Science.gov

Sample records for dengue vector control

  1. Control of dengue vectors in Singapore.

    PubMed

    Wang, N C

    1994-12-01

    Singapore has a well-established system for the surveillance, research and control of Aedes aegypti and Aedes albopictus. Control of these vectors comes under the jurisdiction of the Environmental Public Health Division of the Ministry of the Environment. The strategy for Aedes control is an integrated approach incorporating case detection, source reduction, health education and law enforcement. This is done through the Quarantine & Epidemiology Department (dengue surveillance and research), Vector Control & Research Department (Aedes surveillance, control and research), Environmental Health Department (environmental sanitation and hygiene) and Public Education Department (health education on dengue prevention and control). Despite its success in reducing the Aedes population to a house index of around 1%, the incidence of dengue fever/dengue haemorrhagic fever has increased sharply during the last 5 years. The Ministry realises that the dengue problem can only be tackled on a regional basis and it is with this objective in mind that the Institute of Environmental Epidemiology has been formed to collaborate with other international agencies in operational research and training projects.

  2. Overview of current situation of dengue and dengue vector control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dengue is the most important arbovirus of humans in the world. It is caused by one of four closely related virus serotypes whose primary vector is Aedes aegypti and secondarily by Ae. albopictus. A global dengue pandemic began in Southeast Asia after World War II and has intensified during the las...

  3. Dengue and Chikungunya Vector Control Pocket Guide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This technical guide consolidates information and procedures for surveillance and control of mosquitoes that transmit dengue and chikungunya viruses. The guide focuses on mosquitoes that transmit dengue but also makes reference to chikungunya and yellow fever because the pathogens that cause these ...

  4. Cost of Dengue Vector Control Activities in Malaysia

    PubMed Central

    Packierisamy, P. Raviwharmman; Ng, Chiu-Wan; Dahlui, Maznah; Inbaraj, Jonathan; Balan, Venugopalan K.; Halasa, Yara A.; Shepard, Donald S.

    2015-01-01

    Dengue fever, an arbovirus disease transmitted by Aedes mosquitoes, has recently spread rapidly, especially in the tropical countries of the Americas and Asia-Pacific regions. It is endemic in Malaysia, with an annual average of 37,937 reported dengue cases from 2007 to 2012. This study measured the overall economic impact of dengue in Malaysia, and estimated the costs of dengue prevention. In 2010, Malaysia spent US$73.5 million or 0.03% of the country's GDP on its National Dengue Vector Control Program. This spending represented US$1,591 per reported dengue case and US$2.68 per capita population. Most (92.2%) of this spending occurred in districts, primarily for fogging. A previous paper estimated the annual cost of dengue illness in the country at US$102.2 million. Thus, the inclusion of preventive activities increases the substantial estimated cost of dengue to US$175.7 million, or 72% above illness costs alone. If innovative technologies for dengue vector control prove efficacious, and a dengue vaccine was introduced, substantial existing spending could be rechanneled to fund them. PMID:26416116

  5. Cost of Dengue Vector Control Activities in Malaysia.

    PubMed

    Packierisamy, P Raviwharmman; Ng, Chiu-Wan; Dahlui, Maznah; Inbaraj, Jonathan; Balan, Venugopalan K; Halasa, Yara A; Shepard, Donald S

    2015-11-01

    Dengue fever, an arbovirus disease transmitted by Aedes mosquitoes, has recently spread rapidly, especially in the tropical countries of the Americas and Asia-Pacific regions. It is endemic in Malaysia, with an annual average of 37,937 reported dengue cases from 2007 to 2012. This study measured the overall economic impact of dengue in Malaysia, and estimated the costs of dengue prevention. In 2010, Malaysia spent US$73.5 million or 0.03% of the country's GDP on its National Dengue Vector Control Program. This spending represented US$1,591 per reported dengue case and US$2.68 per capita population. Most (92.2%) of this spending occurred in districts, primarily for fogging. A previous paper estimated the annual cost of dengue illness in the country at US$102.2 million. Thus, the inclusion of preventive activities increases the substantial estimated cost of dengue to US$175.7 million, or 72% above illness costs alone. If innovative technologies for dengue vector control prove efficacious, and a dengue vaccine was introduced, substantial existing spending could be rechanneled to fund them.

  6. A Critical Assessment of Vector Control for Dengue Prevention

    PubMed Central

    Achee, Nicole L.; Gould, Fred; Perkins, T. Alex; Reiner, Robert C.; Morrison, Amy C.; Ritchie, Scott A.; Gubler, Duane J.; Teyssou, Remy; Scott, Thomas W.

    2015-01-01

    Recently, the Vaccines to Vaccinate (v2V) initiative was reconfigured into the Partnership for Dengue Control (PDC), a multi-sponsored and independent initiative. This redirection is consistent with the growing consensus among the dengue-prevention community that no single intervention will be sufficient to control dengue disease. The PDC's expectation is that when an effective dengue virus (DENV) vaccine is commercially available, the public health community will continue to rely on vector control because the two strategies complement and enhance one another. Although the concept of integrated intervention for dengue prevention is gaining increasingly broader acceptance, to date, no consensus has been reached regarding the details of how and what combination of approaches can be most effectively implemented to manage disease. To fill that gap, the PDC proposed a three step process: (1) a critical assessment of current vector control tools and those under development, (2) outlining a research agenda for determining, in a definitive way, what existing tools work best, and (3) determining how to combine the best vector control options, which have systematically been defined in this process, with DENV vaccines. To address the first step, the PDC convened a meeting of international experts during November 2013 in Washington, DC, to critically assess existing vector control interventions and tools under development. This report summarizes those deliberations. PMID:25951103

  7. A critical assessment of vector control for dengue prevention.

    PubMed

    Achee, Nicole L; Gould, Fred; Perkins, T Alex; Reiner, Robert C; Morrison, Amy C; Ritchie, Scott A; Gubler, Duane J; Teyssou, Remy; Scott, Thomas W

    2015-05-01

    Recently, the Vaccines to Vaccinate (v2V) initiative was reconfigured into the Partnership for Dengue Control (PDC), a multi-sponsored and independent initiative. This redirection is consistent with the growing consensus among the dengue-prevention community that no single intervention will be sufficient to control dengue disease. The PDC's expectation is that when an effective dengue virus (DENV) vaccine is commercially available, the public health community will continue to rely on vector control because the two strategies complement and enhance one another. Although the concept of integrated intervention for dengue prevention is gaining increasingly broader acceptance, to date, no consensus has been reached regarding the details of how and what combination of approaches can be most effectively implemented to manage disease. To fill that gap, the PDC proposed a three step process: (1) a critical assessment of current vector control tools and those under development, (2) outlining a research agenda for determining, in a definitive way, what existing tools work best, and (3) determining how to combine the best vector control options, which have systematically been defined in this process, with DENV vaccines. To address the first step, the PDC convened a meeting of international experts during November 2013 in Washington, DC, to critically assess existing vector control interventions and tools under development. This report summarizes those deliberations.

  8. Dengue Prevention and 35 Years of Vector Control in Singapore

    PubMed Central

    Goh, Kee-Tai; Gubler, Duane J.

    2006-01-01

    After a 15-year period of low incidence, dengue has reemerged in Singapore in the past decade. We identify potential causes of this resurgence. A combination of lowered herd immunity, virus transmission outside the home, an increase in the age of infection, and the adoption of a case-reactive approach to vector control contribute to the increased dengue incidence. Singapore's experience with dengue indicates that prevention efforts may not be sustainable. For renewed success, Singapore needs to return to a vector control program that is based on carefully collected entomologic and epidemiologic data. Singapore's taking on a leadership role in strengthening disease surveillance and control in Southeast Asia may also be useful in reducing virus importation. PMID:16707042

  9. A role for vector control in dengue vaccine programs.

    PubMed

    Christofferson, Rebecca C; Mores, Christopher N

    2015-12-10

    Development and deployment of a successful dengue virus (DENV) vaccine has confounded research and pharmaceutical entities owing to the complex nature of DENV immunity and concerns over exacerbating the risk of DENV hemorrhagic fever (DHF) as a consequence of vaccination. Thus, consensus is growing that a combination of mitigation strategies will be needed for DENV to be successfully controlled, likely involving some form of vector control to enhance a vaccine program. We present here a deterministic compartmental model to illustrate that vector control may enhance vaccination campaigns with imperfect coverage and efficacy. Though we recognize the costs and challenges associated with continuous control programs, simultaneous application of vector control methods coincident with vaccine roll out can have a positive effect by further reducing the number of human cases. The success of such an integrative strategy is predicated on closing gaps in our understanding of the DENV transmission cycle in hyperedemic locations. PMID:26478199

  10. A role for vector control in dengue vaccine programs.

    PubMed

    Christofferson, Rebecca C; Mores, Christopher N

    2015-12-10

    Development and deployment of a successful dengue virus (DENV) vaccine has confounded research and pharmaceutical entities owing to the complex nature of DENV immunity and concerns over exacerbating the risk of DENV hemorrhagic fever (DHF) as a consequence of vaccination. Thus, consensus is growing that a combination of mitigation strategies will be needed for DENV to be successfully controlled, likely involving some form of vector control to enhance a vaccine program. We present here a deterministic compartmental model to illustrate that vector control may enhance vaccination campaigns with imperfect coverage and efficacy. Though we recognize the costs and challenges associated with continuous control programs, simultaneous application of vector control methods coincident with vaccine roll out can have a positive effect by further reducing the number of human cases. The success of such an integrative strategy is predicated on closing gaps in our understanding of the DENV transmission cycle in hyperedemic locations.

  11. Ecology and control of dengue vector mosquitoes in Taiwan.

    PubMed

    Chen, Y R; Hwang, J S; Guo, Y J

    1994-12-01

    Due to rapid urbanization, industrialization and social changes in recent years, the use of packing materials and tires has dramatically increased in the Taiwan area. What is more is that some parts of southern Taiwan are short of water resources and water preservation with huge containers becomes part of custom in those areas. Storage water containers, waste vessels and tires are good habitats for Aedes. Meanwhile, some persons traveling to dengue endemic countries bring the dengue disease back to Taiwan. Surveys taken since 1988 show that dengue occurs mainly in the urban and coastal areas where Aedes aegypti is prevalent. This species is the most important, if not the only, vector of dengue in Taiwan. It appears that the types of Aedes breeding have changed quickly. In dengue fever epidemic areas, the most popular breeding sites are ornamental containers (38.8%), storage water containers (30.1%), discarded containers (25.4%), receptacles (3.3%) and water collection in the basement (2.2%). In dengue fever epidemic areas, those building basements, huge water containers, waste vessels and waste tires in open fields are most difficult to clean up and manage and become the most popular Aedes habitats. We established a waste recycling system and promoted a breeding site reduction campaign for waste management, including the application of Temephos in containers to kill larvae. For the drinking water management, fish were released in water containers to prevent larval breeding. It should be mentioned that with the integrated pest control and regular inspections of Aedes larvae in Taiwan the density figures 1, 2-5, and 6 or above for Aedes aegypti were 38.7%, 42.9%, and 18.4%, respectively, in 1988, and in 1993 were 90.8%, 9.2% and 0%. The incidence of dengue fever cases has 98% decreased since 1988. In 1990 and 1993, there was no indigenous cases. We have concluded that integrated pest control is the best and most effective method for dengue fever control, including

  12. ProactiveVector control strategies and improved monitoring and evaluation practices for dengue prevention.

    PubMed

    Eisen, Lars; Beaty, Barry J; Morrison, Amy C; Scott, Thomas W

    2009-11-01

    Despite tremendous efforts by public health organizations in dengue-endemic countries, it has proven difficult to achieve effective and sustainable control of the primary dengue virus vector Aedes aegypti (L.) and to effectively disrupt dengue outbreaks. This problem has multiple root causes, including uncontrolled urbanization, increased global spread of dengue viruses, and vector and dengue control programs not being provided adequate resources. In this forum article, we give an overview of the basic elements of a vector and dengue control program and describe a continuous improvement cyclical model to systematically and incrementally improve control program performance by regular efforts to identify ineffective methods and inferior technology, and then replacing them with better performing alternatives. The first step includes assessments of the overall resource allocation among vector/dengue control program activities, the efficacy of currently used vector control methods, and the appropriateness of technology used to support the program. We expect this will reveal that 1) some currently used vector control methods are not effective, 2) resource allocations often are skewed toward reactive vector control measures, and 3) proactive approaches commonly are underfunded and therefore poorly executed. Next steps are to conceptualize desired changes to vector control methods or technologies used and then to operationally determine in pilot studies whether these changes are likely to improve control program performance. This should be followed by a shift in resource allocation to replace ineffective methods and inferior technology with more effective and operationally tested alternatives. The cyclical and self-improving nature of the continuous improvement model will produce locally appropriate management strategies that continually are adapted to counter changes in vector population or dengue virus transmission dynamics. We discuss promising proactive vector control

  13. ProactiveVector control strategies and improved monitoring and evaluation practices for dengue prevention.

    PubMed

    Eisen, Lars; Beaty, Barry J; Morrison, Amy C; Scott, Thomas W

    2009-11-01

    Despite tremendous efforts by public health organizations in dengue-endemic countries, it has proven difficult to achieve effective and sustainable control of the primary dengue virus vector Aedes aegypti (L.) and to effectively disrupt dengue outbreaks. This problem has multiple root causes, including uncontrolled urbanization, increased global spread of dengue viruses, and vector and dengue control programs not being provided adequate resources. In this forum article, we give an overview of the basic elements of a vector and dengue control program and describe a continuous improvement cyclical model to systematically and incrementally improve control program performance by regular efforts to identify ineffective methods and inferior technology, and then replacing them with better performing alternatives. The first step includes assessments of the overall resource allocation among vector/dengue control program activities, the efficacy of currently used vector control methods, and the appropriateness of technology used to support the program. We expect this will reveal that 1) some currently used vector control methods are not effective, 2) resource allocations often are skewed toward reactive vector control measures, and 3) proactive approaches commonly are underfunded and therefore poorly executed. Next steps are to conceptualize desired changes to vector control methods or technologies used and then to operationally determine in pilot studies whether these changes are likely to improve control program performance. This should be followed by a shift in resource allocation to replace ineffective methods and inferior technology with more effective and operationally tested alternatives. The cyclical and self-improving nature of the continuous improvement model will produce locally appropriate management strategies that continually are adapted to counter changes in vector population or dengue virus transmission dynamics. We discuss promising proactive vector control

  14. The Cost of Dengue Vector Control Activities in Malaysia by Different Service Providers.

    PubMed

    Packierisamy, P Raviwharmman; Ng, Chiu-Wan; Dahlui, Maznah; Venugopalan, B; Halasa, Yara A; Shepard, Donald S

    2015-11-01

    We examined variations in dengue vector control costs and resource consumption between the District Health Departments (DHDs) and Local Authorities (LAs) to assist informed decision making as to the future roles of these agencies in the delivery of dengue vector control services in Malaysia. Data were collected from the vector control units of DHDs and LAs in 8 selected districts. We captured costs and resource consumption in 2010 for premise inspection for mosquito breeding sites, fogging to destroy adult mosquitoes and larviciding of potential breeding sites. Overall, DHDs spent US$5.62 million or US$679 per case and LAs spent US$2.61 million or US$499 per case. The highest expenditure for both agencies was for fogging, 51.0% and 45.8% of costs for DHDs and LAs, respectively. The DHDs had higher resource costs for human personnel, vehicles, pesticides, and equipment. The findings provide some evidence to rationalize delivery of dengue vector control services in Malaysia.

  15. Comparison of Vector Competence of Aedes mediovittatus and Aedes aegypti for Dengue Virus: Implications for Dengue Control in the Caribbean

    PubMed Central

    Poole-Smith, B. Katherine; Hemme, Ryan R.; Delorey, Mark; Felix, Gilberto; Gonzalez, Andrea L.; Amador, Manuel; Hunsperger, Elizabeth A.; Barrera, Roberto

    2015-01-01

    Background Aedes mediovittatus mosquitoes are found throughout the Greater Antilles in the Caribbean and often share the same larval habitats with Ae. Aegypti, the primary vector for dengue virus (DENV). Implementation of vector control measures to control dengue that specifically target Ae. Aegypti may not control DENV transmission in Puerto Rico (PR). Even if Ae. Aegypti is eliminated or DENV refractory mosquitoes are released, DENV transmission may not cease when other competent mosquito species like Ae. Mediovittatus are present. To compare vector competence of Ae. Mediovittatus and Ae. Aegypti mosquitoes, we studied relative infection and transmission rates for all four DENV serotypes. Methods To compare the vector competence of Ae. Mediovittatus and Ae. Aegypti, mosquitoes were exposed to DENV 1–4 per os at viral titers of 5–6 logs plaque-forming unit (pfu) equivalents. At 14 days post infectious bloodmeal, viral RNA was extracted and tested by qRT-PCR to determine infection and transmission rates. Infection and transmission rates were analyzed with a generalized linear model assuming a binomial distribution. Results Ae. Aegypti had significantly higher DENV-4 infection and transmission rates than Ae. mediovittatus. Conclusions This study determined that Ae. Mediovittatus is a competent DENV vector. Therefore dengue prevention programs in PR and the Caribbean should consider both Ae. Mediovittatus and Ae. Aegypti mosquitoes in their vector control programs. PMID:25658951

  16. Community participation and appropriate technologies for dengue vector control at transmission foci in Thailand.

    PubMed

    Kittayapong, Pattamaporn; Chansang, Uruyakorn; Chansang, Chitti; Bhumiratana, Amaret

    2006-09-01

    A community-based dengue vector control trial was conducted at transmission foci in Plaeng Yao District, Chachoengsao Province, eastern Thailand. Implementation was done by the local community in collaboration with local administration, public health, and school authorities. Our cost-effective approaches combined a source reduction campaign with appropriate vector control technologies applied within the foci (within 100 m around the foci) and also within schools attended by children from the treated areas. Vector management measures by local government included cleanup campaigns before the rainy season followed by a routine garbage pickup during the rainy season. Locally made screen covers for water jars, a combination of local Bacillus thuringiensis subsp. israelensis and Mesocyclops thermocyclopoides (copepod), and locally made lethal ovitraps were appropriate technologies used by the community in this campaign. The success of our intervention was evidenced by the significant reduction of dengue vectors and dengue hemorrhagic fever cases in treated areas compared with untreated areas.

  17. INTERIM ANALYSIS OF THE CONTRIBUTION OF HIGH-LEVEL EVIDENCE FOR DENGUE VECTOR CONTROL.

    PubMed

    Horstick, Olaf; Ranzinger, Silvia Runge

    2015-01-01

    This interim analysis reviews the available systematic literature for dengue vector control on three levels: 1) single and combined vector control methods, with existing work on peridomestic space spraying and on Bacillus thuringiensis israelensis; further work is available soon on the use of Temephos, Copepods and larvivorous fish; 2) or for a specific purpose, like outbreak control, and 3) on a strategic level, as for example decentralization vs centralization, with a systematic review on vector control organization. Clear best practice guidelines for methodology of entomological studies are needed. There is a need to include measuring dengue transmission data. The following recommendations emerge: Although vector control can be effective, implementation remains an issue; Single interventions are probably not useful; Combinations of interventions have mixed results; Careful implementation of vector control measures may be most important; Outbreak interventions are often applied with questionable effectiveness. PMID:26506739

  18. Will people change their vector-control practices in the presence of an imperfect dengue vaccine?

    PubMed

    Boccia, T M Q R; Burattini, M N; Coutinho, F A B; Massad, E

    2014-03-01

    Human behaviours, which are influenced by social, cultural, economic and political factors, can increase or decrease the risk of dengue infection, depending on the relationship with the insect vector. Because no vaccine is currently available, the spread of dengue can only be curtailed by controlling vector populations (Aedes aegypti and others) and by protecting individuals. This study tested the hypothesis that dengue-affected populations are likely to relax their vector-control habits if a potentially protective vaccine becomes available. The hypothesis was tested using two approaches: a mathematical model designed to describe dengue transmission and an empirical field test in which the local population of an endemic area was interviewed about their vector-control habits given the presence of a theoretical vaccine. The model demonstrated that depending on the level of vector-control reduction, there is a threshold in vaccine efficacy below which it is better not to introduce the vaccine. The interview showed that people who were informed that a very effective vaccine is available would reduce their vector-control habits significantly compared to a group that was informed that the vaccine is not very effective.

  19. A comparative analysis of the relative efficacy of vector-control strategies against dengue fever.

    PubMed

    Amaku, Marcos; Coutinho, Francisco Antonio Bezerra; Raimundo, Silvia Martorano; Lopez, Luis Fernandez; Nascimento Burattini, Marcelo; Massad, Eduardo

    2014-03-01

    Dengue is considered one of the most important vector-borne infection, affecting almost half of the world population with 50 to 100 million cases every year. In this paper, we present one of the simplest models that can encapsulate all the important variables related to vector control of dengue fever. The model considers the human population, the adult mosquito population and the population of immature stages, which includes eggs, larvae and pupae. The model also considers the vertical transmission of dengue in the mosquitoes and the seasonal variation in the mosquito population. From this basic model describing the dynamics of dengue infection, we deduce thresholds for avoiding the introduction of the disease and for the elimination of the disease. In particular, we deduce a Basic Reproduction Number for dengue that includes parameters related to the immature stages of the mosquito. By neglecting seasonal variation, we calculate the equilibrium values of the model's variables. We also present a sensitivity analysis of the impact of four vector-control strategies on the Basic Reproduction Number, on the Force of Infection and on the human prevalence of dengue. Each of the strategies was studied separately from the others. The analysis presented allows us to conclude that of the available vector control strategies, adulticide application is the most effective, followed by the reduction of the exposure to mosquito bites, locating and destroying breeding places and, finally, larvicides. Current vector-control methods are concentrated on mechanical destruction of mosquitoes' breeding places. Our results suggest that reducing the contact between vector and hosts (biting rates) is as efficient as the logistically difficult but very efficient adult mosquito's control.

  20. Impact of vector control on a dengue fever outbreak in Trinidad, West Indies, in 1998.

    PubMed

    Chadee, Dave D; Williams, Fiona L R; Kitron, Uriel D

    2005-08-01

    In 1998, Trinidad experienced its first major outbreak of dengue haemorrhagic fever. Data from the Trinidad Public Health Laboratory, the National Surveillance Unit and Insect Vector Control Division, Ministry of Health, Trinidad and Tobago were analysed to determine the impact of vector control measures on the dengue outbreak. Geographical Information Systems (GIS)/Global Positioning Systems (GPS) were used to map cases and to distinguish epidemiological clusters. The Aedes aegypti population densities were higher than the 5% transmission threshold in all counties. The spatial distribution of dengue fever cases was significantly correlated with the heavily populated east-west corridor in the north and several distinctly separate clusters in the western part of the island. The temporal distribution patterns showed significantly more dengue fever cases occurring during the rainy season than during the dry season. This study documents the importance of vector control in the prevention of dengue transmission since no vaccine is currently available, and emphasizes the urgent need to understand better the environmental factors which contribute to the proliferation of this disease vector Ae. aegypti. PMID:16045461

  1. Impact of vector control on a dengue fever outbreak in Trinidad, West Indies, in 1998.

    PubMed

    Chadee, Dave D; Williams, Fiona L R; Kitron, Uriel D

    2005-08-01

    In 1998, Trinidad experienced its first major outbreak of dengue haemorrhagic fever. Data from the Trinidad Public Health Laboratory, the National Surveillance Unit and Insect Vector Control Division, Ministry of Health, Trinidad and Tobago were analysed to determine the impact of vector control measures on the dengue outbreak. Geographical Information Systems (GIS)/Global Positioning Systems (GPS) were used to map cases and to distinguish epidemiological clusters. The Aedes aegypti population densities were higher than the 5% transmission threshold in all counties. The spatial distribution of dengue fever cases was significantly correlated with the heavily populated east-west corridor in the north and several distinctly separate clusters in the western part of the island. The temporal distribution patterns showed significantly more dengue fever cases occurring during the rainy season than during the dry season. This study documents the importance of vector control in the prevention of dengue transmission since no vaccine is currently available, and emphasizes the urgent need to understand better the environmental factors which contribute to the proliferation of this disease vector Ae. aegypti.

  2. Thailand Momentum on Policy and Practice in Local Legislation on Dengue Vector Control

    PubMed Central

    Bhumiratana, Adisak; Intarapuk, Apiradee; Chujun, Suriyo; Kaewwaen, Wuthichai; Sorosjinda-Nunthawarasilp, Prapa; Koyadun, Surachart

    2014-01-01

    Over a past decade, an administrative decentralization model, adopted for local administration development in Thailand, is replacing the prior centralized (top-down) command system. The change offers challenges to local governmental agencies and other public health agencies at all the ministerial, regional, and provincial levels. A public health regulatory and legislative framework for dengue vector control by local governmental agencies is a national topic of interest because dengue control program has been integrated into healthcare services at the provincial level and also has been given priority in health plans of local governmental agencies. The enabling environments of local administrations are unique, so this critical review focuses on the authority of local governmental agencies responsible for disease prevention and control and on the functioning of local legislation with respect to dengue vector control and practices. PMID:24799896

  3. The interplay of vaccination and vector control on small dengue networks.

    PubMed

    Hendron, Ross-William S; Bonsall, Michael B

    2016-10-21

    Dengue fever is a major public health issue affecting billions of people in over 100 countries across the globe. This challenge is growing as the invasive mosquito vectors, Aedes aegypti and Aedes albopictus, expand their distributions and increase their population sizes. Hence there is an increasing need to devise effective control methods that can contain dengue outbreaks. Here we construct an epidemiological model for virus transmission between vectors and hosts on a network of host populations distributed among city and town patches, and investigate disease control through vaccination and vector control using variants of the sterile insect technique (SIT). Analysis of the basic reproductive number and simulations indicate that host movement across this small network influences the severity of epidemics. Both vaccination and vector control strategies are investigated as methods of disease containment and our results indicate that these controls can be made more effective with mixed strategy solutions. We predict that reduced lethality through poor SIT methods or imperfectly efficacious vaccines will impact efforts to control disease spread. In particular, weakly efficacious vaccination strategies against multiple virus serotype diversity may be counter productive to disease control efforts. Even so, failings of one method may be mitigated by supplementing it with an alternative control strategy. Generally, our network approach encourages decision making to consider connected populations, to emphasise that successful control methods must effectively suppress dengue epidemics at this landscape scale. PMID:27457093

  4. Is Dengue Vector Control Deficient in Effectiveness or Evidence?: Systematic Review and Meta-analysis

    PubMed Central

    Bowman, Leigh R.; Donegan, Sarah; McCall, Philip J.

    2016-01-01

    Background Although a vaccine could be available as early as 2016, vector control remains the primary approach used to prevent dengue, the most common and widespread arbovirus of humans worldwide. We reviewed the evidence for effectiveness of vector control methods in reducing its transmission. Methodology/Principal Findings Studies of any design published since 1980 were included if they evaluated method(s) targeting Aedes aegypti or Ae. albopictus for at least 3 months. Primary outcome was dengue incidence. Following Cochrane and PRISMA Group guidelines, database searches yielded 960 reports, and 41 were eligible for inclusion, with 19 providing data for meta-analysis. Study duration ranged from 5 months to 10 years. Studies evaluating multiple tools/approaches (23 records) were more common than single methods, while environmental management was the most common method (19 studies). Only 9/41 reports were randomized controlled trials (RCTs). Two out of 19 studies evaluating dengue incidence were RCTs, and neither reported any statistically significant impact. No RCTs evaluated effectiveness of insecticide space-spraying (fogging) against dengue. Based on meta-analyses, house screening significantly reduced dengue risk, OR 0.22 (95% CI 0.05–0.93, p = 0.04), as did combining community-based environmental management and water container covers, OR 0.22 (95% CI 0.15–0.32, p<0.0001). Indoor residual spraying (IRS) did not impact significantly on infection risk (OR 0.67; 95% CI 0.22–2.11; p = 0.50). Skin repellents, insecticide-treated bed nets or traps had no effect (p>0.5), but insecticide aerosols (OR 2.03; 95% CI 1.44–2.86) and mosquito coils (OR 1.44; 95% CI 1.09–1.91) were associated with higher dengue risk (p = 0.01). Although 23/41 studies examined the impact of insecticide-based tools, only 9 evaluated the insecticide susceptibility status of the target vector population during the study. Conclusions/Significance This review and meta

  5. The Cost of Dengue Vector Control Activities in Malaysia by Different Service Providers.

    PubMed

    Packierisamy, P Raviwharmman; Ng, Chiu-Wan; Dahlui, Maznah; Venugopalan, B; Halasa, Yara A; Shepard, Donald S

    2015-11-01

    We examined variations in dengue vector control costs and resource consumption between the District Health Departments (DHDs) and Local Authorities (LAs) to assist informed decision making as to the future roles of these agencies in the delivery of dengue vector control services in Malaysia. Data were collected from the vector control units of DHDs and LAs in 8 selected districts. We captured costs and resource consumption in 2010 for premise inspection for mosquito breeding sites, fogging to destroy adult mosquitoes and larviciding of potential breeding sites. Overall, DHDs spent US$5.62 million or US$679 per case and LAs spent US$2.61 million or US$499 per case. The highest expenditure for both agencies was for fogging, 51.0% and 45.8% of costs for DHDs and LAs, respectively. The DHDs had higher resource costs for human personnel, vehicles, pesticides, and equipment. The findings provide some evidence to rationalize delivery of dengue vector control services in Malaysia. PMID:26047628

  6. Temephos Resistance in Aedes aegypti in Colombia Compromises Dengue Vector Control

    PubMed Central

    Grisales, Nelson; Poupardin, Rodolphe; Gomez, Santiago; Fonseca-Gonzalez, Idalyd; Ranson, Hilary; Lenhart, Audrey

    2013-01-01

    Background Control and prevention of dengue relies heavily on the application of insecticides to control dengue vector mosquitoes. In Colombia, application of the larvicide temephos to the aquatic breeding sites of Aedes aegypti is a key part of the dengue control strategy. Resistance to temephos was recently detected in the dengue-endemic city of Cucuta, leading to questions about its efficacy as a control tool. Here, we characterize the underlying mechanisms and estimate the operational impact of this resistance. Methodology/Principal Findings Larval bioassays of Ae. aegypti larvae from Cucuta determined the temephos LC50 to be 0.066 ppm (95% CI 0.06–0.074), approximately 15× higher than the value obtained from a susceptible laboratory colony. The efficacy of the field dose of temephos at killing this resistant Cucuta population was greatly reduced, with mortality rates <80% two weeks after application and <50% after 4 weeks. Neither biochemical assays nor partial sequencing of the ace-1 gene implicated target site resistance as the primary resistance mechanism. Synergism assays and microarray analysis suggested that metabolic mechanisms were most likely responsible for the temephos resistance. Interestingly, although the greatest synergism was observed with the carboxylesterase inhibitor, DEF, the primary candidate genes from the microarray analysis, and confirmed by quantitative PCR, were cytochrome P450 oxidases, notably CYP6N12, CYP6F3 and CYP6M11. Conclusions/Significance In Colombia, resistance to temephos in Ae. aegypti compromises the duration of its effect as a vector control tool. Several candidate genes potentially responsible for metabolic resistance to temephos were identified. Given the limited number of insecticides that are approved for vector control, future chemical-based control strategies should take into account the mechanisms underlying the resistance to discern which insecticides would likely lead to the greatest control efficacy while

  7. Community-Effectiveness of Temephos for Dengue Vector Control: A Systematic Literature Review

    PubMed Central

    George, Leyanna; Lenhart, Audrey; Toledo, Joao; Lazaro, Adhara; Han, Wai Wai; Velayudhan, Raman; Runge Ranzinger, Silvia; Horstick, Olaf

    2015-01-01

    The application of the organophosphate larvicide temephos to water storage containers is one of the most commonly employed dengue vector control methods. This systematic literature review is to the knowledge of the authors the first that aims to assess the community-effectiveness of temephos in controlling both vectors and dengue transmission when delivered either as a single intervention or in combination with other interventions. A comprehensive literature search of 6 databases was performed (PubMed, WHOLIS, GIFT, CDSR, EMBASE, Wiley), grey literature and cross references were also screened for relevant studies. Data were extracted and methodological quality of the studies was assessed independently by two reviewers. 27 studies were included in this systematic review (11 single intervention studies and 16 combined intervention studies). All 11 single intervention studies showed consistently that using temephos led to a reduction in entomological indices. Although 11 of the 16 combined intervention studies showed that temephos application together with other chemical vector control methods also reduced entomological indices, this was either not sustained over time or–as in the five remaining studies—failed to reduce the immature stages. The community-effectiveness of temephos was found to be dependent on factors such as quality of delivery, water turnover rate, type of water, and environmental factors such as organic debris, temperature and exposure to sunlight. Timing of temephos deployment and its need for reapplication, along with behavioural factors such as the reluctance of its application to drinking water, and operational aspects such as cost, supplies, time and labour were further limitations identified in this review. In conclusion, when applied as a single intervention, temephos was found to be effective at suppressing entomological indices, however, the same effect has not been observed when temephos was applied in combination with other

  8. Innovative dengue vector control interventions in Latin America: what do they cost?

    PubMed Central

    Basso, César; Beltrán-Ayala, Efraín; Mitchell-Foster, Kendra; Cortés, Sebastián; Manrique-Saide, Pablo; Guillermo-May, Guillermo; Carvalho de Lima, Edilmar

    2016-01-01

    Background Five studies were conducted in Fortaleza (Brazil), Girardot (Colombia), Machala (Ecuador), Acapulco (Mexico), and Salto (Uruguay) to assess dengue vector control interventions tailored to the context. The studies involved the community explicitly in the implementation, and focused on the most productive breeding places for Aedes aegypti. This article reports the cost analysis of these interventions. Methods We conducted the costing from the perspective of the vector control program. We collected data on quantities and unit costs of the resources used to deliver the interventions. Comparable information was requested for the routine activities. Cost items were classified, analyzed descriptively, and aggregated to calculate total costs, costs per house reached, and incremental costs. Results Cost per house of the interventions were $18.89 (Fortaleza), $21.86 (Girardot), $30.61 (Machala), $39.47 (Acapulco), and $6.98 (Salto). Intervention components that focused mainly on changes to the established vector control programs seem affordable; cost savings were identified in Salto (−21%) and the clean patio component in Machala (−12%). An incremental cost of 10% was estimated in Fortaleza. On the other hand, there were also completely new components that would require sizeable financial efforts (installing insecticide-treated nets in Girardot and Acapulco costs $16.97 and $24.96 per house, respectively). Conclusions The interventions are promising, seem affordable and may improve the cost profile of the established vector control programs. The costs of the new components could be considerable, and should be assessed in relation to the benefits in reduced dengue burden. PMID:26924235

  9. Determining the spatial autocorrelation of dengue vector populations: influences of mosquito sampling method, covariables, and vector control.

    PubMed

    Azil, Aishah H; Bruce, David; Williams, Craig R

    2014-06-01

    We investigated spatial autocorrelation of female Aedes aegypti L. mosquito abundance from BG-Sentinel trap and sticky ovitrap collections in Cairns, north Queensland, Australia. BG-Sentinel trap collections in 2010 show a significant spatial autocorrelation across the study site and over a smaller spatial extent, while sticky ovitrap collections only indicate a non-significant, weak spatial autocorrelation. The BG-Sentinel trap collections were suitable for spatial interpolation using ordinary kriging and cokriging techniques. The uses of Premise Condition Index and potential breeding container data have helped improve our prediction of vector abundance. Semiovariograms and prediction maps indicate that the spatial autocorrelation of mosquito abundance determined by BG-Sentinel traps extends farther compared to sticky ovitrap collections. Based on our data, fewer BG-Sentinel traps are required to represent vector abundance at a series of houses compared to sticky ovitraps. A lack of spatial structure was observed following vector control treatment in the area. This finding has implications for the design and costs of dengue vector surveillance programs. PMID:24820568

  10. Impact of combined vector-control and vaccination strategies on transmission dynamics of dengue fever: a model-based analysis.

    PubMed

    Knerer, Gerhart; Currie, Christine S M; Brailsford, Sally C

    2015-06-01

    Dengue fever is a vector-borne disease prevalent in tropical and subtropical regions. It is an important public health problem with a considerable and often under-valued disease burden in terms of frequency, cost and quality-of-life. Recent literature reviews have documented the development of mathematical models of dengue fever both to identify important characteristics for future model development as well as to assess the impact of dengue control interventions. Such reviews highlight the importance of short-term cross-protection; antibody-dependent enhancement; and seasonality (in terms of both favourable and unfavourable conditions for mosquitoes). The compartmental model extends work by Bartley (2002) and combines the following factors: seasonality, age-structure, consecutive infection by all four serotypes, cross-protection and immune enhancement, as well as combined vector-host transmission. The model is used to represent dengue transmission dynamics using parameters appropriate for Thailand and to assess the potential impact of combined vector-control and vaccination strategies including routine and catch-up vaccination strategies on disease dynamics. When seasonality and temporary cross-protection between serotypes are included, the model is able to approximate the observed incidence of dengue fever in Thailand. We find vaccination to be the most effective single intervention, albeit with imperfect efficacy (30.2 %) and limited duration of protection. However, in combination, control interventions and vaccination exhibit a marked impact on dengue fever transmission. This study shows that an imperfect vaccine can be a useful weapon in reducing disease spread within the community, although it will be most effective when promoted as one of several strategies for combating dengue fever transmission.

  11. Impact of combined vector-control and vaccination strategies on transmission dynamics of dengue fever: a model-based analysis.

    PubMed

    Knerer, Gerhart; Currie, Christine S M; Brailsford, Sally C

    2015-06-01

    Dengue fever is a vector-borne disease prevalent in tropical and subtropical regions. It is an important public health problem with a considerable and often under-valued disease burden in terms of frequency, cost and quality-of-life. Recent literature reviews have documented the development of mathematical models of dengue fever both to identify important characteristics for future model development as well as to assess the impact of dengue control interventions. Such reviews highlight the importance of short-term cross-protection; antibody-dependent enhancement; and seasonality (in terms of both favourable and unfavourable conditions for mosquitoes). The compartmental model extends work by Bartley (2002) and combines the following factors: seasonality, age-structure, consecutive infection by all four serotypes, cross-protection and immune enhancement, as well as combined vector-host transmission. The model is used to represent dengue transmission dynamics using parameters appropriate for Thailand and to assess the potential impact of combined vector-control and vaccination strategies including routine and catch-up vaccination strategies on disease dynamics. When seasonality and temporary cross-protection between serotypes are included, the model is able to approximate the observed incidence of dengue fever in Thailand. We find vaccination to be the most effective single intervention, albeit with imperfect efficacy (30.2 %) and limited duration of protection. However, in combination, control interventions and vaccination exhibit a marked impact on dengue fever transmission. This study shows that an imperfect vaccine can be a useful weapon in reducing disease spread within the community, although it will be most effective when promoted as one of several strategies for combating dengue fever transmission. PMID:24370922

  12. Dengue Vector Dynamics (Aedes aegypti) Influenced by Climate and Social Factors in Ecuador: Implications for Targeted Control

    PubMed Central

    Stewart Ibarra, Anna M.; Ryan, Sadie J.; Beltrán, Efrain; Mejía, Raúl; Silva, Mercy; Muñoz, Ángel

    2013-01-01

    Background Dengue fever, a mosquito-borne viral disease, is now the fastest spreading tropical disease globally. Previous studies indicate that climate and human behavior interact to influence dengue virus and vector (Aedes aegypti) population dynamics; however, the relative effects of these variables depends on local ecology and social context. We investigated the roles of climate and socio-ecological factors on Ae. aegypti population dynamics in Machala, a city in southern coastal Ecuador where dengue is hyper-endemic. Methods/Principal findings We studied two proximate urban localities where we monitored weekly Ae. aegypti oviposition activity (Nov. 2010-June 2011), conducted seasonal pupal surveys, and surveyed household to identify dengue risk factors. The results of this study provide evidence that Ae. aegypti population dynamics are influenced by social risk factors that vary by season and lagged climate variables that vary by locality. Best-fit models to predict the presence of Ae. aegypti pupae included parameters for household water storage practices, access to piped water, the number of households per property, condition of the house and patio, and knowledge and perceptions of dengue. Rainfall and minimum temperature were significant predictors of oviposition activity, although the effect of rainfall varied by locality due to differences in types of water storage containers. Conclusions These results indicate the potential to reduce the burden of dengue in this region by conducting focused vector control interventions that target high-risk households and containers in each season and by developing predictive models using climate and non-climate information. These findings provide the region's public health sector with key information for conducting time and location-specific vector control campaigns, and highlight the importance of local socio-ecological studies to understand dengue dynamics. See Text S1 for an executive summary in Spanish. PMID:24324542

  13. Community mobilization and household level waste management for dengue vector control in Gampaha district of Sri Lanka; an intervention study

    PubMed Central

    Abeyewickreme, W; Wickremasinghe, A R; Karunatilake, K; Sommerfeld, Johannes; Kroeger, Axel

    2012-01-01

    Introduction Waste management through community mobilization to reduce breeding places at household level could be an effective and sustainable dengue vector control strategy in areas where vector breeding takes place in small discarded water containers. The objective of this study was to assess the validity of this assumption. Methods An intervention study was conducted from February 2009 to February 2010 in the populous Gampaha District of Sri Lanka. Eight neighborhoods (clusters) with roughly 200 houses each were selected randomly from high and low dengue endemic areas; 4 of them were allocated to the intervention arm (2 in the high and 2 in the low endemicity areas) and in the same way 4 clusters to the control arm. A baseline household survey was conducted and entomological and sociological surveys were carried out simultaneously at baseline, at 3 months, at 9 months and at 15 months after the start of the intervention. The intervention programme in the treatment clusters consisted of building partnerships of local stakeholders, waste management at household level, the promotion of composting biodegradable household waste, raising awareness on the importance of solid waste management in dengue control and improving garbage collection with the assistance of local government authorities. Results The intervention and control clusters were very similar and there were no significant differences in pupal and larval indices of Aedes mosquitoes. The establishment of partnerships among local authorities was well accepted and sustainable; the involvement of communities and households was successful. Waste management with the elimination of the most productive water container types (bowls, tins, bottles) led to a significant reduction of pupal indices as a proxy for adult vector densities. Conclusion The coordination of local authorities along with increased household responsibility for targeted vector interventions (in our case solid waste management due to the type of

  14. Estimating dengue vector abundance in the wet and dry season: implications for targeted vector control in urban and peri-urban Asia

    PubMed Central

    Wai, Khin Thet; Arunachalam, Natarajan; Tana, Susilowati; Espino, Fe; Kittayapong, Pattamaporn; Abeyewickreme, W; Hapangama, Dilini; Tyagi, Brij Kishore; Htun, Pe Than; Koyadun, Surachart; Kroeger, Axel; Sommerfeld, Johannes; Petzold, Max

    2012-01-01

    Background Research has shown that the classical Stegomyia indices (or “larval indices”) of the dengue vector Aedes aegypti reflect the absence or presence of the vector but do not provide accurate measures of adult mosquito density. In contrast, pupal indices as collected in pupal productivity surveys are a much better proxy indicator for adult vector abundance. However, it is unknown when it is most optimal to conduct pupal productivity surveys, in the wet or in the dry season or in both, to inform control services about the most productive water container types and if this pattern varies among different ecological settings. Methods A multi-country study in randomly selected twelve to twenty urban and peri-urban neighborhoods (“clusters”) of six Asian countries, in which all water holding containers were examined for larvae and pupae of Aedes aegypti during the dry season and the wet season and their productivity was characterized by water container types. In addition, meteorological data and information on reported dengue cases were collected. Findings The study reconfirmed the association between rainfall and dengue cases (“dengue season”) and underlined the importance of determining through pupal productivity surveys the “most productive containers types”, responsible for the majority (>70%) of adult dengue vectors. The variety of productive container types was greater during the wet than during the dry season, but included practically all container types productive in the dry season. Container types producing pupae were usually different from those infested by larvae indicating that containers with larval infestations do not necessarily foster pupal development and thus the production of adult Aedes mosquitoes. Conclusion Pupal productivity surveys conducted during the wet season will identify almost all of the most productive container types for both the dry and wet seasons and will therefore facilitate cost-effective targeted interventions

  15. People's knowledge and practice about dengue, its vectors, and control means in Brasilia (DF), Brazil: its relevance with entomological factors.

    PubMed

    Dégallier, N; Vilarinhos, P T; de Carvalho, M S; Knox, M B; Caetano, J

    2000-06-01

    In South America, the epidemiology and ecology of dengue fever are strongly associated with human habits because the vector Aedes aegypti is strictly urban. Thus, the evaluation of people's knowledge and practice (PKP) is of great importance to improve integrated control measures. A PKP evaluation has been done in a suburb of Brasilia. Thirty questions were submitted to 130 habitants about income level, education, sources of information, specific knowledge about dengue, vector biology, and control measures applied. Other questions were about the responsibility of dengue control and the opportunity of applying a fine to people who would not cooperate with the control measures. Level of PKP was fairly high, either for housekeepers, workers, or students. The mosquito bite was cited as source of infection by 60.8% of interviewed people but 22.3% had no knowledge about this topic. The most cited symptoms in association with dengue were fever (73.1%), headache (66.2%), and rash (35.4%). Knowledge about mosquito biology and control was also fairly accurate, as demonstrated by 96.9% of answers. Elimination of water containers was the most efficient means according to 73% of people. Such action should be done mainly by the citizen (75.3% of answers). Despite the good PKP, correlations existed only between the PKP about vector biology and presence of potential breeding containers in March, and between the PKP about the disease and potential breeding containers in April. In conclusion, global educational campaigns may have a real impact on the PKP but this did not result in effective control of the mosquito breeding containers by the people.

  16. [Social representations concerning dengue, dengue vectors, and control activities among residents of São Sebastião on the northern coast of São Paulo State, Brazil].

    PubMed

    Lefèvre, Ana Maria Cavalcanti; Ribeiro, Andressa Francisca; Marques, Gisela Rita de Alvarenga Monteiro; Serpa, Lígia Leandro Nunes; Lefèvre, Fernando

    2007-07-01

    This study sought to identify people's knowledge on dengue and its vector biology, aimed at promoting a communications channel between technical and lay reasoning in order to foster community involvement in dengue and dengue vector control activities. A survey was conducted in an Aedes aegypti-infested area with dengue transmission in São Sebastião on the northern coast of São Paulo State, Brazil. One hundred interviews were held, with five open questions on topics related to dengue and vector control. Collective Subject Discourse methodology was used in the analysis. People were not able to properly identify the kinds of accumulated water sources that serve as breeding places for mosquitoes and were unaware of the egg phase in vector development. There was inadequate awareness of vector biology and a need for greater government-community integration. Educational activities should incorporate the study results as insight for improving the social efficiency and efficacy of joint actions to fight dengue and control the mosquito vector.

  17. Declining malaria, rising of dengue and Zika virus: insights for mosquito vector control.

    PubMed

    Benelli, Giovanni; Mehlhorn, Heinz

    2016-05-01

    The fight against mosquito-borne diseases is a challenge of huge public health importance. To our mind, 2015 was an extraordinary year for malaria control, due to three hot news: the Nobel Prize to Youyou Tu for the discovery of artemisinin, the development of the first vaccine against Plasmodium falciparum malaria [i.e. RTS,S/AS01 (RTS,S)], and the fall of malaria infection rates worldwide, with special reference to sub-Saharan Africa. However, there are major challenges that still deserve attention, in order to boost malaria prevention and control. Indeed, parasite strains resistant to artemisinin have been detected, and RTS,S vaccine does not offer protection against Plasmodium vivax malaria, which predominates in many countries outside of Africa. Furthermore, the recent outbreaks of Zika virus infections, occurring in South America, Central America and the Caribbean, represent the most recent of four arrivals of important arboviruses in the Western Hemisphere, over the last 20 years. Zika virus follows dengue (which slyly arrived in the hemisphere over decades and became more aggressive in the 1990s), West Nile virus (emerged in 1999) and chikungunya (emerged in 2013). Notably, there are no specific treatments for these arboviruses. The emerging scenario highlights that the effective and eco-friendly control of mosquito vectors, with special reference to highly invasive species such as Aedes aegypti and Aedes albopictus, is crucial. The concrete potential of screening plant species as sources of metabolites for parasitological purposes is worthy of attention, as elucidated by the Y. Tu's example. Notably, plant-borne molecules are often effective at few parts per million against Aedes, Ochlerotatus, Anopheles and Culex young instars, can be used for the rapid synthesis of mosquitocidal nanoformulations and even employed to prepare cheap repellents with low human toxicity. In addition, behaviour-based control tools relying to the employ of sound traps and the

  18. Declining malaria, rising of dengue and Zika virus: insights for mosquito vector control.

    PubMed

    Benelli, Giovanni; Mehlhorn, Heinz

    2016-05-01

    The fight against mosquito-borne diseases is a challenge of huge public health importance. To our mind, 2015 was an extraordinary year for malaria control, due to three hot news: the Nobel Prize to Youyou Tu for the discovery of artemisinin, the development of the first vaccine against Plasmodium falciparum malaria [i.e. RTS,S/AS01 (RTS,S)], and the fall of malaria infection rates worldwide, with special reference to sub-Saharan Africa. However, there are major challenges that still deserve attention, in order to boost malaria prevention and control. Indeed, parasite strains resistant to artemisinin have been detected, and RTS,S vaccine does not offer protection against Plasmodium vivax malaria, which predominates in many countries outside of Africa. Furthermore, the recent outbreaks of Zika virus infections, occurring in South America, Central America and the Caribbean, represent the most recent of four arrivals of important arboviruses in the Western Hemisphere, over the last 20 years. Zika virus follows dengue (which slyly arrived in the hemisphere over decades and became more aggressive in the 1990s), West Nile virus (emerged in 1999) and chikungunya (emerged in 2013). Notably, there are no specific treatments for these arboviruses. The emerging scenario highlights that the effective and eco-friendly control of mosquito vectors, with special reference to highly invasive species such as Aedes aegypti and Aedes albopictus, is crucial. The concrete potential of screening plant species as sources of metabolites for parasitological purposes is worthy of attention, as elucidated by the Y. Tu's example. Notably, plant-borne molecules are often effective at few parts per million against Aedes, Ochlerotatus, Anopheles and Culex young instars, can be used for the rapid synthesis of mosquitocidal nanoformulations and even employed to prepare cheap repellents with low human toxicity. In addition, behaviour-based control tools relying to the employ of sound traps and the

  19. Effectiveness and acceptance of total release insecticidal aerosol cans as a control measure in reducing dengue vectors.

    PubMed

    Pai, Hsiu-Hua; Hsu, Err-Lieh

    2014-01-01

    The effectiveness of regular application of insecticidal fogging in reducing dengue is questionable, since delays occur between peak time of outbreak and insecticide administrations. Moreover, many residents do not accept indoor application because of concern about insecticide contamination of household items. The study described in this article was designed to evaluate the effectiveness and acceptance of insecticidal aerosol cans to reduce dengue vectors inside and outside of homes. Residents in Kaohsiung City of South Taiwan were provided with two formulations of aerosol cans (permethrin 3.75% weight/weight [w/w] and cypermethrin 1.716% w/w) and were requested to use these aerosol cans. Although the indoor ovitrap index of the permethrin group returned to the original level in week 3, the index of the cypermethrin group decreased 60% to 20%. The residents accepted the insecticidal aerosol cans but complained of unfavorable effects caused by traditional insecticidal fogging. Results indicate that the insecticidal aerosol cans may serve as a supplementary household control measure for dengue vectors during the time period between the peak of outbreak and the administration of government-organized insecticide fogging. PMID:24645416

  20. Evaluation of the Effectiveness of Insecticide Treated Materials for Household Level Dengue Vector Control

    PubMed Central

    Vanlerberghe, Veerle; Villegas, Elci; Oviedo, Milagros; Baly, Alberto; Lenhart, Audrey; McCall, P. J.; Van der Stuyft, Patrick

    2011-01-01

    Objective To assess the operational effectiveness of long-lasting insecticide treated materials (ITMs), when used at household level, for the control of Aedes aegypti in moderately infested urban and suburban areas. Methods In an intervention study, ITMs consisting of curtains and water jar-covers (made from PermaNet) were distributed under routine field conditions in 10 clusters (5 urban and 5 suburban), with over 4000 houses, in Trujillo, Venezuela. Impact of the interventions were determined by comparing pre-and post-intervention measures of the Breteau index (BI, number of positive containers/100 houses) and pupae per person index (PPI), and by comparison with indices from untreated areas of the same municipalities. The effect of ITM coverage was modeled. Results At distribution, the proportion of households with ≥1 ITM curtain was 79.7% in urban and 75.2% in suburban clusters, but decreased to 32.3% and 39.0%, respectively, after 18 months. The corresponding figures for the proportion of jars using ITM covers were 34.0% and 50.8% at distribution and 17.0% and 21.0% after 18 months, respectively. Prior to intervention, the BI was 8.5 in urban clusters and 42.4 in suburban clusters, and the PPI was 0.2 and 0.9, respectively. In both urban and suburban clusters, the BI showed a sustained 55% decrease, while no discernable pattern was observed at the municipal level. After controlling for confounding factors, the percentage ITM curtain coverage, but not ITM jar-cover coverage, was significantly associated with both entomological indices (Incidence Rate Ratio = 0.98; 95%CI 0.97–0.99). The IRR implied that ITM curtain coverage of at least 50% was necessary to reduce A. aegypti infestation levels by 50%. Conclusion Deployment of insecticide treated window curtains in households can result in significant reductions in A. aegypti levels when dengue vector infestations are moderate, but the magnitude of the effect depends on the coverage attained, which itself

  1. Green-synthesized silver nanoparticles as a novel control tool against dengue virus (DEN-2) and its primary vector Aedes aegypti.

    PubMed

    Sujitha, Vasu; Murugan, Kadarkarai; Paulpandi, Manickam; Panneerselvam, Chellasamy; Suresh, Udaiyan; Roni, Mathath; Nicoletti, Marcello; Higuchi, Akon; Madhiyazhagan, Pari; Subramaniam, Jayapal; Dinesh, Devakumar; Vadivalagan, Chithravel; Chandramohan, Balamurugan; Alarfaj, Abdullah A; Munusamy, Murugan A; Barnard, Donald R; Benelli, Giovanni

    2015-09-01

    Dengue is an arthropod-borne viral infection mainly vectored through the bite of Aedes mosquitoes. Recently, its transmission has strongly increased in urban and semi-urban areas of tropical and sub-tropical regions worldwide, becoming a major international public health concern. There is no specific treatment for dengue. Its prevention and control solely depends on effective vector control measures. In this study, we proposed the green-synthesis of silver nanoparticles (AgNP) as a novel and effective tool against the dengue serotype DEN-2 and its major vector Aedes aegypti. AgNP were synthesized using the Moringa oleifera seed extract as reducing and stabilizing agent. AgNP were characterized using a variety of biophysical methods including UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and sorted for size categories. AgNP showed in vitro antiviral activity against DEN-2 infecting vero cells. Viral titer was 7 log10 TCID50/ml in control (AgNP-free), while it dropped to 3.2 log10 TCID50/ml after a single treatment with 20 μl/ml of AgNP. After 6 h, DEN-2 yield was 5.8 log10 PFU/ml in the control, while it was 1.4 log10 PFU/ml post-treatment with AgNP (20 μl/ml). AgNP were highly effective against the dengue vector A. aegypti, with LC50 values ranging from 10.24 ppm (I instar larvae) to 21.17 ppm (pupae). Overall, this research highlighted the concrete potential of green-synthesized AgNP in the fight against dengue and its primary vector A. aegypti. Further research on structure-activity relationships of AgNP against other dengue serotypes is urgently required.

  2. Green-synthesized silver nanoparticles as a novel control tool against dengue virus (DEN-2) and its primary vector Aedes aegypti.

    PubMed

    Sujitha, Vasu; Murugan, Kadarkarai; Paulpandi, Manickam; Panneerselvam, Chellasamy; Suresh, Udaiyan; Roni, Mathath; Nicoletti, Marcello; Higuchi, Akon; Madhiyazhagan, Pari; Subramaniam, Jayapal; Dinesh, Devakumar; Vadivalagan, Chithravel; Chandramohan, Balamurugan; Alarfaj, Abdullah A; Munusamy, Murugan A; Barnard, Donald R; Benelli, Giovanni

    2015-09-01

    Dengue is an arthropod-borne viral infection mainly vectored through the bite of Aedes mosquitoes. Recently, its transmission has strongly increased in urban and semi-urban areas of tropical and sub-tropical regions worldwide, becoming a major international public health concern. There is no specific treatment for dengue. Its prevention and control solely depends on effective vector control measures. In this study, we proposed the green-synthesis of silver nanoparticles (AgNP) as a novel and effective tool against the dengue serotype DEN-2 and its major vector Aedes aegypti. AgNP were synthesized using the Moringa oleifera seed extract as reducing and stabilizing agent. AgNP were characterized using a variety of biophysical methods including UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and sorted for size categories. AgNP showed in vitro antiviral activity against DEN-2 infecting vero cells. Viral titer was 7 log10 TCID50/ml in control (AgNP-free), while it dropped to 3.2 log10 TCID50/ml after a single treatment with 20 μl/ml of AgNP. After 6 h, DEN-2 yield was 5.8 log10 PFU/ml in the control, while it was 1.4 log10 PFU/ml post-treatment with AgNP (20 μl/ml). AgNP were highly effective against the dengue vector A. aegypti, with LC50 values ranging from 10.24 ppm (I instar larvae) to 21.17 ppm (pupae). Overall, this research highlighted the concrete potential of green-synthesized AgNP in the fight against dengue and its primary vector A. aegypti. Further research on structure-activity relationships of AgNP against other dengue serotypes is urgently required. PMID:26063530

  3. Development and evaluation of a pyriproxyfen-treated device to control the dengue vector, Aedes aegypti (L.) (Diptera:Culicidae).

    PubMed

    Ponlawat, Alongkot; Fansiri, Thanyalak; Kurusarttra, Somwang; Pongsiri, Arissara; McCardle, Patrick W; Evans, Brian P; Evans, Brain P; Richardson, Jason H

    2013-03-01

    The resurgence of dengue fever and the chikungunya epidemic make the control of Aedes aegypti mosquitoes, the vectors of these diseases, critically important. We developed and evaluated an Ae. aegypti control device that is visually-attractive to mosquitoes. This pyriproxyfen-treated device was evaluated for its impact on Ae. aegypti egg production and population dynamics in dengue-endemic areas in Thailand. The device consists of a "high rise" shaped ovitrap/ resting station covered with black cotton cloth. The device is easily collapsible and transportable. Ae. aegypti are generally drawn towards darker, shadier areas making this device physically attractive as a resting station to mosquitoes of all physiological stages. The results show this device suppressed Ae. aegypti populations after it was introduced into a village. The observed effect was primarily the result of the Ae. aegypti exposure to pyriproxyfen shortly after adult emergence or after taking a blood meal resulting in decreased egg production. We believe the device may be further improved physically and the formulation should be replaced to provide even better efficacy for controlling Ae. aegypti mosquito, populations. PMID:23691625

  4. Sustained Reduction of the Dengue Vector Population Resulting from an Integrated Control Strategy Applied in Two Brazilian Cities

    PubMed Central

    Regis, Lêda N.; Acioli, Ridelane Veiga; Silveira, José Constantino; Melo-Santos, Maria Alice Varjal; Souza, Wayner Vieira; Ribeiro, Cândida M. Nogueira.; da Silva, Juliana C. Serafim.; Monteiro, Antonio Miguel Vieira; Oliveira, Cláudia M. F.; Barbosa, Rosângela M. R.; Braga, Cynthia; Rodrigues, Marco Aurélio Benedetti; Silva, Marilú Gomes N. M.; Ribeiro Jr., Paulo Justiniano; Bonat, Wagner Hugo; de Castro Medeiros, Liliam César; Carvalho, Marilia Sa; Furtado, André Freire

    2013-01-01

    Aedes aegypti has developed evolution-driven adaptations for surviving in the domestic human habitat. Several trap models have been designed considering these strategies and tested for monitoring this efficient vector of Dengue. Here, we report a real-scale evaluation of a system for monitoring and controlling mosquito populations based on egg sampling coupled with geographic information systems technology. The SMCP-Aedes, a system based on open technology and open data standards, was set up from March/2008 to October/2011 as a pilot trial in two sites of Pernambuco -Brazil: Ipojuca (10,000 residents) and Santa Cruz (83,000), in a joint effort of health authorities and staff, and a network of scientists providing scientific support. A widespread infestation by Aedes was found in both sites in 2008–2009, with 96.8%–100% trap positivity. Egg densities were markedly higher in SCC than in Ipojuca. A 90% decrease in egg density was recorded in SCC after two years of sustained control pressure imposed by suppression of >7,500,000 eggs and >3,200 adults, plus larval control by adding fishes to cisterns. In Ipojuca, 1.1 million mosquito eggs were suppressed and a 77% reduction in egg density was achieved. This study aimed at assessing the applicability of a system using GIS and spatial statistic analysis tools for quantitative assessment of mosquito populations. It also provided useful information on the requirements for reducing well-established mosquito populations. Results from two cities led us to conclude that the success in markedly reducing an Aedes population required the appropriate choice of control measures for sustained mass elimination guided by a user-friendly mosquito surveillance system. The system was able to support interventional decisions and to assess the program’s success. Additionally, it created a stimulating environment for health staff and residents, which had a positive impact on their commitment to the dengue control program. PMID:23844059

  5. Dengue vector-control services: how do they work? A systematic literature review and country case studies.

    PubMed

    Horstick, Olaf; Runge-Ranzinger, Silvia; Nathan, Michael B; Kroeger, Axel

    2010-06-01

    The increasing incidence and geographic expansion of dengue suggest limitations of vector-control operations. We undertook an analysis of services with two methods: a systematic literature review; and case studies (stakeholder interviews, questionnaires) in Brazil, Guatemala, The Philippines and Viet Nam. In the systematic literature review there were only a few studies (strict criteria, 9 studies; less strict criteria, a further 16 studies and 3 guidelines). Of the 9 studies, 3 showed little change of control operations over time but did show strategic changes (decentralisation, intersectoral collaboration). Staffing levels, capacity building, management and organisation, funding and community engagement were insufficient. The case studies confirmed most of this information: (1) a lack of personnel (entomologists, social scientists, operational vector-control staff); (2) a lack of technical expertise at decentralised levels of services; (3) insufficient budgets; (4) inadequate geographical coverage; (5) interventions relying mostly on insecticides; (6) difficulties in engaging communities; (7) little capacity building; (8) almost no monitoring and evaluation. Stakeholders' doubts about service effectiveness were widespread, but interventions were assumed to be effective with increased resources. The analysis underlined the need for: operational standards; evidence-based selection/delivery of combinations of interventions; development/application of monitoring and evaluation tools; needs-driven capacity building. PMID:20400169

  6. Exploring new thermal fog and ultra-low volume technologies to improve indoor control of the dengue vector, Aedes aegypti (Diptera: Culicidae).

    PubMed

    Harwood, James F; Farooq, Muhammad; Richardson, Alec G; Doud, Carl W; Putnam, John L; Szumlas, Daniel E; Richardson, Jason H

    2014-07-01

    Control of the mosquito vector, Aedes aegypti (L.), inside human habitations must be performed quickly and efficiently to reduce the risk of transmission during dengue outbreaks. As part of abroad study to assess the efficacy of dengue vector control tools for the U.S. Military, two pesticide delivery systems (ultra-low volume [ULV] and thermal fog) were evaluated for their ability to provide immediate control of Ae. aegypti mosquitoes with a contact insecticide inside simulated urban structures. An insect growth regulator was also applied to determine how well each sprayer delivered lethal doses of active ingredient to indoor water containers for pupal control. Mortality of caged Ae. aegypti, pesticide droplet size, and droplet deposition were recorded after applications. In addition, larval and pupal mortality was measured from treated water samples for 4 wk after the applications. The ULV and the thermal fogger performed equally well in delivering lethal doses of adulticide throughout the structures. The ULV resulted in greater larval mortality and adult emergence inhibition in the water containers for a longer period than the thermal fogger. Therefore, the ULV technology is expected to be a better tool for sustained vector suppression when combined with an effective insect growth regulator. However, during a dengue outbreak, either delivery system should provide an immediate knockdown of vector populations that may lower the risk of infection and allow other suppression strategies to be implemented.

  7. Contrasting genetic structure between mitochondrial and nuclear markers in the dengue fever mosquito from Rio de Janeiro: implications for vector control

    PubMed Central

    Rašić, Gordana; Schama, Renata; Powell, Rosanna; Maciel-de Freitas, Rafael; Endersby-Harshman, Nancy M; Filipović, Igor; Sylvestre, Gabriel; Máspero, Renato C; Hoffmann, Ary A

    2015-01-01

    Dengue is the most prevalent global arboviral disease that affects over 300 million people every year. Brazil has the highest number of dengue cases in the world, with the most severe epidemics in the city of Rio de Janeiro (Rio). The effective control of dengue is critically dependent on the knowledge of population genetic structuring in the primary dengue vector, the mosquito Aedes aegypti. We analyzed mitochondrial and nuclear genomewide single nucleotide polymorphism markers generated via Restriction-site Associated DNA sequencing, as well as traditional microsatellite markers in Ae. aegypti from Rio. We found four divergent mitochondrial lineages and a strong spatial structuring of mitochondrial variation, in contrast to the overall nuclear homogeneity across Rio. Despite a low overall differentiation in the nuclear genome, we detected strong spatial structure for variation in over 20 genes that have a significantly altered expression in response to insecticides, xenobiotics, and pathogens, including the novel biocontrol agent Wolbachia. Our results indicate that high genetic diversity, spatially unconstrained admixing likely mediated by male dispersal, along with locally heterogeneous genetic variation that could affect insecticide resistance and mosquito vectorial capacity, set limits to the effectiveness of measures to control dengue fever in Rio. PMID:26495042

  8. The successful induction of T-cell and antibody responses by a recombinant measles virus-vectored tetravalent dengue vaccine provides partial protection against dengue-2 infection.

    PubMed

    Hu, Hui-Mei; Chen, Hsin-Wei; Hsiao, Yu-Ju; Wu, Szu-Hsien; Chung, Han-Hsuan; Hsieh, Chun-Hsiang; Chong, Pele; Leng, Chih-Hsiang; Pan, Chien-Hsiung

    2016-07-01

    Dengue has a major impact on global public health, and the use of dengue vaccine is very limited. In this study, we evaluated the immunogenicity and protective efficacy of a dengue vaccine made from a recombinant measles virus (MV) that expresses envelope protein domain III (ED3) of dengue-1 to 4. Following immunization with the MV-vectored dengue vaccine, mice developed specific interferon-gamma and antibody responses against dengue virus and MV. Neutralizing antibodies against MV and dengue viruses were also induced, and protective levels of FRNT50 ≥ 10 to 4 serotypes of dengue viruses were detected in the MV-vectored dengue vaccine-immunized mice. In addition, specific interferon-gamma and antibody responses to dengue viruses were still induced by the MV-vectored dengue vaccine in mice that were pre-infected with MV. This finding suggests that the pre-existing immunity to MV did not block the initiation of immune responses. By contrast, mice that were pre-infected with dengue-3 exhibited no effect in terms of their antibody responses to MV and dengue viruses, but a dominant dengue-3-specific T-cell response was observed. After injection with dengue-2, a detectable but significantly lower viremia and a higher titer of anti-dengue-2 neutralizing antibodies were observed in MV-vectored dengue vaccine-immunized mice versus the vector control, suggesting that an anamnestic antibody response that provided partial protection against dengue-2 was elicited. Our results with regard to T-cell responses and the effect of pre-immunity to MV or dengue viruses provide clues for the future applications of an MV-vectored dengue vaccine. PMID:26901482

  9. Use of Insecticide-Treated House Screens to Reduce Infestations of Dengue Virus Vectors, Mexico

    PubMed Central

    Manrique-Saide, Pablo; Che-Mendoza, Azael; Barrera-Perez, Mario; Guillermo-May, Guillermo; Herrera-Bojorquez, Josue; Dzul-Manzanilla, Felipe; Gutierrez-Castro, Cipriano; Lenhart, Audrey; Vazquez-Prokopec, Gonzalo; Sommerfeld, Johannes; McCall, Philip J.; Kroeger, Axel

    2015-01-01

    Dengue prevention efforts rely on control of virus vectors. We investigated use of insecticide-treated screens permanently affixed to windows and doors in Mexico and found that the screens significantly reduced infestations of Aedes aegypti mosquitoes in treated houses. Our findings demonstrate the value of this method for dengue virus vector control. PMID:25625483

  10. Community-centred eco-bio-social approach to control dengue vectors: an intervention study from Myanmar

    PubMed Central

    Wai, Khin Thet; Htun, Pe Than; Oo, Tin; Myint, Hla; Lin, Zaw; Kroeger, Axel; Sommerfeld, Johannes; Petzold, Max

    2012-01-01

    Objectives To build up and analyse the feasibility, process, and effectiveness of a partnership-driven ecosystem management intervention in reducing dengue vector breeding and constructing sustainable partnerships among multiple stakeholders. Methods A community-based intervention study was conducted from May 2009 to January 2010 in Yangon city. Six high-risk and six low-risk clusters were randomized and allocated as intervention and routine service areas, respectively. For each cluster, 100 households were covered. Bi-monthly entomological evaluations (i.e. larval and pupal surveys) and household acceptability surveys at the end of 6-month intervention period were conducted, supplemented by qualitative evaluations. Intervention description The strategies included eco-friendly multi-stakeholder partner groups (Thingaha) and ward-based volunteers, informed decision-making of householders, followed by integrated vector management approach. Findings Pupae per person index (PPI) decreased at the last evaluation by 5.7% (0.35–0.33) in high-risk clusters. But in low-risk clusters, PPI remarkably decreased by 63.6% (0.33–0.12). In routine service area, PPI also decreased due to availability of Temephos after Cyclone Nargis. As for total number of pupae in all containers, when compared to evaluation 1, there was a reduction of 18.6% in evaluation 2 and 44.1% in evaluation 3 in intervention area. However, in routine service area, more reduction was observed. All intervention tools were found as acceptable, being feasible to implement by multi-stakeholder partner groups. Conclusions The efficacy of community-controlled partnership-driven interventions was found to be superior to the vertical approach in terms of sustainability and community empowerment. PMID:23318238

  11. [Aedes aegypti, vector of the dengue virus: spatio-temporal structure of its genetic variation].

    PubMed

    Huber, Karine; Luu Le, Loan; Tran Huu, Hoang; Tran Khanh, Tien; Rodhain, François; Failloux, Anna-Bella

    2002-01-01

    Aedes aegypti is the main vector of dengue viruses. Methods for limiting the spread of dengue outbreaks are currently based on vector control. Estimates of population genetic organization and gene flow with respect to vector capacity have provided great insights into dengue epidemiology. In Vietnam, dengue hemorrhagic fever was detected in the 1950's and becomes today the major problem of public health. Among factors influencing dengue epidemiology, ecological disturbances have a direct impact on vectorial system functioning. Human activities through urbanization creating sanitary conditions are convenient to the vector proliferation and then, to dengue endemisation. To assess the role of the vector in the changing pattern of dengue in South-East Asia, we studied the genetic differentiation and the vector competence towards dengue 2 virus at two scales: at a spatial level (a local scale (i.e., Ho Chi Minh City) and a regional scale (i.e., Cambodia, Thailand and South Vietnam) and at a temporal scale. This study allows to propose a model of Ae. aegypti population functioning according space and time. Dynamics of dengue virus diffusion in relation with the vector, depend on the population genetic composition and its evolution.

  12. Effectiveness and feasibility of long-lasting insecticide-treated curtains and water container covers for dengue vector control in Colombia: a cluster randomised trial

    PubMed Central

    Quintero, Juliana; García-Betancourt, Tatiana; Cortés, Sebastian; García, Diana; Alcalá, Lucas; González-Uribe, Catalina; Brochero, Helena; Carrasquilla, Gabriel

    2015-01-01

    Background Long-lasting insecticide-treated net (LLIN) window and door curtains alone or in combination with LLIN water container covers were analysed regarding effectiveness in reducing dengue vector density, and feasibility of the intervention. Methods A cluster randomised trial was conducted in an urban area of Colombia comparing 10 randomly selected control and 10 intervention clusters. In control clusters, routine vector control activities were performed. The intervention delivered first, LLIN curtains (from July to August 2013) and secondly, water container covers (from October to March 2014). Cross-sectional entomological surveys were carried out at baseline (February 2013 to June 2013), 9 weeks after the first intervention (August to October 2013), and 4–6 weeks after the second intervention (March to April 2014). Results Curtains were installed in 922 households and water container covers in 303 households. The Breteau index (BI) fell from 14 to 6 in the intervention group and from 8 to 5 in the control group. The additional intervention with LLIN covers for water containers showed a significant reduction in pupae per person index (PPI) (p=0.01). In the intervention group, the PPI index showed a clear decline of 71% compared with 25% in the control group. Costs were high but options for cost savings were identified. Conclusions Short term impact evaluation indicates that the intervention package can reduce dengue vector density but sustained effect will depend on multiple factors. PMID:25604762

  13. Long-lasting insecticide-treated house screens and targeted treatment of productive breeding-sites for dengue vector control in Acapulco, Mexico

    PubMed Central

    Che-Mendoza, Azael; Guillermo-May, Guillermo; Herrera-Bojórquez, Josué; Barrera-Pérez, Mario; Dzul-Manzanilla, Felipe; Gutierrez-Castro, Cipriano; Arredondo-Jiménez, Juan I.; Sánchez-Tejeda, Gustavo; Vazquez-Prokopec, Gonzalo; Ranson, Hilary; Lenhart, Audrey; Sommerfeld, Johannes; McCall, Philip J.; Kroeger, Axel; Manrique-Saide, Pablo

    2015-01-01

    Background Long-lasting insecticidal net screens (LLIS) fitted to domestic windows and doors in combination with targeted treatment (TT) of the most productive Aedes aegypti breeding sites were evaluated for their impact on dengue vector indices in a cluster-randomised trial in Mexico between 2011 and 2013. Methods Sequentially over 2 years, LLIS and TT were deployed in 10 treatment clusters (100 houses/cluster) and followed up over 24 months. Cross-sectional surveys quantified infestations of adult mosquitoes, immature stages at baseline (pre-intervention) and in four post-intervention samples at 6-monthly intervals. Identical surveys were carried out in 10 control clusters that received no treatment. Results LLIS clusters had significantly lower infestations compared to control clusters at 5 and 12 months after installation, as measured by adult (male and female) and pupal-based vector indices. After addition of TT to the intervention houses in intervention clusters, indices remained significantly lower in the treated clusters until 18 (immature and adult stage indices) and 24 months (adult indices only) post-intervention. Conclusions These safe, simple affordable vector control tools were well-accepted by study participants and are potentially suitable in many regions at risk from dengue worldwide. PMID:25604761

  14. Control of aedes vectors of dengue in three provinces of Vietnam by use of Mesocyclops (Copepoda) and community-based methods validated by entomologic, clinical, and serological surveillance.

    PubMed

    Kay, Brian H; Nam, Vu Sinh; Tien, Tran Van; Yen, Nguyen Thi; Phong, Tran Vu; Diep, Vu Thi Bich; Ninh, Truong Uyen; Bektas, Ahmet; Aaskov, John G

    2002-01-01

    We describe remarkable success in controlling dengue vectors, Aedes aegypti (L.) and Aedes albopictus (Skuse), in 6 communes with 11,675 households and 49,647 people in the northern provinces of Haiphong, Hung Yen, and Nam Dinh in Vietnam. The communes were selected for high-frequency use of large outdoor concrete tanks and wells. These were found to be the source of 49.6-98.4% of Ae. aegypti larvae, which were amenable to treatment with local Mesocyclops, mainly M. woutersi Van der Velde, M. aspericornis (Daday) and M. thermocyclopoides Harada. Knowledge, attitude, and practice surveys were performed to determine whether the communities viewed dengue and dengue hemorrhagic fever as a serious health threat; to determine their knowledge of the etiology, attitudes, and practices regarding control methods including Mesocyclops; and to determine their receptivity to various information methods. On the basis of the knowledge, attitude, and practice data, the community-based dengue control program comprised a system of local leaders, health volunteer teachers, and schoolchildren, supported by health professionals. Recycling of discards for economic gain was enhanced, where appropriate, and this, plus 37 clean-up campaigns, removed small containers unsuitable for Mesocyclops treatment. A previously successful eradication at Phan Boi village (Hung Yen province) was extended to 7 other villages forming Di Su commune (1,750 households) in the current study. Complete control was also achieved in Nghia Hiep (Hung Yen province) and in Xuan Phong (Nam Dinh province); control efficacy was > or = 99.7% in the other 3 communes (Lac Vien in Haiphong, Nghia Dong, and Xuan Kien in Nam Dinh). Although tanks and wells were the key container types of Ae. aegypti productivity, discarded materials were the source of 51% of the standing crop of Ae. albopictus. Aedes albopictus larvae were eliminated from the 3 Nam Dinh communes, and 86-98% control was achieved in the other 3 communes

  15. Control of aedes vectors of dengue in three provinces of Vietnam by use of Mesocyclops (Copepoda) and community-based methods validated by entomologic, clinical, and serological surveillance.

    PubMed

    Kay, Brian H; Nam, Vu Sinh; Tien, Tran Van; Yen, Nguyen Thi; Phong, Tran Vu; Diep, Vu Thi Bich; Ninh, Truong Uyen; Bektas, Ahmet; Aaskov, John G

    2002-01-01

    We describe remarkable success in controlling dengue vectors, Aedes aegypti (L.) and Aedes albopictus (Skuse), in 6 communes with 11,675 households and 49,647 people in the northern provinces of Haiphong, Hung Yen, and Nam Dinh in Vietnam. The communes were selected for high-frequency use of large outdoor concrete tanks and wells. These were found to be the source of 49.6-98.4% of Ae. aegypti larvae, which were amenable to treatment with local Mesocyclops, mainly M. woutersi Van der Velde, M. aspericornis (Daday) and M. thermocyclopoides Harada. Knowledge, attitude, and practice surveys were performed to determine whether the communities viewed dengue and dengue hemorrhagic fever as a serious health threat; to determine their knowledge of the etiology, attitudes, and practices regarding control methods including Mesocyclops; and to determine their receptivity to various information methods. On the basis of the knowledge, attitude, and practice data, the community-based dengue control program comprised a system of local leaders, health volunteer teachers, and schoolchildren, supported by health professionals. Recycling of discards for economic gain was enhanced, where appropriate, and this, plus 37 clean-up campaigns, removed small containers unsuitable for Mesocyclops treatment. A previously successful eradication at Phan Boi village (Hung Yen province) was extended to 7 other villages forming Di Su commune (1,750 households) in the current study. Complete control was also achieved in Nghia Hiep (Hung Yen province) and in Xuan Phong (Nam Dinh province); control efficacy was > or = 99.7% in the other 3 communes (Lac Vien in Haiphong, Nghia Dong, and Xuan Kien in Nam Dinh). Although tanks and wells were the key container types of Ae. aegypti productivity, discarded materials were the source of 51% of the standing crop of Ae. albopictus. Aedes albopictus larvae were eliminated from the 3 Nam Dinh communes, and 86-98% control was achieved in the other 3 communes

  16. The dengue vaccine pipeline: Implications for the future of dengue control.

    PubMed

    Schwartz, Lauren M; Halloran, M Elizabeth; Durbin, Anna P; Longini, Ira M

    2015-06-26

    Dengue has become the most rapidly expanding mosquito-borne infectious disease on the planet, surpassing malaria and infecting at least 390 million people per year. There is no effective treatment for dengue illness other than supportive care, especially for severe cases. Symptoms can be mild or life-threatening as in dengue hemorrhagic fever and dengue shock syndrome. Vector control has been only partially successful in decreasing dengue transmission. The potential use of safe and effective tetravalent dengue vaccines is an attractive addition to prevent disease or minimize the possibility of epidemics. There are currently no licensed dengue vaccines. This review summarizes the current status of all dengue vaccine candidates in clinical evaluation. Currently five candidate vaccines are in human clinical trials. One has completed two Phase III trials, two are in Phase II trials, and three are in Phase I testing.

  17. Dengue and dengue vectors in the WHO European region: past, present, and scenarios for the future.

    PubMed

    Schaffner, Francis; Mathis, Alexander

    2014-12-01

    After 55 years of absence, dengue has re-emerged in the WHO European region both as locally transmitted sporadic cases and as an outbreak in Madeira, driven by the introduction of people infected with the virus and the invasion of the vector mosquito species Aedes aegypti and Aedes albopictus. Models predict a further spread of A albopictus, particularly under climate change conditions. Dengue transmission models suggest a low risk in Europe, but these models too rarely include transmission by A albopictus (the main established vector). Further information gaps exist with regard to the Caucasus and central Asian countries of the WHO European region. Many European countries have implemented surveillance and control measures for invasive mosquitoes, but only a few include surveillance for dengue. As long as no dengue-specific prophylaxis or therapeutics are available, integrated vector management is the most sustainable control option. The rapid elimination of newly introduced A aegypti populations should be targeted in the European region, particularly in southern Europe and the Caucasus, where the species was present for decades until the 1950s. PMID:25172160

  18. Promoting health education and public awareness about dengue and its mosquito vector in Saudi Arabia.

    PubMed

    Aziz, Al Thabiani; Al-Shami, Salman A; Mahyoub, Jazem A; Hatabbi, Mesed; Ahmad, Abu Hassan; Md Rawi, Che Salmah

    2014-01-01

    Currently, dengue fever is considered as the main health problem in several parts (Mekkah, Jeddah, Jazan and Najran) of Kingdom of Saudi Arabia (KSA) with dramatically increase in the number of cases reported every year. This is associated with obvious ineffectiveness in the recent control and management programs for the mosquito vector (Aedes aegypti). Here, we suggested promoting the health education and public awareness among Saudi people to improve the control of dengue mosquito vector. Several suggestions and recommendations were highlighted here to ensure effectiveness in the future control and management programs of dengue mosquito vector in KSA.

  19. [Dengue and its vectors in Brazil].

    PubMed

    Dégallier, N; da Rosa, A P; Vasconcelos, P F; Figueiredo, L T; da Rosa, J F; Rodrigues, S G; da Rosa, E S

    1996-01-01

    History of dengue in Brazil is covered from the first citations in the XIXth century to the great outbreaks of the last ten years. DEN-1 and DEN-4 viruses have been isolated for the first time in 1982 during an epidemic in Boa Vista, Roraima State. In 1986-1987, epidemics of dengue type 1 covered an extended area from Rio de Janeiro/Sào Paulo States to the North East States of Brazil. During 1990-1991, dengue type 2 epidemics have been notified in the South East (Rio de Janeiro/São Paulo) and in some States of the interior of the country (Mato Grosso do Sul, Tocantins). DEN-1 virus was also circulating the same year in São Paulo and Minas Gerais States. Recently (1994), an important outbreak has been studied in Ceará State, where DEN-2 and DEN-1 viruses have been isolated. In Rio de Janeiro and Ceara (1990 and 1994, respectively), it is probably the succession of infections by DEN-1 and DEN-2 viruses which has caused many DHF/DSS cases. The urban vector has always been the mosquito Aedes aegypti, from which 4, 7 and 16 strains of DEN-4, DEN-1 and DEN-2 have been isolated, respectively. In Brazil, transovarial transmission of dengue viruses by this species has not yet been shown to occur in nature.

  20. The dengue vector Aedes aegypti: what comes next.

    PubMed

    Jansen, Cassie C; Beebe, Nigel W

    2010-04-01

    Aedes aegypti is the urban vector of dengue viruses worldwide. While climate influences the geographical distribution of this mosquito species, other factors also determine the suitability of the physical environment. Importantly, the close association of A. aegypti with humans and the domestic environment allows this species to persist in regions that may otherwise be unsuitable based on climatic factors alone. We highlight the need to incorporate the impact of the urban environment in attempts to model the potential distribution of A. aegypti and we briefly discuss the potential for future technology to aid management and control of this widespread vector species.

  1. Operational efficiency and sustainability of vector control of malaria and dengue: descriptive case studies from the Philippines

    PubMed Central

    2012-01-01

    Background Analysis is lacking on the management of vector control systems in disease-endemic countries with respect to the efficiency and sustainability of operations. Methods Three locations were selected, at the scale of province, municipality and barangay (i.e. village). Data on disease incidence, programme activities, and programme management were collected on-site through meetings and focus group discussions. Results Adaptation of disease control strategies to the epidemiological situation per barangay, through micro-stratification, brings gains in efficiency, but should be accompanied by further capacity building on local situational analysis for better selection and targeting of vector control interventions within the barangay. An integrated approach to vector control, aiming to improve the rational use of resources, was evident with a multi-disease strategy for detection and response, and by the use of combinations of vector control methods. Collaboration within the health sector was apparent from the involvement of barangay health workers, re-orientation of job descriptions and the creation of a disease surveillance unit. The engagement of barangay leaders and use of existing community structures helped mobilize local resources and voluntary services for vector control. In one location, local authorities and the community were involved in the planning, implementation and evaluation of malaria control, which triggered local programme ownership. Conclusions Strategies that contributed to an improved efficiency and sustainability of vector control operations were: micro-stratification, integration of vector control within the health sector, a multi-disease approach, involvement of local authorities, and empowerment of communities. Capacity building on situational analysis and vector surveillance should be addressed through national policy and guidelines. PMID:22873707

  2. Insecticide resistance and, efficacy of space spraying and larviciding in the control of dengue vectors Aedes aegypti and Aedes albopictus in Sri Lanka.

    PubMed

    Karunaratne, S H P P; Weeraratne, T C; Perera, M D B; Surendran, S N

    2013-09-01

    Unprecedented incidence of dengue has been recorded in Sri Lanka in recent times. Source reduction and use of insecticides in space spraying/fogging and larviciding, are the primary means of controlling the vector mosquitoes Aedes aegypti and Ae. albopictus in the island nation. A study was carried out to understand insecticide cross-resistance spectra and mechanisms of insecticide resistance of both these vectors from six administrative districts, i.e. Kandy, Kurunegala, Puttalam, Gampaha, Ratnapura and Jaffna, of Sri Lanka. Efficacy of the recommended dosages of frequently used insecticides in space spraying and larviciding in dengue vector control programmes was also tested. Insecticide bioassay results revealed that, in general, both mosquito species were highly resistant to DDT but susceptible to propoxur and malathion except Jaffna Ae. aegypti population. Moderate resistance to malathion shown by Jaffna Ae. aegypti population correlated with esterase and malathion carboxylesterase activities of the population. High levels of acetylcholinesterase (AChE) insensitivity in the absence of malathion and propoxur resistance may be due to non-synaptic forms of AChE proteins. Moderate pyrethroid resistance in the absence of high monooxygenase levels indicated the possible involvement of 'kdr' type resistance mechanism in Sri Lankan dengue vectors. Results of the space spraying experiments revealed that 100% mortality at a 10 m distance and >50% mortality at a 50 m distance can be achieved with malathion, pesguard and deltacide even in a ground with dense vegetation. Pesguard and deltacide spraying gave 100% mortality up to 50 m distance in open area and areas with little vegetation. Both species gave >50% mortalities for deltacide at a distance of 75 m in a dense vegetation area. Larval bioassays conducted in the laboratory showed that a 1 ppm temephos solution can maintain a larval mortality rate of 100% for ten months, and the mortality rate declined to 0% in the

  3. Climate Change and Aedes Vectors: 21st Century Projections for Dengue Transmission in Europe.

    PubMed

    Liu-Helmersson, Jing; Quam, Mikkel; Wilder-Smith, Annelies; Stenlund, Hans; Ebi, Kristie; Massad, Eduardo; Rocklöv, Joacim

    2016-05-01

    Warming temperatures may increase the geographic spread of vector-borne diseases into temperate areas. Although a tropical mosquito-borne viral disease, a dengue outbreak occurred in Madeira, Portugal, in 2012; the first in Europe since 1920s. This outbreak emphasizes the potential for dengue re-emergence in Europe given changing climates. We present estimates of dengue epidemic potential using vectorial capacity (VC) based on historic and projected temperature (1901-2099). VC indicates the vectors' ability to spread disease among humans. We calculated temperature-dependent VC for Europe, highlighting 10 European cities and three non-European reference cities. Compared with the tropics, Europe shows pronounced seasonality and geographical heterogeneity. Although low, VC during summer is currently sufficient for dengue outbreaks in Southern Europe to commence-if sufficient vector populations (either Ae. aegypti and Ae. albopictus) were active and virus were introduced. Under various climate change scenarios, the seasonal peak and time window for dengue epidemic potential increases during the 21st century. Our study maps dengue epidemic potential in Europe and identifies seasonal time windows when major cities are most conducive for dengue transmission from 1901 to 2099. Our findings illustrate, that besides vector control, mitigating greenhouse gas emissions crucially reduces the future epidemic potential of dengue in Europe.

  4. Climate Change and Aedes Vectors: 21st Century Projections for Dengue Transmission in Europe.

    PubMed

    Liu-Helmersson, Jing; Quam, Mikkel; Wilder-Smith, Annelies; Stenlund, Hans; Ebi, Kristie; Massad, Eduardo; Rocklöv, Joacim

    2016-05-01

    Warming temperatures may increase the geographic spread of vector-borne diseases into temperate areas. Although a tropical mosquito-borne viral disease, a dengue outbreak occurred in Madeira, Portugal, in 2012; the first in Europe since 1920s. This outbreak emphasizes the potential for dengue re-emergence in Europe given changing climates. We present estimates of dengue epidemic potential using vectorial capacity (VC) based on historic and projected temperature (1901-2099). VC indicates the vectors' ability to spread disease among humans. We calculated temperature-dependent VC for Europe, highlighting 10 European cities and three non-European reference cities. Compared with the tropics, Europe shows pronounced seasonality and geographical heterogeneity. Although low, VC during summer is currently sufficient for dengue outbreaks in Southern Europe to commence-if sufficient vector populations (either Ae. aegypti and Ae. albopictus) were active and virus were introduced. Under various climate change scenarios, the seasonal peak and time window for dengue epidemic potential increases during the 21st century. Our study maps dengue epidemic potential in Europe and identifies seasonal time windows when major cities are most conducive for dengue transmission from 1901 to 2099. Our findings illustrate, that besides vector control, mitigating greenhouse gas emissions crucially reduces the future epidemic potential of dengue in Europe. PMID:27322480

  5. Effective control of dengue vectors with curtains and water container covers treated with insecticide in Mexico and Venezuela: cluster randomised trials

    PubMed Central

    Kroeger, Axel; Lenhart, Audrey; Ochoa, Manuel; Villegas, Elci; Levy, Michael; Alexander, Neal; McCall, P J

    2006-01-01

    Objectives To measure the impact on the dengue vector population (Aedes aegypti) and disease transmission of window curtains and water container covers treated with insecticide. Design Cluster randomised controlled trial based on entomological surveys and, for Trujillo only, serological survey. In addition, each site had a non-randomised external control. Setting 18 urban sectors in Veracruz (Mexico) and 18 in Trujillo (Venezuela). Participants 4743 inhabitants (1095 houses) in Veracruz and 5306 inhabitants (1122 houses) in Trujillo. Intervention Sectors were paired according to entomological indices, and one sector in each pair was randomly allocated to receive treatment. In Veracruz, the intervention comprised curtains treated with lambdacyhalothrin and water treatment with pyriproxyfen chips (an insect growth regulator). In Trujillo, the intervention comprised curtains treated with longlasting deltamethrin (PermaNet) plus water jar covers of the same material. Follow-up surveys were conducted at intervals, with the final survey after 12 months in Veracruz and nine months in Trujillo. Main outcome measures Reduction in entomological indices, specifically the Breteau and house indices. Results In both study sites, indices at the end of the trial were significantly lower than those at baseline, though with no significant differences between control and intervention arms. The mean Breteau index dropped from 60% (intervention clusters) and 113% (control) to 7% (intervention) and 12% (control) in Veracruz and from 38% to 11% (intervention) and from 34% to 17% (control) in Trujillo. The pupae per person and container indices showed similar patterns. In contrast, in nearby communities not in the trial the entomological indices followed the rainfall pattern. The intervention reduced mosquito populations in neighbouring control clusters (spill-over effect); and houses closer to treated houses were less likely to have infestations than those further away. This created a

  6. Toxicity effect of Delonix elata (Yellow Gulmohr) and predatory efficiency of Copepod, Mesocyclops aspericornis for the control of dengue vector, Aedes aegypti

    PubMed Central

    Vasugi, Chellamuthu; Kamalakannan, Siva; Murugan, Kadarkarai

    2013-01-01

    Objective To evaluate the toxicity, predatory efficiency of Delonix elata (D. elata) and Mesocyclops aspericornis (M. aspericornis) against dengue vector, Aedes aegypti (Ae. aegypti). Methods A mosquitocidal bioassay was conducted at different concentration of plant extract followed by WHO standard method. The probit analysis of each tested concentration and control were observed by using software SPSS 11 version package. The each tested concentration variable was assessed by DMRT method. The predatory efficiency of copepod was followed by Deo et al., 1988. The predator, M. aspericornis was observed for mortality, abnormalities, survival and swimming activity after 24 h treatment of plant and also predation on the mosquito larvae were observed. Results D. elata were tested for biological activity against the larvae, and pupae of Ae. aegypti. Significant mortality effects were observed in each life stage. The percentage of mortality was 100% in first and second instars whereas 96%, 92% in third and fourth instars. Fitted probit-mortality curves for larvae indicated the median and 90% lethal concentrations of D. elata for instars 1-4 to be 4.91 (8.13), 5.16 (8.44), 5.95 (7.76) and 6.87 (11.23), respectively. The results indicate that leaf extract exhibits significant biological activity against life stages. The present study revealed that D. elata is potentially important in the control of Ae. aegypti. Similar studies were conducted for predatory efficiency of Copepod, M. aspericornis against mosquito vector Ae. Aegypti. This study reported that the predatory copepod fed on 39% and 25% in I and III instar larvae of mosquito and in combined treatment of D. elata and copepod maximum control of mosquito larval states and at 83%, 80%, 75% and 53% in I, II, III and IV instars, respectively. Conclusions The combined action of plant extract and predatory copepod to effectively control mosquito population and reduce the dengue transmitting diseases.

  7. Chapter 3. Integration of botanicals and microbial pesticides for the control of dengue vector, Aedes aegypti (Insecta: Diptera: Culicidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mosquitoes are the single most important group of insects in terms of public health significance and causing diseases such as malaria, filariasis, dengue fever, Japanese encephalitis and other fevers. There has been an outbreak of Chikungunya and dengue all over the India from 2006 – 2009. Aedes ae...

  8. Green-synthesized silver nanoparticles as a novel control tool against dengue virus (DEN-2) and its primary vector Aedes aegypti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dengue is an arthropod-borne viral infection mainly vectored through the bite of Aedes mosquitoes. Recently, its transmission has strongly increased in urban and semi-urban areas of tropical and sub-tropical regions worldwide, becoming a major international public health concern. There is no specifi...

  9. Evaluating Liquid and Granular Bacillus thuringiensis var. israelensis Broadcast Applications for Controlling Vectors of Dengue and Chikungunya Viruses in Artificial Containers and Tree Holes.

    PubMed

    Harwood, James F; Farooq, Muhammad; Turnwall, Brent T; Richardson, Alec G

    2015-07-01

    The principal vectors of chikungunya and dengue viruses typically oviposit in water-filled artificial and natural containers, including tree holes. Despite the risk these and similar tree hole-inhabiting mosquitoes present to global public health, surprisingly few studies have been conducted to determine an efficient method of applying larvicides specifically to tree holes. The Stihl SR 450, a backpack sprayer commonly utilized during military and civilian vector control operations, may be suitable for controlling larval tree-hole mosquitoes, as it is capable of delivering broadcast applications of granular and liquid dispersible formulations of Bacillus thuringiensis var. israelensis (Bti) to a large area relatively quickly. We compared the application effectiveness of two granular (AllPro Sustain MGB and VectoBac GR) and two liquid (Aquabac XT and VectoBac WDG) formulations of Bti in containers placed on bare ground, placed beneath vegetative cover, and hung 1.5 or 3 m above the ground to simulate tree holes. Aedes aegypti (L.) larval mortality and Bti droplet and granule density data (when appropriate) were recorded for each formulation. Overall, granular formulations of Bti resulted in higher mortality rates in the simulated tree-hole habitats, whereas applications of granular and liquid formulations resulted in similar levels of larval mortality in containers placed on the ground in the open and beneath vegetation. PMID:26335473

  10. Dengue fever occurrence and vector detection by larval survey, ovitrap and MosquiTRAP: a space-time clusters analysis.

    PubMed

    de Melo, Diogo Portella Ornelas; Scherrer, Luciano Rios; Eiras, Álvaro Eduardo

    2012-01-01

    The use of vector surveillance tools for preventing dengue disease requires fine assessment of risk, in order to improve vector control activities. Nevertheless, the thresholds between vector detection and dengue fever occurrence are currently not well established. In Belo Horizonte (Minas Gerais, Brazil), dengue has been endemic for several years. From January 2007 to June 2008, the dengue vector Aedes (Stegomyia) aegypti was monitored by ovitrap, the sticky-trap MosquiTRAP™ and larval surveys in an study area in Belo Horizonte. Using a space-time scan for clusters detection implemented in SaTScan software, the vector presence recorded by the different monitoring methods was evaluated. Clusters of vectors and dengue fever were detected. It was verified that ovitrap and MosquiTRAP vector detection methods predicted dengue occurrence better than larval survey, both spatially and temporally. MosquiTRAP and ovitrap presented similar results of space-time intersections to dengue fever clusters. Nevertheless ovitrap clusters presented longer duration periods than MosquiTRAP ones, less acuratelly signalizing the dengue risk areas, since the detection of vector clusters during most of the study period was not necessarily correlated to dengue fever occurrence. It was verified that ovitrap clusters occurred more than 200 days (values ranged from 97.0±35.35 to 283.0±168.4 days) before dengue fever clusters, whereas MosquiTRAP clusters preceded dengue fever clusters by approximately 80 days (values ranged from 65.5±58.7 to 94.0±14. 3 days), the former showing to be more temporally precise. Thus, in the present cluster analysis study MosquiTRAP presented superior results for signaling dengue transmission risks both geographically and temporally. Since early detection is crucial for planning and deploying effective preventions, MosquiTRAP showed to be a reliable tool and this method provides groundwork for the development of even more precise tools. PMID:22848729

  11. Dengue Fever Occurrence and Vector Detection by Larval Survey, Ovitrap and MosquiTRAP: A Space-Time Clusters Analysis

    PubMed Central

    de Melo, Diogo Portella Ornelas; Scherrer, Luciano Rios; Eiras, Álvaro Eduardo

    2012-01-01

    The use of vector surveillance tools for preventing dengue disease requires fine assessment of risk, in order to improve vector control activities. Nevertheless, the thresholds between vector detection and dengue fever occurrence are currently not well established. In Belo Horizonte (Minas Gerais, Brazil), dengue has been endemic for several years. From January 2007 to June 2008, the dengue vector Aedes (Stegomyia) aegypti was monitored by ovitrap, the sticky-trap MosquiTRAP™ and larval surveys in an study area in Belo Horizonte. Using a space-time scan for clusters detection implemented in SaTScan software, the vector presence recorded by the different monitoring methods was evaluated. Clusters of vectors and dengue fever were detected. It was verified that ovitrap and MosquiTRAP vector detection methods predicted dengue occurrence better than larval survey, both spatially and temporally. MosquiTRAP and ovitrap presented similar results of space-time intersections to dengue fever clusters. Nevertheless ovitrap clusters presented longer duration periods than MosquiTRAP ones, less acuratelly signalizing the dengue risk areas, since the detection of vector clusters during most of the study period was not necessarily correlated to dengue fever occurrence. It was verified that ovitrap clusters occurred more than 200 days (values ranged from 97.0±35.35 to 283.0±168.4 days) before dengue fever clusters, whereas MosquiTRAP clusters preceded dengue fever clusters by approximately 80 days (values ranged from 65.5±58.7 to 94.0±14. 3 days), the former showing to be more temporally precise. Thus, in the present cluster analysis study MosquiTRAP presented superior results for signaling dengue transmission risks both geographically and temporally. Since early detection is crucial for planning and deploying effective preventions, MosquiTRAP showed to be a reliable tool and this method provides groundwork for the development of even more precise tools. PMID:22848729

  12. Dengue fever occurrence and vector detection by larval survey, ovitrap and MosquiTRAP: a space-time clusters analysis.

    PubMed

    de Melo, Diogo Portella Ornelas; Scherrer, Luciano Rios; Eiras, Álvaro Eduardo

    2012-01-01

    The use of vector surveillance tools for preventing dengue disease requires fine assessment of risk, in order to improve vector control activities. Nevertheless, the thresholds between vector detection and dengue fever occurrence are currently not well established. In Belo Horizonte (Minas Gerais, Brazil), dengue has been endemic for several years. From January 2007 to June 2008, the dengue vector Aedes (Stegomyia) aegypti was monitored by ovitrap, the sticky-trap MosquiTRAP™ and larval surveys in an study area in Belo Horizonte. Using a space-time scan for clusters detection implemented in SaTScan software, the vector presence recorded by the different monitoring methods was evaluated. Clusters of vectors and dengue fever were detected. It was verified that ovitrap and MosquiTRAP vector detection methods predicted dengue occurrence better than larval survey, both spatially and temporally. MosquiTRAP and ovitrap presented similar results of space-time intersections to dengue fever clusters. Nevertheless ovitrap clusters presented longer duration periods than MosquiTRAP ones, less acuratelly signalizing the dengue risk areas, since the detection of vector clusters during most of the study period was not necessarily correlated to dengue fever occurrence. It was verified that ovitrap clusters occurred more than 200 days (values ranged from 97.0±35.35 to 283.0±168.4 days) before dengue fever clusters, whereas MosquiTRAP clusters preceded dengue fever clusters by approximately 80 days (values ranged from 65.5±58.7 to 94.0±14. 3 days), the former showing to be more temporally precise. Thus, in the present cluster analysis study MosquiTRAP presented superior results for signaling dengue transmission risks both geographically and temporally. Since early detection is crucial for planning and deploying effective preventions, MosquiTRAP showed to be a reliable tool and this method provides groundwork for the development of even more precise tools.

  13. Impact of dengue virus infection and its control.

    PubMed

    Igarashi, A

    1997-08-01

    Dengue virus infection has been counted among emerging and re-emerging diseases because of (1) the increasing number of patients, (2) the expansion of epidemic areas, and (3) the appearance of severe clinical manifestation of dengue hemorrhagic fever (DHF)/dengue shock syndrome (DSS), which is often fatal if not properly treated. In the meantime, there are no effective dengue control measures: a dengue vaccine is still under development and vector control does not provide a long-lasting effect. In order to obtain direct evidence for the virulent virus theory concerning the pathogenesis of DHF/DSS, type 2 dengue virus strains isolated from patients with different clinical severities in the same epidemic area in northeast Thailand, during the same season, were comparatively sequenced. The result revealed a DF strain specific amino acid substitution from I to R in the PrM, and a DSS strain specific amino acid substitution from D to G in the NS1 gene regions, which could significantly alter the nature of these proteins. Moreover, DF strain specific nucleotide substitutions in the 3' noncoding region were predicted to alter its secondary structure. These amino acid and nucleotide substitutions in other strains isolated in different epidemic areas during other seasons, together with their biological significance, remain to be confirmed. In order to innovate dengue vector control, field tests were carried out in dengue epidemic areas in Vietnam to examine the efficacy of Olyset Net screen, which is a wide-mesh net made of polyethylene thread impregnated with permethrin. The results show that Olyset Net (1) reduced the number of principal dengue vector species, Aedes aegypti, (2) interrupted the silent transmission of dengue viruses and (3) was highly appreciated by the local people as a convenient and comfortable vector control method. This encouraging evaluation of the Olyset Net screen should be confirmed further by other tests under different settings.

  14. DengueTools: innovative tools and strategies for the surveillance and control of dengue

    PubMed Central

    Wilder-Smith, Annelies; Renhorn, Karl-Erik; Tissera, Hasitha; Abu Bakar, Sazaly; Alphey, Luke; Kittayapong, Pattamaporn; Lindsay, Steve; Logan, James; Hatz, Christoph; Reiter, Paul; Rocklöv, Joacim; Byass, Peter; Louis, Valérie R.; Tozan, Yesim; Massad, Eduardo; Tenorio, Antonio; Lagneau, Christophe; L'Ambert, Grégory; Brooks, David; Wegerdt, Johannah; Gubler, Duane

    2012-01-01

    Dengue fever is a mosquito-borne viral disease estimated to cause about 230 million infections worldwide every year, of which 25,000 are fatal. Global incidence has risen rapidly in recent decades with some 3.6 billion people, over half of the world's population, now at risk, mainly in urban centres of the tropics and subtropics. Demographic and societal changes, in particular urbanization, globalization, and increased international travel, are major contributors to the rise in incidence and geographic expansion of dengue infections. Major research gaps continue to hamper the control of dengue. The European Commission launched a call under the 7th Framework Programme with the title of ‘Comprehensive control of Dengue fever under changing climatic conditions’. Fourteen partners from several countries in Europe, Asia, and South America formed a consortium named ‘DengueTools’ to respond to the call to achieve better diagnosis, surveillance, prevention, and predictive models and improve our understanding of the spread of dengue to previously uninfected regions (including Europe) in the context of globalization and climate change. The consortium comprises 12 work packages to address a set of research questions in three areas: Research area 1: Develop a comprehensive early warning and surveillance system that has predictive capability for epidemic dengue and benefits from novel tools for laboratory diagnosis and vector monitoring. Research area 2: Develop novel strategies to prevent dengue in children. Research area 3: Understand and predict the risk of global spread of dengue, in particular the risk of introduction and establishment in Europe, within the context of parameters of vectorial capacity, global mobility, and climate change. In this paper, we report on the rationale and specific study objectives of ‘DengueTools’. DengueTools is funded under the Health theme of the Seventh Framework Programme of the European Community, Grant Agreement Number: 282589

  15. DengueTools: innovative tools and strategies for the surveillance and control of dengue.

    PubMed

    Wilder-Smith, Annelies; Renhorn, Karl-Erik; Tissera, Hasitha; Abu Bakar, Sazaly; Alphey, Luke; Kittayapong, Pattamaporn; Lindsay, Steve; Logan, James; Hatz, Christoph; Reiter, Paul; Rocklöv, Joacim; Byass, Peter; Louis, Valérie R; Tozan, Yesim; Massad, Eduardo; Tenorio, Antonio; Lagneau, Christophe; L'Ambert, Grégory; Brooks, David; Wegerdt, Johannah; Gubler, Duane

    2012-01-01

    Dengue fever is a mosquito-borne viral disease estimated to cause about 230 million infections worldwide every year, of which 25,000 are fatal. Global incidence has risen rapidly in recent decades with some 3.6 billion people, over half of the world's population, now at risk, mainly in urban centres of the tropics and subtropics. Demographic and societal changes, in particular urbanization, globalization, and increased international travel, are major contributors to the rise in incidence and geographic expansion of dengue infections. Major research gaps continue to hamper the control of dengue. The European Commission launched a call under the 7th Framework Programme with the title of 'Comprehensive control of Dengue fever under changing climatic conditions'. Fourteen partners from several countries in Europe, Asia, and South America formed a consortium named 'DengueTools' to respond to the call to achieve better diagnosis, surveillance, prevention, and predictive models and improve our understanding of the spread of dengue to previously uninfected regions (including Europe) in the context of globalization and climate change.The consortium comprises 12 work packages to address a set of research questions in three areas:Research area 1: Develop a comprehensive early warning and surveillance system that has predictive capability for epidemic dengue and benefits from novel tools for laboratory diagnosis and vector monitoring.Research area 2: Develop novel strategies to prevent dengue in children.Research area 3: Understand and predict the risk of global spread of dengue, in particular the risk of introduction and establishment in Europe, within the context of parameters of vectorial capacity, global mobility, and climate change.In this paper, we report on the rationale and specific study objectives of 'DengueTools'. DengueTools is funded under the Health theme of the Seventh Framework Programme of the European Community, Grant Agreement Number: 282589 Dengue Tools.

  16. Genomic approaches for understanding dengue: insights from the virus, vector, and host.

    PubMed

    Sim, Shuzhen; Hibberd, Martin L

    2016-03-02

    The incidence and geographic range of dengue have increased dramatically in recent decades. Climate change, rapid urbanization and increased global travel have facilitated the spread of both efficient mosquito vectors and the four dengue virus serotypes between population centers. At the same time, significant advances in genomics approaches have provided insights into host-pathogen interactions, immunogenetics, and viral evolution in both humans and mosquitoes. Here, we review these advances and the innovative treatment and control strategies that they are inspiring.

  17. Application of mosquito sampling count and geospatial methods to improve dengue vector surveillance.

    PubMed

    Chansang, Chitti; Kittayapong, Pattamaporn

    2007-11-01

    Dengue hemorrhagic fever is a major public health problem in several countries around the world. Dengue vector surveillance is an important methodology to determine when and where to take the control action. We used a combination of the Global Positioning System (GPS)/Geographic Information System (GIS) technology and the immature sampling count method to improve dengue vector surveillance. Both complete count and sampling count methods were used simultaneously to collect immature dengue vectors in all houses and all containers in one village in eastern Thailand to determine the efficiency of the sampling count technique. A hand-held GPS unit was used to record the location of surveyed houses. Linear regression indicated a high correlation between total immature populations resulting from the complete count and estimates from sampling count of immature stages. The immature survey data and the GPS coordinates of house location were combined into GIS maps showing distribution of immature density and clustering of immature stages and positive containers in the study area. This approach could be used to improve the efficiency and accuracy of dengue vector surveillance for targeting vector control.

  18. The prevention and control of dengue after Typhoon Haiyan

    PubMed Central

    Aumentado, Charito; Cerro, Boyd Roderick; Olobia, Leonido; Suy, Lyndon Lee; Reyes, Aldrin; Kusumawathie, Pahalagedera HD; Sagrado, Maria; Hall, Julie Lyn; Abeyasinghe, Rabindra; Foxwell, Alice Ruth

    2015-01-01

    Objective Many of the areas in the Philippines affected by Typhoon Haiyan are endemic for dengue; therefore, dengue prevention was a priority in the initial post-disaster risk assessment. We describe the dengue prevention and response strategies applied after Haiyan. Methods The dengue response was implemented by a wide range of national and international stakeholders. Priorities included the rapid re-establishment of an effective surveillance system to quickly identify new dengue cases, monitor trends and determine the geographical distribution of cases. Dengue rapid diagnostic tests (RDTs) were distributed to sentinel health facilities, and comprehensive vector control activities and entomological surveys were implemented. Several training sessions for key stakeholders and awareness campaigns for communities were organized. Results There were RDT-positive dengue cases reported from urban and semi-urban areas where entomological surveys also confirmed a high density of Aedes aegypti mosquitoes. Although there was an increase in dengue cases in January 2014, the number of cases remained below the epidemic threshold throughout the remaining months of 2014. Discussion There was no large outbreak of dengue after Haiyan, possibly due to the targeted, multifaceted and rapid response for dengue after Haiyan. However, surveillance differed after Typhoon Haiyan, making comparisons with previous years difficult. Multiple players contributed to the response that was also facilitated by close communication and coordination within the Health Cluster. PMID:26767138

  19. The predisposing and protective factors against dengue virus transmission by mosquito vector.

    PubMed

    Ko, Y C; Chen, M J; Yeh, S M

    1992-07-15

    An outbreak of dengue fever occurred in Taiwan between 1987 and 1988. The highest attack rate among adults was estimated at 5.6% in the city of Kao-hsiung. A case-control study was carried out to determine the risks of contracting dengue infection and to identify protective factors against the infection. One hundred dengue patients of the authors' hospital who were diagnosed by virologic or serologic tests constituted the case group. Each dengue patient was matched to a control patient of the same age and sex who had been diagnosed as suffering from a non-vector-borne disease on the same day as the dengue patient. Of the household protective measures against dengue infection prior to the occurrence of illness, the adjusted odds ratio, estimated by stratified analysis, was lower for people who lived in screened houses (odds ratio = 0.58, 95% confidence interval 0.36-0.92) as compared with inhabitants of unscreened houses. The odds ratio was as low as 0.18 (95% confidence interval 0.06-0.56) for people whose homes were fully screened with door screens opening outwardly. Patients who lived near markets and/or open sewers or ditches were running a risk of dengue infection 1.8 (95% confidence interval 1.3-2.4) times higher than those who lived elsewhere. To control dengue outbreaks, the authors recommend that special attention should be devoted to the reduction of outdoor vector sources. Full screening, especially outwardly opening screen doors, seems to be an individual's best protection against dengue fever.

  20. Synergistic action of octopamine receptor agonists on the activity of selected novel insecticides for control of dengue vector Aedes aegypti (Diptera: Culicidae) mosquito.

    PubMed

    Ahmed, Mohamed Ahmed Ibrahim; Vogel, Christoph Franz Adam

    2015-05-01

    Studying insecticide resistance in mosquitoes has attracted the attention of many scientists to elucidate the pathways of resistance development and to design novel strategies in order to prevent or minimize the spread and evolution of resistance. Here, we tested the synergistic action of piperonyl butoxide (PBO) and two octopamine receptor (OR) agonists, amitraz (AMZ) and chlordimeform (CDM) on selected novel insecticides to increase their lethal action on the fourth instar larvae of Aedes aegypti L. However, chlorfenapyr was the most toxic insecticide (LC50 = 193, 102, and 48 ng/ml, after 24, 48, and 72 h exposure, respectively) tested. Further, PBO synergized all insecticides and the most toxic combinatorial insecticide was nitenpyram even after 48 and 72 h exposure. In addition, OR agonists significantly synergized most of the selected insecticides especially after 48 and 72 h exposure. The results imply that the synergistic effects of amitraz are a promising approach in increasing the potency of certain insecticides in controlling the dengue vector Ae. aegypti mosquito.

  1. Need for an efficient adult trap for the surveillance of dengue vectors

    PubMed Central

    Sivagnaname, N.; Gunasekaran, K.

    2012-01-01

    The emergence and re-emergence of arboviral diseases transmitted by Aedes aegypti and Ae. albopictus continue to be a major threat in the tropics and subtropics. Associations between currently used indices and dengue transmission have not been proven to be satisfactorily predictive of dengue epidemics. Classical larval indices in dengue surveillance have limited use in assessing transmission risk and are a poor proxy for measuring adult emergence. Besides, collection of larval indices is labour intensive and plagued by difficulties of access particularly in urban settings. The re-emergence of dengue disease in many countries despite lower immature indices has warranted the need for more effective indices in dengue vector surveillance and control. Reliable and highly useful indices could be developed with the help of efficient and appropriate entomological tools. Most current programmes emphasize reduction of immature Ae. aegypti density, but it is of little value because its relation to transmission risk is weak. More attention should be paid to methods directed toward adult rather than immature Ae. aegypti. Collection of sufficient numbers of adult mosquitoes is important to understand disease transmission dynamics and to devise an appropriate control strategy. Even though, use of certain traps such as BG-Sentinel traps has been attempted in monitoring Ae. aegypti population, their utility is limited due to various setbacks which make these insufficient for entomological and epidemiological studies. Thus, there is an urgent need for the development of an ideal trap that could be used for adult vector surveillance. The present review critically analyzes the setbacks in the existing tools of entomological surveillance of dengue vectors and highlights the importance and necessity of more improved, more sensitive and reliable adult trap that could be used for surveillance of dengue vectors. PMID:23287120

  2. Integrated control of the dengue vector Aedes aegypti in Liu-Chiu village, Ping-Tung County, Taiwan.

    PubMed

    Wang, C H; Chang, N T; Wu, H H; Ho, C M

    2000-06-01

    Because of an inadequate supply of potable water, villagers of Small Liu-Chiu Isle, Ping-Tung County, Taiwan, store water in containers supporting a large population of Aedes aegypti. In 1989-96, integrated control measures against Ae. aegypti were implemented on the basis of community participation. These measures included release of mosquito larvivorous fish in the drinking water storage facilities, application of larvicides to the water storage facilities in vegetable gardens, removal of discarded and unused containers and tires, improvement of household water storage facilities, and increase of potable water supply. Before implementation of the integrated control measures in 1988, 74% of the water-containing vessels were water storage facilities, and 24% of those were infested by Ae. aegypti. In 1989, the Breteau index for the entire island, indicating the average distribution density for larval Ae. aegypti, was 53.9, as compared to an index of 1.2 in 1996. In 4 villages located at the southwest and middle of the island, Ae. aegypti nearly became extinct because of the enthusiastic participation of the community. Before the implementation of integrated control, Ae. aegypti was the dominant species in containers both inside and outside the household, but after the integrated control, Aedes albopictus became predominant outside. PMID:10901632

  3. Evolution of dengue in Sri Lanka-changes in the virus, vector, and climate.

    PubMed

    Sirisena, P D N N; Noordeen, F

    2014-02-01

    Despite the presence of dengue in Sri Lanka since the early 1960s, dengue has become a major public health issue, with a high morbidity and mortality. Aedes aegypti and Aedes albopictus are the vectors responsible for the transmission of dengue viruses (DENV). The four DENV serotypes (1, 2, 3, and 4) have been co-circulating in Sri Lanka for more than 30 years. The new genotype of DENV-1 has replaced an old genotype, and new clades of DENV-3 genotype III have replaced older clades. The emergence of new clades of DENV-3 in the recent past coincided with an abrupt increase in the number of dengue fever (DF)/dengue hemorrhagic fever (DHF) cases, implicating this serotype in severe epidemics. Climatic factors play a pivotal role in the epidemiological pattern of DF/DHF in terms of the number of cases, severity of illness, shifts in affected age groups, and the expansion of spread from urban to rural areas. There is a regular incidence of DF/DHF throughout the year, with the highest incidence during the rainy months. To reduce the morbidity and mortality associated with DF/DHF, it is important to implement effective vector control programs in the country. The economic impact of DF/DHF results from the expenditure on DF/DHF critical care units in several hospitals and the cost of case management.

  4. Assessing the epidemiological impact of Wolbachia deployment for dengue control

    PubMed Central

    Lambrechts, Louis; Ferguson, Neil M.; Harris, Eva; Holmes, Edward C.; McGraw, Elizabeth A.; O’Neill, Scott L.; Ooi, Eng E.; Ritchie, Scott A.; Ryan, Peter A.; Scott, Thomas W.; Simmons, Cameron P.; Weaver, Scott C.

    2016-01-01

    Summary Dengue viruses cause more human morbidity and mortality than any other arthropod-borne virus. Dengue prevention relies primarily on vector control but the failure of traditional methods has promoted the development of novel entomological approaches. Although use of the intracellular bacterium Wolbachia to control mosquito populations was proposed half a century ago, it has only gained significant interest as a potential agent of dengue control in the last decade. Here, we review the evidence that supports a practical approach for dengue reduction through field release of Wolbachia-infected mosquitoes and discuss the additional studies that must be conducted before the strategy can be validated and operationally implemented. A critical next step is to assess the efficacy of Wolbachia deployment in reducing dengue virus transmission. We argue that a cluster-randomized trial is currently premature because Wolbachia strain choice for release as well as deployment strategies are still being optimized. We therefore present a pragmatic approach to acquiring preliminary evidence of efficacy via a suite of complementary methodologies: prospective cohort study, geographical cluster investigation, virus phylogenetic analysis, virus surveillance in mosquitoes, and vector competence assays. This multi-pronged approach could provide valuable intermediate evidence of efficacy to justify a future cluster-randomized trial. PMID:26051887

  5. Assessing the epidemiological effect of wolbachia for dengue control.

    PubMed

    Lambrechts, Louis; Ferguson, Neil M; Harris, Eva; Holmes, Edward C; McGraw, Elizabeth A; O'Neill, Scott L; Ooi, Eng E; Ritchie, Scott A; Ryan, Peter A; Scott, Thomas W; Simmons, Cameron P; Weaver, Scott C

    2015-07-01

    Dengue viruses cause more human morbidity and mortality than any other arthropod-borne virus. Dengue prevention relies mainly on vector control; however, the failure of traditional methods has promoted the development of novel entomological approaches. Although use of the intracellular bacterium wolbachia to control mosquito populations was proposed 50 years ago, only in the past decade has its use as a potential agent of dengue control gained substantial interest. Here, we review evidence that supports a practical approach for dengue reduction through field release of wolbachia-infected mosquitoes and discuss the additional studies that have to be done before the strategy can be validated and implemented. A crucial next step is to assess the efficacy of wolbachia in reducing dengue virus transmission. We argue that a cluster randomised trial is at this time premature because choice of wolbachia strain for release and deployment strategies are still being optimised. We therefore present a pragmatic approach to acquiring preliminary evidence of efficacy through various complementary methods including a prospective cohort study, a geographical cluster investigation, virus phylogenetic analysis, virus surveillance in mosquitoes, and vector competence assays. This multipronged approach could provide valuable intermediate evidence of efficacy to justify a future cluster randomised trial.

  6. Influence of environmental conditions on asynchronous outbreaks of dengue disease and increasing vector population in Kaohsiung, Taiwan.

    PubMed

    Lai, Li-Wei

    2011-04-01

    The objective of this study was to clarify the associations between dengue vectors and the number of dengue fever admissions. We statistically analyzed the daily meteorological and sea surface temperature (SST) data obtained from 13 monitoring stations for 2002-2007, the daily number of dengue fever admissions to hospitals, as well as the Breteau index (BI) values obtained from the Taiwan Centres for Disease Control for the 38 political districts of metropolitan Kaohsiung. It was found that hot and wet environmental conditions were caused by warm SSTs together with the weather patterns that cause typhoons and high-pressure areas in the tropical Pacific Ocean. The conditions clearly contribute to an increase in the BI. Synoptic weather patterns still remain an important factor in determining the growth of dengue vectors, particularly in rural areas, although public health programs and improved environmental sanitation can also reduce the threat of the disease.

  7. Dengue vectors, human activity, and dengue virus transmission potential in the lower Rio Grande Valley, Texas, United States.

    PubMed

    Vitek, Christopher J; Gutierrez, Joann A; Dirrigl, Frank J

    2014-09-01

    Dengue virus is an emerging disease of concern in the Americas. Recent outbreaks in Florida highlight the potential for the virus to return to the United States. The Lower Rio Grande Valley region of Texas directly borders Mexico, and has experienced dengue transmission in the past concurrent with outbreaks in Mexico along the border region. We examined the potential for dengue virus transmission by examining the vectors in the region, as well as assessing human behavior. We further hypothesized that dengue vector abundance would influence human behavior. Two dengue vectors, Aedes aegypti (L.) and Aedes albopictus (Skuse), were found in the region in high abundance. More mosquitoes were collected in rural sites and sites with high vegetation. Of the two species, only Ae. albopictus showed any significant habitat preferences, being more common in rural site. While there was no correlation between human behavior and mosquito abundance, the results support a significant correlation between knowledge of mosquitoes and dengue virus and behavioral practices that might reduce risk of disease transmission. Dengue risk may be higher in certain regions of the Lower Rio Grande Valley based on socioeconomic conditions, specifically in economically poor regions such as the undeveloped colonias found in the region. Because of the proximity of this region to an area with endemic dengue, continued surveillance and risk assessment is suggested.

  8. Effect of Spatial Repellent Exposure on Dengue Vector Attraction to Oviposition Sites

    PubMed Central

    Grieco, John P.; Apperson, Charles S.; Schal, Coby; Ponnusamy, Loganathan; Wesson, Dawn M.; Achee, Nicole L.

    2016-01-01

    Background Aedes aegypti is a primary vector of dengue virus (DENV), the causative agent of dengue fever, an arthropod-borne disease of global importance. Although a vaccine has been recommended for prevention, current dengue prevention strategies rely on vector control. Recently, volatile pyrethroids—spatial repellents—have received interest as a novel delivery system for adult Ae. aegypti control. Understanding the full range of behavioral effects spatial repellents elicit in mosquito species will be critical to understanding the overall impact these products have on vector populations and will guide expectations of efficacy against DENV transmission. Methodology/Principal Findings The current study quantified changes in attraction of gravid Ae. aegypti to experimental oviposition sites following exposure to the spatial repellent transfluthrin. Responses were measured with two-choice olfaction bioassays using ‘sticky-screens’ covering cups to prevent contact with the oviposition substrate. Two cups contained a bacterial attractant composed of four species of bacteria in calcium alginate beads in water and two cups contained only deionized water. Results from 40 replicates (n = 780 females total per treatment) indicated an estimated difference in attraction of 9.35% ± 0.18 (p ≤ 0.003), implying that the transfluthrin-exposed mosquitoes were more attracted to the experimental oviposition sites than the non-exposed mosquitoes. Conclusions/Significance Findings from this study will further characterize the role of spatial repellents to modify Ae. aegypti behavior related to dengue prevention specifically, and encourage innovation in vector control product development more broadly. PMID:27428011

  9. [Vector control and malaria control].

    PubMed

    Carnevale, P; Mouchet, J

    1990-01-01

    Vector control is an integral part of malaria control. Limiting parasite transmission vector control must be considered as one of the main preventive measure. Indeed it prevents transmission of Plasmodium from man to vector and from vector to man. But vector control must be adapted to local situation to be efficient and feasible. Targets of vector control can be larval and/or adults stages. In both cases 3 main methods are currently available: physical (source reduction), chemical (insecticides) and biological tolls. Antilarval control is useful only in some particular circumstances (unstable malaria, island, oasis...) Antiadult control is mainly based upon house-spraying while pyrethroid treated bed nets is advocated regarding efficiency, simple technique and cheap price. Vector control measures could seem restricted but can be very efficient if political will is added to a right choice of adapted measures, a good training of involved personal and a large information of the population concerned with vector control.

  10. [The epidemiological situation of dengue in America. The challenges for its surveillance and control].

    PubMed

    Clark, G G

    1995-01-01

    The recent occurrence of cases of dengue hemorrhagic fever has placed dengue in the agenda of priorities in many countries in the Americas. International efforts directed to the control of the epidemic are supported by the epidemiological surveillance of dengue cases and serotypes while control of the vector is still in need of innovative and more effective measures. These are the challenges to be met by countries in the region, where the laboratory should be incorporated as the key component of the surveillance system. The medical community requires adequate training in the diagnosis and treatment of the severe forms of dengue infection and the community should be deeply involved in the control strategies. Scant resources in the region impose serious constrains to the program which should be comprehensive, intensive and well coordinated. The medical services, the vector control personnel, the surveillance team, the civil authorities and the community have important roles to play in the control of dengue fever.

  11. Prevalence and insecticide susceptibility of dengue vectors in the district of Batticaloa in eastern Sri Lanka.

    PubMed

    Dharshini, Sangaralingam; Vinobaba, Muthuladchumy; Jude, Pavilupillai J; Karunaratne, S H P Parakrama; Surendran, Sinnathamby N

    2011-06-01

    Unprecedented incidences of dengue have been reported in Sri Lanka in recent years. The district of Batticaloa, which was devastated by the 2004 Asian tsunami, is one of the districts affected by dengue. One option to curtail this disease is to implement appropriate vector control measures. A nine-month study was carried out within the Batticaloa Municipal Council limit from April to December 2008. Larval collections were conducted fortnightly using conventional ovitraps for nine months covering the dry and wet seasons. Ovitraps (indoor and outdoor) were placed in 15 randomly selected houses. The collected larvae were brought to the laboratory and reared under laboratory conditions. The larval forms and emerged adults were identified on the basis of reported morphological descriptions. The identified adults of 2-3 d old were exposed to common insecticides following the WHO protocol. During the study period, a total of 10,685 Aedes aegypti and Ae. albopictus mosquitoes were collected, with the former constituting 57% of the total sample. Both species were collected from indoor and outdoor ovitraps, and their prevalence was recorded throughout the study period. A seasonal shift was observed in the density, with Ae. aegypti predominating during the dry season and Ae. albopictus during the wet season. Both species were highly resistant to 4% DDT and susceptible to 0.25% permethrin. The continuous presence of potential dengue vectors may have contributed to the dengue prevalence in the district. Since both species can oviposit in indoor and outdoor ovitraps, public awareness and participation should be promoted in the vector control programme of the Ministry of Health along with continuous vector surveillance. PMID:22028610

  12. Identity and transfer of male reproductive gland proteins of the dengue vector mosquito, Aedes aegypti: potential tools for control of female feeding and reproduction.

    PubMed

    Sirot, Laura K; Poulson, Rebecca L; McKenna, M Caitlin; Girnary, Hussein; Wolfner, Mariana F; Harrington, Laura C

    2008-02-01

    Male reproductive gland proteins (mRGPs) impact the physiology and/or behavior of mated females in a broad range of organisms. We sought to identify mRGPs of the yellow fever mosquito, Aedes aegypti, the primary vector of dengue and yellow fever viruses. Earlier studies with Ae. aegypti demonstrated that "matrone" (a partially purified male reproductive accessory gland substance) or male accessory gland fluid injected into virgin female Ae. aegypti affect female sexual refractoriness, blood feeding and digestion, flight, ovarian development, and oviposition. Using bioinformatic comparisons to Drosophila melanogaster accessory gland proteins and mass spectrometry of proteins from Ae. aegypti male accessory glands and ejaculatory ducts (AG/ED) and female reproductive tracts, we identified 63 new putative Ae. aegypti mRGPs. Twenty-one of these proteins were found in the reproductive tract of mated females but not of virgin females suggesting that they are transferred from males to females during mating. Most of the putative mRGPs fall into the same protein classes as mRGPs in other organisms, although some appear to be evolving rapidly and lack identifiable homologs in Culex pipiens, Anopheles gambiae, and D. melanogaster. Our results identify candidate male-derived molecules that may have an important influence on behavior, survival, and reproduction of female mosquitoes.

  13. Challenges and prospects for dengue and malaria control in Thailand, Southeast Asia.

    PubMed

    Corbel, Vincent; Nosten, Francois; Thanispong, Kanutcharee; Luxemburger, Christine; Kongmee, Monthathip; Chareonviriyaphap, Theeraphap

    2013-12-01

    Despite significant advances in the search for potential dengue vaccines and new therapeutic schemes for malaria, the control of these diseases remains difficult. In Thailand, malaria incidence is falling whereas that of dengue is rising, with an increase in the proportion of reported severe cases. In the absence of antiviral therapeutic options for acute dengue, appropriate case management reduces mortality. However, the interruption of transmission still relies on vector control measures that are currently insufficient to curtail the cycle of epidemics. Drug resistance in malaria parasites is increasing, compromising malaria control and elimination. Deficiencies in our knowledge of vector biology and vectorial capacity also hinder public health efforts for vector control. Challenges to dengue and malaria control are discussed, and research priorities identified. PMID:24215776

  14. Seasonal and habitat effects on dengue and West Nile virus vectors in San Juan, Puerto Rico.

    PubMed

    Smith, Joshua; Amador, Manuel; Barrera, Roberto

    2009-03-01

    The presence of West Nile (WNV) and dengue viruses and the lack of recent mosquito surveys in Puerto Rico prompted an investigation on the distribution and abundance of potential arbovirus vectors in the San Juan Metropolitan Area, and their variation with seasons and habitats. We sampled mosquitoes in early and late 2005 in 58 sites from forests, nonforest vegetation, wetlands, and high- and low-density housing areas using ovijars, Centers for Disease Control and Prevention miniature light/CO2 traps, and gravid traps. A total of 28 mosquito species was found. San Juan had potential WNV enzooticvectors (Culex nigripalpus) within and around the city in wetlands and forests, but few were captured in residential areas. A potential WNV bridge vector (Cx. quinquefasciatus) was abundant in urbanized areas, and it was positively correlated with the main dengue vector, Aedes aegypti. High-density housing areas harbored more Ae. aegypti. Container mosquitoes, including Aedes mediovittatus, were more abundant during the climax of the rainy season when most dengue occurs in Puerto Rico. The greatest risk for contracting WNV would be visiting forests and swamps at night. Culex (Culex) and Culex (Melanoconion) mosquito species were more abundant during the transition dry-wet seasons (March-May). PMID:19432067

  15. Update on temporal and spatial abundance of dengue vectors in Penang, Malaysia.

    PubMed

    Saifur, Rahman G M; Hassan, Ahmad Abu; Dieng, Hamady; Ahmad, Hamdan; Salmah, M Rawi Che; Satho, Tomomitsu; Saad, Ahmad Ramli; Morales Vargas, Ronald Enrique

    2012-06-01

    It is important to obtain frequent measurements of the abundance, distribution, and seasonality of mosquito vectors to determine the risk of disease transmission. The number of cases of dengue infection has increased in recent years on Penang Island, Malaysia, with recurring epidemics. However, ongoing control attempts are being critically hampered by the lack of up-to-date information regarding the vectors. To overcome this problem, we examined the current situation and distribution of dengue vectors on the island. Residences throughout the urban, suburban, and rural areas were inspected through wet and dry seasons between February 2009 and February 2010. Two vectors were encountered in the survey, with Aedes aegypti present in especially high numbers mostly in urban areas. Similar observations were noted for Ae. albopictus in rural areas. The former species was more abundant in outdoor containers, while the latter showed almost equivalent abundance both outdoors and indoors. The dengue virus was active in both urban and rural areas, and the number of cases of infection was higher in areas where Ae. aegypti was predominant. The abundance of immature Ae. albopictus was positively correlated with rainfall (r2 = 0.461; P < 0.05), but this was not the case for Ae. aegypti. For both species, the size of immature populations tended to increase with increasing intensity of rain, but heavy rains resulted in population loss. In addition to updating data regarding the larval habitats and locations (outdoors and indoors), this study highlighted the importance of spatial vector control stratification, which has the potential to reduce costs in control programs.

  16. Human antibody response to Aedes albopictus salivary proteins: a potential biomarker to evaluate the efficacy of vector control in an area of Chikungunya and Dengue Virus transmission.

    PubMed

    Doucoure, Souleymane; Mouchet, François; Cornelie, Sylvie; Drame, Papa Makhtar; D'Ortenzio, Eric; DeHecq, Jean Sébastien; Remoue, Franck

    2014-01-01

    Aedes borne viruses represent public health problems in southern countries and threat to emerge in the developed world. Their control is currently based on vector population control. Much effort is being devoted to develop new tools to control such arbovirus. Recent findings suggest that the evaluation of human antibody (Ab) response to arthropod salivary proteins is relevant to measuring the level of human exposure to mosquito bites. Using an immunoepidemiological approach, the present study aimed to assess the usefulness of the salivary biomarker for measuring the efficacy of Ae. albopictus control strategies in La Reunion urban area. The antisaliva Ab response of adult humans exposed to Ae. albopictus was evaluated before and after vector control measures. Our results showed a significant correlation between antisaliva Ab response and the level of exposure to vectors bites. The decrease of Ae. albopictus density has been detected by this biomarker two weeks after the implementation of control measures, suggesting its potential usefulness for evaluating control strategies in a short time period. The identification of species specific salivary proteins/peptides should improve the use of this biomarker. PMID:24822216

  17. Assessing the Relationship between Vector Indices and Dengue Transmission: A Systematic Review of the Evidence

    PubMed Central

    Bowman, Leigh R.; Runge-Ranzinger, Silvia; McCall, P. J.

    2014-01-01

    Background Despite doubts about methods used and the association between vector density and dengue transmission, routine sampling of mosquito vector populations is common in dengue-endemic countries worldwide. This study examined the evidence from published studies for the existence of any quantitative relationship between vector indices and dengue cases. Methodology/Principal Findings From a total of 1205 papers identified in database searches following Cochrane and PRISMA Group guidelines, 18 were included for review. Eligibility criteria included 3-month study duration and dengue case confirmation by WHO case definition and/or serology. A range of designs were seen, particularly in spatial sampling and analyses, and all but 3 were classed as weak study designs. Eleven of eighteen studies generated Stegomyia indices from combined larval and pupal data. Adult vector data were reported in only three studies. Of thirteen studies that investigated associations between vector indices and dengue cases, 4 reported positive correlations, 4 found no correlation and 5 reported ambiguous or inconclusive associations. Six out of 7 studies that measured Breteau Indices reported dengue transmission at levels below the currently accepted threshold of 5. Conclusions/Significance There was little evidence of quantifiable associations between vector indices and dengue transmission that could reliably be used for outbreak prediction. This review highlighted the need for standardized sampling protocols that adequately consider dengue spatial heterogeneity. Recommendations for more appropriately designed studies include: standardized study design to elucidate the relationship between vector abundance and dengue transmission; adult mosquito sampling should be routine; single values of Breteau or other indices are not reliable universal dengue transmission thresholds; better knowledge of vector ecology is required. PMID:24810901

  18. Retrospective search for dengue vector mosquito Aedes albopictus in areas visited by a German traveler who contracted dengue in Japan.

    PubMed

    Kobayashi, Mutsuo; Komagata, Osamu; Yonejima, Mayuko; Maekawa, Yoshihide; Hirabayashi, Kimio; Hayashi, Toshihiko; Nihei, Naoko; Yoshida, Masahiro; Tsuda, Yoshio; Sawabe, Kyoko

    2014-09-01

    A German traveler developed dengue fever in late August 2013, following a direct flight from Germany. Autochthonous dengue virus (DENV) infection has not been reported in Japan. To evaluate the risk of autochthonous DENV transmission in Japan, the authors performed a retrospective search of the five areas visited by the German patient to determine the population density of dengue vector mosquito, Aedes albopictus. The annual mean temperature of each area was higher than 12°C, which is considered suitable for the establishment of A. albopictus populations. Our retrospective search revealed the population density of A. albopictus to be high in the urban areas of Japan.

  19. A comparison of dengue hemorrhagic fever control interventions in northeastern Thailand.

    PubMed

    Chaikoolvatana, Anun; Chanruang, Suparat; Pothaled, Prakongsil

    2008-07-01

    This study compared the effectiveness of the currently available interventions of dengue vector and dengue hemorrhagic fever (DHF) control used in northeastern Thailand, an area with a high incidence of the disease. Also, the basic knowledge of dengue vector and DHF control of a group of 568 participants from local communities was measured. These communities were divided into two groups that had no reported cases in the previous year (non-DHF) and a group that had reported cases (DHF). Three current interventions of dengue vector and DHF control were assessed: insecticide fogging, 1% w/w temephos sand granules, and a combination of these two. Assessment included numbers of DHF cases, vector indices [house index (HI), container index (CI), and Breteau index (BI)], and cost. A multiple choice questionnaire was used to measure participants' basic knowledge desirable for knowledge retention. Data was statistically analyzed by the use of means, standard deviations, percentages, ANOVA repeated measure, and logistic regression. The results showed 1% w/w temephos sand granules as the most effective intervention of dengue vector and DHF control and there was a statistically significant difference between the control measures (p =0.001). Most participants had either a very low or very high level of knowledge and basic knowledge was statistically significantly associated with vector index (BI) (p = 0.008). Participants stated that they mainly gained knowledge about dengue vector and DHF control from public health workers followed by television and public media. Overall, the findings of this study illustrated the importance of public health workers and communities in health issues at the local level and the need to assess the benefits of current interventions and combinations of current and new interventions of dengue vector and control.

  20. Heterogeneous Feeding Patterns of the Dengue Vector, Aedes aegypti, on Individual Human Hosts in Rural Thailand

    PubMed Central

    Harrington, Laura C.; Fleisher, Andrew; Ruiz-Moreno, Diego; Vermeylen, Francoise; Wa, Chrystal V.; Poulson, Rebecca L.; Edman, John D.; Clark, John M.; Jones, James W.; Kitthawee, Sangvorn; Scott, Thomas W.

    2014-01-01

    Background Mosquito biting frequency and how bites are distributed among different people can have significant epidemiologic effects. An improved understanding of mosquito vector-human interactions would refine knowledge of the entomological processes supporting pathogen transmission and could reveal targets for minimizing risk and breaking pathogen transmission cycles. Methodology and principal findings We used human DNA blood meal profiling of the dengue virus (DENV) vector, Aedes aegypti, to quantify its contact with human hosts and to infer epidemiologic implications of its blood feeding behavior. We determined the number of different people bitten, biting frequency by host age, size, mosquito age, and the number of times each person was bitten. Of 3,677 engorged mosquitoes collected and 1,186 complete DNA profiles, only 420 meals matched people from the study area, indicating that Ae. aegypti feed on people moving transiently through communities to conduct daily business. 10–13% of engorged mosquitoes fed on more than one person. No biting rate differences were detected between high- and low-dengue transmission seasons. We estimate that 43–46% of engorged mosquitoes bit more than one person within each gonotrophic cycle. Most multiple meals were from residents of the mosquito collection house or neighbors. People ≤25 years old were bitten less often than older people. Some hosts were fed on frequently, with three hosts bitten nine times. Interaction networks for mosquitoes and humans revealed biologically significant blood feeding hotspots, including community marketplaces. Conclusion and significance High multiple-feeding rates and feeding on community visitors are likely important features in the efficient transmission and rapid spread of DENV. These results help explain why reducing vector populations alone is difficult for dengue prevention and support the argument for additional studies of mosquito feeding behavior, which when integrated with a

  1. A potential risk assessment of a dengue outbreak in north central Texas, USA. (Part 1 of 2): Abundance and temporal variation of dengue vectors.

    PubMed

    Lee, Joon-Hak; Stahl, Matt; Sawlis, Scott; Suzuki, Sumi; Lee, Jib Ho

    2009-06-01

    In response to three imported dengue cases in north central Texas as well as increased case numbers in Texas and adjoining Mexican states in 2005, the authors assessed the potential risk of a dengue outbreak in north central Texas by investigating abundance and temporal variation of dengue vectors in 2006. Dengue vector abundance was monitored from 54 sites in Dallas County, Texas, from June to November 2006, using oviposition traps. Both dengue vectors--the yellow fever mosquito, Aedes aegypti, and the Asian tiger mosquito, Aedes albopictus--were present. Of the two, Ae. albopictus was more abundant and its abundance appeared to be positively affected by temperature and precipitation. Potential risk of a dengue outbreak was predicted based on the abundance and temporal variation of dengue vectors and a long-term trend of breeding season precipitation and warmer winter temperatures.

  2. Lessons from malaria control to help meet the rising challenge of dengue

    PubMed Central

    Anders, Katherine L; Hay, Simon I

    2012-01-01

    Summary Achievements in malaria control could inform efforts to control the increasing global burden of dengue. Better methods for quantifying dengue endemicity—equivalent to parasite prevalence surveys and endemicity mapping used for malaria—would help target resources, monitor progress, and advocate for investment in dengue prevention. Success in controlling malaria has been attributed to widespread implementation of interventions with proven efficacy. An improved evidence base is needed for large-scale delivery of existing and novel interventions for vector control, alongside continued investment in dengue drug and vaccine development. Control of dengue is unlikely to be achieved without coordinated international financial and technical support for national programmes, which has proven effective in reducing the global burden of malaria. PMID:23174383

  3. Aedes aegypti Control Strategies in Brazil: Incorporation of New Technologies to Overcome the Persistence of Dengue Epidemics

    PubMed Central

    Araújo, Helena R. C.; Carvalho, Danilo O.; Ioshino, Rafaella S.; Costa-da-Silva, André L.; Capurro, Margareth L.

    2015-01-01

    Dengue is considered to be the most important mosquito-borne viral disease in the world. The Aedes aegypti mosquito, its vector, is highly anthropophilic and is very well adapted to urban environments. Although several vaccine candidates are in advanced stages of development no licensed dengue vaccine is yet available. As a result, controlling the spread of dengue still requires that mosquitoes be targeted directly. We review the current methods of dengue vector control focusing on recent technical advances. We first examine the history of Brazil’s National Dengue Control Plan in effect since 2002, and we describe its establishment and operation. With the persistent recurrence of dengue epidemics, current strategies should be reassessed to bring to the forefront a discussion of the possible implementation of new technologies in Brazil’s mosquito control program. PMID:26463204

  4. Aedes aegypti Control Strategies in Brazil: Incorporation of New Technologies to Overcome the Persistence of Dengue Epidemics.

    PubMed

    Araújo, Helena R C; Carvalho, Danilo O; Ioshino, Rafaella S; Costa-da-Silva, André L; Capurro, Margareth L

    2015-01-01

    Dengue is considered to be the most important mosquito-borne viral disease in the world. The Aedes aegypti mosquito, its vector, is highly anthropophilic and is very well adapted to urban environments. Although several vaccine candidates are in advanced stages of development no licensed dengue vaccine is yet available. As a result, controlling the spread of dengue still requires that mosquitoes be targeted directly. We review the current methods of dengue vector control focusing on recent technical advances. We first examine the history of Brazil's National Dengue Control Plan in effect since 2002, and we describe its establishment and operation. With the persistent recurrence of dengue epidemics, current strategies should be reassessed to bring to the forefront a discussion of the possible implementation of new technologies in Brazil's mosquito control program. PMID:26463204

  5. Unusual developing sites of dengue vectors and potential epidemiological implications

    PubMed Central

    Dieng, Hamady; Saifur, Rahman GM; Ahmad, Abu Hassan; Salmah, MR Che; Aziz, Al Thbiani; Satho, Tomomitsu; Miake, Fumio; Jaal, Zairi; Abubakar, Sazaly; Morales, Ronald Enrique

    2012-01-01

    Objective To identify the unusual breeding sites of two dengue vectors, i.e. Aedes albopictus (Ae. albopictus) and Aedes aegypti (Ae. aegypti). Methods During the second half of 2010, we performed an occasional survey in rural (Teluk Tempoyak) and urban (Gelugor) areas of Penang Island, Malaysia, to identify cryptic breeding sites. Results In the rural area, we found heterogeneous immature stages of Ae. albopictus in the water bowl of an encaged bird. We also observed Ae. aegypti eggs deposited in the flush tank of a toilet in the urban area. Conclusions It can be concluded that both breeding patterns can increase contact with hosts (humans and birds) and presumably population densities of Ae. albopictus and Ae. aegypti, thereby potentially boosting the risks for spread and transmission of arboviral diseases. PMID:23569903

  6. Community participation in the prevention and control of dengue: the patio limpio strategy in Mexico

    PubMed Central

    Tapia-Conyer, Roberto; Méndez-Galván, Jorge; Burciaga-Zúñiga, Pierre

    2012-01-01

    Community participation is vital to prevent and control the spread of dengue in Latin America. Initiatives such as the integrated management strategy for dengue prevention and control (IMS-Dengue) and integrated vector management (IVM) incorporate social mobilisation and behavioural change at the community level as part of a wider strategy to control dengue. These strategies aim to improve the efficacy, cost-effectiveness, environmental impact and sustainability of vector control strategies. Community empowerment is a key aspect of the strategy as it allows the local population to drive eradication of the disease in their environment. Through the patio limpio campaign, the concept of community participation has been employed in Mexico to raise awareness of the consequences of dengue. Patio limpio consists of training local people to identify, eliminate, monitor and evaluate vector breeding sites systematically in households under their supervision. A community participation programme in Guerrero State found that approximately 54% were clean and free of breeding sites. Households that were not visited and assessed had a 2·4-times higher risk of developing dengue than those that were. However, after a year, only 30% of trained households had a clean backyard. This emphasises the need for a sustainable process to encourage individuals to maintain efforts in keeping their environment free of dengue. PMID:22668443

  7. Bioimpedance Vector Analysis in Diagnosing Severe and Non-Severe Dengue Patients

    PubMed Central

    Khalil, Sami F.; Mohktar, Mas S.; Ibrahim, Fatimah

    2016-01-01

    Real-time monitoring and precise diagnosis of the severity of Dengue infection is needed for better decisions in disease management. The aim of this study is to use the Bioimpedance Vector Analysis (BIVA) method to differentiate between healthy subjects and severe and non-severe Dengue-infected patients. Bioimpedance was measured using a 50 KHz single-frequency bioimpedance analyzer. Data from 299 healthy subjects (124 males and 175 females) and 205 serologically confirmed Dengue patients (123 males and 82 females) were analyzed in this study. The obtained results show that the BIVA method was able to assess and classify the body fluid and cell mass condition between the healthy subjects and the Dengue-infected patients. The bioimpedance mean vectors (95% confidence ellipse) for healthy subjects, severe and non-severe Dengue-infected patients were illustrated. The vector is significantly shortened from healthy subjects to Dengue patients; for both genders the p-value is less than 0.0001. The mean vector of severe Dengue patients is significantly shortened compare to non-severe patients with a p-value of 0.0037 and 0.0023 for males and females, respectively. This study confirms that the BIVA method is a valid method in differentiating the healthy, severe and non-severe Dengue-infected subjects. All tests performed had a significance level with a p-value less than 0.05. PMID:27322285

  8. Transcriptomics and disease vector control.

    PubMed

    Vontas, John; Ranson, Hilary; Alphey, Luke

    2010-01-01

    Next-generation sequencing can be used to compare transcriptomes under different conditions. A study in BMC Genomics applies this approach to investigating the effects of exposure to a range of xenobiotics on changes in gene expression in the larvae of Aedes aegypti, the mosquito vector of dengue fever.

  9. Eco-bio-social determinants of dengue vector breeding: a multicountry study in urban and periurban Asia

    PubMed Central

    Tana, Susilowati; Espino, Fe; Kittayapong, Pattamaporn; Abeyewickreme, Wimal; Wai, Khin Thet; Tyagi, Brij Kishore; Kroeger, Axel; Sommerfeld, Johannes; Petzold, Max

    2010-01-01

    Abstract Objective To study dengue vector breeding patterns under a variety of conditions in public and private spaces; to explore the ecological, biological and social (eco-bio-social) factors involved in vector breeding and viral transmission, and to define the main implications for vector control. Methods In each of six Asian cities or periurban areas, a team randomly selected urban clusters for conducting standardized household surveys, neighbourhood background surveys and entomological surveys. They collected information on vector breeding sites, people’s knowledge, attitudes and practices surrounding dengue, and the characteristics of the study areas. All premises were inspected; larval indices were used to quantify vector breeding sites, and pupal counts were used to identify productive water container types and as a proxy measure for adult vector abundance. Findings The most productive vector breeding sites were outdoor water containers, particularly if uncovered, beneath shrubbery and unused for at least one week. Peridomestic and intradomestic areas were much more important for pupal production than commercial and public spaces other than schools and religious facilities. A complex but non-significant association was found between water supply and pupal counts, and lack of waste disposal services was associated with higher vector abundance in only one site. Greater knowledge about dengue and its transmission was associated with lower mosquito breeding and production. Vector control measures (mainly larviciding in one site) substantially reduced larval and pupal counts and “pushed” mosquito breeding to alternative containers. Conclusion Vector breeding and the production of adult Aedes aegypti are influenced by a complex interplay of factors. Thus, to achieve effective vector management, a public health response beyond routine larviciding or focal spraying is essential. PMID:20428384

  10. PirAB toxin from Photorhabdus asymbiotica as a larvicide against dengue vectors.

    PubMed

    Ahantarig, Arunee; Chantawat, Nantarat; Waterfield, Nicholas R; ffrench-Constant, Richard; Kittayapong, Pattamaporn

    2009-07-01

    We have evaluated Photorhabdus insect-related protein (Pir) from Photorhabdus asymbiotica against dengue vectors. PirAB shows larvicidal activity against both Aedes aegypti and Aedes albopictus larvae but did not affect the Mesocyclops thermocyclopoides predator. PirAB expressed the strongest toxicity compared to PirA, PirB, or the mixture of PirA plus PirB. Whether the presence of an enterobacterial repetitive intergenic consensus sequence in PirAB, but not in PirA, PirB, or the mixture of PirA plus PirB, has any impact on biological control efficacy needs further investigation.

  11. The impact of indoor residual spraying of deltamethrin on dengue vector populations in the Peruvian Amazon.

    PubMed

    Paredes-Esquivel, Claudia; Lenhart, Audrey; del Río, Ricardo; Leza, M M; Estrugo, M; Chalco, Enrique; Casanova, Wilma; Miranda, Miguel Ángel

    2016-02-01

    Dengue is an important public health problem in the Amazon area of Peru, resulting in significant morbidity each year. As in other areas of the world, ultra-low volume (ULV) application of insecticides is the main strategy to reduce adult populations of the dengue vector Aedes aegypti, despite growing evidence of its limitations as a single control method. This study investigated the efficacy of deltamethrin S.C. applied through indoor residual spraying (IRS) of dwellings in reducing A. aegypti populations. The residual effect of the insecticide was tested by monthly bioassays on the three most common indoor surfaces found in the Amazon area: painted wood, unpainted wood and brick. The results showed that in an area with moderate levels of A. aegypti infestation, IRS dramatically reduced all immature indices the first week after deltamethrin IRS application and the adult index from 18.5 to 3.1, four weeks after intervention (p<0.05). Even though housing conditions facilitated reinfestation with A. aegypti (100% of the houses have open roof eaves, 31.5% lack sewage systems, and 60.4% collected rain in open containers), indices remained low compared to baseline 16 weeks after insecticide application. Bioassays showed that deltamethrin S.C. caused mortalities >80% 8 weeks after application on all types of surfaces. The residual effect of the insecticide was greater on brick than on wooden walls (p<0.05). Our results demonstrate that IRS can have both an immediate and sustained effect on reducing adult and immature A. aegypti populations and should be considered as an adult mosquito control strategy by dengue vector control programs.

  12. The impact of indoor residual spraying of deltamethrin on dengue vector populations in the Peruvian Amazon.

    PubMed

    Paredes-Esquivel, Claudia; Lenhart, Audrey; del Río, Ricardo; Leza, M M; Estrugo, M; Chalco, Enrique; Casanova, Wilma; Miranda, Miguel Ángel

    2016-02-01

    Dengue is an important public health problem in the Amazon area of Peru, resulting in significant morbidity each year. As in other areas of the world, ultra-low volume (ULV) application of insecticides is the main strategy to reduce adult populations of the dengue vector Aedes aegypti, despite growing evidence of its limitations as a single control method. This study investigated the efficacy of deltamethrin S.C. applied through indoor residual spraying (IRS) of dwellings in reducing A. aegypti populations. The residual effect of the insecticide was tested by monthly bioassays on the three most common indoor surfaces found in the Amazon area: painted wood, unpainted wood and brick. The results showed that in an area with moderate levels of A. aegypti infestation, IRS dramatically reduced all immature indices the first week after deltamethrin IRS application and the adult index from 18.5 to 3.1, four weeks after intervention (p<0.05). Even though housing conditions facilitated reinfestation with A. aegypti (100% of the houses have open roof eaves, 31.5% lack sewage systems, and 60.4% collected rain in open containers), indices remained low compared to baseline 16 weeks after insecticide application. Bioassays showed that deltamethrin S.C. caused mortalities >80% 8 weeks after application on all types of surfaces. The residual effect of the insecticide was greater on brick than on wooden walls (p<0.05). Our results demonstrate that IRS can have both an immediate and sustained effect on reducing adult and immature A. aegypti populations and should be considered as an adult mosquito control strategy by dengue vector control programs. PMID:26571068

  13. EVALUATION OF SUBLETHAL EFFECTS OF Ipomoea cairica LINN. EXTRACT ON LIFE HISTORY TRAITS OF DENGUE VECTORS

    PubMed Central

    ZUHARAH, Wan Fatma; AHBIRAMI, Rattanam; DIENG, Hamady; THIAGALETCHUMI, Maniam; FADZLY, Nik

    2016-01-01

    Plant derived insecticides have considerable potential for mosquito control because these products are safer than conventional insecticides. This study aimed to investigate sublethal activities of Ipomoea carica or railway creeper crude acethonilic extract against life history trait of dengue vectors, Aedes albopictus and Aedes aegypti. The late third instar larvae of Ae. albopictus and Ae. aegypti were exposed to a sublethal dose at LC50 and larvae that survived were further cultured. Overall, Ipomea cairica crude extracts affected the whole life history of both Aedes species. The study demonstrated significantly lower egg production (fecundity) and eggs hatchability (fertility) in Ae. albopictus. The sublethal dose of crude extracts reduced significantly the width of larval head capsule and the wing length of both sexes in both Aedes species. The significance of sublethal effects of I. cairica against Aedes mosquitoes was an additional hallmark to demonstrate further activity of this plant despite its direct toxicity to the larvae. The reduced reproductive capacity as well as morphological and physiological anomalies are some of the effects that make I. cairica a potential candidate to be used as a new plant-based insecticide to control dengue vectors. PMID:27253746

  14. Indirect effects of cigarette butt waste on the dengue vector Aedes aegypti (Diptera: Culicidae).

    PubMed

    Dieng, Hamady; Rajasaygar, Sudha; Ahmad, Abu Hassan; Rawi, Che Salmah Md; Ahmad, Hamdan; Satho, Tomomitsu; Miake, Fumio; Zuharah, Wan Fatma; Fukumitsu, Yuki; Saad, Ahmad Ramli; Abdul Hamid, Suhaila; Vargas, Ronald Enrique Morales; Ab Majid, Abdul Hafiz; Fadzly, Nik; Abu Kassim, Nur Faeza; Hashim, Nur Aida; Abd Ghani, Idris; Abang, Fatimah Bt; AbuBakar, Sazaly

    2014-02-01

    Despite major insecticide-based vector control programs, dengue continues to be a major threat to public health in urban areas. The reasons for this failure include the emergence of insecticide resistance and the narrowing of the spectrum of efficient products. Cigarette butts (CBs), the most commonly discarded piece of waste, also represent a major health hazard to human and animal life. CBs are impregnated with thousands of chemical compounds, many of which are highly toxic and none of which has history of resistance in mosquitoes. This study was performed to examine whether exposure to CB alters various biological parameters of parents and their progeny. We examined whether the mosquito changes its ovipositional behaviors, egg hatching, reproductive capacity, longevity and fecundity in response to CB exposure at three different concentrations. Females tended to prefer microcosms containing CBs for egg deposition than those with water only. There were equivalent rates of eclosion success among larvae from eggs that matured in CB and water environments. We also observed decreased life span among adults that survived CB exposure. Extracts of CB waste have detrimental effects on the fecundity and longevity of its offspring, while being attractive to its gravid females. These results altogether indicate that CB waste indirectly affect key adult life traits of Aedes aegypti and could conceivably be developed as a novel dengue vector control strategy, referring to previously documented direct toxicity on the larval stage. But this will require further research on CB waste effects on non-target organisms including humans.

  15. EVALUATION OF SUBLETHAL EFFECTS OF Ipomoea cairica LINN. EXTRACT ON LIFE HISTORY TRAITS OF DENGUE VECTORS.

    PubMed

    Zuharah, Wan Fatma; Ahbirami, Rattanam; Dieng, Hamady; Thiagaletchumi, Maniam; Fadzly, Nik

    2016-01-01

    Plant derived insecticides have considerable potential for mosquito control because these products are safer than conventional insecticides. This study aimed to investigate sublethal activities of Ipomoea carica or railway creeper crude acethonilic extract against life history trait of dengue vectors, Aedes albopictus and Aedes aegypti. The late third instar larvae of Ae. albopictus and Ae. aegypti were exposed to a sublethal dose at LC50 and larvae that survived were further cultured. Overall, Ipomea cairica crude extracts affected the whole life history of both Aedes species. The study demonstrated significantly lower egg production (fecundity) and eggs hatchability (fertility) in Ae. albopictus. The sublethal dose of crude extracts reduced significantly the width of larval head capsule and the wing length of both sexes in both Aedes species. The significance of sublethal effects of I. cairica against Aedes mosquitoes was an additional hallmark to demonstrate further activity of this plant despite its direct toxicity to the larvae. The reduced reproductive capacity as well as morphological and physiological anomalies are some of the effects that make I. cairica a potential candidate to be used as a new plant-based insecticide to control dengue vectors.

  16. EVALUATION OF SUBLETHAL EFFECTS OF Ipomoea cairica LINN. EXTRACT ON LIFE HISTORY TRAITS OF DENGUE VECTORS.

    PubMed

    Zuharah, Wan Fatma; Ahbirami, Rattanam; Dieng, Hamady; Thiagaletchumi, Maniam; Fadzly, Nik

    2016-01-01

    Plant derived insecticides have considerable potential for mosquito control because these products are safer than conventional insecticides. This study aimed to investigate sublethal activities of Ipomoea carica or railway creeper crude acethonilic extract against life history trait of dengue vectors, Aedes albopictus and Aedes aegypti. The late third instar larvae of Ae. albopictus and Ae. aegypti were exposed to a sublethal dose at LC50 and larvae that survived were further cultured. Overall, Ipomea cairica crude extracts affected the whole life history of both Aedes species. The study demonstrated significantly lower egg production (fecundity) and eggs hatchability (fertility) in Ae. albopictus. The sublethal dose of crude extracts reduced significantly the width of larval head capsule and the wing length of both sexes in both Aedes species. The significance of sublethal effects of I. cairica against Aedes mosquitoes was an additional hallmark to demonstrate further activity of this plant despite its direct toxicity to the larvae. The reduced reproductive capacity as well as morphological and physiological anomalies are some of the effects that make I. cairica a potential candidate to be used as a new plant-based insecticide to control dengue vectors. PMID:27253746

  17. Dengue virus.

    PubMed

    Ross, Ted M

    2010-03-01

    Dengue is the most prevalent arthropod-borne virus affecting humans today. The virus group consists of 4 serotypes that manifest with similar symptoms. Dengue causes a spectrum of disease, ranging from a mild febrile illness to a life-threatening dengue hemorrhagic fever. Breeding sites for the mosquitoes that transmit dengue virus have proliferated, partly because of population growth and uncontrolled urbanization in tropical and subtropical countries. Successful vector control programs have also been eliminated, often because of lack of governmental funding. Dengue viruses have evolved rapidly as they have spread worldwide, and genotypes associated with increased virulence have spread across Asia and the Americas. This article describes the virology, epidemiology, clinical manifestations and outcomes, and treatments/vaccines associated with dengue infection.

  18. Wing shape of dengue vectors from around the world.

    PubMed

    Henry, A; Thongsripong, P; Fonseca-Gonzalez, I; Jaramillo-Ocampo, N; Dujardin, Jean-Pierre

    2010-03-01

    Wing shape is increasingly utilized in species identification and characterization. For dengue vectors Aedes aegypti and Aedes albopictus, it could be used as a complement for ensuring accurate diagnostic of damaged specimens. However, the impact of world migration on wing shape is unknown. Has the spread of these invasive species increased shape variation to the extent of producing interspecific overlapping? To answer this question, the geometric patterns of wing venation in Ae. aegypti and Ae. albopictus were compared between natural populations from the Pacific Islands, North and South America and South East Asia. The geometry of 178 female and 174 male wings were described at 13 anatomical landmarks, and processed according to Procrustes superposition, partial warps and subsequent multivariate analyzes. The variation of shape did not produce significant interspecific overlapping. Regardless of geographic origin, Ae. aegypti was recognized as Ae. aegypti and Ae. albopictus as Ae. albopictus. Some significant geographic differentiation was observed in Colombia for Ae. aegypti and in Thailand for Ae. albopictus. Globally, the morphology of these mosquitoes, for both size and shape, appeared well preserved. Strong canalizing mechanisms could account for the observed patterns of relatively uniform morphology, which could also be attributed to sporadic, recurrent mixing of populations, thwarting phenotypic drift.

  19. Dengue and dengue hemorrhagic fever.

    PubMed

    Gubler, D J

    1998-07-01

    Dengue fever, a very old disease, has reemerged in the past 20 years with an expanded geographic distribution of both the viruses and the mosquito vectors, increased epidemic activity, the development of hyperendemicity (the cocirculation of multiple serotypes), and the emergence of dengue hemorrhagic fever in new geographic regions. In 1998 this mosquito-borne disease is the most important tropical infectious disease after malaria, with an estimated 100 million cases of dengue fever, 500,000 cases of dengue hemorrhagic fever, and 25,000 deaths annually. The reasons for this resurgence and emergence of dengue hemorrhagic fever in the waning years of the 20th century are complex and not fully understood, but demographic, societal, and public health infrastructure changes in the past 30 years have contributed greatly. This paper reviews the changing epidemiology of dengue and dengue hemorrhagic fever by geographic region, the natural history and transmission cycles, clinical diagnosis of both dengue fever and dengue hemorrhagic fever, serologic and virologic laboratory diagnoses, pathogenesis, surveillance, prevention, and control. A major challenge for public health officials in all tropical areas of the world is to develop and implement sustainable prevention and control programs that will reverse the trend of emergent dengue hemorrhagic fever.

  20. Spatio-Temporal Distribution of Dengue and Lymphatic Filariasis Vectors along an Altitudinal Transect in Central Nepal

    PubMed Central

    Dhimal, Meghnath; Gautam, Ishan; Kreß, Aljoscha; Müller, Ruth; Kuch, Ulrich

    2014-01-01

    Background Rapidly increasing temperatures in the mountain region of Nepal and recent reports of dengue fever and lymphatic filariasis cases from mountainous areas of central Nepal prompted us to study the spatio-temporal distribution of the vectors of these two diseases along an altitudinal transect in central Nepal. Methodology/Principal Findings We conducted a longitudinal study in four distinct physiographical regions of central Nepal from September 2011 to February 2012. We used BG-Sentinel and CDC light traps to capture adult mosquitoes. We found the geographical distribution of the dengue virus vectors Aedes aegypti and Aedes albopictus along our study transect to extend up to 1,310 m altitude in the Middle Mountain region (Kathmandu). The distribution of the lymphatic filariasis vector Culex quinquefasciatus extended up to at least 2,100 m in the High Mountain region (Dhunche). Statistical analysis showed a significant effect of the physiographical region and month of collection on the abundance of A. aegypti and C. quinquefasciatus only. BG-Sentinel traps captured significantly higher numbers of A. aegypti than CDC light traps. The meteorological factors temperature, rainfall and relative humidity had significant effects on the mean number of A. aegypti per BG-Sentinel trap. Temperature and relative humidity were significant predictors of the number of C. quinquefasciatus per CDC light trap. Dengue fever and lymphatic filariasis cases had previously been reported from all vector positive areas except Dhunche which was free of known lymphatic filariasis cases. Conclusions/Significance We conclude that dengue virus vectors have already established stable populations up to the Middle Mountains of Nepal, supporting previous studies, and report for the first time the distribution of lymphatic filariasis vectors up to the High Mountain region of this country. The findings of our study should contribute to a better planning and scaling-up of mosquito

  1. Age and body size influence male sperm capacity of the dengue vector Aedes aegypti (Diptera: Culicidae).

    PubMed

    Ponlawat, Alongkot; Harrington, Laura C

    2007-05-01

    Understanding mosquito mating biology is essential for studies of mosquito behavior, gene flow, population structure, and genetic control. In the current study, we examine the effect of age and body size on spermatozoa number in two laboratory strains of the dengue vector, Aedes aegypti (L.), Thailand and Rockefeller (ROCK), and in wild-collected mosquitoes from Thailand. Body size was a major predictor of total spermatozoa number, with significantly greater sperm numbers in large (2.27-mm wing length) versus small males (1.85-mm wing length) within the same age group. Total sperm capacity also varied by male age. Spermatozoa numbers in virgin Ae. aegypti males increased significantly up to 10 d after emergence and then leveled off until 20 d. Significant variations in sperm number were detected among Ae. aegypti strains, with wild-collected mosquitoes having the greatest total number of sperm. Our study provides the first evidence of spermatogenesis in adult mosquitoes and indicates high rates of spermatogenesis in male mosquitoes up to 10 d of age (3.3 degree-days). Our results emphasize the potential role of body size and age on the mating capacity of this important vector of dengue and yellow fever viruses.

  2. Dengue viral infections

    PubMed Central

    Malavige, G; Fernando, S; Fernando, D; Seneviratne, S

    2004-01-01

    Dengue viral infections are one of the most important mosquito borne diseases in the world. They may be asymptomatic or may give rise to undifferentiated fever, dengue fever, dengue haemorrhagic fever (DHF), or dengue shock syndrome. Annually, 100 million cases of dengue fever and half a million cases of DHF occur worldwide. Ninety percent of DHF subjects are children less than 15 years of age. At present, dengue is endemic in 112 countries in the world. No vaccine is available for preventing this disease. Early recognition and prompt initiation of appropriate treatment are vital if disease related morbidity and mortality are to be limited. This review outlines aspects of the epidemiology of dengue infections, the dengue virus and its mosquito vector, clinical features and pathogenesis of dengue infections, and the management and control of these infections. PMID:15466994

  3. Dengue viral infections.

    PubMed

    Malavige, G N; Fernando, S; Fernando, D J; Seneviratne, S L

    2004-10-01

    Dengue viral infections are one of the most important mosquito borne diseases in the world. They may be asymptomatic or may give rise to undifferentiated fever, dengue fever, dengue haemorrhagic fever (DHF), or dengue shock syndrome. Annually, 100 million cases of dengue fever and half a million cases of DHF occur worldwide. Ninety percent of DHF subjects are children less than 15 years of age. At present, dengue is endemic in 112 countries in the world. No vaccine is available for preventing this disease. Early recognition and prompt initiation of appropriate treatment are vital if disease related morbidity and mortality are to be limited. This review outlines aspects of the epidemiology of dengue infections, the dengue virus and its mosquito vector, clinical features and pathogenesis of dengue infections, and the management and control of these infections.

  4. Dengue research opportunities in the Americas.

    PubMed

    Laughlin, Catherine A; Morens, David M; Cassetti, M Cristina; Costero-Saint Denis, Adriana; San Martin, Jose-Luis; Whitehead, Stephen S; Fauci, Anthony S

    2012-10-01

    Dengue is a systemic arthropod-borne viral disease of major global public health importance. At least 2.5 billion people who live in areas of the world where dengue occurs are at risk of developing dengue fever (DF) and its severe complications, dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Repeated reemergences of dengue in sudden explosive epidemics often cause public alarm and seriously stress healthcare systems. The control of dengue is further challenged by the lack of effective therapies, vaccines, and point-of-care diagnostics. Despite years of study, even its pathogenic mechanisms are poorly understood. This article discusses recent advances in dengue research and identifies challenging gaps in research on dengue clinical evaluation, diagnostics, epidemiology, immunology, therapeutics, vaccinology/clinical trials research, vector biology, and vector ecology. Although dengue is a major global tropical pathogen, epidemiologic and disease control considerations in this article emphasize dengue in the Americas. PMID:22782946

  5. Dengue Research Opportunities in the Americas

    PubMed Central

    Laughlin, Catherine A.; Morens, David M.; Cassetti, M. Cristina; Costero-Saint Denis, Adriana; San Martin, Jose-Luis; Whitehead, Stephen S.; Fauci, Anthony S.

    2012-01-01

    Dengue is a systemic arthropod-borne viral disease of major global public health importance. At least 2.5 billion people who live in areas of the world where dengue occurs are at risk of developing dengue fever (DF) and its severe complications, dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Repeated reemergences of dengue in sudden explosive epidemics often cause public alarm and seriously stress healthcare systems. The control of dengue is further challenged by the lack of effective therapies, vaccines, and point-of-care diagnostics. Despite years of study, even its pathogenic mechanisms are poorly understood. This article discusses recent advances in dengue research and identifies challenging gaps in research on dengue clinical evaluation, diagnostics, epidemiology, immunology, therapeutics, vaccinology/clinical trials research, vector biology, and vector ecology. Although dengue is a major global tropical pathogen, epidemiologic and disease control considerations in this article emphasize dengue in the Americas. PMID:22782946

  6. Dengue research opportunities in the Americas.

    PubMed

    Laughlin, Catherine A; Morens, David M; Cassetti, M Cristina; Costero-Saint Denis, Adriana; San Martin, Jose-Luis; Whitehead, Stephen S; Fauci, Anthony S

    2012-10-01

    Dengue is a systemic arthropod-borne viral disease of major global public health importance. At least 2.5 billion people who live in areas of the world where dengue occurs are at risk of developing dengue fever (DF) and its severe complications, dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Repeated reemergences of dengue in sudden explosive epidemics often cause public alarm and seriously stress healthcare systems. The control of dengue is further challenged by the lack of effective therapies, vaccines, and point-of-care diagnostics. Despite years of study, even its pathogenic mechanisms are poorly understood. This article discusses recent advances in dengue research and identifies challenging gaps in research on dengue clinical evaluation, diagnostics, epidemiology, immunology, therapeutics, vaccinology/clinical trials research, vector biology, and vector ecology. Although dengue is a major global tropical pathogen, epidemiologic and disease control considerations in this article emphasize dengue in the Americas.

  7. A dengue vector surveillance by human population-stratified ovitrap survey for Aedes (Diptera: Culicidae) adult and egg collections in high dengue-risk areas of Taiwan.

    PubMed

    Wu, Huai-Hui; Wang, Chih-Yuan; Teng, Hwa-Jen; Lin, Cheo; Lu, Liang-Chen; Jian, Shu-Wan; Chang, Niann-Tai; Wen, Tzai-Hung; Wu, Jhy-Wen; Liu, Ding-Ping; Lin, Li-Jen; Norris, Douglas E; Wu, Ho-Sheng

    2013-03-01

    Aedes aegypti L. is the primary dengue vector in southern Taiwan. This article is the first report on a large-scale surveillance program to study the spatial-temporal distribution of the local Ae. aegytpi population using ovitraps stratified according to the human population in high dengue-risk areas. The sampling program was conducted for 1 yr and was based on weekly collections of eggs and adults in Kaohsiung City. In total, 10,380 ovitraps were placed in 5,190 households. Paired ovitraps, one indoors and one outdoors were used per 400 people. Three treatments in these ovitraps (paddle-shaped wooden sticks, sticky plastic, or both) were assigned by stratified random sampling to two areas (i.e., metropolitan or rural, respectively). We found that the sticky plastic alone had a higher sensitivity for detecting the occurrence of indigenous dengue cases than other treatments with time lags of up to 14 wk. The wooden paddle alone detected the oviposition of Ae. aegypti throughout the year in this study area. Furthermore, significantly more Ae. aegypti females were collected indoors than outdoors. Therefore, our survey identified the whole year oviposition activity, spatial-temporal distribution of the local Ae. aegypti population and a 14 wk lag correlation with dengue incidence to plan an effectively proactive control. PMID:23540112

  8. Spatiotemporal distribution of dengue vectors & identification of high risk zones in district Sonitpur, Assam, India

    PubMed Central

    Das, Momi; Gopalakrishnan, Reji; Kumar, Dharmendra; Gayan, Jyotsna; Baruah, Indra; Veer, Vijay; Dutta, Prafulla

    2014-01-01

    Background & objectives: Dengue is an arboviral disease of public health importance in many parts of India and recently many cases have been reported from northeastern India. Aedes mosquitoes, which are the vectors of dengue, are widely prevalent in the region. A study was initiated in Sonitpur district of Assam to understand the spatiotemporal distribution and seasonal prevalence of dengue vectors and to identify the high risk zones. Methods: Ovitrap surveys were conducted in three randomly selected villages under each of the eight public health centres (PHC) in district Sonitpur of Assam, northeastern India during March 2011 - February 2012. Three risk zones (high, medium and low) were identified on the basis of per trap density of Aedes mosquitoes. Meteorological data were collected to study the temporal distribution of dengue vectors. Results: Aedes albopictus (99.3%) was the predominant dengue vector followed by Ae. aegypti (0.7%) recorded in the ovitraps. The highest vector density was observed during the post-monsoon (60.1 ± 18 per trap) while the lowest during the winter (7.6 ± 4.9 per trap) and the season-wise differences in the vector density were significant (P=0.005). Maximum temperature (correlation coefficient, r = 0.45) and minimum temperature (r = 0.408) showed the highest positive correlation with the vector density, whereas the number of rainy days showed high positive correlation (r = 0.185) than the total rainfall (r = 0.117). The high risk zone (Dekhiajuli, Behali, Bihaguri and Gohpur PHC) as indicated by the high larval densities of dengue vectors, 45.3 ± 18, 42.1 ± 22.3, 36.9 ± 29.1, 35.3 ± 22.6 per trap, respectively, was validated by dengue epidemiological data collected during 2012. Interpretation & conclusions: Yearlong monitoring of dengue vectors was done for the first time in this region. Monthly maximum temperature and the number of rainy days could be used for the prediction of larval density of Aedes mosquitoes. The

  9. Chromobacterium Csp_P Reduces Malaria and Dengue Infection in Vector Mosquitoes and Has Entomopathogenic and In Vitro Anti-pathogen Activities

    PubMed Central

    Bahia, Ana C.; Saraiva, Raul G.; Dong, Yuemei; Kang, Seokyoung; Tripathi, Abhai; Mlambo, Godfree; Dimopoulos, George

    2014-01-01

    Plasmodium and dengue virus, the causative agents of the two most devastating vector-borne diseases, malaria and dengue, are transmitted by the two most important mosquito vectors, Anopheles gambiae and Aedes aegypti, respectively. Insect-bacteria associations have been shown to influence vector competence for human pathogens through multi-faceted actions that include the elicitation of the insect immune system, pathogen sequestration by microbes, and bacteria-produced anti-pathogenic factors. These influences make the mosquito microbiota highly interesting from a disease control perspective. Here we present a bacterium of the genus Chromobacterium (Csp_P), which was isolated from the midgut of field-caught Aedes aegypti. Csp_P can effectively colonize the mosquito midgut when introduced through an artificial nectar meal, and it also inhibits the growth of other members of the midgut microbiota. Csp_P colonization of the midgut tissue activates mosquito immune responses, and Csp_P exposure dramatically reduces the survival of both the larval and adult stages. Ingestion of Csp_P by the mosquito significantly reduces its susceptibility to Plasmodium falciparum and dengue virus infection, thereby compromising the mosquito's vector competence. This bacterium also exerts in vitro anti-Plasmodium and anti-dengue activities, which appear to be mediated through Csp_P -produced stable bioactive factors with transmission-blocking and therapeutic potential. The anti-pathogen and entomopathogenic properties of Csp_P render it a potential candidate for the development of malaria and dengue control strategies. PMID:25340821

  10. Dengue 3 Epidemic, Havana, 2001

    PubMed Central

    Peláez, Otto; Kourí, Gustavo; Pérez, Raúl; San Martín, José L.; Vázquez, Susana; Rosario, Delfina; Mora, Regla; Quintana, Ibrahim; Bisset, Juan; Cancio, Reynel; Masa, Ana M; Castro, Osvaldo; González, Daniel; Avila, Luis C.; Rodríguez, Rosmari; Alvarez, Mayling; Pelegrino, Jose L.; Bernardo, Lídice; Prado, Irina

    2004-01-01

    In June 2001, dengue transmission was detected in Havana, Cuba; 12,889 cases were reported. Dengue 3, the etiologic agent of the epidemic, caused the dengue hemorrhagic fever only in adults, with 78 cases and 3 deaths. After intensive vector control efforts, no new cases have been detected. PMID:15200868

  11. Dengue 3 epidemic, Havana, 2001.

    PubMed

    Peláez, Otto; Guzmán, María G; Kourí, Gustavo; Pérez, Raúl; San Martín, José L; Vázquez, Susana; Rosario, Delfina; Mora, Regla; Quintana, Ibrahim; Bisset, Juan; Cancio, Reynel; Masa, Ana M; Castro, Osvaldo; González, Daniel; Avila, Luis C; Rodríguez, Rosmari; Alvarez, Mayling; Pelegrino, Jose L; Bernardo, Lídice; Prado, Irina

    2004-04-01

    In June 2001, dengue transmission was detected in Havana, Cuba; 12,889 cases were reported. Dengue 3, the etiologic agent of the epidemic, caused the dengue hemorrhagic fever only in adults, with 78 cases and 3 deaths. After intensive vector control efforts, no new cases have been detected.

  12. Aedes aegypti on Madeira Island (Portugal): genetic variation of a recently introduced dengue vector.

    PubMed

    Seixas, Gonçalo; Salgueiro, Patrícia; Silva, Ana Clara; Campos, Melina; Spenassatto, Carine; Reyes-Lugo, Matías; Novo, Maria Teresa; Ribolla, Paulo Eduardo Martins; Silva Pinto, João Pedro Soares da; Sousa, Carla Alexandra

    2013-01-01

    The increasing population of Aedes aegypti mosquitoes on Madeira Island (Portugal) resulted in the first autochthonous dengue outbreak, which occurred in October 2012. Our study establishes the first genetic evaluation based on the mitochondrial DNA (mtDNA) genes [cytochrome oxidase subunit I (COI) and NADH dehydrogenase subunit 4 (ND4)] and knockdown resistance (kdr) mutations exploring the colonisation history and the genetic diversity of this insular vector population. We included mosquito populations from Brazil and Venezuela in the analysis as putative geographic sources. The Ae. aegypti population from Madeira showed extremely low mtDNA genetic variability, with a single haplotype for COI and ND4. We also detected the presence of two important kdr mutations and the quasi-fixation of one of these mutations (F1534C). These results are consistent with a unique recent founder event that occurred on the island of Ae. aegypti mosquitoes that carry kdr mutations associated with insecticide resistance. Finally, we also report the presence of the F1534C kdr mutation in the Brazil and Venezuela populations. To our knowledge, this is the first time this mutation has been found in South American Ae. aegypti mosquitoes. Given the present risk of Ae. aegypti re-invading continental Europe from Madeira and the recent dengue outbreaks on the island, this information is important to plan surveillance and control measures.

  13. Dengue and dengue hemorrhagic fever epidemics in Brazil: what research is needed based on trends, surveillance, and control experiences?

    PubMed

    Teixeira, Maria da Glória; Costa, Maria da Conceição Nascimento; Barreto, Maurício Lima; Mota, Eduardo

    2005-01-01

    Dengue epidemics account annually for several million cases and deaths worldwide. The high endemic level of dengue fever and its hemorrhagic form correlates to extensive domiciliary infestation by Aedes aegypti and multiple viral serotype human infection. This study analyzed serial case reports registered in Brazil since 1981, describing incidence evolutionary patterns and spatial distribution. Epidemic waves followed the introduction of every serotype (DEN 1 to 3), and reduction in susceptible individuals possibly accounted for decreasing case frequency. An incremental expansion of affected areas and increasing occurrence of dengue fever and its hemorrhagic form with high case fatality were noted in recent years. In contrast, efforts based solely on chemical vector control have been insufficient. Moreover, some evidence demonstrates that educational measures do not permanently modify population habits. Thus, as long as a vaccine is not available, further dengue control depends on potential results from basic interdisciplinary research and intervention evaluation studies, integrating environmental changes, community participation and education, epidemiological and virological surveillance, and strategic technological innovations aimed to stop transmission.

  14. Assessing Carbon Dioxide and Synthetic Lure-Baited Traps for Dengue and Chikungunya Vector Surveillance (3).

    PubMed

    Harwood, James F; Arimoto, Hanayo; Nunn, Peter; Richardson, Alec G; Obenauer, Peter J

    2015-09-01

    The Aedes mosquito vectors of dengue virus (DENV) and chikungunya virus (CHIKV) are attracted to specific host cues that are not generated by traditional light traps. For this reason multiple companies have designed traps to specifically target those species. Recently the standard trap for DENV and CHIKV vectors, the BG-Sentinel (BGS) trap, has been remodeled to be more durable and better suited for use in harsh field conditions, common during military operations, and relabeled the BG-Sentinel 2 (BGS2). This new trap was evaluated against the standard Centers for Disease Control and Prevention (CDC) light trap, Zumba Trap, and BG-Mosquitito Trap to determine relative effectiveness in collecting adult Aedes aegypti and Ae. albopictus. Evaluations were conducted under semifield and field conditions in suburban areas in northeastern Florida from May to August 2014. The BGS2 trap collected more DENV and CHIKV vectors than the standard CDC light trap, Zumba Trap, and BG-Mosquitito Trap, but attracted fewer species, while the BG-Mosquitito Trap attracted the greatest number of mosquito species. PMID:26375905

  15. Spatial Evaluation and Modeling of Dengue Seroprevalence and Vector Density in Rio de Janeiro, Brazil

    PubMed Central

    Honório, Nildimar Alves; Nogueira, Rita Maria Ribeiro; Codeço, Cláudia Torres; Carvalho, Marilia Sá; Cruz, Oswaldo Gonçalves; de Avelar Figueiredo Mafra Magalhães, Mônica; de Araújo, Josélio Maria Galvão; de Araújo, Eliane Saraiva Machado; Gomes, Marcelo Quintela; Pinheiro, Luciane Silva; da Silva Pinel, Célio; Lourenço-de-Oliveira, Ricardo

    2009-01-01

    Background Rio de Janeiro, Brazil, experienced a severe dengue fever epidemic in 2008. This was the worst epidemic ever, characterized by a sharp increase in case-fatality rate, mainly among younger individuals. A combination of factors, such as climate, mosquito abundance, buildup of the susceptible population, or viral evolution, could explain the severity of this epidemic. The main objective of this study is to model the spatial patterns of dengue seroprevalence in three neighborhoods with different socioeconomic profiles in Rio de Janeiro. As blood sampling coincided with the peak of dengue transmission, we were also able to identify recent dengue infections and visually relate them to Aedes aegypti spatial distribution abundance. We analyzed individual and spatial factors associated with seroprevalence using Generalized Additive Model (GAM). Methodology/Principal Findings Three neighborhoods were investigated: a central urban neighborhood, and two isolated areas characterized as a slum and a suburban area. Weekly mosquito collections started in September 2006 and continued until March 2008. In each study area, 40 adult traps and 40 egg traps were installed in a random sample of premises, and two infestation indexes calculated: mean adult density and mean egg density. Sera from individuals living in the three neighborhoods were collected before the 2008 epidemic (July through November 2007) and during the epidemic (February through April 2008). Sera were tested for DENV-reactive IgM, IgG, Nested RT-PCR, and Real Time RT-PCR. From the before–after epidemics paired data, we described seroprevalence, recent dengue infections (asymptomatic or not), and seroconversion. Recent dengue infection varied from 1.3% to 14.1% among study areas. The highest IgM seropositivity occurred in the slum, where mosquito abundance was the lowest, but household conditions were the best for promoting contact between hosts and vectors. By fitting spatial GAM we found dengue

  16. Ovicidal activity of Ageratina adenophora (Family: Asteraceae) against dengue vector, Aedes aegypti (Diptera: Culicidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To determine the ovicidal efficacy of different solvent leaf extracts of Ageratina adenophora against dengue vector Aedes aegypti . Methods: The ovicidal efficacy of the crude leaf extracts of A. adenophora with five different solvents (hexane, benzene, chloroform, ethyl acetate, methanol) and was ...

  17. Dengue: a continuing global threat

    PubMed Central

    Guzman, Maria G.; Halstead, Scott B.; Artsob, Harvey; Buchy, Philippe; Farrar, Jeremy; Gubler, Duane J.; Hunsperger, Elizabeth; Kroeger, Axel; Margolis, Harold S.; Martínez, Eric; Nathan, Michael B.; Pelegrino, Jose Luis; Simmons, Cameron; Yoksan, Sutee; Peeling, Rosanna W.

    2014-01-01

    Dengue fever and dengue haemorrhagic fever are important arthropod-borne viral diseases. Each year, there are ~50 million dengue infections and ~500,000 individuals are hospitalized with dengue haemorrhagic fever, mainly in Southeast Asia, the Pacific and the Americas. Illness is produced by any of the four dengue virus serotypes. A global strategy aimed at increasing the capacity for surveillance and outbreak response, changing behaviours and reducing the disease burden using integrated vector management in conjunction with early and accurate diagnosis has been advocated. Antiviral drugs and vaccines that are currently under development could also make an important contribution to dengue control in the future. PMID:21079655

  18. Dengue: a continuing global threat.

    PubMed

    Guzman, Maria G; Halstead, Scott B; Artsob, Harvey; Buchy, Philippe; Farrar, Jeremy; Gubler, Duane J; Hunsperger, Elizabeth; Kroeger, Axel; Margolis, Harold S; Martínez, Eric; Nathan, Michael B; Pelegrino, Jose Luis; Simmons, Cameron; Yoksan, Sutee; Peeling, Rosanna W

    2010-12-01

    Dengue fever and dengue haemorrhagic fever are important arthropod-borne viral diseases. Each year, there are ∼50 million dengue infections and ∼500,000 individuals are hospitalized with dengue haemorrhagic fever, mainly in Southeast Asia, the Pacific and the Americas. Illness is produced by any of the four dengue virus serotypes. A global strategy aimed at increasing the capacity for surveillance and outbreak response, changing behaviours and reducing the disease burden using integrated vector management in conjunction with early and accurate diagnosis has been advocated. Antiviral drugs and vaccines that are currently under development could also make an important contribution to dengue control in the future.

  19. Nation-Wide, Web-Based, Geographic Information System for the Integrated Surveillance and Control of Dengue Fever in Mexico

    PubMed Central

    Hernández-Ávila, Juan Eugenio; Rodríguez, Mario-Henry; Santos-Luna, René; Sánchez-Castañeda, Veronica; Román-Pérez, Susana; Ríos-Salgado, Víctor Hugo; Salas-Sarmiento, Jesús Alberto

    2013-01-01

    Dengue fever incidence and its geographical distribution are increasing throughout the world. Quality and timely information is essential for its prevention and control. A web based, geographically enabled, dengue integral surveillance system (Dengue-GIS) was developed for the nation-wide collection, integration, analysis and reporting of geo-referenced epidemiologic, entomologic, and control interventions data. Consensus in the design and practical operation of the system was a key factor for its acceptance. Working with information systems already implemented as a starting point facilitated its acceptance by officials and operative personnel. Dengue-GIS provides the geographical detail needed to plan, asses and evaluate the impact of control activities. The system is beginning to be adopted as a knowledge base by vector control programs. It is used to generate evidence on impact and cost-effectiveness of control activities, promoting the use of information for decision making at all levels of the vector control program. Dengue-GIS has also been used as a hypothesis generator for the academic community. This GIS-based model system for dengue surveillance and the experience gathered during its development and implementation could be useful in other dengue endemic countries and extended to other infectious or chronic diseases. PMID:23936394

  20. Nation-wide, web-based, geographic information system for the integrated surveillance and control of dengue fever in Mexico.

    PubMed

    Hernández-Ávila, Juan Eugenio; Rodríguez, Mario-Henry; Santos-Luna, René; Sánchez-Castañeda, Veronica; Román-Pérez, Susana; Ríos-Salgado, Víctor Hugo; Salas-Sarmiento, Jesús Alberto

    2013-01-01

    Dengue fever incidence and its geographical distribution are increasing throughout the world. Quality and timely information is essential for its prevention and control. A web based, geographically enabled, dengue integral surveillance system (Dengue-GIS) was developed for the nation-wide collection, integration, analysis and reporting of geo-referenced epidemiologic, entomologic, and control interventions data. Consensus in the design and practical operation of the system was a key factor for its acceptance. Working with information systems already implemented as a starting point facilitated its acceptance by officials and operative personnel. Dengue-GIS provides the geographical detail needed to plan, asses and evaluate the impact of control activities. The system is beginning to be adopted as a knowledge base by vector control programs. It is used to generate evidence on impact and cost-effectiveness of control activities, promoting the use of information for decision making at all levels of the vector control program. Dengue-GIS has also been used as a hypothesis generator for the academic community. This GIS-based model system for dengue surveillance and the experience gathered during its development and implementation could be useful in other dengue endemic countries and extended to other infectious or chronic diseases.

  1. Anti-dengue efficacy of bioactive andrographolide from Andrographis paniculata (Lamiales: Acanthaceae) against the primary dengue vector Aedes aegypti (Diptera: Culicidae).

    PubMed

    Edwin, Edward-Sam; Vasantha-Srinivasan, Prabhakaran; Senthil-Nathan, Sengottayan; Thanigaivel, Annamalai; Ponsankar, Athirstam; Pradeepa, Venkatraman; Selin-Rani, Selvaraj; Kalaivani, Kandaswamy; Hunter, Wayne B; Abdel-Megeed, Ahmed; Duraipandiyan, Veeramuthu; Al-Dhabi, Naif Abdullah

    2016-11-01

    The current study investigated the toxic effect of the leaf extract compound andrographolide from Andrographis paniculata (Burm.f) against the dengue vector Ae. aegypti. GC-MS analysis revealed that andrographolide was recognized as the major chemical constituent with the prominent peak area compared with other compounds. All isolated toxic compounds were purified and confirmed through RP-HPLC against chemical standards. The larvicidal assays established at 25ppm of bioactive compound against the treated instars of Ae. Aegypti showed prominent mortality compared to other treated concentrations. The percent mortality of larvae was directly proportional to concentration. The lethal concentration (LC50) was observed at 12ppm treatment concentration. The bioactive andrographolide considerably reduced the detoxifying enzyme regulations of α- and β- carboxylesterases. In contrast, the levels of GST and CYP450 significantly increase in a dose dependent manner. The andrographolide also showed strong oviposition deterrence effects at the sub-lethal dose of 12ppm. Similarly, the mean number of eggs were also significantly reduced in a dose dependent manner. At the concentration of 12ppm the effective percentage of repellency was greater than 90% with a protection time of 15-210min, compared with control. The histopathology study displayed that larvae treated with bioactive andrographolide had cytopathic effects in the midgut epithelium compared with the control. The present study established that bioactive andrographolide served as a potential useful for dengue vector management. PMID:27443607

  2. The Innovative Vector Control Consortium: improved control of mosquito-borne diseases.

    PubMed

    Hemingway, Janet; Beaty, Barry J; Rowland, Mark; Scott, Thomas W; Sharp, Brian L

    2006-07-01

    Few new insecticides have been produced for control of disease vectors for public health in developing countries over the past three decades, owing to market constraints, and the available insecticides are often poorly deployed. The Innovative Vector Control Consortium will address these market failures by developing a portfolio of chemical and technological tools that will be directly and immediately accessible to populations in the developing world. The Bill and Melinda Gates Foundation has supported this new initiative to enable industry and academia to change the vector control paradigm for malaria and dengue and to ensure that vector control, alongside drugs, case management and vaccines, can be better used to reduce disease.

  3. Public Health Responses to and Challenges for the Control of Dengue Transmission in High-Income Countries: Four Case Studies.

    PubMed

    Viennet, Elvina; Ritchie, Scott A; Williams, Craig R; Faddy, Helen M; Harley, David

    2016-09-01

    Dengue has a negative impact in low- and lower middle-income countries, but also affects upper middle- and high-income countries. Despite the efforts at controlling this disease, it is unclear why dengue remains an issue in affluent countries. A better understanding of dengue epidemiology and its burden, and those of chikungunya virus and Zika virus which share vectors with dengue, is required to prevent the emergence of these diseases in high-income countries in the future. The purpose of this review was to assess the relative burden of dengue in four high-income countries and to appraise the similarities and differences in dengue transmission. We searched PubMed, ISI Web of Science, and Google Scholar using specific keywords for articles published up to 05 May 2016. We found that outbreaks rarely occur where only Aedes albopictus is present. The main similarities between countries uncovered by our review are the proximity to dengue-endemic countries, the presence of a competent mosquito vector, a largely nonimmune population, and a lack of citizens' engagement in control of mosquito breeding. We identified important epidemiological and environmental issues including the increase of local transmission despite control efforts, population growth, difficulty locating larval sites, and increased human mobility from neighboring endemic countries. Budget cuts in health and lack of practical vaccines contribute to an increased risk. To be successful, dengue-control programs for high-income countries must consider the epidemiology of dengue in other countries and use this information to minimize virus importation, improve the control of the cryptic larval habitat, and engage the community in reducing vector breeding. Finally, the presence of a communicable disease center is critical for managing and reducing future disease risks.

  4. Public Health Responses to and Challenges for the Control of Dengue Transmission in High-Income Countries: Four Case Studies

    PubMed Central

    Viennet, Elvina; Ritchie, Scott A.; Williams, Craig R.; Faddy, Helen M.; Harley, David

    2016-01-01

    Dengue has a negative impact in low- and lower middle-income countries, but also affects upper middle- and high-income countries. Despite the efforts at controlling this disease, it is unclear why dengue remains an issue in affluent countries. A better understanding of dengue epidemiology and its burden, and those of chikungunya virus and Zika virus which share vectors with dengue, is required to prevent the emergence of these diseases in high-income countries in the future. The purpose of this review was to assess the relative burden of dengue in four high-income countries and to appraise the similarities and differences in dengue transmission. We searched PubMed, ISI Web of Science, and Google Scholar using specific keywords for articles published up to 05 May 2016. We found that outbreaks rarely occur where only Aedes albopictus is present. The main similarities between countries uncovered by our review are the proximity to dengue-endemic countries, the presence of a competent mosquito vector, a largely nonimmune population, and a lack of citizens’ engagement in control of mosquito breeding. We identified important epidemiological and environmental issues including the increase of local transmission despite control efforts, population growth, difficulty locating larval sites, and increased human mobility from neighboring endemic countries. Budget cuts in health and lack of practical vaccines contribute to an increased risk. To be successful, dengue-control programs for high-income countries must consider the epidemiology of dengue in other countries and use this information to minimize virus importation, improve the control of the cryptic larval habitat, and engage the community in reducing vector breeding. Finally, the presence of a communicable disease center is critical for managing and reducing future disease risks. PMID:27643596

  5. Public Health Responses to and Challenges for the Control of Dengue Transmission in High-Income Countries: Four Case Studies.

    PubMed

    Viennet, Elvina; Ritchie, Scott A; Williams, Craig R; Faddy, Helen M; Harley, David

    2016-09-01

    Dengue has a negative impact in low- and lower middle-income countries, but also affects upper middle- and high-income countries. Despite the efforts at controlling this disease, it is unclear why dengue remains an issue in affluent countries. A better understanding of dengue epidemiology and its burden, and those of chikungunya virus and Zika virus which share vectors with dengue, is required to prevent the emergence of these diseases in high-income countries in the future. The purpose of this review was to assess the relative burden of dengue in four high-income countries and to appraise the similarities and differences in dengue transmission. We searched PubMed, ISI Web of Science, and Google Scholar using specific keywords for articles published up to 05 May 2016. We found that outbreaks rarely occur where only Aedes albopictus is present. The main similarities between countries uncovered by our review are the proximity to dengue-endemic countries, the presence of a competent mosquito vector, a largely nonimmune population, and a lack of citizens' engagement in control of mosquito breeding. We identified important epidemiological and environmental issues including the increase of local transmission despite control efforts, population growth, difficulty locating larval sites, and increased human mobility from neighboring endemic countries. Budget cuts in health and lack of practical vaccines contribute to an increased risk. To be successful, dengue-control programs for high-income countries must consider the epidemiology of dengue in other countries and use this information to minimize virus importation, improve the control of the cryptic larval habitat, and engage the community in reducing vector breeding. Finally, the presence of a communicable disease center is critical for managing and reducing future disease risks. PMID:27643596

  6. Oviposition deterring and oviciding potentials of Ipomoea cairica L. leaf extract against dengue vectors.

    PubMed

    Ahbirami, Rattanam; Zuharah, Wan Fatma; Yahaya, Zary Shariman; Dieng, Hamady; Thiagaletchumi, Maniam; Fadzly, Nik; Ahmad, Abu Hassan; Abu Bakar, Sazaly

    2014-09-01

    Bioprospecting of plant-based insecticides for vector control has become an area of interest within the last two decades. Due to drawbacks of chemical insecticides, phytochemicals of plant origin with mosquito control potential are being utilized as alternative sources in integrated vector control. In this regard, the present study aimed to investigate oviposition deterring and oviciding potentials of Ipomoea cairica (L.) (Family: Convolvulaceae) crude leaf extract against dengue vectors, Aedes aegypti and Aedes albopictus. Ipomoea cairica is an indigenous plant that has demonstrated marked toxicity towards larvae of Ae. aegypti and Ae. albopictus. Leaves of I. cairica were extracted using Soxhlet apparatus with acetone as solvent. Oviposition deterrent activity and ovicidal assay was carried out in oviposition site choice tests with three different concentrations (50, 100, 450 ppm). Acetone extract of I. cairica leaf strongly inhibited oviposition with 100% repellence to Ae. aegypti at lower concentration of 100 ppm, while for Ae. albopictus was at 450 ppm. The oviposition activity index (OAI) values which ranged from -0.69 to -1.00 revealed that I. cairica demonstrated deterrent effect. In ovicidal assay, similar trend was observed whereby zero hatchability was recorded for Ae. aegypti and Ae. albopictus eggs at 100 and 450 ppm, respectively. It is noteworthy that I. cairica leaf extract had significantly elicited dual properties as oviposition deterrent and oviciding agent in both Aedes species. Reduction in egg number through oviposition deterring activity, reduction in hatching percentage and survival rates, suggested an additional hallmark of this plant to be integrated in Aedes mosquito control. Ipomoea cairica deserved to be considered as one of the potential alternative sources for the new development of novel plant based insecticides in future. PMID:25382472

  7. Epidemiology of dengue in Nepal: History of incidence, current prevalence and strategies for future control.

    PubMed

    Subedi, Dinesh; Taylor-Robinson, Andrew W

    2016-03-01

    Dengue is now established as one of the most important arboviral infections. As the epidemic continues unabated globally, this Aedes mosquito-transmitted pathogen is considered a major re-emerging tropical disease and significant public health concern. Four well-established distinct serotypes of dengue virus, with a fifth one recently proposed, are responsible for causing a spectrum of clinical symptoms in humans ranging from mild fever to severe haemorrhagic manifestations. Indigenous cases of dengue were first recognised in Nepal, a Himalayan country bordered by India and China, just a decade ago in a cluster of tropical and subtropical areas. Subsequently, the range of infection has extended all over the country and now comprises not only low lying regions, but also hilly locations including the capital city Kathmandu. The two major epidemics to date, in 2010 and 2013, have demonstrated the capacity of infection outbreaks to be explosive and challenging to currently available disease control measures. There is a pressing need to undertake effective vector surveillance studies supported by provision of well-equipped diagnostic virology laboratories. However, sincere efforts are being made to map the nationwide prevalence and understand the epidemiology of dengue infection. Yet, the precise burden of dengue in Nepal remains unknown, since most reports are confined to economically affluent areas and do not account for regions of relative social deprivation in which disease is more likely to occur. This review presents a current overview of dengue in Nepal and discusses future prospects for control of this debilitating disease in the country.

  8. Awareness of dengue and practice of dengue control among the semi-urban community: a cross sectional survey.

    PubMed

    Naing, Cho; Ren, Wong Yih; Man, Chan Yuk; Fern, Koh Pei; Qiqi, Chua; Ning, Choo Ning; Ee, Clarice Wong Syun

    2011-12-01

    Primary prevention is the most effective measure in dengue prevention and control. The objectives were (i) to determine the level of knowledge and practice of dengue control amongst the study community, and (ii) to explore the factors affecting practice of dengue control in the study area. A cross-sectional study was conducted in a semi-urban Town of Malaysia, using a structured questionnaire covering sociodemography, knowledge related to dengue, knowledge related to Aedes mosquito and preventive measures against the disease. For comparison of survey responses, chi-square test was applied for categorical data. To explore the factors affecting the practice of dengue control, a linear regression model was introduced. Almost all of the respondents (95%) had heard about dengue. Overall, misconceptions of dengue transmission were identified and the practice of dengue control in the study population was insufficient. About half (50.5%) had misconceptions that Aedes can breed in dirty water and the preferred biting time is dusk or sunset (45.6%). Only 44.5% of the households surveyed had covered their water containers properly. Significant associations were found between knowledge scores of dengue and age (P = 0.001), education level (P = 0.001), marital status (P = 0.012), and occupation (P = 0.007). In regression analysis, only the knowledge of dengue was significantly and positively associated with practice on dengue control. A future study with larger samples and more variables to assess the knowledge, attitudes and practices of dengue control is recommended.

  9. Characterization of the spatial and temporal dynamics of the dengue vector population established in urban areas of Fernando de Noronha, a Brazilian oceanic island.

    PubMed

    Regis, Lêda N; Acioli, Ridelane Veiga; Silveira, José Constantino; de Melo-Santos, Maria Alice Varjal; da Cunha, Mércia Cristiane Santana; Souza, Fátima; Batista, Carlos Alberto Vieira; Barbosa, Rosângela Maria Rodrigues; de Oliveira, Cláudia Maria Fontes; Ayres, Constância Flávia Junqueira; Monteiro, Antonio Miguel Vieira; Souza, Wayner Vieira

    2014-09-01

    Aedes aegypti has played a major role in the dramatic expansion of dengue worldwide. The failure of control programs in reducing the rhythm of global dengue expansion through vector control suggests the need for studies to support more appropriated control strategies. We report here the results of a longitudinal study on Ae. aegypti population dynamics through continuous egg sampling aiming to characterize the infestation of urban areas of a Brazilian oceanic island, Fernando de Noronha. The spatial and temporal distribution of the dengue vector population in urban areas of the island was described using a monitoring system (SMCP-Aedes) based on a 103-trap network for Aedes egg sampling, using GIS and spatial statistics analysis tools. Mean egg densities were estimated over a 29-month period starting in 2011 and producing monthly maps of mosquito abundance. The system detected continuous Ae. aegypti oviposition in most traps. The high global positive ovitrap index (POI=83.7% of 2815 events) indicated the frequent presence of blood-fed-egg laying females at every sampling station. Egg density (eggs/ovitrap/month) reached peak values of 297.3 (0 - 2020) in May and 295 (0 - 2140) in August 2012. The presence of a stable Ae. aegypti population established throughout the inhabited areas of the island was demonstrated. A strong association between egg abundance and rainfall with a 2-month lag was observed, which combined with a first-order autocorrelation observed in the series of egg counts can provide an important forecasting tool. This first description of the characteristics of the island infestation by the dengue vector provides baseline information to analyze relationships between the spatial distribution of the vector and dengue cases, and to the development of integrated vector control strategies. PMID:24832009

  10. The role of octopamine receptor agonists in the synergistic toxicity of certain insect growth regulators (IGRs) in controlling Dengue vector Aedes aegypti (Diptera: Culicidae) mosquito.

    PubMed

    Ahmed, Mohamed Ahmed Ibrahim; Vogel, Christoph Franz Adam

    2016-03-01

    The synergistic action of octopamine receptor agonists (OR agonists) on many insecticide classes (e.g., organophosphorus, pyrethroids, and neonicotinoids) on Aedes aegypti L. has been reported recently. An investigation of OR agonist's effect on insect growth regulators (IGRs) was undertaken to provide a better understanding of the mechanism of action. Based on the IGR bioassay, pyriproxyfen was the most potent IGR insecticide tested (EC50=0.0019ng/ml). However, the lethal toxicity results indicate that diafenthiuron was the most potent insecticide (LC50=56ng/cm(2)) on A. aegypti adults after 24h of exposure. The same trend was true after 48 and 72h of exposure. Further, the synergistic effects of OR agonists plus amitraz (AMZ) or chlordimeform (CDM) was significant on adults. Among the tested synergists, AMZ increased the potency of the selected IGRs on adults the greatest. As results, OR agonists were largely synergistic with the selected IGRs. OR agonists enhanced the lethal toxicity of IGRs, which is a valuable new tool in the field of A. aegypti control. However, further field experiments need to be done to understand the unique potential role of OR agonists and their synergistic action on IGRs.

  11. Fitness costs of resistance to Bti toxins in the dengue vector Aedes aegypti.

    PubMed

    Paris, Margot; David, Jean-Philippe; Despres, Laurence

    2011-08-01

    Sustainable insect vector disease control strategies involve delaying the evolution of resistance to insecticides in natural populations. The evolutionary dynamics of resistance in the field is highly dependent on the fitness cost of resistance alleles. To successfully manage resistance evolution in target species, it is not only important to find evidence of fitness cost in resistant insects, but also to determine at which stage of the insect's life it is expressed. Here, we show that resistance costs to the bacterio-insecticide Bacillus thuringiensis subsp. israelensis (Bti) are expressed at all the life-stages of the dengue vector Aedes aegypti, including egg survival, larval development time, and female fecundity. We show that the storage of eggs for 4 months is long enough to counter-select resistance alleles. This suggests that Bti resistance is not likely to evolve in temperate climates where most mosquito species overwinter as eggs. In tropical regions with a rapid turn-over of generations, resistance alleles are likely to be counter-selected in only few generations without treatment through fitness costs expressed in terms of larval development time and female fecundity. We discuss the implications of our findings in terms of sustainable management strategies in light of the challenge of preserving the long-term efficiency of this environmentally safe anti-mosquito bio-insecticide.

  12. Analysis of dengue infection based on Raman spectroscopy and support vector machine (SVM).

    PubMed

    Khan, Saranjam; Ullah, Rahat; Khan, Asifullah; Wahab, Noorul; Bilal, Muhammad; Ahmed, Mushtaq

    2016-06-01

    The current study presents the use of Raman spectroscopy combined with support vector machine (SVM) for the classification of dengue suspected human blood sera. Raman spectra for 84 clinically dengue suspected patients acquired from Holy Family Hospital, Rawalpindi, Pakistan, have been used in this study.The spectral differences between dengue positive and normal sera have been exploited by using effective machine learning techniques. In this regard, SVM models built on the basis of three different kernel functions including Gaussian radial basis function (RBF), polynomial function and linear functionhave been employed to classify the human blood sera based on features obtained from Raman Spectra.The classification model have been evaluated with the 10-fold cross validation method. In the present study, the best performance has been achieved for the polynomial kernel of order 1. A diagnostic accuracy of about 85% with the precision of 90%, sensitivity of 73% and specificity of 93% has been achieved under these conditions.

  13. [The role of the Aedes aegypti vector in the epidemiology of dengue in Mexico].

    PubMed

    Fernández-Salas, I; Flores-Leal, A

    1995-01-01

    The role of Aedes aegypti (Lineo) in the epidemiology of dengue fever in Mexico is herein discussed based on the vectorial capacity model. Comments on the advantages and disadvantages of each model component at the time of field determinations are also presented. Emphasis is made on the impact of sampling and method bias on the results of vectorial capacity studies. The paper also addresses the need to increase vector biology knowledge as an input for epidemiological work to explain and predict dengue fever outbreaks. Comments on potential entomological variables not considered by the quantitative model are included. Finally, we elaborate on the introduction of Aedes albopictus (Skuse) in Mexico as a new risk factor and on its implications for the understanding of dengue fever transmission in Mexico.

  14. Analysis of dengue infection based on Raman spectroscopy and support vector machine (SVM)

    PubMed Central

    Khan, Saranjam; Ullah, Rahat; Khan, Asifullah; Wahab, Noorul; Bilal, Muhammad; Ahmed, Mushtaq

    2016-01-01

    The current study presents the use of Raman spectroscopy combined with support vector machine (SVM) for the classification of dengue suspected human blood sera. Raman spectra for 84 clinically dengue suspected patients acquired from Holy Family Hospital, Rawalpindi, Pakistan, have been used in this study.The spectral differences between dengue positive and normal sera have been exploited by using effective machine learning techniques. In this regard, SVM models built on the basis of three different kernel functions including Gaussian radial basis function (RBF), polynomial function and linear functionhave been employed to classify the human blood sera based on features obtained from Raman Spectra.The classification model have been evaluated with the 10-fold cross validation method. In the present study, the best performance has been achieved for the polynomial kernel of order 1. A diagnostic accuracy of about 85% with the precision of 90%, sensitivity of 73% and specificity of 93% has been achieved under these conditions. PMID:27375941

  15. Dengue

    MedlinePlus

    Dengue is an infection caused by a virus. You can get it if an infected mosquito bites you. Dengue does not spread from person to person. It ... the world. Outbreaks occur in the rainy season. Dengue is rare in the United States. Symptoms include ...

  16. Selective primary health care: strategies for control of disease in the developing world. XI. Dengue.

    PubMed

    Halstead, S B

    1984-01-01

    Since World War II, dengue viruses have progressively extended their geographic domain and have increased as causes of human morbidity and mortality. This complex of four flaviviruses is principally transmitted to humans by the bite of Aedes aegypti, the yellow fever vector. Factors that promote the indoor storage of water are congenial to the breeding of A. aegypti. These include the dislocations of wars, overpopulation , and urbanization. By the mid-20th century, A. aegypti eradication campaigns had nearly succeeded in much of the Western Hemisphere. Since then, there has been a steady degradation in ability to cope with this species despite the fact that a newly emerged, severe immunopathologic disorder, dengue hemorrhagic fever/dengue shock syndrome, endows dengue epidemics with grave consequences. Development of a vaccine against dengue is complicated by the need to develop four different live attenuated vaccines and by a justifiable caution imposed by dengue immunopathology. A wide range of proven methods have been and are available to reduce populations of A. aegypti. This paper argues that the eradication strategy adopted earlier in this century is still viable and cost effective. Critical to a successful control program is a prioritied approach, a thorough, disciplined planning effort, a commitment to assessment, adequate compensation of staff, and, above all, the will to succeed.

  17. Dengue infection.

    PubMed

    Guzman, Maria G; Gubler, Duane J; Izquierdo, Alienys; Martinez, Eric; Halstead, Scott B

    2016-01-01

    Dengue is widespread throughout the tropics and local spatial variation in dengue virus transmission is strongly influenced by rainfall, temperature, urbanization and distribution of the principal mosquito vector Aedes aegypti. Currently, endemic dengue virus transmission is reported in the Eastern Mediterranean, American, South-East Asian, Western Pacific and African regions, whereas sporadic local transmission has been reported in Europe and the United States as the result of virus introduction to areas where Ae. aegypti and Aedes albopictus, a secondary vector, occur. The global burden of the disease is not well known, but its epidemiological patterns are alarming for both human health and the global economy. Dengue has been identified as a disease of the future owing to trends toward increased urbanization, scarce water supplies and, possibly, environmental change. According to the WHO, dengue control is technically feasible with coordinated international technical and financial support for national programmes. This Primer provides a general overview on dengue, covering epidemiology, control, disease mechanisms, diagnosis, treatment and research priorities. PMID:27534439

  18. Do colour and surface area of ovitrap influence the oviposition behaviour of Aedes aegypti, the vector of dengue and DHF?

    PubMed

    Sivagnaname, N; Amalraj, D Dominic

    2008-12-01

    A newly developed ovitrap made from a fiberglass tray (FGTO) was compared with conventionally used black jar ovitrap (BJO) in field condition in terms of number of eggs received. The number of eggs laid in FGTO was consistently higher than in BJO. The number of eggs collected in FGTO was significantly higher and it was 5-94 times more than that of BJO (t =9.45; p<0.0001). This finding has implication in designing lethal ovitraps for the control of dengue vectors. PMID:19579722

  19. Do colour and surface area of ovitrap influence the oviposition behaviour of Aedes aegypti, the vector of dengue and DHF?

    PubMed

    Sivagnaname, N; Amalraj, D Dominic

    2008-12-01

    A newly developed ovitrap made from a fiberglass tray (FGTO) was compared with conventionally used black jar ovitrap (BJO) in field condition in terms of number of eggs received. The number of eggs laid in FGTO was consistently higher than in BJO. The number of eggs collected in FGTO was significantly higher and it was 5-94 times more than that of BJO (t =9.45; p<0.0001). This finding has implication in designing lethal ovitraps for the control of dengue vectors.

  20. Mobility of the piggyBac transposon in embryos of the vectors of Dengue fever (Aedes albopictus) and La Crosse encephalitis (Ae. triseriatus).

    PubMed

    Lobo, N; Li, X; Hua-Van, A; Fraser, M J

    2001-03-01

    The re-emergence of arboviral diseases such as Dengue Fever and La Crosse encephalitis is primarily due to the failure of insect vector control strategies. The development of a procedure capable of producing stable germ-line transformants in the insect vectors of these diseases would bridge the gap between gene expression systems being developed to curb vector transmission and the identification of important genes and regulatory sequences and their reintroduction back into the insect genome in the form of vector control strategies. The transposable element piggyBac is capable of transposition in a variety of insect species, and could serve as a versatile insect transformation vector. Using plasmid-based excision and transposition assays, we report that this short-ITR transposon undergoes precise, transposase-dependent excision and transposition in embryos of Aedes albopictus and Aedes triseriatus, the vectors of Dengue fever and LaCrosse encephalitis, respectively. These assays allow us easily and rapidly to confirm and assess the potential utility of piggyBac as a gene transfer tool in a given species. piggyBac is an exceptionally mobile and versatile genetic transformation vector, comparable to other transposons currently in use for the transformation of insects. The mobility of the piggyBac element seen in both Ae. albopictus and Ae. triseriatus is further evidence that it can be employed as a germ-line vector in important insect disease vectors.

  1. Complex behaviour in a dengue model with a seasonally varying vector population.

    PubMed

    McLennan-Smith, Timothy A; Mercer, Geoffry N

    2014-02-01

    In recent decades, dengue fever and dengue haemorrhagic fever have become a substantial public health concern in many subtropical and tropical countries throughout the world. Many of these regions have strong seasonal patterns in rainfall and temperature which are directly linked to the transmission of dengue through the mosquito vector population. Our study focuses on the development and analysis of a strongly seasonally forced, multi-subclass dengue model. This model is a compartment-based system of first-order ordinary differential equations with seasonal forcing in the vector population and also includes host population demographics. Our analysis of this model focuses particularly on the existence of deterministic chaos in regions of the parameter space which potentially hinders application of the model to predict and understand future outbreaks. The numerically efficient 0-1 test for deterministic chaos suggested by Gottwald and Melbourne (2004) [18] is used to analyze the long-term behaviour of the model as an alternative to Lyapunov exponents. Various solutions types were found to exist within the studied parameter range. Most notable are the existence of isola n-cycle solutions before the onset of deterministic chaos. Analysis of the seasonal model with the 0-1 test revealed the existence of three disconnected regions in parameter space where deterministic chaos exists in the single subclass model. Knowledge of these regions and how they relate to the parameters of the model gives greater confidence in the predictive power of the seasonal model.

  2. Competitive exclusion in a vector-host model for the dengue fever.

    PubMed

    Feng, Z; Velasco-Hernández, J X

    1997-05-01

    We study a system of differential equations that models the population dynamics of an SIR vector transmitted disease with two pathogen strains. This model arose from our study of the population dynamics of dengue fever. The dengue virus presents four serotypes each induces host immunity but only certain degree of cross-immunity to heterologous serotypes. Our model has been constructed to study both the epidemiological trends of the disease and conditions that permit coexistence in competing strains. Dengue is in the Americas an epidemic disease and our model reproduces this kind of dynamics. We consider two viral strains and temporary cross-immunity. Our analysis shows the existence of an unstable endemic state ('saddle' point) that produces a long transient behavior where both dengue serotypes cocirculate. Conditions for asymptotic stability of equilibria are discussed supported by numerical simulations. We argue that the existence of competitive exclusion in this system is product of the interplay between the host superinfection process and frequency-dependent (vector to host) contact rates.

  3. Use of mapping and spatial and space-time modeling approaches in operational control of Aedes aegypti and dengue.

    PubMed

    Eisen, Lars; Lozano-Fuentes, Saul

    2009-01-01

    The aims of this review paper are to 1) provide an overview of how mapping and spatial and space-time modeling approaches have been used to date to visualize and analyze mosquito vector and epidemiologic data for dengue; and 2) discuss the potential for these approaches to be included as routine activities in operational vector and dengue control programs. Geographical information system (GIS) software are becoming more user-friendly and now are complemented by free mapping software that provide access to satellite imagery and basic feature-making tools and have the capacity to generate static maps as well as dynamic time-series maps. Our challenge is now to move beyond the research arena by transferring mapping and GIS technologies and spatial statistical analysis techniques in user-friendly packages to operational vector and dengue control programs. This will enable control programs to, for example, generate risk maps for exposure to dengue virus, develop Priority Area Classifications for vector control, and explore socioeconomic associations with dengue risk. PMID:19399163

  4. Tackling the growing threat of dengue: Phyllanthus niruri-mediated synthesis of silver nanoparticles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera: Culicidae).

    PubMed

    Suresh, Udaiyan; Murugan, Kadarkarai; Benelli, Giovanni; Nicoletti, Marcello; Barnard, Donald R; Panneerselvam, Chellasamy; Kumar, Palanisamy Mahesh; Subramaniam, Jayapal; Dinesh, Devakumar; Chandramohan, Balamurugan

    2015-04-01

    Mosquitoes are vectors of devastating pathogens and parasites, causing millions of deaths every year. Dengue is a mosquito-borne viral infection found in tropical and subtropical regions around the world. Recently, transmission has strongly increased in urban and semiurban areas, becoming a major international public health concern. Aedes aegypti (Diptera: Culicidae) is the primary vector of dengue. The use of synthetic insecticides to control Aedes mosquitoes lead to high operational costs and adverse nontarget effects. In this scenario, eco-friendly control tools are a priority. We proposed a novel method to synthesize silver nanoparticles using the aqueous leaf extract of Phyllanthus niruri, a cheap and nontoxic material. The UV-vis spectrum of the aqueous medium containing silver nanostructures showed a peak at 420 nm corresponding to the surface plasmon resonance band of nanoparticles. SEM analyses of the synthesized nanoparticles showed a mean size of 30-60 nm. EDX spectrum showed the chemical composition of the synthesized nanoparticles. XRD highlighted that the nanoparticles are crystalline in nature with face-centered cubic geometry. Fourier transform infrared spectroscopy (FTIR) of nanoparticles exhibited prominent peaks 3,327.63, 2,125.87, 1,637.89, 644.35, 597.41, and 554.63 cm(-1). In laboratory assays, the aqueous extract of P. niruri was toxic against larval instars (I-IV) and pupae of A. aegypti. LC50 was 158.24 ppm (I), 183.20 ppm (II), 210.53 ppm (III), 210.53 ppm (IV), and 358.08 ppm (pupae). P. niruri-synthesized nanoparticles were highly effective against A. aegypti, with LC50 of 3.90 ppm (I), 5.01 ppm (II), 6.2 ppm (III), 8.9 ppm (IV), and 13.04 ppm (pupae). In the field, the application of silver nanoparticles (10 × LC50) lead to A. aegypti larval reduction of 47.6%, 76.7% and 100%, after 24, 48, and 72 h, while the P. niruri extract lead to 39.9%, 69.2 % and 100 % of reduction, respectively. In adulticidal experiments, P. niruri extract

  5. Dengue and dengue haemorrhagic fever: Indian perspective.

    PubMed

    Chaturvedi, U C; Nagar, Rachna

    2008-11-01

    The relationship of this country with dengue has been long and intense. The ?rst recorded epidemic of clinically dengue-like illness occurred at Madras in 1780 and the dengue virus was isolated for the ?rst time almost simultaneously in Japan and Calcutta in 1943-1944. After the ?rst virologically proved epidemic of dengue fever along the East Coast of India in 1963-1964, it spread to allover the country.The ?rst full-blown epidemic of the severe form of the illness,the dengue haemorrhagic fever/dengue shock syndrome occurred in North India in 1996. Aedes aegypti is the vector for transmission of the disease. Vaccines or antiviral drugs are not available for dengue viruses; the only effective way to prevent epidemic degure fever/dengue haemorrhagic fever (DF/DHF) is to control the mosquito vector, Aedes aegypti and prevent its bite. This country has few virus laboratories and some of them have done excellent work in the area of molecular epidemiology,immunopathology and vaccine development. Selected work done in this country on the problems of dengue is presented here.

  6. Exposure of a Dengue Vector to Tea and Its Waste: Survival, Developmental Consequences, and Significance for Pest Management.

    PubMed

    Dieng, Hamady; Tan Yusop, Nur Syafiqah Bt; Kamal, Nurafidah Natasyah Bt; Ahmad, Abu Hassan; Ghani, Idris Abd; Abang, Fatimah; Satho, Tomomitsu; Ahmad, Hamdan; Zuharah, Wan Fatma; Majid, Abdul Hafiz Ab; Morales, Ronald E; Morales, Noppawan P; Hipolito, Cirilo N; Noweg, Gabriel Tonga

    2016-05-11

    Dengue mosquitoes are evolving into a broader global public health menace, with relentless outbreaks and the rise in number of Zika virus disease cases as reminders of the continued hazard associated with Aedes vectors. The use of chemical insecticides-the principal strategy against mosquito vectors-has been greatly impeded due to the development of insecticide resistance and the shrinking spectrum of effective agents. Therefore, there is a pressing need for new chemistries for vector control. Tea contains hundreds of chemicals, and its waste, which has become a growing global environmental problem, is almost as rich in toxicants as green leaves. This paper presents the toxic and sublethal effects of different crude extracts of tea on Aedes albopictus. The survival rates of larvae exposed to tea extracts, especially fresh tea extract (FTE), were markedly lower than those in the control treatment group. In addition to this immediate toxicity against different developmental stages, the extracts tested caused a broad range of sublethal effects. The developmental time was clearly longer in containers with tea, especially in those with young larvae (YL) and FTE. Among the survivors, pupation success was reduced in containers with tea, which also produced low adult emergence rates with increasing tea concentration. The production of eggs tended to be reduced in females derived from the tea treatment groups. These indirect effects of tea extracts on Ae. albopictus exhibited different patterns according to the exposed larval stage. Taken together, these findings indicate that tea and its waste affect most key components of Ae. albopictus vectorial capacity and may be useful for dengue control. Reusing tea waste in vector control could also be a practical solution to the problems associated with its pollution. PMID:27115536

  7. Dengue vector management using insecticide treated materials and targeted interventions on productive breeding-sites in Guatemala

    PubMed Central

    2012-01-01

    Background In view of the epidemiological expansion of dengue worldwide and the availability of new tools and strategies particularly for controlling the primary dengue vector Aedes aegypti, an intervention study was set up to test the efficacy, cost and feasibility of a combined approach of insecticide treated materials (ITMs) alone and in combination with appropriate targeted interventions of the most productive vector breeding-sites. Methods The study was conducted as a cluster randomized community trial using “reduction of the vector population” as the main outcome variable. The trial had two arms: 10 intervention clusters (neighborhoods) and 10 control clusters in the town of Poptun Guatemala. Activities included entomological assessments (characteristics of breeding-sites, pupal productivity, Stegomyia indices) at baseline, 6 weeks after the first intervention (coverage of window and exterior doorways made of PermaNet 2.0 netting, factory treated with deltamethrin at 55 mg/m2, and of 200 L drums with similar treated material) and 6 weeks after the second intervention (combination of treated materials and other suitable interventions targeting productive breeding-sites i.e larviciding with Temephos, elimination etc.). The second intervention took place 17 months after the first intervention. The insecticide residual activity and the insecticidal content were also studied at different intervals. Additionally, information about demographic characteristics, cost of the intervention, coverage of houses protected and satisfaction in the population with the interventions was collected. Results At baseline (during the dry season) a variety of productive container types for Aedes pupae were identified: various container types holding >20 L, 200 L drums, washbasins and buckets (producing 83.7% of all pupae). After covering 100% of windows and exterior doorways and a small number of drums (where the commercial cover could be fixed) in 970 study households, tropical

  8. A focal, rapidly-controlled outbreak of dengue fever in two suburbs in Townsville, north Queensland, 2001.

    PubMed

    Hills, Susan L; Piispanen, John P; Humphreys, Jan L; Foley, Peter N

    2002-01-01

    In April-May 2001 an outbreak of dengue fever occurred in two suburbs in Townsville, north Queensland. This was the first outbreak in the Townsville region since a very large outbreak in 1992-1993. Notification delays resulted in late detection of the outbreak. Once recognised, control measures were implemented and rapid control was achieved. Dengue serotype 2 was the causative virus and 9 cases of dengue fever were documented. The approach to management of dengue fever outbreaks and vector control strategies have been improved and refined in the years since the 1992-1993 outbreak. These measures, in addition to favourable weather conditions, were likely to have contributed to the successful containment of this outbreak.

  9. Diarrhea and dengue control in rural primary schools in Colombia: study protocol for a randomized controlled trial

    PubMed Central

    2012-01-01

    Background Diarrheal diseases and dengue fever are major global health problems. Where provision of clean water is inadequate, water storage is crucial. Fecal contamination of stored water is a common source of diarrheal illness, but stored water also provides breeding sites for dengue vector mosquitoes. Poor household water management and sanitation are therefore potential determinants of both diseases. Little is known of the role of stored water for the combined risk of diarrhea and dengue, yet a joint role would be important for developing integrated control and management efforts. Even less is known of the effect of integrating control of these diseases in school settings. The objective of this trial was to investigate whether interventions against diarrhea and dengue will significantly reduce diarrheal disease and dengue entomological risk factors in rural primary schools. Methods/design This is a 2×2 factorial cluster randomized controlled trial. Eligible schools were rural primary schools in La Mesa and Anapoima municipalities, Cundinamarca, Colombia. Eligible pupils were school children in grades 0 to 5. Schools were randomized to one of four study arms: diarrhea interventions (DIA); dengue interventions (DEN); combined diarrhea and dengue interventions (DIADEN); and control (C). Schools were allocated publicly in each municipality (strata) at the start of the trial, obviating the need for allocation concealment. The primary outcome for diarrhea is incidence rate of diarrhea in school children and for dengue it is density of adult female Aedes aegypti per school. Approximately 800 pupils from 34 schools were enrolled in the trial with eight schools in the DIA arm, nine in the DEN, eight in the DIADEN, and nine in the control arms. The trial status as of June 2012 was: completed baseline data collections; enrollment, randomization, and allocation of schools. The trial was funded by the Research Council of Norway and the Lazos de Calandaima Foundation

  10. Dengue

    MedlinePlus

    ... Epidemiology Transmission, information on epidemics and stats... Entomology & Ecology Mosquito that spreads dengue and its ecology... Clinical & Laboratory Guidance Tools for clinicians and laboratorians... ...

  11. Dengue.

    PubMed

    Halstead, Scott B

    2007-11-10

    The four dengue viruses are transmitted in tropical countries that circle the globe. All can cause syndromes that are self-limited or severe. The common severe syndrome--dengue haemorrhagic fever/dengue shock syndrome (DHF/DSS)--is characterised by sudden vascular permeability generated by cytokines released when T cells attack dengue-infected cells. Dengue 1 virus became prevalent in Hawaii where it was transmitted by Aedes albopictus, producing a classic virgin soil epidemic, with clinical disease seen largely in adults. In Cuba and Singapore, sequential dengue infections at long intervals produced unusually severe disease in adults. Evidence suggests that enhancing and cross-reactive neutralising antibodies regulate dengue epidemics and disease severity. Classic DHF/DSS arises during initial dengue infections in infants with low circulating amounts of maternal dengue antibodies, an observation that precludes an exclusive causal role for secondary T-cell responses. Here, I review and discuss data on clinical diagnosis and pathophysiology of vascular permeability and coagulopathy, parenteral treatment of DHF/DSS, and new laboratory tests.

  12. Ecological, biological and social dimensions of dengue vector breeding in five urban settings of Latin America: a multi-country study

    PubMed Central

    2014-01-01

    Background Dengue is an increasingly important public health problem in most Latin American countries and more cost-effective ways of reducing dengue vector densities to prevent transmission are in demand by vector control programs. This multi-centre study attempted to identify key factors associated with vector breeding and development as a basis for improving targeted intervention strategies. Methods In each of 5 participant cities in Mexico, Colombia, Ecuador, Brazil and Uruguay, 20 clusters were randomly selected by grid sampling to incorporate 100 contiguous households, non-residential private buildings (businesses) and public spaces. Standardized household surveys, cluster background surveys and entomological surveys specifically targeted to obtain pupal indices for Aedes aegypti, were conducted in the dry and wet seasons. Results The study clusters included mainly urban low-middle class populations with satisfactory infrastructure and –except for Uruguay- favourable climatic conditions for dengue vector development. Household knowledge about dengue and “dengue mosquitoes” was widespread, mainly through mass media, but there was less awareness around interventions to reduce vector densities. Vector production (measured through pupal indices) was favoured when water containers were outdoor, uncovered, unused (even in Colombia and Ecuador where the large tanks used for household water storage and washing were predominantly productive) and –particularly during the dry season- rainwater filled. Larval infestation did not reflect productive container types. All productive container types, including those important in the dry season, were identified by pupal surveys executed during the rainy season. Conclusions A number of findings are relevant for improving vector control: 1) there is a need for complementing larval surveys with occasional pupal surveys (to be conducted during the wet season) for identifying and subsequently targeting productive container

  13. Polyandry Depends on Postmating Time Interval in the Dengue Vector Aedes aegypti

    PubMed Central

    Degner, Ethan C.; Harrington, Laura C.

    2016-01-01

    Aedes aegypti is the primary vector of the dengue and chikungunya viruses. After mating, male seminal fluid molecules cause females to become unreceptive to a subsequent mating. This response is often assumed to be immediate and complete, but a growing body of evidence suggests that some females do mate more than once. It is unknown how quickly a female becomes unreceptive to a second mating. Furthermore, the degree to which she remains monandrous after laying several batches of eggs has not been rigorously tested. Therefore, we assessed the rates of polyandry in two sets of experiments using wild-type males and those with fluorescent sperm. The first experiment tested the likelihood of polyandry after postmating intervals of various durations. Most females became refractory to a second mating within 2 hours after mating, and rates of polyandry ranged from 24% immediately after mating to 3% at 20 hours after mating. The second experiment tested whether females were polyandrous after cycles of blood meals and oviposition. No re-insemination was found after one, three, or five such cycles. This study is the first to demonstrate that polyandrous behavior depends on the postmating interval. Our results will inform future applications that depend on an accurate knowledge of Ae. aegypti mating behavior, including models of gene flow, investigations of molecules that drive female mating behavior, and control strategies that deploy genetically modified mosquitoes into the field. PMID:26880776

  14. Productivity and population density estimates of the dengue vector mosquito Aedes aegypti (Stegomyia aegypti) in Australia.

    PubMed

    Williams, C R; Johnson, P H; Ball, T S; Ritchie, S A

    2013-09-01

    New mosquito control strategies centred on the modifying of populations require knowledge of existing population densities at release sites and an understanding of breeding site ecology. Using a quantitative pupal survey method, we investigated production of the dengue vector Aedes aegypti (L.) (Stegomyia aegypti) (Diptera: Culicidae) in Cairns, Queensland, Australia, and found that garden accoutrements represented the most common container type. Deliberately placed 'sentinel' containers were set at seven houses and sampled for pupae over 10 weeks during the wet season. Pupal production was approximately constant; tyres and buckets represented the most productive container types. Sentinel tyres produced the largest female mosquitoes, but were relatively rare in the field survey. We then used field-collected data to make estimates of per premises population density using three different approaches. Estimates of female Ae. aegypti abundance per premises made using the container-inhabiting mosquito simulation (CIMSiM) model [95% confidence interval (CI) 18.5-29.1 females] concorded reasonably well with estimates obtained using a standing crop calculation based on pupal collections (95% CI 8.8-22.5) and using BG-Sentinel traps and a sampling rate correction factor (95% CI 6.2-35.2). By first describing local Ae. aegypti productivity, we were able to compare three separate population density estimates which provided similar results. We anticipate that this will provide researchers and health officials with several tools with which to make estimates of population densities.

  15. Lethal Effects of Aspergillus niger against Mosquitoes Vector of Filaria, Malaria, and Dengue: A Liquid Mycoadulticide

    PubMed Central

    Singh, Gavendra; Prakash, Soam

    2012-01-01

    Aspergillus niger is a fungus of the genus Aspergillus. It has caused a disease called black mold on certain fruits and vegetables. The culture filtrates released from the A. niger ATCC 66566 were grown in Czapek dox broth (CDB) then filtered with flash chromatograph and were used for the bioassay after a growth of thirty days. The result demonstrated these mortalities with LC50, LC90, and LC99 values of Culex quinquefasciatus 0.76, 3.06, and 4.75, Anopheles stephensi 1.43, 3.2, and 3.86, and Aedes aegypti 1.43, 2.2, and 4.1 μl/cm2, after exposure of seven hours. We have calculated significant LT90 values of Cx. quinquefasciatus 4.5, An. stephensi 3.54, and Ae. aegypti 6.0 hrs, respectively. This liquid spray of fungal culture isolate of A. niger can reduce malaria, dengue, and filarial transmission. These results significantly support broadening the current vector control paradigm beyond chemical adulticides. PMID:22629156

  16. Lethal effects of Aspergillus niger against mosquitoes vector of filaria, malaria, and dengue: a liquid mycoadulticide.

    PubMed

    Singh, Gavendra; Prakash, Soam

    2012-01-01

    Aspergillus niger is a fungus of the genus Aspergillus. It has caused a disease called black mold on certain fruits and vegetables. The culture filtrates released from the A. niger ATCC 66566 were grown in Czapek dox broth (CDB) then filtered with flash chromatograph and were used for the bioassay after a growth of thirty days. The result demonstrated these mortalities with LC(50), LC(90), and LC(99) values of Culex quinquefasciatus 0.76, 3.06, and 4.75, Anopheles stephensi 1.43, 3.2, and 3.86, and Aedes aegypti 1.43, 2.2, and 4.1 μl/cm(2), after exposure of seven hours. We have calculated significant LT(90) values of Cx. quinquefasciatus 4.5, An. stephensi 3.54, and Ae. aegypti 6.0 hrs, respectively. This liquid spray of fungal culture isolate of A. niger can reduce malaria, dengue, and filarial transmission. These results significantly support broadening the current vector control paradigm beyond chemical adulticides.

  17. Breeding Sites of Aedes aegypti: Potential Dengue Vectors in Dire Dawa, East Ethiopia

    PubMed Central

    Getachew, Dejene; Tekie, Habte; Gebre-Michael, Teshome; Balkew, Meshesha; Mesfin, Akalu

    2015-01-01

    Background and Objectives. Entomological survey was carried out from May-June to September-October 2014 to investigate the presence of dengue vectors in discarded tires and artificial water containers in houses and peridomestic areas. Methods. A cross-sectional immature stage survey was done indoors and outdoors in 301 houses. Mosquito larval sampling was conducted using pipette or dipper depending on container types. Larvae were identified morphologically and larval indices were also calculated. Results. A total of 750 containers were inspected, and of these 405 were positive for mosquito larvae. A total of 1,873 larvae were collected and morphologically identified as Aedes aegypti (n = 1580: 84.4%) and Culex (n = 293: 15.6%). The larval indices, house index, container index, and breteau index, varied from 33.3 to 86.2, from 23.2 to 73.9, and from 56.5 to 188.9, respectively. Conclusion. Aedes aegypti is breeding in a wide range of artificial containers. To control these mosquitoes, the integration of different methods should be taken into consideration. PMID:26435712

  18. Effect of Polygonum hydropiper L. against dengue vector mosquito Aedes albopictus L.

    PubMed

    Maheswaran, Rajan; Ignacimuthu, Savarimuthu

    2014-09-01

    The present study aimed to evaluate the essential oil and an isolated compound from the leaves of Polygonum hydropiper L. against dengue vector mosquito Aedes albopictus L. The plant material was macerated and steam distilled using clavenger apparatus for oil extraction. The essential oil was tested at different concentrations of 100, 50, 25, 12.5 and 6.25 ppm concentrations against the larvae of Ae. albopictus. The isolated compound was tested for larvicidal, ovicidal, repellent, oviposition deterrent and adulticidal activities at 10, 5, 2.5, 1.25 and 0.625 ppm concentrations. The essential oil exhibited LC₅₀ values of 194.63 and 199.65 and confertifolin exhibited LC₅₀ values of 2.02 and 3.16 against the second and fourth instar larvae of Ae. albopictus, respectively. The ovicidal activity of 100% on 0- to 6-h-old eggs, repellent activity of 320.6 min, oviposition deterrent activity of 98.51% and adulticidal activity of 100% at 10 ppm concentration of confertifolin were recorded. No mortality of was observed in negative control. To the best of our knowledge, this is the first report on the potential mosquitocidal activities of confertifolin against Ae. albopictus. PMID:25033815

  19. Effect of Polygonum hydropiper L. against dengue vector mosquito Aedes albopictus L.

    PubMed

    Maheswaran, Rajan; Ignacimuthu, Savarimuthu

    2014-09-01

    The present study aimed to evaluate the essential oil and an isolated compound from the leaves of Polygonum hydropiper L. against dengue vector mosquito Aedes albopictus L. The plant material was macerated and steam distilled using clavenger apparatus for oil extraction. The essential oil was tested at different concentrations of 100, 50, 25, 12.5 and 6.25 ppm concentrations against the larvae of Ae. albopictus. The isolated compound was tested for larvicidal, ovicidal, repellent, oviposition deterrent and adulticidal activities at 10, 5, 2.5, 1.25 and 0.625 ppm concentrations. The essential oil exhibited LC₅₀ values of 194.63 and 199.65 and confertifolin exhibited LC₅₀ values of 2.02 and 3.16 against the second and fourth instar larvae of Ae. albopictus, respectively. The ovicidal activity of 100% on 0- to 6-h-old eggs, repellent activity of 320.6 min, oviposition deterrent activity of 98.51% and adulticidal activity of 100% at 10 ppm concentration of confertifolin were recorded. No mortality of was observed in negative control. To the best of our knowledge, this is the first report on the potential mosquitocidal activities of confertifolin against Ae. albopictus.

  20. Dengue and dengue hemorrhagic fever.

    PubMed

    Hayes, E B; Gubler, D J

    1992-04-01

    Hundreds of thousands of dengue cases are reported worldwide each year. Given the difficulty in obtaining full reporting, the actual number of human infections is probably much higher than the number reported. Dengue is usually a nonspecific febrile illness that resolves with supportive therapy but the clinical spectrum ranges from asymptomatic infection through severe hemorrhage and sudden fatal shock. The pathophysiology of the severe forms of dengue may be related to sequential infection with different serotypes, variations in virus virulence, interaction of the virus with environmental and host factors or a combination of these factors. Control of dengue at the present time is dependent on control of the principal vector mosquito, A. aegypti. Efforts to achieve such control are now focusing on community education and action towards eliminating this mosquito's breeding sites near human dwellings. Vaccine development continues, but at present the only way to avoid dengue in an area where it is endemic or epidemic is to use repellents and mosquito barriers. The movement of people to and from tropical areas makes dengue an important differential diagnosis in any patient with an acute illness and history of recent travel to tropical areas. Because of continued infestation of the southeastern United States with A. aegypti, indigenous transmission in the continental United States remains a public health concern.

  1. Insecticide-Driven Patterns of Genetic Variation in the Dengue Vector Aedes aegypti in Martinique Island

    PubMed Central

    Paupy, Christophe; Bringuier, Charline; Yebakima, André; Chandre, Fabrice; David, Jean-Philippe; Corbel, Vincent; Despres, Laurence

    2013-01-01

    Effective vector control is currently challenged worldwide by the evolution of resistance to all classes of chemical insecticides in mosquitoes. In Martinique, populations of the dengue vector Aedes aegypti have been intensively treated with temephos and deltamethrin insecticides over the last fifty years, resulting in heterogeneous levels of resistance across the island. Resistance spreading depends on standing genetic variation, selection intensity and gene flow among populations. To determine gene flow intensity, we first investigated neutral patterns of genetic variability in sixteen populations representative of the many environments found in Martinique and experiencing various levels of insecticide pressure, using 6 microsatellites. Allelic richness was lower in populations resistant to deltamethrin, and consanguinity was higher in populations resistant to temephos, consistent with a negative effect of insecticide pressure on neutral genetic diversity. The global genetic differentiation was low, suggesting high gene flow among populations, but significant structure was found, with a pattern of isolation-by-distance at the global scale. Then, we investigated adaptive patterns of divergence in six out of the 16 populations using 319 single nucleotide polymorphisms (SNPs). Five SNP outliers displaying levels of genetic differentiation out of neutral expectations were detected, including the kdr-V1016I mutation in the voltage-gated sodium channel gene. Association tests revealed a total of seven SNPs associated with deltamethrin resistance. Six other SNPs were associated with temephos resistance, including two non-synonymous substitutions in an alkaline phosphatase and in a sulfotransferase respectively. Altogether, both neutral and adaptive patterns of genetic variation in mosquito populations appear to be largely driven by insecticide pressure in Martinique. PMID:24204999

  2. Sialic acid expression in the mosquito Aedes aegypti and its possible role in dengue virus-vector interactions.

    PubMed

    Cime-Castillo, Jorge; Delannoy, Philippe; Mendoza-Hernández, Guillermo; Monroy-Martínez, Verónica; Harduin-Lepers, Anne; Lanz-Mendoza, Humberto; Hernández-Hernández, Fidel de la Cruz; Zenteno, Edgar; Cabello-Gutiérrez, Carlos; Ruiz-Ordaz, Blanca H

    2015-01-01

    Dengue fever (DF) is the most prevalent arthropod-borne viral disease which affects humans. DF is caused by the four dengue virus (DENV) serotypes, which are transmitted to the host by the mosquito Aedes aegypti that has key roles in DENV infection, replication, and viral transmission (vector competence). Mosquito saliva also plays an important role during DENV transmission. In this study, we detected the presence of sialic acid (Sia) in Aedes aegypti tissues, which may have an important role during DENV-vector competence. We also identified genome sequences encoding enzymes involved in Sia pathways. The cDNA for Aedes aegypti CMP-Sia synthase (CSAS) was amplified, cloned, and functionally evaluated via the complementation of LEC29.Lec32 CSAS-deficient CHO cells. AedesCSAS-transfected LEC29.Lec32 cells were able to express Sia moieties on the cell surface. Sequences related to α-2,6-sialyltransferase were detected in the Aedes aegypti genome. Likewise, we identified Sia-α-2,6-DENV interactions in different mosquito tissues. In addition, we evaluated the possible role of sialylated molecules in a salivary gland extract during DENV internalization in mammalian cells. The knowledge of early DENV-host interactions could facilitate a better understanding of viral tropism and pathogenesis to allow the development of new strategies for controlling DENV transmission.

  3. Sialic Acid Expression in the Mosquito Aedes aegypti and Its Possible Role in Dengue Virus-Vector Interactions

    PubMed Central

    Cime-Castillo, Jorge; Delannoy, Philippe; Mendoza-Hernández, Guillermo; Monroy-Martínez, Verónica; Lanz-Mendoza, Humberto; Hernández-Hernández, Fidel de la Cruz; Cabello-Gutiérrez, Carlos; Ruiz-Ordaz, Blanca H.

    2015-01-01

    Dengue fever (DF) is the most prevalent arthropod-borne viral disease which affects humans. DF is caused by the four dengue virus (DENV) serotypes, which are transmitted to the host by the mosquito Aedes aegypti that has key roles in DENV infection, replication, and viral transmission (vector competence). Mosquito saliva also plays an important role during DENV transmission. In this study, we detected the presence of sialic acid (Sia) in Aedes aegypti tissues, which may have an important role during DENV-vector competence. We also identified genome sequences encoding enzymes involved in Sia pathways. The cDNA for Aedes aegypti CMP-Sia synthase (CSAS) was amplified, cloned, and functionally evaluated via the complementation of LEC29.Lec32 CSAS-deficient CHO cells. AedesCSAS-transfected LEC29.Lec32 cells were able to express Sia moieties on the cell surface. Sequences related to α-2,6-sialyltransferase were detected in the Aedes aegypti genome. Likewise, we identified Sia-α-2,6-DENV interactions in different mosquito tissues. In addition, we evaluated the possible role of sialylated molecules in a salivary gland extract during DENV internalization in mammalian cells. The knowledge of early DENV-host interactions could facilitate a better understanding of viral tropism and pathogenesis to allow the development of new strategies for controlling DENV transmission. PMID:25874215

  4. Green synthesis and characterization of silver nanoparticles fabricated using Anisomeles indica: Mosquitocidal potential against malaria, dengue and Japanese encephalitis vectors.

    PubMed

    Govindarajan, Marimuthu; Rajeswary, Mohan; Veerakumar, Kaliyan; Muthukumaran, Udaiyan; Hoti, S L; Benelli, Giovanni

    2016-02-01

    Mosquitoes (Diptera: Culicidae) represent a key threat for millions of people worldwide, since they act as vectors for devastating parasites and pathogens. In this scenario, eco-friendly control tools against mosquito vectors are a priority. Green synthesis of silver nanoparticles (AgNP) using a cheap, aqueous leaf extract of Anisomeles indica by reduction of Ag(+) ions from silver nitrate solution has been investigated. Bio-reduced AgNP were characterized by UV-visible spectrophotometry, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDX) and X-ray diffraction analysis (XRD). The acute toxicity of A. indica leaf extract and biosynthesized AgNP was evaluated against larvae of the malaria vector Anopheles subpictus, the dengue vector Aedes albopictus and the Japanese encephalitis vector Culex tritaeniorhynchus. Both the A. indica leaf extract and AgNP showed dose dependent larvicidal effect against all tested mosquito species. Compared to the leaf aqueous extract, biosynthesized AgNP showed higher toxicity against An. subpictus, Ae. albopictus, and Cx. tritaeniorhynchus with LC50 values of 31.56, 35.21 and 38.08 μg/mL, respectively. Overall, this study firstly shed light on the mosquitocidal potential of A. indica, a potential bioresource for rapid, cheap and effective AgNP synthesis.

  5. Green synthesis and characterization of silver nanoparticles fabricated using Anisomeles indica: Mosquitocidal potential against malaria, dengue and Japanese encephalitis vectors.

    PubMed

    Govindarajan, Marimuthu; Rajeswary, Mohan; Veerakumar, Kaliyan; Muthukumaran, Udaiyan; Hoti, S L; Benelli, Giovanni

    2016-02-01

    Mosquitoes (Diptera: Culicidae) represent a key threat for millions of people worldwide, since they act as vectors for devastating parasites and pathogens. In this scenario, eco-friendly control tools against mosquito vectors are a priority. Green synthesis of silver nanoparticles (AgNP) using a cheap, aqueous leaf extract of Anisomeles indica by reduction of Ag(+) ions from silver nitrate solution has been investigated. Bio-reduced AgNP were characterized by UV-visible spectrophotometry, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDX) and X-ray diffraction analysis (XRD). The acute toxicity of A. indica leaf extract and biosynthesized AgNP was evaluated against larvae of the malaria vector Anopheles subpictus, the dengue vector Aedes albopictus and the Japanese encephalitis vector Culex tritaeniorhynchus. Both the A. indica leaf extract and AgNP showed dose dependent larvicidal effect against all tested mosquito species. Compared to the leaf aqueous extract, biosynthesized AgNP showed higher toxicity against An. subpictus, Ae. albopictus, and Cx. tritaeniorhynchus with LC50 values of 31.56, 35.21 and 38.08 μg/mL, respectively. Overall, this study firstly shed light on the mosquitocidal potential of A. indica, a potential bioresource for rapid, cheap and effective AgNP synthesis. PMID:26708933

  6. Defective rainwater harvesting structure and dengue vector productivity compared with peridomestic habitats in a coastal town in southern India.

    PubMed

    Mariappan, T; Srinivasan, R; Jambulingam, P

    2008-01-01

    to be among the key containers, propagating Aedes population. The pupae per person obtained during northeast monsoon in different houses varied between 0.077 and 2.839 (average 0.864). House and Breteau Indices were relatively higher during northeast monsoon, whereas the Container Index was higher in southwest monsoon. In view of risk of dengue vectors propagation, the need for source reduction involving community and prioritizing control measures toward the highly productive water-holdings is discussed.

  7. Re-assess Vector Indices Threshold as an Early Warning Tool for Predicting Dengue Epidemic in a Dengue Non-endemic Country

    PubMed Central

    Hsu, Pi-Shan; Chen, Chaur-Dong; Lian, Ie-Bin; Chao, Day-Yu

    2015-01-01

    Background Despite dengue dynamics being driven by complex interactions between human hosts, mosquito vectors and viruses that are influenced by climate factors, an operational model that will enable health authorities to anticipate the outbreak risk in a dengue non-endemic area has not been developed. The objectives of this study were to evaluate the temporal relationship between meteorological variables, entomological surveillance indices and confirmed dengue cases; and to establish the threshold for entomological surveillance indices including three mosquito larval indices [Breteau (BI), Container (CI) and House indices (HI)] and one adult index (AI) as an early warning tool for dengue epidemic. Methodology/Principal Findings Epidemiological, entomological and meteorological data were analyzed from 2005 to 2012 in Kaohsiung City, Taiwan. The successive waves of dengue outbreaks with different magnitudes were recorded in Kaohsiung City, and involved a dominant serotype during each epidemic. The annual indigenous dengue cases usually started from May to June and reached a peak in October to November. Vector data from 2005–2012 showed that the peak of the adult mosquito population was followed by a peak in the corresponding dengue activity with a lag period of 1–2 months. Therefore, we focused the analysis on the data from May to December and the high risk district, where the inspection of the immature and mature mosquitoes was carried out on a weekly basis and about 97.9% dengue cases occurred. The two-stage model was utilized here to estimate the risk and time-lag effect of annual dengue outbreaks in Taiwan. First, Poisson regression was used to select the optimal subset of variables and time-lags for predicting the number of dengue cases, and the final results of the multivariate analysis were selected based on the smallest AIC value. Next, each vector index models with selected variables were subjected to multiple logistic regression models to examine the

  8. Insecticide Resistance in the Dengue Vector Aedes aegypti from Martinique: Distribution, Mechanisms and Relations with Environmental Factors

    PubMed Central

    Marcombe, Sébastien; Mathieu, Romain Blanc; Pocquet, Nicolas; Riaz, Muhammad-Asam; Poupardin, Rodolphe; Sélior, Serge; Darriet, Frédéric; Reynaud, Stéphane; Yébakima, André; Corbel, Vincent; David, Jean-Philippe; Chandre, Fabrice

    2012-01-01

    Dengue is an important mosquito borne viral disease in Martinique Island (French West Indies). The viruses responsible for dengue are transmitted by Aedes aegypti, an indoor day-biting mosquito. The most effective proven method for disease prevention has been by vector control by various chemical or biological means. Unfortunately insecticide resistance has already been observed on the Island and recently showed to significantly reduce the efficacy of vector control interventions. In this study, we investigated the distribution of resistance and the underlying mechanisms in nine Ae. aegypti populations. Statistical multifactorial approach was used to investigate the correlations between insecticide resistance levels, associated mechanisms and environmental factors characterizing the mosquito populations. Bioassays revealed high levels of resistance to temephos and deltamethrin and susceptibility to Bti in the 9 populations tested. Biochemical assays showed elevated detoxification enzyme activities of monooxygenases, carboxylesterases and glutathione S-tranferases in most of the populations. Molecular screening for common insecticide target-site mutations, revealed the presence of the “knock-down resistance” V1016I Kdr mutation at high frequency (>87%). Real time quantitative RT-PCR showed the potential involvement of several candidate detoxification genes in insecticide resistance. Principal Component Analysis (PCA) performed with variables characterizing Ae. aegypti from Martinique permitted to underline potential links existing between resistance distribution and other variables such as agriculture practices, vector control interventions and urbanization. Insecticide resistance is widespread but not homogeneously distributed across Martinique. The influence of environmental and operational factors on the evolution of the resistance and mechanisms are discussed. PMID:22363529

  9. Bromeliad-inhabiting mosquitoes in an urban botanical garden of dengue endemic Rio de Janeiro. Are bromeliads productive habitats for the invasive vectors Aedes aegypti and Aedes albopictus?

    PubMed Central

    Mocellin, Márcio Goulart; Simões, Taynãna César; do Nascimento, Teresa Fernandes Silva; Teixeira, Maria Lucia França; Lounibos, Leon Philip; de Oliveira, Ricardo Lourenço

    2012-01-01

    Immatures of both Aedes aegypti and Aedes albopictus have been found in water-holding bromeliad axils in Brazil. Removal of these plants or their treatment with insecticides in public and private gardens have been undertaken during dengue outbreaks in Brazil despite uncertainty as to their importance as productive habitats for dengue vectors. From March 2005-February 2006, we sampled 120 randomly selected bromeliads belonging to 10 species in a public garden less than 200 m from houses in a dengue-endemic neighborhood in Rio de Janeiro. A total of 2,816 mosquito larvae and pupae was collected, with an average of 5.87 immatures per plant per collection. Culex (Microculex) pleuristriatus and Culex spp of the Ocellatus Group were the most abundant culicid species, found in all species of bromeliads; next in relative abundance were species of the genus Wyeomyia. Only two individuals of Ae. aegypti (0.07%) and five of Ae. albopictus (0.18%) were collected from bromeliads. By contrast, immatures of Ae. aegypti were found in manmade containers in nearly 5% of nearby houses. These results demonstrate that bromeliads are not important producers of Ae. aegypti and Ae. albopictus and, hence, should not be a focus for dengue control. However, the results of this study of only one year in a single area may not represent outcomes in other urban localities where bromeliads, Ae. aegypti and dengue coincide in more disturbed habitats. PMID:20140379

  10. Evaluation of the Larvicidal Efficacy of Five Indigenous Weeds against an Indian Strain of Dengue Vector, Aedes aegypti L. (Diptera: Culicidae)

    PubMed Central

    Sharma, Aarti; Kumar, Sarita; Tripathi, Pushplata

    2016-01-01

    Background and Objectives. Aedes aegypti, dengue fever mosquito, is primarily associated with the transmission of dengue and chikungunya in tropical and subtropical regions of the world. The present investigations were carried out to assess the larvicidal efficiency of five indigenous weeds against Ae. aegypti. Methods. The 1,000 ppm hexane and ethanol extracts prepared from the leaves and stem of five plants (Achyranthes aspera, Cassia occidentalis, Catharanthus roseus, Lantana camara, and Xanthium strumarium) were screened for their larvicidal activity against early fourth instars of dengue vector. The extracts which could cause 80–100% mortality were further investigated for their efficacy. Results. The preliminary screening established the efficacy of hexane extracts as compared to the ethanol extracts. Further investigations revealed the highest larvicidal potential of A. aspera extracts exhibiting LC50 value of 82.555 ppm and 68.133 ppm, respectively. Further, their leaf extracts showed 5–85.9% higher larvicidal activity and stem extracts exhibited 0.23- to 0.85-fold more efficiency than the other four extracts. Conclusion. The present investigations suggest the possible use of A. aspera as an ideal ecofriendly, larvicidal agent for the control of dengue vector, Ae. aegypti. Future studies are, however, required to explore and identify the bioactive component involved and its mode of action. PMID:26941996

  11. Chemical composition, toxicity and non-target effects of Pinus kesiya essential oil: An eco-friendly and novel larvicide against malaria, dengue and lymphatic filariasis mosquito vectors.

    PubMed

    Govindarajan, Marimuthu; Rajeswary, Mohan; Benelli, Giovanni

    2016-07-01

    Mosquitoes (Diptera: Culicidae) are vectors of important parasites and pathogens causing death, poverty and social disability worldwide, with special reference to tropical and subtropical countries. The overuse of synthetic insecticides to control mosquito vectors lead to resistance, adverse environmental effects and high operational costs. Therefore, the development of eco-friendly control tools is an important public health challenge. In this study, the mosquito larvicidal activity of Pinus kesiya leaf essential oil (EO) was evaluated against the malaria vector Anopheles stephensi, the dengue vector Aedes aegypti and the lymphatic filariasis vector Culex quinquefasciatus. The chemical composition of the EO was analyzed by gas chromatography-mass spectroscopy. GC-MS revealed that the P. kesiya EO contained 18 compounds. Major constituents were α-pinene, β-pinene, myrcene and germacrene D. In acute toxicity assays, the EO showed significant toxicity against early third-stage larvae of An. stephensi, Ae. aegypti and Cx. quinquefasciatus, with LC50 values of 52, 57, and 62µg/ml, respectively. Notably, the EO was safer towards several aquatic non-target organisms Anisops bouvieri, Diplonychus indicus and Gambusia affinis, with LC50 values ranging from 4135 to 8390µg/ml. Overall, this research adds basic knowledge to develop newer and safer natural larvicides from Pinaceae plants against malaria, dengue and filariasis mosquito vectors. PMID:26995063

  12. Chemical composition, toxicity and non-target effects of Pinus kesiya essential oil: An eco-friendly and novel larvicide against malaria, dengue and lymphatic filariasis mosquito vectors.

    PubMed

    Govindarajan, Marimuthu; Rajeswary, Mohan; Benelli, Giovanni

    2016-07-01

    Mosquitoes (Diptera: Culicidae) are vectors of important parasites and pathogens causing death, poverty and social disability worldwide, with special reference to tropical and subtropical countries. The overuse of synthetic insecticides to control mosquito vectors lead to resistance, adverse environmental effects and high operational costs. Therefore, the development of eco-friendly control tools is an important public health challenge. In this study, the mosquito larvicidal activity of Pinus kesiya leaf essential oil (EO) was evaluated against the malaria vector Anopheles stephensi, the dengue vector Aedes aegypti and the lymphatic filariasis vector Culex quinquefasciatus. The chemical composition of the EO was analyzed by gas chromatography-mass spectroscopy. GC-MS revealed that the P. kesiya EO contained 18 compounds. Major constituents were α-pinene, β-pinene, myrcene and germacrene D. In acute toxicity assays, the EO showed significant toxicity against early third-stage larvae of An. stephensi, Ae. aegypti and Cx. quinquefasciatus, with LC50 values of 52, 57, and 62µg/ml, respectively. Notably, the EO was safer towards several aquatic non-target organisms Anisops bouvieri, Diplonychus indicus and Gambusia affinis, with LC50 values ranging from 4135 to 8390µg/ml. Overall, this research adds basic knowledge to develop newer and safer natural larvicides from Pinaceae plants against malaria, dengue and filariasis mosquito vectors.

  13. Studies on the ovitraps baited with hay and leaf infusions for the surveillance of dengue vector, Aedes albopictus in northeastern India.

    PubMed

    Gopalakrishnan, R; Das, M; Baruah, I; Veer, V; Dutta, P

    2012-12-01

    Ovitraps baited with hay and leaf infusions were evaluated for enhancing the oviposition response of gravid females of the dengue vector Aedes albopictus. The egg density per trap (mean ± SEmean) was the highest with 30% infusions of Pennisetum grass hay (623.6 ± 41) and rice straw (580 ± 51.3), which corresponded to oviposition activity index (OAI) of 0.62. Infusions (5-50%) of mango and banana leaves with OAI ranging from -0.36 to 0.39 were not observed to enhance the oviposition response significantly over control. Rice straw and Pennisetum grass hay are available round the year in northeastern India and the use of these infusions can be a cost effective way to augment the ovitrap surveillance of dengue vectors. PMID:23202605

  14. DENGUE: GLOBAL THREAT.

    PubMed

    Thisyakorn, Usa; Thisyakorn, Chule

    2015-01-01

    Dengue is a mosquito-borne viral disease, which is currently an expanding global problem. Four closely related dengue serotypes cause the disease, which ranges from asymptomatic infection to undifferentiated fever, dengue fever (DF), and dengue hemorrhagic fever (DHF). DHF is characterized by fever, bleeding diathesis, and a tendency to develop a potentially fatal shock syndrome. Dengue infection with organ impairment mainly involves the central nervous system and the liver. Consistent hematological findings include vasculopathy, coagulopathy, and thrombocytopenia. Laboratory diagnosis includes virus isolation, serology, and detection of dengue ribonucleic acid. Successful treatment, which is mainly supportive, depends on early recognition of the disease and careful monitoring for shock. A severity-based revised dengue classification for medical interventions has been developed and validated in many countries. There is no specific dengue treatment, and prevention is currently limited to vector control measures. The world's first, large-scale dengue vaccine efficacy study demonstrated its efficacy and a reduction of dengue disease severity with a good safety profile in a study of more than 30,000 volunteers from Asia and Latin America.

  15. Mosquitocidal vaccines: a neglected addition to malaria and dengue control strategies.

    PubMed

    Billingsley, Peter F; Foy, Brian; Rasgon, Jason L

    2008-09-01

    The transmission of vector-borne diseases is dependent upon the ability of the vector to survive for longer than the period of development of the pathogen within the vector. One means of reducing mosquito lifespan, and thereby reducing their capacity to transmit diseases, is to target mosquitoes with vaccines. Here, the principle behind mosquitocidal vaccines is described, their potential impact in malaria and dengue control is modeled and the current research that could make these vaccines a reality is reviewed. Mosquito genome data, combined with modern molecular techniques, can be exploited to overcome the limited advances in this field. Given the large potential benefit to vector-borne disease control, research into the development of mosquitocidal vaccines deserves a high profile. PMID:18678529

  16. [Vector control, perspectives and realities].

    PubMed

    Carnevale, P

    1995-01-01

    In the WHO Global Strategy for Malaria Control, selective and sustainable vector control is one of the measures to be implemented to complement case management and for the control of epidemics. Vector control can be targeted against larvae and adults, but two elements must be recognized: -vector control measures must be selected according to the existing eco-epidemiological diversity, which has to be well understood before embarking upon any extensive action; -efficient tools are currently available, both for large scale and household use. House spraying is still the method of choice for epidemic control but must be carefully considered and used selectively in endemic countries for various well known reasons. The promotion of personal protection measures for malaria prevention is advocated because insecticide-impregnated mosquito nets and other materials have proved to be effective in different situations. Implementation, sustainability and large scale use of impregnated nets implies a strong community participation supported by well motivated community health workers, the availability of suitable materials (insecticide, mosquito nets), intersectorial collaboration at all levels, well trained health workers from central to the most peripheral level and appropriate educational messages (Knowledge, Attitude and Practices) adapted and elaborated after surveys. It has to be kept in mind that the evaluation of the impact of vector control activities will be made in epidemiological terms such as the reduction of malaria morbidity and mortality.

  17. Prevention and control of influenza and dengue through vaccine development.

    PubMed

    Greenberg, David P; Robertson, Corwin A; Gordon, Daniel M

    2013-08-01

    Influenza and dengue are viral illnesses of global public health importance, especially among children. Accordingly, these diseases have been the focus of efforts to improve their prevention and control. Influenza vaccination offers the best protection against clinical disease caused by strains contained within the specific year's formulation. It is not uncommon for there to be a mismatch between vaccine strains and circulating strains, particularly with regards to the B lineages. For more than a decade, two distinct lineages of influenza B (Yamagata and Victoria) have co-circulated in the US with varying frequencies, but trivalent influenza vaccines contain only one B-lineage strain and do not offer adequate protection against the alternate B-lineage. Quadrivalent influenza vaccines (QIVs), containing two A strains (H1N1 and H3N2) and two B strains (one from each lineage) have been developed to help protect against the four strains predicted to be the most likely to be circulating. The QIV section of this article discusses epidemiology of pediatric influenza, importance of influenza B in children, potential benefits of QIV, and new quadrivalent vaccines. In contrast to influenza, a vaccine against dengue is not yet available in spite of many decades of research and development. A global increase in reports of dengue fever (DF) and its more severe presentations, dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS), suggest that US physicians will increasingly encounter patients with this disease. Similarities of the early signs and symptoms of influenza and dengue and the differences in disease management necessitates a better understanding of the epidemiology, clinical presentation, management, and prevention of DF by US physicians, including pediatricians. The article also provides a brief overview of dengue and discusses dengue vaccine development.

  18. Clustering, climate and dengue transmission.

    PubMed

    Junxiong, Pang; Yee-Sin, Leo

    2015-06-01

    Dengue is currently the most rapidly spreading vector-borne disease, with an increasing burden over recent decades. Currently, neither a licensed vaccine nor an effective anti-viral therapy is available, and treatment largely remains supportive. Current vector control strategies to prevent and reduce dengue transmission are neither efficient nor sustainable as long-term interventions. Increased globalization and climate change have been reported to influence dengue transmission. In this article, we reviewed the non-climatic and climatic risk factors which facilitate dengue transmission. Sustainable and effective interventions to reduce the increasing threat from dengue would require the integration of these risk factors into current and future prevention strategies, including dengue vaccination, as well as the continuous support and commitment from the political and environmental stakeholders.

  19. Clustering, climate and dengue transmission.

    PubMed

    Junxiong, Pang; Yee-Sin, Leo

    2015-06-01

    Dengue is currently the most rapidly spreading vector-borne disease, with an increasing burden over recent decades. Currently, neither a licensed vaccine nor an effective anti-viral therapy is available, and treatment largely remains supportive. Current vector control strategies to prevent and reduce dengue transmission are neither efficient nor sustainable as long-term interventions. Increased globalization and climate change have been reported to influence dengue transmission. In this article, we reviewed the non-climatic and climatic risk factors which facilitate dengue transmission. Sustainable and effective interventions to reduce the increasing threat from dengue would require the integration of these risk factors into current and future prevention strategies, including dengue vaccination, as well as the continuous support and commitment from the political and environmental stakeholders. PMID:25872683

  20. Fight against dengue in India: progresses and challenges.

    PubMed

    Gupta, Bhavna; Reddy, B P Niranjan

    2013-04-01

    At the end of the last century, India has faced resurgence of many infectious diseases, of which dengue is one of the most important in terms of morbidity and mortality. The National Vector Borne Disease Control Program data show that dengue is established in India and is becoming endemic to many areas (dengue cases have increased steadily from ∼450 to ∼50,000 from 2000 to 2012). Despite extensive efforts being made in developing the effective dengue control measures, the number of dengue cases, their severity, and geographical boundaries are expanding alarmingly and posing dengue as one of the deadly disease. Recently, the increasing burden of dengue in the country has attracted the scientific as well as Indian Government's administrative attention; however, a lot remain to be achieved for managing the disease under threshold level. Like other vector-borne diseases, better management of the dengue needs balanced approach involving various aspects like disease prevention, cure/treatment, and the vector control, simultaneously. We have briefly discussed here the situation of dengue in India and have tried to highlight the worrying facets of dengue control and its implementation in Indian perspective. The review on various aspects of dengue control has revealed an urgent need for permanent surveillance programs, coupled with improvised disease diagnostics, effective anti-dengue treatment measures, and controlling the disease transmission by following an effective implementation of vector control programs.

  1. Dengue: a review.

    PubMed

    Rodriguez-Tan, R S; Weir, M R

    1998-10-01

    Millions of dengue cases occur worldwide each year. Most recently, an outbreak occurred in Texas. Though usually a nonspecific febrile illness that resolves with supportive therapy, the clinical spectrum ranges from asymptomatic to severe hemorrhage and sudden fatal shock. The potential exists for the introduction of dengue virus into other parts of the United States, and for secondary transmission in areas with vector mosquitoes, because of increased travel to and from regions of the Americas where dengue is endemic. The discovery of Aedes (Ae) albopictus strains adapted to temperate conditions makes this threat much greater. With global warming, a more rapid distribution of the Aedes species may occur, moving northward, encompassing larger population centers and leading to increased vectorborne diseases. Control of dengue currently requires control of the principal vector mosquitoes. Vaccine development continues, but at present the only way to avoid dengue in an area where it is endemic or epidemic is to use repellents and mosquito barriers. Lifesaving intervention and management of a patient with dengue and its complications depend upon a complete history, to include travel and physical examination with a high level of suspicion. Physicians and other health care providers should learn to recognize this disease. Once a person is infected, the key to survival is early diagnosis and appropriate treatment for the severe, life-threatening complications of dengue hemorrhagic fever and dengue shock syndrome.

  2. Dengue infection: a global concern.

    PubMed

    Pancharoen, Chitsanu; Kulwichit, Wanla; Tantawichien, Terapong; Thisyakorn, Usa; Thisyakorn, Chule

    2002-06-01

    Dengue infection, one of the most important mosquito-borne viral diseases of humans, is now a significant problem in several tropical countries. The disease, caused by the four dengue virus serotypes, ranges from asymptomatic infection, undifferentiated fever, dengue fever (DF) to severe dengue hemorrhagic fever (DHF) with or without shock. DHF is characterized by fever, bleeding diathesis and a tendency to develop a potentially fatal shock syndrome. Hematological findings include vasculopathy, coagulopathy and thrombocytopenia as the most constant findings. During the last twenty-five years, there have been increasing reports of dengue infection with unusual manifestations, mainly with cerebral and hepatic symptoms. Laboratory diagnosis includes virus isolation, serology and detection of dengue ribonucleic acid. Successful treatment, which is mainly supportive, depends on early recognition of the disease and careful monitoring for shock. Prevention depends on control of the mosquito vector. More efforts must be made to understand the pathogenesis of DHF in order to develop a safe and effective dengue vaccine.

  3. Dengue vaccine: priorities and progress.

    PubMed

    Guzmán, María G; Muné, Mayra; Kourí, Gustavo

    2004-12-01

    Dengue transmission has increased considerably in the past 20 years. Currently, it can only be reduced by mosquito control; however, the application of vector-control methods are labor intensive, require discipline and diligence, and are hard to sustain. In this context, a safe dengue vaccine that confers long-lasting protection against infection with the four dengue viruses is urgently required. This review will discuss the requirements of a dengue vaccine, problems, and advances that have been made. Finally, new targets for research will be presented. PMID:15566333

  4. Seasonal abundance of vectors at outdoor environments in endemic and nonendemic districts of dengue in Kaohsiung, South Taiwan.

    PubMed

    Pai, Hsiu-Hua; Lu, Yi-Ling

    2009-01-01

    This study was designed to determine the seasonal variation in abundance of dengue vectors at open spaces, empty houses, parks, and markets in endemic and nonendemic districts of dengue. Ovitraps were placed in these sites from March 2003 to January 2004 in Kaohsiung Area (Kaohsiung City and Kaohsiung County), South Taiwan. The index peaked in May, June, and September in the endemic districts and in May and October in nonendemic districts. The egg production of the vectors increased from April on and peaked in September. Aedes albopictus had a significant higher proportion than A. aegypti throughout the study period and in both districts. Although ovitrap indices at open spaces, empty houses, and parks were significantly higher than those in nearby households, no significant difference was found between markets and households. Moreover, the outdoor ovitrap index was significantly higher than the indoor one. No significant difference was found between the endemic and nonendemic districts in egg production, vector maturation, vector abundance at the outdoor environments, or nearby households. These findings indicate the importance of the environmental conditions surrounding the human dwelling sites in the transmission of dengue. Measures applied to remove dengue vectors should include these sites but also outdoor environments as well.

  5. Seasonal abundance of vectors at outdoor environments in endemic and nonendemic districts of dengue in Kaohsiung, South Taiwan.

    PubMed

    Pai, Hsiu-Hua; Lu, Yi-Ling

    2009-01-01

    This study was designed to determine the seasonal variation in abundance of dengue vectors at open spaces, empty houses, parks, and markets in endemic and nonendemic districts of dengue. Ovitraps were placed in these sites from March 2003 to January 2004 in Kaohsiung Area (Kaohsiung City and Kaohsiung County), South Taiwan. The index peaked in May, June, and September in the endemic districts and in May and October in nonendemic districts. The egg production of the vectors increased from April on and peaked in September. Aedes albopictus had a significant higher proportion than A. aegypti throughout the study period and in both districts. Although ovitrap indices at open spaces, empty houses, and parks were significantly higher than those in nearby households, no significant difference was found between markets and households. Moreover, the outdoor ovitrap index was significantly higher than the indoor one. No significant difference was found between the endemic and nonendemic districts in egg production, vector maturation, vector abundance at the outdoor environments, or nearby households. These findings indicate the importance of the environmental conditions surrounding the human dwelling sites in the transmission of dengue. Measures applied to remove dengue vectors should include these sites but also outdoor environments as well. PMID:19192745

  6. Seasonality and insecticide susceptibility of dengue vectors: an ovitrap based survey in a residential area of northern Sri Lanka.

    PubMed

    Surendran, Sinnathamby N; Kajatheepan, Arunasalam; Sanjeefkumar, Karunakaran F A; Jude, Paviluppillai J

    2007-03-01

    With the backdrop of a high incidence of dengue in Jaffna District, Sri Lanka, an ovitrap based survey was carried out from May 2005 to April 2006 in a residential area to study the seasonality and insecticide susceptibility of Aedes aegypti and Ae. albopictus. Conventional ovitraps were placed inside and outside of 10 randomly selected houses to collect indoor breeding and outdoor breeding Aedes mosquitoes; collections took place fortnightly. A total of 3075 Ae. aegypti and 2665 Ae. albopictus were collected in outdoor ovitraps, whereas in indoor ovitraps a total of 2528 Ae. aegypti and 2002 Ae. albopictus were collected. The highest values for Aedes density and positive ovitrap percentage were recorded in January 2006. A seasonal shift was observed in the density of Ae. aegypti and Ae. albopictus. Ae aegypti density was high during and after the Northeast monsoon whilst Ae. albopictus was the dominant species during the onset of the Northeast monsoon. A significant association (p < 0.05) between Aedes density and rainfall was observed. The association of these two species to site, either indoors or outdoors, was not statistically significant (p > 0.05). Both the species were found to be highly resistant to 4% DDT and completely susceptible to 5% malathion. The high prevalence and the ability of both species to breed indoors and outdoors should be taken into account when formulating a dengue vector control program with community participation in the Jaffna District, Sri Lanka. PMID:17539277

  7. Dengue virus therapeutic intervention strategies based on viral, vector and host factors involved in disease pathogenesis.

    PubMed

    Herrero, Lara J; Zakhary, Andrew; Gahan, Michelle E; Nelson, Michelle A; Herring, Belinda L; Hapel, Andrew J; Keller, Paul A; Obeysekera, Maheshi; Chen, Weiqiang; Sheng, Kuo-Ching; Taylor, Adam; Wolf, Stefan; Bettadapura, Jayaram; Broor, Shobha; Dar, Lalit; Mahalingam, Suresh

    2013-02-01

    Dengue virus (DV) is the most widespread arbovirus, being endemic in over 100 countries, and is estimated to cause 50 million infections annually. Viral factors, such as the genetic composition of the virus strain can play a role in determining the virus virulence and subsequent clinical disease severity. Virus vector competence plays an integral role in virus transmission and is a critical factor in determining the severity and impact of DV outbreaks. Host genetic variations in immune-related genes, including the human leukocyte antigen, have also been shown to correlate with clinical disease and thus may play a role in regulating disease severity. The host's immune system, however, appears to be the primary factor in DV pathogenesis with the delicate interplay of innate and acquired immunity playing a crucial role. Although current research of DV pathogenesis has been limited by the lack of an appropriate animal model, the development of DV therapeutics has been a primary focus of research groups around the world. In the past decade advances in both the development of vaccines and anti-virals have increased in dramatically. This review summarises the current understanding of viral, vector and host factors which contribute to dengue virus pathogenesis and how this knowledge is critically important in the development of pharmaceutical interventions. PMID:23103333

  8. Immunogenic Subviral Particles Displaying Domain III of Dengue 2 Envelope Protein Vectored by Measles Virus

    PubMed Central

    Harahap-Carrillo, Indira S.; Ceballos-Olvera, Ivonne; Reyes-del Valle, Jorge

    2015-01-01

    Vaccines against dengue virus (DV) are commercially nonexistent. A subunit vaccination strategy may be of value, especially if a safe viral vector acts as biologically active adjuvant. In this paper, we focus on an immunoglobulin-like, independently folded domain III (DIII) from DV 2 envelope protein (E), which contains epitopes that elicits highly specific neutralizing antibodies. We modified the hepatitis B small surface antigen (HBsAg, S) in order to display DV 2 DIII on a virus-like particle (VLP), thus generating the hybrid antigen DIII-S. Two varieties of measles virus (MV) vectors were developed to express DIII-S. The first expresses the hybrid antigen from an additional transcription unit (ATU) and the second additionally expresses HBsAg from a separate ATU. We found that this second MV vectoring the hybrid VLPs displaying DIII-S on an unmodified HBsAg scaffold were immunogenic in MV-susceptible mice (HuCD46Ge-IFNarko), eliciting robust neutralizing responses (averages) against MV (1:1280 NT90), hepatitis B virus (787 mIU/mL), and DV2 (1:160 NT50) in all of the tested animals. Conversely, the MV vector expressing only DIII-S induced immunity against MV alone. In summary, DV2 neutralizing responses can be generated by displaying E DIII on a scaffold of HBsAg-based VLPs, vectored by MV. PMID:26350592

  9. Immunogenic Subviral Particles Displaying Domain III of Dengue 2 Envelope Protein Vectored by Measles Virus.

    PubMed

    Harahap-Carrillo, Indira S; Ceballos-Olvera, Ivonne; Valle, Jorge Reyes-Del

    2015-01-01

    Vaccines against dengue virus (DV) are commercially nonexistent. A subunit vaccination strategy may be of value, especially if a safe viral vector acts as biologically active adjuvant. In this paper, we focus on an immunoglobulin-like, independently folded domain III (DIII) from DV 2 envelope protein (E), which contains epitopes that elicits highly specific neutralizing antibodies. We modified the hepatitis B small surface antigen (HBsAg, S) in order to display DV 2 DIII on a virus-like particle (VLP), thus generating the hybrid antigen DIII-S. Two varieties of measles virus (MV) vectors were developed to express DIII-S. The first expresses the hybrid antigen from an additional transcription unit (ATU) and the second additionally expresses HBsAg from a separate ATU. We found that this second MV vectoring the hybrid VLPs displaying DIII-S on an unmodified HBsAg scaffold were immunogenic in MV-susceptible mice (HuCD46Ge-IFNar(k)(o)), eliciting robust neutralizing responses (averages) against MV (1:1280 NT90), hepatitis B virus (787 mIU/mL), and DV2 (1:160 NT50) in all of the tested animals. Conversely, the MV vector expressing only DIII-S induced immunity against MV alone. In summary, DV2 neutralizing responses can be generated by displaying E DIII on a scaffold of HBsAg-based VLPs, vectored by MV. PMID:26350592

  10. Laboratory evaluation of Indian medicinal plants as repellents against malaria, dengue, and filariasis vector mosquitoes.

    PubMed

    Govindarajan, Marimuthu; Sivakumar, Rajamohan

    2015-02-01

    Mosquito-borne diseases have an economic impact, including loss in commercial and labor outputs, particularly in countries with tropical and subtropical climates; however, no part of the world is free from vector-borne diseases. Mosquitoes are the carriers of severe and well-known illnesses such as malaria, arboviral encephalitis, dengue fever, chikungunya fever, West Nile virus, and yellow fever. These diseases produce significant morbidity and mortality in humans and livestock around the world. In view of the recently increased interest in developing plant origin insecticides as an alternative to chemical insecticides, in the present study, the repellent activity of crude hexane, ethyl acetate, benzene, chloroform, and methanol extracts of leaf of Erythrina indica and root of Asparagus racemosus were assayed for their repellency against three important vector mosquitoes, viz., Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus. The crude extract was applied on a membrane used for membrane feeding of unfed mosquitoes in a 1-ft cage. About 50 unfed 3-4-day-old laboratory-reared pathogen-free strains of A. stephensi, A. aegypti, and C. quinquefasciatus were introduced in a 1-ft cage fitted with a membrane with blood for feeding with temperature maintained at 37 °C through circulating water bath maintained at 40-45 °C. Three concentrations (1.0, 2.0, and 5.0 mg/cm(2)) of the crude extracts were evaluated. Repellents in E. indica afforded longer protection time against A. stephensi, A. aegypti, and C. quinquefasciatus than those in A. racemosus at 5.0 mg/cm(2) concentration, and the mean complete protection time ranged from 120 to 210 min with the different extracts tested. In this observation, these two plant crude extracts gave protection against mosquito bites; also, the repellent activity is dependent on the strength of the plant extracts. These results suggest that the leaf extract of E. indica and root extract of A. racemosus have the potential to

  11. Laboratory evaluation of Indian medicinal plants as repellents against malaria, dengue, and filariasis vector mosquitoes.

    PubMed

    Govindarajan, Marimuthu; Sivakumar, Rajamohan

    2015-02-01

    Mosquito-borne diseases have an economic impact, including loss in commercial and labor outputs, particularly in countries with tropical and subtropical climates; however, no part of the world is free from vector-borne diseases. Mosquitoes are the carriers of severe and well-known illnesses such as malaria, arboviral encephalitis, dengue fever, chikungunya fever, West Nile virus, and yellow fever. These diseases produce significant morbidity and mortality in humans and livestock around the world. In view of the recently increased interest in developing plant origin insecticides as an alternative to chemical insecticides, in the present study, the repellent activity of crude hexane, ethyl acetate, benzene, chloroform, and methanol extracts of leaf of Erythrina indica and root of Asparagus racemosus were assayed for their repellency against three important vector mosquitoes, viz., Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus. The crude extract was applied on a membrane used for membrane feeding of unfed mosquitoes in a 1-ft cage. About 50 unfed 3-4-day-old laboratory-reared pathogen-free strains of A. stephensi, A. aegypti, and C. quinquefasciatus were introduced in a 1-ft cage fitted with a membrane with blood for feeding with temperature maintained at 37 °C through circulating water bath maintained at 40-45 °C. Three concentrations (1.0, 2.0, and 5.0 mg/cm(2)) of the crude extracts were evaluated. Repellents in E. indica afforded longer protection time against A. stephensi, A. aegypti, and C. quinquefasciatus than those in A. racemosus at 5.0 mg/cm(2) concentration, and the mean complete protection time ranged from 120 to 210 min with the different extracts tested. In this observation, these two plant crude extracts gave protection against mosquito bites; also, the repellent activity is dependent on the strength of the plant extracts. These results suggest that the leaf extract of E. indica and root extract of A. racemosus have the potential to

  12. Larvicidal and irritant activities of hexane leaf extracts of Citrus sinensis against dengue vector Aedes aegypti L.

    PubMed Central

    Warikoo, Radhika; Ray, Ankita; Sandhu, Jasdeep Kaur; Samal, Roopa; Wahab, Naim; Kumar, Sarita

    2012-01-01

    Objective To assess the larvicidal and irritant activities of the hexane extracts of leaves of Citrus sinensis (C. sinensis) against the early fourth instars and female adults of Aedes aegypti (Ae. aegypti). Methods The larvicidal potential of the prepared leaf extract was evaluated against early fourth instar larvae of Ae. aegypti using WHO protocol. The mortality counts were made after 24 h and LC50 and LC90 values were calculated. The efficacy of extract as mosquito irritant was assessed by contact irritancy assays. Extract-impregnated paper was placed on a glass plate over which a perspex funnel with a hole on the top was kept inverted. Single female adult, 3-day old unfed/blood-fed, was released inside the funnel. After 3 min of acclimatization time, the time taken for the first take-off and total number of flights undertaken during 15 min were scored. Results The citrus leaf extracts from hexane possessed moderate larvicidal efficiency against dengue vector. The bioassays resulted in an LC50 and LC90 value of 446.84 and 1 370.96 ppm, respectively after 24 h of exposure. However, the extracts were proved to be remarkable irritant against adults Ae. aegypti, more pronounced effects being observed on blood-fed females than unfed females. The extract-impregnated paper was thus proved to be 7–11 times more irritable as compared with the control paper. Conclusions The hexane extracts from C. sinensis leaves are proved to be reasonably larvicidal but remarkably irritant against dengue vector. Further studies are needed to identify the possible role of extract as adulticide, oviposition deterrent and ovicidal agent. The isolation of active ingredient from the extract could help in formulating strategies for mosquito control. PMID:23569887

  13. Deconstructing "malaria": West Africa as the next front for dengue fever surveillance and control.

    PubMed

    Stoler, Justin; Al Dashti, Rawan; Anto, Francis; Fobil, Julius N; Awandare, Gordon A

    2014-06-01

    Presumptive treatment of febrile illness patients for malaria remains the norm in endemic areas of West Africa, and "malaria" remains the top source of health facility outpatient visits in many West African nations. Many other febrile illnesses, including bacterial, viral, and fungal infections, share a similar symptomatology as malaria and are routinely misdiagnosed as such; yet growing evidence suggests that much of the burden of febrile illness is often not attributable to malaria. Dengue fever is one of several viral diseases with symptoms similar to malaria, and the combination of rapid globalization, the long-standing presence of Aedes mosquitoes, case reports from travelers, and recent seroprevalence surveys all implicate West Africa as an emerging front for dengue surveillance and control. This paper integrates recent vector ecology, public health, and clinical medicine literature about dengue in West Africa across community, regional, and global geographic scales. We present a holistic argument for greater attention to dengue fever surveillance in West Africa and renew the call for improving differential diagnosis of febrile illness patients in the region.

  14. Mathematical model in controlling dengue transmission with sterile mosquito strategies

    NASA Astrophysics Data System (ADS)

    Aldila, D.; Nuraini, N.; Soewono, E.

    2015-09-01

    In this article, we propose a mathematical model for controlling dengue disease transmission with sterile mosquito techniques (SIT). Sterile male introduced from lab in to habitat to compete with wild male mosquito for mating with female mosquito. Our aim is to displace gradually the natural mosquito from the habitat. Mathematical model analysis for steady states and the basic reproductive ratio are performed analytically. Numerical simulation are shown in some different scenarios. We find that SIT intervention is potential to controlling dengue spread among humans population

  15. Optimal Control of a Dengue Epidemic Model with Vaccination

    NASA Astrophysics Data System (ADS)

    Rodrigues, Helena Sofia; Teresa, M.; Monteiro, T.; Torres, Delfim F. M.

    2011-09-01

    We present a SIR+ASI epidemic model to describe the interaction between human and dengue fever mosquito populations. A control strategy in the form of vaccination, to decrease the number of infected individuals, is used. An optimal control approach is applied in order to find the best way to fight the disease.

  16. [Dengue fever: clinical features].

    PubMed

    Dellamonica, P

    2009-10-01

    The vector for dengue fever and chikungunya, Aedes albopictus, was recently identified in Southeastern France, although the usual vector for dengue fever is Aedes aegypti, raising the possibility of cases occurring among the local population via viraemic individuals returning from endemic areas. Dengue fever is usually transmitted by Aedes aegypti. It is due to an arbovirus-flavivirus of which four different serotypes are known: Den 1 to 4. Each serotype is responsible for specific prolonged immunity but no cross-reactivity exists between serotypes. Clinically, the onset is abrupt with frontal headache, retro-orbital pain, myalgia, joint pain, prostration and, in many cases, a macular rash usually sparing the face and extremities. Haemorrhagic signs may occur, such as petechiae, purpura, epistaxis or bleeding gingivae. Two severe forms of dengue fever, particularly among children below 3 years of age, include dengue haemorrhagic fever (DHF) and DHF with shock (dengue shock syndrome). If a case is suspected in metropolitan France, the diagnosis should be systematically confirmed by positive specific IgM, RT-PCR or viral isolation. Treatment of dengue fever, whether in its uncomplicated form or with hemorrhagic manifestations or shock, remains symptomatic. There is no specific anti-viral treatment. A case should be notified to allow French health authorities to take the appropriate measures for vector control.

  17. Dengue: a global threat.

    PubMed

    Thisyakorn, Usa; Thisyakorn, Chule

    2015-01-01

    Dengue, a mosquito-borne viral disease, is currently an expanding global problem. The disease is caused by four closely related dengue serotypes; it ranges from asymptomatic infection to undifferentiated fever, dengue fever (DF) and dengue hemorrhagic fever (DHF). DHF is characterized by fever, bleeding diathesis and a tendency to develop apotentially fatal shock syndrome. Dengue infection with organ impairment mainly involves the central nervous system and liver. Consistent hematological findings include vasculopathy, coagulopathy and thrombocytopenia. Laboratory diagnoses include virus isolation, serology, and detection ofdengue ribonucleic acid. Successful treatment, which is mainly supportive, depends on early recognition of the disease and careful monitoring for shock. A severity-based revised dengue classification for medical interventions has been developed and validated in many countries. So far however, there has not been any specific dengue treatment; prevention is currently limited to vector control measures. The world's first, large-scale dengue vaccine, efficacy study demonstrated its efficacy and a reduction of dengue's severity in a study of more than 10,000 volunteers in Asia. Initial safety data are consistent with a good safety profile.

  18. The biological control of disease vectors.

    PubMed

    Okamoto, Kenichi W; Amarasekare, Priyanga

    2012-09-21

    Vector-borne diseases are common in nature and can have a large impact on humans, livestock and crops. Biological control of vectors using natural enemies or competitors can reduce vector density and hence disease transmission. However, the indirect interactions inherent in host-vector disease systems make it difficult to use traditional pest control theory to guide biological control of disease vectors. This necessitates a conceptual framework that explicitly considers a range of indirect interactions between the host-vector disease system and the vector's biological control agent. Here we conduct a comparative analysis of the efficacy of different types of biological control agents in controlling vector-borne diseases. We report three key findings. First, highly efficient predators and parasitoids of the vector prove to be effective biological control agents, but highly virulent pathogens of the vector also require a high transmission rate to be effective. Second, biocontrol agents can successfully reduce long-term host disease incidence even though they may fail to reduce long-term vector densities. Third, inundating a host-vector disease system with a natural enemy of the vector has little or no effect on reducing disease incidence, but inundating the system with a competitor of the vector has a large effect on reducing disease incidence. The comparative framework yields predictions that are useful in developing biological control strategies for vector-borne diseases. We discuss how these predictions can inform ongoing biological control efforts for host-vector disease systems.

  19. [Dengue and dengue hemorrhagic fever: research priorities].

    PubMed

    Guzmán, María G; García, Gissel; Kourí, Gustavo

    2006-03-01

    Dengue is one of the most important infectious diseases in tropical and subtropical countries. At present, the only strategy available to reduce the incidence of dengue is vector control. The World Health Organization and the Pan American Health Organization have called on all nations to take the needed steps to help diminish the burden of this disease and its medical and socioeconomic impact. It is hoped that it will be possible to reverse the increase in dengue and help control its spread through a coordinated, effective international response, along with epidemiological, clinical, and virological research that brings together the most advanced methods and techniques. This piece summarizes the most up-to-date information on dengue, analyzes current epidemiologic trends in the Region of the Americas, discusses the main global and Western Hemisphere initiatives to control the disease, and presents the main areas of research that should be developed in the immediate future.

  20. The enzyme 3-hydroxykynurenine transaminase as potential target for 1,2,4-oxadiazoles with larvicide activity against the dengue vector Aedes aegypti.

    PubMed

    Oliveira, Vanessa S; Pimenteira, Cecília; da Silva-Alves, Diana C B; Leal, Laylla L L; Neves-Filho, Ricardo A W; Navarro, Daniela M A F; Santos, Geanne K N; Dutra, Kamilla A; dos Anjos, Janaína V; Soares, Thereza A

    2013-11-15

    The mosquito Aedes aegypti is the vector agent responsible for the transmission of yellow fever and dengue fever viruses to over 80 million people in tropical and subtropical regions of the world. Exhaustive efforts have lead to a vaccine candidate with only 30% effectiveness against the dengue virus and failure to protect patients against the serotype 2. Hence, vector control remains the most viable route to dengue fever control programs. We have synthesized a class of 1,2,4-oxadiazole derivatives whose most biologically active compounds exhibit potent activity against Aedes aegypti larvae (ca. of 15 ppm) and low toxicity in mammals. Exposure to these larvicides results in larvae pigmentation in a manner correlated with the LC50 measurements. Structural comparisons of the 1,2,4-oxadiazole nucleus against known inhibitors of insect enzymes allowed the identification of 3-hydroxykynurenine transaminase as a potential target for these synthetic larvicides. Molecular docking calculations indicate that 1,2,4-oxadiazole compounds can bind to 3-hydroxykynurenine transaminase with similar conformation and binding energies as its crystallographic inhibitor 4-(2-aminophenyl)-4-oxobutanoic acid.

  1. Dengue vaccine.

    PubMed

    Simasathien, Sriluck; Watanaveeradej, Veerachai

    2005-11-01

    Dengue is an expanding health problem. About two-fifths of the world population are at risk for acquiring dengue with 50-100 million cases of acute febrile illness yearly including about 500,000 cases of DHF/DSS. No antiviral drugs active against the flavivirus exist. Attempts to control mosquito vector has been largely unsuccessful. Vaccination remains the most hopeful preventive measure. Dengue vaccine has been in development for more than 30 years, yet none has been licensed. The fact that enhancing antibody from previous infection and high level of T cell activation during secondary infection contribute to immunopathology of DHF, the vaccine must be able to induce protective response to four dengue serotypes simultaneously. Inactivated vaccine is safe but needs a repeated booster thus, development is delayed. Tetravalent live attenuated vaccine and chimeric vaccine using yellow fever or dengue viruses as a backbone are being carried out in human trials. DNA vaccine and subunit vaccine are being carried out in animal trials.

  2. Entomological observations on dengue vector mosquitoes following a suspected outbreak of dengue in certain parts of Nagaland with a note on their susceptibility to insecticides.

    PubMed

    Dutta, P; Khan, S A; Khan, A M; Sharma, C K; Mahanta, J

    2004-04-01

    Three species of Aedes viz., Aedes albopictus, Aedes aegypti and Aedes annandalei were detected from different breeding sources in and around human habitats during entomological study conducted following an outbreak suspected to be of dengue (which occurred during, 1994) in parts of Medziphema PHC area of Nagaland in two different points of time ie., in the year, 1994 and, 2000. The potential dengue vector, Aedes albopictus showed high preponderance by breeding in all types of containers searched with high Breteau Index (BI) value of 85.0 and 72.72 recorded in, 1994 and, 2000 respectively whereas the BI value for other potential vector, Aedes aegypti was recorded low (4.9) in the year, 1994 with a substantial increase (31.81) in, 2000. The change in ecosystem along with the process of urbanization has facilitated the growth of these dengue vector mosquitoes in the area of investigation. Adults of both Aedes aegypti and Aedes albopictus were found to be susceptible to DDT, dieldrin and malathion in insecticide bioassay carried out using WHO test kit.

  3. Modelling the control strategies against dengue in Singapore.

    PubMed

    Burattini, M N; Chen, M; Chow, A; Coutinho, F A B; Goh, K T; Lopez, L F; Ma, S; Massad, E

    2008-03-01

    Notified cases of dengue infections in Singapore reached historical highs in 2004 (9459 cases) and 2005 (13,817 cases) and the reason for such an increase is still to be established. We apply a mathematical model for dengue infection that takes into account the seasonal variation in incidence, characteristic of dengue fever, and which mimics the 2004-2005 epidemics in Singapore. We simulated a set of possible control strategies and confirmed the intuitive belief that killing adult mosquitoes is the most effective strategy to control an ongoing epidemic. On the other hand, the control of immature forms was very efficient in preventing the resurgence of dengue epidemics. Since the control of immature forms allows the reduction of adulticide, it seems that the best strategy is to combine both adulticide and larvicide control measures during an outbreak, followed by the maintenance of larvicide methods after the epidemic has subsided. In addition, the model showed that the mixed strategy of adulticide and larvicide methods introduced by the government seems to be very effective in reducing the number of cases in the first weeks after the start of control.

  4. Modelling the control strategies against dengue in Singapore

    PubMed Central

    BURATTINI, M. N.; CHEN, M.; CHOW, A.; COUTINHO, F. A. B.; GOH, K. T.; LOPEZ, L. F.; MA, S.; MASSAD, E.

    2008-01-01

    SUMMARY Notified cases of dengue infections in Singapore reached historical highs in 2004 (9459 cases) and 2005 (13 817 cases) and the reason for such an increase is still to be established. We apply a mathematical model for dengue infection that takes into account the seasonal variation in incidence, characteristic of dengue fever, and which mimics the 2004–2005 epidemics in Singapore. We simulated a set of possible control strategies and confirmed the intuitive belief that killing adult mosquitoes is the most effective strategy to control an ongoing epidemic. On the other hand, the control of immature forms was very efficient in preventing the resurgence of dengue epidemics. Since the control of immature forms allows the reduction of adulticide, it seems that the best strategy is to combine both adulticide and larvicide control measures during an outbreak, followed by the maintenance of larvicide methods after the epidemic has subsided. In addition, the model showed that the mixed strategy of adulticide and larvicide methods introduced by the government seems to be very effective in reducing the number of cases in the first weeks after the start of control. PMID:17540051

  5. Vector-control response in a post-flood disaster setting, Honiara, Solomon Islands, 2014

    PubMed Central

    Musto, Jennie; Bugoro, Hugo; Butafa, Charles; Sio, Alison; Joshua, Cynthia

    2016-01-01

    Problem The close quartering and exposed living conditions in evacuation centres and the potential increase in vector density after flooding in Solomon Islands resulted in an increased risk of exposure for the occupants to vectorborne diseases. Context In April 2014, Solomon Islands experienced a flash flooding event that affected many areas and displaced a large number of people. In the capital, Honiara, nearly 10 000 people were housed in emergency evacuation centres at the peak of the post-flood emergency. At the time of the floods, the number of dengue cases was increasing, following a record outbreak in 2013. Action The National Vector Borne Disease Control Programme with the assistance of the World Health Organization implemented an emergency vector-control response plan to provide protection to the at-risk populations in the evacuation centres. The National Surveillance Unit also activated an early warning disease surveillance system to monitor communicable diseases, including dengue and malaria. Outcome Timely and strategic application of the emergency interventions probably prevented an increase in dengue and malaria cases in the affected areas. Discussion Rapid and appropriate precautionary vector-control measures applied in a post-natural disaster setting can prevent and mitigate vectorborne disease incidences. Collecting vector surveillance data allows better analysis of vector-control operations’ effectiveness. PMID:27757255

  6. Understanding the Dengue Viruses and Progress towards Their Control

    PubMed Central

    Gould, Ernest A.

    2013-01-01

    Traditionally, the four dengue virus serotypes have been associated with fever, rash, and the more severe forms, haemorrhagic fever and shock syndrome. As our knowledge as well as understanding of these viruses increases, we now recognise not only that they are causing increasing numbers of human infections but also that they may cause neurological and other clinical complications, with sequelae or fatal consequences. In this review we attempt to highlight some of these features in the context of dengue virus pathogenesis. We also examine some of the efforts currently underway to control this “scourge” of the tropical and subtropical world. PMID:23936833

  7. [Classical dengue transmission dynamics involving mechanical control and prophylaxis].

    PubMed

    Toro-Zapata, Hernán D; Restrepo, Leonardo D; Vergaño-Salazar, Juan G; Muñoz-Loaiza, Aníbal

    2010-12-01

    Dengue fever transmission dynamics were studied in an endemic region considering the use of preventative measures and mechanical control in reducing transmission of the disease. A system of ordinary differential equations was proposed, describing the dynamics and their evolution as determined by numerical simulation. Different mechanical control and prophylaxis strategies were compared to the situation without control. The basic reproduction number R₀ was determined R₀ to show that if R₀ > 1 there would be a risk of an epidemic and otherwise the disease would have low impact levels. The basic reproduction number helps determine the dynamics' future pattern and contrast the results so obtained with those obtained numerically. It was concluded that although prophylaxis and mechanical control alone provide effective results in controlling the disease, if both controls are combined then infection levels become significantly reduced. Around 60 % mechanical control and prevention levels are needed to provide suitable results in controlling dengue outbreaks.

  8. Community Involvement in Dengue Outbreak Control: An Integrated Rigorous Intervention Strategy

    PubMed Central

    Lin, Hualiang; Liu, Tao; Song, Tie; Lin, Lifeng; Xiao, Jianpeng; Lin, Jinyan; He, Jianfeng; Zhong, Haojie; Hu, Wenbiao; Deng, Aiping; Peng, Zhiqiang; Ma, Wenjun; Zhang, Yonghui

    2016-01-01

    Background An explosive outbreak of dengue fever occurred in Guangdong Province, China in 2014. A community-based integrated intervention was applied to control this outbreak in the capital city Guangzhou, where dengue epidemic was mainly caused by imported cases. Methodology/Principal Findings We used a time series generalized additive model based on meteorological factors to assess the effectiveness of this intervention. The results showed that there was significant reduction in mosquito density following the intervention, and there was a 70.47% (95% confidence interval: 66.07%, 74.88%) reduction in the reported dengue cases compared with the predicted cases after 12 days since the beginning of the intervention, we estimated that a total of 23,302 dengue cases were prevented. Conclusions This study suggests that an integrated dengue intervention program has significant effects to control a dengue outbreak in areas where dengue epidemic was mainly caused by imported dengue cases. PMID:27548481

  9. Epidemiology and vector efficiency during a dengue fever outbreak in Cixi, Zhejiang Province, China.

    PubMed

    Yang, Tianci; Lu, Liang; Fu, Guiming; Zhong, Shi; Ding, Gangqiang; Xu, Rong; Zhu, Guangfeng; Shi, Nanfeng; Fan, Feilong; Liu, Qiyong

    2009-06-01

    An emigrant worker returning from Southeast Asia triggered the outbreak of a DF epidemic in Zhejiang province, China, in October, 2004. Eighty-three cases, mainly young and middle-aged people between 20 and 50 (78.3%), were reported in the area of Cixi. There were no obvious occupational patterns. The majority of cases were female, with a sex ratio of 1:1.86 (m:f). The dengue virus (DENV) strains from the epidemic area were isolated and identified as DENV-1, which belongs to Asian strain 1. According to the epidemiological investigation, the incidence of DF had no relationship to temperature, humidity, or precipitation, and the Breteau index of larvae showed a clear relationship only with the House Index and Container Index. Recent dengue problems in the town have been associated with the complex social factors and hygienic conditions for endemic villagers and immigrant workers. Some hygienic measures should be taken by the local government to reduce the risk of mosquito-borne disease. These measures should aim to eliminate the breeding sites of the vector Aedes albopictus in indoor and outdoor containers filled with rainwater and thus reducing the risk of DF transmission.

  10. The Dengue Virus Mosquito Vector Aedes aegypti at High Elevation in México

    PubMed Central

    Lozano-Fuentes, Saul; Hayden, Mary H.; Welsh-Rodriguez, Carlos; Ochoa-Martinez, Carolina; Tapia-Santos, Berenice; Kobylinski, Kevin C.; Uejio, Christopher K.; Zielinski-Gutierrez, Emily; Monache, Luca Delle; Monaghan, Andrew J.; Steinhoff, Daniel F.; Eisen, Lars

    2012-01-01

    México has cities (e.g., México City and Puebla City) located at elevations > 2,000 m and above the elevation ceiling below which local climates allow the dengue virus mosquito vector Aedes aegypti to proliferate. Climate warming could raise this ceiling and place high-elevation cities at risk for dengue virus transmission. To assess the elevation ceiling for Ae. aegypti and determine the potential for using weather/climate parameters to predict mosquito abundance, we surveyed 12 communities along an elevation/climate gradient from Veracruz City (sea level) to Puebla City (∼2,100 m). Ae. aegypti was commonly encountered up to 1,700 m and present but rare from 1,700 to 2,130 m. This finding extends the known elevation range in México by > 300 m. Mosquito abundance was correlated with weather parameters, including temperature indices. Potential larval development sites were abundant in Puebla City and other high-elevation communities, suggesting that Ae. aegypti could proliferate should the climate become warmer. PMID:22987656

  11. A program for prevention and control of epidemic dengue and dengue hemorrhagic fever in Puerto Rico and the U.S. Virgin Islands.

    PubMed

    Gubler, D J; Casta-Valez, A

    1991-01-01

    The ongoing resurgence of Aedes aegypti in the Americas--abetted by poor mosquito control, urbanization, and increased air travel--has led to dengue hyperendemicity, more frequent dengue epidemics, and the emergence of dengue hemorrhagic fever (DHF). This article describes a program developed to cope with this situation that emphasizes disease prevention rather than general mosquito control measures.

  12. Impact of larviciding with a Bacillus thuringiensis israelensis formulation, VectoBac WG, on dengue mosquito vectors in a dengue endemic site in Selangor State, Malaysia.

    PubMed

    Lee, H L; Chen, C D; Masri, S Mohd; Chiang, Y F; Chooi, K H; Benjamin, S

    2008-07-01

    The field bioefficacy of a wettable granule (WG) formulation of Bacillus thuringiensis israelensis (Bti), VectoBac WG (Bti strain AM65-52) against dengue vectors, Aedes aegypti and Ae albopictus; was evaluated in a suburban residential area (TST) and in a temporary settlement site (KB) in the state of Selangor, Malaysia. Pre-control ovitrap surveillance of the trial sites indicated a high population of both types of Aedes mosquitoes. The populations were monitored continuously by weekly ovitrapping. Bti was sprayed biweekly at a dosage of 500 g/ha by using a mist-blower. The spray application was targeted into outdoor larval habitats. If required, Bti formulation was also applied directly into indoor water-holding containers at 8 g/1,000 l. Based on ovitrap surveillance, a significant reduction in Aedes populations was evident 4 weeks after initiating the first Bti treatment. The ovitrap index (OI) and the larvae density decreased drastically in both trial sites. In TST, the indoor OI was significantly reduced from 57.50 +/- 7.50% to 19.13 +/- 5.49% (p<0.05), while the outdoor OI decreased from 38.89 +/- 11.11% to 15.36 +/- 5.93%. In KB, similarly, the OI was significantly reduced by more than half, from 66.66 +/- 6.67% to 30.26 +/- 2.99% (p< 0.05). In all cases, the reduction in OI was paralleled by reduction in larval density. PMID:19058596

  13. Climate change influences on global distributions of dengue and chikungunya virus vectors.

    PubMed

    Campbell, Lindsay P; Luther, Caylor; Moo-Llanes, David; Ramsey, Janine M; Danis-Lozano, Rogelio; Peterson, A Townsend

    2015-04-01

    Numerous recent studies have illuminated global distributions of human cases of dengue and other mosquito-transmitted diseases, yet the potential distributions of key vector species have not been incorporated integrally into those mapping efforts. Projections onto future conditions to illuminate potential distributional shifts in coming decades are similarly lacking, at least outside Europe. This study examined the global potential distributions of Aedes aegypti and Aedes albopictus in relation to climatic variation worldwide to develop ecological niche models that, in turn, allowed anticipation of possible changes in distributional patterns into the future. Results indicated complex global rearrangements of potential distributional areas, which--given the impressive dispersal abilities of these two species--are likely to translate into actual distributional shifts. This exercise also signalled a crucial priority: digitization and sharing of existing distributional data so that models of this sort can be developed more rigorously, as present availability of such data is fragmentary and woefully incomplete.

  14. Climate change influences on global distributions of dengue and chikungunya virus vectors.

    PubMed

    Campbell, Lindsay P; Luther, Caylor; Moo-Llanes, David; Ramsey, Janine M; Danis-Lozano, Rogelio; Peterson, A Townsend

    2015-04-01

    Numerous recent studies have illuminated global distributions of human cases of dengue and other mosquito-transmitted diseases, yet the potential distributions of key vector species have not been incorporated integrally into those mapping efforts. Projections onto future conditions to illuminate potential distributional shifts in coming decades are similarly lacking, at least outside Europe. This study examined the global potential distributions of Aedes aegypti and Aedes albopictus in relation to climatic variation worldwide to develop ecological niche models that, in turn, allowed anticipation of possible changes in distributional patterns into the future. Results indicated complex global rearrangements of potential distributional areas, which--given the impressive dispersal abilities of these two species--are likely to translate into actual distributional shifts. This exercise also signalled a crucial priority: digitization and sharing of existing distributional data so that models of this sort can be developed more rigorously, as present availability of such data is fragmentary and woefully incomplete. PMID:25688023

  15. HPTLC analysis of Scoparia dulcis Linn (Scrophulariaceae) and its larvicidal potential against dengue vector Aedes aegypti.

    PubMed

    Wankhar, Wankupar; Srinivasan, Sakthivel; Rathinasamy, Sheeladevi

    2015-01-01

    This study evaluates the larvicidal activity of Scoparia dulcis aqueous extract against dengue vector and determines its major chemical components. The extract was tested at various concentrations ranging from 0.1 to 2 mg/mL against Aedes aegypti larvae. The extracts displayed significant larvicidal efficacy against Ae. aegypt species after 24 h exposure revealing LC50 of 3.3835 (mg/mL) and LC90 of 5.7578 (mg/mL). Finger printing profile carried out by CAMAG automatic TLC sample applicator programmed through WIN CATS software revealed peaks with different Rf values for three different volumes injected: 16, 15 and 18 peaks were spotted for 3, 6 and 9 μL, respectively. Ascending order of Rf values was also ascertained for each peak recorded. This study clearly signifies that S. dulcis extract contains numerous compounds that are known to have larvicidal properties which clearly substantiates its efficacy on Ae. aegypti larvae.

  16. HPTLC analysis of Scoparia dulcis Linn (Scrophulariaceae) and its larvicidal potential against dengue vector Aedes aegypti.

    PubMed

    Wankhar, Wankupar; Srinivasan, Sakthivel; Rathinasamy, Sheeladevi

    2015-01-01

    This study evaluates the larvicidal activity of Scoparia dulcis aqueous extract against dengue vector and determines its major chemical components. The extract was tested at various concentrations ranging from 0.1 to 2 mg/mL against Aedes aegypti larvae. The extracts displayed significant larvicidal efficacy against Ae. aegypt species after 24 h exposure revealing LC50 of 3.3835 (mg/mL) and LC90 of 5.7578 (mg/mL). Finger printing profile carried out by CAMAG automatic TLC sample applicator programmed through WIN CATS software revealed peaks with different Rf values for three different volumes injected: 16, 15 and 18 peaks were spotted for 3, 6 and 9 μL, respectively. Ascending order of Rf values was also ascertained for each peak recorded. This study clearly signifies that S. dulcis extract contains numerous compounds that are known to have larvicidal properties which clearly substantiates its efficacy on Ae. aegypti larvae. PMID:25573588

  17. The effect of antibody-dependent enhancement, cross immunity, and vector population on the dynamics of dengue fever.

    PubMed

    Hu, K; Thoens, C; Bianco, S; Edlund, S; Davis, M; Douglas, J; Kaufman, J H

    2013-02-21

    Dengue is a major international public health concern and impacts one-third of the world's population. No specific vaccine and treatment are available for this vector-borne disease. There are four similar but distinct serotypes of dengue viruses (DENV). Infection with one serotype affords life-long immunity to that serotype but only temporary partial immunity, or cross immunity (CI), to others. This increases the risk of developing lethal complications upon re-infection, mainly because of the effect of antibody-dependent enhancement (ADE). There have been multiple studies of the dynamic behavior created by the interplay of ADE and CI using mathematical models. However, models in the literature seldom capture the vector population, which we consider important because combating the mosquito vector is the only way to contain dengue transmission in the absence of vaccines. We therefore propose two differential-equation models of dengue fever (DF) with different levels of complexity and details. Our results support the need for ADE to explain the complexity of the epidemiological data.

  18. Dengue Expansion in Africa—Not Recognized or Not Happening?

    PubMed Central

    Junghanss, Thomas; Wills, Bridget; Brady, Oliver J.; Eckerle, Isabella; Farlow, Andrew; Hay, Simon I.; McCall, Philip J.; Messina, Jane P.; Ofula, Victor; Sall, Amadou A.; Sakuntabhai, Anavaj; Velayudhan, Raman; Wint, G.R. William; Zeller, Herve; Margolis, Harold S.; Sankoh, Osman

    2014-01-01

    An expert conference on Dengue in Africa was held in Accra, Ghana, in February 2013 to consider key questions regarding the possible expansion of dengue in Africa. Four key action points were highlighted to advance our understanding of the epidemiology of dengue in Africa. First, dengue diagnostic tools must be made more widely available in the healthcare setting in Africa. Second, representative data need to be collected across Africa to uncover the true burden of dengue. Third, established networks should collaborate to produce these types of data. Fourth, policy needs to be informed so the necessary steps can be taken to provide dengue vector control and health services. PMID:25271370

  19. Replacing a Native Wolbachia with a Novel Strain Results in an Increase in Endosymbiont Load and Resistance to Dengue Virus in a Mosquito Vector

    PubMed Central

    Lu, Peng; Xi, Zhiyong

    2013-01-01

    Wolbachia is a maternally transmitted endosymbiotic bacterium that is estimated to infect up to 65% of insect species. The ability of Wolbachia to both induce pathogen interference and spread into mosquito vector populations makes it possible to develop Wolbachia as a biological control agent for vector-borne disease control. Although Wolbachia induces resistance to dengue virus (DENV), filarial worms, and Plasmodium in mosquitoes, species like Aedes polynesiensis and Aedes albopictus, which carry native Wolbachia infections, are able to transmit dengue and filariasis. In a previous study, the native wPolA in Ae. polynesiensis was replaced with wAlbB from Ae. albopictus, and resulted in the generation of the transinfected “MTB” strain with low susceptibility for filarial worms. In this study, we compare the dynamics of DENV serotype 2 (DENV-2) within the wild type “APM” strain and the MTB strain of Ae. polynesiensis by measuring viral infection in the mosquito whole body, midgut, head, and saliva at different time points post infection. The results show that wAlbB can induce a strong resistance to DENV-2 in the MTB mosquito. Evidence also supports that this resistance is related to a dramatic increase in Wolbachia density in the MTB's somatic tissues, including the midgut and salivary gland. Our results suggests that replacement of a native Wolbachia with a novel infection could serve as a strategy for developing a Wolbachia-based approach to target naturally infected insects for vector-borne disease control. PMID:23755311

  20. Reduced efficacy of pyrethroid space sprays for dengue control in an area of Martinique with pyrethroid resistance.

    PubMed

    Marcombe, Sébastien; Carron, Alexandre; Darriet, Frédéric; Etienne, Manuel; Agnew, Philip; Tolosa, Michel; Yp-Tcha, Marie Michèle; Lagneau, Christophe; Yébakima, André; Corbel, Vincent

    2009-05-01

    In the Caribbean, insecticide resistance is widely developed in Aedes aegypti and represents a serious obstacle for dengue vector control. The efficacy of pyrethroid and organophosphate ultra-low volume space sprays was investigated in Martinique where Ae. aegypti has been shown to be resistant to conventional insecticides. In the laboratory, a wild-field caught population showed high levels of resistance to deltamethrin, organophosphate (naled), and pyrethrum. Simulated-field trials showed that this resistance can strongly reduce the knock-down effect and mortality of deltamethrin and synergized pyrethrins when applied by thermal-fogging. Conversely, the efficacy of naled was high against insecticide-resistant mosquitoes. Chemical analyses of nettings exposed to the treatments showed a decrease in residues over distance from release for the pyrethroids, and naled was not detected. This finding has important implications for dengue vector control and emphasizes the need to develop innovative strategies to maintain effective control of resistant Ae. aegypti populations. PMID:19407118

  1. Vector-borne disease problems in rapid urbanization: new approaches to vector control.

    PubMed

    Knudsen, A B; Slooff, R

    1992-01-01

    Owing to population growth, poor levels of hygiene, and increasing urban poverty, the urban environment in many developing countries is rapidly deteriorating. Densely packed housing in shanty towns or slums and inadequate drinking-water supplies, garbage collection services, and surface-water drainage systems combine to create favourable habitats for the proliferation of vectors and reservoirs of communicable diseases. As a consequence, vector-borne diseases such as malaria, lymphatic filariasis and dengue are becoming major public health problems associated with rapid urbanization in many tropical countries. The problems in controlling these diseases and eliminating vectors and pests can be resolved by decision-makers and urban planners by moving away from the concept of "blanket" applications of pesticides towards integrated approaches. Sound environmental management practices and community education and participation form the mainstay of some of the most outstanding successes in this area. On the basis of these examples, it is argued that the municipal authorities need to apply a flexible methodology, which must be based on the possibilities of mobilizing community resources, with minimal reliance on routine pesticidal spraying. In this way, vector control becomes a by-product of human development in the city environment. This is now a true challenge.

  2. Household disposables as breeding habitats of dengue vectors: Linking wastes and public health

    SciTech Connect

    Banerjee, Soumyajit; Aditya, Gautam; Saha, Goutam K

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer An assessment of different household wastes as larval habitats of dengue vectors Aedes aegypti and Aedes albopictus was made using Kolkata, India as a model geographical area. Black-Right-Pointing-Pointer Household wastes of four major categories namely earthen, porcelain, plastic and coconut shells varied significantly for Aedes immature depending on species, month and location. Black-Right-Pointing-Pointer Based on the relative density of Aedes immature, cluster analyses allowed segregation and classification of the waste containers and relative importance as mosquito larval habitats. Black-Right-Pointing-Pointer Conversion of disposed wastes into larval habitats cautions for continuance of Aedes population in Kolkata and similar cities of tropics lacking suitable waste management practices. - Abstract: An assessment of the household wastes as larval habitats of the dengue vectors was made considering Kolkata, India, as geographical area. Wastes of four major categories, namely, earthen, porcelain, plastic and coconut shells were monitored for positive with immature of either Aedes aegypti or Aedes albopictus. Twenty six types of wastes with varying size and shape, resembling containers, were identified that hosted mosquito immature. The number of waste containers positive for Aedes immature varied significantly (P < 0.05) with respect to location, type and month. The relative density of Aedes immature in the waste containers varied significantly (P < 0.05) with the types and months. The significant interaction between the month, waste container types and density of Aedes immature suggest that the household wastes are important contributors to the maintenance of the population of Aedes mosquito in the city. Based on the relative density of mosquito immature in the wastes, cluster analysis allowed segregation and classification of the wastes and their importance as mosquito larval habitats. Apparently, the containers that

  3. Dengue in French Guiana, 1965-1993.

    PubMed

    Fouque, F; Reynes, J M; Moreau, J P

    1995-06-01

    While it seems likely that dengue fever (DF) has existed in French Guiana for at least one century, data on outbreaks are sketchy before temporary eradication of the dengue vector mosquito Aedes aegypti and its reestablishment in the early 1960s. Dengue cases were serologically confirmed for the first time in 1965, and since then dengue epidemics have occurred at two to six year intervals, the most important occurring in 1968-1969, 1970, 1972, 1976, 1982, 1986, and 1992. Three of the four dengue virus serotypes (dengue-1, dengue-2, and dengue-4) have been implicated in these outbreaks. During the 1992 epidemic, which appears to have begun in 1991 and extended into 1993, cases of dengue hemorrhagic fever (DHF) were confirmed for the first time. In all, at least 40 DHF cases and several deaths were associated with this epidemic. This development has raised considerable concern about the public health threat posed by DHF in French Guiana. Such concern is only heightened by the fact that while vector control is the sole means of preventing or combating dengue outbreaks, it has proved difficult to maintain vector populations at low levels with the control measures currently employed.

  4. Epidemiology and control of dengue virus infections in Thai villages in 1987.

    PubMed

    Eamchan, P; Nisalak, A; Foy, H M; Chareonsook, O A

    1989-07-01

    A severe epidemic of dengue hemorrhagic fever (DHF) in Nakhon Ratchasima, Thailand in August of 1987 prompted a field investigation. DHF rates of 0.4-6.5 cases per 1,000 residents in subdistricts and 2-15 cases per 1,000 residents in 10 villages investigated were reported. Epidemics peaked in neighboring villages at different times; in June and July, and in August before the rainy season began late in the month. In 4 primary schools representing 6 villages, sera from groups of randomly selected children were tested for dengue IgM with the antibody capture ELISA test. Rates of recent dengue infection were 10-65% in the schools and correlated closely with reported rates of DHF. In an effort to control vectors, malathion fog and temephos (1% abate sand granules) were applied. Villagers were educated in prevention and were urged to cover water receptacles. The percentage of houses with larvae dropped from 67 to 20, the percentage of containers with larvae decreased from 30 to 5, and the number of containers with larvae per 100 households decreased from 221 to 33. This was a serious epidemic in which conventional control measures were only moderately effective.

  5. DENGUE VIRAL INFECTIONS

    PubMed Central

    Gurugama, Padmalal; Garg, Pankaj; Perera, Jennifer; Wijewickrama, Ananda; Seneviratne, Suranjith L

    2010-01-01

    Dengue viral infections are one of the most important mosquito-borne diseases in the world. Presently dengue is endemic in 112 countries in the world. It has been estimated that almost 100 million cases of dengue fever and half a million cases of dengue hemorrhagic fever (DHF) occur worldwide. An increasing proportion of DHF is in children less than 15 years of age, especially in South East and South Asia. The unique structure of the dengue virus and the pathophysiologic responses of the host, different serotypes, and favorable conditions for vector breeding have led to the virulence and spread of the infections. The manifestations of dengue infections are protean from being asymptomatic to undifferentiated fever, severe dengue infections, and unusual complications. Early recognition and prompt initiation of appropriate supportive treatment are often delayed resulting in unnecessarily high morbidity and mortality. Attempts are underway for the development of a vaccine for preventing the burden of this neglected disease. This review outlines the epidemiology, clinical features, pathophysiologic mechanisms, management, and control of dengue infections. PMID:20418983

  6. Dengue viral infections.

    PubMed

    Gurugama, Padmalal; Garg, Pankaj; Perera, Jennifer; Wijewickrama, Ananda; Seneviratne, Suranjith L

    2010-01-01

    Dengue viral infections are one of the most important mosquito-borne diseases in the world. Presently dengue is endemic in 112 countries in the world. It has been estimated that almost 100 million cases of dengue fever and half a million cases of dengue hemorrhagic fever (DHF) occur worldwide. An increasing proportion of DHF is in children less than 15 years of age, especially in South East and South Asia. The unique structure of the dengue virus and the pathophysiologic responses of the host, different serotypes, and favorable conditions for vector breeding have led to the virulence and spread of the infections. The manifestations of dengue infections are protean from being asymptomatic to undifferentiated fever, severe dengue infections, and unusual complications. Early recognition and prompt initiation of appropriate supportive treatment are often delayed resulting in unnecessarily high morbidity and mortality. Attempts are underway for the development of a vaccine for preventing the burden of this neglected disease. This review outlines the epidemiology, clinical features, pathophysiologic mechanisms, management, and control of dengue infections.

  7. Mosquitoes, models, and dengue.

    PubMed

    Lifson, A R

    1996-05-01

    In the last 10 years dengue has spread markedly through Latin America and the Caribbean (Dominican Republic, Jamaica, Barbados, Mexico, Guatemala, El Salvador, Honduras, Nicaragua, Costa Rica, Panama, Ecuador, Colombia, Venezuela, and Brazil). The mosquito Aedes aegypti has taken advantage of increased urbanization and crowding to transmit the dengue virus. The mosquito infests tires, cans, and water jars near dwellings. The female mosquito practices multiple, interrupted feeding. Thus, mosquito infesting and feeding practices facilitate dengue transmission in crowded conditions. Factors contributing to the spread of dengue include numbers of infected and susceptible human hosts, strain of dengue virus, size of mosquito population, feeding habits, time from infection to ability to transmit virus for both vector and host, likelihood of virus transmission from human to mosquito to human, and temperature (which affects vector distribution, size, feeding habits, and extrinsic incubation period). Public health models may use simulation models to help them plan or evaluate the potential impact of different intervention strategies and/or of environmental changes (e.g., global warming). Other factors contributing to the dengue epidemic are international travel, urbanization, population growth, crowding, poverty, a weakened public health infrastructure, and limited support for sustained disease control programs. Molecular epidemiology by nucleic acid sequence analysis is another sophisticated technique used to study infectious diseases. It showed that dengue type 3 isolated from Panama and Nicaragua in 1994 was identical to that responsible for the major dengue hemorrhagic fever epidemics in Sri Lanka and India in the 1980s. Public health officials must remember three priorities relevant to dengue and other emerging infections: the need to strengthen surveillance efforts, dedicated and sustained involvement in prevention and control needs at the local level, and a strong

  8. Larvicidal and repellent potential of Zingiber nimmonii (J. Graham) Dalzell (Zingiberaceae) essential oil: an eco-friendly tool against malaria, dengue, and lymphatic filariasis mosquito vectors?

    PubMed

    Govindarajan, Marimuthu; Rajeswary, Mohan; Arivoli, Subramanian; Tennyson, Samuel; Benelli, Giovanni

    2016-05-01

    Mosquitoes (Diptera: Culicidae) are important vectors of terms of public health relevance, especially in tropical and sub-tropical regions. The continuous and indiscriminate use of conventional pesticides for the control of mosquito vectors has resulted in the development of resistance and negative impacts on non-target organisms and the environment. Therefore, there is a need for development of effective mosquito control tools. In this study, the larvicidal and repellent activity of Zingiber nimmonii rhizome essential oil (EO) was evaluated against the malaria vector Anopheles stephensi, the dengue vector Aedes aegypti, and the lymphatic filariasis vector Culex quinquefasciatus. The chemical composition of the EO was analyzed by gas chromatography-mass spectroscopy (GC-MS). GC-MS revealed that the Z. nimmonii EO contained at least 33 compounds. Major constituents were myrcene, β-caryophyllene, α-humulene, and α-cadinol. In acute toxicity assays, the EO showed significant toxicity against early third-stage larvae of An. stephensi, Ae. aegypti, and Cx. quinquefasciatus, with LC50 values of 41.19, 44.46, and 48.26 μg/ml, respectively. Repellency bioassays at 1.0, 2.0, and 5.0 mg/cm(2) of Z. nimmonii EO gave 100 % protection up to 120, 150, and 180 min. against An. stephensi, followed by Ae. aegypti (90, 120, and 150 min) and Cx. quinquefasciatus (60, 90, and 120 min). Furthermore, the EO was safer towards two non-target aquatic organisms, Diplonychus indicus and Gambusia affinis, with LC50 values of 3241.53 and 9250.12 μg/ml, respectively. Overall, this research adds basic knowledge to develop newer and safer natural larvicides and repellent from Zingiberaceae plants against malaria, dengue, and filariasis mosquito vectors. PMID:26792432

  9. Novel Genetic and Molecular Tools for the Investigation and Control of Dengue Virus Transmission by Mosquitoes.

    PubMed

    Franz, Alexander W E; Clem, Rollie J; Passarelli, A Lorena

    2014-03-01

    Aedes aegypti is the principal vector of dengue virus (DENV) throughout the tropical world. This anthropophilic mosquito species needs to be persistently infected with DENV before it can transmit the virus through its saliva to a new vertebrate host. In the mosquito, DENV is confronted with several innate immune pathways, among which RNA interference is considered the most important. The Ae. aegypti genome project opened the doors for advanced molecular studies on pathogen-vector interactions including genetic manipulation of the vector for basic research and vector control purposes. Thus, Ae. aegypti has become the primary model for studying vector competence for arboviruses at the molecular level. Here, we present recent findings regarding DENV-mosquito interactions, emphasizing how innate immune responses modulate DENV infections in Ae. aegypti. We also describe the latest advancements in genetic manipulation of Ae. aegypti and discuss how this technology can be used to investigate vector transmission of DENV at the molecular level and to control transmission of the virus in the field.

  10. Field Worker Evaluation of Dengue Vector Surveillance Methods: Factors That Determine Perceived Ease, Difficulty, Value, and Time Effectiveness in Australia and Malaysia.

    PubMed

    Azil, Aishah H; Ritchie, Scott A; Williams, Craig R

    2015-10-01

    This qualitative study aimed to describe field worker perceptions, evaluations of worth, and time costs of routine dengue vector surveillance methods in Cairns (Australia), Kuala Lumpur and Petaling District (Malaysia). In Cairns, the BG-Sentinel trap is a favored method for field workers because of its user-friendliness, but is not as cost-efficient as the sticky ovitrap. In Kuala Lumpur, the Mosquito Larvae Trapping Device is perceived as a solution for the inaccessibility of premises to larval surveys. Nonetheless, the larval survey method is retained in Malaysia for prompt detection of dengue vectors. For dengue vector surveillance to be successful, there needs to be not only technical, quantitative evaluations of method performance but also an appreciation of how amenable field workers are to using particular methods. Here, we report novel field worker perceptions of dengue vector surveillance methods in addition to time analysis for each method.

  11. Field Worker Evaluation of Dengue Vector Surveillance Methods: Factors That Determine Perceived Ease, Difficulty, Value, and Time Effectiveness in Australia and Malaysia.

    PubMed

    Azil, Aishah H; Ritchie, Scott A; Williams, Craig R

    2015-10-01

    This qualitative study aimed to describe field worker perceptions, evaluations of worth, and time costs of routine dengue vector surveillance methods in Cairns (Australia), Kuala Lumpur and Petaling District (Malaysia). In Cairns, the BG-Sentinel trap is a favored method for field workers because of its user-friendliness, but is not as cost-efficient as the sticky ovitrap. In Kuala Lumpur, the Mosquito Larvae Trapping Device is perceived as a solution for the inaccessibility of premises to larval surveys. Nonetheless, the larval survey method is retained in Malaysia for prompt detection of dengue vectors. For dengue vector surveillance to be successful, there needs to be not only technical, quantitative evaluations of method performance but also an appreciation of how amenable field workers are to using particular methods. Here, we report novel field worker perceptions of dengue vector surveillance methods in addition to time analysis for each method. PMID:25186807

  12. Recent developments in understanding dengue virus replication.

    PubMed

    Urcuqui-Inchima, Silvio; Patiño, Claudia; Torres, Silvia; Haenni, Anne-Lise; Díaz, Francisco Javier

    2010-01-01

    Dengue is the most important cause of mosquito-borne virus diseases in tropical and subtropical regions in the world. Severe clinical outcomes such as dengue hemorrhagic fever and dengue shock syndrome are potentially fatal. The epidemiology of dengue has undergone profound changes in recent years, due to several factors such as expansion of the geographical distribution of the insect vector, increase in traveling, and demographic pressure. As a consequence, the incidence of dengue has increased dramatically. Since mosquito control has not been successful and since no vaccine or antiviral treatment is available, new approaches to this problem are needed. Consequently, an in-depth understanding of the molecular and cellular biology of the virus should be helpful to design efficient strategies for the control of dengue. Here, we review the recently acquired knowledge on the molecular and cell biology of the dengue virus life cycle based on newly developed molecular biology technologies.

  13. Exploring the molecular basis of insecticide resistance in the dengue vector Aedes aegypti: a case study in Martinique Island (French West Indies)

    PubMed Central

    Marcombe, Sébastien; Poupardin, Rodolphe; Darriet, Frederic; Reynaud, Stéphane; Bonnet, Julien; Strode, Clare; Brengues, Cecile; Yébakima, André; Ranson, Hilary; Corbel, Vincent; David, Jean-Philippe

    2009-01-01

    Background The yellow fever mosquito Aedes aegypti is a major vector of dengue and hemorrhagic fevers, causing up to 100 million dengue infections every year. As there is still no medicine and efficient vaccine available, vector control largely based on insecticide treatments remains the only method to reduce dengue virus transmission. Unfortunately, vector control programs are facing operational challenges with mosquitoes becoming resistant to commonly used insecticides. Resistance of Ae. aegypti to chemical insecticides has been reported worldwide and the underlying molecular mechanisms, including the identification of enzymes involved in insecticide detoxification are not completely understood. Results The present paper investigates the molecular basis of insecticide resistance in a population of Ae. aegypti collected in Martinique (French West Indies). Bioassays with insecticides on adults and larvae revealed high levels of resistance to organophosphate and pyrethroid insecticides. Molecular screening for common insecticide target-site mutations showed a high frequency (71%) of the sodium channel 'knock down resistance' (kdr) mutation. Exposing mosquitoes to detoxification enzymes inhibitors prior to bioassays induced a significant increased susceptibility of mosquitoes to insecticides, revealing the presence of metabolic-based resistance mechanisms. This trend was biochemically confirmed by significant elevated activities of cytochrome P450 monooxygenases, glutathione S-transferases and carboxylesterases at both larval and adult stages. Utilization of the microarray Aedes Detox Chip containing probes for all members of detoxification and other insecticide resistance-related enzymes revealed the significant constitutive over-transcription of multiple detoxification genes at both larval and adult stages. The over-transcription of detoxification genes in the resistant strain was confirmed by using real-time quantitative RT-PCR. Conclusion These results suggest

  14. Toxicological properties of several medicinal plants from the Himalayas (India) against vectors of malaria, filariasis and dengue.

    PubMed

    Alam, M F; Safhi, Mohammed M; Chopra, A K; Dua, V K

    2011-08-01

    The leaves of five plants namely Nyctanthes arbortistis (Oleaceae), Catharanthus roseus (Apocynaceae), Boenininghusenia albiflora (Rutaceae), Valeriana hardwickii (Valerianaceae) and Eupatorium odoratum (Asteraceae) were selected for the first time from the Garhwal region of north west Himalaya to investigation its toxicological properties against mosquito vectors of malaria, filariasis and dengue. In a laboratory study, using different polarity solvents (petroleum ether, chloroform and methanol) were tested against important larvae of malaria, filariasis and dengue vectors in India. It was observed that petroleum ether fraction of all selected plant possess good larvicidal properties than other solvent fraction. The LC(50) values of isolates from Nyctanthes arbortistis (HAR-1), C. roseus (CAT-1), B. albiflora (BOA-1), V. hardwickii (SUG-1) and E. odoratum (EUP-1) against Anopheles stephensi were 185 ppm, 150 ppm, 105 ppm, 225 ppm and 135 ppm, respectively. The results therefore suggest that the fraction code BOA-1 has excellent larvicidal properties and could be incorporated as botanical insecticides against mosquito vectors with high safety to nontarget organisms. The same fraction was tested against adult vectors of malaria, filariasis and dengue, but no mortality was observed.

  15. Tackling the growing threat of dengue: Phyllanthus niruri-mediated synthesis of silver nanoparticles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera: Culicidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mosquitoes transmit pathogens that cause millions of human deaths each year. Dengue virus is transmitted to humans in tropical and subtropical areas by Aedes aegypti (Diptera: Culicidae). The use of synthetic insecticides to control this mosquito is accompanied by high operational costs and adverse...

  16. Improving Dengue Virus Capture Rates in Humans and Vectors in Kamphaeng Phet Province, Thailand, Using an Enhanced Spatiotemporal Surveillance Strategy

    PubMed Central

    Thomas, Stephen J.; Aldstadt, Jared; Jarman, Richard G.; Buddhari, Darunee; Yoon, In-Kyu; Richardson, Jason H.; Ponlawat, Alongkot; Iamsirithaworn, Sopon; Scott, Thomas W.; Rothman, Alan L.; Gibbons, Robert V.; Lambrechts, Louis; Endy, Timothy P.

    2015-01-01

    Dengue is of public health importance in tropical and sub-tropical regions. Dengue virus (DENV) transmission dynamics was studied in Kamphaeng Phet Province, Thailand, using an enhanced spatiotemporal surveillance of 93 hospitalized subjects with confirmed dengue (initiates) and associated cluster individuals (associates) with entomologic sampling. A total of 438 associates were enrolled from 208 houses with household members with a history of fever, located within a 200-m radius of an initiate case. Of 409 associates, 86 (21%) had laboratory-confirmed DENV infection. A total of 63 (1.8%) of the 3,565 mosquitoes collected were dengue polymerase chain reaction positive (PCR+). There was a significant relationship between spatial proximity to the initiate case and likelihood of detecting DENV from associate cases and Aedes mosquitoes. The viral detection rate from human hosts and mosquito vectors in this study was higher than previously observed by the study team in the same geographic area using different methodologies. We propose that the sampling strategy used in this study could support surveillance of DENV transmission and vector interactions. PMID:25986580

  17. Improving dengue virus capture rates in humans and vectors in Kamphaeng Phet Province, Thailand, using an enhanced spatiotemporal surveillance strategy.

    PubMed

    Thomas, Stephen J; Aldstadt, Jared; Jarman, Richard G; Buddhari, Darunee; Yoon, In-Kyu; Richardson, Jason H; Ponlawat, Alongkot; Iamsirithaworn, Sopon; Scott, Thomas W; Rothman, Alan L; Gibbons, Robert V; Lambrechts, Louis; Endy, Timothy P

    2015-07-01

    Dengue is of public health importance in tropical and sub-tropical regions. Dengue virus (DENV) transmission dynamics was studied in Kamphaeng Phet Province, Thailand, using an enhanced spatiotemporal surveillance of 93 hospitalized subjects with confirmed dengue (initiates) and associated cluster individuals (associates) with entomologic sampling. A total of 438 associates were enrolled from 208 houses with household members with a history of fever, located within a 200-m radius of an initiate case. Of 409 associates, 86 (21%) had laboratory-confirmed DENV infection. A total of 63 (1.8%) of the 3,565 mosquitoes collected were dengue polymerase chain reaction positive (PCR+). There was a significant relationship between spatial proximity to the initiate case and likelihood of detecting DENV from associate cases and Aedes mosquitoes. The viral detection rate from human hosts and mosquito vectors in this study was higher than previously observed by the study team in the same geographic area using different methodologies. We propose that the sampling strategy used in this study could support surveillance of DENV transmission and vector interactions.

  18. Conditions of the household and peridomicile and severe dengue: a case–control study in Brazil

    PubMed Central

    Gibson, Gerusa; Souza-Santos, Reinaldo; Honório, Nildimar Alves; Pacheco, Antonio Guilherme; Moraes, Milton Ozório; Kubelka, Claire; Brasil, Patrícia; Cruz, Oswaldo; Carvalho, Marilia Sá

    2014-01-01

    Introduction The potential influence of high-vector-density environments where people are supposedly more exposed to mosquito bites may have a relation to the clinical severity of dengue fever, an association that has been poorly discussed in the literature. Objective This study aimed at analyzing the association between anthropic environmental factors, particularly those related to the conditions of domicile and peridomicile, and the occurrence of severe dengue cases during the 2008 epidemic in the state of Rio de Janeiro. Methods We conducted a retrospective case–control study with a sample of 88 severe patients aged 2–18. They were selected through chart review in four children's tertiary care centers. The 367 controls were neighbors of the cases, paired by age. Data were collected through interviews and systematic assessment of house conditions as well as peridomicile area conditions, and they were later analyzed by conditional logistic regression. Results The presence of three or more high-volume capacity containers, which were without a lid or were inadequately sealed (water tanks, wells, cisterns, cement tanks, and pools), was significantly more frequent in households with severe cases when compared with households of controls (OR=1.6; CI 95%=1.36–20.01; p=0.015). Discussion The presence of such larger reservoirs that could potentially produce more adult forms of the vector is consistent with a situation where people are more exposed to mosquito bites, and consequently are more prone to have multiple infections over a short period of time. Conclusion The emergence of severe dengue cases in a high-transmission context underpins the importance of constant vigilance and interventions in those types of reservoirs, which result from precarious household structures and irregular water supply services. PMID:24765250

  19. Mosquito vector control and biology in Latin America--a sixth symposium.

    PubMed

    Clark, G G

    1996-09-01

    The sixth Spanish language symposium presented by the American Mosquito Control Association (AMCA) was held as part of the 62nd Annual Meeting in Norfolk, VA, in March 1996. The principal objective, as for the previous 5 symposia, was to promote the participation in the AMCA meeting by vector control specialists, public health workers, and academicians from Latin America. This publication includes summaries of 25 presentations that were given in Spanish by participants from 6 countries in Latin America and the USA. The symposium included the following topics: ecological and genetic studies of anopheline vectors of malaria, laboratory and field evaluations of chemical control methods for several mosquito species, ecological studies and community control of Aedes aegypti, and reports of dengue/dengue hemorrhagic fever and Venezuelan equine encephalitis epidemics that occurred in Latin America in 1995.

  20. Analyzing the spatio-temporal relationship between dengue vector larval density and land-use using factor analysis and spatial ring mapping

    PubMed Central

    2012-01-01

    Background Dengue, a mosquito-borne febrile viral disease, is found in tropical and sub-tropical regions and is now extending its range to temperate regions. The spread of the dengue viruses mainly depends on vector population (Aedes aegypti and Aedes albopictus), which is influenced by changing climatic conditions and various land-use/land-cover types. Spatial display of the relationship between dengue vector density and land-cover types is required to describe a near-future viral outbreak scenario. This study is aimed at exploring how land-cover types are linked to the behavior of dengue-transmitting mosquitoes. Methods Surveys were conducted in 92 villages of Phitsanulok Province Thailand. The sampling was conducted on three separate occasions in the months of March, May and July. Dengue indices, i.e. container index (C.I.), house index (H.I.) and Breteau index (B.I.) were used to map habitats conducible to dengue vector growth. Spatial epidemiological analysis using Bivariate Pearson’s correlation was conducted to evaluate the level of interdependence between larval density and land-use types. Factor analysis using principal component analysis (PCA) with varimax rotation was performed to ascertain the variance among land-use types. Furthermore, spatial ring method was used as to visualize spatially referenced, multivariate and temporal data in single information graphic. Results Results of dengue indices showed that the settlements around gasoline stations/workshops, in the vicinity of marsh/swamp and rice paddy appeared to be favorable habitat for dengue vector propagation at highly significant and positive correlation (p = 0.001) in the month of May. Settlements around the institutional areas were highly significant and positively correlated (p = 0.01) with H.I. in the month of March. Moreover, dengue indices in the month of March showed a significant and positive correlation (p <= 0.05) with deciduous forest. The H.I. of people living around horticulture

  1. Dengue infection: a growing global health threat.

    PubMed

    Hemungkorn, Marisa; Thisyakorn, Usa; Thisyakorn, Chule

    2007-10-01

    Dengue infection, one of the most devastating mosquito-borne viral diseases in humans, is now a significant problem in several tropical countries. The disease, caused by the four dengue virus serotypes, ranges from asymptomatic infection to undifferentiated fever, dengue fever (DF), and severe dengue hemorrhagic fever (DHF) with or without shock. DHF is characterized by fever, bleeding diathesis and a tendency to develop a potentially fatal shock syndrome. Consistent hematological findings include vasculopathy, coagulopathy, and thrombocytopenia. There are increasing reports of dengue infection with unusual manifestations that mainly involve cerebral and hepatic symptoms. Laboratory diagnosis includes virus isolation, serology, and detection of dengue ribonucleic acid. Successful treatment, which is mainly supportive, depends on early recognition of the disease and careful monitoring for shock. Prevention depends primarily on control of the mosquito vector. Further study of the pathogenesis of DHF is required for the development of a safe and effective dengue vaccine.

  2. Undesirable Consequences of Insecticide Resistance following Aedes aegypti Control Activities Due to a Dengue Outbreak

    PubMed Central

    Maciel-de-Freitas, Rafael; Avendanho, Fernando Campos; Santos, Rosangela; Sylvestre, Gabriel; Araújo, Simone Costa; Lima, José Bento Pereira; Martins, Ademir Jesus; Coelho, Giovanini Evelim; Valle, Denise

    2014-01-01

    Background During a dengue outbreak with co-circulation of DENV-1 and -2 in the city of Boa Vista, one patient was diagnosed with DENV-4, a serotype supposed absent from Brazil for almost 30 years. The re-emergence of DENV-4 triggered the intensification of mechanical and chemical Aedes aegypti control activities in order to reduce vector density and avoid DENV-4 dissemination throughout the country. Methods/Principal Findings Vector control activities consisted of (a) source reduction, (b) application of diflubenzuron against larvae and (c) vehicle-mounted space spraying of 2% deltamethrin to eliminate adults. Control activity efficacy was monitored by comparing the infestation levels and the number of eggs collected in ovitraps before and after interventions, performed in 22 Boa Vista districts, covering an area of ∼80% of the city and encompassing 56,837 dwellings. A total of 94,325 containers were eliminated or treated with diflubenzuron. The most frequently positive containers were small miscellaneous receptacles, which corresponded to 59% of all positive breeding sites. Insecticide resistance to deltamethrin was assessed before, during and after interventions by dose-response bioassays adopting WHO-based protocols. The intense use of the pyrethroid increased fourfold the resistance ratio of the local Ae. aegypti population only six months after the beginning of vector control. Curiously, this trend was also observed in the districts in which no deltamethrin was applied by the public health services. On the other hand, changes in the resistance ratio to the organophosphate temephos seemed less influenced by insecticide in Boa Vista. Conclusions Despite the intense effort, mosquito infestation levels were only slightly reduced. Besides, the median number of eggs in ovitraps remained unaltered after control activity intensification. The great and rapid increase in pyrethroid resistance levels of natural Ae. aegypti populations is discussed in the context of

  3. Dengue/DHF: an emerging disease in India.

    PubMed

    Sharma, S N; Raina, V K; Kumar, A

    2000-09-01

    Dengue/DHF is an emergent disease in India and some parts of country are endemic and periodically contributing annual outbreaks of dengue/DHF. Dengue infection manifests as undifferentiated fever, dengue haemorrhagic fever (DHF) which leads to hospitalization large number of people in a localized area. There is high mortality and morbidity associated with the onset of each dengue outbreak leading to great socio-economic impact. The prevention and control of dengue outbreak depends upon the proper monitoring of the disease case through disease surveillance so as to ensure timely management of cases. Vector surveillance helps in the proper and timely implementation of emergency control measures against dengue vector i.e. Aedes aegypti. There is an urgent need for an effective diagnostic strategy for early diagnosis to shorten the illness duration, hospitalization time and the associated complications.

  4. An epidemic of dengue fever in Wewak.

    PubMed

    Farrell, K T

    1978-06-01

    143 clinical cases of dengue fever were reported in Wewak between April and August 1976. 15 patients demonstrated a diagnostic rise in antibody titre for Group B arbovirus. Tests for complement-fixing antibody to dengue viruses did not indicate what type of dengue virus was responsible for the epidemic. Vector species Aedes aegypti and Aedes scutellaris were found before control measures were adopted but were not found four months later. The epidemiology of dengue fever is discussed and measures for prevention and control of epidemics are recommended.

  5. [Population genetics of dengue virus and transmission of dengue fever].

    PubMed

    Falcón-Lezama, Jorge; Sánchez-Burgos, Gilma Guadalupe; Ramos-Castañeda, José

    2009-01-01

    The endemic behavior of dengue fever in Mexico during the past five years is of major concern to every sector related with public health and the effort to control the transmission has been focused on vector control. However, regardless of the effectiveness of the intervention measures it is important to know which elements determine dengue transmission. With regard to the molecular basis for dengue transmission, a great deal of progress has been made due to the introduction of genomic and bioinformatic approaches. The goal of this review is to describe the most recent developments in this area with emphasis on the Mexican situation.

  6. Reviewing Dengue: Still a Neglected Tropical Disease?

    PubMed Central

    Horstick, Olaf; Tozan, Yesim; Wilder-Smith, Annelies

    2015-01-01

    Dengue is currently listed as a “neglected tropical disease” (NTD). But is dengue still an NTD or not? Classifying dengue as an NTD may carry advantages, but is it justified? This review considers the criteria for the definition of an NTD, the current diverse lists of NTDs by different stakeholders, and the commonalities and differences of dengue with other NTDs. We also review the current research gaps and research activities and the adequacy of funding for dengue research and development (R&D) (2003–2013). NTD definitions have been developed to a higher precision since the early 2000s, with the following main features: NTDs are characterised as a) poverty related, b) endemic to the tropics and subtropics, c) lacking public health attention, d) having poor research funding and shortcomings in R&D, e) usually associated with high morbidity but low mortality, and f) often having no specific treatment available. Dengue meets most of these criteria, but not all. Although dengue predominantly affects resource-limited countries, it does not necessarily only target the poor and marginalised in those countries. Dengue increasingly attracts public health attention, and in some affected countries it is now a high profile disease. Research funding for dengue has increased exponentially in the past two decades, in particular in the area of dengue vaccine development. However, despite advances in dengue research, dengue epidemics are increasing in frequency and magnitude, and dengue is expanding to new areas. Specific treatment and a highly effective vaccine remain elusive. Major research gaps exist in the area of integrated surveillance and vector control. Hence, although dengue differs from many of the NTDs, it still meets important criteria commonly used for NTDs. The current need for increased R&D spending, shared by dengue and other NTDs, is perhaps the key reason why dengue should continue to be considered an NTD. PMID:25928673

  7. Reviewing dengue: still a neglected tropical disease?

    PubMed

    Horstick, Olaf; Tozan, Yesim; Wilder-Smith, Annelies

    2015-04-01

    Dengue is currently listed as a "neglected tropical disease" (NTD). But is dengue still an NTD or not? Classifying dengue as an NTD may carry advantages, but is it justified? This review considers the criteria for the definition of an NTD, the current diverse lists of NTDs by different stakeholders, and the commonalities and differences of dengue with other NTDs. We also review the current research gaps and research activities and the adequacy of funding for dengue research and development (R&D) (2003-2013). NTD definitions have been developed to a higher precision since the early 2000s, with the following main features: NTDs are characterised as a) poverty related, b) endemic to the tropics and subtropics, c) lacking public health attention, d) having poor research funding and shortcomings in R&D, e) usually associated with high morbidity but low mortality, and f) often having no specific treatment available. Dengue meets most of these criteria, but not all. Although dengue predominantly affects resource-limited countries, it does not necessarily only target the poor and marginalised in those countries. Dengue increasingly attracts public health attention, and in some affected countries it is now a high profile disease. Research funding for dengue has increased exponentially in the past two decades, in particular in the area of dengue vaccine development. However, despite advances in dengue research, dengue epidemics are increasing in frequency and magnitude, and dengue is expanding to new areas. Specific treatment and a highly effective vaccine remain elusive. Major research gaps exist in the area of integrated surveillance and vector control. Hence, although dengue differs from many of the NTDs, it still meets important criteria commonly used for NTDs. The current need for increased R&D spending, shared by dengue and other NTDs, is perhaps the key reason why dengue should continue to be considered an NTD. PMID:25928673

  8. Reviewing dengue: still a neglected tropical disease?

    PubMed

    Horstick, Olaf; Tozan, Yesim; Wilder-Smith, Annelies

    2015-04-01

    Dengue is currently listed as a "neglected tropical disease" (NTD). But is dengue still an NTD or not? Classifying dengue as an NTD may carry advantages, but is it justified? This review considers the criteria for the definition of an NTD, the current diverse lists of NTDs by different stakeholders, and the commonalities and differences of dengue with other NTDs. We also review the current research gaps and research activities and the adequacy of funding for dengue research and development (R&D) (2003-2013). NTD definitions have been developed to a higher precision since the early 2000s, with the following main features: NTDs are characterised as a) poverty related, b) endemic to the tropics and subtropics, c) lacking public health attention, d) having poor research funding and shortcomings in R&D, e) usually associated with high morbidity but low mortality, and f) often having no specific treatment available. Dengue meets most of these criteria, but not all. Although dengue predominantly affects resource-limited countries, it does not necessarily only target the poor and marginalised in those countries. Dengue increasingly attracts public health attention, and in some affected countries it is now a high profile disease. Research funding for dengue has increased exponentially in the past two decades, in particular in the area of dengue vaccine development. However, despite advances in dengue research, dengue epidemics are increasing in frequency and magnitude, and dengue is expanding to new areas. Specific treatment and a highly effective vaccine remain elusive. Major research gaps exist in the area of integrated surveillance and vector control. Hence, although dengue differs from many of the NTDs, it still meets important criteria commonly used for NTDs. The current need for increased R&D spending, shared by dengue and other NTDs, is perhaps the key reason why dengue should continue to be considered an NTD.

  9. Eco-friendly microbial route to synthesize cobalt nanoparticles using Bacillus thuringiensis against malaria and dengue vectors.

    PubMed

    Marimuthu, Sampath; Rahuman, Abdul Abdul; Kirthi, Arivarasan Vishnu; Santhoshkumar, Thirunavukkarasu; Jayaseelan, Chidambaram; Rajakumar, Govindasamy

    2013-12-01

    The developments of resistance and persistence to chemical insecticides and concerns about the non-target effects have prompted the development of eco-friendly mosquito control agents. The aim of this study was to investigate the larvicidal activities of synthesized cobalt nanoparticles (Co NPs) using bio control agent, Bacillus thuringiensis against malaria vector, Anopheles subpictus and dengue vector, Aedes aegypti (Diptera: Culicidae). The synthesized Co NPs were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR), Field-emission scanning electron microscopy (FESEM) with energy dispersive X-ray spectroscopy, and Transmission electron microscopy (TEM). XRD analysis showed three distinct diffraction peaks at 27.03°, 31.00°, and 45.58° indexed to the planes 102, 122, and 024, respectively on the face-centered cubic cobalt acetate with an average size of 85.3 nm. FTIR spectra implicated role of the peak at 3,436 cm(-1) for O-H hydroxyl group, 2924 cm(-1) for methylene C-H stretch in the formation of Co NPs. FESEM analysis showed the topological and morphological appearance of NPs which were found to be spherical and oval in shape. TEM analysis showed polydispersed and clustered NPs with an average size of 84.81 nm. The maximum larvicidal mortality was observed in the cobalt acetate solution, B. thuringiensis formulation, and synthesized Co NPs against fourth instar larvae of A. subpictus and A. aegypti with LC50 values of 29.16, 8.12, 3.59 mg/L; 34.61, 6.94, and 2.87 mg/L; r (2) values of 0.986, 0.933, 0.942; 0.962, 0.957, and 0.922, respectively.

  10. Larvicidal Potential of the Halogenated Sesquiterpene (+)-Obtusol, Isolated from the Alga Laurencia dendroidea J. Agardh (Ceramiales: Rhodomelaceae), against the Dengue Vector Mosquito Aedes aegypti (Linnaeus) (Diptera: Culicidae)

    PubMed Central

    Salvador-Neto, Orlando; Gomes, Simone Azevedo; Soares, Angélica Ribeiro; Machado, Fernanda Lacerda da Silva; Samuels, Richard Ian; Nunes da Fonseca, Rodrigo; Souza-Menezes, Jackson; Moraes, Jorge Luiz da Cunha; Campos, Eldo; Mury, Flávia Borges; Silva, José Roberto

    2016-01-01

    Dengue is considered a serious public health problem in many tropical regions of the world including Brazil. At the moment, there is no viable alternative to reduce dengue infections other than controlling the insect vector, Aedes aegypti Linnaeus. In the continuing search for new sources of chemicals targeted at vector control, natural products are a promising alternative to synthetic pesticides. In our work, we investigated the toxicity of a bioactive compound extracted from the red alga Laurencia dendroidea J. Agardh. The initial results demonstrated that crude extracts, at a concentration of 5 ppm, caused pronounced mortality of second instar A. aegypti larvae. Two molecules, identified as (−)-elatol and (+)-obtusol were subsequently isolated from crude extract and further evaluated. Assays with (−)-elatol showed moderate larvicidal activity, whereas (+)-obtusol presented higher toxic activity than (−)-elatol, with a LC50 value of 3.5 ppm. Histological analysis of the larvae exposed to (+)-obtusol revealed damage to the intestinal epithelium. Moreover, (+)-obtusol-treated larvae incubated with 2 µM CM-H2DCFDA showed the presence of reactive oxygen species, leading us to suggest that epithelial damage might be related to redox imbalance. These results demonstrate the potential of (+)-obtusol as a larvicide for use against A. aegypti and the possible mode of action of this compound. PMID:26821032

  11. Larvicidal Potential of the Halogenated Sesquiterpene (+)-Obtusol, Isolated from the Alga Laurencia dendroidea J. Agardh (Ceramiales: Rhodomelaceae), against the Dengue Vector Mosquito Aedes aegypti (Linnaeus) (Diptera: Culicidae).

    PubMed

    Salvador-Neto, Orlando; Gomes, Simone Azevedo; Soares, Angélica Ribeiro; Machado, Fernanda Lacerda da Silva; Samuels, Richard Ian; Nunes da Fonseca, Rodrigo; Souza-Menezes, Jackson; Moraes, Jorge Luiz da Cunha; Campos, Eldo; Mury, Flávia Borges; Silva, José Roberto

    2016-02-01

    Dengue is considered a serious public health problem in many tropical regions of the world including Brazil. At the moment, there is no viable alternative to reduce dengue infections other than controlling the insect vector, Aedes aegypti Linnaeus. In the continuing search for new sources of chemicals targeted at vector control, natural products are a promising alternative to synthetic pesticides. In our work, we investigated the toxicity of a bioactive compound extracted from the red alga Laurencia dendroidea J. Agardh. The initial results demonstrated that crude extracts, at a concentration of 5 ppm, caused pronounced mortality of second instar A. aegypti larvae. Two molecules, identified as (-)-elatol and (+)-obtusol were subsequently isolated from crude extract and further evaluated. Assays with (-)-elatol showed moderate larvicidal activity, whereas (+)-obtusol presented higher toxic activity than (-)-elatol, with a LC50 value of 3.5 ppm. Histological analysis of the larvae exposed to (+)-obtusol revealed damage to the intestinal epithelium. Moreover, (+)-obtusol-treated larvae incubated with 2 µM CM-H₂DCFDA showed the presence of reactive oxygen species, leading us to suggest that epithelial damage might be related to redox imbalance. These results demonstrate the potential of (+)-obtusol as a larvicide for use against A. aegypti and the possible mode of action of this compound.

  12. [The density and larval habitats of dengue vectors in Chungho city].

    PubMed

    Teng, H J; Wu, Y L; Chung, C L; Lu, L C; Tseng, C; Wang, S J; Hsue, M H; Lin, T H

    1998-12-01

    A survey was conducted to understand larval habitats and density of dengue vectors in Chungho city during the period of August 12 to September 13, 1996. Most villages (41 in the total of 93) were found to have the density figures of three for Aedes albopictus Skuse. The second common density figures were found at 2nd and 4th levels. The most common breeding containers found were less than 5 cm in water depth and less than 100 cm2 in water area. The number of breeding containers reduced when the water depth and size increased. The common breeding containers in villages were flower vases (30%) and water buckets (18%). In the mountains, water buckets (34%) and kitchen tools (11%) were common. In parks, water buckets (29%) and tires (15%) were commonly found. In cemeteries, the common breeding containers were flower vases (57%) and earthenware pots (17%). The average (2.05 containers per man-hour) of positive water containers in the mountains was significantly higher than that in parks (0.62). However, the average in cemeteries (1.29) was not significantly different from those collected in mountains and parks.

  13. Genetic differentiation of the dengue vector, Aedes aegypti (Ho Chi Minh City, Vietnam) using microsatellite markers.

    PubMed

    Huber, K; Le Loan, L; Hoang, T H; Ravel, S; Rodhain, F; Failloux, A-B

    2002-09-01

    Dengue haemorrhagic fever emerged in the 1950s and has become a major public health concern in most Asian countries. In Vietnam, little is known about the intraspecific variation of the vector and its consequences on vectorial capacity. Here we report the use of microsatellite markers to differentiate Aedes aegypti populations in Ho Chi Minh City, a typical, overcrowded Asian city. Six microsatellite loci, with 5-14 alleles per locus, were scored in 20 mosquito samples collected in 1998 in Ho Chi Minh City. We found substantial differentiation among Ae. aegypti populations from the outskirts, whereas populations from the centre of the city showed less differentiation. These results are consistent with the hypothesis that populations of Ae. aegypti in central Ho Chi Minh City are panmictic because there are abundant larval breeding sites and an abundance of humans for adults to feed upon. In contrast, populations on the outskirts become differentiated largely through the processes of genetic drift because larval breeding sites are not as abundant. These findings implicate human activities associated with urbanization, as factors shaping the genetic structure of Ae. aegypti populations.

  14. Evaluation of silver nanoparticles toxicity of Arachis hypogaea peel extracts and its larvicidal activity against malaria and dengue vectors.

    PubMed

    Velu, Kuppan; Elumalai, Devan; Hemalatha, Periaswamy; Janaki, Arumugam; Babu, Muthu; Hemavathi, Maduraiveeran; Kaleena, Patheri Kunyil

    2015-11-01

    Silver nanoparticles (AgNPs) were successfully synthesised from aqueous silver nitrate using the extracts of Arachis hypogaea peels. The synthesised SNPs were characterized by Fourier transform-infrared spectroscopy analysis, X-ray diffraction, transmission electron microscopy analysis and high-resonance scanning electron microscopy, and energy dispersive X-ray spectroscopy. AgNPs were well defined and measured 20 to 50 nm in size. The nanoparticles were crystallized with a face-centered cubic structure. Larvicidal activity of synthesised AgNPs from A. hypogaea peels was tested for their larvicidal activity against the fourth instar larvae of Aedes aegypti (Yellow fever), Anopheles stephensi (Human malaria). The results suggest that the synthesised AgNPs have the potential to be used as an ideal eco-friendly resource for the control of A. aegypti and A. stephensi. This study provides the first report on the mosquito larvicidal activity of synthesised AgNPs from A. hypogaea peels against vectors of malaria and dengue.

  15. Silent spread of dengue and dengue haemorrhagic fever to Coimbatore and Erode districts in Tamil Nadu, India, 1998: need for effective surveillance to monitor and control the disease.

    PubMed

    Singh, J; Balakrishnan, N; Bhardwaj, M; Amuthadevi, P; George, E G; Subramani, K; Soundararajan, K; Appavoo, N C; Jain, D C; Ichhpujani, R L; Bhatia, R; Sokhey, J

    2000-08-01

    Dengue fever (DF) or dengue haemorrhagic fever (DHF) has not previously been reported in Coimbatore and Erode districts in Tamil Nadu in India. In 1998, 20 hospitalized cases of fever tested positive for dengue virus IgM and/or IgG antibodies. All of them had dengue-compatible illness, and at least four had DHF. Two of them died. Sixteen cases were below 10 years of age. The cases were scattered in 15 distantly located villages and 5 urban localities that had a high Aedes aegypti population. Although the incidence of dengue-like illness has not increased recently, almost 89% (95/107) of samples from healthy persons in the community tested positive for dengue IgG antibodies. The study showed that dengue has been endemic in the area, but was not suspected earlier. A strong laboratory-based surveillance system is essential to monitor and control DF/DHF.

  16. Dengue Fever

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dengue Fever” will be included in “Health Information for International Travel, 2007-2008” which will be published by the U.S. Centers for Disease Control and Prevention. Dengue and dengue hemorrhagic fever are viral diseases transmitted by Aedes mosquitoes. The disease is found in tropical and s...

  17. Spatio-Temporal Distribution of Aedes aegypti (Diptera: Culicidae) Mitochondrial Lineages in Cities with Distinct Dengue Incidence Rates Suggests Complex Population Dynamics of the Dengue Vector in Colombia

    PubMed Central

    Jaimes-Dueñez, Jeiczon; Arboleda, Sair; Triana-Chávez, Omar; Gómez-Palacio, Andrés

    2015-01-01

    Background Aedes aegypti is the primary vector of the four serotypes of dengue virus (DENV1-4), Chikungunya and yellow fever virus to humans. Previous population genetic studies have revealed a particular genetic structure among the vector populations in the Americas that suggests differences in the ability to transmit DENV. In Colombia, despite its high epidemiologic importance, the genetic population structure and the phylogeographic depiction of Ae. aegypti, as well as its relationship with the epidemiologic landscapes in cities with heterogeneous incidence levels, remains unknown. We conducted a spatiotemporal analysis with the aim of determining the genetic structure and phylogeography of Colombian populations of Ae. aegypti among cities with different eco-epidemiologic characteristics with regard to DENV. Methods/Findings Mitochondrial cytochrome oxidase C subunit 1 (COI) - NADH dehydrogenase subunit 4 (ND4) genes were sequenced and analyzed from 341 adult mosquitoes collected during 2012 and 2013 in the Colombian cities of Bello, Riohacha and Villavicencio, which exhibit low, medium and high levels of incidence of DENV, respectively. The results demonstrated a low genetic differentiation over time and a high genetic structure between the cities due to changes in the frequency of two highly supported genetic groups. The phylogeographic analyses indicated that one group (associated with West African populations) was found in all the cities throughout the sampling while the second group (associated with East African populations) was found in all the samples from Bello and in only one sampling from Riohacha. Environmental factors such as the use of chemical insecticides showed a significant correlation with decreasing genetic diversity, indicating that environmental factors affect the population structure of Ae. aegypti across time and space in these cities. Conclusions Our results suggest that two Ae. aegypti lineages are present in Colombia; one that is

  18. Strong larvicidal potential of Artemisia annua leaf extract against malaria (Anopheles stephensi Liston) and dengue (Aedes aegypti L.) vectors and bioassay-driven isolation of the marker compounds.

    PubMed

    Sharma, Gaurav; Kapoor, Himanshi; Chopra, Madhu; Kumar, Kaushal; Agrawal, Veena

    2014-01-01

    Malaria and dengue are the two most important vector-borne human diseases caused by mosquito vectors Anopheles stephensi and Aedes aegypti, respectively. Of the various strategies adopted for eliminating these diseases, controlling of vectors through herbs has been reckoned as one of the important measures for preventing their resurgence. Artemisia annua leaf chloroform extract when tried against larvae of A. stephensi and A. aegypti has shown a strong larvicidal activity against both of these vectors, their respective LC50 and LC90 values being 0.84 and 4.91 ppm for A. stephensi and 0.67 and 5.84 ppm for A. aegypti. The crude extract when separated through column chromatography using petroleum ether-ethyl acetate gradient (0-100%) yielded 76 fractions which were pooled into three different active fractions A, B and C on the basis of same or nearly similar R f values. The aforesaid pooled fractions when assayed against the larvae of A. stephensi too reported a strong larvicidal activity. The respective marker compound purified from the individual fractions A, B and C, were Artemisinin, Arteannuin B and Artemisinic acid, as confirmed and characterized through FT-IR and NMR. This is our first report of strong mortality of A. annua leaf chloroform extract against vectors of two deadly diseases. This technology can be scaled up for commercial exploitation. PMID:24158647

  19. Dengue haemorrhagic fever in Singapore.

    PubMed

    Wong, H B

    1981-01-01

    The history of dengue haemorrhagic fever as distinct from dengue fever in South-East Asia is traced. The epidemiology of the disease in the various countries is contrasted with that in Singapore since DHF first appeared on the scene in South-East Asia. From this survey, it is concluded that the dengue haemorrhagic fever is a new disease presentation, and its fate in SE Asia depends on the immunological state of the community, attempts at vector control, and probably antigenic variation in the various types of dengue virus. The pathogenetic mechanisms are discussed in detail. Diagnosis is presented with a detailed discussion of diagnosis of the pre-shock stage. Finally, the management of dengue haemorrhagic fever is discussed.

  20. Malaria vector control: from past to future.

    PubMed

    Raghavendra, Kamaraju; Barik, Tapan K; Reddy, B P Niranjan; Sharma, Poonam; Dash, Aditya P

    2011-04-01

    Malaria is one of the most common vector-borne diseases widespread in the tropical and subtropical regions. Despite considerable success of malaria control programs in the past, malaria still continues as a major public health problem in several countries. Vector control is an essential part for reducing malaria transmission and became less effective in recent years, due to many technical and administrative reasons, including poor or no adoption of alternative tools. Of the different strategies available for vector control, the most successful are indoor residual spraying and insecticide-treated nets (ITNs), including long-lasting ITNs and materials. Earlier DDT spray has shown spectacular success in decimating disease vectors but resulted in development of insecticide resistance, and to control the resistant mosquitoes, organophosphates, carbamates, and synthetic pyrethroids were introduced in indoor residual spraying with needed success but subsequently resulted in the development of widespread multiple insecticide resistance in vectors. Vector control in many countries still use insecticides in the absence of viable alternatives. Few developments for vector control, using ovitraps, space spray, biological control agents, etc., were encouraging when used in limited scale. Likewise, recent introduction of safer vector control agents, such as insect growth regulators, biocontrol agents, and natural plant products have yet to gain the needed scale of utility for vector control. Bacterial pesticides are promising and are effective in many countries. Environmental management has shown sufficient promise for vector control and disease management but still needs advocacy for inter-sectoral coordination and sometimes are very work-intensive. The more recent genetic manipulation and sterile insect techniques are under development and consideration for use in routine vector control and for these, standardized procedures and methods are available but need thorough

  1. Assessing Disparities of Dengue Virus Transmission Risk across the US-Mexican Border Using a Climate Driven Vector-Epidemiological Model

    NASA Technical Reports Server (NTRS)

    Morin, Cory; Monaghan, Andrew; Quattrochi, Dale; Crosson, William; Hayden, Mary; Ernst, Kacey

    2015-01-01

    Dengue fever is a mosquito-borne viral disease reemerging throughout much of the tropical Americas. Dengue virus transmission is explicitly influenced by climate and the environment through its primary vector, Aedes aegypti. Temperature regulates Ae. aegypti development, survival, and replication rates as well as the incubation period of the virus within the mosquito. Precipitation provides water for many of the preferred breeding habitats of the mosquito, including buckets, old tires, and other places water can collect. Although transmission regularly occurs along the border region in Mexico, dengue virus transmission in bordering Arizona has not occurred. Using NASA's TRMM (Tropical Rainfall Measuring Mission) satellite for precipitation input and Daymet for temperature and supplemental precipitation input, we modeled dengue transmission along a US-Mexico transect using a dynamic dengue transmission model that includes interacting vector ecology and epidemiological components. Model runs were performed for 5 cities in Sonora, Mexico and southern Arizona. Employing a Monte Carlo approach, we performed ensembles of several thousands of model simulations in order to resolve the model uncertainty arising from using different combinations of parameter values that are not well known. For cities with reported dengue case data, the top model simulations that best reproduced dengue case numbers were retained and their parameter values were extracted for comparison. These parameter values were used to run simulations in areas where dengue virus transmission does not occur or where dengue fever case data was unavailable. Additional model runs were performed to reveal how changes in climate or parameter values could alter transmission risk along the transect. The relative influence of climate variability and model parameters on dengue virus transmission is assessed to help public health workers prepare location specific infection prevention strategies.

  2. [The risk of urban yellow fever outbreaks in Brazil by dengue vectors. Aedes aegypti and Aedes albopictus].

    PubMed

    Mondet, B; da Rosa, A P; Vasconcelos, P F

    1996-01-01

    Urban yellow fever (YF) epidemics have disappeared from Brazil since about 50 years, but a selvatic cycle still exist. In many States, cases are more or less numerous each year. Ae. aegypti was eradicated in 1954, re-appeared temporarily in 1967, and then definitively in 1976-1977. Ae. aegypti is a vector of yellow few (YF), but also of dengue, whose first cases were reported in 1982. Today, dengue is endemic in many regions. A second Flavivirus vector, Aedes albopictus is present since about ten years in some States, from which Säo Paulo. The analysis of the YF cases between 1972 and 1994 allowed us to determine the epidemiologic regions. In the first region, the endemic area, the YF virus is circulating "silently" among monkeys, and the emergence of human cases is rare. In the second region, the epidemic area, some epizootics occur in a more or less cyclic way, and human cases can be numerous. Nevertheless, these outbreaks are considered "selvatic" epidemics, as long as Ae. aegypti is not concerned. From the Amazonian region, the virus moves forward along the forest galleries of the Amazone tributaries, from North to South. Actually, dengue epidemics appear in quite all States, and reflect the geographical distribution of Ae. aegypti. Recently, Ae. aegypti was found in the southern part of the Pará State, in the Carajás region considered to be the source of the main YF epidemics. In another hand, Ae. albopictus is now increasing its distribution area, specially in the suburban zones. The ecology of this potential vector, which seems to have a great adaptative capacity, give this vector an intermediate position between the forest galleries, where the YF virus circulates, and the agglomerations infested with Ae. aegypti. Since a few years, the possibility of urban YF is threatening Brazil, it is more and more predictable and we must survey very carefully the epidemiological situation in some regions of the country.

  3. Risk Factors for the Presence of Chikungunya and Dengue Vectors (Aedes aegypti and Aedes albopictus), Their Altitudinal Distribution and Climatic Determinants of Their Abundance in Central Nepal

    PubMed Central

    Dhimal, Meghnath; Gautam, Ishan; Joshi, Hari Datt; O’Hara, Robert B.; Ahrens, Bodo; Kuch, Ulrich

    2015-01-01

    Background The presence of the recently introduced primary dengue virus vector mosquito Aedes aegypti in Nepal, in association with the likely indigenous secondary vector Aedes albopictus, raises public health concerns. Chikungunya fever cases have also been reported in Nepal, and the virus causing this disease is also transmitted by these mosquito species. Here we report the results of a study on the risk factors for the presence of chikungunya and dengue virus vectors, their elevational ceiling of distribution, and climatic determinants of their abundance in central Nepal. Methodology/Principal Findings We collected immature stages of mosquitoes during six monthly cross-sectional surveys covering six administrative districts along an altitudinal transect in central Nepal that extended from Birgunj (80 m above sea level [asl]) to Dhunche (highest altitude sampled: 2,100 m asl). The dengue vectors Ae. aegypti and Ae. albopictus were commonly found up to 1,350 m asl in Kathmandu valley and were present but rarely found from 1,750 to 2,100 m asl in Dhunche. The lymphatic filariasis vector Culex quinquefasciatus was commonly found throughout the study transect. Physiographic region, month of collection, collection station and container type were significant predictors of the occurrence and co-occurrence of Ae. aegypti and Ae. albopictus. The climatic variables rainfall, temperature, and relative humidity were significant predictors of chikungunya and dengue virus vectors abundance. Conclusions/Significance We conclude that chikungunya and dengue virus vectors have already established their populations up to the High Mountain region of Nepal and that this may be attributed to the environmental and climate change that has been observed over the decades in Nepal. The rapid expansion of the distribution of these important disease vectors in the High Mountain region, previously considered to be non-endemic for dengue and chikungunya fever, calls for urgent actions to

  4. Bromeliad-inhabiting mosquitoes in an urban botanical garden of dengue endemic Rio de Janeiro--are bromeliads productive habitats for the invasive vectors Aedes aegypti and Aedes albopictus?

    PubMed

    Mocellin, Márcio Goulart; Simões, Taynãna César; Nascimento, Teresa Fernandes Silva do; Teixeira, Maria Lucia França; Lounibos, Leon Philip; Oliveira, Ricardo Lourenço de

    2009-12-01

    Immatures of both Aedes aegypti and Aedes albopictus have been found in water-holding bromeliad axils in Brazil. Removal of these plants or their treatment with insecticides in public and private gardens have been undertaken during dengue outbreaks in Brazil despite uncertainty as to their importance as productive habitats for dengue vectors. From March 2005-February 2006, we sampled 120 randomly selected bromeliads belonging to 10 species in a public garden less than 200 m from houses in a dengue-endemic neighborhood in Rio de Janeiro. A total of 2,816 mosquito larvae and pupae was collected, with an average of 5.87 immatures per plant per collection. Culex (Microculex) pleuristriatus and Culex spp of the Ocellatus Group were the most abundant culicid species, found in all species of bromeliads; next in relative abundance were species of the genus Wyeomyia. Only two individuals of Ae. aegypti (0.07%) and five of Ae. albopictus(0.18%) were collected from bromeliads. By contrast, immatures of Ae. aegypti were found in manmade containers in nearly 5% of nearby houses. These results demonstrate that bromeliads are not important producers of Ae. aegypti and Ae. albopictus and, hence, should not be a focus for dengue control. However, the results of this study of only one year in a single area may not represent outcomes in other urban localities where bromeliads, Ae. aegypti and dengue coincide in more disturbed habitats.

  5. Effect of mycosynthesized silver nanoparticles from filtrate of Trichoderma harzianum against larvae and pupa of dengue vector Aedes aegypti L.

    PubMed

    Sundaravadivelan, Chandran; Padmanabhan, Madanagopal Nalini

    2014-03-01

    Mosquitoes transmit dreadful diseases, causing millions of deaths every year. Therefore, screening for larvicidal and pupicidal activity of microbial extracts attributes could lead to development of new and improved mosquito control methods that are economical and safe for nontarget organisms and are ecofriendly. Synthetic chemical insecticides occupy predominant position in control strategies. These hazardous chemicals exert unwarranted toxicity and lethal effects on nontarget organisms, develop physiological resistance in target, and cause adverse environmental effect. For vector control, fungal-mediated natural products have been a priority in this area at present. In the current study, effective larvicidal and pupicidal effect of mycosynthesized silver nanoparticles (Ag NPs) using an entomopathogenic fungi Trichoderma harzianum against developmental stages of the dengue vector Aedes aegypti was investigated. An attractive possibility of green nanotechnology is to use microorganisms in the synthesis of nanosilver especially Ag NPs. The mycosynthesized Ag NPs were characterized to find their unique properties through UV-visible spectrophotometer, X-ray diffraction analysis, Fourier transform infrared, and surface characteristics by scanning electron microscopy. To analyze the bioefficacy, different test concentrations for extracellular filtrate (0.2, 0.4, 0.6, 0.8, and 1.0 %) and Ag NPs (0.05, 0.10, 0.15, 0.20, and 0.25 %) were prepared to a final volume of 200 mL using deionized water; 20 larvae of each instars (I-IV) and pupa were exposed to each test concentration separately which included a set of control (distilled water) group with five replicates. Characterization of the synthesized Ag NPs were about 10-20 nm without aggregation. Susceptibility of larval instars to synthesized Ag NPs was higher than the extracellular filtrate of T. harzianum alone after 24-h exposure, where the highest mortality was recorded as 92 and 96 % for first and second instars and

  6. Studies on insecticide susceptibility of Aedes aegypti (Linn) and Aedes albopictus (Skuse) vectors of dengue and chikungunya in Andaman and Nicobar Islands, India.

    PubMed

    Sivan, Arun; Shriram, A N; Sunish, I P; Vidhya, P T

    2015-12-01

    Dengue and chikungunya are important arboviral infections in the Andaman Islands. Competent vectors viz. Aedes aegypti and Aedes albopictus are widely prevalent. The most effective proven method for interrupting the transmission of these arboviruses is vector control, mediated through insecticides. Currently, DDT and temephos are the insecticides used for vector control in these islands. Lack of information on susceptibility necessitated assessing the susceptibility profile of A. aegypti and A. albopictus. F1 generation of adult and larvae were assayed, and LT50 and LT90 values were interpreted following the World Health Organization (WHO) protocol. Adults were found resistant to DDT-4 % while susceptible to dieldrin-0.4 %. Against organophosphates, both showed resistance to fenitrothion but susceptible to malathion-5 %. Both species showed resistance to carbamate and bendiocarb-0.1 % while susceptible to propoxur-0.1 %. Of the four synthetic pyrethroids, both were susceptible to deltamethrin-0.05 %, while resistant to permethrin-0.75 %, lambdacyhalothrin-0.05 % and cyfluthrin-0.15 %. Larvae of both species showed resistance to temephos at 0.02 mg/L but susceptible to malathion at 1 mg/L and fenthion at 0.05 mg/L. Currently, there is no prescribed WHO dose for adult-insecticide susceptibility testing. The emergence of resistance to DDT and temephos in the vector population poses a challenge to the on-going vector control measures. The results highlight the need for monitoring resistance to insecticides in the vector population. Impetus for source reduction and alternative choices of control measures are discussed for tackling future threat of arboviral infections in these islands.

  7. Epidemiology of dengue: past, present and future prospects

    PubMed Central

    Murray, Natasha Evelyn Anne; Quam, Mikkel B; Wilder-Smith, Annelies

    2013-01-01

    Dengue is currently regarded globally as the most important mosquito-borne viral disease. A history of symptoms compatible with dengue can be traced back to the Chin Dynasty of 265–420 AD. The virus and its vectors have now become widely distributed throughout tropical and subtropical regions of the world, particularly over the last half-century. Significant geographic expansion has been coupled with rapid increases in incident cases, epidemics, and hyperendemicity, leading to the more severe forms of dengue. Transmission of dengue is now present in every World Health Organization (WHO) region of the world and more than 125 countries are known to be dengue endemic. The true impact of dengue globally is difficult to ascertain due to factors such as inadequate disease surveillance, misdiagnosis, and low levels of reporting. Currently available data likely grossly underestimates the social, economic, and disease burden. Estimates of the global incidence of dengue infections per year have ranged between 50 million and 200 million; however, recent estimates using cartographic approaches suggest this number is closer to almost 400 million. The expansion of dengue is expected to increase due to factors such as the modern dynamics of climate change, globalization, travel, trade, socioeconomics, settlement and also viral evolution. No vaccine or specific antiviral therapy currently exists to address the growing threat of dengue. Prompt case detection and appropriate clinical management can reduce the mortality from severe dengue. Effective vector control is the mainstay of dengue prevention and control. Surveillance and improved reporting of dengue cases is also essential to gauge the true global situation as indicated in the objectives of the WHO Global Strategy for Dengue Prevention and Control, 2012–2020. More accurate data will inform the prioritization of research, health policy, and financial resources toward reducing this poorly controlled disease. The objective

  8. [Dengue fever. Another infectious disease out of control?].

    PubMed

    Jensenius, M; Gundersen, S G

    1997-11-30

    In the 1950s dengue fever left its home in South-East Asia. The result, as we see it 40 years later, is terrifying. From being an almost unknown infection, dengue fever is today's most common arboviral disease with up to 100 million cases annually. In addition, the clinical picture has changed from a benign influenza-like disorder (classic dengue fever) to a serious disease with bleeding and hypovolemic shock (dengue hemorrhagic fever). In this article the authors give an overview of the present epidemiology, prognosis and possible preventive measures against dengue fever.

  9. Impact of Argemone mexicana extracts on the cidal, morphological, and behavioral response of dengue vector, Aedes aegypti L. (Diptera: Culicidae).

    PubMed

    Warikoo, Radhika; Kumar, Sarita

    2013-10-01

    The larvicidal, behavioral, and morphological response of dengue vector, Aedes aegypti treated with deleterious weed, Argemone mexicana, was explored. The 1,000 ppm extracts of A. mexicana leaf, stem, and roots prepared in five different solvents (petroleum ether, hexane, benzene, acetone, and ethanol) were screened for their larvicidal activity against dengue vector establishing the efficacy of petroleum ether and hexane extracts. Other extracts, unable to give 100% mortality, were considered ineffective and discarded from further study. Larvicidal bioassay conducted with selected extracts confirmed the higher efficacy of hexane extracts exhibiting 1.1- to 1.8-fold more potential than the petroleum ether extracts. The results further revealed 1.6- to 2.4-fold higher efficacy of root extracts than those prepared from the leaves and stem of A. mexicana. The hexane root extract of A. mexicana was found to be the most effective larvicide with LC50 value of 91.331 ppm after 24 h of exposure causing 1.8 and 2.4 fold more toxicity as compared to the hexane leaf and stem extracts, respectively. Prolonged exposure of the larvae to the extracts resulted in increased toxicity potential of the extracts. Observations of the treated larvae revealed excitation, violent vertical, and horizontal movements with aggressive anal biting behavior suggesting effect of extracts on their neuromuscular system. Morphological studies of the treated larvae revealed the demelanization of cuticle and shrinkage of internal cuticle of anal papillae indicating the anal papillae as the probable action sites of the A. mexicana extracts. The potential of A. mexicana as new larvicides against dengue vector are being explored.

  10. The global distribution and burden of dengue.

    PubMed

    Bhatt, Samir; Gething, Peter W; Brady, Oliver J; Messina, Jane P; Farlow, Andrew W; Moyes, Catherine L; Drake, John M; Brownstein, John S; Hoen, Anne G; Sankoh, Osman; Myers, Monica F; George, Dylan B; Jaenisch, Thomas; Wint, G R William; Simmons, Cameron P; Scott, Thomas W; Farrar, Jeremy J; Hay, Simon I

    2013-04-25

    Dengue is a systemic viral infection transmitted between humans by Aedes mosquitoes. For some patients, dengue is a life-threatening illness. There are currently no licensed vaccines or specific therapeutics, and substantial vector control efforts have not stopped its rapid emergence and global spread. The contemporary worldwide distribution of the risk of dengue virus infection and its public health burden are poorly known. Here we undertake an exhaustive assembly of known records of dengue occurrence worldwide, and use a formal modelling framework to map the global distribution of dengue risk. We then pair the resulting risk map with detailed longitudinal information from dengue cohort studies and population surfaces to infer the public health burden of dengue in 2010. We predict dengue to be ubiquitous throughout the tropics, with local spatial variations in risk influenced strongly by rainfall, temperature and the degree of urbanization. Using cartographic approaches, we estimate there to be 390 million (95% credible interval 284-528) dengue infections per year, of which 96 million (67-136) manifest apparently (any level of disease severity). This infection total is more than three times the dengue burden estimate of the World Health Organization. Stratification of our estimates by country allows comparison with national dengue reporting, after taking into account the probability of an apparent infection being formally reported. The most notable differences are discussed. These new risk maps and infection estimates provide novel insights into the global, regional and national public health burden imposed by dengue. We anticipate that they will provide a starting point for a wider discussion about the global impact of this disease and will help to guide improvements in disease control strategies using vaccine, drug and vector control methods, and in their economic evaluation.

  11. Cost of dengue outbreaks: literature review and country case studies

    PubMed Central

    2013-01-01

    Background Dengue disease surveillance and vector surveillance are presumed to detect dengue outbreaks at an early stage and to save – through early response activities – resources, and reduce the social and economic impact of outbreaks on individuals, health systems and economies. The aim of this study is to unveil evidence on the cost of dengue outbreaks. Methods Economic evidence on dengue outbreaks was gathered by conducting a literature review and collecting information on the costs of recent dengue outbreaks in 4 countries: Peru, Dominican Republic, Vietnam, and Indonesia. The literature review distinguished between costs of dengue illness including cost of dengue outbreaks, cost of interventions and cost-effectiveness of interventions. Results Seventeen publications on cost of dengue showed a large range of costs from 0.2 Million US$ in Venezuela to 135.2 Million US$ in Brazil. However, these figures were not standardized to make them comparable. Furthermore, dengue outbreak costs are calculated differently across the publications, and cost of dengue illness is used interchangeably with cost of dengue outbreaks. Only one paper from Australia analysed the resources saved through active dengue surveillance. Costs of vector control interventions have been reported in 4 studies, indicating that the costs of such interventions are lower than those of actual outbreaks. Nine papers focussed on the cost-effectiveness of dengue vaccines or dengue vector control; they do not provide any direct information on cost of dengue outbreaks, but their modelling methodologies could guide future research on cost-effectiveness of national surveillance systems. The country case studies – conducted in very different geographic and health system settings - unveiled rough estimates for 2011 outbreak costs of: 12 million US$ in Vietnam, 6.75 million US$ in Indonesia, 4.5 million US$ in Peru and 2.8 million US$ in Dominican Republic (all in 2012 US$). The proportions of the

  12. Potential impacts of climate change on the ecology of dengue and its mosquito vector the Asian tiger mosquito (Aedes albopictus)

    NASA Astrophysics Data System (ADS)

    Erickson, R. A.; Hayhoe, K.; Presley, S. M.; Allen, L. J. S.; Long, K. R.; Cox, S. B.

    2012-09-01

    Shifts in temperature and precipitation patterns caused by global climate change may have profound impacts on the ecology of certain infectious diseases. We examine the potential impacts of climate change on the transmission and maintenance dynamics of dengue, a resurging mosquito-vectored infectious disease. In particular, we project changes in dengue season length for three cities: Atlanta, GA; Chicago, IL and Lubbock, TX. These cities are located on the edges of the range of the Asian tiger mosquito within the United States of America and were chosen as test cases. We use a disease model that explicitly incorporates mosquito population dynamics and high-resolution climate projections. Based on projected changes under the Special Report on Emissions Scenarios (SRES) A1fi (higher) and B1 (lower) emission scenarios as simulated by four global climate models, we found that the projected warming shortened mosquito lifespan, which in turn decreased the potential dengue season. These results illustrate the difficulty in predicting how climate change may alter complex systems.

  13. Harnessing mosquito-Wolbachia symbiosis for vector and disease control.

    PubMed

    Bourtzis, Kostas; Dobson, Stephen L; Xi, Zhiyong; Rasgon, Jason L; Calvitti, Maurizio; Moreira, Luciano A; Bossin, Hervé C; Moretti, Riccardo; Baton, Luke Anthony; Hughes, Grant L; Mavingui, Patrick; Gilles, Jeremie R L

    2014-04-01

    Mosquito species, members of the genera Aedes, Anopheles and Culex, are the major vectors of human pathogens including protozoa (Plasmodium sp.), filariae and of a variety of viruses (causing dengue, chikungunya, yellow fever, West Nile). There is lack of efficient methods and tools to treat many of the diseases caused by these major human pathogens, since no efficient vaccines or drugs are available; even in malaria where insecticide use and drug therapies have reduced incidence, 219 million cases still occurred in 2010. Therefore efforts are currently focused on the control of vector populations. Insecticides alone are insufficient to control mosquito populations since reduced susceptibility and even resistance is being observed more and more frequently. There is also increased concern about the toxic effects of insecticides on non-target (even beneficial) insect populations, on humans and the environment. During recent years, the role of symbionts in the biology, ecology and evolution of insect species has been well-documented and has led to suggestions that they could potentially be used as tools to control pests and therefore diseases. Wolbachia is perhaps the most renowned insect symbiont, mainly due to its ability to manipulate insect reproduction and to interfere with major human pathogens thus providing new avenues for pest control. We herein present recent achievements in the field of mosquito-Wolbachia symbiosis with an emphasis on Aedes albopictus. We also discuss how Wolbachia symbiosis can be harnessed for vector control as well as the potential to combine the sterile insect technique and Wolbachia-based approaches for the enhancement of population suppression programs. PMID:24252486

  14. Harnessing mosquito-Wolbachia symbiosis for vector and disease control.

    PubMed

    Bourtzis, Kostas; Dobson, Stephen L; Xi, Zhiyong; Rasgon, Jason L; Calvitti, Maurizio; Moreira, Luciano A; Bossin, Hervé C; Moretti, Riccardo; Baton, Luke Anthony; Hughes, Grant L; Mavingui, Patrick; Gilles, Jeremie R L

    2014-04-01

    Mosquito species, members of the genera Aedes, Anopheles and Culex, are the major vectors of human pathogens including protozoa (Plasmodium sp.), filariae and of a variety of viruses (causing dengue, chikungunya, yellow fever, West Nile). There is lack of efficient methods and tools to treat many of the diseases caused by these major human pathogens, since no efficient vaccines or drugs are available; even in malaria where insecticide use and drug therapies have reduced incidence, 219 million cases still occurred in 2010. Therefore efforts are currently focused on the control of vector populations. Insecticides alone are insufficient to control mosquito populations since reduced susceptibility and even resistance is being observed more and more frequently. There is also increased concern about the toxic effects of insecticides on non-target (even beneficial) insect populations, on humans and the environment. During recent years, the role of symbionts in the biology, ecology and evolution of insect species has been well-documented and has led to suggestions that they could potentially be used as tools to control pests and therefore diseases. Wolbachia is perhaps the most renowned insect symbiont, mainly due to its ability to manipulate insect reproduction and to interfere with major human pathogens thus providing new avenues for pest control. We herein present recent achievements in the field of mosquito-Wolbachia symbiosis with an emphasis on Aedes albopictus. We also discuss how Wolbachia symbiosis can be harnessed for vector control as well as the potential to combine the sterile insect technique and Wolbachia-based approaches for the enhancement of population suppression programs.

  15. Genetic Drift, Purifying Selection and Vector Genotype Shape Dengue Virus Intra-host Genetic Diversity in Mosquitoes

    PubMed Central

    Fontaine, Albin; Ar Gouilh, Meriadeg; Moltini-Conclois, Isabelle

    2016-01-01

    Due to their error-prone replication, RNA viruses typically exist as a diverse population of closely related genomes, which is considered critical for their fitness and adaptive potential. Intra-host demographic fluctuations that stochastically reduce the effective size of viral populations are a challenge to maintaining genetic diversity during systemic host infection. Arthropod-borne viruses (arboviruses) traverse several anatomical barriers during infection of their arthropod vectors that are believed to impose population bottlenecks. These anatomical barriers have been associated with both maintenance of arboviral genetic diversity and alteration of the variant repertoire. Whether these patterns result from stochastic sampling (genetic drift) rather than natural selection, and/or from the influence of vector genetic heterogeneity has not been elucidated. Here, we used deep sequencing of full-length viral genomes to monitor the intra-host evolution of a wild-type dengue virus isolate during infection of several mosquito genetic backgrounds. We estimated a bottleneck size ranging from 5 to 42 founding viral genomes at initial midgut infection, irrespective of mosquito genotype, resulting in stochastic reshuffling of the variant repertoire. The observed level of genetic diversity increased following initial midgut infection but significantly differed between mosquito genetic backgrounds despite a similar initial bottleneck size. Natural selection was predominantly negative (purifying) during viral population expansion. Taken together, our results indicate that dengue virus intra-host genetic diversity in the mosquito vector is shaped by genetic drift and purifying selection, and point to a novel role for vector genetic factors in the genetic breadth of virus populations during infection. Identifying the evolutionary forces acting on arboviral populations within their arthropod vector provides novel insights into arbovirus evolution. PMID:27304978

  16. Genetic Drift, Purifying Selection and Vector Genotype Shape Dengue Virus Intra-host Genetic Diversity in Mosquitoes.

    PubMed

    Lequime, Sebastian; Fontaine, Albin; Ar Gouilh, Meriadeg; Moltini-Conclois, Isabelle; Lambrechts, Louis

    2016-06-01

    Due to their error-prone replication, RNA viruses typically exist as a diverse population of closely related genomes, which is considered critical for their fitness and adaptive potential. Intra-host demographic fluctuations that stochastically reduce the effective size of viral populations are a challenge to maintaining genetic diversity during systemic host infection. Arthropod-borne viruses (arboviruses) traverse several anatomical barriers during infection of their arthropod vectors that are believed to impose population bottlenecks. These anatomical barriers have been associated with both maintenance of arboviral genetic diversity and alteration of the variant repertoire. Whether these patterns result from stochastic sampling (genetic drift) rather than natural selection, and/or from the influence of vector genetic heterogeneity has not been elucidated. Here, we used deep sequencing of full-length viral genomes to monitor the intra-host evolution of a wild-type dengue virus isolate during infection of several mosquito genetic backgrounds. We estimated a bottleneck size ranging from 5 to 42 founding viral genomes at initial midgut infection, irrespective of mosquito genotype, resulting in stochastic reshuffling of the variant repertoire. The observed level of genetic diversity increased following initial midgut infection but significantly differed between mosquito genetic backgrounds despite a similar initial bottleneck size. Natural selection was predominantly negative (purifying) during viral population expansion. Taken together, our results indicate that dengue virus intra-host genetic diversity in the mosquito vector is shaped by genetic drift and purifying selection, and point to a novel role for vector genetic factors in the genetic breadth of virus populations during infection. Identifying the evolutionary forces acting on arboviral populations within their arthropod vector provides novel insights into arbovirus evolution.

  17. Nanoparticles in the fight against mosquito-borne diseases: bioactivity of Bruguiera cylindrica-synthesized nanoparticles against dengue virus DEN-2 (in vitro) and its mosquito vector Aedes aegypti (Diptera: Culicidae).

    PubMed

    Murugan, Kadarkarai; Dinesh, Devakumar; Paulpandi, Manickam; Althbyani, Abdulaziz Dakhellah Meqbel; Subramaniam, Jayapal; Madhiyazhagan, Pari; Wang, Lan; Suresh, Udaiyan; Kumar, Palanisamy Mahesh; Mohan, Jagathish; Rajaganesh, Rajapandian; Wei, Hui; Kalimuthu, Kandasamy; Parajulee, Megha N; Mehlhorn, Heinz; Benelli, Giovanni

    2015-12-01

    Mosquitoes are blood-feeding insects serving as the most important vectors for spreading human pathogens and parasites. Dengue is a viral disease mainly vectored through the bite of Aedes mosquitoes. Its transmission has recently increased in urban and semi-urban areas of tropical and subtropical regions worldwide, becoming a major international public health concern. There is no specific treatment for dengue. Its prevention and control solely depend on effective vector control measures. Mangrove plants have been used in Indian traditional medicine for a wide array of purposes. In this research, we proposed a method for biosynthesis of antiviral and mosquitocidal silver nanoparticles (AgNP) using the aqueous extract of Bruguiera cylindrica leaves. AgNP were characterized using a variety of biophysical analyses, including UV-visible spectrophotometry, Fourier-transform infrared spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. Bruguiera cilyndrica aqueous extract and green-synthesized AgNP were tested against the primary dengue vector Aedes aegypti. AgNP were the most effective. LC50 values ranged from 8.93 ppm (larva I) to 30.69 ppm (pupa). In vitro experiments showed that 30 μg/ml of AgNP significantly inhibited the production of dengue viral envelope (E) protein in vero cells and downregulated the expression of dengue viral E gene. Concerning nontarget effects, we observed that the predation efficiency of Carassius auratus against A. aegypti was not affected by exposure at sublethal doses of AgNP. Predation in the control was 71.81 % (larva II) and 50.43 % (larva III), while in an AgNP-treated environment, predation was boosted to 90.25 and 76.81 %, respectively. Overall, this study highlights the concrete potential of green-synthesized AgNP in the fight against dengue virus. Furthermore, B. cylindrica-synthesized AgNP can be employed at low doses to reduce larval and pupal population of A. aegypti, without detrimental

  18. Dengue vaccines: challenges, development, current status and prospects.

    PubMed

    Ghosh, A; Dar, L

    2015-01-01

    Infection with dengue virus (DENV) is the most rapidly spreading mosquito-borne viral disease in the world. The clinical spectrum of dengue, caused by any of the four serotypes of DENV, ranges from mild self-limiting dengue fever to severe dengue, in the form dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Increased rates of hospitalization due to severe dengue, during outbreaks, result in massive economic losses and strained health services. In the absence of specific antiviral therapy, control of transmission of DENV by vector management is the sole method available for decreasing dengue-associated morbidity. Since vector control strategies alone have not been able to satisfactorily achieve reduction in viral transmission, the implementation of a safe, efficacious and cost-effective dengue vaccine as a supplementary measure is a high public health priority. However, the unique and complex immunopathology of dengue has complicated vaccine development. Dengue vaccines have also been challenged by critical issues like lack of animal models for the disease and absence of suitable markers of protective immunity. Although no licensed dengue vaccine is yet available, several vaccine candidates are under phases of development, including live attenuated virus vaccines, live chimeric virus vaccines, inactivated virus vaccines, subunit vaccines, DNA vaccines and viral-vectored vaccines. Although some vaccine candidates have progressed from animal trials to phase II and III in humans, a number of issues regarding implementation of dengue vaccine in countries like India still need to be addressed. Despite the current limitations, collaborative effects of regulatory bodies like World Health Organization with vaccine manufacturers and policy makers, to facilitate vaccine development and standardize field trials can make a safe and efficacious dengue vaccine a reality in near future.

  19. Dengue viruses - an overview.

    PubMed

    Bäck, Anne Tuiskunen; Lundkvist, Ake

    2013-01-01

    Dengue viruses (DENVs) cause the most common arthropod-borne viral disease in man with 50-100 million infections per year. Because of the lack of a vaccine and antiviral drugs, the sole measure of control is limiting the Aedes mosquito vectors. DENV infection can be asymptomatic or a self-limited, acute febrile disease ranging in severity. The classical form of dengue fever (DF) is characterized by high fever, headache, stomach ache, rash, myalgia, and arthralgia. Severe dengue, dengue hemorrhagic fever (DHF), and dengue shock syndrome (DSS) are accompanied by thrombocytopenia, vascular leakage, and hypotension. DSS, which can be fatal, is characterized by systemic shock. Despite intensive research, the underlying mechanisms causing severe dengue is still not well understood partly due to the lack of appropriate animal models of infection and disease. However, even though it is clear that both viral and host factors play important roles in the course of infection, a fundamental knowledge gap still remains to be filled regarding host cell tropism, crucial host immune response mechanisms, and viral markers for virulence.

  20. Control of dengue fever with active surveillance and the use of insecticidal aerosol cans.

    PubMed

    Osaka, K; Ha, D Q; Sakakihara, Y; Khiem, H B; Umenai, T

    1999-09-01

    An interventional study was conducted in southern Vietnam to evaluate the feasibility and effectiveness of a new approach to control dengue fever. The approach consisted of active surveillance of dengue patients and the use of insecticidal aerosol cans. Febrile patients were tested serologically at local health centers and insecticidal aerosol cans were given to the family and employed in the neighborhood of dengue patients instead of ultra low volume (ULV) fogging with insecticide. The number of dengue IgM antibody positive cases among febrile patients, the number of reported dengue hemorrhagic fever patients and the total cost were compared in the 2 approaches (prompt focal ULV fogging and the use of insecticidal aerosol cans) in 1997. The aerosol cans were employed 5 times (in June, July, August, September and October) in the study area. ULV fogging in the control area was performed 5 times (in March, May, July, August and September). Twenty-two serologically positive cases were found in the study area which was about half that found in the control area (43 cases). A total of 16 dengue hemorrhagic fever patients was reported in the study area and 43 in the control area. Compared with the reported numbers of the previous year, the reduction rate in the number of dengue hemorrhagic fever cases was 71.4% in the study area and 51.7% in the control area. There were statistically significant differences in the morbidity of dengue fever and the reduction rate of dengue hemorrhagic fever. The cost of the insecticidal aerosol cans was US$393 which was lower than the cost of US$553 for ULV fogging. The findings suggest that insecticidal aerosol cans were effective and feasible for dengue fever control.

  1. Meteorological Factors for Dengue Fever Control and Prevention in South China

    PubMed Central

    Gu, Haogao; Leung, Ross Ka-Kit; Jing, Qinlong; Zhang, Wangjian; Yang, Zhicong; Lu, Jiahai; Hao, Yuantao; Zhang, Dingmei

    2016-01-01

    Dengue fever (DF) is endemic in Guangzhou and has been circulating for decades, causing significant economic loss. DF prevention mainly relies on mosquito control and change in lifestyle. However, alert fatigue may partially limit the success of these countermeasures. This study investigated the delayed effect of meteorological factors, as well as the relationships between five climatic variables and the risk for DF by boosted regression trees (BRT) over the period of 2005–2011, to determine the best timing and strategy for adapting such preventive measures. The most important meteorological factor was daily average temperature. We used BRT to investigate the lagged relationship between dengue clinical burden and climatic variables, with the 58 and 62 day lag models attaining the largest area under the curve. The climatic factors presented similar patterns between these two lag models, which can be used as references for DF prevention in the early stage. Our results facilitate the development of the Mosquito Breeding Risk Index for early warning systems. The availability of meteorological data and modeling methods enables the extension of the application to other vector-borne diseases endemic in tropical and subtropical countries. PMID:27589777

  2. Meteorological Factors for Dengue Fever Control and Prevention in South China.

    PubMed

    Gu, Haogao; Leung, Ross Ka-Kit; Jing, Qinlong; Zhang, Wangjian; Yang, Zhicong; Lu, Jiahai; Hao, Yuantao; Zhang, Dingmei

    2016-01-01

    Dengue fever (DF) is endemic in Guangzhou and has been circulating for decades, causing significant economic loss. DF prevention mainly relies on mosquito control and change in lifestyle. However, alert fatigue may partially limit the success of these countermeasures. This study investigated the delayed effect of meteorological factors, as well as the relationships between five climatic variables and the risk for DF by boosted regression trees (BRT) over the period of 2005-2011, to determine the best timing and strategy for adapting such preventive measures. The most important meteorological factor was daily average temperature. We used BRT to investigate the lagged relationship between dengue clinical burden and climatic variables, with the 58 and 62 day lag models attaining the largest area under the curve. The climatic factors presented similar patterns between these two lag models, which can be used as references for DF prevention in the early stage. Our results facilitate the development of the Mosquito Breeding Risk Index for early warning systems. The availability of meteorological data and modeling methods enables the extension of the application to other vector-borne diseases endemic in tropical and subtropical countries. PMID:27589777

  3. Meteorological Factors for Dengue Fever Control and Prevention in South China.

    PubMed

    Gu, Haogao; Leung, Ross Ka-Kit; Jing, Qinlong; Zhang, Wangjian; Yang, Zhicong; Lu, Jiahai; Hao, Yuantao; Zhang, Dingmei

    2016-01-01

    Dengue fever (DF) is endemic in Guangzhou and has been circulating for decades, causing significant economic loss. DF prevention mainly relies on mosquito control and change in lifestyle. However, alert fatigue may partially limit the success of these countermeasures. This study investigated the delayed effect of meteorological factors, as well as the relationships between five climatic variables and the risk for DF by boosted regression trees (BRT) over the period of 2005-2011, to determine the best timing and strategy for adapting such preventive measures. The most important meteorological factor was daily average temperature. We used BRT to investigate the lagged relationship between dengue clinical burden and climatic variables, with the 58 and 62 day lag models attaining the largest area under the curve. The climatic factors presented similar patterns between these two lag models, which can be used as references for DF prevention in the early stage. Our results facilitate the development of the Mosquito Breeding Risk Index for early warning systems. The availability of meteorological data and modeling methods enables the extension of the application to other vector-borne diseases endemic in tropical and subtropical countries.

  4. Reduction in dengue cases observed during mass control of Aedes (Stegomyia) in street catch basins in an endemic urban area in Colombia

    PubMed Central

    Ocampo, Clara B.; Mina, Neila Julieth; Carabalí, Mabel; Alexander, Neal; Osorio, Lyda

    2015-01-01

    Dengue incidence continues to increase globally and, in the absence of an efficacious vaccine, prevention strategies are limited to vector control. It has been suggested that targeting the most productive breeding sites instead of all water-holding containers could be a cost-effective vector control strategy. We sought to identify and continuously control the most productive Aedes (Stegomyia) breeding site in an endemic urban area in Colombia and followed the subsequent incidence of dengue. In the urban area of Guadalajara de Buga, southwestern Colombia, potential breeding sites inside and outside houses were first characterized, and local personnel trained to assess their productivity based on the pupae/person index. Simultaneously, training and monitoring were implemented to improve the dengue case surveillance system. Entomological data and insecticide resistance studies were used to define the targeted intervention. Then, a quasi-experimental design was used to assess the efficacy of the intervention in terms of the positivity index of the targeted and non- targeted breeding sites, and the impact on dengue cases. Street catch basins (storm drains) were the potential breeding site most frequently found containing Aedes immature stages in the baseline (58.3% of 108). Due to the high resistance to temephos (0% mortality after 24 h), the intervention consisted of monthly application of pyriproxyfen in all the street catch basins (n = 4800). A significant decrease in catch basins positivity for Aedes larvae was observed after each monthly treatment (p < 0.001). Over the intervention period, a reduction in the dengue incidence in Buga was observed (rate ratio 0.19, 95% CI 0.12–0.30, p < 0.0001) after adjusting for autocorrelation and controlling with a neighboring town, Palmira, This study highlights the importance of street catch basins as Aedes breeding sites and suggests that their targeted control could help to decrease dengue transmission in such areas. PMID

  5. Synthesis and characterization of silver nanoparticles using Gmelina asiatica leaf extract against filariasis, dengue, and malaria vector mosquitoes.

    PubMed

    Muthukumaran, Udaiyan; Govindarajan, Marimuthu; Rajeswary, Mohan; Hoti, S L

    2015-05-01

    Mosquitoes are blood-feeding insects and serve as the most important vectors for spreading human diseases such as malaria, yellow fever, dengue fever, and filariasis. The continued use of synthetic insecticides has resulted in resistance in mosquitoes. Synthetic insecticides are toxic and affect the environment by contaminating soil, water, and air, and then natural products may be an alternative to synthetic insecticides because they are effective, biodegradable, eco-friendly, and safe to environment. Botanical origin may serve as suitable alternative biocontrol techniques in the future. The present study was carried out to establish the larvicidal potential of leaf extracts of Gmelina asiatica and synthesized silver nanoparticles using aqueous leaf extract against late third instar larvae of Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus. Larvae were exposed to varying concentrations of plant extracts and synthesized AgNPs for 24 h. The results were recorded from UV-visible spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray spectroscopy analysis support the biosynthesis and characterization of AgNPs. The maximum efficacy was observed in synthesized AgNPs against the larvae of An. stephensi (lethal dose (LC₅₀) = 22.44 μg/mL; LC₉₀ 40.65 μg/mL), Ae. aegypti (LC₅₀ = 25.77 μg/mL; LC₉₀ 45.98 μg/mL), and C. quinquefasciatus (LC₅₀ = 27.83 μg/mL; LC₉₀ 48.92 μg/mL), respectively. No mortality was observed in the control. This is the first report on mosquito larvicidal activity of plant-synthesized nanoparticles. Thus, the use of G. asiatica to synthesize silver nanoparticles is a rapid, eco-friendly, and a single-step approach and the AgNps formed can be potential mosquito larvicidal agents.

  6. Mechanisms of Pyrethroid Resistance in the Dengue Mosquito Vector, Aedes aegypti: Target Site Insensitivity, Penetration, and Metabolism

    PubMed Central

    Kasai, Shinji; Komagata, Osamu; Itokawa, Kentaro; Shono, Toshio; Ng, Lee Ching; Kobayashi, Mutsuo; Tomita, Takashi

    2014-01-01

    Aedes aegypti is the major vector of yellow and dengue fevers. After 10 generations of adult selection, an A. aegypti strain (SP) developed 1650-fold resistance to permethrin, which is one of the most widely used pyrethroid insecticides for mosquito control. SP larvae also developed 8790-fold resistance following selection of the adults. Prior to the selections, the frequencies of V1016G and F1534C mutations in domains II and III, respectively, of voltage-sensitive sodium channel (Vssc, the target site of pyrethroid insecticide) were 0.44 and 0.56, respectively. In contrast, only G1016 alleles were present after two permethrin selections, indicating that G1016 can more contribute to the insensitivity of Vssc than C1534. In vivo metabolism studies showed that the SP strain excreted permethrin metabolites more rapidly than a susceptible SMK strain. Pretreatment with piperonyl butoxide caused strong inhibition of excretion of permethrin metabolites, suggesting that cytochrome P450 monooxygenases (P450s) play an important role in resistance development. In vitro metabolism studies also indicated an association of P450s with resistance. Microarray analysis showed that multiple P450 genes were over expressed during the larval and adult stages in the SP strain. Following quantitative real time PCR, we focused on two P450 isoforms, CYP9M6 and CYP6BB2. Transcription levels of these P450s were well correlated with the rate of permethrin excretion and they were certainly capable of detoxifying permethrin to 4′-HO-permethrin. Over expression of CYP9M6 was partially due to gene amplification. There was no significant difference in the rate of permethrin reduction from cuticle between SP and SMK strains. PMID:24945250

  7. Paratransgenesis: a promising new strategy for mosquito vector control.

    PubMed

    Wilke, André Barretto Bruno; Marrelli, Mauro Toledo

    2015-01-01

    The three main mosquito genera, Anopheles, Aedes and Culex, transmit respectively malaria, dengue and lymphatic filariasis. Current mosquito control strategies have proved unsuccessful, and there still is a substantial number of morbidity and mortality from these diseases. Genetic control methods have now arisen as promising alternative strategies, based on two approaches: the replacement of a vector population by disease-refractory mosquitoes and the release of mosquitoes carrying a lethal gene to suppress target populations. However, substantial hurdles and limitations need to be overcome if these methods are to be used successfully, the most significant being that a transgenic mosquito strain is required for every target species, making genetically modified mosquito strategies inviable when there are multiple vector mosquitoes in the same area. Genetically modified bacteria capable of colonizing a wide range of mosquito species may be a solution to this problem and another option for the control of these diseases. In the paratransgenic approach, symbiotic bacteria are genetically modified and reintroduced in mosquitoes, where they express effector molecules. For this approach to be used in practice, however, requires a better understanding of mosquito microbiota and that symbiotic bacteria and effector molecules be identified. Paratransgenesis could prove very useful in mosquito species that are inherently difficult to transform or in sibling species complexes. In this approach, a genetic modified bacteria can act by: (a) causing pathogenic effects in the host; (b) interfering with the host's reproduction; (c) reducing the vector's competence; and (d) interfering with oogenesis and embryogenesis. It is a much more flexible and adaptable approach than the use of genetically modified mosquitoes because effector molecules and symbiotic bacteria can be replaced if they do not achieve the desired result. Paratransgenesis may therefore become an important integrated

  8. Paratransgenesis: a promising new strategy for mosquito vector control.

    PubMed

    Wilke, André Barretto Bruno; Marrelli, Mauro Toledo

    2015-06-24

    The three main mosquito genera, Anopheles, Aedes and Culex, transmit respectively malaria, dengue and lymphatic filariasis. Current mosquito control strategies have proved unsuccessful, and there still is a substantial number of morbidity and mortality from these diseases. Genetic control methods have now arisen as promising alternative strategies, based on two approaches: the replacement of a vector population by disease-refractory mosquitoes and the release of mosquitoes carrying a lethal gene to suppress target populations. However, substantial hurdles and limitations need to be overcome if these methods are to be used successfully, the most significant being that a transgenic mosquito strain is required for every target species, making genetically modified mosquito strategies inviable when there are multiple vector mosquitoes in the same area. Genetically modified bacteria capable of colonizing a wide range of mosquito species may be a solution to this problem and another option for the control of these diseases. In the paratransgenic approach, symbiotic bacteria are genetically modified and reintroduced in mosquitoes, where they express effector molecules. For this approach to be used in practice, however, requires a better understanding of mosquito microbiota and that symbiotic bacteria and effector molecules be identified. Paratransgenesis could prove very useful in mosquito species that are inherently difficult to transform or in sibling species complexes. In this approach, a genetic modified bacteria can act by: (a) causing pathogenic effects in the host; (b) interfering with the host's reproduction; (c) reducing the vector's competence; and (d) interfering with oogenesis and embryogenesis. It is a much more flexible and adaptable approach than the use of genetically modified mosquitoes because effector molecules and symbiotic bacteria can be replaced if they do not achieve the desired result. Paratransgenesis may therefore become an important integrated

  9. Epidemic of dengue-4 virus in Yap State, Federated States of Micronesia, and implication of Aedes hensilli as an epidemic vector.

    PubMed

    Savage, H M; Fritz, C L; Rutstein, D; Yolwa, A; Vorndam, V; Gubler, D J

    1998-04-01

    A dengue fever/dengue hemorrhagic fever (DF/DHF) outbreak in Yap State caused by dengue-4 virus was confirmed serologically and by virus isolation from serum samples collected on each of three island groups. Most DF/DHF cases occurred during a three-month period between mid-May and early August 1995. Five fatal cases, three of which were in children between the ages of four and 11, occurred between June 20 and July 26. A serosurvey conducted in late August revealed anti-dengue IgM prevalence rates of 18% on Yap, 36% on Eauripik, and 6% on Woleai. The majority of residents (93-100%) on the three islands were positive for anti-dengue IgG antibodies, indicating widespread exposure to dengue viruses. The IgG titers indicative of secondary antibody response were noted on Eauripik (6.5%) and Woleai (17%), but were rare on Yap (0.7%). Entomologic investigations implicated the native mosquito species, Aedes hensilli, a member of the Scutellaris Group of Aedes (Stegomyia), as a previously unrecognized epidemic vector of dengue viruses. Aedes hensilli was the most abundant and widespread member of Ae. (Stegomyia) in Yap State, the only species of Ae. (Stegomyia) on Woleai, and the only mosquito species present on Eauripik. New distribution records for mosquito species are reported.

  10. Dengue: an update.

    PubMed

    Guzmán, María G; Kourí, Gustavo

    2002-01-01

    This review is an update of dengue and dengue haemorrhagic fever (DHF) based on international and Cuban experience. We describe the virus characteristics and risk factors for dengue and DHF, and compare incidence and the case fatality rates in endemic regions (southeast Asia, western Pacific, and the Americas). The clinical picture and the pathogenesis of the severe disease are explained. We also discuss the viral, individual, and environmental factors that determine severe disease. Much more research is necessary to clarify these mechanisms. Also reviewed are methods for viral isolation and the serological, immunohistochemical, and molecular methods applied in the diagnosis of the disease. We describe the status of vaccine development and emphasise that the only alternative that we have today to control the disease is through control of its vector Aedes aegypti.

  11. Evidence based community mobilization for dengue prevention in Nicaragua and Mexico (Camino Verde, the Green Way): cluster randomized controlled trial

    PubMed Central

    Nava-Aguilera, Elizabeth; Arosteguí, Jorge; Morales-Perez, Arcadio; Suazo-Laguna, Harold; Legorreta-Soberanis, José; Hernandez-Alvarez, Carlos; Fernandez-Salas, Ildefonso; Paredes-Solís, Sergio; Balmaseda, Angel; Cortés-Guzmán, Antonio Juan; Serrano de los Santos, René; Coloma, Josefina; Ledogar, Robert J; Harris, Eva

    2015-01-01

    Objective To test whether community mobilization adds effectiveness to conventional dengue control. Design Pragmatic open label parallel group cluster randomized controlled trial. Those assessing the outcomes and analyzing the data were blinded to group assignment. Centralized computerized randomization after the baseline study allocated half the sites to intervention, stratified by country, evidence of recent dengue virus infection in children aged 3-9, and vector indices. Setting Random sample of communities in Managua, capital of Nicaragua, and three coastal regions in Guerrero State in the south of Mexico. Participants Residents in a random sample of census enumeration areas across both countries: 75 intervention and 75 control clusters (about 140 households each) were randomized and analyzed (60 clusters in Nicaragua and 90 in Mexico), including 85 182 residents in 18 838 households. Interventions A community mobilization protocol began with community discussion of baseline results. Each intervention cluster adapted the basic intervention—chemical-free prevention of mosquito reproduction—to its own circumstances. All clusters continued the government run dengue control program. Main outcome measures Primary outcomes per protocol were self reported cases of dengue, serological evidence of recent dengue virus infection, and conventional entomological indices (house index: households with larvae or pupae/households examined; container index: containers with larvae or pupae/containers examined; Breteau index: containers with larvae or pupae/households examined; and pupae per person: pupae found/number of residents). Per protocol secondary analysis examined the effect of Camino Verde in the context of temephos use. Results With cluster as the unit of analysis, serological evidence from intervention sites showed a lower risk of infection with dengue virus in children (relative risk reduction 29.5%, 95% confidence interval 3.8% to 55.3%), fewer reports of

  12. Eco-friendly larvicides from Indian plants: Effectiveness of lavandulyl acetate and bicyclogermacrene on malaria, dengue and Japanese encephalitis mosquito vectors.

    PubMed

    Govindarajan, Marimuthu; Benelli, Giovanni

    2016-11-01

    Mosquitoes (Diptera: Culicidae) are a key threat for millions of people and animals worldwide, since they act as vectors for devastating pathogens and parasites, including malaria, dengue, Japanese encephalitis, filiariasis and Zika virus. Mosquito young instars are usually targeted using organophosphates, insect growth regulators and microbial agents. Indoor residual spraying and insecticide-treated bed nets are also employed. However, these chemicals have negative effects on human health and the environment and induce resistance in a number of vectors. In this scenario, newer and safer tools have been recently implemented to enhance mosquito control. The concrete potential of screening plant species as sources of metabolites for entomological and parasitological purposes is worthy of attention, as recently elucidated by the Y. Tu's example. Here we investigated the toxicity of Heracleum sprengelianum (Apiaceae) leaf essential oil and its major compounds toward third instar larvae of the malaria vector Anopheles subpictus, the arbovirus vector Aedes albopictus and the Japanese encephalitis vector Culex tritaeniorhynchus. GC-MS analysis showed that EO major components were lavandulyl acetate (17.8%) and bicyclogermacrene (12.9%). The EO was toxic to A. subpictus, A. albopictus, and C. tritaeniorhynchus, with LC50 of 33.4, 37.5 and 40.9µg/ml, respectively. Lavandulyl acetate was more toxic to mosquito larvae if compared to bicyclogermacrene. Their LC50 were 4.17 and 10.3µg/ml for A. subpictus, 4.60 and 11.1µg/ml for A. albopictus, 5.11 and 12.5µg/ml for C. tritaeniorhynchus. Notably, the EO and its major compounds were safer to three non-target mosquito predators, Anisops bouvieri, Diplonychus indicus and Gambusia affinis, with LC50 ranging from 206 to 4219µg/ml. Overall, this study highlights that H. sprengelianum EO is a promising source of eco-friendly larvicides against three important mosquito vectors with moderate toxicity against non-target aquatic

  13. Eco-friendly larvicides from Indian plants: Effectiveness of lavandulyl acetate and bicyclogermacrene on malaria, dengue and Japanese encephalitis mosquito vectors.

    PubMed

    Govindarajan, Marimuthu; Benelli, Giovanni

    2016-11-01

    Mosquitoes (Diptera: Culicidae) are a key threat for millions of people and animals worldwide, since they act as vectors for devastating pathogens and parasites, including malaria, dengue, Japanese encephalitis, filiariasis and Zika virus. Mosquito young instars are usually targeted using organophosphates, insect growth regulators and microbial agents. Indoor residual spraying and insecticide-treated bed nets are also employed. However, these chemicals have negative effects on human health and the environment and induce resistance in a number of vectors. In this scenario, newer and safer tools have been recently implemented to enhance mosquito control. The concrete potential of screening plant species as sources of metabolites for entomological and parasitological purposes is worthy of attention, as recently elucidated by the Y. Tu's example. Here we investigated the toxicity of Heracleum sprengelianum (Apiaceae) leaf essential oil and its major compounds toward third instar larvae of the malaria vector Anopheles subpictus, the arbovirus vector Aedes albopictus and the Japanese encephalitis vector Culex tritaeniorhynchus. GC-MS analysis showed that EO major components were lavandulyl acetate (17.8%) and bicyclogermacrene (12.9%). The EO was toxic to A. subpictus, A. albopictus, and C. tritaeniorhynchus, with LC50 of 33.4, 37.5 and 40.9µg/ml, respectively. Lavandulyl acetate was more toxic to mosquito larvae if compared to bicyclogermacrene. Their LC50 were 4.17 and 10.3µg/ml for A. subpictus, 4.60 and 11.1µg/ml for A. albopictus, 5.11 and 12.5µg/ml for C. tritaeniorhynchus. Notably, the EO and its major compounds were safer to three non-target mosquito predators, Anisops bouvieri, Diplonychus indicus and Gambusia affinis, with LC50 ranging from 206 to 4219µg/ml. Overall, this study highlights that H. sprengelianum EO is a promising source of eco-friendly larvicides against three important mosquito vectors with moderate toxicity against non-target aquatic

  14. Vector control activities. Fiscal year, 1982

    SciTech Connect

    Pickard, E.; Cooney, J.C.; McDuff, B.R.

    1983-06-01

    The goal of the TVA Vector Control Program is to protect the public from potential vectors of disease by controlling medically-important arthropod pests that are propagated on TVA lands or waters. In addition, freedom from annoying mosquitoes and other blood-sucking pests permits the development, use, and full enjoyment of the vast recreational opportunities offered by the many miles of freshwater lakes. To attain this goal the program is divided into operations and support studies. The support studies are designed to improve the operational effectiveness and efficiency of the control program and to identify other vector control problems that require TVA attention and study. Specifically, activities concerning water level management of TVA lakes, dewatering projects, plant growth control, drainage and insect control programs are detailed. Further, report is made of post-impoundment surveys, soil sampling studies of Mosquite larvae and ecological mosquito management studies.

  15. Ovitrap surveillance of the dengue vectors, Aedes (Stegomyia) aegypti (L.) and Aedes (Stegomyia) albopictus Skuse in selected areas in Bentong, Pahang, Malaysia.

    PubMed

    Norzahira, R; Hidayatulfathi, O; Wong, H M; Cheryl, A; Firdaus, R; Chew, H S; Lim, K W; Sing, K W; Mahathavan, M; Nazni, W A; Lee, H L; Vasan, S S; McKemey, A; Lacroix, R

    2011-04-01

    Ovitrap surveillance was conducted in methodically selected areas in Bentong, Pahang, Malaysia from June 2008 till December 2009 in order to identify insular sites with stable Aedes aegypti population. Eleven sites were surveyed in Bentong district, Pahang, and one of these locations (N3º33' E101º54') was found to have an ovitrap index of Ae. aegypti and Aedes albopictus ranging from 8%-47% and 37%-78% respectively, indicating that this site could be a high-risk area for dengue outbreak. Ae. aegypti larvae were found in both indoor and outdoor ovitraps (p>0.05) while significant difference between the populations of Ae. albopictus larvae from indoors and outdoors was observed (p<0.01). Data collected in this study could provide important entomological information for designing an effective integrated vector control programme to combat Aedes mosquitoes in this area. PMID:21602768

  16. New Paradigms for Virus Detection, Surveillance and Control of Zika Virus Vectors in the Settings of Southeast Asia.

    PubMed

    Vythilingam, Indra; Sam, Jamal I-C; Chan, Yoke F; Khaw, Loke T; Sulaiman, Wan Y Wan

    2016-01-01

    Zika virus (ZIKV) has now become a global public health concern. The vectors for ZIKV are Aedes aegypti and A. albopictus. Both these mosquitoes are predominant in Southeast Asia and are also responsible for the spread of other arboviral diseases like dengue virus and chikungunya virus. The incidence of dengue has been increasing over the years and this is of concern to public health workers. Simple laboratory tools for the detection of ZIKV is also lacking. In the absence of drugs and vaccine for these arboviral diseases, vector control is the main option for surveillance and control. Aedes larval surveys have been the hallmark of dengue control along with larviciding and fogging when cases are reported. However, we need new paradigms and options for control of these vectors. The current situation in Southeast Asia clearly proves that effective strategies for vector control need to be proactive and not reactive. This will be the way forward to control epidemics of these diseases inclusive of ZIKV until a vaccine becomes available.

  17. New Paradigms for Virus Detection, Surveillance and Control of Zika Virus Vectors in the Settings of Southeast Asia

    PubMed Central

    Vythilingam, Indra; Sam, Jamal I-C.; Chan, Yoke F.; Khaw, Loke T.; Sulaiman, Wan Y. Wan

    2016-01-01

    Zika virus (ZIKV) has now become a global public health concern. The vectors for ZIKV are Aedes aegypti and A. albopictus. Both these mosquitoes are predominant in Southeast Asia and are also responsible for the spread of other arboviral diseases like dengue virus and chikungunya virus. The incidence of dengue has been increasing over the years and this is of concern to public health workers. Simple laboratory tools for the detection of ZIKV is also lacking. In the absence of drugs and vaccine for these arboviral diseases, vector control is the main option for surveillance and control. Aedes larval surveys have been the hallmark of dengue control along with larviciding and fogging when cases are reported. However, we need new paradigms and options for control of these vectors. The current situation in Southeast Asia clearly proves that effective strategies for vector control need to be proactive and not reactive. This will be the way forward to control epidemics of these diseases inclusive of ZIKV until a vaccine becomes available. PMID:27679623

  18. New Paradigms for Virus Detection, Surveillance and Control of Zika Virus Vectors in the Settings of Southeast Asia.

    PubMed

    Vythilingam, Indra; Sam, Jamal I-C; Chan, Yoke F; Khaw, Loke T; Sulaiman, Wan Y Wan

    2016-01-01

    Zika virus (ZIKV) has now become a global public health concern. The vectors for ZIKV are Aedes aegypti and A. albopictus. Both these mosquitoes are predominant in Southeast Asia and are also responsible for the spread of other arboviral diseases like dengue virus and chikungunya virus. The incidence of dengue has been increasing over the years and this is of concern to public health workers. Simple laboratory tools for the detection of ZIKV is also lacking. In the absence of drugs and vaccine for these arboviral diseases, vector control is the main option for surveillance and control. Aedes larval surveys have been the hallmark of dengue control along with larviciding and fogging when cases are reported. However, we need new paradigms and options for control of these vectors. The current situation in Southeast Asia clearly proves that effective strategies for vector control need to be proactive and not reactive. This will be the way forward to control epidemics of these diseases inclusive of ZIKV until a vaccine becomes available. PMID:27679623

  19. New Paradigms for Virus Detection, Surveillance and Control of Zika Virus Vectors in the Settings of Southeast Asia

    PubMed Central

    Vythilingam, Indra; Sam, Jamal I-C.; Chan, Yoke F.; Khaw, Loke T.; Sulaiman, Wan Y. Wan

    2016-01-01

    Zika virus (ZIKV) has now become a global public health concern. The vectors for ZIKV are Aedes aegypti and A. albopictus. Both these mosquitoes are predominant in Southeast Asia and are also responsible for the spread of other arboviral diseases like dengue virus and chikungunya virus. The incidence of dengue has been increasing over the years and this is of concern to public health workers. Simple laboratory tools for the detection of ZIKV is also lacking. In the absence of drugs and vaccine for these arboviral diseases, vector control is the main option for surveillance and control. Aedes larval surveys have been the hallmark of dengue control along with larviciding and fogging when cases are reported. However, we need new paradigms and options for control of these vectors. The current situation in Southeast Asia clearly proves that effective strategies for vector control need to be proactive and not reactive. This will be the way forward to control epidemics of these diseases inclusive of ZIKV until a vaccine becomes available.

  20. Dengue: update on epidemiology.

    PubMed

    Wilson, Mary Elizabeth; Chen, Lin H

    2015-01-01

    The epidemiology of dengue fever has undergone major shifts in recent decades. The global distribution has expanded to include more geographic areas. The intensity of transmission and the severity of infections have increased in areas where infection was already endemic. Multiple studies provide a clearer picture of the epidemiology and allow mapping of its distribution and change over time. Despite major efforts to control transmission, competent vectors now infest most tropical and subtropical regions; Aedes albopictus, also a competent vector, is able to survive in temperate areas, placing parts of Europe and North America at risk for local transmission. Many research teams in dengue-endemic areas are working to identify key local weather, vector, and other variables that would allow prediction of a likely epidemic early enough to permit interventions to avert it or blunt its impact.

  1. Dengue situation in Brazil by year 2000.

    PubMed

    Schatzmayr, H G

    2000-01-01

    Dengue virus types 1 and 2 have been isolated in Brazil by the Department of Virology, Instituto Oswaldo Cruz, in 1986 and 1990 respectively, after many decades of absence. A successful continental Aedes aegypti control program in the Americas, has been able to eradicate the vector in most countries in the 60's, but the program could not be sustained along the years. Dengue viruses were reintroduced in the American region and the infection became endemic in Brazil, like in most Central and South American countries and in the Caribbean region, due to the weaning of the vector control programs in these countries. High demographic densities and poor housing conditions in large urban communities, made the ideal conditions for vector spreading. All four dengue types are circulating in the continent and there is a high risk of the introduction in the country of the other two dengue types in Brazil, with the development of large epidemics. After the Cuban episode in 1981, when by the first time a large epidemic of dengue hemorrhagic fever and dengue shock syndrome have been described in the Americas, both clinical presentations are observed, specially in the countries like Brazil, with circulation of more than one dengue virus type. A tetravalent potent vaccine seems to be the only possible way to control the disease in the future, besides rapid clinical and laboratory diagnosis, in order to offer supportive treatment to the more severe clinical infections.

  2. Mosquito vector biology and control in latin america-a 24th symposium.

    PubMed

    Clark, Gary G; Fernández-Salas, Ildefonso

    2014-09-01

    The 24th Annual Latin American Symposium presented by the American Mosquito Control Association (AMCA) was held as part of the 80th Annual Meeting in Seattle, WA, in February 2014. The principal objective, for the previous 23 symposia, was to promote participation in the AMCA by vector control specialists, public health workers, and academicians from Latin America. This publication includes summaries of 26 presentations that were given orally in Spanish or presented as posters by participants from Colombia, Mexico, and the USA. Topics addressed in the symposium included: surveillance, ecology, chemical control, studies of dengue viruses, and insecticide resistance associated with Aedes aegypti; Anopheles vectors of malaria; essential oils; and ethnic groups and vector-borne diseases. PMID:25843096

  3. Community and School-Based Health Education for Dengue Control in Rural Cambodia: A Process Evaluation

    PubMed Central

    Khun, Sokrin; Manderson, Lenore

    2007-01-01

    Dengue fever continues to be a major public health problem in Cambodia, with significant impact on children. Health education is a major means for prevention and control of the National Dengue Control Program (NDCP), and is delivered to communities and in schools. Drawing on data collected in 2003–2004 as part of an ethnographic study conducted in eastern Cambodia, we explore the approaches used in health education and their effectiveness to control dengue. Community health education is provided through health centre outreach activities and campaigns of the NDCP, but is not systematically evaluated, is under-funded and delivered irregularly; school-based education is restricted in terms of time and lacks follow-up in terms of practical activities for prevention and control. As a result, adherence is partial. We suggest the need for sustained routine education for dengue prevention and control, and the need for approaches to ensure the translation of knowledge into practice. PMID:18160981

  4. The impact of insecticide-treated school uniforms on dengue infections in school-aged children: study protocol for a randomised controlled trial in Thailand

    PubMed Central

    2012-01-01

    Background There is an urgent need to protect children against dengue since this age group is particularly sensitive to the disease. Since dengue vectors are active mainly during the day, a potential target for control should be schools where children spend a considerable amount of their day. School uniforms are the cultural norm in most developing countries, worn throughout the day. We hypothesise that insecticide-treated school uniforms will reduce the incidence of dengue infection in school-aged children. Our objective is to determine the impact of impregnated school uniforms on dengue incidence. Methods A randomised controlled trial will be conducted in eastern Thailand in a group of schools with approximately 2,000 students aged 7–18 years. Pre-fabricated school uniforms will be commercially treated to ensure consistent, high-quality insecticide impregnation with permethrin. A double-blind, randomised, crossover trial at the school level will cover two dengue transmission seasons. Discussion Practical issues and plans concerning intervention implementation, evaluation, analysing and interpreting the data, and possible policy implications arising from the trial are discussed. Trial registration clinicaltrial.gov. Registration number: NCT01563640 PMID:23153360

  5. Operational vector-borne disease surveillance and control: closing the capabilities gap through research at overseas military laboratories.

    PubMed

    Evans, Brian P; Clark, Jeffrey W; Barbara, Kathryn A; Mundal, Kirk D; Furman, Barry D; McAvin, James C; Richardson, Jason H

    2009-01-01

    Malaria, dengue fever, chikungunya virus, leishmaniasis, and a myriad of other vector-borne diseases pose significant threats to the warfighter and to the overall combat effectiveness of units. Military preventive medicine (PM) assets must accurately evaluate the vector-borne disease threat and then implement and/or advise the commander on countermeasures to reduce a particular threat. The success of these measures is contingent upon the biology of the disease vector and on the tools or methods used to conduct vector/pathogen surveillance and vector control. There is a significant gap between the tools available and those required for operational PM assets to provide real-time, effective surveillance and control. A network of US Army and US Navy overseas laboratories is focused on closing the current capabilities gap. Their mission is to develop and field test tools and methods to enhance the combatant commander's ability to identify and mitigate the threat posed by these vector-borne diseases.

  6. The Importance of Long-Term Social Research in Enabling Participation and Developing Engagement Strategies for New Dengue Control Technologies

    PubMed Central

    McNaughton, Darlene

    2012-01-01

    Background In recent years, new strategies aimed at reducing the capacity of mosquito vectors to transmit dengue fever have emerged. As with earlier control methods, they will have to be employed in a diverse range of communities across the globe and into the main settings for disease transmission, the homes, businesses and public buildings of residents in dengue-affected areas. However, these strategies are notably different from previous methods and draw on technologies that are not without controversy. Public engagement and authorization are critical to the future success of these programs. Methodology/Principal Findings This paper reports on an Australian case study where long-term social research was used to enable participation and the design of an engagement strategy tailored specifically to the sociopolitical setting of a potential trial release site of Wolbachia-infected Aedes aegytpi mosquitoes. Central themes of the social research, methods used and conclusions drawn are briefly described. Results indicate that different communities are likely to have divergent expectations, concerns and cultural sensibilities with regard to participation, engagement and authorization. Conclusions/Significance The findings show that a range of issues need to be understood and taken into account to enable sensitive, ethical and effective engagement when seeking public support for new dengue control methods. PMID:22953011

  7. [Integrated strategy for dengue prevention and control in the Region of the Americas].

    PubMed

    San Martín, José Luis; Brathwaite-Dick, Olivia

    2007-01-01

    During the last 22 years, the Region of the Americas has seen an upward trend in dengue incidence, with epidemics peaking ever higher and recurring every 3-5 years, almost regularly. A major factor in the spread of the disease has been the diminished capacity of national programs to respond with dengue prevention and control. This paper evaluates the Integrated Strategy for Dengue Prevention and Control-approved by the 44th Directing Council of the Pan American Health Organization in September 2003- and its preliminary results. The Integrated Strategy for Dengue is a management model designed to strengthen national programs, with a focus on reducing morbidity, mortality, and the societal and economic burdens produced by outbreaks and epidemics. Currently, 11 of the countries in the Region have developed a plan for or implemented a national strategy. In addition, a sub-Regional plan has been developed for Central America and the Dominican Republic. The Integrated Strategy for Dengue is expected to produce a qualitative leap forward in prevention and control through stronger partnerships among the State, its various ministries, and governing bodies, at all levels; private companies; and the range of community and civil groups. Once implemented, this strategy will reduce risk factors for dengue transmission, establish an integrated epidemiological surveillance system, decrease Aedes aegypti mosquito populations, prepare laboratories to better detect and identify the virus, optimize diagnosis and treatment, and, as a result, decrease the frequency, magnitude, and severity of dengue outbreaks and epidemics.

  8. [New vector control measures implemented between 2005 and 2011 on Reunion Island: lessons learned from chikungunya epidemic].

    PubMed

    Bâville, M; Dehecq, J S; Reilhes, O; Margueron, T; Polycarpe, D; Filleul, L

    2012-03-01

    A major chikungunya outbreak concerned 38% of people living in Reunion Island in 2005-2006. Chikungunya is an arthropod-born-virus disease conveyed by mosquitoes called Aedes albopictus. The health agency in Indian Ocean is responsible for vector control. Previously, in the early 40s, vector control concerned only malaria prophylaxis in La Réunion. Then, during the chikungunya outbreak, a new vector control team was installed and learned from this epidemic. The lessons drawn from chikungunya outbreak in La Réunion are about global executive management and organization linked the local partners and population. The lessons also concern technical topics such as the need of scientific research about vectors and vector-control methods. Finally, the regional cooperation in Indian Ocean (Réunion, Maurice, Seychelles, Comoros, Madagascar) has to be developed to share epidemiologic and entomologic data in order to prevent new chikungunya or dengue outbreak.

  9. Mediational Effects of Self-Efficacy Dimensions in the Relationship between Knowledge of Dengue and Dengue Preventive Behaviour with Respect to Control of Dengue Outbreaks: A Structural Equation Model of a Cross-Sectional Survey

    PubMed Central

    Isa, Affendi; Loke, Yoon K.; Smith, Jane R.; Papageorgiou, Alexia; Hunter, Paul R.

    2013-01-01

    Background Dengue fever is endemic in Malaysia, with frequent major outbreaks in urban areas. The major control strategy relies on health promotional campaigns aimed at encouraging people to reduce mosquito breeding sites close to people's homes. However, such campaigns have not always been 100% effective. The concept of self-efficacy is an area of increasing research interest in understanding how health promotion can be most effective. This paper reports on a study of the impact of self-efficacy on dengue knowledge and dengue preventive behaviour. Methods and Findings We recruited 280 adults from 27 post-outbreak villages in the state of Terengganu, east coast of Malaysia. Measures of health promotion and educational intervention activities and types of communication during outbreak, level of dengue knowledge, level and strength of self-efficacy and dengue preventive behaviour were obtained via face-to-face interviews and questionnaires. A structural equation model was tested and fitted the data well (χ2 = 71.659, df = 40, p = 0.002, RMSEA = 0.053, CFI = 0.973, TLI = 0.963). Mass media, local contact and direct information-giving sessions significantly predicted level of knowledge of dengue. Level and strength of self-efficacy fully mediated the relationship between knowledge of dengue and dengue preventive behaviours. Strength of self-efficacy acted as partial mediator in the relationship between knowledge of dengue and dengue preventive behaviours. Conclusions To control and prevent dengue outbreaks by behavioural measures, health promotion and educational interventions during outbreaks should now focus on those approaches that are most likely to increase the level and strength of self-efficacy. PMID:24086777

  10. Vector control activities: Fiscal Year, 1986

    SciTech Connect

    Not Available

    1987-04-01

    The program is divided into two major components - operations and support studies. The support studies are designed to improve the operational effectiveness and efficiency of the control program and to identify other vector control problems requiring TVA attention and study. Nonchemical methods of control are emphasized and are supplemented with chemical measures as needed. TVA also cooperates with various concerned municipalities in identifying blood-sucking arthropod pest problems and demonstrating control techniques useful in establishing abatement programs, and provides technical assistance to other TVA programs and organizations. The program also helps Land Between The Lakes (LBL) plan and conduct vector control operations and tick control research. Specific program control activities and support studies are discussed.

  11. Effect of mycosynthesized silver nanoparticles from filtrate of Trichoderma harzianum against larvae and pupa of dengue vector Aedes aegypti L.

    PubMed

    Sundaravadivelan, Chandran; Padmanabhan, Madanagopal Nalini

    2014-03-01

    Mosquitoes transmit dreadful diseases, causing millions of deaths every year. Therefore, screening for larvicidal and pupicidal activity of microbial extracts attributes could lead to development of new and improved mosquito control methods that are economical and safe for nontarget organisms and are ecofriendly. Synthetic chemical insecticides occupy predominant position in control strategies. These hazardous chemicals exert unwarranted toxicity and lethal effects on nontarget organisms, develop physiological resistance in target, and cause adverse environmental effect. For vector control, fungal-mediated natural products have been a priority in this area at present. In the current study, effective larvicidal and pupicidal effect of mycosynthesized silver nanoparticles (Ag NPs) using an entomopathogenic fungi Trichoderma harzianum against developmental stages of the dengue vector Aedes aegypti was investigated. An attractive possibility of green nanotechnology is to use microorganisms in the synthesis of nanosilver especially Ag NPs. The mycosynthesized Ag NPs were characterized to find their unique properties through UV-visible spectrophotometer, X-ray diffraction analysis, Fourier transform infrared, and surface characteristics by scanning electron microscopy. To analyze the bioefficacy, different test concentrations for extracellular filtrate (0.2, 0.4, 0.6, 0.8, and 1.0 %) and Ag NPs (0.05, 0.10, 0.15, 0.20, and 0.25 %) were prepared to a final volume of 200 mL using deionized water; 20 larvae of each instars (I-IV) and pupa were exposed to each test concentration separately which included a set of control (distilled water) group with five replicates. Characterization of the synthesized Ag NPs were about 10-20 nm without aggregation. Susceptibility of larval instars to synthesized Ag NPs was higher than the extracellular filtrate of T. harzianum alone after 24-h exposure, where the highest mortality was recorded as 92 and 96 % for first and second instars and

  12. Dengue Fever in mainland China.

    PubMed

    Wu, Jin-Ya; Lun, Zhao-Rong; James, Anthony A; Chen, Xiao-Guang

    2010-09-01

    Dengue is an acute emerging infectious disease transmitted by Aedes mosquitoes and has become a serious global public health problem. In mainland China, a number of large dengue outbreaks with serious consequences have been reported as early as 1978. In the three decades from 1978 to 2008, a total of 655,324 cases were reported, resulting in 610 deaths. Since the 1990s, dengue epidemics have spread gradually from Guangdong, Hainan, and Guangxi provinces in the southern coastal regions to the relatively northern and western regions including Fujian, Zhejiang, and Yunnan provinces. As the major transmission vectors of dengue viruses, the biological behavior and vectorial capacity of Aedes mosquitoes have undergone significant changes in the last two decades in mainland China, most likely the result of urbanization and global climate changes. In this review, we summarize the geographic and temporal distributions, the serotype and genotype distributions of dengue viruses in mainland China, and analyze the current status of surveillance and control of vectors for dengue transmission.

  13. Effect of community participation on household environment to mitigate dengue transmission in Thailand.

    PubMed

    Suwannapong, N; Tipayamongkholgul, M; Bhumiratana, A; Boonshuyar, C; Howteerakul, N; Poolthin, S

    2014-03-01

    Due to the absence of dengue vaccination, vector control is the only measure to prevent dengue outbreaks. The key element of dengue prevention is to eliminate vector habitats. Clean household environment, preventive behaviors of household members and community participation in dengue prevention and control are key successful elements. This study aimed to investigate the associations between environmental factors, dengue knowledge, perception and preventive behaviors of household and collaboration of community members and household risk of dengue by using mixed methods. One dengue epidemic province was selected from each region of Thailand including Bangkok. Two districts, one from the highest and another from the lowest dengue incidence areas, were selected from those provinces. The household leaders, community members, and local authorities in highest dengue incidence areas were interviewed by using questionnaire and through group interviews. The environment of each selected household was observed. Of 4,561 households, 194 were reported having dengue case(s) in the past year and that outdoor solid waste disposal significantly influenced household risk of dengue (OR=1.62; 95% CI=1.16-2.29). In contrast, having gardening areas reduced dengue risk at household level by 32%. High level of community participation in dengue prevention and control in uninfected areas and the information from local authorities and community members reconfirmed that community participation was the key factor against dengue outbreaks. Sustainable process of encouraging community members to eliminate vector breeding sites such as outdoor solid waste disposal is likely to lead to an achievement in dengue prevention and control.

  14. Dengue fever and dengue haemorrhagic fever: challenges of controlling an enemy still at large.

    PubMed

    Kurane, I; Takasaki, T

    2001-01-01

    Dengue virus infections are a serious cause of morbidity and mortality in most tropical and subtropical areas of the world: mainly Southeast and South Asia, Central and South America, and the Caribbean. Understanding the pathogenesis of dengue haemorrhagic fever (DHF), the severe form of dengue illness, is a very important and challenging research subject. Viral virulence and immune responses have been considered as two major factors responsible for the pathogenesis. Virological studies are attempting to define the molecular basis of viral virulence. The immunopathological mechanisms appear to include a complex series of immune responses. A rapid increase in the levels of cytokines and chemical mediators apparently plays a key role in inducing plasma leakage, shock and haemorrhagic manifestations. It is likely that the entire process is initiated by infection with a so-called virulent dengue virus, often with the help of enhancing antibodies in secondary infection, and then triggered by rapidly elevated cytokines and chemical mediators produced by intense immune activation. However, understanding of the DHF pathogenesis is not complete. We still have a long way to go.

  15. Current perspectives on the spread of dengue in India.

    PubMed

    Gupta, Ekta; Ballani, Neha

    2014-01-01

    Dengue fever (DF) and dengue hemorrhagic fever (DHF) are important arthropod-borne viral diseases. Each year, there are ~50 million dengue infections and ~500,000 individuals are hospitalized with DHF, mainly in Southeast Asia. Dengue in India has dramatically expanded over the last few decades, with rapidly changing epidemiology. The first major DHF outbreak in the entire nation occurred in 1996 by dengue virus serotype 2, and after a gap of almost a decade, the country faced yet another DF outbreak in the year 2003 by dengue virus serotype 3. A dramatic increase in the number and frequency of outbreaks followed, and, at present, in most of the states of India, dengue is almost endemic. At present, all the four serotypes are seen in circulation, but the predominant serotype keeps changing. Despite this trend, surveillance, reporting, and diagnosis of dengue remain largely passive in India. More active community-based epidemiological studies with intensive vector control and initiatives for dengue vaccine development should be geared up to control the spread of dengue in India. We review here the factors that may have contributed to the changing epidemiology of dengue in India.

  16. Approaches to vector control: new and trusted. 5. The epidemiological context of vector control.

    PubMed

    Dye, C

    1994-01-01

    This paper discusses 2 prominent, contemporary issues in the epidemiological context of insect vector control: (i) the magnitude of the control problem, and (ii) non-linear processes influencing vector control. It concludes that we still cannot reliably measure the scale of some important control problems; e.g., there is considerable uncertainty about the basic reproduction number of malaria. The emergence of new concepts such as strain-specific immunity, and a growing emphasis on disease control as distinct from infection control, mean that some quantitative problems are being redefined more quickly than they are being solved. Population biologists have urged exploration of density-dependent processes which may help or hinder new methods of vector control. This brief review of non-linear phenomena such as facilitation and limitation finds little evidence that they will significantly influence, e.g., the introduction of some novel refractory mechanism into a vector population.

  17. Predicting the operations alert levels for dengue surveillance and control.

    PubMed

    Sampath, Kameshwaran; Dayama, Pankaj

    2014-01-01

    Operations alert level is a discrete measure that quantifies the severity of epidemic outbreak with respect to operational measures. The alert levels are ordered based on the amount of response operations required. In this paper, we develop multi-class classification models based on ordinal multinomial logistic regression for predicting the alert levels for dengue at twenty weeks in advance. The regression uses the dynamic lag non-linear models to account for the non-linearity of the dengue incidence, along with its lagged values. The performance of the models is tested for the dengue case count data of Singapore.

  18. The combination of the entomopathogenic fungus Metarhizium anisopliae with the insecticide Imidacloprid increases virulence against the dengue vector Aedes aegypti (Diptera: Culicidae)

    PubMed Central

    2011-01-01

    Background Dengue fever transmitted by the mosquito Aedes aegypti, is one of the most rapidly spreading insect borne diseases, stimulating the search for alternatives to current control measures. The dengue vector A. aegypti has received less attention than anophelene species, although more than 2.5 billion people are at risk of infection worldwide. Entomopathogenic fungi are emerging as potential candidates for the control of mosquitoes. Here we continue our studies on the pathogenicity of the entomopathogenic fungus Metarhizium anisopliae against adult A. aegypti females. With the aim of further reducing mean survival times of A. aegypti exposed to fungus impregnated surfaces, a sub-lethal concentration of the neonicotinoid insecticide Imidacloprid (IMI) was added to fungal suspensions. Results A sub-lethal concentration of IMI that did not significantly alter the daily survival rates or mean survival percentages of mosquitoes was identified to be 0.1 ppm. This sub-lethal concentration was combined with M. anisopliae conidia (1 × 109 conidia mL-1). Both the combined treatment and the conidia alone were able to reduce the survival of A. aegypti compared with untreated or IMI treated mosquitoes. Importantly, mosquito survival following exposure to the combined treatment for 6 and 12 hrs was significantly reduced when compared with mosquitoes exposed to conidia alone. Conclusions This is the first time that a combination of an insecticide and an entomopathogenic fungus has been tested against A. aegypti. Firstly, the study showed the potential of IMI as an alternative to the currently employed pyrethroid adulticides. Secondly, as an alternative to applications of high concentrations of chemical insecticides, we suggest that adult A. aegypti could be controlled by surface application of entomopathogenic fungi and that the efficiency of these fungi could be increased by combining the fungi with ultra-low concentrations of insecticides, resulting in higher mortality

  19. Treatment of dengue fever.

    PubMed

    Rajapakse, Senaka; Rodrigo, Chaturaka; Rajapakse, Anoja

    2012-01-01

    The endemic area for dengue fever extends over 60 countries, and approximately 2.5 billion people are at risk of infection. The incidence of dengue has multiplied many times over the last five decades at an alarming rate. In the endemic areas, waves of infection occur in epidemics, with thousands of individuals affected, creating a huge burden on the limited resources of a country's health care system. While the illness passes off as a simple febrile episode in many, a few have a severe illness marked by hypovolemic shock and bleeding. Iatrogenic fluid overload in the management may further complicate the picture. In this severe form dengue can be fatal. Tackling the burden of dengue is impeded by several issues, including a lack of understanding about the exact pathophysiology of the infection, inability to successfully control the vector population, lack of specific therapy against the virus, and the technical difficulties in developing a vaccine. This review provides an overview on the epidemiology, natural history, management strategies, and future directions for research on dengue, including the potential for development of a vaccine.

  20. Studies on community knowledge and behavior following a dengue epidemic in Chennai city, Tamil Nadu, India.

    PubMed

    Ashok Kumar, V; Rajendran, R; Manavalan, R; Tewari, S C; Arunachalam, N; Ayanar, K; Krishnamoorthi, R; Tyagi, B K

    2010-08-01

    In 2001, a major dengue outbreak was recorded in Chennai city, with 737 cases (90%) out of a total of 861 cases recorded from Tamil Nadu state. A KAP survey was carried out to assess the community knowledge, attitude and practice on dengue fever (DF), following the major dengue outbreak in 2001. A pre- tested, structured questionnaire was used for data collection. The multistage cluster sampling method was employed and 640 households (HHs) were surveyed. Among the total HHs surveyed, 34.5% of HHs were aware of dengue and only 3.3% of HHs knew that virus is the causative agent for DF. Majority of the HHs (86.5%) practiced water storage and only 3% of them stored water more than 5 days. No control measures were followed to avoid mosquito breeding in the water holding containers by majority of HHs (65%). Sixty percent of HHs did not know the biting behaviour of dengue vector mosquitoes. The survey results indicate that the community knowledge was very poor on dengue, its transmission, vector breeding sources, biting behavior and preventive measures. The lack of basic knowledge of the community on dengue epidemiology and vector bionomics would be also a major cause of increasing trend of dengue in this highly populated urban environment. There is an inevitable need to organize health education programmes about dengue disease to increase community knowledge and also to sensitize the community to participate in integrated vector control programme to resolve the dengue problem.

  1. Mosquito vector control and biology in Latin America--a 15th symposium. Abstracts.

    PubMed

    Clark, Gary G; Quiroz Martínez, Humberto

    2005-12-01

    The 15th Annual Latin American symposium presented by the American Mosquito Control Association (AMCA) was held as part of the 71st Annual Meeting in Vancouver, British Columbia, Canada, in April 2005. The principal objective, as for the previous 14 symposia, was to promote participation in the AMCA by vector control specialists, public health workers, and academicians from Latin America. This publication includes summaries of 40 presentations that were given orally in Spanish or presented as posters by participants from 8 countries in Latin America and the USA. Topics addressed in the symposium included results from chemical and biological control programs and studies; studies of insecticide resistance; and population genetics, molecular, ecological, and behavioral studies of vectors of dengue (Aedes aegypti and Ae. albopictus) and other arboviruses, malaria (Anopheles albimanus, An. aquasalis, An. neomaculipalpus, An. pseudopunctipennis), leishmaniasis (Lutzomyia), and Chagas Disease (Triatoma), as well as a vaccine for control of Boophilus ticks on cattle.

  2. Mosquito vector control and biology in Latin America--a second symposium.

    PubMed

    Clark, G G; Suárez, M F

    1992-09-01

    The second Spanish language symposium presented by the American Mosquito Control Association (AMCA) was held as part of the 58th Annual Meeting in Corpus Christi, TX in March 1992. The principal objective, as it was for the 1991 symposium, was to increase and stimulate greater participation in the AMCA by vector control specialists and public health workers from Latin America. This publication includes summaries of 25 individual presentations that were given in Spanish. The symposium included the following topics: biology and chemical control of Aedes aegypti and anopheline vectors of malaria; field and laboratory studies of biological control agents for Aedes aegypti; community participation in the prevention of dengue; and other various aspects of the biology of other medically important arthropods (e.g., Simulium ochraceum, Lutzomyia and Culicoides).

  3. River Boats Contribute to the Regional Spread of the Dengue Vector Aedes aegypti in the Peruvian Amazon

    PubMed Central

    Guagliardo, Sarah Anne; Morrison, Amy C.; Barboza, Jose Luis; Requena, Edwin; Astete, Helvio; Vazquez-Prokopec, Gonzalo; Kitron, Uriel

    2015-01-01

    Background and Objectives The dramatic range expansion of the dengue vector Aedes aegypti is associated with various anthropogenic transport activities, but little is known about the underlying mechanisms driving this geographic expansion. We longitudinally characterized infestation of different vehicle types (cars, boats, etc.) to estimate the frequency and intensity of mosquito introductions into novel locations (propagule pressure). Methods Exhaustive adult and immature Ae. aegypti collections were performed on six different vehicle types at five ports and two bus/ taxi departure points in the Amazonian city of Iquitos, Peru during 2013. Aquatic vehicles included 32 large and 33 medium-sized barges, 53 water taxis, and 41 speed boats. Terrestrial vehicles sampled included 40 buses and 30 taxis traveling on the only highway in the region. Ae. aegypti adult infestation rates and immature indices were analyzed by vehicle type, location within vehicles, and sampling date. Results Large barges (71.9% infested) and medium barges (39.4% infested) accounted for most of the infestations. Notably, buses had an overall infestation rate of 12.5%. On large barges, the greatest number of Ae. aegypti adults were found in October, whereas most immatures were found in February followed by October. The vast majority of larvae (85.9%) and pupae (76.7%) collected in large barges were produced in puddles formed in cargo holds. Conclusions Because larges barges provide suitable mosquito habitats (due to dark, damp cargo storage spaces and ample oviposition sites), we conclude that they likely serve as significant contributors to mosquitoes’ propagule pressure across long distances throughout the Peruvian Amazon. This information can help anticipate vector population mixing and future range expansions of dengue and other viruses transmitted by Ae. aegypti. PMID:25860352

  4. Household Wastes as Larval Habitats of Dengue Vectors: Comparison between Urban and Rural Areas of Kolkata, India

    PubMed Central

    Banerjee, Soumyajit; Aditya, Gautam; Saha, Goutam K.

    2015-01-01

    Porcelain and plastic materials constitute bulk of household wastes. Owing to resistibility and slow degradability that accounts for higher residence time, these materials qualify as potential hazardous wastes. Retention of water permits these wastes to form a congenial biotope for the breeding of different vector mosquitoes. Thus porcelain and plastic wastes pose a risk from public health viewpoint. This proposition was validated through the study on the porcelain and plastic household wastes as larval habitats of Dengue vectors (Aedes spp.) in rural and urban areas around Kolkata, India. The wastes were characterized in terms of larval productivity, seasonal variation and a comparison between urban and rural areas was made using data of two subsequent years. The number of wastes positive as larval habitats and their productivity of Aedes spp. varied among the types of household wastes with reference to months and location. Multivariate analysis revealed significant differences in the larval productivity of the household wastes based on the materials, season, and urban–rural context. Results of Discriminant Analysis indicated differences in abundance of Ae. aegypti and Ae. albopictus for the urban and rural areas. The porcelain and plastic wastes were more productive in urban areas compared to the rural areas, indicating a possible difference in the household waste generation. A link between household wastes with Aedes productivity is expected to increase the risk of dengue epidemics if waste generation is continued without appropriate measures to limit addition to the environment. Perhaps, alternative strategies and replacement of materials with low persistence time can reduce this problem of waste and mosquito production. PMID:26447690

  5. Household Wastes as Larval Habitats of Dengue Vectors: Comparison between Urban and Rural Areas of Kolkata, India.

    PubMed

    Banerjee, Soumyajit; Aditya, Gautam; Saha, Goutam K

    2015-01-01

    Porcelain and plastic materials constitute bulk of household wastes. Owing to resistibility and slow degradability that accounts for higher residence time, these materials qualify as potential hazardous wastes. Retention of water permits these wastes to form a congenial biotope for the breeding of different vector mosquitoes. Thus porcelain and plastic wastes pose a risk from public health viewpoint. This proposition was validated through the study on the porcelain and plastic household wastes as larval habitats of Dengue vectors (Aedes spp.) in rural and urban areas around Kolkata, India. The wastes were characterized in terms of larval productivity, seasonal variation and a comparison between urban and rural areas was made using data of two subsequent years. The number of wastes positive as larval habitats and their productivity of Aedes spp. varied among the types of household wastes with reference to months and location. Multivariate analysis revealed significant differences in the larval productivity of the household wastes based on the materials, season, and urban-rural context. Results of Discriminant Analysis indicated differences in abundance of Ae. aegypti and Ae. albopictus for the urban and rural areas. The porcelain and plastic wastes were more productive in urban areas compared to the rural areas, indicating a possible difference in the household waste generation. A link between household wastes with Aedes productivity is expected to increase the risk of dengue epidemics if waste generation is continued without appropriate measures to limit addition to the environment. Perhaps, alternative strategies and replacement of materials with low persistence time can reduce this problem of waste and mosquito production. PMID:26447690

  6. Genetic shifting: a novel approach for controlling vector-borne diseases.

    PubMed

    Powell, Jeffrey R; Tabachnick, Walter J

    2014-06-01

    Rendering populations of vectors of diseases incapable of transmitting pathogens through genetic methods has long been a goal of vector geneticists. We outline a method to achieve this goal that does not involve the introduction of any new genetic variants to the target population. Rather we propose that shifting the frequencies of naturally occurring alleles that confer refractoriness to transmission can reduce transmission below a sustainable level. The program employs methods successfully used in plant and animal breeding. Because no artificially constructed genetically modified organisms (GMOs) are introduced into the environment, the method is minimally controversial. We use Aedes aegypti and dengue virus (DENV) for illustrative purposes but point out that the proposed program is generally applicable to vector-borne disease control. PMID:24794113

  7. Genetic shifting: a novel approach for controlling vector-borne diseases.

    PubMed

    Powell, Jeffrey R; Tabachnick, Walter J

    2014-06-01

    Rendering populations of vectors of diseases incapable of transmitting pathogens through genetic methods has long been a goal of vector geneticists. We outline a method to achieve this goal that does not involve the introduction of any new genetic variants to the target population. Rather we propose that shifting the frequencies of naturally occurring alleles that confer refractoriness to transmission can reduce transmission below a sustainable level. The program employs methods successfully used in plant and animal breeding. Because no artificially constructed genetically modified organisms (GMOs) are introduced into the environment, the method is minimally controversial. We use Aedes aegypti and dengue virus (DENV) for illustrative purposes but point out that the proposed program is generally applicable to vector-borne disease control.

  8. Genetic shifting: a novel approach for controlling vector-borne diseases

    PubMed Central

    Tabachnick, Walter J.

    2014-01-01

    Rendering populations of vectors of diseases incapable of transmitting pathogens through genetic methods has long been a goal of vector geneticists. We outline a method to achieve this goal that does not involve introduction of any new genetic variants to the target population. Rather we propose that shifting the frequencies of naturally occurring alleles that confer refractoriness to transmission can reduce transmission below a sustainable level. The program employs methods successfully used in plant and animal breeding. Because no artificially constructed genetically modified organisms (GMOs) are introduced into the environment, the method is minimally controversial. We use Aedes aegypti and dengue virus (DENV) for illustrative purposes, but point out the proposed program is generally applicable to vector-borne disease control. PMID:24794113

  9. Dengue fever, Hawaii, 2001-2002.

    PubMed

    Effler, Paul V; Pang, Lorrin; Kitsutani, Paul; Vorndam, Vance; Nakata, Michele; Ayers, Tracy; Elm, Joe; Tom, Tammy; Reiter, Paul; Rigau-Perez, José G; Hayes, John M; Mills, Kristin; Napier, Mike; Clark, Gary G; Gubler, Duane J

    2005-05-01

    Autochthonous dengue infections were last reported in Hawaii in 1944. In September 2001, the Hawaii Department of Health was notified of an unusual febrile illness in a resident with no travel history; dengue fever was confirmed. During the investigation, 1,644 persons with locally acquired denguelike illness were evaluated, and 122 (7%) laboratory-positive dengue infections were identified; dengue virus serotype 1 was isolated from 15 patients. No cases of dengue hemorrhagic fever or shock syndrome were reported. In 3 instances autochthonous infections were linked to a person who reported denguelike illness after travel to French Polynesia. Phylogenetic analyses showed the Hawaiian isolates were closely associated with contemporaneous isolates from Tahiti. Aedes albopictus was present in all communities surveyed on Oahu, Maui, Molokai, and Kauai; no Ae. aegypti were found. This outbreak underscores the importance of maintaining surveillance and control of potential disease vectors even in the absence of an imminent disease threat.

  10. Public health implications of dengue in personnel returning from East Timor.

    PubMed

    Hills, S; Piispanen, J; Foley, P; Smith, G; Humphreys, J; Simpson, J; McDonald, G

    2000-12-01

    In north Queensland the vector of dengue fever (Aedes aegypti) is present; hence any viraemic individual importing dengue has the potential to transmit the disease locally. In early 2000 approximately 2,000 personnel returned from East Timor to Townsville, north Queensland. Seven importations of dengue occurred and individual cases were viraemic for up to 6 days in Townsville. No subsequent local transmission occurred. There were 3 cases each of dengue type 2 and dengue type 3. One case could not be serotyped. A response, including mosquito control measures, was initiated in another 18 cases in which dengue fever was clinically suspected but which subsequently proved not to be dengue. The planning and processes undertaken to prevent local transmission of dengue in Townsville during an intense period are described.

  11. Dengue Contingency Planning: From Research to Policy and Practice

    PubMed Central

    Runge-Ranzinger, Silvia; Kroeger, Axel; Olliaro, Piero; McCall, Philip J.; Sánchez Tejeda, Gustavo; Lloyd, Linda S.; Hakim, Lokman; Bowman, Leigh R.; Horstick, Olaf; Coelho, Giovanini

    2016-01-01

    Background Dengue is an increasingly incident disease across many parts of the world. In response, an evidence-based handbook to translate research into policy and practice was developed. This handbook facilitates contingency planning as well as the development and use of early warning and response systems for dengue fever epidemics, by identifying decision-making processes that contribute to the success or failure of dengue surveillance, as well as triggers that initiate effective responses to incipient outbreaks. Methodology/Principal findings Available evidence was evaluated using a step-wise process that included systematic literature reviews, policymaker and stakeholder interviews, a study to assess dengue contingency planning and outbreak management in 10 countries, and a retrospective logistic regression analysis to identify alarm signals for an outbreak warning system using datasets from five dengue endemic countries. Best practices for managing a dengue outbreak are provided for key elements of a dengue contingency plan including timely contingency planning, the importance of a detailed, context-specific dengue contingency plan that clearly distinguishes between routine and outbreak interventions, surveillance systems for outbreak preparedness, outbreak definitions, alert algorithms, managerial capacity, vector control capacity, and clinical management of large caseloads. Additionally, a computer-assisted early warning system, which enables countries to identify and respond to context-specific variables that predict forthcoming dengue outbreaks, has been developed. Conclusions/Significance Most countries do not have comprehensive, detailed contingency plans for dengue outbreaks. Countries tend to rely on intensified vector control as their outbreak response, with minimal focus on integrated management of clinical care, epidemiological, laboratory and vector surveillance, and risk communication. The Technical Handbook for Surveillance, Dengue Outbreak

  12. Eugenol, α-pinene and β-caryophyllene from Plectranthus barbatus essential oil as eco-friendly larvicides against malaria, dengue and Japanese encephalitis mosquito vectors.

    PubMed

    Govindarajan, Marimuthu; Rajeswary, Mohan; Hoti, S L; Bhattacharyya, Atanu; Benelli, Giovanni

    2016-02-01

    Mosquito-borne diseases represent a deadly threat for millions of people worldwide. Eco-friendly mosquitocides are a priority. In Ayurvedic medicine, Plectranthus species have been used to treat heart disease, convulsions, spasmodic pain and painful urination. In this research, we evaluated the acute toxicity of essential oil from Plectranthus barbatus and its major constituents, against larvae of the malaria vector Anopheles subpictus, the dengue vector Aedes albopictus and the Japanese encephalitis vector Culex tritaeniorhynchus. The chemical composition of P. barbatus essential oil was analyzed by gas chromatography-mass spectroscopy. Nineteen components were identified. Major constituents were eugenol (31.12%), α-pinene (19.38%) and β-caryophyllene (18.42%). Acute toxicity against early third-instar larvae of An. subpictus, Ae. albopictus and Cx. tritaeniorhynchus was investigated. The essential oil had a significant toxic effect against larvae of An. subpictus, Ae. albopictus and Cx. tritaeniorhynchus, with 50% lethal concentration (LC50) values of 84.20, 87.25 and 94.34 μg/ml and 90% lethal concentration (LC90) values of 165.25, 170.56 and 179.58 μg/ml, respectively. Concerning major constituents, eugenol, α-pinene and β-caryophyllene appeared to be most effective against An. subpictus (LC50 = 25.45, 32.09 and 41.66 μg/ml, respectively), followed by Ae. albopictus (LC50 = 28.14, 34.09 and 44.77 μg/ml, respectively) and Cx. tritaeniorhynchus (LC50 = 30.80, 36.75 and 48.17 μg/ml, respectively). Overall, the chance to use metabolites from P. barbatus essential oil against mosquito vectors seems promising, since they are effective at low doses and could be an advantageous alternative to build newer and safer mosquito control tools. PMID:26518773

  13. Eugenol, α-pinene and β-caryophyllene from Plectranthus barbatus essential oil as eco-friendly larvicides against malaria, dengue and Japanese encephalitis mosquito vectors.

    PubMed

    Govindarajan, Marimuthu; Rajeswary, Mohan; Hoti, S L; Bhattacharyya, Atanu; Benelli, Giovanni

    2016-02-01

    Mosquito-borne diseases represent a deadly threat for millions of people worldwide. Eco-friendly mosquitocides are a priority. In Ayurvedic medicine, Plectranthus species have been used to treat heart disease, convulsions, spasmodic pain and painful urination. In this research, we evaluated the acute toxicity of essential oil from Plectranthus barbatus and its major constituents, against larvae of the malaria vector Anopheles subpictus, the dengue vector Aedes albopictus and the Japanese encephalitis vector Culex tritaeniorhynchus. The chemical composition of P. barbatus essential oil was analyzed by gas chromatography-mass spectroscopy. Nineteen components were identified. Major constituents were eugenol (31.12%), α-pinene (19.38%) and β-caryophyllene (18.42%). Acute toxicity against early third-instar larvae of An. subpictus, Ae. albopictus and Cx. tritaeniorhynchus was investigated. The essential oil had a significant toxic effect against larvae of An. subpictus, Ae. albopictus and Cx. tritaeniorhynchus, with 50% lethal concentration (LC50) values of 84.20, 87.25 and 94.34 μg/ml and 90% lethal concentration (LC90) values of 165.25, 170.56 and 179.58 μg/ml, respectively. Concerning major constituents, eugenol, α-pinene and β-caryophyllene appeared to be most effective against An. subpictus (LC50 = 25.45, 32.09 and 41.66 μg/ml, respectively), followed by Ae. albopictus (LC50 = 28.14, 34.09 and 44.77 μg/ml, respectively) and Cx. tritaeniorhynchus (LC50 = 30.80, 36.75 and 48.17 μg/ml, respectively). Overall, the chance to use metabolites from P. barbatus essential oil against mosquito vectors seems promising, since they are effective at low doses and could be an advantageous alternative to build newer and safer mosquito control tools.

  14. Pest control industry and vector control activities in Taiwan.

    PubMed

    Wang, C H; Lin, C H; Liao, M J

    1994-12-01

    At the end of 1993, there were 117 private pest control companies in Taiwan, with 438 technical managers and 274 technicians. Their business includes the control of mosquitoes, cockroaches, fleas, rodents, termites, houseflies, etc. Pyrethroids and some organophosphates are employed. At present, no applications of insect growth regulators or microbial agents are used by private pest control operators. During dengue epidemics they assist the government in space spraying with insecticides. The Environmental Protection Administration, Executive Yuan, R.O.C., is responsible for the training and management of pest control operators. In addition, the Administration is also in charge of affairs concerning the manufacture, import, registration and sale of environmental pesticides and microbial agents. It establishes protocols for testing the efficacy of insecticides and promotes pest control on the community level.

  15. Childhood dengue shock syndrome in Trinidad.

    PubMed

    Teelucksingh, S; Lutchman, G; Udit, A; Pooransingh, S

    1999-09-01

    Dengue haemorrhagic fever/dengue shock syndrome (DHF/DSS) is a major cause of hospitalisation and mortality among children in South East Asia. We now report, for the first time, the occurrence of DHF/DSS in Trinidadian children. The presence of vomiting, abdominal pain and hepatomegaly in the setting of a dengue epidemic should alert clinicians to the possibility of DHF/DSS. Timely diagnosis and aggressive supportive treatment are essential for a successful outcome. Source reduction, vector control and community participation are also necessary to avert the South East Asian scenario from emerging in the Caribbean.

  16. Update on the global spread of dengue.

    PubMed

    Guzman, Alfonso; Istúriz, Raul E

    2010-11-01

    The global spread of dengue fever within and beyond the usual tropical boundaries threatens a large percentage of the world's population, as human and environmental conditions for persistence and even spread are present in all continents. The disease causes great human suffering, a sizable mortality from dengue haemorrhagic fever and its complications, and major costs. This situation has worsened in the recent past and may continue to do so in the future. Efforts to decrease transmission by vector control have failed, and no effective antiviral treatment is available or foreseeable on the immediate horizon. A safe and effective vaccine protective against all serotypes of dengue viruses is sorely needed.

  17. The Role of Serotype Interactions and Seasonality in Dengue Model Selection and Control: Insights from a Pattern Matching Approach.

    PubMed

    Ten Bosch, Quirine A; Singh, Brajendra K; Hassan, Muhammad R A; Chadee, Dave D; Michael, Edwin

    2016-05-01

    The epidemiology of dengue fever is characterized by highly seasonal, multi-annual fluctuations, and the irregular circulation of its four serotypes. It is believed that this behaviour arises from the interplay between environmental drivers and serotype interactions. The exact mechanism, however, is uncertain. Constraining mathematical models to patterns characteristic to dengue epidemiology offers a means for detecting such mechanisms. Here, we used a pattern-oriented modelling (POM) strategy to fit and assess a range of dengue models, driven by combinations of temporary cross protective-immunity, cross-enhancement, and seasonal forcing, on their ability to capture the main characteristics of dengue dynamics. We show that all proposed models reproduce the observed dengue patterns across some part of the parameter space. Which model best supports the dengue dynamics is determined by the level of seasonal forcing. Further, when tertiary and quaternary infections are allowed, the inclusion of temporary cross-immunity alone is strongly supported, but the addition of cross-enhancement markedly reduces the parameter range at which dengue dynamics are produced, irrespective of the strength of seasonal forcing. The implication of these structural uncertainties on predicted vulnerability to control is also discussed. With ever expanding spread of dengue, greater understanding of dengue dynamics and control efforts (e.g. a near-future vaccine introduction) has become critically important. This study highlights the capacity of multi-level pattern-matching modelling approaches to offer an analytic tool for deeper insights into dengue epidemiology and control.

  18. The Role of Serotype Interactions and Seasonality in Dengue Model Selection and Control: Insights from a Pattern Matching Approach

    PubMed Central

    ten Bosch, Quirine A.; Hassan, Muhammad R. A.; Chadee, Dave D.; Michael, Edwin

    2016-01-01

    The epidemiology of dengue fever is characterized by highly seasonal, multi-annual fluctuations, and the irregular circulation of its four serotypes. It is believed that this behaviour arises from the interplay between environmental drivers and serotype interactions. The exact mechanism, however, is uncertain. Constraining mathematical models to patterns characteristic to dengue epidemiology offers a means for detecting such mechanisms. Here, we used a pattern-oriented modelling (POM) strategy to fit and assess a range of dengue models, driven by combinations of temporary cross protective-immunity, cross-enhancement, and seasonal forcing, on their ability to capture the main characteristics of dengue dynamics. We show that all proposed models reproduce the observed dengue patterns across some part of the parameter space. Which model best supports the dengue dynamics is determined by the level of seasonal forcing. Further, when tertiary and quaternary infections are allowed, the inclusion of temporary cross-immunity alone is strongly supported, but the addition of cross-enhancement markedly reduces the parameter range at which dengue dynamics are produced, irrespective of the strength of seasonal forcing. The implication of these structural uncertainties on predicted vulnerability to control is also discussed. With ever expanding spread of dengue, greater understanding of dengue dynamics and control efforts (e.g. a near-future vaccine introduction) has become critically important. This study highlights the capacity of multi-level pattern-matching modelling approaches to offer an analytic tool for deeper insights into dengue epidemiology and control. PMID:27159023

  19. Meteorologically Driven Simulations of Dengue Epidemics in San Juan, PR

    PubMed Central

    Morin, Cory W.; Monaghan, Andrew J.; Hayden, Mary H.; Barrera, Roberto; Ernst, Kacey

    2015-01-01

    Meteorological factors influence dengue virus ecology by modulating vector mosquito population dynamics, viral replication, and transmission. Dynamic modeling techniques can be used to examine how interactions among meteorological variables, vectors and the dengue virus influence transmission. We developed a dengue fever simulation model by coupling a dynamic simulation model for Aedes aegypti, the primary mosquito vector for dengue, with a basic epidemiological Susceptible-Exposed-Infectious-Recovered (SEIR) model. Employing a Monte Carlo approach, we simulated dengue transmission during the period of 2010–2013 in San Juan, PR, where dengue fever is endemic. The results of 9600 simulations using varied model parameters were evaluated by statistical comparison (r2) with surveillance data of dengue cases reported to the Centers for Disease Control and Prevention. To identify the most influential parameters associated with dengue virus transmission for each period the top 1% of best-fit model simulations were retained and compared. Using the top simulations, dengue cases were simulated well for 2010 (r2 = 0.90, p = 0.03), 2011 (r2 = 0.83, p = 0.05), and 2012 (r2 = 0.94, p = 0.01); however, simulations were weaker for 2013 (r2 = 0.25, p = 0.25) and the entire four-year period (r2 = 0.44, p = 0.002). Analysis of parameter values from retained simulations revealed that rain dependent container habitats were more prevalent in best-fitting simulations during the wetter 2010 and 2011 years, while human managed (i.e. manually filled) container habitats were more prevalent in best-fitting simulations during the drier 2012 and 2013 years. The simulations further indicate that rainfall strongly modulates the timing of dengue (e.g., epidemics occurred earlier during rainy years) while temperature modulates the annual number of dengue fever cases. Our results suggest that meteorological factors have a time-variable influence on dengue transmission relative to other important

  20. Meteorologically Driven Simulations of Dengue Epidemics in San Juan, PR.

    PubMed

    Morin, Cory W; Monaghan, Andrew J; Hayden, Mary H; Barrera, Roberto; Ernst, Kacey

    2015-08-01

    Meteorological factors influence dengue virus ecology by modulating vector mosquito population dynamics, viral replication, and transmission. Dynamic modeling techniques can be used to examine how interactions among meteorological variables, vectors and the dengue virus influence transmission. We developed a dengue fever simulation model by coupling a dynamic simulation model for Aedes aegypti, the primary mosquito vector for dengue, with a basic epidemiological Susceptible-Exposed-Infectious-Recovered (SEIR) model. Employing a Monte Carlo approach, we simulated dengue transmission during the period of 2010-2013 in San Juan, PR, where dengue fever is endemic. The results of 9600 simulations using varied model parameters were evaluated by statistical comparison (r2) with surveillance data of dengue cases reported to the Centers for Disease Control and Prevention. To identify the most influential parameters associated with dengue virus transmission for each period the top 1% of best-fit model simulations were retained and compared. Using the top simulations, dengue cases were simulated well for 2010 (r2 = 0.90, p = 0.03), 2011 (r2 = 0.83, p = 0.05), and 2012 (r2 = 0.94, p = 0.01); however, simulations were weaker for 2013 (r2 = 0.25, p = 0.25) and the entire four-year period (r2 = 0.44, p = 0.002). Analysis of parameter values from retained simulations revealed that rain dependent container habitats were more prevalent in best-fitting simulations during the wetter 2010 and 2011 years, while human managed (i.e. manually filled) container habitats were more prevalent in best-fitting simulations during the drier 2012 and 2013 years. The simulations further indicate that rainfall strongly modulates the timing of dengue (e.g., epidemics occurred earlier during rainy years) while temperature modulates the annual number of dengue fever cases. Our results suggest that meteorological factors have a time-variable influence on dengue transmission relative to other important

  1. Meteorologically Driven Simulations of Dengue Epidemics in San Juan, PR.

    PubMed

    Morin, Cory W; Monaghan, Andrew J; Hayden, Mary H; Barrera, Roberto; Ernst, Kacey

    2015-08-01

    Meteorological factors influence dengue virus ecology by modulating vector mosquito population dynamics, viral replication, and transmission. Dynamic modeling techniques can be used to examine how interactions among meteorological variables, vectors and the dengue virus influence transmission. We developed a dengue fever simulation model by coupling a dynamic simulation model for Aedes aegypti, the primary mosquito vector for dengue, with a basic epidemiological Susceptible-Exposed-Infectious-Recovered (SEIR) model. Employing a Monte Carlo approach, we simulated dengue transmission during the period of 2010-2013 in San Juan, PR, where dengue fever is endemic. The results of 9600 simulations using varied model parameters were evaluated by statistical comparison (r2) with surveillance data of dengue cases reported to the Centers for Disease Control and Prevention. To identify the most influential parameters associated with dengue virus transmission for each period the top 1% of best-fit model simulations were retained and compared. Using the top simulations, dengue cases were simulated well for 2010 (r2 = 0.90, p = 0.03), 2011 (r2 = 0.83, p = 0.05), and 2012 (r2 = 0.94, p = 0.01); however, simulations were weaker for 2013 (r2 = 0.25, p = 0.25) and the entire four-year period (r2 = 0.44, p = 0.002). Analysis of parameter values from retained simulations revealed that rain dependent container habitats were more prevalent in best-fitting simulations during the wetter 2010 and 2011 years, while human managed (i.e. manually filled) container habitats were more prevalent in best-fitting simulations during the drier 2012 and 2013 years. The simulations further indicate that rainfall strongly modulates the timing of dengue (e.g., epidemics occurred earlier during rainy years) while temperature modulates the annual number of dengue fever cases. Our results suggest that meteorological factors have a time-variable influence on dengue transmission relative to other important

  2. Coverage-Dependent Effect of Insecticide-Treated Curtains for Dengue Control in Thailand

    PubMed Central

    Vanlerberghe, Veerle; Trongtokit, Yuwadee; Jirarojwatana, Somchai; Jirarojwatana, Ravisara; Lenhart, Audrey; Apiwathnasorn, Chamnarn; McCall, Philip J.; Van der Stuyft, Patrick

    2013-01-01

    Evidence on the effectiveness of insecticide-treated curtains (ITCs) for reducing densities of Aedes mosquitoes, the principal vectors of dengue, is scarce. In Laem Chabang southeast of Bangkok, Thailand, the Breteau Index (BI) (number of positive containers/100 houses) was 45 in October 2006. In March 2007, we distributed long-lasting ITCs in 22 clusters (2,032 houses) and selected 66 control clusters (661 houses). Routine control activities continued in all clusters. Six months after distribution, the BI was 25.8 and 77.6 in intervention and control areas, respectively (P < 0.001). Eighteen months after distribution, the BI was 21.8 and 23.8, respectively (P = 0.28). The average number of ITCs/house at cluster level was associated with the BI (P < 0.01) after six months, when 70.5% of households still used ITCs, but not at 18 months, when ITC coverage had decreased to 33.2%. Deployment of ITCs can result in considerable reductions in Aedes infestation levels, but the effect is coverage dependent. PMID:23669233

  3. The incorporation of activities to control dengue by community health agents

    PubMed Central

    Cazola, Luiza Helena de Oliveira; Tamaki, Edson Mamoru; Pontes, Elenir Rose Jardim Cury; de Andrade, Sonia Maria Oliveira

    2014-01-01

    OBJECTIVE To evaluate the performance of Community Health Agents when dengue control activities were added to their tasks. METHODS Performance was measured comparing the evolution of selected indicators from the Brazilian National Dengue Control Program and the Family Health Strategy for 2002 to 2008 in the municipality of Sao Gabriel do Oeste, MS, Central Western Brazil, with those of Rio Verde de Mato Grosso, neighboring municipality with demographic, socioeconomic and health services similarities. Data were collected from municipal databases of the Information System for Yellow Fever and Dengue and the Information System for Primary Healthcare of the Mato Grosso do Sul State Health Office. The variables selected for the family health strategy activities were: monthly home visits, pregnant women whose antenatal care began in the first trimester, children under one with up-to-date vaccinations and hypertensive patients. Those selected for the Brazilian National Dengue Control Program were: properties inspected with Aedes aegypti and properties not inspected. RESULTS The two municipalities maintained a similar trend in dengue control indicators in the period studied. With regard to the Family Health Strategy, in 2002 Sao Gabriel do Oeste was better off in three of the four indicators studied, however, this situation was reversed at the end of the period when the county was overtaken by Rio Verde de Mato Grosso in three of the four indicators analyzed, including, the monthly average community health worker visits per registered family, the main activity of a Family Health Strategy agent. CONCLUSIONS: Incorporating the National Dengue Control Program into the Family Health Strategy is viable and developed without prejudice to dengue control activities, however, the same did not occur with the activities of family health in Sao Gabriel do Oeste. The additional workload of the community health workers is the most likely hypothesis for the declining performance of these

  4. Effects of Blood Coagulate Removal Method on Aedes albopictus (Diptera: Culicidae) Life Table Characteristics and Vector Competence for Dengue Virus.

    PubMed

    van Dodewaard, Caitlin A M; Richards, Stephanie L; Harris, Jonathan W

    2016-01-01

    Commercially available blood can be used as an alternative to live animals to maintain mosquito colonies and deliver infectious bloodmeals during research studies. We analyzed the extent to which two methods for blood coagulate removal (defibrination or addition of sodium citrate) affected life table characteristics (i.e., fecundity, fertility, hatch rate, and adult survival) and vector competence (infection, dissemination, and transmission) of Aedes albopictus (Skuse) for dengue virus (DENV). Two types of bovine blood were tested at two extrinsic incubation temperatures (27 or 30°C) for DENV-infected and uninfected mosquitoes. Fully engorged mosquitoes were transferred to individual cages containing an oviposition cup and a substrate. Eggs (fecundity) and hatched larvae (fertility) were counted. At 14 and 21 d post feeding on a DENV-infected bloodmeal, 15 mosquitoes were sampled from each group, and vector competence was analyzed (bodies [infection], legs [dissemination], and saliva [transmission]). Differences in life table characteristics and vector competence were analyzed for mosquitoes fed blood processed using different methods for removal of coagulates. The method for removal of coagulates significantly impacted fecundity, fertility, and hatch time in the uninfected group, but not DENV-infected group. Infected mosquitoes showed significantly higher fecundity and faster hatch time than uninfected mosquitoes. We show no significant differences in infection or dissemination rates between groups; however, horizontal transmission rate was significantly higher in mosquitoes fed DENV-infected citrated compared with defibrinated blood. We expect the findings of this study to inform research using artificial blood delivery methods to assess vector competence.

  5. [Diseases transmitted by mosquitoes and urbanization. Examples of urban vectors of dengue and filariasis].

    PubMed

    Rodhain, F

    1983-01-01

    Once located in time and place the beginning of urbanization process, the mechanisms of adaptation to urban ecosystem and of dissemination by human conveyances are studied for two domestic mosquitoes: Aedes aegypti and Culex pipiens fatigans (= quinque-fasciatus). Then epidemiological consequences are discussed. Ae. aegypti pullulation constitutes a potential risk of urban yellow fever outbreak and the main factor of dengue haemorrhagic fever appearance; the increase of C. p. fatigans populations involves a slow rise of bancroftian filariasis. Future prospects for these diseases are discussed with regards to data concerning recent evolution of their own epidemiological features.

  6. [Dengue fever in mainland France].

    PubMed

    Paty, M-C

    2014-11-01

    Dengue fever is the most widespread distributed vector borne viral disease. It is transmitted through the bites of Aedes aegypti and Aedes albopictus mosquitoes. With the expansion of Aedes albopictus and increasing travel exchange, it is no longer limited to the tropical zone and transmission has been documented in temperate areas. In mainland France, where Aedes albopictus has been present and disseminating since 2004, 2 episodes of autochthonous transmission occurred in 2010 and in 2013. Control measures against dengue and chikungunya, which shares the same vector, are implemented every year since 2006, in the areas where the vector is present. They aim at preventing or limiting local transmission of these diseases. They are based on epidemiological and entomological surveillance and vector control measures. The diagnosis of dengue, and chikungunya should be considered in case of suggestive symptoms in patients returning from an area of virus circulation. It should also be considered for patients living or having stayed in areas of mainland France where Aedes albopictus is present, during its activity period from May 1 to November 30. The prevention and control system, including vector control measures and the notification of cases to the local health authority should be known, as the risk of autochthonous transmission increases every year. PMID:25080833

  7. [Dengue fever in mainland France].

    PubMed

    Paty, M-C

    2014-11-01

    Dengue fever is the most widespread distributed vector borne viral disease. It is transmitted through the bites of Aedes aegypti and Aedes albopictus mosquitoes. With the expansion of Aedes albopictus and increasing travel exchange, it is no longer limited to the tropical zone and transmission has been documented in temperate areas. In mainland France, where Aedes albopictus has been present and disseminating since 2004, 2 episodes of autochthonous transmission occurred in 2010 and in 2013. Control measures against dengue and chikungunya, which shares the same vector, are implemented every year since 2006, in the areas where the vector is present. They aim at preventing or limiting local transmission of these diseases. They are based on epidemiological and entomological surveillance and vector control measures. The diagnosis of dengue, and chikungunya should be considered in case of suggestive symptoms in patients returning from an area of virus circulation. It should also be considered for patients living or having stayed in areas of mainland France where Aedes albopictus is present, during its activity period from May 1 to November 30. The prevention and control system, including vector control measures and the notification of cases to the local health authority should be known, as the risk of autochthonous transmission increases every year.

  8. Dengue Disease Risk Mental Models in the City of Dhaka, Bangladesh: Juxtapositions and Gaps Between the Public and Experts.

    PubMed

    Dhar-Chowdhury, Parnali; Haque, C Emdad; Driedger, S Michelle

    2016-05-01

    Worldwide, more than 50 million cases of dengue fever are reported every year in at least 124 countries, and it is estimated that approximately 2.5 billion people are at risk for dengue infection. In Bangladesh, the recurrence of dengue has become a growing public health threat. Notably, knowledge and perceptions of dengue disease risk, particularly among the public, are not well understood. Recognizing the importance of assessing risk perception, we adopted a comparative approach to examine a generic methodology to assess diverse sets of beliefs related to dengue disease risk. Our study mapped existing knowledge structures regarding the risk associated with dengue virus, its vector (Aedes mosquitoes), water container use, and human activities in the city of Dhaka, Bangladesh. "Public mental models" were developed from interviews and focus group discussions with diverse community groups; "expert mental models" were formulated based on open-ended discussions with experts in the pertinent fields. A comparative assessment of the public's and experts' knowledge and perception of dengue disease risk has revealed significant gaps in the perception of: (a) disease risk indicators and measurements; (b) disease severity; (c) control of disease spread; and (d) the institutions responsible for intervention. This assessment further identifies misconceptions in public perception regarding: (a) causes of dengue disease; (b) dengue disease symptoms; (c) dengue disease severity; (d) dengue vector ecology; and (e) dengue disease transmission. Based on these results, recommendations are put forward for improving communication of dengue risk and practicing local community engagement and knowledge enhancement in Bangladesh.

  9. Electromechanical actuator for thrust vector control

    NASA Astrophysics Data System (ADS)

    Zubkow, Zygmunt

    Attention is given to the development and testing of electromechanical actuator (EMA) systems for use in first- and second-stage thrust vector control of rocket engines. An overview of the test program is also presented. Designs for both first- and second-stage actuators employ redundant dc brushless, three-phase rare-earth permanent magnet motors. The first-stage actuator is about 28 hp per motor and uses a roller screw. Second-stage thrust vector control is implemented with a much smaller actuator of about 1 hp per motor. This actuator uses a gear drive with a recycling ball screw mechanism. An operational EMA is presented. This 6.5-in. actuator is capable of a stall force of 1350 pounds per motor and a frequency response of about 5 HZ.

  10. Vector population manipulation for control of arboviruses--a novel prospect for India.

    PubMed

    Niranjan Reddy, Bp; Gupta, Bhavna; Rao, B Prasad

    2014-04-01

    India, the seventh largest country in the world, has diverse geographical and climatic regions with vast rural and peri-urban areas. Many are experiencing an escalation in the spread and intensity of numerous human diseases transmitted by insects. Classically, the management of these vector-borne diseases is underpinned by either chemical insecticides and/or environmental management targeted at the vector. However, these methods or their present implementation do not offer acceptable levels of control, and more effective and sustainable options are now available. Genetic strategies for the prevention of arbovirus transmission are most advanced for dengue and chikungunya, targeting their primary vector, Aedes aegypti. The national burden in terms of morbidity and mortality as a direct consequence of dengue virus in India is considered to be the largest worldwide, over 4 times that of any other country. Presently, new genetic technologies are undergoing field evaluation of their biosafety and efficacy in several countries. This paper discusses the merits of these approaches and argues for fair and transparent appraisal in India as a matter of urgency. Identification of any associated risks and their appropriate mitigation are fundamental to that process.

  11. Economic Impact of Dengue Illness in the Americas

    PubMed Central

    Shepard, Donald S.; Coudeville, Laurent; Halasa, Yara A.; Zambrano, Betzana; Dayan, Gustavo H.

    2011-01-01

    The growing burden of dengue in endemic countries and outbreaks in previously unaffected countries stress the need to assess the economic impact of this disease. This paper synthesizes existing studies to calculate the economic burden of dengue illness in the Americas from a societal perspective. Major data sources include national case reporting data from 2000 to 2007, prospective cost of illness studies, and analyses quantifying underreporting in national routine surveillance systems. Dengue illness in the Americas was estimated to cost $2.1 billion per year on average (in 2010 US dollars), with a range of $1–4 billion in sensitivity analyses and substantial year to year variation. The results highlight the substantial economic burden from dengue in the Americas. The burden for dengue exceeds that from other viral illnesses, such as human papillomavirus (HPV) or rotavirus. Because this study does not include some components (e.g., vector control), it may still underestimate total economic consequences of dengue. PMID:21292885

  12. Vaccines and immunization strategies for dengue prevention.

    PubMed

    Liu, Yang; Liu, Jianying; Cheng, Gong

    2016-01-01

    Dengue is currently the most significant arboviral disease afflicting tropical and sub-tropical countries worldwide. Dengue vaccines, such as the multivalent attenuated, chimeric, DNA and inactivated vaccines, have been developed to prevent dengue infection in humans, and they function predominantly by stimulating immune responses against the dengue virus (DENV) envelope (E) and nonstructural-1 proteins (NS1). Of these vaccines, a live attenuated chimeric tetravalent DENV vaccine developed by Sanofi Pasteur has been licensed in several countries. However, this vaccine renders only partial protection against the DENV2 infection and is associated with an unexplained increased incidence of hospitalization for severe dengue disease among children younger than nine years old. In addition to the virus-based vaccines, several mosquito-based dengue immunization strategies have been developed to interrupt the vector competence and effectively reduce the number of infected mosquito vectors, thus controlling the transmission of DENV in nature. Here we summarize the recent progress in the development of dengue vaccines and novel immunization strategies and propose some prospective vaccine strategies for disease prevention in the future. PMID:27436365

  13. Comparison of a commercial dengue IgM capture ELISA with dengue antigen focus reduction microneutralization test and the Centers for Disease Control dengue IgM capture-ELISA.

    PubMed

    Welch, Ryan J; Chang, Gwong-Jen J; Litwin, Christine M

    2014-01-01

    Dengue (DENV) infection is caused by an arbovirus that is a member of the family Flaviviridae, genus Flavivirus. The diagnosis of acute dengue infection using clinical signs and symptoms can be difficult since the manifestations cannot be readily differentiated from other infections. Therefore the diagnosis of acute dengue infection depends upon laboratory assays. Dengue virus ELISAs have been designed for the detection of IgM and IgG antibodies in addition to nonstructural 1 (NS1) antigens. The InBios IgM Dengue ELISA was compared to the Antigen Focus Reduction Microneutralization Test (FRμNT90) and Centers for Disease Control Dengue IgM Capture-ELISA (CDC MAC-ELISA). The calculated sensitivity, specificity and agreement of the InBios ELISA compared to FRμNT90 and CDC MAC-ELISA was 88.7% (C.I. 81.4-93.7), 93.1% (C.I. 89.1-95.8) and 91.5% (C.I. 86.3-95.0), respectively. In summary the InBios IgM Dengue ELISA sensitivity and specificity is comparable to other commercially available IgM Capture-ELISAs.

  14. Dengue serologic survey in Ribeirão Preto, São Paulo, Brazil.

    PubMed

    Figueiredo, L T; Owa, M A; Carlucci, R H; dal Fabbro, A L; de Mello, N V; Capuano, D M; Santili, M B

    1995-03-01

    The city of Ribeirão Preto suffered a dengue 1 epidemic that began in November 1990 and ended in March 1991. A serologic survey designed to detect IgG antibodies to the four dengue serotypes and other flaviviruses was carried out in Ribeirão Preto during September and October of 1992. Dengue 1 antibodies were detected in 5.4% of the survey participants. Significantly higher seropositivity (9.3%) was found among subjects residing in the Northwest Sector of Ribeirão Preto than among those living in the city's other three sectors. The Northwest Sector also exhibited relatively high levels of breeding sites used by the Aedes aegypti vector, the highest number of reported dengue cases of any sector, and relatively poor socioeconomic conditions. The fact that the epidemic was limited mainly to the Northwest Sector probably resulted mainly from intense vector control and educational measures undertaken in response to the outbreak. As of the 1992 survey, most of the city's population remained vulnerable to dengue 1 infection; however, an estimated 23,000 with dengue 1 antibodies appeared to be at relatively high risk of developing dengue hemorrhagic fever/dengue shock syndrome in the event of infection with dengue 2. Both of these considerations indicate an ongoing need to maintain dengue education and vector control measures.

  15. The importance of appropriate temporal and spatial scales for dengue fever control and management.

    PubMed

    Khormi, Hassan M; Kumar, Lalit

    2012-07-15

    It is important to have appropriate models for the surveillance and control of mosquito-borne diseases, such as dengue fever (DF). These models need to be based on appropriate temporal and spatial scales. The aim of this study was to illustrate the impact of different temporal and spatial scales on DF control decisions. We applied the Getis-Ord Gi* statistic at different temporal and spatial scales to examine the local level of spatial clusters at these scales in order to identify and visualize areas where numbers of adult female Aedes mosquitoes were extreme and geographically homogenous. The modeled hotspot areas were different, depending on whether they were modeled on weekly, monthly or yearly aggregated data. A similar result was found when using different spatial scales for modeling, with different scales giving different hotspot regions. For 2006, the highest risk areas (18 districts) were mostly identified in the central districts with a high rate of similarity (95%) compared to the highest risk areas (19) identified in the averaged five-year period model. Knowledge of appropriate temporal and spatial scales can provide an opportunity to specify the health burden of DF and its vector within the hotspots, as well as set a platform that can help to pursue further investigations into associated factors responsible for increased disease risk based on different temporal and spatial scales.

  16. Permethrin-Treated Clothing as Protection against the Dengue Vector, Aedes aegypti: Extent and Duration of Protection

    PubMed Central

    DeRaedt Banks, Sarah; Orsborne, James; Gezan, Salvador A.; Kaur, Harparkash; Wilder-Smith, Annelies; Lindsey, Steve W.; Logan, James G.

    2015-01-01

    Introduction Dengue transmission by the mosquito vector, Aedes aegypti, occurs indoors and outdoors during the day. Personal protection of individuals, particularly when outside, is challenging. Here we assess the efficacy and durability of different types of insecticide-treated clothing on laboratory-reared Ae. aegypti. Methods Standardised World Health Organisation Pesticide Evaluation Scheme (WHOPES) cone tests and arm-in-cage assays were used to assess knockdown (KD) and mortality of Ae. aegypti tested against factory-treated fabric, home-dipped fabric and microencapsulated fabric. Based on the testing of these three different treatment types, the most protective was selected for further analysis using arm-in cage assays with the effect of washing, ultra-violet light, and ironing investigated using high pressure liquid chromatography. Results Efficacy varied between the microencapsulated and factory dipped fabrics in cone testing. Factory-dipped clothing showed the greatest effect on KD (3 min 38.1%; 1 hour 96.5%) and mortality (97.1%) with no significant difference between this and the factory dipped school uniforms. Factory-dipped clothing was therefore selected for further testing. Factory dipped clothing provided 59% (95% CI = 49.2%– 66.9%) reduction in landing and a 100% reduction in biting in arm-in-cage tests. Washing duration and technique had a significant effect, with insecticidal longevity shown to be greater with machine washing (LW50 = 33.4) compared to simulated hand washing (LW50 = 17.6). Ironing significantly reduced permethrin content after 1 week of simulated use, with a 96.7% decrease after 3 months although UV exposure did not reduce permethrin content within clothing significantly after 3 months simulated use. Conclusion Permethrin-treated clothing may be a promising intervention in reducing dengue transmission. However, our findings also suggest that clothing may provide only short-term protection due to the effect of washing and ironing

  17. Dengue vaccines approach the finish line.

    PubMed

    Edelman, Robert

    2007-07-15

    The spread of dengue virus (DV) via its Aedes mosquito vector throughout most of the tropics has led to a worldwide resurgence of epidemic dengue, including dengue hemorrhagic fever. For the first time in 60 years, the pipeline of dengue vaccines looks promising. Strains of each of the 4 DV serotypes, attenuated by passage in tissue culture or by recombinant DNA technology, have been formulated into tetravalent vaccines and have entered successful phase 1 and 2 clinical trials in the United States and Southeast Asia. Antibody-dependent enhancement of wild-type DV infections by the vaccine represents a unique safety issue, which is under investigation. The Pediatric Dengue Vaccine Initiative (funded by the Bill and Melinda Gates Foundation), the World Health Organization, industry, the US military, and governments of tropical countries are collaborating to accelerate dengue vaccine development and phase 3 vaccine efficacy trials in countries where dengue is endemic. A protective tetravalent vaccine must be licensed soon if dengue is to be brought under control.

  18. A prospective case-control study to investigate retinal microvascular changes in acute dengue infection.

    PubMed

    Tan, Petrina; Lye, David C; Yeo, Tun Kuan; Cheung, Carol Y; Thein, Tun-Linn; Wong, Joshua G; Agrawal, Rupesh; Li, Ling-Jun; Wong, Tien-Yin; Gan, Victor C; Leo, Yee-Sin; Teoh, Stephen C

    2015-01-01

    Dengue infection can affect the microcirculation by direct viral infection or activation of inflammation. We aimed to determine whether measured retinal vascular parameters were associated with acute dengue infection. Patients with acute dengue were recruited from Communicable Diseases Center, Singapore and age-gender-ethnicity matched healthy controls were selected from a population-based study. Retinal photographs were taken on recruitment and convalescence. A spectrum of quantitative retinal microvascular parameters (retinal vascular caliber, fractal dimension, tortuosity and branching angle) was measured using a semi-automated computer-based program. (Singapore I Vessel Assessment, version 3.0). We included 62 dengue patients and 127 controls. Dengue cases were more likely to have wider retinal arteriolar and venular calibers (158.3 μm vs 144.3 μm, p < 0.001; 227.7 μm vs 212.8 μm, p < 0.001; respectively), higher arteriolar and venular fractal dimensions (1.271 vs 1.249, p = 0.002; 1.268 vs. 1.230, p < 0.001, respectively), higher arteriolar and venular tortuosity (0.730 vs 0.546 [x10(4)], p < 0.001; 0.849 vs 0.658 [x10(4)], p < 0.001; respectively), compared to controls. Resolution of acute dengue coincided with decrease in retinal vascular calibers and venular fractal dimension. Dengue patients have altered microvascular network in the retina; these changes may reflect pathophysiological processes in the immune system.

  19. Factors Associated with Larval Control Practices in a Dengue Outbreak Prone Area

    PubMed Central

    Mohamad, Mariam; Selamat, Mohamad Ikhsan; Ismail, Zaliha

    2014-01-01

    In order to reduce the risk of dengue outbreak recurrence in a dengue outbreak prone area, the members of the community need to sustain certain behavior to prevent mosquito from breeding. Our study aims to identify the factors associated with larval control practices in this particular community. A cross-sectional study involves 322 respondents living in a dengue outbreak prone area who were interviewed using a pretested questionnaire. The level of knowledge about Aedes mosquitoes, dengue transmission, its symptoms, and personal preventive measures ranges from fair to good. The level of attitude towards preventive measures was high. However, reported level of personal larval control practices was low (33.2%). Our multiple logistic regression analysis showed that only those with a good level of attitude towards personal preventive measure and frequent attendance to health campaigns were significantly associated with the good larval control practices. We conclude that, in a dengue outbreak prone area, having a good attitude towards preventive measures and frequent participation in health campaigns are important factors to sustain practices on larval control. PMID:25309602

  20. Controlling Vector Bessel Beams with Metasurfaces

    NASA Astrophysics Data System (ADS)

    Pfeiffer, Carl; Grbic, Anthony

    2014-10-01

    Unprecedented control of an electromagnetic wave front is demonstrated with reflectionless metasurfaces that can manipulate vector Bessel beams: cylindrical vector beams with a Bessel profile. First, two metasurfaces are developed to convert linearly and circularly polarized Gaussian beams into vector Bessel beams. Each unit cell of the metasurfaces provides polarization and phase control with high efficiency. Next, the reciprocal process is demonstrated: an incident radially polarized Bessel beam is transformed into collimated, linearly and circularly polarized beams. In this configuration, a planar Bessel beam launcher is integrated with a collimating metasurface lens to realize a low-profile lens-antenna. The lens-antenna achieves a high directivity (exceeding 20 dB) with a subwavelength overall thickness. Finally, a metasurface providing isotropic polarization rotation is used to transform a radially polarized Bessel beam into an azimuthally polarized Bessel beam. This work demonstrates that metasurfaces can be used to generate arbitrary combinations of radial and azimuthal polarizations for applications such as focus shaping or generating tractor beams.

  1. Dengue in Florida (USA)

    PubMed Central

    Rey, Jorge R.

    2014-01-01

    Florida (USA), particularly the southern portion of the State, is in a precarious situation concerning arboviral diseases. The geographic location, climate, lifestyle, and the volume of travel and commerce are all conducive to arbovirus transmission. During the last decades, imported dengue cases have been regularly recorded in Florida, and the recent re-emergence of dengue as a major public health concern in the Americas has been accompanied by a steady increase in the number of imported cases. In 2009, there were 28 cases of locally transmitted dengue in Key West, and in 2010, 65 cases were reported. Local transmission was also reported in Martin County in 2013 (29 cases), and isolated locally transmitted cases were also reported from other counties in the last five years. Dengue control and prevention in the future will require close cooperation between mosquito control and public health agencies, citizens, community and government agencies, and medical professionals to reduce populations of the vectors and to condition citizens and visitors to take personal protection measures that minimize bites by infected mosquitoes. PMID:26462955

  2. Dengue in Florida (USA).

    PubMed

    Rey, Jorge R

    2014-01-01

    Florida (USA), particularly the southern portion of the State, is in a precarious situation concerning arboviral diseases. The geographic location, climate, lifestyle, and the volume of travel and commerce are all conducive to arbovirus transmission. During the last decades, imported dengue cases have been regularly recorded in Florida, and the recent re-emergence of dengue as a major public health concern in the Americas has been accompanied by a steady increase in the number of imported cases. In 2009, there were 28 cases of locally transmitted dengue in Key West, and in 2010, 65 cases were reported. Local transmission was also reported in Martin County in 2013 (29 cases), and isolated locally transmitted cases were also reported from other counties in the last five years. Dengue control and prevention in the future will require close cooperation between mosquito control and public health agencies, citizens, community and government agencies, and medical professionals to reduce populations of the vectors and to condition citizens and visitors to take personal protection measures that minimize bites by infected mosquitoes. PMID:26462955

  3. Genetic deviation in geographically close populations of the dengue vector Aedes aegypti (Diptera: Culicidae): influence of environmental barriers in South India.

    PubMed

    Vadivalagan, Chithravel; Karthika, Pushparaj; Murugan, Kadarkarai; Panneerselvam, Chellasamy; Paulpandi, Manickam; Madhiyazhagan, Pari; Wei, Hui; Aziz, Al Thabiani; Alsalhi, Mohamad Saleh; Devanesan, Sandhanasamy; Nicoletti, Marcello; Paramasivan, Rajaiah; Dinesh, Devakumar; Benelli, Giovanni

    2016-03-01

    Mosquitoes are vectors of devastating pathogens and parasites, causing millions of deaths every year. Dengue is a mosquito-borne viral infection found in tropical and subtropical regions around the world. Recently, dengue transmission has strongly increased in urban and semiurban areas, becoming a major international public health concern. Aedes aegypti (Diptera: Culicidae) is a primary vector of dengue. Shedding light on genetic deviation in A. aegypti populations is of crucial importance to fully understand their molecular ecology and evolution. In this research, haplotype and genetic analyses were conducted using individuals of A. aegypti from 31 localities in the north, southeast, northeast and central regions of Tamil Nadu (South India). The mitochondrial DNA region of cytochrome c oxidase 1 (CO1) gene was used as marker for the analyses. Thirty-one haplotypes sequences were submitted to GenBank and authenticated. The complete haplotype set included 64 haplotypes from various geographical regions clustered into three groups (lineages) separated by three fixed mutational steps, suggesting that the South Indian Ae. aegypti populations were pooled and are linked with West Africa, Columbian and Southeast Asian lineages. The genetic and haplotype diversity was low, indicating reduced gene flow among close populations of the vector, due to geographical barriers such as water bodies. Lastly, the negative values for neutrality tests indicated a bottle-neck effect and supported for low frequency of polymorphism among the haplotypes. Overall, our results add basic knowledge to molecular ecology of the dengue vector A. aegypti, providing the first evidence for multiple introductions of Ae. aegypti populations from Columbia and West Africa in South India. PMID:26627691

  4. Genetic deviation in geographically close populations of the dengue vector Aedes aegypti (Diptera: Culicidae): influence of environmental barriers in South India.

    PubMed

    Vadivalagan, Chithravel; Karthika, Pushparaj; Murugan, Kadarkarai; Panneerselvam, Chellasamy; Paulpandi, Manickam; Madhiyazhagan, Pari; Wei, Hui; Aziz, Al Thabiani; Alsalhi, Mohamad Saleh; Devanesan, Sandhanasamy; Nicoletti, Marcello; Paramasivan, Rajaiah; Dinesh, Devakumar; Benelli, Giovanni

    2016-03-01

    Mosquitoes are vectors of devastating pathogens and parasites, causing millions of deaths every year. Dengue is a mosquito-borne viral infection found in tropical and subtropical regions around the world. Recently, dengue transmission has strongly increased in urban and semiurban areas, becoming a major international public health concern. Aedes aegypti (Diptera: Culicidae) is a primary vector of dengue. Shedding light on genetic deviation in A. aegypti populations is of crucial importance to fully understand their molecular ecology and evolution. In this research, haplotype and genetic analyses were conducted using individuals of A. aegypti from 31 localities in the north, southeast, northeast and central regions of Tamil Nadu (South India). The mitochondrial DNA region of cytochrome c oxidase 1 (CO1) gene was used as marker for the analyses. Thirty-one haplotypes sequences were submitted to GenBank and authenticated. The complete haplotype set included 64 haplotypes from various geographical regions clustered into three groups (lineages) separated by three fixed mutational steps, suggesting that the South Indian Ae. aegypti populations were pooled and are linked with West Africa, Columbian and Southeast Asian lineages. The genetic and haplotype diversity was low, indicating reduced gene flow among close populations of the vector, due to geographical barriers such as water bodies. Lastly, the negative values for neutrality tests indicated a bottle-neck effect and supported for low frequency of polymorphism among the haplotypes. Overall, our results add basic knowledge to molecular ecology of the dengue vector A. aegypti, providing the first evidence for multiple introductions of Ae. aegypti populations from Columbia and West Africa in South India.

  5. siRNA-Mediated Silencing of doublesex during Female Development of the Dengue Vector Mosquito Aedes aegypti

    PubMed Central

    Mysore, Keshava; Sun, Longhua; Tomchaney, Michael; Sullivan, Gwyneth; Adams, Haley; Piscoya, Andres S.; Severson, David W.; Syed, Zainulabeuddin; Duman-Scheel, Molly

    2015-01-01

    The development of sex-specific traits, including the female-specific ability to bite humans and vector disease, is critical for vector mosquito reproduction and pathogen transmission. Doublesex (Dsx), a terminal transcription factor in the sex determination pathway, is known to regulate sex-specific gene expression during development of the dengue fever vector mosquito Aedes aegypti. Here, the effects of developmental siRNA-mediated dsx silencing were assessed in adult females. Targeting of dsx during A. aegypti development resulted in decreased female wing size, a correlate for body size, which is typically larger in females. siRNA-mediated targeting of dsx also resulted in decreased length of the adult female proboscis. Although dsx silencing did not impact female membrane blood feeding or mating behavior in the laboratory, decreased fecundity and fertility correlated with decreased ovary length, ovariole length, and ovariole number in dsx knockdown females. Dsx silencing also resulted in disruption of olfactory system development, as evidenced by reduced length of the female antenna and maxillary palp and the sensilla present on these structures, as well as disrupted odorant receptor expression. Female lifespan, a critical component of the ability of A. aegypti to transmit pathogens, was also significantly reduced in adult females following developmental targeting of dsx. The results of this investigation demonstrate that silencing of dsx during A. aegypti development disrupts multiple sex-specific morphological, physiological, and behavioral traits of adult females, a number of which are directly or indirectly linked to mosquito reproduction and pathogen transmission. Moreover, the olfactory phenotypes observed connect Dsx to development of the olfactory system, suggesting that A. aegypti will be an excellent system in which to further assess the developmental genetics of sex-specific chemosensation. PMID:26544686

  6. siRNA-Mediated Silencing of doublesex during Female Development of the Dengue Vector Mosquito Aedes aegypti.

    PubMed

    Mysore, Keshava; Sun, Longhua; Tomchaney, Michael; Sullivan, Gwyneth; Adams, Haley; Piscoya, Andres S; Severson, David W; Syed, Zainulabeuddin; Duman-Scheel, Molly

    2015-11-01

    The development of sex-specific traits, including the female-specific ability to bite humans and vector disease, is critical for vector mosquito reproduction and pathogen transmission. Doublesex (Dsx), a terminal transcription factor in the sex determination pathway, is known to regulate sex-specific gene expression during development of the dengue fever vector mosquito Aedes aegypti. Here, the effects of developmental siRNA-mediated dsx silencing were assessed in adult females. Targeting of dsx during A. aegypti development resulted in decreased female wing size, a correlate for body size, which is typically larger in females. siRNA-mediated targeting of dsx also resulted in decreased length of the adult female proboscis. Although dsx silencing did not impact female membrane blood feeding or mating behavior in the laboratory, decreased fecundity and fertility correlated with decreased ovary length, ovariole length, and ovariole number in dsx knockdown females. Dsx silencing also resulted in disruption of olfactory system development, as evidenced by reduced length of the female antenna and maxillary palp and the sensilla present on these structures, as well as disrupted odorant receptor expression. Female lifespan, a critical component of the ability of A. aegypti to transmit pathogens, was also significantly reduced in adult females following developmental targeting of dsx. The results of this investigation demonstrate that silencing of dsx during A. aegypti development disrupts multiple sex-specific morphological, physiological, and behavioral traits of adult females, a number of which are directly or indirectly linked to mosquito reproduction and pathogen transmission. Moreover, the olfactory phenotypes observed connect Dsx to development of the olfactory system, suggesting that A. aegypti will be an excellent system in which to further assess the developmental genetics of sex-specific chemosensation. PMID:26544686

  7. siRNA-Mediated Silencing of doublesex during Female Development of the Dengue Vector Mosquito Aedes aegypti.

    PubMed

    Mysore, Keshava; Sun, Longhua; Tomchaney, Michael; Sullivan, Gwyneth; Adams, Haley; Piscoya, Andres S; Severson, David W; Syed, Zainulabeuddin; Duman-Scheel, Molly

    2015-11-01

    The development of sex-specific traits, including the female-specific ability to bite humans and vector disease, is critical for vector mosquito reproduction and pathogen transmission. Doublesex (Dsx), a terminal transcription factor in the sex determination pathway, is known to regulate sex-specific gene expression during development of the dengue fever vector mosquito Aedes aegypti. Here, the effects of developmental siRNA-mediated dsx silencing were assessed in adult females. Targeting of dsx during A. aegypti development resulted in decreased female wing size, a correlate for body size, which is typically larger in females. siRNA-mediated targeting of dsx also resulted in decreased length of the adult female proboscis. Although dsx silencing did not impact female membrane blood feeding or mating behavior in the laboratory, decreased fecundity and fertility correlated with decreased ovary length, ovariole length, and ovariole number in dsx knockdown females. Dsx silencing also resulted in disruption of olfactory system development, as evidenced by reduced length of the female antenna and maxillary palp and the sensilla present on these structures, as well as disrupted odorant receptor expression. Female lifespan, a critical component of the ability of A. aegypti to transmit pathogens, was also significantly reduced in adult females following developmental targeting of dsx. The results of this investigation demonstrate that silencing of dsx during A. aegypti development disrupts multiple sex-specific morphological, physiological, and behavioral traits of adult females, a number of which are directly or indirectly linked to mosquito reproduction and pathogen transmission. Moreover, the olfactory phenotypes observed connect Dsx to development of the olfactory system, suggesting that A. aegypti will be an excellent system in which to further assess the developmental genetics of sex-specific chemosensation.

  8. Cell phone-based system (Chaak) for surveillance of immatures of dengue virus mosquito vectors.

    PubMed

    Lozano-Fuentes, Saul; Wedyan, Fadi; Hernandez-Garcia, Edgar; Sadhu, Devadatta; Ghosh, Sudipto; Bieman, James M; Tep-Chel, Diana; García-Rejón, Julián E; Eisen, Lars

    2013-07-01

    Capture of surveillance data on mobile devices and rapid transfer of such data from these devices into an electronic database or data management and decision support systems promote timely data analyses and public health response during disease outbreaks. Mobile data capture is used increasingly for malaria surveillance and holds great promise for surveillance of other neglected tropical diseases. We focused on mosquito-borne dengue, with the primary aims of: 1) developing and field-testing a cell phone-based system (called Chaak) for capture of data relating to the surveillance of the mosquito immature stages, and 2) assessing, in the dengue endemic setting of Mérida, Mexico, the cost-effectiveness of this new technology versus paper-based data collection. Chaak includes a desktop component, where a manager selects premises to be surveyed for mosquito immatures, and a cell phone component, where the surveyor receives the assigned tasks and captures the data. Data collected on the cell phone can be transferred to a central database through different modes of transmission, including near-real time where data are transferred immediately (e.g., over the Internet) or by first storing data on the cell phone for future transmission. Spatial data are handled in a novel, semantically driven, geographic information system. Compared with a pen-and-paper-based method, use of Chaak improved the accuracy and increased the speed of data transcription into an electronic database. The cost-effectiveness of using the Chaak system will depend largely on the up-front cost of purchasing cell phones and the recurring cost of data transfer over a cellular network.

  9. Cell Phone-Based System (Chaak) for Surveillance of Immatures of Dengue Virus Mosquito Vectors

    PubMed Central

    LOZANO–FUENTES, SAUL; WEDYAN, FADI; HERNANDEZ–GARCIA, EDGAR; SADHU, DEVADATTA; GHOSH, SUDIPTO; BIEMAN, JAMES M.; TEP-CHEL, DIANA; GARCÍA–REJÓN, JULIÁN E.; EISEN, LARS

    2014-01-01

    Capture of surveillance data on mobile devices and rapid transfer of such data from these devices into an electronic database or data management and decision support systems promote timely data analyses and public health response during disease outbreaks. Mobile data capture is used increasingly for malaria surveillance and holds great promise for surveillance of other neglected tropical diseases. We focused on mosquito-borne dengue, with the primary aims of: 1) developing and field-testing a cell phone-based system (called Chaak) for capture of data relating to the surveillance of the mosquito immature stages, and 2) assessing, in the dengue endemic setting of Mérida, México, the cost-effectiveness of this new technology versus paper-based data collection. Chaak includes a desktop component, where a manager selects premises to be surveyed for mosquito immatures, and a cell phone component, where the surveyor receives the assigned tasks and captures the data. Data collected on the cell phone can be transferred to a central database through different modes of transmission, including near-real time where data are transferred immediately (e.g., over the Internet) or by first storing data on the cell phone for future transmission. Spatial data are handled in a novel, semantically driven, geographic information system. Compared with a pen-and-paper-based method, use of Chaak improved the accuracy and increased the speed of data transcription into an electronic database. The cost-effectiveness of using the Chaak system will depend largely on the up-front cost of purchasing cell phones and the recurring cost of data transfer over a cellular network. PMID:23926788

  10. Effectiveness of Ultra-Low Volume Nighttime Applications of an Adulticide against Diurnal Aedes albopictus, a Critical Vector of Dengue and Chikungunya Viruses

    PubMed Central

    Farajollahi, Ary; Healy, Sean P.; Unlu, Isik; Gaugler, Randy; Fonseca, Dina M.

    2012-01-01

    Aedes albopictus, the Asian tiger mosquito, continues expanding its geographic range and involvement in mosquito-borne diseases such as chikungunya and dengue. Vector control programs rarely attempt to suppress this diurnal species with an ultra-low volume (ULV) adulticide because for maximum efficacy applications are conducted at night. During 2009–2011 we performed experimental nighttime applications of a novel adulticide (DUET®) against field populations of Ae. albopictus within an urban site composed of approximately 1,000 parcels (home and yard) in northeastern USA. Dual applications at mid label rate of the adulticide spaced one or two days apart accomplished significantly higher control (85.0±5.4% average reduction) than single full rate applications (73.0±5.4%). Our results demonstrate that nighttime ULV adulticiding is effective in reducing Ae. albopictus abundance and highlight its potential for use as part of integrated pest management programs and during disease epidemics when reducing human illness is of paramount importance. PMID:23145115

  11. Effectiveness of ultra-low volume nighttime applications of an adulticide against diurnal Aedes albopictus, a critical vector of dengue and chikungunya viruses.

    PubMed

    Farajollahi, Ary; Healy, Sean P; Unlu, Isik; Gaugler, Randy; Fonseca, Dina M

    2012-01-01

    Aedes albopictus, the Asian tiger mosquito, continues expanding its geographic range and involvement in mosquito-borne diseases such as chikungunya and dengue. Vector control programs rarely attempt to suppress this diurnal species with an ultra-low volume (ULV) adulticide because for maximum efficacy applications are conducted at night. During 2009-2011 we performed experimental nighttime applications of a novel adulticide (DUET®) against field populations of Ae. albopictus within an urban site composed of approximately 1,000 parcels (home and yard) in northeastern USA. Dual applications at mid label rate of the adulticide spaced one or two days apart accomplished significantly higher control (85.0 ± 5.4% average reduction) than single full rate applications (73.0 ± 5.4%). Our results demonstrate that nighttime ULV adulticiding is effective in reducing Ae. albopictus abundance and highlight its potential for use as part of integrated pest management programs and during disease epidemics when reducing human illness is of paramount importance.

  12. 40 CFR 258.22 - Disease vector control.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Disease vector control. 258.22 Section... MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.22 Disease vector control. (a) Owners or operators of all MSWLF units must prevent or control on-site populations of disease vectors using...

  13. 40 CFR 258.22 - Disease vector control.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Disease vector control. 258.22 Section... MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.22 Disease vector control. (a) Owners or operators of all MSWLF units must prevent or control on-site populations of disease vectors using...

  14. 40 CFR 258.22 - Disease vector control.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Disease vector control. 258.22 Section... MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.22 Disease vector control. (a) Owners or operators of all MSWLF units must prevent or control on-site populations of disease vectors using...

  15. 40 CFR 258.22 - Disease vector control.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Disease vector control. 258.22 Section... MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.22 Disease vector control. (a) Owners or operators of all MSWLF units must prevent or control on-site populations of disease vectors using...

  16. The argument for integrating vector control with multiple drug administration campaigns to ensure elimination of lymphatic filariasis

    PubMed Central

    Burkot, TR; Durrheim, DN; Melrose, WD; Speare, R; Ichimori, K

    2006-01-01

    Background There is a danger that mass drug administration campaigns may fail to maintain adequate treatment coverage to achieve lymphatic filariasis elimination. Hence, additional measures to suppress transmission might be needed to ensure the success of the Global Program for the Elimination of Lymphatic Filariasis. Discussion Vector control successfully eliminated lymphatic filariasis when implemented alone or with mass drug administration. Challenges to lymphatic filariasis elimination include uncertainty of the exact level and duration of microfilarial suppression required for elimination, the mobility of infected individuals, consistent non-participation of some infected individuals with mass drug administration, the possible development of anti-filarial drug resistance and treatment strategies in areas co-endemic with loasis. Integration of vector control with mass drug administration can address some of these challenges. The potential benefits of vector control would include: (1) the ability to suppress filariasis transmission without the need to identify all individual 'foci of infection'; (2) minimizing the risk of reestablishment of transmission from imported microfilaria positive individuals; and (3) decreasing the risk of dengue or malaria transmission where, respectively, Aedes or Anopheles are lymphatic filariasis vectors. Summary With adequate sustained treatment coverage, mass drug administration should meet the criteria for elimination of lymphatic filariasis. However, it may be difficult to sustain sufficiently high mass drug administration coverage to achieve lymphatic filariasis elimination in some areas, particularly, where Aedes species are the vectors. Since vector control was effective in controlling and even eliminating lymphatic filariasis transmission, integration of vector control with mass drug administration will ensure the sustainability of transmission suppression and thereby better ensure the success of national filariasis

  17. Ongoing outbreak of dengue type 1 in the Autonomous Region of Madeira, Portugal: preliminary report.

    PubMed

    Sousa, C A; Clairouin, M; Seixas, G; Viveiros, B; Novo, M T; Silva, A C; Escoval, M T; Economopoulou, A

    2012-01-01

    Following the identification of two autochthonous cases of dengue type 1 on 3 October 2012, an outbreak of dengue fever has been reported in Madeira, Portugal. As of 25 November, 1,891 cases have been detected on the island where the vector Aedes aegypti had been established in some areas since 2005. This event represents the first epidemic of dengue fever in Europe since 1928 and concerted control measures have been initiated by local health authorities.

  18. The biological control of the malaria vector.

    PubMed

    Kamareddine, Layla

    2012-09-01

    The call for malaria control, over the last century, marked a new epoch in the history of this disease. Many control strategies targeting either the Plasmodium parasite or the Anopheles vector were shown to be effective. Yet, the emergence of drug resistant parasites and insecticide resistant mosquito strains, along with numerous health, environmental, and ecological side effects of many chemical agents, highlighted the need to develop alternative tools that either complement or substitute conventional malaria control approaches. The use of biological means is considered a fundamental part of the recently launched malaria eradication program and has so far shown promising results, although this approach is still in its infancy. This review presents an overview of the most promising biological control tools for malaria eradication, namely fungi, bacteria, larvivorous fish, parasites, viruses and nematodes. PMID:23105979

  19. Vector and reservoir control for preventing leishmaniasis

    PubMed Central

    González, Urbà; Pinart, Mariona; Sinclair, David; Firooz, Alireza; Enk, Claes; Vélez, Ivan D; Esterhuizen, Tonya M; Tristan, Mario; Alvar, Jorge

    2015-01-01

    Background Leishmaniasis is caused by the Leishmania parasite, and transmitted by infected phlebotomine sandflies. Of the two distinct clinical syndromes, cutaneous leishmaniasis (CL) affects the skin and mucous membranes, and visceral leishmaniasis (VL) affects internal organs. Approaches to prevent transmission include vector control by reducing human contact with infected sandflies, and reservoir control, by reducing the number of infected animals. Objectives To assess the effects of vector and reservoir control interventions for cutaneous and for visceral leishmaniasis. Search methods We searched the following databases to 13 January 2015: Cochrane Infectious Diseases Group Specialized Register, CENTRAL, MEDLINE, EMBASE, LILACS and WHOLIS, Web of Science, and RePORTER. We also searched trials registers for ongoing trials. Selection criteria Randomized controlled trials (RCTs) evaluating the effects of vector and reservoir control interventions in leishmaniasis-endemic regions. Data collection and analysis Two review authors independently searched for trials and extracted data from included RCTs. We resolved any disagreements by discussion with a third review author. We assessed the quality of the evidence using the GRADE approach. Main results We included 14 RCTs that evaluated a range of interventions across different settings. The study methods were generally poorly described, and consequently all included trials were judged to be at high or unclear risk of selection and reporting bias. Only seven trials reported clinical outcome data which limits our ability to make broad generalizations to different epidemiological settings and cultures. Cutaneous leishmaniasis One four-arm RCT from Afghanistan compared indoor residual spraying (IRS), insecticide-treated bednets (ITNs), and insecticide-treated bedsheets, with no intervention. Over 15 months follow-up, all three insecticide-based interventions had a lower incidence of CL than the control area (IRS: risk

  20. [The expansion of vector-borne diseases and the implications for blood transfusion safety: The case of West Nile Virus, dengue and chikungunya].

    PubMed

    Paty, M-C

    2013-05-01

    Arbovirus infections are increasing in prevalence worldwide. This presents new risks for blood transfusion. This article describes the epidemiology and surveillance of West Nile Virus, dengue and chikungunya and their role in the risk management of transfusions. Arboviruses are RNA viruses and very adaptable by nature. The majority of arbovirus infections are zoonoses. The risk of transmission is multifactorial and concerns the virus, vectors, animal reservoirs, the environment and human behaviour. In recent years, West Nile Virus has become established and widespread in North America, the number of cases of dengue worldwide has increased dramatically, and major epidemics of chikungunya have occurred in the Indian Ocean and Asia. The transmission of dengue and chikungunya is demonstrated in temperate zones. All arboviruses are potentially transmissible by transfusion due to their capacity to induce an asymptomatic viremic phase. The risk of West Nile Virus transmission via transfusion is recognised and prevention measures are well established. The risk of transmission via transfusion of dengue and chikungunya is real but difficult to quantify and the optimum prevention strategy is currently the subject of research. Access to up-to-date epidemiological data is an essential aid to decision-making, especially for donors returning from endemic areas to Europe. The challenge is to define and implement appropriate measures in unpredictable situations.

  1. Dengue Knowledge and Preventive Practices in Iquitos, Peru.

    PubMed

    Paz-Soldán, Valerie A; Morrison, Amy C; Cordova Lopez, Jhonny J; Lenhart, Audrey; Scott, Thomas W; Elder, John P; Sihuincha, Moises; Kochel, Tadeusz J; Halsey, Eric S; Astete, Helvio; McCall, Philip J

    2015-12-01

    As part of a cluster-randomized trial to evaluate insecticide-treated curtains for dengue prevention in Iquitos, Peru, we surveyed 1,333 study participants to examine knowledge and reported practices associated with dengue and its prevention. Entomological data from 1,133 of these households were linked to the survey. Most participants knew that dengue was transmitted by mosquito bite (85.6%), but only few (18.6%) knew that dengue vectors bite during daytime. Most commonly recognized dengue symptoms were fever (86.6%), headache (76.4%), and muscle/joint pain (67.9%). Most commonly reported correct practices for mosquito control were cleaning homes (61.6%), using insecticide sprays (23%), and avoiding having standing water at home (12.3%). Higher education was associated with higher knowledge about dengue, including transmission and vector control. Higher socioeconomic status was associated with increased reported use of preventive practices requiring money expenditure. We were less likely to find Aedes aegypti eggs, larvae, or pupae in households that had < 5-year-old children at home. Although dengue has been transmitted in Iquitos since the 1990s and the Regional Health Authority routinely fumigates households, treats domestic water containers with larvicide, and issues health education messages through mass media, knowledge of dengue transmission and household practices for prevention could be improved. PMID:26503276

  2. Dengue Knowledge and Preventive Practices in Iquitos, Peru

    PubMed Central

    Paz-Soldán, Valerie A.; Morrison, Amy C.; Cordova Lopez, Jhonny J.; Lenhart, Audrey; Scott, Thomas W.; Elder, John P.; Sihuincha, Moises; Kochel, Tadeusz J.; Halsey, Eric S.; Astete, Helvio; McCall, Philip J.

    2015-01-01

    As part of a cluster-randomized trial to evaluate insecticide-treated curtains for dengue prevention in Iquitos, Peru, we surveyed 1,333 study participants to examine knowledge and reported practices associated with dengue and its prevention. Entomological data from 1,133 of these households were linked to the survey. Most participants knew that dengue was transmitted by mosquito bite (85.6%), but only few (18.6%) knew that dengue vectors bite during daytime. Most commonly recognized dengue symptoms were fever (86.6%), headache (76.4%), and muscle/joint pain (67.9%). Most commonly reported correct practices for mosquito control were cleaning homes (61.6%), using insecticide sprays (23%), and avoiding having standing water at home (12.3%). Higher education was associated with higher knowledge about dengue, including transmission and vector control. Higher socioeconomic status was associated with increased reported use of preventive practices requiring money expenditure. We were less likely to find Aedes aegypti eggs, larvae, or pupae in households that had < 5-year-old children at home. Although dengue has been transmitted in Iquitos since the 1990s and the Regional Health Authority routinely fumigates households, treats domestic water containers with larvicide, and issues health education messages through mass media, knowledge of dengue transmission and household practices for prevention could be improved. PMID:26503276

  3. Dengue Knowledge and Preventive Practices in Iquitos, Peru.

    PubMed

    Paz-Soldán, Valerie A; Morrison, Amy C; Cordova Lopez, Jhonny J; Lenhart, Audrey; Scott, Thomas W; Elder, John P; Sihuincha, Moises; Kochel, Tadeusz J; Halsey, Eric S; Astete, Helvio; McCall, Philip J

    2015-12-01

    As part of a cluster-randomized trial to evaluate insecticide-treated curtains for dengue prevention in Iquitos, Peru, we surveyed 1,333 study participants to examine knowledge and reported practices associated with dengue and its prevention. Entomological data from 1,133 of these households were linked to the survey. Most participants knew that dengue was transmitted by mosquito bite (85.6%), but only few (18.6%) knew that dengue vectors bite during daytime. Most commonly recognized dengue symptoms were fever (86.6%), headache (76.4%), and muscle/joint pain (67.9%). Most commonly reported correct practices for mosquito control were cleaning homes (61.6%), using insecticide sprays (23%), and avoiding having standing water at home (12.3%). Higher education was associated with higher knowledge about dengue, including transmission and vector control. Higher socioeconomic status was associated with increased reported use of preventive practices requiring money expenditure. We were less likely to find Aedes aegypti eggs, larvae, or pupae in households that had < 5-year-old children at home. Although dengue has been transmitted in Iquitos since the 1990s and the Regional Health Authority routinely fumigates households, treats domestic water containers with larvicide, and issues health education messages through mass media, knowledge of dengue transmission and household practices for prevention could be improved.

  4. Electromechanical actuation for thrust vector control applications

    NASA Astrophysics Data System (ADS)

    Roth, Mary Ellen

    At present, actuation systems for the Thrust Vector Control (TVC) for launch vehicles are hydraulic systems. The Advanced Launch System (ALS), a joint initiative between NASA and the Air Force, is a launch vehicle that is designed to be cost effective, highly reliable and operationally efficient with a goal of reducing the cost per pound to orbit. As part of this initiative, an electromechanical actuation system is being developed as an attractive alternative to the hydraulic systems used today. NASA-Lewis is developing and demonstrating an Induction Motor Controller Actuation System with a 40 hp peak rating. The controller will integrate 20 kHz resonant link Power Management and Distribution (PMAD) technology and Pulse Population Modulation (PPM) techniques to implement Field Oriented Vector Control (FOVC) of a new advanced induction motor. Through PPM, multiphase variable frequency, variable voltage waveforms can be synthesized from the 20 kHz source. FOVC shows that varying both the voltage and frequency and their ratio (V/F), permits independent control of both torque and speed while operating at maximum efficiency at any point on the torque-speed curve. The driver and the FOVC will be microprocessor controlled. For increased system reliability, a Built-in Test (BITE) capability will be included. This involves introducing testability into the design of a system such that testing is calibrated and exercised during the design, manufacturing, maintenance and prelaunch activities. An actuator will be integrated with the motor controller for performance testing of the EMA TVC system. The design and fabrication of the motor controller is being done by General Dynamics Space Systems Division. The University of Wisconsin-Madison will assist in the design of the advanced induction motor and in the implementation of the FOVC theory. A 75 hp electronically controlled dynamometer will be used to test the motor controller in all four quadrants of operation using flight type

  5. Comparison of different uses of adult traps and ovitraps for assessing dengue vector infestation in endemic areas.

    PubMed

    Lourenço-de-Oliveira, Ricardo; Lima, José Bento P; Peres, Roberto; Alves, Fernando da Costa; Eiras, Alvaro E; Codeço, Claudia Torres

    2008-09-01

    This report presents a set of field experiments designed to assess different protocols for the use of ovitrap and MosquiTRAP, a promising new trap for dengue vector monitoring. Percentage of positive houses, calculated either by the use of 2 traps (outside + inside) or 1 trap (outside) per house, tended to increase with time of exposure, at similar rates. When the aim was either to obtain a qualitative index (Aedes aegypti-positive site) or to determine percentage of positive houses in a selected neighborhood, the use of 1 ovitrap per house with only 5 days of exposure at the peridomestic area was quite sensitive. Seven days of exposure was too long, as saturation is expected in some places. The number of eggs collected per site increased with the time of exposure in all sites. At the 3-day trap exposure, we were not able to discriminate neighborhoods in terms of egg productivity per house. At the 5-day trap exposure, a rank of 4 sites was achieved. There was no correlation between the number of adults caught in MosquiTRAPs and number of eggs collected in ovitraps, neither per neighborhood nor per house where both traps were simultaneously exposed for 7 days in the peridomestic area. PMID:18939690

  6. The Cytochrome P450 gene CYP6P12 confers pyrethroid resistance in kdr-free Malaysian populations of the dengue vector Aedes albopictus

    PubMed Central

    Ishak, Intan H.; Riveron, Jacob M.; Ibrahim, Sulaiman S.; Stott, Rob; Longbottom, Joshua; Irving, Helen; Wondji, Charles S.

    2016-01-01

    Control of Aedes albopictus, major dengue and chikungunya vector, is threatened by growing cases of insecticide resistance. The mechanisms driving this resistance remain poorly characterised. This study investigated the molecular basis of insecticide resistance in Malaysian populations of Ae. albopictus. Microarray-based transcription profiling revealed that metabolic resistance (cytochrome P450 up-regulation) and possibly a reduced penetration mechanism (consistent over-expression of cuticular protein genes) were associated with pyrethroid resistance. CYP6P12 over-expression was strongly associated with pyrethroid resistance whereas CYP6N3 was rather consistently over-expressed across carbamate and DDT resistant populations. Other detoxification genes also up-regulated in permethrin resistant mosquitoes included a glucuronosyltransferase (AAEL014279-RA) and the glutathione-S transferases GSTS1 and GSTT3. Functional analyses further supported that CYP6P12 contributes to pyrethroid resistance in Ae. albopictus as transgenic expression of CYP6P12 in Drosophila was sufficient to confer pyrethroid resistance in these flies. Furthermore, molecular docking simulations predicted CYP6P12 possessing enzymatic activity towards pyrethroids. Patterns of polymorphism suggested early sign of selection acting on CYP6P12 but not on CYP6N3. The major role played by P450 in the absence of kdr mutations suggests that addition of the synergist PBO to pyrethroids could improve the efficacy of this insecticide class and overcome resistance in field populations of Ae. albopictus. PMID:27094778

  7. The Cytochrome P450 gene CYP6P12 confers pyrethroid resistance in kdr-free Malaysian populations of the dengue vector Aedes albopictus.

    PubMed

    Ishak, Intan H; Riveron, Jacob M; Ibrahim, Sulaiman S; Stott, Rob; Longbottom, Joshua; Irving, Helen; Wondji, Charles S

    2016-01-01

    Control of Aedes albopictus, major dengue and chikungunya vector, is threatened by growing cases of insecticide resistance. The mechanisms driving this resistance remain poorly characterised. This study investigated the molecular basis of insecticide resistance in Malaysian populations of Ae. albopictus. Microarray-based transcription profiling revealed that metabolic resistance (cytochrome P450 up-regulation) and possibly a reduced penetration mechanism (consistent over-expression of cuticular protein genes) were associated with pyrethroid resistance. CYP6P12 over-expression was strongly associated with pyrethroid resistance whereas CYP6N3 was rather consistently over-expressed across carbamate and DDT resistant populations. Other detoxification genes also up-regulated in permethrin resistant mosquitoes included a glucuronosyltransferase (AAEL014279-RA) and the glutathione-S transferases GSTS1 and GSTT3. Functional analyses further supported that CYP6P12 contributes to pyrethroid resistance in Ae. albopictus as transgenic expression of CYP6P12 in Drosophila was sufficient to confer pyrethroid resistance in these flies. Furthermore, molecular docking simulations predicted CYP6P12 possessing enzymatic activity towards pyrethroids. Patterns of polymorphism suggested early sign of selection acting on CYP6P12 but not on CYP6N3. The major role played by P450 in the absence of kdr mutations suggests that addition of the synergist PBO to pyrethroids could improve the efficacy of this insecticide class and overcome resistance in field populations of Ae. albopictus. PMID:27094778

  8. Temporal and spatial distribution of dengue vector mosquitoes and their habitat patterns in Penang Island, Malaysia.

    PubMed

    Saifur, Rahman G M; Hassan, Ahmad Abu; Dieng, Hamady; Salmah, Md Rawi Che; Saad, Ahmad Ramli; Satho, Tomomitsu

    2013-03-01

    We studied the diversity of Aedes breeding sites in various urban, suburban, and rural areas over time between February 2009 and February 2010 in the dengue endemic areas of Penang Island, Malaysia. We categorized the breeding sites and efficiency, and identified the key breeding containers. Among the 3 areas, the rural areas produced the highest container index (55), followed by suburban (42) and urban (32) areas. The numbers of key premises and containers were significantly higher (P < 0.000) in rural areas. The class 1 containers were identified as the key containers with higher productivity and efficiency, although class 2 and class 4 are the highest in numbers. Aedes aegypti immatures were found mostly in drums, water reservoirs, and polyethylene sheets, while mixed breeding was more common in buckets and empty paint cans in urban and suburban areas. Aedes albopictus was found mainly in miscellaneous containers such as drums, empty paint cans, and covers in all areas. The main potential containers indoors were drums, water reservoirs, and empty paint cans, and containers outdoors included empty paint cans, drums, and polyethylene sheets.

  9. Thrust vector control using electric actuation

    SciTech Connect

    Bechtel, R.T.; Hall, D.K.

    1995-01-25

    Presently, gimbaling of launch vehicle engines for thrust vector control is generally accomplished using a hydraulic system. In the case of the space shuttle solid rocket boosters and main engines, these systems are powered by hydrazine auxiliary power units. Use of electromechanical actuators would provide significant advantages in cost and maintenance. However, present energy source technologies such as batteries are heavy to the point of causing significant weight penalties. Utilizing capacitor technology developed by the Auburn University Space Power Institute in collaboration with the Auburn CCDS, Marshall Space Flight Center (MSFC) and Auburn are developing EMA system components with emphasis on high discharge rate energy sources compatible with space shuttle type thrust vector control requirements. Testing has been done at MSFC as part of EMA system tests with loads up to 66000 newtons for pulse times of several seconds. Results show such an approach to be feasible providing a potential for reduced weight and operations costs for new launch vehicles. {copyright} 1995 {ital American} {ital Institute} {ital of} {ital Physics}

  10. Prospective case-control study of encephalopathy in children with dengue hemorrhagic fever.

    PubMed

    Cam, B V; Fonsmark, L; Hue, N B; Phuong, N T; Poulsen, A; Heegaard, E D

    2001-12-01

    We present a prospective case-control study of 27 serologically confirmed dengue hemorrhagic fever (DHF) patients with severe central nervous system symptoms. Dengue associated encephalopathy accounted for 0.5% of 5,400 patients admitted with DHF. The mortality rate among children with encephalopathy was 22%, with the survivors experiencing a complete recovery. Liver enzymes and bilirubin were significantly elevated in the study group. In analysis of the cerebrospinal fluid (CSF), reverse transcriptase-polymerase chain reaction revealed dengue-3-specific RNA in one evaluated case. Dengue-specific immunoglobulin M was detected in CSF in 14 of 22 assessable patients, indicating a localized infection. Magnetic resonance imaging scans showed cerebral edema in the majority of patients, although encephalitis-like changes were less common. There was an equal distribution of primary and secondary infections. On the basis of previous reports and of the findings of our study, DHF probably encompasses an expanding clinical spectrum that infrequently involves encephalitis due to a direct neurotropic effect of dengue virus.

  11. Legal aspects of public health: difficulties in controlling vector-borne and zoonotic diseases in Brazil.

    PubMed

    Mendes, Marcílio S; de Moraes, Josué

    2014-11-01

    In recent years, vector-borne and zoonotic diseases have become a major challenge for public health. Dengue fever and leptospirosis are the most important communicable diseases in Brazil based on their prevalence and the healthy life years lost from disability. The primary strategy for preventing human exposure to these diseases is effective insect and rodent control in and around the home. However, health authorities have difficulties in controlling vector-borne and zoonotic diseases because residents often refuse access to their homes. This study discusses aspects related to the activities performed by Brazilian health authorities to combat vector-borne and zoonotic diseases, particularly difficulties in relation to the legal aspect, which often impede the quick and effective actions of these professionals. How might it be possible to reconcile the need to preserve public health and the rule on the inviolability of the home, especially in the case of abandoned properties or illegal residents and the refusal of residents to allow the health authority access? Do residents have the right to hinder the performance of health workers even in the face of a significant and visible focus of disease transmission? This paper argues that a comprehensive legal plan aimed at the control of invasive vector-borne and zoonotic diseases including synanthropic animals of public health importance should be considered. In addition, this paper aims to bridge the gap between lawyers and public health professionals and to facilitate communication between them. PMID:25051187

  12. Two step male release strategy using transgenic mosquito lines to control transmission of vector-borne diseases.

    PubMed

    Carvalho, Danilo Oliveira; Costa-da-Silva, André Luis; Lees, Rosemary Susan; Capurro, Margareth Lara

    2014-04-01

    Mosquitoes are responsible for the transmission of pathogens that cause devastating human diseases such as malaria and dengue. The current increase in mean global temperature and changing sea level interfere with precipitation frequency and some other climatic conditions which, in general, influence the rate of development of insects and etiologic agents causing acceleration as the temperature rises. The most common strategy employed to combat target mosquito species is the Integrated Vector Management (IVM), which comprises the use of multiple activities and various approaches to preventing the spread of a vector in infested areas. IVM programmes are becoming ineffective; and the global scenario is threatening, requiring new interventions for vector control and surveillance. Not surprisingly, there is a growing need to find alternative methods to combat the mosquito vectors. The possibility of using transgenic mosquitoes to fight against those diseases has been discussed over the last two decades and this use of transgenic lines to suppress populations or to replace them is still under investigation through field and laboratory trials. As an alternative, the available transgenic strategies could be improved by coupling suppression and substitution strategies. The idea is to first release a suppression line to significantly reduce the wild population, and once the first objective is reached a second release using a substitution line could be then performed. Examples of targeting this approach against vectors of malaria and dengue are discussed. PMID:24513036

  13. [Society, economy, inequities and dengue].

    PubMed

    Kouri, Gustavo; Pelegrino, José L; Munster, Blanca María; Guzmán, María G

    2007-01-01

    Dengue and dengue hemorrhagic fever in the Americas have been on the rise throughout the 1990s, with the highest number -over one million cases- reported in 2002. This paper analyzed the situation of dengue in the region and discussed the determining factors that account for the rise of the disease, making emphasis on socioeconomic factors, such as poverty, inequality, migrations and the lack of access to basic services, which are the most influential in perpetuating this disease in most countries. Considering that a safe and accessible vaccine is now unavailable, basic principles of vector control combined with political willingness, inter-sectoral involvement, active community participation and the tightening of health legislation were also examined as the only viable solution at present.

  14. Costs of Dengue Control Activities and Hospitalizations in the Public Health Sector during an Epidemic Year in Urban Sri Lanka

    PubMed Central

    Thalagala, Neil; Tissera, Hasitha; Palihawadana, Paba; Amarasinghe, Ananda; Ambagahawita, Anuradha; Wilder-Smith, Annelies; Shepard, Donald S.; Tozan, Yeşim

    2016-01-01

    Background Reported as a public health problem since the 1960s in Sri Lanka, dengue has become a high priority disease for public health authorities. The Ministry of Health is responsible for controlling dengue and other disease outbreaks and associated health care. The involvement of large numbers of public health staff in dengue control activities year-round and the provision of free medical care to dengue patients at secondary care hospitals place a formidable financial burden on the public health sector. Methods We estimated the public sector costs of dengue control activities and the direct costs of hospitalizations in Colombo, the most heavily urbanized district in Sri Lanka, during the epidemic year of 2012 from the Ministry of Health’s perspective. The financial costs borne by public health agencies and hospitals are collected using cost extraction tools designed specifically for the study and analysed retrospectively using a combination of activity-based and gross costing approaches. Results The total cost of dengue control and reported hospitalizations was estimated at US$3.45 million (US$1.50 per capita) in Colombo district in 2012. Personnel costs accounted for the largest shares of the total costs of dengue control activities (79%) and hospitalizations (46%). The results indicated a per capita cost of US$0.42 for dengue control activities. The average costs per hospitalization ranged between US$216–609 for pediatric cases and between US$196–866 for adult cases according to disease severity and treatment setting. Conclusions This analysis is a first attempt to assess the economic burden of dengue response in the public health sector in Sri Lanka. Country-specific evidence is needed for setting public health priorities and deciding about the deployment of existing or new technologies. Our results suggest that dengue poses a major economic burden on the public health sector in Sri Lanka. PMID:26910907

  15. Wolbachia pipientis: A potential candidate for combating and eradicating dengue epidemics in Pakistan.

    PubMed

    Tahir, Uruj; Khan, Umair Hassan; Zubair, Muhammad Saad; Bahar-E-Mustafa

    2015-12-01

    Dengue virus syndrome is an emerging global health challenge which is endemic in tropical countries like Pakistan. In recent years dengue incidences have increased considerably in different areas of Pakistan with more sever impacts on urban and peri-urban populations. This review is an effort to highlight the changing epidemiology of dengue fever, role of Government of Pakistan in disease management and control using preventive and community based approaches in the region. Moreover, there is an emphasis on application of Wolbachia as novel, inexpensive and environmentally benign candidate for control and eradication of dengue transmitting vectors.

  16. Seasonal and Geographical Variation of Dengue Vectors in Narathiwat, South Thailand

    PubMed Central

    Boonklong, Ornanong; Bhumiratana, Adisak

    2016-01-01

    Using GIS-based land use map for the urban-rural division (the relative ratio of population density adjusted to relatively Aedes-infested land area), we demonstrated significant independent observations of seasonal and geographical variation of Aedes aegypti and Aedes albopictus vectors between Muang Narathiwat district (urban setting) and neighbor districts (rural setting) of Narathiwat, Southern Thailand, based on binomial distribution of Aedes vectors in water-holding containers (water storage containers, discarded receptacles, miscellaneous containers, and natural containers). The distribution of Aedes vectors was influenced seasonally by breeding outdoors rather than indoors in all 4 containers. Accordingly, both urban and rural settings elicited significantly seasonal (wet versus dry) distributions of Ae. aegypti larvae observed in water storage containers (P = 0.001 and P = 0.002) and natural containers (P = 0.016 and P = 0.015), whereas, in rural setting, the significant difference was observed in discarded receptacles (P = 0.028) and miscellaneous containers (P < 0.001). Seasonal distribution of Ae. albopictus larvae in any containers in urban setting was not remarkably noticed, whereas, in rural setting, the significant difference was observed in water storage containers (P = 0.007) and discarded receptacles (P < 0.001). Moreover, the distributions of percentages of container index for Aedes-infested households in dry season were significantly lower than that in other wet seasons, P = 0.034 for urban setting and P = 0.001 for rural setting. Findings suggest that seasonal and geographical variation of Aedes vectors affect the infestation in those containers in human inhabitations and surroundings. PMID:27437001

  17. Seasonal and Geographical Variation of Dengue Vectors in Narathiwat, South Thailand.

    PubMed

    Boonklong, Ornanong; Bhumiratana, Adisak

    2016-01-01

    Using GIS-based land use map for the urban-rural division (the relative ratio of population density adjusted to relatively Aedes-infested land area), we demonstrated significant independent observations of seasonal and geographical variation of Aedes aegypti and Aedes albopictus vectors between Muang Narathiwat district (urban setting) and neighbor districts (rural setting) of Narathiwat, Southern Thailand, based on binomial distribution of Aedes vectors in water-holding containers (water storage containers, discarded receptacles, miscellaneous containers, and natural containers). The distribution of Aedes vectors was influenced seasonally by breeding outdoors rather than indoors in all 4 containers. Accordingly, both urban and rural settings elicited significantly seasonal (wet versus dry) distributions of Ae. aegypti larvae observed in water storage containers (P = 0.001 and P = 0.002) and natural containers (P = 0.016 and P = 0.015), whereas, in rural setting, the significant difference was observed in discarded receptacles (P = 0.028) and miscellaneous containers (P < 0.001). Seasonal distribution of Ae. albopictus larvae in any containers in urban setting was not remarkably noticed, whereas, in rural setting, the significant difference was observed in water storage containers (P = 0.007) and discarded receptacles (P < 0.001). Moreover, the distributions of percentages of container index for Aedes-infested households in dry season were significantly lower than that in other wet seasons, P = 0.034 for urban setting and P = 0.001 for rural setting. Findings suggest that seasonal and geographical variation of Aedes vectors affect the infestation in those containers in human inhabitations and surroundings. PMID:27437001

  18. Is what I have just a cold or is it dengue? Addressing the gap between the politics of dengue control and daily life in Villavicencio-Colombia.

    PubMed

    Suarez, M Roberto; Olarte, S Maria Fernanda; Ana, M F A; González, U Catalina

    2005-07-01

    In Colombia, dengue has been a target for public health interventions since the 1950s, with inadequate results. Furthermore, during the last few years in Colombia, the reported cases of dengue have increased. The social and cultural realities of the disease has been shown to be important and has not been considered when creating and implementing prevention and control programs. The paper draws on qualitative research of low- and high-income communities in the vicinity of Villaviecencio, South East Colombia to describe changing practices and direction of dengue prevention and control. It can be clearly observed from individuals' therapeutic itineraries and their perception of disease that public policies advertised in booklets and flyers and on television differ radically from people's everyday reality. This difference influences the success or failure of these policies.

  19. Vector and reservoir control for preventing leishmaniasis

    PubMed Central

    González, Urbà; Pinart, Mariona; Sinclair, David; Firooz, Alireza; Enk, Claes; Vélez, Ivan D; Esterhuizen, Tonya M; Tristan, Mario; Alvar, Jorge

    2015-01-01

    Background Leishmaniasis is caused by the Leishmania parasite, and transmitted by infected phlebotomine sandflies. Of the two distinct clinical syndromes, cutaneous leishmaniasis (CL) affects the skin and mucous membranes, and visceral leishmaniasis (VL) affects internal organs. Approaches to prevent transmission include vector control by reducing human contact with infected sandflies, and reservoir control, by reducing the number of infected animals. Objectives To assess the effects of vector and reservoir control interventions for cutaneous and for visceral leishmaniasis. Search methods We searched the following databases to 13 January 2015: Cochrane Infectious Diseases Group Specialized Register, CENTRAL, MEDLINE, EMBASE, LILACS and WHOLIS, Web of Science, and RePORTER. We also searched trials registers for ongoing trials. Selection criteria Randomized controlled trials (RCTs) evaluating the effects of vector and reservoir control interventions in leishmaniasis-endemic regions. Data collection and analysis Two review authors independently searched for trials and extracted data from included RCTs. We resolved any disagreements by discussion with a third review author. We assessed the quality of the evidence using the GRADE approach. Main results We included 14 RCTs that evaluated a range of interventions across different settings. The study methods were generally poorly described, and consequently all included trials were judged to be at high or unclear risk of selection and reporting bias. Only seven trials reported clinical outcome data which limits our ability to make broad generalizations to different epidemiological settings and cultures. Cutaneous leishmaniasis One four-arm RCT from Afghanistan compared indoor residual spraying (IRS), insecticide-treated bednets (ITNs), and insecticide-treated bedsheets, with no intervention. Over 15 months follow-up, all three insecticide-based interventions had a lower incidence of CL than the control area (IRS: risk

  20. [Dengue in a urban locality of southeastern Brazil: epidemiological aspects].

    PubMed

    Pontes, R J; Ruffino-Netto, A

    1994-06-01

    A dengue fever epidemic which occurred in Ribeirão Preto County, S. Paulo State, Brazil, during the period November, 1990 to March, 1991 has been analysed elsewhere. The general aspects of dengue epidemiology and control have been reviewed in this article. Emphasis is given to the analysis of some factors involved in the risk of dengue haemorrhagic fever and ecological aspects of the vector, as well as to the appropriateness of strategies for dengue eradication or control. Epidemiological characteristics of dengue, mainly those related to its occurrence in different geographical areas and periods of time are described. The Ribeirão Preto epidemic has thus, been set within the context of the spread of the disease at global level, in the Americas, and particularly in Brazil and S. Paulo State.

  1. Analysis of a dengue disease transmission model.

    PubMed

    Esteva, L; Vargas, C

    1998-06-15

    A model for the transmission of dengue fever in a constant human population and variable vector population is discussed. A complete global analysis is given, which uses the results of the theory of competitive systems and stability of periodic orbits, to establish the global stability of the endemic equilibrium. The control measures of the vector population are discussed in terms of the threshold condition, which governs the existence and stability of the endemic equilibrium.

  2. Influence of container design on predation rate of potential biocontrol agent, Toxorhynchites splendens (Diptera: Culicidae) against dengue vector.

    PubMed

    Mohamad, N; Zuharah, W F

    2014-03-01

    Toxorhynchites splendens larvae are a natural predator of dengue vector mosquito larvae, Aedes albopictus. This study was carried out to evaluate the predation rate of Tx. splendens third instar larvae on Ae. albopictus larvae in 24 h. Each predator was offered prey at a density between 10 to 50 individuals. Predation rate of Tx. splendens were also tested with two manipulated factors; various types of container and different water volumes. The experiment was evaluated in man-made containers (tin cans, plastic drinking glasses and rubber tires) and natural container (bamboo stumps) which were filled with different water volumes (full, half full, 1/4 full, and 1/8 full). The prey density and the characteristics of the container were found as significant factors which influence the predation rate of Tx. splendens. The predator consumed significantly more prey at higher prey densities (40 and 50 preys) compared to the lowest density (10 preys) (F=3.935, df=4, p=0.008). The results showed significantly higher consumption in horizontal shaped container of rubber tire than in vertical shape of bamboo stumps (F=3.100, df=3, p=0.029). However, the water volume had no significant effect on predation rate of Tx. splendens (F=1.736, df=3, p=0.162). We generally suggest that Tx. splendens is best to be released in discarded tires or any other containers with horizontal shape design with wide opening since Tx. splendens can become more effective in searching prey in this type of container design. This predator is also a suitable biocontrol candidates to be introduced either in wet and dry seasons in Malaysia.

  3. Dengue and dengue haemorrhagic fever.

    PubMed

    Rigau-Pérez, J G; Clark, G G; Gubler, D J; Reiter, P; Sanders, E J; Vorndam, A V

    1998-09-19

    The incidence and geographical distribution of dengue have greatly increased in recent years. Dengue is an acute mosquito-transmitted viral disease characterised by fever, headache, muscle and joint pains, rash, nausea, and vomiting. Some infections result in dengue haemorrhagic fever (DHF), a syndrome that in its most severe form can threaten the patient's life, primarily through increased vascular permeability and shock. The case fatality rate in patients with dengue shock syndrome can be as high as 44%. For decades, two distinct hypotheses to explain the mechanism of DHF have been debated-secondary infection or viral virulence. However, a combination of both now seems to be the plausible explanation. The geographical expansion of DHF presents the need for well-documented clinical, epidemiological, and virological descriptions of the syndrome in the Americas. Biological and social research are essential to develop effective mosquito control, medications to reduce capillary leakage, and a safe tetravalent vaccine.

  4. Vaccines for the prevention of neglected diseases--dengue fever.

    PubMed

    Pang, Tikki

    2003-06-01

    Dengue and dengue hemorrhagic fever have spread to all tropical areas of the developing world, but still remain largely neglected diseases. Several promising vaccine candidates in the form of live attenuated and chimeric vaccines have been developed and are currently in human clinical trials. However, significant practical, logistic, and scientific challenges remain before these vaccines can widely and safely be applied to vulnerable populations. Vector control, community education and public health measures must be pursued in parallel with vaccine development.

  5. [Stratification of a hyperendemic city in hemorrhagic dengue].

    PubMed

    Barrera, R; Delgado, N; Jiménez, M; Villalobos, I; Romero, I

    2000-10-01

    Any effort to control dengue hemorrhagic fever (DHF) faces a number of challenges. Among these are the great environmental heterogeneity of homes and neighborhoods in urban centers where the primary dengue vector, Aedes aegypti, breeds, as well as shortages of resources and of personnel trained in mosquito control. Adequate epidemiological surveillance could serve as a basis to begin to stratify urban communities and identify the areas in them where control efforts should be focused. In this study we stratified Maracay, Venezuela, a city with hyperendemic dengue hemorrhagic fever, using a geographic information system and analyzing the persistence, incidence, and prevalence of dengue, by means of clinical diagnoses reported from 1993 through 1998. Maracay has around one million inhabitants living in some 349 neighborhoods in the six communities that make up the greater Maracay metropolitan area. During that 1993-1998 period the Maracay area reported 10,576 cases of dengue, 2,593 cases of DHF, and 8 deaths. The incidence of DHF was related to the incidence of dengue, the number of inhabitants in an area, and population density. The spatial pattern of dengue incidence was stable over the years that were studied, and significant, positive relationships were found between pairs of years and the incidence of dengue by neighborhood. The persistence of dengue was related directly to monthly incidence by neighborhood. These spatial patterns helped to divide the city into three strata: 68 neighborhoods without apparent dengue, 226 neighborhoods with low persistence and prevalence, and 55 neighborhoods with high persistence and prevalence. We recommend giving the highest priority for control efforts to these 55 neighborhoods, which make up just 35% of the Maracay urban area but had 70% of all the reported dengue cases.

  6. Lessons of Aedes aegypti control in Thailand.

    PubMed

    Gratz, N G

    1993-01-01

    The incidence of dengue haemorrhagic fever (DHF) in Thailand has increased cyclically since the first recognized outbreak in 1958. Without an effective vaccine against dengue, and considering the clinical difficulty of treating DHF cases, vector control is needed to prevent dengue transmission. Since the establishment of the WHO Aedes Research Unit in 1964, continued since 1973 as the WHO Collaborating Centre at the Department of Medical Research in Bangkok, much operational research has been carried out in Thailand on the bionomics and control of dengue vectors: Aedes aegypti and Ae. albopictus. This review shows that, as in most other countries, dengue vector control programmes in Thailand make little use of the procedures arising from research, nor have they reduced the upward trend of dengue or prevented DHF outbreaks. Implications of the reluctance to use results of operational research on vector control are considered and remedial suggestions made.

  7. Assessing effect of climate on the incidence of dengue in Tamil Nadu.

    PubMed

    Chandy, S; Ramanathan, K; Manoharan, A; Mathai, D; Baruah, K

    2013-01-01

    Incidence of dengue is reported to be influenced by climatic factors. The objective of this study is to assess the association of local climate with dengue incidence, in two geographically distinct districts in Tamil Nadu. The study uses climate data, rainfall and mean maximum and minimum temperature to assess its association if any, with dengue incidence in two districts of Tamil Nadu, South India. According to this study while precipitation levels have an effect on dengue incidence in Tamil Nadu, non-climatic factors such as presence of breeding sites, vector control and surveillance are important issues that need to be addressed.

  8. [First case of dengue hemorrhagic fever with shock syndrome in Martinique].

    PubMed

    Mansuy, J M; Delor, R; Mehdaoui, H; Elizabeth, L

    1996-01-01

    Since mid 95, many Caribbean islands and America's countries suffer from a new outbreak of an epidemic of dengue fever and dengue haemorrhagic fever. Until today, no case of dengue haemorrhagic fever was reported in Martinique (FWI) in spite of the high prevalence of dengue fever in the island. The first identified case asserts the severity of illness. In Martinique, these arbovirosis is often underestimated. Nowadays, the disease prevention must become one of the principal targets of the medical corporation and the Public Health Authorities. Consequently, epidemiologic survey and principally vector's control must be reinforced.

  9. Thrust Vector Control for Nuclear Thermal Rockets

    NASA Technical Reports Server (NTRS)

    Ensworth, Clinton B. F.

    2013-01-01

    Future space missions may use Nuclear Thermal Rocket (NTR) stages for human and cargo missions to Mars and other destinations. The vehicles are likely to require engine thrust vector control (TVC) to maintain desired flight trajectories. This paper explores requirements and concepts for TVC systems for representative NTR missions. Requirements for TVC systems were derived using 6 degree-of-freedom models of NTR vehicles. Various flight scenarios were evaluated to determine vehicle attitude control needs and to determine the applicability of TVC. Outputs from the models yielded key characteristics including engine gimbal angles, gimbal rates and gimbal actuator power. Additional factors such as engine thrust variability and engine thrust alignment errors were examined for impacts to gimbal requirements. Various technologies are surveyed for TVC systems for the NTR applications. A key factor in technology selection is the unique radiation environment present in NTR stages. Other considerations including mission duration and thermal environments influence the selection of optimal TVC technologies. Candidate technologies are compared to see which technologies, or combinations of technologies best fit the requirements for selected NTR missions. Representative TVC systems are proposed and key properties such as mass and power requirements are defined. The outputs from this effort can be used to refine NTR system sizing models, providing higher fidelity definition for TVC systems for future studies.

  10. Examination of the genetic basis for sexual dimorphism in the Aedes aegypti (dengue vector mosquito) pupal brain

    PubMed Central

    2014-01-01

    Background Most animal species exhibit sexually dimorphic behaviors, many of which are linked to reproduction. A number of these behaviors, including blood feeding in female mosquitoes, contribute to the global spread of vector-borne illnesses. However, knowledge concerning the genetic basis of sexually dimorphic traits is limited in any organism, including mosquitoes, especially with respect to differences in the developing nervous system. Methods Custom microarrays were used to examine global differences in female vs. male gene expression in the developing pupal head of the dengue vector mosquito, Aedes aegypti. The spatial expression patterns of a subset of differentially expressed transcripts were examined in the developing female vs. male pupal brain through in situ hybridization experiments. Small interfering RNA (siRNA)-mediated knockdown studies were used to assess the putative role of Doublesex, a terminal component of the sex determination pathway, in the regulation of sex-specific gene expression observed in the developing pupal brain. Results Transcripts (2,527), many of which were linked to proteolysis, the proteasome, metabolism, catabolic, and biosynthetic processes, ion transport, cell growth, and proliferation, were found to be differentially expressed in A. aegypti female vs. male pupal heads. Analysis of the spatial expression patterns for a subset of dimorphically expressed genes in the pupal brain validated the data set and also facilitated the identification of brain regions with dimorphic gene expression. In many cases, dimorphic gene expression localized to the optic lobe. Sex-specific differences in gene expression were also detected in the antennal lobe and mushroom body. siRNA-mediated gene targeting experiments demonstrated that Doublesex, a transcription factor with consensus binding sites located adjacent to many dimorphically expressed transcripts that function in neural development, is required for regulation of sex-specific gene

  11. Angelica sinensis (Umbelliferae) with proven repellent properties against Aedes aegypti, the primary dengue fever vector in Thailand.

    PubMed

    Champakaew, D; Junkum, A; Chaithong, U; Jitpakdi, A; Riyong, D; Sanghong, R; Intirach, J; Muangmoon, R; Chansang, A; Tuetun, B; Pitasawat, B

    2015-06-01

    Botanical resources with great diversity in medicinal and aromatic plants are a rich and reliable source for finding insect repellents of plant origin, which are widely popular among today's consumers. Although some herbal-based repellents have been proven comparable to or even better than synthetics, commercially available natural repellents generally tend to be expensive, with short-lived effectiveness. This critical flaw leads to ongoing research for new and effective repellents, which provide longer protection against vector and nuisance-biting insects, while remaining safe, user friendly, and reasonably priced. This study aimed to evaluate the repellent activity of plant-derived products against the primary dengue vector, Aedes aegypti, by following the human bait technique of World Health Organization guidelines. Preliminary laboratory screening tests for repellency of 33 plant species clearly demonstrated Angelica sinensis as the most effective repellent from each kind of extracted product, with its essential oil and ethanolic extract having median complete protection times of 7.0 h (6.0-7.5) and 2.5 h (2.0-2.5), respectively. Due to its low yield (0.02 %), pungent smell, and little cause of irritation, A. sinensis essential oil did not qualify as a candidate for further repellent assessment. However, subsequent extractions of A. sinensis with different organic solvents of increasing polarity provided four extractants with varying degrees of repellency against A. aegypti. The hexane extract of A. sinensis provided excellent repellency, with a median complete protection time of 7.5 h (6.5-8.5), which was longer than that of ethanol (2.5, 2.0-2.5 h), acetone (1.75, 0.5-2.5 h), and methanol extracts (0.5, 0-1.0 h). By being the most effective product, A. sinensis hexane extract gave significant protection comparable to that of its essential oil and the standard synthetic repellent, N,N-diethyl-3-methylbenzamide (DEET: 6.25, 5.0-6.5 h). Qualitative gas

  12. Angelica sinensis (Umbelliferae) with proven repellent properties against Aedes aegypti, the primary dengue fever vector in Thailand.

    PubMed

    Champakaew, D; Junkum, A; Chaithong, U; Jitpakdi, A; Riyong, D; Sanghong, R; Intirach, J; Muangmoon, R; Chansang, A; Tuetun, B; Pitasawat, B

    2015-06-01

    Botanical resources with great diversity in medicinal and aromatic plants are a rich and reliable source for finding insect repellents of plant origin, which are widely popular among today's consumers. Although some herbal-based repellents have been proven comparable to or even better than synthetics, commercially available natural repellents generally tend to be expensive, with short-lived effectiveness. This critical flaw leads to ongoing research for new and effective repellents, which provide longer protection against vector and nuisance-biting insects, while remaining safe, user friendly, and reasonably priced. This study aimed to evaluate the repellent activity of plant-derived products against the primary dengue vector, Aedes aegypti, by following the human bait technique of World Health Organization guidelines. Preliminary laboratory screening tests for repellency of 33 plant species clearly demonstrated Angelica sinensis as the most effective repellent from each kind of extracted product, with its essential oil and ethanolic extract having median complete protection times of 7.0 h (6.0-7.5) and 2.5 h (2.0-2.5), respectively. Due to its low yield (0.02 %), pungent smell, and little cause of irritation, A. sinensis essential oil did not qualify as a candidate for further repellent assessment. However, subsequent extractions of A. sinensis with different organic solvents of increasing polarity provided four extractants with varying degrees of repellency against A. aegypti. The hexane extract of A. sinensis provided excellent repellency, with a median complete protection time of 7.5 h (6.5-8.5), which was longer than that of ethanol (2.5, 2.0-2.5 h), acetone (1.75, 0.5-2.5 h), and methanol extracts (0.5, 0-1.0 h). By being the most effective product, A. sinensis hexane extract gave significant protection comparable to that of its essential oil and the standard synthetic repellent, N,N-diethyl-3-methylbenzamide (DEET: 6.25, 5.0-6.5 h). Qualitative gas

  13. The genetic architecture of a complex trait: Resistance to multiple toxins produced by Bacillus thuringiensis israelensis in the dengue and yellow fever vector, the mosquito Aedes aegypti.

    PubMed

    Bonin, Aurélie; Paris, Margot; Frérot, Hélène; Bianco, Erica; Tetreau, Guillaume; Després, Laurence

    2015-10-01

    The bacterial insecticide Bacillus thuringiensis subsp. israelensis (Bti) is an increasingly popular alternative to chemical insecticides for controlling mosquito populations. Because Bti toxicity relies on the action of four main toxins, resistance to Bti is very likely a complex phenotype involving several genes simultaneously. Dissecting the underlying genetic basis thus requires associating a quantitative measure of resistance to genetic variation at many loci in a segregating population. Here, we undertake this task using the dengue and yellow fever vector, the mosquito Aedes aegypti, as a study model. We conducted QTL (Quantitative Trait Locus) and admixture mapping analyses on two controlled crosses and on an artificial admixed population, respectively, all obtained from resistant and susceptible lab strains. We detected 16 QTL regions, among which four QTLs were revealed by different analysis methods. These four robust QTLs explained altogether 29.2% and 62.2% of the total phenotypic variance in the two QTL crosses, respectively. They also all showed a dominant mode of action. In addition, we found six loci showing statistical association with Bti resistance in the admixed population. Five of the supercontigs highlighted in this study contained candidate genes as suggested by their function, or by prior evidence from expression and/or outlier analyses. These genomic regions are thus good starting points for fine mapping of resistance to Bti or functional analyses aiming at identifying the underlying genes and mutations. Moreover, for the purpose of this work, we built the first Ae. aegypti genetic map based on markers associated with genes expressed in larvae. This genetic map harbors 229 SNP markers mapped across the three chromosomes for a total length of 311.9cM. It brought to light several assembly discrepancies with the reference genome, suggesting a high level of genome plasticity in Ae. aegypti.

  14. In silico models for predicting vector control chemicals targeting Aedes aegypti

    PubMed Central

    Devillers, J.; Lagneau, C.; Lattes, A.; Garrigues, J.C.; Clémenté, M.M.; Yébakima, A.

    2014-01-01

    Human arboviral diseases have emerged or re-emerged in numerous countries worldwide due to a number of factors including the lack of progress in vaccine development, lack of drugs, insecticide resistance in mosquitoes, climate changes, societal behaviours, and economical constraints. Thus, Aedes aegypti is the main vector of the yellow fever and dengue fever flaviviruses and is also responsible for several recent outbreaks of the chikungunya alphavirus. As for the other mosquito species, the A. aegypti control relies heavily on the use of insecticides. However, because of increasing resistance to the different families of insecticides, reduction of Aedes populations is becoming increasingly difficult. Despite the unquestionable utility of insecticides in fighting mosquito populations, there are very few new insecticides developed and commercialized for vector control. This is because the high cost of the discovery of an insecticide is not counterbalanced by the ‘low profitability’ of the vector control market. Fortunately, the use of quantitative structure–activity relationship (QSAR) modelling allows the reduction of time and cost in the discovery of new chemical structures potentially active against mosquitoes. In this context, the goal of the present study was to review all the existing QSAR models on A. aegypti. The homology and pharmacophore models were also reviewed. Specific attention was paid to show the variety of targets investigated in Aedes in relation to the physiology and ecology of the mosquito as well as the diversity of the chemical structures which have been proposed, encompassing man-made and natural substances. PMID:25275884

  15. In silico models for predicting vector control chemicals targeting Aedes aegypti.

    PubMed

    Devillers, J; Lagneau, C; Lattes, A; Garrigues, J C; Clémenté, M M; Yébakima, A

    2014-01-01

    Human arboviral diseases have emerged or re-emerged in numerous countries worldwide due to a number of factors including the lack of progress in vaccine development, lack of drugs, insecticide resistance in mosquitoes, climate changes, societal behaviours, and economical constraints. Thus, Aedes aegypti is the main vector of the yellow fever and dengue fever flaviviruses and is also responsible for several recent outbreaks of the chikungunya alphavirus. As for the other mosquito species, the A. aegypti control relies heavily on the use of insecticides. However, because of increasing resistance to the different families of insecticides, reduction of Aedes populations is becoming increasingly difficult. Despite the unquestionable utility of insecticides in fighting mosquito populations, there are very few new insecticides developed and commercialized for vector control. This is because the high cost of the discovery of an insecticide is not counterbalanced by the 'low profitability' of the vector control market. Fortunately, the use of quantitative structure-activity relationship (QSAR) modelling allows the reduction of time and cost in the discovery of new chemical structures potentially active against mosquitoes. In this context, the goal of the present study was to review all the existing QSAR models on A. aegypti. The homology and pharmacophore models were also reviewed. Specific attention was paid to show the variety of targets investigated in Aedes in relation to the physiology and ecology of the mosquito as well as the diversity of the chemical structures which have been proposed, encompassing man-made and natural substances.

  16. Update on dengue: epidemiology, virus evolution, antiviral drugs, and vaccine development.

    PubMed

    Wilder-Smith, Annelies; Ooi, Eng-Eong; Vasudevan, Subhash G; Gubler, Duane J

    2010-05-01

    Dengue virus is the most widespread geographically of the arboviruses and a major public health threat in the tropics and subtropics. Scientific advances in recent years have provided new insights about the pathogenesis of more severe disease and novel approaches into the development of antiviral compounds and dengue vaccines. Phylogenetic studies show an association between specific subtypes (within serotypes) and severity of dengue. The lack of association between maternal antibodies and development of severe dengue in infants in a recent study has called for the rethinking or refinement of the current antibody-dependent enhancement theory of dengue hemorrhagic syndrome in infancy. Such studies should stimulate new directions of research into mechanisms responsible for the development of severe dengue. The life cycle of dengue virus readily shows that virus entry and replication can be targeted by small molecules. Advances in a mouse model (AG 129 mice) have made it easier to test such antiviral compounds. The efforts to find specific dengue inhibitors are intensifying and the tools to evaluate the efficacy of new drugs are now in place for rapid translation into trials in humans. Furthermore, several dengue vaccine candidates are in development, of which the chimeric dengue/yellow fever vaccine has now entered phase 3 trials. Until the availability of a licensed vaccine, disease surveillance and vector population control remain the mainstay of dengue prevention. PMID:21308524

  17. Update on dengue: epidemiology, virus evolution, antiviral drugs, and vaccine development.

    PubMed

    Wilder-Smith, Annelies; Ooi, Eng-Eong; Vasudevan, Subhash G; Gubler, Duane J

    2010-05-01

    Dengue virus is the most widespread geographically of the arboviruses and a major public health threat in the tropics and subtropics. Scientific advances in recent years have provided new insights about the pathogenesis of more severe disease and novel approaches into the development of antiviral compounds and dengue vaccines. Phylogenetic studies show an association between specific subtypes (within serotypes) and severity of dengue. The lack of association between maternal antibodies and development of severe dengue in infants in a recent study has called for the rethinking or refinement of the current antibody-dependent enhancement theory of dengue hemorrhagic syndrome in infancy. Such studies should stimulate new directions of research into mechanisms responsible for the development of severe dengue. The life cycle of dengue virus readily shows that virus entry and replication can be targeted by small molecules. Advances in a mouse model (AG 129 mice) have made it easier to test such antiviral compounds. The efforts to find specific dengue inhibitors are intensifying and the tools to evaluate the efficacy of new drugs are now in place for rapid translation into trials in humans. Furthermore, several dengue vaccine candidates are in development, of which the chimeric dengue/yellow fever vaccine has now entered phase 3 trials. Until the availability of a licensed vaccine, disease surveillance and vector population control remain the mainstay of dengue prevention.

  18. New Highly Dynamic Approach for Thrust Vector Control

    NASA Astrophysics Data System (ADS)

    Hecht, M.; Ettl, J.; Grothe, D.; Hrbud, I.

    2015-09-01

    For a new launcher system a thrust vector control system is needed. This launch vehicle system consists of two rockets which are namely the VS-50 (two-stage suborbital vehicle) and the VLM-1 (three-stage microsatellite launch vehicle). VLM-1 and VS-50 are developed in a cooperation between the German Aerospace Center (DLR) and the Brazilian Aeronautics and Space Institute (IAE). To keep these two rockets on its trajectory during flight a highly dynamic thrust vector control system is required. For the purpose of developing such a highly dynamic thrust vector control system a master thesis was written by the author. The development includes all mechanical constructions as well as control algorithms and electronics design. Moreover an optimization of control algorithms was made to increase the dynamic capabilities of the thrust vector control system. The composition of the right components plus the sophisticated control algorithm make the thrust vector control system highly dynamic.

  19. Emergency control of Aedes aegypti as a disease vector in urban areas.

    PubMed

    Gratz, N G

    1991-09-01

    Techniques for the emergency control of adult Aedes aegypti populations and their development are reviewed. Larviciding and environmental measures provide only delayed control of adult populations. Large-scale field trials of the ultra-low volume application of insecticide concentrates in Southeast Asia, South America and Africa, using aerial, ground, vehicle-mounted and hand-carried equipment, have, in most cases, resulted in satisfactory levels of control of adult populations. Sequential or indoor ULV applications of fenitrothion have provided immediate control and sustained reduction of the adult populations, often lasting well through normal peak transmission periods of dengue. Many ULV application trials in the Caribbean have not produced satisfactory control, but it is considered that this was due to the type of house construction, to the lower dosage rates of the malathion 96% ULV concentrates used, or to inappropriate droplet sizes. While ULV applications can provide rapid and effective emergency control of vectors at the time of outbreaks of disease in urban and periurban areas, they should not be used as a routine mosquito control measure nor as an alternative to reducing vector populations by environmental measures.

  20. Hypothesis: Impregnated school uniforms reduce the incidence of dengue infections in school children.

    PubMed

    Wilder-Smith, A; Lover, A; Kittayapong, P; Burnham, G

    2011-06-01

    Dengue infection causes a significant economic, social and medical burden in affected populations in over 100 countries in the tropics and sub-tropics. Current dengue control efforts have generally focused on vector control but have not shown major impact. School-aged children are especially vulnerable to infection, due to sustained human-vector-human transmission in the close proximity environments of schools. Infection in children has a higher rate of complications, including dengue hemorrhagic fever and shock syndromes, than infections in adults. There is an urgent need for integrated and complementary population-based strategies to protect vulnerable children. We hypothesize that insecticide-treated school uniforms will reduce the incidence of dengue in school-aged children. The hypothesis would need to be tested in a community based randomized trial. If proven to be true, insecticide-treated school uniforms would be a cost-effective and scalable community based strategy to reduce the burden of dengue in children.

  1. A profile of dengue cases admitted to a tertiary care hospital in Karnataka, southern India.

    PubMed

    Kumar, Ashwini; Pandit, Vinay Ramakrishna; Shetty, Sirish; Pattanshetty, Sanjay; Krish, Sonia Nagesh; Roy, Sreoshi

    2010-01-01

    During the past two decades, epidemics of dengue fever have been causing concern in several South-East Asian countries, including India. A study was conducted in a tertiary care hospital situated in Southern India to determine the trends and outcome of dengue cases. There was a steady rise in number of cases from 2002 to 2007, with the largest number of cases seen in 2007. Most cases were observed in the post-monsoon season in the month of September. Out of a total of 344 cases, 285 (82.8%) patients had dengue fever, 34 (9.8%) had dengue haemorrhagic fever and 25 (7.3%) had dengue shock syndrome. Deaths were reported in nine cases, with the majority of deaths occurring in 2003. The disease control programme should emphasise on vector surveillance, integrated vector control, emergency response, early clinical diagnosis and appropriate management of the cases.

  2. Ovicidal, larvicidal and adulticidal properties of Asparagus racemosus (Willd.) (Family: Asparagaceae) root extracts against filariasis (Culex quinquefasciatus), dengue (Aedes aegypti) and malaria (Anopheles stephensi) vector mosquitoes (Diptera: Culicidae).

    PubMed

    Govindarajan, Marimuthu; Sivakumar, Rajamohan

    2014-04-01

    Several diseases are associated to the mosquito-human interaction. Mosquitoes are the carriers of severe and well-known illnesses such as malaria, arboviral encephalitis, dengue fever, chikungunya fever, West Nile virus and yellow fever. These diseases produce significant morbidity and mortality in humans and livestock around the world. The present investigation was undertaken to study the ovicidal, larvicidal and adulticidal activities of crude hexane, ethyl acetate, benzene, chloroform and methanol extracts of root of Asparagus racemosus were assayed for their toxicity against three important vector mosquitoes, viz., Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi (Diptera: Culicidae). The mean percent hatchability of the eggs was observed after 48 h post-treatment. The percent hatchability was inversely proportional to the concentration of extract and directly proportional to the eggs. All the five solvent extracts showed moderate ovicidal activity; however, the methanol extract showed the highest ovicidal activity. The methanol extract of Asparagus racemosus against Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi exerted 100% mortality (zero hatchability) at 375, 300 and 225 ppm, respectively. Control eggs showed 99-100% hatchability. The larval mortality was observed after 24 h of exposure. All extracts showed moderate larvicidal effects; however, the highest larval mortality was found in methanol extract of root of Asparagus racemosus against the larvae of Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi with the LC50 and LC90 values were 115.13, 97.71 and 90.97 ppm and 210.96, 179.92, and 168.82 ppm, respectively. The adult mortality was observed after 24 h recovery period. The plant crude extracts showed dose-dependent mortality. At higher concentrations, the adult showed restless movement for some times with abnormal wagging and then died. Among the extracts tested, the highest adulticidal activity was observed in

  3. Dengue vaccine: an update on recombinant subunit strategies.

    PubMed

    Martin, J; Hermida, L

    2016-03-01

    Dengue is an increasing public health problem worldwide, with the four serotypes of the virus infecting over 390 million people annually. There is no specific treatment or antiviral drug for dengue, and prevention is largely limited to controlling the mosquito vectors or disrupting the human-vector contact. Despite the considerable progress made in recent years, an effective vaccine against the virus is not yet available. The development of a dengue vaccine has been hampered by many unique challenges, including the need to ensure the absence of vaccine-induced enhanced severity of disease. Recombinant protein subunit vaccines offer a safer alternative to other vaccine approaches. Several subunit vaccine candidates are presently under development, based on different structural and non-structural proteins of the virus. Novel adjuvants or immunopotentiating strategies are also being tested to improve their immunogenicity. This review summarizes the current status and development trends of subunit dengue vaccines.

  4. Assessing the interest to participate in a dengue vaccine efficacy trial among residents of Puerto Rico.

    PubMed

    Pérez-Guerra, Carmen L; Rodríguez-Acosta, Rosa L; Soto-Gómez, Eunice; Zielinski-Gutierrez, Emily; Peña-Orellana, Marisol; Santiago, Luis M; Rivera, Reinaldo; Cruz, R Rhode; Ramírez, Viani; Tomashek, Kay M; Dayan, Gustavo

    2012-07-01

    Dengue, endemic in Puerto Rico, is a major public health problem. Vaccines are thought the best means to prevent dengue because vector control alone has been largely ineffective. We implemented qualitative studies in 2006 and 2010 to determine the acceptability of conducting placebo-controlled dengue vaccine efficacy trials in Puerto Rican children. Key informant interviews and focus groups with parents and children were conducted in municipalities with high dengue incidence. We used structured open-ended questions to determine motivators and attitudes regarding vaccine trial participation. Knowledge about dengue risk and prevention, and knowledge, attitudes, and beliefs regarding vaccines and vaccine trials were assessed. Using grounded theory, we conducted content analysis and established categories and sub-categories of participant responses. All participants were knowledgeable about dengue prevention and perceived children as most affected age groups. Participants were aware of vaccines benefits and they thought a vaccine could prevent dengue. However, most would not allow their children to participate in a placebo-controlled vaccine trial. Barriers included lack of trust in new vaccines and vaccine trial procedures; fear of developing dengue or side effects from the vaccine and lack of information about candidate dengue vaccines. Participants thought information, including results of previous trials might overcome barriers to participation. Motivators for participation were altruism, protection from dengue, free medical attention, and compensation for transportation and participation. Parents would consider children participation if accurate vaccine trial information is provided.

  5. Weather Variability Associated with Aedes (Stegomyia) aegypti (Dengue Vector) Oviposition Dynamics in Northwestern Argentina.

    PubMed

    Estallo, Elizabet L; Ludueña-Almeida, Francisco F; Introini, María V; Zaidenberg, Mario; Almirón, Walter R

    2015-01-01

    This study aims to develop a forecasting model by assessing the weather variability associated with seasonal fluctuation of Aedes aegypti oviposition dynamic at a city level in Orán, in northwestern Argentina. Oviposition dynamics were assessed by weekly monitoring of 90 ovitraps in the urban area during 2005-2007. Correlations were performed between the number of eggs collected weekly and weather variables (rainfall, photoperiod, vapor pressure of water, temperature, and relative humidity) with and without time lags (1 to 6 weeks). A stepwise multiple linear regression analysis was performed with the set of meteorological variables from the first year of study with the variables in the time lags that best correlated with the oviposition. Model validation was conducted using the data from the second year of study (October 2006- 2007). Minimum temperature and rainfall were the most important variables. No eggs were found at temperatures below 10 °C. The most significant time lags were 3 weeks for minimum temperature and rains, 3 weeks for water vapor pressure, and 6 weeks for maximum temperature. Aedes aegypti could be expected in Orán three weeks after rains with adequate min temperatures. The best-fit forecasting model for the combined meteorological variables explained 70 % of the variance (adj. R(2)). The correlation between Ae. aegypti oviposition observed and estimated by the forecasting model resulted in rs = 0.80 (P < 0.05). The forecasting model developed would allow prediction of increases and decreases in the Ae. aegypti oviposition activity based on meteorological data for Orán city and, according to the meteorological variables, vector activity can be predicted three or four weeks in advance.

  6. Weather Variability Associated with Aedes (Stegomyia) aegypti (Dengue Vector) Oviposition Dynamics in Northwestern Argentina.

    PubMed

    Estallo, Elizabet L; Ludueña-Almeida, Francisco F; Introini, María V; Zaidenberg, Mario; Almirón, Walter R

    2015-01-01

    This study aims to develop a forecasting model by assessing the weather variability associated with seasonal fluctuation of Aedes aegypti oviposition dynamic at a city level in Orán, in northwestern Argentina. Oviposition dynamics were assessed by weekly monitoring of 90 ovitraps in the urban area during 2005-2007. Correlations were performed between the number of eggs collected weekly and weather variables (rainfall, photoperiod, vapor pressure of water, temperature, and relative humidity) with and without time lags (1 to 6 weeks). A stepwise multiple linear regression analysis was performed with the set of meteorological variables from the first year of study with the variables in the time lags that best correlated with the oviposition. Model validation was conducted using the data from the second year of study (October 2006- 2007). Minimum temperature and rainfall were the most important variables. No eggs were found at temperatures below 10 °C. The most significant time lags were 3 weeks for minimum temperature and rains, 3 weeks for water vapor pressure, and 6 weeks for maximum temperature. Aedes aegypti could be expected in Orán three weeks after rains with adequate min temperatures. The best-fit forecasting model for the combined meteorological variables explained 70 % of the variance (adj. R(2)). The correlation between Ae. aegypti oviposition observed and estimated by the forecasting model resulted in rs = 0.80 (P < 0.05). The forecasting model developed would allow prediction of increases and decreases in the Ae. aegypti oviposition activity based on meteorological data for Orán city and, according to the meteorological variables, vector activity can be predicted three or four weeks in advance. PMID:25993415

  7. Extracellular synthesis of silver nanoparticles using Bacillus megaterium against malarial and dengue vector (Diptera: Culicidae).

    PubMed

    Banu, A Najitha; Balasubramanian, C

    2015-11-01

    Biosynthesis of silver nanoparticles has provoked nowadays and alternative to physical and chemical approaches. In the present study, silver nanoparticles (AgNPs) were synthesized extracellular method using Bacillus megaterium. The AgNPs formations were confirmed initially through color change, and the aliquots were characterized through UV-visible spectrophotometer, followed by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectroscopy, and Fourier transform infrared (FTIR) spectra. The surface plasmon resonance band was shown at 430 nm in UV-vis spectrophotometer. The bioreduction was categorized through identifying the compounds responsible for the AgNP synthesis, and the functional group present in B. megaterium cell-free culture was scrutinized using FTIR. The topography and morphology of the particles were determined using SEM. In addition, this biosynthesized AgNPs were found to show higher insecticidal efficacy against vector mosquitoes. The LC50 and LC90 were found to be 0.567, 2.260; 0.90, 4.44; 1.349, 8.269; and 1.640, 9.152 and 0.240, 0.955; 0.331, 1.593; 0.494, 2.811; and 0.700, 4.435 with respect to the first, second, third, and fourth instar larvae of Culex quinquefasciatus and Aedes aegypti. All the calculated χ (2) values are highly significant compared with the tabulated value. Therefore, B. megaterium-synthesized silver nanoparticles would be used as a potent larvicidal agent against Cx. quinquefasciatus and Ae. aegypti.

  8. Weather Variability Associated with Aedes (Stegomyia) aegypti (Dengue Vector) Oviposition Dynamics in Northwestern Argentina

    PubMed Central

    Estallo, Elizabet L.; Ludueña-Almeida, Francisco F.; Introini, María V.; Zaidenberg, Mario; Almirón, Walter R.

    2015-01-01

    This study aims to develop a forecasting model by assessing the weather variability associated with seasonal fluctuation of Aedes aegypti oviposition dynamic at a city level in Orán, in northwestern Argentina. Oviposition dynamics were assessed by weekly monitoring of 90 ovitraps in the urban area during 2005-2007. Correlations were perf