1992-01-01
Antigen-presenting, major histocompatibility complex (MHC) class II- rich dendritic cells are known to arise from bone marrow. However, marrow lacks mature dendritic cells, and substantial numbers of proliferating less-mature cells have yet to be identified. The methodology for inducing dendritic cell growth that was recently described for mouse blood now has been modified to MHC class II- negative precursors in marrow. A key step is to remove the majority of nonadherent, newly formed granulocytes by gentle washes during the first 2-4 d of culture. This leaves behind proliferating clusters that are loosely attached to a more firmly adherent "stroma." At days 4-6 the clusters can be dislodged, isolated by 1-g sedimentation, and upon reculture, large numbers of dendritic cells are released. The latter are readily identified on the basis of their distinct cell shape, ultrastructure, and repertoire of antigens, as detected with a panel of monoclonal antibodies. The dendritic cells express high levels of MHC class II products and act as powerful accessory cells for initiating the mixed leukocyte reaction. Neither the clusters nor mature dendritic cells are generated if macrophage colony-stimulating factor rather than granulocyte/macrophage colony-stimulating factor (GM-CSF) is applied. Therefore, GM-CSF generates all three lineages of myeloid cells (granulocytes, macrophages, and dendritic cells). Since > 5 x 10(6) dendritic cells develop in 1 wk from precursors within the large hind limb bones of a single animal, marrow progenitors can act as a major source of dendritic cells. This feature should prove useful for future molecular and clinical studies of this otherwise trace cell type. PMID:1460426
2018-03-02
Adult Acute Myeloid Leukemia in Remission; Acute Biphenotypic Leukemia; Early Relapse of Acute Myeloid Leukemia; Late Relapse of Acute Myeloid Leukemia; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Blastic Plasmacytoid Dendritic Cell Neoplasm; Acute Myeloid Leukemia; Adult Acute Lymphoblastic Leukemia; Interleukin-3 Receptor Subunit Alpha Positive; Minimal Residual Disease; Refractory Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia
Bobryshev, Yuri V; Tran, Dinh; Killingsworth, Murray C; Buckland, Michael; Lord, Reginald V N
2009-03-01
The development of Barrett's esophagus is poorly understood, but it has been suggested that cardiac mucosa is a precursor of intestinal type metaplasia and that inflammation of cardiac mucosa may play a role in the formation of Barrett's esophagus. The present study was undertaken to examine the presence and distribution of immune-inflammatory cells in cardiac mucosa, specifically focusing on dendritic cells because of their importance as regulators of immune reactions. Endoscopic biopsy specimens were obtained from 12 patients with cardiac mucosa without Barrett's esophagus or adenocarcinoma and from 21 patients with Barrett's esophagus without dysplasia (intestinal metaplasia). According to histology, in nine of the 21 specimens with Barrett's esophagus, areas of mucosa composed of cardiac type epithelium-lined glands were present as well. Immunohistochemical staining and electron microscopy were used to examine immune-inflammatory cells in paraffin-embedded sections. Immune-inflammatory cells, including T cells, B cells, dendritic cells, macrophages, and mast cells, were present in the connective tissue matrix that surrounded cardiac type epithelium-lined glands in all patients with cardiac mucosa. Clustering of dendritic cells with each other and with lymphocytes and the intrusion of dendritic cells between glandular mucus cells were observed. In the Barrett's esophagus specimens that contained cardiac type glands, computerized CD83 expression quantitation revealed that there were more dendritic cells in cardiac mucosa than in intestinal metaplasia. Immune-inflammatory infiltrates containing dendritic cells are consistently present in cardiac mucosa. The finding of a larger number of dendritic cells in areas of cardiac mucosa in Barrett's esophagus biopsies suggests that the immune inflammation of cardiac mucosa might play a role in modifying the local tissue environment to promote the development of specialized intestinal type metaplasia.
Yuba, Eiji; Kojima, Chie; Harada, Atsushi; Tana; Watarai, Shinobu; Kono, Kenji
2010-02-01
By modification of liposomes with poly(glycidol) derivatives such as succinylated poly(glycidol) and 3-methylglutarylated poly(glycidol), we have developed functional liposomes that generate fusion ability at mildly acidic pH. We investigated the feasibility of these polymer-modified liposomes as a carrier of antigenic proteins for induction of cellular immunity. These pH-sensitive fusogenic liposomes encapsulating ovalbumin (OVA) were applied to DC2.4 cells, a murine dendritic cell line. Observation with confocal laser scanning microscopy showed that these polymer-modified liposomes were taken up efficiently by the cells, thereafter delivering their contents into the cytosol, probably through fusion with endosomal membranes. Murine bone marrow-derived dendritic cells treated with polymer-modified liposomes encapsulating OVA stimulated CD8-OVA1.3 cells more strongly than OT4H.1D5 cells, indicating that the liposomes induced MHC class I-restricted presentation. Furthermore, administration of the polymer-modified, OVA-loaded liposomes from nasal cavities of mice induced stronger cellular immune responses than the OVA-loaded plain liposomes. Because the ability of the polymer-modified liposomes to activate cellular immunity was comparable to that of Freund's complete adjuvant, which is a widely used adjuvant, they potentially have use in production of efficient vaccines for immunotherapy.
Heydenreich, Bärbel; Bellinghausen, Iris; Lorenz, Steffen; Henmar, Helene; Strand, Dennis; Würtzen, Peter A; Saloga, Joachim
2012-01-01
Although allergen-specific immunotherapy is a clinically effective therapy for IgE-mediated allergic diseases, the risk of IgE-mediated adverse effects still exists. For this reason, chemically modified allergoids have been introduced, which may destroy IgE-binding sites while T-cell activation should be retained. The aim of the study was to analyse the differences between intact allergens and differently modified/aggregated allergoids concerning their internalization as well as T-cell and basophil activation. For this purpose human monocyte-derived immature dendritic cells (DC) were incubated with Phleum pratense or Betula verrucosa pollen extract or with the corresponding allergoids, modified with formaldehyde or glutaraldehyde. After an additional maturation process, the antigen-loaded mature DC were co-cultured with autologous CD4+ T cells. Allergenicity was tested by leukotriene release from basophils. In addition, the uptake of intact allergens and allergoids by immature DC was analysed. The proliferation of, as well as the interleukin-4 (IL-4), IL-10, IL-13 and interferon-γ production by, CD4+ T cells which had been stimulated with glutaraldehyde allergoid-treated DC was reduced compared with CD4+ T cells stimulated with intact allergen-treated or formaldehyde allergoid-treated DC. In line with this, glutaraldehyde-modified allergoids were more aggregated and were internalized more slowly. Furthermore, only the allergoids modified with glutaraldehyde induced a decreased leukotriene release by activated basophils. These findings suggest that IgE-reactive epitopes were destroyed more efficiently by modification with glutaraldehyde than with formaldehyde under the conditions chosen for these investigations. Glutaraldehyde-modified allergoids also displayed lower T-cell stimulatory capacity, which is mainly the result of greater modification/aggregation and diminished uptake by DC. PMID:22348538
Heydenreich, Bärbel; Bellinghausen, Iris; Lorenz, Steffen; Henmar, Helene; Strand, Dennis; Würtzen, Peter A; Saloga, Joachim
2012-06-01
Although allergen-specific immunotherapy is a clinically effective therapy for IgE-mediated allergic diseases, the risk of IgE-mediated adverse effects still exists. For this reason, chemically modified allergoids have been introduced, which may destroy IgE-binding sites while T-cell activation should be retained. The aim of the study was to analyse the differences between intact allergens and differently modified/aggregated allergoids concerning their internalization as well as T-cell and basophil activation. For this purpose human monocyte-derived immature dendritic cells (DC) were incubated with Phleum pratense or Betula verrucosa pollen extract or with the corresponding allergoids, modified with formaldehyde or glutaraldehyde. After an additional maturation process, the antigen-loaded mature DC were co-cultured with autologous CD4(+) T cells. Allergenicity was tested by leukotriene release from basophils. In addition, the uptake of intact allergens and allergoids by immature DC was analysed. The proliferation of, as well as the interleukin-4 (IL-4), IL-10, IL-13 and interferon-γ production by, CD4(+) T cells which had been stimulated with glutaraldehyde allergoid-treated DC was reduced compared with CD4(+) T cells stimulated with intact allergen-treated or formaldehyde allergoid-treated DC. In line with this, glutaraldehyde-modified allergoids were more aggregated and were internalized more slowly. Furthermore, only the allergoids modified with glutaraldehyde induced a decreased leukotriene release by activated basophils. These findings suggest that IgE-reactive epitopes were destroyed more efficiently by modification with glutaraldehyde than with formaldehyde under the conditions chosen for these investigations. Glutaraldehyde-modified allergoids also displayed lower T-cell stimulatory capacity, which is mainly the result of greater modification/aggregation and diminished uptake by DC. © 2012 The Authors. Immunology © 2012 Blackwell Publishing Ltd.
Presence and regulation of the endocannabinoid system in human dendritic cells.
Matias, Isabel; Pochard, Pierre; Orlando, Pierangelo; Salzet, Michel; Pestel, Joel; Di Marzo, Vincenzo
2002-08-01
Cannabinoid receptors and their endogenous ligands, the endocannabinoids, have been detected in several blood immune cells, including monocytes/macrophages, basophils and lymphocytes. However, their presence in dendritic cells, which play a key role in the initiation and development of the immune response, has never been investigated. Here we have analyzed human dendritic cells for the presence of the endocannabinoids, anandamide and 2-arachidonoylglycerol (2-AG), the cannabinoid CB1 and CB2 receptors, and one of the enzymes mostly responsible for endocannabinoid hydrolysis, the fatty acid amide hydrolase (FAAH). By using a very sensitive liquid chromatography-atmospheric pressure chemical ionization-mass spectrometric (LC-APCI-MS) method, lipids extracted from immature dendritic cells were shown to contain 2-AG, anandamide and the anti-inflammatory anandamide congener, N-palmitoylethanolamine (PalEtn) (2.1 +/- 1.0, 0.14 +/- 0.02 and 8.2 +/- 3.9 pmol x 10(-7) cells, respectively). The amounts of 2-AG, but not anandamide or PalEtn, were significantly increased following cell maturation induced by bacterial lipopolysaccharide (LPS) or the allergen Der p 1 (2.8- and 1.9-fold, respectively). By using both RT-PCR and Western immunoblotting, dendritic cells were also found to express measurable amounts of CB1 and CB2 receptors and of FAAH. Cell maturation did not consistently modify the expression of these proteins, although in some cell preparations a decrease of the levels of both CB1 and CB2 mRNA transcripts was observed after LPS stimulation. These findings demonstrate for the first time that the endogenous cannabinoid system is present in human dendritic cells and can be regulated by cell activation.
Epithelial cells from smokers modify dendritic cell responses in the context of influenza infection
Epidemiologic evidence suggests that cigarette smoking is a risk factor for infection with influenza, but the mechanisms underlying this susceptibility remain unknown. To ascertain if airway epithelial cells from smokers demonstrate a decreased ability to orchestrate an influenza...
Lin, Tsang-Hsiung; Su, Hsing-Hao; Kang, Hong-Yo; Chang, Tsung-Hsien
2017-10-23
The original hygiene hypothesis declares "more infections in early childhood protect against later atopy". According to the hygiene hypothesis, the increased incidence of allergic disorders in developed countries is explained by the decrease of infections. Epithelial cells and dendritic cells play key roles in bridging the innate and adaptive immune systems. Among the various pattern-recognition receptor systems of epithelial cells and dendritic cells, including toll-like receptors (TLRs), nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) and others, TLRs are the key systems of immune response regulation. In humans, TLRs consist of TLR1 to TLR10. They regulate cellular responses through engagement with TLR ligands, e.g., lipopolysaccharides (LPS) acts through TLR4 and dsRNA acts through TLR3, but there are certain common components between these two TLR pathways. dsRNA activates epithelial cells and dendritic cells in different directions, resulting in allergy-related Th2-skewing tendency in epithelial cells, and Th1-skewing tendency in dendritic cells. The Th2-skewing effect by stimulation of dsRNA on epithelial cells could be suppressed by the presence of LPS above some threshold. When LPS level decreases, the Th2-skewing effect increases. It may be via these interrelated networks and related factors that LPS modifies the allergic responses and provides a plausible mechanism of the hygiene hypothesis. Several hygiene hypothesis-related phenomena, seemingly conflicting, are also discussed in this review, along with their proposed mechanisms.
Rolny, I S; Tiscornia, I; Racedo, S M; Pérez, P F; Bollati-Fogolín, M
2016-11-30
It is known that probiotic microorganisms are able to modulate pathogen virulence. This ability is strain dependent and involves multiple interactions between microorganisms and relevant host's cell populations. In the present work we focus on the effect of a potentially probiotic lactobacillus strain (Lactobacillus delbrueckii subsp. lactis CIDCA 133) in an in vitro model of Bacillus cereus infection. Our results showed that infection of intestinal epithelial HT-29 cells by B. cereus induces nuclear factor kappa B (NF-κB) pathway. Noteworthy, the presence of strain L. delbrueckii subsp.lactis CIDCA 133 increases stimulation. However, B. cereus-induced interleukin (IL)-8 production by epithelial cells is partially abrogated by L. delbrueckii subsp. lactis CIDCA 133. These findings suggest that signalling pathways other than that of NF-κB are involved. In a co-culture system (HT-29 and monocyte-derived dendritic cells), B. cereus was able to translocate from the epithelial (upper) to the dendritic cell compartment (lower). This translocation was partially abrogated by the presence of lactobacilli in the upper compartment. In addition, infection of epithelial cells in the co-culture model, led to an increase in the expression of CD86 by dendritic cells. This effect could not be modified in the presence of lactobacilli. Interestingly, infection of enterocytes with B. cereus triggers production of proinflammatory cytokines by dendritic cells (IL-8, IL-6 and tumour necrosis factor alpha (TNF-α)). The production of TNF-α (a protective cytokine in B. cereus infections) by dendritic cells was increased in the presence of lactobacilli. The present work demonstrates for the first time the effect of L. delbrueckii subsp. lactis CIDCA 133, a potentially probiotic strain, in an in vitro model of B. cereus infection. The presence of the probiotic strain modulates cell response both in infected epithelial and dendritic cells thus suggesting a possible beneficial effect of selected lactobacilli strains on the course of B. cereus infection.
Farinella, Matteo; Ruedt, Daniel T.; Gleeson, Padraig; Lanore, Frederic; Silver, R. Angus
2014-01-01
In vivo, cortical pyramidal cells are bombarded by asynchronous synaptic input arising from ongoing network activity. However, little is known about how such ‘background’ synaptic input interacts with nonlinear dendritic mechanisms. We have modified an existing model of a layer 5 (L5) pyramidal cell to explore how dendritic integration in the apical dendritic tuft could be altered by the levels of network activity observed in vivo. Here we show that asynchronous background excitatory input increases neuronal gain and extends both temporal and spatial integration of stimulus-evoked synaptic input onto the dendritic tuft. Addition of fast and slow inhibitory synaptic conductances, with properties similar to those from dendritic targeting interneurons, that provided a ‘balanced’ background configuration, partially counteracted these effects, suggesting that inhibition can tune spatio-temporal integration in the tuft. Excitatory background input lowered the threshold for NMDA receptor-mediated dendritic spikes, extended their duration and increased the probability of additional regenerative events occurring in neighbouring branches. These effects were also observed in a passive model where all the non-synaptic voltage-gated conductances were removed. Our results show that glutamate-bound NMDA receptors arising from ongoing network activity can provide a powerful spatially distributed nonlinear dendritic conductance. This may enable L5 pyramidal cells to change their integrative properties as a function of local network activity, potentially allowing both clustered and spatially distributed synaptic inputs to be integrated over extended timescales. PMID:24763087
Bray, Mike; Geisbert, Thomas W
2005-08-01
Ebola hemorrhagic fever is a severe viral infection characterized by fever, shock and coagulation defects. Recent studies in macaques show that major features of illness are caused by effects of viral replication on macrophages and dendritic cells. Infected macrophages produce proinflammatory cytokines, chemokines and tissue factor, attracting additional target cells and inducing vasodilatation, increased vascular permeability and disseminated intravascular coagulation. However, they cannot restrict viral replication, possibly because of suppression of interferon responses. Infected dendritic cells also secrete proinflammatory mediators, but cannot initiate antigen-specific responses. In consequence, virus disseminates to these and other cell types throughout the body, causing multifocal necrosis and a syndrome resembling septic shock. Massive "bystander" apoptosis of natural killer and T cells further impairs immunity. These findings suggest that modifying host responses would be an effective therapeutic strategy, and treatment of infected macaques with a tissue-factor inhibitor reduced both inflammation and viral replication and improved survival.
NASA Astrophysics Data System (ADS)
Yang, Lili; Baltimore, David
2005-03-01
A method to genetically program mouse hematopoietic stem cells to develop into functional CD8 or CD4 T cells of defined specificity in vivo is described. For this purpose, a bicistronic retroviral vector was engineered that efficiently delivers genes for both and chains of T cell receptor (TCR) to hematopoietic stem cells. When modified cell populations were used to reconstruct the hematopoietic lineages of recipient mice, significant percentages of antigen-specific CD8 or CD4 T cells were observed. These cells expressed normal surface markers and responded to peptide antigen stimulation by proliferation and cytokine production. Moreover, they could mature into memory cells after peptide stimulation. Using TCRs specific for a model tumor antigen, we found that the recipient mice were able to partially resist a challenge with tumor cells carrying the antigen. By combining cells modified with CD8- and CD4-specific TCRs, and boosting with dendritic cells pulsed with cognate peptides, complete suppression of tumor could be achieved and even tumors that had become established would regress and be eliminated after dendritic cell/peptide immunization. This methodology of "instructive immunotherapy" could be developed for controlling the growth of human tumors and attacking established pathogens.
Coding and decoding with dendrites.
Papoutsi, Athanasia; Kastellakis, George; Psarrou, Maria; Anastasakis, Stelios; Poirazi, Panayiota
2014-02-01
Since the discovery of complex, voltage dependent mechanisms in the dendrites of multiple neuron types, great effort has been devoted in search of a direct link between dendritic properties and specific neuronal functions. Over the last few years, new experimental techniques have allowed the visualization and probing of dendritic anatomy, plasticity and integrative schemes with unprecedented detail. This vast amount of information has caused a paradigm shift in the study of memory, one of the most important pursuits in Neuroscience, and calls for the development of novel theories and models that will unify the available data according to some basic principles. Traditional models of memory considered neural cells as the fundamental processing units in the brain. Recent studies however are proposing new theories in which memory is not only formed by modifying the synaptic connections between neurons, but also by modifications of intrinsic and anatomical dendritic properties as well as fine tuning of the wiring diagram. In this review paper we present previous studies along with recent findings from our group that support a key role of dendrites in information processing, including the encoding and decoding of new memories, both at the single cell and the network level. Copyright © 2013 Elsevier Ltd. All rights reserved.
Yang, Seok-Chul; Batra, Raj K; Hillinger, Sven; Reckamp, Karen L; Strieter, Robert M; Dubinett, Steven M; Sharma, Sherven
2006-03-15
The antitumor efficiency of dendritic cells transduced with an adenovirus vector expressing secondary lymphoid chemokine (CCL21) was evaluated in a murine model of spontaneous bronchoalveolar cell carcinoma. The transgenic mice (CC-10 TAg) express the SV40 large T antigen (TAg) under the Clara cell promoter, develop bilateral, multifocal, and pulmonary adenocarcinomas, and die at 4 months as a result of progressive pulmonary tumor burden. A single intratracheal administration of CCL21 gene-modified dendritic cells (DC-AdCCL21) led to a marked reduction in tumor burden with extensive mononuclear cell infiltration of the tumors. The reduction in tumor burden was accompanied by the enhanced elaboration of type 1 cytokines [IFN-gamma, interleukin (IL)-12, and granulocyte macrophage colony-stimulating factor] and antiangiogenic chemokines (CXCL9 and CXCL10) but a concomitant decrease in the immunosuppressive molecules (IL-10, transforming growth factor-beta, prostaglandin E(2)) in the tumor microenvironment. The DC-AdCCL21 therapy group revealed a significantly greater frequency of tumor-specific T cells releasing IFN-gamma compared with the controls. Continuous therapy with weekly intranasal delivery of DC-AdCCL21 significantly prolonged median survival by >7 weeks in CC-10 TAg mice. Both innate natural killer and specific T-cell antitumor responses significantly increased following DC-AdCCL21 therapy. Significant reduction in tumor burden in a model in which tumors develop in an organ-specific manner provides a strong rationale for further evaluation of intrapulmonary-administered DC-AdCCL21 in regulation of tumor immunity and genetic immunotherapy for lung cancer.
Park, Seyeon; Ahn, Eun Sook; Kim, Yunjoo
2015-04-01
The identification of small vesicles released by many cell types as tools of intercellular communication is proposed. Here, we identify SH-SY5Y neuroblastoma-derived exosomes comprised of major histocompatibility complex II (MHC II), Hsp90 and flotillin-1. Our data also suggest that, when applied extracellularly, exosomes released from neuronal cells stimulate dendrite-like outgrowth and melanogenesis of A375 melanoma cells through the mitogen-activated protein kinase (MAP kinase), extracellular signal-regulated kinase 1 (ERK1) activation. These results suggest a modification of differentiation of melanocyte by the treatment of neuronal cell exosomes. Since exosomes from neuronal cells have the capacity to affect melanoma cells, they could be generally implicated in intercellular communication between different types of cells. © 2014 International Federation for Cell Biology.
Ugonna, Kelechi; Bingle, Colin D; Plant, Karen; Wilson, Kirsty; Everard, Mark L
2014-01-01
We have previously shown that the respiratory syncytial virus [RSV] can productively infect monocyte derived dendritic cells [MoDC] and remain dormant within the same cells for prolonged periods. It is therefore possible that infected dendritic cells act as a reservoir within the airways of individuals between annual epidemics. In the present study we explored the possibility that sub-epithelial DCs can be infected with RSV from differentiated bronchial epithelium and that in turn RSV from DCs can infect the epithelium. A dual co-culture model was established in which a differentiated primary airway epithelium on an Air Liquid Interface (ALI) was cultured on a transwell insert and MoDCs were subsequently added to the basolateral membrane of the insert. Further experiments were undertaken using a triple co-culture model in which in which macrophages were added to the apical surface of the differentiated epithelium. A modified RSV [rr-RSV] expressing a red fluorescent protein marker of replication was used to infect either the MoDCs or the differentiated epithelium and infection of the reciprocal cell type was assessed using confocal microscopy. Our data shows that primary epithelium became infected when rr-RSV infected MoDCs were introduced onto the basal surface of the transwell insert. MoDCs located beneath the epithelium did not become infected with virus from infected epithelial cells in the dual co-culture model. However when macrophages were present on the apical surface of the primary epithelium infection of the basal MoDCs occurred. Our data suggests that RSV infected dendritic cells readily transmit infection to epithelial cells even when they are located beneath the basal layer. However macrophages appear to be necessary for the transmission of infection from epithelial cells to basal dendritic cells.
Rosário, Marta; Schuster, Steffen; Jüttner, René; Parthasarathy, Srinivas; Tarabykin, Victor; Birchmeier, Walter
2012-08-01
Neocortical neurons have highly branched dendritic trees that are essential for their function. Indeed, defects in dendritic arborization are associated with human neurodevelopmental disorders. The molecular mechanisms regulating dendritic arbor complexity, however, are still poorly understood. Here, we uncover the molecular basis for the regulation of dendritic branching during cortical development. We show that during development, dendritic branching requires post-mitotic suppression of the RhoGTPase Cdc42. By generating genetically modified mice, we demonstrate that this is catalyzed in vivo by the novel Cdc42-GAP NOMA-GAP. Loss of NOMA-GAP leads to decreased neocortical volume, associated specifically with profound oversimplification of cortical dendritic arborization and hyperactivation of Cdc42. Remarkably, dendritic complexity and cortical thickness can be partially restored by genetic reduction of post-mitotic Cdc42 levels. Furthermore, we identify the actin regulator cofilin as a key regulator of dendritic complexity in vivo. Cofilin activation during late cortical development depends on NOMA-GAP expression and subsequent inhibition of Cdc42. Strikingly, in utero expression of active cofilin is sufficient to restore postnatal dendritic complexity in NOMA-GAP-deficient animals. Our findings define a novel cell-intrinsic mechanism to regulate dendritic branching and thus neuronal complexity in the cerebral cortex.
Targeted Cellular Drug Delivery using Tailored Dendritic Nanostructures
NASA Astrophysics Data System (ADS)
Kannan, Rangaramanujam; Kolhe, Parag; Kannan, Sujatha; Lieh-Lai, Mary
2002-03-01
Dendrimers and hyperbranched polymers possess highly branched architectures, with a large number of controllable, tailorble, ‘peripheral’ functionalities. Since the surface chemistry of these materials can be modified with relative ease, these materials have tremendous potential in targeted drug and gene delivery. The large number of end groups can also be tailored to create special affinity to targeted cells, and can also encapsulate drugs and deliver them in a controlled manner. We are developing tailor-modified dendritic systems for drug delivery. Synthesis, in-vitro drug loading, in-vitro drug delivery, and the targeting efficiency to the cell are being studied systematically using a wide variety of experimental tools. Polyamidoamine and Polyol dendrimers, with different generations and end-groups are studied, with drugs such as Ibuprofen and Methotrexate. Our results indicate that a large number of drug molecules can be encapsulated/attached to the dendrimers, depending on the end groups. The drug-encapsulated dendrimer is able to enter the cells rapidly and deliver the drug. Targeting strategies being explored
Enhanced cellular transport and drug targeting using dendritic nanostructures
NASA Astrophysics Data System (ADS)
Kannan, R. M.; Kolhe, Parag; Kannan, Sujatha; Lieh-Lai, Mary
2003-03-01
Dendrimers and hyperbranched polymers possess highly branched architectures, with a large number of controllable, tailorable, peripheral' functionalities. Since the surface chemistry of these materials can be modified with relative ease, these materials have tremendous potential in targeted drug delivery. The large density of end groups can also be tailored to create enhanced affinity to targeted cells, and can also encapsulate drugs and deliver them in a controlled manner. We are developing tailor-modified dendritic systems for drug delivery. Synthesis, drug/ligand conjugation, in vitro cellular and in vivo drug delivery, and the targeting efficiency to the cell are being studied systematically using a wide variety of experimental tools. Results on PAMAM dendrimers and polyol hyperbranched polymers suggest that: (1) These materials complex/encapsulate a large number of drug molecules and release them at tailorable rates; (2) The drug-dendrimer complex is transported very rapidly through a A549 lung epithelial cancel cell line, compared to free drug, perhaps by endocytosis. The ability of the drug-dendrimer-ligand complexes to target specific asthma and cancer cells is currently being explored using in vitro and in vivo animal models.
Dendrite-Suppressed Lithium Plating from a Liquid Electrolyte via Wetting of Li 3N
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Kyusung; Goodenough, John B.
Lithium metal is an ultimate anode material to provide the highest energy density for a given cathode by providing a higher capacity and cell voltage. However, lithium is not used as the anode in commercial lithium-ion batteries because electrochemical dendrite formation and growth during charge can induce a cell short circuit that ignites the flammable liquid electrolyte. Plating of lithium through a bed of Li 3N particles is shown to transform dendrite growth into a 3D lithium network formed by wetting the particle surfaces; plating through a Li 3N particle is without dendrite nucleation. The Li 3N particles create amore » higher overpotential during Li deposition than that with dendrite growth in galvanostatic charge/discharge tests. The characteristic overpotential increase is correlated with the morphological changes and a more isotropic growth behavior. The Li 3N-modified Li electrode shows a stable cycling performance at 0.5 and 1.0 mA cm -2 for more than 100 cycles. In this paper, the origin of the bonding responsible for wetting of the Li 3N particles by lithium and for plating through a Li 3N particle is discussed.« less
Dendrite-Suppressed Lithium Plating from a Liquid Electrolyte via Wetting of Li 3N
Park, Kyusung; Goodenough, John B.
2017-07-10
Lithium metal is an ultimate anode material to provide the highest energy density for a given cathode by providing a higher capacity and cell voltage. However, lithium is not used as the anode in commercial lithium-ion batteries because electrochemical dendrite formation and growth during charge can induce a cell short circuit that ignites the flammable liquid electrolyte. Plating of lithium through a bed of Li 3N particles is shown to transform dendrite growth into a 3D lithium network formed by wetting the particle surfaces; plating through a Li 3N particle is without dendrite nucleation. The Li 3N particles create amore » higher overpotential during Li deposition than that with dendrite growth in galvanostatic charge/discharge tests. The characteristic overpotential increase is correlated with the morphological changes and a more isotropic growth behavior. The Li 3N-modified Li electrode shows a stable cycling performance at 0.5 and 1.0 mA cm -2 for more than 100 cycles. In this paper, the origin of the bonding responsible for wetting of the Li 3N particles by lithium and for plating through a Li 3N particle is discussed.« less
Bioterrorism Preparedness for Infectious Disease (BTPID) Proposal
2007-01-01
approximately $210,000/ year x 5 years. (Pending) Safety, Tolerability and Immunogenicity of ACAM3000 Modified Vaccinia Ankara (MVA) Small Pox ...Hospital. • (Pending) Safety, Tolerability and Immunogenicity of ACAM3000 Modified Vaccinia Ankara (MVA) Small Pox Vaccine in HIV-Seropositive...choosing optimal pox virus derived vectors as vaccines in terms of reducing clinical reactogenicity and inducing dendritic cell (DC) aturation. 2006 Elsevier
Solid lipid nanoparticles mediate non-viral delivery of plasmid DNA to dendritic cells
NASA Astrophysics Data System (ADS)
Penumarthi, Alekhya; Parashar, Deepti; Abraham, Amanda N.; Dekiwadia, Chaitali; Macreadie, Ian; Shukla, Ravi; Smooker, Peter M.
2017-06-01
There is an increasing demand for novel DNA vaccine delivery systems, mainly for the non-viral type as they are considered relatively safe. Therefore, solid lipid nanoparticles (SLNs) were investigated for their suitability as a non-viral DNA vaccine delivery system. SLNs were synthesised by a modified solvent-emulsification method in order to study their potential to conjugate with plasmid DNA and deliver them in vitro to dendritic cells using eGFP as the reporter plasmid. The DNA-SLN complexes were characterised by electron microscopy, gel retardation assays and dynamic light scattering. The cytotoxicity assay data supported their biocompatibility and was used to estimate safe threshold concentration resulting in high transfection rate. The transfection efficiency of these complexes in a dendritic cell line was shown to increase significantly compared to plasmid alone, and was comparable to that mediated by lipofectamine. Transmission electron microscopy studies delineated the pathway of cellular uptake. Endosomal escape was observed supporting the mechanism of transfection.
NASA Astrophysics Data System (ADS)
Li, Yingpin; Wei, Yanan; Feng, Kangning; Hao, Yanzhong; Pei, Juan; Sun, Bao
2018-06-01
Array of TiO2 dendritic structure with nanotubes was constructed on transparent conductive fluorine-doped tin oxide glass (FTO) with titanium potassium oxalate as titanium source. Sb2S3 nanocrystals were successfully deposited on the TiO2 substrate via spin-coating method. Furthermore, TiO2/Sb2S3/P3HT/PEDOT:PSS composite film was prepared by successively spin-coating P3HT and PEDOT:PSS on TiO2/Sb2S3. It was demonstrated that the modification of TiO2 dendritic structure with Sb2S3 could enhance the light absorption in the visible region. The champion hybrid solar cell assembled by TiO2/Sb2S3/P3HT/PEDOT:PSS composite film achieved a power conversion efficiency (PCE) of 1.56%.
NASA Astrophysics Data System (ADS)
Yan, Xuewei; Xu, Qingyan; Liu, Baicheng
2017-12-01
Dendritic structures are the predominant microstructural constituents of nickel-based superalloys, an understanding of the dendrite growth is required in order to obtain the desirable microstructure and improve the performance of castings. For this reason, numerical simulation method and an in-situ observation technology by employing high temperature confocal laser scanning microscopy (HT-CLSM) were used to investigate dendrite growth during solidification process. A combined cellular automaton-finite difference (CA-FD) model allowing for the prediction of dendrite growth of binary alloys was developed. The algorithm of cells capture was modified, and a deterministic cellular automaton (DCA) model was proposed to describe neighborhood tracking. The dendrite and detail morphology, especially hundreds of dendrites distribution at a large scale and three-dimensional (3-D) polycrystalline growth, were successfully simulated based on this model. The dendritic morphologies of samples before and after HT-CLSM were both observed by optical microscope (OM) and scanning electron microscope (SEM). The experimental observations presented a reasonable agreement with the simulation results. It was also found that primary or secondary dendrite arm spacing, and segregation pattern were significantly influenced by dendrite growth. Furthermore, the directional solidification (DS) dendritic evolution behavior and detail morphology were also simulated based on the proposed model, and the simulation results also agree well with experimental results.
Ramirez, Karina; Ditamo, Yanina; Rodriguez, Liliana; Picking, Wendy L.; van Roosmalen, Maarten L.; Leenhouts, Kees; Pasetti, Marcela F.
2010-01-01
Safe and effective immunization of newborns and infants can significantly reduce childhood mortality, yet conventional vaccines have been largely unsuccessful in stimulating the neonatal immune system. We explored the capacity of a novel mucosal antigen delivery system consisting of non-living, non-genetically modified Lactococcus lactis particles, designated Gram-positive Enhancer Matrix (GEM), to induce immune responses in the neonatal setting. Yersinia pestis LcrV, used as model protective antigen, was displayed on the GEM particles. Newborn mice immunized intranasally with GEM-LcrV developed LcrV-specific antibodies, Th1-type cell-mediated immunity, and were protected against lethal Y. pestis (plague) infection. The GEM particles activated and enhanced the maturation of neonatal dendritic cells both in vivo and in vitro. These dendritic cells showed increased capacities for secretion of pro-inflammatory and Th1-cell polarizing cytokines, antigen presentation and stimulation of CD4+ and CD8+ T cells. These data show that mucosal immunization with L. lactis GEM particles carrying vaccine antigens represents a promising approach to prevent infectious diseases early in life. PMID:19924118
Naegleria fowleri immunization modifies lymphocytes and APC of nasal mucosa.
Carrasco-Yepez, M M; Campos-Rodríguez, R; Reséndiz-Albor, A A; Peña-Juárez, C; Contis-Montes de Oca, A; Arciniega-Martínez, I M; Bonilla-Lemus, P; Rojas-Hernandez, S
2018-03-01
We investigated whether intranasal immunization with amoebic lysates plus cholera toxin modified the populations of T and B lymphocytes, macrophages and dendritic cells by flow cytometry from nose-associated lymphoid tissue (NALT), cervical lymph nodes (CN), nasal passages (NP) and spleen (SP). In all immunized groups, the percentage of CD4 was higher than CD8 cells. CD45 was increased in B cells from mice immunized. We observed IgA antibody-forming cell (IgA-AFC) response, mainly in NALT and NP. Macrophages from NP and CN expressed the highest levels of CD80 and CD86 in N. fowleri lysates with either CT or CT alone immunized mice, whereas dendritic cells expressed high levels of CD80 and CD86 in all compartment from immunized mice. These were lower than those expressed by macrophages. Only in SP from CT-immunized mice, these costimulatory molecules were increased. These results suggest that N. fowleri and CT antigens are taking by APCs, and therefore, protective immunity depends on interactions between APCs and T cells from NP and CN. Consequently, CD4 cells stimulate the differentiation from B lymphocytes to AFC IgA-positive; antibody that we previously found interacting with trophozoites in the nasal lumen avoiding the N. fowleri attachment to nasal epithelium. © 2017 John Wiley & Sons Ltd.
Dendritic Cells: A Spot on Sialic Acid
Crespo, Hélio J.; Lau, Joseph T. Y.; Videira, Paula A.
2013-01-01
Glycans decorating cell surface and secreted proteins and lipids occupy the juncture where critical host–host and host-pathogen interactions occur. The role of glycan epitopes in cell–cell and cell-pathogen adhesive events is already well-established, and cell surface glycan structures change rapidly in response to stimulus and inflammatory cues. Despite the wide acceptance that glycans are centrally implicated in immunity, exactly how glycans and their changes contribute to the overall immune response remains poorly defined. Sialic acids are unique sugars that usually occupy the terminal position of the glycan chains and may be modified by external factors, such as pathogens, or upon specific physiological cellular events. At cell surface, sialic acid-modified structures form the key fundamental determinants for a number of receptors with known involvement in cellular adhesiveness and cell trafficking, such as the Selectins and the Siglec families of carbohydrate recognizing receptors. Dendritic cells (DCs) preside over the transition from innate to the adaptive immune repertoires, and no other cell has such relevant role in antigen screening, uptake, and its presentation to lymphocytes, ultimately triggering the adaptive immune response. Interestingly, sialic acid-modified structures are involved in all DC functions, such as antigen uptake, DC migration, and capacity to prime T cell responses. Sialic acid content changes along DC differentiation and activation and, while, not yet fully understood, these changes have important implications in DC functions. This review focuses on the developmental regulation of DC surface sialic acids and how manipulation of DC surface sialic acids can affect immune-critical DC functions by altering antigen endocytosis, pathogen and tumor cell recognition, cell recruitment, and capacity for T cell priming. The existing evidence points to a potential of DC surface sialylation as a therapeutic target to improve and diversify DC-based therapies. PMID:24409183
Motor learning induces plastic changes in Purkinje cell dendritic spines in the rat cerebellum.
González-Tapia, D; González-Ramírez, M M; Vázquez-Hernández, N; González-Burgos, I
2017-12-14
The paramedian lobule of the cerebellum is involved in learning to correctly perform motor skills through practice. Dendritic spines are dynamic structures that regulate excitatory synaptic stimulation. We studied plastic changes occurring in the dendritic spines of Purkinje cells from the paramedian lobule of rats during motor learning. Adult male rats were trained over a 6-day period using an acrobatic motor learning paradigm; the density and type of dendritic spines were determined every day during the study period using a modified version of the Golgi method. The learning curve reflected a considerable decrease in the number of errors made by rats as the training period progressed. We observed more dendritic spines on days 2 and 6, particularly more thin spines on days 1, 3, and 6, fewer mushroom spines on day 3, fewer stubby spines on day 1, and more thick spines on days 4 and 6. The initial stage of motor learning may be associated with fast processing of the underlying synaptic information combined with an apparent "silencing" of memory consolidation processes, based on the regulation of the neuronal excitability. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.
De Serres, Sacha A.; Safa, Kassem; Bijol, Vanesa; Ueno, Takuya; Onozato, Maristela L.; Iafrate, A. John; Herter, Jan M.; Lichtman, Andrew H.; Mayadas, Tanya N.; Guleria, Indira; Rennke, Helmut G.; Najafian, Nader; Chandraker, Anil
2015-01-01
Progress in long-term renal allograft survival continues to lag behind the progress in short-term transplant outcomes. Dendritic cells are the most efficient antigen-presenting cells, but surprisingly little attention has been paid to their presence in transplanted kidneys. We used dendritic cell–specific intercellular adhesion molecule-3–grabbing nonintegrin as a marker of dendritic cells in 105 allograft biopsy samples from 105 kidney transplant recipients. High dendritic cell density was associated with poor allograft survival independent of clinical variables. Moreover, high dendritic cell density correlated with greater T cell proliferation and poor outcomes in patients with high total inflammation scores, including inflammation in areas of tubular atrophy. We then explored the association between dendritic cells and histologic variables associated with poor prognosis. Multivariate analysis revealed an independent association between the densities of dendritic cells and T cells. In biopsy samples with high dendritic cell density, electron microscopy showed direct physical contact between infiltrating lymphocytes and cells that have the ultrastructural morphologic characteristics of dendritic cells. The origin of graft dendritic cells was sought in nine sex-mismatched recipients using XY fluorescence in situ hybridization. Whereas donor dendritic cells predominated initially, the majority of dendritic cells in late allograft biopsy samples were of recipient origin. Our data highlight the prognostic value of dendritic cell density in allograft biopsy samples, suggest a new role for these cells in shaping graft inflammation, and provide a rationale for targeting dendritic cell recruitment to promote long-term allograft survival. PMID:25855773
Angelot, Fanny; Seillès, Estelle; Biichlé, Sabeha; Berda, Yael; Gaugler, Béatrice; Plumas, Joel; Chaperot, Laurence; Dignat-George, Françoise; Tiberghien, Pierre; Saas, Philippe; Garnache-Ottou, Francine
2009-11-01
Increased circulating endothelial microparticles, resulting from vascular endothelium dysfunction, and plasmacytoid dendritic cell activation are both encountered in common inflammatory disorders. The aim of our study was to determine whether interactions between endothelial microparticles and plasmacytoid dendritic cells could contribute to such pathologies. Microparticles generated from endothelial cell lines, platelets or activated T cells were incubated with human plasmacytoid dendritic cells sorted from healthy donor blood or with monocyte-derived dendritic cells. Dendritic cell maturation was evaluated by flow cytometry, cytokine secretion as well as naive T-cell activation and polarization. Labeled microparticles were also used to study cellular interactions. Endothelial microparticles induced plasmacytoid dendritic cell maturation. In contrast, conventional dendritic cells were resistant to endothelial microparticle-induced maturation. In addition to upregulation of co-stimulatory molecules, endothelial microparticle-matured plasmacytoid dendritic cells secreted inflammatory cytokines (interleukins 6 and 8, but no interferon-alpha) and also induced allogeneic naive CD4(+) T cells to proliferate and to produce type 1 cytokines such as interferon-gamma and tumor necrosis factor-alpha. Endothelial microparticle endocytosis by plasmacytoid dendritic cells appeared to be required for plasmacytoid dendritic cell maturation. Importantly, the ability of endothelial microparticles to induce plasmacytoid dendritic cells to mature was specific as microparticles derived from activated T cells or platelets (the major source of circulating microparticules in healthy subjects) did not induce such plasmacytoid dendritic cell maturation. Our data show that endothelial microparticles specifically induce plasmacytoid dendritic cell maturation and production of inflammatory cytokines. This novel activation pathway may be implicated in various inflammatory disorders and endothelial microparticles could be an important immunmodulatory therapeutic target.
Angelot, Fanny; Seillès, Estelle; Biichlé, Sabeha; Berda, Yael; Gaugler, Béatrice; Plumas, Joel; Chaperot, Laurence; Dignat-George, Françoise; Tiberghien, Pierre; Saas, Philippe; Garnache-Ottou, Francine
2009-01-01
Background Increased circulating endothelial microparticles, resulting from vascular endothelium dysfunction, and plasmacytoid dendritic cell activation are both encountered in common inflammatory disorders. The aim of our study was to determine whether interactions between endothelial microparticles and plasmacytoid dendritic cells could contribute to such pathologies. Design and Methods Microparticles generated from endothelial cell lines, platelets or activated T cells were incubated with human plasmacytoid dendritic cells sorted from healthy donor blood or with monocyte-derived dendritic cells. Dendritic cell maturation was evaluated by flow cytometry, cytokine secretion as well as naive T-cell activation and polarization. Labeled microparticles were also used to study cellular interactions. Results Endothelial microparticles induced plasmacytoid dendritic cell maturation. In contrast, conventional dendritic cells were resistant to endothelial microparticle-induced maturation. In addition to upregulation of co-stimulatory molecules, endothelial microparticle-matured plasmacytoid dendritic cells secreted inflammatory cytokines (interleukins 6 and 8, but no interferon-α) and also induced allogeneic naive CD4+ T cells to proliferate and to produce type 1 cytokines such as interferon-γ and tumor necrosis factor-α. Endothelial microparticle endocytosis by plasmacytoid dendritic cells appeared to be required for plasmacytoid dendritic cell maturation. Importantly, the ability of endothelial microparticles to induce plasmacytoid dendritic cells to mature was specific as microparticles derived from activated T cells or platelets (the major source of circulating microparticules in healthy subjects) did not induce such plasmacytoid dendritic cell maturation. Conclusions Our data show that endothelial microparticles specifically induce plasmacytoid dendritic cell maturation and production of inflammatory cytokines. This novel activation pathway may be implicated in various inflammatory disorders and endothelial microparticles could be an important immunmodulatory therapeutic target. PMID:19648164
Sato, Katsuaki; Uto, Tomofumi; Fukaya, Tomohiro; Takagi, Hideaki
2017-01-01
Dendritic cells (DCs) comprise heterogeneous subsets, functionally classified into conventional DCs (cDCs) and plasmacytoid DCs (pDCs). DCs are considered to be essential antigen (Ag)-presenting cells (APCs) that play crucial roles in activation and fine-tuning of innate and adaptive immunity under inflammatory conditions, as well as induction of immune tolerance to maintain immune homeostasis under steady-state conditions. Furthermore, DC functions can be modified and influenced by stimulation with various extrinsic factors, such as ligands for pattern-recognition receptors (PRRs) and cytokines. On the other hand, treatment of DCs with certain immunosuppressive drugs and molecules leads to the generation of tolerogenic DCs that show downregulation of both the major histocompatibility complex (MHC) and costimulatory molecules, and not only show defective T-cell activation, but also possess tolerogenic properties including the induction of anergic T-cells and regulatory T (T reg ) cells. To develop an effective strategy for Ag-specific intervention of T-cell-mediated immune disorders, we have previously established the modified DCs with moderately high levels of MHC molecules that are defective in the expression of costimulatory molecules that had a greater immunoregulatory property than classical tolerogenic DCs, which we therefore designated as regulatory DCs (DC reg ). Herein, we integrate the current understanding of the role of DCs in the control of immune responses, and further provide new information of the characteristics of tolerogenic DCs and DC reg , as well as their regulation of immune responses and disorders.
Garibaldi, Silvano; Barisione, Chiara; Marengo, Barbara; Ameri, Pietro; Brunelli, Claudio; Balbi, Manrico; Ghigliotti, Giorgio
2017-01-10
Local accumulation of Advanced Oxidation Protein Products (AOPP) induces pro-inflammatory and pro-fibrotic processes in kidneys and is an independent predictor of renal fibrosis and of rapid decline of eGFR in patients with chronic kidney disease (CKD). In addition to kidney damage, circulating AOPP may be regarded as mediators of systemic oxidative stress and, in this capacity, they might play a role in the progression of atherosclerotic damage of arterial walls. Atherosclerosis is a chronic inflammatory disease that involves activation of innate and adaptive immunity. Dendritic cells (DCs) are key cells in this process, due to their role in antigen presentation, inflammation resolution and T cell activation. AOPP consist in oxidative modifications of proteins (such as albumin and fibrinogen) that mainly occur through myeloperoxidase (MPO)-derived hypochlorite (HOCl). HOCl modified proteins have been found in atherosclerotic lesions. The oxidizing environment and the shifts in cellular redox equilibrium trigger inflammation, activate immune cells and induce immune responses. Thus, surface thiol groups contribute to the regulation of immune functions. The aims of this work are: (1) to evaluate whether AOPP-proteins induce activation and differentiation of mature macrophages into dendritic cells in vitro; and (2) to define the role of cell surface thiol groups and of free radicals in this process. AOPP-proteins were prepared by in vitro incubation of human serum albumin (HSA) with HOCl. Mouse macrophage-like RAW264.7 were treated with various concentrations of AOPP-HSA with or without the antioxidant N -acetyl cysteine (NAC). Following 48 h of HSA-AOPP treatment, RAW264.7 morphological changes were evaluated by microscopic observation, while markers of dendritic lineage and activation (CD40, CD86, and MHC class II) and allogeneic T cell proliferation were evaluated by flow cytometry. Cell surface thiols were measured by AlexaFluor-maleimide binding, and ROS production was assessed as DCF fluorescence by flow cytometry. HSA-AOPP induced the differentiation of RAW264.7 cells into a dendritic-like phenotype, as shown by morphological changes, by increased CD40, CD86 and MHC class II surface expression and by induction of T cell proliferation. The cell surface thiols dose dependently decreased following HSA-AOPP treatment, while ROS production increased. NAC pre-treatment enhanced the amount of cell surface thiols and prevented their reduction due to treatment with AOPP. Both ROS production and RAW264.7 differentiation into DC-like cells induced by HSA-AOPP were reduced by NAC. Our results highlight that oxidized plasma proteins modulate specific immune responses of macrophages through a process involving changes in the thiol redox equilibrium. We suggest that this mechanism may play a role in determining the rapid progression of the atherosclerotic process observed in CKD patients.
Engineering Dendritic Cells to Enhance Cancer Immunotherapy
Boudreau, Jeanette E; Bonehill, Aude; Thielemans, Kris; Wan, Yonghong
2011-01-01
Cancer immunotherapy aims to establish immune-mediated control of tumor growth by priming T-cell responses to target tumor-associated antigens. Three signals are required for T-cell activation: (i) presentation of cognate antigen in self MHC molecules; (ii) costimulation by membrane-bound receptor-ligand pairs; and (iii) soluble factors to direct polarization of the ensuing immune response. The ability of dendritic cells (DCs) to provide all three signals required for T-cell activation makes them an ideal cancer vaccine platform. Several strategies have been developed to enhance and control antigen presentation, costimulation, and cytokine production. In this review, we discuss progress toward developing DC-based cancer vaccines by genetic modification using RNA, DNA, and recombinant viruses. Furthermore, the ability of DC-based vaccines to activate natural killer (NK) and B-cells, and the impact of gene modification strategies on these populations is described. Clinical trials using gene-modified DCs have shown modest results, therefore, further considerations for DC manipulation to enhance their clinical efficacy are also discussed. PMID:21468005
Trial watch: Dendritic cell-based anticancer immunotherapy.
Garg, Abhishek D; Vara Perez, Monica; Schaaf, Marco; Agostinis, Patrizia; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo
2017-01-01
Dendritic cell (DC)-based vaccines against cancer have been extensively developed over the past two decades. Typically DC-based cancer immunotherapy entails loading patient-derived DCs with an appropriate source of tumor-associated antigens (TAAs) and efficient DC stimulation through a so-called "maturation cocktail" (typically a combination of pro-inflammatory cytokines and Toll-like receptor agonists), followed by DC reintroduction into patients. DC vaccines have been documented to (re)activate tumor-specific T cells in both preclinical and clinical settings. There is considerable clinical interest in combining DC-based anticancer vaccines with T cell-targeting immunotherapies. This reflects the established capacity of DC-based vaccines to generate a pool of TAA-specific effector T cells and facilitate their infiltration into the tumor bed. In this Trial Watch, we survey the latest trends in the preclinical and clinical development of DC-based anticancer therapeutics. We also highlight how the emergence of immune checkpoint blockers and adoptive T-cell transfer-based approaches has modified the clinical niche for DC-based vaccines within the wide cancer immunotherapy landscape.
Dong, Rong; Long, Jinhua; Xu, Xiaoli; Zhang, Chunlin; Wen, Zongyao; Li, Long; Yao, Weijuan; Zeng, Zhu
2014-01-10
Dendritic cells are potent and specialized antigen presenting cells, which play a crucial role in initiating and amplifying both the innate and adaptive immune responses. The dendritic cell-based vaccination against cancer has been clinically achieved promising successes. But there are still many challenges in its clinical application, especially for how to identify the functional states. The CD14+ monocytes were isolated from human peripheral blood after plastic adherence and purified to approximately 98% with cocktail immunomagnetic beads. The immature dendritic cells and mature dendritic cells were induced by traditional protocols. The resulting dendritic cells were cocultured with normal cells and cancer cells. The functional state of dendritic cells including immature dendritic cells (imDCs) and mature dendritic cells (mDCs) under different conditioned microenvironments were investigated by Fourier transformed infrared spectroscopy (FTIR) and molecular biological methods. The results of Fourier transformed infrared spectroscopy showed that the gene transcription activity and energy states of dendritic cells were specifically suppressed by tumor cells (P < 0.05 or 0.01). The expression levels of NF-kappa B (NF-κB) in dendritic cells were also specifically inhibited by tumor-derived factors (P < 0.05 or 0.01). Moreover, the ratios of absorption intensities of Fourier transformed infrared spectroscopy at given wave numbers were closely correlated with the expression levels of NF-κB (R2:0.69 and R2:0.81, respectively). Our results confirmed that the ratios of absorption intensities of Fourier transformed infrared spectroscopy at given wave numbers were positively correlated with the expression levels of NF-κB, suggesting that Fourier transformed infrared spectroscopy technology could be clinically applied to identify the functional states of dendritic cell when performing dendritic cell-based vaccination. It's significant for the simplification and standardization of dendritic cell-based vaccination clinical preparation protocols.
Curran, Kevin J; Seinstra, Beatrijs A; Nikhamin, Yan; Yeh, Raymond; Usachenko, Yelena; van Leeuwen, Dayenne G; Purdon, Terence; Pegram, Hollie J; Brentjens, Renier J
2015-01-01
Adoptive cell therapy with genetically modified T cells expressing a chimeric antigen receptor (CAR) is a promising therapy for patients with B-cell acute lymphoblastic leukemia. However, CAR-modified T cells (CAR T cells) have mostly failed in patients with solid tumors or low-grade B-cell malignancies including chronic lymphocytic leukemia with bulky lymph node involvement. Herein, we enhance the antitumor efficacy of CAR T cells through the constitutive expression of CD40 ligand (CD40L, CD154). T cells genetically modified to constitutively express CD40L (CD40L-modified T cells) demonstrated increased proliferation and secretion of proinflammatory TH1 cytokines. Further, CD40L-modified T cells augmented the immunogenicity of CD40+ tumor cells by the upregulated surface expression of costimulatory molecules (CD80 and CD86), adhesion molecules (CD54, CD58, and CD70), human leukocyte antigen (HLA) molecules (Class I and HLA-DR), and the Fas-death receptor (CD95). Additionally, CD40L-modified T cells induced maturation and secretion of the proinflammatory cytokine interleukin-12 by monocyte-derived dendritic cells. Finally, tumor-targeted CD19-specific CAR/CD40L T cells exhibited increased cytotoxicity against CD40+ tumors and extended the survival of tumor-bearing mice in a xenotransplant model of CD19+ systemic lymphoma. This preclinical data supports the clinical application of CAR T cells additionally modified to constitutively express CD40L with anticipated enhanced antitumor efficacy. PMID:25582824
Biological effect of OK-432 (picibanil) and possible application to dendritic cell therapy.
Ryoma, Yoshiki; Moriya, Yoichiro; Okamoto, Masato; Kanaya, Isao; Saito, Motoo; Sato, Mitsunobu
2004-01-01
OK-432 (Picibanil), a streptococcal preparation with potent biological response modifying activities, was approved in Japan as an anticancer agent in 1975. In the ensuing 30 years, since then, a significant amount of data, including clinical as well as experimental studies, has been accumulated. OK-432 has been reported to induce various cytokines, activate immunological cells and thus augment anticancer immunity. Recently, the interrelation between innate immunity and adaptive immunity has become clear and it was reported that OK-432 acts, at least in part, via Toll-like receptor (TLR) 4-MD2 signaling pathway. In addition, dendritic cells (DCs) are considered to play a pivotal role in immunological response and it is reported that OK-432 induced maturation of DCs both in vitro and in vivo. These results suggest that OK-432 is a useful adjuvant in DC-based anticancer immunotherapy. Clinical studies of DC therapy with OK-432 are under way.
Follicular dendritic cell sarcoma presenting as a painless lump in the parotid.
McClelland, Emma; Bashyam, Anthony; Derbyshire, Stephen; Di Palma, Silvana
2018-05-30
Follicular dendritic cell sarcoma (FDCS) is a rare neoplasm of the antigen presenting cells of the immune system. The majority occur in lymph nodes but around 30% can occur extranodally including in the spleen, lungs, head and neck and liver. We present an unusual case of an FDCS of the parotid gland in a 51-year-old woman with a history of Hodgkin's lymphoma treated with combination chemotherapy and modified mantle radiotherapy. Only four cases of an intraparotid FDCS have been previously reported. The patient underwent a superficial parotidectomy and level 2/3 neck dissection. A diagnosis of an intraparotid FDCS (25 mm) with no nodal disease was made. Given this patient's history of radiotherapy 20 years previously, we speculate the possibility of postradiation sarcoma. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Broer, Johanna; Behnke, Bert
2002-04-01
Dendritic cells are important antigen presenting cells that play a role in the initiation of rheumatoid arthritis (RA). The stinging nettle leaf extract IDS 30 (Hox alpha) has been recommended for adjuvant therapy of rheumatic diseases. We investigated the immunomodulating effect of IDS 30 extract on the maturation of hematopoietic dendritic cells. Human dendritic cells were generated from peripheral blood mononuclear cells cultured in granulocyte macrophage-colony stimulating factor and interleukin 4 (IL-4). Dendritic cell maturation was induced by keyhole limped hemocyanin (KLH). Dendritic cell phenotype was characterized by flow cytometric analysis; dendritic cell cytokine production was measured by ELISA. The ability of dendritic cells to activate naive autologous T cells was evaluated by mixed leukocyte reaction. IDS 30 prevented the maturation of dendritic cells, but did not affect their viability. IDS 30 reduced the expression of CD83 and CD86. It increased the expression of chemokine receptor 5 and CD36 in a dose dependent manner. The secretion of tumor necrosis factor-alpha was reduced. Application of IDS 30 to dendritic cells in culture caused a high endocytosis of dextran and a low capacity to stimulate T cell proliferation. Our in vitro results showed the suppressive effect of IDS 30 on the maturation of human myeloid dendritic cells, leading to reduced induction of primary T cell responses. This may contribute to the therapeutic effect of IDS 30 on T cell mediated inflammatory diseases like RA.
Divergent Effects of Dendritic Cells on Pancreatitis
2015-09-01
role of dendritic cells in pancreatitis. Dendritic cells are professional antigen presenting cells which initiate innate and adaptive immune... Lymphoid -tissue-specific homing of bone- marrow-derived dendritic cells . Blood. 113:6638–6647. http://dx.doi .org/10.1182/blood-2009-02-204321 Dapito...Award Number: W81XWH-12-1-0313 TITLE: Divergent Effects of Dendritic Cells on Pancreatitis PRINCIPAL INVESTIGATOR: Dr. George Miller
Effects of adult dysthyroidism on the morphology of hippocampal granular cells in rats.
Martí-Carbonell, Maria Assumpció; Garau, Adriana; Sala-Roca, Josefina; Balada, Ferran
2012-01-01
Thyroid hormones are essential for normal brain development and very important in the normal functioning of the brain. Thyroid hormones action in the adult brain has not been widely studied. The effects of adult hyperthyroidism are not as well understood as adult hypothyroidism, mainly in hippocampal granular cells. The purpose of the present study is to assess the consequences of adult hormone dysthyroidism (excess/deficiency of TH) on the morphology of dentate granule cells in the hippocampus by performing a quantitative study of dendritic arborizations and dendritic spines using Golgi impregnated material. Hypo-and hyperthyroidism were induced in rats by adding 0.02 percent methimazole and 1 percent L-thyroxine, respectively, to drinking water from 40 days of age. At 89 days, the animals' brains were removed and stained by a modified Golgi method and blood samples were collected in order to measure T4 serum levels. Neurons were selected and drawn using a camera lucida. Our results show that both methimazole and thyroxine treatment affect granule cell morphology. Treatments provoke alterations in the same direction, namely, reduction of certain dendritic-branching parameters that are more evident in the methimazole than in the thyroxine group. We also observe a decrease in spine density in both the methimazole and thyroxine groups.
Raffray, Loic; Douchet, Isabelle; Augusto, Jean-Francois; Youssef, Jihad; Contin-Bordes, Cecile; Richez, Christophe; Duffau, Pierre; Truchetet, Marie-Elise; Moreau, Jean-Francois; Cazanave, Charles; Leroux, Lionel; Mourrissoux, Gaelle; Camou, Fabrice; Clouzeau, Benjamin; Jeannin, Pascale; Delneste, Yves; Gabinski, Claude; Guisset, Olivier; Lazaro, Estibaliz; Blanco, Patrick
2015-04-01
Innate immune system alterations, including dendritic cell loss, have been reproducibly observed in patients with septic shock and correlated to adverse outcomes or nosocomial infections. The goal of this study is to better understand the mechanisms behind this observation in order to better assess septic shock pathogenesis. Prospective, controlled experimental study. Research laboratory at an academic medical center. The study enrolled 71 patients, 49 with septic shock and 22 with cardiogenic shock. Seventeen healthy controls served as reference. In vitro monocyte-derived dendritic cells were generated from healthy volunteers. Sera were assessed for their ability to promote in vitro dendritic cell death through flow cytometry detection in each group of patients. The percentage of apoptotic or necrotic dendritic cells was evaluated by annexin-V and propidium iodide staining. We observed that only patients with septic shock and not patients with pure cardiogenic shock were characterized by a rapid and profound loss of circulating dendritic cells. In vitro analysis revealed that sera from patients with septic shock induced higher dendritic cell death compared to normal sera or cardiogenic shock (p<0.005). Sera from surviving patients induced dendritic cell death through a caspase-dependent apoptotic pathway, whereas sera from nonsurviving patients induced dendritic cell-regulated necrosis. Dendritic cell necrosis was not due to necroptosis but was dependent of the presence of circulating histone. The toxicity of histones toward dendritic cell could be prevented by recombinant human activated protein C. Finally, we observed a direct correlation between the levels of circulating histones in patients and the ability of the sera to promote dendritic cell-regulated necrosis. The study demonstrates a differential mechanism of dendritic cell death in patients with septic shock that is dependent on the severity of the disease.
Angelot-Delettre, Fanny; Roggy, Anne; Frankel, Arthur E; Lamarthee, Baptiste; Seilles, Estelle; Biichle, Sabeha; Royer, Bernard; Deconinck, Eric; Rowinsky, Eric K; Brooks, Christopher; Bardet, Valerie; Benet, Blandine; Bennani, Hind; Benseddik, Zehaira; Debliquis, Agathe; Lusina, Daniel; Roussel, Mikael; Solly, Françoise; Ticchioni, Michel; Saas, Philippe; Garnache-Ottou, Francine
2015-02-01
Blastic plasmacytoid dendritic cell neoplasm is an aggressive malignancy derived from plasmacytoid dendritic cells. There is currently no accepted standard of care for treating this neoplasm, and therapeutic strategies have never been prospectively evaluated. Since blastic plasmacytoid dendritic cell neoplasm cells express high levels of interleukin-3 receptor α chain (IL3-Rα or CD123), antitumor effects of the interleukin-3 receptor-targeted drug SL-401 against blastic plasmacytoid dendritic cell neoplasm were evaluated in vitro and in vivo. The cytotoxicity of SL-401 was assessed in patient-derived blastic plasmacytoid dendritic cell neoplasm cell lines (CAL-1 and GEN2.2) and in primary blastic plasmacytoid dendritic cell neoplasm cells isolated from 12 patients using flow cytometry and an in vitro cytotoxicity assay. The cytotoxic effects of SL-401 were compared to those of several relevant cytotoxic agents. SL-401 exhibited a robust cytotoxicity against blastic plasmacytoid dendritic cell neoplasm cells in a dose-dependent manner. Additionally, the cytotoxic effects of SL-401 were observed at substantially lower concentrations than those achieved in clinical trials to date. Survival of mice inoculated with a blastic plasmacytoid dendritic cell neoplasm cell line and treated with a single cycle of SL-401 was significantly longer than that of untreated controls (median survival, 58 versus 17 days, P<0.001). These findings indicate that blastic plasmacytoid dendritic cell neoplasm cells are highly sensitive to SL-401, and support further evaluation of SL-401 in patients suffering from blastic plasmacytoid dendritic cell neoplasm. Copyright© Ferrata Storti Foundation.
Angelot-Delettre, Fanny; Roggy, Anne; Frankel, Arthur E.; Lamarthee, Baptiste; Seilles, Estelle; Biichle, Sabeha; Royer, Bernard; Deconinck, Eric; Rowinsky, Eric K.; Brooks, Christopher; Bardet, Valerie; Benet, Blandine; Bennani, Hind; Benseddik, Zehaira; Debliquis, Agathe; Lusina, Daniel; Roussel, Mikael; Solly, Françoise; Ticchioni, Michel; Saas, Philippe; Garnache-Ottou, Francine
2015-01-01
Blastic plasmacytoid dendritic cell neoplasm is an aggressive malignancy derived from plasmacytoid dendritic cells. There is currently no accepted standard of care for treating this neoplasm, and therapeutic strategies have never been prospectively evaluated. Since blastic plasmacytoid dendritic cell neoplasm cells express high levels of interleukin-3 receptor α chain (IL3-Rα or CD123), antitumor effects of the interleukin-3 receptor-targeted drug SL-401 against blastic plasmacytoid dendritic cell neoplasm were evaluated in vitro and in vivo. The cytotoxicity of SL-401 was assessed in patient-derived blastic plasmacytoid dendritic cell neoplasm cell lines (CAL-1 and GEN2.2) and in primary blastic plasmacytoid dendritic cell neoplasm cells isolated from 12 patients using flow cytometry and an in vitro cytotoxicity assay. The cytotoxic effects of SL-401 were compared to those of several relevant cytotoxic agents. SL-401 exhibited a robust cytotoxicity against blastic plasmacytoid dendritic cell neoplasm cells in a dose-dependent manner. Additionally, the cytotoxic effects of SL-401 were observed at substantially lower concentrations than those achieved in clinical trials to date. Survival of mice inoculated with a blastic plasmacytoid dendritic cell neoplasm cell line and treated with a single cycle of SL-401 was significantly longer than that of untreated controls (median survival, 58 versus 17 days, P<0.001). These findings indicate that blastic plasmacytoid dendritic cell neoplasm cells are highly sensitive to SL-401, and support further evaluation of SL-401 in patients suffering from blastic plasmacytoid dendritic cell neoplasm. PMID:25381130
Zozulya, Alla L.; Ortler, Sonja; Lee, JangEun; Weidenfeller, Christian; Sandor, Matyas; Wiendl, Heinz; Fabry, Zsuzsanna
2010-01-01
Dendritic cells (DCs) appear in higher numbers within the CNS as a consequence of inflammation associated with autoimmune disorders, such as multiple sclerosis (MS), but the contribution of these cells to the outcome of disease is not yet clear. Here we show that stimulatory or tolerogenic functional states of intracerebral DCs regulate the systemic activation of neuroantigen-specific T cells, the recruitment of these cells into the CNS and the onset and progression of experimental autoimmune encephalomyelitis (EAE). Intracerebral microinjection of stimulatory DCs exacerbated the onset and clinical course of EAE, accompanied with an early T-cell infiltration and a decreased proportion of regulatory FoxP3-expressing cells in the brain. In contrast, the intracerebral microinjection of DCs modified by tumor necrosis factor alpha (TNF-α) induced their tolerogenic functional state and delayed or prevented EAE onset. This triggered the generation of interleukin 10 (IL-10)-producing neuroantigen-specific lymphocytes in the periphery and restricted IL-17 production in the CNS. Our findings suggest that DCs are a rate-limiting factor for neuroinflammation. PMID:19129392
Myung, Ja Hye; Hsu, Hao-Jui; Bugno, Jason; Tam, Kevin A; Hong, Seungpyo
2017-01-01
Dendritic nanomaterials have attracted a great deal of scientific interest due to their high capacity for multifunctionalization and potential in various biomedical applications, such as drug/gene delivery and diagnostic systems. Depending on the molecular structure and starting monomers, several different types of dendrimers have been developed, including poly(amidoamine) (PAMAM), poly(propylenimine) (PPI), and poly(L-lysine) (PLL) dendrimers, in addition to modified dendritic nanomaterials, such as Janus dendrimers and dendritic block copolymers. The chemical structure and surface modification of dendritic nanomaterials have been found to play a critical role in governing their biological behaviors. In this review, we present a comprehensive overview focusing on the synthesis and chemical structures of dendrimers and modified dendritic nanomaterials that are currently being investigated for drug delivery, gene delivery, and diagnostic applications. In addition, the impact of chemical surface modification and functionalization to the dendritic nanomaterials on their therapeutic and diagnostic applications are highlighted. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Zagha, Edward; Manita, Satoshi; Ross, William N; Rudy, Bernardo
2010-06-01
Purkinje cell dendrites are excitable structures with intrinsic and synaptic conductances contributing to the generation and propagation of electrical activity. Voltage-gated potassium channel subunit Kv3.3 is expressed in the distal dendrites of Purkinje cells. However, the functional relevance of this dendritic distribution is not understood. Moreover, mutations in Kv3.3 cause movement disorders in mice and cerebellar atrophy and ataxia in humans, emphasizing the importance of understanding the role of these channels. In this study, we explore functional implications of this dendritic channel expression and compare Purkinje cell dendritic excitability in wild-type and Kv3.3 knockout mice. We demonstrate enhanced excitability of Purkinje cell dendrites in Kv3.3 knockout mice, despite normal resting membrane properties. Combined data from local application pharmacology, voltage clamp analysis of ionic currents, and assessment of dendritic Ca(2+) spike threshold in Purkinje cells suggest a role for Kv3.3 channels in opposing Ca(2+) spike initiation. To study the physiological relevance of altered dendritic excitability, we measured [Ca(2+)](i) changes throughout the dendritic tree in response to climbing fiber activation. Ca(2+) signals were specifically enhanced in distal dendrites of Kv3.3 knockout Purkinje cells, suggesting a role for dendritic Kv3.3 channels in regulating propagation of electrical activity and Ca(2+) influx in distal dendrites. These findings characterize unique roles of Kv3.3 channels in dendrites, with implications for synaptic integration, plasticity, and human disease.
Bassity, Elizabeth; Clark, Theodore G.
2012-01-01
Dendritic cells are specialized antigen presenting cells that bridge innate and adaptive immunity in mammals. This link between the ancient innate immune system and the more evolutionarily recent adaptive immune system is of particular interest in fish, the oldest vertebrates to have both innate and adaptive immunity. It is unknown whether dendritic cells co-evolved with the adaptive response, or if the connection between innate and adaptive immunity relied on a fundamentally different cell type early in evolution. We approached this question using the teleost model organism, rainbow trout (Oncorhynchus mykiss), with the aim of identifying dendritic cells based on their ability to stimulate naïve T cells. Adapting mammalian protocols for the generation of dendritic cells, we established a method of culturing highly motile, non-adherent cells from trout hematopoietic tissue that had irregular membrane processes and expressed surface MHCII. When side-by-side mixed leukocyte reactions were performed, these cells stimulated greater proliferation than B cells or macrophages, demonstrating their specialized ability to present antigen and therefore their functional homology to mammalian dendritic cells. Trout dendritic cells were then further analyzed to determine if they exhibited other features of mammalian dendritic cells. Trout dendritic cells were found to have many of the hallmarks of mammalian DCs including tree-like morphology, the expression of dendritic cell markers, the ability to phagocytose small particles, activation by toll-like receptor-ligands, and the ability to migrate in vivo. As in mammals, trout dendritic cells could be isolated directly from the spleen, or larger numbers could be derived from hematopoietic tissue and peripheral blood mononuclear cells in vitro. PMID:22427987
Pajak, B.; De Smedt, T.; Moulin, V.; De Trez, C.; Maldonado-Lopez, R.; Vansanten, G.; Briend, E.; Urbain, J.; Leo, O.; Moser, M.
2000-01-01
Aims—To describe a new fixation and embedding method for tissue samples, immunohistowax processing, which preserves both morphology and antigen immunoreactivity, and to use this technique to investigate the role of dendritic cells in the immune response in peripheral tissues. Methods—This technique was used to stain a population of specialised antigen presenting cells (dendritic cells) that have the unique capacity to sensitise naive T cells, and therefore to induce primary immune responses. The numbers of dendritic cells in peripheral organs of mice either untreated or injected with live Escherichia coli were compared. Results—Numbers of dendritic cells were greatly decreased in heart, kidney, and intestine after the inoculation of bacteria. The numbers of dendritic cells in the lung did not seem to be affected by the injection of E coli. However, staining of lung sections revealed that some monocyte like cells acquired morphological and phenotypic features of dendritic cells, and migrated into blood vessels. Conclusions—These observations suggest that the injection of bacteria induces the activation of dendritic cells in peripheral organs, where they play the role of sentinels, and/or their movement into lymphoid organs, where T cell priming is likely to occur. Key Words: dendritic cell • Escherichia coli • immunohistochemistry PMID:10961175
Trial watch: Dendritic cell-based anticancer immunotherapy
Vara Perez, Monica; Schaaf, Marco; Agostinis, Patrizia; Zitvogel, Laurence; Kroemer, Guido
2017-01-01
ABSTRACT Dendritic cell (DC)-based vaccines against cancer have been extensively developed over the past two decades. Typically DC-based cancer immunotherapy entails loading patient-derived DCs with an appropriate source of tumor-associated antigens (TAAs) and efficient DC stimulation through a so-called “maturation cocktail” (typically a combination of pro-inflammatory cytokines and Toll-like receptor agonists), followed by DC reintroduction into patients. DC vaccines have been documented to (re)activate tumor-specific T cells in both preclinical and clinical settings. There is considerable clinical interest in combining DC-based anticancer vaccines with T cell-targeting immunotherapies. This reflects the established capacity of DC-based vaccines to generate a pool of TAA-specific effector T cells and facilitate their infiltration into the tumor bed. In this Trial Watch, we survey the latest trends in the preclinical and clinical development of DC-based anticancer therapeutics. We also highlight how the emergence of immune checkpoint blockers and adoptive T-cell transfer-based approaches has modified the clinical niche for DC-based vaccines within the wide cancer immunotherapy landscape. PMID:28811970
WOJAS-TUREK, JUSTYNA; SZCZYGIEŁ, AGNIESZKA; KICIELIŃSKA, JAGODA; ROSSOWSKA, JOANNA; PIASECKI, EGBERT; PAJTASZ-PIASECKA, ELŻBIETA
2016-01-01
The present study shows that an application of cyclophosphamide (CY) supported by dendritic cell (DC)-based vaccines affected differentiation of the activity of CD4+ T cell subpopulations accompanied by an alteration in CD8+ cell number. Vaccines were composed of bone marrow-derived DCs activated with tumor cell lysate (BM-DC/TAgTNF-α) and/or genetically modified DCs of JAWS II line (JAWS II/ Neo or JAWS II/IL-2 cells). Compared to untreated or CY-treated mice, the combined treatment of MC38 colon carcinoma-bearing mice resulted in significant tumor growth inhibition associated with an increase in influx of CD4+ and CD8+ T cells into tumor tissue. Whereas, the division of these cell population in spleen was not observed. Depending on the nature of DC-based vaccines and number of their applications, both tumor infiltrating cells and spleen cells were able to produce various amount of IFN-γ, IL-4 and IL-10 after mitogenic ex vivo stimulation. The administration of CY followed by BM-DC/TAgTNF-α and genetically modified JAWS II cells, increased the percentage of CD4+T-bet+ and CD4+GATA3+ cells and decreased the percentage of CD4+RORγt+ and CD4+FoxP3+ lymphocytes. However, the most intensive response against tumor was noted after the ternary treatment with CY + BM-DC/TAgTNF-α + JAWS II/IL-2 cells. Thus, the administration of various DC-based vaccines was responsible for generation of the diversified antitumor response. These findings demonstrate that the determination of the size of particular CD4+ T cell subpopulations may become a prognostic factor and be the basis for future development of anticancer therapy. PMID:26648160
Li, Shan-Shan; Yang, Min; Chen, Yong-Ping; Tang, Xin-Yue; Zhang, Sheng-Guo; Ni, Shun-Lan; Yang, Nai-Bin; Lu, Ming-Qin
2018-05-28
Acute liver failure is a devastating clinical syndrome with extremely terrible inflammation reaction, which is still lack of effective treatment in clinic. Suppressor of Cytokine Signaling 1 protein is inducible intracellular negative regulator of Janus kinases (JAK)/signal transducers and activators of transcription (STAT) pathway that plays essential role in inhibiting excessive intracellular signaling cascade and preventing autoimmune reaction. In this paper, we want to explore whether dendritic cells (DCs) with overexpression of SOCS1 have a therapeutic effect on experimental acute liver failure. Bone marrow derived dendritic cells were transfected with lentivirus encoding SOCS1 and negative control lentivirus, thereafter collected for costimulatory molecules analysis, allogeneic Mixed Lymphocyte Reaction and Western blot test of JAK/STAT pathway. C57BL/6 mice were randomly separated into normal control and treatment groups which respectively received tail vein injection of modified DCs, negative control DCs and normal saline 12 h earlier than acute liver failure induction. Our results indicated that DCs with overexpression of SOCS1 exhibited like regulatory DCs (DCregs) with low level of costimulatory molecules and poor allostimulatory ability in vitro, which was supposed to correlate with block of JAK2/STAT1 signaling. In vivo tests, we found that infusion of modified DCs increased survival rate of acute liver failure mice and alleviate liver injury via inhibition of TLR4/HMGB1 pathway. We concluded that DCs transduced with SOCS1 gene exhibit as DCregs through negative regulation of JAK2/STAT1 pathway and ameliorated lipopolysaccharide/d-galactosamine induced acute liver failure via inhibition of TLR4 pathway. Copyright © 2018 Elsevier Ltd. All rights reserved.
Zhang, Lingxin; Yang, Chen; Lewis, James S; El-Mofty, Samir K; Chernock, Rebecca D
2017-08-01
Follicular dendritic cell sarcoma is a rare mesenchymal neoplasm that most commonly occurs in cervical lymph nodes. It has histologic and clinical overlap with the much more common p16-positive human papillomavirus (HPV)-related squamous cell carcinoma of the oropharynx, which characteristically has nonkeratinizing morphology and often presents as an isolated neck mass. Not surprisingly, follicular dendritic cell sarcomas are commonly misdiagnosed as squamous cell carcinoma. Immunohistochemistry is helpful in separating the 2 entities. Follicular dendritic cell sarcoma expresses dendritic markers such as CD21 and CD23 and is almost always cytokeratin negative. However, in many cases of HPV-related oropharyngeal carcinoma, only p16 immunohistochemistry as a prognostic and surrogate marker for HPV is performed. p16 expression in follicular dendritic cell sarcoma has not been characterized. Here, we investigate the expression of p16 in follicular dendritic cell sarcoma and correlate it with retinoblastoma protein expression. A pilot study of dendritic marker expression in HPV-related oropharyngeal squamous cell carcinoma was also performed. We found that 4 of 8 sarcomas expressed p16 with strong and diffuse staining in 2 cases. In 2 of the 4 cases, p16 expression corresponded to loss of retinoblastoma protein expression. Dendritic marker expression (CD21 and CD23) was not found in HPV-related oropharyngeal squamous cell carcinomas. As such, positive p16 immunohistochemistry cannot be used as supportive evidence for the diagnosis of squamous cell carcinoma as strong and diffuse p16 expression may also occur in follicular dendritic cell sarcoma. Cytokeratins and dendritic markers are critical in separating the two tumor types. Copyright © 2017 Elsevier Inc. All rights reserved.
Ojima, Toshiyasu; Iwahashi, Makoto; Nakamura, Masaki; Matsuda, Kenji; Nakamori, Mikihito; Ueda, Kentaro; Naka, Teiji; Katsuda, Masahiro; Miyazawa, Motoki; Yamaue, Hiroki
2007-10-01
Granulocyte macrophage colony-stimulating factor (GM-CSF) is a key cytokine for the generation and stimulation of dendritic cells (DCs), and it may also play a pivotal role in promoting the survival of DCs. In this study, the feasibility of creating a cancer vaccine using DCs adenovirally transduced with the carcinoembryonic antigen (CEA) gene and the GM-CSF gene was examined. In addition, the effect of the co-transduction of GM-CSF gene on the lifespan of these genetically modified DCs was determined. A cytotoxic assay using peripheral blood mononuclear cell (PBMC)-derived cytotoxic T lymphocytes (CTLs) was performed in a 4-h 51Cr release assay. The apoptosis of DCs was examined by TdT-mediated dUTP-FITC nick end labeling (TUNEL) assay. CEA-specific CTLs were generated from PBMCs stimulated with genetically modified DCs expressing CEA. The cytotoxicity of these CTLs was augmented by co-transduction of DCs with the GM-CSF gene. Co-transduction of the GM-CSF gene into DCs inhibited apoptosis of these DCs themselves via up-regulation of Bcl-x(L) expression, leading to the extension of the lifespan of these DCs. Furthermore, the transduction of the GM-CSF gene into DCs also suppressed the incidence of apoptosis of DCs induced by transforming growth factor-beta1 (TGFbeta-1). Immunotherapy using these genetically modified DCs may therefore be useful with several advantages as follows: i) adenoviral toxicity to DCs can be reduced; ii) the lifespan of vaccinated DCs can be prolonged; and iii) GM-CSF may protect DCs from apoptosis induced by tumor-derived TGFbeta-1 in the regional lymph nodes.
Junking, Mutita; Grainok, Janya; Thepmalee, Chutamas; Wongkham, Sopit; Yenchitsomanus, Pa-Thai
2017-10-01
Cholangiocarcinoma is a malignancy of bile duct epithelia with an increasing in incidence rate worldwide. Surgery is the only curative treatment, while adjuvant chemotherapy and radiotherapy render poor responses. Cell-based immunotherapy is a potential strategy for cholangiocarcinoma treatment. However, variation of tumor antigens in cholangiocarcinoma leads to the ineffectiveness of cell-based immunotherapy. In this study, we examined the activation of effector T-cells by dendritic cells pulsed with protein lysate or total RNA from cholangiocarcinoma cell lines for their cytolytic activity against cholangiocarcinoma. Broad-spectrum antigen types with respect to RNA antigen sources were obtained from combination of three cholangiocarcinoma cell lines (KKU-213, KKU-100, and KKU-055). Compared with protein lysate-pulsed dendritic cells, total RNA-pulsed dendritic cells induced anti-tumor effector T-cell response with higher killing ability to KKU-100 and KKU-213 cells compared with protein lysate-pulsed dendritic cells. Moreover, pooled messenger RNA from three cholangiocarcinoma cell lines significantly increased the specific killing capacity of activated lymphocytes against KKU-213 cells. These results suggest that activation of anti-tumor effector T-cells against cholangiocarcinoma by RNA-pulsed dendritic cells is more effective than that by protein lysate-pulsed dendritic cells. In addition, pulsing dendritic cells with pooled messenger RNA from multiple cell lines enhanced the efficacy of a cellular immune response against cholangiocarcinoma.
Ratajczak, Céline; Duez, Catherine; Grangette, Corinne; Pochard, Pierre; Tonnel, André-Bernard; Pestel, Joël
2007-01-01
Lactic acid bacteria (LAB) are Gram positive nonpathogenic commensal organisms present in human gastrointestinal tract. In vivo, LAB are separated from antigen-presenting cells such as dendritic cells (DC) by the intestinal epithelial barrier. In this study, the impact of one LAB strain (Lactobacillus casei ATCC393) on human monocyte-derived DC from allergic and healthy donors was assessed by using a polarized epithelium model. Confocal and flow cytometer analyses showed that immature DC efficiently captured FITC-labelled L. casei through the epithelial layer. After interaction with L. casei, DC acquired a partial maturation status (i.e., CD86 and CD54 increase) and increased their interleukin (IL)-10 and IL-12 production. Interestingly, after activation by L. casei in the presence of experimental epithelium, DC from allergic patients instructed autologous naïve CD4+ T cells to produce more interferon-γ than without the epithelium. Thus by modulating human DC reactivity, LAB and intestinal epithelium might modify T cell immune response and regulate the development of allergic reaction. PMID:17497025
Ratajczak, Céline; Duez, Catherine; Grangette, Corinne; Pochard, Pierre; Tonnel, André-Bernard; Pestel, Joël
2007-01-01
Lactic acid bacteria (LAB) are Gram positive nonpathogenic commensal organisms present in human gastrointestinal tract. In vivo, LAB are separated from antigen-presenting cells such as dendritic cells (DC) by the intestinal epithelial barrier. In this study, the impact of one LAB strain (Lactobacillus casei ATCC393) on human monocyte-derived DC from allergic and healthy donors was assessed by using a polarized epithelium model. Confocal and flow cytometer analyses showed that immature DC efficiently captured FITC-labelled L. casei through the epithelial layer. After interaction with L. casei, DC acquired a partial maturation status (i.e., CD86 and CD54 increase) and increased their interleukin (IL)-10 and IL-12 production. Interestingly, after activation by L. casei in the presence of experimental epithelium, DC from allergic patients instructed autologous naïve CD4(+) T cells to produce more interferon-gamma than without the epithelium. Thus by modulating human DC reactivity, LAB and intestinal epithelium might modify T cell immune response and regulate the development of allergic reaction.
Fonseca, Wendy; Lucey, Kaitlyn; Jang, Sihyug; Fujimura, Kei E.; Rasky, Andrew; Ting, Hung-An; Petersen, Julia; Johnson, Christine C.; Boushey, Homer A.; Zoratti, Edward; Ownby, Dennis R.; Levine, Albert M.; Bobbit, Kevin R.
2017-01-01
Summary Regulation of respiratory mucosal immunity by microbial-derived metabolites has been a proposed mechanism that may provide airway protection. Here we examine the effect of oral Lactobacillus johnsonii-supplementation on metabolic and immune response dynamics during respiratory syncytial virus (RSV) infection. L. johnsonii-supplementation reduced airway Th2 cytokines, dendritic cell function, increased T-regulatory cells, and was associated with a reprogrammed circulating metabolic environment, including docosahexanoic acid (DHA) enrichment. RSV-infected bone-marrow derived dendritic cells (BMDC) from L. johnsonii-supplemented mice had altered cytokine secretion, reduced expression of co-stimulatory molecules, and modified CD4+ T cell cytokines. This was replicated upon co-incubation of wild-type BMDCs with either plasma from L. johnsonii-supplemented mice, or DHA. Finally, airway transfer of BMDCs from L. johnsonii-supplemented mice, or with wild-type derived BMDCs pre-treated with plasma from L. johnsonii-supplemented mice, reduced airway pathologic responses to infection in recipient animals. Thus, L. johnsonii-supplementation mediates airway mucosal protection via immunomodulatory metabolites and altered immune function. PMID:28295020
Bradford, Barry M.; Reizis, Boris
2017-01-01
ABSTRACT After oral exposure, the early replication of certain prion strains upon stromal cell-derived follicular dendritic cells (FDC) in the Peyer's patches in the small intestine is essential for the efficient spread of disease to the brain. However, little is known of how prions are initially conveyed from the gut lumen to establish infection on FDC. Our previous data suggest that mononuclear phagocytes such as CD11c+ conventional dendritic cells play an important role in the initial propagation of prions from the gut lumen into Peyer's patches. However, whether these cells conveyed orally acquired prions toward FDC within Peyer's patches was not known. The chemokine CXCL13 is expressed by FDC and follicular stromal cells and modulates the homing of CXCR5-expressing cells toward the FDC-containing B cell follicles. Here, novel compound transgenic mice were created in which a CXCR5 deficiency was specifically restricted to CD11c+ cells. These mice were used to determine whether CXCR5-expressing conventional dendritic cells propagate prions toward FDC after oral exposure. Our data show that in the specific absence of CXCR5-expressing conventional dendritic cells the early accumulation of prions upon FDC in Peyer's patches and the spleen was impaired, and disease susceptibility significantly reduced. These data suggest that CXCR5-expressing conventional dendritic cells play an important role in the efficient propagation of orally administered prions toward FDC within Peyer's patches in order to establish host infection. IMPORTANCE Many natural prion diseases are acquired by oral consumption of contaminated food or pasture. Once the prions reach the brain they cause extensive neurodegeneration, which ultimately leads to death. In order for the prions to efficiently spread from the gut to the brain, they first replicate upon follicular dendritic cells within intestinal Peyer's patches. How the prions are first delivered to follicular dendritic cells to establish infection was unknown. Understanding this process is important since treatments which prevent prions from infecting follicular dendritic cells can block their spread to the brain. We created mice in which mobile conventional dendritic cells were unable to migrate toward follicular dendritic cells. In these mice the early accumulation of prions on follicular dendritic cells was impaired and oral prion disease susceptibility was reduced. This suggests that prions exploit conventional dendritic cells to facilitate their initial delivery toward follicular dendritic cells to establish host infection. PMID:28275192
Jung, Tae-Young; Pham, Thanh Nhan Nguyen; Umeyama, Akemi; Shoji, Noboru; Hashimoto, Toshihiro; Lee, Je-Jung; Takei, Masao
2010-09-25
Ursolic acid is triterpene isolated from Uncaria rhynchophylla and is a pharmacologically active substance. The induction of dendritic cell maturation is critical for the induction of Ag-specific T-lymphocyte response and may be essential for the development of human vaccine relying on T cell immunity. In this study, we investigated that the effect of Ursolic acid on the phenotypic and functional maturation of human monocyte-derived dendritic cells in vitro. Dendritic cells harvested on day 8 were examined using functional assay. The expression levels of CD1a, CD80, CD83, CD86, HLA-DR and CCR7 on Ursolic acid-primed dendritic cells was slightly enhanced. Ursolic acid dose-dependently enhanced the T cell stimulatory capacity in an allogeneic mixed lymphocyte reaction, as measured by T cell proliferation. The production of IL-12p70 induced by Ursolic acid-primed dendritic cells was inhibited by the anti-Toll-like receptor-2 (TLR2) mAb and anti-TLR4 mAb. Moreover, Ursolic acid-primed dendritic cells expressed levels of mRNA coding for both TLR2 and TLR4. The majority of cells produced considerable interferon-gamma (IFN-gamma), but also small amounts of interleukin (IL-4)-4. Ursolic acid-primed dendritic cells have an intermediate migratory capacity towards CCL19 and CCL21. These results suggest that Ursolic acid modulates human dendritic cells function in a fashion that favors Th1 polarization via the activation of IL-12p70 dependent on TLR2 and/or TLR4, and may be used on dendritic cells-based vaccines for cancer immunotherapy. 2010 Elsevier B.V. All rights reserved.
Kopitar, A N; Ihan Hren, N; Ihan, A
2006-02-01
In various immunopathologic conditions, bacterial flora induce an immune response which results in inflammatory manifestations, e.g. periapical granuloma. Dendritic cells provide the main orchestration of specific immune responses. The aim of our study was to test the capacity of distinct oral bacterial antigens (prepared from Streptococcus mitis, Propionibacterium acnes, and Bacteroides spp.) to prime human dendritic cells for stimulation of the T-lymphocyte response. To assess the T-lymphocyte response, the expression of CD25, CD69, intracellular interferon gamma (cIFN-gamma), and intracellular interleukin 4 (cIL-4) was determined. Dendritic cells were prepared from leukocyte buffy coat from healthy blood donors. Monocytes were stimulated with IL-4 and GM-CSF and dendritic cells activated with bacterial lysates. Cell suspensions contained up to 90% dendritic cells, which represented 2-12% of the initial number of mononuclear cells. Lymphocyte subsets that developed in lymphocyte cultures after 1 week of stimulation were analyzed by flow cytometry. Dendritic cells, primed with antigens of Bacteroides fragilis have shown significantly higher activation and expression of intercellular IFN-gamma by T lymphocytes compared to negative controls. The dendritic cells primed with antigens of P. acnes had no effect on T-lymphocyte activation or cytokine production; instead they induced differentiation of T lymphocytes into CD25bright cells (regulatory T cells) with a potentially inhibitory effect on immune response. Dendritic cells primed with antigens of S. mitis induced increased expression of cIL-4. We conclude that commensal oral bacteria antigens prepared from B. fragilis, S. mitis, and P. acnes prime human dendritic cells to induce Th1, Th2, and T(reg) differentiation, respectively. This may advance our understanding of immunopathologic manifestations in the oral cavity and offer new possibilities for redirecting immune responses in mucosal vaccination.
Plant microRNAs as novel immunomodulatory agents
Cavalieri, Duccio; Rizzetto, Lisa; Tocci, Noemi; Rivero, Damariz; Asquini, Elisa; Si-Ammour, Azeddine; Bonechi, Elena; Ballerini, Clara; Viola, Roberto
2016-01-01
An increasing body of literature is addressing the immuno-modulating functions of miRNAs which include paracrine signaling via exosome-mediated intercellular miRNA. In view of the recent evidence of intake and bioavailability of dietary miRNAs in humans and animals we explored the immuno-modulating capacity of plant derived miRNAs. Here we show that transfection of synthetic miRNAs or native miRNA-enriched fractions obtained from a wide range of plant species and organs modifies dendritic cells ability to respond to inflammatory agents by limiting T cell proliferation and consequently dampening inflammation. This immuno-modulatory effect appears associated with binding of plant miRNA on TLR3 with ensuing impairment of TRIF signaling. Similarly, in vivo, plant small RNAs reduce the onset of severity of Experimental Autoimmune Encephalomyelities by limiting dendritic cell migration and dampening Th1 and Th17 responses in a Treg-independent manner. Our results indicate a potential for therapeutic use of plant miRNAs in the prevention of chronic-inflammation related diseases. PMID:27167363
Macke, Lars; Garritsen, Henk S P; Meyring, Wilhelm; Hannig, Horst; Pägelow, Ute; Wörmann, Bernhard; Piechaczek, Christoph; Geffers, Robert; Rohde, Manfred; Lindenmaier, Werner; Dittmar, Kurt E J
2010-04-01
Dendritic cells (DCs) are applied worldwide in several clinical studies of immune therapy of malignancies, autoimmune diseases, and transplantations. Most legislative bodies are demanding high standards for cultivation and transduction of cells. Closed-cell cultivating systems like cell culture bags would simplify and greatly improve the ability to reach these cultivation standards. We investigated if a new polyolefin cell culture bag enables maturation and adenoviral modification of human DCs in a closed system and compare the results with standard polystyrene flasks. Mononuclear cells were isolated from HLA-A*0201-positive blood donors by leukapheresis. A commercially available separation system (CliniMACS, Miltenyi Biotec) was used to isolate monocytes by positive selection using CD14-specific immunomagnetic beads. The essentially homogenous starting cell population was cultivated in the presence of granulocyte-macrophage-colony-stimulating factor and interleukin-4 in a closed-bag system in parallel to the standard flask cultivation system. Genetic modification was performed on Day 4. After induction of maturation on Day 5, mature DCs could be harvested and cryopreserved on Day 7. During the cultivation period comparative quality control was performed using flow cytometry, gene expression profiling, and functional assays. Both flasks and bags generated mature genetically modified DCs in similar yields. Surface membrane markers, expression profiles, and functional testing results were comparable. The use of a closed-bag system facilitated clinical applicability of genetically modified DCs. The polyolefin bag-based culture system yields DCs qualitatively and quantitatively comparable to the standard flask preparation. All steps including cryopreservation can be performed in a closed system facilitating standardized, safe, and reproducible preparation of therapeutic cells.
Smith, R E; Reyes, N J; Khandelwal, P; Schlereth, S L; Lee, H S; Masli, S; Saban, D R
2016-08-01
Allergic eye disease, as in most forms of atopy, ranges in severity among individuals from immediate hypersensitivity to a severe and debilitating chronic disease. Dendritic cells play a key role in stimulating pathogenic T cells in allergen re-exposure, or secondary responses. However, molecular cues by dendritic cells underpinning allergic T cell response levels and the impact that this control has on consequent severity of allergic disease are poorly understood. Here, we show that a deficiency in thrombospondin-1, a matricellular protein known to affect immune function, has subsequent effects on downstream T cell responses during allergy, as revealed in an established mouse model of allergic eye disease. More specifically, we demonstrate that a thrombospondin-1 deficiency specific to dendritic cells leads to heightened secondary T cell responses and consequent clinical disease. Interestingly, whereas thrombospondin-1-deficient dendritic cells augmented activity of allergen-primed T cells, this increase was not recapitulated with naïve T cells in vitro. The role of dendritic cell-derived thrombospondin-1 in regulating secondary allergic T cell responses was confirmed in vivo, as local transfer of thrombospondin-1-sufficient dendritic cells to the ocular mucosa of thrombospondin-1 null hosts prevented the development of augmented secondary T cell responses and heightened allergic eye disease clinical responses. Finally, we demonstrate that topical instillation of thrombospondin-1-derived peptide reduces T cell activity and clinical progression of allergic eye disease. Taken together, this study reveals an important modulatory role of dendritic cell-derived thrombospondin-1 on secondary allergic T cell responses and suggests the possible dysregulation of dendritic cell-derived thrombospondin-1 expression as a factor in allergic eye disease severity. © Society for Leukocyte Biology.
Smith, R. E.; Reyes, N. J.; Khandelwal, P.; Schlereth, S. L.; Lee, H. S.; Masli, S.; Saban, D. R.
2016-01-01
Allergic eye disease, as in most forms of atopy, ranges in severity among individuals from immediate hypersensitivity to a severe and debilitating chronic disease. Dendritic cells play a key role in stimulating pathogenic T cells in allergen re-exposure, or secondary responses. However, molecular cues by dendritic cells underpinning allergic T cell response levels and the impact that this control has on consequent severity of allergic disease are poorly understood. Here, we show that a deficiency in thrombospondin-1, a matricellular protein known to affect immune function, has subsequent effects on downstream T cell responses during allergy, as revealed in an established mouse model of allergic eye disease. More specifically, we demonstrate that a thrombospondin-1 deficiency specific to dendritic cells leads to heightened secondary T cell responses and consequent clinical disease. Interestingly, whereas thrombospondin-1-deficient dendritic cells augmented activity of allergen-primed T cells, this increase was not recapitulated with naïve T cells in vitro. The role of dendritic cell-derived thrombospondin-1 in regulating secondary allergic T cell responses was confirmed in vivo, as local transfer of thrombospondin-1-sufficient dendritic cells to the ocular mucosa of thrombospondin-1 null hosts prevented the development of augmented secondary T cell responses and heightened allergic eye disease clinical responses. Finally, we demonstrate that topical instillation of thrombospondin-1-derived peptide reduces T cell activity and clinical progression of allergic eye disease. Taken together, this study reveals an important modulatory role of dendritic cell-derived thrombospondin-1 on secondary allergic T cell responses and suggests the possible dysregulation of dendritic cell-derived thrombospondin-1 expression as a factor in allergic eye disease severity. PMID:26856994
Zhou, Fang; Zhang, Guang-Xian; Rostami, Abdolmohamad
2017-06-01
Intravenous transfer of LPS-treated bone marrow-derived dendritic cells blocks development of autoimmunity induced by CD4 + T cells in vivo. However, cellular mechanisms of dendritic cell-mediated immune tolerance have not yet been fully elucidated. Here, we report that there are two new subpopulations of CD4 + CD25 + FoxP3 + GITR + regulatory T cells (CD127 + 3G11 + and CD127 + 3G11 - cells). LPS-treated dendritic cells facilitate development of CD4 + CD127 + 3G11 - regulatory T cells but inhibit that of CD4 + CD127 + 3G11 + regulatory T cells. LPS-induced tolerogenic dendritic cells may cause immune tolerance through modulating balance of different subsets of CD4 + regulatory T cells mediated by CD127 and 3G11. Our results imply a new potential cellular mechanism of dendritic cell-mediated immune tolerance.
Patra, Santanu; Roy, Ekta; Madhuri, Rashmi; Sharma, Prashant K
2015-05-19
In this study, nanocomposite of graphene oxide and silane modified magnetic nanoparticles (silane@Fe3O4) were synthesized in a form of dendritic structure. For this, silane@Fe3O4 nanoparticle gets sandwiched between two layers of graphene oxide by chemical synthesis route. The synthesized dendritic structure was used as a monomer for synthesis of europium ion imprinted polymer. The synthesis of imprinted polymer was contemplated onto the surface of the vinyl group modified silica fiber by activated generated free radical atom-transfer radical polymerization, that is, AGET-ATRP technique. The synthesized dendritic monomer was characterized by XRD, FT-IR, VSM, FE-SEM, and TEM analyses. The imprinted polymer modified silica fiber was first validated in the aqueous and blood samples for successful extraction and detection of europium ion with limit of detection = 0.050 pg mL(-1) (signal/noise = 3). The imprinted polymer modified silica fiber was also used for preconcentration and separation of europium metal ion from various soil samples of coal mine areas. However, the same silica fiber was also used for wastewater treatment and shows 100% performance for europium removal. The findings herein suggested that dendritic nanocomposite could be potentially used as a highly effective material for the enrichment and preconcentration of europium or other trivalent lanthanides/actinides in nuclear waste management.
Zhang, Heng; Wang, Yan; Wong, Jack Jing Lin; Lim, Kah-Leong; Liou, Yih-Cherng; Wang, Hongyan; Yu, Fengwei
2014-08-25
Pruning of unnecessary axons and/or dendrites is crucial for maturation of the nervous system. However, little is known about cell adhesion molecules (CAMs) that control neuronal pruning. In Drosophila, dendritic arborization neurons, ddaCs, selectively prune their larval dendrites. Here, we report that Rab5/ESCRT-mediated endocytic pathways are critical for dendrite pruning. Loss of Rab5 or ESCRT function leads to robust accumulation of the L1-type CAM Neuroglian (Nrg) on enlarged endosomes in ddaC neurons. Nrg is localized on endosomes in wild-type ddaC neurons and downregulated prior to dendrite pruning. Overexpression of Nrg alone is sufficient to inhibit dendrite pruning, whereas removal of Nrg causes precocious dendrite pruning. Epistasis experiments indicate that Rab5 and ESCRT restrain the inhibitory role of Nrg during dendrite pruning. Thus, this study demonstrates the cell-surface molecule that controls dendrite pruning and defines an important mechanism whereby sensory neurons, via endolysosomal pathway, downregulate the cell-surface molecule to trigger dendrite pruning. Copyright © 2014 Elsevier Inc. All rights reserved.
do Nascimento de Freitas, Deise; Gassen, Rodrigo Benedetti; Fazolo, Tiago; Souza, Ana Paula Duarte de
2016-10-01
The macrolide rapamycin inhibits mTOR (mechanist target of rapamycin) function and has been broadly used to unveil the role of mTOR in immune responses. Inhibition of mTOR on dendritic cells (DC) can influence cellular immune response and the survival of DC. RSV is the most common cause of hospitalization in infants and is a high priority candidate to vaccine development. In this study we showed that rapamycin treatment on RSV-infected murine bone marrow-derived DC (BMDC) decreases the frequency of CD8(+)CD44(high) T cells. However, inhibition of mTOR on RSV-infected BMDC did not modify the activation phenotype of these cells. RSV-RNA levels increase when infected BMDC were treated with rapamycin. Moreover, we observed that rapamycin diminishes apoptosis cell death of RSV-infected BMDC co-culture with T cells and this effect was abolished when the cells were co-cultured in a transwell system that prevents cell-to-cell contact or migration. Taken together, these data indicate that rapamycin treatment present a toxic effect on RSV-infected BMDC increasing RSV-RNA levels, affecting partially CD8 T cell differentiation and also increasing BMDC survival in a mechanism dependent on T cell contact. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Xu, M.; Ivey, D. G.; Qu, W.; Xie, Z.
2015-01-01
Electrodeposition of Zn was conducted in a new electrolyte system composed of an alkaline solution (9 M KOH + 5 wt% ZnO) modified with a small amount (0.5 wt%) of room temperature ionic liquid 1-ethyl-3-methylimidazolium dicyanamide (EMI-DCA). At a high deposition current density of 80 mA cm-2, a porous, dendrite-free Zn film characterized by clusters of small Zn particles was obtained. The mechanism for the modified Zn morphology in the EMI-DCA containing electrolyte was studied by cyclic voltammetry, chronoamperometry, electrochemical impedance spectroscopy (EIS) and scanning electron microscopy. It was found that the addition of EMI-DCA changed the Zn nucleation process and reduced the potential variation during electrodeposition, which suppressed the uneven growth of Zn deposits and the formation of Zn dendrites. EIS results indicated that there was adsorption of EMI+ cations at the Zn film/electrolyte interface, which may have contributed to suppressed dendritic Zn growth.
2014-07-01
and J.W. Young, Human dendritic cells : potent antigen-presenting cells at the crossroads of innate and adaptive immunity. J Immunol, 2005. 175(3): p...by Listeria-Stimulated Human Dendritic Cells : Implications for Cancer Vaccine Therapy PRINCIPAL INVESTIGATOR: David J. Chung, MD, PhD...5a. CONTRACT NUMBER Evaluation of Immune Responses Mediated by Listeria-Stimulated Human Dendritic Cells : Implications for Cancer Vaccine
Chlamydia trachomatis Cellular Exit Alters Interactions with Host Dendritic Cells
Sherrid, Ashley M.
2017-01-01
ABSTRACT The strategies utilized by pathogens to exit host cells are an area of pathogenesis which has received surprisingly little attention, considering the necessity of this step for infections to propagate. Even less is known about how exit through these pathways affects downstream host-pathogen interactions and the generation of an immune response. Chlamydia trachomatis exits host epithelial cells through two equally active mechanisms: lysis and extrusion. Studies have characterized the outcome of interactions between host innate immune cells, such as dendritic cells and macrophages, and free, extracellular Chlamydia bacteria, such as those resulting from lysis. Exit via extrusion generates a distinct, host-membrane-bound compartment of Chlamydia separate from the original infected cell. In this study, we assessed the effect of containment within extrusions upon the interaction between Chlamydia and host dendritic cells. Extrusion dramatically affected the outcome of Chlamydia-dendritic cell interactions for both the bacterium and the host cell. Dendritic cells rapidly underwent apoptosis in response to engulfment of an extrusion, while uptake of an equivalent dose of free Chlamydia had no such effect. Containment within an extrusion also prolonged bacterial survival within dendritic cells and altered the initial innate immune signaling by the dendritic cell. PMID:28223346
Ottobrini, Luisa; Biasin, Mara; Borelli, Manuela; Lucignani, Giovanni; Trabattoni, Daria; Clerici, Mario
2016-01-01
Introduction Dendritic cells play a key role as initiators of T-cell responses, and even if tumour antigen-loaded dendritic cells can induce anti-tumour responses, their efficacy has been questioned, suggesting a need to enhance immunization strategies. Matherials & Methods We focused on the characterization of bone marrow-derived dendritic cells pulsed with whole tumour lysate (TAA-DC), as a source of known and unknown antigens, in a mouse model of breast cancer (MMTV-Ras). Dendritic cells were evaluated for antigen uptake and for the expression of MHC class I/II and costimulatory molecules and markers associated with maturation. Results Results showed that antigen-loaded dendritic cells are characterized by a phenotypically semi-mature/mature profile and by the upregulation of genes involved in antigen presentation and T-cell priming. Activated dendritic cells stimulated T-cell proliferation and induced the production of high concentrations of IL-12p70 and IFN-γ but only low levels of IL-10, indicating their ability to elicit a TH1-immune response. Furthermore, administration of Antigen loaded-Dendritic Cells in MMTV-Ras mice evoked a strong anti-tumour response in vivo as demonstrated by a general activation of immunocompetent cells and the release of TH1 cytokines. Conclusion Data herein could be useful in the design of antitumoral DC-based therapies, showing a specific activation of immune system against breast cancer. PMID:26795765
Pro-inflammatory Cytokine Expression of Spleen Dendritic Cells in Mouse Toxoplasmosis
Nam, Ho-Woo; Ahn, Hye-Jin
2011-01-01
Dendritic cells have been known as a member of strong innate immune cells against infectious organelles. In this study, we evaluated the cytokine expression of splenic dendritic cells in chronic mouse toxoplasmosis by tissue cyst-forming Me49 strain and demonstrated the distribution of lymphoid dendritic cells by fluorescence-activated cell sorter (FACS). Pro-inflammatory cytokines, such as IL-1α, IL-1β, IL-6, and IL-10 increased rapidly at week 1 post-infection (PI) and peaked at week 3 PI. Serum IL-10 level followed the similar patterns. FACS analysis showed that the number of CD8α+/CD11c+ splenic dendritic cells increased at week 1 and peaked at week 3 PI. In conclusion, mouse splenic dendritic cells showed early and rapid cytokine changes and may have important protective roles in early phases of murine toxoplasmosis. PMID:21738265
Chicha, Laurie; Jarrossay, David; Manz, Markus G
2004-12-06
Because of different cytokine responsiveness, surface receptor, and transcription factor expression, human CD11c(-) natural type I interferon-producing cells (IPCs) and CD11c(+) dendritic cells were thought to derive through lymphoid and myeloid hematopoietic developmental pathways, respectively. To directly test this hypothesis, we used an in vitro assay allowing simultaneous IPC, dendritic cell, and B cell development and we tested lymphoid and myeloid committed hematopoietic progenitor cells for their developmental capacity. Lymphoid and common myeloid and granulocyte/macrophage progenitors were capable of developing into both functional IPCs, expressing gene transcripts thought to be associated with lymphoid lineage development, and into dendritic cells. However, clonal progenitors for both populations were about fivefold more frequent within myeloid committed progenitor cells. Thus, in humans as in mice, natural IPC and dendritic cell development robustly segregates with myeloid differentiation. This would fit with natural interferon type I-producing cell and dendritic cell activity in innate immunity, the evolutionary older arm of the cellular immune system.
Dendritic Cells and Innate Immunity in Kidney Transplantation
Zhuang, Quan; Lakkis, Fadi G.
2015-01-01
Summary This review summarizes emerging concepts related to the roles of dendritic cells and innate immunity in organ transplant rejection. First, it highlights the primary role that recipient, rather than donor, dendritic cells have in rejection and reviews their origin and function in the transplanted kidney. Second, it introduces the novel concept that recognition of allogeneic non-self by host monocytes (referred to here as innate allorecognition) is necessary for initiating rejection by inducing monocyte differentiation into mature, antigen-presenting dendritic cells. Both concepts provide opportunities for preventing rejection by targeting monocytes or dendritic cells. PMID:25629552
Cigarette smoke-induced accumulation of lung dendritic cells is interleukin-1α-dependent in mice
2012-01-01
Background Evidence suggests that dendritic cells accumulate in the lungs of COPD patients and correlate with disease severity. We investigated the importance of IL-1R1 and its ligands IL-1α and β to dendritic cell accumulation and maturation in response to cigarette smoke exposure. Methods Mice were exposed to cigarette smoke using a whole body smoke exposure system. IL-1R1-, TLR4-, and IL-1α-deficient mice, as well as anti-IL-1α and anti-IL-1β blocking antibodies were used to study the importance of IL-1R1 and TLR4 to dendritic cell accumulation and activation. Results Acute and chronic cigarette smoke exposure led to increased frequency of lung dendritic cells. Accumulation and activation of dendritic cells was IL-1R1/IL-1α dependent, but TLR4- and IL-1β-independent. Corroborating the cellular data, expression of CCL20, a potent dendritic cells chemoattractant, was IL-1R1/IL-1α-dependent. Studies using IL-1R1 bone marrow-chimeric mice revealed the importance of IL-1R1 signaling on lung structural cells for CCL20 expression. Consistent with the importance of dendritic cells in T cell activation, we observed decreased CD4+ and CD8+ T cell activation in cigarette smoke-exposed IL-1R1-deficient mice. Conclusion Our findings convey the importance of IL-1R1/IL-1α to the recruitment and activation of dendritic cells in response to cigarette smoke exposure. PMID:22992200
Phase I (Safety) Study of Autologous Tolerogenic Dendritic Cells in Type 1 Diabetic Patients
Giannoukakis, Nick; Phillips, Brett; Finegold, David; Harnaha, Jo; Trucco, Massimo
2011-01-01
OBJECTIVE The safety of dendritic cells to selectively suppress autoimmunity, especially in type 1 diabetes, has never been ascertained. We investigated the safety of autologous dendritic cells, stabilized into an immunosuppressive state, in established adult type 1 diabetic patients. RESEARCH DESIGN AND METHODS A randomized, double-blind, phase I study was conducted. A total of 10, otherwise generally healthy, insulin-requiring type 1 diabetic patients between 18 and 60 years of age, without any other known or suspected health conditions, received autologous dendritic cells, unmanipulated or engineered ex vivo toward an immunosuppressive state. Ten million cells were administered intradermally in the abdomen once every 2 weeks for a total of four administrations. The primary end point determined the proportion of patients with adverse events on the basis of the physician’s global assessment, hematology, biochemistry, and immune monitoring for a period of 12 months. RESULTS The dendritic cells were safely tolerated. There were no discernible adverse events in any patient throughout the study. Other than a significant increase in the frequency of peripheral B220+ CD11c− B cells, mainly seen in the recipients of engineered dendritic cells during the dendritic cell administration period, there were no statistically relevant differences in other immune populations or biochemical, hematological, and immune biomarkers compared with baseline. CONCLUSIONS Treatment with autologous dendritic cells, in a native state or directed ex vivo toward a tolerogenic immunosuppressive state, is safe and well tolerated. Dendritic cells upregulated the frequency of a potentially beneficial B220+ CD11c− B-cell population, at least in type 1 diabetes autoimmunity. PMID:21680720
Angerami, Matias; Suarez, Guadalupe; Pascutti, Maria Fernanda; Salomon, Horacio; Bottasso, Oscar; Quiroga, Maria Florencia
2013-07-01
Cell-mediated immunity, cytokines induced during the specific immune response and T-cell populations are crucial factors for containing Mycobacterium tuberculosis infection. Recent reports suggest a cross-regulation between adrenal steroids (glucocorticoids and dehydroepiandrosterone, DHEA) and the function of antigen-presenting cells (APCs). Therefore, we investigated the role of adrenal hormones on the functional capacity of M. tuberculosis-induced dendritic cells (DCs). Cortisol significantly inhibited the functions of M. tuberculosis-induced DCs. Interestingly, the presence of DHEA enhanced the M. tuberculosis-induced expression of MHC I, MHC II and CD86 and also increased ERK1/2 phosphorylation. Moreover, DHEA improved the production of IL-12 in response to M. tuberculosis stimulation, diminished IL-10 secretion and could not modify TNF-α synthesis. Importantly, we observed that DHEA enhanced the antigen-specific T-cell proliferation and IFN-γ production induced by M. tuberculosis-stimulated DC. These data show for the first time the relevance of the adrenal axis (especially of DHEA) in the modulation of DC function in the context of tuberculosis, a disease where the induction of a Th1 environment by APCs is crucial for the development of an effective immune response to the mycobacteria.
Han, Xinyi; Wang, Dawei; Liu, Dong; Huang, Jianshe; You, Tianyan
2012-02-01
Gold/Platinum (Au/Pt) bimetallic nanodendrites were successfully synthesized through seeded growth method using preformed Au nanodendrites as seeds and ascorbic acid as reductant. Cyclic voltammograms (CVs) of a series of Au/Pt nanodendrites modified electrodes in 1M KOH solution containing 1M ethanol showed that the electrocatalyst with a molar ratio (Au:Pt) of 3 exhibited the highest peak current density and the lowest onset potential. The peak current density of ethanol electro-oxidation on the Au(3)Pt(1) nanodendrites modified glassy carbon electrode (Au(3)Pt(1) electrode) is about 16, 12.5, and 4.5 times higher than those on the polycrystalline Pt electrode, polycrystalline Au electrode, and Au nanodendrites modified glassy carbon electrode (Au dendrites electrode), respectively. The oxidation peak potential of ethanol electro-oxidation on the Au(3)Pt(1) electrode is about 299 and 276 mV lower than those on the polycrystalline Au electrode and Au dendrites electrode, respectively. These results demonstrated that the Au/Pt bimetallic nanodendrites may find potential application in alkaline direct ethanol fuel cells (ADEFCs). Copyright © 2011 Elsevier Inc. All rights reserved.
Malinova, Dessislava; Fritzsche, Marco; Nowosad, Carla R; Armer, Hannah; Munro, Peter M G; Blundell, Michael P; Charras, Guillaume; Tolar, Pavel; Bouma, Gerben; Thrasher, Adrian J
2016-05-01
The immunological synapse is a highly structured and molecularly dynamic interface between communicating immune cells. Although the immunological synapse promotes T cell activation by dendritic cells, the specific organization of the immunological synapse on the dendritic cell side in response to T cell engagement is largely unknown. In this study, confocal and electron microscopy techniques were used to investigate the role of dendritic cell actin regulation in immunological synapse formation, stabilization, and function. In the dendritic cell-restricted absence of the Wiskott-Aldrich syndrome protein, an important regulator of the actin cytoskeleton in hematopoietic cells, the immunological synapse contact with T cells occupied a significantly reduced surface area. At a molecular level, the actin network localized to the immunological synapse exhibited reduced stability, in particular, of the actin-related protein-2/3-dependent, short-filament network. This was associated with decreased polarization of dendritic cell-associated ICAM-1 and MHC class II, which was partially dependent on Wiskott-Aldrich syndrome protein phosphorylation. With the use of supported planar lipid bilayers incorporating anti-ICAM-1 and anti-MHC class II antibodies, the dendritic cell actin cytoskeleton organized into recognizable synaptic structures but interestingly, formed Wiskott-Aldrich syndrome protein-dependent podosomes within this area. These findings demonstrate that intrinsic dendritic cell cytoskeletal remodeling is a key regulatory component of normal immunological synapse formation, likely through consolidation of adhesive interaction and modulation of immunological synapse stability. © The Author(s).
Dendritic cells in Barrett's esophagus and esophageal adenocarcinoma.
Bobryshev, Yuri V; Tran, Dinh; Killingsworth, Murray C; Buckland, Michael; Lord, Reginald V N
2009-01-01
Like other premalignant conditions that develop in the presence of chronic inflammation, the development and progression of Barrett's esophagus is associated with the development of an immune response, but how this immune response is regulated is poorly understood. A comprehensive literature search failed to find any report of the presence of dendritic cells in Barrett's intestinal metaplasia and esophageal adenocarcinoma and this prompted our study. We used immunohistochemical staining and electron microscopy to examine whether dendritic cells are present in Barrett's esophagus and esophageal adenocarcinoma. Immunohistochemical staining with CD83, a specific marker for dendritic cells, was performed on paraffin-embedded sections of Barrett's intestinal metaplasia (IM, n = 12), dysplasia (n = 11) and adenocarcinoma (n = 14). CD83+ cells were identified in the lamina propria surrounding intestinal type glands in Barrett's IM, dysplasia, and cancer tissues. Computerized quantitative analysis showed that the numbers of dendritic cells were significantly higher in cancer tissues. Double immunostaining with CD83, CD20, and CD3, and electron microscopy demonstrated that dendritic cells are present in Barrett's esophagus and form clusters with T cells and B cells directly within the lamina propria. These findings demonstrate that dendritic cells are present in Barrett's tissues, with a significant increase in density in adenocarcinoma compared to benign Barrett's esophagus. Dendritic cells may have a role in the pathogenesis and immunotherapy treatment of Barrett's esophagus and adenocarcinoma.
Ling, Changying; Hendrickson, Michael L; Kalil, Ronald E
2012-01-01
The morphology of confirmed projection neurons in the dorsal lateral geniculate nucleus (dLGN) of the rat was examined by filling these cells retrogradely with biotinylated dextran amine (BDA) injected into the visual cortex. BDA-labeled projection neurons varied widely in the shape and size of their cell somas, with mean cross-sectional areas ranging from 60-340 µm(2). Labeled projection neurons supported 7-55 dendrites that spanned up to 300 µm in length and formed dendritic arbors with cross-sectional areas of up to 7.0 × 10(4) µm(2). Primary dendrites emerged from cell somas in three broad patterns. In some dLGN projection neurons, primary dendrites arise from the cell soma at two poles spaced approximately 180° apart. In other projection neurons, dendrites emerge principally from one side of the cell soma, while in a third group of projection neurons primary dendrites emerge from the entire perimeter of the cell soma. Based on these three distinct patterns in the distribution of primary dendrites from cell somas, we have grouped dLGN projection neurons into three classes: bipolar cells, basket cells and radial cells, respectively. The appendages seen on dendrites also can be grouped into three classes according to differences in their structure. Short "tufted" appendages arise mainly from the distal branches of dendrites; "spine-like" appendages, fine stalks with ovoid heads, typically are seen along the middle segments of dendrites; and "grape-like" appendages, short stalks that terminate in a cluster of ovoid bulbs, appear most often along the proximal segments of secondary dendrites of neurons with medium or large cell somas. While morphologically diverse dLGN projection neurons are intermingled uniformly throughout the nucleus, the caudal pole of the dLGN contains more small projection neurons of all classes than the rostral pole.
Bortezomib as a new therapeutic approach for blastic plasmacytoid dendritic cell neoplasm
Philippe, Laure; Ceroi, Adam; Bôle-Richard, Elodie; Jenvrin, Alizée; Biichle, Sabeha; Perrin, Sophie; Limat, Samuel; Bonnefoy, Francis; Deconinck, Eric; Saas, Philippe; Garnache-Ottou, Francine; Angelot-Delettre, Fanny
2017-01-01
Blastic plasmacytoid dendritic cell neoplasm is an aggressive hematologic malignancy with a poor prognosis. No consensus regarding optimal treatment modalities is currently available. Targeting the nuclear factor-kappa B pathway is considered a promising approach since blastic plasmacytoid dendritic cell neoplasm has been reported to exhibit constitutive activation of this pathway. Moreover, nuclear factor-kappa B inhibition in blastic plasmacytoid dendritic cell neoplasm cell lines, achieved using either an experimental specific inhibitor JSH23 or the clinical drug bortezomib, interferes in vitro with leukemic cell proliferation and survival. Here we extended these data by showing that primary blastic plasmacytoid dendritic cell neoplasm cells from seven patients were sensitive to bortezomib-induced cell death. We confirmed that bortezomib efficiently inhibits the phosphorylation of the RelA nuclear factor-kappa B subunit in blastic plasmacytoid dendritic cell neoplasm cell lines and primary cells from patients in vitro and in vivo in a mouse model. We then demonstrated that bortezomib can be associated with other drugs used in different chemotherapy regimens to improve its impact on leukemic cell death. Indeed, when primary blastic plasmacytoid dendritic cell neoplasm cells from a patient were grafted into mice, bortezomib treatment significantly increased the animals’ survival, and was associated with a significant decrease of circulating leukemic cells and RelA nuclear factor-kappa B subunit expression. Overall, our results provide a rationale for the use of bortezomib in combination with other chemotherapy for the treatment of patients with blastic plasmacytoid dendritic cell neoplasm. Based on our data, a prospective clinical trial combining proteasome inhibitor with classical drugs could be envisaged. PMID:28798071
Baptista, Marisa A. P.; Keszei, Marton; Oliveira, Mariana; Sunahara, Karen K. S.; Andersson, John; Dahlberg, Carin I. M.; Worth, Austen J.; Liedén, Agne; Kuo, I-Chun; Wallin, Robert P. A.; Snapper, Scott B.; Eidsmo, Liv; Scheynius, Annika; Karlsson, Mikael C. I.; Bouma, Gerben; Burns, Siobhan O.; Forsell, Mattias N. E.; Thrasher, Adrian J.; Nylén, Susanne; Westerberg, Lisa S.
2016-01-01
Wiskott–Aldrich syndrome (WAS) is caused by loss-of-function mutations in the WASp gene. Decreased cellular responses in WASp-deficient cells have been interpreted to mean that WASp directly regulates these responses in WASp-sufficient cells. Here, we identify an exception to this concept and show that WASp-deficient dendritic cells have increased activation of Rac2 that support cross-presentation to CD8+ T cells. Using two different skin pathology models, WASp-deficient mice show an accumulation of dendritic cells in the skin and increased expansion of IFNγ-producing CD8+ T cells in the draining lymph node and spleen. Specific deletion of WASp in dendritic cells leads to marked expansion of CD8+ T cells at the expense of CD4+ T cells. WASp-deficient dendritic cells induce increased cross-presentation to CD8+ T cells by activating Rac2 that maintains a near neutral pH of phagosomes. Our data reveals an intricate balance between activation of WASp and Rac2 signalling pathways in dendritic cells. PMID:27425374
NASA Astrophysics Data System (ADS)
Chen, Rui; Xu, Qingyan; Liu, Baicheng
2015-06-01
In this paper, a modified cellular automaton (MCA) model allowing for the prediction of dendrite growth of Al-Si-Mg ternary alloys in two and three dimensions is presented. The growth kinetic of S/L interface is calculated based on the solute equilibrium approach. In order to describe the dendrite growth with arbitrarily crystallographic orientations, this model introduces a modified decentered octahedron algorithm for neighborhood tracking to eliminate the effect of mesh dependency on dendrite growth. The thermody namic and kinetic data needed for dendrite growth is obtained through coupling with Pandat software package in combination with thermodynamic/kinetic/equilibrium phase diagram calculation databases. The effect of interactions between various alloying elements on solute diffusion coefficient is considered in the model. This model has first been used to simulate Al-7Si (weight percent) binary dendrite growth followed by a validation using theoretical predictions. For ternary alloy, Al-7Si-0.5Mg dendrite simulation has been carried out and the effects of solute interactions on diffusion matrix as well as the differences of Si and Mg in solute distribution have been analyzed. For actual application, this model has been applied to simulate the equiaxed dendrite growth with various crystallographic orientations of Al-7Si-0.36Mg ternary alloy, and the predicted secondary dendrite arm spacing (SDAS) shows a reasonable agreement with the experimental ones. Furthermore, the columnar dendrite growth in directional solidification has also been simulated and the predicted primary dendrite arm spacing (PDAS) is in good agreement with experiments. The simulated results effectively demonstrate the abilities of the model in prediction of dendritic microstructure of Al-Si-Mg ternary alloy.
Astrocytes regulate heterogeneity of presynaptic strengths in hippocampal networks
Letellier, Mathieu; Park, Yun Kyung; Chater, Thomas E.; Chipman, Peter H.; Gautam, Sunita Ghimire; Oshima-Takago, Tomoko; Goda, Yukiko
2016-01-01
Dendrites are neuronal structures specialized for receiving and processing information through their many synaptic inputs. How input strengths are modified across dendrites in ways that are crucial for synaptic integration and plasticity remains unclear. We examined in single hippocampal neurons the mechanism of heterosynaptic interactions and the heterogeneity of synaptic strengths of pyramidal cell inputs. Heterosynaptic presynaptic plasticity that counterbalances input strengths requires N-methyl-d-aspartate receptors (NMDARs) and astrocytes. Importantly, this mechanism is shared with the mechanism for maintaining highly heterogeneous basal presynaptic strengths, which requires astrocyte Ca2+ signaling involving NMDAR activation, astrocyte membrane depolarization, and L-type Ca2+ channels. Intracellular infusion of NMDARs or Ca2+-channel blockers into astrocytes, conditionally ablating the GluN1 NMDAR subunit, or optogenetically hyperpolarizing astrocytes with archaerhodopsin promotes homogenization of convergent presynaptic inputs. Our findings support the presence of an astrocyte-dependent cellular mechanism that enhances the heterogeneity of presynaptic strengths of convergent connections, which may help boost the computational power of dendrites. PMID:27118849
Hsueh, Yi-Ping
2012-03-26
Both Neurofibromatosis type I (NF1) and inclusion body myopathy with Paget's disease of bone and frontotemporal dementia (IBMPFD) are autosomal dominant genetic disorders. These two diseases are fully penetrant but with high heterogeneity in phenotypes, suggesting the involvement of genetic modifiers in modulating patients' phenotypes. Although NF1 is recognized as a developmental disorder and IBMPFD is associated with degeneration of multiple tissues, a recent study discovered the direct protein interaction between neurofibromin, the protein product of the NF1 gene, and VCP/p97, encoded by the causative gene of IBMPFD. Both NF1 and VCP/p97 are critical for dendritic spine formation, which provides the cellular mechanism explaining the cognitive deficits and dementia found in patients. Moreover, disruption of the interaction between neurofibromin and VCP impairs dendritic spinogenesis. Neurofibromin likely influences multiple downstream pathways to control dendritic spinogenesis. One is to activate the protein kinase A pathway to initiate dendritic spine formation; another is to regulate the synaptic distribution of VCP and control the activity of VCP in dendritic spinogenesis. Since neurofibromin and VCP/p97 also regulate cell growth and bone metabolism, the understanding of neurofibromin and VCP/p97 in neurons may be applied to study of cancer and bone. Statin treatment rescues the spine defects caused by VCP deficiency, suggesting the potential role of statin in clinical treatment for these two diseases.
Shalaby, Karim H; Lyons-Cohen, Miranda R; Whitehead, Gregory S; Thomas, Seddon Y; Prinz, Immo; Nakano, Hideki; Cook, Donald N
2017-11-14
Mechanisms that elicit mucosal T H 17 cell responses have been described, yet how these cells are sustained in chronically inflamed tissues remains unclear. We sought to understand whether maintenance of lung T H 17 inflammation requires environmental agents in addition to antigen and to identify the lung antigen-presenting cell (APC) types that sustain the self-renewal of T H 17 cells. Animals were exposed repeatedly to aspiration of ovalbumin alone or together with environmental adjuvants, including common house dust extract (HDE), to test their role in maintaining lung inflammation. Alternatively, antigen-specific effector/memory T H 17 cells, generated in culture with CD4 + T cells from Il17a fate-mapping mice, were adoptively transferred to assess their persistence in genetically modified animals lacking distinct lung APC subsets or cell-specific Toll-like receptor (TLR) 4 signaling. T H 17 cells were also cocultured with lung APC subsets to determine which of these could revive their expansion and activation. T H 17 cells and the consequent neutrophilic inflammation were poorly sustained by inhaled antigen alone but were augmented by inhalation of antigen together with HDE. This was associated with weight loss and changes in lung physiology consistent with interstitial lung disease. The effect of HDE required TLR4 signaling predominantly in lung hematopoietic cells, including CD11c + cells. CD103 + and CD11b + conventional dendritic cells interacted directly with T H 17 cells in situ and revived the clonal expansion of T H 17 cells both ex vivo and in vivo, whereas lung macrophages and B cells could not. T H 17-dependent inflammation in the lungs can be sustained by persistent TLR4-mediated activation of lung conventional dendritic cells. Published by Elsevier Inc.
Hormonal Regulation of Dendritic Cell Differentiation in the Thymus.
Shirshev, S V; Orlova, E G; Loginova, O A; Nekrasova, I V; Gorbunova, O L; Maslennikova, I L
2018-06-19
We studied the effect of hormones estriol, ghrelin, kisspeptin, and chorionic gonadotropin in concentrations corresponding to their content in the peripheral blood in each trimester of pregnancy on the expression of membrane molecules on myeloid and plasmacytoid dendritic cells of the thymus. It was found that thymic myeloid dendritic cells are sensitive to the action of estriol and kisspeptin. Estriol in a concentration of the first trimester of pregnancy reduces the number of myeloid dendritic cells expressing receptor for thymic stromal lymphopoietin (CD11c+TSLP-R + ) and inhibitory molecule B7-H3 (CD11c + CD276 + ). In contrast to estriol, kisspeptin regulates the processes of differentiation of thymic myeloid dendritic cells in concentrations typical of the second-third trimesters and reduced their total number (CD11c + ) and the number of cells expressing TSLP-R (CD11c + TSLP-R + ). Estriol and kisspeptin do not affect the total number of plasmacytoid dendritic cells (CD303 + ) and expression of TSLP-R and CD276 by these cells. Ghrelin and chorionic gonadotropin in the studied concentrations had no significant effect on the total number of thymic myeloid and plasmacytoid dendritic cells and on the expression of membrane molecules of TSLP-R and CD276.
Muscarinic regulation of Kenyon cell dendritic arborizations in adult worker honey bees
Dobrin, Scott E.; Herlihy, J. Daniel; Robinson, Gene E.; Fahrbach, Susan E.
2011-01-01
The experience of foraging under natural conditions increases the volume of mushroom body neuropil in worker honey bees. A comparable increase in neuropil volume results from treatment of worker honey bees with pilocarpine, an agonist for muscarinic-type cholinergic receptors. A component of the neuropil growth induced by foraging experience is growth of dendrites in the collar region of the calyces. We show here, via analysis of Golgi-impregnated collar Kenyon cells with wedge arborizations, that significant increases in standard measures of dendritic complexity were also found in worker honey bees treated with pilocarpine. This result suggests that signaling via muscarinic-type receptors promotes the increase in Kenyon cell dendritic complexity associated with foraging. Treatment of worker honey bees with scopolamine, a muscarinic inhibitor, inhibited some aspects of dendritic growth. Spine density on the Kenyon cell dendrites varied with sampling location, with the distal portion of the dendritic field having greater total spine density than either the proximal or medial section. This observation may be functionally significant because of the stratified organization of projections from visual centers to the dendritic arborizations of the collar Kenyon cells. Pilocarpine treatment had no effect on the distribution of spines on dendrites of the collar Kenyon cells. PMID:21262388
"Subpial Fan Cell" - A Class of Calretinin Neuron in Layer 1 of Adult Monkey Prefrontal Cortex.
Gabbott, Paul L A
2016-01-01
Layer 1 of the cortex contains populations of neurochemically distinct neurons and afferent fibers which markedly affect neural activity in the apical dendritic tufts of pyramidal cells. Understanding the causal mechanisms requires knowledge of the cellular architecture and synaptic organization of layer 1. This study has identified eight morphological classes of calretinin immunopositive (CRet+) neurons (including Cajal-Retzius cells) in layer 1 of the prefrontal cortex (PFC) in adult monkey (Macaca fasicularis), with a distinct class - termed "subpial fan (SPF) cell" - described in detail. SPF cells were rare horizontal unipolar CRet+ cells located directly beneath the pia with a single thick primary dendrite that branched into a characteristic fan-like dendritic tree tangential to the pial surface. Dendrites had spines, filamentous processes and thorny branchlets. SPF cells lay millimeters apart with intralaminar axons that ramified widely in upper layer 1. Such cells were GABA immunonegative (-) and occurred in areas beyond PFC. Interspersed amidst SPF cells displaying normal structural integrity were degenerating CRet+ neurons (including SPF cells) and clumps of lipofuscin-rich cellular debris. The number of degenerating SPF cells increased during adulthood. Ultrastructural analyses indicated SPF cell somata received asymmetric (A - presumed excitatory) and symmetric (S - presumed inhibitory) synaptic contacts. Proximal dendritic shafts received mainly S-type and distal shafts mostly A-type input. All dendritic thorns and most dendritic spines received both synapse types. The tangential areal density of SPF cell axonal varicosities varied radially from parent somata - with dense clusters in more distal zones. All boutons formed A-type contacts with CRet- structures. The main post-synaptic targets were dendritic shafts (67%; mostly spine-bearing) and dendritic spines (24%). SPF-SPF cell innervation was not observed. Morphometry of SPF cells indicated a unique class of CRet+/GABA- neuron in adult monkey PFC - possibly a subtype of persisting Cajal-Retzius cell. The distribution and connectivity of SPF cells suggest they act as integrative hubs in upper layer 1 during postnatal maturation. The main synaptic output of SPF cells likely provides a transminicolumnar excitatory influence across swathes of apical dendritic tufts - thus affecting information processing in discrete patches of layer 1 in adult monkey PFC.
Chicha, Laurie; Jarrossay, David; Manz, Markus G.
2004-01-01
Because of different cytokine responsiveness, surface receptor, and transcription factor expression, human CD11c− natural type I interferon–producing cells (IPCs) and CD11c+ dendritic cells were thought to derive through lymphoid and myeloid hematopoietic developmental pathways, respectively. To directly test this hypothesis, we used an in vitro assay allowing simultaneous IPC, dendritic cell, and B cell development and we tested lymphoid and myeloid committed hematopoietic progenitor cells for their developmental capacity. Lymphoid and common myeloid and granulocyte/macrophage progenitors were capable of developing into both functional IPCs, expressing gene transcripts thought to be associated with lymphoid lineage development, and into dendritic cells. However, clonal progenitors for both populations were about fivefold more frequent within myeloid committed progenitor cells. Thus, in humans as in mice, natural IPC and dendritic cell development robustly segregates with myeloid differentiation. This would fit with natural interferon type I–producing cell and dendritic cell activity in innate immunity, the evolutionary older arm of the cellular immune system. PMID:15557348
Immunotherapy with myeloid cells for tolerance induction
Rodriguez-García, Mercedes; Boros, Peter; Bromberg, Jonathan S.; Ochando, Jordi C.
2013-01-01
Purpose of review Understanding the interplay between myeloid dendritic cells and T cells under tolerogenic conditions, and whether their interactions induce the development of antigen-specific regulatory T cells (Tregs) is critical to uncover the mechanisms involved in the induction of indefinite allograft survival. Recent findings Myeloid dendritic cell–T-cell interactions are seminal events that determine the outcome of the immune response, and multiple in-vitro protocols suggest the generation of tolerogenic myeloid dendritic cells that modulate T-cell responses, and determine the outcome of the immune response to an allograft following adoptive transfer. We believe that identifying specific conditions that lead to the generation of tolerogenic myeloid dendritic cells and Tregs are critical for the manipulation the immune response towards the development of transplantation tolerance. Summary We summarize recent findings regarding specific culture conditions that generate tolerogenic myeloid dendritic cells that induce T-cell hyporesponsiveness and Treg development, and represents a novel immunotherapeutic approach to promote the induction of indefinite graft survival prolongation. The interpretations presented here illustrate that different mechanisms govern the generation tolerogenic myeloid dendritic cells, and we discuss the concomitant therapeutic implications. PMID:20616727
Cameron, Michael C.; Zhan, Ren-Zhi; Nadler, J. Victor
2014-01-01
After pilocarpine-induced status epilepticus, many granule cells born into the postseizure environment migrate aberrantly into the dentate hilus. Hilar ectopic granule cells (HEGCs) are hyperexcitable and may therefore increase circuit excitability. This study determined the distribution of their axons and dendrites. HEGCs and normotopic granule cells were filled with biocytin during whole-cell patch clamp recording in hippocampal slices from pilocarpine-treated rats. The apical dendrite of 86% of the biocytin-labeled HEGCs extended to the outer edge of the dentate molecular layer. The total length and branching of HEGC apical dendrites that penetrated the molecular layer were significantly reduced compared with apical dendrites of normotopic granule cells. HEGCs were much more likely to have a hilar basal dendrite than normotopic granule cells. They were about as likely as normotopic granule cells to project to CA3 pyramidal cells within the slice, but were much more likely to send at least one recurrent mossy fiber into the molecular layer. HEGCs with burst capability had less well-branched apical dendrites than nonbursting HEGCs, their dendrites were more likely to be confined to the hilus, and some exhibited dendritic features similar to those of immature granule cells. HEGCs thus have many paths along which to receive synchronized activity from normotopic granule cells and to transmit their own hyperactivity to both normotopic granule cells and CA3 pyramidal cells. They may therefore contribute to the highly interconnected granule cell hubs that have been proposed as crucial to development of a hyperexcitable, potentially seizure-prone circuit. PMID:21455997
Jiang, Hongmei; Hu, Henggui; Zhang, Yali; Yue, Ping; Ning, Lichang; Zhou, Yan; Shi, Ping; Yuan, Rui
2017-01-01
Dendritic cells (DCs) play an important role in the initiation of autoimmunity in rheumatoid arthritis (RA); therefore, the use of DCs needs to be explored to develop new therapeutic approaches for RA. Here, we investigated the therapeutic effect of bovine type II collagen (BIIC)-loaded DCs modified with NF-κB decoy oligodeoxynucleotides (ODNs) on collagen-induced arthritis (CIA) in rats and explored the underlying mechanisms. DCs treated with BIIC and NF-κB decoy ODNs exhibited features of immature DCs with low levels of costimulatory molecule (CD80 and CD86) expression. The development of arthritis in rats with CIA injected with BIIC + NF-κB decoy ODN-propagated DCs (BIIC–decoy DCs) was significantly ameliorated compared to that in rats injected with BIIC-propagated DCs or phosphate-buffered saline. We also found that the BIIC–decoy DCs exerted antiarthritis effects by inhibiting self-lymphocyte proliferative response and suppressing IFN-γ and anti-BIIC antibody production and inducing IL-10 antibody production. Additionally, antihuman serum antibodies were successfully produced in the rats treated with BIIC–decoy DCs but not in those treated with NF-κB decoy ODN-propagated DCs; moreover, the BIIC–decoy DCs did not affect immune function in the normal rats. These findings suggested that NF-κB decoy ODN-modified DCs loaded with a specific antigen might offer a practical method for the treatment of human RA. PMID:29075103
Suppression of zinc dendrites in zinc electrode power cells
NASA Technical Reports Server (NTRS)
Damjanovic, A.; Diggle, J. W.
1970-01-01
Addition of various tetraalkyl quarternary ammonium salts, to alkaline zincate electrolyte of cell, prevents formation of zinc dendrites during charging of zinc electrode. Electrode capacity is not impaired and elimination of dendrites prolongs cell life.
Membrane oxidation in cell delivery and cell killing applications
Wang, Ting-Yi; Libardo, M. Daben J.; Angeles-Boza, Alfredo M.; Pellois, Jean-Philippe
2018-01-01
Cell delivery or cell killing processes often involve the crossing or disruption of cellular membranes. We review how, by modifying the composition and properties of membranes, membrane oxidation can be exploited to enhance the delivery of macromolecular cargos into live human cells. We also describe how membrane oxidation can be utilized to achieve efficient killing of bacteria by antimicrobial peptides. Finally, we present recent evidence highlighting how membrane oxidation is intimately engaged in natural biological processes such as antigen delivery in dendritic cells and in the killing of bacteria by human macrophages. Overall, the insights that have been recently gained in this area should facilitate the development of more effective delivery technologies and antimicrobial therapeutic approaches. PMID:28355059
Bortezomib as a new therapeutic approach for blastic plasmacytoid dendritic cell neoplasm.
Philippe, Laure; Ceroi, Adam; Bôle-Richard, Elodie; Jenvrin, Alizée; Biichle, Sabeha; Perrin, Sophie; Limat, Samuel; Bonnefoy, Francis; Deconinck, Eric; Saas, Philippe; Garnache-Ottou, Francine; Angelot-Delettre, Fanny
2017-11-01
Blastic plasmacytoid dendritic cell neoplasm is an aggressive hematologic malignancy with a poor prognosis. No consensus regarding optimal treatment modalities is currently available. Targeting the nuclear factor-kappa B pathway is considered a promising approach since blastic plasmacytoid dendritic cell neoplasm has been reported to exhibit constitutive activation of this pathway. Moreover, nuclear factor-kappa B inhibition in blastic plasmacytoid dendritic cell neoplasm cell lines, achieved using either an experimental specific inhibitor JSH23 or the clinical drug bortezomib, interferes in vitro with leukemic cell proliferation and survival. Here we extended these data by showing that primary blastic plasmacytoid dendritic cell neoplasm cells from seven patients were sensitive to bortezomib-induced cell death. We confirmed that bortezomib efficiently inhibits the phosphorylation of the RelA nuclear factor-kappa B subunit in blastic plasmacytoid dendritic cell neoplasm cell lines and primary cells from patients in vitro and in vivo in a mouse model. We then demonstrated that bortezomib can be associated with other drugs used in different chemotherapy regimens to improve its impact on leukemic cell death. Indeed, when primary blastic plasmacytoid dendritic cell neoplasm cells from a patient were grafted into mice, bortezomib treatment significantly increased the animals' survival, and was associated with a significant decrease of circulating leukemic cells and RelA nuclear factor-kappa B subunit expression. Overall, our results provide a rationale for the use of bortezomib in combination with other chemotherapy for the treatment of patients with blastic plasmacytoid dendritic cell neoplasm. Based on our data, a prospective clinical trial combining proteasome inhibitor with classical drugs could be envisaged. Copyright© Ferrata Storti Foundation.
Ufer, Friederike; Vargas, Pablo; Engler, Jan Broder; Tintelnot, Joseph; Schattling, Benjamin; Winkler, Hana; Bauer, Simone; Kursawe, Nina; Willing, Anne; Keminer, Oliver; Ohana, Ora; Salinas-Riester, Gabriela; Pless, Ole; Kuhl, Dietmar; Friese, Manuel A
2016-09-23
Skin-migratory dendritic cells (migDCs) are pivotal antigen-presenting cells that continuously transport antigens to draining lymph nodes and regulate immune responses. However, identification of migDCs is complicated by the lack of distinguishing markers, and it remains unclear which molecules determine their migratory capacity during inflammation. We show that, in the skin, the neuronal plasticity molecule activity-regulated cytoskeleton-associated protein/activity-regulated gene 3.1 (Arc/Arg3.1) was strictly confined to migDCs. Mechanistically, Arc/Arg3.1 was required for accelerated DC migration during inflammation because it regulated actin dynamics through nonmuscle myosin II. Accordingly, Arc/Arg3.1-dependent DC migration was critical for mounting T cell responses in experimental autoimmune encephalomyelitis and allergic contact dermatitis. Thus, Arc/Arg3.1 was restricted to migDCs in the skin and drove fast DC migration by exclusively coordinating cytoskeletal changes in response to inflammatory challenges. These findings commend Arc/Arg3.1 as a universal switch in migDCs that may be exploited to selectively modify immune responses. Copyright © 2016, American Association for the Advancement of Science.
Mannan-MUC1-pulsed dendritic cell immunotherapy: a phase I trial in patients with adenocarcinoma.
Loveland, Bruce E; Zhao, Anne; White, Shane; Gan, Hui; Hamilton, Kate; Xing, Pei-Xiang; Pietersz, Geoffrey A; Apostolopoulos, Vasso; Vaughan, Hilary; Karanikas, Vaios; Kyriakou, Peter; McKenzie, Ian F C; Mitchell, Paul L R
2006-02-01
Tumor antigen-loaded dendritic cells show promise for cancer immunotherapy. This phase I study evaluated immunization with autologous dendritic cells pulsed with mannan-MUC1 fusion protein (MFP) to treat patients with advanced malignancy. Eligible patients had adenocarcinoma expressing MUC1, were of performance status 0 to 1, with no autoimmune disease. Patients underwent leukapheresis to generate dendritic cells by culture ex vivo with granulocyte macrophage colony-stimulating factor and interleukin 4 for 5 days. Dendritic cells were then pulsed overnight with MFP and harvested for reinjection. Patients underwent three cycles of leukapheresis and reinjection at monthly intervals. Patients with clinical benefit were able to continue with dendritic cell-MFP immunotherapy. Ten patients with a range of tumor types were enrolled, with median age of 60 years (range, 33-70 years); eight patients were of performance status 0 and two of performance status 1. Dendritic cell-MFP therapy led to strong T-cell IFNgamma Elispot responses to the vaccine and delayed-type hypersensitivity responses at injection sites in nine patients who completed treatments. Immune responses were sustained at 1 year in monitored patients. Antibody responses were seen in three patients only and were of low titer. Side effects were grade 1 only. Two patients with clearly progressive disease (ovarian and renal carcinoma) at entry were stable after initial therapy and went on to further leukapheresis and dendritic cell-MFP immunotherapy. These two patients have now each completed over 3 years of treatment. Immunization produced T-cell responses in all patients with evidence of tumor stabilization in 2 of the 10 advanced cancer patients treated. These data support further clinical evaluation of this dendritic cell-MFP immunotherapy.
Morelli, Adrian E; Thomson, Angus W
2014-08-01
Extensive research in murine transplant models over the past two decades has convincingly demonstrated the ability of regulatory dendritic cells (DCregs) to promote long-term allograft survival. We review important considerations regarding the source of therapeutic DCregs (donor or recipient) and their mode of action, in-situ targeting of DCregs, and optimal therapeutic regimens to promote DCreg function. Recent studies have defined protocols and mechanisms whereby ex-vivo-generated DCregs of donor or recipient origin subvert allogeneic T-cell responses and promote long-term organ transplant survival. Particular interest has focused on how donor antigen is acquired, processed and presented by autologous dendritic cells, on the stability of DCregs, and on in-situ targeting of dendritic cells to promote their tolerogenic function. New evidence of the therapeutic efficacy of DCregs in a clinically relevant nonhuman primate organ transplant model and production of clinical grade DCregs support early evaluation of DCreg therapy in human graft recipients. We discuss strategies currently used to promote dendritic cell tolerogenicity, including DCreg therapy and in-situ targeting of dendritic cells, with a view to improved understanding of underlying mechanisms and identification of the most promising strategies for therapeutic application.
Phase 2 of the array automated assembly task for the low cost solar array project
NASA Technical Reports Server (NTRS)
Campbell, R. B.; Davis, J. R.; Ostroski, J. W.; Rai-Choudhury, P.; Rohatgi, A.; Seman, E. J.; Stapleton, R. E.
1979-01-01
The process sequence for the fabrication of dendritic web silicon into solar panels was modified to include aluminum back surface field formation. Plasma etching was found to be a feasible technique for pre-diffusion cleaning of the web. Several contacting systems were studied. The total plated Pd-Ni system was not compatible with the process sequence; however, the evaporated TiPd-electroplated Cu system was shown stable under life testing. Ultrasonic bonding parameters were determined for various interconnect and contact metals but the yield of the process was not sufficiently high to use for module fabrication at this time. Over 400 solar cells were fabricated according to the modified sequence. No sub-process incompatibility was seen. These cells were used to fabricate four demonstration modules. A cost analysis of the modified process sequence resulted in a selling price of $0.75/peak watt.
NASA Astrophysics Data System (ADS)
Dias, Marcelino; Costa, Thiago A.; Soares, Thiago; Silva, Bismarck L.; Cheung, Noé; Spinelli, José E.; Garcia, Amauri
2018-02-01
Transient directional solidification experiments, and further optical and scanning electron microscopy analyses and tensile tests, allowed the dependence of tensile properties on the micromorphology and length scale of the dendritic/cellular matrix of ternary Sn-5.5Sb-1Ag and Sn-5.5Sb-1Cu alloys to be determined. Extensive ranges of cooling rates were obtained, which permitted specific values of cooling rate for each sample examined along the length of the casting to be attributed. Very broad microstructural length scales were revealed as well as the presence of either cells or dendrites for the Ag-containing alloy. Hereafter, microstructural spacing values such as the cellular spacing, λ c, and the primary dendritic spacing, λ 1, may be correlated with thermal solidification parameters, that is, the cooling rate and the growth rate. While, for the Cu-containing Sn-Sb alloy, the β-Sn matrix is characterized only by the presence of dendritic arrangements, the Ag-containing Sn-Sb alloy is shown to have high-velocity β-Sn cells associated with high cooling rate regions, i.e., positions closer to the bottom of the alloy casting, with the remaining positions being characterized by a complex growth of β-Sn dendrites. Minor additions of Cu and Ag increase both the yield and ultimate tensile strengths when compared with the corresponding values of the binary Sn-5.5Sb alloy, with a small reduction in ductility. This has been attributed to the homogeneous distribution of the Ag3Sn and Cu6Sn5 intermetallic particles related to smaller λ 1 characterizing the dendritic zones of the ternary Sn-Sb-(Cu,Ag) alloys. In addition, the Ag-modified Sn-Sb alloy exhibited an initial wetting angle consistent with that characterizing the binary Sn-5.5Sb alloy.
2015-09-01
Award Number: W81XWH-11-1-0384 TITLE: Evaluation of Immune Responses Mediated by Listeria-Stimulated Human Dendritic Cells : Implications for...Immune Responses Mediated by Listeria-Stimulated Human Dendritic Cells : Implications for Cancer Vaccine Therapy 5b. GRANT NUMBER CA100463 5c...Listeria monocytogenes (Lm) on human dendritic cells (DCs) to optimize Lm-based DC cancer vaccines. The project aims are: 1) Compare the activation and
Assegie, Addisu Alemayehu; Cheng, Ju-Hsiang; Kuo, Li-Ming; Su, Wei-Nien; Hwang, Bing-Joe
2018-03-29
The practical implementation of an anode-free lithium-metal battery with promising high capacity is hampered by dendrite formation and low coulombic efficiency. Most notably, these challenges stem from non-uniform lithium plating and unstable SEI layer formation on the bare copper electrode. Herein, we revealed the homogeneous deposition of lithium and effective suppression of dendrite formation using a copper electrode coated with a polyethylene oxide (PEO) film in an electrolyte comprising 1 M LiTFSI, DME/DOL (1/1, v/v) and 2 wt% LiNO3. More importantly, the PEO film coating promoted the formation of a thin and robust SEI layer film by hosting lithium and regulating the inevitable reaction of lithium with the electrolyte. The modified electrode exhibited stable cycling of lithium with an average coulombic efficiency of ∼100% over 200 cycles and low voltage hysteresis (∼30 mV) at a current density of 0.5 mA cm-2. Moreover, we tested the anode-free battery experimentally by integrating it with an LiFePO4 cathode into a full-cell configuration (Cu@PEO/LiFePO4). The new cell demonstrated stable cycling with an average coulombic efficiency of 98.6% and capacity retention of 30% in the 200th cycle at a rate of 0.2C. These impressive enhancements in cycle life and capacity retention result from the synergy of the PEO film coating, high electrode-electrolyte interface compatibility, stable polar oligomer formation from the reduction of 1,3-dioxolane and the generation of SEI-stabilizing nitrite and nitride upon lithium nitrate reduction. Our result opens up a new route to realize anode-free batteries by modifying the copper anode with PEO to achieve ever more demanding yet safe interfacial chemistry and control of dendrite formation.
Yokogawa, Hideaki; Kobayashi, Akira; Mori, Natsuko; Sugiyama, Kazuhisa
2015-01-01
Purpose To produce a two-dimensional reconstruction map of dendritic lesions in patients with herpes simplex keratitis (HSK) using in vivo confocal microscopy. Methods Four eyes of four patients (mean 65.8 years) with HSK presenting with a dendritic lesion were enrolled. Slit-lamp biomicroscopy and in vivo laser confocal microscopy were performed. Acquired confocal images at the level of the epithelium were arranged and mapped into subconfluent montages. Changes in the shape and degree of light reflection of abnormal cells and deposits around dendritic lesions as well as other corneal layers were qualitatively evaluated. Results Mapping of dendritic lesion was successful in all cases, and the subconfluent montages clearly showed the larger image of dendritic lesion. In all cases, the dendritic lesion consisted of hyperreflective irregular epithelial cells, and was surrounded by distorted and elongated epithelial cells. In three cases, hyperreflective deposits were noted at the midline of the lesion. The corneal stroma showed a hyperreflective honeycomb pattern. In two cases, inflammatory cells were observed at the level of endothelial cell layer. Conclusion Mapping of dendritic lesions in patients with HSK was successful in all patients using in vivo confocal microscopy. Cellular level observation of dendritic lesion at a relatively larger magnification may help understand the in vivo morphological change of HSK. Further study in more patients with HSK and nonherpetic dendritic lesion is needed to utilize confocal microscopy images in differential diagnosis and follow-up of the epithelial lesions with dendrite. PMID:26445524
Yokogawa, Hideaki; Kobayashi, Akira; Mori, Natsuko; Sugiyama, Kazuhisa
2015-01-01
To produce a two-dimensional reconstruction map of dendritic lesions in patients with herpes simplex keratitis (HSK) using in vivo confocal microscopy. Four eyes of four patients (mean 65.8 years) with HSK presenting with a dendritic lesion were enrolled. Slit-lamp biomicroscopy and in vivo laser confocal microscopy were performed. Acquired confocal images at the level of the epithelium were arranged and mapped into subconfluent montages. Changes in the shape and degree of light reflection of abnormal cells and deposits around dendritic lesions as well as other corneal layers were qualitatively evaluated. Mapping of dendritic lesion was successful in all cases, and the subconfluent montages clearly showed the larger image of dendritic lesion. In all cases, the dendritic lesion consisted of hyperreflective irregular epithelial cells, and was surrounded by distorted and elongated epithelial cells. In three cases, hyperreflective deposits were noted at the midline of the lesion. The corneal stroma showed a hyperreflective honeycomb pattern. In two cases, inflammatory cells were observed at the level of endothelial cell layer. Mapping of dendritic lesions in patients with HSK was successful in all patients using in vivo confocal microscopy. Cellular level observation of dendritic lesion at a relatively larger magnification may help understand the in vivo morphological change of HSK. Further study in more patients with HSK and nonherpetic dendritic lesion is needed to utilize confocal microscopy images in differential diagnosis and follow-up of the epithelial lesions with dendrite.
Erb, P; Ramila, G; Sklenar, I; Kennedy, M; Sunshine, G H
1985-05-01
Dendritic cells and macrophages obtained from spleen and peritoneal exudate were tested as accessory cells for the activation of lymphokine production by T cells, for supporting T-B cooperation and for the induction of antigen-specific T helper cells. Dendritic cells as well as macrophages were able to activate T cells for interleukin-2 secretion and functioned as accessory cells in T-B cooperation, but only macrophages induced T helper cells, which cooperate with B cells by a linked recognition interaction, to soluble antigens. Dendritic cell- and antigen-activated T cells also did not help B cells in the presence of Con A supernatants which contained various T cell- and B cell-stimulatory factors. The failure of dendritic cells to differentiate memory into functional T helper cells, but their efficient accessory cell function in T-B cooperation, where functional T helper cells are already present, can be best explained by a differential accessory cell requirement for T helper cell activation dependent on the differentiation stage of the T helper cell.
Functional properties of granule cells with hilar basal dendrites in the epileptic dentate gyrus.
Kelly, Tony; Beck, Heinz
2017-01-01
The maturation of adult-born granule cells and their functional integration into the network is thought to play a key role in the proper functioning of the dentate gyrus. In temporal lobe epilepsy, adult-born granule cells in the dentate gyrus develop abnormally and possess a hilar basal dendrite (HBD). Although morphological studies have shown that these HBDs have synapses, little is known about the functional properties of these HBDs or the intrinsic and network properties of the granule cells that possess these aberrant dendrites. We performed patch-clamp recordings of granule cells within the granule cell layer "normotopic" from sham-control and status epilepticus (SE) animals. Normotopic granule cells from SE animals possessed an HBD (SE + HBD + cells) or not (SE + HBD - cells). Apical and basal dendrites were stimulated using multiphoton uncaging of glutamate. Two-photon Ca 2+ imaging was used to measure Ca 2+ transients associated with back-propagating action potentials (bAPs). Near-synchronous synaptic input integrated linearly in apical dendrites from sham-control animals and was not significantly different in apical dendrites of SE + HBD - cells. The majority of HBDs integrated input linearly, similar to apical dendrites. However, 2 of 11 HBDs were capable of supralinear integration mediated by a dendritic spike. Furthermore, the bAP-evoked Ca 2+ transients were relatively well maintained along HBDs, compared with apical dendrites. This further suggests an enhanced electrogenesis in HBDs. In addition, the output of granule cells from epileptic tissue was enhanced, with both SE + HBD - and SE + HBD + cells displaying increased high-frequency (>100 Hz) burst-firing. Finally, both SE + HBD - and SE + HBD + cells received recurrent excitatory input that was capable of generating APs, especially in the absence of feedback inhibition. Taken together, these data suggest that the enhanced excitability of HBDs combined with the altered intrinsic and network properties of granule cells collude to promote excitability and synchrony in the epileptic dentate gyrus. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.
Structural basis of orientation sensitivity of cat retinal ganglion cells.
Leventhal, A G; Schall, J D
1983-11-10
We investigated the structural basis of the physiological orientation sensitivity of retinal ganglion cells (Levick and Thibos, '82). The dendritic fields of 840 retinal ganglion cells labeled by injections of horseradish peroxidase into the dorsal lateral geniculate nucleus (LGNd) or optic tracts of normal cats. Siamese cats, and cat deprived of patterned visual experience from birth by monocular lid-suture (MD) were studied. Mathematical techniques designed to analyze direction were used to find the dendritic field orientation of each cell. Statistical techniques designed for angular data were used to determine the relationship between dendritic field orientation and angular position on the retina (polar angle). Our results indicate that 88% of retinal ganglion cells have oriented dendritic fields and that dendritic field orientation is related systematically to retinal position. In all regions of retina more that 0.5 mm from the area centralis the dendritic fields of retinal ganglion cells are oriented radially, i.e., like the spokes of a wheel having the area centralis at its hub. This relationship was present in all animals and cell types studied and was strongest for cells located close to the horizontal meridian (visual streak) of the retina. Retinal ganglion cells appear to be sensitive to stimulus orientation because they have oriented dendritic fields.
Targeting MOG expression to dendritic cells delays onset of experimental autoimmune disease.
Ko, Hyun-Ja; Chung, Jie-Yu; Nasa, Zeyad; Chan, James; Siatskas, Christopher; Toh, Ban-Hock; Alderuccio, Frank
2011-05-01
Haematopoietic stem cell (HSC) transfer coupled with gene therapy is a powerful approach to treating fatal diseases such as X-linked severe combined immunodeficiency. This ability to isolate and genetically manipulate HSCs also offers a strategy for inducing immune tolerance through ectopic expression of autoantigens. We have previously shown that retroviral transduction of bone marrow (BM) with vectors encoding the autoantigen, myelin oligodendrocyte glycoprotein (MOG), can prevent the induction of experimental autoimmune encephalomyelitis (EAE). However, ubiquitous cellular expression of autoantigen driven by retroviral promoters may not be the best approach for clinical translation and a targeted expression approach may be more acceptable. As BM-derived dendritic cells (DCs) play a major role in tolerance induction, we asked whether targeted expression of MOG, a target autoantigen in EAE, to DCs can promote tolerance induction and influence the development of EAE. Self-inactivating retroviral vectors incorporating the mouse CD11c promoter were generated and used to transduce mouse BM cells. Transplantation of gene-modified cells into irradiated recipients resulted in the generation of chimeric mice with transgene expression limited to DCs. Notably, chimeric mice transplanted with MOG-expressing BM cells manifest a significant delay in the development of EAE suggesting that targeted antigen expression to tolerogenic cell types may be a feasible approach to inducing antigen-specific tolerance.
Epidermal Viral Immunity Induced by CD8α+ Dendritic Cells But Not by Langerhans Cells
NASA Astrophysics Data System (ADS)
Allan, Rhys S.; Smith, Chris M.; Belz, Gabrielle T.; van Lint, Allison L.; Wakim, Linda M.; Heath, William R.; Carbone, Francis R.
2003-09-01
The classical paradigm for dendritic cell function derives from the study of Langerhans cells, which predominate within skin epidermis. After an encounter with foreign agents, Langerhans cells are thought to migrate to draining lymph nodes, where they initiate T cell priming. Contrary to this, we show here that infection of murine epidermis by herpes simplex virus did not result in the priming of virus-specific cytotoxic T lymphocytes by Langerhans cells. Rather, the priming response required a distinct CD8α+ dendritic cell subset. Thus, the traditional view of Langerhans cells in epidermal immunity needs to be revisited to accommodate a requirement for other dendritic cells in this response.
Yin, Tao; Shi, Pengfei; Gou, Shanmiao; Shen, Qiang; Wang, Chunyou
2014-01-01
According to the cancer stem cells (CSCs) theory, malignant tumors may be heterogeneous in which a small population of CSCs drive the progression of cancer. Because of their intrinsic abilities, CSCs may survive a variety of treatments and then lead to therapeutic resistance and cancer recurrence. Pancreatic CSCs have been reported to be responsible for the malignant behaviors of pancreatic cancer, including suppression of immune protection. Thus, development of immune strategies to eradicate pancreatic CSCs may be of great value for the treatment of pancreatic cancer. In this study, we enriched pancreatic CSCs by culturing Panc-1 cells under sphere-forming conditions. Panc-1 CSCs expressed low levels of HLA-ABC and CD86, as measured by flow cytometry analysis. We further found that the Panc-1 CSCs modulate immunity by inhibiting lymphocyte proliferation which is promoted by phytohemagglutinin (PHA) and anti-CD3 monoclonal antibodies. The monocyte derived dendritic cells (DCs) were charged with total lysates generated from Panc-1 CSCs obtained from tumor sphere culturing. After co-culturing with lymphocytes at different ratios, the Panc-1 CSCs lysates modified DC effectively promoted lymphocyte proliferation. The activating efficiency reached 72.4% and 74.7% at the ratios of 1∶10 and 1∶20 with lymphocytes. The activated lymphocytes secreted high levels of INF-γ and IL-2, which are strong antitumor cytokines. Moreover, Panc-1 CSCs lysates modified DC induced significant cytotoxic effects of lymphocytes on Panc-1 CSCs and parental Panc-1 cells, respectively, as shown by lactate dehydrogenase (LDH) assay. Our study demonstrates that the development of CSCs-based vaccine is a promising strategy for treating pancreatic cancer. PMID:25521461
Manipulation of visible-light polarization with dendritic cell-cluster metasurfaces.
Fang, Zhen-Hua; Chen, Huan; An, Di; Luo, Chun-Rong; Zhao, Xiao-Peng
2018-06-26
Cross-polarization conversion plays an important role in visible light manipulation. Metasurface with asymmetric structure can be used to achieve polarization conversion of linearly polarized light. Based on this, we design a quasi-periodic dendritic metasurface model composed of asymmetric dendritic cells. The simulation indicates that the asymmetric dendritic structure can vertically rotate the polarization direction of the linear polarization wave in visible light. Silver dendritic cell-cluster metasurface samples were prepared by the bottom-up electrochemical deposition. It experimentally proved that they could realize the cross - polarization conversion in visible light. Cross-polarized propagating light is deflected into anomalous refraction channels. Dendritic cell-cluster metasurface with asymmetric quasi-periodic structure conveys significance in cross-polarization conversion research and features extensive practical application prospect and development potential.
Breece, Elizabeth; Paciotti, Brian; Nordahl, Christine Wu; Ozonoff, Sally; Van de Water, Judy A.; Rogers, Sally J.; Amaral, David; Ashwood, Paul
2012-01-01
The pathophysiology of Autism Spectrum Disorder (ASD) is not yet known; however, studies suggest that dysfunction of the immune system affects many children with ASD. Increasing evidence points to dysfunction of the innate immune system including activation of microglia and perivascular macrophages, increases in inflammatory cytokines/chemokines in brain tissue and CSF, and abnormal peripheral monocyte cell function. Dendritic cells are major players in innate immunity and have important functions in the phagocytosis of pathogens or debris, antigen presentation, activation of naïve T cells, induction of tolerance and cytokine/chemokine production. In this study, we assessed circulating frequencies of myeloid dendritic cells (defined as Lin-1−BDCA1+CD11c+ and Lin-1−BDCA3+CD123−) and plasmacytoid dendritic cells (Lin-1− BDCA2+CD123+ or Lin-1−BDCA4+ CD11c−) in 57 children with ASD, and 29 typically developing controls of the same age, all of who were enrolled as part of the Autism Phenome Project (APP). The frequencies of dendritic cells and associations with behavioral assessment and MRI measurements of amygdala volume were compared in the same participants. The frequencies of myeloid dendritic cells were significantly increased in children with ASD compared to typically developing controls (p < 0.03). Elevated frequencies of myeloid dendritic cells were positively associated with abnormal right and left amygdala enlargement, severity of gastrointestinal symptoms and increased repetitive behaviors. The frequencies of plasmacytoid dendritic cells were also associated with amygdala volumes as well as developmental regression in children with ASD. Dendritic cells play key roles in modulating immune responses and differences in frequencies or functions of these cells may result in immune dysfunction in children with ASD. These data further implicate innate immune cells in the complex pathophysiology of ASD. PMID:23063420
Oka, Y
1983-04-01
The local neuronal circuitry of goldfish olfactory bulb was analyzed in Golgi preparations combining light- and electron-microscopy, as well as in routinely prepared ultrastructural preparations. Mitral cells were identified with the light-microscope in Golgi-impregnated thick sections according to the following criteria: (1) cell bodies were distributed irregularly in a wide layer between 100 and 200 micrometer from the surface, (2) cell bodies were larger than other neurons (10-20 micrometer in diameter), and (3) the dendrites were directed toward the superficially-located olfactory nerve layer where they ended as highly branched glomerular tufts. These impregnated cells were examined by electron-microscopy in serial section. The results demonstrate synaptic organization in relation to the mitral cells. (1) Glomerular tufts received afferent input from primary olfactory axons which made Gray's Type I synaptic contacts. These dendrites also had reciprocal dendrodendritic synapses with dendrites of certain non-mitral cells. (2) Dendritic shafts of mitral cells made reciprocal dendritic synapses with dendrites of certain non-mitral cells. (3) Cell bodies and their initial axon segments had reciprocal synapses with certain dendrites but occurred infrequently. In reciprocal synapses, the direction of the Gray Type I (asymmetrical) is away from the mitral cell while those with Gray Type II synapses (symmetrical) are toward the mitral cell. Assuming that the type I synapse is excitatory and Type II is inhibitory, these findings explain the electrophysiological demonstration of self-inhibition discharge found in mitral cells.
Linking macroscopic with microscopic neuroanatomy using synthetic neuronal populations.
Schneider, Calvin J; Cuntz, Hermann; Soltesz, Ivan
2014-10-01
Dendritic morphology has been shown to have a dramatic impact on neuronal function. However, population features such as the inherent variability in dendritic morphology between cells belonging to the same neuronal type are often overlooked when studying computation in neural networks. While detailed models for morphology and electrophysiology exist for many types of single neurons, the role of detailed single cell morphology in the population has not been studied quantitatively or computationally. Here we use the structural context of the neural tissue in which dendritic trees exist to drive their generation in silico. We synthesize the entire population of dentate gyrus granule cells, the most numerous cell type in the hippocampus, by growing their dendritic trees within their characteristic dendritic fields bounded by the realistic structural context of (1) the granule cell layer that contains all somata and (2) the molecular layer that contains the dendritic forest. This process enables branching statistics to be linked to larger scale neuroanatomical features. We find large differences in dendritic total length and individual path length measures as a function of location in the dentate gyrus and of somatic depth in the granule cell layer. We also predict the number of unique granule cell dendrites invading a given volume in the molecular layer. This work enables the complete population-level study of morphological properties and provides a framework to develop complex and realistic neural network models.
Linking Macroscopic with Microscopic Neuroanatomy Using Synthetic Neuronal Populations
Schneider, Calvin J.; Cuntz, Hermann; Soltesz, Ivan
2014-01-01
Dendritic morphology has been shown to have a dramatic impact on neuronal function. However, population features such as the inherent variability in dendritic morphology between cells belonging to the same neuronal type are often overlooked when studying computation in neural networks. While detailed models for morphology and electrophysiology exist for many types of single neurons, the role of detailed single cell morphology in the population has not been studied quantitatively or computationally. Here we use the structural context of the neural tissue in which dendritic trees exist to drive their generation in silico. We synthesize the entire population of dentate gyrus granule cells, the most numerous cell type in the hippocampus, by growing their dendritic trees within their characteristic dendritic fields bounded by the realistic structural context of (1) the granule cell layer that contains all somata and (2) the molecular layer that contains the dendritic forest. This process enables branching statistics to be linked to larger scale neuroanatomical features. We find large differences in dendritic total length and individual path length measures as a function of location in the dentate gyrus and of somatic depth in the granule cell layer. We also predict the number of unique granule cell dendrites invading a given volume in the molecular layer. This work enables the complete population-level study of morphological properties and provides a framework to develop complex and realistic neural network models. PMID:25340814
Gerlini, Gianni; Tun-Kyi, Adrian; Dudli, Christa; Burg, Günter; Pimpinelli, Nicola; Nestle, Frank O.
2004-01-01
CD1 molecules are expressed by antigen-presenting cells such as dendritic cells and mediate primary immune responses to lipids and glycolipids which have been shown to be expressed by various tumors. Glycolipids are expressed by melanoma cells but, despite their immunogenicity, no efficient spontaneous immune responses are elicited. As IL-10 has previously been shown to down-regulate CD1a on dendritic cells and is known to be expressed by various melanoma cell lines, we investigated if melanoma-derived IL-10 could down-regulate CD1 molecule expression on dendritic cells as a possible way to circumvent immune recognition. We found that CD1a, CD1b, CD1c, and CD1d were significantly down-regulated on dendritic cells in metastatic (n = 10) but not in primary melanoma lesions (n = 10). We further detected significantly higher IL-10 protein levels in metastatic than in primary melanomas. Moreover, supernatants from metastatic melanomas were significantly more effective in down-regulating CD1 molecules on dendritic cells than supernatants from primary melanoma cultures. This effect was blocked using a neutralizing IL-10 antibody in a dose dependent manner. Our findings suggest that metastatic but not primary melanomas can down-regulate CD1 molecules on infiltrating dendritic cells by secreting IL-10 which may represent a novel way to escape the immune response directed against the tumor. PMID:15579430
“Subpial Fan Cell” — A Class of Calretinin Neuron in Layer 1 of Adult Monkey Prefrontal Cortex
Gabbott, Paul L. A.
2016-01-01
Layer 1 of the cortex contains populations of neurochemically distinct neurons and afferent fibers which markedly affect neural activity in the apical dendritic tufts of pyramidal cells. Understanding the causal mechanisms requires knowledge of the cellular architecture and synaptic organization of layer 1. This study has identified eight morphological classes of calretinin immunopositive (CRet+) neurons (including Cajal-Retzius cells) in layer 1 of the prefrontal cortex (PFC) in adult monkey (Macaca fasicularis), with a distinct class — termed “subpial fan (SPF) cell” — described in detail. SPF cells were rare horizontal unipolar CRet+ cells located directly beneath the pia with a single thick primary dendrite that branched into a characteristic fan-like dendritic tree tangential to the pial surface. Dendrites had spines, filamentous processes and thorny branchlets. SPF cells lay millimeters apart with intralaminar axons that ramified widely in upper layer 1. Such cells were GABA immunonegative (-) and occurred in areas beyond PFC. Interspersed amidst SPF cells displaying normal structural integrity were degenerating CRet+ neurons (including SPF cells) and clumps of lipofuscin-rich cellular debris. The number of degenerating SPF cells increased during adulthood. Ultrastructural analyses indicated SPF cell somata received asymmetric (A — presumed excitatory) and symmetric (S — presumed inhibitory) synaptic contacts. Proximal dendritic shafts received mainly S-type and distal shafts mostly A-type input. All dendritic thorns and most dendritic spines received both synapse types. The tangential areal density of SPF cell axonal varicosities varied radially from parent somata — with dense clusters in more distal zones. All boutons formed A-type contacts with CRet- structures. The main post-synaptic targets were dendritic shafts (67%; mostly spine-bearing) and dendritic spines (24%). SPF-SPF cell innervation was not observed. Morphometry of SPF cells indicated a unique class of CRet+/GABA- neuron in adult monkey PFC — possibly a subtype of persisting Cajal-Retzius cell. The distribution and connectivity of SPF cells suggest they act as integrative hubs in upper layer 1 during postnatal maturation. The main synaptic output of SPF cells likely provides a transminicolumnar excitatory influence across swathes of apical dendritic tufts — thus affecting information processing in discrete patches of layer 1 in adult monkey PFC. PMID:27147978
Altenburg, Arwen F; van de Sandt, Carolien E; Li, Bobby W S; MacLoughlin, Ronan J; Fouchier, Ron A M; van Amerongen, Geert; Volz, Asisa; Hendriks, Rudi W; de Swart, Rik L; Sutter, Gerd; Rimmelzwaan, Guus F; de Vries, Rory D
2017-08-17
Modified Vaccinia virus Ankara (MVA) is a promising vaccine vector with an excellent safety profile. However, despite extensive pre-clinical and clinical testing, surprisingly little is known about the cellular tropism of MVA, especially in relevant animal species. Here, we performed in vitro, ex vivo and in vivo experiments with recombinant MVA expressing green fluorescent protein (rMVA-GFP). In both human peripheral blood mononuclear cells and mouse lung explants, rMVA-GFP predominantly infected antigen presenting cells. Subsequent in vivo experiments performed in mice, ferrets and non-human primates indicated that preferential targeting of dendritic cells and alveolar macrophages was observed after respiratory administration, although subtle differences were observed between the respective animal species. Following intramuscular injection, rMVA-GFP was detected in interdigitating cells between myocytes, but also in myocytes themselves. These data are important in advancing our understanding of the basis for the immunogenicity of MVA-based vaccines and aid rational vaccine design and delivery strategies.
Heimesaat, Markus M.; Bereswill, Stefan; Tareen, Abdul Malik; Lugert, Raimond; Groß, Uwe; Zautner, Andreas E.
2013-01-01
Campylobacter jejuni is the leading cause of bacterial food-borne gastroenteritis in the world, and thus one of the most important public health concerns. The initial stage in its pathogenesis after ingestion is to overcome colonization resistance that is maintained by the human intestinal microbiota. But how it overcomes colonization resistance is unknown. Recently developed humanized gnotobiotic mouse models have provided deeper insights into this initial stage and host's immune response. These studies have found that a fat-rich diet modifies the composition of the conventional intestinal microbiota by increasing the Firmicutes and Proteobacteria loads while reducing the Actinobacteria and Bacteroidetes loads creating an imbalance that exposes the intestinal epithelial cells to adherence. Upon adherence, deoxycholic acid stimulates C. jejuni to synthesize Campylobacter invasion antigens, which invade the epithelial cells. In response, NF-κB triggers the maturation of dendritic cells. Chemokines produced by the activated dendritic cells initiate the clearance of C. jejuni cells by inducing the actions of neutrophils, B-lymphocytes, and various subsets of T-cells. This immune response causes inflammation. This review focuses on the progress that has been made on understanding the relationship between intestinal microbiota shift, establishment of C. jejuni infection, and consequent immune response. PMID:24324507
Mikulic, Josip; Longet, Stéphanie; Favre, Laurent; Benyacoub, Jalil; Corthesy, Blaise
2017-01-01
The importance of secretory IgA in controlling the microbiota is well known, yet how the antibody affects the perception of the commensals by the local immune system is still poorly defined. We have previously shown that the transport of secretory IgA in complex with bacteria across intestinal microfold cells results in an association with dendritic cells in Peyer’s patches. However, the consequences of such an interaction on dendritic cell conditioning have not been elucidated. In this study, we analyzed the impact of the commensal Lactobacillus rhamnosus, alone or associated with secretory IgA, on the responsiveness of dendritic cells freshly recovered from mouse Peyer’s patches, mesenteric lymph nodes, and spleen. Lactobacillus rhamnosus-conditioned mucosal dendritic cells are characterized by increased expression of Toll-like receptor regulatory proteins [including single immunoglobulin interleukin-1 receptor-related molecule, suppressor of cytokine signaling 1, and Toll-interacting molecule] and retinaldehyde dehydrogenase 2, low surface expression of co-stimulatory markers, high anti- versus pro-inflammatory cytokine production ratios, and induction of T regulatory cells with suppressive function. Association with secretory IgA enhanced the anti-inflammatory/regulatory Lactobacillus rhamnosus-induced conditioning of mucosal dendritic cells, particularly in Peyer’s patches. At the systemic level, activation of splenic dendritic cells exposed to Lactobacillus rhamnosus was partially dampened upon association with secretory IgA. These data suggest that secretory IgA, through coating of commensal bacteria, contributes to the conditioning of mucosal dendritic cells toward tolerogenic profiles essential for the maintenance of intestinal homeostasis. PMID:26972771
Rollins-Raval, Marian A; Marafioti, Teresa; Swerdlow, Steven H; Roth, Christine G
2013-06-01
Plasmacytoid dendritic cells, which play a fundamental role in the innate immune response, are best known for their presence in hyaline-vascular Castleman disease and histiocytic necrotizing lymphadenitis. The relative number and distribution in many reactive entities as detected using more sensitive methods are uncertain, and their diagnostic implications are unknown. Immunohistochemical studies for plasmacytoid dendritic cell-associated markers CD123 and CD2AP were performed on 42 lymph nodes with hyaline-vascular Castleman disease, histiocytic necrotizing lymphadenitis, sarcoidosis, necrotizing granulomatous inflammation, viral infection, dermatopathic lymphadenopathy, autoimmune disease, and a histologic pattern compatible with toxoplasmosis. The overall plasmacytoid dendritic cell numbers and growth patterns (tight aggregates, loose aggregates/clusters, scattered single cells) were assessed. Plasmacytoid dendritic cells were present in all cases and were predominantly distributed in loose aggregates/clusters or singly. They were most numerous in granulomatous inflammation and histiocytic necrotizing lymphadenitis, whereas viral infections showed the fewest overall numbers and a predominant pattern of scattered single cells. Tight aggregates of plasmacytoid dendritic cells were most numerous in hyaline-vascular Castleman disease (100% sensitive, 68% specific). Plasmacytoid dendritic cells are not limited to a small number of reactive lymphadenopathies but are found in many reactive processes, often with a predominant pattern of loose aggregates/clusters and scattered single cells. However, tight aggregates were a characteristic feature of hyaline-vascular Castleman disease, and viral infections typically showed only few scattered cells distributed singly. Copyright © 2013 Elsevier Inc. All rights reserved.
Antigen-loaded dendritic cell migration: MR imaging in a pancreatic carcinoma model.
Zhang, Zhuoli; Li, Weiguo; Procissi, Daniele; Li, Kangan; Sheu, Alexander Y; Gordon, Andrew C; Guo, Yang; Khazaie, Khashayarsha; Huan, Yi; Han, Guohong; Larson, Andrew C
2015-01-01
To test the following hypotheses in a murine model of pancreatic cancer: (a) Vaccination with antigen-loaded iron-labeled dendritic cells reduces T2-weighted signal intensity at magnetic resonance (MR) imaging within peripheral draining lymph nodes ( LN lymph node s) and (b) such signal intensity reductions are associated with tumor size changes after dendritic cell vaccination. The institutional animal care and use committee approved this study. Panc02 cells were implanted into the flanks of 27 C57BL/6 mice bilaterally. After tumors reached 10 mm, cell viability was evaluated, and iron-labeled dendritic cell vaccines were injected into the left hind footpad. The mice were randomly separated into the following three groups (n = 9 in each): Group 1 was injected with 1 million iron-labeled dendritic cells; group 2, with 2 million cells; and control mice, with 200 mL of phosphate-buffered saline. T1- and T2-weighted MR imaging of labeled dendritic cell migration to draining LN lymph node s was performed before cell injection and 6 and 24 hours after injection. The signal-to-noise ratio ( SNR signal-to-noise ratio ) of the draining LN lymph node s was measured. One-way analysis of variance ( ANOVA analysis of variance ) was used to compare Prussian blue-positive dendritic cell measurements in LN lymph node s. Repeated-measures ANOVA analysis of variance was used to compare in vivo T2-weighted SNR signal-to-noise ratio LN lymph node measurements between groups over the observation time points. Trypan blue assays showed no significant difference in mean viability indexes (unlabeled vs labeled dendritic cells, 4.32% ± 0.69 [standard deviation] vs 4.83% ± 0.76; P = .385). Thirty-five days after injection, the mean left and right flank tumor sizes, respectively, were 112.7 mm(2) ± 16.4 and 109 mm(2) ± 24.3 for the 1-million dendritic cell group, 92.2 mm(2) ± 9.9 and 90.4 mm(2) ± 12.8 for the 2-million dendritic cell group, and 193.7 mm(2) ± 20.9 and 189.4 mm(2) ± 17.8 for the control group (P = .0001 for control group vs 1-million cell group; P = .00007 for control group vs 2-million cell group). There was a correlation between postinjection T2-weighted SNR signal-to-noise ratio decreases in the left popliteal LN lymph node 24 hours after injection and size changes at follow-up for tumors in both flanks (R = 0.81 and R = 0.76 for left and right tumors, respectively). MR imaging approaches can be used for quantitative measurement of accumulated iron-labeled dendritic cell-based vaccines in draining LN lymph node s. The amount of dendritic cell-based vaccine in draining LN lymph node s correlates well with observed protective effects.
Karim, M Rezaul; Moore, Adrian W
2011-11-07
Nervous system development requires the correct specification of neuron position and identity, followed by accurate neuron class-specific dendritic development and axonal wiring. Recently the dendritic arborization (DA) sensory neurons of the Drosophila larval peripheral nervous system (PNS) have become powerful genetic models in which to elucidate both general and class-specific mechanisms of neuron differentiation. There are four main DA neuron classes (I-IV)(1). They are named in order of increasing dendrite arbor complexity, and have class-specific differences in the genetic control of their differentiation(2-10). The DA sensory system is a practical model to investigate the molecular mechanisms behind the control of dendritic morphology(11-13) because: 1) it can take advantage of the powerful genetic tools available in the fruit fly, 2) the DA neuron dendrite arbor spreads out in only 2 dimensions beneath an optically clear larval cuticle making it easy to visualize with high resolution in vivo, 3) the class-specific diversity in dendritic morphology facilitates a comparative analysis to find key elements controlling the formation of simple vs. highly branched dendritic trees, and 4) dendritic arbor stereotypical shapes of different DA neurons facilitate morphometric statistical analyses. DA neuron activity modifies the output of a larval locomotion central pattern generator(14-16). The different DA neuron classes have distinct sensory modalities, and their activation elicits different behavioral responses(14,16-20). Furthermore different classes send axonal projections stereotypically into the Drosophila larval central nervous system in the ventral nerve cord (VNC)(21). These projections terminate with topographic representations of both DA neuron sensory modality and the position in the body wall of the dendritic field(7,22,23). Hence examination of DA axonal projections can be used to elucidate mechanisms underlying topographic mapping(7,22,23), as well as the wiring of a simple circuit modulating larval locomotion(14-17). We present here a practical guide to generate and analyze genetic mosaics(24) marking DA neurons via MARCM (Mosaic Analysis with a Repressible Cell Marker)(1,10,25) and Flp-out(22,26,27) techniques (summarized in Fig. 1).
Watanabe, Tomoya; Hotta, Chie; Koizumi, Shin-ichi; Miyashita, Kazuho; Nakabayashi, Jun; Kurotaki, Daisuke; Sato, Go R; Yamamoto, Michio; Nakazawa, Masatoshi; Fujita, Hiroyuki; Sakai, Rika; Fujisawa, Shin; Nishiyama, Akira; Ikezawa, Zenro; Aihara, Michiko; Ishigatsubo, Yoshiaki; Tamura, Tomohiko
2013-11-15
BCR-ABL tyrosine kinase inhibitors (TKI) have dramatically improved therapy for chronic myelogenous leukemia (CML). However, several problems leading to TKI resistance still impede a complete cure of this disease. IFN regulatory factor-8 (IRF8) is a transcription factor essential for the development and functions of immune cells, including dendritic cells. Irf8(-/-) mice develop a CML-like disease and IRF8 expression is downregulated in patients with CML, suggesting that IRF8 is involved in the pathogenesis of CML. In this study, by using a murine CML model, we show that BCR-ABL strongly inhibits a generation of dendritic cells from an early stage of their differentiation in vivo, concomitant with suppression of Irf8 expression. Forced expression of IRF8 overrode BCR-ABL (both wild-type and T315I-mutated) to rescue dendritic cell development in vitro, indicating that the suppression of Irf8 causes dendritic cell deficiency. Gene expression profiling revealed that IRF8 restored the expression of a significant portion of BCR-ABL-dysregulated genes and predicted that BCR-ABL has immune-stimulatory potential. Indeed, IRF8-rescued BCR-ABL-expressing dendritic cells were capable of inducing CTLs more efficiently than control dendritic cells. Altogether, our findings suggest that IRF8 is an attractive target in next-generation therapies for CML. ©2013 AACR
Can dendritic cells see light?
NASA Astrophysics Data System (ADS)
Chen, Aaron C.-H.; Huang, Ying-Ying; Sharma, Sulbha K.; Hamblin, Michael R.
2010-02-01
There are many reports showing that low-level light/laser therapy (LLLT) can enhance wound healing, upregulate cell proliferation and has anti-apoptotic effects by activating intracellular protective genes. In the field of immune response study, it is not known with any certainty whether light/laser is proinflammatory or anti-inflammatory. Increasingly in recent times dendritic cells have been found to play an important role in inflammation and the immunological response. In this study, we try to look at the impact of low level near infrared light (810-nm) on murine bone-marrow derived dendritic cells. Changes in surface markers, including MHC II, CD80 and CD11c and the secretion of interleukins induced by light may provide additional evidence to reveal the mystery of how light affects the maturation of dendritic cells as well how these light-induced mature dendritic cells would affect the activation of adaptive immune response.
CT findings associated with blastic plasmacytoid dendritic cell neoplasm: a case report
Choi, Jung W; Jeong, Katherine; Sokol, Lubomir
2016-01-01
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare hematologic malignancy that is frequently misdiagnosed. We present a case of a 53-year-old man diagnosed with blastic plasmacytoid dendritic cell neoplasm with extensive computed tomography (CT) findings and provide an imaging focused review of this uncommon malignancy. PMID:27504192
USDA-ARS?s Scientific Manuscript database
Phylogenic comparisons of the mononuclear phagocyte system (MPS) of humans and mice demonstrate phenotypic divergence of dendritic cell (DC) subsets that play similar roles in innate and adaptive immunity. Although differing in phenotype, DC can be classified into four groups according to ontogeny a...
NASA Technical Reports Server (NTRS)
Tewari, S. N.; Raj, S. V.; Locci, I. E.
2003-01-01
Directionally solidified (DS) intermetallic and ceramic-based eutectic alloys with an in-situ composite microstructure containing finely distributed, long aspect ratio, fiber, or plate reinforcements are being seriously examined for several advanced aero-propulsion applications. In designing these alloys, additional solutes need to be added to the base eutectic composition in order to improve heir high-temperature strength, and provide for adequate toughness and resistance to environmental degradation. Solute addition, however, promotes instability at the planar liquid-solid interface resulting in the formation of two-phase eutectic "colonies." Because morphology of eutectic colonies is very similar to the single-phase cells and dendrites, the stability analysis of Mullins and Sekerka has been extended to describe their formation. Onset of their formation shows a good agreement with this approach; however, unlike the single-phase cells and dendrites, there is limited examination of their growth speed dependence of spacing, morphology, and spatial distribution. The purpose of this study is to compare the growth speed dependence of the morphology, spacing, and spatial distribution of eutectic cells and dendrites with that for the single-phase cells and dendrites.
Antigen-loaded Dendritic Cell Migration: MR Imaging in a Pancreatic Carcinoma Model
Li, Weiguo; Procissi, Daniele; Li, Kangan; Sheu, Alexander Y.; Gordon, Andrew C.; Guo, Yang; Khazaie, Khashayarsha; Huan, Yi; Han, Guohong; Larson, Andrew C.
2015-01-01
Purpose To test the following hypotheses in a murine model of pancreatic cancer: (a) Vaccination with antigen-loaded iron-labeled dendritic cells reduces T2-weighted signal intensity at magnetic resonance (MR) imaging within peripheral draining lymph nodes (LNlymph nodes) and (b) such signal intensity reductions are associated with tumor size changes after dendritic cell vaccination. Materials and Methods The institutional animal care and use committee approved this study. Panc02 cells were implanted into the flanks of 27 C57BL/6 mice bilaterally. After tumors reached 10 mm, cell viability was evaluated, and iron-labeled dendritic cell vaccines were injected into the left hind footpad. The mice were randomly separated into the following three groups (n = 9 in each): Group 1 was injected with 1 million iron-labeled dendritic cells; group 2, with 2 million cells; and control mice, with 200 mL of phosphate-buffered saline. T1- and T2-weighted MR imaging of labeled dendritic cell migration to draining LNlymph nodes was performed before cell injection and 6 and 24 hours after injection. The signal-to-noise ratio (SNRsignal-to-noise ratio) of the draining LNlymph nodes was measured. One-way analysis of variance (ANOVAanalysis of variance) was used to compare Prussian blue–positive dendritic cell measurements in LNlymph nodes. Repeated-measures ANOVAanalysis of variance was used to compare in vivo T2-weighted SNRsignal-to-noise ratio LNlymph node measurements between groups over the observation time points. Results Trypan blue assays showed no significant difference in mean viability indexes (unlabeled vs labeled dendritic cells, 4.32% ± 0.69 [standard deviation] vs 4.83% ± 0.76; P = .385). Thirty-five days after injection, the mean left and right flank tumor sizes, respectively, were 112.7 mm2 ± 16.4 and 109 mm2 ± 24.3 for the 1-million dendritic cell group, 92.2 mm2 ± 9.9 and 90.4 mm2 ± 12.8 for the 2-million dendritic cell group, and 193.7 mm2 ± 20.9 and 189.4 mm2 ± 17.8 for the control group (P = .0001 for control group vs 1-million cell group; P = .00007 for control group vs 2-million cell group). There was a correlation between postinjection T2-weighted SNRsignal-to-noise ratio decreases in the left popliteal LNlymph node 24 hours after injection and size changes at follow-up for tumors in both flanks (R = 0.81 and R = 0.76 for left and right tumors, respectively). Conclusion MR imaging approaches can be used for quantitative measurement of accumulated iron-labeled dendritic cell–based vaccines in draining LNlymph nodes. The amount of dendritic cell–based vaccine in draining LNlymph nodes correlates well with observed protective effects. © RSNA, 2014 Online supplemental material is available for this article. PMID:25222066
Hayashi, Kenji; Suzuki, Atsushi; Hirai, Syu-ichi; Kurihara, Yasuyuki; Hoogenraad, Casper C; Ohno, Shigeo
2011-08-24
Dendritic spines are postsynaptic structures that receive excitatory synaptic input from presynaptic terminals. Actin and its regulatory proteins play a central role in morphogenesis of dendritic spines. In addition, recent studies have revealed that microtubules are indispensable for the maintenance of mature dendritic spine morphology by stochastically invading dendritic spines and regulating dendritic localization of p140Cap, which is required for actin reorganization. However, the regulatory mechanisms of microtubule dynamics remain poorly understood. Partitioning-defective 1b (PAR1b), a cell polarity-regulating serine/threonine protein kinase, is thought to regulate microtubule dynamics by inhibiting microtubule binding of microtubule-associated proteins. Results from the present study demonstrated that PAR1b participates in the maintenance of mature dendritic spine morphology in mouse hippocampal neurons. Immunofluorescent analysis revealed PAR1b localization in the dendrites, which was concentrated in dendritic spines of mature neurons. PAR1b knock-down cells exhibited decreased mushroom-like dendritic spines, as well as increased filopodia-like dendritic protrusions, with no effect on the number of protrusions. Live imaging of microtubule plus-end tracking proteins directly revealed decreases in distance and duration of microtubule growth following PAR1b knockdown in a neuroblastoma cell line and in dendrites of hippocampal neurons. In addition, reduced accumulation of GFP-p140Cap in dendritic protrusions was confirmed in PAR1b knock-down neurons. In conclusion, the present results suggested a novel function for PAR1b in the maintenance of mature dendritic spine morphology by regulating microtubule growth and the accumulation of p140Cap in dendritic spines.
p15Ink4b is Key in Dendritic Cell Development | Center for Cancer Research
An important step in the initiation of leukemia is the ability of pre-leukemic and leukemic cells to evade the immune system. Dendritic cells are instrumental in maintaining the body’s immunity, and CCR scientists have shown for the first time that the tumor suppressor protein p15Ink4b regulates the differentiation and maturation of conventional dendritic cells.
Vitte, Franck; Fabiani, Bettina; Bénet, Claire; Dalac, Sophie; Balme, Brigitte; Delattre, Claire; Vergier, Béatrice; Beylot-Barry, Marie; Vignon-Pennamen, Dominique; Ortonne, Nicolas; Algros, Marie Paule; Carlotti, Agnès; Samaleire, Dimitri; Frouin, Eric; Levy, Anne; Laroche, Liliane; Theate, Ivan; Monnien, Franck; Mugneret, Francine; Petrella, Tony
2012-09-01
Chronic myelomonocytic leukemia (CMML) is a rare clonal hematopoietic disorder that can also involve the skin. The histopathology of these skin lesions is not clearly defined, and few data are available in the literature. To better understand tumoral skin involvements in CMML we carried out an extensive, retrospective clinicopathologic study of 42 cases selected from the database of the French Study Group of Cutaneous Lymphomas. On the basis of clinical data, morphology, and phenotype we identified 4 clinicopathologic profiles representing 4 distinct groups. The first group comprised myelomonocytic cell tumors (n=18), exhibiting a proliferation of granulocytic or monocytic blast cells, which were CD68 and/or MPO positive but negative for dendritic cell markers. The second group comprised mature plasmacytoid dendritic cell tumors (n=16), denoted by a proliferation of mature plasmacytoid dendritic cells, which were CD123, TCL1, and CD303 positive but CD56, CD1a, and S100 negative. The third group comprised blastic plasmacytoid dendritic cell tumors (n=4), characterized by a proliferation of monomorphous medium-sized blast cells, which were CD4, CD56, CD123, TCL1 positive but CD1a and S100 negative. The fourth group consisted of a putatively novel category of tumor that we named blastic indeterminate dendritic cell tumors (n=4), distinguished by a proliferation of large blast cells that not only exhibited monocytic markers but also the dendritic markers CD1a and S100. These 4 groups showed distinctive outcomes. Finally, we showed, by fluorescence in situ hybridization analysis, a clonal link between bone marrow disease and skin lesions in 4 patients. Herein, we have described a novel scheme for pathologists and physicians to handle specific lesions in CMML, which correspond to a spectrum of myelomonocytic and dendritic cell proliferations with different outcomes. A minimal panel of immunohistochemical markers including CD68, CD1a, S100, Langerin, and CD123 is necessary to make the correct classification in this spectrum of cutaneous CMML tumors, in which dendritic cell lineage plays an important role.
Dai, Peihong; Wang, Weiyi; Yang, Ning; Serna-Tamayo, Cristian; Ricca, Jacob M; Zamarin, Dmitriy; Shuman, Stewart; Merghoub, Taha; Wolchok, Jedd D; Deng, Liang
2017-05-19
Advanced cancers remain a therapeutic challenge despite recent progress in targeted therapy and immunotherapy. Novel approaches are needed to alter the tumor immunosuppressive microenvironment and to facilitate the recognition of tumor antigens that leads to antitumor immunity. Poxviruses, such as modified vaccinia virus Ankara (MVA), have potential as immunotherapeutic agents. We show that infection of conventional dendritic cells (DCs) with heat- or ultraviolet-inactivated MVA leads to higher levels of interferon induction than MVA alone through the cGAS (cyclic guanosine monophosphate-adenosine monophosphate synthase)-STING cytosolic DNA-sensing pathway. Intratumoral injection of inactivated MVA (iMVA) was effective and generated adaptive antitumor immunity in murine melanoma and colon cancer models. iMVA-induced antitumor therapy was less effective in STING- or Batf3-deficient mice than in wild-type mice, indicating that both cytosolic DNA sensing and Batf3-dependent CD103 + /CD8α + DCs are essential for iMVA immunotherapy. The combination of intratumoral delivery of iMVA and systemic delivery of immune checkpoint blockade generated synergistic antitumor effects in bilateral tumor implantation models as well as in a unilateral large established tumor model. Our results suggest that inactivated vaccinia virus could be used as an immunotherapeutic agent for human cancers. Copyright © 2017, American Association for the Advancement of Science.
Yatim, Karim M; Gosto, Minja; Humar, Rishab; Williams, Amanda L; Oberbarnscheidt, Martin H
2016-10-01
Bony fish are among the first vertebrates to possess an innate and adaptive immune system. In these species, the kidney has a dual function: filtering solutes similar to mammals and acting as a lymphoid organ responsible for hematopoiesis and antigen processing. Recent studies have shown that the mammalian kidney has an extensive network of mononuclear phagocytes, whose function is not fully understood. Here, we employed two-photon intravital microscopy of fluorescent reporter mice to demonstrate that renal dendritic cells encase the microvasculature in the cortex, extend dendrites into the peritubular capillaries, and sample the blood for antigen. We utilized a mouse model of systemic bacterial infection as well as immune complexes to demonstrate antigen uptake by renal dendritic cells. As a consequence, renal dendritic cells mediated T-cell migration into the kidney in an antigen-dependent manner in the setting of bacterial infection. Thus, renal dendritic cells may be uniquely positioned to play an important role not only in surveillance of systemic infection but also in local infection and autoimmunity. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Modulation of Dendritic Cell Activation and Subsequent Th1 Cell Polarization by Lidocaine
Chung, Yeonseok
2015-01-01
Dendritic cells play an essential role in bridging innate and adaptive immunity by recognizing cellular stress including pathogen- and damage-associated molecular patterns and by shaping the types of antigen-specific T cell immunity. Although lidocaine is widely used in clinical settings that trigger cellular stress, it remains unclear whether such treatment impacts the activation of innate immune cells and subsequent differentiation of T cells. Here we showed that lidocaine inhibited the production of IL–6, TNFα and IL–12 from dendritic cells in response to toll-like receptor ligands including lipopolysaccharide, poly(I:C) and R837 in a dose-dependent manner. Notably, the differentiation of Th1 cells was significantly suppressed by the addition of lidocaine while the same treatment had little effect on the differentiation of Th17, Th2 and regulatory T cells in vitro. Moreover, lidocaine suppressed the ovalbumin-specific Th1 cell responses in vivo induced by the adoptive transfer of ovalbumin-pulsed dendritic cells. These results demonstrate that lidocaine inhibits the activation of dendritic cells in response to toll-like receptor signals and subsequently suppresses the differentiation of Th1 cell responses. PMID:26445366
Dendritic excitation–inhibition balance shapes cerebellar output during motor behaviour
Jelitai, Marta; Puggioni, Paolo; Ishikawa, Taro; Rinaldi, Arianna; Duguid, Ian
2016-01-01
Feedforward excitatory and inhibitory circuits regulate cerebellar output, but how these circuits interact to shape the somatodendritic excitability of Purkinje cells during motor behaviour remains unresolved. Here we perform dendritic and somatic patch-clamp recordings in vivo combined with optogenetic silencing of interneurons to investigate how dendritic excitation and inhibition generates bidirectional (that is, increased or decreased) Purkinje cell output during self-paced locomotion. We find that granule cells generate a sustained depolarization of Purkinje cell dendrites during movement, which is counterbalanced by variable levels of feedforward inhibition from local interneurons. Subtle differences in the dendritic excitation–inhibition balance generate robust, bidirectional changes in simple spike (SSp) output. Disrupting this balance by selectively silencing molecular layer interneurons results in unidirectional firing rate changes, increased SSp regularity and disrupted locomotor behaviour. Our findings provide a mechanistic understanding of how feedforward excitatory and inhibitory circuits shape Purkinje cell output during motor behaviour. PMID:27976716
Kidney dendritic cells in acute and chronic renal disease.
Hochheiser, Katharina; Tittel, André; Kurts, Christian
2011-06-01
Dendritic cells are not only the master regulators of adaptive immunity, but also participate profoundly in innate immune responses. Much has been learned about their basic immunological functions and their roles in various diseases. Comparatively little is still known about their role in renal disease, despite their obvious potential to affect immune responses in the kidney, and immune responses that are directed against renal components. Kidney dendritic cells form an abundant network in the renal tubulointerstitium and constantly survey the environment for signs of injury or infection, in order to alert the immune system to the need to initiate defensive action. Recent studies have identified a role for dendritic cells in several murine models of acute renal injury and chronic nephritis. Here we summarize the current knowledge on the role of kidney dendritic cells that has been obtained from the study of murine models of renal disease. © 2010 The Authors. Journal compilation © 2010 Blackwell Publishing Ltd.
The E3 ligase c-Cbl regulates dendritic cell activation
Chiou, Shin-Heng; Shahi, Payam; Wagner, Ryan T; Hu, Hongbo; Lapteva, Natalia; Seethammagari, Mamatha; Sun, Shao-Cong; Levitt, Jonathan M; Spencer, David M
2011-01-01
The activation of innate and adaptive immunity is always balanced by inhibitory signalling mechanisms to maintain tissue integrity. We have identified the E3 ligase c-Cbl––known for its roles in regulating lymphocyte signalling––as a modulator of dendritic cell activation. In c-Cbl-deficient dendritic cells, Toll-like receptor-induced expression of proinflammatory factors, such as interleukin-12, is increased, correlating with a greater potency of dendritic-cell-based vaccines against established tumours. This proinflammatory phenotype is accompanied by an increase in nuclear factor (NF)-κB activity. In addition, c-Cbl deficiency reduces both p50 and p105 levels, which have been shown to modulate the stimulatory function of NF-κB. Our data indicate that c-Cbl has a crucial, RING-domain-dependent role in regulating dendritic cell maturation, probably by facilitating the regulatory function of p105 and/or p50. PMID:21799517
Malo, Courtney S; Huggins, Matthew A; Goddery, Emma N; Tolcher, Heather M A; Renner, Danielle N; Jin, Fang; Hansen, Michael J; Pease, Larry R; Pavelko, Kevin D; Johnson, Aaron J
2018-02-12
The contribution of antigen-presenting cell (APC) types in generating CD8 + T cell responses in the central nervous system (CNS) is not fully defined, limiting the development of vaccines and understanding of immune-mediated neuropathology. Here, we generate a transgenic mouse that enables cell-specific deletion of the H-2Kb MHC class I molecule. By deleting H-2K b on dendritic cells and macrophages, we compare the effect of each APC in three distinct models of neuroinflammation: picornavirus infection, experimental cerebral malaria, and a syngeneic glioma. Dendritic cells and macrophages both activate CD8 + T cell responses in response to these CNS immunological challenges. However, the extent to which each of these APCs contributes to CD8 + T cell priming varies. These findings reveal distinct functions for dendritic cells and macrophages in generating CD8 + T cell responses to neurological disease.
The morphology and classification of α ganglion cells in the rat retinae: a fractal analysis study.
Jelinek, Herbert F; Ristanović, Dušan; Milošević, Nebojša T
2011-09-30
Rat retinal ganglion cells have been proposed to consist of a varying number of subtypes. Dendritic morphology is an essential aspect of classification and a necessary step toward understanding structure-function relationships of retinal ganglion cells. This study aimed at using a heuristic classification procedure in combination with the box-counting analysis to classify the alpha ganglion cells in the rat retinae based on the dendritic branching pattern and to investigate morphological changes with retinal eccentricity. The cells could be divided into two groups: cells with simple dendritic pattern (box dimension lower than 1.390) and cells with complex dendritic pattern (box dimension higher than 1.390) according to their dendritic branching pattern complexity. Both were further divided into two subtypes due to the stratification within the inner plexiform layer. In the present study we have shown that the alpha rat RCGs can be classified further by their dendritic branching complexity and thus extend those of previous reports that fractal analysis can be successfully used in neuronal classification, particularly that the fractal dimension represents a robust and sensitive tool for the classification of retinal ganglion cells. A hypothesis of possible functional significance of our classification scheme is also discussed. Copyright © 2011 Elsevier B.V. All rights reserved.
Li, Yi; Xu, Xiaoping; Xu, Junyan; Huang, Dan
2018-05-31
Follicular dendritic cell sarcoma is a very rare neoplasm, which is not lymphoma, but originates from a type of immune cells called follicular dendritic cells. We presented a 37-year-old woman who has suffered from obstructive jaundice, weight loss and right upper abdominal pain for 2 months. The contrast CT revealed masses located in the region of pancreatic head and lots of enlarged retroperitoneal lymph nodes, both of which were enhanced on the artery phase of CT images. Meanwhile, Tc-HYNIC-TOC SPECT/CT revealed high activity in the corresponding lesions. After biopsy, the masses were pathologically confirmed as retroperitoneal follicular dendritic cell sarcoma.
Sherkhane, Pradeep; Kapfhammer, Josef P
2017-09-01
The Na + /Ca 2+ exchanger (NCX) is a bidirectional plasma membrane antiporter involved in Ca 2+ homeostasis in eukaryotes. NCX has three isoforms, NCX1-3, and all of them are expressed in the cerebellum. Immunostaining on cerebellar slice cultures indicates that NCX is widely expressed in the cerebellum, including expression in Purkinje cells. The pharmacological blockade of the forward mode of NCX (Ca 2+ efflux mode) by bepridil moderately inhibited growth and development of Purkinje cell dendritic arbor in cerebellar slice cultures. However, the blockade of the reverse mode (Ca 2+ influx mode) by KB-R7943 severely reduced the dendritic arbor and induced a morphological change with thickened distal dendrites. The effect of KB-R7943 on dendritic growth was unrelated to the activity of voltage-gated calcium channels and was also apparent in the absence of bioelectrical activity indicating that it was mediated by NCX expressed in Purkinje cells. We have used additional NCX inhibitors including CB-DMB, ORM-10103, SEA0400, YM-244769, and SN-6 which have higher specificity for NCX isoforms and target either the forward, reverse, or both modes. These inhibitors caused a strong dendritic reduction similar to that seen with KB-R7943, but did not elicit thickening of distal dendrites. Our findings indicate that disturbance of the NCX-dependent calcium transport in Purkinje cells induces a reduction of dendritic arbor, which is presumably caused by changes in the calcium handling, and underline the importance of the calcium equilibrium for the dendritic development in cerebellar Purkinje cells. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Leontovich, T A; Zvegintseva, E G
1985-10-01
Two principal classes of striatum long axonal neurons (sparsely ramified reticular cells and densely ramified dendritic cells) were analyzed quantitatively in four animal species: hedgehog, rabbit, dog and monkey. The cross section area, total dendritic length and the area of dendritic field were measured using "LEITZ-ASM" system. Classes of neurons studied were significantly different in dogs and monkeys, while no differences were noted between hedgehog and rabbit. Reticular neurons of different species varied much more than dendritic ones. Quantitative analysis has revealed the progressive increase in the complexity of dendritic tree in mammals from rabbit to monkey.
Anti-tumor response with immunologically modified carbon nanotubes and phototherapy
NASA Astrophysics Data System (ADS)
Acquaviva, Joseph T.; Zhou, Feifan; Boarman, Ellen; Chen, Wei R.
2013-02-01
While successes of different cancer therapies have been achieved in various degrees a systemic immune response is needed to effectively treat late-stage, metastatic cancers, and to establish long-term tumor resistance in the patients. A novel method for combating metastatic cancers has been developed using immunologically modified carbon nanotubes in conjunction with phototherapy. Glycated chitosan (GC) is a potent immunological adjuvant capable of increasing host immune responses, including antigen presentation by activation of dendritic cells (DCs) and causing T cell proliferation. GC is also an effective surfactant for nanomaterials. By combining single-walled carbon nanotubes (SWNTs) and GC, immunologically modified carbon nanotubes (SWNT-GC) were constructed. The SWNT-GC suspension retains the enhanced light absorption properties in the near infrared (NIR) region and the ability to enter cells, which are characteristic of SWNTs. The SWNT-GC also retains the immunological properties of GC. Cellular SWNT-GC treatments increased macrophage activity, DC activation and T cell proliferation. When cellular SWNT-GC was irradiated with a laser of an appropriate wavelength, these immune activities could be enhanced. The combination of laser irradiation and SWNT-GC induced cellular toxicity in targeted tumor cells, leading to a systemic antitumor response. Immunologically modified carbon nanotubes in conjunction with phototherapy is a novel and promising method to produce a systemic immune response for the treatment of metastatic cancers.
Migration of Toxoplasma gondii–Infected Dendritic Cells across Human Retinal Vascular Endothelium
Furtado, João M.; Bharadwaj, Arpita S.; Ashander, Liam M.; Olivas, Antoinette; Smith, Justine R.
2012-01-01
Purpose. Toxoplasma gondii, the parasite responsible for ocular toxoplasmosis, accesses the retina from the bloodstream. We investigated the dendritic cell as a potential taxi for T. gondii tachyzoites moving across the human retinal endothelium, and examined the participation of adhesion molecules and chemokines in this process. Methods. CD14-positive monocytes were isolated from human peripheral blood by antibody-mediated cell enrichment, and cultured in granulocyte-macrophage colony-stimulating factor and interleukin-4 to generate dendritic cells. Transmigration assays were performed over 18 hours in transwells seeded with human retinal endothelial cells and using dendritic cells exposed to laboratory or natural strains of T. gondii tachyzoites. Parasites were tagged with yellow fluorescent protein to verify infection. In some experiments, endothelial monolayers were preincubated with antibody directed against adhesion molecules, or chemokine was added to lower chambers of transwells. Results. Human monocyte–derived dendritic cell preparations infected with laboratory or natural strain T. gondii tachyzoites transmigrated in larger numbers across simulated human retinal endothelium than uninfected dendritic cells (P ≤ 0.0004 in 5 of 6 experiments). Antibody blockade of intercellular adhesion molecule (ICAM)–1, vascular cell adhesion molecule (VCAM)–1, and activated leukocyte cell adhesion molecule (ALCAM) inhibited transmigration (P ≤ 0.007), and CCL21 or CXCL10 increased transmigration (P ≤ 0.031). Conclusions. Transmigration of human dendritic cells across retinal endothelium is increased following infection with T. gondii. Movement may be impacted by locally produced chemokines and is mediated in part by ICAM-1, VCAM-1, and ALCAM. These findings have implications for development of novel therapeutics aimed at preventing retinal infection by T. gondii. PMID:22952125
de Haar, Colin; Kool, Mirjam; Hassing, Ine; Bol, Marianne; Lambrecht, Bart N; Pieters, Raymond
2008-05-01
The adjuvant activity of air pollution particles on allergic airway sensitization is well known, but the cellular mechanisms underlying this adjuvant potential are not clear. We sough to study the role of dendritic cells and the costimulatory molecules CD80 and CD86 in the adjuvant activity of ultrafine carbon black particles (CBP). The proliferation of CFSE-labeled DO11.10 CD4 cells was studied after intranasal exposure to particles and ovalbumin (OVA). Next the frequency of myeloid dendritic cells (mDCs) and plasmacytoid dendritic cells and their expression of CD80 and CD86 were studied in the peribronchial lymph nodes (PBLNs). The expression of costimulatory molecules was also studied on bone marrow-derived mDCs after exposure to CBPs in vitro, and the importance of costimulation in CBP adjuvant activity was assessed by using CD80/CD86-deficient mice or cytotoxic T lymphocyte-associated antigen 4 (CTLA4)-Ig in vivo. Our data show that CBPs plus OVA caused proliferation of DO11.10 CD4 cells and high levels of cytokine production in the PBLNs. Furthermore, the combined CBP plus OVA exposure increased the number of mDCs and expression of costimulatory molecules in the PBLNs. In addition, CBPs upregulated the expression of CD80/CD86 molecules on dendritic cells in vitro, which are necessary for the particle adjuvant effects in vivo. Together this study shows the importance of dendritic cells and costimulation in particle adjuvant activity. Furthermore, we show for the first time that CBPs can also directly induce maturation of dendritic cells.
Leguey, Ignacio; Bielza, Concha; Larrañaga, Pedro; Kastanauskaite, Asta; Rojo, Concepción; Benavides-Piccione, Ruth; DeFelipe, Javier
2016-09-01
The characterization of the structural design of cortical microcircuits is essential for understanding how they contribute to function in both health and disease. Since pyramidal neurons represent the most abundant neuronal type and their dendritic spines constitute the major postsynaptic elements of cortical excitatory synapses, our understanding of the synaptic organization of the neocortex largely depends on the available knowledge regarding the structure of pyramidal cells. Previous studies have identified several apparently common rules in dendritic geometry. We study the dendritic branching angles of pyramidal cells across layers to further shed light on the principles that determine the geometric shapes of these cells. We find that the dendritic branching angles of pyramidal cells from layers II-VI of the juvenile rat somatosensory cortex suggest common design principles, despite the particular morphological and functional features that are characteristic of pyramidal cells in each cortical layer. J. Comp. Neurol. 524:2567-2576, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Calcium transient prevalence across the dendritic arbour predicts place field properties.
Sheffield, Mark E J; Dombeck, Daniel A
2015-01-08
Establishing the hippocampal cellular ensemble that represents an animal's environment involves the emergence and disappearance of place fields in specific CA1 pyramidal neurons, and the acquisition of different spatial firing properties across the active population. While such firing flexibility and diversity have been linked to spatial memory, attention and task performance, the cellular and network origin of these place cell features is unknown. Basic integrate-and-fire models of place firing propose that such features result solely from varying inputs to place cells, but recent studies suggest instead that place cells themselves may play an active role through regenerative dendritic events. However, owing to the difficulty of performing functional recordings from place cell dendrites, no direct evidence of regenerative dendritic events exists, leaving any possible connection to place coding unknown. Using multi-plane two-photon calcium imaging of CA1 place cell somata, axons and dendrites in mice navigating a virtual environment, here we show that regenerative dendritic events do exist in place cells of behaving mice, and, surprisingly, their prevalence throughout the arbour is highly spatiotemporally variable. Furthermore, we show that the prevalence of such events predicts the spatial precision and persistence or disappearance of place fields. This suggests that the dynamics of spiking throughout the dendritic arbour may play a key role in forming the hippocampal representation of space.
Calcium transient prevalence across the dendritic arbor predicts place field properties
Sheffield, Mark E. J.; Dombeck, Daniel A.
2014-01-01
Establishing the hippocampal cellular ensemble that represents an animal’s environment involves the emergence and disappearance of place fields in specific CA1 pyramidal neurons1–4, and the acquisition of different spatial firing properties across the active population5. While such firing flexibility and diversity have been linked to spatial memory, attention and task performance6,7, the cellular and network origin of these place cell features is unknown. Basic integrate-and-fire models of place firing propose that such features result solely from varying inputs to place cells8,9, but recent studies3,10 instead suggest that place cells themselves may play an active role through regenerative dendritic events. However, due to the difficulty of performing functional recordings from place cell dendrites, no direct evidence of regenerative dendritic events exists, leaving any possible connection to place coding unknown. Using multi-plane two-photon calcium imaging of CA1 place cell somata, axons, and dendrites in mice navigating a virtual environment, we show that regenerative dendritic events do exist in place cells of behaving mice and, surprisingly, their prevalence throughout the arbor is highly spatiotemporally variable. Further, we show that the prevalence of such events predicts the spatial precision and persistence or disappearance of place fields. This suggests that the dynamics of spiking throughout the dendritic arbor may play a key role in forming the hippocampal representation of space. PMID:25363782
Lingenhöhl, K; Finch, D M
1991-01-01
We used in vivo intracellular labeling with horseradish peroxidase in order to study the soma-dendritic morphology and axonal projections of rat entorhinal neurons. The cells responded to hippocampal stimulation with inhibitory postsynaptic potentials, and thus likely received direct or indirect hippocampal input. All cells (n = 24) showed extensive dendritic domains that extended in some cases for more than 1 mm. The dendrites of layer II neurons were largely restricted to layers I and II or layers I-III, while the dendrites of deeper cells could extend through all cortical layers. Computed 3D rotations showed that the basilar dendrites of deep pyramids extended roughly parallel to the cortical layering, and that they were mostly confined to the layer containing the soma and layers immediately adjacent. Total dendritic lengths averaged 9.8 mm +/- 3.8 (SD), and ranged from 5 mm to more than 18 mm. Axonal processes could be visualized in 21 cells. Most of these showed axonal branching within the entorhinal cortex, sometimes extensive. Efferent axonal domains were reconstructed in detail in 3 layer II stellate cells. All 3 projected axons across the subicular complex to the dentate gyrus. One of these cells showed an extensive net-like axonal domain that also projected to several other structures, including the hippocampus proper, subicular complex, and the amygdalo-piriform transition area. The axons of layer III and IV cells projected to the angular bundle, where they continued in a rostral direction. In contrast to the layer II, III and IV cells, no efferent axonal branches leaving the entorhinal cortex could be visualized in 5 layer V neurons. The data indicate that entorhinal neurons can integrate input from a considerable volume of entorhinal cortex by virtue of their extensive dendritic domains, and provide a further basis for specifying the layers in which cells receive synaptic input. The extensive axonal branching pattern seen in most of the cells would support divergent propagation of their activity.
Democracy-independence trade-off in oscillating dendrites and its implications for grid cells.
Remme, Michiel W H; Lengyel, Máté; Gutkin, Boris S
2010-05-13
Dendritic democracy and independence have been characterized for near-instantaneous processing of synaptic inputs. However, a wide class of neuronal computations requires input integration on long timescales. As a paradigmatic example, entorhinal grid fields have been thought to be generated by the democratic summation of independent dendritic oscillations performing direction-selective path integration. We analyzed how multiple dendritic oscillators embedded in the same neuron integrate inputs separately and determine somatic membrane voltage jointly. We found that the interaction of dendritic oscillations leads to phase locking, which sets an upper limit on the timescale for independent input integration. Factors that increase this timescale also decrease the influence that the dendritic oscillations exert on somatic voltage. In entorhinal stellate cells, interdendritic coupling dominates and causes these cells to act as single oscillators. Our results suggest a fundamental trade-off between local and global processing in dendritic trees integrating ongoing signals. Copyright 2010 Elsevier Inc. All rights reserved.
Al-Hussain Bani Hani, Saleh M; El-Dwairi, Qasim A; Bataineh, Ziad M; Al-Haidari, Mohammad S; Al-Alami, Jamil
2008-05-01
The morphological and quantitative features of neurons in the adult human ventral anterior thalamic nucleus were studied in Golgi preparations. Two neuronal types were found and their quantitative features were studied. Golgi-type I neurons were medium to large cells with dense dendritic trees and dendritic protrusions and short hair-like appendages. They have somatic mean diameter of 30.8 microm (+/-9.4, n = 85). They have an average 100.3 dendritic branches, 48.97 dendritic branching points, and 58.85 dendritic tips. The mean diameters of their primary, secondary, and tertiary dendrites were 3.1 microm (+/-1, n = 80), 1.85 microm (+/-0.8, n = 145), and 1.5 microm (+/-0.4, n = 160), respectively. Golgi-type II neurons were small to medium cells with few sparsely branching dendrites and dendritic stalked appendages with or without terminal swellings. They have somatic mean diameters of 22.2 microm (+/-5.8, n = 120). They have an average 33.76 dendritic branches, 16.49 dendritic branching points, and 21.97 dendritic tips. The mean diameters of their primary, secondary, and tertiary dendrites were 1.6 microm (+/-0.86, n = 70), 1.15 microm (+/-0.55, n = 118), and 1 microm (+/-0.70, n = 95), respectively. These quantitative data may form the basis for further quantitative studies involving aging or some degenerative diseases that may affect cell bodies and/or dendritic trees of the Golgi-type I and/or Golgi-type II thalamic neurons.
Voltage signals of individual Purkinje cell dendrites in rat cerebellar slices.
Borst, A; Heck, D; Thomann, M
1997-11-28
For investigating neuronal information processing at the cellular level, a technique which visualizes the voltage distribution within single neurons in situ would be extremely useful. Voltage-sensitive dyes are, in principle, capable of reporting membrane potential [Cohen, L.B. and Salzberg, B.M., Rev. Physiol. Biochem. Pharmacol., 83 (1978) 35-88; Grinvald, A., Lieke, E.E., Frostig, R.D. and Hildesheim, R., J. Neurosci., 14 (1994) 2545-2568; Kleinfeld, D., Delaney, K.R., Fee, M.S., Flores, J.A., Tank, D.W. and Gelperin, A., J. Neurophysiol., 72 (1994) 1402-1419]. However, their application to single cells internally is technically difficult [Antic, S. and Zecevic, D., J. Neurosci., 15 (1995) 1392-1405; Grinvald, A., Salzberg, B.M., Lev-Ram, V. and Hildesheim, R., Biophys. J., 51 (1987) 643-651; Kogan, A., Ross, W.N., Zecevic, D. and Lasser-Ross, N., Brain Res., 700 (1995) 235-239; Zecevic, D., Nature, 381 (1996) 322-325]. An alternative strategy consists in applying the dye from the outside to all cells in the tissue, while manipulating a single cell by current injection [Krauthamer, V. and Ross, W.N., J. Neurosci., 4 (1984) 673-682; Ross, W.N. and Krauthamer, V., J. Neurosci., 4 (1984) 659-672]. Here, we modify this technique to further enhance spatial at the cost of temporal resolution [Borst, A., Z. Naturforsch., 50 (1995) 435-438]. Applied to rat cerebellar slices we demonstrate that the potential spread in individual Purkinje cells can be imaged up to even fine dendritic branches. The acquired optical signals suggest that steadily hyperpolarized Purkinje cells are electrically compact. When permanently depolarized, the somatic input resistance is significantly diminished, yet the spatial voltage drop along the dendrites remains unchanged. As demonstrated by compartmental modeling, this hints to a concentration of outward rectifying currents at the soma of the cells.
Roquilly, Antoine; Broquet, Alexis; Jacqueline, Cédric; Masson, Damien; Segain, Jean Pierre; Braudeau, Cecile; Vourc'h, Mickael; Caillon, Jocelyne; Altare, Frédéric; Josien, Regis; Retière, Christelle; Villadangos, Jose; Asehnoune, Karim
2014-12-01
Trauma induces a state of immunosuppression, which is responsible for the development of nosocomial infections. Hydrocortisone reduces the rate of pneumonia in patients with trauma. Because alterations of dendritic cells and natural killer cells play a central role in trauma-induced immunosuppression, we investigated whether hydrocortisone modulates the dendritic cell/natural killer cell cross talk in the context of posttraumatic pneumonia. Experimental study. Research laboratory from an university hospital. Bagg Albino/cJ mice (weight, 20-24 g). First, in an a priori substudy of a multicenter, randomized, double-blind, placebo-controlled trial of hydrocortisone (200 mg/d for 7 d) in patients with severe trauma, we have measured the blood levels of five cytokines (tumor necrosis factor-α, interleukin-6, interleukin-10, interleukin-12, interleukin-17) at day 1 and day 8. In a second step, the effects of hydrocortisone on dendritic cell/natural killer cell cross talk were studied in a mouse model of posttraumatic pneumonia. Hydrocortisone (0.6 mg/mice i.p.) was administered immediately after hemorrhage. Twenty-four hours later, the mice were challenged with Staphylococcus aureus (7 × 10 colony-forming units). Using sera collected during a multicenter study in patients with trauma, we found that hydrocortisone decreased the blood level of interleukin-10, a cytokine centrally involved in the regulation of dendritic cell/natural killer cell cluster. In a mouse model of trauma-hemorrhage-induced immunosuppression, splenic natural killer cells induced an interleukin-10-dependent elimination of splenic dendritic cell. Hydrocortisone treatment reduced this suppressive function of natural killer cells and increased survival of mice with posthemorrhage pneumonia. The reduction of the interleukin-10 level in natural killer cells by hydrocortisone was partially dependent on the up-regulation of glucocorticoid-induced tumor necrosis factor receptor-ligand (TNFsf18) on dendritic cell. These data demonstrate that trauma-induced immunosuppression is characterized by an interleukin-10-dependent elimination of dendritic cell by natural killer cells and that hydrocortisone improves outcome by limiting this immunosuppressive feedback loop.
Yuba, Eiji; Harada, Atsushi; Sakanishi, Yuichi; Watarai, Shinobu; Kono, Kenji
2013-04-01
Highly pH-sensitive liposomes that deliver antigenic molecules into cytosol through fusion with or destabilization of endosome were prepared by surface modification of egg yolk phosphatidylcholine/dioleoylphosphatidylethanolamine (1/1, mol/mol) liposomes with 3-methylglutarylated poly(glycidol) of linear (MGlu-LPG) or hyperbranched structure (MGlu-HPG). These polymer-modified liposomes were stable at neutral pH, but they became strongly destabilized below pH 6, which corresponds to the pH of endosome. These polymer-modified liposomes were taken up by murine dendritic cells (DCs) more efficiently than the unmodified liposomes were through an endocytic pathway. They introduced entrapped ovalbumin (OVA) molecules into cytosol. Subcutaneous or nasal administration of the polymer-modified liposomes loaded with OVA induced generation of OVA-specific cytotoxic T cells (CTL) much more effectively than the unmodified liposomes loaded with OVA. Furthermore, administration of the polymer-modified OVA-loaded liposomes to mice bearing E.G7-OVA tumor significantly reduced the tumor burden, although the OVA-loaded unmodified liposomes only slightly affected tumor growth. Results suggest that the polymer-modified liposomes with highly pH-sensitive destabilizing property are promising as antigen carriers for efficient cancer immunotherapy. Copyright © 2012 Elsevier Ltd. All rights reserved.
Multivalent glycopeptide dendrimers for the targeted delivery of antigens to dendritic cells.
García-Vallejo, Juan J; Ambrosini, Martino; Overbeek, Annemieke; van Riel, Wilhelmina E; Bloem, Karien; Unger, Wendy W J; Chiodo, Fabrizio; Bolscher, Jan G; Nazmi, Kamran; Kalay, Hakan; van Kooyk, Yvette
2013-04-01
Dendritic cells are the most powerful type of antigen presenting cells. Current immunotherapies targeting dendritic cells have shown a relative degree of success but still require further improvement. One of the most important issues to solve is the efficiency of antigen delivery to dendritic cells in order to achieve an appropriate uptake, processing, and presentation to Ag-specific T cells. C-type lectins have shown to be ideal receptors for the targeting of antigens to dendritic cells and allow the use of their natural ligands - glycans - instead of antibodies. Amongst them, dendritic cell-specific ICAM-3-grabbing non-integrin (DC-SIGN) is an interesting candidate due to its biological properties and the availability of its natural carbohydrate ligands. Using Le(b)-conjugated poly(amido amine) (PAMAM) dendrimers we aimed to characterize the optimal level of multivalency necessary to achieve the desired internalization, lysosomal delivery, Ag-specific T cell proliferation, and cytokine response. Increasing DC-SIGN ligand multivalency directly translated in an enhanced binding, which might also be interesting for blocking purposes. Internalization, routing to lysosomal compartments, antigen presentation and cytokine response could be optimally achieved with glycopeptide dendrimers carrying 16-32 glycan units. This report provides the basis for the design of efficient targeting of peptide antigens for the immunotherapy of cancer, autoimmunity and infectious diseases. Copyright © 2012 Elsevier Ltd. All rights reserved.
Luo, Shasha; Zou, Qiang
2016-01-01
It is well known that dendritic cells (DCs) play a pivotal role in triggering self-specific responses. Conversely, tolerogenic DCs (tolDCs), a specialized subset, induce tolerance and negatively regulate autoreactive responses. Tofacitinib, a Janus kinase inhibitor developed by Pfizer for treatment of rheumatoid arthritis, is probable to be a promising candidate for inducing tolDCs. The aims of this study were to evaluate the effectiveness of tolDCs induced by tofacitinib in a myelin oligodendrocyte glycoprotein- (MOG-) specific experimental autoimmune encephalomyelitis (EAE) model and to investigate their effects on Th17/Treg balance in the animal model of multiple sclerosis (MS). Our results revealed that tofacitinib-treated DCs maintained a steady semimature phenotype with a low level of proinflammatory cytokines and costimulatory molecules. DCs treated by tofacitinib also induced antigen-specific T cells hyporesponsiveness in a concentration-dependent manner. Upon intravenous injection into EAE mice, MOG pulsed tolDCs significantly dampened disease activity, and adoptive cell therapy (ACT) disturbed Th17/Treg balance with a remarkable decrease of Th1/Th17 cells and an increase in regulatory T cells (Tregs). Overall, DCs modified by tofacitinib exhibited a typical tolerogenic phenotype, and the antigen-specific tolDCs may represent a new avenue of research for the development of future clinical treatments for MS. PMID:28070525
Strasser, Erwin F; Berger, Thomas G; Weisbach, Volker; Zimmermann, Robert; Ringwald, Jürgen; Schuler-Thurner, Beatrice; Zingsem, Jürgen; Eckstein, Reinhold
2003-09-01
Monocytes collected by leukapheresis are increasingly used for dendritic cell (DC) culture in cell factories suitable for DC vaccination in cancer. Using modified MNC programs on two apheresis systems (Cobe Spectra and Fresenius AS.TEC204), leukapheresis components collected from 84 patients with metastatic malignant melanoma and from 31 healthy male donors were investigated. MNCs, monocytes, RBCs, and platelets (PLTs) in donors and components were analyzed by cell counters, WBC differential counts, and flow cytometry. In 5-L collections, Astec showed better results regarding monocyte collection rates (11.0 vs. 7.4 x 10(6)/min, p = 0.04) and efficiencies (collection efficiency, 51.9 vs. 31.9%; p < 0.001). Both devices resulted in monocyte yields at an average of 1 x 10(9) (donors) and 2.5 x 10(9) (patients), whereas Astec components contained high residual RBCs. Compared to components with low residual PLTs, high PLT concentration resulted in higher monocyte loss (48 vs. 20%, p < 0.0001) before DC culture. The Astec is more efficient in 5-L MNC collections compared to the Spectra. Components with high residual PLTs result in high MNC loss by purification procedures. Thus, optimizing MNC programs is essential to obtain components with high MNC yields and low residual cells as prerequisite for high DC yields.
Effect of Different Titanium Surfaces on Maturation of Murine Bone Marrow-Derived Dendritic Cells
NASA Astrophysics Data System (ADS)
Zheng, Xiaofei; Zhou, Fengjuan; Gu, Yifei; Duan, Xiaobo; Mo, Anchun
2017-02-01
Dendritic cells (DCs) play a pivotal role in the host response to implanted biomaterials. Osseointegration of titanium (Ti) implant is an immunological and inflammatory-driven process. However, the role of DCs in this complex process is largely unknown. This study aimed to investigate the effect of different Ti surfaces on DC maturation, and evaluate its subsequent potential on osteogenic differentiation of preosteoblasts. Murine bone marrow-derived DCs were seeded on Ti disks with different surface treatments, including pretreatment (PT), sandblasted/acid-etched (SLA) and modified SLA (modSLA) surface. Compared with DCs cultured on PT and SLA surfaces, the cells seeded on modSLA surface demonstrated a more round morphology with lower expression of CD86 and MHC-II, the DC maturation markers. Those cells also secreted high levels of anti-inflammatory cytokine IL-10 and TGF-β. Notably, addition of conditioned medium (CM) from modSLA-induced DCs significantly increased the mRNA expression of Runx2 and ALP as well as ALP activity by murine preosteoblast MC3T3-E1 cells. Our data demonstrated that Ti disks with different surfaces lead to differential DCs responses. PT and SLA surfaces induce DCs mature, while DCs seeded on modSLA-Ti surface maintain an immature phenotype and exhibit a potential of promoting osteogenic differentiation of MC3T3-E1 cells.
NASA Astrophysics Data System (ADS)
Marañón, Concepción; Desoutter, Jean-François; Hoeffel, Guillaume; Cohen, William; Hanau, Daniel; Hosmalin, Anne
2004-04-01
A better understanding of the antigen presentation pathways that lead to CD8+ T cell recognition of HIV epitopes in vivo is needed to achieve better immune control of HIV replication. Here, we show that cross-presentation of very small amounts of HIV proteins from apoptotic infected CD4+ T lymphocytes by dendritic cells to CD8+ T cells is much more efficient than other known HIV presentation pathways, i.e., direct presentation of infectious virus or cross-presentation of defective virus. Unexpectedly, dendritic cells also take up actively antigens into endosomes from live infected CD4+ T lymphocytes and cross-present them as efficiently as antigens derived from apoptotic infected cells. Moreover, live infected CD4+ T cells costimulate cross-presenting dendritic cells in the process. Therefore, dendritic cells can present very small amounts of viral proteins from infected T cells either after apoptosis, which is frequent during HIV infection, or not. Thus, if HIV expression is transiently induced while costimulation is enhanced (for instance after IL-2 and IFN immune therapy), this HIV antigen presentation pathway could be exploited to eradicate latently infected reservoirs, which are poorly recognized by patients' immune systems.
Lu, Yu; Huang, Yifan; Luo, Li; Liu, Zhenguang; Bo, Ruonan; Hu, Yuanliang; Liu, Jiaguo; Wang, Deyun
2018-01-01
Background Poly lactide (PLA) was proved in the last years to be good for use in sustained drug delivery and as carriers for vaccine antigens. In our previous research, pachyman (PHY)-encapsulated PLA (PHYP) nanospheres were synthesized and their function of controlling drug release was demonstrated. Purpose In order to modify the fast drug-release rate of PHY when inoculated alone, the maturation of bone marrow dendritic cells (BMDCs) in vitro and their immunological enhancement in vivo were explored using PHYP nanospheres. Methods The maturation and antigen uptake of BMDCs were evaluated, both alone and with formulated antigen PHYP nanospheres, ie, ovalbumin (OVA)-loaded PHYP nanospheres, as an antigen delivery system, to investigate antigen-specific humoral and cellular immune responses. Results The results indicated that, when stimulated by PHYP, the BMDCs matured as a result of upregulated expression of co-stimulatory molecules; the mechanism was elucidated by tracing fluorescently labeled antigens in confocal laser scanning microscopy images and observing the uptake of nanospheres by transmission electron microscopy. It was further revealed that mice inoculated with OVA-PHYP had augmented antigen-specific IgG antibodies, increased cytokine secretion by splenocytes, increased splenocyte proliferation, and activation of cluster of differentiation (CD)4+ and CD8+ T cells in vivo. Elevated immune responses were produced by OVA-PHYP, possibly owing to the activation and maturation of dendritic cells (in draining lymph nodes). Conclusion It was corroborated that PHY- and/or OVA-encapsulated PLA nanospheres elicited prominent antigen-presenting effects on BMDCs and heightened humoral and cellular immune responses compared with other formulations. PMID:29416336
Vergleich von rekombinanten Vaccinia- und DNA-Vektoren zur Tumorimmuntherapie im C57BL/6-Mausmodell
NASA Astrophysics Data System (ADS)
Johnen, Heiko
2002-10-01
In der vorliegenden Arbeit wurden Tumorimpfstoffe auf der Basis des Plasmid-Vektors pCI, modified vaccinia virus Ankara (MVA) und MVA-infizierten dendritischen Zellen entwickelt und durch Sequenzierung, Western blotting und durchflußzytometrische Analyse überprüft. Die in vivo Wirksamkeit der Vakzinen wurde in verschiedenen Tumormodellen in C57BL/6 Mäusen verglichen. Die auf dem eukaryotischen Expressionsvektor pCI basierende DNA-Vakzinierung induzierte einen sehr wirksamen, antigenspezifischen und langfristigen Schutz vor Muzin, CEA oder beta-Galactosidase exprimierenden Tumoren. Eine MVA-Vakzinierung bietet in den in dieser Arbeit durchgeführten Tumormodellen keinen signifikanten Schutz vor Muzin oder beta-Galactosidase exprimierenden Tumoren. Sowohl humane, als auch murine in vitro generierte dendritische Zellen lassen sich mit MVA – im Vergleich zu anderen viralen Vektoren – sehr gut infizieren. Die Expressionsrate der eingefügten Gene ist aber gering im Vergleich zur Expression in permissiven Wirtszellen des Virus (embryonale Hühnerfibroblasten). Es konnte gezeigt werden, daß eine MVA-Infektion dendritischer Zellen ähnliche Auswirkungen auf den Reifezustand humaner und muriner dendritischer Zellen hat, wie eine Infektion mit replikationskompetenten Vakzinia-Stämmen, und außerdem die Hochregulation von CD40 während der terminalen Reifung von murinen dendritischen Zellen inhibiert wird. Die während der langfristigen in vitro Kultur auf CEF-Zellen entstandenen Deletionen im MVA Genom führten zu einer starken Attenuierung und dem Verlust einiger Gene, die immunmodulatorische Proteine kodieren, jedoch nicht zu einer Verminderung des zytopathischen Effekts in dendritischen Zellen. Die geringe Expressionsrate und die beobachtete Inhibition der Expression kostimulatorischer Moleküle auf dendritischen Zellen kann für eine wenig effektive Induktion einer Immunantwort in MVA vakzinierten Tieren durch cross priming oder die direkte Infektion antigenpräsentierender Zellen verantwortlich sein. Durch die Modifikation einer Methode zur intrazellulären IFN-gamma Färbung konnten in vakzinierten Mäusen tumorantigenspezifische CTL sensitiv und quantitativ detektiert werden. Die so bestimmte CTL-Frequenz, nicht jedoch die humorale Antwort, korrelierte mit der in vivo Wirksamkeit der verschiedenen Vakzinen: DNA vakzinierte Tiere entwickeln starke tumorantigenspezifische CTL-Antworten, wohingegen in MVA-vakzinierten Tieren überwiegend gegen virale Epitope gerichtete CD4 und CD8-T-Zellen detektiert wurden. Die Wirksamkeit der pCI-DNA-Vakzine spricht für die Weiterentwicklung in weiteren präklinischen Mausmodellen, beispielsweise unter Verwendung von MUC1 oder HLA-A2 transgenen Mäusen. Die Methoden zur Detektion Tumorantigen-spezifischer CTL in 96-Loch-Mikrotiterplatten können dabei zur systematischen Suche nach im Menschen immundominanten T-Zell-Epitopen im Muzin-Molekül genutzt werden. Der durchgeführte Vergleich der auf den Vektoren pCI und MVA basierenden Vakzinen und die Analyse neuerer Publikationen führen zu dem Ergebniss, daß vor allem DNA-Vakzinen in Zukunft eine wichtige Rolle bei der Entwicklung von aktiven Tumorimpfstoffen spielen werden. Rekombinante MVA-Viren, eventuell in Kombination mit DNA- oder anderen Vektoren, haben sich dagegen in zahlreichen Studien als wirksame Impfstoffe zur Kontrolle von durch Pathogene hervorgerufenen Infektionserkrankungen erwiesen. In this study, tumor vaccines based on the plasmid pCI, the attenuated vaccinia virus strain modified vaccinia virus Ankara (MVA) and MVA-infected dendritic cells were constructed and characterized by sequencing, Western blot and flow cytometric analysis. The efficiency to induce tumor immunity in vivo was compared in several C57BL/6 mouse tumor models. Naked DNA Vaccination based on the eukaryotic expression vector pCI did induce very effective, antigen-specific and long-term protection against tumor cell lines expressing mucin, CEA or beta-Gal whereas MVA vaccination did not elicit protective immunity against Mucin or beta-Gal expressing tumors. MVA does infect human or murine in vitro generated dendritic cells very efficiently compared to other viral vectors, however expression levels of the inserted antigens in dendritic cells are significantly lower than in permissive host cells (chicken embryo fibroblasts). It could be shown that the effect of MVA infection on the maturation status of dendritic cells is similar to the effects described for dendritic cells infected with replication competent vaccinia strains. In addition it was shown that the upregulation of the important costimulatory molecule CD40 through LPS stimulation is strongly inhibited in MVA infected cells. During passage in tissue culture, MVA has accumulated a number of large deletions, including a number of immunomodulatory molecules and resulting in a strong attenuation. However the strong cytopathic effect on dendritic cells is maintained. The low level of expression and the effect on dendritic cell maturation may be responsible for the failure of MVA to induce tumor immunity through either cross presentation or direct infection of antigen presenting cells. To detect and quantify tumor-antigen-specific CTL a method based on intracellular IFN-gamma staining was modified and it could be shown that the cellular – but not the humoral – response does correlate with in vivo protection: DNA but not MVA vaccines do induce high levels of tumorantigen-specific CTL whereas MVA-vaccines do induce strong and long lasting CD4 and CD8-T-cell responses against vaccinia antigens. The excellent protection induced by pCI-DNA-vaccination in different tumor models does encourage us to further investigate the elicitation of tumor immunity in MUC1 or HLA-A2 transgenic mice. In mice transgenic for human MHC-I, the IFN-gamma staining protocol could be used to systematically screen for mucin T-cell epitopes that are relevant in humans.
Kuznetsov, A V
1992-09-01
Dendritic cells of central lymph of rabbits have been identified according to the form of the cell body, characteristics of formation and branchiness of its processes in health, in atherosclerosis, its correction with radon, polyphenol preparations made of Sanguisorba officinalis and in combination of the latter. Two main types of dendritic cells have been distinguished. Type I is characterized by a rounded body with clear outlines, protrusions and one compact process. Such cells are often found in lymph of intact animals. Type II has a cell body of various forms with two and more compact or branching processes. This type is mainly detected in atherosclerosis and its correction. The prevalence of the above phenotypes of dendritic cells is attributed to the response of the immune system to atherosclerosis and its correction.
Nowatzky, Johannes; Manches, Olivier; Khan, Shaukat Ali; Godefroy, Emmanuelle; Bhardwaj, Nina
2018-06-13
Apoptotic cell receptors contribute to the induction of tolerance by modulating dendritic cell function following the uptake of apoptotic cells or microparticles. Dendritic cells that have bound or ingested apoptotic cells produce only low amounts of pro-inflammatory cytokines and fail to prime effector T cell responses. Specifically, ligation of the apoptotic cell receptor CR3 (CD11 b/CD18) on human monocyte-derived dendritic cells (moDC) down-modates proinflammatory cytokine secretion, but the consequences for human Th17 cell homeostasis and effector responses remain unknown. Here, we aimed to establish whether CD11b-ligated moDC modulate Th17 cell effector reponses to assess their potential for future use in moDC-based suppressive immunotherapy. We generated a bead-based surrogate system to target CD11b on monocyte-derived human dendritic cells and examined the effects of CD11b ligation on Th17-skewing cytokine secretion, priming, expansion and functional plasticity in DC/T cell co-culture systems at the poly- and monoclonal level. We show that Th17 cell expansion within the human memory CD4 + T cell compartment was efficiently constricted by targeting the CD11b receptor on moDC. This tolerogenic capacity was primarily dependent on cytokine skewing. Furthermore, ligation of CD11b on healthy homozygous carriers of the rs11143679 (ITGAM) variant - a strong genetic susceptibility marker for human systemic lupus erythematosus - also down-modulated the secretion of Th17-skewing cytokines. Overall, our findings underline the potential of targeted CD11b ligation on human dendritic cells for the engineering of suppressive immunotherapy for Th17-related autoimmune disorders. Copyright © 2018 Elsevier Ltd. All rights reserved.
Mesquita, Ricardo Alves; de Araújo, Vera Cavalcanti; Paes, Roberto Antônio Pinto; Nunes, Fábio Daumas; de Sousa, Suzana Cantanhede Orsini Machado
2009-01-01
Objective: Follicular dendritic cells (FDCs) and interdigitating dendritic cells (IDCs) are dendritic cells found in lymphoid follicles, reactive follicles and in lymphomas. The goal of this study was to evaluate the presence and distribution of FDCs and IDCs in oral lymphomas. Material and Methods: Immunohistochemistry reactions were applied to 50 oral lymphomas using the antibodies anti-CD21, anti-CD35 and anti-caldesmon to FDCs, and anti-S100 protein to IDCs. Caldesmon+/FDCs and S100+/IDCs were quantified in Imagelab® software. Results: FDCs revealed by CD21 and CD35 were positively stained in two cases of diffuse large B-cell lymphoma, one MALT lymphoma, and in one case of mantle cell lymphoma. FDCs were immunopositive to caldesmon in all cases, as well as IDCs to S100 protein. Burkitt lymphoma presented a lower amount of caldesmon+/FDCs and S100+/IDCs than diffuse large B-cell lymphoma and plasmablastic lymphoma of the oral mucosa type. Conclusions: The microenvironment determined by neoplastic lymphoid cells in oral lymphomas is responsible by the development and expression of dendritic cells types. PMID:19466261
Heterogeneous integration of adult-generated granule cells into the epileptic brain
Murphy, Brian L.; Pun, Raymund Y.K.; Yin, Hulian; Faulkner, Christian R.; Loepke, Andreas W.; Danzer, Steve C.
2011-01-01
The functional impact of adult-generated granule cells in the epileptic brain is unclear, with data supporting both protective and maladaptive roles. These conflicting findings could be explained if new granule cells integrate heterogeneously, with some cells taking neutral or adaptive roles, while others contribute to recurrent circuitry supporting seizures. Here, we tested this hypothesis by completing detailed morphological characterizations of age- and experience-defined cohorts of adult-generated granule cells from transgenic mice. The majority of newborn cells exposed to an epileptogenic insult exhibited reductions in dendritic spine number, suggesting reduced excitatory input to these cells. A significant subset, however, exhibited higher spine numbers. These latter cells tended to have enlarged cell bodies, long basal dendrites or both. Moreover, cells with basal dendrites received significantly more recurrent mossy fiber input through their apical dendrites, indicating that these cells are robustly integrated into the pathological circuitry of the epileptic brain. These data imply that newborn cells play complex – and potentially conflicting – roles in epilepsy. PMID:21209195
Pyramidal neurons in the septal and temporal CA1 field of the human and hedgehog tenrec hippocampus.
Liagkouras, Ioannis; Michaloudi, Helen; Batzios, Christos; Psaroulis, Dimitrios; Georgiadis, Marios; Künzle, Heinz; Papadopoulos, Georgios C
2008-07-07
The present study examines comparatively the cellular density of disector-counted/Nissl-stained CA1 pyramidal neurons and the morphometric characteristics (dendritic number/length, spine number/density and Sholl-counted dendritic branch points/20 microm) of the basal and apical dendritic systems of Golgi-impregnated CA1 neurons, in the septal and temporal hippocampus of the human and hedgehog tenrec brain. The obtained results indicate that in both hippocampal parts the cellular density of the CA1 pyramidal neurons is lower in human than in tenrec. However, while the human pyramidal cell density is higher in the septal hippocampal part than in the temporal one, in the tenrec the density of these cells is higher in the temporal part. The dendritic tree of the CA1 pyramidal cells, more developed in the septal than in temporal hippocampus in both species studied, is in general more complex in the human hippocampus. The basal and the apical dendritic systems exhibit species related morphometric differences, while dendrites of different orders exhibit differences in their number and length, and in their spine density. Finally, in both species, as well as hippocampal parts and dendritic systems, changes of dendritic morphometric features along ascending dendritic orders fluctuate in a similar way, as do the number of dendritic branch points in relation to the distance from the neuron soma.
Dendritic cell and histiocytic neoplasms: biology, diagnosis, and treatment.
Dalia, Samir; Shao, Haipeng; Sagatys, Elizabeth; Cualing, Hernani; Sokol, Lubomir
2014-10-01
Dendritic and histiocytic cell neoplasms are rare malignancies that make up less than 1% of all neoplasms arising in lymph nodes or soft tissues. These disorders have distinctive disease biology, clinical presentations, pathology, and unique treatment options. Morphology and immunohistochemistry evaluation by a hematopathologist remains key for differentiating between these neoplasms. In this review, we describe tumor biology, clinical features, pathology, and treatment of follicular dendritic cell sarcoma, interdigitating dendritic cell sarcoma, indeterminate dendritic cell sarcoma, histiocytic sarcoma, fibroblastic reticular cell tumors, and disseminated juvenile xanthogranuloma. A literature search for articles published between 1990 and 2013 was undertaken. Articles are reviewed and salient findings are systematically described. Patients with dendritic cell and histiocytic neoplasms have distinct but variable clinical presentations; however, because many tumors have recently been recognized, their true incidence is uncertain. Although the clinical features can present in many organs, most occur in the lymph nodes or skin. Most cases are unifocal and solitary presentations have good prognoses with surgical resection. The role of adjuvant therapy in these disorders remains unclear. In cases with disseminated disease, prognosis is poor and data on treatment options are limited, although chemotherapy and referral to a tertiary care center should be considered. Excisional biopsy is the preferred method of specimen collection for tissue diagnosis, and immunohistochemistry is the most important diagnostic method for differentiating these disorders from other entities. Dendritic cell and histiocytic cell neoplasms are rare hematological disorders with variable clinical presentations and prognoses. Immunohistochemistry remains important for diagnosis. Larger pooled analyses or clinical trials are needed to better understand optimal treatment options in these rare disorders. Whenever possible, patients should be referred to a tertiary care center for disease management.
Campbell, John N; Register, David; Churn, Severn B
2012-01-20
Traumatic brain injury (TBI) causes both an acute loss of tissue and a progressive injury through reactive processes such as excitotoxicity and inflammation. These processes may worsen neural dysfunction by altering neuronal circuitry beyond the focally-damaged tissue. One means of circuit alteration may involve dendritic spines, micron-sized protuberances of dendritic membrane that support most of the excitatory synapses in the brain. This study used a modified Golgi-Cox technique to track changes in spine density on the proximal dendrites of principal cells in rat forebrain regions. Spine density was assessed at 1 h, 24 h, and 1 week after a lateral fluid percussion TBI of moderate severity. At 1 h after TBI, no changes in spine density were observed in any of the brain regions examined. By 24 h after TBI, however, spine density had decreased in ipsilateral neocortex in layer II and III and dorsal dentate gyrus (dDG). This apparent loss of spines was prevented by a single, post-injury administration of the calcineurin inhibitor FK506. These results, together with those of a companion study, indicate an FK506-sensitive mechanism of dendritic spine loss in the TBI model. Furthermore, by 1 week after TBI, spine density had increased substantially above control levels, bilaterally in CA1 and CA3 and ipsilaterally in dDG. The apparent overgrowth of spines in CA1 is of particular interest, as it may explain previous reports of abnormal and potentially epileptogenic activity in this brain region.
Pan, Jian-ping; Weng, Yue-song; Wu, Qian-qian
2006-09-01
To investigate the anti-metastatic effect of vascular endothelial growth factor receptor 2 extracellular domain gene-modified dendritic cell (DC-sVEGFR-2) vaccination. Dendritic cells (DC) were electroporated with pcDNA3. 1/sVEGFR-2 plasmid DNA. Expression of sVEGFR-2 was determined by ELISA. For immunization, C57BL/6 mice were intravenously injected three times with 1 x 10(5) cells per mouse of DC, pcDNA3. 1-transfected DC (DC-vector) , DC-sVEGFR-2, or 100 microl of PBS at 7-day intervals. At 10 days after the last immunization, the immunized mice were subjected to assessment of cytotoxic T lymphocyte ( CTL) response to VEGFR-2, alginate bead analysis of tumor cell-induced angiogenesis, and observation of the anti-metastatic effect in B16 melanoma metastasis model. CTL activity was determined by a standard 4-h 51Cr release assay against VEGFR-2 + vascular endothelial cell line H5V, 3LL cells stably transfected with pcDNA3. 1/sVEGFR-2 (3LL,-sVEGFR-2), and VEGFR-2- cell lines EL-4 and 3LL. Monoclonal antibodies GK1.5 anti-CD4 and 2.43 anti-CD8 were used to deplete in vivo CD4 + T cells and CD8' T cells, respectively. DC-sVEGFR-2 could effectively express sVEGFR-2, whereas DC-vector and DC could not. Immunization of mice with DC-sVEGFR-2 significantly induce CTL activity against VEGFR-2 + cell lines H5V and 3LL-sVEGFR-2, however, no significant CTL activity was observed when VEGFR-2- syngeneic cell lines EL-4 and 3LL. were used as target cells, implying this CTL activity was VEGFR-2 specific. Alginate bead analysis of in vivo neoangiogenesis showed that the inhibition reached 50% in mice vaccinated with DC-sVEGFR-2 compared with mice vaccinated with DC, DC-vector or PBS. Anti-metastatic experiment showed that profound reduction in pulmonary metastases was found in mice immunized with DC-sVEGFR-2, while mice immunized with PBS, DC, DC-vector developed extensive pulmonary metastases. The number of tumor nodules on lung surface decreased by 81.9% in mice immunized with DC-sVEGFR-2 when compared with mice immunized with DC-vector (49.7+/-12.7 vs. 9.0+/-3.2). In vivo T cell subset depletion experiments showed that the anti-metastatic effect of DC-sVEGFR-2 vaccination was abrogated in CD8 + T cell-depleted but not in CD4+ T cell-depleted mice. Immunization of mice with DC-sVEGFR-2 could break self-tolerance and induce a significant CTL response to VEGFR-2, leading to profound inhibition of tumor-cell induced angiogenesis and metastasis. This anti-metastatic effect is mainly mediated by CD8+ T cells.
Connelly, William M; Crunelli, Vincenzo; Errington, Adam C
2015-11-25
Low-threshold Ca(2+) spikes (LTS) are an indispensible signaling mechanism for neurons in areas including the cortex, cerebellum, basal ganglia, and thalamus. They have critical physiological roles and have been strongly associated with disorders including epilepsy, Parkinson's disease, and schizophrenia. However, although dendritic T-type Ca(2+) channels have been implicated in LTS generation, because the properties of low-threshold spiking neuron dendrites are unknown, the precise mechanism has remained elusive. Here, combining data from fluorescence-targeted dendritic recordings and Ca(2+) imaging from low-threshold spiking cells in rat brain slices with computational modeling, the cellular mechanism responsible for LTS generation is established. Our data demonstrate that key somatodendritic electrical conduction properties are highly conserved between glutamatergic thalamocortical neurons and GABAergic thalamic reticular nucleus neurons and that these properties are critical for LTS generation. In particular, the efficiency of soma to dendrite voltage transfer is highly asymmetric in low-threshold spiking cells, and in the somatofugal direction, these neurons are particularly electrotonically compact. Our data demonstrate that LTS have remarkably similar amplitudes and occur synchronously throughout the dendritic tree. In fact, these Ca(2+) spikes cannot occur locally in any part of the cell, and hence we reveal that LTS are generated by a unique whole-cell mechanism that means they always occur as spatially global spikes. This all-or-none, global electrical and biochemical signaling mechanism clearly distinguishes LTS from other signals, including backpropagating action potentials and dendritic Ca(2+)/NMDA spikes, and has important consequences for dendritic function in low-threshold spiking neurons. Low-threshold Ca(2+) spikes (LTS) are critical for important physiological processes, including generation of sleep-related oscillations, and are implicated in disorders including epilepsy, Parkinson's disease, and schizophrenia. However, the mechanism underlying LTS generation in neurons, which is thought to involve dendritic T-type Ca(2+) channels, has remained elusive due to a lack of knowledge of the dendritic properties of low-threshold spiking cells. Combining dendritic recordings, two-photon Ca(2+) imaging, and computational modeling, this study reveals that dendritic properties are highly conserved between two prominent low-threshold spiking neurons and that these properties underpin a whole-cell somatodendritic spike generation mechanism that makes the LTS a unique global electrical and biochemical signal in neurons. Copyright © 2015 Connelly et al.
FURTHER STUDY OF SOMA, DENDRITE, AND AXON EXCITATION IN SINGLE NEURONS
Eyzaguirre, Carlos; Kuffler, Stephen W.
1955-01-01
The present investigation continues a previous study in which the soma-dendrite system of sensory neurons was excited by stretch deformation of the peripheral dendrite portions. Recording was done with intracellular leads which were inserted into the cell soma while the neuron was activated orthodromically or antidromically. The analysis was also extended to axon conduction. Crayfish, Procambarus alleni (Faxon) and Orconectes virilis (Hagen), were used. 1. The size and time course of action potentials recorded from the soma-dendrite complex vary greatly with the level of the cell's membrane potential. The latter can be changed over a wide range by stretch deformation which sets up a "generator potential" in the distal portions of the dendrites. If a cell is at its resting unstretched equilibrium potential, antidromic stimulation through the axon causes an impulse which normally overshoots the resting potential and decays into an afternegativity of 15 to 20 msec. duration. The postspike negativity is not followed by an appreciable hyperpolarization (positive) phase. If the membrane potential is reduced to a new steady level a postspike positivity appears and increases linearly over a depolarization range of 12 to 20 mv. in various cells. At those levels the firing threshold of the cell for orthodromic discharges is generally reached. 2. The safety factor for conduction between axon and cell soma is reduced under three unrelated conditions, (a) During the recovery period (2 to 3 msec.) immediately following an impulse which has conducted fully over the cell soma, a second impulse may be delayed, may invade the soma partially, or may be blocked completely. (b) If progressive depolarization is produced by stretch, it leads to a reduction of impulse height and eventually to complete block of antidromic soma invasion, resembling cathodal block, (c) In some cells, when the normal membrane potential is within several millivolts of the relaxed resting state, an antidromic impulse may be blocked and may set up within the soma a local potential only. The local potential can sum with a second one or it may sum with potential changes set up in the dendrites, leading to complete invasion of the soma. Such antidromic invasion block can always be relieved by appropriate stretch which shifts the membrane potential out of the "blocking range" nearer to the soma firing level. During the afterpositivity of an impulse in a stretched cell the membrane potential may fall below or near the blocking range. During that period another impulse may be delayed or blocked. 3. Information regarding activity and conduction in dendrites has been obtained indirectly, mainly by analyzing the generator action under various conditions of stretch. The following conclusions have been reached: The large dendrite branches have similar properties to the cell body from which they arise and carry the same kind of impulses. In the finer distal filaments of even lightly depolarized dendrites, however, no axon type all-or-none conduction occurs since the generator potential persists to a varying degree during antidromic invasion of the cell. With the membrane potential at its resting level the dendrite terminals contribute to the prolonged impulse afternegativity of the soma. 4. Action potentials in impaled axons and in cell bodies have been compared. It is thought that normally the over-all duration of axon impulses is shorter. Local activity during reduction of the safety margin for conduction was studied. 5. An analysis was made of high frequency grouped discharges which occasionally arise in cells. They differ in many essential aspects from the regular discharges set up by the generator action. It is proposed that grouped discharges occur only when invasion of dendrites is not synchronous, due to a delay in excitation spread between soma and dendrites. Each impulse in a group is assumed to be caused by an impulse in at least one of the large dendrite branches. Depolarization of dendrites abolishes the grouped activity by facilitating invasion of the large dendrite branches. PMID:13252238
The DC-SIGN-CD56 interaction inhibits the anti-dendritic cell cytotoxicity of CD56 expressing cells.
Nabatov, Alexey A; Raginov, Ivan S
2015-01-01
This study aimed to clarify interactions of the pattern-recognition receptor DC-SIGN with cells from the HIV-infected peripheral blood lymphocyte cultures. Cells from control and HIV-infected peripheral blood lymphocyte cultures were tested for the surface expression of DC-SIGN ligands. The DC-SIGN ligand expressing cells were analyzed for the role of DC-SIGN-ligand interaction in their functionality. In the vast majority of experiments HIV-infected lymphocytes did not express detectable DC-SIGN ligands on their cell surfaces. In contrast, non-infected cells, carrying NK-specific marker CD56, expressed cell surface DC-SIGN ligands. The weakly polysialylated CD56 was identified as a novel DC-SIGN ligand. The treatment of DC-SIGN expressing dendritic cells with anti-DC-SIGN antibodies increased the anti-dendritic cell cytotoxicity of CD56(pos) cells. The treatment of CD56(pos) cells with a peptide, blocking the weakly polysialylated CD56-specifc trans-homophilic interactions, inhibited their anti-dendritic cells cytotoxicity. The interaction between DC-SIGN and CD56 inhibits homotypic intercellular interactions of CD56(pos) cells and protects DC-SIGN expressing dendritic cells against CD56(pos) cell-mediated cytotoxicity. This finding can have an impact on the development of approaches to HIV infection and cancer therapy as well as in transplantation medicine.
Peixoto, Mariana Lima Perazzini; Santos, Dilvani Oliveira; Souza, Ivy de Castro Campos de; Neri, Eloah Christina Lyrio; Sequeira, Danielly Correa Moreira de; De Luca, Paula Mello; Borba, Cíntia de Moraes
2014-01-01
Purpureocillium lilacinum is emerging as a causal agent of hyalohyphomycosis that is refractory to antifungal drugs; however, the pathogenic mechanisms underlying P. lilacinum infection are not understood. In this study, we investigated the interaction of P. lilacinum conidia with human macrophages and dendritic cells in vitro. Spores of a P. lilacinum clinical isolate were obtained by chill-heat shock. Mononuclear cells were isolated from eight healthy individuals. Monocytes were separated by cold aggregation and differentiated into macrophages by incubation for 7 to 10 days at 37°C or into dendritic cells by the addition of the cytokines human granulocyte-macrophage colony stimulating factor and interleukin-4. Conidial suspension was added to the human cells at 1:1, 2:1, and 5:1 (conidia:cells) ratios for 1h, 6h, and 24h, and the infection was evaluated by Giemsa staining and light microscopy. After 1h interaction, P. lilacinum conidia were internalized by human cells and after 6h contact, some conidia became inflated. After 24h interaction, the conidia produced germ tubes and hyphae, leading to the disruption of macrophage and dendritic cell membranes. The infection rate analyzed after 6h incubation of P. lilacinum conidia with cells at 2:1 and 1:1 ratios was 76.5% and 25.5%, respectively, for macrophages and 54.3% and 19.5%, respectively, for cultured dendritic cells. P. lilacinum conidia are capable of infecting and destroying both macrophages and dendritic cells, clearly demonstrating the ability of this pathogenic fungus to invade human phagocytic cells.
Larrañaga, Pedro; Benavides-Piccione, Ruth; Fernaud-Espinosa, Isabel; DeFelipe, Javier; Bielza, Concha
2017-01-01
We modeled spine distribution along the dendritic networks of pyramidal neurons in both basal and apical dendrites. To do this, we applied network spatial analysis because spines can only lie on the dendritic shaft. We expanded the existing 2D computational techniques for spatial analysis along networks to perform a 3D network spatial analysis. We analyzed five detailed reconstructions of adult human pyramidal neurons of the temporal cortex with a total of more than 32,000 spines. We confirmed that there is a spatial variation in spine density that is dependent on the distance to the cell body in all dendrites. Considering the dendritic arborizations of each pyramidal cell as a group of instances of the same observation (the neuron), we used replicated point patterns together with network spatial analysis for the first time to search for significant differences in the spine distribution of basal dendrites between different cells and between all the basal and apical dendrites. To do this, we used a recent variant of Ripley’s K function defined to work along networks. The results showed that there were no significant differences in spine distribution along basal arbors of the same neuron and along basal arbors of different pyramidal neurons. This suggests that dendritic spine distribution in basal dendritic arbors adheres to common rules. However, we did find significant differences in spine distribution along basal versus apical networks. Therefore, not only do apical and basal dendritic arborizations have distinct morphologies but they also obey different rules of spine distribution. Specifically, the results suggested that spines are more clustered along apical than in basal dendrites. Collectively, the results further highlighted that synaptic input information processing is different between these two dendritic domains. PMID:28662210
Anton-Sanchez, Laura; Larrañaga, Pedro; Benavides-Piccione, Ruth; Fernaud-Espinosa, Isabel; DeFelipe, Javier; Bielza, Concha
2017-01-01
We modeled spine distribution along the dendritic networks of pyramidal neurons in both basal and apical dendrites. To do this, we applied network spatial analysis because spines can only lie on the dendritic shaft. We expanded the existing 2D computational techniques for spatial analysis along networks to perform a 3D network spatial analysis. We analyzed five detailed reconstructions of adult human pyramidal neurons of the temporal cortex with a total of more than 32,000 spines. We confirmed that there is a spatial variation in spine density that is dependent on the distance to the cell body in all dendrites. Considering the dendritic arborizations of each pyramidal cell as a group of instances of the same observation (the neuron), we used replicated point patterns together with network spatial analysis for the first time to search for significant differences in the spine distribution of basal dendrites between different cells and between all the basal and apical dendrites. To do this, we used a recent variant of Ripley's K function defined to work along networks. The results showed that there were no significant differences in spine distribution along basal arbors of the same neuron and along basal arbors of different pyramidal neurons. This suggests that dendritic spine distribution in basal dendritic arbors adheres to common rules. However, we did find significant differences in spine distribution along basal versus apical networks. Therefore, not only do apical and basal dendritic arborizations have distinct morphologies but they also obey different rules of spine distribution. Specifically, the results suggested that spines are more clustered along apical than in basal dendrites. Collectively, the results further highlighted that synaptic input information processing is different between these two dendritic domains.
Detecting T-cell reactivity to whole cell vaccines
Brusic, Ana; Hainz, Ursula; Wadleigh, Martha; Neuberg, Donna; Su, Mei; Canning, Christine M.; DeAngelo, Daniel J.; Stone, Richard M.; Lee, Jeng-Shin; Mulligan, Richard C.; Ritz, Jerome; Dranoff, Glenn; Sasada, Tetsuro; Wu, Catherine J.
2012-01-01
BCR-ABL+ K562 cells hold clinical promise as a component of cancer vaccines, either as bystander cells genetically modified to express immunostimulatory molecules, or as a source of leukemia antigens. To develop a method for detecting T-cell reactivity against K562 cell-derived antigens in patients, we exploited the dendritic cell (DC)-mediated cross-presentation of proteins generated from apoptotic cells. We used UVB irradiation to consistently induce apoptosis of K562 cells, which were then fed to autologous DCs. These DCs were used to both stimulate and detect antigen-specific CD8+ T-cell reactivity. As proof-of-concept, we used cross-presented apoptotic influenza matrix protein-expressing K562 cells to elicit reactivity from matrix protein-reactive T cells. Likewise, we used this assay to detect increased anti-CML antigen T-cell reactivity in CML patients that attained long-lasting clinical remissions following immunotherapy (donor lymphocyte infusion), as well as in 2 of 3 CML patients vaccinated with lethally irradiated K562 cells that were modified to secrete high levels of granulocyte macrophage colony-stimulating factor (GM-CSF). This methodology can be readily adapted to examine the effects of other whole tumor cell-based vaccines, a scenario in which the precise tumor antigens that stimulate immune responses are unknown. PMID:23170257
Booth, Victoria; Poe, Gina R.
2005-01-01
In simulation studies using a realistic model CA1 pyramidal cell, we accounted for the shift in mean firing phase from theta cycle peaks to theta cycle troughs during REM sleep reactivation of hippocampal CA1 place cells over several days of growing familiarization with an environment (Poe et al., 2000). Changes in the theta drive between proximal and distal dendritic regions of the cell modulated the theta phase of firing when stimuli were presented at proximal and distal dendritic locations. Stimuli at proximal dendritic sites (proximal to 100 μm from the soma) invoked firing with a significant phase preference at the depolarizing theta peaks, while distal stimuli (> 290 μm from the soma) invoked firing at hyperpolarizing theta troughs. The location-related phase preference depended on active dendritic conductances, a sufficient electrotonic separation between input sites and theta-induced subthreshold membrane potential oscillations in the cell. The simulation results predict that the shift in mean theta phase during REM sleep cellular reactivation could occur through potentiation of distal dendritic (temporo-ammonic) synapses and depotentiation of proximal dendritic (Schaffer collateral) synapses over the course of familiarization. PMID:16411243
The neuronal structure of paramamillary nuclei in Bison bonasus: Nissl and Golgi pictures.
Robak, A; Szteyn, S; Równiak, M
1998-01-01
The studies were carried out on the hypothalamus of bison bonasus aged 2 and 3 months. Sections were made by means of Bagiński's technique and Nissl and Klüver-Barrera methods. Four types of neurons were distinguished in the paramamillary nuclei: nucleus supramamillaris (Sm) and nucleus tuberomammillaris pars posterior (Tmp). Type I, small and medium-size, triangular or fusiform cells, which have 2-3 slender, poorly ramified dendrites; typical leptodendritic neurons. Type II, medium size neurons with quadrangular or spindle-shaped perikaryons. Most of them have 3-4 thick dendritic trunks with ramifying relatively long dendrites. These cells show stalked-appearance and possess different appendages sparsely distributed. Type III is similar to type II, but is made of medium-size to large multipolar cells having quadrangular, triangular or fusiform perikaryons and relatively short dendrites. Type IV, small and medium-size, globular cells with 2 or 3 dendritic trunks, which dichotomously subdivide into quaternary dendrites. In all types of neurons, axons emerge from the perikaryon or initial portion of a dendritic trunk. Type I was found in both studied nuclei. Types II and III constitute mainly the nucleus tuberomamillaris pars posterior. Type IV preponderate in the nucleus supramamillaris. The characteristic feature of Tmp cells, in Nissl picture was irregular contour of their somas and clumps of rough Nisls granules, which appear to lie outside the perikaryons. In Sm there were also lightly stained small rounded cells having both small amount of the cytoplasm and tigroid matter.
2012-07-01
Mediated by Listeria -Stimulated Human Dendritic Cells: Implications for Cancer Vaccine Therapy PRINCIPAL INVESTIGATOR: David J. Chung, M D , Ph D...CONTRACT NUMBER Evaluation of Immune Responses Mediated by Listeria -Stimulated Human Dendritic Cells: Implications for Cancer Vaccine Therapy 5b...Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The purpose of this project is to study the immunomodulatory effect of Listeria on
Dudda, Jan C; Simon, Jan C; Martin, Stefan
2004-01-15
The effector/memory T cell pool branches in homing subsets selectively trafficking to organs such as gut or skin. Little is known about the critical factors in the generation of skin-homing CD8+ T cells, although they are crucial effectors in skin-restricted immune responses such as contact hypersensitivity and melanoma defense. In this study, we show that intracutaneous, but not i.v. injection of bone marrow-derived dendritic cells induced skin-homing CD8+ T cells with up-regulated E-selectin ligand expression and effector function in contact hypersensitivity. The skin-homing potential and E-selectin ligand expression remained stable in memory phase without further Ag contact. In contrast, i.p. injection induced T cells expressing the gut-homing integrin alpha(4)beta(7). Although differential expression of these adhesion molecules was strictly associated with the immunization route, the postulated skin-homing marker CCR4 was transiently up-regulated in all conditions. Interestingly, dendritic cells from different tissues effectively induced the corresponding homing markers on T cells in vitro. Our results suggest a crucial role for the tissue microenvironment and dendritic cells in the instruction of T cells for tissue-selective homing and demonstrate that Langerhans cells are specialized to target T cells to inflamed skin.
Di, Xiaxia; Oskarsson, Jon T; Omarsdottir, Sesselja; Freysdottir, Jona; Hardardottir, Ingibjorg
2017-12-01
Halichondria (Halichondriidae) marine sponges contain components possessing various biological activities, but immunomodulation is not among the ones reported. This study evaluated the immunomodulatory effects of fractions/compounds from Halichondria sitiens Schmidt. Crude dichloromethane/methanol extracts of H. sitiens were subjected to various chromatographic techniques to obtain fractions/compounds with immunomodulatory activity, using bioassay-guided isolation. The effects of the fractions/compounds were determined by measuring secretion of cytokines and expression of surface molecules by dendritic cells (DCs) and their ability to stimulate and modify cytokine secretion by allogeneic CD4 + T cells. The bioactive fractions were chemically analyzed to identify the immunomodulatory constituents by 1D, 2D NMR, and HRMS data. Several lipophilic fractions from H. sitiens at 10 μg/mL decreased secretion of the pro-inflammatory cytokines IL-12p40 and IL-6 by the DCs, with maximum inhibition being 64% and 25%, respectively. In addition, fractions B3b3F and B3b3J decreased the ability of DCs to induce T cell secretion of IFN-γ. Fraction B3b3 induced morphological changes in DCs, characterized by extreme elongation of dendrites and cell clustering. Chemical screening revealed the presence of glycerides and some minor unknown constituents in the biologically active fractions. One new glyceride, 2,3-dihydroxypropyl 2-methylhexadecanoate (1), was isolated from one fraction and two known compounds, 3-[(1-methoxyhexadecyl)oxy]propane-1,2-diol (2) and monoheptadecanoin (3), were identified in another, but none of them had immunomodulatory activity. These results demonstrate that several lipophilic fractions from H. sitiens have anti-inflammatory effects on DCs and decrease their ability to induce a Th1 type immune response.
The expression and function of cathepsin E in dendritic cells.
Chain, Benjamin M; Free, Paul; Medd, Patrick; Swetman, Claire; Tabor, Alethea B; Terrazzini, Nadia
2005-02-15
Cathepsin E is an aspartic proteinase that has been implicated in Ag processing within the class II MHC pathway. In this study, we document the presence of cathepsin E message and protein in human myeloid dendritic cells, the preeminent APCs of the immune system. Cathepsin E is found in a perinuclear compartment, which is likely to form part of the endoplasmic reticulum, and also a peripheral compartment just beneath the cell membrane, with a similar distribution to that of Texas Red-dextran within 2 min of endocytosis. To investigate the function of cathepsin E in processing, a new soluble targeted inhibitor was synthesized by linking the microbial aspartic proteinase inhibitor pepstatin to mannosylated BSA via a cleavable disulfide linker. This inhibitor was shown to block cathepsin D/E activity in cell-free assays and within dendritic cells. The inhibitor blocked the ability of dendritic cells from wild-type as well as cathepsin D-deficient mice to present intact OVA, but not an OVA-derived peptide, to cognate T cells. The data therefore support the hypothesis that cathepsin E has an important nonredundant role in the class II MHC Ag processing pathway within dendritic cells.
Laser surface modification of 316 L stainless steel with bioactive hydroxyapatite.
Balla, Vamsi Krishna; Das, Mitun; Bose, Sreyashree; Ram, G D Janaki; Manna, Indranil
2013-12-01
Laser-engineered net shaping (LENS™), a commercial additive manufacturing process, was used to modify the surfaces of 316 L stainless steel with bioactive hydroxyapatite (HAP). The modified surfaces were characterized in terms of their microstructure, hardness and apatite forming ability. The results showed that with increase in laser energy input from 32 J/mm(2) to 59 J/mm(2) the thickness of the modified surface increased from 222±12 μm to 355±6 μm, while the average surface hardness decreased marginally from 403±18 HV0.3 to 372±8 HV0.3. Microstructural studies showed that the modified surface consisted of austenite dendrites with HAP and some reaction products primarily occurring in the inter-dendritic regions. Finally, the surface-modified 316 L samples immersed in simulated body fluids showed significantly higher apatite precipitation compared to unmodified 316 L samples. © 2013.
Blastic plasmacytoid dendritic cell neoplasm in an elderly woman.
Foong, H B B; Chong, M; Taylor, E M; Carlson, J A; Petrella, T
2013-04-01
Blastic plasmacytoid dendritic cell neoplasm (a.k.a. NK cell lymphoma, CD4+CD56+ haematodermic neoplasm) is a rare aggressive tumour that arises from plasmacytoid dendritic cell precursors. We report the first case from Malaysia of a 79-year-old Chinese woman who presented with purpuric plaques and nodules produced by pleomorphic CD4+, CD56+, CD68+, CD123+ and CD303+, but CD2APmononuclear cell infiltrates. Leukemic dissemination occurred and she succumbed to disease without treatment 4 weeks after diagnosis and 9 months after onset of cutaneous disease.
Feline atopic dermatitis. A model for Langerhans cell participation in disease pathogenesis.
Roosje, P J; Whitaker-Menezes, D; Goldschmidt, M H; Moore, P F; Willemse, T; Murphy, G F
1997-10-01
Atopic dermatitis is a disorder characterized by cutaneous exanthemata as a consequence of exaggerated eczematous reactions to topical and systemic allergens. Langerhans cells, expressing CD1a and HLA-DR, and dermal dendritic cells, expressing HLA-DR, are known to be potent antigen-presenting cells and are thought to play an important role in the pathogenesis of atopic dermatitis. The immunophenotype of lesional skin in atopic dermatitis in humans involves increased numbers of CD1a+/MHC class II+ dendritic cells in addition to activated T cells, mast cells, and macrophages. To establish feline skin as a model for the study of human atopic dermatitis, and to elucidate the role of dendritic cells in feline atopic dermatitis, we investigated the presence of CD1a+ cells and MHC class II+ cells in the epidermis and dermis of lesional feline skin and in skin of healthy control animals. Immunohistochemistry revealed that MHC class II+ epidermal dendritic cells were CD1a+ in normal feline skin and significantly increased numbers of CD1a+ cells and MHC class II+ cells were present in the epidermis and dermis of lesional skin. These data provide the first correlative documentation of CD1a expression by feline dendritic cells containing Birbeck granules, and indicate the utility of feline skin in the study of human cutaneous atopy.
Plasmacytoid dendritic cell leukaemia/lymphoma: towards a well defined entity?
Garnache-Ottou, Francine; Feuillard, Jean; Saas, Philippe
2007-02-01
CD4(+)/CD56(+) haematodermic neoplasm or 'early' plasmacytoid dendritic cell leukaemia/lymphoma (pDCL) was described as a disease entity in the last World Health Organisation/European Organisation for Research and Treatment of Cancer classification for cutaneous lymphomas. These leukaemia/lymphomas co-express CD4 and CD56 without any other lineage-specific markers and have been identified as arising from plasmacytoid dendritic cells. Despite a fairly homogeneous pattern of markers expressed by most pDCL, numerous distinctive features (e.g. cytological aspects and aberrant marker expression) have been reported. This may be related to the 'lineage-independent developmental' programme of dendritic cells, which may be able to develop from either immature or already committed haematopoietic progenitors. This highlights the need for specific validated markers to diagnose such aggressive leukaemia. Here, we propose--among others (e.g. T-cell leukaemia 1)--blood dendritic cell antigen-2 and high levels of CD123 expression as potential markers. In addition, we propose a multidisciplinary approach including several fields of haematology to improve pDCL diagnosis.
Szteyn, S; Robak, A; Równiak, M
1997-01-01
The neuronal structure of the somatic oculomotor nucleus (SON) was studied on the basis of Nissl and Golgi preparations, obtained from mesencephalons of 4 European bisons. We distinguished four types of neurons in the investigated nucleus: 1. The large multipolar nerve cells with 5-8 thick dendritic trunks and a thin axon which emerges directly from the soma. These are the most numerous neurons in the SON. 2. The small multipolar neurons. These cells have 4-6 thick dendritic trunks. An axon arises mostly from initial segment of one of the dendrites. This type represents about 8% neurons of SON. 3. The triangular neurons. From perikaryon 3 thick dendritic trunks emerge. A thin axon arises directly from the cell body. These cells make about 10% neurons of SON. 4. The pear-shaped cells which have 1 or 2 dendritic trunks concentrate at one pole of the neurons. In the SON there are about 2% pear-shaped cells. Their features correspond to the features attributed by many authors to the interneurons.
Rationale: Historically, single cell culture models have been limited in pathological and physiological relevance. A co-culture model of dendritic cells (DCs) and differentiated human airway epithelial cells was developed to examine potential interactions between these two cell t...
Sharma, Sherven; Batra, Raj K; Yang, Seok Chul; Hillinger, Sven; Zhu, Li; Atianzar, Kimberly; Strieter, Robert M; Riedl, Karen; Huang, Min; Dubinett, Steven M
2003-11-01
The antitumor efficiency of dendritic cells transduced with an adenovirus vector expressing interleukin (IL)-7 (DC-AdIL-7) was evaluated in a murine model of spontaneous bronchoalveolar cell carcinoma. These transgenic mice (CC-10 TAg), expressing the SV40 large T antigen under the Clara cell promoter, develop bilateral multifocal pulmonary adenocarcinomas and die at 4 months as a result of progressive pulmonary tumor burden. Injection of DC-AdIL-7 in the axillary lymph node region (ALNR) weekly for 3 weeks led to a marked reduction in tumor burden with extensive lymphocytic infiltration of the tumors and enhanced survival. The antitumor responses were accompanied by the enhanced elaboration of interferon (IFN)-gamma and IL-12 as well as an increase in the antiangiogenic chemokines, IFN-gamma-inducible protein 10 (IP-10/CXCL10) and monokine induced by IFN-gamma (MIG/CXCL9). In contrast, production of the immunosuppressive mediators IL-10, transforming growth factor (TGF)-beta, prostaglandin E(2) (PGE(2)), and the proangiogenic modulator vascular endothelial growth factor (VEGF) decreased in response to DC-AdIL-7 treatment. Significant reduction in tumor burden in a model in which tumors develop in an organ-specific manner provides a strong rationale for further evaluation of DC-AdIL-7 in regulation of tumor immunity and its use in lung cancer genetic immunotherapy.
Ficus carica Polysaccharides Promote the Maturation and Function of Dendritic Cells
Tian, Jie; Zhang, Yue; Yang, Xiaomin; Rui, Ke; Tang, Xinyi; Ma, Jie; Chen, Jianguo; Xu, Huaxi; Lu, Liwei; Wang, Shengjun
2014-01-01
Various polysaccharides purified from plants are considered to be biological response modifiers and have been shown to enhance immune responses. Ficus carica L. is a Chinese traditional plant and has been widely used in Asian countries for its anti-tumor properties. Ficus carica polysaccharides (FCPS), one of the most essential and effective components in Ficus carica L., have been considered to be a beneficial immunomodulator and may be used in immunotherapy. However, the immunologic mechanism of FCPS is still unclear. Dectin-1 is a non-toll-like pattern recognition receptor, predominately expressed on dendritic cells (DCs). Activation of DCs through dectin-1 signaling can lead to the maturation of DC, thus inducing both innate and adaptive immune responses against tumor development and microbial infection. In our study, we found that FCPS could effectively stimulate DCs, partially through the dectin-1/Syk pathway, and promote their maturation, as shown by the up-regulation of CD40, CD80, CD86, and major histocompatibility complex II (MHCII). FCPS also enhanced the production of cytokines by DCs, including IL-12, IFN-γ, IL-6, and IL-23. Moreover, FCPS-treated DCs showed an enhanced capability to stimulate T cells and promote T cell proliferation. Altogether, these results demonstrate that FCPS are able to activate and maturate DCs, thereby up-regulating the immunostimulatory capacity of DCs, which leads to enhanced T cell responses. PMID:25026176
Lee, Andrew W; Hertel, Laura; Louie, Ryan K; Burster, Timo; Lacaille, Vashti; Pashine, Achal; Abate, Davide A; Mocarski, Edward S; Mellins, Elizabeth D
2006-09-15
Hemopoietic stem cell-derived mature Langerhans-type dendritic cells (LC) are susceptible to productive infection by human CMV (HCMV). To investigate the impact of infection on this cell type, we examined HLA-DR biosynthesis and trafficking in mature LC cultures exposed to HCMV. We found decreased surface HLA-DR levels in viral Ag-positive as well as in Ag-negative mature LC. Inhibition of HLA-DR was independent of expression of unique short US2-US11 region gene products by HCMV. Indeed, exposure to UV-inactivated virus, but not to conditioned medium from infected cells, was sufficient to reduce HLA-DR on mature LC, implicating particle binding/penetration in this effect. Reduced surface levels reflected an altered distribution of HLA-DR because total cellular HLA-DR was not diminished. Accumulation of HLA-DR was not explained by altered cathepsin S activity. Mature, peptide-loaded HLA-DR molecules were retained within cells, as assessed by the proportion of SDS-stable HLA-DR dimers. A block in egress was implicated, as endocytosis of surface HLA-DR was not increased. Immunofluorescence microscopy corroborated the intracellular retention of HLA-DR and revealed markedly fewer HLA-DR-positive dendritic projections in infected mature LC. Unexpectedly, light microscopic analyses showed a dramatic loss of the dendrites themselves and immunofluorescence revealed that cytoskeletal elements crucial for the formation and maintenance of dendrites are disrupted in viral Ag-positive cells. Consistent with these dendrite effects, HCMV-infected mature LC exhibit markedly reduced chemotaxis in response to lymphoid chemokines. Thus, HCMV impedes MHC class II molecule trafficking, dendritic projections, and migration of mature LC. These changes likely contribute to the reduced activation of CD4+ T cells by HCMV-infected mature LC.
Interactions of Cryptococcus with Dendritic Cells
Wozniak, Karen L.
2018-01-01
The fungal pathogens Cryptococcus neoformans and Cryptococcus gattii can cause life-threatening infections in immune compromised and immune competent hosts. These pathogens enter the host via inhalation, and respiratory tract innate immune cells such as dendritic cells (DCs) are one of the first host cells they encounter. The interactions between Cryptococcus and innate immune cells play a critical role in the progression of disease in the host. This review will focus specifically on the interactions between Cryptococcus and dendritic cells (DCs), including recognition/processing by DCs, effects of immune mediators on DC recruitment and activity, and the potential for DC vaccination against cryptococcosis. PMID:29543719
Interactions of Cryptococcus with Dendritic Cells.
Wozniak, Karen L
2018-03-15
The fungal pathogens Cryptococcus neoformans and Cryptococcus gattii can cause life-threatening infections in immune compromised and immune competent hosts. These pathogens enter the host via inhalation, and respiratory tract innate immune cells such as dendritic cells (DCs) are one of the first host cells they encounter. The interactions between Cryptococcus and innate immune cells play a critical role in the progression of disease in the host. This review will focus specifically on the interactions between Cryptococcus and dendritic cells (DCs), including recognition/processing by DCs, effects of immune mediators on DC recruitment and activity, and the potential for DC vaccination against cryptococcosis.
Arancio, O; Yoshimura, M; Murase, K; MacDermott, A B
1993-01-01
Excitatory amino acid receptor distribution was mapped on acutely dissociated neurons from postnatal rat spinal cord dorsal horn. N-methyl D-aspartate, quisqualate and kainate were applied to multiple locations along the somal and dendritic surfaces of voltage-clamped neurons by means of a pressure application system. To partially compensate for the decrement of response amplitude due to current loss between the site of activation on the dendrite and the recording electrode at the soma, a solution containing 0.15 M KCl was applied on the cell bodies and dendrites of some cells to estimate an empirical length constant. In the majority of the cells tested, the dendritic membrane had regions of higher sensitivity to excitatory amino acid agonists than the somatic membrane, with dendritic response amplitudes reaching more than seven times those at the cell body. A comparison of the relative changes in sensitivity between each combination of two of the three excitatory amino acid agonists along the same dendrite showed different patterns of agonist sensitivity along the dendrite in the majority of the cells. These data were obtained from dorsal horn neurons that had developed and formed synaptic connections in vivo. They demonstrate that in contrast to observations made on ventral horn neurons, receptor density for all the excitatory amino acid receptors on dorsal horn neurons, including the N-methyl-D-aspartate receptor, are generally higher on the dendrites than on the soma. Further, these results are similar to those obtained from dorsal horn neurons grown in culture.
Retinal ganglion cell dendritic fields in old-world monkeys are oriented radially.
Schall, J D; Perry, V H; Leventhal, A G
1986-03-12
We analyzed the dendritic field morphology of 297 ganglion cells from peripheral regions of monkey retina. Most of the dendritic fields were elongated, and there was a significant tendency for the dendritic fields to be oriented radially, i.e., like the spokes of a wheel with the fovea at the hub. An overrepresentation of radial orientations in the peripheral retina of primates might explain why humans are best able to detect stimuli which are oriented radially using peripheral vision.
Subramaniam, Sakthivel; Cao, Dianjun; Tian, Debin; Cao, Qian M; Overend, Christopher; Yugo, Danielle M; Matzinger, Shannon R; Rogers, Adam J; Heffron, C Lynn; Catanzaro, Nicholas; Kenney, Scott P; Opriessnig, Tanja; Huang, Yao-Wei; Labarque, Geoffrey; Wu, Stephen Q; Meng, Xiang-Jin
2017-01-02
Porcine epidemic diarrhea virus (PEDV) first emerged in the United States in 2013 causing high mortality and morbidity in neonatal piglets with immense economic losses to the swine industry. PEDV is an alpha-coronavirus replicating primarily in porcine intestinal cells. PEDV vaccines are available in Asia and Europe, and conditionally-licensed vaccines recently became available in the United States but the efficacies of these vaccines in eliminating PEDV from swine populations are questionable. In this study, the immunogenicity of a subunit vaccine based on the spike protein of PEDV, which was directly targeted to porcine dendritic cells (DCs) expressing Langerin, was assessed. The PEDV S antigen was delivered to the dendritic cells through a single-chain antibody specific to Langerin and the targeted cells were stimulated with cholera toxin adjuvant. This approach, known as "dendritic cell targeting," greatly improved PEDV S antigen-specific T cell interferon-γ responses in the CD4 pos CD8 pos T cell compartment in pigs as early as 7days upon transdermal administration. When the vaccine protein was targeted to Langerin pos DCs systemically through intramuscular vaccination, it induced higher serum IgG and IgA responses in pigs, though these responses require a booster dose, and the magnitude of T cell responses were lower as compared to transdermal vaccination. We conclude that PEDV spike protein domains targeting Langerin-expressing dendritic cells significantly increased CD4 T cell immune responses in pigs. The results indicate that the immunogenicity of protein subunit vaccines can be greatly enhanced by direct targeting of the vaccine antigens to desirable dendritic cell subsets in pigs. Copyright © 2016 Elsevier B.V. All rights reserved.
Phase I dendritic cell p53 peptide vaccine for head and neck cancer.
Schuler, Patrick J; Harasymczuk, Malgorzata; Visus, Carmen; Deleo, Albert; Trivedi, Sumita; Lei, Yu; Argiris, Athanassios; Gooding, William; Butterfield, Lisa H; Whiteside, Theresa L; Ferris, Robert L
2014-05-01
p53 accumulation in head and neck squamous cell carcinoma (HNSCC) cells creates a targetable tumor antigen. Adjuvant dendritic cell (DC)-based vaccination against p53 was tested in a phase I clinical trial. Monocyte-derived DC from 16 patients were loaded with two modified HLA-class I p53 peptides (Arm 1), additional Th tetanus toxoid peptide (Arm 2), or additional Th wild-type (wt) p53-specific peptide (Arm 3). Vaccine DCs (vDC) were delivered to inguinal lymph nodes at three time points. vDC phenotype, circulating p53-specific T cells, and regulatory T cells (Treg) were serially monitored by flow cytometry and cytokine production by Luminex. vDC properties were compared with those of DC1 generated with an alternative maturation regimen. No grade II-IV adverse events were observed. Two-year disease-free survival of 88% was favorable. p53-specific T-cell frequencies were increased postvaccination in 11 of 16 patients (69%), with IFN-γ secretion detected in four of 16 patients. Treg frequencies were consistently decreased (P = 0.006) relative to prevaccination values. The phenotype and function of DC1 were improved relative to vDC. Adjuvant p53-specific vaccination of patients with HNSCC was safe and associated with promising clinical outcome, decreased Treg levels, and modest vaccine-specific immunity. HNSCC patients' DC required stronger maturation stimuli to reverse immune suppression and improve vaccine efficacy. ©2014 AACR.
Dendritic excitability modulates dendritic information processing in a purkinje cell model.
Coop, Allan D; Cornelis, Hugo; Santamaria, Fidel
2010-01-01
Using an electrophysiological compartmental model of a Purkinje cell we quantified the contribution of individual active dendritic currents to processing of synaptic activity from granule cells. We used mutual information as a measure to quantify the information from the total excitatory input current (I(Glu)) encoded in each dendritic current. In this context, each active current was considered an information channel. Our analyses showed that most of the information was encoded by the calcium (I(CaP)) and calcium activated potassium (I(Kc)) currents. Mutual information between I(Glu) and I(CaP) and I(Kc) was sensitive to different levels of excitatory and inhibitory synaptic activity that, at the same time, resulted in the same firing rate at the soma. Since dendritic excitability could be a mechanism to regulate information processing in neurons we quantified the changes in mutual information between I(Glu) and all Purkinje cell currents as a function of the density of dendritic Ca (g(CaP)) and Kca (g(Kc)) conductances. We extended our analysis to determine the window of temporal integration of I(Glu) by I(CaP) and I(Kc) as a function of channel density and synaptic activity. The window of information integration has a stronger dependence on increasing values of g(Kc) than on g(CaP), but at high levels of synaptic stimulation information integration is reduced to a few milliseconds. Overall, our results show that different dendritic conductances differentially encode synaptic activity and that dendritic excitability and the level of synaptic activity regulate the flow of information in dendrites.
Dendritic Glutamate Receptor mRNAs Show Contingent Local Hotspot-Dependent Translational Dynamics
Kim, Tae Kyung; Sul, Jai-Yoon; Helmfors, Henrik; Langel, Ulo; Kim, Junhyong; Eberwine, James
2014-01-01
SUMMARY Protein synthesis in neuronal dendrites underlies long-term memory formation in the brain. Local translation of reporter mRNAs has demonstrated translation in dendrites at focal points called translational hotspots. Various reports have shown that hundreds to thousands of mRNAs are localized to dendrites, yet the dynamics of translation of multiple dendritic mRNAs has remained elusive. Here, we show that the protein translational activities of two dendritically localized mRNAs are spatiotemporally complex but constrained by the translational hotspots in which they are colocalized. Cotransfection of glutamate receptor 2 (GluR2) and GluR4 mRNAs (engineered to encode different fluorescent proteins) into rat hippocampal neurons demonstrates a heterogeneous distribution of translational hotspots for the two mRNAs along dendrites. Stimulation with s-3,5-dihydroxy-phenylglycine modifies the translational dynamics of both of these RNAs in a complex saturable manner. These results suggest that the translational hotspot is a primary structural regulator of the simultaneous yet differential translation of multiple mRNAs in the neuronal dendrite. PMID:24075992
Con-nectin axons and dendrites.
Beaudoin, Gerard M J
2006-07-03
Unlike adherens junctions, synapses are asymmetric connections, usually between axons and dendrites, that rely on various cell adhesion molecules for structural stability and function. Two cell types of adhesion molecules found at adherens junctions, cadherins and nectins, are thought to mediate homophilic interaction between neighboring cells. In this issue, Togashi et al. (see p. 141) demonstrate that the differential localization of two heterophilic interacting nectins mediates the selective attraction of axons and dendrites in cooperation with cadherins.
ERIC Educational Resources Information Center
Saad, Khaled; Zahran, Asmaa M.; Elsayh, Khalid I.; Abdel-Rahman, Ahmed A.; Al-Atram, Abdulrahman A.; Hussein, Almontaser; El-Gendy, Yasmin G.
2017-01-01
The aim of our study was to evaluate the frequencies of myeloid dendritic cells (mDCs) and plasmacytoid dendritic cells (pDCs) in children with ASD. Subjects were 32 children with ASD and 30 healthy children as controls. The numbers of mDCs and pDCs and the expression of CD86 and CD80 on the entire DCs were detected by flow cytometry. ASD children…
Neutrophils, dendritic cells and Toxoplasma.
Denkers, Eric Y; Butcher, Barbara A; Del Rio, Laura; Bennouna, Soumaya
2004-03-09
Toxoplasma gondii rapidly elicits strong Type 1 cytokine-based immunity. The necessity for this response is well illustrated by the example of IFN-gamma and IL-12 gene knockout mice that rapidly succumb to the effects of acute infection. The parasite itself is skilled at sparking complex interactions in the innate immune system that lead to protective immunity. Neutrophils are one of the first cell types to arrive at the site of infection, and the cells release several proinflammatory cytokines and chemokines in response to Toxoplasma. Dendritic cells are an important source of IL-12 during infection with T. gondii and other microbial pathogens, and they are also specialized for high-level antigen presentation to T lymphocytes. Tachyzoites express at least two types of molecules that trigger innate immune cell cytokine production. One of these involves Toll-like receptor/MyD88 pathways common to many microbial pathogens. The second pathway is less conventional and involves molecular mimicry between a parasite cyclophilin and host CC chemokine receptor 5-binding ligands. Neutrophils, dendritic cells and Toxoplasma work together to elicit the immune response required for host survival. Cytokine and chemokine cross-talk between parasite-triggered neutrophils and dendritic cells results in recruitment, maturation and activation of the latter. Neutrophil-empowered dendritic cells possess properties expected of highly potent antigen presenting cells that drive T helper 1 generation.
Cellular and dendritic growth in a binary melt - A marginal stability approach
NASA Technical Reports Server (NTRS)
Laxmanan, V.
1986-01-01
A simple model for the constrained growth of an array of cells or dendrites in a binary alloy in the presence of an imposed positive temperature gradient in the liquid is proposed, with the dendritic or cell tip radius calculated using the marginal stability criterion of Langer and Muller-Krumbhaar (1977). This approach, an approach adopting the ad hoc assumption of minimum undercooling at the cell or dendrite tip, and an approach based on the stability criterion of Trivedi (1980) all predict tip radii to within 30 percent of each other, and yield a simple relationship between the tip radius and the growth conditions. Good agreement is found between predictions and data obtained in a succinonitrile-acetone system, and under the present experimental conditions, the dendritic tip stability parameter value is found to be twice that obtained previously, possibly due to a transition in morphology from a cellular structure with just a few side branches, to a more fully developed dendritic structure.
A dendrite-autonomous mechanism for direction selectivity in retinal starburst amacrine cells.
Hausselt, Susanne E; Euler, Thomas; Detwiler, Peter B; Denk, Winfried
2007-07-01
Detection of image motion direction begins in the retina, with starburst amacrine cells (SACs) playing a major role. SACs generate larger dendritic Ca(2+) signals when motion is from their somata towards their dendritic tips than for motion in the opposite direction. To study the mechanisms underlying the computation of direction selectivity (DS) in SAC dendrites, electrical responses to expanding and contracting circular wave visual stimuli were measured via somatic whole-cell recordings and quantified using Fourier analysis. Fundamental and, especially, harmonic frequency components were larger for expanding stimuli. This DS persists in the presence of GABA and glycine receptor antagonists, suggesting that inhibitory network interactions are not essential. The presence of harmonics indicates nonlinearity, which, as the relationship between harmonic amplitudes and holding potential indicates, is likely due to the activation of voltage-gated channels. [Ca(2+)] changes in SAC dendrites evoked by voltage steps and monitored by two-photon microscopy suggest that the distal dendrite is tonically depolarized relative to the soma, due in part to resting currents mediated by tonic glutamatergic synaptic input, and that high-voltage-activated Ca(2+) channels are active at rest. Supported by compartmental modeling, we conclude that dendritic DS in SACs can be computed by the dendrites themselves, relying on voltage-gated channels and a dendritic voltage gradient, which provides the spatial asymmetry necessary for direction discrimination.
Histopathology of human superficial herpes simplex keratitis.
Maudgal, P. C.; Missotten, L.
1978-01-01
In vivo corneal replicas were made in 20 cases of patients with superficial dendritic ulcers of the cornea. Histopathological study of the replicas and superficial epithelial cells showed that the dendrites are composed of rounded epithelial cells and variable sized syncytia containing bizarre shaped nuclei. Pseudopodia-like processes containing DNA and some RNA extend from the syncytia into the surrounding epithelial cells, which on coming into contact with these processes become rounded and liquefied to give rise to another syncytium. The epithelial cells adjacent to the dendrite and elongated and usually orientated parallel to the long axis of the lesion. Surrounding the terminal bulbs, they are disposed in an arcuate fashion. These cells show C-mitotic lesions, intranuclear and cytoplasmic inclusion bodies, and polykaryocyte formation. Microscopic examination of the corneal replicas shows the intranuclear lesions and rounding of cells up to about 2 mm away from the dendritic ulcers. These areas appear normal on clinical examination. Images PMID:629910
Ceroi, Adam; Masson, David; Roggy, Anne; Roumier, Christophe; Chagué, Cécile; Gauthier, Thierry; Philippe, Laure; Lamarthée, Baptiste; Angelot-Delettre, Fanny; Bonnefoy, Francis; Perruche, Sylvain; Biichle, Sabeha; Preudhomme, Claude; Macintyre, Elisabeth; Lagrost, Laurent; Garnache-Ottou, Francine
2016-01-01
Blastic plasmacytoid dendritic cell (PDC) neoplasm (BPDCN) is an aggressive hematological malignancy with a poor prognosis that derives from PDCs. No consensus for optimal treatment modalities is available today and the full characterization of this leukemia is still emerging. We identified here a BPDCN-specific transcriptomic profile when compared with those of acute myeloid leukemia and T-acute lymphoblastic leukemia, as well as the transcriptomic signature of primary PDCs. This BPDCN gene signature identified a dysregulation of genes involved in cholesterol homeostasis, some of them being liver X receptor (LXR) target genes. LXR agonist treatment of primary BPDCN cells and BPDCN cell lines restored LXR target gene expression and increased cholesterol efflux via the upregulation of adenosine triphosphate–binding cassette (ABC) transporters, ABCA1 and ABCG1. LXR agonist treatment was responsible for limiting BPDCN cell proliferation and inducing intrinsic apoptotic cell death. LXR activation in BPDCN cells was shown to interfere with 3 signaling pathways associated with leukemic cell survival, namely: NF-κB activation, as well as Akt and STAT5 phosphorylation in response to the BPDCN growth/survival factor interleukin-3. These effects were increased by the stimulation of cholesterol efflux through a lipid acceptor, the apolipoprotein A1. In vivo experiments using a mouse model of BPDCN cell xenograft revealed a decrease of leukemic cell infiltration and BPDCN-induced cytopenia associated with increased survival after LXR agonist treatment. This demonstrates that cholesterol homeostasis is modified in BPDCN and can be normalized by treatment with LXR agonists which can be proposed as a new therapeutic approach. PMID:27702801
Identification of a dendritic cell receptor that couples sensing of necrosis to immunity.
Sancho, David; Joffre, Olivier P; Keller, Anna M; Rogers, Neil C; Martínez, Dolores; Hernanz-Falcón, Patricia; Rosewell, Ian; Reis e Sousa, Caetano
2009-04-16
Injury or impaired clearance of apoptotic cells leads to the pathological accumulation of necrotic corpses, which induce an inflammatory response that initiates tissue repair. In addition, antigens present in necrotic cells can sometimes provoke a specific immune response and it has been argued that necrosis could explain adaptive immunity in seemingly infection-free situations, such as after allograft transplantation or in spontaneous and therapy-induced tumour rejection. In the mouse, the CD8alpha+ subset of dendritic cells phagocytoses dead cell remnants and cross-primes CD8+ T cells against cell-associated antigens. Here we show that CD8alpha+ dendritic cells use CLEC9A (also known as DNGR-1), a recently-characterized C-type lectin, to recognize a preformed signal that is exposed on necrotic cells. Loss or blockade of CLEC9A does not impair the uptake of necrotic cell material by CD8+ dendritic cells, but specifically reduces cross-presentation of dead-cell-associated antigens in vitro and decreases the immunogenicity of necrotic cells in vivo. The function of CLEC9A requires a key tyrosine residue in its intracellular tail that allows the recruitment and activation of the tyrosine kinase SYK, which is also essential for cross-presentation of dead-cell-associated antigens. Thus, CLEC9A functions as a SYK-coupled C-type lectin receptor to mediate sensing of necrosis by the principal dendritic-cell subset involved in regulating cross-priming to cell-associated antigens.
Alpha-Fetoprotein and Hepatocellular Carcinoma Immunity
Wang, Qiaoxia
2018-01-01
Hepatocarcinoma is one of the most prevalent gastroenterological cancers in the world with less effective therapy. As an oncofetal antigen and diagnostic marker for liver cancer, alpha-fetoprotein (AFP) possesses a variety of biological functions. Except for its diagnosis in liver cancer, AFP has become a target for liver cancer immunotherapy. Although the immunogenicity of AFP is weak and it could induce the immune escapes through inhibiting the function of dendritic cells, natural killer cells, and T lymphocytes, AFP has attracted more attention in liver cancer immunotherapy. By in vitro modification, the immunogenicity and immune response of AFP could be enhanced. AFP-modified immune cell vaccine or peptide vaccine has displayed the specific antitumor immunity against AFP-positive tumor cells and laid a better foundation for the immunotherapy of liver cancer.
Wen, Quan; Stepanyants, Armen; Elston, Guy N.; Grosberg, Alexander Y.; Chklovskii, Dmitri B.
2009-01-01
The shapes of dendritic arbors are fascinating and important, yet the principles underlying these complex and diverse structures remain unclear. Here, we analyzed basal dendritic arbors of 2,171 pyramidal neurons sampled from mammalian brains and discovered 3 statistical properties: the dendritic arbor size scales with the total dendritic length, the spatial correlation of dendritic branches within an arbor has a universal functional form, and small parts of an arbor are self-similar. We proposed that these properties result from maximizing the repertoire of possible connectivity patterns between dendrites and surrounding axons while keeping the cost of dendrites low. We solved this optimization problem by drawing an analogy with maximization of the entropy for a given energy in statistical physics. The solution is consistent with the above observations and predicts scaling relations that can be tested experimentally. In addition, our theory explains why dendritic branches of pyramidal cells are distributed more sparsely than those of Purkinje cells. Our results represent a step toward a unifying view of the relationship between neuronal morphology and function. PMID:19622738
miR-451 regulates dendritic cell cytokine responses to influenza infection1
Rosenberger, Carrie M.; Podyminogin, Rebecca L.; Navarro, Garnet; Zhao, Guo-Wei; Askovich, Peter S.; Weiss, Mitchell J.; Aderem, Alan
2012-01-01
MicroRNAs are important post-transcriptional regulators in immune cells, but how viral infection regulates microRNA expression to shape dendritic cell responses has not been well characterized. We identified 20 miRNAs that were differentially expressed in primary murine dendritic cells in response to the double-stranded RNA agonist poly(I:C), a subset of which were modestly regulated by influenza infection. miR-451 was unique because it was induced more strongly in primary splenic and lung dendritic cells by live viral infection than by purified agonists of pattern recognition receptors. We determined that miR-451 regulates a subset of pro-inflammatory cytokine responses. Three types of primary dendritic cells treated with anti-sense RNA antagomirs directed against miR-451 secreted elevated levels of IL-6, TNF, CCL5/RANTES, and CCL3/MIP1α, and these results were confirmed using miR-451null cells. miR-451 negatively regulates YWHAZ/14-3-3ζ protein levels in various cell types, and we measured a similar inhibition of YWHAZ levels in dendritic cells. It is known that YWHAZ can control the activity of two negative regulators of cytokine production: FOXO3, which is an inhibitory transcription factor, and ZFP36/Tristetraprolin, which binds to AU-rich elements within 3′-UTRs to destabilize cytokine mRNAs. Inhibition of miR-451 expression correlated with increased YWHAZ protein expression and decreased ZFP36 expression, providing a possible mechanism for the elevated secretion of IL-6, TNF, CCL5/RANTES, and CCL3/MIP1α. miR-451 levels are themselves increased by IL-6 and type I interferon, potentially forming a regulatory loop. These data suggest that viral infection specifically induces a miRNA that directs a negative regulatory cascade to tune dendritic cell cytokine production. PMID:23169590
Dendrodendritic Synapses in the Mouse Olfactory Bulb External Plexiform Layer
Bartel, Dianna L.; Rela, Lorena; Hsieh, Lawrence; Greer, Charles A.
2014-01-01
Odor information relayed by olfactory bulb projection neurons, mitral and tufted cells (M/T), is modulated by pairs of reciprocal dendrodendritic synaptic circuits in the external plexiform layer (EPL). Interneurons, which are accounted for largely by granule cells, receive depolarizing input from M/T dendrites and in turn inhibit current spread in M/T dendrites via hyperpolarizing reciprocal dendrodendritic synapses. Because the location of dendrodendritic synapses may significantly affect the cascade of odor information, we assessed synaptic properties and density within sublaminae of the EPL and along the length of M/T secondary dendrites. In electron micrographs the M/T to granule cell synapse appeared to predominate and were equivalent in both the outer and inner EPL. However, the dendrodendritic synapses from granule cell spines onto M/T dendrites, were more prevalent in the outer EPL. In contrast, individual gephyrin-IR puncta, a postsynaptic scaffolding protein at inhibitory synapses used here as a proxy for the granule to M/T dendritic synapse was equally distributed throughout the EPL. Of significance to the organization of intrabulbar circuits, gephyrin-IR synapses are not uniformly distributed along M/T secondary dendrites. Synaptic density, expressed as a function of surface area, increases distal to the cell body. Furthermore, the distributions of gephyrin-IR puncta are heterogeneous and appear as clusters along the length of the M/T dendrites. Consistent with computational models, our data suggest that temporal coding in M/T cells is achieved by precisely located inhibitory input and that distance from the soma is compensated with an increase in synaptic density. PMID:25420934
Sun, Xiaoming; Hua, Stephane; Chen, Hsiao-Rong; Ouyang, Zhengyu; Einkauf, Kevin; Tse, Samantha; Ard, Kevin; Ciaranello, Andrea; Yawetz, Sigal; Sax, Paul; Rosenberg, Eric S; Lichterfeld, Mathias; Yu, Xu G
2017-12-19
Although dendritic cells are among the human cell population best equipped for cell-intrinsic antiviral immune defense, they seem highly susceptible to infection with the Zika virus (ZIKV). Using highly purified myeloid dendritic cells isolated from individuals with naturally acquired acute infection, we here show that ZIKV induces profound perturbations of transcriptional signatures relative to healthy donors. Interestingly, we noted a remarkable downregulation of antiviral interferon-stimulated genes and innate immune sensors, suggesting that ZIKV can actively suppress interferon-dependent immune responses. In contrast, several host factors known to support ZIKV infection were strongly upregulated during natural ZIKV infection; these transcripts included AXL, the main entry receptor for ZIKV; SOCS3, a negative regulator of ISG expression; and IDO-1, a recognized inducer of regulatory T cell responses. Thus, during in vivo infection, ZIKV can transform the transcriptome of dendritic cells in favor of the virus to render these cells highly conducive to ZIKV infection. Published by Elsevier Inc.
Yamamoto, Misato; Ueda, Ryu; Takahashi, Kuniaki; Saigo, Kaoru; Uemura, Tadashi
2006-08-22
Neurons are highly polarized cells with distinct subcellular compartments, including dendritic arbors and an axon. The proper function of the nervous system relies not only on correct targeting of axons, but also on development of neuronal-class-specific geometry of dendritic arbors [1-4]. To study the intercellular control of the shaping of dendritic trees in vivo, we searched for cell-surface proteins expressed by Drosophila dendritic arborization (da) neurons [5-7]. One of them was Neuroglian (Nrg), a member of the Ig superfamily ; Nrg and vertebrate L1-family molecules have been implicated in various aspects of neuronal wiring, such as axon guidance, axonal myelination, and synapse formation [9-12]. A subset of the da neurons in nrg mutant embryos exhibited deformed dendritic arbors and abnormal axonal sprouting. Our functional analysis in a cell-type-selective manner strongly suggested that those da neurons employed Nrg to interact with the peripheral glia for suppressing axonal sprouting and for forming second-order dendritic branches. At least for the former role, Nrg functioned in concert with the intracellular adaptor protein Ankyrin (Ank) [13]. Thus, the neuron-glia interaction that is mediated by Nrg, together with Ank under some situations, contributes to axonal and dendritic morphogenesis.
Liberman, Rachel; Bond, Sarah; Shainheit, Mara G.; Stadecker, Miguel J.; Forgac, Michael
2014-01-01
The vacuolar (H+)-ATPases (V-ATPases) are ATP-driven proton pumps composed of a peripheral V1 domain and a membrane-embedded V0 domain. Regulated assembly of V1 and V0 represents an important regulatory mechanism for controlling V-ATPase activity in vivo. Previous work has shown that V-ATPase assembly increases during maturation of bone marrow-derived dendritic cells induced by activation of Toll-like receptors. This increased assembly is essential for antigen processing, which is dependent upon an acidic lysosomal pH. Cluster disruption of dendritic cells induces a semi-mature phenotype associated with immune tolerance. Thus, semi-mature dendritic cells are able to process and present self-peptides to suppress autoimmune responses. We have investigated V-ATPase assembly in bone marrow-derived, murine dendritic cells and observed an increase in assembly following cluster disruption. This increased assembly is not dependent upon new protein synthesis and is associated with an increase in concanamycin A-sensitive proton transport in FITC-loaded lysosomes. Inhibition of phosphatidylinositol 3-kinase with wortmannin or mTORC1 with rapamycin effectively inhibits the increased assembly observed upon cluster disruption. These results suggest that the phosphatidylinositol 3-kinase/mTOR pathway is involved in controlling V-ATPase assembly during dendritic cell maturation. PMID:24273170
Iron oxide nanoparticles stabilized with dendritic polyglycerols as selective MRI contrast agents
NASA Astrophysics Data System (ADS)
Nordmeyer, Daniel; Stumpf, Patrick; Gröger, Dominic; Hofmann, Andreas; Enders, Sven; Riese, Sebastian B.; Dernedde, Jens; Taupitz, Matthias; Rauch, Ursula; Haag, Rainer; Rühl, Eckart; Graf, Christina
2014-07-01
Monodisperse small iron oxide nanoparticles functionalized with dendritic polyglycerol (dPG) or dendritic polyglycerol sulfate (dPGS) are prepared. They are highly stable in aqueous solutions as well as physiological media. In particular, oleic acid capped iron oxide particles (core diameter = 11 +/- 1 nm) were modified by a ligand exchange process in a one pot synthesis with dPG and dPGS bearing phosphonate as anchor groups. Dynamic light scattering measurements performed in water and different biological media demonstrate that the hydrodynamic diameter of the particles is only slightly increased by the ligand exchange process resulting in a final diameter of less than 30 nm and that the particles are stable in these media. It is also revealed by magnetic resonance studies that their magnetic relaxivity is reduced by the surface modification but it is still sufficient for high contrast magnetic resonance imaging (MRI). Additionally, incubation of dPGS functionalized iron oxide nanoparticles with human umbilical vein endothelial cells showed a 50% survival at 85 nM (concentration of nanoparticles). Surface plasmon resonance (SPR) studies demonstrate that the dPGS functionalized iron oxide nanoparticles inhibit L-selectin ligand binding whereas the particles containing only dPG do not show this effect. Experiments in a flow chamber with human myelogenous leukemia cells confirmed L-selectin inhibition of the dPGS functionalized iron oxide nanoparticles and with that the L-selectin mediated leukocyte adhesion. These results indicate that dPGS functionalized iron oxide nanoparticles are a promising contrast agent for inflamed tissue probed by MRI.Monodisperse small iron oxide nanoparticles functionalized with dendritic polyglycerol (dPG) or dendritic polyglycerol sulfate (dPGS) are prepared. They are highly stable in aqueous solutions as well as physiological media. In particular, oleic acid capped iron oxide particles (core diameter = 11 +/- 1 nm) were modified by a ligand exchange process in a one pot synthesis with dPG and dPGS bearing phosphonate as anchor groups. Dynamic light scattering measurements performed in water and different biological media demonstrate that the hydrodynamic diameter of the particles is only slightly increased by the ligand exchange process resulting in a final diameter of less than 30 nm and that the particles are stable in these media. It is also revealed by magnetic resonance studies that their magnetic relaxivity is reduced by the surface modification but it is still sufficient for high contrast magnetic resonance imaging (MRI). Additionally, incubation of dPGS functionalized iron oxide nanoparticles with human umbilical vein endothelial cells showed a 50% survival at 85 nM (concentration of nanoparticles). Surface plasmon resonance (SPR) studies demonstrate that the dPGS functionalized iron oxide nanoparticles inhibit L-selectin ligand binding whereas the particles containing only dPG do not show this effect. Experiments in a flow chamber with human myelogenous leukemia cells confirmed L-selectin inhibition of the dPGS functionalized iron oxide nanoparticles and with that the L-selectin mediated leukocyte adhesion. These results indicate that dPGS functionalized iron oxide nanoparticles are a promising contrast agent for inflamed tissue probed by MRI. Electronic supplementary information (ESI) available: A detailed description of the synthesis of the ligands as well as the preparation and functionalization of the iron oxide nanoparticles including their physico-chemical characterization are presented. Further, details of the cell experiments and the SPR experiments are given. Two representative movies are provided showing leukocyte rolling on the ligand coated surface of the flow chamber. See DOI: 10.1039/c3nr04793h
Arora, Pooja; Baena, Andres; Yu, Karl O.A.; Saini, Neeraj K.; Kharkwal, Shalu S.; Goldberg, Michael F.; Kunnath-Velayudhan, Shajo; Carreño, Leandro J.; Venkataswamy, Manjunatha M.; Kim, John; Lazar-Molnar, Eszter; Lauvau, Gregoire; Chang, Young-tae; Liu, Zheng; Bittman, Robert; Al-Shamkhani, Aymen; Cox, Liam R.; Jervis, Peter J.; Veerapen, Natacha; Besra, Gurdyal S.; Porcelli, Steven A.
2014-01-01
Summary Many hematopoietic cell types express CD1d and are capable of presenting glycolipid antigens to invariant natural killer T cells (iNKT cells). However, the question of which cells are the principal presenters of glycolipid antigens in vivo remains controversial, and it has been suggested that this might vary depending on the structure of a particular glycolipid antigen. Here we have shown that a single type of cell, the CD8α+ DEC-205+ dendritic cell, was mainly responsible for capturing and presenting a variety of different glycolipid antigens, including multiple forms of α-galactosylceramide that stimulate widely divergent cytokine responses. After glycolipid presentation, these dendritic cells rapidly altered their expression of various costimulatory and coinhibitory molecules in a manner that was dependent on the structure of the antigen. These findings show flexibility in the outcome of two-way communication between CD8α+ dendritic cells and iNKT cells, providing a mechanism for biasing toward either proinflammatory or anti-inflammatory responses. PMID:24412610
Synaptic integration in dendrites: exceptional need for speed
Golding, Nace L; Oertel, Donata
2012-01-01
Some neurons in the mammalian auditory system are able to detect and report the coincident firing of inputs with remarkable temporal precision. A strong, low-voltage-activated potassium conductance (gKL) at the cell body and dendrites gives these neurons sensitivity to the rate of depolarization by EPSPs, allowing neurons to assess the coincidence of the rising slopes of unitary EPSPs. Two groups of neurons in the brain stem, octopus cells in the posteroventral cochlear nucleus and principal cells of the medial superior olive (MSO), extract acoustic information by assessing coincident firing of their inputs over a submillisecond timescale and convey that information at rates of up to 1000 spikes s−1. Octopus cells detect the coincident activation of groups of auditory nerve fibres by broadband transient sounds, compensating for the travelling wave delay by dendritic filtering, while MSO neurons detect coincident activation of similarly tuned neurons from each of the two ears through separate dendritic tufts. Each makes use of filtering that is introduced by the spatial distribution of inputs on dendrites. PMID:22930273
Simmons, Aaron B.; Bloomsburg, Samuel J.; Sukeena, Joshua M.; Miller, Calvin J.; Ortega-Burgos, Yohaniz; Borghuis, Bart G.
2017-01-01
Mature mammalian neurons have a limited ability to extend neurites and make new synaptic connections, but the mechanisms that inhibit such plasticity remain poorly understood. Here, we report that OFF-type retinal bipolar cells in mice are an exception to this rule, as they form new anatomical connections within their tiled dendritic fields well after retinal maturity. The Down syndrome cell-adhesion molecule (Dscam) confines these anatomical rearrangements within the normal tiled fields, as conditional deletion of the gene permits extension of dendrite and axon arbors beyond these borders. Dscam deletion in the mature retina results in expanded dendritic fields and increased cone photoreceptor contacts, demonstrating that DSCAM actively inhibits circuit-level plasticity. Electrophysiological recordings from Dscam−/− OFF bipolar cells showed enlarged visual receptive fields, demonstrating that expanded dendritic territories comprise functional synapses. Our results identify cell-adhesion molecule-mediated inhibition as a regulator of circuit-level neuronal plasticity in the adult retina. PMID:29114051
A Novel Heat Shock Protein 70-based Vaccine Prepared from DC-Tumor Fusion Cells.
Weng, Desheng; Calderwood, Stuart K; Gong, Jianlin
2018-01-01
We have developed an enhanced molecular chaperone-based vaccine through rapid isolation of Hsp70 peptide complexes after the fusion of tumor and dendritic cells (Hsp70.PC-F). In this approach, the tumor antigens are introduced into the antigen processing machinery of dendritic cells through the cell fusion process and thus we can obtain antigenic tumor peptides or their intermediates that have been processed by dendritic cells. Our results show that Hsp70.PC-F has increased immunogenicity compared to preparations from tumor cells alone and therefore constitutes an improved formulation of chaperone protein-based tumor vaccine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sengupta, S.; Soda, H.; McLean, A.
2000-01-01
A ternary eutectic alloy with a composition of 57.2 pct Bi, 24.8 pct In, and 18 pct Sn was continuously cast into wire of 2 mm diameter with casting speeds of 14 and 79 mm/min using the Ohno Continuous Casting (OCC) process. The microstructures obtained were compared with those of statically cast specimens. Extensive segregation of massive Bi blocks, Bi complex structures, and tin-rich dendrites was found in specimens that were statically cast. Decomposition of {radical}Sn by a eutectoid reaction was confirmed based on microstructural evidence. Ternary eutectic alloy with a cooling rate of approximately 1 C/min formed a doublemore » binary eutectic. The double binary eutectic consisted of regions of BiIn and decomposed {radical}Sn in the form of a dendrite cell structure and regions of Bi and decomposed {radical}Sn in the form of a complex-regular cell. The Bi complex-regular cells, which are a ternary eutectic constituent, existed either along the boundaries of the BiIn-decomposed {radical}Sn dendrite cells or at the front of elongated dendrite cell structures. In the continuously cast wires, primary Sn dendrites coupled with a small Bi phase were uniformly distributed within the Bi-In alloy matrix. Neither massive Bi phase, Bi complex-regular cells, no BiIn eutectic dendrite cells were observed, resulting in a more uniform microstructure in contrast to the heavily segregated structures of the statically cast specimens.« less
Distal gap junctions and active dendrites can tune network dynamics.
Saraga, Fernanda; Ng, Leo; Skinner, Frances K
2006-03-01
Gap junctions allow direct electrical communication between CNS neurons. From theoretical and modeling studies, it is well known that although gap junctions can act to synchronize network output, they can also give rise to many other dynamic patterns including antiphase and other phase-locked states. The particular network pattern that arises depends on cellular, intrinsic properties that affect firing frequencies as well as the strength and location of the gap junctions. Interneurons or GABAergic neurons in hippocampus are diverse in their cellular characteristics and have been shown to have active dendrites. Furthermore, parvalbumin-positive GABAergic neurons, also known as basket cells, can contact one another via gap junctions on their distal dendrites. Using two-cell network models, we explore how distal electrical connections affect network output. We build multi-compartment models of hippocampal basket cells using NEURON and endow them with varying amounts of active dendrites. Two-cell networks of these model cells as well as reduced versions are explored. The relationship between intrinsic frequency and the level of active dendrites allows us to define three regions based on what sort of network dynamics occur with distal gap junction coupling. Weak coupling theory is used to predict the delineation of these regions as well as examination of phase response curves and distal dendritic polarization levels. We find that a nonmonotonic dependence of network dynamic characteristics (phase lags) on gap junction conductance occurs. This suggests that distal electrical coupling and active dendrite levels can control how sensitive network dynamics are to gap junction modulation. With the extended geometry, gap junctions located at more distal locations must have larger conductances for pure synchrony to occur. Furthermore, based on simulations with heterogeneous networks, it may be that one requires active dendrites if phase-locking is to occur in networks formed with distal gap junctions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerberick, G.F.; Ryan, C.A.; Von Bargen, E.C.
Lymphocytes from BALB/c mice photosensitized in vivo to tetrachlorosalicylanilide (TCSA) were investigated to determine whether they could be stimulated to proliferate when cultured with Langerhans cell-enriched cultured epidermal cells (LC-EC) photohapten-modified in vitro with TCSA + UVA radiation. Cultured LC-EC were photohapten-modified in vitro by irradiation in TCSA-containing medium using a 1000-watt solar simulator equipped with filters to deliver primarily UVA radiation (320-400 nm). Lymphocytes from TCSA-photosensitized mice were incubated with LC-EC that had been treated in vitro with 0.1 mM TCSA and 2 J/cm2 UVA radiation (TCSA + UVA). Responder lymphocytes demonstrated a significant increase in their blastogenesis responsemore » compared to lymphocytes that were incubated with LC-EC irradiated with UVA prior to treatment with TCSA (UVA/TCSA) or with LC-EC that had received no treatment. Lymphocytes from naive mice or mice photosensitized with musk ambrette (MA) demonstrated a significantly lower response to LC-EC modified with TCSA + UVA, indicating the specificity of the response. Maximum blastogenesis response was achieved when LC-EC were treated with 0.1 mM TCSA and a UVA radiation dose of at least 0.5 J/cm2. Epidermal cells depleted of LC by treatment with anti-Ia antibody plus complement or by an adherence procedure were unable to stimulate this blastogenesis response. Epidermal cells treated in vitro with TCSA + UVA demonstrated enhanced fluorescence compared to control cells. The fluorescence observed was not restricted to any specific epidermal cell type; however, fluorescence microscopy studies revealed that dendritic Ia-positive cells, presumably LC, were also TCSA fluorescent.« less
Functions of TGF-β-exposed plasmacytoid dendritic cells.
Saas, Philippe; Perruche, Sylvain
2012-01-01
Plasmacytoid dendritic cells (pDCs) belong to the family of dendritic cells and possess specific features that distinguish them from conventional dendritic cells. For instance, pDC are the main interferon-alpha-secreting cells. Plasmacytoid dendritic cells exert both proinflammatory and regulatory functions. This is attested by the involvement of pDC through interferon-alpha secretion in several autoimmune diseases, and by the implication of pDC in tolerance. The same is true for TGF-β that plays a dual role in inflammation. In this review, we discuss recent data on pDC and TGF-β interactions. As with many cell types, pDCs are able to respond to TGF-β using the classic Smad signaling pathway. In addition, pDCs are capable to secrete TGF-β, in particular in response to TGF-β exposure. Exposure of pDCs to TGF-β prevents type I interferon secretion in response to TLR7/9 ligands. In contrast, the consequences of TGF-β on the antigen-presenting cell capacities of pDC are less clear, since TGF-β-exposed pDCs may lead to both regulatory T-cell and interleukin-17-secreting cell polarization. Here, we discuss the factors that may influence this polarization. We also discuss how pDCs exposed to TGF-β may participate in tolerance induction and maintenance, or, on the contrary, in autoimmune diseases.
Clarke, David J; Chohan, Tariq W; Kassem, Mustafa S; Smith, Kristie L; Chesworth, Rose; Karl, Tim; Kuligowski, Michael P; Fok, Sandra Y; Bennett, Maxwell R; Arnold, Jonathon C
2018-03-16
One neuropathological feature of schizophrenia is a diminished number of dendritic spines in the prefrontal cortex and hippocampus. The neuregulin 1 (Nrg1) system is involved in the plasticity of dendritic spines, and chronic stress decreases dendritic spine densities in the prefrontal cortex and hippocampus. Here, we aimed to assess whether Nrg1 deficiency confers vulnerability to the effects of adolescent stress on dendritic spine plasticity. We also assessed other schizophrenia-relevant neurobiological changes such as microglial cell activation, loss of parvalbumin (PV) interneurons, and induction of complement factor 4 (C4). Adolescent male wild-type (WT) and Nrg1 heterozygous mice were subjected to chronic restraint stress before their brains underwent Golgi impregnation or immunofluorescent staining of PV interneurons, microglial cells, and C4. Stress in WT mice promoted dendritic spine loss and microglial cell activation in the prefrontal cortex and the hippocampus. However, Nrg1 deficiency rendered mice resilient to stress-induced dendritic spine loss in the infralimbic cortex and the CA3 region of the hippocampus without affecting stress-induced microglial cell activation in these brain regions. Nrg1 deficiency and adolescent stress combined to trigger increased dendritic spine densities in the prelimbic cortex. In the hippocampal CA1 region, Nrg1 deficiency accentuated stress-induced dendritic spine loss. Nrg1 deficiency increased C4 protein and decreased C4 mRNA expression in the hippocampus, and the number of PV interneurons in the basolateral amygdala. This study demonstrates that Nrg1 modulates the impact of stress on the adolescent brain in a region-specific manner. It also provides first evidence of a link between Nrg1 and C4 systems in the hippocampus.
Wang, Xiaodong; Tong, Jingzhi; Li, Keqiu; Jing, Yaqing
2016-01-01
Recently, regulatory dendritic cells (DCregs), a newly described dendritic cell subset with potent immunomodulatory function, have attracted increased attention for their utility in treating immune response-related diseases, such as graft-versus-host disease, hypersensitivity, and autoimmune diseases. Danchaiheji (DCHJ) is a traditional Chinese formula that has been used for many years in the clinic. However, whether DCHJ can program dendritic cells towards a regulatory phenotype and the underlying mechanism behind this process remain unknown. Herein, we investigate the effects of traditional Chinese DCHJ on DCregs differentiation and a mouse model of skin transplantation. The current study demonstrates that DCHJ can induce dendritic cells to differentiate into DCregs, which are represented by high CD11b and low CD86 and HLA-DR expression as well as the secretion of IL-10 and TGF-β. In addition, DCHJ inhibited DC migration and T cell proliferation, which correlated with increased IDO expression. Furthermore, DCHJ significantly prolonged skin graft survival time in a mouse model of skin transplantation without any liver or kidney toxicity. The traditional Chinese formula DCHJ has the potential to be a potent immunosuppressive agent with high efficiency and nontoxicity. PMID:27525028
Nanoparticles, [Gd@C82(OH)22]n, induces dendritic cell maturation and activates Th1 immune responses
Yang, De; Zhao, Yuliang; Guo, Hua; Li, Yana; Tewary, Poonam; Xing, Gengmei; Hou, Wei; Oppenheim, Joost J.; Zhang, Ning
2010-01-01
Dendritic cells play a pivotal role in host immune defense, such as elimination of foreign pathogen and inhibition of tumorigenesis. In this paper, we report that [Gd@C82(OH)22]n could induce phenotypic maturation of dendritic cells by stimulating DC production of cytokines including IL-12p70, upregulating DC costimulatory (CD80, CD83, and CD86) and MHC (HLA-A,B,C and HLA-DR) molecules, and switching DCs from a CCL5-responsive to a CCL19-responsive phenotype. We found that [Gd@C82(OH)22]n can induce dendritic cells to become functionally mature as illustrated by their capacity to activate allogeneic T cells. Mice immunized with ovalbumin in the presence of [Gd@C82(OH)22]n exhibit enhanced ovalbumin-specific Th1-polarized immune response as evidenced by the predominantly increased production of IFNγ, IL-1β, and IL-2. The [Gd@C82(OH)22]n nanoparticle is a potent activator of dendritic cells and Th1 immune responses. These new findings also provide a rational understanding of the potent anticancer activities of [Gd@C82(OH)22]n nanoparticles reported previously. PMID:20121217
Design of dendrimer-based drug delivery nanodevices with enhanced therapeutic efficacies
NASA Astrophysics Data System (ADS)
Kannan, Rangaramanujam
2007-03-01
Dendrimers and hyperbranched polymers possess highly branched architectures, with a large number of controllable, tailorable, `peripheral' functionalities. Since the surface chemistry of these materials can be modified with relative ease, these materials have tremendous potential in targeted drug delivery. They have significant potential compared to liposomes and nanoparticles, because of the reduced macrophage update, increased cellular transport, and the ability to modulate the local environment through functional groups. We are developing nanodevices based on dendritic systems for drug delivery, that contain a high drug payload, ligands, and imaging agents, resulting in `smart' drug delivery devices that can target, deliver, and signal. In collaboration with the Children's Hospital of Michigan, Karmanos Cancer Institute, and College of Pharmacy, we are testing the in vitro and in vivo response of these nanodevices, by adapting the chemistry for specific clinical applications such as asthma and cancer. These materials are characterized by UV/Vis spectroscopy, flow cytometry, fluorescence/confocal microscopy, and appropriate animal models. Our results suggest that: (1) We can prepare drug-dendrimer conjugates with drug payloads of greater than 50%, for a variety of drugs; (2) The dendritic polymers are capable of transporting and delivering drugs into cells faster than free drugs, with superior therapeutic efficiency. This can be modulated by the surface functionality of the dendrimer; (3) For chemotherapy drugs, the conjugates are a factor of 6-20 times more effective even in drug-resistant cell lines; (4) For corticosteroidal drugs, the dendritic polymers provide higher drug residence times in the lung, allowing for passive targeting. The ability of the drug-dendrimer-ligand conjugates to target specific asthma and cancer cells is currently being explored using in vitro and in vivo animal models.
Pathogen-Sensing and Regulatory T Cells: Integrated Regulators of Immune Responses
Grossman, Zvi; Paul, William E.
2014-01-01
We present the concept that pathogen-sensing and Tregs mutually regulate immune responses to conventional and tumor antigens through countervailing effects on dendritic cells. Normally, conventional CD4 T cells recognizing their cognate antigen-presented by a dendritic cell will respond only if the dendritic cell also receives a signal through its pathogen-sensing/ danger / adjuvant recognition systems (the pathogen-sensing triad). However, if Tregs capable of interacting with the same DC are absent, dendritic cells are competent to present antigens, both foreign and self, even without the stimulation provided by the pathogen-sensing triad. Tregs recognizing an antigen presented by the DC that is also presenting antigen to a conventional CD4 T cell will prevent such responses but a signal delivered by a member of the pathogen-sensing traid will overcome the Tregs’inhibitory action and will allow responses to go forward. These considerations take on special meaning for responses to “weak antigens” such as many of the antigens displayed by spontaneous human tumors. PMID:24894087
DSCAM Localization and Function at the Mouse Cone Synapse
de Andrade, Gabriel Belem; Long, Samuel S.; Fleming, Harrison; Li, Wei; Fuerst, Peter G.
2014-01-01
The Down Syndrome Cell Adhesion Molecule (DSCAM) is required for regulation of cell number, soma spacing and cell type specific dendrite avoidance in many types of retinal ganglion and amacrine cells. In this study we assay the organization of cells making up the outer plexiform layer of the retina in the absence of Dscam. Some types of OFF bipolar cells, type 3b and type 4 bipolar cells, had defects in dendrite arborization in the Dscam mutant retina, while other cell types appeared similar to wild type. The cone synapses that these cells project their dendrites to were intact, as visualized by electron microscopy, and had a distribution and density that was not significantly different than wild type. The spacing of type 3b bipolar cell dendrites was further analyzed by Voronoi domain analysis, Density Recovery Profiling (DRP) analysis and Nearest Neighbor Analysis (NNA). Spacing was found to be significantly different when comparing wild type and mutant type 3b bipolar cell dendrites. Defects in arborization of these bipolar cells could not be attributed to the disorganization of inner plexiform layer cells that occurs in the Dscam mutant retina or an increase in cell number, as they arborized when Dscam was targeted in retinal ganglion cells only or in the bax null retina. Localization of DSCAM was assayed and the protein was localized near to cone synapses in mouse, macaque and ground squirrel retinas. DSCAM protein was detected in several types of bipolar cells, including type 3b and type 4 bipolar cells. PMID:24477985
Measuring Lithium Dendritic Growth in Polymer Electrolytes
NASA Astrophysics Data System (ADS)
He, Yuping; Downing, Gregory; Wang, Howard
The nature of Li dendritic growth in polymeric electrolytes for rechargeable batteries has been investigated using simultaneous electrochemical and neutron depth profiling (NDP) measurements. A symmetric sandwich cell of Li / poly(ethyleneoxide) (PEO) : lithium bis(trifluoromethane)sulfonamide (LiTFSI) / Li was used as a model system in this study. Operating the cell at a constant electric current of 0.1 mA, in situ NDP measurements show that after a period of steady Li plating, dendrites start to grow, which eventually short-circuit the sandwich cell. 3D Li mapping reveals heterogeneous lateral distribution of Li over length scales from below a millimeter to centimeters. Most Li in the electrolyte layer resides in dendrites growing from the top electrode, it is observed that dendrites also grow from the bottom electrode, where presumably only Li oxidation reaction occurs. The revelation poses new design and engineering challenges in using Li metal electrode in future development of rechargeable batteries.
Pane, Jessica A.; Webster, Nicole L.; Coulson, Barbara S.
2014-01-01
It has been proposed that rotavirus infection promotes the progression of genetically-predisposed children to type 1 diabetes, a chronic autoimmune disease marked by infiltration of activated lymphocytes into pancreatic islets. Non-obese diabetic (NOD) mice provide a model for the human disease. Infection of adult NOD mice with rhesus monkey rotavirus (RRV) accelerates diabetes onset, without evidence of pancreatic infection. Rather, RRV spreads to the pancreatic and mesenteric lymph nodes where its association with antigen-presenting cells, including dendritic cells, induces cellular maturation. RRV infection increases levels of the class I major histocompatibility complex on B cells and proinflammatory cytokine expression by T cells at these sites. In autoimmunity-resistant mice and human mononuclear cells from blood, rotavirus-exposed plasmacytoid dendritic cells contribute to bystander polyclonal B cell activation through type I interferon expression. Here we tested the hypothesis that rotavirus induces bystander activation of lymphocytes from NOD mice by provoking dendritic cell activation and proinflammatory cytokine secretion. NOD mouse splenocytes were stimulated with rotavirus and assessed for activation by flow cytometry. This stimulation activated antigen-presenting cells and B cells independently of virus strain and replicative ability. Instead, activation depended on virus dose and was prevented by blockade of virus decapsidation, inhibition of endosomal acidification and interference with signaling through Toll-like receptor 7 and the type I interferon receptor. Plasmacytoid dendritic cells were more efficiently activated than conventional dendritic cells by RRV, and contributed to the activation of B and T cells, including islet-autoreactive CD8+ T cells. Thus, a double-stranded RNA virus can induce Toll-like receptor 7 signaling, resulting in lymphocyte activation. Our findings suggest that bystander activation mediated by type I interferon contributes to the lymphocyte activation observed following RRV infection of NOD mice, and may play a role in diabetes acceleration by rotavirus. PMID:24676425
Raϊch-Regué, Dàlia; Grau-López, Laia; Naranjo-Gómez, Mar; Ramo-Tello, Cristina; Pujol-Borrell, Ricardo; Martínez-Cáceres, Eva; Borràs, Francesc E
2012-03-01
Multiple sclerosis (MS) is a chronic demyelinating autoimmune disease of the central nervous system. Current therapies decrease the frequency of relapses and limit, to some extent, but do not prevent disease progression. Hence, new therapeutic approaches that modify the natural course of MSneed to be identified. Tolerance induction to self-antigens using monocyte-derived dendritic cells (MDDCs) is a promising therapeutic strategy in autoimmunity. In this work, we sought to generate and characterize tolerogenic MDDCs (tolDCs) from relapsing-remitting (RR) MSpatients, loaded with myelin peptides as specific antigen, with the aim of developing immunotherapeutics for MS. MDDCs were generated from both healthy-blood donors and RR-MSpatients, and MDDCmaturation was induced with a proinflammatory cytokine cocktail in the absence or presence of 1α,25-dihydroxyvitamin-D(3) , a tolerogenicity-inducing agent. tolDCs were generated from monocytes of RR-MSpatients as efficiently as from monocytes of healthy subjects. The RR-MStolDCs expressed a stable semimature phenotype and an antiinflammatory profile as compared with untreated MDDCs. Importantly, myelin peptide-loaded tolDCs induced stable antigen-specific hyporesponsiveness in myelin-reactive T cells from RR-MS patients. These results suggest that myelin peptide-loaded tolDCs may be a powerful tool for inducing myelin-specific tolerance in RR-MS patients. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Monkey extensor digitorum communis motoneuron pool: Proximal dendritic trees and small motoneurons.
Jenny, Arthur B; Cheney, Paul D; Jenny, Andrew K
2018-05-14
Transverse sections of the monkey cervical spinal cord from a previous study (Jenny and Inukai, 1983) were reanalyzed using Neurolucida to create a three-dimensional display of extensor digitorum communis (EDC) motoneurons and proximal dendrites that had been labeled with horse radish peroxidase (HRP). The EDC motoneuron pool was located primarily in the C8 and T1 segments of the spinal cord. Small motoneurons (cell body areas less than 500 μm 2 and presumed to be gamma motoneurons) comprised about ten percent of the motoneurons and were located throughout the length of the motoneuron pool. Most small motoneurons were oblong in shape and had one or two major dendrites originating from the cell body in the transverse plane of section. The majority of the HRP labeled dendritic trees were directed either superiorly, dorsal-medially to the mid zone area between the base of the dorsal horn and the upper portion of the ventral horn, or medially to the ventromedial gray matter. The longer HRP labeled dendrites usually continued in the same radial direction as when originating from the cell body. As such we considered the radial direction of the longer proximal HRP labeled dendrites to be a reasonable estimate of the radial direction of the more distal dendritic tree. Our data suggest that the motoneuron dendritic tree as seen in transverse section has direction-oriented dendrites that extend toward functional terminal regions. Copyright © 2018 Elsevier B.V. All rights reserved.
Frequent Calcium Oscillations Lead to NFAT Activation in Human Immature Dendritic Cells*
Vukcevic, Mirko; Zorzato, Francesco; Spagnoli, Giulio; Treves, Susan
2010-01-01
Spontaneous Ca2+ oscillations have been observed in a number of excitable and non-excitable cells, but in most cases their biological role remains elusive. In the present study we demonstrate that spontaneous Ca2+ oscillations occur in immature human monocyte-derived dendritic cells but not in dendritic cells stimulated to undergo maturation with lipopolysaccharide or other toll like-receptor agonists. We investigated the mechanism and role of spontaneous Ca2+ oscillations in immature dendritic cells and found that they are mediated by the inositol 1,4,5-trisphosphate receptor as they were blocked by pretreatment of cells with the inositol 1,4,5-trisphosphate receptor antagonist Xestospongin C and 2-aminoethoxydiphenylborate. A component of the Ca2+ signal is also due to influx from the extracellular environment and may be involved in maintaining the level of the intracellular Ca2+ stores. As to their biological role, our results indicate that they are intimately linked to the “immature” phenotype and are associated with the translocation of the transcription factor NFAT into the nucleus. In fact, once the Ca2+ oscillations are blocked with 2-aminoethoxydiphenylborate or by treating the cells with lipopolysaccharide, NFAT remains cytoplasmic. The results presented in this report provide novel insights into the physiology of monocyte-derived dendritic cells and into the mechanisms involved in maintaining the cells in the immature stage. PMID:20348098
ISOLATION OF CHICKEN FOLLICULAR DENDRITIC CELLS
USDA-ARS?s Scientific Manuscript database
The aim of the present study was to isolate chicken follicular dendritic cells (FDC). A combination of methods involving panning, iodixanol density gradient centrifugation, and magnetic cell separation technology made it possible to obtain functional FDC from the cecal tonsils from chickens, which h...
Modification of dendritic development.
Feria-Velasco, Alfredo; del Angel, Alma Rosa; Gonzalez-Burgos, Ignacio
2002-01-01
Since 1890 Ramón y Cajal strongly defended the theory that dendrites and their processes and spines had a function of not just nutrient transport to the cell body, but they had an important conductive role in neural impulse transmission. He extensively discussed and supported this theory in the Volume 1 of his extraordinary book Textura del Sistema Nervioso del Hombre y de los Vertebrados. Also, Don Santiago significantly contributed to a detailed description of the various neural components of the hippocampus and cerebral cortex during development. Extensive investigation has been done in the last Century related to the functional role of these complex brain regions, and their association with learning, memory and some limbic functions. Likewise, the organization and expression of neuropsychological qualities such as memory, exploratory behavior and spatial orientation, among others, depend on the integrity and adequate functional activity of the cerebral cortex and hippocampus. It is known that brain serotonin synthesis and release depend directly and proportionally on the availability of its precursor, tryptophan (TRY). By using a chronic TRY restriction model in rats, we studied their place learning ability in correlation with the dendritic spine density of pyramidal neurons in field CA1 of the hippocampus during postnatal development. We have also reported alterations in the maturation pattern of the ability for spontaneous alternation and task performance evaluating short-term memory, as well as adverse effects on the density of dendritic spines of hippocampal CA1 field pyramidal neurons and on the dendritic arborization and the number of dendritic spines of pyramidal neurons from the third layer of the prefrontal cortex using the same model of TRY restriction. The findings obtained in these studies employing a modified Golgi method, can be interpreted as a trans-synaptic plastic response due to understimulation of serotoninergic receptors located in the hippocampal Ammon's horn and, particularly, on the CA1 field pyramidal neurons, as well as on afferences to the hippocampus which needs to be further investigated.
Hinchcliff, Monique; Toledo, Diana M; Taroni, Jaclyn N; Wood, Tammara A; Franks, Jennifer M; Ball, Michael S; Hoffmann, Aileen; Amin, Sapna M; Tan, Ainah U; Tom, Kevin; Nesbeth, Yolanda; Lee, Jungwha; Ma, Madeleine; Aren, Kathleen; Carns, Mary A; Pioli, Patricia A; Whitfield, Michael L
2018-01-31
Fewer than half of patients with systemic sclerosis demonstrate modified Rodnan skin score improvement during mycophenolate mofetil (MMF) treatment. To understand the molecular basis for this observation, we extended our prior studies and characterized molecular and cellular changes in skin biopsies from subjects with systemic sclerosis treated with MMF. Eleven subjects completed ≥24 months of MMF therapy. Two distinct skin gene expression trajectories were observed across six of these subjects. Three of the six subjects showed attenuation of the inflammatory signature by 24 months, paralleling reductions in CCL2 mRNA expression in skin and reduced numbers of macrophages and myeloid dendritic cells in skin biopsies. MMF cessation at 24 months resulted in an increased inflammatory score, increased CCL2 mRNA and protein levels, modified Rodnan skin score rebound, and increased numbers of skin myeloid cells in these subjects. In contrast, three other subjects remained on MMF >24 months and showed a persistent decrease in inflammatory score, decreasing or stable modified Rodnan skin score, CCL2 mRNA reductions, sera CCL2 protein levels trending downward, reduction in monocyte migration, and no increase in skin myeloid cell numbers. These data summarize molecular changes during MMF therapy that suggest reduction of innate immune cell numbers, possibly by attenuating expression of chemokines, including CCL2. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Shah, Nishel Mohan; Herasimtschuk, Anna A.; Boasso, Adriano; Benlahrech, Adel; Fuchs, Dietmar; Imami, Nesrina; Johnson, Mark R.
2017-01-01
During pregnancy, the mother allows the immunologically distinct fetoplacental unit to develop and grow. Opinions are divided as to whether this represents a state of fetal-specific tolerance or of a generalized suppression of the maternal immune system. We hypothesized that antigen-specific T cell responses are modulated by an inhibitory T cell phenotype and modified dendritic cell (DC) phenotype in a gestation-dependent manner. We analyzed changes in surface markers of peripheral blood T cells, ex vivo antigen-specific T cell responses, indoleamine 2,3-dioxygenase (IDO) activity (kynurenine/tryptophan ratio, KTR), plasma neopterin concentration, and the in vitro expression of progesterone-induced blocking factor (PIBF) in response to peripheral blood mononuclear cell culture with progesterone. We found that mid gestation is characterized by reduced antigen-specific T cell responses associated with (1) predominance of effector memory over other T cell subsets; (2) upregulation of inhibitory markers (programmed death ligand 1); (3) heightened response to progesterone (PIBF); and (4) reduced proportions of myeloid DC and concurrent IDO activity (KTR). Conversely, antigen-specific T cell responses normalized in late pregnancy and were associated with increased markers of T cell activation (CD38, neopterin). However, these changes occur with a simultaneous upregulation of immune suppressive mechanisms including apoptosis (CD95), coinhibition (TIM-3), and immune regulation (IL-10) through the course of pregnancy. Together, our data suggest that immune tolerance dominates in the second trimester and that it is gradually reversed in the third trimester in association with immune activation as the end of pregnancy approaches. PMID:28966619
Slawin, Kevin M.; Levitt, Jonathan M.; Spencer, David M.
2016-01-01
Therapeutic DNA-based vaccines aim to prime an adaptive host immune response against tumor-associated antigens, eliminating cancer cells primarily through CD8+ cytotoxic T cell-mediated destruction. To be optimally effective, immunological adjuvants are required for the activation of tumor-specific CD8+ T cells responses by DNA vaccination. Here, we describe enhanced anti-tumor efficacy of an in vivo electroporation-delivered DNA vaccine by inclusion of a genetically encoded chimeric MyD88/CD40 (MC) adjuvant, which integrates both innate and adaptive immune signaling pathways. When incorporated into a DNA vaccine, signaling by the MC adjuvant increased antigen-specific CD8+ T cells and promoted elimination of pre-established tumors. Interestingly, MC-enhanced vaccine efficacy did not require direct-expression of either antigen or adjuvant by local antigen-presenting cells, but rather our data supports a key role for MC function in “atypical” antigen-presenting cells of skin. In particular, MC adjuvant-modified keratinocytes increased inflammatory cytokine secretion, upregulated surface MHC class I, and were able to increase in vitro and in vivo priming of antigen-specific CD8+ T cells. Furthermore, in the absence of critical CD8α+/CD103+ cross-priming dendritic cells, MC was still able to promote immune priming in vivo, albeit at a reduced level. Altogether, our data support a mechanism by which MC signaling activates an inflammatory phenotype in atypical antigen-presenting cells within the cutaneous vaccination site, leading to an enhanced CD8+ T cell response against DNA vaccine-encoded antigens, through both CD8α+/CD103+ dendritic cell-dependent and independent pathways. PMID:27741278
Preparation of Horizontal Slices of Adult Mouse Retina for Electrophysiological Studies.
Feigenspan, Andreas; Babai, Norbert Zsolt
2017-01-27
Vertical slice preparations are well established to study circuitry and signal transmission in the adult mammalian retina. The plane of sectioning in these preparations is perpendicular to the retinal surface, making it ideal for the study of radially oriented neurons like photoreceptors and bipolar cells. However, the large dendritic arbors of horizontal cells, wide-field amacrine cells, and ganglion cells are mostly truncated, leaving markedly reduced synaptic activity in these cells. Whereas ganglion cells and displaced amacrine cells can be studied in a whole-mounted preparation of the retina, horizontal cells and amacrine cells located in the inner nuclear layer are only poorly accessible for electrodes in whole retina tissue. To achieve maximum accessibility and synaptic integrity, we developed a horizontal slice preparation of the mouse retina, and studied signal transmission at the synapse between photoreceptors and horizontal cells. Horizontal sectioning allows (1) easy and unambiguous visual identification of horizontal cell bodies for electrode targeting, and (2) preservation of the extended horizontal cell dendritic fields, as a prerequisite for intact and functional cone synaptic input to horizontal cell dendrites. Horizontal cells from horizontal slices exhibited tonic synaptic activity in the dark, and they responded to brief flashes of light with a reduction of inward current and diminished synaptic activity. Immunocytochemical evidence indicates that almost all cones within the dendritic field of a horizontal cell establish synapses with its peripheral dendrites. The horizontal slice preparation is therefore well suited to study the physiological properties of horizontally extended retinal neurons as well as sensory signal transmission and integration across selected synapses.
Dendritic Properties Control Energy Efficiency of Action Potentials in Cortical Pyramidal Cells
Yi, Guosheng; Wang, Jiang; Wei, Xile; Deng, Bin
2017-01-01
Neural computation is performed by transforming input signals into sequences of action potentials (APs), which is metabolically expensive and limited by the energy available to the brain. The metabolic efficiency of single AP has important consequences for the computational power of the cell, which is determined by its biophysical properties and morphologies. Here we adopt biophysically-based two-compartment models to investigate how dendrites affect energy efficiency of APs in cortical pyramidal neurons. We measure the Na+ entry during the spike and examine how it is efficiently used for generating AP depolarization. We show that increasing the proportion of dendritic area or coupling conductance between two chambers decreases Na+ entry efficiency of somatic AP. Activating inward Ca2+ current in dendrites results in dendritic spike, which increases AP efficiency. Activating Ca2+-activated outward K+ current in dendrites, however, decreases Na+ entry efficiency. We demonstrate that the active and passive dendrites take effects by altering the overlap between Na+ influx and internal current flowing from soma to dendrite. We explain a fundamental link between dendritic properties and AP efficiency, which is essential to interpret how neural computation consumes metabolic energy and how biophysics and morphologies contribute to such consumption. PMID:28919852
Dendritic Properties Control Energy Efficiency of Action Potentials in Cortical Pyramidal Cells.
Yi, Guosheng; Wang, Jiang; Wei, Xile; Deng, Bin
2017-01-01
Neural computation is performed by transforming input signals into sequences of action potentials (APs), which is metabolically expensive and limited by the energy available to the brain. The metabolic efficiency of single AP has important consequences for the computational power of the cell, which is determined by its biophysical properties and morphologies. Here we adopt biophysically-based two-compartment models to investigate how dendrites affect energy efficiency of APs in cortical pyramidal neurons. We measure the Na + entry during the spike and examine how it is efficiently used for generating AP depolarization. We show that increasing the proportion of dendritic area or coupling conductance between two chambers decreases Na + entry efficiency of somatic AP. Activating inward Ca 2+ current in dendrites results in dendritic spike, which increases AP efficiency. Activating Ca 2+ -activated outward K + current in dendrites, however, decreases Na + entry efficiency. We demonstrate that the active and passive dendrites take effects by altering the overlap between Na + influx and internal current flowing from soma to dendrite. We explain a fundamental link between dendritic properties and AP efficiency, which is essential to interpret how neural computation consumes metabolic energy and how biophysics and morphologies contribute to such consumption.
Jacome-Galarza, Christian E.; Lee, Sun-Kyeong; Lorenzo, Joseph A.; LeonardoAguila, Hector
2012-01-01
Osteoclasts are specialized bone resorbing cells that derive from monocyte precursors. We have identified three populations of cells with high osteoclastogenic potential in murine bone marrow, which expressed the phenotype: B220−CD3−CD11b−/low CD115+ and either CD117hi, CD117intermediate or CD117low. We have evaluated these populations for their ability to also generate macrophages and dendritic cells. At a single cell level, the population expressing higher CD117 levels was able to generate bone-resorbing osteoclasts, phagocytic macrophages and antigen-presenting dendritic cells in vitro with efficiencies of over 90 percent, indicating that there exists a common developmental pathway for these cell types. Cells with osteoclastogenic potential also exist in blood and peripheral hematopoietic organs. Their functional meaning and/or their relationship with bone marrow progenitors is not well established. Hence, we characterized murine peripheral cell populations for their ability to form osteoclasts, macrophages and dendritic cells in vitro. The spleen and peripheral blood monocyte progenitors share phenotypic markers with bone marrow progenitors, but differ in their expression of CD11b, which was low in bone marrow but high in periphery. We propose that circulating monocyte progenitors are derived from a common bone marrow osteoclasts/macrophage/dendritic cell progenitor (OcMDC), which we have now characterized at a clonal level. However, the lineage relationship between the bone marrow and peripheral monocyte progenitors has yet to be defined. PMID:23165930
Massanella, Marta; Rodríguez-García, Marta; Blanco, Julià; Gatell, José M.; García, Felipe; Gallart, Teresa; Lluis, Carme; Mallol, Josefa
2012-01-01
ADA is an enzyme implicated in purine metabolism, and is critical to ensure normal immune function. Its congenital deficit leads to severe combined immunodeficiency (SCID). ADA binding to adenosine receptors on dendritic cell surface enables T-cell costimulation through CD26 crosslinking, which enhances T-cell activation and proliferation. Despite a large body of work on the actions of the ecto-enzyme ADA on T-cell activation, questions arise on whether ADA can also modulate dendritic cell maturation. To this end we investigated the effects of ADA on human monocyte derived dendritic cell biology. Our results show that both the enzymatic and non-enzymatic activities of ADA are implicated in the enhancement of CD80, CD83, CD86, CD40 and CCR7 expression on immature dendritic cells from healthy and HIV-infected individuals. These ADA-mediated increases in CD83 and costimulatory molecule expression is concomitant to an enhanced IL-12, IL-6, TNF-α, CXCL8(IL-8), CCL3(MIP1-α), CCL4(MIP-1β) and CCL5(RANTES) cytokine/chemokine secretion both in healthy and HIV-infected individuals and to an altered apoptotic death in cells from HIV-infected individuals. Consistently, ADA-mediated actions on iDCs are able to enhance allogeneic CD4 and CD8-T-cell proliferation, globally yielding increased iDC immunogenicity. Taken together, these findings suggest that ADA would promote enhanced and correctly polarized T-cell responses in strategies targeting asymptomatic HIV-infected individuals. PMID:23240012
Matrix metalloproteinase-9 involvement in the structural plasticity of dendritic spines
Stawarski, Michal; Stefaniuk, Marzena; Wlodarczyk, Jakub
2014-01-01
Dendritic spines are the locus for excitatory synaptic transmission in the brain and thus play a major role in neuronal plasticity. The ability to alter synaptic connections includes volumetric changes in dendritic spines that are driven by scaffolds created by the extracellular matrix (ECM). Here, we review the effects of the proteolytic activity of ECM proteases in physiological and pathological structural plasticity. We use matrix metalloproteinase-9 (MMP-9) as an example of an ECM modifier that has recently emerged as a key molecule in regulating the morphology and dysmorphology of dendritic spines that underlie synaptic plasticity and neurological disorders, respectively. We summarize the influence of MMP-9 on the dynamic remodeling of the ECM via the cleavage of extracellular substrates. We discuss its role in the formation, modification, and maintenance of dendritic spines in learning and memory. Finally, we review research that implicates MMP-9 in aberrant synaptic plasticity and spine dysmorphology in neurological disorders, with a focus on morphological abnormalities of dendritic protrusions that are associated with epilepsy. PMID:25071472
NASA Astrophysics Data System (ADS)
Ge, Honghao; Ren, Fengli; Li, Jun; Han, Xiujun; Xia, Mingxu; Li, Jianguo
2017-03-01
A four-phase dendritic model was developed to predict the macrosegregation, shrinkage cavity, and porosity during solidification. In this four-phase dendritic model, some important factors, including dendritic structure for equiaxed crystals, melt convection, crystals sedimentation, nucleation, growth, and shrinkage of solidified phases, were taken into consideration. Furthermore, in this four-phase dendritic model, a modified shrinkage criterion was established to predict shrinkage porosity (microporosity) of a 55-ton industrial Fe-3.3 wt pct C ingot. The predicted macrosegregation pattern and shrinkage cavity shape are in a good agreement with experimental results. The shrinkage cavity has a significant effect on the formation of positive segregation in hot top region, which generally forms during the last stage of ingot casting. The dendritic equiaxed grains also play an important role on the formation of A-segregation. A three-dimensional laminar structure of A-segregation in industrial ingot was, for the first time, predicted by using a 3D case simulation.
Olfactory granule cell development in normal and hyperthyroid rats.
Brunjes, P C; Schwark, H D; Greenough, W T
1982-10-01
Dendritic development was examined in olfactory bulbs of both normal 7-, 14-, 21- and 60-day-old rats and littermates treated on postnatal days 1-4 with 1 microgram/g body weight of L-thyroxine sodium. Tissue was processed via the Golgi-Cox technique and subjected to quantitative analyses of mitral and internal layer granule cell development. These populations of granule cells were selected because their pattern of late proliferation suggested potentially greater susceptibility to postnatal hormonal alterations. Although neonatal hyperthyroidism induces widespread acceleration of maturation, including precocious chemosensitivity, granule cell development was unaffected relative to littermate controls. Both normal and hyperthyroid groups exhibited an inverted U-shaped pattern of cellular development, with rapid dendritic dendritic growth and expansion occurring during the earliest ages tested, but with loss of processes and dendritic field size occurring after day 21.
Weigand, Kilian; Voigt, Franziska; Encke, Jens; Hoyler, Birgit; Stremmel, Wolfgang; Eisenbach, Christoph
2012-01-01
AIM: To explore dendritic cells (DCs) multiple functions in immune modulation. METHODS: We used bone-marrow derived dendritic cells from BALB/c mice pulsed with pseudo particles from the hepatitis C virus to vaccinate naive BALB/c mice. Hepatitis C virus (HCV) pseudo particles consist of the genotype 1b derived envelope proteins E1 and E2, covering a non-HCV core structure. Thus, not a single epitope, but the whole “viral surface” induces immunogenicity. For vaccination, mature and activated DC were injected subcutaneously twice. RESULTS: Humoral and cellular immune responses measured by enzyme-linked immunosorbent assay and interferon-gamma enzyme-linked immunosorbent spot test showed antibody production as well as T-cells directed against HCV. Furthermore, T-cell responses confirmed two highly immunogenic regions in E1 and E2 outside the hypervariable region 1. CONCLUSION: Our results indicate dendritic cells as a promising vaccination model for HCV infection that should be evaluated further. PMID:22371638
USDA-ARS?s Scientific Manuscript database
Activation statuses of monocytic cells, e.g. monocytes, macrophages and dendritic cells (DCs), are critically important for antiviral immunity. In particular, some devastating viruses, including porcine reproductive and respiratory syndrome virus (PRRSV), are capable of directly infecting these cell...
A bloody mess: dendritic cells use hemophagocytosis to regulate viral inflammation.
Miller, Elizabeth; Bhardwaj, Nina
2013-09-19
Previous studies have highlighted the immune-dampening effects of apoptotic cell uptake by phagocytes. Ohyagi et al. (2013) expose a unique mechanism of immune regulation during viral infection, which is mediated through phagocytosis of apoptotic red cells by dendritic cells. Copyright © 2013 Elsevier Inc. All rights reserved.
de Kock, Christiaan P. J.; Bruno, Randy M.; Ramirez, Alejandro; Meyer, Hanno S.; Dercksen, Vincent J.; Helmstaedter, Moritz; Sakmann, Bert
2012-01-01
Soma location, dendrite morphology, and synaptic innervation may represent key determinants of functional responses of individual neurons, such as sensory-evoked spiking. Here, we reconstruct the 3D circuits formed by thalamocortical afferents from the lemniscal pathway and excitatory neurons of an anatomically defined cortical column in rat vibrissal cortex. We objectively classify 9 cortical cell types and estimate the number and distribution of their somata, dendrites, and thalamocortical synapses. Somata and dendrites of most cell types intermingle, while thalamocortical connectivity depends strongly upon the cell type and the 3D soma location of the postsynaptic neuron. Correlating dendrite morphology and thalamocortical connectivity to functional responses revealed that the lemniscal afferents can account for some of the cell type- and location-specific subthreshold and spiking responses after passive whisker touch (e.g., in layer 4, but not for other cell types, e.g., in layer 5). Our data provides a quantitative 3D prediction of the cell type–specific lemniscal synaptic wiring diagram and elucidates structure–function relationships of this physiologically relevant pathway at single-cell resolution. PMID:22089425
Role of hepatocyte growth factor in the development of dendritic cells from CD34+ bone marrow cells.
Ovali, E; Ratip, S; Kibaroglu, A; Tekelioglu, Y; Cetiner, M; Karti, S; Aydin, F; Bayik, M; Akoglu, T
2000-05-01
Hepatocyte growth factor (HGF) is known to augment the effects of stem cell factor, interleukin-3, granulocyte-macrophage colony-stimulating factor (GM-CSF), erythropoetin, and granulocyte colony-stimulating factor, all of which are involved in hematopoiesis. HGF is also known to have a role in immune responses. The aim of this study was to investigate whether HGF is involved in the development of dendritic cells (DC) from CD34+ bone marrow cells. CD34+ cells obtained from three healthy donors were incubated in various combinations of HGF, GM-CSF, and tumor necrosis factor (TNF) for 12 days. Developing cell populations were analyzed for surface markers, morphology and functional capacities by flow cytometry, light microscopy and mixed lymphocyte reaction, respectively. Incubation with HGF alone generated greater number of dendritic cells from CD34+ bone marrow cells than incubation with GM-CSF, or a combination of GM-CSF with TNF. HGF was also found to potentiate the effect of GM-CSF on DC and monocyte development. The effects of HGF were inhibited by the concurrent use of TNF. HGF appears to be a significant factor in the development of dendritic cells from CD34+ bone marrow cells.
Thymic Dendritic Cells Are Primary Targets for the Oncogenic Virus SL3-3
Uittenbogaart, Christel H.; Law, Wendy; Leenen, Pieter J. M.; Bristol, Gregory; van Ewijk, Willem; Hays, Esther F.
1998-01-01
The murine retrovirus SL3-3 causes malignant transformation of thymocytes and thymic lymphoma in mice of the AKR and NFS strains when they are inoculated neonatally. The objective of the present study was to identify the primary target cells for the virus in the thymuses of these mice. Immunohistochemical studies of the thymus after neonatal inoculation of the SL3-3 virus showed that cells expressing the viral envelope glycoprotein (gp70+ cells) were first seen at 2 weeks of age. These virus-expressing cells were found in the cortex and at the corticomedullary junction in both mouse strains. The gp70+ cells had the morphology and immunophenotype of dendritic cells. They lacked macrophage-specific antigens. Cell separation studies showed that bright gp70+ cells were detected in a fraction enriched for dendritic cells. At 3 weeks of age, macrophages also expressed gp70. At that time, both gp70+ dendritic cells and macrophages were found at the corticomedullary junction and in foci in the thymic cortex. At no time during this 3-week period was the virus expressed in cortical and medullary epithelial cells or in thymic lymphoid cells. Infectious cell center assays indicated that cells expressing infectious virus were present in small numbers at 2 weeks after inoculation but increased at 5 weeks of age by several orders of magnitude, indicating virus spread to the thymic lymphoid cells. Thus, at 2 weeks after neonatal inoculation of SL3-3, thymic dendritic cells are the first cells to express the virus. At 3 weeks of age, macrophages also express the virus. In subsequent weeks, the virus spreads to the thymocytes. This pathway of virus expression in the thymus allows the inevitable provirus integration in a thymocyte that results in a clonal lymphoma. PMID:9811752
Yoshizaki, Yuta; Yuba, Eiji; Komatsu, Toshihiro; Udaka, Keiko; Harada, Atsushi; Kono, Kenji
2016-09-26
To establish peptide vaccine-based cancer immunotherapy, we investigated the improvement of antigenic peptides by encapsulation with pH-sensitive fusogenic polymer-modified liposomes for induction of antigen-specific immunity. The liposomes were prepared by modification of egg yolk phosphatidylcholine and l-dioleoyl phosphatidylethanolamine with 3-methyl-glutarylated hyperbranched poly(glycidol) (MGlu-HPG) and were loaded with antigenic peptides derived from ovalbumin (OVA) OVA-I (SIINFEKL), and OVA-II (PSISQAVHAAHAEINEAP β A), which bind, respectively, to major histocompatibility complex (MHC) class I and class II molecules on dendritic cell (DCs). The peptide-loaded liposomes were taken up efficiently by DCs. The peptides were delivered into their cytosol. Administration of OVA-I-loaded MGlu-HPG-modified liposomes to mice bearing OVA-expressing E.G7-OVA tumors induced the activation of OVA-specific CTLs much more efficiently than the administration of free OVA-I peptide did. Mice strongly rejected E.G7-OVA cells after immunization with OVA-I peptide-loaded MGlu-HPG liposomes, although mice treated with free OVA-I peptide only slightly rejected the cells. Furthermore, efficient suppression of tumor volume was observed when tumor-bearing mice were immunized with OVA-I-peptide-loaded liposomes. Immunization with OVA-II-loaded MGlu-HPG-modified liposomes exhibited much lower tumor-suppressive effects. Results indicate that MGlu-HPG liposomes might be useful for improvement of CTL-inducing peptides for efficient cancer immunotherapy.
Wan, Jiangbo; Huang, Fang; Hao, Siguo; Hu, Weiwei; Liu, Chuanxu; Zhang, Wenhao; Deng, Xiaohui; Chen, Linjun; Ma, Liyuan; Tao, Rong
2017-01-01
Tr1 cells can induce peripheral tolerance to self- and foreign antigens, and have been developed as a therapeutic tool for the induction of tolerance to transplanted tissue. We explored the feasibility of generating Tr1 cells by using IL-10 gene-modified recipient DCs (DCLV-IL-10) to stimulate donor naive CD4+ T cells. We also investigated some biological properties of Tr1 cells. DCLV-IL-10 were generated through DCs transduced with a lentivirus vector carrying the IL-10 gene, and Tr1 cells were produced by using DCLV-IL-10 to stimulate naive CD4+ T cells. The effects of Tr1 cells on T-cell proliferation and the occurrence of graft versus host disease (GVHD) following allogeneic stem-cell transplantation (allo-HSCT) were investigated. The DCLV-IL-10-induced Tr1 cells co-expressed LAG-3 and CD49b. Moreover, they also expressed CD4, CD25, and IL-10, but not Foxp3, and secreted significantly higher levels of IL-10 (1,729.36 ± 185.79 pg/mL; P < 0.001) and INF-γ (1,524.48 ± 168.65 pg/mL; P < 0.01) than the control T cells upon the stimulation by allogeneic DCs. Tr1 cells markedly suppressed T-lymphocyte proliferation and the mixed lymphocytic response (MLR) in vitro. The mice used in the allo-HSCT model had longer survival times and lower clinical and pathological GVHD scores than the control mice. IL-10 gene-modified DC-induced Tr1 cells may be used as a potent cellular therapy for the prevention of GVHD after allo-HSCT. © 2017 The Author(s). Published by S. Karger AG, Basel.
Magro, Cynthia M; Momtahen, Shabnam; Verma, Shalini; Abraham, Ronnie M; Friedman, Constantin; Nuovo, Gerard J; Tam, Wayne
2016-12-01
Monocytes are critical components of the innate immune system and they can differentiate into dendritic cells (DCs). Cutaneous neoplasms of dendritic cell origin are uncommon and mostly represented by histiocytic lesions derived primarily from Langerhans cells. The myeloid DC (mDC) while recognized in the immunology literature does not have a well-defined neoplastic cutaneous counterpart. Eleven patients with a diagnosis of cutaneous mDC dyscrasia were evaluated. Routine hematoxylin and eosin stain were performed followed by selective phenotypic studies. The patients were older without a gender predilection and exhibited an asymptomatic papular skin rash with a waxing and waning course. The biopsies demonstrated a dermal based monomorphic small mononuclear cell infiltrate. The cells expressed CD14, CD11c, HLA-DR, as well as granzyme and lysozyme that defines terminally differentiated monocyte/dendritic cells. Expression of BDCA-3 (CD141) by the tumor cells indicated that they were myeloid dendritic cells (mDC2). Each patient had a prior or subsequent diagnosis of an abnormal bone marrow biopsy that included myelodysplastic syndrome, myelofibrosis, chronic myelomonocytic leukemia, and acute myelogenous leukemia. We propose the term cutaneous mDC cell dyscrasia for distinctive infiltrates of differentiated mDCs reflective of underlying myeloproliferative disease. The clinical course is variable and can be indolent although it is strongly correlated with myelodysplastic syndrome that included leukemia. Copyright © 2016 Elsevier Inc. All rights reserved.
Tabarkiewicz, Jacek; Postępski, Jacek; Olesińska, Edyta; Roliński, Jacek; Tuszkiewicz-Misztal, Ewa
2011-01-01
Childhood chronic arthritis of unknown etiology is known collectively as juvenile idiopathic arthritis (JIA) and consists of heterogeneous subtypes with unique clinical patterns of disease. JIA is the commonest rheumatic disease in children and may still result in significant disability, with joint deformity, growth impairment, and persistence of active arthritis into adulthood. Basic research is rather focused on rheumatoid arthritis, and this lead to small number of publications considering JIA. In this study we examine, by flow cytometry, the expression of dendritic cells (DCs) in the peripheral blood and synovial fluid of children with active JIA in a group of 220 patients. We reveal a significant decrease in the percentage of immature DCs in the blood of patients compared to control children. Surprisingly, we found higher percentages of mature circulating dendritic cells. Both populations of DCs, immature and mature, were accumulated in patients' synovial fluid. We also confirmed the presence of CD206+/CD209+ in JIA samples, which can represent a population of macrophages with dendritic cells morphology. Our results support the thesis that dendritic cells are crucial in the induction and maintenance of autoimmune response and local inflammation during juvenile idiopathic arthritis.
Liang, Ruijing; Xie, Jun; Li, Jun; Wang, Ke; Liu, Liping; Gao, Yujie; Hussain, Mubashir; Shen, Guanxin; Zhu, Jintao; Tao, Juan
2017-12-01
For nanovaccine-based cancer immunotherapy, dendritic cells (DCs) are one of the most powerful antigen presenting cells (APCs) that initiate and promote the maturation of antigen-specific cytotoxic T lymphocytes (e.g., CD8 + T cells) to induce the local and systemic antitumor immunity and further suppress the tumor metastasis and produce long-term protection against tumor. Thus, the activation and maturation of DCs is the prerequisite for efficient CD8 + T cell-based antitumor immune responses, which is considered as a primary and promising task for nanovaccine engineering. Herein, we introduce a versatile nanovaccine of liposomes-coated gold nanocages (Lipos-AuNCs) modified with DCs specific antibody aCD11c for targeted delivery of adjuvant MPLA and melanoma antigen peptide TRP2 to promote the activation and maturation of DCs, and enhance tumor specific T lymphocytes responses. Moreover, AuNCs accumulation and AuNCs-engulfed DCs migration to regional lymph nodes (RLNs) became real-time visualization through in vivo fluorescence and photoacoustic (PA) imaging to monitor the immunity process. In vivo experimental results demonstrated that the targeted antigen/adjuvants-loaded AuNCs exhibited enhanced antitumor immune response to inhibit tumor growth and metastasis in both B16-F10 prophylactic and lung metastasis models, which may act as a promising nanoplatform for antitumor immunotherapy and in vivo tracking. Copyright © 2017 Elsevier Ltd. All rights reserved.
Song, Yuanquan; Ori-McKenney, Kassandra M.; Zheng, Yi; Han, Chun; Jan, Lily Yeh; Jan, Yuh Nung
2012-01-01
Both cell-intrinsic and extrinsic pathways govern axon regeneration, but only a limited number of factors have been identified and it is not clear to what extent axon regeneration is evolutionarily conserved. Whether dendrites also regenerate is unknown. Here we report that, like the axons of mammalian sensory neurons, the axons of certain Drosophila dendritic arborization (da) neurons are capable of substantial regeneration in the periphery but not in the CNS, and activating the Akt pathway enhances axon regeneration in the CNS. Moreover, those da neurons capable of axon regeneration also display dendrite regeneration, which is cell type-specific, developmentally regulated, and associated with microtubule polarity reversal. Dendrite regeneration is restrained via inhibition of the Akt pathway in da neurons by the epithelial cell-derived microRNA bantam but is facilitated by cell-autonomous activation of the Akt pathway. Our study begins to reveal mechanisms for dendrite regeneration, which depends on both extrinsic and intrinsic factors, including the PTEN–Akt pathway that is also important for axon regeneration. We thus established an important new model system—the fly da neuron regeneration model that resembles the mammalian injury model—with which to study and gain novel insights into the regeneration machinery. PMID:22759636
Dendritic nonlinearities are tuned for efficient spike-based computations in cortical circuits.
Ujfalussy, Balázs B; Makara, Judit K; Branco, Tiago; Lengyel, Máté
2015-12-24
Cortical neurons integrate thousands of synaptic inputs in their dendrites in highly nonlinear ways. It is unknown how these dendritic nonlinearities in individual cells contribute to computations at the level of neural circuits. Here, we show that dendritic nonlinearities are critical for the efficient integration of synaptic inputs in circuits performing analog computations with spiking neurons. We developed a theory that formalizes how a neuron's dendritic nonlinearity that is optimal for integrating synaptic inputs depends on the statistics of its presynaptic activity patterns. Based on their in vivo preynaptic population statistics (firing rates, membrane potential fluctuations, and correlations due to ensemble dynamics), our theory accurately predicted the responses of two different types of cortical pyramidal cells to patterned stimulation by two-photon glutamate uncaging. These results reveal a new computational principle underlying dendritic integration in cortical neurons by suggesting a functional link between cellular and systems--level properties of cortical circuits.
Horiguchi, Kotaro; Higuchi, Masashi; Yoshida, Saishu; Nakakura, Takashi; Tateno, Kozue; Hasegawa, Rumi; Takigami, Shu; Ohsako, Shunji; Kato, Takako; Kato, Yukio
2014-11-01
S100β-positive cells, which do not express the classical pituitary hormones, appear to possess multifunctional properties and are assumed to be heterogeneous in the anterior pituitary gland. The presence of several protein markers has shown that S100β-positive cells are composed of populations such as stem/progenitor cells, epithelial cells, astrocytes and dendritic cells. Recently, we succeeded in separating S100β-positive cells into round-cell (dendritic-cell-like) and process-cell types. We also found the characteristic expression of anti-inflammatory factors (interleukin-6, Il-6) and membrane receptors (integrin β-6) in the round type. Here, we further investigate the function of the subpopulation of S100β-positive cells. Since IL-6 is also a paracrine factor that regulates hormone producing-cells, we examine whether a correlation exists among extracellular acid stress, IL-6 and hormone production by using primary cultures of anterior pituitary cells. Dendritic-cell-like S100β-positive cells notably expressed Gpr68 (proton receptor) and Il-6. Furthermore, the expression of Il-6 and proopiomelanocortin (Pomc) was up-regulated by extracellular acidification. The functional role of IL-6 and GPR68 in the gene expression of Pomc during extracellular acidification was also examined. Small interfering RNA for Il-6 up-regulated Pomc expression and that for Gpr68 reversed the down-regulation of Il-6 and up-regulated Pomc expression by extracellular acidification. Thus, S100β-positive dendritic-like cells can sense an increase in extracellular protons via GPR68 and respond by the production of IL-6 in order to suppress the up-regulation of Pomc expression.
USDA-ARS?s Scientific Manuscript database
Activation statuses of monocytic cells including monocytes, macrophages and dendritic cells (DCs) are critically important for antiviral immunity. In particular, some devastating viruses, including porcine reproductive and respiratory syndrome virus (PRRSV), are capable of directly infecting these c...
Zhou, Wen-Liang; Yan, Ping; Wuskell, Joseph P; Loew, Leslie M; Antic, Srdjan D
2008-02-01
Basal dendrites of neocortical pyramidal neurons are relatively short and directly attached to the cell body. This allows electrical signals arising in basal dendrites to strongly influence the neuronal output. Likewise, somatic action potentials (APs) should readily propagate back into the basilar dendritic tree to influence synaptic plasticity. Two recent studies, however, determined that sodium APs are severely attenuated in basal dendrites of cortical pyramidal cells, so that they completely fail in distal dendritic segments. Here we used the latest improvements in the voltage-sensitive dye imaging technique (Zhou et al., 2007) to study AP backpropagation in basal dendrites of layer 5 pyramidal neurons of the rat prefrontal cortex. With a signal-to-noise ratio of > 15 and minimal temporal averaging (only four sweeps) we were able to sample AP waveforms from the very last segments of individual dendritic branches (dendritic tips). We found that in short- (< 150 microm) and medium (150-200 microm in length)-range basal dendrites APs backpropagated with modest changes in AP half-width or AP rise-time. The lack of substantial changes in AP shape and dynamics of rise is inconsistent with the AP-failure model. The lack of substantial amplitude boosting of the third AP in the high-frequency burst also suggests that in short- and medium-range basal dendrites backpropagating APs were not severely attenuated. Our results show that the AP-failure concept does not apply in all basal dendrites of the rat prefrontal cortex. The majority of synaptic contacts in the basilar dendritic tree actually received significant AP-associated electrical and calcium transients.
Clement, Cristina C.; Becerra, Aniuska; Yin, Liusong; Zolla, Valerio; Huang, Liling; Merlin, Simone; Follenzi, Antonia; Shaffer, Scott A.; Stern, Lawrence J.; Santambrogio, Laura
2016-01-01
The repertoire of peptides displayed in vivo by MHC II molecules derives from a wide spectrum of proteins produced by different cell types. Although intracellular endosomal processing in dendritic cells and B cells has been characterized for a few antigens, the overall range of processing pathways responsible for generating the MHC II peptidome are currently unclear. To determine the contribution of non-endosomal processing pathways, we eluted and sequenced over 3000 HLA-DR1-bound peptides presented in vivo by dendritic cells. The processing enzymes were identified by reference to a database of experimentally determined cleavage sites and experimentally validated for four epitopes derived from complement 3, collagen II, thymosin β4, and gelsolin. We determined that self-antigens processed by tissue-specific proteases, including complement, matrix metalloproteases, caspases, and granzymes, and carried by lymph, contribute significantly to the MHC II self-peptidome presented by conventional dendritic cells in vivo. Additionally, the presented peptides exhibited a wide spectrum of binding affinity and HLA-DM susceptibility. The results indicate that the HLA-DR1-restricted self-peptidome presented under physiological conditions derives from a variety of processing pathways. Non-endosomal processing enzymes add to the number of epitopes cleaved by cathepsins, altogether generating a wider peptide repertoire. Taken together with HLA-DM-dependent and-independent loading pathways, this ensures that a broad self-peptidome is presented by dendritic cells. This work brings attention to the role of “self-recognition” as a dynamic interaction between dendritic cells and the metabolic/catabolic activities ongoing in every parenchymal organ as part of tissue growth, remodeling, and physiological apoptosis. PMID:26740625
Rapid, directed transport of DC-SIGN clusters in the plasma membrane
Liu, Ping; Weinreb, Violetta; Ridilla, Marc; Betts, Laurie; Patel, Pratik; de Silva, Aravinda M.; Thompson, Nancy L.; Jacobson, Ken
2017-01-01
C-type lectins, including dendritic cell–specific intercellular adhesion molecule-3–grabbing nonintegrin (DC-SIGN), are all-purpose pathogen receptors that exist in nanoclusters in plasma membranes of dendritic cells. A small fraction of these clusters, obvious from the videos, can undergo rapid, directed transport in the plane of the plasma membrane at average speeds of more than 1 μm/s in both dendritic cells and MX DC-SIGN murine fibroblasts ectopically expressing DC-SIGN. Surprisingly, instantaneous speeds can be considerably greater. In MX DC-SIGN cells, many cluster trajectories are colinear with microtubules that reside close to the ventral membrane, and the microtubule-depolymerizing drug, nocodazole, markedly reduced the areal density of directed movement trajectories, suggesting a microtubule motor–driven transport mechanism; by contrast, latrunculin A, which affects the actin network, did not depress this movement. Rapid, retrograde movement of DC-SIGN may be an efficient mechanism for bringing bound pathogen on the leading edge and projections of dendritic cells to the perinuclear region for internalization and processing. Dengue virus bound to DC-SIGN on dendritic projections was rapidly transported toward the cell center. The existence of this movement within the plasma membrane points to an unexpected lateral transport mechanism in mammalian cells and challenges our current concepts of cortex-membrane interactions. PMID:29134199
Transient potentials in dendritic systems of arbitrary geometry.
Butz, E G; Cowan, J D
1974-09-01
A simple graphical calculus is developed that generates analytic solutions for membrane potential transforms at any point on the dendritic tree of neurons with arbitrary dendritic geometries, in response to synaptic "current" inputs. Such solutions permit the computation of transients in neurons with arbitrary geometry and may facilitate analysis of the role of dendrites in such cells.
Ceroi, Adam; Masson, David; Roggy, Anne; Roumier, Christophe; Chagué, Cécile; Gauthier, Thierry; Philippe, Laure; Lamarthée, Baptiste; Angelot-Delettre, Fanny; Bonnefoy, Francis; Perruche, Sylvain; Biichle, Sabeha; Preudhomme, Claude; Macintyre, Elisabeth; Lagrost, Laurent; Garnache-Ottou, Francine; Saas, Philippe
2016-12-08
Blastic plasmacytoid dendritic cell (PDC) neoplasm (BPDCN) is an aggressive hematological malignancy with a poor prognosis that derives from PDCs. No consensus for optimal treatment modalities is available today and the full characterization of this leukemia is still emerging. We identified here a BPDCN-specific transcriptomic profile when compared with those of acute myeloid leukemia and T-acute lymphoblastic leukemia, as well as the transcriptomic signature of primary PDCs. This BPDCN gene signature identified a dysregulation of genes involved in cholesterol homeostasis, some of them being liver X receptor (LXR) target genes. LXR agonist treatment of primary BPDCN cells and BPDCN cell lines restored LXR target gene expression and increased cholesterol efflux via the upregulation of adenosine triphosphate-binding cassette (ABC) transporters, ABCA1 and ABCG1. LXR agonist treatment was responsible for limiting BPDCN cell proliferation and inducing intrinsic apoptotic cell death. LXR activation in BPDCN cells was shown to interfere with 3 signaling pathways associated with leukemic cell survival, namely: NF-κB activation, as well as Akt and STAT5 phosphorylation in response to the BPDCN growth/survival factor interleukin-3. These effects were increased by the stimulation of cholesterol efflux through a lipid acceptor, the apolipoprotein A1. In vivo experiments using a mouse model of BPDCN cell xenograft revealed a decrease of leukemic cell infiltration and BPDCN-induced cytopenia associated with increased survival after LXR agonist treatment. This demonstrates that cholesterol homeostasis is modified in BPDCN and can be normalized by treatment with LXR agonists which can be proposed as a new therapeutic approach. © 2016 by The American Society of Hematology.
Neocortical layers I and II of the hedgehog (Erinaceus europaeus). I. Intrinsic organization.
Valverde, F; Facal-Valverde, M V
1986-01-01
The intrinsic organization and interlaminar connections in neocortical layers I and II have been studied in adult hedgehogs (Erinaceus europaeus) using the Golgi method. Layer I contains a dense plexus of horizontal fibers, the terminal dendritic bouquets of pyramidal cells of layer II and of underlying layers, and varieties of intrinsic neurons. Four main types of cells were found in layer I. Small horizontal cells represent most probably persisting foetal horizontal cells described for other mammals. Large horizontal cells, tufted cells, and spinous horizontal cells were also found in this layer. Layer II contains primitive pyramidal cells representing the most outstanding feature of the neocortex of the hedgehog. Most pyramidal cells in layer II have two, three or more apical dendrites, richly covered by spines predominating over the basal dendrites. These cells resemble pyramidal cells found in the piriform cortex, hippocampus and other olfactory areas. It is suggested that the presence of these neurons reflects the retention of a primitive character in neocortical evolution. Cells with intrinsic axons were found among pyramidal cells in layer II. These have smooth dendrites penetrating layer I and local axons forming extremely complex terminal arborizations around the bodies and proximal dendritic portions of pyramidal cells. They most probably effect numerous axo-somatic contacts resembling basket cells. The similarity of some axonal terminals with the chandelier type of axonal arborization is discussed. Other varieties of cells located in deep cortical layers and having ascending axons for layers I and II were also studied. It is concluded that the two first neocortical layers represent a level of important integration in this primitive mammal.
Dendro-dendritic interactions between motion-sensitive large-field neurons in the fly.
Haag, Juergen; Borst, Alexander
2002-04-15
For visual course control, flies rely on a set of motion-sensitive neurons called lobula plate tangential cells (LPTCs). Among these cells, the so-called CH (centrifugal horizontal) cells shape by their inhibitory action the receptive field properties of other LPTCs called FD (figure detection) cells specialized for figure-ground discrimination based on relative motion. Studying the ipsilateral input circuitry of CH cells by means of dual-electrode and combined electrical-optical recordings, we find that CH cells receive graded input from HS (large-field horizontal system) cells via dendro-dendritic electrical synapses. This particular wiring scheme leads to a spatial blur of the motion image on the CH cell dendrite, and, after inhibiting FD cells, to an enhancement of motion contrast. This could be crucial for enabling FD cells to discriminate object from self motion.
Apparatus for silicon web growth of higher output and improved growth stability
Duncan, Charles S.; Piotrowski, Paul A.
1989-01-01
This disclosure describes an apparatus to improve the web growth attainable from prior web growth configurations. This apparatus modifies the heat loss at the growth interface in a manner that minimizes thickness variations across the web, especially regions of the web adjacent to the two bounding dendrites. In the unmodified configuration, thinned regions of web, adjacent to the dendrites, were found to be the origin of crystal degradation which ultimately led to termination of the web growth. According to the present invention, thinning adjacent to the dendrites is reduced and the incidence of crystal degradation is similarly reduced.
Olfactory epithelium influences the orientation of mitral cell dendrites during development.
López-Mascaraque, Laura; García, Concepción; Blanchart, Albert; De Carlos, Juan A
2005-02-01
We have established previously that, although the olfactory epithelium is absent in the homozygous Pax-6 mutant mouse, an olfactory bulb-like structure (OBLS) does develop. Moreover, this OBLS contains cells that correspond to mitral cells, the primary projection neurons in the olfactory bulb. The current study aimed to address whether the dendrites of mitral cells in the olfactory bulb or in the OBLS mitral-like cells, exhibit a change in orientation in the presence of the olfactory epithelium. The underlying hypothesis is that the olfactory epithelium imparts a trophic signal on mitral and mitral-like cell that influences the growth of their primary dendrites, orientating them toward the surface of the olfactory bulb. Hence, we cultured hemibrains from wild-type and Pax 6 mutant mice from two different embryonic stages (embryonic days 14 and 15) either alone or in coculture with normal olfactory epithelial explants or control tissue (cerebellum). Our results indicate that the final dendritic orientation of mitral and mitral-like cells is directly influenced both by age and indeed by the presence of the olfactory epithelium. Copyright 2004 Wiley-Liss, Inc.
Aubin, F; Alcalay, J; Dall'Acqua, F; Kripke, M L
1990-06-01
Although some psoralens are therapeutically active in the treatment of cutaneous hyperproliferative diseases when combined with UVA (320-400 nm) radiation, the toxic effects of these compounds have led physicians to seek new photochemotherapeutic agents. One such agent is 4,4',5'-trimethylazapsoralen (TMAP), a new bifunctional psoralen compound. We investigated the effects of repetitive treatments with TMAP plus UVA radiation on the number of dendritic immune cells in murine epidermis and on the induction of phototoxicity. Mice treated 3 times per week for 4 weeks with 129 microgram TMAP plus 10 kJ/m2 UVA radiation exhibited no gross or microscopic evidence of phototoxicity. During this treatment, the numbers of ATPase+, Ia+, and Thy-l+ dendritic epidermal cells were greatly reduced, and by the end of the treatment period, few dendritic immune cells could be detected. We conclude that morphological alterations of cutaneous immune cells can occur in the absence of overt phototoxicity, and that TMAP plus low-dose UVA radiation decreases the numbers of detectable Langerhans cells and Thy-1+ cells in murine skin.
McGinley, Matthew J.; Liberman, M. Charles; Bal, Ramazan; Oertel, Donata
2012-01-01
Broadband transient sounds, such as clicks and consonants, activate a traveling wave in the cochlea. This wave evokes firing in auditory nerve fibers that are tuned to high frequencies several milliseconds earlier than in fibers tuned to low frequencies. Despite this substantial traveling wave delay, octopus cells in the brainstem receive broadband input and respond to clicks with submillisecond temporal precision. The dendrites of octopus cells lie perpendicular to the tonotopically organized array of auditory nerve fibers, placing the earliest arriving inputs most distally and the latest arriving closest to the soma. Here, we test the hypothesis that the topographic arrangement of synaptic inputs on dendrites of octopus cells allows octopus cells to compensate the traveling wave delay. We show that in mice the full cochlear traveling wave delay is 1.6 ms. Because the dendrites of each octopus cell spread across about one third of the tonotopic axis, a click evokes a soma directed sweep of synaptic input lasting 0.5 ms in individual octopus cells. Morphologically and biophysically realistic, computational models of octopus cells show that soma-directed sweeps with durations matching in vivo measurements result in the largest and sharpest somatic excitatory postsynaptic potentials (EPSPs). A low input resistance and activation of a low-voltage-activated potassium conductance that are characteristic of octopus cells are important determinants of sweep sensitivity. We conclude that octopus cells have dendritic morphologies and biophysics tailored to accomplish the precise encoding of broadband transient sounds. PMID:22764237
Previously we found that dendritic cells (DC) were sensitive functional bioindicators of ambient PM (APM) exposure mediating Th2-allergic inflammation in the draining lymph nodes. Here, the ability of bone-marrow-derived DC (DC) and putative BM-derived basophils (Ba) to present a...
USDA-ARS?s Scientific Manuscript database
Dendritic cells (DC) are multifunctional cells that bridge the gap between innate and adaptive immune systems. In bovine, significant information is lacking on the precise identity and role of peripheral blood DC subsets. In this study, we identify and characterize bovine peripheral blood DC subsets...
Enhanced Tumor Retention Effect by Click Chemistry for Improved Cancer Immunochemotherapy.
Mei, Ling; Liu, Yayuan; Rao, Jingdong; Tang, Xian; Li, Man; Zhang, Zhirong; He, Qin
2018-05-30
Because of the limited drug concentration in tumor tissues and inappropriate treatment strategies, tumor recurrence and metastasis are critical challenges for effectively treating malignancies. A key challenge for effective delivery of nanoparticles is to reduce uptake by reticuloendothelial system and to enhance the permeability and retention effect. Herein, we demonstrated Cu(I)-catalyzed click chemistry triggered the aggregation of azide/alkyne-modified micelles, enhancing micelles accumulation in tumor tissues. In addition, combined doxorubicin with the adjuvant monophosphoryl lipid A, an agonist of toll-like receptor4, generated immunogenic cell death, which further promoted maturity of dendritic cells, antigen presentation and induced strong effector T cells in vivo. Following combined with anti-PD-L1 therapy, substantial antitumor and metastasis inhibitory effects were achieved because of the reduced PD-L1 expression and regulatory T cells. In addition, effective long-term immunity from memory T cell responses protected mice from tumor recurrence.
Frøkiær, Hanne; Henningsen, Louise; Metzdorff, Stine Broeng; Weiss, Gudrun; Roller, Marc; Flanagan, John; Fromentin, Emilie; Ibarra, Alvin
2012-01-01
Many foods and food components boost the immune system, but little data are available regarding the mechanisms by which they do. Bacterial strains have disparate effects in stimulating the immune system. Indendritic cells, the gram-negative bacteria Escherichia coli upregulates proinflammatory cytokines, whereas gram-positive Lactobacillus acidophilus induces a robust interferon (IFN)-β response. The immune-modulating effects of astragalus root and elderberry fruit extracts were examined in bone marrow-derived murine dendritic cells that were stimulated with L. acidophilus or E. coli. IFN-β and other cytokines were measured by ELISA and RT-PCR. Endocytosis of fluorescence-labeled dextran and L. acidophilus in the presence of elderberry fruit or astragalus root extract was evaluated in dendritic cells. Our results show that both extracts enhanced L. acidophilus-induced IFN-β production and slightly decreased the proinflammatory response to E. coli. The enhanced IFN-β production was associated with upregulation of toll-like receptor 3 and to a varying degree, the cytokines IL-12, IL-6, IL-1β and TNF-α. Both extracts increased endocytosis in immature dendritic cells, and only slightly influenced the viability of the cells. In conclusion, astragalus root and elderberry fruit extracts increase the IFN-β inducing activity of L. acidophilus in dendritic cells, suggesting that they may exert antiviral and immune-enhancing activity. PMID:23118903
2013-07-01
by Listeria -Stimulated Human Dendritic Cells: Implications for Cancer Vaccine Therapy PRINCIPAL INVESTIGATOR: David J. Chung, MD, PhD...2013 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-11-1-0384 Evaluation of Immune Responses Mediated by Listeria -Stimulated Human Dendritic...Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The purpose of this project is to study the immunomodulatory effect of Listeria on human
Romero, Ana M; Renau-Piqueras, Jaime; Marín, M Pilar; Esteban-Pretel, Guillermo
2015-01-01
The specific traffic of the membrane components in neurons is a major requirement to establish and maintain neuronal domains-the axonal and the somatodendritic domains-and their polarized morphology. Unlike axons, dendrites contain membranous organelles, which are involved in the secretory pathway, including the endoplasmic reticulum, the Golgi apparatus and post-Golgi apparatus carriers, the cytoskeleton, and plasma membrane. A variety of molecules and factors are also involved in this process. Previous studies have shown that chronic alcohol exposure negatively affects several of these cell components, such as the Golgi apparatus or cytoskeleton in neurons. Yet very little information is available on the possible effects of this exposure on the remaining cell elements involved in intracellular trafficking in neurons, particularly in dendrites. By qualitative and quantitative electron microscopy, immunofluorescence and immunoblotting, we herein show that chronic exposure to moderate levels (30 mM) of ethanol in cultured neurons reduces the volume and surface density of the rough endoplasmic reticulum, and increases the levels of GRP78, a chaperone involved in endoplasmic reticulum stress. Ethanol also significantly diminishes the proportion of neurons that show an extension of Golgi into dendrites and dendritic Golgi outposts, a structure present exclusively in longer, thicker apical dendrites. Both Golgi apparatus types were also fragmented into a large number of cells. We also investigated the effect of alcohol on the levels of microtubule-based motor proteins KIF5, KIF17, KIFC2, dynein, and myosin IIb, responsible for transporting different cargoes in dendrites. Of these, alcohol differently affects several of them by lowering dynein and raising KIF5, KIFC2, and myosin IIb. These results, together with other previously published ones, suggest that practically all the protein trafficking steps in dendrites are altered to a greater or lesser extent by chronic alcohol exposure in neuronal cells, which may have negative repercussions for the development and maintenance of their polarized morphology and function.
Musical representation of dendritic spine distribution: a new exploratory tool.
Toharia, Pablo; Morales, Juan; de Juan, Octavio; Fernaud, Isabel; Rodríguez, Angel; DeFelipe, Javier
2014-04-01
Dendritic spines are small protrusions along the dendrites of many types of neurons in the central nervous system and represent the major target of excitatory synapses. For this reason, numerous anatomical, physiological and computational studies have focused on these structures. In the cerebral cortex the most abundant and characteristic neuronal type are pyramidal cells (about 85 % of all neurons) and their dendritic spines are the main postsynaptic target of excitatory glutamatergic synapses. Thus, our understanding of the synaptic organization of the cerebral cortex largely depends on the knowledge regarding synaptic inputs to dendritic spines of pyramidal cells. Much of the structural data on dendritic spines produced by modern neuroscience involves the quantitative analysis of image stacks from light and electron microscopy, using standard statistical and mathematical tools and software developed to this end. Here, we present a new method with musical feedback for exploring dendritic spine morphology and distribution patterns in pyramidal neurons. We demonstrate that audio analysis of spiny dendrites with apparently similar morphology may "sound" quite different, revealing anatomical substrates that are not apparent from simple visual inspection. These morphological/music translations may serve as a guide for further mathematical analysis of the design of the pyramidal neurons and of spiny dendrites in general.
Dendrite architecture organized by transcriptional control of the F-actin nucleator Spire.
Ferreira, Tiago; Ou, Yimiao; Li, Sally; Giniger, Edward; van Meyel, Donald J
2014-02-01
The architectures of dendritic trees are crucial for the wiring and function of neuronal circuits because they determine coverage of receptive territories, as well as the nature and strength of sensory or synaptic inputs. Here, we describe a cell-intrinsic pathway sculpting dendritic arborization (da) neurons in Drosophila that requires Longitudinals Lacking (Lola), a BTB/POZ transcription factor, and its control of the F-actin cytoskeleton through Spire (Spir), an actin nucleation protein. Loss of Lola from da neurons reduced the overall length of dendritic arbors, increased the expression of Spir, and produced inappropriate F-actin-rich dendrites at positions too near the cell soma. Selective removal of Lola from only class IV da neurons decreased the evasive responses of larvae to nociception. The increased Spir expression contributed to the abnormal F-actin-rich dendrites and the decreased nocifensive responses because both were suppressed by reduced dose of Spir. Thus, an important role of Lola is to limit expression of Spir to appropriate levels within da neurons. We found Spir to be expressed in dendritic arbors and to be important for their development. Removal of Spir from class IV da neurons reduced F-actin levels and total branch number, shifted the position of greatest branch density away from the cell soma, and compromised nocifensive behavior. We conclude that the Lola-Spir pathway is crucial for the spatial arrangement of branches within dendritic trees and for neural circuit function because it provides balanced control of the F-actin cytoskeleton.
Bielza, Concha; Benavides-Piccione, Ruth; López-Cruz, Pedro; Larrañaga, Pedro; DeFelipe, Javier
2014-08-01
Unraveling pyramidal cell structure is crucial to understanding cortical circuit computations. Although it is well known that pyramidal cell branching structure differs in the various cortical areas, the principles that determine the geometric shapes of these cells are not fully understood. Here we analyzed and modeled with a von Mises distribution the branching angles in 3D reconstructed basal dendritic arbors of hundreds of intracellularly injected cortical pyramidal cells in seven different cortical regions of the frontal, parietal, and occipital cortex of the mouse. We found that, despite the differences in the structure of the pyramidal cells in these distinct functional and cytoarchitectonic cortical areas, there are common design principles that govern the geometry of dendritic branching angles of pyramidal cells in all cortical areas.
Bielza, Concha; Benavides-Piccione, Ruth; López-Cruz, Pedro; Larrañaga, Pedro; DeFelipe, Javier
2014-01-01
Unraveling pyramidal cell structure is crucial to understanding cortical circuit computations. Although it is well known that pyramidal cell branching structure differs in the various cortical areas, the principles that determine the geometric shapes of these cells are not fully understood. Here we analyzed and modeled with a von Mises distribution the branching angles in 3D reconstructed basal dendritic arbors of hundreds of intracellularly injected cortical pyramidal cells in seven different cortical regions of the frontal, parietal, and occipital cortex of the mouse. We found that, despite the differences in the structure of the pyramidal cells in these distinct functional and cytoarchitectonic cortical areas, there are common design principles that govern the geometry of dendritic branching angles of pyramidal cells in all cortical areas. PMID:25081193
Schachter, Michael J; Oesch, Nicholas; Smith, Robert G; Taylor, W Rowland
2010-08-19
The On-Off direction-selective ganglion cell (DSGC) in mammalian retinas responds most strongly to a stimulus moving in a specific direction. The DSGC initiates spikes in its dendritic tree, which are thought to propagate to the soma with high probability. Both dendritic and somatic spikes in the DSGC display strong directional tuning, whereas somatic PSPs (postsynaptic potentials) are only weakly directional, indicating that spike generation includes marked enhancement of the directional signal. We used a realistic computational model based on anatomical and physiological measurements to determine the source of the enhancement. Our results indicate that the DSGC dendritic tree is partitioned into separate electrotonic regions, each summing its local excitatory and inhibitory synaptic inputs to initiate spikes. Within each local region the local spike threshold nonlinearly amplifies the preferred response over the null response on the basis of PSP amplitude. Using inhibitory conductances previously measured in DSGCs, the simulation results showed that inhibition is only sufficient to prevent spike initiation and cannot affect spike propagation. Therefore, inhibition will only act locally within the dendritic arbor. We identified the role of three mechanisms that generate directional selectivity (DS) in the local dendritic regions. First, a mechanism for DS intrinsic to the dendritic structure of the DSGC enhances DS on the null side of the cell's dendritic tree and weakens it on the preferred side. Second, spatially offset postsynaptic inhibition generates robust DS in the isolated dendritic tips but weak DS near the soma. Third, presynaptic DS is apparently necessary because it is more robust across the dendritic tree. The pre- and postsynaptic mechanisms together can overcome the local intrinsic DS. These local dendritic mechanisms can perform independent nonlinear computations to make a decision, and there could be analogous mechanisms within cortical circuitry.
Transient Potentials in Dendritic Systems of Arbitrary Geometry
Butz, Edward G.; Cowan, Jack D.
1974-01-01
A simple graphical calculus is developed that generates analytic solutions for membrane potential transforms at any point on the dendritic tree of neurons with arbitrary dendritic geometries, in response to synaptic “current” inputs. Such solutions permit the computation of transients in neurons with arbitrary geometry and may facilitate analysis of the role of dendrites in such cells. PMID:4416699
Kim, Myung-Gyu; Boo, Chang Su; Ko, Yoon Sook; Lee, Hee Young; Cho, Won Yong; Kim, Hyoung Kyu; Jo, Sang-Kyung
2010-09-01
Recent studies provided evidence of the potential role of CD11c(+) F4/80(+) dendritic subset in mediating injury and repair. The purpose of this study was to examine the role of kidney CD11c(+) F4/80(+) dendritic subset in the recovery phase of ischaemia/reperfusion injury (IRI). Following ischaemia/reperfusion (I/R), liposome clodronate or phosphate buffered saline (PBS) was administered, and on day 7 biochemical and histologic kidney damage was assessed. Activation and depletion of CD11c(+) F4/80(+) dendritic subset were confirmed by flow cytometry. Isolation of kidney CD11c(+) cells on days 1 and 7 with in vitro culture for measuring cytokines was performed to define functional characteristics of these cells, and adoptive transfer of CD11c(+) cells was also done. Following kidney IRI, the percentage of CD11c(+) F4/80(+) kidney dendritic cell subset that co-expresses maturation marker increased. Liposome clodronate injection after I/R resulted in preferential depletion of CD11c(+) F4/80(+) kidney dendritic subset, and depletion of these cells was associated with persistent kidney injury, more apoptosis, inflammation and impaired tubular cell proliferation. CD11c(+) F4/80(+) cell depletion was also associated with higher tissue levels of pro-inflammatory cytokines and lower level of IL-10, indicating the persistence of inflammatory milieu. Isolated kidney CD11c(+) cells on day 7 showed different phenotype with increased production of IL-10 compared with those on day 1. Adoptive transfer of CD11c(+) cells partially reversed impaired tissue recovery. Our results suggest that kidney CD11c(+) F4/80(+) dendritic subset might contribute to the recovery process by dynamic phenotypic change from pro-inflammatory to anti-inflammatory with modulation of immune response.
Engel, Dominique; Seutin, Vincent
2015-11-15
The hyperpolarization-activated cation current Ih is expressed in dopamine neurons of the substantia nigra, but the subcellular distribution of the current and its role in synaptic integration remain unknown. We used cell-attached patch recordings to determine the localization profile of Ih along the somatodendritic axis of nigral dopamine neurons in slices from young rats. Ih density is higher in axon-bearing dendrites, in a membrane area close to the axon origin, than in the soma and axon-lacking dendrites. Dual current-clamp recordings revealed a similar contribution of Ih to the waveform of single excitatory postsynaptic potentials throughout the somatodendritic domain. The Ih blocker ZD 7288 increased the temporal summation in all dendrites with a comparable effect in axon- and non-axon dendrites. The strategic position of Ih in the proximity of the axon may influence importantly transitions between pacemaker and bursting activities and consequently the downstream release of dopamine. Dendrites of most neurons express voltage-gated ion channels in their membrane. In combination with passive properties, active currents confer to dendrites a high computational potential. The hyperpolarization-activated cation current Ih present in the dendrites of some pyramidal neurons affects their membrane and integration properties, synaptic plasticity and higher functions such as memory. A gradient of increasing h-channel density towards distal dendrites has been found to be responsible for the location independence of excitatory postsynaptic potential (EPSP) waveform and temporal summation in cortical and hippocampal pyramidal cells. However, reports on other cell types revealed that smoother gradients or even linear distributions of Ih can achieve homogeneous temporal summation. Although the existence of a robust, slowly activating Ih current has been repeatedly demonstrated in nigral dopamine neurons, its subcellular distribution and precise role in synaptic integration are unknown. Using cell-attached patch-clamp recordings, we find a higher Ih current density in the axon-bearing dendrite than in the soma or in dendrites without axon in nigral dopamine neurons. Ih is mainly concentrated in the dendritic membrane area surrounding the axon origin and decreases with increasing distances from this site. Single EPSPs and temporal summation are similarly affected by blockade of Ih in axon- and non-axon-bearing dendrites. The presence of Ih close to the axon is pivotal to control the integrative functions and the output signal of dopamine neurons and may consequently influence the downstream coding of movement. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.
Different tissue phagocytes sample apoptotic cells to direct distinct homeostasis programs.
Cummings, Ryan J; Barbet, Gaetan; Bongers, Gerold; Hartmann, Boris M; Gettler, Kyle; Muniz, Luciana; Furtado, Glaucia C; Cho, Judy; Lira, Sergio A; Blander, J Magarian
2016-11-24
Recognition and removal of apoptotic cells by professional phagocytes, including dendritic cells and macrophages, preserves immune self-tolerance and prevents chronic inflammation and autoimmune pathologies. The diverse array of phagocytes that reside within different tissues, combined with the necessarily prompt nature of apoptotic cell clearance, makes it difficult to study this process in situ. The full spectrum of functions executed by tissue-resident phagocytes in response to homeostatic apoptosis, therefore, remains unclear. Here we show that mouse apoptotic intestinal epithelial cells (IECs), which undergo continuous renewal to maintain optimal barrier and absorptive functions, are not merely extruded to maintain homeostatic cell numbers, but are also sampled by a single subset of dendritic cells and two macrophage subsets within a well-characterized network of phagocytes in the small intestinal lamina propria. Characterization of the transcriptome within each subset before and after in situ sampling of apoptotic IECs revealed gene expression signatures unique to each phagocyte, including macrophage-specific lipid metabolism and amino acid catabolism, and a dendritic-cell-specific program of regulatory CD4 + T-cell activation. A common 'suppression of inflammation' signature was noted, although the specific genes and pathways involved varied amongst dendritic cells and macrophages, reflecting specialized functions. Apoptotic IECs were trafficked to mesenteric lymph nodes exclusively by the dendritic cell subset and served as critical determinants for the induction of tolerogenic regulatory CD4 + T-cell differentiation. Several of the genes that were differentially expressed by phagocytes bearing apoptotic IECs overlapped with susceptibility genes for inflammatory bowel disease. Collectively, these findings provide new insights into the consequences of apoptotic cell sampling, advance our understanding of how homeostasis is maintained within the mucosa and set the stage for development of novel therapeutics to alleviate chronic inflammatory diseases such as inflammatory bowel disease.
Input transformation by dendritic spines of pyramidal neurons
Araya, Roberto
2014-01-01
In the mammalian brain, most inputs received by a neuron are formed on the dendritic tree. In the neocortex, the dendrites of pyramidal neurons are covered by thousands of tiny protrusions known as dendritic spines, which are the major recipient sites for excitatory synaptic information in the brain. Their peculiar morphology, with a small head connected to the dendritic shaft by a slender neck, has inspired decades of theoretical and more recently experimental work in an attempt to understand how excitatory synaptic inputs are processed, stored and integrated in pyramidal neurons. Advances in electrophysiological, optical and genetic tools are now enabling us to unravel the biophysical and molecular mechanisms controlling spine function in health and disease. Here I highlight relevant findings, challenges and hypotheses on spine function, with an emphasis on the electrical properties of spines and on how these affect the storage and integration of excitatory synaptic inputs in pyramidal neurons. In an attempt to make sense of the published data, I propose that the raison d'etre for dendritic spines lies in their ability to undergo activity-dependent structural and molecular changes that can modify synaptic strength, and hence alter the gain of the linearly integrated sub-threshold depolarizations in pyramidal neuron dendrites before the generation of a dendritic spike. PMID:25520626
Yau, Kah Wai; Schätzle, Philipp; Tortosa, Elena; Pagès, Stéphane; Holtmaat, Anthony; Kapitein, Lukas C; Hoogenraad, Casper C
2016-01-27
In cultured vertebrate neurons, axons have a uniform arrangement of microtubules with plus-ends distal to the cell body (plus-end-out), whereas dendrites contain mixed polarity orientations with both plus-end-out and minus-end-out oriented microtubules. Rather than non-uniform microtubules, uniparallel minus-end-out microtubules are the signature of dendrites in Drosophila and Caenorhabditis elegans neurons. To determine whether mixed microtubule organization is a conserved feature of vertebrate dendrites, we used live-cell imaging to systematically analyze microtubule plus-end orientations in primary cultures of rat hippocampal and cortical neurons, dentate granule cells in mouse organotypic slices, and layer 2/3 pyramidal neurons in the somatosensory cortex of living mice. In vitro and in vivo, all microtubules had a plus-end-out orientation in axons, whereas microtubules in dendrites had mixed orientations. When dendritic microtubules were severed by laser-based microsurgery, we detected equal numbers of plus- and minus-end-out microtubule orientations throughout the dendritic processes. In dendrites, the minus-end-out microtubules were generally more stable and comparable with plus-end-out microtubules in axons. Interestingly, at early stages of neuronal development in nonpolarized cells, newly formed neurites already contained microtubules of opposite polarity, suggesting that the establishment of uniform plus-end-out microtubules occurs during axon formation. We propose a model in which the selective formation of uniform plus-end-out microtubules in the axon is a critical process underlying neuronal polarization. Live-cell imaging was used to systematically analyze microtubule organization in primary cultures of rat hippocampal neurons, dentate granule cells in mouse organotypic slices, and layer 2/3 pyramidal neuron in somatosensory cortex of living mice. In vitro and in vivo, all microtubules have a plus-end-out orientation in axons, whereas microtubules in dendrites have mixed orientations. Interestingly, newly formed neurites of nonpolarized neurons already contain mixed microtubules, and the specific organization of uniform plus-end-out microtubules only occurs during axon formation. Based on these findings, the authors propose a model in which the selective formation of uniform plus-end-out microtubules in the axon is a critical process underlying neuronal polarization. Copyright © 2016 the authors 0270-6474/16/361072-15$15.00/0.
Modeling somatic and dendritic spike mediated plasticity at the single neuron and network level.
Bono, Jacopo; Clopath, Claudia
2017-09-26
Synaptic plasticity is thought to be the principal neuronal mechanism underlying learning. Models of plastic networks typically combine point neurons with spike-timing-dependent plasticity (STDP) as the learning rule. However, a point neuron does not capture the local non-linear processing of synaptic inputs allowed for by dendrites. Furthermore, experimental evidence suggests that STDP is not the only learning rule available to neurons. By implementing biophysically realistic neuron models, we study how dendrites enable multiple synaptic plasticity mechanisms to coexist in a single cell. In these models, we compare the conditions for STDP and for synaptic strengthening by local dendritic spikes. We also explore how the connectivity between two cells is affected by these plasticity rules and by different synaptic distributions. Finally, we show that how memory retention during associative learning can be prolonged in networks of neurons by including dendrites.Synaptic plasticity is the neuronal mechanism underlying learning. Here the authors construct biophysical models of pyramidal neurons that reproduce observed plasticity gradients along the dendrite and show that dendritic spike dependent LTP which is predominant in distal sections can prolong memory retention.
Heilmann, Monika; Wellner, Anne; Gadermaier, Gabriele; Ilchmann, Anne; Briza, Peter; Krause, Maren; Nagai, Ryoji; Burgdorf, Sven; Scheurer, Stephan; Vieths, Stefan; Henle, Thomas; Toda, Masako
2014-01-01
The Maillard reaction (also referred to as “glycation”) takes place between reducing sugars and compounds with free amino groups during thermal processing of foods. In the final stage of the complex reaction cascade, the so-called advanced glycation end products (AGEs) are formed, including proteins with various glycation structures. It has been suggested that some AGEs could have immunostimulatory effects. Here, we aimed to identify specific glycation structure(s) that could influence the T-cell immunogenicity and potential allergenicity of food allergens, using ovalbumin (OVA, an egg white allergen) as a model allergen. OVA was specifically modified with representative glycation structures: Nϵ-carboxymethyl lysine (CM-OVA), Nϵ-carboxyethyl lysine (CE-OVA), pyrraline (Pyr-OVA), or methylglyoxal-derived arginine derivatives (MGO-OVA). As well as AGE-OVA, a crude glycation product in thermal incubation of OVA with glucose, only Pyr-OVA, and not other modified OVAs, was efficiently taken up by bone marrow-derived murine dendritic cells (BMDCs). The uptake of Pyr-OVA was reduced in scavenger receptor class A (SR-A)-deficient BMDCs, but not in cells treated with inhibitors of scavenger receptor class B, galectin-3, or blocking antibodies against CD36, suggesting that pyrraline binds to SR-A. Compared with other modified OVAs, Pyr-OVA induced higher activation of OVA-specific CD4+ T-cells in co-culture with BMDCs. Furthermore, compared with native OVA, AGE-OVA and Pyr-OVA induced higher IgE production in mice. Pyrraline could induce better allergen uptake by DCs via association with SR-A and subsequently enhance CD4+ T-cell activation and IgE production. Our findings help us to understand how Maillard reaction enhances the potential allergenicity of food allergens. PMID:24505139
Laouar, Yasmina; Sutterwala, Fayyaz S; Gorelik, Leonid; Flavell, Richard A
2005-06-01
Interferon-gamma and interleukin 12 produced by the innate arm of the immune system are important regulators of T helper type 1 (T(H)1) cell development, but signals that negatively regulate their expression remain controversial. Here we show that transforming growth factor-beta (TGF-beta) controlled T(H)1 differentiation through the regulation of interferon-gamma produced by natural killer (NK) cells. Blockade of TGF-beta signaling in NK cells caused the accumulation of a large pool of NK cells secreting copious interferon-gamma, responsible for T(H)1 differentiation and protection from leishmania infection. In contrast, blockade of TGF-beta signaling in dendritic cells did not affect dendritic cell homeostasis or interleukin 12 production, thus indicating a previously undescribed demarcation of the function of TGF-beta in NK cells versus dendritic cells.
Carboxylated hyperbranched poly(glycidol)s for preparation of pH-sensitive liposomes.
Yuba, Eiji; Harada, Atsushi; Sakanishi, Yuichi; Kono, Kenji
2011-01-05
Previous reports by the authors described intracellular delivery using liposomes modified with various carboxylated poly(glycidol) derivatives. These linear polymer-modified liposomes exhibited a pH-dependent membrane fusion behavior in cellular acidic compartments. However, the effect of the backbone structure on membrane fusion activity remains unknown. Therefore, this study specifically investigated the backbone structure to obtain pH-sensitive polymers with much higher fusogenic activity and to reveal the effect of the polymer backbone structure on the interaction with the membrane. Hyperbranched poly(glycidol) (HPG) derivatives were prepared as a new type of pH-sensitive polymer and used for the modification of liposomes. The resultant HPG derivatives exhibited high hydrophobicity and intensive interaction with the membrane concomitantly with the increasing degree of polymerization (DP). Furthermore, HPG derivatives showed a stronger interaction with the membrane than the linear polymers show. Liposomes modified with HPG derivatives of high DP delivered contents into the cytosol of DC2.4 cells, a dendritic cell line, more effectively than the linear polymer-modified liposomes do. Results show that the backbone structure of pH-sensitive polymers affected their pH-sensitivity and interaction with liposomal and cellular membranes. Copyright © 2010 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Dendritic cells (DC) are professional antigen-presenting cells of the immune system that function to initiate primary immune responses. Progenitors of DCs are derived from haematopoietic stem cells in the bone marrow (BM) that migrate in non-lymphoid tissues to develop into immature DCs. Here, they ...
Rudolph, Stephanie; Hull, Court; Regehr, Wade G
2015-11-25
Interneurons are essential to controlling excitability, timing, and synaptic integration in neuronal networks. Golgi cells (GoCs) serve these roles at the input layer of the cerebellar cortex by releasing GABA to inhibit granule cells (grcs). GoCs are excited by mossy fibers (MFs) and grcs and provide feedforward and feedback inhibition to grcs. Here we investigate two important aspects of GoC physiology: the properties of GoC dendrites and the role of calcium signaling in regulating GoC spontaneous activity. Although GoC dendrites are extensive, previous studies concluded they are devoid of voltage-gated ion channels. Hence, the current view holds that somatic voltage signals decay passively within GoC dendrites, and grc synapses onto distal dendrites are not amplified and are therefore ineffective at firing GoCs because of strong passive attenuation. Using whole-cell recording and calcium imaging in rat slices, we find that dendritic voltage-gated sodium channels allow somatic action potentials to activate voltage-gated calcium channels (VGCCs) along the entire dendritic length, with R-type and T-type VGCCs preferentially located distally. We show that R- and T-type VGCCs located in the dendrites can boost distal synaptic inputs and promote burst firing. Active dendrites are thus critical to the regulation of GoC activity, and consequently, to the processing of input to the cerebellar cortex. In contrast, we find that N-type channels are preferentially located near the soma, and control the frequency and pattern of spontaneous firing through their close association with calcium-activated potassium (KCa) channels. Thus, VGCC types are differentially distributed and serve specialized functions within GoCs. Interneurons are essential to neural processing because they modulate excitability, timing, and synaptic integration within circuits. At the input layer of the cerebellar cortex, a single type of interneuron, the Golgi cell (GoC), carries these functions. The extent of inhibition depends on both spontaneous activity of GoCs and the excitatory synaptic input they receive. In this study, we find that different types of calcium channels are differentially distributed, with dendritic calcium channels being activated by somatic activity, boosting synaptic inputs and enabling bursting, and somatic calcium cannels promoting regular firing. We therefore challenge the current view that GoC dendrites are passive and identify the mechanisms that contribute to GoCs regulating the flow of sensory information in the cerebellar cortex. Copyright © 2015 the authors 0270-6474/15/3515492-13$15.00/0.
Neuropil threads occur in dendrites of tangle-bearing nerve cells.
Braak, H; Braak, E
1988-01-01
Transparent Golgi preparations counterstained for Alzheimer's neurofibrillary changes rendered possible the demonstration of neuropil threads in defined cellular processes. Only dendrites of tangle-bearing cortical nerve cells were found to contain neuropil threads. Processes of glial cells as well as axons present in the material were devoid of neuropil threads.
Dendritic cells control fibroblastic reticular network tension and lymph node expansion.
Acton, Sophie E; Farrugia, Aaron J; Astarita, Jillian L; Mourão-Sá, Diego; Jenkins, Robert P; Nye, Emma; Hooper, Steven; van Blijswijk, Janneke; Rogers, Neil C; Snelgrove, Kathryn J; Rosewell, Ian; Moita, Luis F; Stamp, Gordon; Turley, Shannon J; Sahai, Erik; Reis e Sousa, Caetano
2014-10-23
After immunogenic challenge, infiltrating and dividing lymphocytes markedly increase lymph node cellularity, leading to organ expansion. Here we report that the physical elasticity of lymph nodes is maintained in part by podoplanin (PDPN) signalling in stromal fibroblastic reticular cells (FRCs) and its modulation by CLEC-2 expressed on dendritic cells. We show in mouse cells that PDPN induces actomyosin contractility in FRCs via activation of RhoA/C and downstream Rho-associated protein kinase (ROCK). Engagement by CLEC-2 causes PDPN clustering and rapidly uncouples PDPN from RhoA/C activation, relaxing the actomyosin cytoskeleton and permitting FRC stretching. Notably, administration of CLEC-2 protein to immunized mice augments lymph node expansion. In contrast, lymph node expansion is significantly constrained in mice selectively lacking CLEC-2 expression in dendritic cells. Thus, the same dendritic cells that initiate immunity by presenting antigens to T lymphocytes also initiate remodelling of lymph nodes by delivering CLEC-2 to FRCs. CLEC-2 modulation of PDPN signalling permits FRC network stretching and allows for the rapid lymph node expansion--driven by lymphocyte influx and proliferation--that is the critical hallmark of adaptive immunity.
Ho, Giang Thanh Thi; Wangensteen, Helle; Barsett, Hilde
2017-01-01
Modulation of complement activity and inhibition of nitric oxide (NO) production by macrophages and dendritic cells may have therapeutic value in inflammatory diseases. Elderberry and elderflower extracts, constituents, and metabolites were investigated for their effects on the complement system, and on NO production in lipopolysaccharide (LPS)-activated RAW 264.7 macrophages and murine dendritic D2SC/I cells. The EtOH crude extracts from elderberry and elderflower and the isolated anthocyanins and procyanidins possessed strong complement fixating activity and strong inhibitory activity on NO production in RAW cells and dendritic cells. Phenolic compounds in the range of 0.1–100 µM showed a dose-dependent inhibition of NO production, with quercetin, rutin, and kaempferol as the most potent ones. Among the metabolites, caffeic acid and 3,4-dihydroxyphenylacetic acid showed the strongest inhibitory effects on NO production in both cell lines, without having cytotoxic effect. Only 4-methylcatechol was cytotoxic at the highest tested concentration (100 µM). Elderberry and elderflower constituents may possess inflammatory modulating activity, which increases their nutritional value. PMID:28282861
Ho, Giang Thanh Thi; Wangensteen, Helle; Barsett, Hilde
2017-03-08
Modulation of complement activity and inhibition of nitric oxide (NO) production by macrophages and dendritic cells may have therapeutic value in inflammatory diseases. Elderberry and elderflower extracts, constituents, and metabolites were investigated for their effects on the complement system, and on NO production in lipopolysaccharide (LPS)-activated RAW 264.7 macrophages and murine dendritic D2SC/I cells. The EtOH crude extracts from elderberry and elderflower and the isolated anthocyanins and procyanidins possessed strong complement fixating activity and strong inhibitory activity on NO production in RAW cells and dendritic cells. Phenolic compounds in the range of 0.1-100 µM showed a dose-dependent inhibition of NO production, with quercetin, rutin, and kaempferol as the most potent ones. Among the metabolites, caffeic acid and 3,4-dihydroxyphenylacetic acid showed the strongest inhibitory effects on NO production in both cell lines, without having cytotoxic effect. Only 4-methylcatechol was cytotoxic at the highest tested concentration (100 µM). Elderberry and elderflower constituents may possess inflammatory modulating activity, which increases their nutritional value.
Connelly, William M; Crunelli, Vincenzo; Errington, Adam C
2017-05-24
Backpropagating action potentials (bAPs) are indispensable in dendritic signaling. Conflicting Ca 2+ -imaging data and an absence of dendritic recording data means that the extent of backpropagation in thalamocortical (TC) and thalamic reticular nucleus (TRN) neurons remains unknown. Because TRN neurons signal electrically through dendrodendritic gap junctions and possibly via chemical dendritic GABAergic synapses, as well as classical axonal GABA release, this lack of knowledge is problematic. To address this issue, we made two-photon targeted patch-clamp recordings from rat TC and TRN neuron dendrites to measure bAPs directly. These recordings reveal that "tonic"' and low-threshold-spike (LTS) "burst" APs in both cell types are always recorded first at the soma before backpropagating into the dendrites while undergoing substantial distance-dependent dendritic amplitude attenuation. In TC neurons, bAP attenuation strength varies according to firing mode. During LTS bursts, somatic AP half-width increases progressively with increasing spike number, allowing late-burst spikes to propagate more efficiently into the dendritic tree compared with spikes occurring at burst onset. Tonic spikes have similar somatic half-widths to late burst spikes and undergo similar dendritic attenuation. In contrast, in TRN neurons, AP properties are unchanged between LTS bursts and tonic firing and, as a result, distance-dependent dendritic attenuation remains consistent across different firing modes. Therefore, unlike LTS-associated global electrical and calcium signals, the spatial influence of bAP signaling in TC and TRN neurons is more restricted, with potentially important behavioral-state-dependent consequences for synaptic integration and plasticity in thalamic neurons. SIGNIFICANCE STATEMENT In most neurons, action potentials (APs) initiate in the axosomatic region and propagate into the dendritic tree to provide a retrograde signal that conveys information about the level of cellular output to the locations that receive most input: the dendrites. In thalamocortical and thalamic reticular nucleus neurons, the site of AP generation and the true extent of backpropagation remain unknown. Using patch-clamp recordings, this study measures dendritic propagation of APs directly in these neurons. In either cell type, high-frequency low-threshold spike burst or lower-frequency tonic APs undergo substantial voltage attenuation as they spread into the dendritic tree. Therefore, backpropagating spikes in these cells can only influence signaling in the proximal part of the dendritic tree. Copyright © 2017 Connelly et al.
Nyíri, G; Stephenson, F A; Freund, T F; Somogyi, P
2003-01-01
Pyramidal cells receive input from several types of GABA-releasing interneurons and innervate them reciprocally. Glutamatergic activation of interneurons involves both alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) type glutamate receptors expressed in type I synapses, mostly on their dendritic shafts. On average, the synaptic AMPA receptor content is several times higher on interneurons than in the spines of pyramidal cells. To compare the NMDA receptor content of synapses, we used a quantitative postembedding immunogold technique on serial electron microscopic sections, and analysed the synapses on interneuron dendrites and pyramidal cell spines in the CA1 area. Because all NMDA receptors contain the obligatory NR1 subunit, receptor localisation was carried out using antibodies recognising all splice variants of the NR1 subunit. Four populations of synapse were examined: i). on spines of pyramidal cells in stratum (str.) radiatum and str. oriens; ii). on parvalbumin-positive interneuronal dendritic shafts in str. radiatum; iii). on randomly found dendritic shafts in str. oriens and iv). on somatostatin-positive interneuronal dendritic shafts and somata in str. oriens. On average, the size of the synapses on spines was about half of those on interneurons. The four populations of synapse significantly differed in labelling for the NR1 subunit. The median density of NR1 subunit labelling was highest on pyramidal cell spines. It was lowest in the synapses on parvalbumin-positive dendrites in str. radiatum, where more than half of these synapses were immunonegative. In str. oriens, synapses on interneurons had a high variability of receptor content; some dendrites were similar to those in str. radiatum, including the proximal synapses of somatostatin-positive cells, whereas others had immunoreactivity for the NR1 subunit similar to or higher than synapses on pyramidal cell spines. These results show that synaptic NMDA receptor density differs between pyramidal cells and interneurons. Some interneurons may have a high NMDA receptor content, whereas others, like some parvalbumin-expressing cells, a particularly low synaptic NMDA receptor content. Consequently, fast glutamatergic activation of interneurons is expected to show cell type-specific time course and state-dependent dynamics.
Pallas-Bazarra, Noemí; Kastanauskaite, Asta; Avila, Jesús; DeFelipe, Javier; Llorens-Martín, María
2017-01-01
The dentate gyrus (DG) plays a crucial role in hippocampal-related memory. The most abundant cellular type in the DG, namely granule neurons, are developmentally generated around postnatal day P6 in mice. Moreover, a unique feature of the DG is the occurrence of adult hippocampal neurogenesis, a process that gives rise to newborn granule neurons throughout life. Adult-born and developmentally generated granule neurons share some maturational aspects but differ in others, such as in their positioning within the granule cell layer. Adult hippocampal neurogenesis encompasses a series of plastic changes that modify the function of the hippocampal trisynaptic network. In this regard, it is known that glycogen synthase kinase 3β (GSK-3β) regulates both synaptic plasticity and memory. By using a transgenic mouse overexpressing GSK-3β in hippocampal neurons, we previously demonstrated that the overexpression of this kinase has deleterious effects on the maturation of newborn granule neurons. In the present study, we addressed the effects of GSK-3β overexpression on the morphology and number of dendritic spines of developmentally generated granule neurons. To this end, we performed intracellular injections of Lucifer Yellow in developmentally generated granule neurons of wild-type and GSK-3β-overexpressing mice and analyzed the number and morphologies of dendritic spines (namely, stubby, thin and mushroom). GSK-3β overexpression led to a general reduction in the number of dendritic spines. In addition, it caused a slight reduction in the percentage, head diameter and length of thin spines, whereas the head diameter of mushroom spines was increased.
Pallas-Bazarra, Noemí; Kastanauskaite, Asta; Avila, Jesús; DeFelipe, Javier; Llorens-Martín, María
2017-01-01
The dentate gyrus (DG) plays a crucial role in hippocampal-related memory. The most abundant cellular type in the DG, namely granule neurons, are developmentally generated around postnatal day P6 in mice. Moreover, a unique feature of the DG is the occurrence of adult hippocampal neurogenesis, a process that gives rise to newborn granule neurons throughout life. Adult-born and developmentally generated granule neurons share some maturational aspects but differ in others, such as in their positioning within the granule cell layer. Adult hippocampal neurogenesis encompasses a series of plastic changes that modify the function of the hippocampal trisynaptic network. In this regard, it is known that glycogen synthase kinase 3β (GSK-3β) regulates both synaptic plasticity and memory. By using a transgenic mouse overexpressing GSK-3β in hippocampal neurons, we previously demonstrated that the overexpression of this kinase has deleterious effects on the maturation of newborn granule neurons. In the present study, we addressed the effects of GSK-3β overexpression on the morphology and number of dendritic spines of developmentally generated granule neurons. To this end, we performed intracellular injections of Lucifer Yellow in developmentally generated granule neurons of wild-type and GSK-3β-overexpressing mice and analyzed the number and morphologies of dendritic spines (namely, stubby, thin and mushroom). GSK-3β overexpression led to a general reduction in the number of dendritic spines. In addition, it caused a slight reduction in the percentage, head diameter and length of thin spines, whereas the head diameter of mushroom spines was increased. PMID:28344548
Campeau, Jody L; Wu, Gengshu; Bell, John R; Rasmussen, Jay; Sim, Valerie L
2013-01-01
Prion diseases are infectious neurodegenerative diseases associated with the accumulation of protease-resistant prion protein, neuronal loss, spongiform change and astrogliosis. In the mouse model, the loss of dendritic spines is one of the earliest pathological changes observed in vivo, occurring 4-5 weeks after the first detection of protease-resistant prion protein in the brain. While there are cell culture models of prion infection, most do not recapitulate the neuropathology seen in vivo. Only the recently developed prion organotypic slice culture assay has been reported to undergo neuronal loss and the development of some aspects of prion pathology, namely small vacuolar degeneration and tubulovesicular bodies. Given the rapid replication of prions in this system, with protease-resistant prion protein detectable by 21 days, we investigated whether the dendritic spine loss and altered dendritic morphology seen in prion disease might also develop within the lifetime of this culture system. Indeed, six weeks after first detection of protease-resistant prion protein in tga20 mouse cerebellar slice cultures infected with RML prion strain, we found a statistically significant loss of Purkinje cell dendritic spines and altered dendritic morphology in infected cultures, analogous to that seen in vivo. In addition, we found a transient but statistically significant increase in Purkinje cell dendritic spine density during infection, at the time when protease-resistant prion protein was first detectable in culture. Our findings support the use of this slice culture system as one which recapitulates prion disease pathology and one which may facilitate study of the earliest stages of prion disease pathogenesis.
Baude, A; Nusser, Z; Molnár, E; McIlhinney, R A; Somogyi, P
1995-12-01
The cellular and subcellular localization of the GluRA, GluRB/C and GluRD subunits of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) type glutamate receptor was determined in the rat hippocampus using polyclonal antipeptide antibodies in immunoperoxidase and immunogold procedures. For the localization of the GluRD subunit a new polyclonal antiserum was developed using the C-terminal sequence of the protein (residues 869-881), conjugated to carrier protein and absorbed to colloidal gold for immunization. The purified antibodies immunoprecipitated about 25% of 3[H]AMPA binding activity from the hippocampus, cerebellum or whole brain, but very little from neocortex. These antibodies did not precipitate a significant amount of 3[H]kainate binding activity. The antibodies also recognize the GluRD subunit, but not the other AMPA receptor subunits, when expressed in transfected COS-7 cells and only when permeabilized with detergent, indicating an intracellular epitope. All subunits were enriched in the neuropil of the dendritic layers of the hippocampus and in the molecular layer of the dentate gyrus. The cellular distribution of the GluRD subunit was studied more extensively. The strata radiatum, oriens and the dentate molecular layer were more strongly immunoreactive than the stratum lacunosum moleculare, the stratum lucidum and the hilus. However, in the stratum lucidum of the CA3 area and in the hilus the weakly reacting dendrites were surrounded by immunopositive rosettes, shown in subsequent electron microscopic studies to correspond to complex dendritic spines. In the stratum radiatum, the weakly reacting apical dendrites contrasted with the surrounding intensely stained neuropil. The cell bodies of pyramidal and granule cells were moderately reactive. Some non-principal cells and their dendrites in the pyramidal cell layer and in the alveus also reacted very strongly for the GluRD subunit. At the subcellular level, silver intensified immunogold particles for the GluRA, GluRB/C and GluRD subunits were present at type 1 synaptic membrane specializations on dendritic spines of pyramidal cells throughout all layers of the CA1 and CA3 areas. The most densely labelled synapses tended to be on the largest spines and many smaller spines remained unlabelled. Immunoparticle density at type 1 synapses on dendritic shafts of some non-principal cells was consistently higher than at labelled synapses of dendritic spines of pyramidal cells. Synapses established between dendritic spines and mossy fibre terminals, were immunoreactive for all studied subunits in stratum lucidum of the CA3 area. The postembedding immunogold method revealed that the AMPA type receptors are concentrated within the main body of the anatomically defined type 1 (asymmetrical) synaptic junction. Often only a part of the membrane specialization showed clustered immunoparticles. There was a sharp decrease in immunoreactive receptor density at the edge of the synaptic specialization. Immunolabelling was consistently demonstrated at extrasynaptic sites on dendrites, dendritic spines and somata. The results demonstrate that the GluRA, B/C and D subunits of the AMPA type glutamate receptor are present in many of the glutamatergic synapses formed by the entorhinal, CA3 pyramidal and mossy fibre terminals. Some interneurons have a higher density of AMPA type receptors in their asymmetrical afferent synapses than pyramidal cells. This may contribute to a lower activation threshold of interneurons as compared to principal cells by the same afferents in the hippocampal formation.
Yamamichi, Nobutake; Oka, Masashi; Inada, Ken-ichi; Konno-Shimizu, Maki; Kageyama-Yahara, Natsuko; Tamai, Hideyuki; Kato, Jun; Fujishiro, Mitsuhiro; Kodashima, Shinya; Niimi, Keiko; Ono, Satoshi; Tsutsumi, Yutaka; Ichinose, Masao; Koike, Kazuhiko
2012-07-20
Rebamipide is usually used for mucosal protection, healing of gastric ulcers, treatment of gastritis, etc., but its effects on gastric malignancy have not been elucidated. Using Lewis and Buffalo rat strains treated with peroral administration of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), we evaluated the effect of rebamipide on the induction of tumor-suppressive dendritic cells, which are known to be heterogeneous antigen-presenting cells of bone marrow origin and are critical for the initiation of primary T-cell responses. Using CD68 as a marker for dendritic cells, the stomach pyloric mucosae of Lewis and Buffalo rats were immunohistochemically analyzed in the presence or absence of rebamipide and MNNG. After a 14-day treatment of rebamipide alone, no significant change in number of CD68-expressing cells was detected in either rat strain. However, after concurrent exposure to MNNG for 14 days, treatment with rebamipide slightly increased CD68-positive cells in the Lewis strain, and significantly increased them in the Buffalo strain. Analysis of two chemotactic factors of dendritic cells, IL-1β and TNF-α, in the gastric cancer cells showed that expression of IL-1β, but not TNF-α, was induced by rebamipide in a dose-dependent manner. A luciferase promoter assay using gastric SH-10-TC cells demonstrated that an element mediating rebamipide action exists in the IL-1β gene promoter region. In conclusion, rebamipide has potential tumor-suppressive effects on gastric tumorigenesis via the recruitment of dendritic cells, based on the upregulation of the IL-1β gene in gastric epithelial cells. Copyright © 2012 Elsevier Inc. All rights reserved.
Passive dendrites enable single neurons to compute linearly non-separable functions.
Cazé, Romain Daniel; Humphries, Mark; Gutkin, Boris
2013-01-01
Local supra-linear summation of excitatory inputs occurring in pyramidal cell dendrites, the so-called dendritic spikes, results in independent spiking dendritic sub-units, which turn pyramidal neurons into two-layer neural networks capable of computing linearly non-separable functions, such as the exclusive OR. Other neuron classes, such as interneurons, may possess only a few independent dendritic sub-units, or only passive dendrites where input summation is purely sub-linear, and where dendritic sub-units are only saturating. To determine if such neurons can also compute linearly non-separable functions, we enumerate, for a given parameter range, the Boolean functions implementable by a binary neuron model with a linear sub-unit and either a single spiking or a saturating dendritic sub-unit. We then analytically generalize these numerical results to an arbitrary number of non-linear sub-units. First, we show that a single non-linear dendritic sub-unit, in addition to the somatic non-linearity, is sufficient to compute linearly non-separable functions. Second, we analytically prove that, with a sufficient number of saturating dendritic sub-units, a neuron can compute all functions computable with purely excitatory inputs. Third, we show that these linearly non-separable functions can be implemented with at least two strategies: one where a dendritic sub-unit is sufficient to trigger a somatic spike; another where somatic spiking requires the cooperation of multiple dendritic sub-units. We formally prove that implementing the latter architecture is possible with both types of dendritic sub-units whereas the former is only possible with spiking dendrites. Finally, we show how linearly non-separable functions can be computed by a generic two-compartment biophysical model and a realistic neuron model of the cerebellar stellate cell interneuron. Taken together our results demonstrate that passive dendrites are sufficient to enable neurons to compute linearly non-separable functions.
Passive Dendrites Enable Single Neurons to Compute Linearly Non-separable Functions
Cazé, Romain Daniel; Humphries, Mark; Gutkin, Boris
2013-01-01
Local supra-linear summation of excitatory inputs occurring in pyramidal cell dendrites, the so-called dendritic spikes, results in independent spiking dendritic sub-units, which turn pyramidal neurons into two-layer neural networks capable of computing linearly non-separable functions, such as the exclusive OR. Other neuron classes, such as interneurons, may possess only a few independent dendritic sub-units, or only passive dendrites where input summation is purely sub-linear, and where dendritic sub-units are only saturating. To determine if such neurons can also compute linearly non-separable functions, we enumerate, for a given parameter range, the Boolean functions implementable by a binary neuron model with a linear sub-unit and either a single spiking or a saturating dendritic sub-unit. We then analytically generalize these numerical results to an arbitrary number of non-linear sub-units. First, we show that a single non-linear dendritic sub-unit, in addition to the somatic non-linearity, is sufficient to compute linearly non-separable functions. Second, we analytically prove that, with a sufficient number of saturating dendritic sub-units, a neuron can compute all functions computable with purely excitatory inputs. Third, we show that these linearly non-separable functions can be implemented with at least two strategies: one where a dendritic sub-unit is sufficient to trigger a somatic spike; another where somatic spiking requires the cooperation of multiple dendritic sub-units. We formally prove that implementing the latter architecture is possible with both types of dendritic sub-units whereas the former is only possible with spiking dendrites. Finally, we show how linearly non-separable functions can be computed by a generic two-compartment biophysical model and a realistic neuron model of the cerebellar stellate cell interneuron. Taken together our results demonstrate that passive dendrites are sufficient to enable neurons to compute linearly non-separable functions. PMID:23468600
Wurtman, R.J.; Cansev, M; Sakamoto, T; Ulus, I.H.
2010-01-01
Brain phosphatide synthesis requires three circulating compounds: docosahexaenoic acid (DHA), uridine and choline. Oral administration of these phosphatide precursors to experimental animals increases the levels of phosphatides and synaptic proteins in the brain and per brain cell, as well as the numbers of dendritic spines on hippocampal neurons. Arachidonic acid (AA) fails to reproduce these effects of DHA. If similar increases occur in human brain, giving these compounds to patients with diseases – like Alzheimer’s disease – which cause the loss of brain synapses – could be beneficial. PMID:21091953
Magariños, A.M.; Li, C.J.; Toth, J. Gal; Bath, K.G.; Jing, D.; Lee, F.S.; McEwen, B.S.
2010-01-01
Chronic restraint stress (CRS) induces the remodeling (i.e., retraction and simplification) of the apical dendrites of hippocampal CA3 pyramidal neurons in rats, suggesting that intrahippocampal connectivity can be affected by a prolonged stressful challenge. Since the structural maintenance of neuronal dendritic arborizations and synaptic connectivity requires neurotrophic support, we investigated the potential role of brain derived neurotrophic factor (BDNF), a neurotrophin enriched in the hippocampus and released from neurons in an activity-dependent manner, as a mediator of the stress-induced dendritic remodeling. The analysis of Golgi-impregnated hippocampal sections revealed that wild type (WT) C57BL/6 male mice showed a similar CA3 apical dendritic remodeling in response to three weeks of CRS to that previously described for rats. Haploinsufficient BDNF mice (BDNF±) did not show such remodeling, but, even without CRS, they presented shorter and simplified CA3 apical dendritic arbors, like those observed in stressed WT mice. Furthermore, unstressed BDNF± mice showed a significant decrease in total hippocampal volume. The dendritic arborization of CA1 pyramidal neurons was not affected by CRS or genotype. However, only in WT mice, CRS induced changes in the density of dendritic spine shape subtypes in both CA1 and CA3 apical dendrites. These results suggest a complex role of BDNF in maintaining the dendritic and spine morphology of hippocampal neurons and the associated volume of the hippocampal formation. The inability of CRS to modify the dendritic structure of CA3 pyramidal neurons in BDNF± mice suggests an indirect, perhaps permissive, role of BDNF in mediating hippocampal dendritic remodeling. PMID:20095008
Dendritic Immunotherapy Improvement for an Optimal Control Murine Model
Chimal-Eguía, J. C.; Castillo-Montiel, E.
2017-01-01
Therapeutic protocols in immunotherapy are usually proposed following the intuition and experience of the therapist. In order to deduce such protocols mathematical modeling, optimal control and simulations are used instead of the therapist's experience. Clinical efficacy of dendritic cell (DC) vaccines to cancer treatment is still unclear, since dendritic cells face several obstacles in the host environment, such as immunosuppression and poor transference to the lymph nodes reducing the vaccine effect. In view of that, we have created a mathematical murine model to measure the effects of dendritic cell injections admitting such obstacles. In addition, the model considers a therapy given by bolus injections of small duration as opposed to a continual dose. Doses timing defines the therapeutic protocols, which in turn are improved to minimize the tumor mass by an optimal control algorithm. We intend to supplement therapist's experience and intuition in the protocol's implementation. Experimental results made on mice infected with melanoma with and without therapy agree with the model. It is shown that the dendritic cells' percentage that manages to reach the lymph nodes has a crucial impact on the therapy outcome. This suggests that efforts in finding better methods to deliver DC vaccines should be pursued. PMID:28912828
Ona-Jodar, Tiffany; Gerkau, Niklas J; Sara Aghvami, S; Rose, Christine R; Egger, Veronica
2017-01-01
Dendrodendritic synaptic interactions are a hallmark of neuronal processing in the vertebrate olfactory bulb. Many classes of olfactory bulb neurons including the principal mitral cells (MCs) and the axonless granule cells (GCs) dispose of highly efficient propagation of action potentials (AP) within their dendrites, from where they can release transmitter onto each other. So far, backpropagation in GC dendrites has been investigated indirectly via Ca 2+ imaging. Here, we used two-photon Na + imaging to directly report opening of voltage-gated sodium channels due to AP propagation in both cell types. To this end, neurons in acute slices from juvenile rat bulbs were filled with 1 mM SBFI via whole-cell patch-clamp. Calibration of SBFI signals revealed that a change in fluorescence Δ F / F by 10% corresponded to a Δ[Na + ] i of ∼22 mM. We then imaged proximal axon segments of MCs during somatically evoked APs (sAP). While single sAPs were detectable in ∼50% of axons, trains of 20 sAPs at 50 Hz always resulted in substantial Δ F / F of ∼15% (∼33 mM Δ[Na + ] i ). Δ F / F was significantly larger for 80 Hz vs. 50 Hz trains, and decayed with half-durations τ 1/2 ∼0.6 s for both frequencies. In MC lateral dendrites, AP trains yielded small Δ F / F of ∼3% (∼7 mM Δ[Na + ] i ). In GC apical dendrites and adjacent spines, single sAPs were not detectable. Trains resulted in an average dendritic Δ F / F of 7% (16 mM Δ[Na + ] i ) with τ 1/2 ∼1 s, similar for 50 and 80 Hz. Na + transients were indistinguishable between large GC spines and their adjacent dendrites. Cell-wise analysis revealed two classes of GCs with the first showing a decrease in Δ F / F along the dendrite with distance from the soma and the second an increase. These classes clustered with morphological parameters. Simulations of Δ[Na + ] i replicated these behaviors via negative and positive gradients in Na + current density, assuming faithful AP backpropagation. Such specializations of dendritic excitability might confer specific temporal processing capabilities to bulbar principal cell-GC subnetworks. In conclusion, we show that Na + imaging provides a valuable tool for characterizing AP invasion of MC axons and GC dendrites and spines.
Ona-Jodar, Tiffany; Gerkau, Niklas J.; Sara Aghvami, S.; Rose, Christine R.; Egger, Veronica
2017-01-01
Dendrodendritic synaptic interactions are a hallmark of neuronal processing in the vertebrate olfactory bulb. Many classes of olfactory bulb neurons including the principal mitral cells (MCs) and the axonless granule cells (GCs) dispose of highly efficient propagation of action potentials (AP) within their dendrites, from where they can release transmitter onto each other. So far, backpropagation in GC dendrites has been investigated indirectly via Ca2+ imaging. Here, we used two-photon Na+ imaging to directly report opening of voltage-gated sodium channels due to AP propagation in both cell types. To this end, neurons in acute slices from juvenile rat bulbs were filled with 1 mM SBFI via whole-cell patch-clamp. Calibration of SBFI signals revealed that a change in fluorescence ΔF/F by 10% corresponded to a Δ[Na+]i of ∼22 mM. We then imaged proximal axon segments of MCs during somatically evoked APs (sAP). While single sAPs were detectable in ∼50% of axons, trains of 20 sAPs at 50 Hz always resulted in substantial ΔF/F of ∼15% (∼33 mM Δ[Na+]i). ΔF/F was significantly larger for 80 Hz vs. 50 Hz trains, and decayed with half-durations τ1/2 ∼0.6 s for both frequencies. In MC lateral dendrites, AP trains yielded small ΔF/F of ∼3% (∼7 mM Δ[Na+]i). In GC apical dendrites and adjacent spines, single sAPs were not detectable. Trains resulted in an average dendritic ΔF/F of 7% (16 mM Δ[Na+]i) with τ1/2 ∼1 s, similar for 50 and 80 Hz. Na+ transients were indistinguishable between large GC spines and their adjacent dendrites. Cell-wise analysis revealed two classes of GCs with the first showing a decrease in ΔF/F along the dendrite with distance from the soma and the second an increase. These classes clustered with morphological parameters. Simulations of Δ[Na+]i replicated these behaviors via negative and positive gradients in Na+ current density, assuming faithful AP backpropagation. Such specializations of dendritic excitability might confer specific temporal processing capabilities to bulbar principal cell-GC subnetworks. In conclusion, we show that Na+ imaging provides a valuable tool for characterizing AP invasion of MC axons and GC dendrites and spines. PMID:28293175
Dendrites of dentate gyrus granule cells contribute to pattern separation by controlling sparsity
Chavlis, Spyridon; Petrantonakis, Panagiotis C.
2016-01-01
ABSTRACT The hippocampus plays a key role in pattern separation, the process of transforming similar incoming information to highly dissimilar, nonverlapping representations. Sparse firing granule cells (GCs) in the dentate gyrus (DG) have been proposed to undertake this computation, but little is known about which of their properties influence pattern separation. Dendritic atrophy has been reported in diseases associated with pattern separation deficits, suggesting a possible role for dendrites in this phenomenon. To investigate whether and how the dendrites of GCs contribute to pattern separation, we build a simplified, biologically relevant, computational model of the DG. Our model suggests that the presence of GC dendrites is associated with high pattern separation efficiency while their atrophy leads to increased excitability and performance impairments. These impairments can be rescued by restoring GC sparsity to control levels through various manipulations. We predict that dendrites contribute to pattern separation as a mechanism for controlling sparsity. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc. PMID:27784124
Dendritic nonlinearities are tuned for efficient spike-based computations in cortical circuits
Ujfalussy, Balázs B; Makara, Judit K; Branco, Tiago; Lengyel, Máté
2015-01-01
Cortical neurons integrate thousands of synaptic inputs in their dendrites in highly nonlinear ways. It is unknown how these dendritic nonlinearities in individual cells contribute to computations at the level of neural circuits. Here, we show that dendritic nonlinearities are critical for the efficient integration of synaptic inputs in circuits performing analog computations with spiking neurons. We developed a theory that formalizes how a neuron's dendritic nonlinearity that is optimal for integrating synaptic inputs depends on the statistics of its presynaptic activity patterns. Based on their in vivo preynaptic population statistics (firing rates, membrane potential fluctuations, and correlations due to ensemble dynamics), our theory accurately predicted the responses of two different types of cortical pyramidal cells to patterned stimulation by two-photon glutamate uncaging. These results reveal a new computational principle underlying dendritic integration in cortical neurons by suggesting a functional link between cellular and systems--level properties of cortical circuits. DOI: http://dx.doi.org/10.7554/eLife.10056.001 PMID:26705334
Meigo governs dendrite targeting specificity by modulating Ephrin level and N-glycosylation
Sekine, Sayaka U; Haraguchi, Shuka; Chao, Kinhong; Kato, Tomoko; Luo, Liqun; Miura, Masayuki; Chihara, Takahiro
2016-01-01
Neural circuit assembly requires precise dendrite and axon targeting. We identified an evolutionarily conserved endoplasmic reticulum (ER) protein, Meigo, from a mosaic genetic screen in Drosophila melanogaster. Meigo was cell-autonomously required in olfactory receptor neurons and projection neurons to target their axons and dendrites to the lateral antennal lobe and to refine projection neuron dendrites into individual glomeruli. Loss of Meigo induced an unfolded protein response and reduced the amount of neuronal cell surface proteins, including Ephrin. Ephrin overexpression specifically suppressed the projection neuron dendrite refinement defect present in meigo mutant flies, and ephrin knockdown caused a similar projection neuron dendrite refinement defect. Meigo positively regulated the level of Ephrin N-glycosylation, which was required for its optimal function in vivo. Thus, Meigo, an ER-resident protein, governs neuronal targeting specificity by regulating ER folding capacity and protein N-glycosylation. Furthermore, Ephrin appears to be an important substrate that mediates Meigo’s function in refinement of glomerular targeting. PMID:23624514
Quantitative Analysis of Dendritic Cell Haptotaxis.
Schwarz, Jan; Sixt, Michael
2016-01-01
Chemokines are the main guidance cues directing leukocyte migration. Opposed to early assumptions, chemokines do not necessarily act as soluble cues but are often immobilized within tissues, e.g., dendritic cell migration toward lymphatic vessels is guided by a haptotactic gradient of the chemokine CCL21. Controlled assay systems to quantitatively study haptotaxis in vitro are still missing. In this chapter, we describe an in vitro haptotaxis assay optimized for the unique properties of dendritic cells. The chemokine CCL21 is immobilized in a bioactive state, using laser-assisted protein adsorption by photobleaching. The cells follow this immobilized CCL21 gradient in a haptotaxis chamber, which provides three dimensionally confined migration conditions. © 2016 Elsevier Inc. All rights reserved.
Direct antigen presentation and gap junction mediated cross-presentation during apoptosis.
Pang, Baoxu; Neijssen, Joost; Qiao, Xiaohang; Janssen, Lennert; Janssen, Hans; Lippuner, Christoph; Neefjes, Jacques
2009-07-15
MHC class I molecules present peptides from endogenous proteins. Ags can also be presented when derived from extracellular sources in the form of apoptotic bodies. Cross-presentation of such Ags by dendritic cells is required for proper CTL responses. The fate of Ags in cells initiated for apoptosis is unclear as is the mechanism of apoptosis-derived Ag transfer into dendritic cells. Here we show that novel Ags can be generated by caspases and be presented by MHC class I molecules of apoptotic cells. Since gap junctions function until apoptotic cells remodel to form apoptotic bodies, transfer and cross-presentation of apoptotic peptides by neighboring and dendritic cells occurs. We thus define a novel phase in classical Ag presentation and cross-presentation by MHC class I molecules: presentation of Ags created by caspase activities in cells in apoptosis.
NASA Astrophysics Data System (ADS)
Xu, Weitai; Zhao, Yutao; Sun, Shaochun; Liu, Manping; Ma, Dexin; Liang, Xiangfeng; Wang, Cunlong; Tao, Ran
2018-04-01
The mold shell used for single-crystal turbine blades preparation was modified from conventional process to fiber reinforcement technology. The wall thickness was decreased by 32.3 percent (pct) than the conventional process. Then these two mold shells were used to produce single crystal samples of nickel-base superalloy in a Bridgman furnace. The local temperature curves were recorded in the process. The results show that the modified mold shell can increase the temperature gradient in the mushy zone than the conventional mold shell. The primary and secondary dendrite arm space were reduced by 8 pct and 12 pct, respectively. Moreover, both the area fraction and mean size of the γ‧/γ eutectic were declined, as well as the dendritic segregation tendency. Therefore it contributed to the lower residual eutectic and micro-porosity in the heat-treated microstructure. Further, fracture surface of the samples made by modified mold shell exhibited smaller facets and more uniform dimples in the size and shape.
Dendritic cells in cancer immunotherapy
NASA Astrophysics Data System (ADS)
Le Gall, Camille M.; Weiden, Jorieke; Eggermont, Loek J.; Figdor, Carl G.
2018-06-01
Camille M. Le Gall, Jorieke Weiden, Loek J. Eggermont and Carl G. Figdor provide an overview of immunotherapeutics for cancer treatment that harness dendritic cells, their challenges in clinical use, and approaches employed to enhance their recruitment and activation to promote effective anti-tumour immunity.
'Educated' dendritic cells act as messengers from memory to naive T helper cells.
Alpan, Oral; Bachelder, Eric; Isil, Eda; Arnheiter, Heinz; Matzinger, Polly
2004-06-01
Ingested antigens lead to the generation of effector T cells that secrete interleukin 4 (IL-4) rather than interferon-gamma (IFN-gamma) and are capable of influencing naive T cells in their immediate environment to do the same. Using chimeric mice generated by aggregation of two genotypically different embryos, we found that the conversion of a naive T cell occurs only if it can interact with the same antigen-presenting cell, although not necessarily the same antigen, as the effector T cell. Using a two-step culture system in vitro, we found that antigen-presenting dendritic cells can act as 'temporal bridges' to relay information from orally immunized memory CD4 T cells to naive CD4 T cells. The orally immunized T cells use IL-4 and IL-10 (but not CD40 ligand) to 'educate' dendritic cells, which in turn induce naive T cells to produce the same cytokines as those produced by the orally immunized memory T cells.
Patel, Vineet I.; Booth, J. Leland; Duggan, Elizabeth S.; Cate, Steven; White, Vicky L.; Hutchings, David; Kovats, Susan; Burian, Dennis M.; Dozmorov, Mikhail; Metcalf, Jordan P.
2016-01-01
The respiratory system is a complex network of many cell types, including subsets of macrophages and dendritic cells that work together to maintain steady-state respiration. Due to limitations in acquiring cells from healthy human lung, these subsets remain poorly characterized transcriptionally and phenotypically. We set out to systematically identify these subsets in human airways by developing a schema of isolating large numbers of cells by whole lung bronchoalveolar lavage. Six subsets of phagocytic antigen presenting (HLA-DR+) cells were consistently observed. Aside from alveolar macrophages, subsets of Langerin+, BDCA1− CD14+, BDCA1+ CD14+, BDCA1+ CD14−, and BDCA1− CD14− cells were identified. These subsets varied in their ability to internalize Escherichia coli, Staphylococcus aureus, and Bacillus anthracis particles. All subsets were more efficient at internalizing S. aureus and B. anthracis compared to E. coli. Alveolar macrophages and CD14+ cells were overall more efficient at particle internalization compared to the four other populations. Subsets were further separated into two groups based on their inherent capacities to upregulate surface CD83, CD86, and CCR7 expression levels. Whole genome transcriptional profiling revealed a clade of “true dendritic cells” consisting of Langerin+, BDCA1+ CD14+, and BDCA1+ CD14− cells. The dendritic cell clade was distinct from a macrophage/monocyte clade, as supported by higher mRNA expression levels of several dendritic cell-associated genes, including CD1, FLT3, CX3CR1, and CCR6. Each clade, and each member of both clades, were discerned by specific upregulated genes, which can serve as markers for future studies in healthy and diseased states. PMID:28031342
Improved electrolyte for zinc-bromine flow batteries
NASA Astrophysics Data System (ADS)
Wu, M. C.; Zhao, T. S.; Wei, L.; Jiang, H. R.; Zhang, R. H.
2018-04-01
Conventional zinc bromide electrolytes offer low ionic conductivity and often trigger severe zinc dendrite growth in zinc-bromine flow batteries. Here we report an improved electrolyte modified with methanesulfonic acid, which not only improves the electrolyte conductivity but also ameliorates zinc dendrite. Experimental results also reveal that the kinetics and reversibility of Zn2+/Zn and Br2/Br- are improved in this modified electrolyte. Moreover, the battery's internal resistance is significantly reduced from 4.9 to 2.0 Ω cm2 after adding 1 M methanesulfonic acid, thus leading to an improved energy efficiency from 64% to 75% at a current density of 40 mA cm-2. More impressively, the battery is capable of delivering an energy efficiency of about 78% at a current density of as high as 80 mA cm-2 when the electrode is replaced by a thermally treated one. Additionally, zinc dendrite growth is found to be effectively suppressed in methanesulfonic acid supported media, which, as a result, enables the battery to be operated for 50 cycles without degradation, whereas the one without methanesulfonic acid suffers from significant decay after only 40 cycles, primarily due to severe zinc dendrite growth. These superior results indicate methanesulfonic acid is a promising supporting electrolyte for zinc-bromine flow batteries.
Winters, Bradley D.; Jin, Shan-Xue; Ledford, Kenneth R.
2017-01-01
The principal neurons of the medial superior olive (MSO) encode cues for horizontal sound localization through comparisons of the relative timing of EPSPs. To understand how the timing and amplitude of EPSPs are maintained during propagation in the dendrites, we made dendritic and somatic whole-cell recordings from MSO principal neurons in brain slices from Mongolian gerbils. In somatic recordings, EPSP amplitudes were largely uniform following minimal stimulation of excitatory synapses at visualized locations along the dendrites. Similar results were obtained when excitatory synaptic transmission was eliminated in a low calcium solution and then restored at specific dendritic sites by pairing input stimulation and focal application of a higher calcium solution. We performed dual dendritic and somatic whole-cell recordings to measure spontaneous EPSPs using a dual-channel template-matching algorithm to separate out those events initiated at or distal to the dendritic recording location. Local dendritic spontaneous EPSP amplitudes increased sharply in the dendrite with distance from the soma (length constant, 53.6 μm), but their attenuation during propagation resulted in a uniform amplitude of ∼0.2 mV at the soma. The amplitude gradient of dendritic EPSPs was also apparent in responses to injections of identical simulated excitatory synaptic currents in the dendrites. Compartmental models support the view that these results extensively reflect the influence of dendritic cable properties. With relatively few excitatory axons innervating MSO neurons, the normalization of dendritic EPSPs at the soma would increase the importance of input timing versus location during the processing of interaural time difference cues in vivo. SIGNIFICANCE STATEMENT The neurons of the medial superior olive analyze cues for sound localization by detecting the coincidence of binaural excitatory synaptic inputs distributed along the dendrites. Previous studies have shown that dendritic voltages undergo severe attenuation as they propagate to the soma, potentially reducing the influence of distal inputs. However, using dendritic and somatic patch recordings, we found that dendritic EPSP amplitude increased with distance from the soma, compensating for dendritic attenuation and normalizing EPSP amplitude at the soma. Much of this normalization reflected the influence of dendritic morphology. As different combinations of presynaptic axons may be active during consecutive cycles of sound stimuli, somatic EPSP normalization renders spike initiation more sensitive to synapse timing than dendritic location. PMID:28213442
Human cerebral cortex Cajal-Retzius neuron: development, structure and function. A Golgi study.
Marín-Padilla, Miguel
2015-01-01
The development, morphology and possible functional activity of the Cajal-Retzius cell of the developing human cerebral cortex are explored herein. The C-RC, of extracortical origin, is the essential neuron of the neocortex first lamina. It receives inputs from afferent fibers that reach the first lamina early in development. Although the origin and function of these original afferent fibers remain unknown, their target is the first lamina sole neuron: the C-RC. This neuron orchestrates the arrival, size and stratification of all pyramidal neurons (of ependymal origin) of the neocortex gray matter. Its axonic terminals spread radially and horizontally throughout the entirety of the first lamina establishing contacts with the dendritic terminals of all gray matter pyramidal cells regardless of size, location and/or eventual functional roles. While the neuron axonic terminals spread radially and horizontally throughout the first lamina, the neuronal' body undergoes progressive developmental dilution and locating any of them in the adult brain become quite difficult. The neuron bodies are probably retained in the older regions of the neocortex while their axonic collaterals will spread throughout its more recent ones and eventually will extend to great majority of the cortical surface. The neocortex first lamina evolution and composition and that of the C-RC are intertwined and mutually interdependent. It is not possible to understand the C-RC evolving morphology without understanding that of the first lamina. The first lamina composition and its structural and functional organizations obtained with different staining methods may be utterly different. These differences have added unnecessary confusion about its nature. The essential emptiness observed in hematoxylin and eosin preparations (most commonly used) contrast sharply with the concentration of dendrites (the cortex' largest) obtained using special (MAP-2) stain for dendrites. Only Golgi preparations demonstrate the numerous dendritic and axonic terminals that compose the first lamina basic structure. High power microscopic views of Golgi preparations demonstrate the intimate anatomical and functional interrelationships among dendritic and axonic terminals as well as synaptic contacts between them. The C-RC' essential morphology does not changes but it is progressively modified by the first lamina increase in thickness and in number of terminal dendrites and their subsequent maturation. This neuron variable morphologic appearance has been the source of controversy. Its morphology depends on the first lamina thickness that may be quite variable among different mammals. In rodents (most commonly used experimental mammal), the first lamina thickness, number and horizontal expansion of dendrites is but a fraction of those in humans. This differences are reflected in the C-RC' morphology among mammals (including humans) and should not be thought as representing new types of neurons.
Sulkowski, Mikolaj J.; Iyer, Srividya Chandramouli; Kurosawa, Mathieu S.; Iyer, Eswar Prasad R.; Cox, Daniel N.
2011-01-01
Background Dendritic morphology largely determines patterns of synaptic connectivity and electrochemical properties of a neuron. Neurons display a myriad diversity of dendritic geometries which serve as a basis for functional classification. Several types of molecules have recently been identified which regulate dendrite morphology by acting at the levels of transcriptional regulation, direct interactions with the cytoskeleton and organelles, and cell surface interactions. Although there has been substantial progress in understanding the molecular mechanisms of dendrite morphogenesis, the specification of class-specific dendritic arbors remains largely unexplained. Furthermore, the presence of numerous regulators suggests that they must work in concert. However, presently, few genetic pathways regulating dendrite development have been defined. Methodology/Principal Findings The Drosophila gene turtle belongs to an evolutionarily conserved class of immunoglobulin superfamily members found in the nervous systems of diverse organisms. We demonstrate that Turtle is differentially expressed in Drosophila da neurons. Moreover, MARCM analyses reveal Turtle acts cell autonomously to exert class specific effects on dendritic growth and/or branching in da neuron subclasses. Using transgenic overexpression of different Turtle isoforms, we find context-dependent, isoform-specific effects on mediating dendritic branching in class II, III and IV da neurons. Finally, we demonstrate via chromatin immunoprecipitation, qPCR, and immunohistochemistry analyses that Turtle expression is positively regulated by the Cut homeodomain transcription factor and via genetic interaction studies that Turtle is downstream effector of Cut-mediated regulation of da neuron dendrite morphology. Conclusions/Significance Our findings reveal that Turtle proteins differentially regulate the acquisition of class-specific dendrite morphologies. In addition, we have established a transcriptional regulatory interaction between Cut and Turtle, representing a novel pathway for mediating class specific dendrite development. PMID:21811639
Abdala-Valencia, Hiam; Soveg, Frank
2016-01-01
γ-Tocopherol increases responses to allergen challenge in allergic adult mice, but it is not known whether γ-tocopherol regulates the development of allergic disease. Development of allergic disease often occurs early in life. In clinical studies and animal models, offspring of allergic mothers have increased responsiveness to allergen challenge. Therefore, we determined whether γ-tocopherol augments development of allergic responses in offspring of allergic female mice. Allergic female mice were supplemented with γ-tocopherol starting at mating. The pups from allergic mothers developed allergic lung responses, whereas pups from saline-treated mothers did not respond to allergen challenge. The γ-tocopherol supplementation of allergic female mice increased the numbers of eosinophils twofold in the pup bronchoalveolar lavage and lungs after allergen challenge. There was also about a twofold increase in pup lung CD11b+ subsets of CD11c+ dendritic cells and in numbers of these dendritic cells expressing the transcription factor IRF4. There was no change in several CD11b− dendritic cell subsets. Furthermore, maternal supplementation with γ-tocopherol increased the number of fetal liver CD11b+CD11c+ dendritic cells twofold in utero. In the pups, γ-tocopherol increased lung expression of the inflammatory mediators CCL11, amphiregulin, activin A, and IL-5. In conclusion, maternal supplementation with γ-tocopherol increased fetal development of subsets of dendritic cells that are critical for allergic responses and increased development of allergic responses in pups from allergic mothers. These results have implications for supplementation of allergic mothers with γ-tocopherol in prenatal vitamins. PMID:26801566
Tukker, John J.; Lasztóczi, Bálint; Katona, Linda; Roberts, J. David B.; Pissadaki, Eleftheria K.; Dalezios, Yannis; Márton, László; Zhang, Limei; Klausberger, Thomas; Somogyi, Peter
2015-01-01
Hippocampal CA3 area generates temporally structured network activity such as sharp waves and gamma and theta oscillations. Parvalbumin-expressing basket cells, making GABAergic synapses onto cell bodies and proximal dendrites of pyramidal cells, control pyramidal cell activity and participate in network oscillations in slice preparations, but their roles in vivo remain to be tested. We have recorded the spike timing of parvalbumin-expressing basket cells in areas CA2/3 of anesthetized rats in relation to CA3 putative pyramidal cell firing and activity locally and in area CA1. During theta oscillations, CA2/3 basket cells fired on the same phase as putative pyramidal cells, but, surprisingly, significantly later than downstream CA1 basket cells. This indicates a distinct modulation of CA3 and CA1 pyramidal cells by basket cells, which receive different inputs. We observed unexpectedly large dendritic arborization of CA2/3 basket cells in stratum lacunosum moleculare (33% of length, 29% surface, and 24% synaptic input from a total of ~35,000), different from the dendritic arborizations of CA1 basket cells. Area CA2/3 basket cells fired phase locked to both CA2/3 and CA1 gamma oscillations, and increased firing during CA1 sharp waves, thus supporting the role of CA3 networks in the generation of gamma oscillations and sharp waves. However, during ripples associated with sharp waves, firing of CA2/3 basket cells was phase locked only to local but not CA1 ripples, suggesting the independent generation of fast oscillations by basket cells in CA1 and CA2/3. The distinct spike timing of basket cells during oscillations in CA1 and CA2/3 suggests differences in synaptic inputs paralleled by differences in dendritic arborizations. PMID:23595740
Scott, Naomi M; Ng, Royce L X; McGonigle, Terence A; Gorman, Shelley; Hart, Prue H
2015-11-01
During respiratory inflammation, it is generally assumed that dendritic cells differentiating from the bone marrow are immunogenic rather than immunoregulatory. Using chimeric mice, the outcomes of airways inflammation on bone marrow progenitor cells were studied. Immune responses were analyzed in chimeric mice engrafted for >16 weeks with bone marrow cells from mice with experimental allergic airways disease (EAAD). Responses to sensitization and challenge with the allergen causing inflammation in the bone marrow-donor mice were significantly reduced in the chimeric mice engrafted with bone marrow cells from mice with EAAD (EAAD-chimeric). Responses to intranasal LPS and topical fluorescein isothiocyanate (non-specific challenges) were significantly attenuated. Fewer activated dendritic cells from the airways and skin of the EAAD-chimeric mice could be tracked to the draining lymph nodes, and may contribute to the significantly reduced antigen/chemical-induced hypertrophy in the draining nodes, and the reduced immune responses to sensitizing allergens. Dendritic cells differentiating in vitro from the bone marrow of >16 weeks reconstituted EAAD-chimeric mice retained an ability to poorly prime immune responses when transferred into naïve mice. Dendritic cells developing from bone marrow progenitors during airways inflammation are altered such that daughter cells have reduced antigen priming capabilities.
Characterization of chicken dendritic cell markers
USDA-ARS?s Scientific Manuscript database
Animal and Natural Resources Institute, ARS-USDA, Beltsville, MD, USA. New mouse monoclonal antibodies which detect CD80 and CD83 were developed to characterize chicken dendritic cells (DCs). The characteristics of these molecules have been studied in human, swine, ovine, feline, and canine but not ...
ROCK1 and 2 differentially regulate actomyosin organization to drive cell and synaptic polarity
Badoual, Mathilde; Asmussen, Hannelore; Patel, Heather; Whitmore, Leanna; Horwitz, Alan Rick
2015-01-01
RhoGTPases organize the actin cytoskeleton to generate diverse polarities, from front–back polarity in migrating cells to dendritic spine morphology in neurons. For example, RhoA through its effector kinase, RhoA kinase (ROCK), activates myosin II to form actomyosin filament bundles and large adhesions that locally inhibit and thereby polarize Rac1-driven actin polymerization to the protrusions of migratory fibroblasts and the head of dendritic spines. We have found that the two ROCK isoforms, ROCK1 and ROCK2, differentially regulate distinct molecular pathways downstream of RhoA, and their coordinated activities drive polarity in both cell migration and synapse formation. In particular, ROCK1 forms the stable actomyosin filament bundles that initiate front–back and dendritic spine polarity. In contrast, ROCK2 regulates contractile force and Rac1 activity at the leading edge of migratory cells and the spine head of neurons; it also specifically regulates cofilin-mediated actin remodeling that underlies the maturation of adhesions and the postsynaptic density of dendritic spines. PMID:26169356
Bangert, Christine; Friedl, Josef; Stary, Georg; Stingl, Georg; Kopp, Tamara
2003-12-01
Contrary to our abundant knowledge about the sensitization phase of human contact hypersensitivity, little is known about the cell types orchestrating the effector phase. In order to address this issue, we phenotypically analyzed biopsies from 72 h epicutaneous patch test reactions (n=10) and normal human skin (n=5) for the presence of various leukocyte differentiation antigens. The inflammatory infiltrate was dominated by CD3+/CD4+ T cells with approximately 30% of the cells coexpressing CD25 and CTLA-4, a phenotype consistent with either activated effector or regulatory T cells. In our search for professional antigen-presenting cells, we were surprised to find not only sizeable numbers of CD1a+ dendritic cells and CD1c+ dendritic cells, but also of CD123+, CD45RA+, BDCA-2+, CLA+, and CD62L+ plasmacytoid dendritic cells. Although virtually absent in normal human skin, these cells were detectable already 6 h after hapten challenge and were often found in close proximity to CD56+ natural killer cells, indicative of a functional interaction between these cell types. The detailed knowledge of the cellular composition of the inflammatory infiltrate in allergic contact dermatitis and its kinetics should form the basis for the investigation of the immunologic and molecular events operative in the perpetuation and resolution of the eczematous response.
Battisti, Federico; Napoletano, Chiara; Rahimi Koshkaki, Hassan; Belleudi, Francesca; Zizzari, Ilaria Grazia; Ruscito, Ilary; Palchetti, Sara; Bellati, Filippo; Benedetti Panici, Pierluigi; Torrisi, Maria Rosaria; Caracciolo, Giulio; Altieri, Fabio; Nuti, Marianna; Rughetti, Aurelia
2017-01-01
Dendritic cells (DCs) are the only antigen-presenting cells able to prime naïve T cells and cross-prime antigen-specific CD8 + T cells. Their functionality is a requirement for the induction and maintenance of long-lasting cancer immunity. Albeit intensively investigated, the in vivo mechanisms underlying efficient antigen cross-processing and presentation are not fully understood. Several pieces of evidence indicate that antigen transfer to DCs mediated by microvesicles (MVs) enhances antigen immunogenicity. This mechanism is also relevant for cross-presentation of those tumor-associated glycoproteins such as MUC1 that are blocked in HLA class II compartment when internalized by DCs as soluble molecules. Here, we present pieces of evidence that the internalization of tumor-derived MVs modulates antigen-processing machinery of DCs. Employing MVs derived from ovarian cancer ascites fluid and established tumor cell lines, we show that MV uptake modifies DC phagosomal microenvironment, triggering reactive oxygen species (ROS) accumulation and early alkalinization. Indeed, tumor MVs carry radical species and the MV uptake by DCs counteracts the chemically mediated acidification of the phagosomal compartment. Further pieces of evidence suggest that efficacious antigen cross-priming of the MUC1 antigen carried by the tumor MVs results from the early signaling induced by MV internalization and the function of the antigen-processing machinery of DCs. These results strongly support the hypothesis that tumor-derived MVs impact antigen immunogenicity by tuning the antigen-processing machinery of DCs, besides being carrier of tumor antigens. Furthermore, these findings have important implications for the exploitation of MVs as antigenic cell-free immunogen for DC-based therapeutic strategies.
EVIR: chimeric receptors that enhance dendritic cell cross-dressing with tumor antigens.
Squadrito, Mario Leonardo; Cianciaruso, Chiara; Hansen, Sarah K; De Palma, Michele
2018-03-01
We describe a lentivirus-encoded chimeric receptor, termed extracellular vesicle (EV)-internalizing receptor (EVIR), which enables the selective uptake of cancer-cell-derived EVs by dendritic cells (DCs). The EVIR enhances DC presentation of EV-associated tumor antigens to CD8 + T cells primarily through MHCI recycling and cross-dressing. EVIRs should facilitate exploring the mechanisms and implications of horizontal transfer of tumor antigens to antigen-presenting cells.
Lithium dendrite growth through solid polymer electrolyte membranes
NASA Astrophysics Data System (ADS)
Harry, Katherine; Schauser, Nicole; Balsara, Nitash
2015-03-01
Replacing the graphite-based anode in current batteries with a lithium foil will result in a qualitative increase in the energy density of lithium batteries. The primary reason for not adopting lithium-foil anodes is the formation of dendrites during cell charging. In this study, stop-motion X-ray microtomography experiments were used to directly monitor the growth of lithium dendrites during electrochemical cycling of symmetric lithium-lithium cells with a block copolymer electrolyte. In an attempt to understand the relationship between viscoelastic properties of the electrolyte on dendrite formation, a series of complementary experiments including cell cycling, tomography, ac impedance, and rheology, were conducted above and below the glass transition temperature of the non-conducting poly(styrene) block; the conducting phase is a mixture of rubbery poly(ethylene oxide) and a lithium salt. The tomography experiments enable quantification of the evolution of strain in the block copolymer electrolyte. Our work provides fundamental insight into the dynamics of electrochemical deposition of metallic films in contact with high modulus polymer electrolytes. Rational approaches for slowing down and, perhaps, eliminating dendrite growth are proposed.
Tian, Shenghe; Liu, Zuqiang; Donahue, Cara; Falo, Louis D; You, Zhaoyang
2012-02-01
In vivo dendritic cells (DC) targeting is an attractive approach with potential advantages in vaccine efficacy, cost, and availability. Identification of molecular adjuvants to in vivo "modulate " DC to coordinately render improved Th1 and CD8 T cell immunity, and attenuated deleterious Treg effects, is a critical challenge. Here, we report that in vivo genetic targeting of the active transcription factor XBP1s to DC (XBP1s/DC) potentiated vaccine-induced prophylactic and therapeutic antitumor immunity in multiple tumor models. This immunization strategy is based on a genetic vaccine encoding both cytomegalovirus (CMV)-driven vaccine Aghsp70 and DC-specific CD11c-driven XBP1s. The novel targeted vaccine induced durable Th1 and CD8 T cell responses to poorly immunogenic self/tumor antigen (Ag) and attenuated tumor-associated Treg suppressive function. Bone marrow (BM)-derived DC genetically modified to simultaneously overexpress XBP1s and express Aghsp70 upregulated CD40, CD70, CD86, interleukin (IL)-15, IL-15Rα, and CCR7 expression, and increased IL-6, IL-12, and tumor necrosis factor (TNF)-α production in vitro. XBP1s/DC elevated functional DEC205(+)CD8α(+)DC in the draining lymph nodes (DLN). The data suggest a novel role for XBP1s in modulating DC to potentiate tumor vaccine efficacy via overcoming two major obstacles to tumor vaccines (i.e., T cell hyporesponsiveness against poorly immunologic self/tumor Ag and tumor-associated Treg-mediated suppression) and improving DEC205(+)CD8α(+)DC.
CARMA3 Is Critical for the Initiation of Allergic Airway Inflammation
Causton, Benjamin; Ramadas, Ravisankar A.; Cho, Josalyn L.; Jones, Khristianna; Pardo-Saganta, Ana; Rajagopal, Jayaraj; Xavier, Ramnik J.
2015-01-01
Innate immune responses to allergens by airway epithelial cells (AECs) help initiate and propagate the adaptive immune response associated with allergic airway inflammation in asthma. Activation of the transcription factor NF-κB in AECs by allergens or secondary mediators via G protein–coupled receptors (GPCRs) is an important component of this multifaceted inflammatory cascade. Members of the caspase recruitment domain family of proteins display tissue-specific expression and help mediate NF-κB activity in response to numerous stimuli. We have previously shown that caspase recruitment domain–containing membrane-associated guanylate kinase protein (CARMA)3 is specifically expressed in AECs and mediates NF-κB activation in these cells in response to stimulation with the GPCR agonist lysophosphatidic acid. In this study, we demonstrate that reduced levels of CARMA3 in normal human bronchial epithelial cells decreases the production of proasthmatic mediators in response to a panel of asthma-relevant GPCR ligands such as lysophosphatidic acid, adenosine triphosphate, and allergens that activate GPCRs such as Alternaria alternata and house dust mite. We then show that genetically modified mice with CARMA3-deficient AECs have reduced airway eosinophilia and proinflammatory cytokine production in a murine model of allergic airway inflammation. Additionally, we demonstrate that these mice have impaired dendritic cell maturation in the lung and that dendritic cells from mice with CARMA3-deficient AECs have impaired Ag processing. In conclusion, we show that AEC CARMA3 helps mediate allergic airway inflammation, and that CARMA3 is a critical signaling molecule bridging the innate and adaptive immune responses in the lung. PMID:26041536
Emitter formation in dendritic web silicon solar cells
NASA Technical Reports Server (NTRS)
Meier, D. L.; Rohatgi, A.; Campbell, R. B.; Alexander, P.; Fonash, S. J.; Singh, R.
1984-01-01
The use of liquid dopants and liquid masks for p-n junction formation in dendritic web solar cells was investigated and found to be equivalent to the use of gaseous dopants and CVD SiO2 masks previously used. This results in a projected cost reduction of 0.02 1980$/Watt for a 25 MW/year production line, and makes possible junction formation processes having a higher throughput than more conventional processes. The effect of a low-energy (0.4 keV) hydrogen ion implant on dendritic web solar cells was also investigated. Such an implant was observed to improve Voc and Jsc substantially. Measurements of internal quantum efficiency suggest that it is the base of the cell, rather than the emitter, which benefits from the hydrogen implant. The diffusion length for electrons in the p-type base increased from 53 microns to 150 microns in one case, with dendritic web cell efficiency being boosted to 15.2 percent. The mechanism by which low-energy hydrogen ions can penetrate deeply into the silicon to effect the observed improvement is not known at this time.
[Role of Langerhans cells in the physiopathology of atopic dermatitis].
Bieber, T
1995-12-01
The demonstration of IgE receptors on the surface of epidermal dendritic cells and on other antigen presenting cells is a crucial element in the understanding of the pathophysiological role of these cells in the genesis of atopic disease, and especially the atopic dermatitis (AD). The sensibilisation phase to an aeroallergen at the level of nasal or bronchial mucosa and even at the skin may be mediated by dendritic cells expressing Fc epsilon RI. Distinct forms of AD may then represent the equivalent of the ellicitation phase of the classical allergic contact dermatitis. Fc epsilon RI would lead, via specific IgE, to an efficient antigen capture, to the activation of the dendritic cells and finally to an antigen presentation. Thus, AD may represent the paradigma of an IgE-mediated type IV reaction.
Glaffig, Markus; Stergiou, Natascha; Hartmann, Sebastian; Schmitt, Edgar; Kunz, Horst
2018-01-08
A MUC1 anticancer vaccine equipped with covalently linked divalent mannose ligands was found to improve the antigen uptake and presentation by targeting mannose-receptor-positive macrophages and dendritic cells. It induced much stronger specific IgG immune responses in mice than the non-mannosylated reference vaccine. Mannose coupling also led to increased numbers of macrophages, dendritic cells, and CD4 + T cells in the local lymph organs. Comparison of di- and tetravalent mannose ligands revealed an increased binding of the tetravalent version, suggesting that higher valency improves binding to the mannose receptor. The mannose-coupled vaccine and the non-mannosylated reference vaccine induced IgG antibodies that exhibited similar binding to human breast tumor cells. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lymphatic exosomes promote dendritic cell migration along guidance cues
Brown, Markus; Johnson, Louise A.; Leone, Dario A.; Majek, Peter; Senfter, Daniel; Bukosza, Nora; Asfour, Gabriele; Langer, Brigitte; Parapatics, Katja; Hong, Young-Kwon; Bennett, Keiryn L.; Sixt, Michael
2018-01-01
Lymphatic endothelial cells (LECs) release extracellular chemokines to guide the migration of dendritic cells. In this study, we report that LECs also release basolateral exosome-rich endothelial vesicles (EEVs) that are secreted in greater numbers in the presence of inflammatory cytokines and accumulate in the perivascular stroma of small lymphatic vessels in human chronic inflammatory diseases. Proteomic analyses of EEV fractions identified >1,700 cargo proteins and revealed a dominant motility-promoting protein signature. In vitro and ex vivo EEV fractions augmented cellular protrusion formation in a CX3CL1/fractalkine-dependent fashion and enhanced the directional migratory response of human dendritic cells along guidance cues. We conclude that perilymphatic LEC exosomes enhance exploratory behavior and thus promote directional migration of CX3CR1-expressing cells in complex tissue environments. PMID:29650776
A role for a rat homolog of staufen in the transport of RNA to neuronal dendrites.
Tang, S J; Meulemans, D; Vazquez, L; Colaco, N; Schuman, E
2001-11-08
RNAs are present in dendrites and may be used for local protein synthesis in response to synaptic activity. To begin to understand dendritic RNA targeting, we cloned a rat homolog of staufen, a Drosophila gene that participates in mRNA targeting during development. In hippocampal neurons, rat staufen protein displays a microtubule-dependent somatodendritic distribution pattern that overlaps with dendritic RNAs. To determine whether r-staufen is required for dendritic RNA targeting, we constructed a mutant version containing the RNA binding domains (stau-RBD) but lacking the C-terminal portion potentially involved in dendritic targeting. Stau-RBD expression was restricted to the cell bodies and proximal dendrites. Expression of stau-RBD significantly decreased, while overexpression of wild-type r-staufen increased, the amount of dendritic mRNA. Taken together, these results suggest that the rat staufen protein plays an important role in the delivery of RNA to dendrites.
The multifaceted biology of plasmacytoid dendritic cells
Swiecki, Melissa; Colonna, Marco
2015-01-01
Plasmacytoid dendritic cells (pDCs) are a unique dendritic cell subset that specializes in the production of type I interferons (IFNs). pDCs promote antiviral immune responses and have been implicated in the pathogenesis of autoimmune diseases characterized by a type I IFN signature. However, pDCs can also induce tolerogenic immune responses. Here, we review recent progress from the field of pDC biology, focusing on: the molecular mechanisms that regulate pDC development and functions; the pathways involved in their sensing of pathogens and endogenous nucleic acids; the function of pDCs at mucosal sites; and their roles in infections, autoimmunity and cancer. PMID:26160613
Patil, Sonali; Pincas, Hanna; Seto, Jeremy; Nudelman, German; Nudelman, Irina; Sealfon, Stuart C
2010-10-07
Dendritic cells are antigen-presenting cells that play an essential role in linking the innate and adaptive immune systems. Much research has focused on the signaling pathways triggered upon infection of dendritic cells by various pathogens. The high level of activity in the field makes it desirable to have a pathway-based resource to access the information in the literature. Current pathway diagrams lack either comprehensiveness, or an open-access editorial interface. Hence, there is a need for a dependable, expertly curated knowledgebase that integrates this information into a map of signaling networks. We have built a detailed diagram of the dendritic cell signaling network, with the goal of providing researchers with a valuable resource and a facile method for community input. Network construction has relied on comprehensive review of the literature and regular updates. The diagram includes detailed depictions of pathways activated downstream of different pathogen recognition receptors such as Toll-like receptors, retinoic acid-inducible gene-I-like receptors, C-type lectin receptors and nucleotide-binding oligomerization domain-like receptors. Initially assembled using CellDesigner software, it provides an annotated graphical representation of interactions stored in Systems Biology Mark-up Language. The network, which comprises 249 nodes and 213 edges, has been web-published through the Biological Pathway Publisher software suite. Nodes are annotated with PubMed references and gene-related information, and linked to a public wiki, providing a discussion forum for updates and corrections. To gain more insight into regulatory patterns of dendritic cell signaling, we analyzed the network using graph-theory methods: bifan, feedforward and multi-input convergence motifs were enriched. This emphasis on activating control mechanisms is consonant with a network that subserves persistent and coordinated responses to pathogen detection. This map represents a navigable aid for presenting a consensus view of the current knowledge on dendritic cell signaling that can be continuously improved through contributions of research community experts. Because the map is available in a machine readable format, it can be edited and may assist researchers in data analysis. Furthermore, the availability of a comprehensive knowledgebase might help further research in this area such as vaccine development. The dendritic cell signaling knowledgebase is accessible at http://tsb.mssm.edu/pathwayPublisher/DC_pathway/DC_pathway_index.html.
Lapadat, Razvan; Nam, Moon Woo; Mehrotra, Swati; Velankar, Milind; Pambuccian, Stefan E
2017-03-01
Warthin-Finkeldey type giant cells were first described in autopsies performed on young children who died during the highly lethal measles epidemic in Palermo during the winter of 1908. The cells had 8-15 nuclei without identifiable cytoplasm within the germinal centers of lymphoid organs resembling megakaryocytes. We describe a case of Hashimoto thyroiditis with an enlarging substernal throid mass. The resection specimen contained many Warthin-Finkeldey-Like Cells (WFLC) in an extranodal marginal zone lymphoma (MALT type) with focal transformation to diffuse large B-cell lymphoma. The WFLC showed nuclear features similar to those of neighboring follicular dendritic cells (FDCs), favoring the hypothesis that these cells might be the product of fusion of FDCs. This is supported by immunostaining results and the occurrence of similar cells in follicular dendritic cell sarcomas and in "dysplastic" FDCs in hyaline vascular type Castleman disease, a possible precursor of follicular dendritic cell tumors. Diagn. Cytopathol. 2017;45:212-216. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Laxmanan, V.
1986-01-01
The development of theoretical models which characterize the planar-cellular and cell-dendrite transitions is described. The transitions are analyzed in terms of the Chalmers number, the solute Peclet number, and the tip stability parameter, which correlate microstructural features and processing conditions. The planar-cellular transition is examined using the constitutional supercooling theory of Chalmers et al., (1953) and it is observed that the Chalmers number is between 0 and 1 during dendritic and cellular growth. Analysis of cell-dendrite transition data reveal that the transition occurs when the solute Peclet number goes through a minimum, the primary arm spacings go through a maximum, and the Chalmers number is equal to 1/2. The relation between the tip stability parameter and the solute Peclet number is investigated and it is noted that the tip stability parameter is useful for studying dendritic growth in alloys.
Palisade pattern of mormyrid Purkinje cells: a correlated light and electron microscopic study.
Meek, J; Nieuwenhuys, R
1991-04-01
The present study is devoted to a detailed analysis of the structural and synaptic organization of mormyrid Purkinje cells in order to evaluate the possible functional significance of their dendritic palisade pattern. For this purpose, the properties of Golgi-impregnated as well as unimpregnated Purkinje cells in lobe C1 and C3 of the cerebellum of Gnathonemus petersii were light and electron microscopically analyzed, quantified, reconstructed, and mutually compared. Special attention was paid to the degree of regularity of their dendritic trees, their relations with Bergmann glia, and the distribution and numerical properties of their synaptic connections with parallel fibers, stellate cells, "climbing" fibers, and Purkinje axonal boutons. The highest degree of palisade specialization was encountered in lobe C1, where Purkinje cells have on average 50 palisade dendrites with a very regular distribution in a sagittal plane. Their spine density decreases from superficial to deep (from 14 to 6 per micron dendritic length), a gradient correlated with a decreasing parallel fiber density but an increasing parallel fiber diameter. Each Purkinje cell makes on average 75,000 synaptic contacts with parallel fibers, some of which are rather coarse (0.45 microns), and provided with numerous short collaterals. Climbing fibers do not climb, since their synaptic contacts are restricted to the ganglionic layer (i.e., the layer of Purkinje and eurydendroid projection cells), where they make about 130 synaptic contacts per cell with 2 or 3 clusters of thorns on the proximal dendrites. These clusters contain also a type of "shunting" elements that make desmosome-like junctions with both the climbing fiber boutons and the necks of the thorns. The axons of Purkinje cells in lobe C1 make small terminal arborizations, with about 20 boutons, that may be substantially (up to 500 microns) displaced rostrally or caudally with respect to the soma. Purkinje axonal boutons were observed to make synaptic contacts with eurydendroid projection cells and with the proximal dendritic and somatic receptive surface of Purkinje cells, where about 15 randomly distributed boutons per neuron occur. The organization of Purkinje cells in lobe C3 differs markedly from that in C1 and seems to be less regular and specialized, although the overall palisade pattern is even more regular than in lobe C1 because of the absence of large eurydendroid neurons. However, individual neurons have a less regular dendritic tree, there is no apical-basal gradient in spine density or parallel fiber density and diameter, and there are no "shunting" elements in the climbing fiber glomeruli.(ABSTRACT TRUNCATED AT 400 WORDS)
NASA Technical Reports Server (NTRS)
1981-01-01
Liquid diffusion masks and liquid applied dopants to replace the CVD Silox masking and gaseous diffusion operations specified for forming junctions in the Westinghouse baseline process sequence for producing solar cells from dendritic web silicon were investigated. The baseline diffusion masking and drive processes were compared with those involving direct liquid applications to the dendritic web silicon strips. Attempts were made to control the number of variables by subjecting dendritic web strips cut from a single web crystal to both types of operations. Data generated reinforced earlier conclusions that efficiency levels at least as high as those achieved with the baseline back junction formation process can be achieved using liquid diffusion masks and liquid dopants. The deliveries of dendritic web sheet material and solar cells specified by the current contract were made as scheduled.
Zhang, Xiaohan; Liu, Shenquan; Zhan, Feibiao; Wang, Jing; Jiang, Xiaofang
2017-01-01
The damage of dopaminergic neurons that innervate the striatum has been considered to be the proximate cause of Parkinson's disease (PD). In the dopamine-denervated state, the loss of dendritic spines and the decrease of dendritic length may prevent medium spiny neuron (MSN) from receiving too much excitatory stimuli from the cortex, thereby reducing the symptom of Parkinson's disease. However, the reduction in dendritic spine density obtained by different experiments is significantly different. We developed a biological-based network computational model to quantify the effect of dendritic spine loss and dendrites tree degeneration on basal ganglia (BG) signal regulation. Through the introduction of error index (EI), which was used to measure the attenuation of the signal, we explored the amount of dendritic spine loss and dendritic trees degradation required to restore the normal regulatory function of the network, and found that there were two ranges of dendritic spine loss that could reduce EI to normal levels in the case of dopamine at a certain level, this was also true for dendritic trees. However, although these effects were the same, the mechanisms of these two cases were significant difference. Using the method of phase diagram analysis, we gained insight into the mechanism of signal degradation. Furthermore, we explored the role of cortex in MSN morphology changes dopamine depletion-induced and found that proper adjustments to cortical activity do stop the loss in dendritic spines induced by dopamine depleted. These results suggested that modifying cortical drive onto MSN might provide a new idea on clinical therapeutic strategies for Parkinson's disease.
Blastic plasmacytoid dendritic cell neoplasm: report of two pediatric cases.
Dharmani, Preeti Ashok; Mittal, Neha Manish; Subramanian, P G; Galani, Komal; Badrinath, Yajamanam; Amare, Pratibha; Gujral, Sumeet
2015-01-01
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare subtype of acute leukemia that typically follows a highly aggressive clinical course in adults, whereas experience in children with this disease is very limited. We report cases of two children in whom bone marrow showed infiltration by large atypical monocytoid 'blast-like' cells which on immunophenotyping expressed CD4, CD56, HLA-DR and CD33 while were negative for CD34 other T-cell, B-cell and myeloid markers. The differential diagnoses considered were AML, T/NK-cell leukemia and acute undifferentiated leukemia. Additional markers CD303/BDCA-2 and CD123 which are recently validated plasmacytoid dendritic cell markers were done which helped us clinch the diagnosis of this rare neoplasm. An accurate diagnosis of BPDCN is essential in order to provide prompt treatment. Due to its rarity and only recent recognition as a distinct clinicopathological entity, no standardized therapeutic approach has been established for BPDCN.
In vitro haematopoiesis of a novel dendritic-like cell present in murine spleen.
Tan, Jonathan K H; O'Neill, Helen C
2010-12-01
Dendritic cells (DC) are important antigen presenting cells (APC) which induce and control the adaptive immune response. In spleen alone, multiple DC subsets can be distinguished by cell surface marker phenotype. Most of these have been shown to develop from progenitors in bone marrow and to seed lymphoid and tissue sites during development. This study advances in vitro methodology for haematopoiesis of dendritic-like cells from progenitors in spleen. Since spleen progenitors undergo differentiation in vitro to produce these cells, the possibility exists that spleen represents a specific niche for differentiation of this subset. The fact that an equivalent cell subset has been shown to exist in spleen also supports that hypothesis. Studies have been directed at investigating the specific functional role of this novel subset as an APC accessible to blood-borne antigen, as well as the conditions under which haematopoiesis is initiated in spleen, and the type of progenitor involved.
Qin, Tao; Ren, Zhe; Huang, Yifan; Song, Yulong; Lin, Dandan; Li, Jian; Ma, Yufang; Wu, Xiuqin; Qiu, Fuan; Xiao, Qi
2017-04-01
In this study, polysaccharides extracted from Hericium erinaceus were modified to obtain its nine selenium derivatives, sHEP 1 -sHEP 9 . Their structures were identified, yields and selenium contents were determined, the phenotypic and functional maturation of murine bone marrow-derived dendritic cells (DCs) and relevant mechanisms were compared taking unmodified HEP as control. The results revealed that the selenylation were successful. sHEP 1 , sHEP 2 and sHEP 8 treatment of DCs increased their surface expression of MHC-II and CD86 and indicated that sHEP 1 , sHEP 2 and sHEP 8 induced DC maturation. Furthermore, sHEP 2 and sHEP 8 also significantly decreased DCs endocytosis and significantly enhanced cytokine (IL-12 and IFN-γ) production. In line with TLR4 activation, sHEP 2 increased the phosphorylation of ERK, p38, and JNK, and the nuclear translocation of p-c-Jun, p-CREB, and c-Fos. sHEP 2 also activated NF-κB signaling, as evidenced by degradation of IκBα/β and nuclear translocation of p65 and p50. Together, these results suggest that sHEP is a strong immunostimulant. Copyright © 2017 Elsevier B.V. All rights reserved.
Kowalewicz-Kulbat, Magdalena; Ograczyk, Elżbieta; Włodarczyk, Marcin; Krawczyk, Krzysztof; Fol, Marek
2016-06-01
The immunomagnetic separation technique is the basis of monocyte isolation and further generation of monocyte-derived dendritic cells. To compare the efficiency of monocyte positive and negative separation, concentration of beads, and their impact on generated dendritic cells. Monocytes were obtained using monoclonal antibody-coated magnetic beads followed the Ficoll-Paque gradient separation of mononuclear cell fraction from the peripheral blood of 6 healthy volunteers. CD14 expression was analyzed by flow cytometry. Both types of magnetic separation including recommended and reduced concentrations of beads did not affect the yield and the purity of monocytes and their surface CD14 expression. However, DCs originated from the "positively" separated monocytes had noticeable higher expression of CD80.
Radiation-Induced Immune Modulation in Prostate Cancer
2008-01-01
cancers. 15. SUBJECT TERMS Radiation, Dendritic Cells , Cytokines, PSA 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18...radiation is more than a cytotoxic agent. Our recent study has shown that radiation modulates the immune system by affecting dendritic cell (DC...translate radiation-induced tumor cell death into generation of tumor immunity in the hope of optimizing therapy for localized and disseminated prostate
Neuroligin-1 overexpression in newborn granule cells in vivo.
Schnell, Eric; Bensen, Aesoon L; Washburn, Eric K; Westbrook, Gary L
2012-01-01
Adult-born dentate granule cells integrate into the hippocampal network, extend neurites and form synapses in otherwise mature tissue. Excitatory and inhibitory inputs innervate these new granule cells in a stereotyped, temporally segregated manner, which presents a unique opportunity to study synapse development in the adult brain. To examine the role of neuroligins as synapse-inducing molecules in vivo, we infected dividing neural precursors in adult mice with a retroviral construct that increased neuroligin-1 levels during granule cell differentiation. By 21 days post-mitosis, exogenous neuroligin-1 was expressed at the tips of dendritic spines and increased the number of dendritic spines. Neuroligin-1-overexpressing cells showed a selective increase in functional excitatory synapses and connection multiplicity by single afferent fibers, as well as an increase in the synaptic AMPA/NMDA receptor ratio. In contrast to its synapse-inducing ability in vitro, neuroligin-1 overexpression did not induce precocious synapse formation in adult-born neurons. However, the dendrites of neuroligin-1-overexpressing cells did have more thin protrusions during an early period of dendritic outgrowth, suggesting enhanced filopodium formation or stabilization. Our results indicate that neuroligin-1 expression selectively increases the degree, but not the onset, of excitatory synapse formation in adult-born neurons.
Lowenstein, P R; Castro, M G
2016-01-01
Malignant brain tumors are one of the most lethal cancers. They originate from glial cells which infiltrate throughout the brain. Current standard of care involves surgical resection, radiotherapy, and chemotherapy; median survival is currently ~14-20 months postdiagnosis. Given that the brain immune system is deficient in priming systemic immune responses to glioma antigens, we proposed to reconstitute the brain immune system to achieve immunological priming from within the brain. Two adenoviral vectors are injected into the resection cavity or remaining tumor. One adenoviral vector expresses the HSV-1-derived thymidine kinase which converts ganciclovir into a compound only cytotoxic to dividing glioma cells. The second adenovirus expresses the cytokine fms-like tyrosine kinase 3 ligand (Flt3L). Flt3L differentiates precursors into dendritic cells and acts as a chemokine that attracts dendritic cells to the brain. HSV-1/ganciclovir killing of tumor cells releases tumor antigens that are taken up by dendritic cells within the brain tumor microenvironment. Tumor killing also releases HMGB1, an endogenous TLR2 agonist that activates dendritic cells. HMGB1-activated dendritic cells, loaded with glioma antigens, migrate to cervical lymph nodes to stimulate a systemic CD8+ T cells cytotoxic immune response against glioma. This immune response is specific to glioma tumors, induces immunological memory, and does neither cause brain toxicity nor autoimmune responses. An IND was granted by the FDA on 4/7/2011. A Phase I, first in person trial, to test whether reengineering the brain immune system is potentially therapeutic is ongoing. © 2016 Elsevier Inc. All rights reserved.
Evans, Heather M.; Simpson, Andrew; Shen, Shu; Stromberg, Arnold J.; Pickett, Carol L.
2017-01-01
ABSTRACT The life cycle of the opportunistic fungal pathogen Pneumocystis murina consists of a trophic stage and an ascus-like cystic stage. Infection with the cyst stage induces proinflammatory immune responses, while trophic forms suppress the cytokine response to multiple pathogen-associated molecular patterns (PAMPs), including β-glucan. A targeted gene expression assay was used to evaluate the dendritic cell response following stimulation with trophic forms alone, with a normal mixture of trophic forms and cysts, or with β-glucan. We demonstrate that stimulation with trophic forms downregulated the expression of multiple genes normally associated with the response to infection, including genes encoding transcription factors. Trophic forms also suppressed the expression of genes related to antigen processing and presentation, including the gene encoding the major histocompatibility complex (MHC) class II transactivator, CIITA. Stimulation of dendritic cells with trophic forms, but not a mixture of trophic forms and cysts, reduced the expression of MHC class II and the costimulatory molecule CD40 on the surface of the cells. These defects in the expression of MHC class II and costimulatory molecules corresponded with a reduced capacity for trophic form-loaded dendritic cells to stimulate CD4+ T cell proliferation and polarization. These data are consistent with the delayed innate and adaptive responses previously observed in immunocompetent mice inoculated with trophic forms compared to responses in mice inoculated with a mixture of trophic forms and cysts. We propose that trophic forms broadly inhibit the ability of dendritic cells to fulfill their role as antigen-presenting cells. PMID:28694293
Travelling waves in a model of quasi-active dendrites with active spines
NASA Astrophysics Data System (ADS)
Timofeeva, Y.
2010-05-01
Dendrites, the major components of neurons, have many different types of branching structures and are involved in receiving and integrating thousands of synaptic inputs from other neurons. Dendritic spines with excitable channels can be present in large densities on the dendrites of many cells. The recently proposed Spike-Diffuse-Spike (SDS) model that is described by a system of point hot-spots (with an integrate-and-fire process) embedded throughout a passive tree has been shown to provide a reasonable caricature of a dendritic tree with supra-threshold dynamics. Interestingly, real dendrites equipped with voltage-gated ion channels can exhibit not only supra-threshold responses, but also sub-threshold dynamics. This sub-threshold resonant-like oscillatory behaviour has already been shown to be adequately described by a quasi-active membrane. In this paper we introduce a mathematical model of a branched dendritic tree based upon a generalisation of the SDS model where the active spines are assumed to be distributed along a quasi-active dendritic structure. We demonstrate how solitary and periodic travelling wave solutions can be constructed for both continuous and discrete spine distributions. In both cases the speed of such waves is calculated as a function of system parameters. We also illustrate that the model can be naturally generalised to an arbitrary branched dendritic geometry whilst remaining computationally simple. The spatio-temporal patterns of neuronal activity are shown to be significantly influenced by the properties of the quasi-active membrane. Active (sub- and supra-threshold) properties of dendrites are known to vary considerably among cell types and animal species, and this theoretical framework can be used in studying the combined role of complex dendritic morphologies and active conductances in rich neuronal dynamics.
Loo, Christopher P; Snyder, Christopher M; Hill, Ann B
2017-01-01
Increasing amounts of pathogen replication usually lead to a proportionate increase in size and effector differentiation of the CD8 + T cell response, which is attributed to increased Ag and inflammation. Using a murine CMV that is highly sensitive to the antiviral drug famciclovir to modulate virus replication, we found that increased virus replication drove increased effector CD8 + T cell differentiation, as expected. Paradoxically, however, increased virus replication dramatically decreased the size of the CD8 + T cell response to two immunodominant epitopes. The decreased response was due to type I IFN-dependent depletion of conventional dendritic cells and could be reproduced by specific depletion of dendritic cells from day 2 postinfection or by sterile induction of type I IFN. Increased virus replication and type I IFN specifically inhibited the response to two immunodominant epitopes that are known to be dependent on Ag cross-presented by DCs, but they did not inhibit the response to "inflationary" epitopes whose responses can be sustained by infected nonhematopoietic cells. Our results show that type I IFN can suppress CD8 + T cell responses to cross-presented Ag by depleting cross-presenting conventional dendritic cells. Copyright © 2016 by The American Association of Immunologists, Inc.
Guiton, R; Zagani, R; Dimier-Poisson, I
2009-10-01
Toxoplasma gondii is the causative agent of toxoplasmosis, a worldwide zoonosis for which an effective vaccine is needed. Vaccination with pulsed dendritic cells is very efficient but their use in a vaccination protocol is unconceivable. Nevertheless, unravelling the induced effector mechanisms is crucial to design new vaccine strategies. We vaccinated CBA/J mice with parasite extract-pulsed dendritic cells, challenged them with T. gondii cysts and carried out in vivo depletion of CD4(+) or CD8(+) T lymphocytes to study the subsequent cellular immune response and protective mechanisms. CD4(+) lymphocytes were poorly implicated either in spleen and mesenteric lymph node (MLN) cytokine secretion or in mice protection. By contrast, the increasing number of intracerebral cysts and depletion of CD8(+) cells were strongly correlated, revealing a prominent role for CD8(+) lymphocytes in the protection of mice. Splenic CD8(+) lymphocytes induce a strong Th1 response controlled by a Th2 response whereas CD8(+) cells from MLNs inhibit both Th1 and Th2 responses. CD8(+) cells are the main effectors following dendritic cell vaccination and Toxoplasma infection while CD4(+) T cells only play a minor role. This contrasts with T. gondii infection which elicits the generation of CD4(+) and CD8(+) T cells that provide protective immunity.
Shen, Hung-Chang; Chu, Sao-Yu; Hsu, Tsai-Chi; Wang, Chun-Han; Lin, I-Ya; Yu, Hung-Hsiang
2017-04-01
Elucidating how appropriate neurite patterns are generated in neurons of the olfactory system is crucial for comprehending the construction of the olfactory map. In the Drosophila olfactory system, projection neurons (PNs), primarily derived from four neural stem cells (called neuroblasts), populate their cell bodies surrounding to and distribute their dendrites in distinct but overlapping patterns within the primary olfactory center of the brain, the antennal lobe (AL). However, it remains unclear whether the same molecular mechanisms are employed to generate the appropriate dendritic patterns in discrete AL glomeruli among PNs produced from different neuroblasts. Here, by examining a previously explored transmembrane protein Semaphorin-1a (Sema-1a) which was proposed to globally control initial PN dendritic targeting along the dorsolateral-to-ventromedial axis of the AL, we discover a new role for Sema-1a in preventing dendrites of both uni-glomerular and poly-glomerular PNs from aberrant invasion into select AL regions and, intriguingly, this Sema-1a-deficient dendritic mis-targeting phenotype seems to associate with the origins of PNs from which they are derived. Further, ectopic expression of Sema-1a resulted in PN dendritic mis-projection from a select AL region into adjacent glomeruli, strengthening the idea that Sema-1a plays an essential role in preventing abnormal dendritic accumulation in select AL regions. Taken together, these results demonstrate that Sema-1a repulsion keeps dendrites of different types of PNs away from each other, enabling the same types of PN dendrites to be sorted into destined AL glomeruli and permitting for functional assembly of olfactory circuitry.
Oren-Suissa, Meital; Gattegno, Tamar; Kravtsov, Veronika; Podbilewicz, Benjamin
2017-01-01
Injury triggers regeneration of axons and dendrites. Research has identified factors required for axonal regeneration outside the CNS, but little is known about regeneration triggered by dendrotomy. Here, we study neuronal plasticity triggered by dendrotomy and determine the fate of complex PVD arbors following laser surgery of dendrites. We find that severed primary dendrites grow toward each other and reconnect via branch fusion. Simultaneously, terminal branches lose self-avoidance and grow toward each other, meeting and fusing at the tips via an AFF-1-mediated process. Ectopic branch growth is identified as a step in the regeneration process required for bypassing the lesion site. Failure of reconnection to the severed dendrites results in degeneration of the distal end of the neuron. We discover pruning of excess branches via EFF-1 that acts to recover the original wild-type arborization pattern in a late stage of the process. In contrast, AFF-1 activity during dendritic auto-fusion is derived from the lateral seam cells and not autonomously from the PVD neuron. We propose a model in which AFF-1-vesicles derived from the epidermal seam cells fuse neuronal dendrites. Thus, EFF-1 and AFF-1 fusion proteins emerge as new players in neuronal arborization and maintenance of arbor connectivity following injury in Caenorhabditis elegans. Our results demonstrate that there is a genetically determined multi-step pathway to repair broken dendrites in which EFF-1 and AFF-1 act on different steps of the pathway. EFF-1 is essential for dendritic pruning after injury and extrinsic AFF-1 mediates dendrite fusion to bypass injuries. PMID:28283540
Srivastava, U C; Pathak, S V
2010-10-30
To study interlaminar phenotypic variations in the pyramidal neurons of parietal isocortex in bat (Cynopterus sphinx), Golgi and Nissl methods have been employed. The parietal isocortex is relatively thin in the bat as compared to prototheria with layer III, V and VI accounting for more than two—thirds of total cortical thickness. Thick cell free layer I and thinnest accentuated layer II are quite in connotation with other chiropterids. Poor demarcation of layer III/IV in the present study is also in connotation with primitive eutherian mammal (i.e. prototherian) and other chiropterids. Most of the pyramidal cells in the different layers of the parietal isocortex are of typical type as seen in other eutherians but differ significantly in terms of soma shape and size, extent of dendritic arbor, diameter of dendrites and spine density. Percentage of pyramidal neurons, diameter of apical dendrite and spine density on apical dendrite appear to follow an increasing trend from primitive to advanced mammals; but extent of dendrites are probably governed by the specific life patterns of these mammals. It is thus concluded that 'typical' pyramidal neurons in parietal isocortex are similar in therians but different from those in prototherians. It is possible that these cells might have arisen among early eutherians after divergence from prototherian stock.
Hirokawa, N; Funakoshi, T; Sato-Harada, R; Kanai, Y
1996-02-01
In mature neurons, tau is abundant in axons, whereas microtubule-associated protein 2 (MAP2) and MAP2C are specifically localized in dendrites. Known mechanisms involved in the compartmentalization of these cytoskeletal proteins include the differential localization of mRNA (MAP2 mRNA in dendrites, MAP2C mRNA in cell body, and Tau mRNA in proximal axon revealed by in situ hybridization) (Garner, C.C., R.P. Tucker, and A. Matus. 1988. Nature (Lond.). 336:674-677; Litman, P., J. Barg, L. Rindzooski, and I. Ginzburg. 1993. Neuron. 10:627-638), suppressed transit of MAP2 into axons (revealed by cDNA transfection into neurons) (Kanai, Y., and N. Hirokawa. 1995. Neuron. 14:421-432), and differential turnover of MAP2 in axons vs dendrites (Okabe, S., and N. Hirokawa. 1989. Proc. Natl. Acad. Sci. USA. 86:4127-4131). To investigate whether differential turnover of MAPs contributes to localization of other major MAPs in general, we microinjected biotinylated tau, MAP2C, or MAP2 into mature spinal cord neurons in culture (approximately 3 wk) and then analyzed their fates by antibiotin immunocytochemistry. Initially, each was detected in axons and dendrites, although tau persisted only in axons, whereas MAP2C and MAP2 were restricted to cell bodies and dendrites. Injected MAP2C and MAP2 bound to dendritic microtubules more firmly than to microtubules in axons, while injected tau bound to axonal microtubules more firmly than to microtubules in dendrites. Thus, beyond contributions from mRNA localization and selective axonal transport, compartmentalization of each of the three major MAPs occurs through local differential turnover.
Ismahil, Mohamed Ameen; Hamid, Tariq; Bansal, Shyam S; Patel, Bindiya; Kingery, Justin R; Prabhu, Sumanth D
2014-01-17
The role of mononuclear phagocytes in chronic heart failure (HF) is unknown. Our aim was to delineate monocyte, macrophage, and dendritic cell trafficking in HF and define the contribution of the spleen to cardiac remodeling. We evaluated C57Bl/6 mice with chronic HF 8 weeks after coronary ligation. As compared with sham-operated controls, HF mice exhibited: (1) increased proinflammatory CD11b+ F4/80+ CD206- macrophages and CD11b+ F4/80+ Gr-1(hi) monocytes in the heart and peripheral blood, respectively, and reduced CD11b+ F4/80+ Gr-1(hi) monocytes in the spleen; (2) significantly increased CD11c+ B220- classical dendritic cells and CD11c+ low)B220+ plasmacytoid dendritic cells in both the heart and spleen, and increased classic dendritic cells and plasmacytoid dendritic cells in peripheral blood and bone marrow, respectively; (3) increased CD4+ helper and CD8+ cytotoxic T-cells in the spleen; and (4) profound splenic remodeling with abundant white pulp follicles, markedly increased size of the marginal zone and germinal centers, and increased expression of alarmins. Splenectomy in mice with established HF reversed pathological cardiac remodeling and inflammation. Splenocytes adoptively transferred from mice with HF, but not from sham-operated mice, homed to the heart and induced long-term left ventricular dilatation, dysfunction, and fibrosis in naive recipients. Recipient mice also exhibited monocyte activation and splenic remodeling similar to HF mice. Activation of mononuclear phagocytes is central to the progression of cardiac remodeling in HF, and heightened antigen processing in the spleen plays a critical role in this process. Splenocytes (presumably splenic monocytes and dendritic cells) promote immune-mediated injurious responses in the failing heart and retain this memory on adoptive transfer.
Sakaguchi, Hitoshi; Ryan, Cindy; Ovigne, Jean-Marc; Schroeder, Klaus R; Ashikaga, Takao
2010-09-01
Regulatory policies in Europe prohibited the testing of cosmetic ingredients in animals for a number of toxicological endpoints. Currently no validated non-animal test methods exist for skin sensitization. Evaluation of changes in cell surface marker expression in dendritic cell (DC)-surrogate cell lines represents one non-animal approach. The human Cell Line Activation Test (h-CLAT) examines the level of CD86 and CD54 expression on the surface of THP-1 cells, a human monocytic leukemia cell line, following 24h of chemical exposure. To examine protocol transferability, between-lab reproducibility, and predictive capacity, the h-CLAT has been evaluated by five independent laboratories in several ring trials (RTs) coordinated by the European Cosmetics Association (COLIPA). The results of the first and second RTs demonstrated that the protocol was transferable and basically had good between-lab reproducibility and predictivity, but there were some false negative data. To improve performance, protocol and prediction model were modified. Using the modified prediction model in the first and second RT, accuracy was improved. However, about 15% of the outcomes were not correctly identified, which exposes some of the limitations of the assay. For the chemicals evaluated, the limitation may due to chemical being a weak allergen or having low solubility (ex. alpha-hexylcinnamaldehyde). The third RT evaluated the modified prediction model and satisfactory results were obtained. From the RT data, the feasibility of utilizing cell lines as surrogate DC in development of in vitro skin sensitization methods shows promise. The data also support initiating formal pre-validation of the h-CLAT in order to fully understand the capabilities and limitations of the assay. Copyright 2010 Elsevier Ltd. All rights reserved.
Different tissue phagocytes sample apoptotic cells to direct distinct homeostasis programs
Cummings, Ryan J.; Barbet, Gaetan; Bongers, Gerold; Hartmann, Boris M.; Gettler, Kyle; Muniz, Luciana; Furtado, Glaucia C.; Cho, Judy; Lira, Sergio A.; Blander, J. Magarian
2017-01-01
Recognition and removal of apoptotic cells by professional phagocytes, including dendritic cells and macrophages, preserves immune self-tolerance and prevents chronic inflammation and autoimmune pathologies1,2. The diverse array of phagocytes that reside within different tissues, combined with the necessarily prompt nature of apoptotic cell clearance, makes it difficult to study this process in situ. The full spectrum of functions executed by tissue-resident phagocytes in response to homeostatic apoptosis, therefore, remains unclear. Here we show that mouse apoptotic intestinal epithelial cells (IECs), which undergo continuous renewal to maintain optimal barrier and absorptive functions3, are not merely extruded to maintain homeostatic cell numbers4, but are also sampled by a single subset of dendritic cells and two macrophage subsets within a well-characterized network of phagocytes in the small intestinal lamina propria5,6. Characterization of the transcriptome within each subset before and after in situ sampling of apoptotic IECs revealed gene expression signatures unique to each phagocyte, including macrophage-specific lipid metabolism and amino acid catabolism, and a dendritic-cell-specific program of regulatory CD4+ T-cell activation. A common ‘suppression of inflammation’ signature was noted, although the specific genes and pathways involved varied amongst dendritic cells and macrophages, reflecting specialized functions. Apoptotic IECs were trafficked to mesenteric lymph nodes exclusively by the dendritic cell subset and served as critical determinants for the induction of tolerogenic regulatory CD4+ T-cell differentiation. Several of the genes that were differentially expressed by phagocytes bearing apoptotic IECs overlapped with susceptibility genes for inflammatory bowel disease7. Collectively, these findings provide new insights into the consequences of apoptotic cell sampling, advance our understanding of how homeostasis is maintained within the mucosa and set the stage for development of novel therapeutics to alleviate chronic inflammatory diseases such as inflammatory bowel disease. PMID:27828940
Winters, Bradley D; Jin, Shan-Xue; Ledford, Kenneth R; Golding, Nace L
2017-03-22
The principal neurons of the medial superior olive (MSO) encode cues for horizontal sound localization through comparisons of the relative timing of EPSPs. To understand how the timing and amplitude of EPSPs are maintained during propagation in the dendrites, we made dendritic and somatic whole-cell recordings from MSO principal neurons in brain slices from Mongolian gerbils. In somatic recordings, EPSP amplitudes were largely uniform following minimal stimulation of excitatory synapses at visualized locations along the dendrites. Similar results were obtained when excitatory synaptic transmission was eliminated in a low calcium solution and then restored at specific dendritic sites by pairing input stimulation and focal application of a higher calcium solution. We performed dual dendritic and somatic whole-cell recordings to measure spontaneous EPSPs using a dual-channel template-matching algorithm to separate out those events initiated at or distal to the dendritic recording location. Local dendritic spontaneous EPSP amplitudes increased sharply in the dendrite with distance from the soma (length constant, 53.6 μm), but their attenuation during propagation resulted in a uniform amplitude of ∼0.2 mV at the soma. The amplitude gradient of dendritic EPSPs was also apparent in responses to injections of identical simulated excitatory synaptic currents in the dendrites. Compartmental models support the view that these results extensively reflect the influence of dendritic cable properties. With relatively few excitatory axons innervating MSO neurons, the normalization of dendritic EPSPs at the soma would increase the importance of input timing versus location during the processing of interaural time difference cues in vivo SIGNIFICANCE STATEMENT The neurons of the medial superior olive analyze cues for sound localization by detecting the coincidence of binaural excitatory synaptic inputs distributed along the dendrites. Previous studies have shown that dendritic voltages undergo severe attenuation as they propagate to the soma, potentially reducing the influence of distal inputs. However, using dendritic and somatic patch recordings, we found that dendritic EPSP amplitude increased with distance from the soma, compensating for dendritic attenuation and normalizing EPSP amplitude at the soma. Much of this normalization reflected the influence of dendritic morphology. As different combinations of presynaptic axons may be active during consecutive cycles of sound stimuli, somatic EPSP normalization renders spike initiation more sensitive to synapse timing than dendritic location. Copyright © 2017 the authors 0270-6474/17/373138-12$15.00/0.
Otsu, Yo; Marcaggi, Païkan; Feltz, Anne; Isope, Philippe; Kollo, Mihaly; Nusser, Zoltan; Mathieu, Benjamin; Kano, Masanobu; Tsujita, Mika; Sakimura, Kenji; Dieudonné, Stéphane
2014-01-01
Summary In cerebellar Purkinje cell dendrites, heterosynaptic calcium signaling induced by the proximal climbing fiber (CF) input controls plasticity at distal parallel fiber (PF) synapses. The substrate and regulation of this long-range dendritic calcium signaling are poorly understood. Using high-speed calcium imaging, we examine the role of active dendritic conductances. Under basal conditions, CF stimulation evokes T-type calcium signaling displaying sharp proximodistal decrement. Combined mGluR1 receptor activation and depolarization, two activity-dependent signals, unlock P/Q calcium spikes initiation and propagation, mediating efficient CF signaling at distal sites. These spikes are initiated in proximal smooth dendrites, independently from somatic sodium action potentials, and evoke high-frequency bursts of all-or-none fast-rising calcium transients in PF spines. Gradual calcium spike burst unlocking arises from increasing inactivation of mGluR1-modulated low-threshold A-type potassium channels located in distal dendrites. Evidence for graded activity-dependent CF calcium signaling at PF synapses refines current views on cerebellar supervised learning rules. PMID:25220810
Otsu, Yo; Marcaggi, Païkan; Feltz, Anne; Isope, Philippe; Kollo, Mihaly; Nusser, Zoltan; Mathieu, Benjamin; Kano, Masanobu; Tsujita, Mika; Sakimura, Kenji; Dieudonné, Stéphane
2014-10-01
In cerebellar Purkinje cell dendrites, heterosynaptic calcium signaling induced by the proximal climbing fiber (CF) input controls plasticity at distal parallel fiber (PF) synapses. The substrate and regulation of this long-range dendritic calcium signaling are poorly understood. Using high-speed calcium imaging, we examine the role of active dendritic conductances. Under basal conditions, CF stimulation evokes T-type calcium signaling displaying sharp proximodistal decrement. Combined mGluR1 receptor activation and depolarization, two activity-dependent signals, unlock P/Q calcium spikes initiation and propagation, mediating efficient CF signaling at distal sites. These spikes are initiated in proximal smooth dendrites, independently from somatic sodium action potentials, and evoke high-frequency bursts of all-or-none fast-rising calcium transients in PF spines. Gradual calcium spike burst unlocking arises from increasing inactivation of mGluR1-modulated low-threshold A-type potassium channels located in distal dendrites. Evidence for graded activity-dependent CF calcium signaling at PF synapses refines current views on cerebellar supervised learning rules. Copyright © 2014 Elsevier Inc. All rights reserved.
Cell-Autonomous Regulation of Dendritic Spine Density by PirB.
Vidal, George S; Djurisic, Maja; Brown, Kiana; Sapp, Richard W; Shatz, Carla J
2016-01-01
Synapse density on cortical pyramidal neurons is modulated by experience. This process is highest during developmental critical periods, when mechanisms of synaptic plasticity are fully engaged. In mouse visual cortex, the critical period for ocular dominance (OD) plasticity coincides with the developmental pruning of synapses. At this time, mice lacking paired Ig-like receptor B (PirB) have excess numbers of dendritic spines on L5 neurons; these spines persist and are thought to underlie the juvenile-like OD plasticity observed in adulthood. Here we examine whether PirB is required specifically in excitatory neurons to exert its effect on dendritic spine and synapse density during the critical period. In mice with a conditional allele of PirB (PirB fl/fl ), PirB was deleted only from L2/3 cortical pyramidal neurons in vivo by timed in utero electroporation of Cre recombinase. Sparse mosaic expression of Cre produced neurons lacking PirB in a sea of wild-type neurons and glia. These neurons had significantly elevated dendritic spine density, as well as increased frequency of miniature EPSCs, suggesting that they receive a greater number of synaptic inputs relative to Cre - neighbors. The effect of cell-specific PirB deletion on dendritic spine density was not accompanied by changes in dendritic branching complexity or axonal bouton density. Together, results imply a neuron-specific, cell-autonomous action of PirB on synaptic density in L2/3 pyramidal cells of visual cortex. Moreover, they are consistent with the idea that PirB functions normally to corepress spine density and synaptic plasticity, thereby maintaining headroom for cells to encode ongoing experience-dependent structural change throughout life.
Chabaud, Mélanie; Heuzé, Mélina L.; Bretou, Marine; Vargas, Pablo; Maiuri, Paolo; Solanes, Paola; Maurin, Mathieu; Terriac, Emmanuel; Le Berre, Maël; Lankar, Danielle; Piolot, Tristan; Adelstein, Robert S.; Zhang, Yingfan; Sixt, Michael; Jacobelli, Jordan; Bénichou, Olivier; Voituriez, Raphaël; Piel, Matthieu; Lennon-Duménil, Ana-Maria
2015-01-01
The immune response relies on the migration of leukocytes and on their ability to stop in precise anatomical locations to fulfil their task. How leukocyte migration and function are coordinated is unknown. Here we show that in immature dendritic cells, which patrol their environment by engulfing extracellular material, cell migration and antigen capture are antagonistic. This antagonism results from transient enrichment of myosin IIA at the cell front, which disrupts the back-to-front gradient of the motor protein, slowing down locomotion but promoting antigen capture. We further highlight that myosin IIA enrichment at the cell front requires the MHC class II-associated invariant chain (Ii). Thus, by controlling myosin IIA localization, Ii imposes on dendritic cells an intermittent antigen capture behaviour that might facilitate environment patrolling. We propose that the requirement for myosin II in both cell migration and specific cell functions may provide a general mechanism for their coordination in time and space. PMID:26109323
Bhattacharya, Parna; Dey, Ranadhir; Dagur, Pradeep K; Joshi, Amritanshu B; Ismail, Nevien; Gannavaram, Sreenivas; Debrabant, Alain; Akue, Adovi D; KuKuruga, Mark A; Selvapandiyan, Angamuthu; McCoy, John Philip; Nakhasi, Hira L
2016-08-01
Visceral leishmaniasis (VL) caused by the protozoan parasite Leishmania donovani causes severe disease. Age appears to be critical in determining the clinical outcome of VL and at present there is no effective vaccine available against VL for any age group. Previously, we showed that genetically modified live attenuated L. donovani parasites (LdCen-/-) induced a strong protective innate and adaptive immune response in young mice. In this study we analyzed LdCen-/- parasite mediated modulation of innate and adaptive immune response in aged mice (18 months) and compared to young (2 months) mice. Analysis of innate immune response in bone marrow derived dendritic cells (BMDCs) from both young and aged mice upon infection with LdCen-/- parasites, showed significant enhancement of innate effector responses, which consequently augmented CD4+ Th1 cell effector function compared to LdWT infected BMDCs in vitro. Similarly, parasitized splenic dendritic cells from LdCen-/- infected young and aged mice also revealed induction of proinflammatory cytokines (IL-12, IL-6, IFN-γ and TNF) and subsequent down regulation of anti-inflammatory cytokine (IL-10) genes compared to LdWT infected mice. We also evaluated in vivo protection of the LdCen-/- immunized young and aged mice against virulent L. donovani challenge. Immunization with LdCen-/- induced higher IgG2a antibodies, lymphoproliferative response, pro- and anti-inflammatory cytokine responses and stimulated splenocytes for heightened leishmanicidal activity associated with nitric oxide production in young and aged mice. Furthermore, upon virulent L. donovani challenge, LdCen-/- immunized mice from both age groups displayed multifunctional Th1-type CD4 and cytotoxic CD8 T cells correlating to a significantly reduced parasite burden in the spleen and liver compared to naïve mice. It is interesting to note that even though there was no difference in the LdCen-/- induced innate response in dendritic cells between aged and young mice; the adaptive response specifically in terms of T cell and B cell activation in aged animals was reduced compared to young mice which correlated with less protection in old mice compared to young mice. Taken together, LdCen-/- immunization induced a significant but diminished host protective response in aged mice after challenge with virulent L. donovani parasites compared to young mice.
Bhattacharya, Parna; Dey, Ranadhir; Dagur, Pradeep K.; Joshi, Amritanshu B.; Ismail, Nevien; Gannavaram, Sreenivas; Debrabant, Alain; Akue, Adovi D.; KuKuruga, Mark A.; Selvapandiyan, Angamuthu; McCoy, John Philip; Nakhasi, Hira L.
2016-01-01
Background Visceral leishmaniasis (VL) caused by the protozoan parasite Leishmania donovani causes severe disease. Age appears to be critical in determining the clinical outcome of VL and at present there is no effective vaccine available against VL for any age group. Previously, we showed that genetically modified live attenuated L. donovani parasites (LdCen-/-) induced a strong protective innate and adaptive immune response in young mice. In this study we analyzed LdCen-/- parasite mediated modulation of innate and adaptive immune response in aged mice (18 months) and compared to young (2 months) mice. Methodology Analysis of innate immune response in bone marrow derived dendritic cells (BMDCs) from both young and aged mice upon infection with LdCen-/- parasites, showed significant enhancement of innate effector responses, which consequently augmented CD4+ Th1 cell effector function compared to LdWT infected BMDCs in vitro. Similarly, parasitized splenic dendritic cells from LdCen-/- infected young and aged mice also revealed induction of proinflammatory cytokines (IL-12, IL-6, IFN-γ and TNF) and subsequent down regulation of anti-inflammatory cytokine (IL-10) genes compared to LdWT infected mice. We also evaluated in vivo protection of the LdCen-/- immunized young and aged mice against virulent L. donovani challenge. Immunization with LdCen-/- induced higher IgG2a antibodies, lymphoproliferative response, pro- and anti-inflammatory cytokine responses and stimulated splenocytes for heightened leishmanicidal activity associated with nitric oxide production in young and aged mice. Furthermore, upon virulent L. donovani challenge, LdCen-/- immunized mice from both age groups displayed multifunctional Th1-type CD4 and cytotoxic CD8 T cells correlating to a significantly reduced parasite burden in the spleen and liver compared to naïve mice. It is interesting to note that even though there was no difference in the LdCen-/- induced innate response in dendritic cells between aged and young mice; the adaptive response specifically in terms of T cell and B cell activation in aged animals was reduced compared to young mice which correlated with less protection in old mice compared to young mice. Conclusions Taken together, LdCen-/- immunization induced a significant but diminished host protective response in aged mice after challenge with virulent L. donovani parasites compared to young mice. PMID:27580076
Rapamycin Promotes Mouse 4T1 Tumor Metastasis that Can Be Reversed by a Dendritic Cell-Based Vaccine
Lin, Tien-Jen; Liang, Wen-Miin; Hsiao, Pei-Wen; M. S, Pradeep; Wei, Wen-Chi; Lin, Hsin-Ting; Yin, Shu-Yi; Yang, Ning-Sun
2015-01-01
Suppression of tumor metastasis is a key strategy for successful cancer interventions. Previous studies indicated that rapamycin (sirolimus) may promote tumor regression activity or enhance immune response against tumor targets. However, rapamycin also exhibits immunosuppressant effects and is hence used clinically as an organ transplantation drug. We hypothesized that the immunosuppressive activities of rapamycin might also negatively mediate host immunity, resulting in promotion of tumor metastasis. In this study, the effects of rapamycin and phytochemical shikonin were investigated in vitro and in vivo in a 4T1 mouse mammary tumor model through quantitative assessment of immunogenic cell death (ICD), autophagy, tumor growth and metastasis. Tumor-bearing mice were immunized with test vaccines to monitor their effect on tumor metastasis. We found that intraperitoneal (ip) administration of rapamycin after a tumor-resection surgery drastically increased the metastatic activity of 4T1 tumors. Possible correlation of this finding to human cancers was suggested by epidemiological analysis of data from Taiwan’s National Health Insurance Research Database (NHIRD). Since our previous studies showed that modified tumor cell lysate (TCL)-pulsed, dendritic cell (DC)-based cancer vaccines can effectively suppress metastasis in mouse tumor models, we assessed whether such vaccines may help offset this rapamycin-promoted metastasis. We observed that shikonin efficiently induced ICD of 4T1 cells in culture, and DC vaccines pulsed with shikonin-treated TCL (SK-TCL-DC) significantly suppressed rapamycin-enhanced metastasis and Treg cell expansion in test mice. In conclusion, rapamycin treatment in mice (and perhaps in humans) promotes metastasis and the effect may be offset by treatment with a DC-based cancer vaccine. PMID:26426423
Adaptation of the human Cell Line Activation Test (h-CLAT) to Animal-Product-Free Conditions.
Edwards, Alexander; Roscoe, Lottie; Longmore, Christopher; Bailey, Fiona; Sim, Bushra; Treasure, Carol
2018-06-13
Skin sensitisers are substances that can elicit allergic responses following skin contact and the process by which this occurs is described as skin sensitisation. Skin sensitisation is defined as a series of key events, that form an adverse outcome pathway (AOP). Key event three in the AOP is dendritic cell activation that can be modelled by the human Cell Line Activation Test (h-CLAT) and is typified by changes in cell surface markers CD54 and CD86 in dendritic cells. The h-CLAT is accepted at a regulatory level (OECD Test-Guideline (TG)442E) and can be used to assess skin sensitisation potential as part of an integrated approach to testing and assessment (IATA). Stakeholders in the cosmetics and chemical industries have scientific and ethical concerns relating to use of animal derived material and have communicated a strong preference for fully human based in vitro methods. Therefore, we adapted the h-CLAT to animal-product-free conditions and validated the adapted method with the proficiency panel substances in Annex II of TG442E, using 3 independent batches of pooled human serum. The modified method showed equivalence to the validated reference method (VRM), as all proficiency substances were correctly classified. Comparable values for CV75 (concentration yielding 75% cell viability), EC150 and EC200 (concentration yielding RFI of ≥150 for CD86 and ≥200 for CD54) were obtained. Data generated using the adapted method may be used in European REACH submissions, provided the proficiency data is included. We are seeking formal inclusion of the adaptation into TG442E, enabling compliance with global regulations.
Flutter, Barry; Nestle, Frank O
2013-10-17
Interferon regulatory factors play an important role in the transcriptional regulation of immunity. In this issue of Immunity, Kumamoto et al. (2013) and Gao et al. (2013) identify an Irf4-dependent migratory dendritic cell subset required for T helper 2 cell polarization following cutaneous challenge. Copyright © 2013 Elsevier Inc. All rights reserved.
Dendritic Cell-Based Genetic Immunotherapy for Ovarian Cancer
2008-12-01
transduction of dendritic cells (DCs) is inefficient because of the lack of the primary Ad receptor, CAR. CD40 is a surface marker expressed by DCs that...ligands or antibodies that can bind to the cell surface markers expressed by DCs. The tumor antigen or peptides are linked to the ligands...thus pose the risk of insertional mutagenesis and oncogenesis. The various cell- surface markers that have been exploited for targeting DCs have
Thermal Coefficient of Linear Expansion Modified by Dendritic Segregation in Nickel-Iron Alloys
NASA Astrophysics Data System (ADS)
Ogorodnikova, O. M.; Maksimova, E. V.
2018-05-01
The paper presents investigations of thermal properties of Fe-Ni and Fe-Ni-Co casting alloys affected by the heterogeneous distribution of their chemical elements. It is shown that nickel dendritic segregation has a negative effect on properties of studied invars. A mathematical model is proposed to explore the influence of nickel dendritic segregation on the thermal coefficient of linear expansion (TCLE) of the alloy. A computer simulation of TCLE of Fe-Ni-Co superinvars is performed with regard to a heterogeneous distribution of their chemical elements over the whole volume. The ProLigSol computer software application is developed for processing the data array and results of computer simulation.
PDC expressing CD36, CD61 and IL-10 may contribute to propagation of immune tolerance.
Parcina, Marijo; Schiller, Martin; Gierschke, Aline; Heeg, Klaus; Bekeredjian-Ding, Isabelle
2009-05-01
Human plasmacytoid dendritic cells (PDC) are blood dendritic cell antigen 2 (BDCA2) and blood dendritic cell antigen 4 (BDCA4) positive leukocytes that do not express common lineage markers. They have been described as proinflammatory innate immune cells and are the major source of alphaIFN in the human body. PDC-derived secretion of type I IFNs upon triggering of nucleic acid-sensing toll-like receptors (TLR) primes immune cells to rapidly respond to microbial stimuli and promotes a Th1 response. Here, we report that human PDC express CD36 and CD61 (beta3 integrin), both involved in uptake of apoptotic cells and in induction of tolerance. Freshly isolated PDC and PDC within human blood leukocytes constitutively express IL-10. Thus, PDC may possess a so far neglected role in propagation of immune tolerance.
Maxwell, Russell; Luksik, Andrew S; Garzon-Muvdi, Tomas; Lim, Michael
2017-06-01
Malignant gliomas, including glioblastoma and anaplastic astrocytoma, are the most frequent primary brain tumors and present with many treatment challenges. In this review, we discuss the potential of cellular- and viral-based immunotherapies in the treatment of malignant glioma, specifically focusing on dendritic cell vaccines, adoptive cell therapy, and oncolytic viruses. Diverse cellular- and viral-based strategies have been engineered and optimized to generate either a specific or broad antitumor immune response in malignant glioma. Due to their successes in the preclinical arena, many of these therapies have undergone phase I and II clinical testing. These early clinical trials have demonstrated the feasibility, safety, and efficacy of these immunotherapies. Dendritic cell vaccines, adoptive cell transfer, and oncolytic viruses may have a potential role in the treatment of malignant glioma. However, these modalities must be investigated in well-designed phase III trials to prove their efficacy.
Immune heterogeneity in neuroinflammation: dendritic cells in the brain.
Colton, Carol A
2013-03-01
Dendritic cells (DC) are critical to an integrated immune response and serve as the key link between the innate and adaptive arms of the immune system. Under steady state conditions, brain DC's act as sentinels, continually sampling their local environment. They share this function with macrophages derived from the same basic hemopoietic (bone marrow-derived) precursor and with parenchymal microglia that arise from a unique non-hemopoietic origin. While multiple cells may serve as antigen presenting cells (APCs), dendritic cells present both foreign and self-proteins to naïve T cells that, in turn, carry out effector functions that serve to protect or destroy. The resulting activation of the adaptive response is a critical step to resolution of injury or infection and is key to survival. In this review we will explore the critical roles that DCs play in the brain's response to neuroinflammatory disease with emphasis on how the brain's microenvironment impacts these actions.
Designing oral vaccines targeting intestinal dendritic cells.
Devriendt, Bert; De Geest, Bruno G; Cox, Eric
2011-04-01
Most pathogens colonize and invade the host at mucosal surfaces, such as the lung and the intestine. To combat intestinal pathogens the induction of local adaptive immune responses is required, which is mainly achieved through oral vaccination. However, most vaccines are ineffective when given orally owing to the hostile environment in the gastrointestinal tract. The encapsulation of antigens in biodegradable microparticulate delivery systems enhances their immunogenicity; however, the uptake of these delivery systems by intestinal immune cells is rather poor. Surface decoration of the particulates with targeting ligands could increase the uptake and mediate the selective targeting of the vaccine to intestinal antigen-presenting cells, including dendritic cells. In this review, current knowledge on dendritic cell subsets is discussed, along with progress in the development of selective antigen targeting to these cells, in addition to focusing on data obtained in mice and, where possible, the pig, as a non-rodent animal model for humans. Moreover, the potential use and benefits of Fcγ receptor-mediated targeting of antigen delivery systems are highlighted. In conclusion, dendritic cell targeting ligands grafted on antigen carrier systems should preferably bind to a conserved endocytotic receptor, facilitating the design of a multispecies vaccine platform, which could elicit robust protective immune responses against enteric pathogens.
Matias, Bruna F; de Oliveira, Tânia M; Rodrigues, Cláudia M; Abdalla, Douglas R; Montes, Letícia; Murta, Eddie F C; Michelin, Márcia A
2013-01-01
The objective of this study was to evaluate some of the mechanisms involved in the activation of the immune system in patients with advanced-stage cancer (n = 7) who received an autologous dendritic cell vaccine. We examined the immune response mediated by macrophages (CD14+), natural killer cells (CD56+), and B lymphocytes (CD19+) by flow cytometry and assessed the expression of Th1 (IFN-γ, TNF-α, IL-2, and IL-12), Th2 (IL-4), and Treg (TGF-β) cytokines by flow cytometry and an enzyme-linked immunosorbent assay. The CD14+ TNF-α+ population was significantly increased (P < 0.04) when patients received the vaccine; IL-2 expression in both NK cells and in B lymphocytes was increased after a transient initial increase showed a nearly significant decrease (P < 0.07 and P < 0.06 respectively), whereas the CD19+ and CD56+ populations did not show significant changes. Dendritic cell-based immunotherapy led to increased secretion of IFN-γ and IL-12 and reduced secretion of TGF-β. In conclusion, it is likely that the autologous dendritic cell vaccine stimulated the immune cells from the peripheral blood of patients with cancer and generally increased the production of Th1 cytokines, which are related to immunomodulatory responses against cancer.
Matias, Bruna F.; de Oliveira, Tânia M.; Rodrigues, Cláudia M.; Abdalla, Douglas R.; Montes, Letícia; Murta, Eddie F.C.; Michelin, Márcia A.
2013-01-01
The objective of this study was to evaluate some of the mechanisms involved in the activation of the immune system in patients with advanced-stage cancer (n = 7) who received an autologous dendritic cell vaccine. We examined the immune response mediated by macrophages (CD14+), natural killer cells (CD56+), and B lymphocytes (CD19+) by flow cytometry and assessed the expression of Th1 (IFN-γ, TNF-α, IL-2, and IL-12), Th2 (IL-4), and Treg (TGF-β) cytokines by flow cytometry and an enzyme-linked immunosorbent assay. The CD14+ TNF-α+ population was significantly increased (P < 0.04) when patients received the vaccine; IL-2 expression in both NK cells and in B lymphocytes was increased after a transient initial increase showed a nearly significant decrease (P < 0.07 and P < 0.06 respectively), whereas the CD19+ and CD56+ populations did not show significant changes. Dendritic cell-based immunotherapy led to increased secretion of IFN-γ and IL-12 and reduced secretion of TGF-β. In conclusion, it is likely that the autologous dendritic cell vaccine stimulated the immune cells from the peripheral blood of patients with cancer and generally increased the production of Th1 cytokines, which are related to immunomodulatory responses against cancer. PMID:23926442
Onset of Curved Dendrite Growth in an Al-Cu Welding Pool: A Phase Field Study
NASA Astrophysics Data System (ADS)
Wang, Lei; Wei, Yanhong
2018-02-01
A phase field model is developed to predict curved dendrite growth in the gas tungsten arc (GTA) welding pool of an Al-Cu alloy. The equations of temperature gradient, pulling velocity and dendrite growth orientation are proposed to consider the transient solidification process during welding. Solidification microstructures and solute diffusion along the fusion boundary in the welding pool are predicted by using the phase field model coupled with transient solidification conditions. Predicted primary dendrites are curved and point toward the welding direction. Welding experiments are carried out to observe solidification microstructures of the weld. Comparisons of simulation results with experimental measurements are conducted. Predicted dendritic morphology, dendrite growth orientation, primary dendrite arm spacing and initial cell spacing give a good agreement with experimental measurements.
Bourne, Jennifer N; Schoppa, Nathan E
2017-02-15
Recent studies have suggested that the two excitatory cell classes of the mammalian olfactory bulb, the mitral cells (MCs) and tufted cells (TCs), differ markedly in physiological responses. For example, TCs are more sensitive and broadly tuned to odors than MCs and also are much more sensitive to stimulation of olfactory sensory neurons (OSNs) in bulb slices. To examine the morphological bases for these differences, we performed quantitative ultrastructural analyses of glomeruli in rat olfactory bulb under conditions in which specific cells were labeled with biocytin and 3,3'-diaminobenzidine. Comparisons were made between MCs and external TCs (eTCs), which are a TC subtype in the glomerular layer with large, direct OSN signals and capable of mediating feedforward excitation of MCs. Three-dimensional analysis of labeled apical dendrites under an electron microscope revealed that MCs and eTCs in fact have similar densities of several chemical synapse types, including OSN inputs. OSN synapses also were distributed similarly, favoring a distal localization on both cells. Analysis of unlabeled putative MC dendrites further revealed gap junctions distributed uniformly along the apical dendrite and, on average, proximally with respect to OSN synapses. Our results suggest that the greater sensitivity of eTCs vs. MCs is due not to OSN synapse number or absolute location but rather to a conductance in the MC dendrite that is well positioned to attenuate excitatory signals passing to the cell soma. Functionally, such a mechanism could allow rapid and dynamic control of OSN-driven action potential firing in MCs through changes in gap junction properties. J. Comp. Neurol. 525:592-609, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Dscam1-mediated self-avoidance counters netrin-dependent targeting of dendrites in Drosophila.
Matthews, Benjamin J; Grueber, Wesley B
2011-09-13
Dendrites and axons show precise targeting and spacing patterns for proper reception and transmission of information in the nervous system. Self-avoidance promotes complete territory coverage and nonoverlapping spacing between processes from the same cell [1, 2]. Neurons that lack Drosophila Down syndrome cell adhesion molecule 1 (Dscam1) show aberrant overlap, fasciculation, and accumulation of dendrites and axons, demonstrating a role in self-recognition and repulsion leading to self-avoidance [3-11]. Fasciculation and accumulation of processes suggested that Dscam1 might promote process spacing by counterbalancing developmental signals that otherwise promote self-association [9, 12]. Here we show that Dscam1 functions to counter Drosophila sensory neuron dendritic targeting signals provided by secreted Netrin-B and Frazzled, a netrin receptor. Loss of Dscam1 function resulted in aberrant dendrite accumulation at a Netrin-B-expressing target, whereas concomitant loss of Frazzled prevented accumulation and caused severe deficits in dendritic territory coverage. Netrin misexpression was sufficient to induce ectopic dendritic targeting in a Frazzled-dependent manner, whereas Dscam1 was required to prevent ectopic accumulation, consistent with separable roles for these receptors. Our results suggest that Dscam1-mediated self-avoidance counters extrinsic signals that are required for normal dendritic patterning, but whose action would otherwise favor neurite accumulation. Counterbalancing roles for Dscam1 may be deployed in diverse contexts during neural circuit formation. Copyright © 2011 Elsevier Ltd. All rights reserved.
Dscam1-mediated self-avoidance counters Netrin-dependent targeting of dendrites in Drosophila
Matthews, Benjamin J.; Grueber, Wesley B.
2011-01-01
SUMMARY Dendrites and axons show precise targeting and spacing patterns for proper reception and transmission of information in the nervous system. Self-avoidance promotes complete territory coverage and non-overlapping spacing between processes from the same cell [1, 2]. Neurons that lack Drosophila Down syndrome cell adhesion molecule 1 (Dscam1) show aberrant overlap, fasciculation, and accumulation of dendrites and axons, demonstrating a role in self-recognition and repulsion leading to self-avoidance [3–11]. Fasciculation and accumulation of processes suggested that Dscam1 might promote process spacing by counterbalancing developmental signals that otherwise promote self-association [9, 12]. Here we show that Dscam1 functions to counter sensory neuron dendritic targeting signals provided by secreted Netrin-B and Frazzled, a netrin receptor. Loss of Dscam1 function resulted in aberrant dendrite accumulation at a Netrin-B expressing target, whereas concomitant loss of Frazzled prevented accumulation and caused severe deficits in dendritic territory coverage. Netrin misexpression was sufficient to induce ectopic dendritic targeting in a Frazzled-dependent manner, whereas Dscam1 was required to prevent ectopic accumulation, consistent with separable roles for these receptors. Our results suggest that Dscam1-mediated self-avoidance counter extrinsic signals that are required for normal dendritic patterning, but whose action would otherwise favor neurite accumulation. Counterbalancing roles for Dscam1 may be deployed in diverse contexts during neural circuit formation. PMID:21871804
Zhang, Jiqing; Tai, Lee-Hwa; Ilkow, Carolina S; Alkayyal, Almohanad A; Ananth, Abhirami A; de Souza, Christiano Tanese; Wang, Jiahu; Sahi, Shalini; Ly, Lundi; Lefebvre, Charles; Falls, Theresa J; Stephenson, Kyle B; Mahmoud, Ahmad B; Makrigiannis, Andrew P; Lichty, Brian D; Bell, John C; Stojdl, David F; Auer, Rebecca C
2014-01-01
This study characterizes the ability of novel oncolytic rhabdoviruses (Maraba MG1) to boost natural killer (NK) cell activity. Our results demonstrate that MG1 activates NK cells via direct infection and maturation of conventional dendritic cells. Using NK depletion and conventional dendritic cells ablation studies in vivo, we established that both are required for MG1 efficacy. We further explored the efficacy of attenuated MG1 (nonreplicating MG1-UV2min and single-cycle replicating MG1-Gless) and demonstrated that these viruses activate conventional dendritic cells, although to a lesser extent than live MG1. This translates to equivalent abilities to remove tumor metastases only at the highest viral doses of attenuated MG1. In tandem, we characterized the antitumor ability of NK cells following preoperative administration of live and attenuated MG1. Our results demonstrates that a similar level of NK activation and reduction in postoperative tumor metastases was achieved with equivalent high viral doses concluding that viral replication is important, but not necessary for NK activation. Biochemical characterization of a panel of UV-inactivated MG1 (2–120 minutes) revealed that intact viral particle and target cell recognition are essential for NK cell–mediated antitumor responses. These findings provide mechanistic insight and preclinical rationale for safe perioperative virotherapy to effectively reduce metastatic disease following cancer surgery. PMID:24695102
Svirskis, Gytis; Baranauskas, Gytis; Svirskiene, Natasa; Tkatch, Tatiana
2015-01-01
The superior colliculus in mammals or the optic tectum in amphibians is a major visual information processing center responsible for generation of orientating responses such as saccades in monkeys or prey catching avoidance behavior in frogs. The conserved structure function of the superior colliculus the optic tectum across distant species such as frogs, birds monkeys permits to draw rather general conclusions after studying a single species. We chose the frog optic tectum because we are able to perform whole-cell voltage-clamp recordings fluorescence imaging of tectal neurons while they respond to a visual stimulus. In the optic tectum of amphibians most visual information is processed by pear-shaped neurons possessing long dendritic branches, which receive the majority of synapses originating from the retinal ganglion cells. Since the first step of the retinal input integration is performed on these dendrites, it is important to know whether this integration is enhanced by active dendritic properties. We demonstrate that rapid calcium transients coinciding with the visual stimulus evoked action potentials in the somatic recordings can be readily detected up to the fine branches of these dendrites. These transients were blocked by calcium channel blockers nifedipine CdCl2 indicating that calcium entered dendrites via voltage-activated L-type calcium channels. The high speed of calcium transient propagation, >300 μm in <10 ms, is consistent with the notion that action potentials, actively propagating along dendrites, open voltage-gated L-type calcium channels causing rapid calcium concentration transients in the dendrites. We conclude that such activation by somatic action potentials of the dendritic voltage gated calcium channels in the close vicinity to the synapses formed by axons of the retinal ganglion cells may facilitate visual information processing in the principal neurons of the frog optic tectum.
Ross, John R.; Porter, Brenda E.; Buckley, Peter T.; Eberwine, James H.; Robinson, Michael B.
2011-01-01
The neuronal Na+-dependent glutamate transporter, excitatory amino acid carrier 1 (EAAC1, also called EAAT3), has been implicated in the control of synaptic spillover of glutamate, synaptic plasticity, and the import of cysteine for neuronal synthesis of glutathione. EAAC1 protein is observed in both perisynaptic regions of the synapse and in neuronal cell bodies. Although amino acid residues in the carboxyl terminal tail have been implicated in the dendritic targeting of EAAC1 protein, it is not known if mRNA for EAAC1 may also be targeted to dendrites. Sorting of mRNA to specific cellular domains provides a mechanism by which signals can rapidly increase translation in a local environment; this form of regulated translation has been linked to diverse biological phenomena ranging from establishment of polarity during embryogenesis to synapse development and synaptic plasticity. In the present study, EAAC1 mRNA sequences were amplified from dendritic samples that were mechanically harvested from low-density hippocampal neuronal cultures. In parallel analyses, mRNA for histone deacetylase 2 (HDAC-2) and glial fibrillary acidic protein (GFAP) was not detected, suggesting that these samples are not contaminated with cell body or glial mRNAs. EAAC1 mRNA also co-localized with Map2a (a marker of dendrites) but not Tau1 (a marker of axons) in hippocampal neuronal cultures by in situ hybridization. In control rats, EAAC1 mRNA was observed in soma and proximal dendrites of hippocampal pyramidal neurons. Following pilocarpine- or kainate-induced seizures, EAAC1 mRNA was present in CA1 pyramidal cell dendrites up to 200 μm from the soma. These studies provide the first evidence that EAAC1 mRNA localizes to dendrites and suggest that dendritic targeting of EAAC1 mRNA is increased by seizure activity and may be regulated by neuronal activity/depolarization. PMID:21185901
NASA Technical Reports Server (NTRS)
Stella, P. M.; Anspaugh, B. E.
1985-01-01
Electrical characteristics of thin (100- and 140-micron) Westinghouse dendritic-web N/P silicon solar cells are presented in graphical and tabular format as a function of solar illumination intensity and temperature. Performance is also shown as a function of solar illlumination angle of incidence for AMO.
Over-limiting Current and Control of Dendritic Growth by Surface Conduction in Nanopores
Han, Ji-Hyung; Khoo, Edwin; Bai, Peng; Bazant, Martin Z.
2014-01-01
Understanding over-limiting current (faster than diffusion) is a long-standing challenge in electrochemistry with applications in desalination and energy storage. Known mechanisms involve either chemical or hydrodynamic instabilities in unconfined electrolytes. Here, it is shown that over-limiting current can be sustained by surface conduction in nanopores, without any such instabilities, and used to control dendritic growth during electrodeposition. Copper electrodeposits are grown in anodized aluminum oxide membranes with polyelectrolyte coatings to modify the surface charge. At low currents, uniform electroplating occurs, unaffected by surface modification due to thin electric double layers, but the morphology changes dramatically above the limiting current. With negative surface charge, growth is enhanced along the nanopore surfaces, forming surface dendrites and nanotubes behind a deionization shock. With positive surface charge, dendrites avoid the surfaces and are either guided along the nanopore centers or blocked from penetrating the membrane. PMID:25394685
Wiesner, Darin L.; Specht, Charles A.; Lee, Chrono K.; Smith, Kyle D.; Mukaremera, Liliane; Lee, S. Thera; Lee, Chun G.; Elias, Jack A.; Nielsen, Judith N.; Boulware, David R.; Bohjanen, Paul R.; Jenkins, Marc K.; Levitz, Stuart M.; Nielsen, Kirsten
2015-01-01
Pulmonary mycoses are often associated with type-2 helper T (Th2) cell responses. However, mechanisms of Th2 cell accumulation are multifactorial and incompletely known. To investigate Th2 cell responses to pulmonary fungal infection, we developed a peptide-MHCII tetramer to track antigen-specific CD4+ T cells produced in response to infection with the fungal pathogen Cryptococcus neoformans. We noted massive accruement of pathologic cryptococcal antigen-specific Th2 cells in the lungs following infection that was coordinated by lung-resident CD11b+ IRF4-dependent conventional dendritic cells. Other researchers have demonstrated that this dendritic cell subset is also capable of priming protective Th17 cell responses to another pulmonary fungal infection, Aspergillus fumigatus. Thus, higher order detection of specific features of fungal infection by these dendritic cells must direct Th2 cell lineage commitment. Since chitin-containing parasites commonly elicit Th2 responses, we hypothesized that recognition of fungal chitin is an important determinant of Th2 cell-mediated mycosis. Using C. neoformans mutants or purified chitin, we found that chitin abundance impacted Th2 cell accumulation and disease. Importantly, we determined Th2 cell induction depended on cleavage of chitin via the mammalian chitinase, chitotriosidase, an enzyme that was also prevalent in humans experiencing overt cryptococcosis. The data presented herein offers a new perspective on fungal disease susceptibility, whereby chitin recognition via chitotriosidase leads to the initiation of harmful Th2 cell differentiation by CD11b+ conventional dendritic cells in response to pulmonary fungal infection. PMID:25764512
Wiesner, Darin L; Specht, Charles A; Lee, Chrono K; Smith, Kyle D; Mukaremera, Liliane; Lee, S Thera; Lee, Chun G; Elias, Jack A; Nielsen, Judith N; Boulware, David R; Bohjanen, Paul R; Jenkins, Marc K; Levitz, Stuart M; Nielsen, Kirsten
2015-03-01
Pulmonary mycoses are often associated with type-2 helper T (Th2) cell responses. However, mechanisms of Th2 cell accumulation are multifactorial and incompletely known. To investigate Th2 cell responses to pulmonary fungal infection, we developed a peptide-MHCII tetramer to track antigen-specific CD4+ T cells produced in response to infection with the fungal pathogen Cryptococcus neoformans. We noted massive accruement of pathologic cryptococcal antigen-specific Th2 cells in the lungs following infection that was coordinated by lung-resident CD11b+ IRF4-dependent conventional dendritic cells. Other researchers have demonstrated that this dendritic cell subset is also capable of priming protective Th17 cell responses to another pulmonary fungal infection, Aspergillus fumigatus. Thus, higher order detection of specific features of fungal infection by these dendritic cells must direct Th2 cell lineage commitment. Since chitin-containing parasites commonly elicit Th2 responses, we hypothesized that recognition of fungal chitin is an important determinant of Th2 cell-mediated mycosis. Using C. neoformans mutants or purified chitin, we found that chitin abundance impacted Th2 cell accumulation and disease. Importantly, we determined Th2 cell induction depended on cleavage of chitin via the mammalian chitinase, chitotriosidase, an enzyme that was also prevalent in humans experiencing overt cryptococcosis. The data presented herein offers a new perspective on fungal disease susceptibility, whereby chitin recognition via chitotriosidase leads to the initiation of harmful Th2 cell differentiation by CD11b+ conventional dendritic cells in response to pulmonary fungal infection.
Zhang, Bin; Liu, Rui; Shi, Dan; Liu, Xingxia; Chen, Yuan; Dou, Xiaowei; Zhu, Xishan; Lu, Chunhua; Liang, Wei; Liao, Lianming; Zenke, Martin; Zhao, Robert C H
2009-01-01
Mesenchymal stem cells (MSCs), in addition to their multilineage differentiation, exert immunomodulatory effects on immune cells, even dendritic cells (DCs). However, whether they influence the destiny of full mature DCs (maDCs) remains controversial. Here we report that MSCs vigorously promote proliferation of maDCs, significantly reduce their expression of Ia, CD11c, CD80, CD86, and CD40 while increasing CD11b expression. Interestingly, though these phenotypes clearly suggest their skew to immature status, bacterial lipopolysaccharide (LPS) stimulation could not reverse this trend. Moreover, high endocytosic capacity, low immunogenicity, and strong immunoregulatory function of MSC-treated maDCs (MSC-DCs) were also observed. Furthermore we found that MSCs, partly via cell-cell contact, drive maDCs to differentiate into a novel Jagged-2-dependent regulatory DC population and escape their apoptotic fate. These results further support the role of MSCs in preventing rejection in organ transplantation and treatment of autoimmune disease.
Thymic cytoarchitecture changes in mice exposed to vanadium.
Ustarroz-Cano, Martha; Garcia-Pelaez, Isabel; Cervantes-Yepez, Silvana; Lopez-Valdez, Nelly; Fortoul, Teresa I
2017-12-01
The thymus is a vital immune system organ wherein selection of T-lymphocytes occurs in a process regulated by dendritic and epithelial thymic cells. Previously, we have reported that in a mouse model of vanadium inhalation, a decrease in CD11c dendritic cells was observed. In the present study, we report on a thymic cortex-medulla distribution distortion in these hosts due to apparent effects of the inhaled vanadium on cytokeratin-5 (K5 + ) epithelial cells in the same mouse model - after 1, 2, and 4 weeks of exposure - by immunohistochemistry. These cells - together with dendritic cells - eliminate autoreactive T-cell clones and regulate the production of regulatory T-cells in situ. Because both cell types are involved in the negative selection of autoreactive clones, a potential for an increase in development of autoimmune conditions could be a possible consequence among individuals who might be exposed often to vanadium in air pollution, including dwellers of highly polluted cities with elevated levels of particulate matter onto which vanadium is often adsorbed.
Martinez, Victor G; Ontoria-Oviedo, Imelda; Ricardo, Carolina P; Harding, Sian E; Sacedon, Rosa; Varas, Alberto; Zapata, Agustin; Sepulveda, Pilar; Vicente, Angeles
2017-09-29
Human dental mesenchymal stem cells (MSCs) are considered as highly accessible and attractive MSCs for use in regenerative medicine, yet some of their features are not as well characterized as other MSCs. Hypoxia-preconditioning and hypoxia-inducible factor 1 (HIF-1) alpha overexpression significantly improves MSC therapeutics, but the mechanisms involved are not fully understood. In the present study, we characterize immunomodulatory properties of dental MSCs and determine changes in their ability to modulate adaptive and innate immune populations after HIF-1 alpha overexpression. Human dental MSCs were stably transduced with green fluorescent protein (GFP-MSCs) or GFP-HIF-1 alpha lentivirus vectors (HIF-MSCs). A hypoxic-like metabolic profile was confirmed by mitochondrial and glycolysis stress test. Capacity of HIF-MSCs to modulate T-cell activation, dendritic cell differentiation, monocyte migration, and polarizations towards macrophages and natural killer (NK) cell lytic activity was assessed by a number of functional assays in co-cultures. The expression of relevant factors were determined by polymerase chain reaction (PCR) analysis and enzyme-linked immunosorbent assay (ELISA). While HIF-1 alpha overexpression did not modify the inhibition of T-cell activation by MSCs, HIF-MSCs impaired dendritic cell differentiation more efficiently. In addition, HIF-MSCs showed a tendency to induce higher attraction of monocytes, which differentiate into suppressor macrophages, and exhibited enhanced resistance to NK cell-mediated lysis, which supports the improved therapeutic capacity of HIF-MSCs. HIF-MSCs also displayed a pro-angiogenic profile characterized by increased expression of CXCL12/SDF1 and CCL5/RANTES and complete loss of CXCL10/IP10 transcription. Immunomodulation and expression of trophic factors by dental MSCs make them perfect candidates for cell therapy. Overexpression of HIF-1 alpha enhances these features and increases their resistance to allogenic NK cell lysis and, hence, their potential in vivo lifespan. Our results further support the use of HIF-1 alpha-expressing dental MSCs for cell therapy in tissue injury and immune disorders.
Herde, Michel K; Herbison, Allan E
2015-11-01
GnRH neurons are the final output neurons of the hypothalamic network controlling fertility in mammals. In the present study, we used ankyrin G immunohistochemistry and neurobiotin filling of live GnRH neurons in brain slices from GnRH-green fluorescent protein transgenic male mice to examine in detail the location of action potential initiation in GnRH neurons with somata residing at different locations in the basal forebrain. We found that the vast majority of GnRH neurons are bipolar in morphology, elaborating a thick (primary) and thinner (secondary) dendrite from opposite poles of the soma. In addition, an axon-like process arising predominantly from a proximal dendrite was observed in a subpopulation of GnRH neurons. Ankyrin G immunohistochemistry revealed the presence of a single action potential initiation zone ∼27 μm in length primarily in the secondary dendrite of GnRH neurons and located 30 to 140 μm distant from the cell soma, depending on the type of process and location of the cell body. In addition to dendrites, the GnRH neurons with cell bodies located close to hypothalamic circumventricular organs often elaborated ankyrin G-positive axon-like structures. Almost all GnRH neurons (>90%) had their action potential initiation site in a process that initially, or ultimately after a hairpin loop, was coursing in the direction of the median eminence. These studies indicate that action potentials are initiated in different dendritic and axonal compartments of the GnRH neuron in a manner that is dependent partly on the neuroanatomical location of the cell body.
Wu, Chi-Cheng; Chawla, Faisal; Games, Dora; Rydel, Russell E; Freedman, Stephen; Schenk, Dale; Young, Warren G; Morrison, John H; Bloom, Floyd E
2004-05-04
Increasing evidence from mouse models of Alzheimer's disease shows that overexpression of a mutant form of the amyloid precursor protein (APP) and its product, beta-amyloid peptide, initiate pathological changes before amyloid deposition. To evaluate the cytological basis for one of these early changes, namely reduced volume of the dentate gyrus (DG), we have used high-throughput diOlistic cell loading and 3D neuronal reconstruction to investigate potential dendritic pathology of granule cells (GCs) in 90-day-old PDAPP mice. Labeled GCs from fixed hippocampal slices were selected randomly and imaged digitally by using confocal laser-scanning microscopy. The dendritic complexity of GCs was quantified according to subordinate morphological parameters, including soma position within the granule cell layer (superficial versus deep) and topographic location within the DG (dorsal versus ventral blade) along the anterior-posterior hippocampal axis. Initial analysis, which included all sampled GC types, revealed a 12% reduction of total dendritic length in PDAPP mice compared with littermate controls. Further analysis, performed with refined subgroups, found that superficially located GCs in the dorsal blade were profoundly altered, exhibiting a 23% loss in total dendritic length, whereas neurons in the ventral blade were unaffected. Superficial GCs were particularly vulnerable (a 32% reduction) in the posterior region of the DG. Furthermore, the dendritic reductions of this select group were uniformly localized within middle-to-outer portions of the dentate molecular layer. We conclude that substantial dendritic pathology is evident in 90-day-old PDAPP mice for a spatially defined subset of GCs well before amyloid accumulation occurs.
Wu, Chi-Cheng; Chawla, Faisal; Games, Dora; Rydel, Russell E.; Freedman, Stephen; Schenk, Dale; Young, Warren G.; Morrison, John H.; Bloom, Floyd E.
2004-01-01
Increasing evidence from mouse models of Alzheimer's disease shows that overexpression of a mutant form of the amyloid precursor protein (APP) and its product, β-amyloid peptide, initiate pathological changes before amyloid deposition. To evaluate the cytological basis for one of these early changes, namely reduced volume of the dentate gyrus (DG), we have used high-throughput diOlistic cell loading and 3D neuronal reconstruction to investigate potential dendritic pathology of granule cells (GCs) in 90-day-old PDAPP mice. Labeled GCs from fixed hippocampal slices were selected randomly and imaged digitally by using confocal laser-scanning microscopy. The dendritic complexity of GCs was quantified according to subordinate morphological parameters, including soma position within the granule cell layer (superficial versus deep) and topographic location within the DG (dorsal versus ventral blade) along the anterior-posterior hippocampal axis. Initial analysis, which included all sampled GC types, revealed a 12% reduction of total dendritic length in PDAPP mice compared with littermate controls. Further analysis, performed with refined subgroups, found that superficially located GCs in the dorsal blade were profoundly altered, exhibiting a 23% loss in total dendritic length, whereas neurons in the ventral blade were unaffected. Superficial GCs were particularly vulnerable (a 32% reduction) in the posterior region of the DG. Furthermore, the dendritic reductions of this select group were uniformly localized within middle-to-outer portions of the dentate molecular layer. We conclude that substantial dendritic pathology is evident in 90-day-old PDAPP mice for a spatially defined subset of GCs well before amyloid accumulation occurs. PMID:15118092
Weber, A J; Stanford, L R
1994-05-15
It has long been known that a number of functionally different types of ganglion cells exist in the cat retina, and that each responds differently to visual stimulation. To determine whether the characteristic response properties of different retinal ganglion cell types might reflect differences in the number and distribution of their bipolar and amacrine cell inputs, we compared the percentages and distributions of the synaptic inputs from bipolar and amacrine cells to the entire dendritic arbors of physiologically characterized retinal X- and Y-cells. Sixty-two percent of the synaptic input to the Y-cell was from amacrine cell terminals, while the X-cells received approximately equal amounts of input from amacrine and bipolar cells. We found no significant difference in the distributions of bipolar or amacrine cell inputs to X- and Y-cells, or ON-center and OFF-center cells, either as a function of dendritic branch order or distance from the origin of the dendritic arbor. While, on the basis of these data, we cannot exclude the possibility that the difference in the proportion of bipolar and amacrine cell input contributes to the functional differences between X- and Y-cells, the magnitude of this difference, and the similarity in the distributions of the input from the two afferent cell types, suggest that mechanisms other than a simple predominance of input from amacrine or bipolar cells underlie the differences in their response properties. More likely, perhaps, is that the specific response features of X- and Y-cells originate in differences in the visual responses of the bipolar and amacrine cells that provide their input, or in the complex synaptic arrangements found among amacrine and bipolar cell terminals and the dendrites of specific types of retinal ganglion cells.
USDA-ARS?s Scientific Manuscript database
The effects of immunization with dendritic cell (DC) exosomes, which had been incubated or non-incubated with an anti-tetraspanin-3 (Tspan-3) blocking antibody (Ab), were studied using an experimental model of Eimeria tenella avian coccidiosis. Purified exosomes from cecal tonsil and splenic DCs exp...
Zhang, Xiaohan; Liu, Shenquan; Zhan, Feibiao; Wang, Jing; Jiang, Xiaofang
2017-01-01
The damage of dopaminergic neurons that innervate the striatum has been considered to be the proximate cause of Parkinson's disease (PD). In the dopamine-denervated state, the loss of dendritic spines and the decrease of dendritic length may prevent medium spiny neuron (MSN) from receiving too much excitatory stimuli from the cortex, thereby reducing the symptom of Parkinson's disease. However, the reduction in dendritic spine density obtained by different experiments is significantly different. We developed a biological-based network computational model to quantify the effect of dendritic spine loss and dendrites tree degeneration on basal ganglia (BG) signal regulation. Through the introduction of error index (EI), which was used to measure the attenuation of the signal, we explored the amount of dendritic spine loss and dendritic trees degradation required to restore the normal regulatory function of the network, and found that there were two ranges of dendritic spine loss that could reduce EI to normal levels in the case of dopamine at a certain level, this was also true for dendritic trees. However, although these effects were the same, the mechanisms of these two cases were significant difference. Using the method of phase diagram analysis, we gained insight into the mechanism of signal degradation. Furthermore, we explored the role of cortex in MSN morphology changes dopamine depletion-induced and found that proper adjustments to cortical activity do stop the loss in dendritic spines induced by dopamine depleted. These results suggested that modifying cortical drive onto MSN might provide a new idea on clinical therapeutic strategies for Parkinson's disease. PMID:29123477
Dupont, Christopher D.; Christian, David A.; Selleck, Elizabeth M.; Pepper, Marion; Leney-Greene, Michael; Harms Pritchard, Gretchen; Koshy, Anita A.; Wagage, Sagie; Reuter, Morgan A.; Sibley, L. David; Betts, Michael R.; Hunter, Christopher A.
2014-01-01
During infection with the intracellular parasite Toxoplasma gondii, the presentation of parasite-derived antigens to CD4+ and CD8+ T cells is essential for long-term resistance to this pathogen. Fundamental questions remain regarding the roles of phagocytosis and active invasion in the events that lead to the processing and presentation of parasite antigens. To understand the most proximal events in this process, an attenuated non-replicating strain of T. gondii (the cpsII strain) was combined with a cytometry-based approach to distinguish active invasion from phagocytic uptake. In vivo studies revealed that T. gondii disproportionately infected dendritic cells and macrophages, and that infected dendritic cells and macrophages displayed an activated phenotype characterized by enhanced levels of CD86 compared to cells that had phagocytosed the parasite, thus suggesting a role for these cells in priming naïve T cells. Indeed, dendritic cells were required for optimal CD4+ and CD8+ T cell responses, and the phagocytosis of heat-killed or invasion-blocked parasites was not sufficient to induce T cell responses. Rather, the selective transfer of cpsII-infected dendritic cells or macrophages (but not those that had phagocytosed the parasite) to naïve mice potently induced CD4+ and CD8+ T cell responses, and conferred protection against challenge with virulent T. gondii. Collectively, these results point toward a critical role for actively infected host cells in initiating T. gondii-specific CD4+ and CD8+ T cell responses. PMID:24722202
Wang, Feixiang; Jia, Yali; Liu, Jiajing; Zhai, Jinglei; Cao, Ning; Yue, Wen; He, Huixia; Pei, Xuetao
2017-06-01
Alzheimer's disease (AD) is an incurable neurodegenerative disease and many types of stem cells have been used in AD therapy with some favorable effects. In this study, we investigated the potential therapeutical effects of human dental pulp stem cells (hDPSCs) on AD cellular model which established by okadaic acid (OA)-induced damage to human neuroblastoma cell line, SH-SY5Y, in vitro for 24 h. After confirmed the AD cellular model, the cells were co-culture with hDPSCs by transwell co-culture system till 24 h for treatment. Then the cytomorphology of the hDPSCs-treated cells were found to restore gradually with re-elongation of retracted dendrites. Meanwhile, Cell Counting Kit-8 assay and Hoechst 33258 staining showed that hDPSCs caused significant increase in the viability and decrease in apoptosis of the model cells, respectively. Observation of DiI labeling also exhibited the prolongation dendrites in hDPSCs-treated cells which were obviously different from the retraction dendrites in AD model cells. Furthermore, specific staining of α-tubulin and F-actin demonstrated that the hDPSCs-treated cells had the morphology of restored neurons, with elongated dendrites, densely arranged microfilaments, and thickened microtubular fibrils. In addition, results from western blotting revealed that phosphorylation at Ser 396 of Tau protein was significantly suppressed by adding of hDPSCs. These results indicate that hDPSCs may promote regeneration of damaged neuron cells in vitro model of AD and may serve as a useful cell source for treatment of AD. © 2017 International Federation for Cell Biology.
Cruz, Luis J; Rueda, Felix; Simón, Lorena; Cordobilla, Begoña; Albericio, Fernando; Domingo, Joan C
2014-04-01
To improve the immunological response against tumors, a vaccine based on nanoliposomes targeted to the Fcg-receptor was developed to enhance the immunogenicity of tumor-associated antigens (TAAs). Using human dendritic cells in vitro, a fragment of the TAA NY-ESO-1 combined with a T-helper peptide from the tetanus toxoid encapsulated in nanoliposomes was evaluated. In addition, peptides Palm-IL-1 and MAP-IFN-g were coadministered as adjuvants to enhance the immunological response. Coadministration of Palm-IL-1 or MAP-IFN-g peptide adjuvants and the hybrid NY-ESO-1-tetanus toxoid (soluble or encapsulated in nanoliposomes without targeting) increased immunogenicity. However, the most potent immunological response was obtained when the peptide adjuvants were encapsulated in liposomes targeted to human dendritic cells via the Fc receptor. This targeted vaccine strategy is a promising tool to activate and deliver antigens to dendritic cells, thus improving immunotherapeutic response in situations in which the immune system is frequently compromised, as in advanced cancers.
SNAP-25 requirement for dendritic growth of hippocampal neurons.
Grosse, G; Grosse, J; Tapp, R; Kuchinke, J; Gorsleben, M; Fetter, I; Höhne-Zell, B; Gratzl, M; Bergmann, M
1999-06-01
Structure and dimension of the dendritic arbor are important determinants of information processing by the nerve cell, but mechanisms and molecules involved in dendritic growth are essentially unknown. We investigated early mechanisms of dendritic growth using mouse fetal hippocampal neurons in primary culture, which form processes during the first week in vitro. We detected a key component of regulated exocytosis, SNAP-25 (synaptosomal associated protein of 25 kDa), in axons and axonal terminals as well as in dendrites identified by the occurrence of the dendritic markers transferrin receptor and MAP2. Selective inactivation of SNAP-25 by botulinum neurotoxin A (BoNTA) resulted in inhibition of axonal growth and of vesicle recycling in axonal terminals. In addition, dendritic growth of hippocampal pyramidal and granule neurons was significantly inhibited by BoNTA. In contrast, cleavage of synaptobrevin by tetanus toxin had an effect on neither axonal nor dendritic growth. Our observations indicate that SNAP-25, but not synaptobrevin, is involved in constitutive axonal growth and dendrite formation by hippocampal neurons.
Yang, Wei-Kang; Peng, Yu-Huei; Li, Hsun; Lin, Hsiu-Chen; Lin, Yu-Ching; Lai, Tzu-Ting; Suo, Hsien; Wang, Chien-Hsiang; Lin, Wei-Hsiang; Ou, Chan-Yen; Zhou, Xin; Pi, Haiwei; Chang, Henry C; Chien, Cheng-Ting
2011-10-20
During development, dendrites arborize in a field several hundred folds of their soma size, a process regulated by intrinsic transcription program and cell adhesion molecule (CAM)-mediated interaction. However, underlying cellular machineries that govern distal higher-order dendrite extension remain largely unknown. Here, we show that Nak, a clathrin adaptor-associated kinase, promotes higher-order dendrite growth through endocytosis. In nak mutants, both the number and length of higher-order dendrites are reduced, which are phenocopied by disruptions of clathrin-mediated endocytosis. Nak interacts genetically with components of the endocytic pathway, colocalizes with clathrin puncta, and is required for dendritic localization of clathrin puncta. More importantly, these Nak-containing clathrin structures preferentially localize to branching points and dendritic tips that are undergoing active growth. We present evidence that the Drosophila L1-CAM homolog Neuroglian is a relevant cargo of Nak-dependent internalization, suggesting that localized clathrin-mediated endocytosis of CAMs facilitates the extension of nearby higher-order dendrites. Copyright © 2011 Elsevier Inc. All rights reserved.
Electrical Advantages of Dendritic Spines
Gulledge, Allan T.; Carnevale, Nicholas T.; Stuart, Greg J.
2012-01-01
Many neurons receive excitatory glutamatergic input almost exclusively onto dendritic spines. In the absence of spines, the amplitudes and kinetics of excitatory postsynaptic potentials (EPSPs) at the site of synaptic input are highly variable and depend on dendritic location. We hypothesized that dendritic spines standardize the local geometry at the site of synaptic input, thereby reducing location-dependent variability of local EPSP properties. We tested this hypothesis using computational models of simplified and morphologically realistic spiny neurons that allow direct comparison of EPSPs generated on spine heads with EPSPs generated on dendritic shafts at the same dendritic locations. In all morphologies tested, spines greatly reduced location-dependent variability of local EPSP amplitude and kinetics, while having minimal impact on EPSPs measured at the soma. Spine-dependent standardization of local EPSP properties persisted across a range of physiologically relevant spine neck resistances, and in models with variable neck resistances. By reducing the variability of local EPSPs, spines standardized synaptic activation of NMDA receptors and voltage-gated calcium channels. Furthermore, spines enhanced activation of NMDA receptors and facilitated the generation of NMDA spikes and axonal action potentials in response to synaptic input. Finally, we show that dynamic regulation of spine neck geometry can preserve local EPSP properties following plasticity-driven changes in synaptic strength, but is inefficient in modifying the amplitude of EPSPs in other cellular compartments. These observations suggest that one function of dendritic spines is to standardize local EPSP properties throughout the dendritic tree, thereby allowing neurons to use similar voltage-sensitive postsynaptic mechanisms at all dendritic locations. PMID:22532875
Dendritic biomimicry: microenvironmental hydrogen-bonding effects on tryptophan fluorescence.
Koenig, S; Müller, L; Smith, D K
2001-03-02
Two series of dendritically modified tryptophan derivatives have been synthesised and their emission spectra measured in a range of different solvents. This paper presents the syntheses of these novel dendritic structures and discusses their emission spectra in terms of both solvent and dendritic effects. In the first series of dendrimers, the NH group of the indole ring is available for hydrogen bonding, whilst in the second series, the indole NH group has been converted to NMe. Direct comparison of the emission wavelengths of analogous NH and NMe derivatives indicates the importance of the Kamlet-Taft solvent beta3 parameter, which reflects the ability of the solvent to accept a hydrogen bond from the NH group, an effect not possible for the NMe series of dendrimers. For the NH dendrimers, the attachment of a dendritic shell to the tryptophan subunit leads to a red shift in emission wavelength. This dendritic effect only operates in non-hydrogen-bonding solvents. For the NMe dendrimers, however, the attachment of a dendritic shell has no effect on the emission spectra of the indole ring. This proves the importance of hydrogen bonding between the branched shell and the indole NH group in causing the dendritic effect. This is the first time a dendritic effect has been unambiguously assigned to individual hydrogen-bonding interactions and indicates that such intramolecular interactions are important in dendrimers, just as they are in proteins. Furthermore, this paper sheds light on the use of tryptophan residues as a probe of the microenvironment within proteins--in particular, it stresses the importance of hydrogen bonds formed by the indole NH group.
Rojo, Concepción; Leguey, Ignacio; Kastanauskaite, Asta; Bielza, Concha; Larrañaga, Pedro; DeFelipe, Javier; Benavides-Piccione, Ruth
2016-06-01
Pyramidal cell structure varies between different cortical areas and species, indicating that the cortical circuits that these cells participate in are likely to be characterized by different functional capabilities. Structural differences between cortical layers have been traditionally reported using either the Golgi method or intracellular labeling, but the structure of pyramidal cells has not previously been systematically analyzed across all cortical layers at a particular age. In the present study, we investigated the dendritic architecture of complete basal arbors of pyramidal neurons in layers II, III, IV, Va, Vb, and VI of the hindlimb somatosensory cortical region of postnatal day 14 rats. We found that the characteristics of basal dendritic morphologies are statistically different in each cortical layer. The variations in size and branching pattern that exist between pyramidal cells of different cortical layers probably reflect the particular functional properties that are characteristic of the cortical circuit in which they participate. This new set of complete basal dendritic arbors of 3D-reconstructed pyramidal cell morphologies across each cortical layer will provide new insights into interlaminar information processing in the cerebral cortex. © The Author 2016. Published by Oxford University Press.
Yoo, Hyun Deog; Liang, Yanliang; Li, Yifei; Yao, Yan
2015-04-01
Hybrid magnesium-lithium-ion batteries (MLIBs) featuring dendrite-free deposition of Mg anode and Li-intercalation cathode are safe alternatives to Li-ion batteries for large-scale energy storage. Here we report for the first time the excellent stability of a high areal capacity MLIB cell and dendrite-free deposition behavior of Mg under high current density (2 mA cm(-2)). The hybrid cell showed no capacity loss for 100 cycles with Coulombic efficiency as high as 99.9%, whereas the control cell with a Li-metal anode only retained 30% of its original capacity with Coulombic efficiency well below 90%. The use of TiS2 as a cathode enabled the highest specific capacity and one of the best rate performances among reported MLIBs. Postmortem analysis of the cycled cells revealed dendrite-free Mg deposition on a Mg anode surface, while mossy Li dendrites were observed covering the Li surface and penetrated into separators in the Li cell. The energy density of a MLIB could be further improved by developing electrolytes with higher salt concentration and wider electrochemical window, leading to new opportunities for its application in large-scale energy storage.
Urrego, Diana; Troncoso, Julieta; Múnera, Alejandro
2015-01-01
This work was aimed at characterizing structural changes in primary motor cortex layer 5 pyramidal neurons and their relationship with microglial density induced by facial nerve lesion using a murine facial paralysis model. Adult transgenic mice, expressing green fluorescent protein in microglia and yellow fluorescent protein in projecting neurons, were submitted to either unilateral section of the facial nerve or sham surgery. Injured animals were sacrificed either 1 or 3weeks after surgery. Two-photon excitation microscopy was then used for evaluating both layer 5 pyramidal neurons and microglia in vibrissal primary motor cortex (vM1). It was found that facial nerve lesion induced long-lasting changes in the dendritic morphology of vM1 layer 5 pyramidal neurons and in their surrounding microglia. Dendritic arborization of the pyramidal cells underwent overall shrinkage. Apical dendrites suffered transient shortening while basal dendrites displayed sustained shortening. Moreover, dendrites suffered transient spine pruning. Significantly higher microglial cell density was found surrounding vM1 layer 5 pyramidal neurons after facial nerve lesion with morphological bias towards the activated phenotype. These results suggest that facial nerve lesions elicit active dendrite remodeling due to pyramidal neuron and microglia interaction, which could be the pathophysiological underpinning of some neuropathic motor sequelae in humans. PMID:26064916
Wong, Kuan Y; Baron, Rebecca; Seldon, Therese A; Jones, Martina L; Rice, Alison M; Munster, David J
2018-05-15
Anti-CD83 Ab capable of Ab-dependent cellular cytotoxicity can deplete activated CD83 + human dendritic cells, thereby inhibiting CD4 T cell-mediated acute graft-versus-host disease. As CD83 is also expressed on the surface of activated B lymphocytes, we hypothesized that anti-CD83 would also inhibit B cell responses to stimulation. We found that anti-CD83 inhibited total IgM and IgG production in vitro by allostimulated human PBMC. Also, Ag-specific Ab responses to immunization of SCID mice xenografted with human PBMC were inhibited by anti-CD83 treatment. This inhibition occurred without depletion of all human B cells because anti-CD83 lysed activated CD83 + B cells by Ab-dependent cellular cytotoxicity and spared resting (CD83 - ) B cells. In cultured human PBMC, anti-CD83 inhibited tetanus toxoid-stimulated B cell proliferation and concomitant dendritic cell-mediated CD4 T cell proliferation and expression of IFN-γ and IL-17A, with minimal losses of B cells (<20%). In contrast, the anti-CD20 mAb rituximab depleted >80% of B cells but had no effect on CD4 T cell proliferation and cytokine expression. By virtue of the ability of anti-CD83 to selectively deplete activated, but not resting, B cells and dendritic cells, with the latter reducing CD4 T cell responses, anti-CD83 may be clinically useful in autoimmunity and transplantation. Advantages might include inhibited expansion of autoantigen- or alloantigen-specific B cells and CD4 T cells, thus preventing further production of pathogenic Abs and inflammatory cytokines while preserving protective memory and regulatory cells. Copyright © 2018 by The American Association of Immunologists, Inc.
Biologic interactions between HSV-2 and HIV-1 and possible implications for HSV vaccine development.
Schiffer, Joshua T; Gottlieb, Sami L
2017-09-25
Development of a safe and effective vaccine against herpes simplex virus type 2 (HSV-2) has the potential to limit the global burden of HSV-2 infection and disease, including genital ulcer disease and neonatal herpes, and is a global sexual and reproductive health priority. Another important potential benefit of an HSV-2 vaccine would be to decrease HIV infections, as HSV-2 increases the risk of HIV-1 acquisition several-fold. Acute and chronic HSV-2 infection creates ulcerations and draws dendritic cells and activated CD4+ T cells into genital mucosa. These cells are targets for HIV entry and replication. Prophylactic HSV-2 vaccines (to prevent infection) and therapeutic vaccines (to modify or treat existing infections) are currently under development. By preventing or modifying infection, an effective HSV-2 vaccine could limit HSV-associated genital mucosal inflammation and thus HIV risk. However, a vaccine might have competing effects on HIV risk depending on its mechanism of action and cell populations generated in the genital mucosa. In this article, we review biologic interactions between HSV-2 and HIV-1, consider HSV-2 vaccine development in the context of HIV risk, and discuss implications and research needs for future HSV vaccine development. Copyright © 2017 Elsevier Ltd. All rights reserved.
Young, Brett C.; Stanic, Aleksandar K.; Panda, Britta; Rueda, Bo R.; Panda, Alexander
2014-01-01
OBJECTIVE Toll-like receptors (TLRs) are integral parts of the innate immune system and have been implicated in complications of pregnancy. The longitudinal expression of TLRs on dendritic cells in the maternal circulation during uncomplicated pregnancies is unknown. The objective of this study was to prospectively evaluate TLRs 1-9 as expressed on dendritic cells in the maternal circulation at defined intervals throughout pregnancy and postpartum. STUDY DESIGN This was a prospective cohort of 30 pregnant women with uncomplicated pregnancies and 30 nonpregnant controls. TLRs and cytokine expression was measured in unstimulated dendritic cells at 4 defined intervals during pregnancy and postpartum. Basal expression of TLRs and cytokines was measured by multicolor flow cytometry. The percent-positive dendritic cells for each TLRs were compared with both nonpregnant and postpartum levels with multivariate linear regression. RESULTS TLRs 1, 7, and 9 were elevated compared with nonpregnant controls with persistent elevation of TLR 1 and interleukin-12 (IL-12) into the postpartum period. Concordantly, levels of IL-6, IL-12, interferon alpha, and tumor necrosis factor alpha increased during pregnancy and returned to levels similar to nonpregnant controls during the postpartum period. The elevated levels of TLR 1 and IL-12 were persistent postpartum, challenging notions that immunologic changes during pregnancy resolve after the prototypical postpartum period. CONCLUSION Normal pregnancy is associated with time-dependent changes in TLR expression compared with nonpregnant controls; these findings may help elucidate immunologic dysfunction in complicated pregnancies. PMID:24291497
Zhu, He; Li, Jian; Nolan, Thomas J.; Schad, Gerhard A.; Lok, James B.
2011-01-01
Owing to its ability to switch between free-living and parasitic modes of development, Parastrongyloides trichosuri represents a valuable model with which to study the evolution of parasitism among the nematodes, especially aspects pertaining to morphogenesis of infective third-stage larvae. In the free-living nematode Caenorhabditis elegans, developmental fates of third-stage larvae are determined in part by environmental cues received by chemosensory neurons in the amphidial sensillae. As a basis for comparative study, we have described the neuroanatomy of the amphidial sensillae of P. trichosuri. Using computational methods we incorporated serial electron micrographs into a three-dimensional reconstruction of the amphidial neurons of this parasite. Each amphid is innervated by 13 neurons, and the dendritic processes of 10 of these extend nearly to the amphidial pore. Dendritic processes of two specialized neurons leave the amphidial channel and terminate within invaginations of the sheath cell. One of these is similar to the finger cell of C. elegans, terminating in digitiform projections. The other projects a single cilium into the sheath cell. The dendritic process of a third specialized neuron terminates within the tight junction of the amphid. Each amphidial neuron was traced from the tip of its dendrite(s) to its cell body in the lateral ganglion. Positions of these cell bodies approximate those of morphologically similar amphidial neurons in Caenorhabditis elegans, so the standard nomenclature for amphidial neurons in C. elegans was adopted. A map of cell bodies within the lateral ganglion of P. trichosuri was prepared to facilitate functional study of these neurons. PMID:21456026
The cytoarchitecture of the torus semicircularis in the Tegu lizard, Tupinambis nigropunctatus.
Browner, R H; Rubinson, K
1977-12-15
The torus semicircularis (TS) of the Tegu lizard extends from the superficial caudal mesencephalon, dorsal to the exiting trochlear nerve, to a position ventral to the middle part of the optic tectum and its ventricle. It has an oblique orientation with the caudal pole abutting the midline while the rostal end is lateral and slightly ventral. The TS consists of a central nucleus and several adjacent cell groups. The central nucleus and the laminar nucleus, situated medially, extend the entire length of the TS while the cortical nucleus, situated dorsally and laterally, is present only in the caudal superficial portion. The central nucleus is composed of ovoid neurons with branched, radiating dendrites. The dendrites are directed medially and laterally with spines on the distal portion of the dendritic tree. The laminar nucleus consists of three to five neuronal layers. It is mainly composed of fusiform neurons with one dendritic trunk from each extremity of the soma. There is little branching and few dendritic spines. The cortical nucleus is a laminated region consisting of alternating layers of neurons and lateral lemniscal fibers. The neurons of the superficial layers are fusiform with their long axis perpendicular to the long axis of the brainstem. They possess two main dendritic trunks which parallel the laminae and are covered with dendritic spines. The deeper layers consist of pyramidal neurons with three dendritic trunks, secondary branches, and few spines. The long axis of these neurons extends from the center of the TS to the periphery. Two dendritic trunks extend dorsally or laterally towards the surface, while the third extends towards the central nucleus. The dendrites, thus, extend across the laminae. In addition, a cell-free lateral zone is described.
Wynne, P M; Puig, S I; Martin, G E; Treistman, S N
2009-06-01
Neurons are highly differentiated and polarized cells, whose various functions depend upon the compartmentalization of ion channels. The rat hypothalamic-neurohypophysial system (HNS), in which cell bodies and dendrites reside in the hypothalamus, physically separated from their nerve terminals in the neurohypophysis, provides a particularly powerful preparation in which to study the distribution and regional properties of ion channel proteins. Using electrophysiological and immunohistochemical techniques, we characterized the large-conductance calcium-activated potassium (BK) channel in each of the three primary compartments (soma, dendrite, and terminal) of HNS neurons. We found that dendritic BK channels, in common with somatic channels but in contrast to nerve terminal channels, are insensitive to iberiotoxin. Furthermore, analysis of dendritic BK channel gating kinetics indicates that they, like somatic channels, have fast activation kinetics, in contrast to the slow gating of terminal channels. Dendritic and somatic channels are also more sensitive to calcium and have a greater conductance than terminal channels. Finally, although terminal BK channels are highly potentiated by ethanol, somatic and dendritic channels are insensitive to the drug. The biophysical and pharmacological properties of somatic and dendritic versus nerve terminal channels are consistent with the characteristics of exogenously expressed alphabeta1 versus alphabeta4 channels, respectively. Therefore, one possible explanation for our findings is a selective distribution of auxiliary beta1 subunits to the somatic and dendritic compartments and beta4 to the terminal compartment. This hypothesis is supported immunohistochemically by the appearance of distinct punctate beta1 or beta4 channel clusters in the membrane of somatic and dendritic or nerve terminal compartments, respectively.
Oren-Suissa, Meital; Gattegno, Tamar; Kravtsov, Veronika; Podbilewicz, Benjamin
2017-05-01
Injury triggers regeneration of axons and dendrites. Research has identified factors required for axonal regeneration outside the CNS, but little is known about regeneration triggered by dendrotomy. Here, we study neuronal plasticity triggered by dendrotomy and determine the fate of complex PVD arbors following laser surgery of dendrites. We find that severed primary dendrites grow toward each other and reconnect via branch fusion. Simultaneously, terminal branches lose self-avoidance and grow toward each other, meeting and fusing at the tips via an AFF-1-mediated process. Ectopic branch growth is identified as a step in the regeneration process required for bypassing the lesion site. Failure of reconnection to the severed dendrites results in degeneration of the distal end of the neuron. We discover pruning of excess branches via EFF-1 that acts to recover the original wild-type arborization pattern in a late stage of the process. In contrast, AFF-1 activity during dendritic auto-fusion is derived from the lateral seam cells and not autonomously from the PVD neuron. We propose a model in which AFF-1-vesicles derived from the epidermal seam cells fuse neuronal dendrites. Thus, EFF-1 and AFF-1 fusion proteins emerge as new players in neuronal arborization and maintenance of arbor connectivity following injury in Caenorhabditis elegans Our results demonstrate that there is a genetically determined multi-step pathway to repair broken dendrites in which EFF-1 and AFF-1 act on different steps of the pathway. EFF-1 is essential for dendritic pruning after injury and extrinsic AFF-1 mediates dendrite fusion to bypass injuries. Copyright © 2017 by the Genetics Society of America.
Chu, Sao-Yu; Wang, Chun-Han; Lin, I-Ya
2017-01-01
Elucidating how appropriate neurite patterns are generated in neurons of the olfactory system is crucial for comprehending the construction of the olfactory map. In the Drosophila olfactory system, projection neurons (PNs), primarily derived from four neural stem cells (called neuroblasts), populate their cell bodies surrounding to and distribute their dendrites in distinct but overlapping patterns within the primary olfactory center of the brain, the antennal lobe (AL). However, it remains unclear whether the same molecular mechanisms are employed to generate the appropriate dendritic patterns in discrete AL glomeruli among PNs produced from different neuroblasts. Here, by examining a previously explored transmembrane protein Semaphorin-1a (Sema-1a) which was proposed to globally control initial PN dendritic targeting along the dorsolateral-to-ventromedial axis of the AL, we discover a new role for Sema-1a in preventing dendrites of both uni-glomerular and poly-glomerular PNs from aberrant invasion into select AL regions and, intriguingly, this Sema-1a-deficient dendritic mis-targeting phenotype seems to associate with the origins of PNs from which they are derived. Further, ectopic expression of Sema-1a resulted in PN dendritic mis-projection from a select AL region into adjacent glomeruli, strengthening the idea that Sema-1a plays an essential role in preventing abnormal dendritic accumulation in select AL regions. Taken together, these results demonstrate that Sema-1a repulsion keeps dendrites of different types of PNs away from each other, enabling the same types of PN dendrites to be sorted into destined AL glomeruli and permitting for functional assembly of olfactory circuitry. PMID:28448523
Brenman, J E; Gao, F B; Jan, L Y; Jan, Y N
2001-11-01
Morphological complexity of neurons contributes to their functional complexity. How neurons generate different dendritic patterns is not known. We identified the sequoia mutant from a previous screen for dendrite mutants. Here we report that Sequoia is a pan-neural nuclear protein containing two putative zinc fingers homologous to the DNA binding domain of Tramtrack. sequoia mutants affect the cell fate decision of a small subset of neurons but have global effects on axon and dendrite morphologies of most and possibly all neurons. In support of sequoia as a specific regulator of neuronal morphogenesis, microarray experiments indicate that sequoia may regulate downstream genes that are important for executing neurite development rather than altering a variety of molecules that specify cell fates.
Isolation of dendritic-cell-like S100β-positive cells in rat anterior pituitary gland.
Horiguchi, Kotaro; Fujiwara, Ken; Yoshida, Saishu; Higuchi, Masashi; Tsukada, Takehiro; Kanno, Naoko; Yashiro, Takashi; Tateno, Kozue; Osako, Shunji; Kato, Takako; Kato, Yukio
2014-07-01
S100β-protein-positive cells in the anterior pituitary gland appear to possess multifunctional properties. Because of their pleiotropic features, S100β-positive cells are assumed to be of a heterogeneous or even a non-pituitary origin. The observation of various markers has allowed these cells to be classified into populations such as stem/progenitor cells, epithelial cells, astrocytes and dendritic cells. The isolation and characterization of each heterogeneous population is a prerequisite for clarifying the functional character and origin of the cells. We attempt to isolate two of the subpopulations of S100β-positive cells from the anterior lobe. First, from transgenic rats that express green fluorescent protein (GFP) driven by the S100β protein promoter, we fractionate GFP-positive cells with a cell sorter and culture them so that they can interact with laminin, a component of the extracellular matrix. We observe that one morphological type of GFP-positive cells possesses extended cytoplasmic processes and shows high adhesiveness to laminin (process type), whereas the other is round in shape and exhibits low adherence to laminin (round type). We successfully isolate cells of the round type from the cultured GFP-positive cells by taking advantage of their low affinity to laminin and then measure mRNA levels of the two cell types by real-time polymerase chain reaction. The resultant data show that the process type expresses vimentin (mesenchymal cell marker) and glial fibrillary acidic protein (astrocyte marker). The round type expresses dendritic cell markers, CD11b and interleukin-6. Thus, we found a method for isolating dendritic-cell-like S100β-positive cells by means of their property of adhering to laminin.
The ultrastructure of conjunctival melanocytic tumors.
Jakobiec, F A
1984-01-01
The ultrastructure of conjunctival melanocytic lesions in 49 patients was evaluated to find significant differences between benign and malignant cells. The patients studied included 9 with benign epithelial (racial) melanosis, 2 with pigmented squamous cell papillomas, 16 with conjunctival nevi, 18 with primary acquired melanosis, and 11 with invasive nodules of malignant melanoma. In benign epithelial melanosis, dendritic melanocytes were situated along the basement membrane region of the conjunctival epithelium, with one basilar dendritic melanocyte lodged among every five or six basilar keratinocytes. The dendritic melanocytes extended arborizing cellular processes between the basilar and among the suprabasilar keratinocytes, which manifested considerable uptake of melanin granules into their cytoplasm. The benign dendritic melanocytes possessed nuclei with clumped heterochromatin at the nuclear membrane, small, tightly wound nucleoli, and large, elongated, fully melaninized melanin granules. In two patients with benign hyperplasia of the dendritic melanocytes, occasional dendritic melanocytes were located in a suprabasilar position, but were always separated from each other by keratinocytes or their processes. In the two black patients with benign pigmented squamous papillomas, the benign dendritic melanocytes were located hapharzardly at all levels of the acanthotic epithelium and not just along the basement membrane region. Melanin uptake by the proliferating keratinocytes was minimal. In benign melanocytic nevi of the conjunctiva, nevus cells within the intraepithelial junctional nests displayed a more rounded cellular configuration; short villi and broader cellular processes suggestive of abortive dendrites were found. The nuclear chromatin pattern was clumped at the nuclear membrane, but the nucleoli were somewhat larger than those of benign dendritic melanocytes in epithelial melanosis. The melanosomes were smaller and rounder than those in dendritic melanocytes and exhibited more haphazard arrangements of the melanofilaments, which were only partially melaninized. Mitochondria were more numerous than in dendritic melanocytes, and monoribosomes predominated over polyribosomes. Cytoplasmic filaments were inconspicuous. Cells in the immediate subepithelial connective tissue zone had features identical to those of the cells within the junctional nests. Smaller, lymphocytoid cells with less numerous and more rudimentary melanosomes were found in the middle and deeper portions of the lesions.(ABSTRACT TRUNCATED AT 400 WORDS) Images FIGURE 21 FIGURE 22 FIGURE 42 FIGURE 67 FIGURE 1 FIGURE 62 FIGURE 26 FIGURE 29 FIGURE 37 FIGURE 11 FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 7 FIGURE 8 FIGURE 9 FIGURE 10 FIGURE 12 FIGURE 13 FIGURE 14 FIGURE 15 FIGURE 16 FIGURE 17 FIGURE 18 FIGURE 19 FIGURE 20 FIGURE 23 FIGURE 24 FIGURE 25 FIGURE 27 FIGURE 28 FIGURE 30 FIGURE 31 FIGURE 32 FIGURE 33 FIGURE 34 FIGURE 35 FIGURE 36 FIGURE 38 FIGURE 39 FIGURE 40 FIGURE 41 FIGURE 43 FIGURE 44 FIGURE 45 FIGURE 46 FIGURE 47 FIGURE 48 FIGURE 49 FIGURE 50 FIGURE 51 FIGURE 52 FIGURE 53 FIGURE 54 FIGURE 55 FIGURE 56 FIGURE 57 FIGURE 58 FIGURE 59 FIGURE 60 FIGURE 61 FIGURE 63 FIGURE 64 FIGURE 65 FIGURE 66 FIGURE 68 FIGURE 69 FIGURE 70 FIGURE 71 FIGURE 72 FIGURE 73 FIGURE 74 FIGURE 75 FIGURE 76 FIGURE 77 FIGURE 78 FIGURE 79 FIGURE 80 FIGURE 81 FIGURE 82 FIGURE 83 FIGURE 84 FIGURE 85 FIGURE 86 FIGURE 87 FIGURE 88 FIGURE 89 PMID:6398936
Kouo, Theodore; Huang, Lanqing; Pucsek, Alexandra B; Cao, Minwei; Solt, Sara; Armstrong, Todd; Jaffee, Elizabeth
2015-04-01
Galectin-3 is a 31-kDa lectin that modulates T-cell responses through several mechanisms, including apoptosis, T-cell receptor (TCR) cross-linking, and TCR downregulation. We found that patients with pancreatic ductal adenocarcinoma (PDA) who responded to a granulocyte-macrophage colony-stimulating factor-secreting allogeneic PDA vaccine developed neutralizing antibodies to galectin-3 after immunization. We show that galectin-3 binds activated antigen-committed CD8(+) T cells only in the tumor microenvironment. Galectin-3-deficient mice exhibit improved CD8(+) T-cell effector function and increased expression of several inflammatory genes. Galectin-3 binds to LAG-3, and LAG-3 expression is necessary for galectin-3-mediated suppression of CD8(+) T cells in vitro. Lastly, galectin-3-deficient mice have elevated levels of circulating plasmacytoid dendritic cells, which are superior to conventional dendritic cells in activating CD8(+) T cells. Thus, inhibiting galectin-3 in conjunction with CD8(+) T-cell-directed immunotherapies should enhance the tumor-specific immune response. ©2015 American Association for Cancer Research.
Ka, Minhan; Kook, Yeon-Hee; Liao, Ke; Buch, Shilpa; Kim, Woo-Yang
2016-01-01
Cocaine is a highly addictive narcotic associated with dendritic spine plasticity in the striatum. However, it remains elusive whether cocaine modifies spines in a cell type-specific or region-specific manner or whether it alters different types of synapses in the brain. In addition, there is a paucity of data on the regulatory mechanism(s) involved in cocaine-induced modification of spine density. In the current study, we report that cocaine exposure differentially alters spine density, spine morphology, and the types of synapses in hippocampal and cortical neurons. Cocaine exposure in the hippocampus resulted in increased spine density, but had no significant effect on cortical neurons. Although cocaine exposure altered spine morphology in both cell types, the patterns of spine morphology were distinct for each cell type. Furthermore, we observed that cocaine selectively affects the density of excitatory synapses. Intriguingly, in hippocampal neurons cocaine-mediated effects on spine density and morphology involved sigma-1 receptor (Sig-1 R) and its downstream TrkB signaling, which were not the case in cortical neurons. Furthermore, pharmacological inhibition of Sig-1 R prevented cocaine-induced TrkB activation in hippocampal neurons. Our findings reveal a novel mechanism by which cocaine induces selective changes in spine morphology, spine density, and synapse formation, and could provide insights into the cellular basis for the cognitive impairment observed in cocaine addicts. PMID:27735948
Propitious Dendritic Cu2O-Pt Nanostructured Anodes for Direct Formic Acid Fuel Cells.
El-Nagar, Gumaa A; Mohammad, Ahmad M; El-Deab, Mohamed S; El-Anadouli, Bahgat E
2017-06-14
This study introduces a novel competent dendritic copper oxide-platinum nanocatalyst (nano-Cu 2 O-Pt) immobilized onto a glassy carbon (GC) substrate for formic acid (FA) electro-oxidation (FAO); the prime reaction in the anodic compartment of direct formic acid fuel cells (DFAFCs). Interestingly, the proposed catalyst exhibited an outstanding improvement for FAO compared to the traditional platinum nanoparticles (nano-Pt) modified GC (nano-Pt/GC) catalyst. This was evaluated from steering the reaction mechanism toward the desired direct route producing carbon dioxide (CO 2 ); consistently with mitigating the other undesired indirect pathway producing carbon monoxide (CO); the potential poison deteriorating the catalytic activity of typical Pt-based catalysts. Moreover, the developed catalyst showed a reasonable long-term catalytic stability along with a significant lowering in onset potential of direct FAO that ultimately reduces the polarization and amplifies the fuel cell's voltage. The observed catalytic enhancement was believed to originate bifunctionally; while nano-Pt represented the base for the FA adsorption, nanostructured copper oxide (nano-Cu 2 O) behaved as a catalytic mediator facilitating the charge transfer during FAO and providing the oxygen atmosphere inspiring the poison's (CO) oxidation at relatively lower potential. Surprisingly, moreover, nano-Cu 2 O induced a surface retrieval of nano-Pt active sites by capturing the poisoning CO via "a spillover mechanism" to renovate the Pt surface for the direct FAO. Finally, the catalytic tolerance of the developed catalyst toward halides' poisoning was discussed.
Living in the branches: population dynamics and ecological processes in dendritic networks
Grant, E.H.C.; Lowe, W.H.; Fagan, W.F.
2007-01-01
Spatial structure regulates and modifies processes at several levels of ecological organization (e.g. individual/genetic, population and community) and is thus a key component of complex systems, where knowledge at a small scale can be insufficient for understanding system behaviour at a larger scale. Recent syntheses outline potential applications of network theory to ecological systems, but do not address the implications of physical structure for network dynamics. There is a specific need to examine how dendritic habitat structure, such as that found in stream, hedgerow and cave networks, influences ecological processes. Although dendritic networks are one type of ecological network, they are distinguished by two fundamental characteristics: (1) both the branches and the nodes serve as habitat, and (2) the specific spatial arrangement and hierarchical organization of these elements interacts with a species' movement behaviour to alter patterns of population distribution and abundance, and community interactions. Here, we summarize existing theory relating to ecological dynamics in dendritic networks, review empirical studies examining the population- and community-level consequences of these networks, and suggest future research integrating spatial pattern and processes in dendritic systems.
NASA Astrophysics Data System (ADS)
Shur, V. Ya.; Akhmatkhanov, A. R.; Chuvakova, M. A.; Dolbilov, M. A.; Zelenovskiy, P. S.; Lobov, A. I.
2017-03-01
We have studied the self-organized dendrite domain structures appeared as a result of polarization reversal in the uniform field in lithium niobate single crystals with the artificial surface layer created by proton exchange. We have revealed the self-organized sub-micron scale dendrite domain patterns consisting of domain stripes oriented along the X crystallographic directions separated by arrays of dashed residual domains at the surface by scanning probe microscopy. Raman confocal microscopy allowed visualizing the quasi-regular dendrite domain structures with similar geometry in the vicinity of both polar surfaces. The depth of the structure was about 20 μm for Z+ polar surface and 70 μm for Z- one. According to the proposed mechanism, the dendrite structure formation at the surface was related to the ineffective screening of the residual depolarization field. The computer simulation of the structure formation based on the cellular automata model with probabilistic switching rule proved the eligibility of the proposed scheme, the simulated dendrite domain patterns at various depths being similar to the experimental ones.
Gröbner, Sabine; Schulz, Sebastian; Soldanova, Irena; Gunst, Dani S J; Waibel, Michaela; Wesselborg, Sebastian; Borgmann, Stefan; Autenrieth, Ingo B
2007-01-01
In an initial period (< or =4 h) Toll-like receptor 4 (TLR4) signaling is required for Yersinia enterocolitica YopP-induced dendritic cell (DC) death. Later (>4 h), DC die independent of TLR4 signaling. In TLR4-deficient DC caspase 8 cleavage is delayed, indicating that TLR4 signaling accelerates caspase 8 activation, leading to DC death.
Hillyer, Lyn; Whitley, Charlene; Olver, Amy; Webster, Michelle; Steevels, Tessa; Woodward, Bill
2008-02-01
Immune depression associated with prepubescent malnutrition underlies a staggering burden of infection-related morbidity. This investigation centered on dendritic cells as potentially decisive in this phenomenon. C57BL/6J mice, initially 19 days old, had free access for 14 days to a complete diet or to a low-protein formulation that induced wasting deficits of protein and energy. Mice were sensitized by i.p. injection of sheep red blood cells on day 9, at which time one-half of the animals in each dietary group received a simultaneous injection of 10(6) syngeneic dendritic cells (JAWS II). All mice were challenged with the immunizing antigen in the right hind footpad on day 13, and the 24-hour delayed hypersensitivity response was assessed as percentage increase in footpad thickness. The low-protein diet reduced the inflammatory immune response, but JAWS cells, which exhibited immature phenotypic and functional characteristics, increased the response of both the malnourished group and the controls. By contrast, i.p. injection of 10(6) syngeneic T cells did not influence the inflammatory immune response of mice subjected to the low-protein protocol. Antigen-presenting cell numbers limited primary inflammatory cell-mediated competence in this model of wasting malnutrition, an outcome that challenges the prevailing multifactorial model of malnutrition-associated immune depression. Thus, a new dendritic cell-centered perspective emerges regarding the cellular mechanism underlying immune depression in acute pediatric protein and energy deficit.
Viscum album neutralizes tumor-induced immunosuppression in a human in vitro cell model
Steinborn, Carmen; Klemd, Amy Marisa; Sauer, Barbara; Garcia-Käufer, Manuel; Urech, Konrad; Follo, Marie; Ücker, Annekathrin; Kienle, Gunver Sophia; Huber, Roman
2017-01-01
Tumor cells have the capacity to secrete immunosuppressive substances in order to diminish dendritic cell (DC) activity and thereby escape from immune responses. The impact of mistletoe (Viscum album) extracts (VAE), which are frequently used as an additive anti-cancer therapy to stimulate the immune response, is still unknown. Using a human cellular system, the impact of two different VAE (VAEA + VAEI) on the maturation of human dendritic cells and on T cell function has been investigated using flow cytometry, automated fluorescence microscopy and cytokine bead array assays. Furthermore, we examined whether VAEI was able to counteract tumor-induced immunosuppression within this cellular system using a renal cancer cell model. The role of mistletoe lectin (ML) was analyzed using ML-specific antibodies and ML-depleted VAEI. VAEI and VAEA augmented the maturation of dendritic cells. VAEI abrogated tumor-induced immunosuppression of dendritic cells and both processes were partially mediated by ML since ML-depleted VAEI and ML-specific antibodies almost neutralized the rehabilitative effects of VAEI on DC maturation. Using these settings, co-culture experiments with purified CD4+ T cells had no influence on T cell proliferation and activation but did have an impact on IFN-γ secretion. The study provides a potential mode-of-action of VAE as an additive cancer therapy based on immunomodulatory effects. However, the impact on the in vivo situation has to be evaluated in further studies. PMID:28719632
Recent Advances in Subunit Vaccine Carriers
Vartak, Abhishek; Sucheck, Steven J.
2016-01-01
The lower immunogenicity of synthetic subunit antigens, compared to live attenuated vaccines, is being addressed with improved vaccine carriers. Recent reports indicate that the physio-chemical properties of these carriers can be altered to achieve optimal antigen presentation, endosomal escape, particle bio-distribution, and cellular trafficking. The carriers can be modified with various antigens and ligands for dendritic cells targeting. They can also be modified with adjuvants, either covalently or entrapped in the matrix, to improve cellular and humoral immune responses against the antigen. As a result, these multi-functional carrier systems are being explored for use in active immunotherapy against cancer and infectious diseases. Advancing technology, improved analytical methods, and use of computational methodology have also contributed to the development of subunit vaccine carriers. This review details recent breakthroughs in the design of nano-particulate vaccine carriers, including liposomes, polymeric nanoparticles, and inorganic nanoparticles. PMID:27104575
Zhang, Lin; Reckling, Stacie; Dean, Gregg A
2015-10-01
Numerous studies suggest dendritic cell (DC) dysfunction is central to the dysregulated immune response during HIV infection; however, in vivo studies are lacking. In the present study we used feline immunodeficiency virus (FIV) infection of cats as a model for HIV-1 infection to assess the maturation and function of dendritic cells, in vivo and in vitro. We compared CD1a+ DC migration, surface phenotype, endocytosis, mixed leukocyte reaction (MLR) and regulatory T cell (Treg) phenotype induction by CD1a+ cells isolated from lymph nodes of FIV-infected and control cats. Results showed that resident CD1a+ DC in lymph nodes of chronically FIV-infected cats are phenotypically mature, can stimulate normal primary T cell proliferation, override Treg suppression and do not skew toward Treg induction. In contrast, FIV infection had deleterious effects on antigen presentation and migratory capacity of CD1a+ cells in tissues. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hu, Hua; Vervaeke, Koen; Graham, Lyle J; Storm, Johan F
2009-11-18
Synaptic input to a neuron may undergo various filtering steps, both locally and during transmission to the soma. Using simultaneous whole-cell recordings from soma and apical dendrites from rat CA1 hippocampal pyramidal cells, and biophysically detailed modeling, we found two complementary resonance (bandpass) filters of subthreshold voltage signals. Both filters favor signals in the theta (3-12 Hz) frequency range, but have opposite location, direction, and voltage dependencies: (1) dendritic H-resonance, caused by h/HCN-channels, filters signals propagating from soma to dendrite when the membrane potential is close to rest; and (2) somatic M-resonance, caused by M/Kv7/KCNQ and persistent Na(+) (NaP) channels, filters signals propagating from dendrite to soma when the membrane potential approaches spike threshold. Hippocampal pyramidal cells participate in theta network oscillations during behavior, and we suggest that that these dual, polarized theta resonance mechanisms may convey voltage-dependent tuning of theta-mediated neural coding in the entorhinal/hippocampal system during locomotion, spatial navigation, memory, and sleep.
Differential polarization of cortical pyramidal neuron dendrites through weak extracellular fields
Obermayer, Klaus
2018-01-01
The rise of transcranial current stimulation (tCS) techniques have sparked an increasing interest in the effects of weak extracellular electric fields on neural activity. These fields modulate ongoing neural activity through polarization of the neuronal membrane. While the somatic polarization has been investigated experimentally, the frequency-dependent polarization of the dendritic trees in the presence of alternating (AC) fields has received little attention yet. Using a biophysically detailed model with experimentally constrained active conductances, we analyze the subthreshold response of cortical pyramidal cells to weak AC fields, as induced during tCS. We observe a strong frequency resonance around 10-20 Hz in the apical dendrites sensitivity to polarize in response to electric fields but not in the basal dendrites nor the soma. To disentangle the relative roles of the cell morphology and active and passive membrane properties in this resonance, we perform a thorough analysis using simplified models, e.g. a passive pyramidal neuron model, simple passive cables and reconstructed cell model with simplified ion channels. We attribute the origin of the resonance in the apical dendrites to (i) a locally increased sensitivity due to the morphology and to (ii) the high density of h-type channels. Our systematic study provides an improved understanding of the subthreshold response of cortical cells to weak electric fields and, importantly, allows for an improved design of tCS stimuli. PMID:29727454
van Vliet, Sandra J.; Steeghs, Liana; Bruijns, Sven C. M.; Vaezirad, Medi M.; Snijders Blok, Christian; Arenas Busto, Jésus A.; Deken, Marcel; van Putten, Jos P. M.; van Kooyk, Yvette
2009-01-01
Gonorrhea is one of the most prevalent sexually transmitted diseases in the world. A naturally occurring variation of the terminal carbohydrates on the lipooligosaccharide (LOS) molecule correlates with altered disease states. Here, we investigated the interaction of different stable gonoccocal LOS phenotypes with human dendritic cells and demonstrate that each variant targets a different set of receptors on the dendritic cell, including the C-type lectins MGL and DC-SIGN. Neisseria gonorrhoeae LOS phenotype C constitutes the first bacterial ligand to be described for the human C-type lectin receptor MGL. Both MGL and DC-SIGN are locally expressed at the male and female genital area, the primary site of N. gonorrhoeae infection. We show that targeting of different C-type lectins with the N. gonorrhoeae LOS variants results in alterations in dendritic cell cytokine secretion profiles and the induction of distinct adaptive CD4+ T helper responses. Whereas N. gonorrhoeae variant A with a terminal N-acetylglucosamine on its LOS was recognized by DC-SIGN and induced significantly more IL-10 production, phenotype C, carrying a terminal N-acetylgalactosamine, primarily interacted with MGL and skewed immunity towards the T helper 2 lineage. Together, our results indicate that N. gonorrhoeae LOS variation allows for selective manipulation of dendritic cell function, thereby shifting subsequent immune responses in favor of bacterial survival. PMID:19834553
Yau, Suk-Yu; Li, Ang; Tong, Jian-Bin; Bostrom, Crystal; Christie, Brian R; Lee, Tatia M C; So, Kwok-Fai
2016-09-21
Our previous work has shown that exposure to the stress hormone corticosterone (40 mg/kg CORT) for two weeks induces dendritic atrophy of pyramidal neurons in the hippocampal CA3 region and behavioral deficits. However, it is unclear whether this treatment also affects the dentate gyrus (DG), a subregion of the hippocampus comprising a heterogeneous population of young and mature neurons. We examined the effect of CORT treatment on the dendritic complexity of mature and young granule cells in the DG. We utilized a Golgi staining method to investigate the dendritic morphology and spine density of young neurons in the inner granular cell layer (GCL) and mature neurons in the outer GCL in response to CORT application. The expressions of glucocorticoid receptors during neuronal maturation were examined using Western blot analysis in a primary hippocampal neuronal culture. Sholl analysis revealed that CORT treatment decreased the number of intersections and shortened the dendritic length in mature, but not young, granule cells. However, the spine density of mature and young neurons was not affected. Western blot analysis showed a progressive increase in the protein levels of glucocorticoid receptors (GRs) in the cultured primary hippocampal neurons during neuronal maturation. These data suggest that mature neurons are likely more vulnerable to chronic exposure to CORT; this may be due to their higher expression of GRs when compared to younger DG neurons.
Cell-autonomous inactivation of the Reelin pathway impairs adult neurogenesis in the hippocampus
Teixeira, Catia M.; Kron, Michelle M.; Masachs, Nuria; Zhang, Helen; Lagace, Diane C.; Martinez, Albert; Reillo, Isabel; Duan, Xin; Bosch, Carles; Pujadas, Lluis; Brunso, Lucas; Song, Hongjun; Eisch, Amelia J.; Borrell, Victor; Howell, Brian W.; Parent, Jack M.; Soriano, Eduardo
2012-01-01
Adult hippocampal neurogenesis is thought to be essential for learning and memory and has been implicated in the pathogenesis of several disorders. Although recent studies have identified key factors regulating neuroprogenitor proliferation in the adult hippocampus, the mechanisms that control the migration and integration of adult-born neurons into circuits are largely unknown. Reelin is an extracellular matrix protein that is vital for neuronal development. Activation of the Reelin cascade leads to phosphorylation of disabled-1 (Dab1), an adaptor protein required for Reelin signaling. Here we used transgenic mouse and retroviral reporters along with Reelin signaling gain- and loss-of-function studies to show that the Reelin pathway regulates migration and dendritic development of adult-generated hippocampal neurons. Whereas overexpression of Reelin accelerated dendritic maturation, inactivation of the Reelin signaling pathway specifically in adult neuroprogenitor cells resulted in aberrant migration, decreased dendrite development, formation of ectopic dendrites in the hilus and the establishment of aberrant circuits. Our findings support a cell-autonomous and critical role for the Reelin pathway in regulating dendritic development and the integration of adult-generated granule cells and point to this pathway as a key regulator of adult neurogenesis. Moreover, our data reveal a novel role of the Reelin cascade in adult brain function with potential implications for the pathogenesis of several neurological and psychiatric disorders. PMID:22933789
Schaheen, Basil; Downs, Emily A; Serbulea, Vlad; Almenara, Camila C P; Spinosa, Michael; Su, Gang; Zhao, Yunge; Srikakulapu, Prasad; Butts, Cherié; McNamara, Coleen A; Leitinger, Norbert; Upchurch, Gilbert R; Meher, Akshaya K; Ailawadi, Gorav
2016-11-01
B-cell depletion therapy is widely used for treatment of cancers and autoimmune diseases. B cells are abundant in abdominal aortic aneurysms (AAA); however, it is unknown whether B-cell depletion therapy affects AAA growth. Using experimental models of murine AAA, we aim to examine the effect of B-cell depletion on AAA formation. Wild-type or apolipoprotein E-knockout mice were treated with mouse monoclonal anti-CD20 or control antibodies and subjected to an elastase perfusion or angiotensin II infusion model to induce AAA, respectively. Anti-CD20 antibody treatment significantly depleted B1 and B2 cells, and strikingly suppressed AAA growth in both models. B-cell depletion resulted in lower circulating IgM levels, but did not affect the levels of IgG or cytokine/chemokine levels. Although the total number of leukocyte remained unchanged in elastase-perfused aortas after anti-CD20 antibody treatment, the number of B-cell subtypes was significantly lower. Interestingly, plasmacytoid dendritic cells expressing the immunomodulatory enzyme indole 2,3-dioxygenase were detected in the aortas of B-cell-depleted mice. In accordance with an increase in indole 2,3-dioxygenase+ plasmacytoid dendritic cells, the number of regulatory T cells was higher, whereas the expression of proinflammatory genes was lower in aortas of B-cell-depleted mice. In a coculture model, the presence of B cells significantly lowered the number of indole 2,3-dioxygenase+ plasmacytoid dendritic cells without affecting total plasmacytoid dendritic cell number. The present results demonstrate that B-cell depletion protects mice from experimental AAA formation and promotes emergence of an immunosuppressive environment in aorta. © 2016 American Heart Association, Inc.
Dendritic Growth Morphologies in Al-Zn Alloys—Part I: X-ray Tomographic Microscopy
NASA Astrophysics Data System (ADS)
Friedli, Jonathan; Fife, J. L.; di Napoli, P.; Rappaz, M.
2013-12-01
Upon solidification, most metallic alloys form dendritic structures that grow along directions corresponding to low index crystal axes, e.g., directions in fcc aluminum. However, recent findings[1,2] have shown that an increase in the zinc content in Al-Zn alloys continuously changes the dendrite growth direction from to in {100} planes. At intermediate compositions, between 25 wt pct and 55 wt pct Zn, dendrites and textured seaweeds were reported. The reason for this dendrite orientation transition is that this system exhibits a large solubility of zinc, a hexagonal metal, in the primary fcc aluminum phase, thus modifying its weak solid-liquid interfacial energy anisotropy. Owing to the complexity of the phenomenology, there is still no satisfactory theory that predicts all the observed microstructures. The current study is thus aimed at better understanding the formation of these structures. This is provided by the access to their 3D morphologies via synchrotron-based X-ray tomographic microscopy of quenched Bridgman solidified specimens in combination with the determination of the crystal orientation of the dendrites by electron-backscattered diffraction. Most interestingly, all alloys with intermediate compositions were shown to grow as seaweeds, constrained to grow mostly in a (001) symmetry plane, by an alternating growth direction mechanism. Thus, these structures are far from random and are considered less hierarchically ordered than common dendrites.
Gold dendrites Co-deposited with M13 virus as a biosensor platform for nitrite ions.
Seo, Yeji; Manivannan, Shanmugam; Kang, Inhak; Lee, Seung-Wuk; Kim, Kyuwon
2017-08-15
We developed a biosensor for nitrite ion on an electrode surface modified with M13 viruses and gold nanostructures. Gold dendritic nanostructures (Au-DNs) are electrochemically co-deposited from 4E peptides engineered M13 virus (M13 4E ) mixed electrolyte on to the ITO electrode. The M13 4E could specifically nucleate Au precursor (Gold (III) chloride), which enable the efficient growth of dendritic nanostructures, whereas such dendritic structures were not obtained in the presence of wild-type and Y3E peptides engineered M13 viruses. The structural features of the Au-DNs and their interfacing mechanism with ITO electrode are characterized by SEM, EDX and XRD analyses. The growth of Au-DNs at ITO electrode has been monitored by time dependent SEM study. The M13 4E induces the formation and plays a crucial role in shaping the dendritic morphology for Au. Biosensor electrode was constructed using Au-DNs modified electrode for nitrite ions and found improved sensitivity relative to the sensor electrode prepared from wild-type M13, Y3E peptides engineered M13 and without M13. Sensor electrode exhibited good selectivity toward target analyte from the possible interferences. Furthermore, 4E native peptides were used as additive to deposit Au nanostructures and it is compared with the structure and reactivity of the Au nanostructures prepared in the presence of M13 4E . Our novel biosensor fabrication can be extended to other metal and metal oxide nanostructures and its application might be useful to develop novel biosensor electrode for variety of biomolecules. Copyright © 2017 Elsevier B.V. All rights reserved.
Poudrier, J; Graber, P; Herren, S; Berney, C; Gretener, D; Kosco-Vilbois, M H; Gauchat, J F
2000-11-01
Responsiveness to IL-13 involves at least two chains, IL-4Ralpha and IL-13Ralpha1. Although mouse B cells express IL-4Ralpha, little is known about their expression of IL-13Ralpha chains. To investigate this topic further, we have generated a monoclonal antibody (C41) specific for murine IL-13Ralpha1. Using C41, IL-13Ralpha1 expression was detected on germinal center (GC) B cells by flow cytometry and immunohistochemistry. In addition, IL-13Ralpha1 was observed on follicular dendritic cells, but not interdigitating dendritic cells in the T cell areas. Furthermore, resting B cells also expressed IL-13Ralpha1, and in the presence of IL-13 produced increased amounts of IgM in response to in vitro CD40 stimulation. However, C41 was unable to neutralize this bioactivity. The distribution of IL-13Ralpha1 on murine B cells and during GC reactions suggests a role for IL-13 during B cell differentiation.
Silverman, A J; Hou-Yu, A; Zimmerman, E A
1983-05-01
The ultrastructure of the vasopressin neurons of the paraventricular nucleus of the hypothalamus was studied by immunocytochemical techniques. Tissue antigen was detected in unembedded tissue sections using a monoclonal antibody that recognizes vasopressin but not oxytocin or vasotocin. At the light-microscopic level, reaction product was seen to fill the cytoplasm of the neuron cell body as well as large portions of the dendrite and axon. Immunoreactive spines were seen on both somatic and dendritic surfaces and their presence was confirmed at the ultrastructural level. In the light-microscope, axonal processes do not have spines and are thinner and more varicose than dendritic processes. At the electron-microscopic level, both axons and dendrites of the vasopressin cells are filled with reactive neurosecretory granules. The presence of large numbers of these organelles made it difficult to distinguish proximal dendrites from Herring bodies (axonal swellings). At the ultrastructural level, reaction product was also observed in the cytoplasm of all segments of the vasopressin cells. The presence of reaction product outside of membranous compartments is undoubtably due to disruption of membranes by detergent treatment or exposure to basic pH. However, the staining procedure used did allow us to examine the synaptic input to the vasopressin cells. All portions of the vasopressin neuron receive a diverse innervation. The somata have synapses on their surfaces and on spines. These axo-somatic terminals are primarily, but not exclusively, symmetrical and the presynaptic elements contain spherical or elongate vesicles. On the dendrites, terminals again were observed on the surface or on spines. these axo-dendritic synapses were usually asymmetrical. The presynaptic elements contained clear spherical, elongate or pleomorphic vesicles. Occasional varicosities with dense-core granules were seen to make en passant contacts with dendrites; these contacts did not have obvious membrane specializations. Input to vasopressin axons was studied both along the paraventricular-neurohypophysial tract and in the median eminence. Vasopressin axons receive a synaptic input (axo-axonic), predominately of the asymmetric variety with clear, spherical vesicles in the presynaptic element. These findings demonstrate that the vasopressin neurons of the paraventricular nucleus receive a diverse innervation.
NASA Astrophysics Data System (ADS)
Wu, Hua; Briscoe, Wuge H.
2018-04-01
We report polycrystalline residual patterns with dendritic micromorphologies upon fast evaporation of a mixed-solvent sessile drop containing reactive ZnO nanoparticles. The molecular and particulate species generated in situ upon evaporative drying collude with and modify the Marangoni solvent flows and Bénard-Marangoni instabilities, as they undergo self-assembly and self-organization under conditions far from equilibrium, leading to the ultimate hierarchical central cellular patterns surrounded by a peripheral coffee ring upon drying.
Zheng, Yi; Hu, Bicheng; Xie, Shenggao; Chen, Xiaofan; Hu, Yuqian; Chen, Wanping; Li, Shanshan; Hu, Bo
2017-05-01
Cervical cancer constitutes a major problem in women's health worldwide, but the efficacy of the standard therapy is unsatisfactory. Cytokine-induced killer (CIK) cells exhibit antitumor activity against a variety of malignancies in preclinical models and have proven safe and effective in clinical trials. However, current CIK therapy has limitations and needs to be improved to meet the clinical requirements. The aim of this study was to investigate whether suppressing the expression of cytokine signaling 1 (SOCS1) in dendritic cells (DCs) can shorten in vitro CIK culture time and improve its antitumor efficacy. DCs were pre-cultured for 3 days before infected with adenovirus-mediated-SOCS1 short hairpin RNA (Ad-sh-SOCS1) and pulsed with CTL epitope peptides E7. The DCs infected by Ad-sh-SOCS1 (gmDCs) and CIKs were then co-cultured for 5 or 9 days, and CIK proliferation and antitumor activity were evaluated both in vitro and in vivo. Our data show that gmDCs significantly stimulated the expansion of co-cultured CIKs and increased the secretion of interferon-γ and interleukin-12. Moreover, gmDCs-activated CIKs showed higher cytotoxic activity against TC-1 cells expressing HPV16E6 and E7. Our in vivo study showed that the mice infused with gmDCs-activated CIKs on day 10 had an increased survival rate and prolonged survival time compared with the controls. Taken together, these results indicate that DCs modified by adenovirus-mediated SOCS1 silencing can promote CIKs expansion and enhance the efficacy of antitumor immunotherapy both in vitro and in vivo, which represents an effective therapeutic approach for cervical cancer and other tumors. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Effector and regulatory dendritic cells display distinct patterns of miRNA expression.
Lombardi, Vincent; Luce, Sonia; Moussu, Hélène; Morizur, Lise; Gueguen, Claire; Neukirch, Catherine; Chollet-Martin, Sylvie; Mascarell, Laurent; Aubier, Michel; Baron-Bodo, Véronique; Moingeon, Philippe
2017-09-01
MicroRNAs (miRNAs) contribute to the regulation of dendritic cell (DC) polarization, thereby influencing the balance of adaptive immune responses. Herein, we studied the expression of miRNAs in polarized DCs and analyzed whether expression of these miRNAs could be associated with allergic rhinitis and allergen immunotherapy (AIT) outcome. Using specific culture conditions, we differentiated immature human monocyte-derived DCs into DC1, DC2, and DCreg subsets (supporting the differentiation of T H 1, T H 2 or regulatory T cells, respectively). Profiling of miRNA expression was performed in these DC subpopulations using microarrays. Levels of miRNAs specific for polarized DCs were then evaluated in a cohort of 58 patients with allergic rhinitis and 25 non-allergic controls, as well as in samples from 30 subjects treated with sublingual grass pollen tablets or placebo for four months. We successfully identified 16 miRNAs differentially regulated between immature DCs, DC1, DC2, and DCreg cells. In allergic rhinoconjunctivitis patients, the expression of two of those miRNAs (miR-132 and miR-155), was down-regulated compared to non-allergic individuals. However, the levels of these miRNAs were not significantly modified following four months of grass pollen immunotherapy. Studying polarized DCs and clinical samples from subjects with or without allergic rhinoconjunctivitis, we demonstrated that the expression of two miRNAs linked to effector DCs (i.e., DC1 and/or DC2 cells), was reduced in the blood of patients with allergic rhinoconjunctivitis. Nevertheless, these miRNAs did not represent relevant biomarkers to predict or follow-up AIT efficacy. © 2017 The Authors. Immunity, Inflammation and Disease Published by John Wiley & Sons Ltd.
Effector and regulatory dendritic cells display distinct patterns of miRNA expression
Luce, Sonia; Moussu, Hélène; Morizur, Lise; Gueguen, Claire; Neukirch, Catherine; Chollet‐Martin, Sylvie; Mascarell, Laurent; Aubier, Michel; Baron‐Bodo, Véronique; Moingeon, Philippe
2017-01-01
Abstract Introduction MicroRNAs (miRNAs) contribute to the regulation of dendritic cell (DC) polarization, thereby influencing the balance of adaptive immune responses. Herein, we studied the expression of miRNAs in polarized DCs and analyzed whether expression of these miRNAs could be associated with allergic rhinitis and allergen immunotherapy (AIT) outcome. Method Using specific culture conditions, we differentiated immature human monocyte‐derived DCs into DC1, DC2, and DCreg subsets (supporting the differentiation of TH1, TH2 or regulatory T cells, respectively). Profiling of miRNA expression was performed in these DC subpopulations using microarrays. Levels of miRNAs specific for polarized DCs were then evaluated in a cohort of 58 patients with allergic rhinitis and 25 non‐allergic controls, as well as in samples from 30 subjects treated with sublingual grass pollen tablets or placebo for four months. Results We successfully identified 16 miRNAs differentially regulated between immature DCs, DC1, DC2, and DCreg cells. In allergic rhinoconjunctivitis patients, the expression of two of those miRNAs (miR‐132 and miR‐155), was down‐regulated compared to non‐allergic individuals. However, the levels of these miRNAs were not significantly modified following four months of grass pollen immunotherapy. Conclusions Studying polarized DCs and clinical samples from subjects with or without allergic rhinoconjunctivitis, we demonstrated that the expression of two miRNAs linked to effector DCs (i.e., DC1 and/or DC2 cells), was reduced in the blood of patients with allergic rhinoconjunctivitis. Nevertheless, these miRNAs did not represent relevant biomarkers to predict or follow‐up AIT efficacy. PMID:28497578
CARMA3 Is Critical for the Initiation of Allergic Airway Inflammation.
Causton, Benjamin; Ramadas, Ravisankar A; Cho, Josalyn L; Jones, Khristianna; Pardo-Saganta, Ana; Rajagopal, Jayaraj; Xavier, Ramnik J; Medoff, Benjamin D
2015-07-15
Innate immune responses to allergens by airway epithelial cells (AECs) help initiate and propagate the adaptive immune response associated with allergic airway inflammation in asthma. Activation of the transcription factor NF-κB in AECs by allergens or secondary mediators via G protein-coupled receptors (GPCRs) is an important component of this multifaceted inflammatory cascade. Members of the caspase recruitment domain family of proteins display tissue-specific expression and help mediate NF-κB activity in response to numerous stimuli. We have previously shown that caspase recruitment domain-containing membrane-associated guanylate kinase protein (CARMA)3 is specifically expressed in AECs and mediates NF-κB activation in these cells in response to stimulation with the GPCR agonist lysophosphatidic acid. In this study, we demonstrate that reduced levels of CARMA3 in normal human bronchial epithelial cells decreases the production of proasthmatic mediators in response to a panel of asthma-relevant GPCR ligands such as lysophosphatidic acid, adenosine triphosphate, and allergens that activate GPCRs such as Alternaria alternata and house dust mite. We then show that genetically modified mice with CARMA3-deficient AECs have reduced airway eosinophilia and proinflammatory cytokine production in a murine model of allergic airway inflammation. Additionally, we demonstrate that these mice have impaired dendritic cell maturation in the lung and that dendritic cells from mice with CARMA3-deficient AECs have impaired Ag processing. In conclusion, we show that AEC CARMA3 helps mediate allergic airway inflammation, and that CARMA3 is a critical signaling molecule bridging the innate and adaptive immune responses in the lung. Copyright © 2015 by The American Association of Immunologists, Inc.
2'-O-methyl-modified RNAs act as TLR7 antagonists.
Robbins, Marjorie; Judge, Adam; Liang, Lisa; McClintock, Kevin; Yaworski, Ed; MacLachlan, Ian
2007-09-01
RNA molecules such as single-stranded RNA (ssRNA) and small interfering RNA (siRNA) duplexes induce Toll-like receptor (TLR)-mediated immune stimulation after intracellular delivery. We have previously shown that selective incorporation of 2'-O-methyl (2'OMe) residues into siRNA abrogates cytokine production without reduction of gene silencing activity. Here we show that 2'OMe-modified RNA acts as a potent inhibitor of RNA-mediated cytokine induction in both human and murine systems. This activity does not require the direct incorporation of 2'OMe nucleotides into the immunostimulatory RNA or that the 2'OMe nucleotide-containing RNA be annealed as a complementary strand to form a duplex. Our results indicate that 2'OMe RNA acts as a potent antagonist of immunostimulatory RNA. We further show that 2'OMe RNA is able significantly to reduce both interferon-alpha (IFN-alpha) and interleukin-6 (IL-6) induction by the small-molecule TLR7 agonist loxoribine in human peripheral blood mononuclear cells (human PBMCs), in murine Flt3L dendritic cells (Flt3L DCs), and in vivo in mice. These results indicate that 2'OMe-modified RNA may have utility as an inhibitor of TLR7 with potential applications in the treatment of inflammatory and autoimmune diseases that involve TLR7-mediated immune stimulation.
Chen, Yan; Zhang, Jin; Lu, Yong; Wang, Libo
2015-01-01
Bronchial asthma is a chronic airway inflammatory condition with high morbidity, and effective treatments for asthma are limited. Allergen-specific immunotherapy can only induce peripheral immune tolerance and is not sustainable. Exploring new therapeutic strategies is of great clinical importance. Recombinant adenovirus (rAdV) was used as a vector to make cells expressing cytotoxic T lymphocyte-associated antigen-4-immunoglobulin (CTLA4Ig) a soluble CTLA4 immunoglobulin fusion protein. Dendritic cells (DCs) were modified using the rAdVs together with allergens. Then these modified DCs were transplanted to mice before allergen sensitization. The persistence and specificity of immune tolerance were evaluated in mice challenged with asthma allergens at 3 and 7 months. DCs modified by CTLA4Ig showed increased IL-10 secretion, decreased IL-12 secretion, and T cell stimulation in vitro. Mice treated with these DCs in the early neonatal period developed tolerance against the allergens that were used to induce asthma in the adult stage. Asthma symptoms, lung damage, airway reactivity, and inflammatory response all improved. Humoral immunity indices showed that this therapeutic strategy strongly suppressed mice immune responses and was maintained for as long as 7 months. Furthermore, allergen cross-sensitization and challenge experiments demonstrated that this immune tolerance was allergen-specific. Treatment with CTLA4Ig modified DCs in the early neonatal period, inducing persistent and allergen-specific immune tolerance to asthma in adult mice. Our results suggest that it may be possible to develop a vaccine for asthma. PMID:25860995
Synthetic and biogenic magnetite nanoparticles for tracking of stem cells and dendritic cells
NASA Astrophysics Data System (ADS)
Schwarz, Sebastian; Fernandes, Fabiana; Sanroman, Laura; Hodenius, Michael; Lang, Claus; Himmelreich, Uwe; Schmitz-Rode, Thomas; Schueler, Dirk; Hoehn, Mathias; Zenke, Martin; Hieronymus, Thomas
2009-05-01
Accurate delivery of cells to target organs is critical for success of cell-based therapies with stem cells or immune cells such as antigen-presenting dendritic cells (DC). Labeling with contrast agents before implantation provides a powerful means for monitoring cellular migration using magnetic resonance imaging (MRI). In this study, we investigated the uptake of fully synthesized or bacterial magnetic nanoparticles (MNPs) into hematopoietic Flt3 + stem cells and DC from mouse bone marrow. We show that (i) uptake of both synthetic and biogenic nanoparticles into cells endow magnetic activity and (ii) low numbers of MNP-loaded cells are readily detected by MRI.
Differential excitability and modulation of striatal medium spiny neuron dendrites
Day, Michelle; Wokosin, David; Plotkin, Joshua L.; Tian, Xinyoung; Surmeier, D. James
2011-01-01
The loss of striatal dopamine (DA) in Parkinson's disease (PD) models triggers a cell-type specific reduction in the density of dendritic spines in D2 receptor-expressing striatopallidal medium spiny neurons (D2 MSNs). How the intrinsic properties of MSN dendrites, where the vast majority of DA receptors are found, contribute to this adaptation is not clear. To address this question, two-photon laser scanning microscopy (2PLSM) was performed in patch-clamped mouse MSNs identified in striatal slices by expression of green fluorescent protein (eGFP) controlled by DA receptor promoters. These studies revealed that single back-propagating action potentials (bAP) produced more reliable elevations in cytosolic Ca2+ concentration at distal dendritic locations in D2 MSNs than at similar locations in D1 receptor-expressing striatonigral MSNs (D1 MSNs). In both cell types, the dendritic Ca2+ entry elicited by bAPs was enhanced by pharmacological blockade of Kv4, but not Kv1 K+ channels. Local application of DA depressed dendritic bAP-evoked Ca2+ transients, whereas application of ACh increased these Ca2+ transients in D2 MSNs—but not in D1 MSNs. Following DA depletion, bAP-evoked Ca2+ transients were enhanced in distal dendrites and spines in D2 MSNs. Taken together, these results suggest that normally D2 MSN dendrites are more excitable than those of D1 MSNs and that DA depletion exaggerates this asymmetry, potentially contributing to adaptations in PD models. PMID:18987196
Empowering gamma delta T cells with antitumor immunity by dendritic cell-based immunotherapy
Van Acker, Heleen H; Anguille, Sébastien; Van Tendeloo, Viggo F; Lion, Eva
2015-01-01
Gamma delta (γδ) T cells are the all-rounders of our immune-system with their major histocompatibility complex-unrestricted cytotoxicity, capacity to secrete immunosti-mulatory cytokines and ability to promote the generation of tumor antigen-specific CD8+ and CD4+ T cell responses. Dendritic cell (DC)-based vaccine therapy has the prospective to harness these unique features of the γδ T cells in the fight against cancer. In this review, we will discuss our current knowledge on DC-mediated γδ T cell activation and related opportunities for tumor immunologists. PMID:26405575
It's Lonely at the Top: Winning Climbing Fibers Ascend Dendrites Solo
Draft, Ryan W.; Lichtman, Jeff W.
2009-01-01
In mammals, climbing fiber axons compete for sole innervation at each Purkinje cell. At the same time, synapses disappear from Purkinje somata and appear in great numbers on the dendrites. In this issue of Neuron, Hashimoto et al. show that, by the time climbing fibers ascend the dendrites, the winner and losers are already decided. PMID:19607787
Slowing down light using a dendritic cell cluster metasurface waveguide
Fang, Z. H.; Chen, H.; Yang, F. S.; Luo, C. R.; Zhao, X. P.
2016-01-01
Slowing down or even stopping light is the first task to realising optical information transmission and storage. Theoretical studies have revealed that metamaterials can slow down or even stop light; however, the difficulty of preparing metamaterials that operate in visible light hinders progress in the research of slowing or stopping light. Metasurfaces provide a new opportunity to make progress in such research. In this paper, we propose a dendritic cell cluster metasurface consisting of dendritic structures. The simulation results show that dendritic structure can realise abnormal reflection and refraction effects. Single- and double-layer dendritic metasurfaces that respond in visible light were prepared by electrochemical deposition. Abnormal Goos-Hänchen (GH) shifts were experimentally obtained. The rainbow trapping effect was observed in a waveguide constructed using the dendritic metasurface sample. The incident white light was separated into seven colours ranging from blue to red light. The measured transmission energy in the waveguide showed that the energy escaping from the waveguide was zero at the resonant frequency of the sample under a certain amount of incident light. The proposed metasurface has a simple preparation process, functions in visible light, and can be readily extended to the infrared band and communication wavelengths. PMID:27886279
Input integration around the dendritic branches in hippocampal dentate granule cells.
Kamijo, Tadanobu Chuyo; Hayakawa, Hirofumi; Fukushima, Yasuhiro; Kubota, Yoshiyuki; Isomura, Yoshikazu; Tsukada, Minoru; Aihara, Takeshi
2014-08-01
Recent studies have shown that the dendrites of several neurons are not simple translators but are crucial facilitators of excitatory postsynaptic potential (EPSP) propagation and summation of synaptic inputs to compensate for inherent voltage attenuation. Granule cells (GCs)are located at the gateway for valuable information arriving at the hippocampus from the entorhinal cortex. However, the underlying mechanisms of information integration along the dendrites of GCs in the hippocampus are still unclear. In this study, we investigated the input integration around dendritic branches of GCs in the rat hippocampus. We applied differential spatiotemporal stimulations to the dendrites using a high-speed glutamate-uncaging laser. Our results showed that when two sites close to and equidistant from a branching point were simultaneously stimulated, a nonlinear summation of EPSPs was observed at the soma. In addition, nonlinear summation (facilitation) depended on the stimulus location and was significantly blocked by the application of a voltage-dependent Ca(2+) channel antagonist. These findings suggest that the nonlinear summation of EPSPs around the dendritic branches of hippocampal GCs is a result of voltage-dependent Ca(2+) channel activation and may play a crucial role in the integration of input information.
Francischetti, Ivo M B; Oliveira, Carlo J; Ostera, Graciela R; Yager, Stephanie B; Debierre-Grockiego, Françoise; Carregaro, Vanessa; Jaramillo-Gutierrez, Giovanna; Hume, Jen C C; Jiang, Lubin; Moretz, Samuel E; Lin, Christina K; Ribeiro, José M C; Long, Carole A; Vickers, Brandi K; Schwarz, Ralph T; Seydel, Karl B; Iacobelli, Massimo; Ackerman, Hans C; Srinivasan, Prakash; Gomes, Regis B; Wang, Xunde; Monteiro, Robson Q; Kotsyfakis, Michail; Sá-Nunes, Anderson; Waisberg, Michael
2012-03-01
The coagulation-inflammation cycle has been implicated as a critical component in malaria pathogenesis. Defibrotide (DF), a mixture of DNA aptamers, displays anticoagulant, anti-inflammatory, and endothelial cell (EC)-protective activities and has been successfully used to treat comatose children with veno-occlusive disease. DF was investigated here as a drug to treat cerebral malaria. DF blocks tissue factor expression by ECs incubated with parasitized red blood cells and attenuates prothrombinase activity, platelet aggregation, and complement activation. In contrast, it does not affect nitric oxide bioavailability. We also demonstrated that Plasmodium falciparum glycosylphosphatidylinositol (Pf-GPI) induces tissue factor expression in ECs and cytokine production by dendritic cells. Notably, dendritic cells, known to modulate coagulation and inflammation systemically, were identified as a novel target for DF. Accordingly, DF inhibits Toll-like receptor ligand-dependent dendritic cells activation by a mechanism that is blocked by adenosine receptor antagonist (8-p-sulfophenyltheophylline) but not reproduced by synthetic poly-A, -C, -T, and -G. These results imply that aptameric sequences and adenosine receptor mediate dendritic cells responses to the drug. DF also prevents rosetting formation, red blood cells invasion by P. falciparum and abolishes oocysts development in Anopheles gambiae. In a murine model of cerebral malaria, DF affected parasitemia, decreased IFN-γ levels, and ameliorated clinical score (day 5) with a trend for increased survival. Therapeutic use of DF in malaria is proposed.
Krey, Gesa; Frank, Pierre; Shaikly, Valerie; Barrientos, Gabriela; Cordo-Russo, Rosalia; Ringel, Frauke; Moschansky, Petra; Chernukhin, Igor V; Metodiev, Metodi; Fernández, Nelson; Klapp, Burghard F; Arck, Petra C; Blois, Sandra M
2008-09-01
Implantation of mammalian embryos into their mother's uterus ensures optimal nourishment and protection throughout development. Complex molecular interactions characterize the implantation process, and an optimal synchronization of the components of this embryo-maternal dialogue is crucial for a successful reproductive outcome. In the present study, we investigated the role of dendritic cells (DC) during implantation process using a transgenic mouse system (DTRtg) that allows transient depletion of CD11c+ cells in vivo through administration of diphtheria toxin. We observed that DC depletion impairs the implantation process, resulting in a reduced breeding efficiency. Furthermore, the maturity of uterine natural killer cells at dendritic cell knockout (DCKO) implantation sites was affected as well; as demonstrated by decreased perforin expression and reduced numbers of periodic-acid-Schiff (PAS)-positive cells. This was accompanied by disarrangements in decidual vascular development. In the present study, we were also able to identify a novel DC-dependent protein, phosphatidylinositol transfer protein beta (PITPbeta), involved in implantation and trophoblast development using a proteomic approach. Indeed, DCKO mice exhibited substantial anomalies in placental development, including hypocellularity of the spongiotrophoblast and labyrinthine layers and reduced numbers of trophoblast giant cells. Giant cells also down-regulated their expression of two characteristic markers of trophoblast differentiation, placental lactogen 1 and proliferin. In view of these findings, dendritic cells emerge as possible modulators in the orchestration of events leading to the establishment and maintenance of pregnancy.
Shamji, M H; Bellido, V; Scadding, G W; Layhadi, J A; Cheung, D K M; Calderon, M A; Asare, A; Gao, Z; Turka, L A; Tchao, N; Togias, A; Phippard, D; Durham, S R
2015-02-01
Several studies have demonstrated the time course of inflammatory mediators in nasal fluids following nasal allergen challenge (NAC), whereas the effects of NAC on cells in the periphery are unknown. We examined the time course of effector cell markers (for basophils, dendritic cells and T cells) in peripheral blood after nasal grass pollen allergen challenge. Twelve participants with seasonal allergic rhinitis underwent a control (diluent) challenge followed by NAC after an interval of 14 days. Nasal symptoms and peak nasal inspiratory flow (PNIF) were recorded along with peripheral basophil, T-cell and dendritic cell responses (flow cytometry), T-cell proliferative responses (thymidine incorporation), and cytokine expression (FluoroSpot assay). Robust increases in nasal symptoms and decreases in PNIF were observed during the early (0-1 h) response and modest significant changes during the late (1-24 h) response. Sequential peaks in peripheral blood basophil activation markers were observed (CD107a at 3 h, CD63 at 6 h, and CD203c(bright) at 24 h). T effector/memory cells (CD4(+) CD25(lo) ) were increased at 6 h and accompanied by increases in CD80(+) and CD86(+) plasmacytoid dendritic cells (pDCs). Ex vivo grass antigen-driven T-cell proliferative responses and the frequency of IL-4(+) CD4(+) T cells were significantly increased at 6 h after NAC when compared to the control day. Basophil, T-cell, and dendritic cell activation increased the frequency of allergen-driven IL-4(+) CD4(+) T cells, and T-cell proliferative responses are detectable in the periphery after NAC. These data confirm systemic cellular activation following a local nasal provocation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Dantoft, Widad; Martínez-Vicente, Pablo; Jafali, James; Pérez-Martínez, Lara; Martin, Kim; Kotzamanis, Konstantinos; Craigon, Marie; Auer, Manfred; Young, Neil T.; Walsh, Paul; Marchant, Arnaud; Angulo, Ana; Forster, Thorsten; Ghazal, Peter
2017-01-01
Neonates and especially premature infants are highly susceptible to infection but still can have a remarkable resilience that is poorly understood. The view that neonates have an incomplete or deficient immune system is changing. Human neonatal studies are challenging, and elucidating host protective responses and underlying cognate pathway biology, in the context of viral infection in early life, remains to be fully explored. In both resource rich and poor settings, human cytomegalovirus (HCMV) is the most common cause of congenital infection. By using unbiased systems analyses of transcriptomic resources for HCMV neonatal infection, we find the systemic response of a preterm congenital HCMV infection, involves a focused IFN regulatory response associated with dendritic cells. Further analysis of transcriptional-programming of neonatal dendritic cells in response to HCMV infection in culture revealed an early dominant IFN-chemokine regulatory subnetworks, and at later times the plasticity of pathways implicated in cell-cycle control and lipid metabolism. Further, we identify previously unknown suppressed networks associated with infection, including a select group of GPCRs. Functional siRNA viral growth screen targeting 516-GPCRs and subsequent validation identified novel GPCR-dependent antiviral (ADORA1) and proviral (GPR146, RGS16, PTAFR, SCTR, GPR84, GPR85, NMUR2, FZ10, RDS, CCL17, and SORT1) roles. By contrast a gene family cluster of protocadherins is significantly differentially induced in neonatal cells, suggestive of possible immunomodulatory roles. Unexpectedly, programming responses of adult and neonatal dendritic cells, upon HCMV infection, demonstrated comparable quantitative and qualitative responses showing that functionally, neonatal dendritic cell are not overly compromised. However, a delay in responses of neonatal cells for IFN subnetworks in comparison with adult-derived cells are notable, suggestive of subtle plasticity differences. These findings support a set-point control mechanism rather than immaturity for explaining not only neonatal susceptibility but also resilience to infection. In summary, our findings show that neonatal HCMV infection leads to a highly plastic and functional robust programming of dendritic cells in vivo and in vitro. In comparison with adults, a minimal number of subtle quantitative and temporal differences may contribute to variability in host susceptibility and resilience, in a context dependent manner. PMID:28993767
Dantoft, Widad; Martínez-Vicente, Pablo; Jafali, James; Pérez-Martínez, Lara; Martin, Kim; Kotzamanis, Konstantinos; Craigon, Marie; Auer, Manfred; Young, Neil T; Walsh, Paul; Marchant, Arnaud; Angulo, Ana; Forster, Thorsten; Ghazal, Peter
2017-01-01
Neonates and especially premature infants are highly susceptible to infection but still can have a remarkable resilience that is poorly understood. The view that neonates have an incomplete or deficient immune system is changing. Human neonatal studies are challenging, and elucidating host protective responses and underlying cognate pathway biology, in the context of viral infection in early life, remains to be fully explored. In both resource rich and poor settings, human cytomegalovirus (HCMV) is the most common cause of congenital infection. By using unbiased systems analyses of transcriptomic resources for HCMV neonatal infection, we find the systemic response of a preterm congenital HCMV infection, involves a focused IFN regulatory response associated with dendritic cells. Further analysis of transcriptional-programming of neonatal dendritic cells in response to HCMV infection in culture revealed an early dominant IFN-chemokine regulatory subnetworks, and at later times the plasticity of pathways implicated in cell-cycle control and lipid metabolism. Further, we identify previously unknown suppressed networks associated with infection, including a select group of GPCRs. Functional siRNA viral growth screen targeting 516-GPCRs and subsequent validation identified novel GPCR-dependent antiviral (ADORA1) and proviral (GPR146, RGS16, PTAFR, SCTR, GPR84, GPR85, NMUR2, FZ10, RDS, CCL17, and SORT1) roles. By contrast a gene family cluster of protocadherins is significantly differentially induced in neonatal cells, suggestive of possible immunomodulatory roles. Unexpectedly, programming responses of adult and neonatal dendritic cells, upon HCMV infection, demonstrated comparable quantitative and qualitative responses showing that functionally, neonatal dendritic cell are not overly compromised. However, a delay in responses of neonatal cells for IFN subnetworks in comparison with adult-derived cells are notable, suggestive of subtle plasticity differences. These findings support a set-point control mechanism rather than immaturity for explaining not only neonatal susceptibility but also resilience to infection. In summary, our findings show that neonatal HCMV infection leads to a highly plastic and functional robust programming of dendritic cells in vivo and in vitro . In comparison with adults, a minimal number of subtle quantitative and temporal differences may contribute to variability in host susceptibility and resilience, in a context dependent manner.
Hammad, Hamida; Smits, Hermelijn H; Ratajczak, Céline; Nithiananthan, Asokananthan; Wierenga, Eddy A; Stewart, Geoffrey A; Jacquet, Alain; Tonnel, Andre-Bernard; Pestel, Joël
2003-01-01
Dendritic cells (DC) are potent antigen - presenting cells that can orientate the immune response towards a Th1 or a Th2 type. DC produce chemokines that are involved in the recruitment of either Th1 cells, such as IP10 (CXCL10), Th2 cells such as TARC (CCL17) and MDC (CCL22), or non-polarized T cells such as RANTES (CCL5) and MIP-lalpha (CCL3). We investigated whether monocyte-derived DC (MD-DC) generated from healthy donors or from patients sensitive to Dermatophagoides pteronyssinus (Dpt) and exposed to the cysteine-protease Der p 1(allergen of Dpt), could upregulate the expression of chemokines involved in type 1 or type 2 T cell recruitment. MD-DC were pulsed with either Der p 1 or with LPS as the control and the chemokines produced were evaluated using ELISA and chemotaxis assays. Der p 1-pulsed DC from allergic patients showed increased TARC (CCL17) and MDC (CCL22) production without modifying IP-10 (CXCL10) release. Der p 1-pulsed DC from healthy donors showed only increased IP-10 (CXCL10) secretion. RANTES (CCL5) and MIP-lalpha (CCL3) production were similarly increased when DC were from healthy or allergic donors. The selective Th2 clone recruitment activity of supernatants from Der p 1-pulsed DC of allergic patients was inhibited by anti-TARC (CCL17) and anti-MDC (CCL22) neutralizing Abs. By using anti-IP10 (CXCL10) blocking Abs, supernatants of Der p 1-pulsed DC from healthy donors were shown to be involved in the recruitment of Th1 cells. These results suggest that in allergic patients exposed to house dust mites, DC may favour the exacerbation of the Th2 response via the increase in type 2 chemokine production. Copyright John Libbey Eurotext 2003.
NASA Astrophysics Data System (ADS)
Mirsafianf, Atefeh S.; Isfahani, Shirin N.; Kasaei, Shohreh; Mobasheri, Hamid
Here we present an approach for processing neural cells images to analyze their growth process in culture environment. We have applied several image processing techniques for: 1- Environmental noise reduction, 2- Neural cells segmentation, 3- Neural cells classification based on their dendrites' growth conditions, and 4- neurons' features Extraction and measurement (e.g., like cell body area, number of dendrites, axon's length, and so on). Due to the large amount of noise in the images, we have used feed forward artificial neural networks to detect edges more precisely.
Designer dendritic cells for tolerance induction: guided not misguided missiles.
Hackstein, H; Morelli, A E; Thomson, A W
2001-08-01
Dendritic cells (DCs) are professional antigen-presenting cells (APCs) that play crucial roles as initiators and modulators of adaptive immune responses. Although DC-based vaccines have been utilized successfully to generate cytolytic T-cell activity against tumor antigens (Ags), evidence has accumulated that DCs also have potent capabilities to tolerize T cells in an Ag-specific manner. DCs cultured in the laboratory can suppress auto- or alloimmunity. Current and prospective strategies to promote this inherent tolerogenic potential of DCs might prove to be important for the therapy of transplant rejection and autoimmune diseases.
Interactions between human mesenchymal stem cells and natural killer cells.
Sotiropoulou, Panagiota A; Perez, Sonia A; Gritzapis, Angelos D; Baxevanis, Constantin N; Papamichail, Michael
2006-01-01
Mesenchymal stem cells (MSCs) are multipotent progenitor cells representing an attractive therapeutic tool for regenerative medicine. They possess unique immunomodulatory properties, being capable of suppressing T-cell responses and modifying dendritic cell differentiation, maturation, and function, whereas they are not inherently immunogenic, failing to induce alloreactivity to T cells and freshly isolated natural killer (NK) cells. To clarify the generation of host immune responses to implanted MSCs in tissue engineering and their potential use as immunosuppressive elements, the effect of MSCs on NK cells was investigated. We demonstrate that at low NK-to-MSC ratios, MSCs alter the phenotype of NK cells and suppress proliferation, cytokine secretion, and cyto-toxicity against HLA-class I- expressing targets. Some of these effects require cell-to-cell contact, whereas others are mediated by soluble factors, including transforming growth factor-beta1 and prostaglandin E2, suggesting the existence of diverse mechanisms for MSC-mediated NK-cell suppression. On the other hand, MSCs are susceptible to lysis by activated NK cells. Overall, these data improve our knowledge of interactions between MSCs and NK cells and consequently of their effect on innate immune responses and their contribution to the regulation of adaptive immunity, graft rejection, and cancer immunotherapy.
Prominent role for plasmacytoid dendritic cells in mucosal T cell-independent IgA induction.
Tezuka, Hiroyuki; Abe, Yukiko; Asano, Jumpei; Sato, Taku; Liu, Jiajia; Iwata, Makoto; Ohteki, Toshiaki
2011-02-25
Although both conventional dendritic cells (cDCs) and plasmacytoid dendritic cells (pDCs) are present in the gut-associated lymphoid tissues (GALT), the roles of pDCs in the gut remain largely unknown. Here we show a critical role for pDCs in T cell-independent (TI) IgA production by B cells in the GALT. When pDCs of the mesenteric lymph nodes (MLNs) and Peyer's patches (PPs) (which are representative GALT) were cultured with naive B cells to induce TI IgA class switch recombination (CSR), IgA production was substantially higher than in cocultures of these cells with cDCs. IgA production was dependent on APRIL and BAFF production by pDCs. Importantly, pDC expression of APRIL and BAFF was dependent on stromal cell-derived type I IFN signaling under steady-state conditions. Our findings provide insight into the molecular basis of pDC conditioning to induce mucosal TI IgA production, which may lead to improvements in vaccination strategies and treatment for mucosal-related disorders. Copyright © 2011 Elsevier Inc. All rights reserved.
Disarmed by density: A glycolytic break for immunostimulatory dendritic cells?
Nasi, Aikaterini; Rethi, Bence
2013-12-01
We observed a cell concentration-dependent differentiation switch among cultured dendritic cells (DCs) triggered by lactic acid, a product of glycolytic metabolism. In particular, while interleukin (IL)-12, IL-23, and tumor necrosis factor α (TNFα)-producing, migratory DCs developed in sparse cultures, IL-10-producing, non-migratory DCs differentiated in dense cultures. This points to a novel opportunity for tailoring DC-based anticancer therapies through metabolism modulation in developing DCs.
Banerjee, Shashwat S; Jalota-Badhwar, Archana; Satavalekar, Sneha D; Bhansali, Sujit G; Aher, Naval D; Mascarenhas, Russel R; Paul, Debjani; Sharma, Somesh; Khandare, Jayant J
2013-06-01
A multicomponent magneto-dendritic nanosystem (MDNS) is designed for rapid tumor cell targeting, isolation, and high-resolution imaging by a facile bioconjugation approach. The highly efficient and rapid-acting MDNS provides a convenient platform for simultaneous isolation and high-resolution imaging of tumor cells, potentially leading towards an early diagnosis of cancer. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Neuillé, Marion; Morgans, Catherine W.; Cao, Yan; Orhan, Elise; Michiels, Christelle; Sahel, José-Alain; Audo, Isabelle; Duvoisin, Robert M.; Martemyanov, Kirill A.; Zeitz, Christina
2016-01-01
Mutations in LRIT3 lead to complete congenital stationary night blindness (cCSNB). The exact role of LRIT3 in ON-bipolar cell signaling cascade remains to be elucidated. Recently, we have characterized a novel mouse model lacking Lrit3 (no b-wave 6, (Lrit3nob6/nob6)), which displays similar abnormalities as patients with cCSNB with LRIT3 mutations. Here we compare the localization of components of the ON-bipolar cell signaling cascade in wild-type and Lrit3nob6/nob6 retinal sections by immunofluorescence confocal microscopy. An anti-LRIT3 antibody was generated. Immunofluorescent staining of LRIT3 in wild-type mice revealed a specific punctate labeling in the outer plexiform layer (OPL), which was absent in Lrit3nob6/nob6 mice. LRIT3 did not colocalize with ribeye or calbindin but colocalized with mGluR6. TRPM1 staining was severely decreased at the dendritic tips of all depolarizing bipolar cells in Lrit3nob6/nob6 mice. mGluR6, GPR179, RGS7, RGS11 and Gβ5 immunofluorescence was absent at the dendritic tips of cone ON-bipolar cells in Lrit3nob6/nob6 mice, while it was present at the dendritic tips of rod bipolar cells. Furthermore, PNA labeling was severely reduced in the OPL in Lrit3nob6/nob6 mice. This study confirmed the localization of LRIT3 at the dendritic tips of depolarizing bipolar cells in mouse retina and demonstrated the dependence of TRPM1 localization on the presence of LRIT3. Since tested components of the ON-bipolar cell signaling cascade and PNA revealed disrupted localization, an additional function of LRIT3 in cone synapse formation is suggested. These results point to a possibly different regulation of the mGluR6 signaling cascade between rod and cone ON-bipolar cells. PMID:25997951
Conjunctival Primary Acquired Melanosis: Is It Time for a New Terminology?
Jakobiec, Frederick A
2016-02-01
To review the diagnostic categories of a group of conditions referred to as "primary acquired melanosis." Literature review on the subject and proposal of an alternative diagnostic schema with histopathologic and immunohistochemical illustrations. Standard hematoxylin-eosin-stained sections and immunohistochemical stains for MART-1, HMB-45, microphthalmia-associated transcription factor (MiTF), and Ki-67 for calculating the proliferation index are illustrated. "Melanosis" is an inadequate and misleading term because it does not distinguish between conjunctival intraepithelial melanin overproduction ("hyperpigmentation") and intraepithelial melanocytic proliferation. It is recommended that "intraepithelial melanocytic proliferation" be adopted for histopathologic diagnosis. Atypical proliferations are characterized either by bloated dendritic melanocytes with enlarged cell components (dendrites, cell bodies, and nuclei) or by epithelioid melanocytes without dendrites. Atypical polygonal or epithelioid pagetoid cells may reach higher levels of the epithelium beyond the basal layer. Immunohistochemistry defines the degree of melanocytic proliferation or the cellular shape (dendritic or nondendritic) (MART-1, HMB-45) or identifies the melanocytic nuclei (MiTF). Intraepithelial melanocytic proliferation without atypia represents increased numbers of normal-appearing dendritic melanocytes (hyperplasia or early neoplasia) that generally remain confined to the basal/basement membrane region. Intraepithelial nonproliferative melanocytic pigmentation signifies the usually small number of conjunctival basal dendritic melanocytes that synthesize increased amounts of melanin that is transferred to surrounding keratinocytes. All pre- and postoperative biopsies of flat conjunctival melanocytic disorders should be evaluated immunohistochemically if there is any question regarding atypicality. This should lead to a clearer microscopic descriptive diagnosis that is predicated on an analysis of the participating cell types and their architectural patterns. This approach is conducive to a better appreciation of features indicating when to intervene therapeutically. An accurate early diagnosis should forestall unnecessary later surgery. Copyright © 2016 Elsevier Inc. All rights reserved.
Random Positions of Dendritic Spines in Human Cerebral Cortex
Morales, Juan; Benavides-Piccione, Ruth; Dar, Mor; Fernaud, Isabel; Rodríguez, Angel; Anton-Sanchez, Laura; Bielza, Concha; Larrañaga, Pedro; DeFelipe, Javier
2014-01-01
Dendritic spines establish most excitatory synapses in the brain and are located in Purkinje cell's dendrites along helical paths, perhaps maximizing the probability to contact different axons. To test whether spine helixes also occur in neocortex, we reconstructed >500 dendritic segments from adult human cortex obtained from autopsies. With Fourier analysis and spatial statistics, we analyzed spine position along apical and basal dendrites of layer 3 pyramidal neurons from frontal, temporal, and cingulate cortex. Although we occasionally detected helical positioning, for the great majority of dendrites we could not reject the null hypothesis of spatial randomness in spine locations, either in apical or basal dendrites, in neurons of different cortical areas or among spines of different volumes and lengths. We conclude that in adult human neocortex spine positions are mostly random. We discuss the relevance of these results for spine formation and plasticity and their functional impact for cortical circuits. PMID:25057209
3D morphology-based clustering and simulation of human pyramidal cell dendritic spines.
Luengo-Sanchez, Sergio; Fernaud-Espinosa, Isabel; Bielza, Concha; Benavides-Piccione, Ruth; Larrañaga, Pedro; DeFelipe, Javier
2018-06-13
The dendritic spines of pyramidal neurons are the targets of most excitatory synapses in the cerebral cortex. They have a wide variety of morphologies, and their morphology appears to be critical from the functional point of view. To further characterize dendritic spine geometry, we used in this paper over 7,000 individually 3D reconstructed dendritic spines from human cortical pyramidal neurons to group dendritic spines using model-based clustering. This approach uncovered six separate groups of human dendritic spines. To better understand the differences between these groups, the discriminative characteristics of each group were identified as a set of rules. Model-based clustering was also useful for simulating accurate 3D virtual representations of spines that matched the morphological definitions of each cluster. This mathematical approach could provide a useful tool for theoretical predictions on the functional features of human pyramidal neurons based on the morphology of dendritic spines.
Active Dendrites Enhance Neuronal Dynamic Range
Gollo, Leonardo L.; Kinouchi, Osame; Copelli, Mauro
2009-01-01
Since the first experimental evidences of active conductances in dendrites, most neurons have been shown to exhibit dendritic excitability through the expression of a variety of voltage-gated ion channels. However, despite experimental and theoretical efforts undertaken in the past decades, the role of this excitability for some kind of dendritic computation has remained elusive. Here we show that, owing to very general properties of excitable media, the average output of a model of an active dendritic tree is a highly non-linear function of its afferent rate, attaining extremely large dynamic ranges (above 50 dB). Moreover, the model yields double-sigmoid response functions as experimentally observed in retinal ganglion cells. We claim that enhancement of dynamic range is the primary functional role of active dendritic conductances. We predict that neurons with larger dendritic trees should have larger dynamic range and that blocking of active conductances should lead to a decrease in dynamic range. PMID:19521531
Erythrocyte membrane based cationic polymer-mcDNA complexes as an efficient gene delivery system.
Huang, Ping; Zhao, Jing; Wei, Chiju; Hou, Xiaohu; Chen, Pingzhang; Tan, Yan; He, Cheng-Yi; Wang, Zhiyong; Chen, Zhi-Ying
2016-12-20
Gene therapy has great promise for the treatment of obtained and inherited serious diseases. However, the lack of safe and efficient gene delivery systems remains a barrier for their clinical application. Here, we reported a potential gene delivery vehicle composed of the erythrocyte membrane and cationic polymers, for example the XtremeGENE from Roche and the ε-caprolactone modified polyethylenimine. In addition to high efficiency, this system showed negligible cytotoxicity compared to the two cationic polymers alone in various cell lines, including human embryonic kidney cells (293T), human liver cancer cells (Huh7 and HepG2), murine dendritic cells (DC2.4) and human umbilical cord mesenchymal stem cells (Hu-MSCs). Moreover, the results of confocal laser scanning microscopy and flow cytometry suggested that the cell uptake of this gene vector was improved and might be introduced by the fusion interaction between the erythrocyte membrane and targeted cells.Thus, all the results revealed that the erythrocyte membrane based gene delivery system might be able to serve as an excellent gene delivery system.
Feng, Yuping; Wang, Jiao; Ling, Shixin; Li, Zhuo; Li, Mingsheng; Li, Qiongyi; Ma, Zongren; Yu, Sijiu
2014-01-01
The purpose of this study was to assess fetal bovine acellular dermal matrix as a scaffold for supporting the differentiation of bone marrow mesenchymal stem cells into neural cells following induction with neural differentiation medium. We performed long-term, continuous observation of cell morphology, growth, differentiation, and neuronal development using several microscopy techniques in conjunction with immunohistochemistry. We examined specific neuronal proteins and Nissl bodies involved in the differentiation process in order to determine the neuronal differentiation of bone marrow mesenchymal stem cells. The results show that bone marrow mesenchymal stem cells that differentiate on fetal bovine acellular dermal matrix display neuronal morphology with unipolar and bi/multipolar neurite elongations that express neuronal-specific proteins, including βIII tubulin. The bone marrow mesenchymal stem cells grown on fetal bovine acellular dermal matrix and induced for long periods of time with neural differentiation medium differentiated into a multilayered neural network-like structure with long nerve fibers that was composed of several parallel microfibers and neuronal cells, forming a complete neural circuit with dendrite-dendrite to axon-dendrite to dendrite-axon synapses. In addition, growth cones with filopodia were observed using scanning electron microscopy. Paraffin sectioning showed differentiated bone marrow mesenchymal stem cells with the typical features of neuronal phenotype, such as a large, round nucleus and a cytoplasm full of Nissl bodies. The data suggest that the biological scaffold fetal bovine acellular dermal matrix is capable of supporting human bone marrow mesenchymal stem cell differentiation into functional neurons and the subsequent formation of tissue engineered nerve. PMID:25598779
Utilizing cell-based therapeutics to overcome immune evasion in hematologic malignancies.
Sun, Chuang; Dotti, Gianpietro; Savoldo, Barbara
2016-06-30
Hematologic malignancies provide a suitable testing environment for cell-based immunotherapies, which were pioneered by the development of allogeneic hematopoietic stem cell transplant. All types of cell-based therapies, from donor lymphocyte infusion to dendritic cell vaccines, and adoptive transfer of tumor-specific cytotoxic T cells and natural killer cells, have been clinically translated for hematologic malignancies. The recent success of chimeric antigen receptor-modified T lymphocytes in B-cell malignancies has stimulated the development of this approach toward other hematologic tumors. Similarly, the remarkable activity of checkpoint inhibitors as single agents has created enthusiasm for potential combinations with other cell-based immune therapies. However, tumor cells continuously develop various strategies to evade their immune-mediated elimination. Meanwhile, the recruitment of immunosuppressive cells and the release of inhibitory factors contribute to the development of a tumor microenvironment that hampers the initiation of effective immune responses or blocks the functions of immune effector cells. Understanding how tumor cells escape from immune attack and favor immunosuppression is essential for the improvement of immune cell-based therapies and the development of rational combination approaches. © 2016 by The American Society of Hematology.
Hussain, Shaista; Basu, Arindam
2016-01-01
The development of power-efficient neuromorphic devices presents the challenge of designing spike pattern classification algorithms which can be implemented on low-precision hardware and can also achieve state-of-the-art performance. In our pursuit of meeting this challenge, we present a pattern classification model which uses a sparse connection matrix and exploits the mechanism of nonlinear dendritic processing to achieve high classification accuracy. A rate-based structural learning rule for multiclass classification is proposed which modifies a connectivity matrix of binary synaptic connections by choosing the best “k” out of “d” inputs to make connections on every dendritic branch (k < < d). Because learning only modifies connectivity, the model is well suited for implementation in neuromorphic systems using address-event representation (AER). We develop an ensemble method which combines several dendritic classifiers to achieve enhanced generalization over individual classifiers. We have two major findings: (1) Our results demonstrate that an ensemble created with classifiers comprising moderate number of dendrites performs better than both ensembles of perceptrons and of complex dendritic trees. (2) In order to determine the moderate number of dendrites required for a specific classification problem, a two-step solution is proposed. First, an adaptive approach is proposed which scales the relative size of the dendritic trees of neurons for each class. It works by progressively adding dendrites with fixed number of synapses to the network, thereby allocating synaptic resources as per the complexity of the given problem. As a second step, theoretical capacity calculations are used to convert each neuronal dendritic tree to its optimal topology where dendrites of each class are assigned different number of synapses. The performance of the model is evaluated on classification of handwritten digits from the benchmark MNIST dataset and compared with other spike classifiers. We show that our system can achieve classification accuracy within 1 − 2% of other reported spike-based classifiers while using much less synaptic resources (only 7%) compared to that used by other methods. Further, an ensemble classifier created with adaptively learned sizes can attain accuracy of 96.4% which is at par with the best reported performance of spike-based classifiers. Moreover, the proposed method achieves this by using about 20% of the synapses used by other spike algorithms. We also present results of applying our algorithm to classify the MNIST-DVS dataset collected from a real spike-based image sensor and show results comparable to the best reported ones (88.1% accuracy). For VLSI implementations, we show that the reduced synaptic memory can save upto 4X area compared to conventional crossbar topologies. Finally, we also present a biologically realistic spike-based version for calculating the correlations required by the structural learning rule and demonstrate the correspondence between the rate-based and spike-based methods of learning. PMID:27065782
Mo, Lijun; Chen, Qianmei; Zhang, Xinji; Shi, Xiaojun; Wei, Lili; Zheng, Dianpeng; Li, Hongwei; Gao, Jimin; Li, Jinlong; Hu, Zhiming
2017-10-13
ICOS + Treg cells exert important immunosuppressive effects in tumor immunity. We adopt a combination approach of ICOS + Treg cells depletion with tumor cell vaccine to evaluate anti-tumor immunity in mouse prostate cancer model. Streptavidin (SA)-mGM-CSF surface-modified RM-1 cells were prepared as the vaccine and the mouse subcutaneous prostate tumor model was used to evaluate the immunity. Tumor growth, flow cytometry, immunohistochemistry, immunofluorescence and enzyme linked immunosorbent assay (ELISA) were performed to evaluate the therapeutic effects. Our results demonstrated that SA-mGM-CSF vaccine was prepared successfully and tumor growth was inhibited. The tumor size in the combination group was much smaller than that in the vaccine with IgG mAb group. The portions of dendritic cells, CD8 + and CD4 + T cells in the mice blood and tumor tissues were increased after treatment with vaccine. There were more immune-suppressing Tregs infiltrated into tumor after treatment with tumor cell vaccine, and ICOS blocking could deplete the infiltrated Tregs, and T lymphocytes increased more dramatically in the combination therapy group. The concentrations of interferon-γ were increased in all vaccine group, the concentrations of Interleukin-10 and Interleukin-4 were much lower in the combination group. Our study demonstrated that ICOS blocking could deplete the tumor-infiltrated ICOS + Treg cells. Combining GM-CSF surface-modified RM-1 cell vaccine with Anti-ICOS antibody could induce better antitumor immunity than a vaccine alone. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wang, Qiwei; Wang, Yan; Yu, Fengwei
2018-05-16
Pruning that selectively removes unnecessary neurites without causing neuronal death is essential for sculpting the mature nervous system during development. In Drosophila , ddaC sensory neurons specifically prune their larval dendrites with intact axons during metamorphosis. However, it remains unknown about an important role of ER-to-Golgi transport in dendrite pruning. Here, in a clonal screen we identified Yif1, an uncharacterized Drosophila homologue of Yif1p that is known as a regulator of ER-to-Golgi transport in yeast. We show that Yif1 is required for dendrite pruning of ddaC neurons but not for apoptosis of ddaF neurons. We further identified the Yif1-binding partner Yip1 which is also crucial for dendrite pruning. Yif1 forms a protein complex with Yip1 in S2 cells and ddaC neurons. Yip1 and Yif1 colocalize on ER/Golgi and are required for the integrity of Golgi apparatus and outposts. Moreover, we show that two GTPases Rab1 and Sar1, known to regulate ER-to-Golgi transport, are essential for dendrite pruning of ddaC neurons. Finally, our data reveal that ER-to-Golgi transport promotes endocytosis and downregulation of cell adhesion molecule Neuroglian and thereby dendrite pruning. © 2018. Published by The Company of Biologists Ltd.
Zhang, Ming-Zhi; Wang, Xin; Wang, Yinqiu; Niu, Aolei; Wang, Suwan; Zou, Chenhang; Harris, Raymond C
2017-02-01
Cytokines IL-4 and IL-13 play important roles in polarization of macrophages/dendritic cells to an M2 phenotype, which is important for recovery from acute kidney injury. Both IL-4 and IL-13 activate JAK3/STAT6 signaling. In mice with diphtheria toxin receptor expression in proximal tubules (selective injury model), a relatively selective JAK3 inhibitor, tofacitinib, led to more severe kidney injury, delayed recovery from acute kidney injury, increased inflammatory M1 phenotype markers and decreased reparative M2 phenotype markers of macrophages/dendritic cells, and development of more severe renal fibrosis after diphtheria toxin administration. Similarly, there was delayed recovery and increased tubulointerstitial fibrosis in these diphtheria toxin-treated mice following tamoxifen-induced deletion of both IL-4 and IL-13, with increased levels of M1 and decreased levels of M2 markers in the macrophages/dendritic cells. Furthermore, deletion of IL-4 and IL-13 led to a decrease of tissue reparative M2a phenotype markers but had no effect on anti-inflammatory M2c phenotype markers. Deletion of IL-4 and IL-13 also inhibited recovery from ischemia-reperfusion injury in association with increased M1 and decreased M2 markers and promoted subsequent tubulointerstitial fibrosis. Thus, IL-4 and IL-13 are required to effectively polarize macrophages/dendritic cells to an M2a phenotype and to promote recovery from acute kidney injury. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Iizuka-Koga, Mana; Asashima, Hiromitsu; Ando, Miki; Lai, Chen-Yi; Mochizuki, Shinji; Nakanishi, Mahito; Nishimura, Toshinobu; Tsuboi, Hiroto; Hirota, Tomoya; Takahashi, Hiroyuki; Matsumoto, Isao; Otsu, Makoto; Sumida, Takayuki
2017-05-09
Although it is important to clarify the pathogenic functions of T cells in human samples, their examination is often limited due to difficulty in obtaining sufficient numbers of dendritic cells (DCs), used as antigen-presenting cells, especially in autoimmune diseases. We describe the generation of DCs from induced pluripotent stem cells derived from T cells (T-iPSCs). We reprogrammed CD4+ T cell clones from a patient with Sjögren's syndrome (SS) into iPSCs, which were differentiated into DCs (T-iPS-DCs). T-iPS-DCs had dendritic cell-like morphology, and expressed CD11c, HLA-DR, CD80, CD86, and also BDCA-3. Compared with monocyte-derived DCs, the capacity for antigen processing was similar, and T-iPS-DCs induced the proliferative response of autoreactive CD4+ T cells. Moreover, we could evaluate T cell functions of the patient with SS. In conclusion, we obtained adequate numbers of DCs from T-iPSCs, which could be used to characterize pathogenic T cells in autoimmune diseases such as SS. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Sonobe, Yoshifumi; Li, Hua; Jin, Shijie; Kishida, Satoshi; Kadomatsu, Kenji; Takeuchi, Hideyuki; Mizuno, Tetsuya; Suzumura, Akio
2012-03-15
Midkine (MK), a heparin-binding growth factor, reportedly contributes to inflammatory diseases, including Crohn's disease and rheumatoid arthritis. We previously showed that MK aggravates experimental autoimmune encephalomyelitis (EAE) by decreasing regulatory CD4(+)CD25(+)Foxp3(+) T cells (Tregs), a population that regulates the development of autoimmune responses, although the precise mechanism remains uncertain. In this article, we show that MK produced in inflammatory conditions suppresses the development of tolerogenic dendritic cells (DCregs), which drive the development of inducible Treg. MK suppressed DCreg-mediated expansion of the CD4(+)CD25(+)Foxp3(+) Treg population. DCregs expressed significantly higher levels of CD45RB and produced significantly less IL-12 compared with conventional dendritic cells. However, MK downregulated CD45RB expression and induced IL-12 production by reducing phosphorylated STAT3 levels via src homology region 2 domain-containing phosphatase-2 in DCreg. Inhibiting MK activity with anti-MK RNA aptamers, which bind to the targeted protein to suppress the function of the protein, increased the numbers of CD11c(low)CD45RB(+) dendritic cells and Tregs in the draining lymph nodes and suppressed the severity of EAE, an animal model of multiple sclerosis. Our results also demonstrated that MK was produced by inflammatory cells, in particular, CD4(+) T cells under inflammatory conditions. Taken together, these results suggest that MK aggravates EAE by suppressing DCreg development, thereby impairing the Treg population. Thus, MK is a promising therapeutic target for various autoimmune diseases.
Quintana, Francisco J.; Murugaiyan, Gopal; Farez, Mauricio F.; Mitsdoerffer, Meike; Tukpah, Ann-Marcia; Burns, Evan J.; Weiner, Howard L.
2010-01-01
The ligand-activated transcription factor aryl hydrocarbon receptor (AHR) participates in the differentiation of FoxP3+ Treg, Tr1 cells, and IL-17–producing T cells (Th17). Most of our understanding on the role of AHR on the FoxP3+ Treg compartment results from studies using the toxic synthetic chemical 2,3,7,8-tetrachlorodibenzo-p-dioxin. Thus, the physiological relevance of AHR signaling on FoxP3+ Treg in vivo is unclear. We studied mice that carry a GFP reporter in the endogenous foxp3 locus and a mutated AHR protein with reduced affinity for its ligands, and found that AHR signaling participates in the differentiation of FoxP3+ Treg in vivo. Moreover, we found that treatment with the endogenous AHR ligand 2-(1′H-indole-3′-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) given parenterally or orally induces FoxP3+ Treg that suppress experimental autoimmune encephalomyelitis. ITE acts not only on T cells, but also directly on dendritic cells to induce tolerogenic dendritic cells that support FoxP3+ Treg differentiation in a retinoic acid-dependent manner. Thus, our work demonstrates that the endogenous AHR ligand ITE promotes the induction of active immunologic tolerance by direct effects on dendritic and T cells, and identifies nontoxic endogenous AHR ligands as potential unique compounds for the treatment of autoimmune disorders. PMID:21068375
Brucella β 1,2 Cyclic Glucan Is an Activator of Human and Mouse Dendritic Cells
Martirosyan, Anna; Pérez-Gutierrez, Camino; Banchereau, Romain; Dutartre, Hélène; Lecine, Patrick; Dullaers, Melissa; Mello, Marielle; Pinto Salcedo, Suzana; Muller, Alexandre; Leserman, Lee; Levy, Yves; Zurawski, Gerard; Zurawski, Sandy; Moreno, Edgardo; Moriyón, Ignacio; Klechevsky, Eynav; Banchereau, Jacques; Oh, SangKon; Gorvel, Jean-Pierre
2012-01-01
Bacterial cyclic glucans are glucose polymers that concentrate within the periplasm of alpha-proteobacteria. These molecules are necessary to maintain the homeostasis of the cell envelope by contributing to the osmolarity of Gram negative bacteria. Here, we demonstrate that Brucella β 1,2 cyclic glucans are potent activators of human and mouse dendritic cells. Dendritic cells activation by Brucella β 1,2 cyclic glucans requires TLR4, MyD88 and TRIF, but not CD14. The Brucella cyclic glucans showed neither toxicity nor immunogenicity compared to LPS and triggered antigen-specific CD8+ T cell responses in vivo. These cyclic glucans also enhanced antigen-specific CD4+ and CD8+ T cell responses including cross-presentation by different human DC subsets. Brucella β 1,2 cyclic glucans increased the memory CD4+ T cell responses of blood mononuclear cells exposed to recombinant fusion proteins composed of anti-CD40 antibody and antigens from both hepatitis C virus and Mycobacterium tuberculosis. Thus cyclic glucans represent a new class of adjuvants, which might contribute to the development of effective antimicrobial therapies. PMID:23166489
Navarro-Sanchez, Erika; Altmeyer, Ralf; Amara, Ali; Schwartz, Olivier; Fieschi, Franck; Virelizier, Jean-Louis; Arenzana-Seisdedos, Fernando; Desprès, Philippe
2003-01-01
Dengue virus (DV) is a mosquito-borne flavivirus that causes haemorrhagic fever in humans. DV primarily targets immature dendritic cells (DCs) after a bite by an infected mosquito vector. Here, we analysed the interactions between DV and human-monocyte-derived DCs at the level of virus entry. We show that the DC-specific ICAM3-grabbing non-integrin (DC-SIGN) molecule, a cell-surface, mannose-specific, C-type lectin, binds mosquito-cell-derived DVs and allows viral replication. Conclusive evidence for the involvement of DC-SIGN in DV infection was obtained by the inhibition of viral infection by anti-DC-SIGN antibodies and by the soluble tetrameric ectodomain of DC-SIGN. Our data show that DC-SIGN functions as a DV-binding lectin by interacting with the DV envelope glycoprotein. Mosquito-cell-derived DVs may have differential infectivity for DC-SIGN-expressing cells. We suggest that the differential use of DC-SIGN by viral envelope glycoproteins may account for the immunopathogenesis of DVs. PMID:12783086
2010-01-01
Background Typhoid, which is caused by Salmonella enterica serovar Typhimurium, remains a major health concern worldwide. Multidrug-resistant strains of Salmonella have emerged which exhibit increased survivability and virulence, thus leading to increased morbidity. However, little is known about the protective immune response against this microorganism. The outer membrane protein (Omp)A of bacteria plays an important role in pathogenesis. Results We purified OmpA from S. enterica serovar Typhimurium (OmpA-sal) and characterized the role of OmpA-sal in promoting adaptive and innate immune responses. OmpA-sal functionally activated bone marrow-derived dendritic cells by augmenting expression of CD80, CD86, and major histocompatibility complex classes I and II. Interestingly, OmpA-sal induced production of interferon-γ from T cells in mixed lymphocyte reactions, thus indicating Th1-polarizing capacity. The expression of surface markers and cytokine production in dendritic cells was mediated by the TLR4 signaling pathway in a TLR4 Knock-out system. Conclusions Our findings suggest that OmpA-sal modulates the adaptive immune responses to S. enterica serovar Typhimurium by activating dendritic cells and driving Th1 polarization, which are important properties to consider in the development of effective S. enterica serovar Typhimurium vaccines and immunotherapy adjuvant. PMID:20950448
Mechanical Deformation of a Lithium-Metal Anode Due to a Very Stiff Separator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferrese, A; Newman, J
2014-05-21
This work builds on the two-dimensional model presented by Ferrese et al. [J. Electrochem. Soc., 159, A1615 (2012)1, which captures the movement of lithium metal at the negative electrode during cycling in a Li-metal/LiCoO2 cell. In this paper, the separator is modeled as a dendrite-inhibiting polymer separator with an elastic modulus of 16 GPa. The separator resists the movement of lithium through the generation of stresses in the cell. These stresses affect the negative electrode through two mechanisms altering the thermodynamics of the negative electrode and deforming the negative electrode mechanically. From this analysis, we find that the dendrite-inhibiting separatormore » causes plastic and elastic deformation of the lithium at the negative electrode which flattens the electrode considerably when compared to the liquid-electrolyte case. This flattening of the negative electrode causes only very slight differences in the local state of charge in the positive electrode. When comparing the magnitude of the effects flattening the negative electrode, we find that the plastic deformation plays a much larger role than either the pressure-modified reaction kinetics or elastic deformation. This is due to the low yield strength of the lithium metal, which limits the stresses such that they have only a small effect on the reaction kinetics. (C) 2014 The Electrochemical Society. All rights reserved.« less
Role of Dendritic Cells in Immune Dysfunction
NASA Technical Reports Server (NTRS)
Savary, Cherylyn A.
1997-01-01
Specific aims include: (1) Application of the bioreactor to enhance cytokine-regulated proliferation and maturation of dendritic cells (DC); (2) Based on clues from spaceflight: compare the frequency and function of DC in normal donors and immunocompromised cancer patients; and (3) Initiate studies on the efficiency of cytokine therapy and DC-assisted immunotherapy (using bioreactor-expanded DC) in animal models of experimental fungal infections.