the present study, sections reacted for microtubule-associated protein (MAP2) were examined in order to determine the three-dimensional inter-relationships of pyramidal cell dendrites in mouse primary motor cortex (MsI) cortex. Results indicate that pyramidal cell dendrites in MsI cortex can be interpreted to be arranged in a modular fashion, and that these modules are organized similarly to those in the sensory areas of the cortex. Also included in the present study are experiments designed to determine if the clusters of apical dendrites, around which the modules are centred, are composed of dendrites belonging to one or to more than one type of projection cell. Callosal neurons in MsI cortex were labelled by the retrograde transport of horseradish peroxidase deposited onto severed callosal fibres in the contralateral hemisphere. Examination of tangential thin sections through layer IV of MsI cortex shows clusters of apical dendrites in which every dendrite is labelled with horseradish peroxidase. Adjacent clusters are composed of unlabelled dendrites, suggesting that the apical dendrites of callosal neurons aggregate to form clusters that are composed exclusively of dendrites belonging to this type of projection cell. These findings suggest a hitherto unsuspected degree of specificity in the cellular composition of cortical modules.

  13. Dendrites of rod bipolar cells sprout in normal aging retina.

    PubMed

    Liets, Lauren C; Eliasieh, Kasra; van der List, Deborah A; Chalupa, Leo M

    2006-08-08

    The aging nervous system is known to manifest a variety of degenerative and regressive events. Here we report the unexpected growth of dendrites in the retinas of normal old mice. The dendrites of many rod bipolar cells in aging mice were observed to extend well beyond their normal strata within the outer plexiform layer to innervate the outer nuclear layer where they appeared to form contacts with the spherules of rod photoreceptors. Such dendritic sprouting increased with age and was evident at all retinal eccentricities. These results provide evidence of retinal plasticity associated with normal aging.

  14. Endothelial cell-derived microparticles induce plasmacytoid dendritic cell maturation: potential implications in inflammatory diseases

    PubMed Central

    Angelot, Fanny; Seillès, Estelle; Biichlé, Sabeha; Berda, Yael; Gaugler, Béatrice; Plumas, Joel; Chaperot, Laurence; Dignat-George, Françoise; Tiberghien, Pierre; Saas, Philippe; Garnache-Ottou, Francine

    2009-01-01

    Background Increased circulating endothelial microparticles, resulting from vascular endothelium dysfunction, and plasmacytoid dendritic cell activation are both encountered in common inflammatory disorders. The aim of our study was to determine whether interactions between endothelial microparticles and plasmacytoid dendritic cells could contribute to such pathologies. Design and Methods Microparticles generated from endothelial cell lines, platelets or activated T cells were incubated with human plasmacytoid dendritic cells sorted from healthy donor blood or with monocyte-derived dendritic cells. Dendritic cell maturation was evaluated by flow cytometry, cytokine secretion as well as naive T-cell activation and polarization. Labeled microparticles were also used to study cellular interactions. Results Endothelial microparticles induced plasmacytoid dendritic cell maturation. In contrast, conventional dendritic cells were resistant to endothelial microparticle-induced maturation. In addition to upregulation of co-stimulatory molecules, endothelial microparticle-matured plasmacytoid dendritic cells secreted inflammatory cytokines (interleukins 6 and 8, but no interferon-α) and also induced allogeneic naive CD4+ T cells to proliferate and to produce type 1 cytokines such as interferon-γ and tumor necrosis factor-α. Endothelial microparticle endocytosis by plasmacytoid dendritic cells appeared to be required for plasmacytoid dendritic cell maturation. Importantly, the ability of endothelial microparticles to induce plasmacytoid dendritic cells to mature was specific as microparticles derived from activated T cells or platelets (the major source of circulating microparticules in healthy subjects) did not induce such plasmacytoid dendritic cell maturation. Conclusions Our data show that endothelial microparticles specifically induce plasmacytoid dendritic cell maturation and production of inflammatory cytokines. This novel activation pathway may be implicated in

  15. New generation of oral mucosal vaccines targeting dendritic cells.

    PubMed

    Owen, Jennifer L; Sahay, Bikash; Mohamadzadeh, Mansour

    2013-12-01

    As most infectious organisms gain entry at mucosal surfaces, there is a great deal of interest in developing vaccines that elicit effective mucosal immune responses against pathogen challenge. Targeted vaccination is one of the most effective methods available to prevent and control infectious diseases. Mucosal vaccines can offer lower costs, better accessibility, needle free delivery, and a higher capacity for mass immunizations during pandemics. Both local mucosal immunity and robust systemic responses can be achieved through mucosal vaccination. Recent progress in understanding the molecular and cellular components of the mucosal immune system have allowed for the development of a novel mucosal vaccine platform utilizing specific dendritic cell-targeting peptides and orally administered lactobacilli to elicit efficient antigen specific immune responses against infections, including Bacillus anthracis in experimental models of disease.

  16. New generation of oral mucosal vaccines targeting dendritic cells

    PubMed Central

    Owen, Jennifer L.; Sahay, Bikash; Mohamadzadeh, Mansour

    2013-01-01

    As most infectious organisms gain entry at mucosal surfaces, there is a great deal of interest in developing vaccines that elicit effective mucosal immune responses against pathogen challenge. Targeted vaccination is one of the most effective methods available to prevent and control infectious diseases. Mucosal vaccines can offer lower costs, better accessibility, needle free delivery, and a higher capacity for mass immunizations during pandemics. Both local mucosal immunity and robust systemic responses can be achieved through mucosal vaccination. Recent progress in understanding the molecular and cellular components of the mucosal immune system have allowed for the development of a novel mucosal vaccine platform utilizing specific dendritic cell-targeting peptides and orally administered lactobacilli to elicit efficient antigen specific immune responses against infections, including B. anthracis in experimental models of disease. PMID:23835515

  17. [Glucocorticoids and their effect on dendritic cell function].

    PubMed

    Rozková, D; Horváth, R; Bartůnková, J; Spísek, R

    2005-01-01

    Dendritic cells represent the most effective antigen presenting cells and they are the only cell type capable of initiating the primary immune response. They use several sets of germ-line encoded receptors to differentiate between self and non-self and to detect the presence of danger signals. Danger signals are mainly represented by microbial pathogens but it can be also a necrotic or malignant cell. At various stages of their lifecycle dendritic cells play a key role in maintaining the peripheral tolerance towards self-antigens and in the initiation of an effective immune response. Glucocorticoids have been widely used in the treatment of autoimmune or inflammatory disorders and their immunosuppressive effect has been mainly attributed to the inhibition of lymphocytes functions. In this study, we discuss the effects of glucocorticoids on in vitro generated myeloid dendritic cells and on peripheral blood myeloid and plasmacytoid dendritic cells subsets. Experimental results point to the profound suppressive effect of glucocorticoids on the antigen presenting functions of dendritic cells and to contribute to better understanding of glucocorticoids-mediated immunosuppressive effect.

  18. Insights into dendritic cell function using advanced imaging modalities.

    PubMed

    Vyas, Jatin M

    2012-11-15

    The application of advanced imaging techniques to fundamental questions in immunology has provided insight into dendritic cell function and has challenged dogma created using static imaging of lymphoid tissue. The history of dendritic cell biology has a storied past and is tightly linked to imaging. The development of imaging techniques that emphasize live cell imaging in situ has provided not only breath-taking movies, but also novel insights into the importance of spatiotemporal relationships between antigen presenting cells and T cells. This review serves to provide a primer on two-photon microscopy, TIRF microscopy, spinning disk confocal microscopy and optical trapping and provides selective examples of insights gained from these tools on dendritic cell biology.

  19. Local Control of Postinhibitory Rebound Spiking in CA1 Pyramidal Neuron Dendrites

    PubMed Central

    Ascoli, Giorgio A.; Gasparini, Sonia; Medinilla, Virginia; Migliore, Michele

    2012-01-01

    Postinhibitory rebound spiking is characteristic of several neuron types and brain regions, where it sustains spontaneous activity and central pattern generation. However, rebound spikes are rarely observed in the principal cells of the hippocampus under physiological conditions. We report that CA1 pyramidal neurons support rebound spikes mediated by hyperpolarization-activated inward current (Ih), and normally masked by A-type potassium channels (KA). In both experiments and computational models, KA blockage or reduction consistently resulted in a somatic action potential upon release from hyperpolarizing injections in the soma or main apical dendrite. Rebound spiking was systematically abolished by the additional blockage or reduction of Ih. Since the density of both KA and Ih increases in these cells with the distance from the soma, such “latent” mechanism may be most effective in the distal dendrites, which are targeted by a variety of GABAergic interneurons. Detailed computer simulations, validated against the experimental data, demonstrate that rebound spiking can result from activation of distal inhibitory synapses. In particular, partial KA reduction confined to one or few branches of the apical tuft may be sufficient to elicit a local spike following a train of synaptic inhibition. Moreover, the spatial extent and amount of KA reduction determines whether the dendritic spike propagates to the soma. These data suggest that the plastic regulation of KA can provide a dynamic switch to unmask postinhibitory spiking in CA1 pyramidal neurons. This newly discovered local modulation of postinhibitory spiking further increases the signal processing power of the CA1 synaptic microcircuitry. PMID:20445069

  20. Components of RNA granules affect their localization and dynamics in neuronal dendrites.

    PubMed

    Mitsumori, Kazuhiko; Takei, Yosuke; Hirokawa, Nobutaka

    2017-04-12

    In neurons, RNA transport is important for local protein synthesis. Messenger RNAs (mRNAs) are transported along dendrites as large RNA granules. The localization and dynamics of Puralpha and Stau1, major components of RNA transport granules, were investigated in cultured hippocampal neurons. Puralpha-positive granules were localized in both the shafts and spines of dendrites. In contrast, Stau1-positive granules tended to be localized mainly in dendritic shafts. More than 90% of Puralpha-positive granules were positive for Stau1 in immature dendrites, while only half were positive in mature dendrites. Stau1-negative Puralpha granules tended to be stationary with fewer anterograde and retrograde movements than Stau1-positive Puralpha granules. After metabotropic glutamate receptor 5 (mGluR5) activation, Stau-1 positive granules remained in the dendritic shafts, while Puralpha granules translocated from the shaft to the spine. The translocation of Puralpha granules was dependent on Myosin Va, an actin-based molecular motor protein. Collectively, our findings suggest the possibility that the loss of Stau1 in Puralpha-positive RNA granules might promote their activity-dependent translocation into dendritic spines, which could underlie the regulation of protein synthesis in synapses.

  1. Hyperactivation of STAT3 is involved in abnormal differentiation of dendritic cells in cancer.

    PubMed

    Nefedova, Yulia; Huang, Mei; Kusmartsev, Sergei; Bhattacharya, Raka; Cheng, Pingyan; Salup, Raoul; Jove, Richard; Gabrilovich, Dmitry

    2004-01-01

    Abnormal differentiation of myeloid cells is one of the hallmarks of cancer. However, the molecular mechanisms of this process remain elusive. In this study, we investigated the effect of tumor-derived factors on Janus kinase (Jak)/STAT signaling in myeloid cells during their differentiation into dendritic cells. Tumor cell conditioned medium induced activation of Jak2 and STAT3, which was associated with an accumulation of immature myeloid cells. Jak2/STAT3 activity was localized primarily in these myeloid cells, which prevented the differentiation of immature myeloid cells into mature dendritic cells. This differentiation was restored after removal of tumor-derived factors. Inhibition of STAT3 abrogated the negative effects of these factors on myeloid cell differentiation, and overexpression of STAT3 reproduced the effects of tumor-derived factors. Thus, this is a first demonstration that tumor-derived factors may affect myeloid cell differentiation in cancer via constitutive activation of Jak2/STAT3.

  2. How Follicular Dendritic Cells Shape the B-Cell Antigenome

    PubMed Central

    Kranich, Jan; Krautler, Nike Julia

    2016-01-01

    Follicular dendritic cells (FDCs) are stromal cells residing in primary follicles and in germinal centers of secondary and tertiary lymphoid organs (SLOs and TLOs). There, they play a crucial role in B-cell activation and affinity maturation of antibodies. FDCs have the unique capacity to bind and retain native antigen in B-cell follicles for long periods of time. Therefore, FDCs shape the B-cell antigenome (the sum of all B-cell antigens) in SLOs and TLOs. In this review, we discuss recent findings that explain how this stromal cell type can arise in almost any tissue during TLO formation and, furthermore, focus on the mechanisms of antigen capture and retention involved in the generation of long-lasting antigen depots displayed on FDCs. PMID:27446069

  3. Retrospection to discovery of bursal function and recognition of avian dendritic cells; past and present.

    PubMed

    Oláh, Imre; Nagy, Nándor

    2013-11-01

    In 1954 the discovery of bursal function was one of the major contributions to the formation of the T and B cell concept of immunology. In 1978 the avian dendritic cells; bursal secretory dendritic cell (BSDC) and follicular dendritic cell (FDC) in the cecal tonsil were recognized. In 1982 the interdigitating dendritic cell was described in the periarteriolar lymphatic sheath (PALS) of the spleen. This paper is a retrospection of the stories of the discovery of bursal function and recognition of avian dendritic cells and includes the markers which can be used for monitoring and characterizing avian dendritic cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Macrophages as APC and the dendritic cell myth.

    PubMed

    Hume, David A

    2008-11-01

    Dendritic cells have been considered an immune cell type that is specialized for the presentation of Ag to naive T cells. Considerable effort has been applied to separate their lineage, pathways of differentiation, and effectiveness in Ag presentation from those of macrophages. This review summarizes evidence that dendritic cells are a part of the mononuclear phagocyte system and are derived from a common precursor, responsive to the same growth factors (including CSF-1), express the same surface markers (including CD11c), and have no unique adaptation for Ag presentation that is not shared by other macrophages.

  5. Drinking a lot is good for dendritic cells

    PubMed Central

    Norbury, Christopher C

    2006-01-01

    Macropinocytosis is the actin-dependent formation of large vesicles, which allow the internalization of large quantities of fluid-phase solute. In the majority of cells examined, an exogenous stimulus is required to induce the initiation of this endocytic pathway. However, dendritic cells are thought to constitutively macropinocytose large quantities of exogenous solute as part of their sentinel function. In this review we discuss the evidence that dendritic cells macropinocytose exogenous solute and subsequently present antigenic peptides derived from internalized material to T cells. In addition, we put these data into the context of immune surveillance in vivo. PMID:16556257

  6. Sodium action potentials in the dendrites of cerebellar Purkinje cells.

    PubMed

    Regehr, W G; Konnerth, A; Armstrong, C M

    1992-06-15

    We report here that in cerebellar Purkinje cells from which the axon has been removed, positive voltage steps applied to the voltage-clamped soma produce spikes of active current. The spikes are inward, are all-or-none, have a duration of approximately 1 ms, and are reversibly eliminated by tetrodotoxin, a Na channel poison. From cell to cell, the amplitude of the spikes ranges from 4 to 20 nA. Spike latency decreases as the depolarizing step is made larger. These spikes clearly arise at a site where the voltage is not controlled, remote from the soma. From these facts we conclude that Purkinje cell dendrites contain a sufficient density of Na channels to generate action potentials. Activation by either parallel fiber or climbing fiber synapses produces similar spikes, suggesting that normal input elicits Na action potentials in the dendrites. These findings greatly alter current views of how dendrites in these cells respond to synaptic input.

  7. Murid Herpesvirus-4 Exploits Dendritic Cells to Infect B Cells

    PubMed Central

    Frederico, Bruno; Gill, Michael B.; Smith, Christopher M.; Belz, Gabrielle T.; Stevenson, Philip G.

    2011-01-01

    Dendritic cells (DCs) play a central role in initiating immune responses. Some persistent viruses infect DCs and can disrupt their functions in vitro. However, these viruses remain strongly immunogenic in vivo. Thus what role DC infection plays in the pathogenesis of persistent infections is unclear. Here we show that a persistent, B cell-tropic gamma-herpesvirus, Murid Herpesvirus-4 (MuHV-4), infects DCs early after host entry, before it establishes a substantial infection of B cells. DC-specific virus marking by cre-lox recombination revealed that a significant fraction of the virus latent in B cells had passed through a DC, and a virus attenuated for replication in DCs was impaired in B cell colonization. In vitro MuHV-4 dramatically altered the DC cytoskeleton, suggesting that it manipulates DC migration and shape in order to spread. MuHV-4 therefore uses DCs to colonize B cells. PMID:22102809

  8. Bone marrow plasmacytoid dendritic cells can differentiate into myeloid dendritic cells upon virus infection

    PubMed Central

    Zuniga, Elina I; McGavern, Dorian B; Pruneda-Paz, Jose L; Teng, Chao; Oldstone, Michael B A

    2017-01-01

    Two subsets of dendritic cell (DCs), plasmacytoid (p) and myeloid (m) DCs, have been described in humans and mice. These subsets are known to have divergent roles during an immune response, but their developmental course is unclear. Here we report that virus infection induces bone marrow pDCs to differentiate into mDCs, thereby undergoing profound phenotypic and functional changes including the acquisition of enhanced antigen-presenting capacity and the ability to recognize different microbial structures through Toll-like receptor 4. The conversion of pDCs into mDCs is also induced by the injection of double-stranded RNA and requires type I interferons. Our results establish a precursor-product developmental relationship between these two DC subsets and highlight unexpected plasticity of bone marrow pDCs. PMID:15531885

  9. Functions of TGF-β-exposed plasmacytoid dendritic cells.

    PubMed

    Saas, Philippe; Perruche, Sylvain

    2012-01-01

    Plasmacytoid dendritic cells (pDCs) belong to the family of dendritic cells and possess specific features that distinguish them from conventional dendritic cells. For instance, pDC are the main interferon-alpha-secreting cells. Plasmacytoid dendritic cells exert both proinflammatory and regulatory functions. This is attested by the involvement of pDC through interferon-alpha secretion in several autoimmune diseases, and by the implication of pDC in tolerance. The same is true for TGF-β that plays a dual role in inflammation. In this review, we discuss recent data on pDC and TGF-β interactions. As with many cell types, pDCs are able to respond to TGF-β using the classic Smad signaling pathway. In addition, pDCs are capable to secrete TGF-β, in particular in response to TGF-β exposure. Exposure of pDCs to TGF-β prevents type I interferon secretion in response to TLR7/9 ligands. In contrast, the consequences of TGF-β on the antigen-presenting cell capacities of pDC are less clear, since TGF-β-exposed pDCs may lead to both regulatory T-cell and interleukin-17-secreting cell polarization. Here, we discuss the factors that may influence this polarization. We also discuss how pDCs exposed to TGF-β may participate in tolerance induction and maintenance, or, on the contrary, in autoimmune diseases.

  10. HIV is trapped and masked in the cytoplasm of lymph node follicular dendritic cells.

    PubMed Central

    Tacchetti, C.; Favre, A.; Moresco, L.; Meszaros, P.; Luzzi, P.; Truini, M.; Rizzo, F.; Grossi, C. E.; Ciccone, E.

    1997-01-01

    To gain further insight into the pathogenesis of human immunodeficiency virus (HIV) infection, lymph nodes from seven asymptomatic HIV+ subjects were analyzed during the latent phase of disease. Both ultrastructural and immunohistochemical analyses revealed that, in all of the cases, plasma cells producing IgM/gamma were present in germinal centers. Secreted immunoglobulins formed extracellular deposits mimicking the follicular dendritic cell network. Immunoglobulin produced by germinal center plasma cells are specific for HIV because they bind the HIV env protein gp 120. Plasma cells producing antibodies with the same specificity were also abundant in the extrafollicular regions of lymph nodes. During the latent phase of infection, the virus largely accumulates within the germinal centers. Therefore, extracellular immunoglobulin may form immune complexes, as shown by the presence of HIV-specific antibodies, HIV particles, and complement components C3c, C3d, and C1q in the interdendritic spaces. When the ultrastructural localization of HIV in germinal centers was analyzed, abundant virus particles were found in the interdendritic spaces. In addition to this extracellular localization of HIV, receptor-mediated endocytosis of viral particles by follicular dendritic cells was observed. Complete HIV particles were found within the endosomal compartment of the follicular dendritic cells and, as complete viral particles, free in the cytoplasm, indicating that the virus may escape from the endocytic compartment. As the virus is abundant in the cytoplasm, this event leads to formation of a hidden reservoir within follicular dendritic cells. In this location, HIV escapes recognition by cytotoxic T lymphocytes. In contrast, virus budding indicating a productive infection of follicular dendritic cells that would render them susceptible to T-cell-mediated lysis has been seldom observed. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:9033269

  11. Angioimmunoblastic T-Cell Lymphoma: A Questionable Association with Follicular Dendritic Cell Sarcoma

    PubMed Central

    Zekzer, Miriam; Nalbandyan, Karen

    2017-01-01

    An elderly woman presented with generalized lymphadenopathy, several systemic symptoms, and splenomegaly. An inguinal lymph node excision revealed a compound picture. One aspect of the lymph node morphology, including cells with follicular T-helper cell phenotype, was most consistent with angioimmunoblastic T-cell lymphoma. The other component, revealing spindle cells forming whorls with immunostaining for CD21, CD23, and fascin, might be an integral part of this T-cell lymphoma. However, due to the often massive involvement of the nodal tissue by these follicular dendritic cells, these areas were questionably suggestive of involvement by follicular dendritic cell sarcoma. We raise herein the issue of the borderline area between advanced follicular dendritic cell expansion in angioimmunoblastic T-cell lymphoma and a massive follicular dendritic cell proliferation consistent with follicular dendritic cells sarcoma, in the absence of a genomic analysis. PMID:28197348

  12. Liaison between natural killer cells and dendritic cells in human gestation

    PubMed Central

    Leno-Durán, Ester; Muñoz-Fernández, Raquel; García Olivares, Enrique; Tirado-González, Irene

    2014-01-01

    A successful pregnancy relies on immunological adaptations that allow the fetus to grow and develop in the uterus, despite being recognized by maternal immune cells. Among several immunocompetent cell types present within the human maternal/fetal interface, DC-SIGN+ dendritic cells (DCs) and CD56+ natural killer (NK) cells are of major importance for early pregnancy maintenance, not only generating maternal immunological tolerance but also regulating stromal cell differentiation. Previous reports show the presence of NK–DC cell conjugates in first trimester human decidua, suggesting that these cells may play a role in the modulation of the local immune response within the uterus. While effective immunity is necessary to protect the mother from harmful pathogens, some form of tolerance must be activated to avoid an immune response against fetal antigens. This review article discusses current evidence concerning the functions of DC and NK cells in pregnancy and their liaison in human decidua. PMID:24954224

  13. Liaison between natural killer cells and dendritic cells in human gestation.

    PubMed

    Leno-Durán, Ester; Muñoz-Fernández, Raquel; Olivares, Enrique García; Tirado-González, Irene

    2014-09-01

    A successful pregnancy relies on immunological adaptations that allow the fetus to grow and develop in the uterus, despite being recognized by maternal immune cells. Among several immunocompetent cell types present within the human maternal/fetal interface, DC-SIGN(+) dendritic cells (DCs) and CD56(+) natural killer (NK) cells are of major importance for early pregnancy maintenance, not only generating maternal immunological tolerance but also regulating stromal cell differentiation. Previous reports show the presence of NK-DC cell conjugates in first trimester human decidua, suggesting that these cells may play a role in the modulation of the local immune response within the uterus. While effective immunity is necessary to protect the mother from harmful pathogens, some form of tolerance must be activated to avoid an immune response against fetal antigens. This review article discusses current evidence concerning the functions of DC and NK cells in pregnancy and their liaison in human decidua.

  14. Development of Retinal Amacrine Cells and Their Dendritic Stratification

    PubMed Central

    Balasubramanian, Revathi

    2014-01-01

    Themammalian retina containsmultiple neurons, each of which contributes differentially to visual processing. Of these retinal neurons, amacrine cells have recently come to prime light since they facilitate majority of visual processing that takes place in the retina. Amacrine cells are also the most diverse group of neurons in the retina, classified majorly based on the neurotransmitter type they express and morphology of their dendritic arbors. Currently, little is known about the molecular basis contributing to this diversity during development. Amacrine cells also contribute to most of the synapses in the inner plexiform layer and mediate visual information input from bipolar cells onto retinal ganglion cells. In this review, we will describe the current understanding of amacrine cell and cell subtype development. Furthermore, we will address the molecular basis of retinal lamination at the inner plexiform layer. Overall, our review will provide a developmental perspective of amacrine cell subtype classification and their dendritic stratification. PMID:25170430

  15. Adiponectin Receptor Signaling on Dendritic Cells Blunts Antitumor Immunity

    PubMed Central

    Tan, Peng H.; Tyrrell, Helen E.J.; Gao, Liquan; Xu, Danmei; Quan, Jianchao; Gill, Dipender; Rai, Lena; Ding, Yunchuan; Plant, Gareth; Chen, Yuan; Xue, John Z.; Handa, Ashok I.; Greenall, Michael J.; Walsh, Kenneth; Xue, Shao-An

    2015-01-01

    Immune escape is a fundamental trait of cancer. Dendritic cells (DC) that interact with T cells represent a crucial site for the development of tolerance to tumor antigens, but there remains incomplete knowledge about how DC-tolerizing signals evolve during tumorigenesis. In this study, we show that DCs isolated from patients with metastatic or locally advanced breast cancer express high levels of the adiponectin receptors AdipoR1 and AdipoR2, which are sufficient to blunt antitumor immunity. Mechanistic investigations of ligand–receptor interactions on DCs revealed novel signaling pathways for each receptor. AdipoR1 stimulated IL10 production by activating the AMPK and MAPKp38 pathways, whereas AdipoR2 modified inflammatory processes by activating the COX-2 and PPARγ pathways. Stimulation of these pathways was sufficient to block activation of NF-κB in DC, thereby attenuating their ability to stimulate antigen-specific T-cell responses. Together, our findings reveal novel insights into how DC-tolerizing signals evolve in cancer to promote immune escape. Furthermore, by defining a critical role for adiponectin signaling in this process, our work suggests new and broadly applicable strategies for immunometabolic therapy in patients with cancer. PMID:25261236

  16. Programmed Cell Death of Dendritic Cells in Immune Regulation

    PubMed Central

    Chen, Min; Wang, Jin

    2010-01-01

    Summary Programmed cell death is essential for the maintenance of lymphocyte homeostasis and immune tolerance. Dendritic cells (DCs), the most efficient antigen presenting cells, represent a small cell population in the immune system. However, DCs play major roles in the regulation of both innate and adaptive immune responses. Programmed cell death in DCs is essential for regulating DC homeostasis and consequently, the scope of immune responses. Interestingly, different DC subsets show varied turnover rates in vivo. The conventional DCs are relatively short-lived in most lymphoid organs, while plasmacytoid DCs are long-lived cells. Mitochondrion-dependent programmed cell death plays an important role in regulating spontaneous DC turnover. Antigen-specific T cells are also capable of killing DCs, thereby providing a mechanism for negative feedback regulation of immune responses. It has been shown that a surplus of DCs due to defects in programmed cell death leads to overactivation of lymphocytes and the onset of autoimmunity. Studying programmed cell death in DCs will shed light on the roles for DC turnover in the regulation of the duration and magnitude of immune responses in vivo, and in the maintenance of immune tolerance. PMID:20636805

  17. Dendritic cell-derived nitric oxide inhibits the differentiation of effector dendritic cells

    PubMed Central

    Wu, Tianshu; Lu, Geming; Hu, Yuan; Zhang, Hui; Xu, Feihong; Wei, Peter; Chen, Kang; Tang, Hua; Yeretssian, Garabet; Xiong, Huabao

    2016-01-01

    Dendritic cells (DCs) play a pivotal role in the development of effective immune defense while avoiding detrimental inflammation and autoimmunity by regulating the balance of adaptive immunity and immune tolerance. However, the mechanisms that govern the effector and regulatory functions of DCs are incompletely understood. Here, we show that DC-derived nitric oxide (NO) controls the balance of effector and regulatory DC differentiation. Mice deficient in the NO-producing enzyme inducible nitric oxide synthase (iNOS) harbored increased effector DCs that produced interleukin-12, tumor necrosis factor (TNF) and IL-6 but normal numbers of regulatory DCs that expressed IL-10 and programmed cell death-1 (PD-1). Furthermore, an iNOS-specific inhibitor selectively enhanced effector DC differentiation, mimicking the effect of iNOS deficiency in mice. Conversely, an NO donor significantly suppressed effector DC development. Furthermore, iNOS−/− DCs supported enhanced T cell activation and proliferation. Finally iNOS−/− mice infected with the enteric pathogen Citrobacter rodentium suffered more severe intestinal inflammation with concomitant expansion of effector DCs in colon and spleen. Collectively, our results demonstrate that DC-derived iNOS restrains effector DC development, and offer the basis of therapeutic targeting of iNOS in DCs to treat autoimmune and inflammatory diseases. PMID:27556858

  18. The SNARE VAMP7 Regulates Exocytic Trafficking of Interleukin-12 in Dendritic Cells

    PubMed Central

    Chiaruttini, Giulia; Piperno, Giulia M.; Jouve, Mabel; De Nardi, Francesca; Larghi, Paola; Peden, Andrew A.; Baj, Gabriele; Müller, Sabina; Valitutti, Salvatore; Galli, Thierry; Benvenuti, Federica

    2016-01-01

    Summary Interleukin-12 (IL-12), produced by dendritic cells in response to activation, is central to pathogen eradication and tumor rejection. The trafficking pathways controlling spatial distribution and intracellular transport of IL-12 vesicles to the cell surface are still unknown. Here, we show that intracellular IL-12 localizes in late endocytic vesicles marked by the SNARE VAMP7. Dendritic cells (DCs) from VAMP7-deficient mice are partially impaired in the multidirectional release of IL-12. Upon encounter with antigen-specific T cells, IL-12-containing vesicles rapidly redistribute at the immune synapse and release IL-12 in a process entirely dependent on VAMP7 expression. Consistently, acquisition of effector functions is reduced in T cells stimulated by VAMP7-null DCs. These results provide insights into IL-12 intracellular trafficking pathways and show that VAMP7-mediated release of IL-12 at the immune synapse is a mechanism to transmit innate signals to T cells. PMID:26972013

  19. The Endosome Localized Arf-GAP AGAP1 Modulates Dendritic Spine Morphology Downstream of the Neurodevelopmental Disorder Factor Dysbindin

    PubMed Central

    Arnold, Miranda; Cross, Rebecca; Singleton, Kaela S.; Zlatic, Stephanie; Chapleau, Christopher; Mullin, Ariana P.; Rolle, Isaiah; Moore, Carlene C.; Theibert, Anne; Pozzo-Miller, Lucas; Faundez, Victor; Larimore, Jennifer

    2016-01-01

    AGAP1 is an Arf1 GTPase activating protein that interacts with the vesicle-associated protein complexes adaptor protein 3 (AP-3) and Biogenesis of Lysosome Related Organelles Complex-1 (BLOC-1). Overexpression of AGAP1 in non-neuronal cells results in an accumulation of endosomal cargoes, which suggests a role in endosome-dependent traffic. In addition, AGAP1 is a candidate susceptibility gene for two neurodevelopmental disorders, autism spectrum disorder (ASD) and schizophrenia (SZ); yet its localization and function in neurons have not been described. Here, we describe that AGAP1 localizes to axons, dendrites, dendritic spines and synapses, colocalizing preferentially with markers of early and recycling endosomes. Functional studies reveal overexpression and down-regulation of AGAP1 affects both neuronal endosomal trafficking and dendritic spine morphology, supporting a role for AGAP1 in the recycling endosomal trafficking involved in their morphogenesis. Finally, we determined the sensitivity of AGAP1 expression to mutations in the DTNBP1 gene, which is associated with neurodevelopmental disorder, and found that AGAP1 mRNA and protein levels are selectively reduced in the null allele of the mouse ortholog of DTNBP1. We postulate that endosomal trafficking contributes to the pathogenesis of neurodevelopmental disorders affecting dendritic spine morphology, and thus excitatory synapse structure and function. PMID:27713690

  20. Distribution and lateral mobility of DC-SIGN on immature dendritic cells--implications for pathogen uptake.

    PubMed

    Neumann, Aaron K; Thompson, Nancy L; Jacobson, Ken

    2008-03-01

    The receptor C-type lectin DC-SIGN (CD209) is expressed by immature dendritic cells, functioning as an antigen capture receptor and cell adhesion molecule. Various microbes, including HIV-1, can exploit binding to DC-SIGN to gain entry to dendritic cells. DC-SIGN forms discrete nanoscale clusters on immature dendritic cells that are thought to be important for viral binding. We confirmed that these DC-SIGN clusters also exist both in live dendritic cells and in cell lines that ectopically express DC-SIGN. Moreover, DC-SIGN has an unusual polarized lateral distribution in the plasma membrane of dendritic cells and other cells: the receptor is preferentially localized to the leading edge of the dendritic cell lamellipod and largely excluded from the ventral plasma membrane. Colocalization of DC-SIGN clusters with endocytic activity demonstrated that surface DC-SIGN clusters are enriched near the leading edge, whereas endocytosis of these clusters occurred preferentially at lamellar sites posterior to the leading edge. Therefore, we predicted that DC-SIGN clusters move from the leading edge to zones of internalization. Two modes of lateral mobility were evident from the trajectories of DC-SIGN clusters at the leading edge, directed and non-directed mobility. Clusters with directed mobility moved in a highly linear fashion from the leading edge to rearward locations in the lamella at remarkably high velocity (1420+/-260 nm/second). Based on these data, we propose that DC-SIGN clusters move from the leading edge--where the dendritic cell is likely to encounter pathogens in tissue--to a medial lamellar site where clusters enter the cell via endocytosis. Immature dendritic cells may acquire and internalize HIV and other pathogens by this process.

  1. Ceramide Inhibits Antigen Uptake and Presentation by Dendritic Cells

    PubMed Central

    Sallusto, Federica; Nicolò, Chiara; De Maria, Ruggero; Corinti, Silvia; Testi, Roberto

    1996-01-01

    Ceramides are intramembrane diffusible mediators involved in transducing signals originated from a variety of cell surface receptors. Different adaptive and differentiative cellular responses, including apoptotic cell death, use ceramide-mediated pathways as an essential part of the program. Here, we show that human dendritic cells respond to CD40 ligand, as well as to tumor necrosis factor-α and IL-1β, with intracellular ceramide accumulation, as they are induced to differentiate. Dendritic cells down-modulate their capacity to take up soluble antigens in response to exogenously added or endogenously produced ceramides. This is followed by an impairment in presenting soluble antigens to specific T cell clones, while cell viability and the capacity to stimulate allogeneic responses or to present immunogenic peptides is fully preserved. Thus, ceramide-mediated pathways initiated by different cytokines can actively modulate professional antigen-presenting cell function and antigen-specific immune responses. PMID:8976196

  2. Epidermal Viral Immunity Induced by CD8α+ Dendritic Cells But Not by Langerhans Cells

    NASA Astrophysics Data System (ADS)

    Allan, Rhys S.; Smith, Chris M.; Belz, Gabrielle T.; van Lint, Allison L.; Wakim, Linda M.; Heath, William R.; Carbone, Francis R.

    2003-09-01

    The classical paradigm for dendritic cell function derives from the study of Langerhans cells, which predominate within skin epidermis. After an encounter with foreign agents, Langerhans cells are thought to migrate to draining lymph nodes, where they initiate T cell priming. Contrary to this, we show here that infection of murine epidermis by herpes simplex virus did not result in the priming of virus-specific cytotoxic T lymphocytes by Langerhans cells. Rather, the priming response required a distinct CD8α+ dendritic cell subset. Thus, the traditional view of Langerhans cells in epidermal immunity needs to be revisited to accommodate a requirement for other dendritic cells in this response.

  3. Slowing down light using a dendritic cell cluster metasurface waveguide

    NASA Astrophysics Data System (ADS)

    Fang, Z. H.; Chen, H.; Yang, F. S.; Luo, C. R.; Zhao, X. P.

    2016-11-01

    Slowing down or even stopping light is the first task to realising optical information transmission and storage. Theoretical studies have revealed that metamaterials can slow down or even stop light; however, the difficulty of preparing metamaterials that operate in visible light hinders progress in the research of slowing or stopping light. Metasurfaces provide a new opportunity to make progress in such research. In this paper, we propose a dendritic cell cluster metasurface consisting of dendritic structures. The simulation results show that dendritic structure can realise abnormal reflection and refraction effects. Single- and double-layer dendritic metasurfaces that respond in visible light were prepared by electrochemical deposition. Abnormal Goos-Hänchen (GH) shifts were experimentally obtained. The rainbow trapping effect was observed in a waveguide constructed using the dendritic metasurface sample. The incident white light was separated into seven colours ranging from blue to red light. The measured transmission energy in the waveguide showed that the energy escaping from the waveguide was zero at the resonant frequency of the sample under a certain amount of incident light. The proposed metasurface has a simple preparation process, functions in visible light, and can be readily extended to the infrared band and communication wavelengths.

  4. Slowing down light using a dendritic cell cluster metasurface waveguide

    PubMed Central

    Fang, Z. H.; Chen, H.; Yang, F. S.; Luo, C. R.; Zhao, X. P.

    2016-01-01

    Slowing down or even stopping light is the first task to realising optical information transmission and storage. Theoretical studies have revealed that metamaterials can slow down or even stop light; however, the difficulty of preparing metamaterials that operate in visible light hinders progress in the research of slowing or stopping light. Metasurfaces provide a new opportunity to make progress in such research. In this paper, we propose a dendritic cell cluster metasurface consisting of dendritic structures. The simulation results show that dendritic structure can realise abnormal reflection and refraction effects. Single- and double-layer dendritic metasurfaces that respond in visible light were prepared by electrochemical deposition. Abnormal Goos-Hänchen (GH) shifts were experimentally obtained. The rainbow trapping effect was observed in a waveguide constructed using the dendritic metasurface sample. The incident white light was separated into seven colours ranging from blue to red light. The measured transmission energy in the waveguide showed that the energy escaping from the waveguide was zero at the resonant frequency of the sample under a certain amount of incident light. The proposed metasurface has a simple preparation process, functions in visible light, and can be readily extended to the infrared band and communication wavelengths. PMID:27886279

  5. Slowing down light using a dendritic cell cluster metasurface waveguide.

    PubMed

    Fang, Z H; Chen, H; Yang, F S; Luo, C R; Zhao, X P

    2016-11-25

    Slowing down or even stopping light is the first task to realising optical information transmission and storage. Theoretical studies have revealed that metamaterials can slow down or even stop light; however, the difficulty of preparing metamaterials that operate in visible light hinders progress in the research of slowing or stopping light. Metasurfaces provide a new opportunity to make progress in such research. In this paper, we propose a dendritic cell cluster metasurface consisting of dendritic structures. The simulation results show that dendritic structure can realise abnormal reflection and refraction effects. Single- and double-layer dendritic metasurfaces that respond in visible light were prepared by electrochemical deposition. Abnormal Goos-Hänchen (GH) shifts were experimentally obtained. The rainbow trapping effect was observed in a waveguide constructed using the dendritic metasurface sample. The incident white light was separated into seven colours ranging from blue to red light. The measured transmission energy in the waveguide showed that the energy escaping from the waveguide was zero at the resonant frequency of the sample under a certain amount of incident light. The proposed metasurface has a simple preparation process, functions in visible light, and can be readily extended to the infrared band and communication wavelengths.

  6. Dendritic cells and vaccine design for sexually-transmitted diseases.

    PubMed

    Duluc, Dorothee; Gannevat, Julien; Joo, Hyemee; Ni, Ling; Upchurch, Katherine; Boreham, Muriel; Carley, Michael; Stecher, Jack; Zurawski, Gerard; Oh, Sangkon

    2013-05-01

    Dendritic cells (DCs) are major antigen presenting cells (APCs) that can initiate and control host immune responses toward either immunity or tolerance. These features of DCs, as immune orchestrators, are well characterized by their tissue localizations as well as by their subset-dependent functional specialties and plasticity. Thus, the level of protective immunity to invading microbial pathogens can be dependent on the subsets of DCs taking up microbial antigens and their functional plasticity in response to microbial products, host cellular components and the cytokine milieu in the microenvironment. Vaccines are the most efficient and cost-effective preventive medicine against infectious diseases. However, major challenges still remain for the diseases caused by sexually-transmitted pathogens, including HIV, HPV, HSV and Chlamydia. We surmise that the establishment of protective immunity in the female genital mucosa, the major entry and transfer site of these pathogens, will bring significant benefit for the protection against sexually-transmitted diseases. Recent progresses made in DC biology suggest that vaccines designed to target proper DC subsets may permit us to establish protective immunity in the female genital mucosa against sexually-transmitted pathogens. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Dendritic cell subsets digested: RNA sensing makes the difference!

    PubMed

    Buschow, Sonja I; Figdor, Carl G

    2010-02-26

    In this issue of Immunity, Luber et al. (2010) report a comprehensive quantitative proteome of in vivo mouse spleen dendritic cell (DC) subsets: a data set of encyclopedic value already revealing that DC subsets exploit different RNA sensors for virus recognition. Copyright 2010 Elsevier Inc. All rights reserved.

  8. Organ-derived dendritic cells have differential effects on alloreactive T cells.

    PubMed

    Kim, Theo D; Terwey, Theis H; Zakrzewski, Johannes L; Suh, David; Kochman, Adam A; Chen, Megan E; King, Chris G; Borsotti, Chiara; Grubin, Jeremy; Smith, Odette M; Heller, Glenn; Liu, Chen; Murphy, George F; Alpdogan, Onder; van den Brink, Marcel R M

    2008-03-01

    Dendritic cells (DCs) are considered critical for the induction of graft-versus-host disease (GVHD) after bone marrow transplantation (BMT). In addition to their priming function, dendritic cells have been shown to induce organ-tropism through induction of specific homing molecules on T cells. Using adoptive transfer of CFSE-labeled cells, we first demonstrated that alloreactive T cells differentially up-regulate specific homing molecules in vivo. Host-type dendritic cells from the GVHD target organs liver and spleen or skin- and gut-draining lymph nodes effectively primed naive allogeneic T cells in vitro with the exception of liver-derived dendritic cells, which showed less stimulatory capacity. Gut-derived dendritic cells induced alloreactive donor T cells with a gut-homing phenotype that caused increased GVHD mortality and morbidity compared with T cells stimulated with dendritic cells from spleen, liver, and peripheral lymph nodes in an MHC-mismatched murine BMT model. However, in vivo analysis demonstrated that the in vitro imprinting of homing molecules on alloreactive T cells was only transient. In conclusion, organ-derived dendritic cells can efficiently induce specific homing molecules on alloreactive T cells. A gut-homing phenotype correlates with increased GVHD mortality and morbidity after murine BMT, underlining the importance of the gut in the pathophysiology of GVHD.

  9. Dendritic cell vaccination of patients with metastatic colorectal cancer.

    PubMed

    Burgdorf, Stefan K

    2010-09-01

    Colorectal cancer is with more than 4000 new cases every year the third most common cancer in Denmark. Metastases are most often found in the liver, and 20-25% of the patients have synchronous metastases to the liver at time of primary diagnosis. Other frequent sites for metastases are lungs and lymph nodes. Without treatment the median survival for patients with metastatic colorectal cancer is 7-9 months. Patients receiving systemic or regional chemotherapy now have a median survival of approximately 20 months. Up to 40% of the patients undergoing intended curative surgery subsequently relapse with local or distant disease, and approximately 80% of the relapses appear within the first 3 years. If the cancer metastasises, and the chances of radical surgery are eliminated, the prognosis is poor. The aim of the present study was to evaluate the clinical and immunological effects of treating patients with disseminated colorectal cancer with a dendritic cell based cancer vaccine (MelCancerVac). The vaccine consisted of dendritic cells generated from autologous mononuclear cells pulsed with an allogeneic tumor cell lysate, selected for its high expression of cancer associated antigens. A clinical phase I study evaluating tolerability and toxicity of the treatment was established. Six patients with progressive disease were included and the analysis revealed that the treatment was well tolerated and not associated with toxicity. A subsequent clinical phase II study evaluating the activity of the treatment with CT-scan based measurements of tumors (RECIST), self reported quality of life (SF-36), and clinical evaluation was established. Out of twenty included patients with progressive disease, seventeen received intervention with the vaccine. Stable disease was achieved in four patients and two of these remained stable throughout the entire study period. Quality of life remained for most parameters included in the evaluation high and stable. The immunological consequences

  10. Dendritic web - A viable material for silicon solar cells

    NASA Technical Reports Server (NTRS)

    Seidensticker, R. G.; Scudder, L.; Brandhorst, H. W., Jr.

    1975-01-01

    The dendritic web process is a technique for growing thin silicon ribbon from liquid silicon. The material is suitable for solar cell fabrication and, in fact, cells fabricated on web material are equivalent in performance to cells fabricated on Czochralski-grown material. A recently concluded study has delineated the thermal requirements for silicon web crucibles, and a detailed conceptual design has been developed for a laboratory growth apparatus.

  11. Active Dendritic Properties and Local Inhibitory Input Enable Selectivity for Object Motion in Mouse Superior Colliculus Neurons.

    PubMed

    Gale, Samuel D; Murphy, Gabe J

    2016-08-31

    Neurons respond to specific features of sensory stimuli. In the visual system, for example, some neurons respond to motion of small but not large objects, whereas other neurons prefer motion of the entire visual field. Separate neurons respond equally to local and global motion but selectively to additional features of visual stimuli. How and where does response selectivity emerge? Here, we show that wide-field (WF) cells in retino-recipient layers of the mouse superior colliculus (SC) respond selectively to small moving objects. Moreover, we identify two mechanisms that contribute to this selectivity. First, we show that input restricted to a small portion of the broad dendritic arbor of WF cells is sufficient to trigger dendritic spikes that reliably propagate to the soma/axon. In vivo whole-cell recordings reveal that nearly every action potential evoked by visual stimuli has characteristics of spikes initiated in dendrites. Second, inhibitory input from a different class of SC neuron, horizontal cells, constrains the range of stimuli to which WF cells respond. Horizontal cells respond preferentially to the sudden appearance or rapid movement of large stimuli. Optogenetic reduction of their activity reduces movement selectivity and broadens size tuning in WF cells by increasing the relative strength of responses to stimuli that appear suddenly or cover a large region of space. Therefore, strongly propagating dendritic spikes enable small stimuli to drive spike output in WF cells and local inhibition helps restrict responses to stimuli that are both small and moving. How do neurons respond selectively to some sensory stimuli but not others? In the visual system, a particularly relevant stimulus feature is object motion, which often reveals other animals. Here, we show how specific cells in the superior colliculus, one synapse downstream of the retina, respond selectively to object motion. These wide-field (WF) cells respond strongly to small objects that move

  12. EVIDENCE OF CELL-NONAUTONOMOUS CHANGES IN DENDRITE AND DENDRITIC SPINE MORPHOLOGY IN THE MET-SIGNALING DEFICIENT MOUSE FOREBRAIN

    PubMed Central

    Judson, Matthew C.; Eagleson, Kathie L.; Wang, Lily; Levitt, Pat

    2010-01-01

    Human genetic findings and murine neuroanatomical expression mapping have intersected to implicate Met receptor tyrosine kinase signaling in the development of forebrain circuits controlling social and emotional behaviors that are atypical in autism spectrum disorders (ASD). To clarify roles for Met signaling during forebrain circuit development in vivo, we generated mutant mice (Emx1Cre/Metfx/fx) with an Emx1-Cre-driven deletion of signaling-competent Met in dorsal pallially-derived forebrain neurons. Morphometric analyses of Lucifer Yellow-injected pyramidal neurons in postnatal day 40 anterior cingulate cortex (ACC) revealed no statistically significant changes in total dendritic length, but a selective reduction in apical arbor length distal to the soma in Emx1Cre/Metfx/fx neurons relative to wild type, consistent with a decrease in the total tissue volume sampled by individual arbors in the cortex. The effects on dendritic structure appear to be circuit-selective, as basal arbor length was increased in Emx1Cre/Metfx/fx layer 2/3 neurons. Spine number was not altered on Emx1Cre/Metfx/fx pyramidal cell populations studied, but spine head volume was significantly increased (~20%). Cell-nonautonomous, circuit-level influences of Met signaling on dendritic development were confirmed by studies of medium spiny neurons (MSN), which do not express Met, but receive Met-expressing corticostriatal afferents during development. Emx1Cre/Metfx/fx MSN exhibited robust increases in total arbor length (~20%). Like in the neocortex, average spine head volume was also increased (~12%). These data demonstrate that a developmental loss of presynaptic Met receptor signaling can affect postsynaptic morphogenesis and suggest a mechanism whereby attenuated Met signaling could disrupt both local and long-range connectivity within circuits relevant to ASD. PMID:20853516

  13. Plasmacytoid dendritic cells in skin lesions of classic Kaposi's sarcoma.

    PubMed

    Karouni, Mirna; Kurban, Mazen; Abbas, Ossama

    2016-09-01

    Plasmacytoid dendritic cells (pDCs) are the most potent producers of type I interferons (IFNs), which allows them to provide anti-viral resistance and to link the innate and adaptive immunity by controlling the function of myeloid DCs, lymphocytes, and natural killer cells. pDCs are involved in the pathogenesis of several infectious [especially viral, such as Molluscum contagiosum (MC)], inflammatory/autoimmune, and neoplastic entities. Kaposi's sarcoma (KS) is a multifocal, systemic lympho-angioproliferative tumor associated with Kaposi's sarcoma-associated herpesvirus (KSHV) infection. Microscopy typically exhibits a chronic inflammatory lymphoplasmacytic infiltrate in addition to the vascular changes and spindle cell proliferation. Despite the extensive research done on the immune evasion strategies employed by KSHV, pDCs role in relation to KS has only rarely been investigated. Given this, we intend to investigate pDC occurrence and activity in the skin lesions of KS. Immunohistochemical staining for BDCA-2 (specific pDC marker) and MxA (surrogate marker for local type I IFN production) was performed on classic KS (n = 20) with the control group comprising inflamed MC (n = 20). As expected, BDCA-2+ pDCs were present in abundance with diffuse and intense MxA expression (indicative of local type I IFN production) in all inflamed MC cases (20 of 20, 100 %). Though present in all the KS cases, pDCs were significantly less abundant in KS than in inflamed MC cases, and MxA expression was patchy/weak in most KS cases. In summary, pDCs are part of the inflammatory host response in KS; however, they were generally low in number with decreased type I IFN production which is probably related to KSHV's ability to evade the immune system through the production of different viral proteins capable of suppressing IFN production as well as pDC function.

  14. CD44: a novel synaptic cell adhesion molecule regulating structural and functional plasticity of dendritic spines

    PubMed Central

    Roszkowska, Matylda; Skupien, Anna; Wójtowicz, Tomasz; Konopka, Anna; Gorlewicz, Adam; Kisiel, Magdalena; Bekisz, Marek; Ruszczycki, Blazej; Dolezyczek, Hubert; Rejmak, Emilia; Knapska, Ewelina; Mozrzymas, Jerzy W.; Wlodarczyk, Jakub; Wilczynski, Grzegorz M.; Dzwonek, Joanna

    2016-01-01

    Synaptic cell adhesion molecules regulate signal transduction, synaptic function, and plasticity. However, their role in neuronal interactions with the extracellular matrix (ECM) is not well understood. Here we report that the CD44, a transmembrane receptor for hyaluronan, modulates synaptic plasticity. High-resolution ultrastructural analysis showed that CD44 was localized at mature synapses in the adult brain. The reduced expression of CD44 affected the synaptic excitatory transmission of primary hippocampal neurons, simultaneously modifying dendritic spine shape. The frequency of miniature excitatory postsynaptic currents decreased, accompanied by dendritic spine elongation and thinning. These structural and functional alterations went along with a decrease in the number of presynaptic Bassoon puncta, together with a reduction of PSD-95 levels at dendritic spines, suggesting a reduced number of functional synapses. Lack of CD44 also abrogated spine head enlargement upon neuronal stimulation. Moreover, our results indicate that CD44 contributes to proper dendritic spine shape and function by modulating the activity of actin cytoskeleton regulators, that is, Rho GTPases (RhoA, Rac1, and Cdc42). Thus CD44 appears to be a novel molecular player regulating functional and structural plasticity of dendritic spines. PMID:27798233

  15. Dendritic Cells and HIV-1 Trans-Infection

    PubMed Central

    McDonald, David

    2010-01-01

    Dendritic cells initiate and sustain immune responses by migrating to sites of pathogenic insult, transporting antigens to lymphoid tissues and signaling immune specific activation of T cells through the formation of the immunological synapse. Dendritic cells can also transfer intact, infectious HIV-1 to CD4 T cells through an analogous structure, the infectious synapse. This replication independent mode of HIV-1 transmission, known as trans-infection, greatly increases T cell infection in vitro and is thought to contribute to viral dissemination in vivo. This review outlines the recent data defining the mechanisms of trans-infection and provides a context for the potential contribution of trans-infection in HIV-1 disease. PMID:21994702

  16. How tolerogenic dendritic cells induce regulatory T cells

    PubMed Central

    Maldonado, Roberto A.; von Andrian, Ulrich H.

    2010-01-01

    Since their discovery by Steinman and Cohn in 1973, dendritic cells (DCs) have become increasingly recognized for their crucial role as regulators of innate and adaptive immunity. DCs are exquisitely adept at acquiring, processing and presenting antigens to T cells. They also adjust the context (and hence the outcome) of antigen presentation in response to a plethora of environmental inputs that signal the occurence of pathogens or tissue damage. Such signals generally boost DC maturation, which promotes their migration from peripheral tissues into and within secondary lymphoid organs and their capacity to induce and regulate effector T cell responses. Conversely, more recent observations indicate that DCs are also crucial to ensure immunological peace. Indeed, DCs constantly present innocuous self and non-self antigens in a fashion that promotes tolerance, at least in part, through the control of regulatory T cells (Tregs). Tregs are specialized T cells that exert their immuno-suppressive function through a variety of mechanisms affecting both DCs and effector cells. Here, we review recent advances in our understanding of the relationship between tolerogenic DCs and Tregs. PMID:21056730

  17. A Comparison between Growth Morphology of "Eutectic" Cells/Dendrites and Single-Phase Cells/Dendrites

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Raj, S. V.; Locci, I. E.

    2003-01-01

    Directionally solidified (DS) intermetallic and ceramic-based eutectic alloys with an in-situ composite microstructure containing finely distributed, long aspect ratio, fiber, or plate reinforcements are being seriously examined for several advanced aero-propulsion applications. In designing these alloys, additional solutes need to be added to the base eutectic composition in order to improve heir high-temperature strength, and provide for adequate toughness and resistance to environmental degradation. Solute addition, however, promotes instability at the planar liquid-solid interface resulting in the formation of two-phase eutectic "colonies." Because morphology of eutectic colonies is very similar to the single-phase cells and dendrites, the stability analysis of Mullins and Sekerka has been extended to describe their formation. Onset of their formation shows a good agreement with this approach; however, unlike the single-phase cells and dendrites, there is limited examination of their growth speed dependence of spacing, morphology, and spatial distribution. The purpose of this study is to compare the growth speed dependence of the morphology, spacing, and spatial distribution of eutectic cells and dendrites with that for the single-phase cells and dendrites.

  18. Phenotype and function of CD209+ bovine blood dendritic cells, monocyte-derived-dendritic cells and monocyte-derived macrophages

    USDA-ARS?s Scientific Manuscript database

    Phylogenic comparisons of the mononuclear phagocyte system (MPS) of humans and mice demonstrate phenotypic divergence of dendritic cell (DC) subsets that play similar roles in innate and adaptive immunity. Although differing in phenotype, DC can be classified into four groups according to ontogeny a...

  19. Kv1 channels selectively prevent dendritic hyperexcitability in rat Purkinje cells

    PubMed Central

    Khavandgar, Simin; Walter, Joy T; Sageser, Kristin; Khodakhah, Kamran

    2005-01-01

    Purkinje cells, the sole output of the cerebellar cortex, encode the timing signals required for motor coordination in their firing rate and activity pattern. Dendrites of Purkinje cells express a high density of P/Q-type voltage-gated calcium channels and fire dendritic calcium spikes. Here we show that dendritic subthreshold Kv1.2 subunit-containing Kv1 potassium channels prevent generation of random spontaneous calcium spikes. With Kv1 channels blocked, dendritic calcium spikes drive bursts of somatic sodium spikes and prevent the cell from faithfully encoding motor timing signals. The selective dendritic function of Kv1 channels in Purkinje cells allows them to effectively suppress dendritic hyperexcitability without hindering the generation of somatic action potentials. Further, we show that Kv1 channels also contribute to dendritic integration of parallel fibre synaptic input. Kv1 channels are often targeted to soma and axon and the data presented support a major dendritic function for these channels. PMID:16210348

  20. Interstitial dendritic cell guidance by haptotactic chemokine gradients.

    PubMed

    Weber, Michele; Hauschild, Robert; Schwarz, Jan; Moussion, Christine; de Vries, Ingrid; Legler, Daniel F; Luther, Sanjiv A; Bollenbach, Tobias; Sixt, Michael

    2013-01-18

    Directional guidance of cells via gradients of chemokines is considered crucial for embryonic development, cancer dissemination, and immune responses. Nevertheless, the concept still lacks direct experimental confirmation in vivo. Here, we identify endogenous gradients of the chemokine CCL21 within mouse skin and show that they guide dendritic cells toward lymphatic vessels. Quantitative imaging reveals depots of CCL21 within lymphatic endothelial cells and steeply decaying gradients within the perilymphatic interstitium. These gradients match the migratory patterns of the dendritic cells, which directionally approach vessels from a distance of up to 90-micrometers. Interstitial CCL21 is immobilized to heparan sulfates, and its experimental delocalization or swamping the endogenous gradients abolishes directed migration. These findings functionally establish the concept of haptotaxis, directed migration along immobilized gradients, in tissues.

  1. Aeroallergen challenge promotes dendritic cell proliferation in the airways.

    PubMed

    Veres, Tibor Z; Voedisch, Sabrina; Spies, Emma; Valtonen, Joona; Prenzler, Frauke; Braun, Armin

    2013-02-01

    Aeroallergen provocation induces the rapid accumulation of CD11c(+)MHC class II (MHC II)(+) dendritic cells (DCs) in the lungs, which is driven by an increased recruitment of blood-derived DC precursors. Recent data show, however, that well-differentiated DCs proliferate in situ in various tissues. This may also contribute to their allergen-induced expansion; therefore, we studied DC proliferation in the airways of mice in the steady state and after local aeroallergen provocation. Confocal whole-mount microscopy was used to visualize proliferating DCs in different microanatomical compartments of the lung. We demonstrate that in the steady state, CD11c(+)MHC II(+) DCs proliferate in both the epithelial and subepithelial layers of the airway mucosa as well as in the lung parenchyma. A 1-h pulse of the nucleotide 5-ethynyl-2'-deoxyuridine was sufficient to label 5% of DCs in both layers of the airway mucosa. On the level of whole-lung tissue, 3-5% of both CD11b(+) and CD11b(-) DC populations and 0.3% of CD11c(+)MHC II(low) lung macrophages incorporated 5-ethynyl-2'-deoxyuridine. Aeroallergen provocation caused a 3-fold increase in the frequency of locally proliferating DCs in the airway mucosa. This increase in mucosal DC proliferation was later followed by an elevation in the number of DCs. The recruitment of monocyte-derived inflammatory DCs contributed to the increasing number of DCs in the lung parenchyma, but not in the airway mucosa. We conclude that local proliferation significantly contributes to airway DC homeostasis in the steady state and that it is the major mechanism underlying the expansion of the mucosal epithelial/subepithelial DC network in allergic inflammation.

  2. Characterization of colonic dendritic cells in normal and colitic mice.

    PubMed

    Cruickshank, Sheena M; English, Nicholas R; Felsburg, Peter J; Carding, Simon R

    2005-10-28

    Recent studies demonstrating the direct involvement of dendritic cells (DC) in the activation of pathogenic T cells in animal models of inflammatory bowel disease identify DC as important antigen presenting cells in the colon. However, very little is known about the properties of colonic DC. Using immunohistochemistry, electron microscopy and flow cytometry we have characterized and compared colonic DC in the colon of healthy animals and interleukin-2-deficient (IL2(-/-)) mice that develop colitis. In the healthy colon, DC resided within the lamina propria and in close association with the basement membrane of colonic villi. Type 1 myeloid (CD11c(+), CD11b(+), B220(-), CD8alpha(-)) DC made up the largest (40-45%) population and all DC expressed low levels of CD80, CD86, and CD40, and had high endocytic activity consistent with an immature phenotype. In colitic IL2(-/-) mice, colonic DC numbers increased four- to five-fold and were localized within the epithelial layer and within aggregates of T and B cells. They were also many more DC in mesenteric lymph nodes (MLN). The majority (>85%) of DC in the colon and MLN of IL2(-/-) mice were type 1 myeloid, and expressed high levels of MHC class II, CD80, CD86, CD40, DEC 205, and CCR5 molecules and were of low endocytic activity consistent with mature DC. These findings demonstrate striking changes in the number, distribution and phenotype of DC in the inflamed colon. Their intimate association with lymphocytes in the colon and draining lymph nodes suggest that they may contribute directly to the ongoing inflammation in the colon.

  3. Characterization of colonic dendritic cells in normal and colitic mice

    PubMed Central

    Cruickshank, Sheena M; English, Nicholas R; Felsburg, Peter J; Carding, Simon R

    2005-01-01

    AIM: Recent studies demonstrating the direct involvement of dendritic cells (DC) in the activation of pathogenic T cells in animal models of inflammatory bowel disease identify DC as important antigen presenting cells in the colon. However, very little is known about the properties of colonic DC. METHODS: Using immunohistochemistry, electron microscopy and flow cytometry we have characterized and compared colonic DC in the colon of healthy animals and interleukin-2-deficient (IL2-/-) mice that develop colitis. RESULTS: In the healthy colon, DC resided within the lamina propria and in close association with the basement membrane of colonic villi. Type 1 myeloid (CD11c+, CD11b+, B220-, CD8α-) DC made up the largest (40-45%) population and all DC expressed low levels of CD80, CD86, and CD40, and had high endocytic activity consistent with an immature phenotype. In colitic IL2-/- mice, colonic DC numbers increased four- to five-fold and were localized within the epithelial layer and within aggregates of T and B cells. They were also many more DC in mesenteric lymph nodes (MLN). The majority (>85%) of DC in the colon and MLN of IL2-/- mice were type 1 myeloid, and expressed high levels of MHC class II, CD80, CD86, CD40, DEC 205, and CCR5 molecules and were of low endocytic activity consistent with mature DC. CONCLUSION: These findings demonstrate striking changes in the number, distribution and phenotype of DC in the inflamed colon. Their intimate association with lymphocytes in the colon and draining lymph nodes suggest that they may contribute directly to the ongoing inflammation in the colon. PMID:16419163

  4. Phenotypic Characterization of Five Dendritic Cell Subsets in Human Tonsils

    PubMed Central

    Summers, Kelly L.; Hock, Barry D.; McKenzie, Judith L.; Hart, Derek N. J.

    2001-01-01

    Heterogeneous expression of several antigens on the three currently defined tonsil dendritic cell (DC) subsets encouraged us to re-examine tonsil DCs using a new method that minimized DC differentiation and activation during their preparation. Three-color flow cytometry and dual-color immunohistology was used in conjunction with an extensive panel of antibodies to relevant DC-related antigens to analyze lin− HLA-DR+ tonsil DCs. Here we identify, quantify, and locate five tonsil DC subsets based on their relative expression of the HLA-DR, CD11c, CD13, and CD123 antigens. In situ localization identified four of these DC subsets as distinct interdigitating DC populations. These included three new interdigitating DC subsets defined as HLA-DRhi CD11c+ DCs, HLA-DRmod CD11c+ CD13+ DCs, and HLA-DRmod CD11c− CD123− DCs, as well as the plasmacytoid DCs (HLA-DRmod CD11c− CD123+). These subsets differed in their expression of DC-associated differentiation/activation antigens and co-stimulator molecules including CD83, CMRF-44, CMRF-56, 2-7, CD86, and 4-1BB ligand. The fifth HLA-DRmod CD11c+ DC subset was identified as germinal center DCs, but contrary to previous reports they are redefined as lacking the CD13 antigen. The definition and extensive phenotypic analysis of these five DC subsets in human tonsil extends our understanding of the complexity of DC biology. PMID:11438475

  5. Self-Antigen Presentation by Dendritic Cells in Autoimmunity

    PubMed Central

    Hopp, Ann-Katrin; Rupp, Anne; Lukacs-Kornek, Veronika

    2014-01-01

    The operation of both central and peripheral tolerance ensures the prevention of autoimmune diseases. The maintenance of peripheral tolerance requires self-antigen presentation by professional antigen presenting cells (APCs). Dendritic cells (DCs) are considered as major APCs involved in this process. The current review discusses the role of DCs in autoimmune diseases, the various factors involved in the induction and maintenance of tolerogenic DC phenotype, and pinpoints their therapeutic capacity as well as potential novel targets for future clinical studies. PMID:24592266

  6. Monocyte-derived dendritic cells from horses differ from dendritic cells of humans and mice

    PubMed Central

    Mauel, Susanne; Steinbach, Falko; Ludwig, Hanns

    2006-01-01

    Dendritic cells (DC) are the initiators of immune responses and are present in most tissues in vivo. To generate myeloid DC from monocytes (MoDC) in vitro the necessary cytokines are granulocyte–macrophage colony-stimulating factor (GM-CSF) and interleukin-4 (IL-4). Using degenerated primers delineated from other species and rapid amplification of cDNA ends reverse transcription–polymerase chain reaction (RACE RT-PCR), the cDNA of equine (eq.) GM-CSF was cloned and found to have a point deletion at the 3′-end of eq.GM-CSF, resulting in a 24-nucleotide extended open reading frame not described in any species thus far. For differentiating eq.MoDC, monocytes were stimulated with eq.GM-CSF and eq.IL-4. The eq.MoDC was analysed by both light and electron microscopy and by flow cytometry and mixed lymphocyte reaction. The eq.MoDC obtained had the typical morphology and function of DC, including the ability to stimulate allogeneic T cells in a mixed lymphocyte reaction. In contrast to the human system, however, monocytes had to be differentiated for 6–7 days before immature DC were obtained. Our data also indicate that lipopolysaccharide or poly(I:C) alone are not sufficient to confer the full phenotypic transition into mature DC. Thus our study contributes to understanding the heterogeneity of immunity and adds important information on the equine immune system, which is clearly distinct from those of mice or man. PMID:16556260

  7. CD1c+ blood dendritic cells have Langerhans cell potential.

    PubMed

    Milne, Paul; Bigley, Venetia; Gunawan, Merry; Haniffa, Muzlifah; Collin, Matthew

    2015-01-15

    Langerhans cells (LCs) are self-renewing in the steady state but repopulated by myeloid precursors after injury. Human monocytes give rise to langerin-positive cells in vitro, suggesting a potential precursor role. However, differentiation experiments with human lineage-negative cells and CD34(+) progenitors suggest that there is an alternative monocyte-independent pathway of LC differentiation. Recent data in mice also show long-term repopulation of the LC compartment with alternative myeloid precursors. Here we show that, although monocytes are able to express langerin, when cultured with soluble ligands granulocyte macrophage colony-stimulating factor (GM-CSF), transforming growth factor β (TGFβ), and bone morphogenetic protein 7 (BMP7), CD1c(+) dendritic cells (DCs) become much more LC-like with high langerin, Birbeck granules, EpCAM, and E-cadherin expression under the same conditions. These data highlight a new potential precursor function of CD1c(+) DCs and demonstrate an alternative pathway of LC differentiation that may have relevance in vivo.

  8. Splenic Inflammatory Pseudotumor-Like Follicular Dendritic Cell Tumor

    PubMed Central

    Vardas, Konstantinos; Manganas, Dimitrios; Papadimitriou, Georgios; Kalatzis, Vasileios; Kyriakopoulos, Georgios; Chantziara, Maria; Exarhos, Dimitrios; Drakopoulos, Spiros

    2014-01-01

    Inflammatory pseudotumor of the spleen with expression of follicular dendritic cell markers is an extremely rare lesion with only a few cases reported previously. The present study reports on an inflammatory pseudotumor of the spleen 10 × 8 × 7 cm in size that was incidentally found in a 61-year-old man and increased gradually in size during a period of 3 months. Abdominal ultrasonography revealed a well-circumscribed splenic mass, and abdominal computed tomography confirmed the presence of a well-circumscribed isodense lesion in the splenic hilum with inhomogenous enhancement in the early-phase images and no enhancement on delayed-phase contrast-enhanced images. Magnetic resonance imaging of the abdomen showed a well-defined isodense tumor on T1-weighted images with mildly increased signal intensity on T2-weighted images, and this is only the second study that provides MRI findings of this entity. The patient underwent an uncomplicated open splenectomy for definitive histologic diagnosis. Under microscopic examination, the lesion was an admixture of lymphocytes, plasma cells and spindle cells. In situ hybridization analysis for Epstein-Barr virus (EBV) revealed that most of the spindle cells were positive for EBV, and immunochemistry showed the expression of the follicular dendritic cell markers CD21, CD35 and CD23 within the tumor. The diagnosis of inflammatory pseudotumor-like follicular dendritic cell tumor was established. PMID:25076893

  9. Dendritic cell fate is determined by BCL11A

    PubMed Central

    Ippolito, Gregory C.; Dekker, Joseph D.; Wang, Yui-Hsi; Lee, Bum-Kyu; Shaffer, Arthur L.; Lin, Jian; Wall, Jason K.; Lee, Baeck-Seung; Staudt, Louis M.; Liu, Yong-Jun; Iyer, Vishwanath R.; Tucker, Haley O.

    2014-01-01

    The plasmacytoid dendritic cell (pDC) is vital to the coordinated action of innate and adaptive immunity. pDC development has not been unequivocally traced, nor has its transcriptional regulatory network been fully clarified. Here we confirm an essential requirement for the BCL11A transcription factor in fetal pDC development, and demonstrate this lineage-specific requirement in the adult organism. Furthermore, we identify BCL11A gene targets and provide a molecular mechanism for its action in pDC commitment. Embryonic germ-line deletion of Bcl11a revealed an absolute cellular, molecular, and functional absence of pDCs in fetal mice. In adults, deletion of Bcl11a in hematopoietic stem cells resulted in perturbed yet continued generation of progenitors, loss of downstream pDC and B-cell lineages, and persisting myeloid, conventional dendritic, and T-cell lineages. Challenge with virus resulted in a marked reduction of antiviral response in conditionally deleted adults. Genome-wide analyses of BCL11A DNA binding and expression revealed that BCL11A regulates transcription of E2-2 and other pDC differentiation modulators, including ID2 and MTG16. Our results identify BCL11A as an essential, lineage-specific factor that regulates pDC development, supporting a model wherein differentiation into pDCs represents a primed “default” pathway for common dendritic cell progenitors. PMID:24591644

  10. Continuous single cell imaging reveals sequential steps of plasmacytoid dendritic cell development from common dendritic cell progenitors

    PubMed Central

    Dursun, Ezgi; Endele, Max; Musumeci, Andrea; Failmezger, Henrik; Wang, Shu-Hung; Tresch, Achim; Schroeder, Timm; Krug, Anne B.

    2016-01-01

    Functionally distinct plasmacytoid and conventional dendritic cells (pDC and cDC) shape innate and adaptive immunity. They are derived from common dendritic cell progenitors (CDPs) in the murine bone marrow, which give rise to CD11c+ MHCII− precursors with early commitment to DC subpopulations. In this study, we dissect pDC development from CDP into an ordered sequence of differentiation events by monitoring the expression of CD11c, MHC class II, Siglec H and CCR9 in CDP cultures by continuous single cell imaging and tracking. Analysis of CDP genealogies revealed a stepwise differentiation of CDPs into pDCs in a part of the CDP colonies. This developmental pathway involved an early CD11c+ SiglecH− pre-DC stage and a Siglec H+ CCR9low precursor stage, which was followed rapidly by upregulation of CCR9 indicating final pDC differentiation. In the majority of the remaining CDP pedigrees however the Siglec H+ CCR9low precursor state was maintained for several generations. Thus, although a fraction of CDPs transits through precursor stages rapidly to give rise to a first wave of pDCs, the majority of CDP progeny differentiate more slowly and give rise to longer lived precursor cells which are poised to differentiate on demand. PMID:27892478

  11. A general principle governs vision-dependent dendritic patterning of retinal ganglion cells.

    PubMed

    Xu, Hong-Ping; Sun, Jin Hao; Tian, Ning

    2014-10-15

    Dendritic arbors of retinal ganglion cells (RGCs) collect information over a certain area of the visual scene. The coverage territory and the arbor density of dendrites determine what fraction of the visual field is sampled by a single cell and at what resolution. However, it is not clear whether visual stimulation is required for the establishment of branching patterns of RGCs, and whether a general principle directs the dendritic patterning of diverse RGCs. By analyzing the geometric structures of RGC dendrites, we found that dendritic arbors of RGCs underwent a substantial spatial rearrangement after eye-opening. Light deprivation blocked both the dendritic growth and the branch patterning, suggesting that visual stimulation is required for the acquisition of specific branching patterns of RGCs. We further showed that vision-dependent dendritic growth and arbor refinement occurred mainly in the middle portion of the dendritic tree. This nonproportional growth and selective refinement suggest that the late-stage dendritic development of RGCs is not a passive stretching with the growth of eyes, but rather an active process of selective growth/elimination of dendritic arbors of RGCs driven by visual activity. Finally, our data showed that there was a power law relationship between the coverage territory and dendritic arbor density of RGCs on a cell-by-cell basis. RGCs were systematically less dense when they cover larger territories regardless of their cell type, retinal location, or developmental stage. These results suggest that a general structural design principle directs the vision-dependent patterning of RGC dendrites.

  12. Neural Cell Adhesion Molecule NrCAM Regulates Semaphorin 3F-Induced Dendritic Spine Remodeling

    PubMed Central

    Demyanenko, Galina P.; Mohan, Vishwa; Zhang, Xuying; Brennaman, Leann H.; Dharbal, Katherine E.S.; Tran, Tracy S.; Manis, Paul B.

    2014-01-01

    Neuron-glial related cell adhesion molecule (NrCAM) is a regulator of axon growth and repellent guidance, and has been implicated in autism spectrum disorders. Here a novel postsynaptic role for NrCAM in Semaphorin3F (Sema3F)-induced dendritic spine remodeling was identified in pyramidal neurons of the primary visual cortex (V1). NrCAM localized to dendritic spines of star pyramidal cells in postnatal V1, where it was coexpressed with Sema3F. NrCAM deletion in mice resulted in elevated spine densities on apical dendrites of star pyramidal cells at both postnatal and adult stages, and electron microscopy revealed increased numbers of asymmetric synapses in layer 4 of V1. Whole-cell recordings in cortical slices from NrCAM-null mice revealed increased frequency of mEPSCs in star pyramidal neurons. Recombinant Sema3F-Fc protein induced spine retraction on apical dendrites of wild-type, but not NrCAM-null cortical neurons in culture, while re-expression of NrCAM rescued the spine retraction response. NrCAM formed a complex in brain with Sema3F receptor subunits Neuropilin-2 (Npn-2) and PlexinA3 (PlexA3) through an Npn-2-binding sequence (TARNER) in the extracellular Ig1 domain. A trans heterozygous genetic interaction test demonstrated that Sema3F and NrCAM pathways interacted in vivo to regulate spine density in star pyramidal neurons. These findings reveal NrCAM as a novel postnatal regulator of dendritic spine density in cortical pyramidal neurons, and an integral component of the Sema3F receptor complex. The results implicate NrCAM as a contributor to excitatory/inhibitory balance in neocortical circuits. PMID:25143608

  13. Localization of Cacna1s to ON Bipolar Dendritic Tips Requires mGluR6-Related Cascade Elements

    PubMed Central

    Tummala, Shanti R.; Neinstein, Adam; Fina, Marie E.; Dhingra, Anuradha; Vardi, Noga

    2014-01-01

    Purpose. L-type voltage gated calcium channels in retina localize primarily at the presynaptic active zones of photoreceptors and bipolar cells where they modulate glutamate release. However, the pore forming subunit Cacna1s of certain L-type channels is also expressed postsynaptically at the tips of ON bipolar cell dendrites where it colocalizes with mGluR6, but has an unknown function. At these dendritic tips, the components of the mGluR6 signaling cascade cluster together in a macromolecular complex, and each one's localization often depends on that of the others. Thus, we explored if Cacna1s is part of the mGluR6 complex. Methods. We determined Cacna1s expression by PCR using an ON bipolar library, by Western blotting, and by standard immunohistochemistry. Results. The PCR amplification confirmed expression of the transcript in ON bipolar cells, and Western blotting showed the expected bands. Immunostaining for Cacna1s was stronger in the dendritic tips of rod bipolar cells than in those of ON cone bipolar cells. This staining severely decreased in mice missing various mGluR6 cascade elements (Grm6−/−, Gnao1−/−, Gnb3−/−, Gng13−/−, and Trpm1−/−). During development, the ratio of the number of Cacna1s puncta to the number of presynaptic ribbons followed a sigmoidal pattern, rising rapidly from P13 to P17. The mGluR6 expression preceded that of Cacna1s and RGS11. Conclusions. Our results show that the localization and stability of Cacna1s depend on the expression of mGluR6 and its cascade components, and they suggest that Cacna1s is part of the mGluR6 complex. We hypothesize that Cacna1s contributes to light adaptation by permeating calcium. PMID:24519419

  14. Distinct behavior of human Langerhans cells and inflammatory dendritic epidermal cells at tight junctions in patients with atopic dermatitis.

    PubMed

    Yoshida, Kazue; Kubo, Akiharu; Fujita, Harumi; Yokouchi, Mariko; Ishii, Ken; Kawasaki, Hiroshi; Nomura, Toshifumi; Shimizu, Hiroshi; Kouyama, Keisuke; Ebihara, Tamotsu; Nagao, Keisuke; Amagai, Masayuki

    2014-10-01

    The stratum corneum and tight junctions (TJs) form physical barriers in the epidermis. Dendrites of activated Langerhans cells (LCs) extend beyond the TJs to capture external antigens in mice. LCs and inflammatory dendritic epidermal cells (IDECs) are observed in the skin of patients with atopic dermatitis (AD). We sought to investigate the characteristics of LCs and IDECs and the distribution of their antigen capture receptors in relation to TJs in normal and AD skin. We characterized the interactions of LCs and IDECs with TJs and the expression patterns of langerin and FcεRI by using whole-mount epidermal sheets from healthy subjects and patients with AD, ichthyosis vulgaris, and psoriasis vulgaris. As in mouse skin, activated LCs penetrate TJs in human skin. The number of LCs with TJ penetration increased approximately 5-fold in erythematous lesional skin of patients with AD but not in nonlesional skin of patients with AD or lesions of patients with ichthyosis vulgaris or psoriasis. In contrast, IDECs localized in the lower part of the epidermis, and their dendrites extended horizontally without penetration through TJs. Although langerin accumulated on the tips of dendrites of activated LCs, FcεRI was expressed diffusely on the cell surfaces on LCs and IDECs in lesional skin from patients with AD. These findings highlight interesting differences between LCs and IDECs in epidermis of patients with AD, where LCs, but not IDECs, extend dendrites through the TJs, likely to capture antigens from outside the TJ barrier with a polarized distribution of langerin but not FcεRI. These behavioral differences between skin dendritic cells might reflect an important pathophysiology of AD. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  15. Emitter formation in dendritic web silicon solar cells

    NASA Technical Reports Server (NTRS)

    Meier, D. L.; Rohatgi, A.; Campbell, R. B.; Alexander, P.; Fonash, S. J.; Singh, R.

    1984-01-01

    The use of liquid dopants and liquid masks for p-n junction formation in dendritic web solar cells was investigated and found to be equivalent to the use of gaseous dopants and CVD SiO2 masks previously used. This results in a projected cost reduction of 0.02 1980$/Watt for a 25 MW/year production line, and makes possible junction formation processes having a higher throughput than more conventional processes. The effect of a low-energy (0.4 keV) hydrogen ion implant on dendritic web solar cells was also investigated. Such an implant was observed to improve Voc and Jsc substantially. Measurements of internal quantum efficiency suggest that it is the base of the cell, rather than the emitter, which benefits from the hydrogen implant. The diffusion length for electrons in the p-type base increased from 53 microns to 150 microns in one case, with dendritic web cell efficiency being boosted to 15.2 percent. The mechanism by which low-energy hydrogen ions can penetrate deeply into the silicon to effect the observed improvement is not known at this time.

  16. Dendritic Guanidines as Efficient Analogues of Cell Penetrating Peptides

    PubMed Central

    Bonduelle, Colin V.; Gillies, Elizabeth R.

    2010-01-01

    The widespread application of cell penetrating agents to clinical therapeutics and imaging agents relies on the ability to prepare them on a large scale and to readily conjugate them to their cargos. Dendritic analogues of cell penetrating peptides, with multiple guanidine groups on their peripheries offer advantages as their high symmetry allows them to be efficiently synthesized, while orthogonal functionalities at their focal points allow them to be conjugated to cargo using simple synthetic methods. Their chemical structures and properties are also highly tunable as their flexibility and the number of guanidine groups can be tuned by altering the dendritic backbone or the linkages to the guanidine groups. This review describes the development of cell-penetrating dendrimers based on several different backbones, their structure-property relationships, and comparisons of their efficacies with those of known cell penetrating peptides. The toxicities of these dendritic guanidines are also reported as well as their application towards the intracellular delivery of biologically significant cargos including proteins and nanoparticles. PMID:27713272

  17. Dynamic synchrony of local cell assembly.

    PubMed

    Sakurai, Yoshio; Takahashi, Susumu

    2008-01-01

    In the present paper, we focus on the problem of the dynamic size of a cell assembly and discuss how we can detect synchronized firing of a local cell assembly consisting of closely neighboring neurons in the working brain. A local cell assembly is difficult to detect because of the problem of spike overlapping of neighboring neurons, which cannot be overcome by ordinary spike-sorting techniques. We introduce a unique technique of spike-sorting that combines independent component analysis (ICA) and an ordinary sorting method to separate individual neighboring neurons and analyze their firing synchrony in behaving animals. One of our experiments employing this method showed that some closely neighboring neurons in the monkey prefrontal cortex have dynamic and sharp synchrony of firing reflecting local cell assemblies during working-memory processes. Another experiment showed that our other method (ICSort) of novel spike-sorting by ICA using special electrodes (dodecatrodes) can distinguish firing signals from the soma and those from the dendrites of individual neurons in behaving rats and suggests that the somatic and dendritic signals have different roles in information processing. This indicates that functional connectivity among neurons may be more dynamic and complex and spikes from the soma and dendrites of individual neurons should be considered in the investigation of the activity of local cell assemblies. We finally propose that detailed and real features of a local cell assembly consisting of closely neighboring neurons should be examined further and detection of local cell assemblies could be applied to the development of neuronal prosthetic devices, that is, brain-machine interfaces (BMIs).

  18. Epidermal cells are the primary phagocytes in the fragmentation and clearance of degenerating dendrites in Drosophila

    PubMed Central

    Xiao, Hui; Wang, Denan; Franc, Nathalie C.; Jan, Lily Yeh; Jan, Yuh-Nung

    2014-01-01

    SUMMARY During developmental remodeling, neurites destined for pruning often degenerate on-site. Physical injury also induces degeneration of neurites distal to the injury site. Prompt clearance of degenerating neurites is important for maintaining tissue homeostasis and preventing inflammatory responses. Here we show that in both dendrite pruning and dendrite injury of Drosophila sensory neurons, epidermal cells rather than hemocytes are the primary phagocytes in clearing degenerating dendrites. Epidermal cells act via Draper-mediated recognition to facilitate dendrite degeneration and to engulf and degrade degenerating dendrites. Using multiple dendritic membrane markers to trace phagocytosis, we show that two members of the CD36 family, croquemort (crq) and debris buster (dsb), act at distinct stages of phagosome maturation for dendrite clearance. Our finding reveals the physiological importance of coordination between neurons and their surrounding epidermis, for both dendrite fragmentation and clearance. PMID:24412417

  19. Targeting Dendritic Cells in vivo for Cancer Therapy

    PubMed Central

    Caminschi, Irina; Maraskovsky, Eugene; Heath, William Ross

    2012-01-01

    Monoclonal antibodies that recognize cell surface molecules have been used deliver antigenic cargo to dendritic cells (DC) for induction of immune responses. The encouraging anti-tumor immunity elicited using this immunization strategy suggests its suitability for clinical trials. This review discusses the complex network of DC, the functional specialization of DC subsets, the immunological outcomes of targeting different DC subsets and their cell surface receptors, and the requirements for the induction of effective anti-tumor CD4 and CD8 T cell responses that can recognize tumor-specific antigens. Finally, we review preclinical experiments and the progress toward targeting human DC in vivo. PMID:22566899

  20. Viral piracy: HIV-1 targets dendritic cells for transmission.

    PubMed

    Lekkerkerker, Annemarie N; van Kooyk, Yvette; Geijtenbeek, Teunis B H

    2006-04-01

    Dendritic cells (DCs), the professional antigen presenting cells, are critical for host immunity by inducing specific immune responses against a broad variety of pathogens. Remarkably the human immunodeficiency virus-1 (HIV-1) subverts DC function leading to spread of the virus. At an early phase of HIV-1 transmission, DCs capture HIV-1 at mucosal surfaces and transmit the virus to T cells in secondary lymphoid tissues. Capture of the virus on DCs takes place via C-type lectins of which the dendritic cell-specific intercellular adhesion molecule-3 (ICAM-3) grabbing nonintegrin (DC-SIGN) is the best studied. DC-SIGN-captured HIV-1 particles accumulate in CD81(+) multivesicular bodies (MVBs) in DCs and are subsequently transmitted to CD4+ T cells resulting in infection of T cells. The viral cell-to-cell transmission takes place at the DC-T cell interface termed the infectious synapse. Recent studies demonstrate that direct infection of DCs contributes to the transmission to T cells at a later phase. Moreover, the infected DCs may function as cellular reservoirs for HIV-1. This review discusses the different processes that govern viral piracy of DCs by HIV-1, emphasizing the intracellular routing of the virus from capture on the cell surface to egress in the infectious synapse.

  1. Computer Tomography Imaging Findings of Abdominal Follicular Dendritic Cell Sarcoma

    PubMed Central

    Li, Jing; Geng, Zhi-Jun; Xie, Chuan-Miao; Zhang, Xin-Ke; Chen, Rui-Ying; Cai, Pei-Qiang; Lv, Xiao-Fei

    2016-01-01

    Abstract Follicular dendritic cell sarcoma (FDCS) is a neoplasm that arises from follicular dendritic cells. FDCSs originating in the abdomen are extremely rare. Clinically, they often mimic a wide variety of other abdominal tumors, and correct preoperative diagnosis is often a challenging task. To date, only scattered cases of abdominal FDCS have been reported and few data are available on their radiological features. Here we present the computer tomography imaging findings of 5 patients with surgically and pathologically demonstrated abdominal FDCS. An abdominal FDCS should be included in the differential diagnosis when single or multiple masses with relatively large size, well- or ill-defined borders, complex internal architecture with marked internal necrosis and/or focal calcification, and heterogeneous enhancement with “rapid wash-in and slow wash-out” or “progressive enhancement” enhancement patterns in the solid component are seen. PMID:26735543

  2. Targeting human dendritic cells in situ to improve vaccines.

    PubMed

    Sehgal, Kartik; Dhodapkar, Kavita M; Dhodapkar, Madhav V

    2014-11-01

    Dendritic cells (DCs) provide a critical link between innate and adaptive immunity. The potent antigen presenting properties of DCs makes them a valuable target for the delivery of immunogenic cargo. Recent clinical studies describing in situ DC targeting with antibody-mediated targeting of DC receptor through DEC-205 provide new opportunities for the clinical application of DC-targeted vaccines. Further advances with nanoparticle vectors which can encapsulate antigens and adjuvants within the same compartment and be targeted against diverse DC subsets also represent an attractive strategy for targeting DCs. This review provides a brief summary of the rationale behind targeting dendritic cells in situ, the existing pre-clinical and clinical data on these vaccines and challenges faced by the next generation DC-targeted vaccines. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Lung dendritic cells facilitate extrapulmonary bacterial dissemination during pneumococcal pneumonia

    PubMed Central

    Rosendahl, Alva; Bergmann, Simone; Hammerschmidt, Sven; Goldmann, Oliver; Medina, Eva

    2013-01-01

    Streptococcus pneumoniae is a leading cause of bacterial pneumonia worldwide. Given the critical role of dendritic cells (DCs) in regulating and modulating the immune response to pathogens, we investigated here the role of DCs in S. pneumoniae lung infections. Using a well-established transgenic mouse line which allows the conditional transient depletion of DCs, we showed that ablation of DCs resulted in enhanced resistance to intranasal challenge with S. pneumoniae. DCs-depleted mice exhibited delayed bacterial systemic dissemination, significantly reduced bacterial loads in the infected organs and lower levels of serum inflammatory mediators than non-depleted animals. The increased resistance of DCs-depleted mice to S. pneumoniae was associated with a better capacity to restrict pneumococci extrapulmonary dissemination. Furthermore, we demonstrated that S. pneumoniae disseminated from the lungs into the regional lymph nodes in a cell-independent manner and that this direct way of dissemination was much more efficient in the presence of DCs. We also provide evidence that S. pneumoniae induces expression and activation of matrix metalloproteinase-9 (MMP-9) in cultured bone marrow-derived DCs. MMP-9 is a protease involved in the breakdown of extracellular matrix proteins and is critical for DC trafficking across extracellular matrix and basement membranes during the migration from the periphery to the lymph nodes. MMP-9 was also significantly up-regulated in the lungs of mice after intranasal infection with S. pneumoniae. Notably, the expression levels of MMP-9 in the infected lungs were significantly decreased after depletion of DCs suggesting the involvement of DCs in MMP-9 production during pneumococcal pneumonia. Thus, we propose that S. pneumoniae can exploit the DC-derived proteolysis to open tissue barriers thereby facilitating its own dissemination from the local site of infection. PMID:23802100

  4. Dendritic Cells Endocytose Bacillus Anthracis Spores: Implications for Anthrax Pathogenesis

    DTIC Science & Technology

    2007-11-02

    significance of coiling phagocy- tosis for disease pathogenesis has yet to be elucidated, it is a sub- ject that surely warrants further investigation. B...Schmaljohn. 2003. Ebola and marburg viruses replicate in monocyte-derived dendritic cells without inducing the pro- duction of cytokines and full maturation...Journal of Immunology, 2005, 174: 5545–5552. I nhalational anthrax, a disease that was exploited for bioter-rorism (1), is most often fatal and causes

  5. Dendritic web-type solar cell mini-modules

    NASA Technical Reports Server (NTRS)

    Campbell, R. B.

    1985-01-01

    Twenty-five minimodules composed of dendritic web solar cells with nominal glass size of 12 by 40 cm were provided for study. The modules were identical with respect to design, materials, and manufacturing and assembly processes to full scale modules. The modules were also electrically functional. These minimodules were fabricated to provide test vehicle for environmental testing and to assess reliability of process and design procedures. The module design and performance are outlined.

  6. Modulatory effects on dendritic cells by human herpesvirus 6

    PubMed Central

    Gustafsson, Rasmus; Svensson, Mattias; Fogdell-Hahn, Anna

    2015-01-01

    Human herpesvirus 6A and 6B are β-herpesviruses approaching 100% seroprevalance worldwide. These viruses are involved in several clinical syndromes and have important immunomodulatory effects. Dendritic cells (DC) are key players in innate and adaptive immunity. Accordingly, DC are implicated in the pathogenesis of many human diseases, including infections. In this review the effects of HHV-6 infection on DC will be discussed. PMID:25983728

  7. Developmental profile of localized spontaneous Ca2+ release events in the dendrites of rat hippocampal pyramidal neurons

    PubMed Central

    Miyazaki, Kenichi; Manita, Satoshi; Ross, William N.

    2012-01-01

    Summary Recent experiments demonstrate that localized spontaneous Ca2+ release events can be detected in the dendrites of pyramidal cells in the hippocampus and other neurons (J. Neurosci. 29:7833-7845, 2009). These events have some properties that resemble ryanodine receptor mediated “sparks” in myocytes, and some that resemble IP3 receptor mediated “puffs” in oocytes. They can be detected in the dendrites of rats of all tested ages between P3 and P80 (with sparser sampling in older rats), suggesting that they serve a general signaling function and are not just important in development. However, in younger rats the amplitudes of the events are larger than the amplitudes in older animals and almost as large as the amplitudes of Ca2+ signals from backpropagating action potentials (bAPs). The rise time of the event signal is fast at all ages and is comparable to the rise time of the bAP fluorescence signal at the same dendritic location. The decay time is slower in younger animals, primarily because of weaker Ca2+ extrusion mechanisms at that age. Diffusion away from a brief localized source is the major determinant of decay at all ages. A simple computational model closely simulates these events with extrusion rate the only age dependent variable. PMID:22951184

  8. Induction and identification of rabbit peripheral blood derived dendritic cells

    NASA Astrophysics Data System (ADS)

    Zhou, Jing; Yang, FuYuan; Chen, WenLi

    2012-03-01

    Purpose: To study a method of the induction of dendritic cells (DCs) from rabbit peripheral blood. Methods: Peripheral blood cells were removed from rabbit, filtered through nylon mesh. Peripheral blood mononuclear cells (PBMC) were isolated from the blood cells by Ficoll-Hypaque centrifugation (density of 1.077g/cm3).To obtain DCs, PBMC were cultured in RPMI1640 medium containing 10% fetal calf serum, 50U/mL penicillin and streptomycin, referred to subsequently as complete medium, at 37°C in 5% CO2 atmosphere for 4 hours. Nonadherent cells were aspirated, adherent cells were continued incubated in complete medium, supplemented with granulocyte/macrophage colony-stimulating factor (GM-CSF, 50ng/ml),and interleukin 4 (IL-4, 50ng/ml) for 9 days. Fluorescein labeled antibodies(anti-CD14, anti-HLA-DR, anti-CD86) were used to sign cells cultured for 3,6,9 days respectively, Then flow cytometry was performed. Results: Ratio of anti-HLA-DR and anti-CD86 labeled cells increased with induction time extension, in contrast with anti-CD14. Conclusion: Dendritic cells can be effectively induced by the method of this experiment, cell maturation status increased with induction time extension.

  9. Longitudinal Tracking of Human Dendritic Cells in Murine Models Using Magnetic Resonance Imaging

    PubMed Central

    Briley-Saebo, Karen C.; Leboeuf, Marylene; Dickson, Stephen; Mani, Venkatesh; Fayad, Zahi A.; Palucka, A. Karolina; Banchereau, Jacques; Merad, Miriam

    2011-01-01

    Ex vivo generated dendritic cells are currently used to induce therapeutic immunity in solid tumors. Effective immune response requires dendritic cells to home and remain in lymphoid organs to allow for adequate interaction with T lymphocytes. The aim of the current study was to detect and track Feridex labeled human dendritic cells in murine models using magnetic resonance imaging. Human dendritic cells were incubated with Feridex and the effect of labeling on dendritic cells immune function was evaluated. Ex vivo dendritic cell phantoms were used to estimate sensitivity of the magnetic resonance methods and in vivo homing was evaluated after intravenous or subcutaneous injection. R2*-maps of liver, spleen, and draining lymph nodes were obtained and inductively coupled plasma mass spectrometry or relaxometry methods were used to quantify the Feridex tissue concentrations. Correlations between in vivo R2* values and iron content were then determined. Feridex labeling did not affect dendritic cell maturation or function. Phantom results indicated that it was possible to detect 125 dendritic cells within a given slice. Strong correlation between in vivo R2* values and iron deposition was observed. Importantly, Feridex-labeled dendritic cells were detected in the spleen for up to 2 weeks postintravenous injection. This study suggests that magnetic resonance imaging may be used to longitudinally track Feridex-labeled human dendritic cells for up to 2 weeks after injection. PMID:20593373

  10. Moderate or deep local hypothermia does not prevent the onset of ischemia-induced dendritic damage

    PubMed Central

    Tran, Sherri; Chen, Shangbin; Liu, Ran R; Xie, Yicheng; Murphy, Timothy H

    2012-01-01

    We studied the acute (up to 2 hours after reperfusion) effects of localized cortical hypothermia on ischemia-induced dendritic structural damage. Moderate (31°C) and deep (22°C) hypothermia delays, but does not block the onset of dendritic blebbing or spine loss during global ischemia in mouse in vivo. Hypothermic treatment promoted more consistent recovery of dendritic structure and spines during reperfusion. These results suggest that those using therapeutic hypothermia will need to consider that it does not spare neurons from structural changes that are the result of ischemia, but hypothermia may interact with mechanisms that control the onset of damage and recovery during reperfusion. PMID:22167237

  11. GABA promotes the competitive selection of dendritic spines by controlling local Ca2+ signaling.

    PubMed

    Hayama, Tatsuya; Noguchi, Jun; Watanabe, Satoshi; Takahashi, Noriko; Hayashi-Takagi, Akiko; Ellis-Davies, Graham C R; Matsuzaki, Masanori; Kasai, Haruo

    2013-10-01

    Activity-dependent competition of synapses plays a key role in neural organization and is often promoted by GABA; however, its cellular bases are poorly understood. Excitatory synapses of cortical pyramidal neurons are formed on small protrusions known as dendritic spines, which exhibit structural plasticity. We used two-color uncaging of glutamate and GABA in rat hippocampal CA1 pyramidal neurons and found that spine shrinkage and elimination were markedly promoted by the activation of GABAA receptors shortly before action potentials. GABAergic inhibition suppressed bulk increases in cytosolic Ca(2+) concentrations, whereas it preserved the Ca(2+) nanodomains generated by NMDA-type receptors, both of which were necessary for spine shrinkage. Unlike spine enlargement, spine shrinkage spread to neighboring spines (<15 μm) and competed with their enlargement, and this process involved the actin-depolymerizing factor ADF/cofilin. Thus, GABAergic inhibition directly suppresses local dendritic Ca(2+) transients and strongly promotes the competitive selection of dendritic spines.

  12. Jet exhaust particles alter human dendritic cell maturation.

    PubMed

    Ferry, D; Rolland, C; Delhaye, D; Barlesi, F; Robert, P; Bongrand, P; Vitte, Joana

    2011-03-01

    Among combustion-derived air pollutants, little is known about jet kerosene characteristics and effects. Particles yielded by experimental kerosene combustion in a jet engine were characterized with electron microscopy and X-ray energy dispersive spectroscopy. Immature human monocyte-derived dendritic cells were exposed for 18 h to 10, 25 or 100 μg/mL jet exhaust particles and/or Escherichia coli-derived endotoxin. Antigen-presenting and costimulation molecules (HLA DR, CD40, CD80, CD86, CD11c), tumor necrosis factor-α and interleukin-10 production were measured. The primary particles of jet exhaust are spherical (9.9 nm), carbonaceous and exert an adjuvant effect on human monocyte-derived dendritic cell maturation in vitro. Concomitant particle and endotoxin stimulation induced a high cytokine production with low antigen-presenting molecules; particle contact prior to endotoxin contact led to an opposite phenotype. Finally, low cytokine production and high costimulation molecules were present when particle adjunction followed endotoxin contact. Jet exhaust particles act as adjuvants to endotoxin-induced dendritic cell maturation, suggesting possible implications for human health and a role for the time pattern of infectious and pollutant interplay.

  13. 3D visualization of HIV transfer at the virological synapse between dendritic cells and T cells

    PubMed Central

    Felts, Richard L.; Narayan, Kedar; Estes, Jacob D.; Shi, Dan; Trubey, Charles M.; Fu, Jing; Hartnell, Lisa M.; Ruthel, Gordon T.; Schneider, Douglas K.; Nagashima, Kunio; Bess, Julian W.; Bavari, Sina; Lowekamp, Bradley C.; Bliss, Donald; Lifson, Jeffrey D.; Subramaniam, Sriram

    2010-01-01

    The efficiency of HIV infection is greatly enhanced when the virus is delivered at conjugates between CD4+ T cells and virus-bearing antigen-presenting cells such as macrophages or dendritic cells via specialized structures known as virological synapses. Using ion abrasion SEM, electron tomography, and superresolution light microscopy, we have analyzed the spatial architecture of cell-cell contacts and distribution of HIV virions at virological synapses formed between mature dendritic cells and T cells. We demonstrate the striking envelopment of T cells by sheet-like membrane extensions derived from mature dendritic cells, resulting in a shielded region for formation of virological synapses. Within the synapse, filopodial extensions emanating from CD4+ T cells make contact with HIV virions sequestered deep within a 3D network of surface-accessible compartments in the dendritic cell. Viruses are detected at the membrane surfaces of both dendritic cells and T cells, but virions are not released passively at the synapse; instead, virus transfer requires the engagement of T-cell CD4 receptors. The relative seclusion of T cells from the extracellular milieu, the burial of the site of HIV transfer, and the receptor-dependent initiation of virion transfer by T cells highlight unique aspects of cell-cell HIV transmission. PMID:20624966

  14. Maturation and trafficking of monocyte-derived dendritic cells in monkeys: implications for dendritic cell-based vaccines.

    PubMed

    Barratt-Boyes, S M; Zimmer, M I; Harshyne, L A; Meyer, E M; Watkins, S C; Capuano, S; Murphey-Corb, M; Falo, L D; Donnenberg, A D

    2000-03-01

    Human dendritic cells (DC) have polarized responses to chemokines as a function of maturation state, but the effect of maturation on DC trafficking in vivo is not known. We have addressed this question in a highly relevant rhesus macaque model. We demonstrate that immature and CD40 ligand-matured monocyte-derived DC have characteristic phenotypic and functional differences in vitro. In particular, immature DC express CC chemokine receptor 5 (CCR5) and migrate in response to macrophage inflammatory protein-1alpha (MIP-1alpha), whereas mature DC switch expression to CCR7 and respond exclusively to MIP-3beta and 6Ckine. Mature DC transduced to express a marker gene localized to lymph nodes after intradermal injection, constituting 1.5% of lymph node DC. In contrast, cutaneous DC transfected in situ via gene gun were detected in the draining lymph node at a 20-fold lower frequency. Unexpectedly, the state of maturation at the time of injection had no influence on the proportion of DC that localized to draining lymph nodes, as labeled immature and mature DC were detected in equal numbers. Immature DC that trafficked to lymph nodes underwent a significant up-regulation of CD86 expression indicative of spontaneous maturation. Moreover, immature DC exited completely from the dermis within 36 h of injection, whereas mature DC persisted in large numbers associated with a marked inflammatory infiltrate. We conclude that in vitro maturation is not a requirement for effective migration of DC in vivo and suggest that administration of Ag-loaded immature DC that undergo natural maturation following injection may be preferred for DC-based immunotherapy.

  15. Suppressing The Growth Of Dendrites In Secondary Li Cells

    NASA Technical Reports Server (NTRS)

    Davies, Evan D.; Perrone, David E.; Shen, David H.

    1996-01-01

    Proposed technique for suppressing growth of lithium dendrites in rechargeable lithium electrochemical power cells involves periodic interruption of steady charging current with short, high-current discharge pulses. Technique applicable to lithium cells of several different types, including Li/TiS(2), Li/NbSe(3), Li/CoO(2), Li/MoS(2), Li/Vo(x), and Li/MnO(2). Cells candidates for use in spacecraft, military, communications, automotive, and other applications in which high-energy-density rechargeable batteries needed.

  16. How helminths use excretory secretory fractions to modulate dendritic cells

    PubMed Central

    White, Rhiannon R.; Artavanis-Tsakonas, Katerina

    2012-01-01

    It is well known that helminth parasites have immunomodulatory effects on their hosts. They characteristically cause a skew toward TH2 immunity, stimulate Treg cells while simultaneously inhibiting TH1 and TH17 responses. Additionally, they induce eosinophilia and extensive IgE release. The exact mechanism of how the worms achieve this effect have yet to be fully elucidated; however, parasite-derived secretions and their interaction with antigen presenting cells have been centrally implicated. Herein, we will review the effects of helminth excretory-secretory fractions on dendritic cells and discuss how this interaction is crucial in shaping the host response. PMID:23221477

  17. Kaposi's sarcoma-associated herpesvirus infection of bone marrow dendritic cells from multiple myeloma patients.

    PubMed

    Rettig, M B; Ma, H J; Vescio, R A; Põld, M; Schiller, G; Belson, D; Savage, A; Nishikubo, C; Wu, C; Fraser, J; Said, J W; Berenson, J R

    1997-06-20

    Kaposi's sarcoma-associated herpesvirus (KSHV) was found in the bone marrow dendritic cells of multiple myeloma patients but not in malignant plasma cells or bone marrow dendritic cells from normal individuals or patients with other malignancies. In addition the virus was detected in the bone marrow dendritic cells from two out of eight patients with monoclonal gammopathy of undetermined significance (MGUS), a precursor to myeloma. Viral interleukin-6, the human homolog of which is a growth factor for myeloma, was found to be transcribed in the myeloma bone marrow dendritic cells. KSHV may be required for transformation from MGUS to myeloma and perpetuate the growth of malignant plasma cells.

  18. Functional Properties of Dendritic Gap Junctions in Cerebellar Golgi Cells.

    PubMed

    Szoboszlay, Miklos; Lőrincz, Andrea; Lanore, Frederic; Vervaeke, Koen; Silver, R Angus; Nusser, Zoltan

    2016-06-01

    The strength and variability of electrical synaptic connections between GABAergic interneurons are key determinants of spike synchrony within neuronal networks. However, little is known about how electrical coupling strength is determined due to the inaccessibility of gap junctions on the dendritic tree. We investigated the properties of gap junctions in cerebellar interneurons by combining paired somato-somatic and somato-dendritic recordings, anatomical reconstructions, immunohistochemistry, electron microscopy, and modeling. By fitting detailed compartmental models of Golgi cells to their somato-dendritic voltage responses, we determined their passive electrical properties and the mean gap junction conductance (0.9 nS). Connexin36 immunofluorescence and freeze-fracture replica immunogold labeling revealed a large variability in gap junction size and that only 18% of the 340 channels are open in each plaque. Our results establish that the number of gap junctions per connection is the main determinant of both the strength and variability in electrical coupling between Golgi cells. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  19. CD45R, CD44 and MHC class II are signaling molecules for the cytoskeleton-dependent induction of dendrites and motility in activated B cells.

    PubMed

    Partida-Sánchez, S; Garibay-Escobar, A; Frixione, E; Parkhouse, R M; Santos-Argumedo, L

    2000-09-01

    Anti-CD44 or anti-MHC II antibodies bound to tissue culture plates have previously been shown to induce a dramatic generation of dendritic processes in activated murine B cells. In this study, we demonstrate a similar generation of dendrites and cell motility in activated B cells through CD45R. The dynamic formation of dendritic processes and associated induction of cell motility were analyzed by video microscopy and were characterized by a rapid, and multidirectional emission of dendrites with retractile behavior. The addition of cytochalasin E totally blocked dendrites formation and motility induced through either CD45R, CD44 or MHC II, suggesting that the necessary cytoskeletal rearrangements require active polymerization of actin. Confocal microscopy showed an accumulation of F-actin in the dendrites, as long as cells were elongating. In contrast, G-actin was localized in the perinuclear area and also accumulated in sites where dendrites originated. Preincubation of B cells with staurosporine (a PKC inhibitor) or BAPTA-AM (a calcium chelator) prevented these morphological changes, indicating additionally a requirement for a PKC-calcium-dependent activity. Dendrite formation and cellular motility, therefore, seem to be two manifestations of the same phenomenon, and CD44, CD45R and MHC II appear to be signaling molecules for the observed cytoskeleton-dependent morphological changes.

  20. Influence of organophosphate poisoning on human dendritic cells.

    PubMed

    Schäfer, Marina; Koppe, Franziska; Stenger, Bernhard; Brochhausen, Christoph; Schmidt, Annette; Steinritz, Dirk; Thiermann, Horst; Kirkpatrick, Charles James; Pohl, Christine

    2013-12-05

    Organophosphourus compounds (OPC, including nerve agents and pesticides) exhibit acute toxicity by inhibition of acetylcholinesterase. Lung affections are frequent complications and a risk factor for death. In addition, epidemiological studies reported immunological alterations after OPC exposure. In our experiments we investigated the effects of organophosphourus pesticides dimethoate and chlorpyrifos on dendritic cells (DC) that are essential for the initial immune response, especially in the pulmonary system. DC, differentiated from the monocyte cell line THP-1 by using various cytokines (IL-4, GM-CSF, TNF-α, Ionomycin), were exposed to organophosphourus compounds at different concentrations for a 24h time period. DC were characterized by flow cytometry and immunofluorescence using typical dendritic cell markers (e.g., CD11c, CD209 and CD83). After OPC exposure we investigated cell death, the secretion profile of inflammatory mediators, changes of DC morphology, and the effect on protein kinase signalling pathways. Our results revealed a successful differentiation of THP-1 into DC. OPC exposure caused a significant concentration-dependent influence on DC: Dendrites of the DC were shortened and damaged, DC-specific cell surface markers (i.e., CD83and CD209) decreased dramatically after chlorpyrifos exposure. Interestingly, the effects caused by dimethoate were in general less pronounced. The organophosphourus compounds affected the release of inflammatory cytokines, such as IL-1ß and IL-8. The anti-inflammatory cytokine IL-10 was significantly down regulated. Protein kinases like the Akt family or ERK, which are essential for cell survival and proliferation, were inhibited by both OPC. These findings indicate that the tested organophosphourus compounds induced significant changes in cell morphology, inhibited anti-inflammatory cytokines and influenced important protein signalling pathways which are involved in regulation of apoptosis. Thus our results highlight

  1. Generation of Th17 cells in response to intranasal infection requires TGF-β1 from dendritic cells and IL-6 from CD301b+ dendritic cells.

    PubMed

    Linehan, Jonathan L; Dileepan, Thamotharampillai; Kashem, Sakeen W; Kaplan, Daniel H; Cleary, Patrick; Jenkins, Marc K

    2015-10-13

    Intranasal (i.n.) infections preferentially generate Th17 cells. We explored the basis for this anatomic preference by tracking polyclonal CD4(+) T cells specific for an MHC class II-bound peptide from the mucosal pathogen Streptococcus pyogenes. S. pyogenes MHC class II-bound peptide-specific CD4(+) T cells were first activated in the cervical lymph nodes following i.n. inoculation and then differentiated into Th17 cells. S. pyogenes-induced Th17 formation depended on TGF-β1 from dendritic cells and IL-6 from a CD301b(+) dendritic cell subset located in the cervical lymph nodes but not the spleen. Thus, the tendency of i.n. infection to induce Th17 cells is related to cytokine production by specialized dendritic cells that drain this site.

  2. Thyroid Hormone Acts Locally to Increase Neurogenesis, Neuronal Differentiation, and Dendritic Arbor Elaboration in the Tadpole Visual System

    PubMed Central

    Thompson, Christopher K.

    2016-01-01

    Thyroid hormone (TH) regulates many cellular events underlying perinatal brain development in vertebrates. Whether and how TH regulates brain development when neural circuits are first forming is less clear. Furthermore, although the molecular mechanisms that impose spatiotemporal constraints on TH action in the brain have been described, the effects of local TH signaling are poorly understood. We determined the effects of manipulating TH signaling on development of the optic tectum in stage 46–49 Xenopus laevis tadpoles. Global TH treatment caused large-scale morphological effects in tadpoles, including changes in brain morphology and increased tectal cell proliferation. Either increasing or decreasing endogenous TH signaling in tectum, by combining targeted DIO3 knockdown and methimazole, led to corresponding changes in tectal cell proliferation. Local increases in TH, accomplished by injecting suspensions of tri-iodothyronine (T3) in coconut oil into the midbrain ventricle or into the eye, selectively increased tectal or retinal cell proliferation, respectively. In vivo time-lapse imaging demonstrated that local TH first increased tectal progenitor cell proliferation, expanding the progenitor pool, and subsequently increased neuronal differentiation. Local T3 also dramatically increased dendritic arbor growth in neurons that had already reached a growth plateau. The time-lapse data indicate that the same cells are differentially sensitive to T3 at different time points. Finally, TH increased expression of genes pertaining to proliferation and neuronal differentiation. These experiments indicate that endogenous TH locally regulates neurogenesis at developmental stages relevant to circuit assembly by affecting cell proliferation and differentiation and by acting on neurons to increase dendritic arbor elaboration. SIGNIFICANCE STATEMENT Thyroid hormone (TH) is a critical regulator of perinatal brain development in vertebrates. Abnormal TH signaling in early

  3. Autologous tolerogenic dendritic cells for rheumatoid and inflammatory arthritis

    PubMed Central

    Bell, G M; Anderson, A E; Diboll, J; Reece, R; Eltherington, O; Harry, R A; Fouweather, T; MacDonald, C; Chadwick, T; McColl, E; Dunn, J; Dickinson, A M; Hilkens, C M U; Isaacs, John D

    2017-01-01

    Objectives To assess the safety of intra-articular (IA) autologous tolerogenic dendritic cells (tolDC) in patients with inflammatory arthritis and an inflamed knee; to assess the feasibility and acceptability of the approach and to assess potential effects on local and systemic disease activities. Methods An unblinded, randomised, controlled, dose escalation Phase I trial. TolDC were differentiated from CD14+ monocytes and loaded with autologous synovial fluid as a source of autoantigens. Cohorts of three participants received 1×106, 3×106 or 10×106 tolDC arthroscopically following saline irrigation of an inflamed (target) knee. Control participants received saline irrigation only. Primary outcome was flare of disease in the target knee within 5 days of treatment. Feasibility was assessed by successful tolDC manufacture and acceptability via patient questionnaire. Potential effects on disease activity were assessed by arthroscopic synovitis score, disease activity score (DAS)28 and Health Assessment Questionnaire (HAQ). Immunomodulatory effects were sought in peripheral blood. Results There were no target knee flares within 5 days of treatment. At day 14, arthroscopic synovitis was present in all participants except for one who received 10×106 tolDC; a further participant in this cohort declined day 14 arthroscopy because symptoms had remitted; both remained stable throughout 91 days of observation. There were no trends in DAS28 or HAQ score or consistent immunomodulatory effects in peripheral blood. 9 of 10 manufactured products met quality control release criteria; acceptability of the protocol by participants was high. Conclusion IA tolDC therapy appears safe, feasible and acceptable. Knee symptoms stabilised in two patients who received 10×106 tolDC but no systemic clinical or immunomodulatory effects were detectable. Trial registration number NCT01352858. PMID:27117700

  4. EBI2 augments Tfh cell fate by promoting interaction with IL2-quenching dendritic cells

    PubMed Central

    Li, Jianhua; Lu, Erick; Yi, Tangsheng; Cyster, Jason G.

    2016-01-01

    T follicular helper (Tfh) cells are a CD4 T cell subset that is important for supporting plasma cell and germinal center (GC) responses1,2. The initial induction of Tfh cell properties occurs within the first few days following activation by antigen recognition on dendritic cells (DCs), though how DCs promote this cell-fate decision is not fully understood1,2. Moreover, although Tfh cells are uniquely defined by expression of the follicle-homing receptor CXCR51,2, the guidance receptor promoting the earlier localization of activated T cells at the B cell follicle–T zone interface has been unclear3–5. Here we show that the G-protein coupled receptor EBI2 (GPR183) and its ligand 7α,25-dihydroxycholesterol (7α,25-OHC) mediate positioning of activated CD4 T cells at the follicle–T zone interface. In this location they interact with activated DCs and are exposed to Tfh cell-promoting ICOS ligand. IL2 is a cytokine that has multiple influences on T cell fate, including negative regulation of Tfh cell differentiation6–10. We demonstrate that activated DCs in the outer T zone further augment Tfh cell differentiation by producing membrane and soluble forms of CD25, the IL2 receptor α chain, and quenching T cell-derived IL2. Mice lacking EBI2 in T cells or CD25 in DCs have reduced Tfh cells and mount defective T cell-dependent plasma cell and GC responses. These findings demonstrate that distinct niches within the lymphoid organ T zone support distinct cell fate decisions, and they establish a function for DC-derived CD25 in controlling IL2 availability and T cell differentiation. PMID:27147029

  5. A novel cancer therapeutic using thrombospondin 1 in dendritic cells.

    PubMed

    Weng, Tzu-Yang; Huang, Shih-Shien; Yen, Meng-Chi; Lin, Chi-Chen; Chen, Yi-Ling; Lin, Chiu-Mei; Chen, Wei-Ching; Wang, Chih-Yang; Chang, Jang-Yang; Lai, Ming-Derg

    2014-02-01

    Induction of thrombospondin 1 (TSP-1) is generally assumed to suppress tumor growth through inhibiting angiogenesis; however, it is less clear how TSP-1 in dendritic cells (DCs) influences tumor progression. We investigated tumor growth and immune mechanism by downregulation of TSP-1 in dendritic cells. Administration of TSP-1 small hairpin RNA (shRNA) through the skin produced anticancer therapeutic effects. Tumor-infiltrating CD4(+) and CD8(+) T cells were increased after the administration of TSP-1 shRNA. The expression of interleukin-12 and interferon-γ in the lymph nodes was enhanced by injection of TSP-1 shRNA. Lymphocytes from the mice injected with TSP-1 shRNA selectively killed the tumor cells, and the cytotoxicity of lymphocytes was abolished by depletion of CD8(+) T cells. Injection of CD11c(+) TSP-1-knockout (TSP-1-KO) bone marrow-derived DCs (BMDCs) delayed tumor growth in tumor-bearing mice. Similarly, antitumor activity induced by TSP-1-KO BMDCs was abrogated by depletion of CD8(+) T cells. In contrast, the administration of shRNAs targeting TSP-2, another TSP family member, did not extend the survival of tumor-bearing mice. Finally, TSP-1 shRNA functioned as an immunotherapeutic adjuvant to augment the therapeutic efficacy of Neu DNA vaccination. Collectively, the downregulation of TSP-1 in DCs produces an effective antitumor response that is opposite to the protumor effects by silencing of TSP-1 within tumor cells.

  6. Serial assessment of lymphocytes and apoptosis in the prostate during coordinated intraprostatic dendritic cell injection and radiotherapy.

    PubMed

    Finkelstein, Steven Eric; Rodriguez, Francisco; Dunn, Mary; Farmello, Mary-Jane; Smilee, Renee; Janssen, William; Kang, Loveleen; Chuang, Tian; Seigne, John; Pow-Sang, Julio; Torres-Roca, Javier F; Heysek, Randy; Biagoli, Matt; Shankar, Ravi; Scott, Jacob; Antonia, Scott; Gabrilovich, Dmitry; Fishman, Mayer

    2012-04-01

    Local radiotherapy plus intratumoral syngeneic dendritic cell injection can mediate apoptosis/cell death and immunological tumor eradication in murine models. A novel method of coordinated intraprostatic, autologous dendritic cell injection together with radiation therapy was prospectively evaluated in five HLA-A2(+) subjects with high-risk, localized prostate cancer, using androgen suppression, 45 Gy external beam radiation therapy in 25 fractions over 5 weeks, dendritic cell injections after fractions 5, 15 and 25 and then interstitial radioactive seed placement. Serial prostate biopsies before and during treatment showed increased apoptotic cells and parenchymal distribution of CD8(+) cells. CD8(+) T-cell responses to test peptides were assessed using an enzyme-linked immunosorbent spot IFN-γ production assay, demonstrating some prostate cancer-specific protein-derived peptides associated with increased titer. In conclusion, the technique was feasible and well-tolerated and specific immune responses were observable. Future trials could further test the utility of this approach and improve on temporal coordination of intratumoral dendritic cell introduction with particular timelines of therapy-induced apoptosis.

  7. Directing dendritic cell immunotherapy towards successful cancer treatment

    PubMed Central

    Sabado, Rachel Lubong; Bhardwaj, Nina

    2010-01-01

    The use of dendritic cells (DCs) for tumor immunotherapy represents a powerful approach for harnessing the patient's own immune system to eliminate tumor cells. However, suboptimal conditions for generating potent immunostimulatory DCs, as well as the induction of tolerance and suppression mediated by the tumors and its microenvironment have contributed to limited success. Combining DC vaccines with new approaches that enhance immunogenicity and overcome the regulatory mechanisms underlying peripheral tolerance may be the key to achieving effective and durable anti-tumor immune responses that translate to better clinical outcomes. PMID:20473346

  8. Classification of dendritic cell phenotypes from gene expression data

    PubMed Central

    2011-01-01

    Background The selection of relevant genes for sample classification is a common task in many gene expression studies. Although a number of tools have been developed to identify optimal gene expression signatures, they often generate gene lists that are too long to be exploited clinically. Consequently, researchers in the field try to identify the smallest set of genes that provide good sample classification. We investigated the genome-wide expression of the inflammatory phenotype in dendritic cells. Dendritic cells are a complex group of cells that play a critical role in vertebrate immunity. Therefore, the prediction of the inflammatory phenotype in these cells may help with the selection of immune-modulating compounds. Results A data mining protocol was applied to microarray data for murine cell lines treated with various inflammatory stimuli. The learning and validation data sets consisted of 155 and 49 samples, respectively. The data mining protocol reduced the number of probe sets from 5,802 to 10, then from 10 to 6 and finally from 6 to 3. The performances of a set of supervised classification models were compared. The best accuracy, when using the six following genes --Il12b, Cd40, Socs3, Irgm1, Plin2 and Lgals3bp-- was obtained by Tree Augmented Naïve Bayes and Nearest Neighbour (91.8%). Using the smallest set of three genes --Il12b, Cd40 and Socs3-- the performance remained satisfactory and the best accuracy was with Support Vector Machine (95.9%). These data mining models, using data for the genes Il12b, Cd40 and Socs3, were validated with a human data set consisting of 27 samples. Support Vector Machines (71.4%) and Nearest Neighbour (92.6%) gave the worst performances, but the remaining models correctly classified all the 27 samples. Conclusions The genes selected by the data mining protocol proposed were shown to be informative for discriminating between inflammatory and steady-state phenotypes in dendritic cells. The robustness of the data mining

  9. Cross-Presentation in Mouse and Human Dendritic Cells.

    PubMed

    Segura, Elodie; Amigorena, Sebastian

    2015-01-01

    Cross-presentation designates the presentation of exogenous antigens on major histocompatibility complex class I molecules and is essential for the initiation of cytotoxic immune responses. It is now well established that dendritic cells (DCs) are the best cross-presenting cells. In this chapter, we will discuss recent advances in our understanding of the molecular mechanisms of cross-presentation. We will also describe the different DC subsets identified in mouse and human, and their functional specialization for cross-presentation. Finally, we will summarize the current knowledge of the role of cross-presentation in pathological situations.

  10. Maturation-Resistant Dendritic Cells Ameliorate Experimental Autoimmune Uveoretinitis

    PubMed Central

    Oh, Keunhee; Kim, Yon Su

    2011-01-01

    Background Endogenous uveitis is a chronic inflammatory eye disease of human, which frequently leads to blindness. Experimental autoimmune uveoretinitis (EAU) is an animal disease model of human endogenous uveitis and can be induced in susceptible animals by immunization with retinal antigens. EAU resembles the key immunological characteristics of human disease in that both are CD4+ T-cell mediated diseases. Dendritic cells (DCs) are specialized antigen-presenting cells that are uniquely capable of activating naïve T cells. Regulation of immune responses through modulation of DCs has thus been tried extensively. Recently our group reported that donor strain-derived immature DC pretreatment successfully controlled the adverse immune response during allogeneic transplantation. Methods EAU was induced by immunization with human interphotoreceptor retinoid-binding protein (IRBP) peptide1-20. Dendritic cells were differentiated from bone marrow in the presence of recombinant GM-CSF. Results In this study, we used paraformaldehyde-fixed bone marrow-derived DCs to maintain them in an immature state. Pretreatment with fixed immature DCs, but not fixed mature DCs, ameliorated the disease progression of EAU by inhibiting uveitogenic CD4+ T cell activation and differentiation. Conclusion Application of iBMDC prepared according to the protocol of this study would provide an important treatment modality for the autoimmune diseases and transplantation rejection. PMID:22346781

  11. Targeting antigens through blood dendritic cell antigen 2 (BDCA2) on plasmacytoid dendritic cells promotes immunologic tolerance1

    PubMed Central

    Draves, Kevin E.; Chen, ChangHung; Hayden-Ledbetter, Martha S.; Shlomchik, Mark J.; Kaplan, Daniel H.; Clark, Edward A.

    2014-01-01

    The C-type lectin receptor blood dendritic cell antigen 2 (BDCA2) is expressed exclusively on human plasmacytoid dendritic cells (pDCs) and plays a role in Ag capture, internalization and presentation to T cells. We used transgenic mice that express human BDCA2 and anti-BDCA2 mAbs to deliver Ags directly to BDCA2 on pDCs in vivo. Targeting Ag to pDCs in this manner resulted in significant suppression of Ag-specific CD4+ T cell and Ab responses upon secondary exposure to Ag in the presence of adjuvant. Suppression of Ab responses required both a decrease in effector CD4+ T cells and preservation of Foxp3+ regulatory T cells (Tregs). Reduction in Treg cell numbers following Ag delivery to BDCA2 restored both CD4+ T cell activation and Ab responses, demonstrating that Tregs were required for the observed tolerance. Our results demonstrate that Ag delivery to pDCs through BDCA2 is an effective method to induce immunological tolerance, which may be useful for treating autoimmune diseases or to inhibit unwanted Ab responses. PMID:24829416

  12. The serotonin receptor 5-HT₇R regulates the morphology and migratory properties of dendritic cells.

    PubMed

    Holst, Katrin; Guseva, Daria; Schindler, Susann; Sixt, Michael; Braun, Armin; Chopra, Himpriya; Pabst, Oliver; Ponimaskin, Evgeni

    2015-08-01

    Dendritic cells are potent antigen-presenting cells endowed with the unique ability to initiate adaptive immune responses upon inflammation. Inflammatory processes are often associated with an increased production of serotonin, which operates by activating specific receptors. However, the functional role of serotonin receptors in regulation of dendritic cell functions is poorly understood. Here, we demonstrate that expression of serotonin receptor 5-HT7 (5-HT7R) as well as its downstream effector Cdc42 is upregulated in dendritic cells upon maturation. Although dendritic cell maturation was independent of 5-HT7R, receptor stimulation affected dendritic cell morphology through Cdc42-mediated signaling. In addition, basal activity of 5-HT7R was required for the proper expression of the chemokine receptor CCR7, which is a key factor that controls dendritic cell migration. Consistent with this, we observed that 5-HT7R enhances chemotactic motility of dendritic cells in vitro by modulating their directionality and migration velocity. Accordingly, migration of dendritic cells in murine colon explants was abolished after pharmacological receptor inhibition. Our results indicate that there is a crucial role for 5-HT7R-Cdc42-mediated signaling in the regulation of dendritic cell morphology and motility, suggesting that 5-HT7R could be a new target for treatment of a variety of inflammatory and immune disorders.

  13. Leukemia-derived immature dendritic cells differentiate into functionally competent mature dendritic cells that efficiently stimulate T cell responses.

    PubMed

    Cignetti, Alessandro; Vallario, Antonella; Roato, Ilaria; Circosta, Paola; Allione, Bernardino; Casorzo, Laura; Ghia, Paolo; Caligaris-Cappio, Federico

    2004-08-15

    Primary acute myeloid leukemia cells can be induced to differentiate into dendritic cells (DC). In the presence of GM-CSF, TNF-alpha, and/or IL-4, leukemia-derived DC are obtained that display features of immature DC (i-DC). The aim of this study was to determine whether i-DC of leukemic origin could be further differentiated into mature DC (m-DC) and to evaluate the possibility that leukemic m-DC could be effective in vivo as a tumor vaccine. Using CD40L as maturating agent, we show that leukemic i-DC can differentiate into cells that fulfill the phenotypic criteria of m-DC and, compared with normal counterparts, are functionally competent in vitro in terms of: 1) production of cytokines that support T cell activation and proliferation and drive Th1 polarization; 2) generation of autologous CD8(+) CTLs and CD4(+) T cells that are MHC-restricted and leukemia-specific; 3) migration from tissues to lymph nodes; 4) amplification of Ag presentation by monocyte attraction; 5) attraction of naive/resting and activated T cells. Irradiation of leukemic i-DC after CD40L stimulation did not affect their differentiating and functional capacity. Our data indicate that acute myeloid leukemia cells can fully differentiate into functionally competent m-DC and lay the ground for testing their efficacy as a tumor vaccine.

  14. Redefining the role of dendritic cells in periodontics.

    PubMed

    Venkatesan, Gomathinayagam; Uppoor, Ashita; Naik, Dilip G

    2013-11-01

    A properly functioning adaptive immune system signifies the best features of life. It is diverse beyond compare, tolerant without fail, and capable of behaving appropriately with a myriad of infections and other challenges. Dendritic cells (DCs) are required to explain how this remarkable system is energized and directed. DCs consist of a family of antigen presenting cells, which are bone-marrow-derived cells that patrol all tissues of the body with the possible exceptions of the brain and testes. DCs function to capture bacteria and other pathogens for processing and presentation to T cells in the secondary lymphoid organs. They serve as an essential link between innate and adaptive immune systems and induce both primary and secondary immune responses. As a result of progress worldwide, there is now evidence of a central role for dendritic cells in initiating antigen-specific immunity and tolerance. This review addresses the origins and migration of DCs to target sites, their basic biology and plasticity in playing a key role in periodontal diseases, and finally, selected strategies being pursued to harness its ability to prevent periodontal diseases.

  15. Active immunotherapy for cancer patients using tumor lysate pulsed dendritic cell vaccine: a safety study.

    PubMed

    Ovali, E; Dikmen, T; Sonmez, M; Yilmaz, M; Unal, A; Dalbasti, T; Kuzeyli, K; Erturk, M; Omay, S B

    2007-06-01

    Cancer vaccine therapy represents a promising therapeutical option. Consistently, with these new treatment strategies, the use of dendritic cell vaccines is becoming increasingly widespread and currently in the forefront for cancer treatment. The purpose of this study was to evaluate the feasibility and safety of tumor lysate-pulsed dendritic cell (DC) vaccine in patients with advanced cancers. For this purpose, eighteen patients with relapsed or refractory cancer were vaccinated with peripheral monocyte-derived DCs generated with GM-CSF and IL-4, and pulsed consequently with 100 microg/ml of tumor lysate before maturation in culture in the presence of IL-1beta, PGE2 and TNF alpha for two days. The first two vaccinations were given intradermally every two weeks while further injections were given monthly. Tumor lysate-pulsed dendritic cell injections were well-tolerated in all patients with no more than grade 1 injection-related toxicity. Local inflammatory response was mainly erythematous which subsided in 48 hrs time. No end organ toxicity or autoimmune toxicity was identified. Clinical responses observed in our study were satisfactory for a phase I clinical study. We observed 4 (22%) objective clinical responses. These responses are significantly correlated with delayed type hypersensitivity testing (DTH) (p < 0.01). The results showed that this active immunotherapy is feasible, safe, and may be capable of eliciting immune responses against cancer.

  16. Investigating Evolutionary Conservation of Dendritic Cell Subset Identity and Functions

    PubMed Central

    Vu Manh, Thien-Phong; Bertho, Nicolas; Hosmalin, Anne; Schwartz-Cornil, Isabelle; Dalod, Marc

    2015-01-01

    Dendritic cells (DCs) were initially defined as mononuclear phagocytes with a dendritic morphology and an exquisite efficiency for naïve T-cell activation. DC encompass several subsets initially identified by their expression of specific cell surface molecules and later shown to excel in distinct functions and to develop under the instruction of different transcription factors or cytokines. Very few cell surface molecules are expressed in a specific manner on any immune cell type. Hence, to identify cell types, the sole use of a small number of cell surface markers in classical flow cytometry can be deceiving. Moreover, the markers currently used to define mononuclear phagocyte subsets vary depending on the tissue and animal species studied and even between laboratories. This has led to confusion in the definition of DC subset identity and in their attribution of specific functions. There is a strong need to identify a rigorous and consensus way to define mononuclear phagocyte subsets, with precise guidelines potentially applicable throughout tissues and species. We will discuss the advantages, drawbacks, and complementarities of different methodologies: cell surface phenotyping, ontogeny, functional characterization, and molecular profiling. We will advocate that gene expression profiling is a very rigorous, largely unbiased and accessible method to define the identity of mononuclear phagocyte subsets, which strengthens and refines surface phenotyping. It is uniquely powerful to yield new, experimentally testable, hypotheses on the ontogeny or functions of mononuclear phagocyte subsets, their molecular regulation, and their evolutionary conservation. We propose defining cell populations based on a combination of cell surface phenotyping, expression analysis of hallmark genes, and robust functional assays, in order to reach a consensus and integrate faster the huge but scattered knowledge accumulated by different laboratories on different cell types, organs, and

  17. Distinct mechanisms of neonatal tolerance induced by dendritic cells and thymic B cells

    PubMed Central

    1991-01-01

    To assess the role of different types of antigen-presenting cells (APC) in the induction of tolerance, we isolated B cells, macrophages, and dendritic cells from thymus and spleen, and injected these into neonatal BALB/c mice across an Mls-1 antigenic barrier. One week after injection of APC from Mls-1-incompatible mice or from control syngeneic mice, we measured the number of thymic, Mls-1a-reactive, V beta 6+ T cells and the capacity of thymocytes to induce a graft-vs.-host (GVH) reaction in popliteal lymph nodes of Mls-1a mice. Injection of thymic but not spleen B cells deleted thymic, Mls-1a-reactive V beta 6+ T cells and induced tolerance in the GVH assay. The thymic B cells were primarily of the CD5+ type, and fluorescence-activated cell sorter- purified CD5+ thymic B cells were active. Injection of dendritic cells from spleen or thymus also induced tolerance, but the V beta 6 cells were anergized rather than deleted. Macrophages from thymus did not induce tolerance. Dendritic cells and thymic B cells were also effective in inducing tolerance even when injected into Mls-, major histocompatibility complex-incompatible, I-E- mice, but only thymic B cells depleted V beta 6-expressing T cells. Therefore, different types of bone marrow-derived APC have different capacities for inducing tolerance, and the active cell types (dendritic cells and CD5+ thymic B cells) can act by distinct mechanisms. PMID:1900075

  18. Radiation tolerance of boron doped dendritic web silicon solar cells

    NASA Technical Reports Server (NTRS)

    Rohatgi, A.

    1980-01-01

    The potential of dendritic web silicon for giving radiation hard solar cells is compared with the float zone silicon material. Solar cells with n(+)-p-P(+) structure and approximately 15% (AMl) efficiency were subjected to 1 MeV electron irradiation. Radiation tolerance of web cell efficiency was found to be at least as good as that of the float zone silicon cell. A study of the annealing behavior of radiation-induced defects via deep level transient spectroscopy revealed that E sub v + 0.31 eV defect, attributed to boron-oxygen-vacancy complex, is responsible for the reverse annealing of the irradiated cells in the temperature range of 150 to 350 C.

  19. Building on Dendritic Cell Subsets to Improve Cancer Vaccines

    PubMed Central

    Palucka, Karolina; Ueno, Hideki; Zurawski, Gerard; Fay, Joseph; Banchereau, Jacques

    2010-01-01

    SUMMARY T cells can reject established tumors when adoptively transferred into patients, thereby demonstrating that the immune system can be harnessed for cancer therapy. However, such passive immunotherapy is unlikely to maintain memory T cells that might control tumor outgrowth on the long term. Active immunotherapy with vaccines has the potential to induce tumor-specific effector and memory T cells. Vaccines act through dendritic cells (DCs) which induce, regulate and maintain T cell immunity. Clinical trials testing first generation DC vaccines pulsed with tumor antigens provided a proof-of-principle that therapeutic immunity can be elicited. The increased knowledge of the DC system, including the existence of distinct DC subsets is leading to new trials which aim at improved immune and clinical outcomes. PMID:20226644

  20. Polyelectrolyte coating of ferumoxytol nanoparticles for labeling of dendritic cells

    NASA Astrophysics Data System (ADS)

    Celikkin, Nehar; Jakubcová, Lucie; Zenke, Martin; Hoss, Mareike; Wong, John Erik; Hieronymus, Thomas

    2015-04-01

    Engineered magnetic nanoparticles (MNPs) are emerging to be used as cell tracers, drug delivery vehicles, and contrast agents for magnetic resonance imaging (MRI) for enhanced theragnostic applications in biomedicine. In vitro labeling of target cell populations with MNPs and their implantation into animal models and patients shows promising outcomes in monitoring successful cell engraftment, differentiation and migration by using MRI. Dendritic cells (DCs) are professional antigen-presenting cells that initiate adaptive immune responses. Thus, DCs have been the focus of cellular immunotherapy and are increasingly applied in clinical trials. Here, we addressed the coating of different polyelectrolytes (PE) around ferumoxytol particles using the layer-by-layer technique. The impact of PE-coated ferumoxytol particles for labeling of DCs and Flt3+ DC progenitors was then investigated. The results from our studies revealed that PE-coated ferumoxytol particles can be readily employed for labeling of DC and DC progenitors and thus are potentially suitable as contrast agents for MRI tracking.

  1. Immune modulation by dendritic-cell-based cancer vaccines.

    PubMed

    Kumar, Chaitanya; Kohli, Sakshi; Bapsy, Poonamalle Parthasarathy; Vaid, Ashok Kumar; Jain, Minish; Attili, Venkata Sathya Suresh; Sharan, Bandana

    2017-03-01

    The interplay between host immunity and tumour cells has opened the possibility of targeting tumour cells by modulation of the human immune system. Cancer immunotherapy involves the treatment of a tumour by utilizing the recombinant human immune system components to target the pro-tumour microenvironment or by revitalizing the immune system with the ability to kill tumour cells by priming the immune cells with tumour antigens. In this review, current immunotherapy approaches to cancer with special focus on dendritic cell (DC)-based cancer vaccines are discussed. Some of the DC-based vaccines under clinical trials for various cancer types are highlighted. Establishing tumour immunity involves a plethora of immune components and pathways; hence, combining chemotherapy, radiation therapy and various arms of immunotherapy, after analysing the benefits of individual therapeutic agents, might be beneficial to the patient.

  2. Regulation of intestinal immune system by dendritic cells.

    PubMed

    Ko, Hyun-Jeong; Chang, Sun-Young

    2015-02-01

    Innate immune cells survey antigenic materials beneath our body surfaces and provide a front-line response to internal and external danger signals. Dendritic cells (DCs), a subset of innate immune cells, are critical sentinels that perform multiple roles in immune responses, from acting as principal modulators to priming an adaptive immune response through antigen-specific signaling. In the gut, DCs meet exogenous, non-harmful food antigens as well as vast commensal microbes under steady-state conditions. In other instances, they must combat pathogenic microbes to prevent infections. In this review, we focus on the function of intestinal DCs in maintaining intestinal immune homeostasis. Specifically, we describe how intestinal DCs affect IgA production from B cells and influence the generation of unique subsets of T cell.

  3. Dendritic sidebranching with periodic localized perturbations: Directional solidification of pivalic acid--coumarin 152 mixtures

    SciTech Connect

    Williams, L.M.; Muschol, M.; Qian, X.; Losert, W.; Cummins, H.Z. )

    1993-07-01

    We have studied the response of the sidebranches of pivalic acid dendrites, growing by directional solidification, to localized periodic thermal perturbations. The perturbations were generated by a laser beam focused near the tip of a single dendrite growing in a glass capillary, with the pulse duration, repetition rate, and intensity controlled separately. The perturbation dramatically altered the sidebranch structure, producing ordered sidebranches of well-defined wavelength, synchronous with the perturbation, which were strongly correlated on the two sides of the dendrite. The dependencies of the sidebranch amplitude on the frequency of the perturbation and on the distance from the dendrite tip were compared to the predictions of Barber, Barbieri, and Langer [Phys. Rev. A 36, 3340 (1987)] and found to be in qualitative agreement. The value of the selection parameter [sigma] found from these fits to the theory is compared to a value obtained from material parameters also determined in this experiment, and to a value deduced from the initial Mullins-Sekerka instability of the planar crystal-melt interface.

  4. NG2 glial cells integrate synaptic input in global and dendritic calcium signals

    PubMed Central

    Sun, Wenjing; Matthews, Elizabeth A; Nicolas, Vicky; Schoch, Susanne; Dietrich, Dirk

    2016-01-01

    Synaptic signaling to NG2-expressing oligodendrocyte precursor cells (NG2 cells) could be key to rendering myelination of axons dependent on neuronal activity, but it has remained unclear whether NG2 glial cells integrate and respond to synaptic input. Here we show that NG2 cells perform linear integration of glutamatergic synaptic inputs and respond with increasing dendritic calcium elevations. Synaptic activity induces rapid Ca2+ signals mediated by low-voltage activated Ca2+ channels under strict inhibitory control of voltage-gated A-type K+ channels. Ca2+ signals can be global and originate throughout the cell. However, voltage-gated channels are also found in thin dendrites which act as compartmentalized processing units and generate local calcium transients. Taken together, the activity-dependent control of Ca2+ signals by A-type channels and the global versus local signaling domains make intracellular Ca2+ in NG2 cells a prime signaling molecule to transform neurotransmitter release into activity-dependent myelination. DOI: http://dx.doi.org/10.7554/eLife.16262.001 PMID:27644104

  5. NG2 glial cells integrate synaptic input in global and dendritic calcium signals.

    PubMed

    Sun, Wenjing; Matthews, Elizabeth A; Nicolas, Vicky; Schoch, Susanne; Dietrich, Dirk

    2016-09-19

    Synaptic signaling to NG2-expressing oligodendrocyte precursor cells (NG2 cells) could be key to rendering myelination of axons dependent on neuronal activity, but it has remained unclear whether NG2 glial cells integrate and respond to synaptic input. Here we show that NG2 cells perform linear integration of glutamatergic synaptic inputs and respond with increasing dendritic calcium elevations. Synaptic activity induces rapid Ca(2+) signals mediated by low-voltage activated Ca(2+) channels under strict inhibitory control of voltage-gated A-type K(+) channels. Ca(2+) signals can be global and originate throughout the cell. However, voltage-gated channels are also found in thin dendrites which act as compartmentalized processing units and generate local calcium transients. Taken together, the activity-dependent control of Ca(2+) signals by A-type channels and the global versus local signaling domains make intracellular Ca(2+) in NG2 cells a prime signaling molecule to transform neurotransmitter release into activity-dependent myelination.

  6. Dendritic Cell Regulation by Cannabinoid-Based Drugs

    PubMed Central

    Svensson, Mattias; Chen, Puran; Hammarfjord, Oscar

    2010-01-01

    Cannabinoid pharmacology has made important advances in recent years after the cannabinoid system was discovered. Studies in experimental models and in humans have produced promising results using cannabinoid-based drugs for the treatment of obesity and cancer, as well as neuroinflammatory and chronic inflammatory diseases. Moreover, as we discuss here, additional studies also indicates that these drugs have immunosuppressive and anti-inflammatory properties including modulation of immune cell function. Thus, manipulation of the endocannabinoid system in vivo may provide novel therapeutic strategies against inflammatory disorders. At least two types of cannabinoid receptors, cannabinoid 1 and cannabinoid 2 receptors are expressed on immune cells such as dendritic cells (DC). Dendritic cells are recognized for their critical role in initiating and maintaining immune responses. Therefore, DC are potential targets for cannabinoid-mediated modulation. Here, we review the effects of cannabinoids on DC and provide some perspective concerning the therapeutic potential of cannabinoids for the treatment of human diseases involving aberrant inflammatory processes. PMID:27713374

  7. Resistivity and thickness effects in dendritic web silicon solar cells

    NASA Technical Reports Server (NTRS)

    Meier, D. L.; Hwang, J. M.; Greggi, J.; Campbell, R. B.

    1987-01-01

    The decrease of minority carrier lifetime as resistivity decreases in dendritic-web silicon solar cells is addressed. This variation is shown to be consistent with the presence of defect levels in the bandgap which arise from extended defects in the web material. The extended defects are oxide precipitates (SiOx) and the dislocation cores they decorate. Sensitivity to this background distribution of defect levels increases with doping because the Fermi level moves closer to the majority carrier band edge. For high-resistivity dendritic-web silicon, which has a low concentration of these extended defects, cell efficiencies as high as 16.6 percent (4 sq cm, 40 ohm-cm boron-doped base, AM1.5 global, 100 mW/sq cm, 25 C JPL LAPSS1 measurement) and a corresponding electron lifetime of 38 microsec have been obtained. Thickness effects occur in bifacial cell designs and in designs which use light trapping. In some cases, the dislocation/precipitate defect can be passivated through the full thickness of web cells by hydrogen ion implantation.

  8. p15Ink4b is Key in Dendritic Cell Development | Center for Cancer Research

    Cancer.gov

    An important step in the initiation of leukemia is the ability of pre-leukemic and leukemic cells to evade the immune system. Dendritic cells are instrumental in maintaining the body’s immunity, and CCR scientists have shown for the first time that the tumor suppressor protein p15Ink4b regulates the differentiation and maturation of conventional dendritic cells.

  9. Aggressive Indeterminate Dendritic Cell Tumor Mimicking Scalp Angiosarcoma.

    PubMed

    Li, Yun; Wang, Ting-Ting; Zhang, Zi-Hui; Wang, Lin

    2017-10-01

    Indeterminate dendritic cell tumor (IDCT) is a proliferation of CD1a+, S100+ and langerin- histiocytes with a generally benign course. Here, we describe a case of a 90-year-old male who developed skin lesions on his scalp mimicking angiosarcoma and lymphadenopathy. He died six months after the onset of skin lesions despite of months' radiotherapy. Pathological examination ruled out scalp angiosarcoma and showed a high Ki-67 index. The appearance of skin lesions and lymphadenopathy led to challenges in diagnosis and the development of a treatment plan.

  10. Generation of mouse and human dendritic cells in vitro.

    PubMed

    Guo, Xueheng; Zhou, Yifan; Wu, Tao; Zhu, Xinyi; Lai, Wenlong; Wu, Li

    2016-05-01

    Dendritic cells (DC) that can orchestrate immune responses and maintain host homeostasis, are indispensable components of the immune system. Although distributed widely in many lymphoid and non-lymphoid tissues, their rarity in number has become a limiting factor for DC related research and therapies. Therefore, methods for efficiently generating large numbers of DC resembling their in vivo counterparts are urgently needed for DC related research and therapies. Herein we summarize the current methods for generating mouse and human DC in vitro and hope that these will facilitate both studies of DC biology and their clinical applications.

  11. Replication of human immunodeficiency virus type 1 in primary dendritic cell cultures.

    PubMed Central

    Langhoff, E; Terwilliger, E F; Bos, H J; Kalland, K H; Poznansky, M C; Bacon, O M; Haseltine, W A

    1991-01-01

    The ability of the human immunodeficiency virus type 1 (HIV-1) to replicate in primary blood dendritic cells was investigated. Dendritic cells compose less than 1% of the circulating leukocytes and are nondividing cells. Highly purified preparations of dendritic cells were obtained using recent advances in cell fractionation. The results of these experiments show that dendritic cells, in contrast to monocytes and T cells, support the active replication of all strains of HIV-1 tested, including T-cell tropic and monocyte/macrophage tropic isolates. The dendritic cell cultures supported much more virus production than did cultures of primary unseparated T cells, CD4+ T cells, and adherent as well as nonadherent monocytes. Replication of HIV-1 in dendritic cells produces no noticeable cytopathic effect nor does it decrease total cell number. The ability of the nonreplicating dendritic cells to support high levels of replication of HIV-1 suggests that this antigen-presenting cell population, which is also capable of supporting clonal T-cell growth, may play a central role in HIV pathogenesis, serving as a source of continued infection of CD4+ T cells and as a reservoir of virus infection. Images PMID:1910172

  12. Topical vaccination with functionalized particles targeting dendritic cells.

    PubMed

    Baleeiro, Renato B; Wiesmüller, Karl-Heinz; Reiter, Yoran; Baude, Barbara; Dähne, Lars; Patzelt, Alexa; Lademann, Jürgen; Barbuto, José A; Walden, Peter

    2013-08-01

    Needle-free vaccination, for reasons of safety, economy, and convenience, is a central goal in vaccine development, but it also needs to meet the immunological requirements for efficient induction of prophylactic and therapeutic immune responses. Combining the principles of noninvasive delivery to dendritic cells (DCs) through skin and the immunological principles of cell-mediated immunity, we developed microparticle-based topical vaccines. We show here that the microparticles are efficient carriers for coordinated delivery of the essential vaccine constituents to DCs for cross-presentation of the antigens and stimulation of T-cell responses. When applied to the skin, the microparticles penetrate into hair follicles and target the resident DCs, the immunologically most potent cells and site for induction of efficient immune responses. The microparticle vaccine principle can be applied to different antigen formats such as peptides and proteins, or nucleic acids coding for the antigens.

  13. Innate immune sensing of HIV-1 by dendritic cells.

    PubMed

    Luban, Jeremy

    2012-10-18

    HIV-1-specific antibodies and CD8(+) cytotoxic T cells are detected in most HIV-1-infected people, yet HIV-1 infection is not eradicated. Contributing to the failure to mount a sterilizing immune response may be the inability of antigen-presenting dendritic cells (DCs) to sense HIV-1 during acute infection, and thus the inability to effectively prime naive, HIV-1-specific T cells. Recent findings related to DC-expressed innate immune factors including SAMHD1, TREX1, and TRIM5 provide a molecular basis for understanding why DCs fail to adequately sense invasion by this deadly pathogen and suggest experimental approaches to improve T cell priming to HIV-1 in prophylactic vaccination protocols. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. [Features of functional activity of dendritic cells in tumor growth].

    PubMed

    Sennikov, S V; Obleukhova, I A; Kurilin, V V; Kulikova, E V; Khristin, A A

    2015-01-01

    During recent years much data, accumulated on biology, function and role of dendritic cells (DC) in cancer development, in a new way allow assessing their role in disease process. Identification of features of DC functional state as well as their interaction and influence on the immune cells in tumor growth can be used as a basis for a new approach to cancer therapy enhancing standard therapy efficacy. The review analyzes different mechanisms of escaping of tumor cell from immune surveillance involving DC as one of the main participants of antitumor immune response. Also the prospects of using DC for vaccination are discussed. DC can be promising target for therapeutic strategies and also can be used for formation of antitumor response and cell therapy.

  15. Ebola virus infection induces irregular dendritic cell gene expression.

    PubMed

    Melanson, Vanessa R; Kalina, Warren V; Williams, Priscilla

    2015-02-01

    Filoviruses subvert the human immune system in part by infecting and replicating in dendritic cells (DCs). Using gene arrays, a phenotypic profile of filovirus infection in human monocyte-derived DCs was assessed. Monocytes from human donors were cultured in GM-CSF and IL-4 and were infected with Ebola virus Kikwit variant for up to 48 h. Extracted DC RNA was analyzed on SuperArray's Dendritic and Antigen Presenting Cell Oligo GEArray and compared to uninfected controls. Infected DCs exhibited increased expression of cytokine, chemokine, antiviral, and anti-apoptotic genes not seen in uninfected controls. Significant increases of intracellular antiviral and MHC I and II genes were also noted in EBOV-infected DCs. However, infected DCs failed to show any significant difference in co-stimulatory T-cell gene expression from uninfected DCs. Moreover, several chemokine genes were activated, but there was sparse expression of chemokine receptors that enabled activated DCs to home to lymph nodes. Overall, statistically significant expression of several intracellular antiviral genes was noted, which may limit viral load but fails to stop replication. EBOV gene expression profiling is of vital importance in understanding pathogenesis and devising novel therapeutic treatments such as small-molecule inhibitors.

  16. NGF induces neonatal rat sensory neurons to extend dendrites in culture after removal of satellite cells.

    PubMed

    De Koninck, P; Carbonetto, S; Cooper, E

    1993-02-01

    Vertebrate sensory neurons have a pseudo-unipolar morphology; their somata are covered by satellite cells and lack dendrites or synaptic contacts. However, when neonatal rat sensory neurons from the nodose ganglia develop in culture in absence of satellite cells and with NGF, they form synapses among themselves. In this study, we investigated whether neonatal rat nodose neurons express dendrites under the same culture conditions. We show by Lucifer yellow injection that nodose neurons remain typically unipolar when cocultured with their ganglionic satellite cells. However, when these neurons are cultured without satellite cells, virtually all neurons acquire a multipolar morphology. Moreover, when NGF is added to satellite cell-free cultures, several neurons extend dendrites; these processes stain positively for microtubule-associated protein-2. NGF induces a 17-fold increase in dendritic outgrowth after 3 weeks but has little effect on axon number. In addition, we find that the ability of nodose neurons to extend dendrites is developmentally regulated. Furthermore, in a combined morphological and electrophysiological study, using whole-cell voltage-clamp technique with Lucifer yellow in the recording solution, we demonstrate a positive correlation between the extent of dendritic outgrowth and the density of ACh currents, suggesting that these dendrites have ACh receptors. Our results indicate that neonatal rat nodose neurons are capable of extending dendrites and that extrinsic factors can induce or suppress their extension. In addition, the results suggest that these dendrites may act as principal post-synaptic structures for synapse formation that occurs in these cultures.

  17. Stimulation of dendritic cells enhances immune response after photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Mroz, Pawel; Castano, Ana P.; Hamblin, Michael R.

    2009-02-01

    Photodynamic therapy (PDT) involves the administration of photosensitizers followed by illumination of the primary tumor with red light producing reactive oxygen species that cause vascular shutdown and tumor cell necrosis and apoptosis. Anti-tumor immunity is stimulated after PDT due to the acute inflammatory response, priming of the immune system to recognize tumor-associated antigens (TAA). The induction of specific CD8+ Tlymphocyte cells that recognize major histocompatibility complex class I (MHC-I) restricted epitopes of TAAs is a highly desirable goal in cancer therapy. The PDT killed tumor cells may be phagocytosed by dendritic cells (DC) that then migrate to draining lymph nodes and prime naÃve T-cells that recognize TAA epitopes. This process is however, often sub-optimal, in part due to tumor-induced DC dysfunction. Instead of DC that can become mature and activated and have a potent antigen-presenting and immune stimulating phenotype, immature dendritic cells (iDC) are often found in tumors and are part of an immunosuppressive milieu including regulatory T-cells and immunosuppressive cytokines such as TGF-beta and IL10. We here report on the use of a potent DC activating agent, an oligonucleotide (ODN) that contains a non-methylated CpG motif and acts as an agonist of toll like receptor (TLR) 9. TLR activation is a danger signal to notify the immune system of the presence of invading pathogens. CpG-ODN (but not scrambled non-CpG ODN) increased bone-marrow DC activation after exposure to PDT-killed tumor cells, and significantly increased tumor response to PDT and mouse survival after peri-tumoral administration. CpG may be a valuable immunoadjuvant to PDT especially for tumors that produce DC dysfunction.

  18. A multifunctional core-shell nanoparticle for dendritic cell-based cancer immunotherapy

    NASA Astrophysics Data System (ADS)

    Cho, Nam-Hyuk; Cheong, Taek-Chin; Min, Ji Hyun; Wu, Jun Hua; Lee, Sang Jin; Kim, Daehong; Yang, Jae-Seong; Kim, Sanguk; Kim, Young Keun; Seong, Seung-Yong

    2011-10-01

    Dendritic cell-based cancer immunotherapy requires tumour antigens to be delivered efficiently into dendritic cells and their migration to be monitored in vivo. Nanoparticles have been explored as carriers for antigen delivery, but applications have been limited by the toxicity of the solvents used to make nanoparticles, and by the need to use transfection agents to deliver nanoparticles into cells. Here we show that an iron oxide-zinc oxide core-shell nanoparticle can deliver carcinoembryonic antigen into dendritic cells while simultaneously acting as an imaging agent. The nanoparticle-antigen complex is efficiently taken up by dendritic cells within one hour and can be detected in vitro by confocal microscopy and in vivo by magnetic resonance imaging. Mice immunized with dendritic cells containing the nanoparticle-antigen complex showed enhanced tumour antigen specific T-cell responses, delayed tumour growth and better survival than controls.

  19. [In vitro culture of human dendritic cells by using a HydroCell™].

    PubMed

    Aruga, Atsushi; Kogen, Yumi; Sakai, Mayuko; Kotera, Yoshihito; Yamamoto, Masakazu

    2011-11-01

    Cancer Immunotherapy using dendritic cells would be a feasible and useful tool for cancer treatment. However, no immunotherapy has been approved in Japan because of a lack of any randomized clinical studies. We are now trying to develop an automatic dendritic cell culture system in order to perform a large-scale randomized clinical trial. In this study, we investigated the utility of a HydroCell™ for in vitro culture of human dendritic cells induced from peripheral blood monocytes. The dendritic cells grew one and a half times when they were cultured in a HydroCell™. All the cells were floating and harvested easily without any enzymes. The cells expressed the CD80 and CD83 molecules on their surface and still had strong phagocytosis. This results demonstrated that a HydroCell™ was a useful tool for in vitro culture of dendritic cells.

  20. Retrogradely trafficked TrkA endosomes signal locally within dendrites to maintain sympathetic neuron synapses

    PubMed Central

    Lehigh, Kathryn M.; West, Katherine M.; Ginty, David D.

    2017-01-01

    Summary Sympathetic neurons require NGF from their target fields for survival, axonal target innervation, dendritic growth and formation, and maintenance of synaptic inputs from preganglionic neurons. Target-derived NGF signals are propagated retrogradely, from distal axons to somata of sympathetic neurons via TrkA signaling endosomes. We report that a subset of TrkA endosomes that are transported from distal axons to cell bodies also translocate into dendrites, where they are signaling-competent and move bidirectionally, in close proximity to synaptic protein clusters. Using a strategy for spatially-confined inhibition of TrkA kinase activity, we found that distal axon-derived TrkA signaling endosomes are necessary specifically within sympathetic neuron dendrites for maintenance of synapses. Thus, TrkA signaling endosomes have unique functions in different cellular compartments. Moreover, target-derived NGF mediates circuit formation and synapse maintenance through TrkA endosome signaling within dendrites to promote aggregation of postsynaptic protein complexes. PMID:28380365

  1. Concomitant detection of IFNα signature and activated monocyte/dendritic cell precursors in the peripheral blood of IFNα-treated subjects at early times after repeated local cytokine treatments.

    PubMed

    Aricò, Eleonora; Castiello, Luciano; Urbani, Francesca; Rizza, Paola; Panelli, Monica C; Wang, Ena; Marincola, Francesco M; Belardelli, Filippo

    2011-05-17

    Interferons alpha (IFNα) are the cytokines most widely used in clinical medicine for the treatment of cancer and viral infections. Among the immunomodulatory activities possibly involved in their therapeutic efficacy, the importance of IFNα effects on dendritic cells (DC) differentiation and activation has been considered. Despite several studies exploiting microarray technology to characterize IFNα mechanisms of action, there is currently no consensus on the core signature of these cytokines in the peripheral blood of IFNα-treated individuals, as well as on the existence of blood genomic and proteomic markers of low-dose IFNα administered as a vaccine adjuvant. Gene profiling analysis with microarray was performed on PBMC isolated from melanoma patients and healthy individuals 24 hours after each repeated injection of low-dose IFNα, administered as vaccine adjuvant in two separate clinical trials. At the same time points, cytofluorimetric analysis was performed on CD14+ monocytes, to detect the phenotypic modifications exerted by IFNα on antigen presenting cells precursors. An IFNα signature was consistently observed in both clinical settings 24 hours after each repeated administration of the cytokine. The observed modulation was transient, and did not reach a steady state level refractory to further stimulations. The molecular signature observed ex vivo largely matched the one detected in CD14+ monocytes exposed in vitro to IFNα, including the induction of CXCL10 at the transcriptional and protein level. Interestingly, IFNα ex vivo signature was paralleled by an increase in the percentage and expression of costimulatory molecules by circulating CD14+/CD16+ monocytes, indicated as natural precursors of DC in response to danger signals. Our results provide new insights into the identification of a well defined molecular signature as biomarker of IFNα administered as immune adjuvants, and for the characterization of new molecular and cellular players

  2. Tolerogenic and Activatory Plasmacytoid Dendritic Cells in Autoimmunity

    PubMed Central

    Guéry, Leslie; Hugues, Stéphanie

    2013-01-01

    Plasmacytoid dendritic cells (pDCs) are a particular subset of DCs that link innate and adaptive immunity. They are responsible for the substantial production of type 1 interferon (IFN-I) in response to viral RNA or DNA through activation of TLR7 and 9. Furthermore, pDCs present antigens (Ag) and induce naïve T cell differentiation. It has been demonstrated that pDCs can induce immunogenic T cell responses through differentiation of cytotoxic CD8+ T cells and effector CD4+ T cells. Conversely, pDCs exhibit strong tolerogenic functions by inducing CD8+ T cell deletion, CD4+ T cell anergy, and Treg differentiation. However, since IFN-I produced by pDCs efficiently activates and recruits conventional DCs, B cells, T cells, and NK cells, pDCs also indirectly affect the nature and the amplitude of adaptive immune responses. As a consequence, the precise role of Ag-presenting functions of pDCs in adaptive immunity has been difficult to dissect in vivo. Additionally, different experimental procedures led to conflicting results regarding the outcome of T cell responses induced by pDCs. During the development of autoimmunity, pDCs have been shown to play both immunogenic and tolerogenic functions depending on disease, disease progression, and the experimental conditions. In this review, we will discuss the relative contribution of innate and adaptive pDC functions in modulating T cell responses, particularly during the development of autoimmunity. PMID:23508732

  3. Ragweed subpollen particles of respirable size activate human dendritic cells.

    PubMed

    Pazmandi, Kitti; Kumar, Brahma V; Szabo, Krisztina; Boldogh, Istvan; Szoor, Arpad; Vereb, Gyorgy; Veres, Agota; Lanyi, Arpad; Rajnavolgyi, Eva; Bacsi, Attila

    2012-01-01

    Ragweed (Ambrosia artemisiifolia) pollen grains, which are generally considered too large to reach the lower respiratory tract, release subpollen particles (SPPs) of respirable size upon hydration. These SPPs contain allergenic proteins and functional NAD(P)H oxidases. In this study, we examined whether exposure to SPPs initiates the activation of human monocyte-derived dendritic cells (moDCs). We found that treatment with freshly isolated ragweed SPPs increased the intracellular levels of reactive oxygen species (ROS) in moDCs. Phagocytosis of SPPs by moDCs, as demonstrated by confocal laser-scanning microscopy, led to an up-regulation of the cell surface expression of CD40, CD80, CD86, and HLA-DQ and an increase in the production of IL-6, TNF-α, IL-8, and IL-10. Furthermore, SPP-treated moDCs had an increased capacity to stimulate the proliferation of naïve T cells. Co-culture of SPP-treated moDCs with allogeneic CD3(+) pan-T cells resulted in increased secretion of IFN-γ and IL-17 by T cells of both allergic and non-allergic subjects, but induced the production of IL-4 exclusively from the T cells of allergic individuals. Addition of exogenous NADPH further increased, while heat-inactivation or pre-treatment with diphenyleneiodonium (DPI), an inhibitor of NADPH oxidases, strongly diminished, the ability of SPPs to induce phenotypic and functional changes in moDCs, indicating that these processes were mediated, at least partly, by the intrinsic NAD(P)H oxidase activity of SPPs. Collectively, our data suggest that inhaled ragweed SPPs are fully capable of activating dendritic cells (DCs) in the airways and SPPs' NAD(P)H oxidase activity is involved in initiation of adaptive immune responses against innocuous pollen proteins.

  4. Ragweed Subpollen Particles of Respirable Size Activate Human Dendritic Cells

    PubMed Central

    Pazmandi, Kitti; Kumar, Brahma V.; Szabo, Krisztina; Boldogh, Istvan; Szoor, Arpad; Vereb, Gyorgy; Veres, Agota; Lanyi, Arpad; Rajnavolgyi, Eva; Bacsi, Attila

    2012-01-01

    Ragweed (Ambrosia artemisiifolia) pollen grains, which are generally considered too large to reach the lower respiratory tract, release subpollen particles (SPPs) of respirable size upon hydration. These SPPs contain allergenic proteins and functional NAD(P)H oxidases. In this study, we examined whether exposure to SPPs initiates the activation of human monocyte-derived dendritic cells (moDCs). We found that treatment with freshly isolated ragweed SPPs increased the intracellular levels of reactive oxygen species (ROS) in moDCs. Phagocytosis of SPPs by moDCs, as demonstrated by confocal laser-scanning microscopy, led to an up-regulation of the cell surface expression of CD40, CD80, CD86, and HLA-DQ and an increase in the production of IL-6, TNF-α, IL-8, and IL-10. Furthermore, SPP-treated moDCs had an increased capacity to stimulate the proliferation of naïve T cells. Co-culture of SPP-treated moDCs with allogeneic CD3+ pan-T cells resulted in increased secretion of IFN-γ and IL-17 by T cells of both allergic and non-allergic subjects, but induced the production of IL-4 exclusively from the T cells of allergic individuals. Addition of exogenous NADPH further increased, while heat-inactivation or pre-treatment with diphenyleneiodonium (DPI), an inhibitor of NADPH oxidases, strongly diminished, the ability of SPPs to induce phenotypic and functional changes in moDCs, indicating that these processes were mediated, at least partly, by the intrinsic NAD(P)H oxidase activity of SPPs. Collectively, our data suggest that inhaled ragweed SPPs are fully capable of activating dendritic cells (DCs) in the airways and SPPs' NAD(P)H oxidase activity is involved in initiation of adaptive immune responses against innocuous pollen proteins. PMID:23251688

  5. Dendritic-tumor fusion cells in cancer immunotherapy.

    PubMed

    Takakura, Kazuki; Kajihara, Mikio; Ito, Zensho; Ohkusa, Toshifumi; Gong, Jianlin; Koido, Shigeo

    2015-03-01

    A promising area of clinical investigation is the use of cancer immunotherapy to treat cancer patients. Dendritic cells (DCs) operate as professional antigen-presenting cells (APCs) and play a critical role in the induction of antitumor immune responses. Thus, DC-based cancer immunotherapy represents a powerful strategy. One DC-based cancer immunotherapy strategy that has been investigated is the administration of fusion cells generated with DCs and whole tumor cells (DC-tumor fusion cells). The DC-tumor fusion cells can process a broad array of tumor-associated antigens (TAAs), including unidentified molecules, and present them through major histocompatibility complex (MHC) class I and II pathways in the context of co-stimulatory signals. Improving the therapeutic efficacy of DC-tumor fusion cell-based cancer immunotherapy requires increased immunogenicity of DCs and whole tumor cells. We discuss the potential ability of DC-tumor fusion cells to activate antigen-specific T cells and strategies to improve the immunogenicity of DC-tumor fusion cells as anticancer vaccines.

  6. Intrinsic features of the CD8α(-) dendritic cell subset in inducing functional T follicular helper cells.

    PubMed

    Shin, Changsik; Han, Jae-A; Choi, Bongseo; Cho, Yoon-Kyoung; Do, Yoonkyung; Ryu, Seongho

    2016-04-01

    T follicular helper (Tfh) cells, a true B cell helper, have a critical role in enhancing humoral immune responses. However, the initial differentiation of Tfh cells by dendritic cells (DCs), the most potent antigen presenting cells, has not been clearly understood, particularly in the knowledge of the two major conventional dendritic cell subsets, CD8α(+) DCs or CD8α(-) DCs. Here we demonstrated that the localization of CD8α(-) DCs in the marginal zone (MZ) bridging channels is closely associated with the induction of CXCR5(+)CCR7(low) Tfh cells. We also showed that the major source of IL-6 for inducing Tfh cells is provided from the activated CD4(+) T cells induced by CD8α(-) DCs, and IL-6 directly secreted from the DC subsets seems minor. CD8α(-) DCs were superior in inducing functional Tfh cells over other antigen presenting cells including B cells. We here observed the unknown intrinsic features of the DC subsets, suggesting the potential of utilizing the CD8α(-) DC subset as therapeutic vaccine for the regulation of humoral immune responses.

  7. Krebs cycle rewired for macrophage and dendritic cell effector functions.

    PubMed

    Ryan, Dylan Gerard; O'Neill, Luke A J

    2017-07-07

    The Krebs cycle is an amphibolic pathway operating in the mitochondrial matrix of all eukaryotic organisms. In response to proinflammatory stimuli, macrophages and dendritic cells undergo profound metabolic remodelling to support the biosynthetic and bioenergetic requirements of the cell. Recently, it has been discovered that this metabolic shift also involves the rewiring of the Krebs cycle to regulate cellular metabolic flux and the accumulation of Krebs cycle intermediates, notably, citrate, succinate and fumarate. Interestingly, a new role for Krebs cycle intermediates as signalling molecules and immunomodulators that dictate the inflammatory response has begun to emerge. This review will discuss the latest developments in Krebs cycle rewiring and immune cell effector functions, with a particular focus on the regulation of cytokine production. © 2017 Federation of European Biochemical Societies.

  8. Aligning bona fide dendritic cell populations across species.

    PubMed

    Dutertre, Charles-Antoine; Wang, Lin-Fa; Ginhoux, Florent

    2014-01-01

    Dendritic cells (DC) are professional antigen sensing and presenting cells that link innate and adaptive immunity. Consisting of functionally specialized subsets, they form a complex cellular network capable of integrating multiple environmental signals leading to immunity or tolerance. Much of DC research so far has been carried out in mice and increasing efforts are now being devoted to translating the findings into humans and other species. Recent studies have aligned these cellular networks across species at multiple levels from phenotype, gene expression program, ontogeny and functional specializations. In this review, we focus on recent advances in the definition of bona fide DC subsets across species. The understanding of functional similarities and differences of specific DC subsets in different animals not only brings light in the field of DC biology, but also paves the way for the design of future effective therapeutic strategies targeting these cells.

  9. Dendritic cells in autoimmune disorders and cancer of the thyroid.

    PubMed

    Lewinski, Andrzej; Sliwka, Przemyslaw Wiktor; Stasiolek, Mariusz

    2014-01-01

    Dendritic cells (DCs), considered as one of the crucial immune regulatory populations, are implicated in the immune pathology of various disorders. Also in the thyroid gland, DCs were shown to be involved in early and chronic phases of various types of autoimmunity - including Hashimoto's thyroiditis and Graves' disease. In thyroid malignant processes, DCs are suggested as an important element of both tumour defence and tumour immune evasion mechanisms. Recent findings emphasize a crucial role of interactions between particular DC subsets and other regulatory cell populations (e.g. FoxP3+ regulatory T cells) in thyroid pathology. Additionally, an increasing attention has been paid to the control of DC function by thyrometabolic conditions.

  10. Dendritic Cell Subsets in Type 1 Diabetes: Friend or Foe?

    PubMed Central

    Morel, Penelope A.

    2013-01-01

    Type 1 diabetes (T1D) is a T cell mediated autoimmune disease characterized by immune mediated destruction of the insulin-producing β cells in the islets of Langerhans. Dendritic cells (DC) have been implicated in the pathogenesis of T1D and are also used as immunotherapeutic agents. Plasmacytoid (p)DC have been shown to have both protective and pathogenic effects and a newly described merocytic DC population has been shown to break tolerance in the mouse model of T1D, the non-obese diabetic (NOD) mouse. We have used DC populations to prevent the onset of T1D in NOD mice and clinical trials of DC therapy in T1D diabetes have been initiated. In this review we will critically examine the recent published literature on the role of DC subsets in the induction and regulation of the autoimmune response in T1D. PMID:24367363

  11. Follicular Dendritic Cells Retain Infectious HIV in Cycling Endosomes.

    PubMed

    Heesters, Balthasar A; Lindqvist, Madelene; Vagefi, Parsia A; Scully, Eileen P; Schildberg, Frank A; Altfeld, Marcus; Walker, Bruce D; Kaufmann, Daniel E; Carroll, Michael C

    2015-12-01

    Despite the success of antiretroviral therapy (ART), it does not cure Human Immunodeficiency Virus (HIV) and discontinuation results in viral rebound. Follicular dendritic cells (FDC) are in direct contact with CD4+ T cells and they retain intact antigen for prolonged periods. We found that human FDC isolated from patients on ART retain infectious HIV within a non-degradative cycling compartment and transmit infectious virus to uninfected CD4 T cells in vitro. Importantly, treatment of the HIV+ FDC with a soluble complement receptor 2 purges the FDC of HIV virions and prevents viral transmission in vitro. Our results provide an explanation for how FDC can retain infectious HIV for extended periods and suggest a therapeutic strategy to achieve cure in HIV-infected humans.

  12. Role of plasmacytoid dendritic cells in lung-associated inflammation.

    PubMed

    Sorrentino, Rosalinda; Morello, Silvana; Pinto, Aldo

    2010-06-01

    Plasmacytoid Dendritic Cells (pDCs) are important immune orchestrators. One of the most important features of pDCs is the high production of IFN type I that can promote the polarization of T cells towards a Th1 phenotype. Recent evidence has highlighted the relevance of pDCs in therapy for asthma, lung infections and cancer. However, it is to note that pDCs can also participate in suppressive networks via the recruitment of T regulatory cells. Further studies are needed to understand pDCs activity in the lung, not only to elucidate pathological mechanisms, but also to lead towards new therapeutic approaches for lung inflammatory-based diseases. The article also outlines recent patents on plasmacytoid DCs.

  13. Dendritic Cells in the Gut: Interaction with Intestinal Helminths

    PubMed Central

    Mendlovic, Fela; Flisser, Ana

    2010-01-01

    The mucosal environment in mammals is highly tolerogenic; however, after exposure to pathogens or danger signals, it is able to shift towards an inflammatory response. Dendritic cells (DCs) orchestrate immune responses and are highly responsible, through the secretion of cytokines and expression of surface markers, for the outcome of such immune response. In particular, the DC subsets found in the intestine have specialized functions and interact with different immune as well as nonimmune cells. Intestinal helminths primarily induce Th2 responses where DCs have an important yet not completely understood role. In addition, this cross-talk results in the induction of regulatory T cells (T regs) as a result of the homeostatic mucosal environment. This review highlights the importance of studying the particular relation “helminth-DC-milieu” in view of the significance that each of these factors plays. Elucidating the mechanisms that trigger Th2 responses may provide the understanding of how we might modulate inflammatory processes. PMID:20224759

  14. Somatic translocation: a novel mechanism of granule cell dendritic dysmorphogenesis and dispersion

    PubMed Central

    Murphy, Brian L.; Danzer, Steve C.

    2011-01-01

    Pronounced neuronal remodeling is a hallmark of temporal lobe epilepsy. Here, we use real-time confocal imaging of tissue from mouse brain to demonstrate that remodeling can involve fully-differentiated granule cells following translocation of the soma into an existing apical dendrite. Somatic translocation converts dendritic branches into primary dendrites and shifts adjacent apical dendrites to the basal pole of the cell. Moreover, somatic translocation contributes to the dispersion of the granule cell body layer in vitro, and when granule cell dispersion is induced in vivo, the dispersed cells exhibit virtually identical derangements of their dendritic structures. Together, these findings identify novel forms of neuronal plasticity which contribute to granule cell dysmorphogenesis in the epileptic brain. PMID:21414917

  15. A polymeric bacterial protein activates dendritic cells via TLR4.

    PubMed

    Berguer, Paula M; Mundiñano, Juliana; Piazzon, Isabel; Goldbaum, Fernando A

    2006-02-15

    The enzyme lumazine synthase from Brucella spp. (BLS) is a highly immunogenic protein that folds as a stable dimer of pentamers. It is possible to insert foreign peptides and proteins at the 10 N terminus of BLS without disrupting its general folding, and these chimeras are very efficient to elicit systemic and oral immunity without adjuvants. In this study, we show that BLS stimulates bone marrow dendritic cells from mice in vitro to up-regulate the levels of costimulatory molecules (CD40, CD80, and CD86) and major histocompatibility class II Ag. Furthermore, the mRNA levels of several chemokines are increased, and proinflammatory cytokine secretion is induced upon exposure to BLS. In vivo, BLS increases the number of dendritic cells and their expression of CD62L in the draining lymph node. All of the observed effects are dependent on TLR4, and clearly independent of LPS contamination. The described characteristics of BLS make this protein an excellent candidate for vaccine development.

  16. Human Plasmacytoid Dendritic Cells Display and Shed B Cell Maturation Antigen upon TLR Engagement.

    PubMed

    Schuh, Elisabeth; Musumeci, Andrea; Thaler, Franziska S; Laurent, Sarah; Ellwart, Joachim W; Hohlfeld, Reinhard; Krug, Anne; Meinl, Edgar

    2017-04-15

    The BAFF-APRIL system is best known for its control of B cell homeostasis, and it is a target of therapeutic intervention in autoimmune diseases and lymphoma. By analyzing the expression of the three receptors of this system, B cell maturation Ag (BCMA), transmembrane activator and CAML interactor, and BAFF receptor, in sorted human immune cell subsets, we found that BCMA was transcribed in plasmacytoid dendritic cells (pDCs) in both blood and lymphoid tissue. Circulating human pDCs contained BCMA protein without displaying it on the cell surface. After engagement of TLR7/8 or TLR9, BCMA was detected also on the cell surface of pDCs. The display of BCMA on the surface of human pDCs was accompanied by release of soluble BCMA (sBCMA); inhibition of γ-secretase enhanced surface expression of BCMA and reduced the release of sBCMA by pDCs. In contrast with human pDCs, murine pDCs did not express BCMA, not even after TLR9 activation. In this study, we extend the spectrum of BCMA expression to human pDCs. sBCMA derived from pDCs might determine local availability of its high-affinity ligand APRIL, because sBCMA has been shown to function as an APRIL-specific decoy. Further, therapeutic trials targeting BCMA in patients with multiple myeloma should consider possible effects on pDCs. Copyright © 2017 by The American Association of Immunologists, Inc.

  17. Dendritic cell type-specific HIV-1 activation in effector T cells: implications for latent HIV-1 reservoir establishment.

    PubMed

    van der Sluis, Renée M; van Capel, Toni M M; Speijer, Dave; Sanders, Rogier W; Berkhout, Ben; de Jong, Esther C; Jeeninga, Rienk E; van Montfort, Thijs

    2015-06-01

    Latent HIV type I (HIV-1) infections can frequently occur in short-lived proliferating effector T lymphocytes. These latently infected cells could revert into resting T lymphocytes and thereby contribute to the establishment of the long-lived viral reservoir. Monocyte-derived dendritic cells can revert latency in effector T cells in vitro. Here we investigated the latency activation properties of tissue-specific immune cells, including a large panel of dendritic cell subsets, to explore in which body compartments effector T cells are most likely to maintain latent HIV-1 provirus and thus potentially contribute to the long-lived reservoir. Our results demonstrate that blood or genital tract dendritic cells do not activate latent provirus in effector T cells, whereas gut or lymphoid dendritic cells induce virus production from latently infected effector T cells in our in-vitro model for latency. Toll-like receptor 3-induced interferon production by myeloid dendritic cells abolished the dendritic cells' ability to induce viral gene expression. In this study, we show that HIV-1 provirus residing in effector T cells is activated from latency by tissue-specific dendritic cell subsets and other immune cells with remarkably different efficiencies.Our new assay system points to an important, neglected aspect of HIV-1 research: the ability of other immune cells, especially dendritic cells, to differentially affect latency establishment as well as virus reactivation.

  18. Genome wide transcriptome analysis of dendritic cells identifies genes with altered expression in psoriasis.

    PubMed

    Filkor, Kata; Hegedűs, Zoltán; Szász, András; Tubak, Vilmos; Kemény, Lajos; Kondorosi, Éva; Nagy, István

    2013-01-01

    Activation of dendritic cells by different pathogens induces the secretion of proinflammatory mediators resulting in local inflammation. Importantly, innate immunity must be properly controlled, as its continuous activation leads to the development of chronic inflammatory diseases such as psoriasis. Lipopolysaccharide (LPS) or peptidoglycan (PGN) induced tolerance, a phenomenon of transient unresponsiveness of cells to repeated or prolonged stimulation, proved valuable model for the study of chronic inflammation. Thus, the aim of this study was the identification of the transcriptional diversity of primary human immature dendritic cells (iDCs) upon PGN induced tolerance. Using SAGE-Seq approach, a tag-based transcriptome sequencing method, we investigated gene expression changes of primary human iDCs upon stimulation or restimulation with Staphylococcus aureus derived PGN, a widely used TLR2 ligand. Based on the expression pattern of the altered genes, we identified non-tolerizeable and tolerizeable genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (Kegg) analysis showed marked enrichment of immune-, cell cycle- and apoptosis related genes. In parallel to the marked induction of proinflammatory mediators, negative feedback regulators of innate immunity, such as TNFAIP3, TNFAIP8, Tyro3 and Mer are markedly downregulated in tolerant cells. We also demonstrate, that the expression pattern of TNFAIP3 and TNFAIP8 is altered in both lesional, and non-lesional skin of psoriatic patients. Finally, we show that pretreatment of immature dendritic cells with anti-TNF-α inhibits the expression of IL-6 and CCL1 in tolerant iDCs and partially releases the suppression of TNFAIP8. Our findings suggest that after PGN stimulation/restimulation the host cell utilizes different mechanisms in order to maintain critical balance between inflammation and tolerance. Importantly, the transcriptome sequencing of stimulated/restimulated iDCs identified numerous genes with

  19. Imaging Findings of Follicular Dendritic Cell Sarcoma: Report of Four Cases

    PubMed Central

    Long-Hua, Qiu; Qin, Xiao; Jian, Wang; Xiao-Yuan, Feng

    2011-01-01

    Follicular dendritic cell sarcoma is a rare malignant neoplasm and little is known about its radiological features. We present here four cases of follicular dendritic cell sarcomas and we provide the image characteristics of these tumors to help radiologists recognize this entity when making a diagnosis. PMID:21228948

  20. Imaging findings of follicular dendritic cell sarcoma: report of four cases.

    PubMed

    Long-Hua, Qiu; Qin, Xiao; Ya-Jia, Gu; Jian, Wang; Xiao-Yuan, Feng

    2011-01-01

    Follicular dendritic cell sarcoma is a rare malignant neoplasm and little is known about its radiological features. We present here four cases of follicular dendritic cell sarcomas and we provide the image characteristics of these tumors to help radiologists recognize this entity when making a diagnosis.

  1. Inorganic arsenic impairs differentiation and functions of human dendritic cells

    SciTech Connect

    Macoch, Mélinda; Morzadec, Claudie; Fardel, Olivier; Vernhet, Laurent

    2013-01-15

    Experimental studies have demonstrated that the antileukemic trivalent inorganic arsenic prevents the development of severe pro-inflammatory diseases mediated by excessive Th1 and Th17 cell responses. Differentiation of Th1 and Th17 subsets is mainly regulated by interleukins (ILs) secreted from dendritic cells (DCs) and the ability of inorganic arsenic to impair interferon-γ and IL-17 secretion by interfering with the physiology of DCs is unknown. In the present study, we demonstrate that high concentrations of sodium arsenite (As(III), 1–2 μM) clinically achievable in plasma of arsenic-treated patients, block differentiation of human peripheral blood monocytes into immature DCs (iDCs) by inducing their necrosis. Differentiation of monocytes in the presence of non-cytotoxic concentrations of As(III) (0.1 to 0.5 μM) only slightly impacts endocytotic activity of iDCs or expression of co-stimulatory molecules in cells activated with lipopolysaccharide. However, this differentiation in the presence of As(III) strongly represses secretion of IL-12p70 and IL-23, two major regulators of Th1 and Th17 activities, from iDCs stimulated with different toll-like receptor (TLR) agonists in metalloid-free medium. Such As(III)-exposed DCs also exhibit reduced mRNA levels of IL12A and/or IL12B genes when activated with TLR agonists. Finally, differentiation of monocytes with non-cytotoxic concentrations of As(III) subsequently reduces the ability of activated DCs to stimulate the release of interferon-γ and IL-17 from Th cells. In conclusion, our results demonstrate that clinically relevant concentrations of inorganic arsenic markedly impair in vitro differentiation and functions of DCs, which may contribute to the putative beneficial effects of the metalloid towards inflammatory autoimmune diseases. Highlights: ► Inorganic arsenic impairs differentiation and functions of human dendritic cells (DCs) ► Arsenite (> 1 μM) blocks differentiation of dendritic cells by

  2. The diverging roles of dendritic cells in kidney allotransplantation.

    PubMed

    Podestà, Manuel Alfredo; Cucchiari, David; Ponticelli, Claudio

    2015-07-01

    Dendritic cells (DCs) are a family of antigen presenting cells that play a paramount role in bridging innate and adaptive immunity. In murine models several subtypes of DCs have been identified, including classical DCs, monocyte-derived DCs, and plasmacytoid DCs. Quiescent, immature DCs and some subtypes of plasmacytoid cells favor the expression of regulatory T cells, but in an inflammatory milieu DCs become mature and after intercepting the antigen migrate to lymphatic system where they present the antigen to naïve T cells. Transplant rejection largely depends on the phenotype and maturation of DCs. The ischemia-reperfusion injury causes the release of endogenous molecules that are recognized as danger signals by the pattern recognition receptor of the innate immunity with subsequent activation of inflammatory cells and mediators. In this environment DCs become mature and migrate to lymphonodes where they present the alloantigen to T cells and direct their differentiation towards Th1 and Th17 effector cells. On the other hand, manipulation of DCs may favor T cell differentiation towards tolerant Th2 and T regulators (Treg). Experimental studies in murine models showed the possibility of inducing an operational tolerance by injecting immature tolerogenic DCs. Recently, such a possibility has been also confirmed in primates. Although manipulation of DCs may represent an important step ahead in kidney transplantation, a number of technical and ethical issues should be solved before its clinical application.

  3. Modulation of Dendritic Cell Activation and Subsequent Th1 Cell Polarization by Lidocaine

    PubMed Central

    Chung, Yeonseok

    2015-01-01

    Dendritic cells play an essential role in bridging innate and adaptive immunity by recognizing cellular stress including pathogen- and damage-associated molecular patterns and by shaping the types of antigen-specific T cell immunity. Although lidocaine is widely used in clinical settings that trigger cellular stress, it remains unclear whether such treatment impacts the activation of innate immune cells and subsequent differentiation of T cells. Here we showed that lidocaine inhibited the production of IL–6, TNFα and IL–12 from dendritic cells in response to toll-like receptor ligands including lipopolysaccharide, poly(I:C) and R837 in a dose-dependent manner. Notably, the differentiation of Th1 cells was significantly suppressed by the addition of lidocaine while the same treatment had little effect on the differentiation of Th17, Th2 and regulatory T cells in vitro. Moreover, lidocaine suppressed the ovalbumin-specific Th1 cell responses in vivo induced by the adoptive transfer of ovalbumin-pulsed dendritic cells. These results demonstrate that lidocaine inhibits the activation of dendritic cells in response to toll-like receptor signals and subsequently suppresses the differentiation of Th1 cell responses. PMID:26445366

  4. Dendritic cells and follicular dendritic cells express a novel ligand for CD38 which influences their maturation and antibody responses

    PubMed Central

    Wykes, Michelle N; Beattie, Lynette; MacPherson, Gordon G; Hart, Derek N

    2004-01-01

    CD38 is a cell surface molecule with ADP-ribosyl cyclase activity, which is predominantly expressed on lymphoid and myeloid cells. CD38 has a significant role in B-cell function as some anti-CD38 antibodies can deliver potent growth and differentiation signals, but the ligand that delivers this signal in mice is unknown. We used a chimeric protein of mouse CD38 and human immunogobulin G (IgG) (CD38-Ig) to identify a novel ligand for murine CD38 (CD38L) on networks of follicular dendritic cells (FDCs) as well as dendritic cells (DCs) in the spleen. Flow-cytometry found that all DC subsets expressed cytoplasmic CD38L but only fresh ex vivo CD11c+ CD11b− DCs had cell surface CD38L. Anti-CD38 antibody blocked the binding of CD38-Ig to CD38L, confirming the specificity of detection. CD38-Ig immuno-precipitated ligands of 66 and 130 kDa. Functional studies found that CD38-Ig along with anti-CD40 and anti-major histocompatibility complex (MHC) class II antibody provided maturation signals to DCs in vitro. When CD38-Ig was administered in vivo with antigen, IgG2a responses were significantly reduced, suggesting that B and T cells expressing CD38 may modulate the isotype of antibodies produced through interaction with CD38L on DCs. CD38-Ig also expanded FDC networks when administered in vivo. In conclusion, this study has identified a novel ligand for CD38 which has a role in functional interactions between lymphocytes and DCs or FDCs. PMID:15500618

  5. Oral prion disease pathogenesis is impeded in the specific absence of CXCR5-expressing dendritic cells.

    PubMed

    Bradford, Barry M; Reizis, Boris; Mabbott, Neil A

    2017-03-08

    After oral exposure the early replication of certain prion strains upon stromal-derived follicular dendritic cells (FDC) in the Peyer's patches in the small intestine is essential for the efficient spread of disease to the brain. However, little is known of how prions are initially conveyed from the gut lumen to establish infection on FDC. Our previous data suggest that mononuclear phagocytes such as CD11c(+) conventional dendritic cells play an important role in the initial propagation of prions from the gut lumen into Peyer's patches. But whether these cells conveyed orally-acquired prions towards FDC within Peyer's patches was not known. The chemokine CXCL13 is expressed by FDC and follicular stromal cells and modulates the homing of CXCR5-expressing cells towards the FDC-containing B cell follicles. Here, novel compound transgenic mice were created in which CXCR5-deficiency was specifically restricted to CD11c(+) cells. These mice were used to determine whether CXCR5-expressing conventional dendritic cells propagate prions towards FDC after oral exposure. Our data show that in the specific absence of CXCR5-expressing conventional dendritic cells the early accumulation of prions upon FDC in Peyer's patches and the spleen was impaired, and disease susceptibility significantly reduced. These data suggest that CXCR5-expressing conventional dendritic cells play an important role in the efficient propagation of orally-administered prions towards FDC within Peyer's patches in order to establish host infection.IMPORTANCE Many natural prion diseases are acquired by oral consumption of contaminated food or pasture. Once the prions reach the brain they cause extensive neurodegeneration which ultimately leads to death. In order for the prions to efficiently spread from the gut to the brain, they first replicate upon follicular dendritic cells within intestinal Peyer's patches. How the prions are first delivered to follicular dendritic cells to establish infection was

  6. Relation of apical dendritic spikes to output decision in CA1 pyramidal cells during synchronous activation: a computational study.

    PubMed

    Ibarz, José M; Makarova, Ioulia; Herreras, Oscar

    2006-03-01

    Recent studies on the initiation and propagation of dendritic spikes have modified the classical view of postsynaptic integration. Earlier we reported that subthreshold currents and spikes recruited by synaptic currents play a critical role in defining outputs following synchronous activation. Experimental factors strongly condition these currents due to their nonlinear behaviour. Hence, we have performed a detailed parametric study in a CA1 pyramidal cell model to explore how different variables interact and initiate dendritic spiking, and how they influence cell output. The input pattern, the relative excitability of axon and dendrites, the presence/modulation of voltage-dependent channels, and inhibition were cross analysed. Subthreshold currents and spikes on synaptically excited branches fired spikes in other branches to jointly produce different modalities of apical shaft spiking with a variable impact on cell output. Synchronous activation initiated a varying number and temporal scatter of firing branches that produced in the apical shaft-soma axis nonpropagating spikes, pseudosaltatory or continuous forward conduction, or backpropagation. As few as 6-10 local spikes within a time window of 2 ms ensure cell output. However, the activation mode varied extremely when two or more variables were cross-analysed, becoming rather unpredictable when all the variables were considered. Spatially clustered inputs and upper modulation of dendritic Na(+) or Ca(2+) electrogenesis favour apical decision. In contrast, inhibition biased the output decision toward the axon and switched between dendritic firing modes. We propose that dendrites can discriminate input patterns and decide immediate cell output depending on the particular state of a variety of endogenous parameters.

  7. Pyramidal cell development: postnatal spinogenesis, dendritic growth, axon growth, and electrophysiology

    PubMed Central

    Elston, Guy N.; Fujita, Ichiro

    2014-01-01

    Here we review recent findings related to postnatal spinogenesis, dendritic and axon growth, pruning and electrophysiology of neocortical pyramidal cells in the developing primate brain. Pyramidal cells in sensory, association and executive cortex grow dendrites, spines and axons at different rates, and vary in the degree of pruning. Of particular note is the fact that pyramidal cells in primary visual area (V1) prune more spines than they grow during postnatal development, whereas those in inferotemporal (TEO and TE) and granular prefrontal cortex (gPFC; Brodmann's area 12) grow more than they prune. Moreover, pyramidal cells in TEO, TE and the gPFC continue to grow larger dendritic territories from birth into adulthood, replete with spines, whereas those in V1 become smaller during this time. The developmental profile of intrinsic axons also varies between cortical areas: those in V1, for example, undergo an early proliferation followed by pruning and local consolidation into adulthood, whereas those in area TE tend to establish their territory and consolidate it into adulthood with little pruning. We correlate the anatomical findings with the electrophysiological properties of cells in the different cortical areas, including membrane time constant, depolarizing sag, duration of individual action potentials, and spike-frequency adaptation. All of the electrophysiological variables ramped up before 7 months of age in V1, but continued to ramp up over a protracted period of time in area TE. These data suggest that the anatomical and electrophysiological profiles of pyramidal cells vary among cortical areas at birth, and continue to diverge into adulthood. Moreover, the data reveal that the “use it or lose it” notion of synaptic reinforcement may speak to only part of the story, “use it but you still might lose it” may be just as prevalent in the cerebral cortex. PMID:25161611

  8. Monocyte-derived inflammatory Langerhans cells and dermal dendritic cells mediate psoriasis-like inflammation.

    PubMed

    Singh, Tej Pratap; Zhang, Howard H; Borek, Izabela; Wolf, Peter; Hedrick, Michael N; Singh, Satya P; Kelsall, Brian L; Clausen, Bjorn E; Farber, Joshua M

    2016-12-16

    Dendritic cells (DCs) have been implicated in the pathogenesis of psoriasis but the roles for specific DC subsets are not well defined. Here we show that DCs are required for psoriasis-like changes in mouse skin induced by the local injection of IL-23. However, Flt3L-dependent DCs and resident Langerhans cells are dispensable for the inflammation. In epidermis and dermis, the critical DCs are TNF-producing and IL-1β-producing monocyte-derived DCs, including a population of inflammatory Langerhans cells. Depleting Ly6C(hi) blood monocytes reduces DC accumulation and the skin changes induced either by injecting IL-23 or by application of the TLR7 agonist imiquimod. Moreover, we find that IL-23-induced inflammation requires expression of CCR6 by DCs or their precursors, and that CCR6 mediates monocyte trafficking into inflamed skin. Collectively, our results imply that monocyte-derived cells are critical contributors to psoriasis through production of inflammatory cytokines that augment the activation of skin T cells.

  9. Monocyte-derived inflammatory Langerhans cells and dermal dendritic cells mediate psoriasis-like inflammation

    PubMed Central

    Singh, Tej Pratap; Zhang, Howard H.; Borek, Izabela; Wolf, Peter; Hedrick, Michael N.; Singh, Satya P.; Kelsall, Brian L.; Clausen, Bjorn E.; Farber, Joshua M.

    2016-01-01

    Dendritic cells (DCs) have been implicated in the pathogenesis of psoriasis but the roles for specific DC subsets are not well defined. Here we show that DCs are required for psoriasis-like changes in mouse skin induced by the local injection of IL-23. However, Flt3L-dependent DCs and resident Langerhans cells are dispensable for the inflammation. In epidermis and dermis, the critical DCs are TNF-producing and IL-1β-producing monocyte-derived DCs, including a population of inflammatory Langerhans cells. Depleting Ly6Chi blood monocytes reduces DC accumulation and the skin changes induced either by injecting IL-23 or by application of the TLR7 agonist imiquimod. Moreover, we find that IL-23-induced inflammation requires expression of CCR6 by DCs or their precursors, and that CCR6 mediates monocyte trafficking into inflamed skin. Collectively, our results imply that monocyte-derived cells are critical contributors to psoriasis through production of inflammatory cytokines that augment the activation of skin T cells. PMID:27982014

  10. Curcumin prevents human dendritic cell response to immune stimulants

    SciTech Connect

    Shirley, Shawna A.; Montpetit, Alison J.; Lockey, R.F.; Mohapatra, Shyam S.

    2008-09-26

    Curcumin, a compound found in the Indian spice turmeric, has anti-inflammatory and immunomodulatory properties, though the mechanism remains unclear. Dendritic cells (DCs) are important to generating an immune response and the effect of curcumin on human DCs has not been explored. The role curcumin in the DC response to bacterial and viral infection was investigated in vitro using LPS and Poly I:C as models of infection. CD14{sup +} monocytes, isolated from human peripheral blood, were cultured in GM-CSF- and IL-4-supplemented medium to generate immature DCs. Cultures were incubated with curcumin, stimulated with LPS or Poly I:C and functional assays were performed. Curcumin prevents DCs from responding to immunostimulants and inducing CD4{sup +} T cell proliferation by blocking maturation marker, cytokine and chemokine expression and reducing both migration and endocytosis. These data suggest a therapeutic role for curcumin as an immune suppressant.

  11. Dendritic cells and cytokines in immune rejection of cancer.

    PubMed

    Ferrantini, Maria; Capone, Imerio; Belardelli, Filippo

    2008-02-01

    Dendritic cells (DCs) play a crucial role in linking innate and adaptive immunity and, thus, in the generation of a protective immune response against both infectious diseases and tumors. The ability of DCs to prime and expand an immune response is regulated by signals acting through soluble mediators, mainly cytokines and chemokines. Understanding how cytokines influence DC functions and orchestrate the interactions of DCs with other immune cells is strictly instrumental to the progress in cancer immunotherapy. Herein, we will illustrate how certain cytokines and immune stimulating molecules can induce and sustain the antitumor immune response by acting on DCs. We will also discuss these cytokine-DC interactions in the light of clinical results in cancer patients.

  12. The role of the vascular dendritic cell network in atherosclerosis

    PubMed Central

    Alberts-Grill, Noah; Denning, Timothy L.; Rezvan, Amir

    2013-01-01

    A complex role has been described for dendritic cells (DCs) in the potentiation and control of vascular inflammation and atherosclerosis. Resident vascular DCs are found in the intima of atherosclerosis-prone vascular regions exposed to disturbed blood flow patterns. Several phenotypically and functionally distinct vascular DC subsets have been described. The functional heterogeneity of these cells and their contributions to vascular homeostasis, inflammation, and atherosclerosis are only recently beginning to emerge. Here, we review the available literature, characterizing the origin and function of known vascular DC subsets and their important role contributing to the balance of immune activation and immune tolerance governing vascular homeostasis under healthy conditions. We then discuss how homeostatic DC functions are disrupted during atherogenesis, leading to atherosclerosis. The effectiveness of DC-based “atherosclerosis vaccine” therapies in the treatment of atherosclerosis is also reviewed. We further provide suggestions for distinguishing DCs from macrophages and discuss important future directions for the field. PMID:23552284

  13. Deciphering the transcriptional network of the dendritic cell lineage.

    PubMed

    Miller, Jennifer C; Brown, Brian D; Shay, Tal; Gautier, Emmanuel L; Jojic, Vladimir; Cohain, Ariella; Pandey, Gaurav; Leboeuf, Marylene; Elpek, Kutlu G; Helft, Julie; Hashimoto, Daigo; Chow, Andrew; Price, Jeremy; Greter, Melanie; Bogunovic, Milena; Bellemare-Pelletier, Angelique; Frenette, Paul S; Randolph, Gwendalyn J; Turley, Shannon J; Merad, Miriam

    2012-09-01

    Although much progress has been made in the understanding of the ontogeny and function of dendritic cells (DCs), the transcriptional regulation of the lineage commitment and functional specialization of DCs in vivo remains poorly understood. We made a comprehensive comparative analysis of CD8(+), CD103(+), CD11b(+) and plasmacytoid DC subsets, as well as macrophage DC precursors and common DC precursors, across the entire immune system. Here we characterized candidate transcriptional activators involved in the commitment of myeloid progenitor cells to the DC lineage and predicted regulators of DC functional diversity in tissues. We identified a molecular signature that distinguished tissue DCs from macrophages. We also identified a transcriptional program expressed specifically during the steady-state migration of tissue DCs to the draining lymph nodes that may control tolerance to self tissue antigens.

  14. Mechanisms of Dendritic Cell Lysosomal Killing of Cryptococcus

    NASA Astrophysics Data System (ADS)

    Hole, Camaron R.; Bui, Hoang; Wormley, Floyd L.; Wozniak, Karen L.

    2012-10-01

    Cryptococcus neoformans is an opportunistic pulmonary fungal pathogen that disseminates to the CNS causing fatal meningitis in immunocompromised patients. Dendritic cells (DCs) phagocytose C. neoformans following inhalation. Following uptake, cryptococci translocate to the DC lysosomal compartment and are killed by oxidative and non-oxidative mechanisms. DC lysosomal extracts kill cryptococci in vitro; however, the means of antifungal activity remain unknown. Our studies determined non-oxidative antifungal activity by DC lysosomal extract. We examined DC lysosomal killing of cryptococcal strains, anti-fungal activity of purified lysosomal enzymes, and mechanisms of killing against C. neoformans. Results confirmed DC lysosome fungicidal activity against all cryptococcal serotypes. Purified lysosomal enzymes, specifically cathepsin B, inhibited cryptococcal growth. Interestingly, cathepsin B combined with its enzymatic inhibitors led to enhanced cryptococcal killing. Electron microscopy revealed structural changes and ruptured cryptococcal cell walls following treatment. Finally, additional studies demonstrated that osmotic lysis was responsible for cryptococcal death.

  15. Metabolic reprogramming in macrophages and dendritic cells in innate immunity

    PubMed Central

    Kelly, Beth; O'Neill, Luke AJ

    2015-01-01

    Activation of macrophages and dendritic cells (DCs) by pro-inflammatory stimuli causes them to undergo a metabolic switch towards glycolysis and away from oxidative phosphorylation (OXPHOS), similar to the Warburg effect in tumors. However, it is only recently that the mechanisms responsible for this metabolic reprogramming have been elucidated in more detail. The transcription factor hypoxia-inducible factor-1α (HIF-1α) plays an important role under conditions of both hypoxia and normoxia. The withdrawal of citrate from the tricarboxylic acid (TCA) cycle has been shown to be critical for lipid biosynthesis in both macrophages and DCs. Interference with this process actually abolishes the ability of DCs to activate T cells. Another TCA cycle intermediate, succinate, activates HIF-1α and promotes inflammatory gene expression. These new insights are providing us with a deeper understanding of the role of metabolic reprogramming in innate immunity. PMID:26045163

  16. Optimizing dendritic cell-based immunotherapy for cancer.

    PubMed

    Zhong, Hua; Shurin, Michael R; Han, Baohui

    2007-06-01

    Dendritic cells (DCs) are the most powerful professional antigen-presenting cells and are unique in their capability to initiate, maintain and regulate the intensity of primary immune responses, including specific antitumor responses. Development of practical procedures to prepare sufficient numbers of functional human DCs in culture from the peripheral blood precursors, paved the way for clinical trials to evaluate various DC-based strategies in patients with malignant diseases. However, no definite conclusions regarding the clinical and even immunological efficacy of DC vaccination can be stated, despite the fact that 12 years have passed since the first clinical trial utilizing DCs in cancer patients. Many unanswered questions hamper the development of DC-based vaccines, including the source of DC preparation and protocols for DC generation, activation and loading with tumor antigens, source of tumor antigens, route of vaccine administration and methods of immunomonitoring. Fortunately, in spite of the many obstacles, DC vaccines continue to hold promise for cancer therapy.

  17. Dendritic Cells in Anti-Fungal Immunity and Vaccine Design

    PubMed Central

    Roy, René M.; Klein, Bruce S.

    2012-01-01

    Life-threatening fungal infections have increased in recent years while treatment options remain limited. The development of vaccines against fungal pathogens represents a key advance sorely needed to combat the increasing fungal disease threat. Dendritic cells (DC) are uniquely able to shape anti-fungal immunity by initiating and modulating naive T cell responses. Targeting DC may allow for the generation of potent vaccines against fungal pathogens. In the context of anti-fungal vaccine design, we describe the characteristics of the varied DC subsets, how DC recognize fungi, their function in immunity against fungal pathogens, and how DC can be targeted in order to create new anti-fungal vaccines. Ongoing studies continue to highlight the critical role of DC in anti-fungal immunity and will help guide DC-based vaccine strategies. PMID:22607797

  18. Engineered Lentivector Targeting of Dendritic Cells for In Vivo Immunization

    PubMed Central

    Yang, Lili; Yang, Haiguang; Rideout, Kendra; Cho, Taehoon; Joo, Kye il; Ziegler, Leslie; Elliot, Abigail; Walls, Anthony; Yu, Dongzi; Baltimore, David; Wang, Pin

    2008-01-01

    We report a method of inducing antigen production in dendritic cells (DCs) by in vivo targeting with lentiviral vectors that specifically bind to the DC surface protein, DC-SIGN. To target the DCs, the lentivector was enveloped with a viral glycoprotein from Sindbis virus, engineered to be DC-SIGN-specific. In vitro, this lentivector specifically transduced DCs and induced DC maturation. A remarkable frequency (up to 12%) of ovalbumin (OVA)-specific CD8+ T cells and a significant antibody response were observed 2 weeks following injection of a targeted lentiviral vector encoding an OVA transgene into naïve mice. These mice were solidly protected against the growth of the OVA-expressing E.G7 tumor and this methodology could even induce regression of an established tumor. Thus, lentiviral vectors targeting DCs provide a simple method of producing effective immunity and may provide an alternative route for immunization with protein antigens. PMID:18297056

  19. Optimizing Dendritic Cell-Based Approaches for Cancer Immunotherapy

    PubMed Central

    Datta, Jashodeep; Terhune, Julia H.; Lowenfeld, Lea; Cintolo, Jessica A.; Xu, Shuwen; Roses, Robert E.; Czerniecki, Brian J.

    2014-01-01

    Dendritic cells (DC) are professional antigen-presenting cells uniquely suited for cancer immunotherapy. They induce primary immune responses, potentiate the effector functions of previously primed T-lymphocytes, and orchestrate communication between innate and adaptive immunity. The remarkable diversity of cytokine activation regimens, DC maturation states, and antigen-loading strategies employed in current DC-based vaccine design reflect an evolving, but incomplete, understanding of optimal DC immunobiology. In the clinical realm, existing DC-based cancer immunotherapy efforts have yielded encouraging but inconsistent results. Despite recent U.S. Federal and Drug Administration (FDA) approval of DC-based sipuleucel-T for metastatic castration-resistant prostate cancer, clinically effective DC immunotherapy as monotherapy for a majority of tumors remains a distant goal. Recent work has identified strategies that may allow for more potent “next-generation” DC vaccines. Additionally, multimodality approaches incorporating DC-based immunotherapy may improve clinical outcomes. PMID:25506283

  20. Immunological Characterization of Whole Tumour Lysate-Loaded Dendritic Cells for Cancer Immunotherapy

    PubMed Central

    Ottobrini, Luisa; Biasin, Mara; Borelli, Manuela; Lucignani, Giovanni; Trabattoni, Daria; Clerici, Mario

    2016-01-01

    Introduction Dendritic cells play a key role as initiators of T-cell responses, and even if tumour antigen-loaded dendritic cells can induce anti-tumour responses, their efficacy has been questioned, suggesting a need to enhance immunization strategies. Matherials & Methods We focused on the characterization of bone marrow-derived dendritic cells pulsed with whole tumour lysate (TAA-DC), as a source of known and unknown antigens, in a mouse model of breast cancer (MMTV-Ras). Dendritic cells were evaluated for antigen uptake and for the expression of MHC class I/II and costimulatory molecules and markers associated with maturation. Results Results showed that antigen-loaded dendritic cells are characterized by a phenotypically semi-mature/mature profile and by the upregulation of genes involved in antigen presentation and T-cell priming. Activated dendritic cells stimulated T-cell proliferation and induced the production of high concentrations of IL-12p70 and IFN-γ but only low levels of IL-10, indicating their ability to elicit a TH1-immune response. Furthermore, administration of Antigen loaded-Dendritic Cells in MMTV-Ras mice evoked a strong anti-tumour response in vivo as demonstrated by a general activation of immunocompetent cells and the release of TH1 cytokines. Conclusion Data herein could be useful in the design of antitumoral DC-based therapies, showing a specific activation of immune system against breast cancer. PMID:26795765

  1. Dendritic cell MST1 inhibits Th17 differentiation

    PubMed Central

    Li, Chunxiao; Bi, Yujing; Li, Yan; Yang, Hui; Yu, Qing; Wang, Jian; Wang, Yu; Su, Huilin; Jia, Anna; Hu, Ying; Han, Linian; Zhang, Jiangyuan; Li, Simin; Tao, Wufan; Liu, Guangwei

    2017-01-01

    Although the differentiation of CD4+T cells is widely studied, the mechanisms of antigen-presenting cell-dependent T-cell modulation are unclear. Here, we investigate the role of dendritic cell (DC)-dependent T-cell differentiation in autoimmune and antifungal inflammation and find that mammalian sterile 20-like kinase 1 (MST1) signalling from DCs negatively regulates IL-17 producing-CD4+T helper cell (Th17) differentiation. MST1 deficiency in DCs increases IL-17 production by CD4+T cells, whereas ectopic MST1 expression in DCs inhibits it. Notably, MST1-mediated DC-dependent Th17 differentiation regulates experimental autoimmune encephalomyelitis and antifungal immunity. Mechanistically, MST1-deficient DCs promote IL-6 secretion and regulate the activation of IL-6 receptor α/β and STAT3 in CD4+T cells in the course of inducing Th17 differentiation. Activation of the p38 MAPK signal is responsible for IL-6 production in MST1-deficient DCs. Thus, our results define the DC MST1–p38MAPK signalling pathway in directing Th17 differentiation. PMID:28145433

  2. Communication between Human Dendritic Cell Subsets in Tuberculosis: Requirements for Naive CD4+ T Cell Stimulation

    PubMed Central

    Lozza, Laura; Farinacci, Maura; Bechtle, Marina; Stäber, Manuela; Zedler, Ulrike; Baiocchini, Andrea; del Nonno, Franca; Kaufmann, Stefan H. E.

    2014-01-01

    Human primary dendritic cells (DCs) are heterogeneous by phenotype, function, and tissue localization and distinct from inflammatory monocyte-derived DCs. Current information regarding the susceptibility and functional role of primary human DC subsets to Mycobacterium tuberculosis (Mtb) infection is limited. Here, we dissect the response of different primary DC subsets to Mtb infection. Myeloid CD11c+ cells and pDCs (C-type lectin 4C+ cells) were located in human lymph nodes (LNs) of tuberculosis (TB) patients by histochemistry. Rare CD141hi DCs (C-type lectin 9A+ cells) were also identified. Infection with live Mtb revealed a higher responsiveness of myeloid CD1c+ DCs compared to CD141hi DCs and pDCs. CD1c+ DCs produced interleukin (IL)-6, tumor necrosis factor α, and IL-1β but not IL-12p70, a cytokine important for Th1 activation and host defenses against Mtb. Yet, CD1c+ DCs were able to activate autologous naïve CD4+ T cells. By combining cell purification with fluorescence-activated cell sorting and gene expression profiling on rare cell populations, we detected in responding CD4+ T cells, genes related to effector-cytolytic functions and transcription factors associated with Th1, Th17, and Treg polarization, suggesting multifunctional properties in our experimental conditions. Finally, immunohistologic analyses revealed contact between CD11c+ cells and pDCs in LNs of TB patients and in vitro data suggest that cooperation between Mtb-infected CD1c+ DCs and pDCs favors stimulation of CD4+ T cells. PMID:25071784

  3. Characteristics, management, and outcomes of patients with follicular dendritic cell sarcoma.

    PubMed

    Jain, Preetesh; Milgrom, Sarah A; Patel, Keyur P; Nastoupil, Loretta; Fayad, Luis; Wang, Michael; Pinnix, Chelsea C; Dabaja, Bouthaina S; Smith, Grace L; Yu, Jun; Hu, Shimin; Bueso Ramos, Carlos E; Kanagal-Shamanna, Rashmi; Medeiros, L Jeffrey; Oki, Yasuhiro; Fowler, Nathan

    2017-04-06

    Dendritic cell sarcomas are rare tumours of antigen presenting cells. Data regarding their biology, management and outcomes are sparse. We analysed 66 patients with follicular dendritic cell sarcoma (FDCS). Six patients also had Castleman disease, 9 had another malignancy and 13 had an autoimmune disease. Fifty-four per cent of patients presented with localized disease and 46% with systemic involvement. The median progression-free (PFS) and overall survival (OS) following frontline therapy was 21 and 50 months, respectively. Survival outcomes were significantly inferior in patients with extranodal, bulky or intra-abdominal disease at presentation. Stage was not associated with survival. Management approaches were heterogeneous. Patients who underwent an upfront gross total resection (GTR) experienced better PFS and OS (both P < 0·0001). In patients who underwent a GTR, consolidative radiotherapy was associated with improved local control (P = 0·03), PFS (P = 0·04) and OS (P = 0·05). In patients with measureable disease, gemcitabine with a taxane yielded an overall response rate of 80%. The pattern of relapse was predominantly locoregional. Salvage rates after recurrence were poor. Studies are underway at our institution to define the genomic profile in FDCS and identify potential novel therapeutic targets.

  4. Uncoupling dendrite growth and patterning: single-cell knockout analysis of NMDA receptor 2B.

    PubMed

    Espinosa, J Sebastian; Wheeler, Damian G; Tsien, Richard W; Luo, Liqun

    2009-04-30

    N-methyl-D-aspartate receptors (NMDARs) play important functions in neural development. NR2B is the predominant NR2 subunit of NMDAR in the developing brain. Here we use mosaic analysis with double markers (MADM) to knock out NR2B in isolated single cells and analyze its cell-autonomous function in dendrite development. NR2B mutant dentate gyrus granule cells (dGCs) and barrel cortex layer 4 spiny stellate cells (bSCs) have similar dendritic growth rates, total length, and branch number as control cells. However, mutant dGCs maintain supernumerary primary dendrites resulting from a pruning defect. Furthermore, while control bSCs restrict dendritic growth to a single barrel, mutant bSCs maintain dendritic growth in multiple barrels. Thus, NR2B functions cell autonomously to regulate dendrite patterning to ensure that sensory information is properly represented in the cortex. Our study also indicates that molecular mechanisms that regulate activity-dependent dendrite patterning can be separated from those that control general dendrite growth and branching.

  5. Uncoupling Dendrite Growth and Patterning: Single Cell Knockout Analysis of NMDA Receptor 2B

    PubMed Central

    Espinosa, J. Sebastian; Wheeler, Damian G.; Tsien, Richard W.; Luo, Liqun

    2009-01-01

    SUMMARY N-Methyl-D-aspartate receptors (NMDARs) play important functions in neural development. NR2B is the predominant NR2 subunit of NMDAR in the developing brain. Here we use MADM (Mosaic Analysis with Double Markers) to knock out NR2B in isolated single cells and analyze its cell-autonomous function in dendrite development. NR2B mutant dentate gyrus granule cells (dGCs) and barrel cortex layer 4 spiny stellate cells (bSCs) have similar dendritic growth rates, total length and branch number as control cells. However, mutant dGCs maintain supernumerary primary dendrites resulting from a pruning defect. Furthermore, while control bSCs restrict dendritic growth to a single barrel, mutant bSCs maintain dendritic growth in multiple barrels. Thus, NR2B functions cell-autonomously to regulate dendrite patterning to ensure that sensory information is properly represented in the cortex. Our study also indicates that molecular mechanisms that regulate activity-dependent dendrite patterning can be separated from those that control general dendrite growth and branching. PMID:19409266

  6. Mapping calcium transients in the dendrites of Purkinje cells from the guinea-pig cerebellum in vitro.

    PubMed Central

    Ross, W N; Werman, R

    1987-01-01

    1. A 10 X 10 photodiode array was used to detect stimulation-dependent absorbance changes simultaneously from many positions in the dendrite field of guinea-pig Purkinje cells which had been injected with the calcium indicator Arsenazo III in thin cerebellar slices. Signals from each element of the array were matched to positions on the cells by mapping them onto fluorescence photographs of Lucifer Yellow which had been co-injected into the cells with the Arsenazo III. 2. In response to intrasomatic stimulation the rising phase of the absorbance signals corresponded in time with the calcium spikes recorded with an intracellular electrode. There was no increase in absorbance during bursts of fast sodium spikes. Absorbance signals persisted after the sodium spikes were blocked by tetrodotoxin (TTX). In addition, the signals were largest at 660 nm and small signals of opposite polarity were found at 540 nm. These results indicate that the absorbance signals came from calcium entry into the cell resulting from the turning on of voltage-dependent calcium conductances. 3. In these experiments signals were usually seen all over the dendritic field and were weak or totally absent over the soma. In some cases signals were seen over a more restricted area. With a spatial resolution of 25 microns we were not able to see any evidence for highly localized sites of calcium entry. 4. Sometimes the rising phase of the calcium signals was separated by almost 13 ms in different parts of the dendritic field, too long to be explained by active propagation delay. This suggests that calcium spikes causing these signals can be evoked separately in different regions of the Purkinje cell dendritic field by long-lasting potentials which may reach local threshold at different times. 5. Calcium signals resulting from slow plateau after-potentials and the calcium spikes produced by them were also detected in all locations in the dendritic field. The relative distribution of amplitudes from

  7. Evaluation of Immune Responses Mediated by Listeria-Stimulated Human Dendritic Cells: Implications for Cancer Vaccine Therapy

    DTIC Science & Technology

    2014-07-01

    by Listeria -Stimulated Human Dendritic Cells: Implications for Cancer Vaccine Therapy PRINCIPAL INVESTIGATOR: David J. Chung, MD, PhD...5a. CONTRACT NUMBER Evaluation of Immune Responses Mediated by Listeria -Stimulated Human Dendritic Cells: Implications for Cancer Vaccine...ABSTRACT The purpose of this project is to study the immunomodulatory effect of Listeria on human dendritic cells (DCs) to optimize Listeria - based

  8. Time-Lapse Retinal Ganglion Cell Dendritic Field Degeneration Imaged in Organotypic Retinal Explant Culture

    PubMed Central

    Johnson, Thomas V.; Oglesby, Ericka N.; Steinhart, Matthew R.; Cone-Kimball, Elizabeth; Jefferys, Joan; Quigley, Harry A.

    2016-01-01

    Purpose To develop an ex vivo organotypic retinal explant culture system suitable for multiple time-point imaging of retinal ganglion cell (RGC) dendritic arbors over a period of 1 week, and capable of detecting dendrite neuroprotection conferred by experimental treatments. Methods Thy1-YFP mouse retinas were explanted and maintained in organotypic culture. Retinal ganglion cell dendritic arbors were imaged repeatedly using confocal laser scanning microscopy. Maximal projection z-stacks were traced by two masked investigators and dendritic fields were analyzed for characteristics including branch number, size, and complexity. One group of explants was treated with brain derived neurotrophic factor (BDNF) and ciliary neurotrophic factor (CNTF) added to the culture media. Changes in individual dendritic fields over time were detected using pair-wise comparison testing. Results Retinal ganglion cells in mouse retinal explant culture began to degenerate after 3 days with 52.4% surviving at 7 days. Dendritic field parameters showed minimal change over 8 hours in culture. Intra- and interobserver measurements of dendrite characteristics were strongly correlated (Spearman rank correlations consistently > 0.80). Statistically significant (P < 0.001) dendritic tree degeneration was detected following 7 days in culture including: 40% to 50% decreases in number of branch segments, number of junctions, number of terminal branches, and total branch length. Scholl analyses similarly demonstrated a significant decrease in dendritic field complexity. Treatment of explants with BDNF+CNTF significantly attenuated dendritic field degeneration. Conclusions Retinal explant culture of Thy1-YFP tissue provides a useful model for time-lapse imaging of RGC dendritic field degeneration over a course of several days, and is capable of detecting neuroprotective amelioration of dendritic pruning within individual RGCs. PMID:26811145

  9. Differential trafficking of transport vesicles contributes to the localization of dendritic proteins.

    PubMed

    Al-Bassam, Sarmad; Xu, Min; Wandless, Thomas J; Arnold, Don B

    2012-07-26

    In neurons, transmembrane proteins are targeted to dendrites in vesicles that traffic solely within the somatodendritic compartment. How these vesicles are retained within the somatodendritic domain is unknown. Here, we use a novel pulse-chase system, which allows synchronous release of exogenous transmembrane proteins from the endoplasmic reticulum to follow movements of post-Golgi transport vesicles. Surprisingly, we found that post-Golgi vesicles carrying dendritic proteins were equally likely to enter axons and dendrites. However, once such vesicles entered the axon, they very rarely moved beyond the axon initial segment but instead either halted or reversed direction in an actin and Myosin Va-dependent manner. In contrast, vesicles carrying either an axonal or a nonspecifically localized protein only rarely halted or reversed and instead generally proceeded to the distal axon. Thus, our results are consistent with the axon initial segment behaving as a vesicle filter that mediates the differential trafficking of transport vesicles. Copyright © 2012 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Rationalizing the use of functionalized poly-lactic-co-glycolic acid nanoparticles for dendritic cell-based targeted anticancer therapy.

    PubMed

    Kokate, Rutika A; Chaudhary, Pankaj; Sun, Xiangle; Thamake, Sanjay I; Maji, Sayantan; Chib, Rahul; Vishwanatha, Jamboor K; Jones, Harlan P

    2016-01-01

    Delivery of PLGA (poly [D, L-lactide-co-glycolide])-based biodegradable nanoparticles (NPs) to antigen presenting cells, particularly dendritic cells, has potential for cancer immunotherapy. Using a PLGA NP vaccine construct CpG-NP-Tag (CpG-ODN-coated tumor antigen [Tag] encapsulating NP) prepared using solvent evaporation technique we tested the efficacy of ex vivo and in vivo use of this construct as a feasible platform for immune-based therapy. CpG-NP-Tag NPs were avidly endocytosed and localized in the endosomal compartment of bone marrow-derived dendritic cells. Bone marrow-derived dendritic cells exposed to CpG-NP-Tag NPs exhibited an increased maturation (higher CD80/86 expression) and activation status (enhanced IL-12 secretion levels). In vivo results demonstrated attenuation of tumor growth and angiogenesis as well as induction of potent cytotoxic T-lymphocyte responses. Collectively, results validate dendritic cells stimulatory response to CpG-NP-Tag NPs (ex vivo) and CpG-NP-Tag NPs' tumor inhibitory potential (in vivo) for therapeutic applications, respectively.

  11. Direct Transfection of Dendritic Cells in the Epidermis After Plasmid Delivery Enhanced by Surface Electroporation

    PubMed Central

    Amante, Dinah H.; Smith, Trevor R.F.; Kiosses, Bill B.; Sardesai, Niranjan Y.; Humeau, Laurent M.P.F.

    2014-01-01

    Abstract The skin is rich in antigen-presenting cells and as such is an excellent target tissue for vaccination strategies. Electroporation is a physical delivery method that potentiates the uptake of DNA vaccines into target cells. Intradermal electroporation offers a minimally invasive solution to DNA delivery in the clinic. Here we describe the direct transfection of dendritic cells in the epidermis, using a surface dermal electroporation device, and specifically show a dendritic cell transfected with plasmid expressing green fluorescent protein. The dendritic cell has used its motile capabilities after transfection to move from the epidermis into the dermis, making its way to the lymphatic system. PMID:25470335

  12. Fluorescence Lifetime Imaging Microscopy reveals rerouting of SNARE trafficking driving dendritic cell activation.

    PubMed

    Verboogen, Daniëlle Rianne José; González Mancha, Natalia; Ter Beest, Martin; van den Bogaart, Geert

    2017-05-19

    SNARE proteins play a crucial role in intracellular trafficking by catalyzing membrane fusion, but assigning SNAREs to specific intracellular transport routes is challenging with current techniques. We developed a novel Förster resonance energy transfer-fluorescence lifetime imaging microscopy (FRET-FLIM)-based technique allowing visualization of real-time local interactions of fluorescently tagged SNARE proteins in live cells. We used FRET-FLIM to delineate the trafficking steps underlying the release of the inflammatory cytokine interleukin-6 (IL-6) from human blood-derived dendritic cells. We found that activation of dendritic cells by bacterial lipopolysaccharide leads to increased FRET of fluorescently labeled syntaxin 4 with VAMP3 specifically at the plasma membrane, indicating increased SNARE complex formation, whereas FRET with other tested SNAREs was unaltered. Our results revealed that SNARE complexing is a key regulatory step for cytokine production by immune cells and prove the applicability of FRET-FLIM for visualizing SNARE complexes in live cells with subcellular spatial resolution.

  13. Altered heme-mediated modulation of dendritic cell function in sickle cell alloimmunization

    PubMed Central

    Godefroy, Emmanuelle; Liu, Yunfeng; Shi, Patricia; Mitchell, W. Beau; Cohen, Devin; Chou, Stella T.; Manwani, Deepa; Yazdanbakhsh, Karina

    2016-01-01

    Transfusions are the main treatment for patients with sickle cell disease. However, alloimmunization remains a major life-threatening complication for these patients, but the mechanism underlying pathogenesis of alloimmunization is not known. Given the chronic hemolytic state characteristic of sickle cell disease, resulting in release of free heme and activation of inflammatory cascades, we tested the hypothesis that anti-inflammatory response to heme is compromised in alloimmunized sickle patients, increasing their risk of alloimmunization. Heme-exposed monocyte-derived dendritic cells from both non-alloimmunized sickle patients and healthy donors inhibited priming of pro-inflammatory CD4+ type 1 T cells, and exhibited significantly reduced levels of the maturation marker CD83. In contrast, in alloimmunized patients, heme did not reverse priming of pro-inflammatory CD4+ cells by monocyte-derived dendritic cells or their maturation. Furthermore, heme dampened NF-κB activation in non-alloimmunized, but not in alloimmunized monocyte-derived dendritic cells. Heme-mediated CD83 inhibition depended on Toll-like receptor 4 but not heme oxygenase 1. These data suggest that extracellular heme limits CD83 expression on dendritic cells in non-alloimmunized sickle patients through a Toll-like receptor 4-mediated pathway, involving NF-κB, resulting in dampening of pro-inflammatory responses, but that in alloimmunized patients this pathway is defective. This opens up the possibility of developing new therapeutic strategies to prevent sickle cell alloimmunization. PMID:27229712

  14. Altered heme-mediated modulation of dendritic cell function in sickle cell alloimmunization.

    PubMed

    Godefroy, Emmanuelle; Liu, Yunfeng; Shi, Patricia; Mitchell, W Beau; Cohen, Devin; Chou, Stella T; Manwani, Deepa; Yazdanbakhsh, Karina

    2016-09-01

    Transfusions are the main treatment for patients with sickle cell disease. However, alloimmunization remains a major life-threatening complication for these patients, but the mechanism underlying pathogenesis of alloimmunization is not known. Given the chronic hemolytic state characteristic of sickle cell disease, resulting in release of free heme and activation of inflammatory cascades, we tested the hypothesis that anti-inflammatory response to heme is compromised in alloimmunized sickle patients, increasing their risk of alloimmunization. Heme-exposed monocyte-derived dendritic cells from both non-alloimmunized sickle patients and healthy donors inhibited priming of pro-inflammatory CD4(+) type 1 T cells, and exhibited significantly reduced levels of the maturation marker CD83. In contrast, in alloimmunized patients, heme did not reverse priming of pro-inflammatory CD4(+) cells by monocyte-derived dendritic cells or their maturation. Furthermore, heme dampened NF-κB activation in non-alloimmunized, but not in alloimmunized monocyte-derived dendritic cells. Heme-mediated CD83 inhibition depended on Toll-like receptor 4 but not heme oxygenase 1. These data suggest that extracellular heme limits CD83 expression on dendritic cells in non-alloimmunized sickle patients through a Toll-like receptor 4-mediated pathway, involving NF-κB, resulting in dampening of pro-inflammatory responses, but that in alloimmunized patients this pathway is defective. This opens up the possibility of developing new therapeutic strategies to prevent sickle cell alloimmunization. Copyright© Ferrata Storti Foundation.

  15. Interactions between airway epithelial cells and dendritic cells during viral infections using an in vitro co-culture model

    EPA Science Inventory

    Rationale: Historically, single cell culture models have been limited in pathological and physiological relevance. A co-culture model of dendritic cells (DCs) and differentiated human airway epithelial cells was developed to examine potential interactions between these two cell t...

  16. Interactions between airway epithelial cells and dendritic cells during viral infections using an in vitro co-culture model

    EPA Science Inventory

    Rationale: Historically, single cell culture models have been limited in pathological and physiological relevance. A co-culture model of dendritic cells (DCs) and differentiated human airway epithelial cells was developed to examine potential interactions between these two cell t...

  17. Cell death induced by the application of alternating magnetic fields to nanoparticle-loaded dendritic cells

    NASA Astrophysics Data System (ADS)

    Marcos-Campos, I.; Asín, L.; Torres, T. E.; Marquina, C.; Tres, A.; Ibarra, M. R.; Goya, G. F.

    2011-05-01

    In this work, the capability of primary, monocyte-derived dendritic cells (DCs) to uptake iron oxide magnetic nanoparticles (MNPs) is assessed and a strategy to induce selective cell death in these MNP-loaded DCs using external alternating magnetic fields (AMFs) is reported. No significant decrease in the cell viability of MNP-loaded DCs, compared to the control samples, was observed after five days of culture. The number of MNPs incorporated into the cytoplasm was measured by magnetometry, which confirmed that 1-5 pg of the particles were uploaded per cell. The intracellular distribution of these MNPs, assessed by transmission electron microscopy, was found to be primarily inside the endosomic structures. These cells were then subjected to an AMF for 30 min and the viability of the blank DCs (i.e. without MNPs), which were used as control samples, remained essentially unaffected. However, a remarkable decrease of viability from approximately 90% to 2-5% of DCs previously loaded with MNPs was observed after the same 30 min exposure to an AMF. The same results were obtained using MNPs having either positive (NH2 + ) or negative (COOH - ) surface functional groups. In spite of the massive cell death induced by application of AMF to MNP-loaded DCs, the number of incorporated magnetic particles did not raise the temperature of the cell culture. Clear morphological changes at the cell structure after magnetic field application were observed using scanning electron microscopy. Therefore, local damage produced by the MNPs could be the main mechanism for the selective cell death of MNP-loaded DCs under an AMF. Based on the ability of these cells to evade the reticuloendothelial system, these complexes combined with an AMF should be considered as a potentially powerful tool for tumour therapy.

  18. Cell-intrinsic regulation of murine dendritic cell function and survival by prereceptor amplification of glucocorticoid.

    PubMed

    Soulier, Annelise; Blois, Sandra M; Sivakumaran, Shivajanani; Fallah-Arani, Farnaz; Henderson, Stephen; Flutter, Barry; Rabbitt, Elizabeth H; Stewart, Paul M; Lavery, Gareth G; Bennett, Clare; Curnow, S John; Chakraverty, Ronjon

    2013-11-07

    Although the inhibitory effects of therapeutic glucocorticoids (GCs) on dendritic cells (DCs) are well established, the roles of endogenous GCs in DC homeostasis are less clear. A critical element regulating endogenous GC concentrations involves local conversion of inactive substrates to active 11-hydroxyglucocorticoids, a reduction reaction catalyzed within the endoplasmic reticulum by an enzyme complex containing 11β-hydroxysteroid dehydrogenase type 1 (11βHSD1) and hexose-6-phosphate dehydrogenase (H6PDH). In this study, we found that this GC amplification pathway operates both constitutively and maximally in steady state murine DC populations and is unaffected by additional inflammatory stimuli. Under physiologic conditions, 11βHSD1-H6PDH increases the sensitivity of plasmacytoid DCs (pDCs) to GC-induced apoptosis and restricts the survival of this population through a cell-intrinsic mechanism. Upon CpG activation, the effects of enzyme activity are overridden, with pDCs becoming resistant to GCs and fully competent to release type I interferon. CD8α(+) DCs are also highly proficient in amplifying GC levels, leading to impaired maturation following toll-like receptor-mediated signaling. Indeed, pharmacologic inhibition of 11βHSD1 synergized with CpG to enhance specific T-cell responses following vaccination targeted to CD8α(+) DCs. In conclusion, amplification of endogenous GCs is a critical cell-autonomous mechanism for regulating the survival and functions of DCs in vivo.

  19. Dendritic cell-based immunotherapy for cancer and relevant challenges for transfusion medicine.

    PubMed

    Voss, Ching Y; Albertini, Mark R; Malter, James S

    2004-07-01

    The encouraging results from dendritic cell-related cancer immunotherapy have created tremendous interest for its broad clinical application. Dendritic cells are the most potent antigen-presenting cells. In cancer patients, dendritic cell production and function along with other antitumor immune defenses are compromised. Autologous dendritic cells enriched and sensitized in vitro with tumor-associated antigens can effectively elicit host cellular immunity against cancer and result in clinical antitumor responses through either direct injection or ex vivo generation of antitumor T lymphocytes. In small group studies, clinical response rates have reached 50% in patients with advanced stage of cancer. These cellular products caused minimal side effects and were well tolerated. The isolation and preparation of clinical grade dendritic cells have been driven by transfusion medicine specialists who are well versed in similar processes for hematopoietic stem-cell preparation. The purpose of this article is to review the mechanisms of tumor immune surveillance and the biology of dendritic cells relevant to tumor antigen presentation, sensitization, and T-lymphocyte stimulation. Information on tumor-associated antigens and clinical trial results with dendritic cell-based cancer immunotherapy are summarized. The potential challenges for blood banking/transfusion medicine involving both technical and regulatory issues are discussed.

  20. Clinical significance of circulating dendritic cells in patients with systemic lupus erythematosus.

    PubMed Central

    Robak, E; Smolewski, P; Woźniacka, A; Sysa-Jedrzejowska, A; Robak, T

    2004-01-01

    Dendritic cells are a complex group of mainly bone-marrow-derived leukocytes that play a role in autoimmune diseases. The total number of circulating dendritic cells (tDC), and their plasmacytoid dendritic cell (pDC) and myeloid dendritic cell (mDC1 and mDC2) subpopulations were assessed using flow cytometry. The number of tDC and their subsets were significantly lower in systemic lupus erythematosus patients than in the control group. The count of tDC and their subsets correlated with the number of T cells. The number of tDC and pDC subpopulation were lower in the patients with lymphopenia and leukopenia than in the patients without these symptoms. Our data suggest that fluctuations in blood dendritic cell count in systemic lupus erythematosus patients are much more significant in pDC than in mDC, what may be caused by their migration to the sites of inflammation including skin lesions. Positive correlation between dendritic cell number and TCD4+, TCD8+ and CD19+ B cells, testify of their interactions and influence on SLE pathogenesis. The association between dendritic cell number and clinical features seems to be less clear. PMID:15223608

  1. Unsaturated compounds induce up-regulation of CD86 on dendritic cells in the in vitro sensitization assay LCSA.

    PubMed

    Frohwein, Thomas Armin; Sonnenburg, Anna; Zuberbier, Torsten; Stahlmann, Ralf; Schreiner, Maximilian

    2016-04-01

    Unsaturated compounds are known to cause false-positive reactions in the local lymph node assay (LLNA) but not in the guinea pig maximization test. We have tested a panel of substances (succinic acid, undecylenic acid, 1-octyn-3-ol, fumaric acid, maleic acid, linoleic acid, oleic acid, alpha-linolenic acid, squalene, and arachidonic acid) in the loose-fit coculture-based sensitization assay (LCSA) to evaluate whether unspecific activation of dendritic cells is a confounder for sensitization testing in vitro. Eight out of 10 tested substances caused significant up-regulation of CD86 on dendritic cells cocultured with keratinocytes and would have been classified as sensitizers; only succinic acid was tested negative, and squalene had to be excluded from data analysis due to poor solubility in cell culture medium. Based on human data, only undecylenic acid can be considered a true sensitizer. The true sensitizing potential of 1-octyn-3-ol is uncertain. Fumaric acid and its isomer maleic acid are not known as sensitizers, but their esters are contact allergens. A group of 18- to 20-carbon chain unsaturated fatty acids (linoleic acid, oleic acid, alpha-linolenic acid, and arachidonic acid) elicited the strongest reaction in vitro. This is possibly due to the formation of pro-inflammatory lipid mediators in the cell culture causing nonspecific activation of dendritic cells. In conclusion, both the LLNA and the LCSA seem to provide false-positive results for unsaturated fatty acids. The inclusion of T cells in dendritic cell-based in vitro sensitization assays may help to eliminate false-positive results due to nonspecific dendritic cell activation. This would lead to more accurate prediction of sensitizers, which is paramount for consumer health protection and occupational safety.

  2. Study on biological characters of SGC7901 gastric cancer cell-dendritic cell fusion vaccines

    PubMed Central

    Zhang, Kun; Gao, Peng-Fen; Yu, Pei-Wu; Rao, Yun; Zhou, Li-Xin

    2006-01-01

    AIM: To detect the biological characters of the SGC7901 gastric cancer cell-dendritic cell fusion vaccines. METHODS: The suspending living SGC7901 gastric cancer cells and dendritic cells were induced to be fusioned by polyethylene glycol. Pure fusion cells were obtained by selective culture with the HAT/HT culture systems. The fusion cells were counted at different time points of culture and their growth curves were drawn to reflect their proliferative activities. The fusion cells were also cultured in culture medium to investigate whether they could grow into cell clones. MTT method was used to test the stimulating abilities of the fusion cells on T lymphocytes’ proliferations. Moreover, the fusion cells were planted into nude mice to observe whether they could grow into new planted tumors in this kind of immunodeficiency animals. RESULTS: The fusion cells had weaker proliferative activity and clone abilities than their parental cells. When they were cultured, the counts of cells did not increase remarkably, nor could they grow into cell clones in culture medium. The fusion cells could not grow into new planted tumors after planted into nude mice. The stimulating abilities of the fusion cells on T lymphocytes’ proliferations were remarkably increased than their parental dendritic cells. CONCLUSION: The SGC7901 gastric cancer cell-dendritic cell fusion vaccines have much weaker proliferative abilities than their parental cells, but they keep strong abilities to irritate the T lymphocytes and have no abilities to grow into new planted tumors in immunodeficiency animals. These are the biological basis for their anti-tumor biotherapies. PMID:16733866

  3. Human XCR1+ Dendritic Cells Derived In Vitro from CD34+ Progenitors Closely Resemble Blood Dendritic Cells, Including Their Adjuvant Responsiveness, Contrary to Monocyte-Derived Dendritic Cells

    PubMed Central

    Balan, Sreekumar; Ollion, Vincent; Colletti, Nicholas; Chelbi, Rabie; Montanana-Sanchis, Frédéric; Liu, Hong; Vu Manh, Thien-Phong; Sanchez, Cindy; Savoret, Juliette; Perrot, Ivan; Doffin, Anne-Claire; Fossum, Even; Bechlian, Didier; Chabannon, Christian; Bogen, Bjarne; Asselin-Paturel, Carine; Shaw, Michael; Soos, Timothy; Caux, Christophe; Valladeau-Guilemond, Jenny

    2014-01-01

    Human monocyte-derived dendritic cell (MoDC) have been used in the clinic with moderately encouraging results. Mouse XCR1+ DC excel at cross-presentation, can be targeted in vivo to induce protective immunity, and share characteristics with XCR1+ human DC. Assessment of the immunoactivation potential of XCR1+ human DC is hindered by their paucity in vivo and by their lack of a well-defined in vitro counterpart. We report in this study a protocol generating both XCR1+ and XCR1− human DC in CD34+ progenitor cultures (CD34-DC). Gene expression profiling, phenotypic characterization, and functional studies demonstrated that XCR1− CD34-DC are similar to canonical MoDC, whereas XCR1+ CD34-DC resemble XCR1+ blood DC (bDC). XCR1+ DC were strongly activated by polyinosinic-polycytidylic acid but not LPS, and conversely for MoDC. XCR1+ DC and MoDC expressed strikingly different patterns of molecules involved in inflammation and in cross-talk with NK or T cells. XCR1+ CD34-DC but not MoDC efficiently cross-presented a cell-associated Ag upon stimulation by polyinosinic-polycytidylic acid or R848, likewise to what was reported for XCR1+ bDC. Hence, it is feasible to generate high numbers of bona fide XCR1+ human DC in vitro as a model to decipher the functions of XCR1+ bDC and as a potential source of XCR1+ DC for clinical use. PMID:25009205

  4. Follicular dendritic cell tumor of the mediastinum: expression of fractalkine and SDF-1alpha as mast cell chemoattractants.

    PubMed

    Guettier, Catherine; Validire, Pierre; Emilie, Dominique; Tricottet, Viviane; Sebagh, Mylène; Anjo, Aurora; Misset, Jean-Louis; Reynes, Michel

    2006-02-01

    Follicular dendritic cell tumor (FDCT) is a rare tumor mainly located in laterocervical lymph nodes. We report one case of mediastinal FDCT associated with a history of bullous skin disease and clinically obvious immunosuppression. This tumor was characterized by heavy mast cell infiltration. Mast cells were in close relationship with tumor cells as demonstrated by ultrastructural examination and their presence are probably related with the strong expression of mast cell chemoattractants as fraktalkine and stromal cell-derived factor-1alpha by tumor cells. The long follow-up period of more than 17 years allowed to us assess the relatively indolent evolution of this tumor characterized by three slowly growing local recurrences without metastasis.

  5. C-type lectin-like receptor LOX-1 promotes dendritic cell-mediated class-switched B cell responses.

    PubMed

    Joo, HyeMee; Li, Dapeng; Dullaers, Melissa; Kim, Tae-Whan; Duluc, Dorothee; Upchurch, Katherine; Xue, Yaming; Zurawski, Sandy; Le Grand, Roger; Liu, Yong-Jun; Kuroda, Marcelo; Zurawski, Gerard; Oh, SangKon

    2014-10-16

    Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is a pattern-recognition receptor for a variety of endogenous and exogenous ligands. However, LOX-1 function in the host immune response is not fully understood. Here, we report that LOX-1 expressed on dendritic cells (DCs) and B cells promotes humoral responses. On B cells LOX-1 signaling upregulated CCR7, promoting cellular migration toward lymphoid tissues. LOX-1 signaling on DCs licensed the cells to promote B cell differentiation into class-switched plasmablasts and led to downregulation of chemokine receptor CXCR5 and upregulation of chemokine receptor CCR10 on plasmablasts, enabling their exit from germinal centers and migration toward local mucosa and skin. Finally, we found that targeting influenza hemagglutinin 1 (HA1) subunit to LOX-1 elicited HA1-specific protective antibody responses in rhesus macaques. Thus, LOX-1 expressed on B cells and DC cells has complementary functions to promote humoral immune responses.

  6. Aging and the Dendritic Cell System: Implications for Cancer

    PubMed Central

    Shurin, Michael R.; Shurin, Galina V.; Chatta, Gurkamal S.

    2007-01-01

    The immune system shows a decline in responsiveness to antigens both with aging, as well as in the presence of tumors. The malfunction of the immune system with age can be attributed to developmental and functional alterations in several cell populations. Previous studies have shown defects in humoral responses and abnormalities in T cell function in aged individuals, but have not distinguished between abnormalities in antigen presentation and intrinsic T cell or B cell defects in aged individuals. Dendritic cells (DC) play a pivotal role in regulating immune responses by presenting antigens to naïve T lymphocytes, modulating Th1/Th2/Treg balance, producing numerous regulatory cytokines and chemokines, and modifying survival of immune effectors. DC are receiving increased attention due to their involvement in the immunobiology of tolerance and autoimmunity, as well as their potential role as biological adjuvants in tumor vaccines. Recent advances in the molecular and cell biology of different DC populations allow for addressing the issue of DC and aging both in rodents and humans. Since DC play a crucial role in initiating and regulating immune responses, it is reasonable to hypothesize that they are directly involved in altered antitumor immunity in aging. However, the results of studies focusing on DC in the elderly are conflicting. The present review summarizes the available human and experimental animal data on quantitative and qualitative alterations of DC in aging and discusses the potential role of the DC system in the increased incidence of cancer in the elderly. PMID:17446082

  7. Targeting Skin Dendritic Cells to Improve Intradermal Vaccination

    PubMed Central

    Romani, N.; Flacher, V.; Tripp, C. H.; Sparber, F.; Ebner, S.; Stoitzner, P.

    2014-01-01

    Vaccinations in medicine are typically administered into the muscle beneath the skin or into the subcutaneous fat. As a consequence, the vaccine is immunologically processed by antigen-presenting cells of the skin or the muscle. Recent evidence suggests that the clinically seldom used intradermal route is effective and possibly even superior to the conventional subcutaneous or intramuscular route. Several types of professional antigen-presenting cells inhabit the healthy skin. Epidermal Langerhans cells (CD207/langerin+), dermal langerinneg, and dermal langerin+ dendritic cells (DC) have been described, the latter subset so far only in mouse skin. In human skin langerinneg dermal DC can be further classified based on their reciprocal expression of CD1a and CD14. The relative contributions of these subsets to the generation of immunity or tolerance are still unclear. Yet, specializations of these different populations have become apparent. Langerhans cells in human skin appear to be specialized for induction of cytotoxic T lymphocytes; human CD14+ dermal DC can promote antibody production by B cells. It is currently attempted to rationally devise and improve vaccines by harnessing such specific properties of skin DC. This could be achieved by specifically targeting functionally diverse skin DC subsets. We discuss here advances in our knowledge on the immunological properties of skin DC and strategies to significantly improve the outcome of vaccinations by applying this knowledge. PMID:21253784

  8. Antithymocyte Globulin Induces a Tolerogenic Phenotype in Human Dendritic Cells.

    PubMed

    Roider, Tobias; Katzfuß, Michael; Matos, Carina; Singer, Katrin; Renner, Kathrin; Oefner, Peter J; Dettmer-Wilde, Katja; Herr, Wolfgang; Holler, Ernst; Kreutz, Marina; Peter, Katrin

    2016-12-11

    Antithymocyte globulin (ATG) is used in the prevention of graft-versus-host disease during allogeneic hematopoietic stem cell transplantation. It is generally accepted that ATG mediates its immunosuppressive effect primarily via depletion of T cells. Here, we analyzed the impact of ATG-Fresenius (now Grafalon(®)) on human monocyte-derived dendritic cells (DC). ATG induced a semi-mature phenotype in DC with significantly reduced expression of CD14, increased expression of HLA-DR, and intermediate expression of CD54, CD80, CD83, and CD86. ATG-DC showed an increase in IL-10 secretion but no IL-12 production. In line with this tolerogenic phenotype, ATG caused a significant induction of indoleamine 2,3-dioxygenase expression and a concomitant increase in levels of tryptophan metabolites in the supernatants of DC. Further, ATG-DC did not induce the proliferation of allogeneic T cells in a mixed lymphocyte reaction but actively suppressed the T cell proliferation induced by mature DC. These data suggest that besides its well-known effect on T cells, ATG modulates the phenotype of DC in a tolerogenic way, which might constitute an essential part of its immunosuppressive action in vivo.

  9. Dendritic Cell-Mediated In Vivo Bone Resorption

    PubMed Central

    Maitra, Radhashree; Follenzi, Antonia; Yaghoobian, Arash; Montagna, Cristina; Merlin, Simone; Cannizzo, Elvira S.; Hardin, John A.; Cobelli, Neil; Stanley, E. Richard; Santambrogio, Laura

    2013-01-01

    Osteoclasts are resident cells of the bone that are primarily involved in the physiological and pathological remodeling of this tissue. Mature osteoclasts are multinucleated giant cells that are generated from the fusion of circulating precursors originating from the monocyte/macrophage lineage. During inflammatory bone conditions in vivo, de novo osteoclastogenesis is observed but it is currently unknown whether, besides increased osteoclast differentiation from undifferentiated precursors, other cell types can generate a multinucleated giant cell phenotype with bone resorbing activity. In this study, an animal model of calvaria-induced aseptic osteolysis was used to analyze possible bone resorption capabilities of dendritic cells (DCs). We determined by FACS analysis and confocal microscopy that injected GFP-labeled immature DCs were readily recruited to the site of osteolysis. Upon recruitment, the cathepsin K-positive DCs were observed in bone-resorbing pits. Additionally, chromosomal painting identified nuclei from female DCs, previously injected into a male recipient, among the nuclei of giant cells at sites of osteolysis. Finally, osteolysis was also observed upon recruitment of CD11c-GFP conventional DCs in Csf1r–/– mice, which exhibit a severe depletion of resident osteoclasts and tissue macrophages. Altogether, our analysis indicates that DCs may have an important role in bone resorption associated with various inflammatory diseases. PMID:20581147

  10. Defining human dendritic cell progenitors by multiparametric flow cytometry

    PubMed Central

    Breton, Gaëlle; Lee, Jaeyop; Liu, Kang; Nussenzweig, Michel C

    2015-01-01

    Human dendritic cells (DCs) develop from progressively restricted bone marrow (BM) progenitors: these progenitor cells include granulocyte, monocyte and DC progenitor (GMDP) cells; monocyte and DC progenitor (MDP) cells; and common DC progenitor (CDP) and DC precursor (pre-DC) cells. These four DC progenitors can be defined on the basis of the expression of surface markers such as CD34 and hematopoietin receptors. In this protocol, we describe five multiparametric flow cytometry panels that can be used as a tool (i) to simultaneously detect or phenotype the four DC progenitors, (ii) to isolate DC progenitors to enable in vitro differentiation or (iii) to assess the in vitro differentiation and proliferation of DC progenitors. The entire procedure from isolation of cells to flow cytometry can be completed in 3–7 h. This protocol provides optimized antibody panels, as well as gating strategies, for immunostaining of BM and cord blood specimens to study human DC hematopoiesis in health, disease and vaccine settings. PMID:26292072

  11. Minocycline promotes the generation of dendritic cells with regulatory properties

    PubMed Central

    Im, Sun-A; Kim, Ji-Wan; Lee, Jae-Hee; Park, Young-Jun; Song, Sukgil; Lee, Chong-Kil

    2016-01-01

    Minocycline, which has long been used as a broad-spectrum antibiotic, also exhibits non-antibiotic properties such as inhibition of inflammation and angiogenesis. In this study, we show that minocycline significantly enhances the generation of dendritic cells (DCs) from mouse bone marrow (BM) cells when used together with GM-CSF and IL-4. DCs generated from BM cells in the presence of minocycline (Mino-DCs) demonstrate the characteristics of regulatory DCs. Compared with control DCs, Mino-DCs are resistant to subsequent maturation stimuli, impaired in MHC class II-restricted exogenous Ag presentation, and show decreased cytokine secretion. Mino-DCs also show decreased ability to prime allogeneic-specific T cells, while increasing the expansion of CD4+CD25+Foxp3+ T regulatory cells both in vitro and in vivo. In addition, pretreatment with MOG35-55 peptide-pulsed Mino-DCs ameliorates clinical signs of experimental autoimmune encephalitis induced by MOG peptide injection. Our study identifies minocycline as a new pharmacological agent that could be potentially used to increase the production of regulatory DCs for cell therapy to treat autoimmune disorders, allergy, and transplant rejection. PMID:27463004

  12. Antithymocyte Globulin Induces a Tolerogenic Phenotype in Human Dendritic Cells

    PubMed Central

    Roider, Tobias; Katzfuß, Michael; Matos, Carina; Singer, Katrin; Renner, Kathrin; Oefner, Peter J.; Dettmer-Wilde, Katja; Herr, Wolfgang; Holler, Ernst; Kreutz, Marina; Peter, Katrin

    2016-01-01

    Antithymocyte globulin (ATG) is used in the prevention of graft-versus-host disease during allogeneic hematopoietic stem cell transplantation. It is generally accepted that ATG mediates its immunosuppressive effect primarily via depletion of T cells. Here, we analyzed the impact of ATG-Fresenius (now Grafalon®) on human monocyte-derived dendritic cells (DC). ATG induced a semi-mature phenotype in DC with significantly reduced expression of CD14, increased expression of HLA-DR, and intermediate expression of CD54, CD80, CD83, and CD86. ATG-DC showed an increase in IL-10 secretion but no IL-12 production. In line with this tolerogenic phenotype, ATG caused a significant induction of indoleamine 2,3-dioxygenase expression and a concomitant increase in levels of tryptophan metabolites in the supernatants of DC. Further, ATG-DC did not induce the proliferation of allogeneic T cells in a mixed lymphocyte reaction but actively suppressed the T cell proliferation induced by mature DC. These data suggest that besides its well-known effect on T cells, ATG modulates the phenotype of DC in a tolerogenic way, which might constitute an essential part of its immunosuppressive action in vivo. PMID:27973435

  13. Hypergravity Effects on Dendritic Cells and Vascular Wall Interactions

    NASA Astrophysics Data System (ADS)

    Bellik, L.; Parenti, A.; Ledda, F.; Basile, V.; Romano, G.; Fusi, F.; Monici, M.

    2009-01-01

    Dendritic cells (DCs), the most potent antigen-presenting cells inducing specific immune responses, are involved in the pathogenesis of atherosclerosis. In this inflammatory disease, DCs increase in number, being particularly abundant in the shoulder regions of plaques. Since the exposure to altered gravitational conditions results in a significant impairment of the immune function, the aim of this study was to investigate the effects of hypergravity on both the function of DCs and their interactions with the vascular wall cells. Monocytes from peripheral blood mononuclear cells of healthy volunteers were sorted by CD14+ magnetic beads selection, cultured for 6 days in medium supplemented with GM-CSF and IL-4, followed by a further maturation stimulus. DC phenotype, assessed by flow cytometry, showed a high expression of the specific DC markers CD80, CD86, HLA-DR and CD83. The DCs obtained were then exposed to hypergravitational stimuli and their phenotype, cytoskeleton, ability to activate lymphocytes and interaction with vascular wall cells were investigated. The findings showed that the exposure to hypergravity conditions resulted in a significant impairment of DC cytoskeletal organization, without affecting the expression of DC markers. Moreover, an increase in DC adhesion to human vascular smooth muscle cells and in their ability to activate lymphocytes was observed.

  14. Dendritic cell targeted vaccines: Recent progresses and challenges

    PubMed Central

    Chen, Pengfei; Liu, Xinsheng; Sun, Yuefeng; Zhou, Peng; Wang, Yonglu; Zhang, Yongguang

    2016-01-01

    ABSTRACT Dendritic cells (DCs) are known to be a set of morphology, structure and function of heterogeneous professional antigen presenting cells (APCs), as well as the strongest functional antigen presenting cells, which can absorb, process and present antigens. As the key regulators of innate and adaptive immune responses, DCs are at the center of the immune system and capable of interacting with both B cells and T cells, thereby manipulating the humoral and cellular immune responses. DCs provide an essential link between the innate and adaptive immunity, and the strong immune activation function of DCs and their properties of natural adjuvants, make them a valuable target for antigen delivery. Targeting antigens to DC-specific endocytic receptors in combination with the relevant antibodies or ligands along with immunostimulatory adjuvants has been recently recognized as a promising strategy for designing an effective vaccine that elicits a strong and durable T cell response against intracellular pathogens and cancer. This opinion article provides a brief summary of the rationales, superiorities and challenges of existing DC-targeting approaches. PMID:26513200

  15. Follicular Dendritic Cells Emerge from Ubiquitous Perivascular Precursors

    PubMed Central

    Krautler, Nike Julia; Kana, Veronika; Kranich, Jan; Tian, Yinghua; Perera, Dushan; Lemm, Doreen; Schwarz, Petra; Armulik, Annika; Browning, Jeffrey L.; Tallquist, Michelle; Buch, Thorsten; Oliveira-Martins, José B.; Zhu, Caihong; Hermann, Mario; Wagner, Ulrich; Brink, Robert; Heikenwalder, Mathias; Aguzzi, Adriano

    2013-01-01

    Summary The differentiation of follicular dendritic cells (FDC) is essential to the remarkable microanatomic plasticity of lymphoid follicles. Here we show that FDC arise from ubiquitous perivascular precursors (preFDC) expressing platelet-derived growth factor receptor β (PDGFRβ). PDGFRβ-Cre-driven reporter gene recombination resulted in FDC labeling, whereas conditional ablation of PDGFRβ+-derived cells abolished FDC, indicating that FDC originate from PDGFRβ+ cells. Lymphotoxin-α-overexpressing prion protein (PrP)+ kidneys developed PrP+ FDC after transplantation into PrP mice, confirming that preFDC exist outside lymphoid organs. Adipose tissue-derived PDGFRβ+ stromal-vascular cells responded to FDC maturation factors and, when transplanted into lymphotoxin β receptor (LTβR) kidney capsules, differentiated into Mfge8+CD21/35+ FcγRIIβ+PrP+ FDC capable of trapping immune complexes and recruiting B cells. Spleens of lymphocyte-deficient mice contained perivascular PDGFRβ+ FDC precursors whose expansion required both lymphoid tissue inducer (LTi) cells and lymphotoxin. The ubiquity of preFDC and their strategic location at blood vessels may explain the de novo generation of organized lymphoid tissue at sites of lymphocytic inflammation. PMID:22770220

  16. Spherical Lactic Acid Bacteria Activate Plasmacytoid Dendritic Cells Immunomodulatory Function via TLR9-Dependent Crosstalk with Myeloid Dendritic Cells

    PubMed Central

    Jounai, Kenta; Ikado, Kumiko; Sugimura, Tetsu; Ano, Yasuhisa; Braun, Jonathan; Fujiwara, Daisuke

    2012-01-01

    Plasmacytoid dendritic cells (pDC) are a specialized sensor of viral and bacterial nucleic acids and a major producer of IFN-α that promotes host defense by priming both innate and acquired immune responses. Although synthetic Toll-like receptor (TLR) ligands, pathogenic bacteria and viruses activate pDC, there is limited investigation of non-pathogenic microbiota that are in wide industrial dietary use, such as lactic acid bacteria (LAB). In this study, we screened for LAB strains, which induce pDC activation and IFN-α production using murine bone marrow (BM)-derived Flt-3L induced dendritic cell culture. Microbial strains with such activity on pDC were absent in a diversity of bacillary strains, but were observed in certain spherical species (Lactococcus, Leuconostoc, Streptococcus and Pediococcus), which was correlated with their capacity for uptake by pDC. Detailed study of Lactococcus lactis subsp. lactis JCM5805 and JCM20101 revealed that the major type I and type III interferons were induced (IFN-α, -β, and λ). IFN-α induction was TLR9 and MyD88-dependent; a slight impairment was also observed in TLR4-/- cells. While these responses occurred with purified pDC, IFN-α production was synergistic upon co-culture with myeloid dendritic cells (mDC), an interaction that required direct mDC-pDC contact. L. lactis strains also stimulated expression of immunoregulatory receptors on pDC (ICOS-L and PD-L1), and accordingly augmented pDC induction of CD4+CD25+FoxP3+ Treg compared to the Lactobacillus strain. Oral administration of L. lactis JCM5805 induced significant activation of pDC resident in the intestinal draining mesenteric lymph nodes, but not in a remote lymphoid site (spleen). Taken together, certain non-pathogenic spherical LAB in wide dietary use has potent and diverse immunomodulatory effects on pDC potentially relevant to anti-viral immunity and chronic inflammatory disease. PMID:22505996

  17. Lateral contacts and interactions of horizontal cell dendrites in the retina of the larval tiger salamander.

    PubMed

    Lasansky, A

    1980-04-01

    1. The contacts of horizontal cell dendrites with processes of other second order neurones were studied at the level of the electron microscope in serial sections of the salamander retina. Intracellular recordings of the responses to light of horizontal and bipolar cells were used to investigate the possible significance of some of the morphological findings.2. Horizontal cell dendrites make close membrane appositions (gap junctions) with one another and are post-synaptic to bipolar cell dendrites at presumed chemical synapses. On the other hand, there is no clear evidence that horizontal cell dendrites are presynaptic to any other neuronal processes at the outer plexiform layer, so that the output connexions of horizontal cell bodies remain a matter of speculation.3. It is suggested that the bipolar cell input and the gap junctions between dendrites contribute, respectively, depolarizing and hyperpolarizing components to the responses of horizontal cell bodies to surround illumination. In addition, the facilitatory effect of central illumination on the surround response of horizontal cell bodies may result, although perhaps only partly, from observed properties of the surround response of bipolar cells.4. In the course of these observations, bipolar cells were found to be presynaptic at the outer plexiform layer not only to horizontal cell dendrites, but also to other bipolar cells, horizontal cell axon terminals and certain processes belonging to an as yet unidentified neurone.

  18. Multidendritic sensory neurons in the adult Drosophila abdomen: origins, dendritic morphology, and segment- and age-dependent programmed cell death

    PubMed Central

    Shimono, Kohei; Fujimoto, Azusa; Tsuyama, Taiichi; Yamamoto-Kochi, Misato; Sato, Motohiko; Hattori, Yukako; Sugimura, Kaoru; Usui, Tadao; Kimura, Ken-ichi; Uemura, Tadashi

    2009-01-01

    Background For the establishment of functional neural circuits that support a wide range of animal behaviors, initial circuits formed in early development have to be reorganized. One way to achieve this is local remodeling of the circuitry hardwiring. To genetically investigate the underlying mechanisms of this remodeling, one model system employs a major group of Drosophila multidendritic sensory neurons - the dendritic arborization (da) neurons - which exhibit dramatic dendritic pruning and subsequent growth during metamorphosis. The 15 da neurons are identified in each larval abdominal hemisegment and are classified into four categories - classes I to IV - in order of increasing size of their receptive fields and/or arbor complexity at the mature larval stage. Our knowledge regarding the anatomy and developmental basis of adult da neurons is still fragmentary. Results We identified multidendritic neurons in the adult Drosophila abdomen, visualized the dendritic arbors of the individual neurons, and traced the origins of those cells back to the larval stage. There were six da neurons in abdominal hemisegment 3 or 4 (A3/4) of the pharate adult and the adult just after eclosion, five of which were persistent larval da neurons. We quantitatively analyzed dendritic arbors of three of the six adult neurons and examined expression in the pharate adult of key transcription factors that result in the larval class-selective dendritic morphologies. The 'baseline design' of A3/4 in the adult was further modified in a segment-dependent and age-dependent manner. One of our notable findings is that a larval class I neuron, ddaE, completed dendritic remodeling in A2 to A4 and then underwent caspase-dependent cell death within 1 week after eclosion, while homologous neurons in A5 and in more posterior segments degenerated at pupal stages. Another finding is that the dendritic arbor of a class IV neuron, v'ada, was immediately reshaped during post-eclosion growth. It exhibited

  19. Multidendritic sensory neurons in the adult Drosophila abdomen: origins, dendritic morphology, and segment- and age-dependent programmed cell death.

    PubMed

    Shimono, Kohei; Fujimoto, Azusa; Tsuyama, Taiichi; Yamamoto-Kochi, Misato; Sato, Motohiko; Hattori, Yukako; Sugimura, Kaoru; Usui, Tadao; Kimura, Ken-ichi; Uemura, Tadashi

    2009-10-02

    For the establishment of functional neural circuits that support a wide range of animal behaviors, initial circuits formed in early development have to be reorganized. One way to achieve this is local remodeling of the circuitry hardwiring. To genetically investigate the underlying mechanisms of this remodeling, one model system employs a major group of Drosophila multidendritic sensory neurons - the dendritic arborization (da) neurons - which exhibit dramatic dendritic pruning and subsequent growth during metamorphosis. The 15 da neurons are identified in each larval abdominal hemisegment and are classified into four categories - classes I to IV - in order of increasing size of their receptive fields and/or arbor complexity at the mature larval stage. Our knowledge regarding the anatomy and developmental basis of adult da neurons is still fragmentary. We identified multidendritic neurons in the adult Drosophila abdomen, visualized the dendritic arbors of the individual neurons, and traced the origins of those cells back to the larval stage. There were six da neurons in abdominal hemisegment 3 or 4 (A3/4) of the pharate adult and the adult just after eclosion, five of which were persistent larval da neurons. We quantitatively analyzed dendritic arbors of three of the six adult neurons and examined expression in the pharate adult of key transcription factors that result in the larval class-selective dendritic morphologies. The 'baseline design' of A3/4 in the adult was further modified in a segment-dependent and age-dependent manner. One of our notable findings is that a larval class I neuron, ddaE, completed dendritic remodeling in A2 to A4 and then underwent caspase-dependent cell death within 1 week after eclosion, while homologous neurons in A5 and in more posterior segments degenerated at pupal stages. Another finding is that the dendritic arbor of a class IV neuron, v'ada, was immediately reshaped during post-eclosion growth. It exhibited prominent radial

  20. PM10-stimulated airway epithelial cells activate primary human dendritic cells independent of uric acid: application of an in vitro model system exposing dendritic cells to airway epithelial cell-conditioned media.

    PubMed

    Hirota, Jeremy A; Alexis, Neil E; Pui, Mandy; Wong, SzeWing; Fung, Elkie; Hansbro, Phillip; Knight, Darryl A; Sin, Don D; Carlsten, Chris

    2014-08-01

    Airway epithelial cells represent the first line of defence against inhaled insults, including air pollution. Air pollution can activate innate immune signalling in airway epithelial cells leading to the production of soluble mediators that can influence downstream inflammatory cells. Our objective was to develop and validate a model of dendritic cell exposure to airway epithelial cell-conditioned media. After establishing the model, we explored how soluble mediators released from airway epithelial cells in response to air pollution influenced the phenotype of dendritic cells. Human airway epithelial cells were cultured under control and urban particulate matter (PM10) exposure conditions with or without pharmacological inhibitors of the uric acid pathway. Culture supernatants were collected for conditioned media experiments with peripheral blood mononuclear cell-derived dendritic cells analysed by flow cytometry. Monocytes derived from peripheral blood mononuclear cells cultured in interleukin-4 and granulocyte macrophage colony stimulating factor differentiated into immature dendritic cells that phenotypically differentiated into mature dendritic cells in response to conditioned media from phorbol myristate acetate-activated THP-1 monocytes. Exposure of immature dendritic cells to conditioned media from airway epithelial cells exposed to PM10 resulted in dendritic cell maturation that was independent of uric acid. We present a conditioned media model useful for interrogating the contribution of soluble mediators produced by airway epithelial cells to dendritic cell phenotype and function. Furthermore, we demonstrate that PM10 exposure induces airway epithelial cell production of soluble mediators that induce maturation of dendritic cells independent of uric acid. © 2014 Asian Pacific Society of Respirology.

  1. Adaptive (T and B cells) immunity and control by dendritic cells in atherosclerosis.

    PubMed

    Ait-Oufella, Hafid; Sage, Andrew P; Mallat, Ziad; Tedgui, Alain

    2014-05-09

    Chronic inflammation in response to lipoprotein accumulation in the arterial wall is central in the development of atherosclerosis. Both innate and adaptive immunity are involved in this process. Adaptive immune responses develop against an array of potential antigens presented to effector T lymphocytes by antigen-presenting cells, especially dendritic cells. Functional analysis of the role of different T-cell subsets identified the Th1 responses as proatherogenic, whereas regulatory T-cell responses exert antiatherogenic activities. The effect of Th2 and Th17 responses is still debated. Atherosclerosis is also associated with B-cell activation. Recent evidence established that conventional B-2 cells promote atherosclerosis. In contrast, innate B-1 B cells offer protection through secretion of natural IgM antibodies. This review discusses the recent development in our understanding of the role of T- and B-cell subsets in atherosclerosis and addresses the role of dendritic cell subpopulations in the control of adaptive immunity.

  2. Increased plasmacytoid dendritic cells in Guillain-Barré syndrome.

    PubMed

    Wang, Yu-Zhong; Feng, Xun-Gang; Wang, Qian; Xing, Chun-Ye; Shi, Qi-Guang; Kong, Qing-Xia; Cheng, Pan-Pan; Zhang, Yong; Hao, Yan-Lei; Yuki, Nobuhiro

    2015-06-15

    Guillain-Barré syndrome (GBS) is a post-infectious autoimmune disease. Dendritic cells (DCs) can recognize the pathogen and modulate the host immune response. Exploring the role of DCs in GBS will help our understanding of the disease development. In this study, we aimed to analyze plasmacytoid and conventional DCs in peripheral blood of patients with GBS at different stages of the disease: acute phase as well as early and late recovery phases. There was a significant increase of plasmacytoid DCs in the acute phase (p=0.03 vs healthy donors). There was a positive correlation between percentage of plasmacytoid DCs and the clinical severity of patients with GBS (r=0.61, p<0.001). Quantitative polymerase chain reaction and flow cytometry confirmed the aberrant plasmacytoid DCs in GBS. Thus, plasmacytoid DCs may participate in the development of GBS.

  3. Designing vaccines based on biology of human dendritic cell subsets

    PubMed Central

    Palucka, Karolina; Banchereau, Jacques; Mellman, Ira

    2010-01-01

    The effective vaccines developed against a variety of infectious agents, including polio, measles and Hepatitis B, represent major achievements in medicine. These vaccines, usually composed of microbial antigens, are often associated with an adjuvant that activates dendritic cells (DCs). Many infectious diseases are still in need of an effective vaccine including HIV, malaria, hepatitis C and tuberculosis. In some cases, the induction of cellular rather than humoral responses may be more important as the goal is to control and eliminate the existing infection rather than to prevent it. Our increased understanding of the mechanisms of antigen presentation, particularly with the description of DC subsets with distinct functions, as well as their plasticity in responding to extrinsic signals, represent opportunities to develop novel vaccines. In addition, we foresee that this increased knowledge will permit us to design vaccines that will reprogram the immune system to intervene therapeutically in cancer, allergy and autoimmunity. PMID:21029958

  4. Blood monocytes: development, heterogeneity, and relationship with dendritic cells.

    PubMed

    Auffray, Cedric; Sieweke, Michael H; Geissmann, Frederic

    2009-01-01

    Monocytes are circulating blood leukocytes that play important roles in the inflammatory response, which is essential for the innate response to pathogens. But inflammation and monocytes are also involved in the pathogenesis of inflammatory diseases, including atherosclerosis. In adult mice, monocytes originate in the bone marrow in a Csf-1R (MCSF-R, CD115)-dependent manner from a hematopoietic precursor common for monocytes and several subsets of macrophages and dendritic cells (DCs). Monocyte heterogeneity has long been recognized, but in recent years investigators have identified three functional subsets of human monocytes and two subsets of mouse monocytes that exert specific roles in homeostasis and inflammation in vivo, reminiscent of those of the previously described classically and alternatively activated macrophages. Functional characterization of monocytes is in progress in humans and rodents and will provide a better understanding of the pathophysiology of inflammation.

  5. Dendritic epidermal T cells facilitate wound healing in diabetic mice

    PubMed Central

    Liu, Zhongyang; Xu, Yingbin; Chen, Lei; Xie, Julin; Tang, Jinming; Zhao, Jingling; Shu, Bin; Qi, Shaohai; Chen, Jian; Liang, Guangping; Luo, Gaoxing; Wu, Jun; He, Weifeng; Liu, Xusheng

    2016-01-01

    The impairment of skin repair in diabetic patients can lead to increased morbidity and mortality. Proper proliferation, apoptosis and migration in keratinocytes are vital for skin repair, but in diabetic patients, hyperglycemia impairs this process. Dendritic epidermal T cells (DETCs) are an important part of the resident cutaneous immunosurveillance program. We observed a reduction in the number of DETCs in a streptozotocin-induced diabetic mouse model. This reduction in DETCs resulted in decreased IGF-1 and KGF production in the epidermis, which is closely associated with diabetic delayed wound closure. DETCs ameliorated the poor wound-healing conditions in diabetic mice by increasing keratinocyte migration and proliferation and decreasing keratinocyte apoptosis in diabetes-like microenvironments. Our results elucidate a new mechanism for diabetic delayed wound closure and point to a new strategy for the treatment of wounds in diabetic patients. PMID:27347345

  6. Plasmacytoid Dendritic Cells and the Control of Herpesvirus Infections

    PubMed Central

    Baranek, Thomas; Zucchini, Nicolas; Dalod, Marc

    2009-01-01

    Type-I interferons (IFN-I) are cytokines essential for vertebrate antiviral defense, including against herpesviruses. IFN-I have potent direct antiviral activities and also mediate a multiplicity of immunoregulatory functions, which can either promote or dampen antiviral adaptive immune responses. Plasmacytoid dendritic cells (pDCs) are the professional producers of IFN-I in response to many viruses, including all of the herpesviruses tested. There is strong evidence that pDCs could play a major role in the initial orchestration of both innate and adaptive antiviral immune responses. Depending on their activation pattern, pDC responses may be either protective or detrimental to the host. Here, we summarize and discuss current knowledge regarding pDC implication in the physiopathology of mouse and human herpesvirus infections, and we discuss how pDC functions could be manipulated in immunotherapeutic settings to promote health over disease. PMID:21994554

  7. Induction of JAM-A during differentiation of human THP-1 dendritic cells.

    PubMed

    Ogasawara, Noriko; Kojima, Takashi; Go, Mitsuru; Fuchimoto, Jun; Kamekura, Ryuta; Koizumi, Jun-ichi; Ohkuni, Tsuyoshi; Masaki, Tomoyuki; Murata, Masaki; Tanaka, Satoshi; Ichimiya, Shingo; Himi, Tetsuo; Sawada, Norimasa

    2009-11-20

    Junctional adhesion molecule (JAM)-A is not only localized at tight junctions of endothelial and epithelial cells but is also expressed on circulating leukocytes and dendritic cells (DCs). In the present study, to investigate the regulation of JAM-A in DCs, mature DCs were differentiated from the human monocytic cell THP-1 by treatment with IL-4, GM-CSF, TNF-alpha, and ionomycin, and some cells were pretreated with the PPAR-gamma agonists. In the THP-1 monocytes, mRNAs of tight junction molecules, occludin, tricellulin, JAM-A, ZO-1, ZO-2 and claudin-4, -7, -8, and -9 were detected by RT-PCR. In mature DCs that had elongated dendrites, mRNA and protein of JAM-A were significantly increased compared to the monocytes. PPAR-gamma agonists prevented the elongation of dentrites but not upregulation of JAM-A in mature DCs. These findings indicated that the induction of JAM-A occurred during differentiation of human THP-1 DCs and was independent of PPAR-gamma and the p38 MAPK pathway.

  8. CD4 Receptor is a Key Determinant of Divergent HIV-1 Sensing by Plasmacytoid Dendritic Cells

    PubMed Central

    Wilen, Craig; Gopal, Ramya; Huq, Rumana; Wu, Vernon; Sunseri, Nicole; Bhardwaj, Nina

    2016-01-01

    Plasmacytoid dendritic cells (pDC) are innate immune cells that sense viral nucleic acids through endosomal Toll-like receptor (TLR) 7/9 to produce type I interferon (IFN) and to differentiate into potent antigen presenting cells (APC). Engagement of TLR7/9 in early endosomes appears to trigger the IRF7 pathway for IFN production whereas engagement in lysosomes seems to trigger the NF-κB pathway for maturation into APC. We showed previously that HIV-1 (HIV) localizes predominantly to early endosomes, not lysosomes, and mainly stimulate IRF7 rather than NF-κB signaling pathways in pDC. This divergent signaling may contribute to disease progression through production of pro-apoptotic and pro-inflammatory IFN and inadequate maturation of pDCs. We now demonstrate that HIV virions may be re-directed to lysosomes for NF-κB signaling by either pseudotyping HIV with influenza hemagglutinin envelope or modification of CD4 mediated-intracellular trafficking. These data suggest that HIV envelope-CD4 receptor interactions drive pDC activation toward an immature IFN producing phenotype rather than differentiation into a mature dendritic cell phenotype. PMID:27082754

  9. Targeting Toll-like receptor signaling in plasmacytoid dendritic cells and autoreactive B cells as a therapy for lupus.

    PubMed

    Lenert, Petar S

    2006-01-01

    This review focuses on the role of Toll-like receptors (TLRs) in lupus and on possibilities to treat lupus using TLR modulating inhibitory oligodeoxynucleotides (INH-ODNs). TLRs bridge innate and adaptive immune responses and may play an important role in the pathogenesis of systemic lupus erythematosus. Of particular interest are TLR3, -7, -8, and -9, which are localized intracellularly. These TLRs recognize single-stranded or double-stranded RNA or hypomethylated CpG-DNA. Exposure to higher order CpG-DNA ligands or to immune complexed self-RNA triggers activation of autoreactive B cells and plasmacytoid dendritic cells. INH-ODNs were recently developed that block all downstream signaling events in TLR9-responsive cells. Some of these INH-ODNs can also target TLR7 signaling pathways. Based on their preferential cell reactivity, we classify INH-ODNs into class B and class R. Class B ('broadly reactive') INH-ODNs target a broad range of TLR-expressing cells. Class R ('restricted') INH-ODNs easily form DNA duplexes or higher order structures, and are preferentially recognized by autoreactive B cells and plasmacytoid dendritic cells, rather than by non-DNA specific follicular B cells. Both classes of INH-ODNs can block animal lupus. Hence, therapeutic application of these novel INH-ODNs in human lupus, particularly class R INH-ODNs, may result in more selective and disease-specific immunosuppression.

  10. Targeting Toll-like receptor signaling in plasmacytoid dendritic cells and autoreactive B cells as a therapy for lupus

    PubMed Central

    Lenert, Petar S

    2006-01-01

    This review focuses on the role of Toll-like receptors (TLRs) in lupus and on possibilities to treat lupus using TLR modulating inhibitory oligodeoxynucleotides (INH-ODNs). TLRs bridge innate and adaptive immune responses and may play an important role in the pathogenesis of systemic lupus erythematosus. Of particular interest are TLR3, -7, -8, and -9, which are localized intracellularly. These TLRs recognize single-stranded or double-stranded RNA or hypomethylated CpG-DNA. Exposure to higher order CpG-DNA ligands or to immune complexed self-RNA triggers activation of autoreactive B cells and plasmacytoid dendritic cells. INH-ODNs were recently developed that block all downstream signaling events in TLR9-responsive cells. Some of these INH-ODNs can also target TLR7 signaling pathways. Based on their preferential cell reactivity, we classify INH-ODNs into class B and class R. Class B ('broadly reactive') INH-ODNs target a broad range of TLR-expressing cells. Class R ('restricted') INH-ODNs easily form DNA duplexes or higher order structures, and are preferentially recognized by autoreactive B cells and plasmacytoid dendritic cells, rather than by non-DNA specific follicular B cells. Both classes of INH-ODNs can block animal lupus. Hence, therapeutic application of these novel INH-ODNs in human lupus, particularly class R INH-ODNs, may result in more selective and disease-specific immunosuppression. PMID:16542467

  11. Tolerogenic versus Immunogenic Lipidomic Profiles of CD11c(+) Immune Cells and Control of Immunogenic Dendritic Cell Ceramide Dynamics.

    PubMed

    Ocaña-Morgner, Carlos; Sales, Susanne; Rothe, Manuela; Shevchenko, Andrej; Jessberger, Rolf

    2017-06-01

    Lipids affect the membrane properties determining essential biological processes. Earlier studies have suggested a role of switch-activated protein 70 (SWAP-70) in lipid raft formation of dendritic cells. We used lipidomics combined with genetic and biochemical assays to analyze the role of SWAP-70 in lipid dynamics. TLR activation using LPS as a ligand represented a pathogenic immunogenic stimulus, physical disruption of cell-cell contacts a tolerogenic stimulus. Physical disruption, but not LPS, caused an increase of phosphatidylcholine ether and cholesteryl esters in CD11c(+) immune cells. An increase of ceramide (Cer) was a hallmark for LPS activation. SWAP-70 was required for regulating the increase and localization of Cers in the cell membrane. SWAP-70 controls Cer accumulation through the regulation of pH-dependent acid-sphingomyelinase activity and of RhoA-dependent transport of endosomal contents to the plasma membrane. Poor accumulation of Cers in Swap70(-/-) cells caused decreased apoptosis. This shows that two different pathways of activation, immunogenic and tolerogenic, induce different changes in the lipid composition of cultured CD11c(+) cells, and highlights the important role of SWAP-70 in Cer dynamics in dendritic cells. Copyright © 2017 by The American Association of Immunologists, Inc.

  12. A Model of Cytotoxic T Antitumor Activation Stimulated by Pulsed Dendritic Cells

    NASA Astrophysics Data System (ADS)

    Pennisi, Marzio; Pappalardo, Francesco; Chiacchio, Ferdinando; Motta, Santo

    2011-09-01

    We present a preliminary ODE model to sketch the immune response of cytotoxic T cells against cancer through the use of pulsed autologous dendritic cells. The model is partially based on data coming from experiments that are presently in progress in the wet lab of our collaborators, but it can be applied in principle to different tumors. To this end, we show the immune response of cytotoxic T cells stimulated by autologous dendritic cells for different cancers.

  13. Differential functional effects of biomaterials on dendritic cell maturation.

    PubMed

    Park, Jaehyung; Babensee, Julia E

    2012-10-01

    The immunological outcome of dendritic cell (DC) treatment with different biomaterials was assessed to demonstrate the range of DC phenotypes induced by biomaterials commonly used in combination products. Immature DCs (iDCs) were derived from human peripheral blood monocytes, and treated with different biomaterial films of alginate, agarose, chitosan, hyaluronic acid (HA), or 75:25 poly(lactic-co-glycolic acid) (PLGA) and a comprehensive battery of phenotypic functional outcomes was assessed. Different levels of functional changes in DC phenotype were observed depending on the type of biomaterial films used to treat the DCs. Treatment of DCs with PLGA or chitosan films supported DC maturation, with higher levels of DC allostimulatory capacity, pro-inflammatory cytokine release, and expression of CD80, CD86, CD83, HLA-DQ and CD44 compared with iDCs, and lower endocytic ability compared with iDCs. Alginate film induced pro-inflammatory cytokine release from DCs at levels higher than from iDCs. Dendritic cells treated with HA film expressed lower levels of CD40, CD80, CD86 and HLA-DR compared with iDCs. They also exhibited lower endocytic ability and CD44 expression than iDCs, possibly due to an insolubilized (cross-linked) form of high molecular weight HA. Interestingly, treatment of DCs with agarose film maintained the DC functional phenotype at levels similar to iDCs except for CD44 expression, which was lower than that of iDCs. Taken together, these results can provide selection criteria for biomaterials to be used in immunomodulating applications and can inform potential outcomes of biomaterials within combination products on associated immune responses as desired by the application.

  14. Thrombin regulates the function of human blood dendritic cells

    SciTech Connect

    Yanagita, Manabu; Kobayashi, Ryohei; Kashiwagi, Yoichiro; Shimabukuro, Yoshio; Murakami, Shinya E-mail: ipshinya@dent.osaka-u.ac.jp

    2007-12-14

    Thrombin is the key enzyme in the coagulation cascade and activates endothelial cells, neutrophils and monocytes via protease-activated receptors (PARs). At the inflammatory site, immune cells have an opportunity to encounter thrombin. However little is known about the effect of thrombin for dendritic cells (DC), which are efficient antigen-presenting cells and play important roles in initiating and regulating immune responses. The present study revealed that thrombin has the ability to stimulate blood DC. Plasmacytoid DC (PDC) and myeloid DC (MDC) isolated from PBMC expressed PAR-1 and released MCP-1, IL-10, and IL-12 after thrombin stimulation. Unlike blood DC, monocyte-derived DC (MoDC), differentiated in vitro did not express PAR-1 and were unresponsive to thrombin. Effects of thrombin on blood DC were significantly diminished by the addition of anti-PAR-1 Ab or hirudin, serine protease inhibitor. Moreover, thrombin induced HLA-DR and CD86 expression on DC and the thrombin-treated DC induced allogenic T cell proliferation. These findings indicate that thrombin plays a role in the regulation of blood DC functions.

  15. Probiotic modulation of dendritic cell function is influenced by ageing.

    PubMed

    You, Jialu; Dong, Honglin; Mann, Elizabeth R; Knight, Stella C; Yaqoob, Parveen

    2014-02-01

    Dendritic cells (DCs) are critical for the generation of T-cell responses. DC function may be modulated by probiotics, which confer health benefits in immunocompromised individuals, such as the elderly. This study investigated the effects of four probiotics, Bifidobacterium longum bv. infantis CCUG 52486, B. longum SP 07/3, Lactobacillus rhamnosus GG (L.GG) and L. casei Shirota (LcS), on DC function in an allogeneic mixed leucocyte reaction (MLR) model, using DCs and T-cells from young and older donors in different combinations. All four probiotics enhanced expression of CD40, CD80 and CCR7 on both young and older DCs, but enhanced cytokine production (TGF-β, TNF-α) by old DCs only. LcS induced IL-12 and IFNγ production by DC to a greater degree than other strains, while B. longum bv. infantis CCUG 52486 favoured IL-10 production. Stimulation of young T cells in an allogeneic MLR with DC was enhanced by probiotic pretreatment of old DCs, which demonstrated greater activation (CD25) than untreated controls. However, pretreatment of young or old DCs with LPS or probiotics failed to enhance the proliferation of T-cells derived from older donors. In conclusion, this study demonstrates that ageing increases the responsiveness of DCs to probiotics, but this is not sufficient to overcome the impact of immunosenescence in the MLR.

  16. Role of Dendritic Cells in the Pathogenesis of Whipple's Disease

    PubMed Central

    Schinnerling, Katina; Geelhaar-Karsch, Anika; Allers, Kristina; Friebel, Julian; Conrad, Kristina; Loddenkemper, Christoph; Kühl, Anja A.; Erben, Ulrike; Ignatius, Ralf; Schneider, Thomas

    2014-01-01

    Accumulation of Tropheryma whipplei-stuffed macrophages in the duodenum, impaired T. whipplei-specific Th1 responses, and weak secretion of interleukin-12 (IL-12) are hallmarks of classical Whipple's disease (CWD). This study addresses dendritic cell (DC) functionality during CWD. We documented composition, distribution, and functionality of DC ex vivo or after in vitro maturation by fluorescence-activated cell sorting (FACS) and by immunohistochemistry in situ. A decrease in peripheral DC of untreated CWD patients compared to healthy donors was due to reduced CD11chigh myeloid DC (M-DC). Decreased maturation markers CD83, CD86, and CCR7, as well as low IL-12 production in response to stimulation, disclosed an immature M-DC phenotype. In vitro-generated monocyte-derived DC from CWD patients showed normal maturation and T cell-stimulatory capacity under proinflammatory conditions but produced less IL-12 and failed to activate T. whipplei-specific Th1 cells. In duodenal and lymphoid tissues, T. whipplei was found within immature DC-SIGN+ DC. DC and proliferating lymphocytes were reduced in lymph nodes of CWD patients compared to levels in controls. Our results indicate that dysfunctional IL-12 production by DC provides suboptimal conditions for priming of T. whipplei-specific T cells during CWD and that immature DC carrying T. whipplei contribute to the dissemination of the bacterium. PMID:25385798

  17. Dendritic cell reprogramming by endogenously produced lactic acid.

    PubMed

    Nasi, Aikaterini; Fekete, Tünde; Krishnamurthy, Akilan; Snowden, Stuart; Rajnavölgyi, Eva; Catrina, Anca I; Wheelock, Craig E; Vivar, Nancy; Rethi, Bence

    2013-09-15

    The demand for controlling T cell responses via dendritic cell (DC) vaccines initiated a quest for reliable and feasible DC modulatory strategies that would facilitate cytotoxicity against tumors or tolerance in autoimmunity. We studied endogenous mechanisms in developing monocyte-derived DCs (MoDCs) that can induce inflammatory or suppressor programs during differentiation, and we identified a powerful autocrine pathway that, in a cell concentration-dependent manner, strongly interferes with inflammatory DC differentiation. MoDCs developing at low cell culture density have superior ability to produce inflammatory cytokines, to induce Th1 polarization, and to migrate toward the lymphoid tissue chemokine CCL19. On the contrary, MoDCs originated from dense cultures produce IL-10 but no inflammatory cytokines upon activation. DCs from high-density cultures maintained more differentiation plasticity and can develop to osteoclasts. The cell concentration-dependent pathway was independent of peroxisome proliferator-activated receptor γ (PPARγ), a known endogenous regulator of MoDC differentiation. Instead, it acted through lactic acid, which accumulated in dense cultures and induced an early and long-lasting reprogramming of MoDC differentiation. Our results suggest that the lactic acid-mediated inhibitory pathway could be efficiently manipulated in developing MoDCs to influence the immunogenicity of DC vaccines.

  18. Dendritic differentiation of cerebellar Purkinje cells is promoted by ryanodine receptors expressed by Purkinje and granule cells.

    PubMed

    Ohashi, Ryo; Sakata, Shin-ichi; Naito, Asami; Hirashima, Naohide; Tanaka, Masahiko

    2014-04-01

    Cerebellar Purkinje cells have the most elaborate dendritic trees among neurons in the brain. We examined the roles of ryanodine receptor (RyR), an intracellular Ca(2+) release channel, in the dendrite formation of Purkinje cells using cerebellar cell cultures. In the cerebellum, Purkinje cells express RyR1 and RyR2, whereas granule cells express RyR2. When ryanodine (10 µM), a blocker of RyR, was added to the culture medium, the elongation and branching of Purkinje cell dendrites were markedly inhibited. When we transferred small interfering RNA (siRNA) against RyR1 into Purkinje cells using single-cell electroporation, dendritic branching but not elongation of the electroporated Purkinje cells was inhibited. On the other hand, transfection of RyR2 siRNA into granule cells also inhibited dendritic branching of Purkinje cells. Furthermore, ryanodine reduced the levels of brain-derived neurotrophic factor (BDNF) in the culture medium. The ryanodine-induced inhibition of dendritic differentiation was partially rescued when BDNF was exogenously added to the culture medium in addition to ryanodine. Overall, these results suggest that RyRs expressed by both Purkinje and granule cells play important roles in promoting the dendritic differentiation of Purkinje cells and that RyR2 expressed by granule cells is involved in the secretion of BDNF from granule cells.

  19. Novel immunomodulatory effects of adiponectin on dendritic cell functions.

    PubMed

    Tsang, Julia Yuen Shan; Li, Daxu; Ho, Derek; Peng, Jiao; Xu, Aimin; Lamb, Jonathan; Chen, Yan; Tam, Paul Kwong Hang

    2011-05-01

    Adiponectin (ADN) is an adipocytokine with anti-inflammatory properties. Although it has been reported that ADN can inhibit the immunostimulatory function of monocytes and macrophages, little is known of its effect on dendritic cells (DC). Recent data suggest that ADN can regulate immune responses. DCs are uniquely specialised antigen presenting cells that play a central role in the initiation of immunity and tolerance. In this study, we have investigated the immuno- modulatory effects of ADN on DC functions. We found that ADN has only moderate effect on the differentiation of murine bone marrow (BM) derived DCs but altered the phenotype of DCs. The expression of major histocompatibilty complex class II (MHCII), CD80 and CD86 on ADN conditioned DCs (ADN-DCs) was lower than that on untreated cells. The production of IL-12p40 was also suppressed in ADN-DCs. Interestingly, ADN treated DCs showed an increase in the expression of the inhibitory molecule, programmed death-1 ligand (PDL-1) compared to untreated cells. In vitro co-culture of ADN-DCs with allogeneic T cells led to a decrease in T cell proliferation and reduction of IL-2 production. Concomitant with that, a higher percentage of CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs) was detected in co-cultures of T cells and ADN-DCs. Blocking PD-1/PDL-1 pathway could partially restore T cell function. These findings suggest that the immunomodulatory effect of ADN on immune responses could be at least partially be mediated by its ability to alter DC function. The PD-1/PDL-1 pathway and the enhancement of Treg expansion are implicated in the immunomodulatory mechanisms.

  20. Dendritic Cells in Systemic Lupus Erythematosus: From Pathogenic Players to Therapeutic Tools

    PubMed Central

    Klarquist, Jared; Zhou, Zhenyuan; Shen, Nan; Janssen, Edith M.

    2016-01-01

    System lupus erythematosus (SLE) is a multifactorial systemic autoimmune disease with a wide variety of presenting features. SLE is believed to result from dysregulated immune responses, loss of tolerance of CD4 T cells and B cells to ubiquitous self-antigens, and the subsequent production of anti-nuclear and other autoreactive antibodies. Recent research has associated lupus development with changes in the dendritic cell (DC) compartment, including altered DC subset frequency and localization, overactivation of mDCs and pDCs, and functional defects in DCs. Here we discuss the current knowledge on the role of DC dysfunction in SLE pathogenesis, with the focus on DCs as targets for interventional therapies. PMID:27122656

  1. CXCR4 engagement promotes dendritic cell survival and maturation

    SciTech Connect

    Kabashima, Kenji Sugita, Kazunari; Shiraishi, Noriko; Tamamura, Hirokazu; Fujii, Nobutaka; Tokura, Yoshiki

    2007-10-05

    It has been reported that human monocyte derived-dendritic cells (DCs) express CXCR4, responsible for chemotaxis to CXCL12. However, it remains unknown whether CXCR4 is involved in other functions of DCs. Initially, we found that CXCR4 was expressed on bone marrow-derived DCs (BMDCs). The addition of specific CXCR4 antagonist, 4-F-Benzoyl-TN14003, to the culture of mouse BMDCs decreased their number, especially the mature subset of them. The similar effect was found on the number of Langerhans cells (LCs) but not keratinocytes among epidermal cell suspensions. Since LCs are incapable of proliferating in vitro, these results indicate that CXCR4 engagement is important for not only maturation but also survival of DCs. Consistently, the dinitrobenzene sulfonic acid-induced, antigen-specific in vitro proliferation of previously sensitized lymph node cells was enhanced by CXCL12, and suppressed by CXCR4 antagonist. These findings suggest that CXCL12-CXCR4 engagement enhances DC maturation and survival to initiate acquired immune response.

  2. Targeting Dendritic Cell Function during Systemic Autoimmunity to Restore Tolerance

    PubMed Central

    Mackern-Oberti, Juan P.; Vega, Fabián; Llanos, Carolina; Bueno, Susan M.; Kalergis, Alexis M.

    2014-01-01

    Systemic autoimmune diseases can damage nearly every tissue or cell type of the body. Although a great deal of progress has been made in understanding the pathogenesis of autoimmune diseases, current therapies have not been improved, remain unspecific and are associated with significant side effects. Because dendritic cells (DCs) play a major role in promoting immune tolerance against self-antigens (self-Ags), current efforts are focusing at generating new therapies based on the transfer of tolerogenic DCs (tolDCs) during autoimmunity. However, the feasibility of this approach during systemic autoimmunity has yet to be evaluated. TolDCs may ameliorate autoimmunity mainly by restoring T cell tolerance and, thus, indirectly modulating autoantibody development. In vitro induction of tolDCs loaded with immunodominant self-Ags and subsequent cell transfer to patients would be a specific new therapy that will avoid systemic immunosuppression. Herein, we review recent approaches evaluating the potential of tolDCs for the treatment of systemic autoimmune disorders. PMID:25229821

  3. The function of myeloid dendritic cells in rheumatoid arthritis.

    PubMed

    Yu, Mary Beth; Langridge, William H R

    2017-07-01

    Rheumatoid arthritis (RA) is a systemic autoimmune disease that causes joint pain, inflammation, and loss of function. Disease pathogenesis involves activation and proliferation of autoreactive pro-inflammatory effector T cells. While the details of RA onset and progression remain controversial, dendritic cell (DC) numbers dramatically increase in the synovial joint tissues of RA patients. Based on their key functions as antigen-presenting cells and inducers of T cell differentiation, DCs may play an important role in the initiation of joint inflammation. Myeloid DC contributions are likely central to the development of RA, as they are more efficient at antigen presentation in comparison with their closely related cousins, plasmacytoid DCs. Synovial fluid in the joints of RA patients is enriched with pro-inflammatory cytokines and chemokines, which may stimulate or result from DC activation. Epidemiological evidence indicates that smoking and periodontal infection are major environmental risk factors for RA development. In this review, factors in the synovial environment that contribute to altered myeloid DC functions in RA and the effects of environmental risk factors on myeloid DCs are described.

  4. Immunogenicity is preferentially induced in sparse dendritic cell cultures

    PubMed Central

    Nasi, Aikaterini; Bollampalli, Vishnu Priya; Sun, Meng; Chen, Yang; Amu, Sylvie; Nylén, Susanne; Eidsmo, Liv; Rothfuchs, Antonio Gigliotti; Réthi, Bence

    2017-01-01

    We have previously shown that human monocyte-derived dendritic cells (DCs) acquired different characteristics in dense or sparse cell cultures. Sparsity promoted the development of IL-12 producing migratory DCs, whereas dense cultures increased IL-10 production. Here we analysed whether the density-dependent endogenous breaks could modulate DC-based vaccines. Using murine bone marrow-derived DC models we show that sparse cultures were essential to achieve several key functions required for immunogenic DC vaccines, including mobility to draining lymph nodes, recruitment and massive proliferation of antigen-specific CD4+ T cells, in addition to their TH1 polarization. Transcription analyses confirmed higher commitment in sparse cultures towards T cell activation, whereas DCs obtained from dense cultures up-regulated immunosuppressive pathway components and genes suggesting higher differentiation plasticity towards osteoclasts. Interestingly, we detected a striking up-regulation of fatty acid and cholesterol biosynthesis pathways in sparse cultures, suggesting an important link between DC immunogenicity and lipid homeostasis regulation. PMID:28276533

  5. Inhibitory effect of cepharanthine on dendritic cell activation and function.

    PubMed

    Uto, Tomofumi; Nishi, Yosuke; Toyama, Masaaki; Yoshinaga, Keisuke; Baba, Masanori

    2011-11-01

    Dendritic cells (DCs) are specialized antigen presenting cells that connect innate and adaptive immunity. DCs are considered as a major target for controlling excessive immune responses. In this study, the effect of cepharanthine (CEP), a biscoclaurine alkaloid isolated from Stephania cepharantha Hayata, on murine DCs was examined in vitro. CEP inhibited antigen uptake by DCs at a concentration between 1 and 5 μg/ml. Although CEP did not inhibit the expression of costimulatory molecules and major histocompatibility complex (MHC) class I in DCs, the compound inhibited lipopolysaccharide (LPS)-induced DC maturation determined by the expression of costimulatory molecules and MHC class I. In addition, CEP could reduce the production of interleukin-6 and tumor necrosis factor-α in LPS-stimulated DCs. DCs treated with CEP were found to be a poor stimulator of allogeneic T cell proliferation and interferon-γ production from the cells. These results suggest that CEP may have great potential as an immunoregulatory agent against various autoimmune diseases and allergy.

  6. Dendritic cells in hyperplastic thymuses from patients with myasthenia gravis.

    PubMed

    Nagane, Yuriko; Utsugisawa, Kimiaki; Obara, Daiji; Yamagata, Munehisa; Tohgi, Hideo

    2003-05-01

    To investigate the role of dendritic cells (DCs) in the hyperplastic myasthenia gravis (MG) thymus, we studied the frequency and distribution of three mature DC phenotypes (CD83(+)CD11c(+), CD86(+)CD11c(+), and HLA-DR(+)CD11c(+)) in samples from patients with MG whose symptoms dramatically improved following thymectomy and in non-MG control thymuses. In hyperplastic MG thymuses, mature DCs were much more numerous in nonmedullary areas, such as the subcapsular/outer cortex; around the germinal centers; and in extralobular connective tissue, particularly around blood vessels. Mature DCs strongly coexpressed CD44 and appeared to be components of a CD44-highly positive (CD44(high)) cell population migrating from the vascular system. Furthermore, in the hyperplastic MG thymus, the expression of secondary lymphoid-tissue chemokine (SLC) markedly increased especially around extralobular blood vessels, where the CD44(high) cell population accumulated. These findings suggest that DCs may migrate into the hyperplastic thymus from the vascular system via mechanisms that involve CD44 and SLC. DCs may present self-antigens, thereby promoting the priming and/or boosting of potentially autoreactive T cells against the acetylcholine receptor.

  7. Dendritic Cell Trafficking and Function in Rare Lung Diseases.

    PubMed

    Liu, Huan; Jakubzick, Claudia; Osterburg, Andrew R; Nelson, Rebecca L; Gupta, Nishant; McCormack, Francis X; Borchers, Michael T

    2017-10-01

    Dendritic cells (DCs) are highly specialized immune cells that capture antigens and then migrate to lymphoid tissue and present antigen to T cells. This critical function of DCs is well defined, and recent studies further demonstrate that DCs are also key regulators of several innate immune responses. Studies focused on the roles of DCs in the pathogenesis of common lung diseases, such as asthma, infection, and cancer, have traditionally driven our mechanistic understanding of pulmonary DC biology. The emerging development of novel DC reagents, techniques, and genetically modified animal models has provided abundant data revealing distinct populations of DCs in the lung, and allow us to examine mechanisms of DC development, migration, and function in pulmonary disease with unprecedented detail. This enhanced understanding of DCs permits the examination of the potential role of DCs in diseases with known or suspected immunological underpinnings. Recent advances in the study of rare lung diseases, including pulmonary Langerhans cell histiocytosis, sarcoidosis, hypersensitivity pneumonitis, and pulmonary fibrosis, reveal expanding potential pathogenic roles for DCs. Here, we provide a review of DC development, trafficking, and effector functions in the lung, and discuss how alterations in these DC pathways contribute to the pathogenesis of rare lung diseases.

  8. Systemic IL-12 Administration Alters Hepatic Dendritic Cell Stimulation Capabilities

    PubMed Central

    Chan, Tim; Back, Timothy C.; Subleski, Jeffrey J.; Weiss, Jonathan M.; Ortaldo, John R.; Wiltrout, Robert H.

    2012-01-01

    The liver is an immunologically unique organ containing tolerogenic dendritic cells (DC) that maintain an immunosuppressive microenvironment. Although systemic IL-12 administration can improve responses to tumors, the effects of IL-12-based treatments on DC, in particular hepatic DC, remain incompletely understood. In this study, we demonstrate systemic IL-12 administration induces a 2–3 fold increase in conventional, but not plasmacytoid, DC subsets in the liver. Following IL-12 administration, hepatic DC became more phenotypically and functionally mature, resembling the function of splenic DC, but differed as compared to their splenic counterparts in the production of IL-12 following co-stimulation with toll-like receptor (TLR) agonists. Hepatic DCs from IL-12 treated mice acquired enhanced T cell proliferative capabilities similar to levels observed using splenic DCs. Furthermore, IL-12 administration preferentially increased hepatic T cell activation and IFNγ expression in the RENCA mouse model of renal cell carcinoma. Collectively, the data shows systemic IL-12 administration enables hepatic DCs to overcome at least some aspects of the inherently suppressive milieu of the hepatic environment that could have important implications for the design of IL-12-based immunotherapeutic strategies targeting hepatic malignancies and infections. PMID:22428016

  9. Candida albicans mannoprotein influences the biological function of dendritic cells.

    PubMed

    Pietrella, Donatella; Bistoni, Giovanni; Corbucci, Cristina; Perito, Stefano; Vecchiarelli, Anna

    2006-04-01

    Cell wall components of fungi involved in induction of host immune response are predominantly proteins and glycoproteins, the latter being mainly mannoproteins (MP). In this study we analyse the interaction of the MP from Candida albicans (MP65) with dendritic cells (DC) and demonstrate that MP65 stimulates DC and induces the release of TNF-alpha, IL-6 and the activation of IL-12 gene, with maximal value 6 h post treatment. MP65 induces DC maturation by increasing costimulatory molecules and decreasing CD14 and FcgammaR molecule expression. The latter effect is partly mediated by toll-like receptor 2 (TLR2) and TLR4, and the MyD88-dependent pathway is involved in the process. MP65 enables DC to activate T cell response, its protein core is essential for induction of T cell activation, while its glycosylated portion primarily promotes cytokine production. The mechanisms involved in induction of protective response against C. albicans could be mediated by the MP65 antigen, suggesting that MP65 may be a suitable candidate vaccine.

  10. Dendritic cells--why can they help and hurt us.

    PubMed

    Schäkel, Knut

    2009-03-01

    Dendritic cells (DCs) show a Janus-like functional behavior. They help us by their orchestration of numerous immune responses to defend our body against invading pathogenic micro-organisms and also induce regulatory T cells to inhibit immune reactions against autoantigens as well as diverse harmless environmental antigens. However, DCs can also be of harm to us when misguided by their microenvironment as in allergic and autoimmune diseases or when DCs are targeted and exploited by microbes and cancer cells to evade the immune defense. This huge and diverse functional repertoire of DCs requires complex decision-making processes and the integration of multiple stimulatory and inhibitory signals. Although a given DC type has an extensive functionally plasticity, DCs are heterogeneous and individual DC subtypes are differentially distributed in tissues, express distinct sets of pattern recognition receptors and differ in their capacity to program naive T cells. With the help of transgenic mouse models and selective ablation of individual DC subtypes, we are just at the beginning of understanding the DC system in its complexity. Obtaining a more detailed knowledge of the DC system in mice and men holds strong promise for the successful induction of immunity and tolerance in therapeutic trials. This review presents the recent advances in the understanding of DC biology and discusses why and how DC can help and hurt us.

  11. Dendritic stratification differs among retinal OFF bipolar cell types in the absence of rod photoreceptors

    PubMed Central

    Puller, Christian; Arbogast, Patrick; Keeley, Patrick W.; Reese, Benjamin E.; Haverkamp, Silke

    2017-01-01

    Retinal OFF bipolar cells show distinct connectivity patterns with photoreceptors in the wild-type mouse retina. Some types are cone-specific while others penetrate further through the outer plexiform layer (OPL) to contact rods in addition to cones. To explore dendritic stratification of OFF bipolar cells in the absence of rods, we made use of the ‘cone-full’ Nrl-/- mouse retina in which all photoreceptor precursor cells commit to a cone fate including those which would have become rods in wild-type retinas. The dendritic distribution of OFF bipolar cell types was investigated by confocal and electron microscopic imaging of immunolabeled tissue sections. The cells’ dendrites formed basal contacts with cone terminals and expressed the corresponding glutamate receptor subunits at those sites, indicating putative synapses. All of the four analyzed cell populations showed distinctive patterns of vertical dendritic invasion through the OPL. This disparate behavior of dendritic extension in an environment containing only cone terminals demonstrates type-dependent specificity for dendritic outgrowth in OFF bipolar cells: rod terminals are not required for inducing dendritic extension into distal areas of the OPL. PMID:28257490

  12. Clusters of synaptic inputs on dendrites of layer 5 pyramidal cells in mouse visual cortex

    PubMed Central

    Gökçe, Onur; Bonhoeffer, Tobias; Scheuss, Volker

    2016-01-01

    The spatial organization of synaptic inputs on the dendritic tree of cortical neurons plays a major role for dendritic integration and neural computations, yet, remarkably little is known about it. We mapped the spatial organization of glutamatergic synapses between layer 5 pyramidal cells by combining optogenetics and 2-photon calcium imaging in mouse neocortical slices. To mathematically characterize the organization of inputs we developed an approach based on combinatorial analysis of the likelihoods of specific synapse arrangements. We found that the synapses of intralaminar inputs form clusters on the basal dendrites of layer 5 pyramidal cells. These clusters contain 4 to 14 synapses within ≤30 µm of dendrite. According to the spatiotemporal characteristics of synaptic summation, these numbers suggest that there will be non-linear dendritic integration of synaptic inputs during synchronous activation. DOI: http://dx.doi.org/10.7554/eLife.09222.001 PMID:27431612

  13. Plasmacytoid dendritic cells in autoimmune diabetes - potential tools for immunotherapy.

    PubMed

    Nikolic, Tatjana; Welzen-Coppens, Jojanneke M C; Leenen, Pieter J M; Drexhage, Hemmo A; Versnel, Marjan A

    2009-01-01

    Type 1 diabetes (T1D) is an autoimmune disease in which a T-cell-mediated attack destroys the insulin-producing cells of the pancreatic islets. Despite insulin supplementation severe complications ask for novel treatments that aim at cure or delay of the onset of the disease. In spontaneous animal models for diabetes like the nonobese diabetic (NOD) mouse, distinct steps in the pathogenesis of the disease can be distinguished. In the past 10 years it became evident that DC and macrophages play an important role in all three phases of the pathogenesis of T1D. In phase 1, dendritic cells (DC) and macrophages accumulate at the islet edges. In phase 2, DC and macrophages are involved in the activation of autoreactive T cells that accumulate in the pancreas. In the third phase the islets are invaded by macrophages, DC and NK cells followed by the destruction of the beta-cells. Recent data suggest a role for a new member of the DC family: the plasmacytoid DC (pDC). pDC have been found to induce tolerance in experimental models of asthma. Several studies in humans and the NOD mouse support a similar role for pDC in diabetes. Mechanisms found to be involved in tolerance induction by pDC are inhibition of effector T cells, induction of regulatory T cells, production of cytokines and indoleamine 2,3-dioxygenase (IDO). The exact mechanism of tolerance induction by pDC in diabetes remains to be established but the intrinsic tolerogenic properties of pDC provide a promising, yet underestimated target for therapeutic intervention.

  14. Interleukin-4 can induce interleukin-4 production in dendritic cells.

    PubMed

    Maroof, Asher; Penny, Michelle; Kingston, Rosetta; Murray, Clare; Islam, Sabita; Bedford, Penelope A; Knight, Stella C

    2006-02-01

    The presence of interleukin-4 (IL-4) during the generation of dendritic cells (DC) from precursor cells results in measurable increases of IL-12 in supernatants but IL-4 secretion has not been reported. However, DC have IL-4 receptors and are able to make IL-4. We therefore sought evidence for autocrine effects of IL-4 on DC. IL-4 gene expression was low in DC generated from bone-marrow stem cells in the presence of granulocyte-macrophage colony-stimulating factor but was up-regulated by exposure of the developing DC to IL-4. Exposure to IL-4 also induced intracellular IL-4 production in DC. The intracellular IL-4 induced in the presence of IL-4 was increased following further DC maturation with tumour necrosis factor-alpha. By contrast, in supernatants of DC, IL-4 was rarely detected and only at late culture periods. However, after exposure of DC to IL-4, cell-bound IL-4 was detected transiently, which suggested binding and internalization of the cytokine. Binding via IL-4 receptor-alpha was indicated from phosphorylation of the signal transducer and activator of transcription (STAT) protein 6, which is known to mediate IL-4 function. Cytokine persisting within the supernatants of the cells may therefore be unrepresentative of the actual production and function of IL-4 in the cells; IL-4 may be produced in DC in response to exposure to IL-4 but may then be lost from the supernatants during cell binding and activation of the cells.

  15. Interleukin-4 can induce interleukin-4 production in dendritic cells

    PubMed Central

    Maroof, Asher; Penny, Michelle; Kingston, Rosetta; Murray, Clare; Islam, Sabita; Bedford, Penelope A; Knight, Stella C

    2006-01-01

    The presence of interleukin-4 (IL-4) during the generation of dendritic cells (DC) from precursor cells results in measurable increases of IL-12 in supernatants but IL-4 secretion has not been reported. However, DC have IL-4 receptors and are able to make IL-4. We therefore sought evidence for autocrine effects of IL-4 on DC. IL-4 gene expression was low in DC generated from bone-marrow stem cells in the presence of granulocyte–macrophage colony-stimulating factor but was up-regulated by exposure of the developing DC to IL-4. Exposure to IL-4 also induced intracellular IL-4 production in DC. The intracellular IL-4 induced in the presence of IL-4 was increased following further DC maturation with tumour necrosis factor-α. By contrast, in supernatants of DC, IL-4 was rarely detected and only at late culture periods. However, after exposure of DC to IL-4, cell-bound IL-4 was detected transiently, which suggested binding and internalization of the cytokine. Binding via IL-4 receptor-α was indicated from phosphorylation of the signal transducer and activator of transcription (STAT) protein 6, which is known to mediate IL-4 function. Cytokine persisting within the supernatants of the cells may therefore be unrepresentative of the actual production and function of IL-4 in the cells; IL-4 may be produced in DC in response to exposure to IL-4 but may then be lost from the supernatants during cell binding and activation of the cells. PMID:16423063

  16. Modulation of Dendritic Cell Responses by Parasites: A Common Strategy to Survive

    PubMed Central

    Terrazas, César A.; Terrazas, Luis I.; Gómez-García, Lorena

    2010-01-01

    Parasitic infections are one of the most important causes of morbidity and mortality in our planet and the immune responses triggered by these organisms are critical to determine their outcome. Dendritic cells are key elements for the development of immunity against parasites; they control the responses required to eliminate these pathogens while maintaining host homeostasis. However, there is evidence showing that parasites can influence and regulate dendritic cell function in order to promote a more permissive environment for their survival. In this review we will focus on the strategies protozoan and helminth parasites have developed to interfere with dendritic cell activities as well as in the possible mechanisms involved. PMID:20204070

  17. [Morphofunctional changes of dendritic cells induced by sulfated polysaccharides of brown algae].

    PubMed

    Makarenkova, I D; Akhmatova, N K; Ermakova, S P; Besednova, N N

    2017-01-01

    The effects of various sulfated polysaccharides of brown algae Fucus evanescens, Saccharina cichorioides and Saccharina japonica on the morphofunctional changes of dendritic cells have been investigated using flow cytometry and phase-contrast microscopy. The dendritic cells are characterized by larger sizes, vacuolated cytoplasm, eccentrically located nucleus, and also by the presence of numerous cytoplasmic pseudopodia of various shapes. They express surface markers, indicating their maturation (CD83, CD11c, HLA-DR, CD86). Increased production of immunoregulatory (IL-12) and proinflammatory TNF-a, IL-6) cytokines (by dendritic cells polarizes the development of the Th-1 type immune response.

  18. Inflammatory pseudotumour-like follicular dendritic cell tumour of the spleen

    PubMed Central

    Nishiyama, Raisuke; Baba, Satoshi; Watahiki, Yoichi; Maruo, Hirotoshi

    2015-01-01

    We describe an unusual case of a 73-year-old woman presenting with a solitary splenic mass 8 cm in diameter and an elevation of serum soluble interleukin-2 receptor level. The preoperative diagnosis was primary malignant lymphoma of the spleen. Splenectomy was conducted. Histological analysis confirmed an inflammatory pseudotumour-like follicular dendritic cell tumour that showed different clinicopathological features from those of the classic follicular dendritic cell tumour. Only 33 cases of inflammatory pseudotumour-like follicular dendritic cell tumour have so far been reported. We discuss the incidence, presentation and management of this rare disease. PMID:25766434

  19. The spatial distribution of glutamatergic inputs to dendrites of retinal ganglion cells.

    PubMed

    Jakobs, Tatjana C; Koizumi, Amane; Masland, Richard H

    2008-09-10

    The spatial pattern of excitatory glutamatergic input was visualized in a large series of ganglion cells of the rabbit retina, by using particle-mediated gene transfer of an expression plasmid for postsynaptic density 95-green fluorescent protein (PSD95-GFP). PSD95-GFP was confirmed as a marker of excitatory input by co-localization with synaptic ribbons (RIBEYE and kinesin II) and glutamate receptor subunits. Despite wide variation in the size, morphology, and functional complexity of the cells, the distribution of excitatory synaptic inputs followed a single set of rules: 1) the linear density of synaptic inputs (PSD95 sites/linear mum) varied surprisingly little and showed little specialization within the arbor; 2) the total density of excitatory inputs across individual arbors peaked in a ring-shaped region surrounding the soma, which is in accord with high-resolution maps of receptive field sensitivity in the rabbit; and 3) the areal density scaled inversely with the total area of the dendritic arbor, so that narrow dendritic arbors receive more synapses per unit area than large ones. To achieve sensitivity comparable to that of large cells, those that report upon a small region of visual space may need to receive a denser synaptic input from within that space.

  20. Dendritic Cell-Lymphocyte Cross Talk Downregulates Host Restriction Factor SAMHD1 and Stimulates HIV-1 Replication in Dendritic Cells

    PubMed Central

    Biedma, Marina Elizabeth; Lederle, Alexandre; Peressin, Maryse; Lambotin, Mélanie; Proust, Alizé; Decoville, Thomas; Schmidt, Sylvie; Laumond, Géraldine

    2014-01-01

    ABSTRACT Human immunodeficiency virus type 1 (HIV-1) replication in dendritic cells (DCs) is restricted by SAMHD1. This factor is counteracted by the viral protein Vpx; Vpx is found in HIV-2 and simian immunodeficiency virus (SIV) from sooty mangabeys (SIVsm) or from macaques (SIVmac) but is absent from HIV-1. We previously observed that HIV-1 replication in immature DCs is stimulated by cocultivation with primary T and B lymphocytes, suggesting that HIV-1 restriction in DCs may be overcome under coculture conditions. Here, we aimed to decipher the mechanism of SAMHD1-mediated restriction in DC-lymphocyte coculture. We found that coculture with lymphocytes downregulated SAMHD1 expression and was associated with increased HIV-1 replication in DCs. Moreover, in infected DC-T lymphocyte cocultures, DCs acquired maturation status and secreted type 1 interferon (alpha interferon [IFN-α]). The blockade of DC-lymphocyte cross talk by anti-ICAM-1 antibody markedly inhibited the stimulation of HIV-1 replication and prevented the downregulation of SAMHD1 expression in cocultured DCs. These results demonstrate that, in contrast to purified DCs, cross talk with lymphocytes downregulates SAMHD1 expression in DCs, triggering HIV-1 replication and an antiviral immune response. Therefore, HIV-1 replication and immune sensing by DCs should be investigated in more physiologically relevant models of DC/lymphocyte coculture. IMPORTANCE SAMHD1 restricts HIV-1 replication in dendritic cells (DCs). Here, we demonstrate that, in a coculture model of DCs and lymphocytes mimicking early mucosal HIV-1 infection, stimulation of HIV-1 replication in DCs is associated with downregulation of SAMHD1 expression and activation of innate immune sensing by DCs. We propose that DC-lymphocyte cross talk occurring in vivo modulates host restriction factor SAMHD1, promoting HIV-1 replication in cellular reservoirs and stimulating immune sensing. PMID:24574390

  1. Effects of inactivated porcine epidemic diarrhea virus on porcine monocyte-derived dendritic cells and intestinal dendritic cells.

    PubMed

    Gao, Qi; Zhao, Shanshan; Qin, Tao; Yin, Yinyan; Yu, Qinghua; Yang, Qian

    2016-06-01

    Porcine epidemic diarrhea (PED) is a serious infection in neonatal piglets. As the causative agent of PED, porcine epidemic diarrhea virus (PEDV) results in acute diarrhea and dehydration with high mortality rates in swine. Dendritic cells (DCs) are highly effective antigen-presenting cells to uptake and present viral antigens to T cells, which then initiate a distinct immune response. In this study, our results show that the expression of Mo-DCs surface markers such as SWC3a(+)CD1a(+), SWC3a(+)CD80/86(+) and SWC3a(+)SLA-II-DR(+) is increased after incubation with UV-PEDV for 24h. Mo-DCs incubated with UV-PEDV produce higher levels of IL-12 and INF-γ compared to mock-infected Mo-DCs. Interactions between Mo-DCs and UV-PEDV significantly stimulate T-cell proliferation in vitro. Consistent with these results, there is an enhancement in the ability of porcine intestinal DCs to activate T-cell proliferation in vivo. We conclude that UV-PEDV may be a useful and safe vaccine to trigger adaptive immunity.

  2. Density of CD163+ CD11c+ dendritic cells increases and CD103+ dendritic cells decreases in the coeliac lesion.

    PubMed

    Beitnes, A-C R; Ráki, M; Lundin, K E A; Jahnsen, J; Sollid, L M; Jahnsen, F L

    2011-08-01

    Coeliac disease is a chronic inflammation of the intestinal mucosa controlled by gluten-specific T cells restricted by disease-associated HLA-DQ molecules. We have previously reported that mucosal CD11c(+) dendritic cells (DCs) are responsible for activation of gluten-reactive T cells within the coeliac lesion. In mice, intestinal CD11c(+) DCs comprise several functionally distinct subsets. Here, we report that HLA-DQ(+) antigen-presenting cells (APCs) in normal human duodenal mucosa can be divided into four subsets with striking similarities to those described in mice: CD163(+) CD11c(-) macrophages (74%), and CD11c(+) cells expressing either CD163 (7%), CD103 (11%) or CD1c (13%). CD103(+) and CD1c(+) DCs belonged to partly overlapping populations, whereas CD163(+) CD11c(+) APCs appeared to be a distinct population. In the coeliac lesion, we found increased density of CD163(+) CD11c(+) APCs, whereas the density of CD103(+) and CD1c(+) DCs was decreased, suggesting that distinct subpopulations of APCs in coeliac disease may exert different functions in the pathogenesis. © 2011 The Authors. Scandinavian Journal of Immunology © 2011 Blackwell Publishing Ltd.

  3. Spatial modelling of brief and long interactions between T cells and dendritic cells.

    PubMed

    Beltman, Joost B; Marée, Athanasius F M; de Boer, Rob J

    2007-06-01

    In the early phases of an immune response, T cells of appropriate antigen specificity become activated by antigen-presenting cells in secondary lymphoid organs. Two-photon microscopy imaging experiments have shown that this stimulation occurs in distinct stages during which T cells exhibit different motilities and interactions with dendritic cells (DCs). In this paper, we utilize the Cellular Potts Model, a model formalism that takes cell shapes and cellular interactions explicitly into account, to simulate the dynamics of, and interactions between, T cells and DCs in the lymph node paracortex. Our three-dimensional simulations suggest that the initial decrease in T-cell motility after antigen appearance is due to "stop signals" transmitted by activated DCs to T cells. The long-lived interactions that occur at a later stage can only be explained by the presence of both stop signals and a high adhesion between specific T cells and antigen-bearing DCs. Furthermore, our results indicate that long-lasting contacts with T cells are promoted when DCs retract dendrites that detect a specific contact at lower velocities than other dendrites. Finally, by performing long simulations (after prior fitting to short time scale data) we are able to provide an estimate of the average contact duration between T cells and DCs.

  4. Study of dendritic cell migration using micro-fabrication.

    PubMed

    Vargas, Pablo; Chabaud, Mélanie; Thiam, Hawa-Racine; Lankar, Danielle; Piel, Matthieu; Lennon-Dumenil, Ana-Maria

    2016-05-01

    Cell migration is a hallmark of dendritic cells (DCs) function. It is needed for DCs to scan their environment in search for antigens as well as to reach lymphatic organs in order to trigger T lymphocyte's activation. Such interaction leads to tolerance in the case of DCs migrating under homeostatic conditions or to immunity in the case of DCs migrating upon encounter with pathogen-associated molecular patterns. Cell migration is therefore essential for DCs to transfer information from peripheral tissues to lymphoid organs, thereby linking innate to adaptive immunity. This stresses the need to unravel the molecular mechanisms involved. However, the tremendous complexity of the tissue microenvironment as well as the limited spatio-temporal resolution of in vivo imaging techniques has made this task difficult. To bypass this problem, we have developed microfabrication-based experimental tools that are compatible with high-resolution imaging. Here, we will discuss how such devices can be used to study DC migration under controlled conditions that mimic their physiological environment in a robust quantitative manner.

  5. Dendritic Cells in Human Atherosclerosis: From Circulation to Atherosclerotic Plaques

    PubMed Central

    Van Vré, Emily A.; Van Brussel, Ilse; Bosmans, Johan M.; Vrints, Christiaan J.; Bult, Hidde

    2011-01-01

    Background. Atherosclerosis is a chronic inflammatory disease with atherosclerotic plaques containing inflammatory infiltrates predominantly consisting of monocytes/macrophages and activated T cells. More recent is the implication of dendritic cells (DCs) in the disease. Since DCs were demonstrated in human arteries in 1995, numerous studies in humans suggest a role for these professional antigen-presenting cells in atherosclerosis. Aim. This paper focuses on the observations made in blood and arteries of patients with atherosclerosis. In principal, flow cytometric analyses show that circulating myeloid (m) and plasmacytoid (p) DCs are diminished in coronary artery disease, while immunohistochemical studies describe increased intimal DC counts with evolving plaque stages. Moreover, mDCs and pDCs appear to behave differently in atherosclerosis. Yet, the origin of plaque DCs and their relationship with blood DCs are unknown. Therefore, several explanations for the observed changes are postulated. In addition, the technical challenges and discrepancies in the research field are discussed. Future. Future studies in humans, in combination with experimental animal studies will unravel mechanisms leading to altered blood and plaque DCs in atherosclerosis. As DCs are crucial for inducing but also dampening immune responses, understanding their life cycle, trafficking and function in atherosclerosis will determine potential use of DCs in antiatherogenic therapies. PMID:21976788

  6. GM-CSF alters dendritic cells in autoimmune diseases.

    PubMed

    Li, Bao-Zhu; Ye, Qian-Ling; Xu, Wang-Dong; Li, Jie-Hua; Ye, Dong-Qing; Xu, Yuekang

    2013-11-01

    Autoimmune diseases arise from an inappropriate immune response against self components, including macromolecules, cells, tissues, organs etc. They are often triggered or accompanied by inflammation, during which the levels of granulocyte macrophage colony-stimulating factor (GM-CSF) are elevated. GM-CSF is an inflammatory cytokine that has profound impact on the differentiation of immune system cells of myeloid lineage, especially dendritic cells (DCs) that play critical roles in immune initiation and tolerance, and is involved in the pathogenesis of autoimmune diseases. Although GM-CSF was discovered decades ago, recent studies with some new findings have shed an interesting light on the old hematopoietic growth factor. In the inflammatory autoimmune diseases, GM-CSF redirects the normal developmental pathway of DCs, conditions their antigen presentation capacities and endows them with unique cytokine signatures to affect autoimmune responses. Here we review the latest advances in the field, with the aim of demonstrating the effects of GM-CSF on DCs and their influences on autoimmune diseases. The summarized knowledge will help to design DC-based strategies for the treatment of autoimmune diseases.

  7. Identification of novel dendritic cell subset markers in human blood.

    PubMed

    Schütz, Fabian; Hackstein, Holger

    2014-01-10

    Human dendritic cells (DC) are key regulators of innate and adaptive immunity that can be divided in at least three major subpopulations: plasmacytoid DC (pDC), myeloid type 1 DC (mDC1) and myeloid type 2 DC (mDC2) exhibiting different functions. However, research, diagnostic and cell therapeutic studies on human DC subsets are limited because only few DC subset markers have been identified so far. Especially mDC2 representing the rarest blood DC subset are difficult to be separated from mDC1 and pDC due to a paucity of mDC2 markers. We have combined multiparameter flow cytometry analysis of human blood DC subsets with systematic expression analysis of 332 surface antigens in magnetic bead-enriched blood DC samples. The initial analysis revealed eight novel putative DC subset markers CD26, CD85a, CD109, CD172a, CD200, CD200R, CD275 and CD301 that were subsequently tested in bulk peripheral blood mononuclear cell (PBMC) samples from healthy blood donors. Secondary analysis of PBMC samples confirmed three novel DC subset markers CD26 (dipeptidyl peptidase IV), CD85a (Leukocyte immunoglobulin-like receptor B3) and CD275 (inducible costimulator ligand). CD85a is specifically expressed in mDC1 and CD26 and CD275 represent novel mDC2 markers. These markers will facilitate human DC subset discrimination and additionally provide insight into potentially novel DC subset-specific functions.

  8. Targeting dendritic cells for improved HIV-1 vaccines.

    PubMed

    Smed-Sörensen, Anna; Loré, Karin

    2013-01-01

    As dendritic cells (DCs) have the unique capacity to activate antigen-naive T cells they likely play a critical role in eliciting immune responses to vaccines. DCs are therefore being explored as attractive targets for vaccines, but understanding the interaction of DCs and clinically relevant vaccine antigens and adjuvants is a prerequisite. The HIV-1/AIDS epidemic continues to be a significant health problem, and despite intense research efforts over the past 30 years a protective vaccine has not yet been developed. A common challenge in vaccine design is to find a vaccine formulation that best shapes the immune response to protect against and/or control the given pathogen. Here, we discuss the importance of understanding the diversity, anatomical location and function of different human DC subsets in order to identify the optimal target cells for an HIV-1 vaccine. We review human DC interactions with some of the HIV-1 vaccine antigen delivery vehicles and adjuvants currently utilized in preclinical and clinical studies. Specifically, the effects of distinctly different vaccine adjuvants in terms of activation of DCs and improving DC function and vaccine efficacy are discussed. The susceptibility and responses of DCs to recombinant adenovirus vectors are reviewed, as well as the strategy of directly targeting DCs by using DC marker-specific monoclonal antibodies coupled to an antigen.

  9. Loss of Gadkin Affects Dendritic Cell Migration In Vitro

    PubMed Central

    Stache, Vanessa; Plewa, Natalia; Legler, Daniel F.; Höpken, Uta E.; Maritzen, Tanja

    2015-01-01

    Migration is crucial for the function of dendritic cells (DCs), which act as outposts of the immune system. Upon detection of pathogens, skin- and mucosa-resident DCs migrate to secondary lymphoid organs where they activate T cells. DC motility relies critically on the actin cytoskeleton, which is regulated by the actin-related protein 2/3 (ARP2/3) complex, a nucleator of branched actin networks. Consequently, loss of ARP2/3 stimulators and upstream Rho family GTPases dramatically impairs DC migration. However, nothing is known yet about the relevance of ARP2/3 inhibitors for DC migration. We previously demonstrated that the AP-1-associated adaptor protein Gadkin inhibits ARP2/3 by sequestering it on intracellular vesicles. Consistent with a role of Gadkin in DC physiology, we here report Gadkin expression in bone marrow-derived DCs and show that its protein level and posttranslational modification are regulated upon LPS-induced DC maturation. DCs derived from Gadkin-deficient mice were normal with regards to differentiation and maturation, but displayed increased actin polymerization. While the actin-dependent processes of macropinocytosis and cell spreading were not affected, loss of Gadkin significantly impaired DC migration in vitro, however, in vivo DC migration was unperturbed suggesting the presence of compensatory mechanisms. PMID:26624014

  10. Epigenetic program and transcription factor circuitry of dendritic cell development

    PubMed Central

    Lin, Qiong; Chauvistré, Heike; Costa, Ivan G.; Gusmao, Eduardo G.; Mitzka, Saskia; Hänzelmann, Sonja; Baying, Bianka; Klisch, Theresa; Moriggl, Richard; Hennuy, Benoit; Smeets, Hubert; Hoffmann, Kurt; Benes, Vladimir; Seré, Kristin; Zenke, Martin

    2015-01-01

    Dendritic cells (DC) are professional antigen presenting cells that develop from hematopoietic stem cells through successive steps of lineage commitment and differentiation. Multipotent progenitors (MPP) are committed to DC restricted common DC progenitors (CDP), which differentiate into specific DC subsets, classical DC (cDC) and plasmacytoid DC (pDC). To determine epigenetic states and regulatory circuitries during DC differentiation, we measured consecutive changes of genome-wide gene expression, histone modification and transcription factor occupancy during the sequel MPP-CDP-cDC/pDC. Specific histone marks in CDP reveal a DC-primed epigenetic signature, which is maintained and reinforced during DC differentiation. Epigenetic marks and transcription factor PU.1 occupancy increasingly coincide upon DC differentiation. By integrating PU.1 occupancy and gene expression we devised a transcription factor regulatory circuitry for DC commitment and subset specification. The circuitry provides the transcription factor hierarchy that drives the sequel MPP-CDP-cDC/pDC, including Irf4, Irf8, Tcf4, Spib and Stat factors. The circuitry also includes feedback loops inferred for individual or multiple factors, which stabilize distinct stages of DC development and DC subsets. In summary, here we describe the basic regulatory circuitry of transcription factors that drives DC development. PMID:26476451

  11. MicroRNAs affect dendritic cell function and phenotype

    PubMed Central

    Smyth, Lesley A; Boardman, Dominic A; Tung, Sim L; Lechler, Robert; Lombardi, Giovanna

    2015-01-01

    MicroRNA (miRNA) are small, non-coding RNA molecules that have been linked with immunity through regulating/modulating gene expression. A role for these molecules in T-cell and B-cell development and function has been well established. An increasing body of literature now highlights the importance of specific miRNA in dendritic cell (DC) development as well as their maturation process, antigen presentation capacity and cytokine release. Given the unique role of DC within the immune system, linking the innate and adaptive immune responses, understanding how specific miRNA affect DC function is of importance for understanding disease. In this review we summarize recent developments in miRNA and DC research, highlighting the requirement of miRNA in DC lineage commitment from bone marrow progenitors and for the development of subsets such as plasmacytoid DC and conventional DC. In addition, we discuss how infections and tumours modulate miRNA expression and consequently DC function. PMID:25244106

  12. Cancer immunotherapy using dendritic cell-derived exosomes.

    PubMed

    Amigorena, S

    2000-01-01

    Dendritic cells (DCs) are the most potent antigen presenting cells and the only ones capable of inducing primary cytotoxic immune responses. We found that DCs secrete a population of membrane vesicles, called exosomes. Exosomes are 60-80 nm vesicles of endocytic origin. The protein composition of exosomes was subjected to a systematic proteomic analysis. Besides MHC and co-stimulatory molecules, exosomes bear several adhesion proteins, most likely involved in their specific subjected to targeting. We also found that exosomes accumulate several cytosolic factors, probably involved in their endosomal biogenesis. Like DCs, exosomes induced immune responses in vivo. Indeed, a single injection of DC-derived exosomes sensitized with tumor peptides induced potent anti tumor immune responses in mice and the eradication of established tumors. Tumor-specific cytotoxic T lymphocytes were found in the spleen of exosome-treated mice, and the anti tumor effect of exosomes was sensitive to in vivo depletion of CD8+ T cells. These results show that exosomes induce potent anti tumor effects in vivo, and strongly support the implementation of human DC-derived exosomes for cancer immunotherapy.

  13. Plasmacytoid Dendritic Cells Reduce HIV Production in Elite Controllers

    PubMed Central

    Machmach, K.; Leal, M.; Gras, C.; Viciana, P.; Genebat, M.; Franco, E.; Boufassa, F.; Lambotte, O.; Herbeuval, J. P.

    2012-01-01

    HIV elite controllers (EC) are a rare group of HIV-infected patients who are able to maintain undetectable viral loads during a long period of time in the absence of antiretroviral treatment. Adaptive immunity and host genetic factors, although implicated, do not entirely explain this phenomenon. On the other hand, plasmacytoid dendritic cells (pDCs) are the principal type I interferon (IFN) producers in response to viral infection, and it is unknown whether pDCs are involved in the control of HIV infection in EC. In our study, we analyzed peripheral pDC levels and IFN-α production by peripheral blood mononuclear cells (PBMCs) in EC compared to other groups of HIV-infected patients, the ability of pDCs to reduce HIV production in vitro, and the mechanisms potentially involved. We showed preserved pDC counts and IFN-α production in EC. We also observed a higher capacity of pDCs from EC to reduce HIV production and to induce T cell apoptosis, whereas pDCs from viremic patients barely responded without previous Toll-like receptor 9 (TLR-9) stimulus. The preserved functionality of pDCs from EC to reduce viral production may be one of the mechanisms involved in the control of HIV viremia in these subjects. These results demonstrate the importance of innate immunity in HIV pathogenesis, and an understanding of pDC mechanisms would be helpful for the design of new therapies. PMID:22318133

  14. Identification of a unique B-cell-stimulating factor produced by a cloned dendritic cell.

    PubMed Central

    Clayberger, C; DeKruyff, R H; Fay, R; Cantor, H

    1985-01-01

    We describe a cloned dendritic cell, clone Den-1, which is a potent accessory cell for some B-cell responses. Clone Den-1 produces a unique lymphokine that induces polyclonal B-cell proliferation in the absence of other costimulators. This clone or factors produced by it also stimulate purified B cells to develop plaque-forming cell responses to type 2 antigens. The effect of this factor(s) on various B-cell populations and its relationship to previously described B-cell-stimulating factors is discussed. Images PMID:3871522

  15. Circadian expression of clock genes in mouse macrophages, dendritic cells, and B cells

    PubMed Central

    Silver, Adam C.; Arjona, Alvaro; Hughes, Michael E.; Nitabach, Michael N.; Fikrig, Erol

    2012-01-01

    In mammals, circadian and daily rhythms influence nearly all aspects of physiology, ranging from behavior to gene expression. Functional molecular clocks have been described in the murine spleen and splenic NK cells. The aim of our study was to investigate the existence of molecular clock mechanisms in other immune cells. Therefore, we measured the circadian changes in gene expression of clock genes (Per1, Per2, Bmal1, and Clock) and clock-controlled transcription factors (Rev-erbα and Dbp) in splenic enriched macrophages, dendritic cells, and B cells in both mice entrained to a light-dark cycle and under constant environmental conditions. Our study reveals the existence of functional molecular clock mechanisms in splenic macrophages, dendritic cells, and B cells. PMID:22019350

  16. Extracellular transport of cell-size particles and tumor cells by dendritic cells in culture.

    PubMed

    Thacker, Robert I; Retzinger, Andrew C; Cash, James G; Dentler, Michael D; Retzinger, Gregory S

    2013-12-01

    Many particulate materials of sizes approximating that of a cell disseminate after being introduced into the body. While some move about within phagocytic inflammatory cells, others appear to move about outside of, but in contact with, such cells. In this report, we provide unequivocal photomicroscopic evidence that cultured, mature, human dendritic cells can transport in extracellular fashion over significant distances both polymeric beads and tumor cells. At least in the case of polymeric beads, both fibrinogen and the β2-integrin subunit, CD18, appear to play important roles in the transport process. These discoveries may yield insight into a host of disease-related phenomena, including and especially tumor cell invasion and metastasis.

  17. Dendritic branching angles of pyramidal cells across layers of the juvenile rat somatosensory cortex.

    PubMed

    Leguey, Ignacio; Bielza, Concha; Larrañaga, Pedro; Kastanauskaite, Asta; Rojo, Concepción; Benavides-Piccione, Ruth; DeFelipe, Javier

    2016-09-01

    The characterization of the structural design of cortical microcircuits is essential for understanding how they contribute to function in both health and disease. Since pyramidal neurons represent the most abundant neuronal type and their dendritic spines constitute the major postsynaptic elements of cortical excitatory synapses, our understanding of the synaptic organization of the neocortex largely depends on the available knowledge regarding the structure of pyramidal cells. Previous studies have identified several apparently common rules in dendritic geometry. We study the dendritic branching angles of pyramidal cells across layers to further shed light on the principles that determine the geometric shapes of these cells. We find that the dendritic branching angles of pyramidal cells from layers II-VI of the juvenile rat somatosensory cortex suggest common design principles, despite the particular morphological and functional features that are characteristic of pyramidal cells in each cortical layer. J. Comp. Neurol. 524:2567-2576, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Brucella Control of Dendritic Cell Maturation Is Dependent on the TIR-Containing Protein Btp1

    PubMed Central

    Salcedo, Suzana P; Marchesini, María Ines; Lelouard, Hugues; Fugier, Emilie; Jolly, Gilles; Balor, Stephanie; Muller, Alexandre; Lapaque, Nicolas; Demaria, Olivier; Alexopoulou, Lena; Comerci, Diego J; Ugalde, Rodolfo A; Pierre, Philippe; Gorvel, Jean-Pierre

    2008-01-01

    Brucella is an intracellular pathogen able to persist for long periods of time within the host and establish a chronic disease. We show that soon after Brucella inoculation in intestinal loops, dendritic cells from ileal Peyer's patches become infected and constitute a cell target for this pathogen. In vitro, we found that Brucella replicates within dendritic cells and hinders their functional activation. In addition, we identified a new Brucella protein Btp1, which down-modulates maturation of infected dendritic cells by interfering with the TLR2 signaling pathway. These results show that intracellular Brucella is able to control dendritic cell function, which may have important consequences in the development of chronic brucellosis. PMID:18266466

  19. Psoriasis in humans is associated with down-regulation of galectins in dendritic cells.

    PubMed

    de la Fuente, H; Perez-Gala, Silvia; Bonay, Pedro; Cruz-Adalia, Aranzazu; Cibrian, Danay; Sanchez-Cuellar, Silvia; Dauden, Esteban; Fresno, Manuel; García-Diez, Amaro; Sanchez-Madrid, Francisco

    2012-10-01

    We have investigated the expression and role of galectin-1 and other galectins in psoriasis and in the Th1/Th17 effector and dendritic cell responses associated with this chronic inflammatory skin condition. To determine differences between psoriasis patients and healthy donors, expression of galectins was analysed by RT-PCR in skin samples and on epidermal and peripheral blood dendritic cells by immunofluorescence and flow cytometry. In the skin of healthy donors, galectin-1, -3 and -9 were expressed in a high proportion of Langerhans cells. Also, galectins were differentially expressed in peripheral blood dendritic cell subsets; galectin-1 and galectin-9 were highly expressed in peripheral myeloid dendritic cells compared with plasmacytoid dendritic cells. We found that non-lesional as well as lesional skin samples from psoriasis patients had low levels of galectin-1 at the mRNA and protein levels, in parallel with low levels of IL-10 mRNA compared with skin from healthy patients. However, only lesional skin samples expressed high levels of Th1/Th17 cytokines. The analysis of galectin-1 expression showed that this protein was down-regulated in Langerhans cells and dermal dendritic cells as well as in peripheral blood CD11c(+) DCs from psoriasis patients. Expression of galectin-1 correlated with IL-17 and IL-10 expression and with the psoriasis area and index activity. Addition of galectin-1 to co-cultures of human monocyte-derived dendritic cells with autologous T lymphocytes from psoriasis patients attenuated the Th1 response. Conversely, blockade of galectin binding increased IFNγ production and inhibited IL-10 secretion in co-cultures of monocyte-derived dendritic cells with CD4(+) T cells. Our results suggest a model in which galectin-1 down-regulation contributes to the exacerbation of the Th1/Th17 effector response in psoriasis patients. Copyright © 2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  20. Mannose receptor-mediated gene delivery into antigen presenting dendritic cells.

    PubMed

    Diebold, Sandra S; Plank, Christian; Cotten, Matt; Wagner, Ernst; Zenke, Martin

    2002-11-01

    Dendritic cells are professional antigen presenting cells and are unique in their ability to prime naïve T cells. Gene modification of dendritic cells is of particular interest for immunotherapy of diseases where the immune system has failed or is aberrantly regulated, such as in cancer or autoimmune disease, respectively. Dendritic cells abundantly express mannose receptor and mannose receptor-related receptors, and receptor-mediated gene transfer via mannose receptor offers a versatile tool for targeted gene delivery into these cells. Accordingly, mannose polyethylenimine DNA transfer complexes were generated and used for gene delivery into dendritic cells. Mannose receptor belongs to the group of scavenger receptors that allow dendritic cells to take up pathogenic material, which is directed for degradation and MHC class II presentation. Therefore, a limiting step of transgene expression by mannose receptor-mediated gene delivery is endosomal degradation of DNA. Several strategies have been explored to overcome this limitation including the addition of endosomolytic components to DNA transfer complexes like adenovirus particles and influenza peptides. Here, we review the current understanding of mannose receptor-mediated gene delivery into dendritic cells and discuss strategies to identify appropriate endosomolytic agents to improve DNA transfer efficacy.

  1. Characterization of dermal dendritic cells in psoriasis. Autostimulation of T lymphocytes and induction of Th1 type cytokines.

    PubMed Central

    Nestle, F O; Turka, L A; Nickoloff, B J

    1994-01-01

    Local activation of T lymphocytes is regarded as an important immunological component of psoriatic skin lesions. Within psoriatic plaques (PP) there are large numbers of dermal dendritic cells (DDCs) immediately beneath the hyperplastic epidermis surrounded by T cells. In this study we investigated the ability of DDCs isolated from PP skin to support immune responses to resting peripheral blood T cells. For comparison, other dendritic cells were obtained from blood of the same psoriatic patients, as well as DDCs from skin of normal healthy individuals (designated NN skin). All dendritic cells studied had high surface expression of HLA-DR, B7, and lymphocyte function associated antigen-1 molecules. T cell proliferative responses and cytokine production profiles to these various dendritic cells were measured in the absence and presence of PHA or bacterial-derived superantigens. In the absence of exogenous mitogens, PP skin-derived DDCs were much more effective stimulators of spontaneous T cell proliferation compared with either psoriatic blood-derived or NN skin-derived dendritic cells. Antibody blocking studies revealed involvement of HLA-DR, B7, and lymphocyte function associated antigen-1 on PP skin-derived DDCs. Cytokine profiles revealed that in the absence of exogenous stimuli PP skin-derived DDCs mediated a T cell response with high levels of IL-2 and IFN-gamma, but not IL-4 or IL-10. NN skin-derived DDCs produced a similar qualitative response, but quantitative amounts of all cytokines measured were lower. Upon addition of PHA or superantigens, both PP skin-derived and NN skin-derived DDCs mediated high levels of IL-2 and IFN-gamma production, with induction of IL-4 particularly evident for PHA reactions. Addition of conditioned medium from psoriatic dermal fragments did not enhance the autostimulatory capacity of blood-derived dendritic cells. These findings highlight the potent autostimulatory potential of PP skin-derived DDCs and suggest an important

  2. Glycyrrhiza uralensis water extract enhances dendritic cell maturation and antitumor efficacy of HPV dendritic cell-based vaccine.

    PubMed

    Aipire, Adila; Li, Jinyu; Yuan, Pengfei; He, Jiang; Hu, Yelang; Liu, Lu; Feng, Xiaoli; Li, Yijie; Zhang, Fuchun; Yang, Jianhua; Li, Jinyao

    2017-03-08

    Licorice has been used as herbal medicine and natural sweetener. Here, we prepared Glycyrrhiza uralensis water extract (GUWE) and investigated the effect of GUWE on the maturation and function of dendritic cells (DCs) and its adjuvant effect on DC-based vaccine. We observed that GUWE dose-dependently promoted DC maturation and cytokine secretion through TLR4 signaling pathway. The capacity of DC to stimulate allogenic splenocyte proliferation was also enhanced by GUWE treatment. Compared with control group, GUWE treated DCs pulsed with human papillomavirus (HPV)-16 E6/E7 peptides significantly inhibited the tumor growth in both early and late therapeutic groups. In early therapeutic group, the frequencies of induced regulatory T cells (iTregs: CD4(+)CD25(-)Fopx3(+)) and CD4(+) and CD8(+) T cells were significantly decreased and increased, respectively. HPV-16-specific CD8(+) T cell responses were significantly induced and negatively correlated with iTreg frequencies and tumor weight. These results indicated the immunoregulatory activities of licorice.

  3. Glycyrrhiza uralensis water extract enhances dendritic cell maturation and antitumor efficacy of HPV dendritic cell-based vaccine

    PubMed Central

    Aipire, Adila; Li, Jinyu; Yuan, Pengfei; He, Jiang; Hu, Yelang; Liu, Lu; Feng, Xiaoli; Li, Yijie; Zhang, Fuchun; Yang, Jianhua; Li, Jinyao

    2017-01-01

    Licorice has been used as herbal medicine and natural sweetener. Here, we prepared Glycyrrhiza uralensis water extract (GUWE) and investigated the effect of GUWE on the maturation and function of dendritic cells (DCs) and its adjuvant effect on DC-based vaccine. We observed that GUWE dose-dependently promoted DC maturation and cytokine secretion through TLR4 signaling pathway. The capacity of DC to stimulate allogenic splenocyte proliferation was also enhanced by GUWE treatment. Compared with control group, GUWE treated DCs pulsed with human papillomavirus (HPV)-16 E6/E7 peptides significantly inhibited the tumor growth in both early and late therapeutic groups. In early therapeutic group, the frequencies of induced regulatory T cells (iTregs: CD4+CD25−Fopx3+) and CD4+ and CD8+ T cells were significantly decreased and increased, respectively. HPV-16-specific CD8+ T cell responses were significantly induced and negatively correlated with iTreg frequencies and tumor weight. These results indicated the immunoregulatory activities of licorice. PMID:28272545

  4. Bortezomib as a new therapeutic approach for blastic plasmacytoid dendritic cell neoplasm.

    PubMed

    Philippe, Laure; Ceroi, Adam; Bôle-Richard, Elodie; Jenvrin, Alizée; Biichle, Sabeha; Perrin, Sophie; Limat, Samuel; Bonnefoy, Francis; Deconinck, Eric; Saas, Philippe; Garnache-Ottou, Francine; Angelot-Delettre, Fanny

    2017-08-10

    Blastic plasmacytoid dendritic cell neoplasm is an aggressive hematological malignancy with a poor prognosis. No consensus for optimal treatment modalities is available today. Targeting the NF-κB pathway is considered as a promising approach since blastic plasmacytoid dendritic cell neoplasm have been reported to exhibit a constitutive activation of the NF-κB pathway. Moreover, NF-κB inhibition in blastic plasmacytoid dendritic cell neoplasm cell lines using either an experimental specific inhibitor JSH23 or the clinical drug bortezomib interferes in vitro with leukemic cell proliferation and survival. We extended here these data by showing that primary blastic plasmacytoid dendritic cell neoplasm cells from 7 patients were sensitive to bortezomib-induced cell death. We confirmed that bortezomib inhibits efficiently the phosphorylation of the RelA NF-κB subunit in blastic plasmacytoid dendritic cell neoplasm cell lines and primary cells from patients in vitro and in vivo in a mouse model. Then, we demonstrated that bortezomib can be associated with other drugs used in different chemotherapy regimens to improve its impact on leukemic cell death. Indeed, when primary blastic plasmacytoid dendritic cell neoplasm cells from a patient were grafted, bortezomib treatment significantly increased mouse survival, and was associated with a significant decrease of circulating leukemic cells and RelA NF-κB subunit expression. Overall, our results provide a rationale for the use of bortezomib in combination with other chemotherapy for the treatment of blastic plasmacytoid dendritic cell neoplasm patients. Based on our data, a prospective clinical trial combining proteasome inhibitor with classical drugs could be envisaged. Copyright © 2017, Ferrata Storti Foundation.

  5. Type I TARPs promote dendritic growth of early postnatal neocortical pyramidal cells in organotypic cultures.

    PubMed

    Hamad, Mohammad I K; Jack, Alexander; Klatt, Oliver; Lorkowski, Markus; Strasdeit, Tobias; Kott, Sabine; Sager, Charlotte; Hollmann, Michael; Wahle, Petra

    2014-04-01

    The ionotropic α-amino-3-hydroxy-5-methyl-4-isoxazole propionate glutamate receptors (AMPARs) have been implicated in the establishment of dendritic architecture. The transmembrane AMPA receptor regulatory proteins (TARPs) regulate AMPAR function and trafficking into synaptic membranes. In the current study, we employ type I and type II TARPs to modulate expression levels and function of endogenous AMPARs and investigate in organotypic cultures (OTCs) of rat occipital cortex whether this influences neuronal differentiation. Our results show that in early development [5-10 days in vitro (DIV)] only the type I TARP γ-8 promotes pyramidal cell dendritic growth by increasing spontaneous calcium amplitude and GluA2/3 expression in soma and dendrites. Later in development (10-15 DIV), the type I TARPs γ-2, γ-3 and γ-8 promote dendritic growth, whereas γ-4 reduced dendritic growth. The type II TARPs failed to alter dendritic morphology. The TARP-induced dendritic growth was restricted to the apical dendrites of pyramidal cells and it did not affect interneurons. Moreover, we studied the effects of short hairpin RNA-induced knockdown of endogenous γ-8 and showed a reduction of dendritic complexity and amplitudes of spontaneous calcium transients. In addition, the cytoplasmic tail (CT) of γ-8 was required for dendritic growth. Single-cell calcium imaging showed that the γ-8 CT domain increases amplitude but not frequency of calcium transients, suggesting a regulatory mechanism involving the γ-8 CT domain in the postsynaptic compartment. Indeed, the effect of γ-8 overexpression was reversed by APV, indicating a contribution of NMDA receptors. Our results suggest that selected type I TARPs influence activity-dependent dendritogenesis of immature pyramidal neurons.

  6. Mitochondrial fission protein Drp1 regulates mitochondrial transport and dendritic arborization in cerebellar Purkinje cells.

    PubMed

    Fukumitsu, Kansai; Hatsukano, Tetsu; Yoshimura, Azumi; Heuser, John; Fujishima, Kazuto; Kengaku, Mineko

    2016-03-01

    Mitochondria dynamically change their shape by repeated fission and fusion in response to physiological and pathological conditions. Recent studies have uncovered significant roles of mitochondrial fission and fusion in neuronal functions, such as neurotransmission and spine formation. However, the contribution of mitochondrial fission to the development of dendrites remains controversial. We analyzed the function of the mitochondrial fission GTPase Drp1 in dendritic arborization in cerebellar Purkinje cells. Overexpression of a dominant-negative mutant of Drp1 in postmitotic Purkinje cells enlarged and clustered mitochondria, which failed to exit from the soma into the dendrites. The emerging dendrites lacking mitochondrial transport remained short and unstable in culture and in vivo. The dominant-negative Drp1 affected neither the basal respiratory function of mitochondria nor the survival of Purkinje cells. Enhanced ATP supply by creatine treatment, but not reduced ROS production by antioxidant treatment, restored the hypomorphic dendrites caused by inhibition of Drp1 function. Collectively, our results suggest that Drp1 is required for dendritic distribution of mitochondria and thereby regulates energy supply in growing dendritic branches in developing Purkinje cells.

  7. Controlling T-Cell Activation with Synthetic Dendritic Cells Using the Multivalency Effect

    PubMed Central

    2017-01-01

    Artificial antigen-presenting cells (aAPCs) have recently gained a lot of attention. They efficiently activate T cells and serve as powerful replacements for dendritic cells in cancer immunotherapy. Focusing on a specific class of polymer-based aAPCs, so-called synthetic dendritic cells (sDCs), we have investigated the importance of multivalent binding on T-cell activation. Using antibody-functionalized sDCs, we have tested the influence of polymer length and antibody density. Increasing the multivalent character of the antibody-functionalized polymer lowered the effective concentration required for T-cell activation. This was evidenced for both early and late stages of activation. The most important effect observed was the significantly prolonged activation of the stimulated T cells, indicating that multivalent sDCs sustain T-cell signaling. Our results highlight the importance of multivalency for the design of aAPCs and will ultimately allow for better mimics of natural dendritic cells that can be used as vaccines in cancer treatment. PMID:28393131

  8. Controlling T-Cell Activation with Synthetic Dendritic Cells Using the Multivalency Effect.

    PubMed

    Hammink, Roel; Mandal, Subhra; Eggermont, Loek J; Nooteboom, Marco; Willems, Peter H G M; Tel, Jurjen; Rowan, Alan E; Figdor, Carl G; Blank, Kerstin G

    2017-03-31

    Artificial antigen-presenting cells (aAPCs) have recently gained a lot of attention. They efficiently activate T cells and serve as powerful replacements for dendritic cells in cancer immunotherapy. Focusing on a specific class of polymer-based aAPCs, so-called synthetic dendritic cells (sDCs), we have investigated the importance of multivalent binding on T-cell activation. Using antibody-functionalized sDCs, we have tested the influence of polymer length and antibody density. Increasing the multivalent character of the antibody-functionalized polymer lowered the effective concentration required for T-cell activation. This was evidenced for both early and late stages of activation. The most important effect observed was the significantly prolonged activation of the stimulated T cells, indicating that multivalent sDCs sustain T-cell signaling. Our results highlight the importance of multivalency for the design of aAPCs and will ultimately allow for better mimics of natural dendritic cells that can be used as vaccines in cancer treatment.

  9. Intraepithelial dendritic cells and sensory nerves are structurally associated and functional interdependent in the cornea

    PubMed Central

    Gao, Nan; Lee, Patrick; Yu, Fu-Shin

    2016-01-01

    The corneal epithelium consists of stratified epithelial cells, sparsely interspersed with dendritic cells (DCs) and a dense layer of sensory axons. We sought to assess the structural and functional correlation of DCs and sensory nerves. Two morphologically different DCs, dendriform and round-shaped, were detected in the corneal epithelium. The dendriform DCs were located at the sub-basal space where the nerve plexus resides, with DC dendrites crossing several nerve endings. The round-shaped DCs were closely associated with nerve fiber branching points, penetrating the basement membrane and reaching into the stroma. Phenotypically, the round-shaped DCs were CD86 positive. Trigeminal denervation resulted in epithelial defects with or without total tarsorrhaphy, decreased tear secretion, and the loss of dendriform DCs at the ocular surface. Local DC depletion resulted in a significant decrease in corneal sensitivity, an increase in epithelial defects, and a reduced density of nerve endings at the center of the cornea. Post-wound nerve regeneration was also delayed in the DC-depleted corneas. Taken together, our data show that DCs and sensory nerves are located in close proximity. DCs may play a role in epithelium innervation by accompanying the sensory nerve fibers in crossing the basement membrane and branching into nerve endings. PMID:27805041

  10. Immune tolerance of mice allogenic tooth transplantation induced by immature dendritic cells

    PubMed Central

    Li, Wenying; Deng, Feng; Wang, Yu; Ma, Ce; Wang, Yurong

    2015-01-01

    As a common procedure in dentistry for replacing a missing tooth, allogenic tooth transplantation has encountered many difficulties in the clinical application because of immunological rejection. It is hypothesized that immature dendritic cell injection might be a potential alternative method to avoid or alleviate immunological rejection in allogenic tooth transplantation. To test this hypothesis, a mouse model of allogenic and autogeneic tooth transplantation was to established test the immunosuppressive effect of immature dendritic cells (imDCs) derived from donor bone marrows on transplant rejection in allogenic tooth transplantation. 2 × 106 imDCs generated with 50 U/ml GM-CSF were injected to each recipient mouse by two ways: tail vein injection 7 days before transplantation or regional dermal injection at day 0 and day 3 after transplantation. Groups of autogeneic tooth transplantation and allogenic