Science.gov

Sample records for dense fluid shockwaves

  1. Static dielectric properties of dense ionic fluids.

    PubMed

    Zarubin, Grigory; Bier, Markus

    2015-05-14

    The static dielectric properties of dense ionic fluids, e.g., room temperature ionic liquids (RTILs) and inorganic fused salts, are investigated on different length scales by means of grandcanonical Monte Carlo simulations. A generally applicable scheme is developed which allows one to approximately decompose the electric susceptibility of dense ionic fluids into the orientation and the distortion polarization contribution. It is shown that at long range, the well-known plasma-like perfect screening behavior occurs, which corresponds to a diverging distortion susceptibility, whereas at short range, orientation polarization dominates, which coincides with that of a dipolar fluid of attached cation-anion pairs. This observation suggests that the recently debated interpretation of RTILs as dilute electrolyte solutions might not be simply a yes-no-question but it might depend on the considered length scale.

  2. Phase boundary of hot dense fluid hydrogen

    PubMed Central

    Ohta, Kenji; Ichimaru, Kota; Einaga, Mari; Kawaguchi, Sho; Shimizu, Katsuya; Matsuoka, Takahiro; Hirao, Naohisa; Ohishi, Yasuo

    2015-01-01

    We investigated the phase transformation of hot dense fluid hydrogen using static high-pressure laser-heating experiments in a laser-heated diamond anvil cell. The results show anomalies in the heating efficiency that are likely to be attributed to the phase transition from a diatomic to monoatomic fluid hydrogen (plasma phase transition) in the pressure range between 82 and 106 GPa. This study imposes tighter constraints on the location of the hydrogen plasma phase transition boundary and suggests higher critical point than that predicted by the theoretical calculations. PMID:26548442

  3. Smooth particle hydrodynamics method for modeling cavitation-induced fracture of a fluid under shock-wave loading

    NASA Astrophysics Data System (ADS)

    Davydov, M. N.; Kedrinskii, V. K.

    2013-11-01

    It is demonstrated that the method of smoothed particle hydrodynamics can be used to study the flow structure in a cavitating medium with a high concentration of the gas phase and to describe the process of inversion of the two-phase state of this medium: transition from a cavitating fluid to a system consisting of a gas and particles. A numerical analysis of the dynamics of the state of a hemispherical droplet under shock-wave loading shows that focusing of the shock wave reflected from the free surface of the droplet leads to the formation of a dense, but rapidly expanding cavitation cluster at the droplet center. By the time t = 500 µs, the bubbles at the cluster center not only coalesce and form a foam-type structure, but also transform to a gas-particle system, thus, forming an almost free rapidly expanding zone. The mechanism of this process defined previously as an internal "cavitation explosion" of the droplet is validated by means of mathematical modeling of the problem by the smoothed particle hydrodynamics method. The deformation of the cavitating droplet is finalized by its decomposition into individual fragments and particles.

  4. Prediction of viscosity of dense fluid mixtures

    NASA Astrophysics Data System (ADS)

    Royal, Damian D.; Vesovic, Velisa; Trusler, J. P. Martin; Wakeham, William. A.

    The Vesovic-Wakeham (VW) method of predicting the viscosity of dense fluid mixtures has been improved by implementing new mixing rules based on the rigid sphere formalism. The proposed mixing rules are based on both Lebowitz's solution of the Percus-Yevick equation and on the Carnahan-Starling equation. The predictions of the modified VW method have been compared with experimental viscosity data for a number of diverse fluid mixtures: natural gas, hexane + hheptane, hexane + octane, cyclopentane + toluene, and a ternary mixture of hydrofluorocarbons (R32 + R125 + R134a). The results indicate that the proposed improvements make possible the extension of the original VW method to liquid mixtures and to mixtures containing polar species, while retaining its original accuracy.

  5. Dense colloidal fluids form denser amorphous sediments

    PubMed Central

    Liber, Shir R.; Borohovich, Shai; Butenko, Alexander V.; Schofield, Andrew B.; Sloutskin, Eli

    2013-01-01

    We relate, by simple analytical centrifugation experiments, the density of colloidal fluids with the nature of their randomly packed solid sediments. We demonstrate that the most dilute fluids of colloidal hard spheres form loosely packed sediments, where the volume fraction of the particles approaches in frictional systems the random loose packing limit, φRLP = 0.55. The dense fluids of the same spheres form denser sediments, approaching the so-called random close packing limit, φRCP = 0.64. Our experiments, where particle sedimentation in a centrifuge is sufficiently rapid to avoid crystallization, demonstrate that the density of the sediments varies monotonically with the volume fraction of the initial suspension. We reproduce our experimental data by simple computer simulations, where structural reorganizations are prohibited, such that the rate of sedimentation is irrelevant. This suggests that in colloidal systems, where viscous forces dominate, the structure of randomly close-packed and randomly loose-packed sediments is determined by the well-known structure of the initial fluids of simple hard spheres, provided that the crystallization is fully suppressed. PMID:23530198

  6. An efficient fully atomistic potential model for dense fluid methane

    NASA Astrophysics Data System (ADS)

    Jiang, Chuntao; Ouyang, Jie; Zhuang, Xin; Wang, Lihua; Li, Wuming

    2016-08-01

    A fully atomistic model aimed to obtain a general purpose model for the dense fluid methane is presented. The new optimized potential for liquid simulation (OPLS) model is a rigid five site model which consists of five fixed point charges and five Lennard-Jones centers. The parameters in the potential model are determined by a fit of the experimental data of dense fluid methane using molecular dynamics simulation. The radial distribution function and the diffusion coefficient are successfully calculated for dense fluid methane at various state points. The simulated results are in good agreement with the available experimental data shown in literature. Moreover, the distribution of mean number hydrogen bonds and the distribution of pair-energy are analyzed, which are obtained from the new model and other five reference potential models. Furthermore, the space-time correlation functions for dense fluid methane are also discussed. All the numerical results demonstrate that the new OPLS model could be well utilized to investigate the dense fluid methane.

  7. Fundamental Study of Dense Fluid-Detonation

    DTIC Science & Technology

    1983-03-31

    equation of state accurately, for sufficiently simple materials. For some "realistic" potentials, such as the Lennard - Jones 6-12 interatomic *potential...continuum calculations are complete. Using an equation of state which describes the Lennard - Jones potential throughout the fluid regions of the phase diagram...reactant and product Hugoniots calculated with the Lennard - Jones equation of state. The well depth and collision diameter are c and a, respectively. The

  8. Test of a new heat-flow equation for dense-fluid shock waves.

    PubMed

    Holian, Brad Lee; Mareschal, Michel; Ravelo, Ramon

    2010-09-21

    Using a recently proposed equation for the heat-flux vector that goes beyond Fourier's Law of heat conduction, we model shockwave propagation in the dense Lennard-Jones fluid. Disequilibrium among the three components of temperature, namely, the difference between the kinetic temperature in the direction of a planar shock wave and those in the transverse directions, particularly in the region near the shock front, gives rise to a new transport (equilibration) mechanism not seen in usual one-dimensional heat-flow situations. The modification of the heat-flow equation was tested earlier for the case of strong shock waves in the ideal gas, which had been studied in the past and compared to Navier-Stokes-Fourier solutions. Now, the Lennard-Jones fluid, whose equation of state and transport properties have been determined from independent calculations, allows us to study the case where potential, as well as kinetic contributions are important. The new heat-flow treatment improves the agreement with nonequilibrium molecular-dynamics simulations under strong shock wave conditions, compared to Navier-Stokes.

  9. Dense brushes of stiff polymers or filaments in fluid flow

    NASA Astrophysics Data System (ADS)

    Römer, F.; Fedosov, D. A.

    2015-03-01

    Dense filamentous brush-like structures are present in many biological interfacial systems (e.g., glycocalyx layer in blood vessels) to control their surface properties. Such structures can regulate the softness of a surface and modify fluid flow. In this letter, we propose a theoretical model which predicts quantitatively flow-induced deformation of a dense brush of stiff polymers or filaments, whose persistence length is larger or comparable to their contour length. The model is validated by detailed mesoscopic simulations and characterizes different contributions to brush deformation including hydrodynamic friction due to flow and steric excluded-volume interactions between grafted filaments. This theoretical model can be used to describe the effect of a stiff-polymer brush on fluid flow and to aid in the quantification of experiments.

  10. Shock-induced bubble jetting into a viscous fluid with application to tissue injury in shock-wave lithotripsy

    PubMed Central

    Freund, J. B.; Shukla, R. K.; Evan, A. P.

    2009-01-01

    Shock waves in liquids are known to cause spherical gas bubbles to rapidly collapse and form strong re-entrant jets in the direction of the propagating shock. The interaction of these jets with an adjacent viscous liquid is investigated using finite-volume simulation methods. This configuration serves as a model for tissue injury during shock-wave lithotripsy, a medical procedure to remove kidney stones. In this case, the viscous fluid provides a crude model for the tissue. It is found that for viscosities comparable to what might be expected in tissue, the jet that forms upon collapse of a small bubble fails to penetrate deeply into the viscous fluid “tissue.” A simple model reproduces the penetration distance versus viscosity observed in the simulations and leads to a phenomenological model for the spreading of injury with multiple shocks. For a reasonable selection of a single efficiency parameter, this model is able to reproduce in vivo observations of an apparent 1000-shock threshold before wide-spread tissue injury occurs in targeted kidneys and the approximate extent of this injury after a typical clinical dose of 2000 shock waves. PMID:19894850

  11. Three lectures: NEMD, SPAM, and shockwaves

    NASA Astrophysics Data System (ADS)

    Hoover, Wm. G.; Hoover, Carol G.

    2011-03-01

    We discuss three related subjects well suited to graduate research. The first, Nonequilibrium molecular dynamics or "NEMD", makes possible the simulation of atomistic systems driven by external fields, subject to dynamic constraints, and thermostated so as to yield stationary nonequilibrium states. The second subject, Smooth Particle Applied Mechanics or "SPAM", provides a particle method, resembling molecular dynamics, but designed to solve continuum problems. The numerical work is simplified because the SPAM particles obey ordinary, rather than partial, differential equations. The interpolation method used with SPAM is a powerful interpretive tool converting point particle variables to twice-differentiable field variables. This interpolation method is vital to the study and understanding of the third research topic we discuss, strong shockwaves in dense fluids. Such shockwaves exhibit stationary far-from-equilibrium states obtained with purely reversible Hamiltonian mechanics. The SPAM interpolation method, applied to this molecular dynamics problem, clearly demonstrates both the tensor character of kinetic temperature and the time-delayed response of stress and heat flux to the strain rate and temperature gradients. The dynamic Lyapunov instability of the shockwave problem can be analyzed in a variety of ways, both with and without symmetry in time. These three subjects suggest many topics suitable for graduate research in nonlinear nonequilibrium problems.

  12. Coupling lattice Boltzmann and molecular dynamics models for dense fluids

    NASA Astrophysics Data System (ADS)

    Dupuis, A.; Kotsalis, E. M.; Koumoutsakos, P.

    2007-04-01

    We propose a hybrid model, coupling lattice Boltzmann (LB) and molecular dynamics (MD) models, for the simulation of dense fluids. Time and length scales are decoupled by using an iterative Schwarz domain decomposition algorithm. The MD and LB formulations communicate via the exchange of velocities and velocity gradients at the interface. We validate the present LB-MD model in simulations of two- and three-dimensional flows of liquid argon past and through a carbon nanotube. Comparisons with existing hybrid algorithms and with reference MD solutions demonstrate the validity of the present approach.

  13. Coupling lattice Boltzmann and molecular dynamics models for dense fluids.

    PubMed

    Dupuis, A; Kotsalis, E M; Koumoutsakos, P

    2007-04-01

    We propose a hybrid model, coupling lattice Boltzmann (LB) and molecular dynamics (MD) models, for the simulation of dense fluids. Time and length scales are decoupled by using an iterative Schwarz domain decomposition algorithm. The MD and LB formulations communicate via the exchange of velocities and velocity gradients at the interface. We validate the present LB-MD model in simulations of two- and three-dimensional flows of liquid argon past and through a carbon nanotube. Comparisons with existing hybrid algorithms and with reference MD solutions demonstrate the validity of the present approach.

  14. High frequency flow-structural interaction in dense subsonic fluids

    NASA Technical Reports Server (NTRS)

    Liu, Baw-Lin; Ofarrell, J. M.

    1995-01-01

    Prediction of the detailed dynamic behavior in rocket propellant feed systems and engines and other such high-energy fluid systems requires precise analysis to assure structural performance. Designs sometimes require placement of bluff bodies in a flow passage. Additionally, there are flexibilities in ducts, liners, and piping systems. A design handbook and interactive data base have been developed for assessing flow/structural interactions to be used as a tool in design and development, to evaluate applicable geometries before problems develop, or to eliminate or minimize problems with existing hardware. This is a compilation of analytical/empirical data and techniques to evaluate detailed dynamic characteristics of both the fluid and structures. These techniques have direct applicability to rocket engine internal flow passages, hot gas drive systems, and vehicle propellant feed systems. Organization of the handbook is by basic geometries for estimating Strouhal numbers, added mass effects, mode shapes for various end constraints, critical onset flow conditions, and possible structural response amplitudes. Emphasis is on dense fluids and high structural loading potential for fatigue at low subsonic flow speeds where high-frequency excitations are possible. Avoidance and corrective measure illustrations are presented together with analytical curve fits for predictions compiled from a comprehensive data base.

  15. Minimal continuum theories of structure formation in dense active fluids

    NASA Astrophysics Data System (ADS)

    Dunkel, Jörn; Heidenreich, Sebastian; Bär, Markus; Goldstein, Raymond E.

    2013-04-01

    Self-sustained dynamical phases of living matter can exhibit remarkable similarities over a wide range of scales, from mesoscopic vortex structures in microbial suspensions and motility assays of biopolymers to turbulent large-scale instabilities in flocks of birds or schools of fish. Here, we argue that, in many cases, the phenomenology of such active states can be efficiently described in terms of fourth- and higher-order partial differential equations. Structural transitions in these models can be interpreted as Landau-type kinematic transitions in Fourier (wavenumber) space, suggesting that microscopically different biological systems can share universal long-wavelength features. This general idea is illustrated through numerical simulations for two classes of continuum models for incompressible active fluids: a Swift-Hohenberg-type scalar field theory, and a minimal vector model that extends the classical Toner-Tu theory and appears to be a promising candidate for the quantitative description of dense bacterial suspensions. We discuss how microscopic symmetry-breaking mechanisms can enter macroscopic continuum descriptions of collective microbial motion near surfaces, and conclude by outlining future applications.

  16. Transport theory for the Lennard-Jones dense fluid

    SciTech Connect

    Karkheck, J.; Stell, G.; Xu, J.

    1988-11-01

    A kinetic theory for a fluid of particles interacting via a pair potential with hard-core plus truncated tail is described and used to derive a transport theory for the Lennard-Jones fluid as well as the square-well fluid. Numerical results for shear viscosity, thermal conductivity, and the self-diffusion coefficient are given for the Lennard-Jones fluid and compared with simulation and experimental results. Our Lennard-Jones theory proves quantitatively useful over a wide range of states.

  17. Inhomogeneous quasistationary state of dense fluids of inelastic hard spheres.

    PubMed

    Fouxon, Itzhak

    2014-05-01

    We study closed dense collections of freely cooling hard spheres that collide inelastically with constant coefficient of normal restitution. We find inhomogeneous states (ISs) where the density profile is spatially nonuniform but constant in time. The states are exact solutions of nonlinear partial differential equations that describe the coupled distributions of density and temperature valid when inelastic losses of energy per collision are small. The derivation is performed without modeling the equations' coefficients that are unknown in the dense limit (such as the equation of state) using only their scaling form specific for hard spheres. Thus the IS is the exact state of this dense many-body system. It captures a fundamental property of inelastic collections of particles: the possibility of preserving nonuniform temperature via the interplay of inelastic cooling and heat conduction that generalizes previous results. We perform numerical simulations to demonstrate that arbitrary initial state evolves to the IS in the limit of long times where the container has the geometry of the channel. The evolution is like a gas-liquid transition. The liquid condenses in a vanishing part of the total volume but takes most of the mass of the system. However, the gaseous phase, which mass grows only logarithmically with the system size, is relevant because its fast particles carry most of the energy of the system. Remarkably, the system self-organizes to dissipate no energy: The inelastic decay of energy is a power law [1+t/t(c)](-2), where t(c) diverges in the thermodynamic limit. This is reinforced by observing that for supercritical systems the IS coincide in most of the space with the steady states of granular systems heated at one of the walls. We discuss the relation of our results to the recently proposed finite-time singularity in other container's geometries.

  18. Heterogeneous Atomistic-Continuum Methods for Dense Fluid Systems

    NASA Astrophysics Data System (ADS)

    Hadjiconstantinou, Nicolas; Patera, Anthony

    1997-08-01

    We present new results obtained using the formulation and numerical solution procedure for heterogeneous atomistic--continuum representations of fluid flows presented in [1]. The ingredients are, from the atomistic side, non-equilibrium molecular dynamics, and from the continuum side, finite element solution; the matching is provided by a classical procedure, the Schwarz alternating method with overlapping subdomains. The technique is applied to the flow of two immiscible fluids in a microscale channel. The problem "presents" a particular modelling challenge because of the stress singularity at the moving contact line which is usually relieved through ad hoc methods, the most popular of which is the assumption of slip close to the contact line. The Heterogeneous method properly addresses the problem by treating the region near the contact line with molecular dynamics. References 1. Hadjiconstantinou N., Patera, A.T., Proceedings of the Sixth International Conference on Discrete Models for Fluid Mechanics, To appear as a special edition of the International Journal of Modern Physics C.

  19. Dynamics of dense granular flows of small-and-large-grain mixtures in an ambient fluid.

    PubMed

    Meruane, C; Tamburrino, A; Roche, O

    2012-08-01

    Dense grain flows in nature consist of a mixture of solid constituents that are immersed in an ambient fluid. In order to obtain a good representation of these flows, the interaction mechanisms between the different constituents of the mixture should be considered. In this article, we study the dynamics of a dense granular flow composed of a binary mixture of small and large grains immersed in an ambient fluid. In this context, we extend the two-phase approach proposed by Meruane et al. [J. Fluid Mech. 648, 381 (2010)] to the case of flowing dense binary mixtures of solid particles, by including in the momentum equations a constitutive relation that describes the interaction mechanisms between the solid constituents in a dense regime. These coupled equations are solved numerically and validated by comparing the numerical results with experimental measurements of the front speed of gravitational granular flows resulting from the collapse, in ambient air or water, of two-dimensional granular columns that consisted of mixtures of small and large spherical particles of equal mass density. Our results suggest that the model equations include the essential features that describe the dynamics of grains flows of binary mixtures in an ambient fluid. In particular, it is shown that segregation of small and large grains can increase the front speed because of the volumetric expansion of the flow. This increase in flow speed is damped by the interaction forces with the ambient fluid, and this behavior is more pronounced in water than in air.

  20. Molecular Dynamics of Dense Fluids: Simulation-Theory Symbiosis

    NASA Astrophysics Data System (ADS)

    Yip, Sidney

    35 years ago Berni J. Alder showed the Boltzmann-Enskog kinetic theory failed to adequately account for the viscosity of fluids near solid density as determined by molecular dynamics simulation. This work, along with other notable simulation findings, provided great stimulus to the statistical mechanical studies of transport phenomena, particularly in dealing with collective effects in the time correlation functions of liquids. An extended theoretical challenge that remains partially resolved at best is the shear viscosity of supercooled liquids. How can one give a unified explanation of the so-called fragile and strong characteristic temperature behavior, with implications for the dynamics of glass transition? In this tribute on the occasion of his 90th birthday symposium, we recount a recent study where simulation, combined with heuristic (transition-state) and first principles (linear response) theories, identifies the molecular mechanisms governing glassy-state relaxation. Such an interplay between simulation and theory is progress from the early days; instead of simulation challenging theory, now simulation and theory complement each other.

  1. Shockwave Consolidation of Nanostructured Thermoelectric Materials

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.; Taylor, Patrick; Nemir, David

    2014-01-01

    Nanotechnology based thermoelectric materials are considered attractive for developing highly efficient thermoelectric devices. Nano-structured thermoelectric materials are predicted to offer higher ZT over bulk materials by reducing thermal conductivity and increasing electrical conductivity. Consolidation of nano-structured powders into dense materials without losing nanostructure is essential towards practical device development. Using the gas atomization process, amorphous nano-structured powders were produced. Shockwave consolidation is accomplished by surrounding the nanopowder-containing tube with explosives and then detonating. The resulting shock wave causes rapid fusing of the powders without the melt and subsequent grain growth. We have been successful in generating consolidated nano-structured bismuth telluride alloy powders by using the shockwave technique. Using these consolidated materials, several types of thermoelectric power generating devices have been developed. Shockwave consolidation is anticipated to generate large quantities of nanostructred materials expeditiously and cost effectively. In this paper, the technique of shockwave consolidation will be presented followed by Seebeck Coefficient and thermal conductivity measurements of consolidated materials. Preliminary results indicate a substantial increase in electrical conductivity due to shockwave consolidation technique.

  2. An accurate equation of state for the exponential-6 fluid applied to dense supercritical nitrogen

    NASA Astrophysics Data System (ADS)

    Fried, Laurence E.; Howard, W. Michael

    1998-11-01

    The exponential-6 potential model is widely used in fluid equation of state studies. We have developed an accurate and efficient complete equation of state for the exponential-6 fluid based on HMSA integral equation theory and Monte Carlo calculations. Our equation of state has average fractional error of 0.2% in pV/NkBT and 0.3% in the excess energy Uex/NkBT. This is a substantial improvement in accuracy over perturbation methods, which are typically used in treatments of dense fluid equations of state. We have applied our equation of state to the problem of dense supercritical N2. We find that we are able to accurately reproduce a wide range of material properties with our model, over a range 0.01⩽P⩽100 GPa and 298⩽T⩽15 000 K.

  3. Nonlinear ion modes in a dense plasma with strongly coupled ions and degenerate electron fluids

    SciTech Connect

    Shukla, P. K.; Mamun, A. A.; Mendis, D. A.

    2011-08-15

    The properties of solitary and shock structures associated with nonlinear ion modes in a dense plasma with strongly coupled nondegenerate ions and degenerate electron fluids are presented. For this purpose, we have used the viscoelastic fluid model for the ions, the inertialess electron momentum equation with weakly and ultrarelativistic pressure laws for the degenerate electron fluids, and Poisson's equation to derive the Burgers and Kortweg-de Vries equations. Possible stationary solutions of the latter are the shock and solitary structures, respectively. It is found that the speed, amplitude, and width of the shock and solitary waves critically depend on the strong coupling between ions and electron degeneracy effects. The relevance of our investigation to the role of localized excitations in dense astrophysical objects is briefly discussed.

  4. Local shear viscosity of strongly inhomogeneous dense fluids: from the hard-sphere to the Lennard-Jones fluids.

    PubMed

    Hoang, Hai; Galliero, Guillaume

    2013-12-04

    This work aims at providing a tractable approach to model the local shear viscosity of strongly inhomogeneous dense fluids composed of spherical molecules, in which the density variations occur on molecular distance. The proposed scheme, which relies on the local density average model, has been applied to the quasi-hard-sphere, the Week-Chandler-Andersen and the Lennard-Jones fluids. A weight function has been developed to deal with the hard-sphere fluid given the specificities of momentum exchange. To extend the approach to the smoothly repulsive potential, we have taken into account that the non-local contributions to the viscosity due to the interactions of particles separated by a given distance are temperature dependent. Then, using a simple perturbation scheme, the approach is extended to the Lennard-Jones fluids. It is shown that the viscosity profiles of inhomogeneous dense fluids deduced from this approach are consistent with those directly computed by non-equilibrium molecular dynamics simulations.

  5. Shock waves and double layers in electron degenerate dense plasma with viscous ion fluids

    SciTech Connect

    Mamun, A. A.; Zobaer, M. S.

    2014-02-15

    The properties of ion-acoustic shock waves and double layers propagating in a viscous degenerate dense plasma (containing inertial viscous ion fluid, non-relativistic and ultra-relativistic degenerate electron fluid, and negatively charged stationary heavy element) is investigated. A new nonlinear equation (viz. Gardner equation with additional dissipative term) is derived by the reductive perturbation method. The properties of the ion-acoustic shock waves and double layers are examined by the analysis of the shock and double layer solutions of this new equation (we would like to call it “M-Z equation”). It is found that the properties of these shock and double layer structures obtained from this analysis are significantly different from those obtained from the analysis of standard Gardner or Burgers’ equation. The implications of our results to dense plasmas in astrophysical objects (e.g., non-rotating white dwarf stars) are briefly discussed.

  6. Rheology of dense suspensions of non colloidal spheres in yield-stress fluids

    NASA Astrophysics Data System (ADS)

    Guazzelli, Elisabeth; Dagois-Bohy, Simon; Hormozi, Sarah; Pouliquen, Olivier; Aix-Marseille Université, Cnrs, Iusti Umr 7343 Team; Department Of Mechanical Engineering, Ohio University Team

    2015-11-01

    Pressure-imposed rheometry is used to study the rheological properties of suspensions of non colloidal spheres in yield stress fluids. Accurate measurements for both the shear stress and particle normal stress are obtained in the dense regime. The rheological measurements are favourably compared to a model based on scaling arguments and homogenisation methods. The detailed account of this study can be found in. ANR-13-IS09-0005-01, Etudes et Productions Schlumberger, NSERC Postdoctoral Fellowships Program PDF-439036-2013.

  7. The Chelyabinsk airburst shockwave

    NASA Astrophysics Data System (ADS)

    Popova, O.; Shuvalov, V.; Rybnov, Y.; Jenniskens, P.; Kharlamov, V.; Usoltseva, O.; Glazachev, D.; Podobnaya, E.; Dyagilev, R.; Trubetskaya, I.

    2014-07-01

    The Chelyabinsk airburst of 15 February 2013 was exceptional because of the large kinetic energy of the impacting body and because the airburst that was generated created significant damage and injuries in a densely populated area. The butterfly-shape of the damaged area (Popova et al., 2013) is explained from the fact that the energy was deposited over a range of altitudes. Some uncertainty remains about the source energy of the airburst, because it is not known precisely at what pressure glass is expected to break. Reasonable results were obtained for energies of 300--520 kt TNT and over pressures of 500--1000 Pa, assuming that the time dependence of the energy release followed the meteor lightcurve (Popova et al. 2013). Additional information about the airburst characteristics may be extracted from the arrival times of the shockwave at various locations and from pressure records. Arrival times of the shock wave were derived from video observations. From the analysis of these shock wave arrival times, a range of altitudes of energy deposition was derived (Popova et al. 2013). The observed arrival times were compared with model estimates, taking into account the real wind and atmospheric conditions. Results of the numerical simulations were compared with recorded sound signals, which were often quite complex. Borovicka et al. (2013) suggested that subsequent acoustic arrivals corresponded to separate fragmentation events. This hypothesis is tested. There were no instrumental records of overpressure in the damaged area. However, seismic records exist from locations surrounding a coal mine at Korkino, situated in the damage area close to the meteoroid trajectory, almost immediately below the region of highest energy deposition. Its seismic control system to monitor land slides recorded the blast wave from the meteoroid entry indirectly due to coupling to the ground. This is the only instrumental record of the airburst close to the meteoroid trajectory. An analysis

  8. Atomization and dense-fluid breakup regimes in liquid rocket engines

    SciTech Connect

    Oefelein, Joseph; Dahms, Rainer Norbert Uwe

    2015-04-20

    Until recently, modern theory has lacked a fundamentally based model to predict the operating pressures where classical sprays transition to dense-fluid mixing with diminished surface tension. In this paper, such a model is presented to quantify this transition for liquid-oxygen–hydrogen and n-decane–gaseous-oxygen injection processes. The analysis reveals that respective molecular interfaces break down not necessarily because of vanishing surface tension forces but instead because of the combination of broadened interfaces and a reduction in mean free molecular path. When this occurs, the interfacial structure itself enters the continuum regime, where transport processes rather than intermolecular forces dominate. Using this model, regime diagrams for the respective systems are constructed that show the range of operating pressures and temperatures where this transition occurs. The analysis also reveals the conditions where classical spray dynamics persists even at high supercritical pressures. As a result, it demonstrates that, depending on the composition and temperature of the injected fluids, the injection process can exhibit either classical spray atomization, dense-fluid diffusion-dominated mixing, or supercritical mixing phenomena at chamber pressures encountered in state-of-the-art liquid rocket engines.

  9. Atomization and dense-fluid breakup regimes in liquid rocket engines

    DOE PAGES

    Oefelein, Joseph; Dahms, Rainer Norbert Uwe

    2015-04-20

    Until recently, modern theory has lacked a fundamentally based model to predict the operating pressures where classical sprays transition to dense-fluid mixing with diminished surface tension. In this paper, such a model is presented to quantify this transition for liquid-oxygen–hydrogen and n-decane–gaseous-oxygen injection processes. The analysis reveals that respective molecular interfaces break down not necessarily because of vanishing surface tension forces but instead because of the combination of broadened interfaces and a reduction in mean free molecular path. When this occurs, the interfacial structure itself enters the continuum regime, where transport processes rather than intermolecular forces dominate. Using this model,more » regime diagrams for the respective systems are constructed that show the range of operating pressures and temperatures where this transition occurs. The analysis also reveals the conditions where classical spray dynamics persists even at high supercritical pressures. As a result, it demonstrates that, depending on the composition and temperature of the injected fluids, the injection process can exhibit either classical spray atomization, dense-fluid diffusion-dominated mixing, or supercritical mixing phenomena at chamber pressures encountered in state-of-the-art liquid rocket engines.« less

  10. Stepwise shockwave velocity determinator

    NASA Technical Reports Server (NTRS)

    Roth, Timothy E.; Beeson, Harold

    1992-01-01

    To provide an uncomplicated and inexpensive method for measuring the far-field velocity of a surface shockwave produced by an explosion, a stepwise shockwave velocity determinator (SSVD) was developed. The velocity determinator is constructed of readily available materials and works on the principle of breaking discrete sensors composed of aluminum foil contacts. The discrete sensors have an average breaking threshold of approximately 7 kPa. An incremental output step of 250 mV is created with each foil contact breakage and is logged by analog-to-digital instrumentation. Velocity data obtained from the SSVD is within approximately 11 percent of the calculated surface shockwave velocity of a muzzle blast from a 30.06 rifle.

  11. Kinetic arrest, dynamical transitions, and activated relaxation in dense fluids of attractive nonspherical colloids

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Schweizer, Kenneth S.

    2011-06-01

    The coupled translation-rotation activated dynamics in dense suspensions of attractive homogeneous and Janus uniaxial dicolloids are studied using microscopic statistical mechanical theory. Multiple kinetic arrest transitions and reentrant phenomena are predicted that are associated with fluid, gel, repulsive glass, attractive glass, plastic glass, and novel glass-gel states. The activated relaxation rate is a nonuniversal nonmonotonic function of attraction strength at high volume fractions due to the consequences of a change of the transient localization mechanism from caging to physical bonding.

  12. Fluid and porous media property effects on dense nonaqueous phase liquid migration and contaminant mass flux.

    PubMed

    Totten, C T; Annable, M D; Jawitz, J W; Delfinot, J J

    2007-03-01

    The effects of fluid and porous media properties on dense nonaqueous phase liquid (DNAPL) migration and associated contaminant mass flux generation were evaluated. Relationships between DNAPL mass and solute mass flux were generated by measuring steady-state mass flux following stepwise injection of perchloroethylene (PCE) into flow chambers packed with homogeneous porous media. The effects of fluid properties including density and interfacial tension (IFT), and media properties including grain size and wettability were evaluated by varying the density contrast and interfacial tension properties between PCE and water, and by varying the porous media mean grain diameter and wettability characteristics. Contaminant mass flux was found to increase as grain size decreased, suggesting enhanced lateral and vertical DNAPL spreading with higher fluid entry pressure. Mass flux showed a slight increase as the DNAPL approached neutral buoyancy, likely due to enhanced vertical spreading above the injection point. DNAPL spatial distribution and contaminant mass flux were only minimally affected by IFT and by intermediate-level wettability changes, but were dramatically affected by wettability reversal. The relationship between DNAPL loading and flux generation became more linear as grain size decreased and density contrast between fluids decreased. These results imply that capillary flow characteristics of the porous media and fluid properties will control mass flux generation from source zones.

  13. Equilibrium properties of dense hydrogen isotope gases based on the theory of simple fluids.

    PubMed

    Kowalczyk, Piotr; MacElroy, J M D

    2006-08-03

    We present a new method for the prediction of the equilibrium properties of dense gases containing hydrogen isotopes. The proposed approach combines the Feynman-Hibbs effective potential method and a deconvolution scheme introduced by Weeks et al. The resulting equations of state and the chemical potentials as functions of pressure for each of the hydrogen isotope gases depend on a single set of Lennard-Jones parameters. In addition to its simplicity, the proposed method with optimized Lennard-Jones potential parameters accurately describes the equilibrium properties of hydrogen isotope fluids in the regime of moderate temperatures and pressures. The present approach should find applications in the nonlocal density functional theory of inhomogeneous quantum fluids and should also be of particular relevance to hydrogen (clean energy) storage and to the separation of quantum isotopes by novel nanomaterials.

  14. A New Unsteady Model for Dense Cloud Cavitation in Cryogenic Fluids

    NASA Technical Reports Server (NTRS)

    Hosangadi, A.; Ahuja, V.

    2005-01-01

    A new unsteady, cavitation model is presented wherein the phase change process (bubble growth/collapse) is coupled to the acoustic field in a cryogenic fluid. It predicts the number density and radius of bubbles in vapor clouds by tracking both the aggregate surface area and volume fraction of the cloud. Hence, formulations for the dynamics of individual bubbles (e.g. Rayleigh-Plesset equation) may be integrated within the macroscopic context of a dense vapor cloud i.e. a cloud that occupies a significant fraction of available volume and contains numerous bubbles. This formulation has been implemented within the CRUNCH CFD, which has a compressible real fluid formulation, a multi-element, unstructured grid framework, and has been validated extensively for liquid rocket turbopump inducers. Detailed unsteady simulations of a cavitating ogive in liquid nitrogen are presented where time-averaged mean cavity pressure and temperature depressions due to cavitation are compared with experimental data. The model also provides the spatial and temporal history of the bubble size distribution in the vapor clouds that are shed, an important physical parameter that is difficult to measure experimentally and is a significant advancement in the modeling of dense cloud cavitation.

  15. Sensitivity analysis of Immersed Boundary Method simulations of fluid flow in dense polydisperse random grain packings

    NASA Astrophysics Data System (ADS)

    Knight, Chris; Abdol Azis, Mohd Hazmil; O'Sullivan, Catherine; van Wachem, Berend; Dini, Daniele

    2017-06-01

    Polydisperse granular materials are ubiquitous in nature and industry. Despite this, knowledge of the momentum coupling between the fluid and solid phases in dense saturated grain packings comes almost exclusively from empirical correlations [2-4, 8] with monosized media. The Immersed Boundary Method (IBM) is a Computational Fluid Dynamics (CFD) modelling technique capable of resolving pore scale fluid flow and fluid-particle interaction forces in polydisperse media at the grain scale. Validation of the IBM in the low Reynolds number, high concentration limit was performed by comparing simulations of flow through ordered arrays of spheres with the boundary integral results of Zick and Homsy [10]. Random grain packings were studied with linearly graded particle size distributions with a range of coefficient of uniformity values (Cu = 1.01, 1.50, and 2.00) at a range of concentrations (ϕ ∈ [0.396; 0.681]) in order to investigate the influence of polydispersity on drag and permeability. The sensitivity of the IBM results to the choice of radius retraction parameter [1] was investigated and a comparison was made between the predicted forces and the widely used Ergun correlation [3].

  16. Perfect fluid flow from the impact of a dense granular jet

    NASA Astrophysics Data System (ADS)

    Zhang, Wendy W.; Ellowitz, Jake; Guttenberg, Nicholas; Turlier, Herve; Nagel, Sidney R.

    2011-03-01

    Axisymmetric collision of a cylindrical water jet with a circular target generates a thin conical sheet, also known as a water bell [Cheng et al. Phys. Rev. Lett. 99, 2007]. Intriguingly, recent experiments on granular jet impact in the regime of dense inertial flow reveal similar behavior: the angles by which the collimated sheets of particles are ejected from the target agree closely with the angles measured in the water-bell experiments [Clanet, C. J. Fluid Mech. 430, 2001]. This quantitative correspondence suggests that the collective granular motion during impact can be modeled as an incompressible, continuum fluid. Since viscous effects are weak in water-jet impact and the granular jet is comprised of non-cohesive particles (hence possessing zero surface tension), the simplest scenario is that the continuum motion corresponds to the flow of a perfect fluid. We show an exact solution of 2D perfect fluid impact agrees quantitatively with 2D discrete-particle simulation results. Therefore, the emergence of a highly collimated outgoing sheet does not necessarily signal the creation of a thermodynamic liquid phase. Such a coherent outcome results generically when the motion is nearly incompressible and dominated by inertia.

  17. Analysis of a dense-medium separator for coarse coal separation using computational fluid dynamics

    SciTech Connect

    Peng, F.F.; Xia, Y.K.

    2007-02-15

    The raw-coal feeding system and the upward medium current flow in a dense-medium vessel (DMV) are, in addition to the residence time of particles in the separator, important factors for efficient coarse particle separation. The feed material from a raw coal screen and/or pre-wet screen merge with the major volume of circulating medium as push medium, guided by an adjustable submergence baffle plate deep fed into the separator effective separation. The remaining volume of the circulating medium enters from the purge and drain for hoppers at the bottom of the DMV. This generates a gentle upward medium current flow in the separator, which prevents dense medium stratification/settling and merges as part of the push medium. A two-dimensional, two-phase model developed using computational fluid dynamics (CFD) is used to describe the flow pattern and evaluate the function of the dip plate for understanding the mechanisms of particle separation in the separator. The particle movement in the DMV is also tracked to investigate the major operating parameters affecting the separation performance of the DMV. The simulation results of the DMV separation performance are validated by in-plant test data.

  18. A device for generating motive force through the expansion of a non-elastic dense fluid

    NASA Technical Reports Server (NTRS)

    Muller, L.

    1985-01-01

    A device for generating motive force through the expansion of a dense, nonelastic fluid is described. It consists of an exterior block of a material with a low expansion coefficient, the interior of which is equipped with two circular cavities, both of which are equipped with rotors having blades constantly stressed outward by springs, so that they make contact with the cavity walls. One cavity is heated externally, and both have an exterior wall made of a friction ring which keeps the volume constant when their length varies. These cavities are interconnected by ducts which, at the inlet, are a prolongation of a peripheral groove made in the friction ring. The excess fluid produced by expansion flows through the groove, subsequently entering the cavity again after passing through a cooler located in the exterior part of the block. Both rotors are connected to gears with appropriate ratios which are equipped with a blocking device to guarantee that they always rotate in the same direction.

  19. Numerical study of long-time dynamics and ergodic-nonergodic transitions in dense simple fluids

    NASA Astrophysics Data System (ADS)

    McCowan, David D.

    2015-08-01

    Since the mid-1980s, mode-coupling theory (MCT) has been the de facto theoretic description of dense fluids and the transition from the fluid state to the glassy state. MCT, however, is limited by the approximations used in its construction and lacks an unambiguous mechanism to institute corrections. We use recent results from a new theoretical framework—developed from first principles via a self-consistent perturbation expansion in terms of an effective two-body potential—to numerically explore the kinetics of systems of classical particles, specifically hard spheres governed by Smoluchowski dynamics. We present here a full solution for such a system to the kinetic equation governing the density-density time correlation function and show that the function exhibits the characteristic two-step decay of supercooled fluids and an ergodic-nonergodic transition to a dynamically arrested state. Unlike many previous numerical studies—and in stark contrast to experiment—we have access to the full time and wave-number range of the correlation function with great precision and are able to track the solution unprecedentedly close to the transition, covering nearly 15 decades in scaled time. Using asymptotic approximation techniques analogous to those developed for MCT, we fit the solution to predicted forms and extract critical parameters. We find complete qualitative agreement with known glassy behavior (e.g. power-law divergence of the α -relaxation time scale in the ergodic phase and square-root growth of the glass form factors in the nonergodic phase), as well as some limited quantitative agreement [e.g. the transition at packing fraction η*=0.60149761 (10 ) ] , consistent with previous static solutions under this theory and with comparable colloidal suspension experiments. However, most importantly, we establish that this new theory is able to reproduce the salient features seen in other theories, experiments, and simulations but has the advantages of being

  20. Tables of equation-of-state, thermodynamic properties, and shock Hugoniot for hot dense fluid deuterium

    NASA Astrophysics Data System (ADS)

    Zaghloul, Mofreh R.

    2015-11-01

    We present computational results and tables of the equation-of-state, thermodynamic properties, and shock Hugoniot for hot dense fluid deuterium. The present results are generated using a recently developed chemical model that takes into account different high density effects such as Coulomb interactions among charged particles, partial degeneracy, and intensive short range hard core repulsion. Internal partition functions are evaluated in a statistical-mechanically consistent way implementing recent developments in the literature. The shock Hugoniot curve derived from the present tables is overall in reasonable agreement with the Hugoniot derived from the Nova-laser shock wave experiments on liquid deuterium, showing that deuterium has a significantly higher compressibility than predicted by the SESAME tables or by Path Integral Monte Carlo calculations. Computational results are presented as surface plots for the dissociated fraction, degree of ionization, pressure, and specific internal energy for densities ranging from 0.0001 to 40 g/cm3 and temperatures from 2000 to ˜106 K. Tables for values of the above mentioned quantities in addition to the specific heat at constant pressure, cp, ratio of specific heats, cp/cv, sound speed and Hugoniot curve (for a specific initial state) are presented for practical use.

  1. Nucleation of biomimetic apatite in synthetic body fluids: dense and porous scaffold development.

    PubMed

    Landi, Elena; Tampieri, Anna; Celotti, Giancarlo; Langenati, Ratih; Sandri, Monica; Sprio, Simone

    2005-06-01

    The effectiveness of synthetic body fluids (SBF) as biomimetic sources to synthesize carbonated hydroxyapatite (CHA) powder similar to the biological inorganic phase, in terms of composition and microstructure, was investigated. CHA apatite powders were prepared following two widely experimented routes: (1) calcium nitrate tetrahydrate and diammonium hydrogen phosphate and (2) calcium hydroxide and ortophosphoric acid, but using SBF as synthesis medium instead of pure water. The characteristics of the as-prepared powders were compared, also with the features of apatite powders synthesized via pure water-based classical methods. The powder thermal resistance and behaviour during densification were studied together with the mechanical properties of the dense samples. The sponge impregnation process was used to prepare porous samples having morphological and mechanical characteristics suitable for bone substitution. Using this novel synthesis was it possible to prepare nanosized (approximately equal to 20 nm), pure, carbonate apatite powder containing Mg, Na, K ions, with morphological and compositional features mimicking natural apatite and with improved thermal properties. After sintering at 1250 degrees C the carbonate-free apatite porous samples showed a surprising, high compressive strength together with a biomimetic morphology.

  2. Tables of equation-of-state, thermodynamic properties, and shock Hugoniot for hot dense fluid deuterium

    SciTech Connect

    Zaghloul, Mofreh R.

    2015-11-15

    We present computational results and tables of the equation-of-state, thermodynamic properties, and shock Hugoniot for hot dense fluid deuterium. The present results are generated using a recently developed chemical model that takes into account different high density effects such as Coulomb interactions among charged particles, partial degeneracy, and intensive short range hard core repulsion. Internal partition functions are evaluated in a statistical-mechanically consistent way implementing recent developments in the literature. The shock Hugoniot curve derived from the present tables is overall in reasonable agreement with the Hugoniot derived from the Nova-laser shock wave experiments on liquid deuterium, showing that deuterium has a significantly higher compressibility than predicted by the SESAME tables or by Path Integral Monte Carlo calculations. Computational results are presented as surface plots for the dissociated fraction, degree of ionization, pressure, and specific internal energy for densities ranging from 0.0001 to 40 g/cm{sup 3} and temperatures from 2000 to ∼10{sup 6 }K. Tables for values of the above mentioned quantities in addition to the specific heat at constant pressure, c{sub p}, ratio of specific heats, c{sub p}/c{sub v}, sound speed and Hugoniot curve (for a specific initial state) are presented for practical use.

  3. Modeling and simulation of dense cloud dispersion in urban areas by means of computational fluid dynamics.

    PubMed

    Scargiali, F; Grisafi, F; Busciglio, A; Brucato, A

    2011-12-15

    The formation of toxic heavy clouds as a result of sudden accidental releases from mobile containers, such as road tankers or railway tank cars, may occur inside urban areas so the problem arises of their consequences evaluation. Due to the semi-confined nature of the dispersion site simplified models may often be inappropriate. As an alternative, computational fluid dynamics (CFD) has the potential to provide realistic simulations even for geometrically complex scenarios since the heavy gas dispersion process is described by basic conservation equations with a reduced number of approximations. In the present work a commercial general purpose CFD code (CFX 4.4 by Ansys(®)) is employed for the simulation of dense cloud dispersion in urban areas. The simulation strategy proposed involves a stationary pre-release flow field simulation followed by a dynamic after-release flow and concentration field simulations. In order to try a generalization of results, the computational domain is modeled as a simple network of straight roads with regularly distributed blocks mimicking the buildings. Results show that the presence of buildings lower concentration maxima and enlarge the side spread of the cloud. Dispersion dynamics is also found to be strongly affected by the quantity of heavy-gas released.

  4. Quantum molecular dynamics study of expanded beryllium: evolution from warm dense matter to atomic fluid.

    PubMed

    Li, Dafang; Liu, Haitao; Zeng, Siliang; Wang, Cong; Wu, Zeqing; Zhang, Ping; Yan, Jun

    2014-07-31

    By performing quantum molecular dynamics (QMD) simulations, we investigate the equation of states, electrical and optical properties of the expanded beryllium at densities two to one-hundred lower than the normal solid density, and temperatures ranging from 5000 to 30000 K. With decreasing the density of Be, the optical response evolves from the one characteristic of a simple metal to the one of an atomic fluid. By fitting the optical conductivity spectra with the Drude-Smith model, it is found that the conducting electrons become localized at lower densities. In addition, the negative derivative of the electrical resistivity on temperature at density about eight lower than the normal solid density demonstrates that the metal to nonmetal transition takes place in the expanded Be. To interpret this transition, the electronic density of states is analyzed systematically. Furthermore, a direct comparison of the Rosseland opacity obtained by using QMD and the standard opacity code demonstrates that QMD provides a powerful tool to validate plasma models used in atomic physics approaches in the warm dense matter regime.

  5. Numerical study of long-time dynamics and ergodic-nonergodic transitions in dense simple fluids.

    PubMed

    McCowan, David D

    2015-08-01

    Since the mid-1980s, mode-coupling theory (MCT) has been the de facto theoretic description of dense fluids and the transition from the fluid state to the glassy state. MCT, however, is limited by the approximations used in its construction and lacks an unambiguous mechanism to institute corrections. We use recent results from a new theoretical framework--developed from first principles via a self-consistent perturbation expansion in terms of an effective two-body potential--to numerically explore the kinetics of systems of classical particles, specifically hard spheres governed by Smoluchowski dynamics. We present here a full solution for such a system to the kinetic equation governing the density-density time correlation function and show that the function exhibits the characteristic two-step decay of supercooled fluids and an ergodic-nonergodic transition to a dynamically arrested state. Unlike many previous numerical studies--and in stark contrast to experiment--we have access to the full time and wave-number range of the correlation function with great precision and are able to track the solution unprecedentedly close to the transition, covering nearly 15 decades in scaled time. Using asymptotic approximation techniques analogous to those developed for MCT, we fit the solution to predicted forms and extract critical parameters. We find complete qualitative agreement with known glassy behavior (e.g. power-law divergence of the α-relaxation time scale in the ergodic phase and square-root growth of the glass form factors in the nonergodic phase), as well as some limited quantitative agreement [e.g. the transition at packing fraction η*=0.60149761(10)], consistent with previous static solutions under this theory and with comparable colloidal suspension experiments. However, most importantly, we establish that this new theory is able to reproduce the salient features seen in other theories, experiments, and simulations but has the advantages of being derived from

  6. Numerical Simulation of Low-Density Shock-Wave Interactions

    NASA Technical Reports Server (NTRS)

    Glass, Christopher E.

    1999-01-01

    Computational Fluid Dynamics (CFD) numerical simulations of low-density shock-wave interactions for an incident shock impinging on a cylinder have been performed. Flow-field density gradient and surface pressure and heating define the type of interference pattern and corresponding perturbations. The maximum pressure and heat transfer level and location for various interaction types (i.e., shock-wave incidence with respect to the cylinder) are presented. A time-accurate solution of the Type IV interference is employed to demonstrate the establishment and the steadiness of the low-density flow interaction.

  7. Long-time tail of the velocity autocorrelation function in a two-dimensional moderately dense hard-disk fluid.

    PubMed

    Isobe, Masaharu

    2008-02-01

    Alder and Wainwright discovered the slow power decay ~t(-d/2) (d is dimension) of the velocity autocorrelation function in moderately dense hard-sphere fluids using the event-driven molecular dynamics simulations. In the two-dimensional (2D) case, the diffusion coefficient derived using the time correlation expression in linear response theory shows logarithmic divergence, which is called the "2D long-time-tail problem." We reexamined this problem to perform a large-scale, long-time simulation with 1x10(6) hard disks using a modern efficient algorithm and found that the decay of the long tail in moderately dense fluids is slightly faster than the power decay (~1/t) . We also compared our numerical data with the prediction of the self-consistent mode-coupling theory in the long-time limit [~1/(t sqrt[ln t])] .

  8. Numerical Simulation of the Dynamic FSI Response and Stability of a Flapping Foil in a Dense Fluid

    NASA Astrophysics Data System (ADS)

    Chae, Eun Jung; Akcabay, Deniz Tolga; Young, Yin Lu

    2012-11-01

    To advance the understanding of fish locomotion, improve the design biological devices or marine propulsions or turbines, or to explore innovative ocean energy harvesting ideas, it is important to be able accurately predict the dynamic fluid structure interaction (FSI) response and stability of flexible structures in a dense fluid. The objectives of this research are to (1) present an efficient and stable algorithm for numerical modeling of the dynamic FSI response and stability of a flapping foil in dense fluid, and (2) investigate the influence of fluid-to-solid density ratio on the FSI response and stability of a flapping foil. The numerical model involves coupling an unsteady RANS solver with a 2DOF structural model using a new hybrid coupling approach. The results show that the new hybrid coupling approach converge much faster than traditional loosely and tightly coupled approaches, and is able to avoid numerical instability issues due to virtual added mass effects for light, flexible structures in incompressible flow. The influence of density ratio on the FSI response, divergence and flutter speeds are presented, along with comparisons between viscous and inviscid FSI computations.

  9. A Supernova's Shockwaves

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Supernovae are the explosive deaths of the universe's most massive stars. In death, these volatile creatures blast tons of energetic waves into the cosmos, destroying much of the dust surrounding them.

    This false-color composite from NASA's Spitzer Space Telescope and NASA's Chandra X-ray Observatory shows the remnant of one such explosion. The remnant, called N132D, is the wispy pink shell of gas at the center of this image. The pinkish color reveals a clash between the explosion's high-energy shockwaves and surrounding dust grains.

    In the background, small organic molecules called polycyclic aromatic hydrocarbons are shown as tints of green. The blue spots represent stars in our galaxy along this line of sight.

    N132D is located 163,000 light-years away in a neighboring galaxy called, the Large Magellanic Cloud.

    In this image, infrared light at 4.5 microns is mapped to blue, 8.0 microns to green and 24 microns to red. Broadband X-ray light is mapped purple. The infrared data were taken by Spitzer's infrared array camera and multiband imaging photometer, while the X-ray data were captured by Chandra.

  10. A Supernova's Shockwaves

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Supernovae are the explosive deaths of the universe's most massive stars. In death, these volatile creatures blast tons of energetic waves into the cosmos, destroying much of the dust surrounding them.

    This false-color composite from NASA's Spitzer Space Telescope and NASA's Chandra X-ray Observatory shows the remnant of one such explosion. The remnant, called N132D, is the wispy pink shell of gas at the center of this image. The pinkish color reveals a clash between the explosion's high-energy shockwaves and surrounding dust grains.

    In the background, small organic molecules called polycyclic aromatic hydrocarbons are shown as tints of green. The blue spots represent stars in our galaxy along this line of sight.

    N132D is located 163,000 light-years away in a neighboring galaxy called, the Large Magellanic Cloud.

    In this image, infrared light at 4.5 microns is mapped to blue, 8.0 microns to green and 24 microns to red. Broadband X-ray light is mapped purple. The infrared data were taken by Spitzer's infrared array camera and multiband imaging photometer, while the X-ray data were captured by Chandra.

  11. Collapse dynamics and runout of dense granular materials in a fluid.

    PubMed

    Topin, V; Monerie, Y; Perales, F; Radjaï, F

    2012-11-02

    We investigate the effect of an ambient fluid on the dynamics of collapse and spread of a granular column simulated by means of the contact dynamics method interfaced with computational fluid dynamics. The runout distance is found to increase as a power law with the aspect ratio of the column, and, surprisingly, for a given aspect ratio and packing fraction, it may be similar in the grain-inertial and fluid-inertial regimes but with considerably longer duration in the latter case. We show that the effect of fluid in viscous and fluid-inertial regimes is to both reduce the kinetic energy during collapse and enhance the flow by lubrication during spread. Hence, the runout distance in a fluid may be below or equal to that in the absence of fluid due to compensation between those effects.

  12. Two-Phase Solid/Fluid Simulation of Dense Granular Flows With Dilatancy Effects

    NASA Astrophysics Data System (ADS)

    Mangeney, A.; Bouchut, F.; Fernández-Nieto, E. D.; Kone, E. H.; Narbona-Reina, G.

    2016-12-01

    Describing grain/fluid interaction in debris flows models is still an open and challenging issue with key impact on hazard assessment [1]. We present here a two-phase two-thin-layer model for fluidized debris flows that takes into account dilatancy effects. It describes the velocity of both the solid and the fluid phases, the compression/ dilatation of the granular media and its interaction with the pore fluid pressure [2]. The model is derived from a 3D two-phase model proposed by Jackson [3] and the mixture equations are closed by a weak compressibility relation. This relation implies that the occurrence of dilation or contraction of the granular material in the model depends on whether the solid volume fraction is respectively higher or lower than a critical value. When dilation occurs, the fluid is sucked into the granular material, the pore pressure decreases and the friction force on the granular phase increases. On the contrary, in the case of contraction, the fluid is expelled from the mixture, the pore pressure increases and the friction force diminishes. To account for this transfer of fluid into and out of the mixture, a two-layer model is proposed with a fluid or a solid layer on top of the two-phase mixture layer. Mass and momentum conservation are satisfied for the two phases, and mass and momentum are transferred between the two layers. A thin-layer approximation is used to derive average equations. Special attention is paid to the drag friction terms that are responsible for the transfer of momentum between the two phases and for the appearance of an excess pore pressure with respect to the hydrostatic pressure. By comparing quantitatively the results of simulation and laboratory experiments on submerged granular flows, we show that our model contains the basic ingredients making it possible to reproduce the interaction between the granular and fluid phases through the change in pore fluid pressure. In particular, we analyse the different time

  13. Two-Phase Solid/Fluid Simulation of Dense Granular Flows With Dilatancy Effects

    NASA Astrophysics Data System (ADS)

    Mangeney, Anne; Bouchut, Francois; Fernandez-Nieto, Enrique; Narbona-Reina, Gladys; Kone, El Hadj

    2017-04-01

    Describing grain/fluid interaction in debris flows models is still an open and challenging issue with key impact on hazard assessment [1]. We present here a two-phase two-thin-layer model for fluidized debris flows that takes into account dilatancy effects. It describes the velocity of both the solid and the fluid phases, the compression/ dilatation of the granular media and its interaction with the pore fluid pressure [2]. The model is derived from a 3D two-phase model proposed by Jackson [3] and the mixture equations are closed by a weak compressibility relation. This relation implies that the occurrence of dilation or contraction of the granular material in the model depends on whether the solid volume fraction is respectively higher or lower than a critical value. When dilation occurs, the fluid is sucked into the granular material, the pore pressure decreases and the friction force on the granular phase increases. On the contrary, in the case of contraction, the fluid is expelled from the mixture, the pore pressure increases and the friction force diminishes. To account for this transfer of fluid into and out of the mixture, a two-layer model is proposed with a fluid or a solid layer on top of the two-phase mixture layer. Mass and momentum conservation are satisfied for the two phases, and mass and momentum are transferred between the two layers. A thin-layer approximation is used to derive average equations. Special attention is paid to the drag friction terms that are responsible for the transfer of momentum between the two phases and for the appearance of an excess pore pressure with respect to the hydrostatic pressure. Interestingly, when removing the role of water, our model reduces to a dry granular flow model including dilatancy. We first compare experimental and numerical results of dilatant dry granular flows. Then, by quantitatively comparing the results of simulation and laboratory experiments on submerged granular flows, we show that our model

  14. Solid-like features in dense vapors near the fluid critical point

    NASA Astrophysics Data System (ADS)

    Ruppeiner, George; Dyjack, Nathan; McAloon, Abigail; Stoops, Jerry

    2017-06-01

    The phase diagram (pressure versus temperature) of the pure fluid is typically envisioned as being featureless apart from the presence of the liquid-vapor coexistence curve terminating at the critical point. However, a number of recent authors have proposed that this simple picture misses important features, such as the Widom line, the Fisher-Widom line, and the Frenkel line. In our paper, we discuss another way of augmenting the pure fluid phase diagram, lines of zero thermodynamic curvature R = 0 separating regimes of fluid solid-like behavior (R > 0) from gas-like or liquid-like behavior (R < 0). We systematically evaluate R for the 121 pure fluids in the NIST/REFPROP (version 9.1) fluid database near the saturated vapor line from the triple point to the critical point. Our specific goal was to identify regions of positive R abutting the saturated vapor line ("feature D"). We found the following: (i) 97/121 of the NIST/REFPROP fluids have feature D. (ii) The presence and character of feature D correlates with molecular complexity, taken to be the number of atoms Q per molecule. (iii) The solid-like properties of feature D might be attributable to a mesoscopic model based on correlations among coordinated spinning molecules, a model that might be testable with computer simulations. (iv) There are a number of correlations between thermodynamic quantities, including the acentric factor ω , but we found little explicit correlation between ω and the shape of a molecule. (v) Feature D seriously constrains the size of the asymptotic fluid critical point regime, possibly resolving a long-standing mystery about why these are so small. (vi) Feature D correlates roughly with regimes of anomalous sound propagation.

  15. Adsorption of fluids on solid surfaces: A route toward very dense layers

    NASA Astrophysics Data System (ADS)

    Sartarelli, S. A.; Szybisz, L.

    2012-08-01

    Adsorption of Xe on single planar walls is investigated in the frame of a density functional theory. The strength of the adsorbate-substrate attraction is changed by considering surfaces of Cs, Na, Li, and Mg. The behavior is analyzed by varying the temperature T (between the triple point Tt and the critical Tc) and the coverage Γℓ. The obtained adsorption isotherms exhibit a variety of wetting situations. Density profiles are reported. It is shown that for strongly attractive surfaces the adsorbed liquid becomes very dense reaching densities characteristic of solids.

  16. Effects of Atomistic Domain Size on Hybrid Lattice Boltzmann-Molecular Dynamics Simulations of Dense Fluids

    NASA Astrophysics Data System (ADS)

    Dupuis, A.; Koumoutsakos, P.

    We present a convergence study for a hybrid Lattice Boltzmann-Molecular Dynamics model for the simulation of dense liquids. Time and length scales are decoupled by using an iterative Schwarz domain decomposition algorithm. The velocity field from the atomistic domain is introduced as forcing terms to the Lattice Boltzmann model of the continuum while the mean field of the continuum imposes mean field conditions for the atomistic domain. In the present paper we investigate the effect of varying the size of the atomistic subdomain in simulations of two dimensional flows of liquid argon past carbon nanotubes and assess the efficiency of the method.

  17. A two-phase solid/fluid model for dense granular flows including dilatancy effects

    NASA Astrophysics Data System (ADS)

    Mangeney, Anne; Bouchut, Francois; Fernandez-Nieto, Enrique; Koné, El-Hadj; Narbona-Reina, Gladys

    2016-04-01

    Describing grain/fluid interaction in debris flows models is still an open and challenging issue with key impact on hazard assessment [{Iverson et al.}, 2010]. We present here a two-phase two-thin-layer model for fluidized debris flows that takes into account dilatancy effects. It describes the velocity of both the solid and the fluid phases, the compression/dilatation of the granular media and its interaction with the pore fluid pressure [{Bouchut et al.}, 2016]. The model is derived from a 3D two-phase model proposed by {Jackson} [2000] based on the 4 equations of mass and momentum conservation within the two phases. This system has 5 unknowns: the solid and fluid velocities, the solid and fluid pressures and the solid volume fraction. As a result, an additional equation inside the mixture is necessary to close the system. Surprisingly, this issue is inadequately accounted for in the models that have been developed on the basis of Jackson's work [{Bouchut et al.}, 2015]. In particular, {Pitman and Le} [2005] replaced this closure simply by imposing an extra boundary condition at the surface of the flow. When making a shallow expansion, this condition can be considered as a closure condition. However, the corresponding model cannot account for a dissipative energy balance. We propose here an approach to correctly deal with the thermodynamics of Jackson's model by closing the mixture equations by a weak compressibility relation following {Roux and Radjai} [1998]. This relation implies that the occurrence of dilation or contraction of the granular material in the model depends on whether the solid volume fraction is respectively higher or lower than a critical value. When dilation occurs, the fluid is sucked into the granular material, the pore pressure decreases and the friction force on the granular phase increases. On the contrary, in the case of contraction, the fluid is expelled from the mixture, the pore pressure increases and the friction force diminishes. To

  18. Nested Markov chain Monte Carlo sampling of a density functional theory potential: equilibrium thermodynamics of dense fluid nitrogen.

    PubMed

    Coe, Joshua D; Sewell, Thomas D; Shaw, M Sam

    2009-08-21

    An optimized variant of the nested Markov chain Monte Carlo [n(MC)(2)] method [J. Chem. Phys. 130, 164104 (2009)] is applied to fluid N(2). In this implementation of n(MC)(2), isothermal-isobaric (NPT) ensemble sampling on the basis of a pair potential (the "reference" system) is used to enhance the efficiency of sampling based on Perdew-Burke-Ernzerhof density functional theory with a 6-31G(*) basis set (PBE6-31G(*), the "full" system). A long sequence of Monte Carlo steps taken in the reference system is converted into a trial step taken in the full system; for a good choice of reference potential, these trial steps have a high probability of acceptance. Using decorrelated samples drawn from the reference distribution, the pressure and temperature of the full system are varied such that its distribution overlaps maximally with that of the reference system. Optimized pressures and temperatures then serve as input parameters for n(MC)(2) sampling of dense fluid N(2) over a wide range of thermodynamic conditions. The simulation results are combined to construct the Hugoniot of nitrogen fluid, yielding predictions in excellent agreement with experiment.

  19. Extracorporeal shockwave lithotripsy in pediatrics.

    PubMed

    D'Addessi, Alessandro; Bongiovanni, Luca; Sasso, Francesco; Gulino, Gaetano; Falabella, Roberto; Bassi, Pierfrancesco

    2008-01-01

    Since its introduction in 1980, extracorporeal shockwave lithotripsy (SWL) has become the first therapeutic option in most cases of upper-tract urolithiasis, and the technique has been used for pediatric renal stones since the first report of success in 1986. Lithotripter effectiveness depends on the power expressed at the focal point. Closely correlated with the power is the pain produced by the shockwaves. By reducing the dimensions of the focus, it becomes possible to treat the patient without anesthesia or analgesia but at the cost of a higher re-treatment rate. Older children often tolerate SWL under intravenous sedation, and minimal anesthesia is applicable for most patients treated with second- and third-generation lithotripters. Ureteral stenting before SWL has been controversial. Current data suggest that preoperative stent placement should be reserved for a few specific cases. Stone-free rates in pediatric SWL exceed 70% at 3 months, with the rate reaching 100% in many series. Even the low-birth-weight infant can be treated with a stone-free as high as 100%. How can one explain the good results? Possible explanations include the lesser length of the child's ureter, which partially compensates for the narrower lumen. Moreover, the pediatric ureter is more elastic and distensible, which facilitates passage of stone fragments and prevents impaction. Another factor is shockwave reproduction in the body: there is a 10% to 20% damping of shockwave energy as it travels through 6 cm of body tissue, so the small body volume of the child allows the shockwaves to be transmitted with little loss of energy. There are several concerns regarding the possible detrimental effect of shockwaves on growing kidneys. Various renal injures have been documented with all type of lithotripters. On the other hand, several studies have not shown adverse effects. In general, SWL is considered to be the method of choice for managing the majority of urinary stones in children of all

  20. A Two-Phase Solid/Fluid Model for Dense Granular Flows Including Dilatancy Effects

    NASA Astrophysics Data System (ADS)

    Mangeney, A.; Bouchut, F.; Fernández-Nieto, E. D.; Narbona-Reina, G.; Kone, E. H.

    2014-12-01

    We propose a thin layer depth-averaged two-phase model to describe solid-fluid mixtures such as debris flows. It describes the velocity of the two phases, the compression/dilatation of the granular media and its interaction with the pore fluid pressure, that itself modifies the friction within the granular phase (Iverson et al., 2010). The model is derived from a 3D two-phase model proposed by Jackson (2000) based on the 4 equations of mass and momentum conservation within the two phases. This system has 5 unknowns: the solid and fluid velocities, the solid and fluid pressures and the solid volume fraction. As a result, an additional equation inside the mixture is necessary to close the system. Surprisingly, this issue is inadequately accounted for in the models that have been developed on the basis of Jackson's work (Bouchut et al., 2014). In particular, Pitman and Le replaced this closure simply by imposing an extra boundary condition at the surface of the flow. When making a shallow expansion, this condition can be considered as a closure condition. However, the corresponding model cannot account for a dissipative energy balance. We propose here an approach to correctly deal with the thermodynamics of Jackson's equations. We close the mixture equations by a weak compressibility relation involving a critical density, or equivalently a critical pressure. Moreover, we relax one boundary condition, making it possible for the fluid to escape the granular media when compression of the granular mass occurs. Furthermore, we introduce second order terms in the equations making it possible to describe the evolution of the pore fluid pressure in response to the compression/dilatation of the granular mass without prescribing an extra ad-hoc equation for the pore pressure. We prove that the energy balance associated with this Jackson closure is dissipative, as well as its thin layer associated model. We present several numerical tests for the 1D case that are compared to the

  1. A Two-Phase Solid/Fluid Model for Dense Granular Flows Including Dilatancy Effects

    NASA Astrophysics Data System (ADS)

    Mangeney, Anne; Bouchut, Francois; Fernandez-Nieto, Enrique; Narbona-Reina, Gladys

    2015-04-01

    We propose a thin layer depth-averaged two-phase model to describe solid-fluid mixtures such as debris flows. It describes the velocity of the two phases, the compression/dilatation of the granular media and its interaction with the pore fluid pressure, that itself modifies the friction within the granular phase (Iverson et al., 2010). The model is derived from a 3D two-phase model proposed by Jackson (2000) based on the 4 equations of mass and momentum conservation within the two phases. This system has 5 unknowns: the solid and fluid velocities, the solid and fluid pressures and the solid volume fraction. As a result, an additional equation inside the mixture is necessary to close the system. Surprisingly, this issue is inadequately accounted for in the models that have been developed on the basis of Jackson's work (Bouchut et al., 2014). In particular, Pitman and Le replaced this closure simply by imposing an extra boundary condition at the surface of the flow. When making a shallow expansion, this condition can be considered as a closure condition. However, the corresponding model cannot account for a dissipative energy balance. We propose here an approach to correctly deal with the thermodynamics of Jackson's equations. We close the mixture equations by a weak compressibility relation involving a critical density, or equivalently a critical pressure. Moreover, we relax one boundary condition, making it possible for the fluid to escape the granular media when compression of the granular mass occurs. Furthermore, we introduce second order terms in the equations making it possible to describe the evolution of the pore fluid pressure in response to the compression/dilatation of the granular mass without prescribing an extra ad-hoc equation for the pore pressure. We prove that the energy balance associated with this Jackson closure is dissipative, as well as its thin layer associated model. We present several numerical tests for the 1D case that are compared to the

  2. Dynamic three-dimensional simulations of densely-packed fluid loaded cloth in a complex geometry

    NASA Astrophysics Data System (ADS)

    Akcabay, Deniz T.; Schultz, William W.; Dowling, David R.

    2006-11-01

    This talk presents three-dimensional simulations of the fluid-structure interaction that occurs inside the washtub of a modern clothes washing machine. The results are based on the numerical solution of the incompressible Navier-Stokes equations on a Cartesian grid using Peskin's Immersed Boundary Method for the cloth-fluid coupling, and a weighted domain-mapping method to represent the complicated moving boundaries of the agitator and washtub. Cloth pieces are modeled as impermeable flexible isotropic elastic plates. Results from simple benchmarking studies with theoretical and experimental results for the individual cloth and complex geometry models are presented. A variety of simulation studies involving complicated mixing patterns that result from mechanical excitation from a realistic agitator are shown and analyzed. The effects of cloth size, bending stiffness, and load density on the resulting motion of individual pieces of cloth and on the bulk flow within the machine are analyzed. [Sponsored by Whirlpool Corporation

  3. Dynamic compression of dense oxide (Gd3Ga5O12) from 0.4 to 2.6 TPa: Universal Hugoniot of fluid metals

    DOE PAGES

    Ozaki, N.; Nellis, W. J.; Mashimo, T.; ...

    2016-05-19

    Materials at high pressures and temperatures are of great current interest for warm dense matter physics, planetary sciences, and inertial fusion energy research. Shock-compression equation-of-state data and optical reflectivities of the fluid dense oxide, Gd3Ga5O12 (GGG), were measured at extremely high pressures up to 2.6 TPa (26 Mbar) generated by high-power laser irradiation and magnetically-driven hypervelocity impacts. Above 0.75 TPa, the GGG Hugoniot data approach/reach a universal linear line of fluid metals, and the optical reflectivity most likely reaches a constant value indicating that GGG undergoes a crossover from fluid semiconductor to poor metal with minimum metallic conductivity (MMC). Thesemore » results suggest that most fluid compounds, e.g., strong planetary oxides, reach a common state on the universal Hugoniot of fluid metals (UHFM) with MMC at sufficiently extreme pressures and temperatures. Lastly, the systematic behaviors of warm dense fluid would be useful benchmarks for developing theoretical equation-of-state and transport models in the warm dense matter regime in determining computational predictions.« less

  4. Dynamic compression of dense oxide (Gd3Ga5O12) from 0.4 to 2.6 TPa: Universal Hugoniot of fluid metals

    PubMed Central

    Ozaki, N.; Nellis, W. J.; Mashimo, T.; Ramzan, M.; Ahuja, R.; Kaewmaraya, T.; Kimura, T.; Knudson, M.; Miyanishi, K.; Sakawa, Y.; Sano, T.; Kodama, R.

    2016-01-01

    Materials at high pressures and temperatures are of great current interest for warm dense matter physics, planetary sciences, and inertial fusion energy research. Shock-compression equation-of-state data and optical reflectivities of the fluid dense oxide, Gd3Ga5O12 (GGG), were measured at extremely high pressures up to 2.6 TPa (26 Mbar) generated by high-power laser irradiation and magnetically-driven hypervelocity impacts. Above 0.75 TPa, the GGG Hugoniot data approach/reach a universal linear line of fluid metals, and the optical reflectivity most likely reaches a constant value indicating that GGG undergoes a crossover from fluid semiconductor to poor metal with minimum metallic conductivity (MMC). These results suggest that most fluid compounds, e.g., strong planetary oxides, reach a common state on the universal Hugoniot of fluid metals (UHFM) with MMC at sufficiently extreme pressures and temperatures. The systematic behaviors of warm dense fluid would be useful benchmarks for developing theoretical equation-of-state and transport models in the warm dense matter regime in determining computational predictions. PMID:27193942

  5. On axial temperature gradients due to large pressure drops in dense fluid chromatography.

    PubMed

    Colgate, Sam O; Berger, Terry A

    2015-03-13

    The effect of energy degradation (Degradation is the creation of net entropy resulting from irreversibility.) accompanying pressure drops across chromatographic columns is examined with regard to explaining axial temperature gradients in both high performance liquid chromatography (HPLC) and supercritical fluid chromatography (SFC). The observed effects of warming and cooling can be explained equally well in the language of thermodynamics or fluid dynamics. The necessary equivalence of these treatments is reviewed here to show the legitimacy of using whichever one supports the simpler determination of features of interest. The determination of temperature profiles in columns by direct application of the laws of thermodynamics is somewhat simpler than applying them indirectly by solving the Navier-Stokes (NS) equations. Both disciplines show that the preferred strategy for minimizing the reduction in peak quality caused by temperature gradients is to operate columns as nearly adiabatically as possible (i.e. as Joule-Thomson expansions). This useful fact, however, is not widely familiar or appreciated in the chromatography community due to some misunderstanding of the meaning of certain terms and expressions used in these disciplines. In fluid dynamics, the terms "resistive heating" or "frictional heating" have been widely used as synonyms for the dissipation function, Φ, in the NS energy equation. These terms have been widely used by chromatographers as well, but often misinterpreted as due to friction between the mobile phase and the column packing, when in fact Φ describes the increase in entropy of the system (dissipation, ∫TdSuniv>0) due to the irreversible decompression of the mobile phase. Two distinctly different contributions to the irreversibility are identified; (1) ΔSext, viscous dissipation of work done by the external surroundings driving the flow (the pump) contributing to its warming, and (2) ΔSint, entropy change accompanying decompression of

  6. Neutron Scattering Studies of Collective Effects in the Dynamic and Static Structure of Dense Fluids

    NASA Astrophysics Data System (ADS)

    Youden, James P. A.

    The dynamic structure factors S(Q,omega ) for dense nitrogen (1.3 rho_ {c} and 0.9 rho_ {c}, where rho_{c } is the critical density) and krypton (1.8 rho_{c}) were measured in the low Q region of 0.5-1.5 nm ^{-1}. While the continuum theory of linearized hydrodynamics is valid up to the lower limit of this Q-range, deviations are observed for larger Q. For the two states of nitrogen, the experimental spectra are successfully described by the modification of the hydrodynamic theory to include the viscosity relaxation time tau_{nu}. Furthermore, the values of tau_{nu} derived from the experimental S(Q,omega ) spectra are in agreement with the estimates provided within the equal relaxation time approximation. The use of the relaxation time tau_{ nu} can also be used to explain the S( Q,omega) spetra for ^ {36}Ar gas (0.63 rho_ {c} and 0.25 rho_ {c}) as measured by Bafile et al. (1990), and which have been previously examined in terms of the three generalized Lorentzians of the extended hydrodynamic model (Bafile et al., 1990). The differences between these two approaches to a generalized hydrodynamic model are briefly discussed. For the krypton S(Q,omega), the deviations from the continuum theory at the larger Q values are more pronounced, especially as manifested through the dominance of the central mode in the experimental spectra. This behaviour has yet to be explained; and indeed a detailed analysis of the krypton data is limited by the relatively poor quality of the data, which suffers from the large neutron absorption in the natural isotopic compositition. In the static structure, the effects of the many -body interactions in dense gaseous krypton (0.9 -2.1 rho_{c}) and xenon (2.2-2.6 rho_ {c}) were investigated in the range 4 <= Q <=q 42 nm^{-1}, through comparisons of the measured structure factors S(Q) with those determined either through the MHNC-CRS integral equation (Reatto and Tau, 1987) or Monte Carlo simulations. Of particular interest is the increase

  7. Simple and accurate theory for strong shock waves in a dense hard-sphere fluid.

    PubMed

    Montanero, J M; López de Haro, M; Santos, A; Garzó, V

    1999-12-01

    Following an earlier work by Holian et al. [Phys. Rev. E 47, R24 (1993)] for a dilute gas, we present a theory for strong shock waves in a hard-sphere fluid described by the Enskog equation. The idea is to use the Navier-Stokes hydrodynamic equations but taking the temperature in the direction of shock propagation rather than the actual temperature in the computation of the transport coefficients. In general, for finite densities, this theory agrees much better with Monte Carlo simulations than the Navier-Stokes and (linear) Burnett theories, in contrast to the well-known superiority of the Burnett theory for dilute gases.

  8. Microscopic theories of the structure and glassy dynamics of ultra-dense hard sphere fluids

    NASA Astrophysics Data System (ADS)

    Jadrich, Ryan; Schweizer, Kenneth

    2013-03-01

    We construct a new thermodynamically self-consistent integral equation theory (IET) for the equilibrium metastable fluid structure of monodisperse hard spheres that incorporates key features of the jamming transition. A two Yukawa generalized mean spherical IET closure for the direct correlation function tail is employed to model the distinctive short and long range contributions for highly compressed fluids. The exact behavior of the contact value of the radial distribution function (RDF) and isothermal compressibility are enforced, as well as an approximate theory for the RDF contact derivative. Comparison of the theoretical results for the real and Fourier space structure with nonequilibrium jammed simulations reveals many similarities, but also differences as expected. The new structural theory is used as input into the nonlinear Langevin equation (NLE) theory of activated single particle dynamics to study the alpha relaxation time, and good agreement with recent experiments and simulations is found. We demonstrate it is crucial to accurately describe the very high wave vector Fourier space to reliably extract the dynamical predictions of NLE theory, and structural precursors of jamming play an important role in determining entropic barriers.

  9. Thermodynamics and phase separation of dense fully-ionized hydrogen-helium fluid mixtures

    NASA Technical Reports Server (NTRS)

    Stevenson, D. J.

    1975-01-01

    The free energy of a hydrogen-helium fluid mixture is evaluated for the temperatures and densities appropriate to the deep interior of a giant planet such as Jupiter. The electrons are assumed to be fully pressure-ionized and degenerate. In this regime, an appropriate first approximation to the ionic distribution functions can be found by assuming hard sphere interactions. Corrections to this approximation are incorporated by means of the perturbation theory of Anderson and Chandler. Approximations for the three-body interactions and the nonlinear response of the electron gas to the ions are included. It is predicted that a hydrogen-helium mixture, containing 10% by number of helium ions, separates into hydrogen-rich and helium-rich phases below about 8000 K, at the pressures relevant to Jupiter (4-40 Megabars). It is also predicted that the alloy occupies less volume per ion than the separated phases. The equations of state and other thermodynamic derivatives are tabulated. Implications of these results are discussed.

  10. Generation of highly symmetric, cylindrically convergent shockwaves in water

    NASA Astrophysics Data System (ADS)

    Bland, S. N.; Krasik, Ya. E.; Yanuka, D.; Gardner, R.; MacDonald, J.; Virozub, A.; Efimov, S.; Gleizer, S.; Chaturvedi, N.

    2017-08-01

    We report on pulsed power driven, exploding copper wire array experiments conducted to generate cylindrical convergent shockwaves in water employing μs risetime currents >550 kA in amplitude and with stored energies of >15 kJ—a substantial increase over previous results. The experiments were carried out on the recently constructed Mega-Ampere-Compression-and-Hydrodynamics facility at Imperial College London in collaboration with colleagues of Technion, Israel. 10 mm diameter arrays consisting of 60 × 130 μm wires were utilized, and the current and voltage diagnostics of the load region suggested that ˜8 kJ of energy was deposited in the wires (and the load region close to the wires) during the experiments, resulting in the formation of dense, highly resistive plasmas that rapidly expanded driving the shockwaves in water. Laser-backlit framing images of the shockfront were obtained at radii <0.25 mm for the first time, and there was strong evidence that even at radii <0.1 mm this front remains stable, resulting in a convergence ratio of >50:1. Framing images and streak photographs showed that the velocity of the shockwave reached ˜7.5 km s-1 at 0.1 mm from the axis. 2D hydrodynamic simulations that match the experimentally obtained implosion trajectory suggest that pressures >1 Mbar are produced within 10 μm of the axis along with water densities of 3gcm-3 and temperatures of many 1000 s of Kelvin. Under these conditions, Quotidian Equation of State suggests that a strongly coupled plasma with an ionization fraction of ˜0.7 would be formed. The results represent a "stepping stone" in the application of the technique to drive different material samples into high pressure, warm dense matter regimes with compact, university scale generators, and provide support in scaling the technique to multi-mega ampere currents.

  11. Use of a multichannel collimator for structural investigation of low-Z dense liquids in a diamond anvil cell: validation on fluid H2 up to 5 GPa.

    PubMed

    Weck, Gunnar; Garbarino, Gaston; Ninet, Sandra; Spaulding, Dylan; Datchi, Frederic; Loubeyre, Paul; Mezouar, Mohamed

    2013-06-01

    We report the first application of a multichannel collimator (MCC) to perform quantitative structure factor measurements of dense low-Z fluids in a diamond anvil cell (DAC) using synchrotron x-ray diffraction. The MCC design, initially developed for the Paris-Edinburgh large volume press geometry, has been modified for use with diamond anvil cells. A good selectivity of the diffracted signal of the dense fluid sample is obtained due to a large rejection of the Compton diffusion from the diamond anvils. The signal to background ratio is significantly improved. We modify previously developed analytical techniques for quantitative measurement of the structure factor of fluids in DACs [J. H. Eggert, G. Weck, P. Loubeyre, and M. Mezouar, Phys. Rev. B 65, 174105 (2002)] to account for the contribution of the MCC. We present experimental results on liquids argon and hydrogen at 296 K to validate our method and test its limits, respectively.

  12. Shockwave Engine: Wave Disk Engine

    SciTech Connect

    2010-01-14

    Broad Funding Opportunity Announcement Project: MSU is developing a new engine for use in hybrid automobiles that could significantly reduce fuel waste and improve engine efficiency. In a traditional internal combustion engine, air and fuel are ignited, creating high-temperature and high-pressure gases which expand rapidly. This expansion of gases forces the engine’s pistons to pump and powers the car. MSU’s engine has no pistons. It uses the combustion of air and fuel to build up pressure within the engine, generating a shockwave that blasts hot gas exhaust into the blades of the engine’s rotors causing them to turn, which generates electricity. MSU’s redesigned engine would be the size of a cooking pot and contain fewer moving parts—reducing the weight of the engine by 30%. It would also enable a vehicle that could use 60% of its fuel for propulsion.

  13. Shockwave Interactions with Argon Glow Discharges

    DTIC Science & Technology

    2006-03-01

    grow. Therefore, a stable solution to ne and nm is not possible. This highlights the main features of why two-step ionization in a noble gas discharge...Shockwaves, generated by a spark gap, were launched into a direct current gas discharge in argon. The modification of the positive column structure was...the topic of shockwave interaction with weakly-ionized gas , the jump conditions for the neutral species at a shock front in argon are presented. The

  14. Shockwaves Cause Synaptic Degeneration in Cultured Neurons

    DTIC Science & Technology

    2009-11-02

    constructed of delrin. A piezoresistive pressure sensor (Endevco Model 8530C) was mounted flush with the plate, coaxial with the center of the gene gun ...biolostic gene gun to deliver shockwaves to cultured hippocampal or cortical neurons. These cultured cells form abundant synapses in vitro, and after a 24-48...neurons, we used a biolostic gene gun to deliver shockwaves to cultured hippocampal or cortical neurons. These cultured cells form abundant synapses in

  15. Criticality and characteristic neutronic analysis of a transient-state shockwave in a pulsed spherical gaseous uranium-hexafluoride reactor

    NASA Astrophysics Data System (ADS)

    Boles, Jeremiah Thomas

    The purpose of this study is to analyze the theoretical criticality of a spherical uranium-hexafluoride reactor with a transient, pulsed shockwave emanating from the center of the sphere in an outward-radial direction. This novel nuclear reactor design, based upon pulsed fission in a spherical enclosure is proposed for possible use in direct energy conversion, where the energy from fission products is captured through the use of electrostatic fields or through induction. An analysis of the dynamic behavior of the shockwave in this reactor is the subject of this thesis. As a shockwave travels through a fluid medium, the characteristics of the medium will change across the shockwave boundary. Pressure, temperature, and density are all affected by the shockwave. Changes in these parameters will affect the neutronic characteristics of a fissile medium. If the system is initially in a subcritical state, the increases in pressure, temperature, and density, all brought about by the introduction of the shockwave, will increase the reactivity of the nuclear system, creating a brief super critical state that will return to a subcritical state after the shockwave dissipates. Two major problems are required to be solved for this system. One is the effects of the shockwave on the gas, and the second is the resulting effects on system criticality. These problems are coupled due to the unique nature of the speed of the expanding shockwave in the uranium-hexafluoride medium and the energy imparted to the system by the shockwave with respect to the fissile uranium-hexafluoride. Using compressible flow and shockwave theories, this study determines the properties of the gaseous medium for reference points before, during, and behind the shockwave as it passes through the fissile medium. These properties include pressure changes, temperature changes, and density changes that occur to the system. Using the parameters calculated from the shockwave, the neutron transport equation is

  16. Shock-Wave Consolidation of Nanostructured Bismuth Telluride Powders

    NASA Astrophysics Data System (ADS)

    Beck, Jan; Alvarado, Manuel; Nemir, David; Nowell, Mathew; Murr, Lawrence; Prasad, Narasimha

    2012-06-01

    Nanostructured thermoelectric powders can be produced using a variety of techniques. However, it is very challenging to build a bulk material from these nanopowders without losing the nanostructure. In the present work, nanostructured powders of the bismuth telluride alloy system are obtained in kilogram quantities via a gas atomization process. These powders are characterized using a variety of methods including scanning electron microscopy, transition electron microscopy, and x-ray diffraction analysis. Then the powders are consolidated into a dense bulk material using a shock-wave consolidation technique whereby a nanopowder-containing tube is surrounded by explosives and then detonated. The resulting shock wave causes rapid fusing of the powders without the melt and subsequent grain growth of other techniques. We describe the test setup and consolidation results.

  17. Is extracorporeal shockwave lithotripsy suitable treatment for lower ureteric stones?

    PubMed

    Cole, R S; Shuttleworth, K E

    1988-12-01

    Forty patients with lower ureteric calculi for which intervention was considered desirable have been treated by in situ extracorporeal shockwave lithotripsy (ESWL) on the Dornier HM3 Lithotripter using a modified technique. Stone localisation was satisfactory in all patients. Adequate disintegration was achieved in 90% of patients following one treatment; 34 patients have been followed up for at least 3 months and 27 of these are stone-free (79%). Treatment failed in 4 patients and 2 of these had dense lower ureteric stone streets as a result of previous ESWL. The retreatment rate, post-treatment auxiliary procedure rate and complication rate were minimal. It was concluded that in situ ESWL is an effective and safe method for treating certain selected lower ureteric stones and should be considered as a feasible alternative to the more conventional methods of treatment.

  18. Fast atoms and negative chain-cluster fragments from laser-induced Coulomb explosions in a super-fluid film of ultra-dense deuterium D(-1)

    NASA Astrophysics Data System (ADS)

    Andersson, Patrik U.; Holmlid, Leif

    2012-10-01

    Fragments from laser-induced Coulomb explosions (CE) in a thin super-fluid film of ultra-dense deuterium D(-1) on a vertical surface are now observed by both negative and positive time-of-flight mass spectrometry. The so-called normal phase of the super-fluid is probably associated with D4 clusters and gives only neutral atomic fragments with a kinetic energy from the CE of 945 eV. The super-fluid phase is associated with long chain clusters D2N with N deuteron pairs and gives cluster fragments by CE mainly with a kinetic energy of 315 eV from the central cleavage in a neutral, positive or negative form. This indicates that the chain clusters are standing perpendicularly to the surface. The fragment charge state is influenced by the external field, which indicates efficient charge transfer processes.

  19. Extracorporeal shockwave therapy in musculoskeletal disorders

    PubMed Central

    2012-01-01

    The sources of shockwave generation include electrohydraulic, electromagnetic and piezoelectric principles. Electrohydraulic shockwaves are high-energy acoustic waves generated under water explosion with high voltage electrode. Shockwave in urology (lithotripsy) is primarily used to disintegrate urolithiasis, whereas shockwave in orthopedics (orthotripsy) is not used to disintegrate tissues, rather to induce tissue repair and regeneration. The application of extracorporeal shockwave therapy (ESWT) in musculoskeletal disorders has been around for more than a decade and is primarily used in the treatment of sports related over-use tendinopathies such as proximal plantar fasciitis of the heel, lateral epicondylitis of the elbow, calcific or non-calcific tendonitis of the shoulder and patellar tendinopathy etc. The success rate ranged from 65% to 91%, and the complications were low and negligible. ESWT is also utilized in the treatment of non-union of long bone fracture, avascular necrosis of femoral head, chronic diabetic and non-diabetic ulcers and ischemic heart disease. The vast majority of the published papers showed positive and beneficial effects. FDA (USA) first approved ESWT for the treatment of proximal plantar fasciitis in 2000 and lateral epicondylitis in 2002. ESWT is a novel non-invasive therapeutic modality without surgery or surgical risks, and the clinical application of ESWT steadily increases over the years. This article reviews the current status of ESWT in musculoskeletal disorders. PMID:22433113

  20. Cavitation in ultrasound and shockwave therapy

    NASA Astrophysics Data System (ADS)

    Colonius, Tim

    2014-11-01

    Acoustic waves, especially high-intensity ultrasound and shock waves, are used for medical imaging and intra- and extra-corporeal manipulation of cells, tissue, and urinary calculi. Waves are currently used to treat kidney stone disease, plantar fasciitis, and bone nonunion, and they are being investigated as a technique to ablate cancer tumors and mediate drug delivery. In many applications, acoustic waves induce the expansion and collapse of preexisting or newly cavitating bubbles whose presence can either mediate the generation of localized stresses or lead to collateral damage, depending on how effectively they can be controlled. We describe efforts aimed at simulating the collapse of bubbles, both individually and in clusters, with the aim to characterize the induced mechanical stresses and strains. To simulate collapse of one or a few bubbles, compressible Euler and Navier-Stokes simulations of multi-component materials are performed with WENO-based shock and interface capturing schemes. Repetitive insonification generates numerous bubbles that are difficult to resolve numerically. Such clouds are also important in traditional engineering applications such as caveating hydrofoils. Models that incorporate the dynamics of an unresolved dispersed phase consisting of the bubble cloud are also developed. The results of several model problems including bubble collapse near rigid surfaces, bubble collapse near compliant surfaces and in small capillaries are analyzed. The results are processed to determine the potential for micron-sized preexisting gas bubbles to damage capillaries. The translation of the fundamental fluid dynamics into improvements in the design and clinical application of shockwave lithotripters will be discussed. NIH Grant PO1-DK043881.

  1. Well-posed two-temperature constitutive equations for stable dense fluid shock waves using molecular dynamics and generalizations of Navier-Stokes-Fourier continuum mechanics.

    PubMed

    Hoover, Wm G; Hoover, Carol G

    2010-04-01

    Guided by molecular dynamics simulations, we generalize the Navier-Stokes-Fourier constitutive equations and the continuum motion equations to include both transverse and longitudinal temperatures. To do so we partition the contributions of the heat transfer, the work done, and the heat flux vector between the longitudinal and transverse temperatures. With shockwave boundary conditions time-dependent solutions of these equations converge to give stationary shockwave profiles. The profiles include anisotropic temperature and can be fitted to molecular dynamics results, demonstrating the utility and simplicity of a two-temperature description of far-from-equilibrium states.

  2. Bacterial biofilm disruption using laser generated shockwaves.

    PubMed

    Taylor, Zachary D; Navarro, Artemio; Kealey, Colin P; Beenhouwer, David; Haake, David A; Grundfest, Warren S; Gupta, Vijay

    2010-01-01

    A system was built to test the efficacy of bacterial biofilm disruption using laser generated shockwaves. The system is based on a Q-switched, ND:YAG pulsed laser operating at a rep rate of 10 Hz with 1500 mJ pulses centered at 1064 nm. The laser pulses were used to create shockwave pulses in Al coated polycarbonate substrates and a resulting peak stress of greater than 50 MPa was measured. These stress pulses were coupled to bacteria grown to confluence on agar plates and cell death as a result of shockwave stress was assessed. The results show a 55% reduction in the number living bacteria between shocked and control samples. This type of biofilm disruption method could prove useful in the treatment of infected wounds where standard treatment methods such as debridement and topical antibiotics have proven to be ineffectual or harmful.

  3. The effect of shockwaves on mature and healing cortical bone.

    PubMed

    Forriol, F; Solchaga, L; Moreno, J L; Canãdell, J

    1994-10-01

    It has been proposed that high energy shockwaves could be used to create microfractures in cortical bone. This quality might be exploited clinically to perform closed osteotomies and promote healing in nonunion (15). However, no study has previously documented the effect of shockwaves on cortical bone "in vivo". We report an investigation designed to demonstrate the effect of shockwaves on mature cortical and healing bone. An osteotomy was performed on the tibiae of 37 lambs; two weeks later the operation site was exposed to shockwaves. Three weeks later the lambs were killed and specimens of the bone examined histologically and radiographically. Shockwaves had no effect on the periosteal surface of mature cortical bone, but on the endosteal surface some new trabecular bone was seen. Healing of bone was delayed by the shockwave therapy. We conclude that there is currently little place for shockwave treatment in clinical orthopaedics.

  4. Extracorporeal shockwave therapy for peyronie disease.

    PubMed

    Groth, T; Monga, M

    2003-01-01

    While surgery is the mainstay of therapy for Peyronie disease requiring correction of angulation, interest has grown in the application of extracorporeal shockwave therapy (ESWT) as a minimally invasive approach. This article reviews the current literature reporting the use of ESWT for Peyronie disease.

  5. A family of anisotropic super-dense star models using a space-time describing charged perfect fluid distributions

    NASA Astrophysics Data System (ADS)

    Maurya, S. K.; Gupta, Y. K.

    2012-08-01

    A family of anisotropic fluid distributions is constructed using a space-time describing a family of charged perfect fluid distributions. The anisotropy parameter is taken to be twice the square of electric intensity used in the charged fluid distributions. As the anisotropy parameter (or the electric intensity) is zero at the centre and is monotonically increasing towards the pressure-free interface, we have utilized the anisotropic fluid distributions to create Boson-type neutron stars models which join smoothly to the Schwarzschild exterior metric. All the physical entities such as energy density, radial pressure, tangential pressure and velocity of sound are monotonically decreasing towards the surface. Different members of the above family are characterized by a positive integral number n. It is observed that the maximum mass (which is 5.8051 solar mass for n = 4) starts decreasing for n > 4. But this reaches a non-zero terminal value (2.8010 solar mass) as n tends to infinity.

  6. Activated dynamics in dense fluids of attractive nonspherical particles. I. Kinetic crossover, dynamic free energies, and the physical nature of glasses and gels

    NASA Astrophysics Data System (ADS)

    Tripathy, Mukta; Schweizer, Kenneth S.

    2011-04-01

    We apply the center-of-mass versions of naïve mode coupling theory and nonlinear Langevin equation theory to study how short-range attractive interactions modify the onset of localization, activated single-particle dynamics, and the physical nature of the transiently arrested state of a variety of dense nonspherical particle fluids (and the spherical analog) as a function of volume fraction and attraction strength. The form of the dynamic crossover boundary depends on particle shape, but the reentrant glass-fluid-gel phenomenon and the repulsive glass-to-attractive glass crossover always occur. Diverse functional forms of the dynamic free energy are found for all shapes including glasslike, gel-like, a glass-gel form defined by the coexistence of two localization minima and two activation barriers, and a “mixed” attractive glass characterized by a single, very short localization length but an activation barrier located at a large displacement as in repulsive-force caged glasses. For the latter state, particle trajectories are expected to be of a two-step activated form and can be accessed at high attraction strength by increasing volume fraction, or by increasing attraction strength at fixed high enough volume fraction. A new classification scheme for slow dynamics of fluids of dense attractive particles is proposed based on specification of both the nature of the localized state and the particle displacements required to restore ergodicity via activated barrier hopping. The proposed physical picture appears to be in qualitative agreement with recent computer simulations and colloid experiments.

  7. Transport properties of dense fluid mixtures using nonequilibrium molecular dynamics. Final report, September 15, 1987--March 14, 1997

    SciTech Connect

    Murad, S.

    1997-05-01

    Computer Simulation Studies were carried out using the method of equilibrium and nonequilibrium molecular dynamics (NEMD) to examine a wide range of transport processes in both fluids and fluid mixtures. This included testing a wide range of mixing rules for thermal conductivity and viscosity. In addition a method was developed to calculate the internal rotational contributions to thermal conductivity and the accuracy of current methods for predicting these contributions were examined. These comparisons were then used to suggest possible ways of improving these theories. The method of NEMD was also used to examine the critical enhancements of thermal conductivity. Finally, molecular simulations were carried out to study the various transport coefficients of fluids confined by membranes, as well as important transport processes such as osmosis, and reverse osmosis.

  8. Nested Markov Chain Monte Carlo Sampling of a Density Functional Theory Potential: Equilibrium Thermodynamics of Dense Fluid Nitrogen

    DTIC Science & Technology

    2009-08-01

    method [JChem. Phys. 130, 164104(2009) is applied to fluid N2. In this implementation of n(MC)2, isothermal - isobaric (NPT) ensemble sampling on the...Phys. 130, 164104 2009 is applied to fluid N2. In this implementation of nMC2, isothermal - isobaric NPT ensemble sampling on the basis of a pair...and Wk is a thermodynamic function appropriate to the ensemble being sampled. In the isothermal – isobaric NPT ensemble used below, W is defined as Wk

  9. Theory of nonlinear elasticity, stress-induced relaxation, and dynamic yielding in dense fluids of hard nonspherical colloids

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Schweizer, Kenneth S.

    2012-04-01

    We generalize the microscopic naïve mode coupling and nonlinear Langevin equation theories of the coupled translation-rotation dynamics of dense suspensions of uniaxial colloids to treat the effect of applied stress on shear elasticity, cooperative cage escape, structural relaxation, and dynamic and static yielding. The key concept is a stress-dependent dynamic free energy surface that quantifies the center-of-mass force and torque on a moving colloid. The consequences of variable particle aspect ratio and volume fraction, and the role of plastic versus double glasses, are established in the context of dense, glass-forming suspensions of hard-core dicolloids. For low aspect ratios, the theory provides a microscopic basis for the recently observed phenomenon of double yielding as a consequence of stress-driven sequential unlocking of caging constraints via reduction of the distinct entropic barriers associated with the rotational and translational degrees of freedom. The existence, and breadth in volume fraction, of the double yielding phenomena is predicted to generally depend on both the degree of particle anisotropy and experimental probing frequency, and as a consequence typically occurs only over a window of (high) volume fractions where there is strong decoupling of rotational and translational activated relaxation. At high enough concentrations, a return to single yielding is predicted. For large aspect ratio dicolloids, rotation and translation are always strongly coupled in the activated barrier hopping event, and hence for all stresses only a single yielding process is predicted.

  10. Dynamic compression of dense oxide (Gd3Ga5O12) from 0.4 to 2.6 TPa: Universal Hugoniot of fluid metals

    SciTech Connect

    Ozaki, N.; Nellis, W. J.; Mashimo, T.; Ramzan, M.; Ahuja, R.; Kaewmaraya, T.; Kimura, T.; Knudson, M.; Miyanishi, K.; Sakawa, Y.; Sano, T.; Kodama, R.

    2016-05-19

    Materials at high pressures and temperatures are of great current interest for warm dense matter physics, planetary sciences, and inertial fusion energy research. Shock-compression equation-of-state data and optical reflectivities of the fluid dense oxide, Gd3Ga5O12 (GGG), were measured at extremely high pressures up to 2.6 TPa (26 Mbar) generated by high-power laser irradiation and magnetically-driven hypervelocity impacts. Above 0.75 TPa, the GGG Hugoniot data approach/reach a universal linear line of fluid metals, and the optical reflectivity most likely reaches a constant value indicating that GGG undergoes a crossover from fluid semiconductor to poor metal with minimum metallic conductivity (MMC). These results suggest that most fluid compounds, e.g., strong planetary oxides, reach a common state on the universal Hugoniot of fluid metals (UHFM) with MMC at sufficiently extreme pressures and temperatures. Lastly, the systematic behaviors of warm dense fluid would be useful benchmarks for developing theoretical equation-of-state and transport models in the warm dense matter regime in determining computational predictions.

  11. International Shock-Wave Database: Current Status

    NASA Astrophysics Data System (ADS)

    Levashov, Pavel

    2013-06-01

    Shock-wave and related dynamic material response data serve for calibrating, validating, and improving material models over very broad regions of the pressure-temperature-density phase space. Since the middle of the 20th century vast amount of shock-wave experimental information has been obtained. To systemize it a number of compendiums of shock-wave data has been issued by LLNL, LANL (USA), CEA (France), IPCP and VNIIEF (Russia). In mid-90th the drawbacks of the paper handbooks became obvious, so the first version of the online shock-wave database appeared in 1997 (http://www.ficp.ac.ru/rusbank). It includes approximately 20000 experimental points on shock compression, adiabatic expansion, measurements of sound velocity behind the shock front and free-surface-velocity for more than 650 substances. This is still a useful tool for the shock-wave community, but it has a number of serious disadvantages which can't be easily eliminated: (i) very simple data format for points and references; (ii) minimalistic user interface for data addition; (iii) absence of history of changes; (iv) bad feedback from users. The new International Shock-Wave database (ISWdb) is intended to solve these and some other problems. The ISWdb project objectives are: (i) to develop a database on thermodynamic and mechanical properties of materials under conditions of shock-wave and other dynamic loadings, selected related quantities of interest, and the meta-data that describes the provenance of the measurements and material models; and (ii) to make this database available internationally through the Internet, in an interactive form. The development and operation of the ISWdb is guided by an advisory committee. The database will be installed on two mirrored web-servers, one in Russia and the other in USA (currently only one server is available). The database provides access to original experimental data on shock compression, non-shock dynamic loadings, isentropic expansion, measurements of sound

  12. Some aspects of shock-wave research

    NASA Astrophysics Data System (ADS)

    Glass, I. I.

    1986-01-01

    Examples are given of shock-wave phenomena on Earth and in space. A specific shock-wave research problem, namely, pseudostationary oblique shock-wave reflections in perfect and imperfect gases is presented. Consideration is given to what has been achieved to date by using two- and three-shock theory to predict what type of reflection results when a planar shock wave M sub s, in a shock tube, collides with a sharp compressive wedge of angle, theta sub w. Experimental (interferometric and other optical) data are presented in (M sub s, theta sub w)-plots for argon, nitrogen, oxygen, air carbon-dioxide, Freon 12 and sulfurhexafluoride, in order to check the validity of the analytically predicted regions and transition lines of the four types of reflection (RR, SMR, CMR, DMR). Some disagreements are noted and discussed. Our interferometric isopycnic data are also compared with state-of-the-art computational results from a solution of the inviscid Euler equations using a CRAY I computer. Good agreement was obtained, yet, it would be important to obtain new data by solving the Navier-Stokes equations, as well as the rate equations for imperfect-gas excitations, in order to judge the improvement obtained with real-flow interferograms.

  13. Causality violation, gravitational shockwaves and UV completion

    NASA Astrophysics Data System (ADS)

    Hollowood, Timothy J.; Shore, Graham M.

    2016-03-01

    The effective actions describing the low-energy dynamics of QFTs involving gravity generically exhibit causality violations. These may take the form of superluminal propagation or Shapiro time advances and allow the construction of "time machines", i.e. spacetimes admitting closed non-spacelike curves. Here, we discuss critically whether such causality violations may be used as a criterion to identify unphysical effective actions or whether, and how, causality problems may be resolved by embedding the action in a fundamental, UV complete QFT. We study in detail the case of photon scattering in an Aichelburg-Sexl gravitational shockwave background and calculate the phase shifts in QED for all energies, demonstrating their smooth interpolation from the causality-violating effective action values at low-energy to their manifestly causal high-energy limits. At low energies, these phase shifts may be interpreted as backwards-in-time coordinate jumps as the photon encounters the shock wavefront, and we illustrate how the resulting causality problems emerge and are resolved in a two-shockwave time machine scenario. The implications of our results for ultra-high (Planck) energy scattering, in which graviton exchange is modelled by the shockwave background, are highlighted.

  14. Shockwave-induced deformation of organic particles during laser shockwave cleaning

    NASA Astrophysics Data System (ADS)

    Hoon Kim, Tae; Cho, Hanchul; Busnaina, Ahmed; Park, Jin-Goo; Kim, Dongsik

    2013-08-01

    Although the laser shockwave cleaning process offers a promising alternative to conventional dry-cleaning processes for nanoscale particle removal, its difficulty in removing organic particles has been an unexplained problem. This work elucidates the physics underlying the ineffectiveness of removing organic particles using laser shock cleaning utilizing polystyrene latex particles on silicon substrates. It is found that the shockwave pressure is high enough to deform the particles, increasing the contact radius and consequently the particle adhesion force. The particle deformation has been verified by high-angle scanning electron microscopy. The Maugis-Pollock theory has been applied to predict the contact radius, showing good agreement with the experiment.

  15. Density of states and dynamical crossover in a dense fluid revealed by exponential mode analysis of the velocity autocorrelation function

    NASA Astrophysics Data System (ADS)

    Bellissima, S.; Neumann, M.; Guarini, E.; Bafile, U.; Barocchi, F.

    2017-01-01

    Extending a preceding study of the velocity autocorrelation function (VAF) in a simulated Lennard-Jones fluid [Phys. Rev. E 92, 042166 (2015), 10.1103/PhysRevE.92.042166] to cover higher-density and lower-temperature states, we show that the recently demonstrated multiexponential expansion method allows for a full account and understanding of the basic dynamical processes encompassed by a fundamental quantity as the VAF. In particular, besides obtaining evidence of a persisting long-time tail, we assign specific and unambiguous physical meanings to groups of exponential modes related to the longitudinal and transverse collective dynamics, respectively. We have made this possible by consistently introducing the interpretation of the VAF frequency spectrum as a global density of states in fluids, generalizing a solid-state concept, and by giving to specific spectral components, obtained through the VAF exponential expansion, the corresponding meaning of partial densities of states relative to specific dynamical processes. The clear identification of a high-frequency oscillation of the VAF with the near-top excitation frequency in the dispersion curve of acoustic waves is a neat example of the power of the method. As for the transverse mode contribution, its analysis turns out to be particularly important, because the multiexponential expansion reveals a transition marking the onset of propagating excitations when the density is increased beyond a threshold value. While this finding agrees with the recent literature debating the issue of dynamical crossover boundaries, such as the one identified with the Frenkel line, we can add detailed information on the modes involved in this specific process in the domains of both time and frequency. This will help obtain a still missing full account of transverse dynamics, in both its nonpropagating and propagating aspects which are linked through dynamical transitions depending on both the thermodynamic states and the excitation

  16. Density of states and dynamical crossover in a dense fluid revealed by exponential mode analysis of the velocity autocorrelation function.

    PubMed

    Bellissima, S; Neumann, M; Guarini, E; Bafile, U; Barocchi, F

    2017-01-01

    Extending a preceding study of the velocity autocorrelation function (VAF) in a simulated Lennard-Jones fluid [Phys. Rev. E 92, 042166 (2015)PLEEE81539-375510.1103/PhysRevE.92.042166] to cover higher-density and lower-temperature states, we show that the recently demonstrated multiexponential expansion method allows for a full account and understanding of the basic dynamical processes encompassed by a fundamental quantity as the VAF. In particular, besides obtaining evidence of a persisting long-time tail, we assign specific and unambiguous physical meanings to groups of exponential modes related to the longitudinal and transverse collective dynamics, respectively. We have made this possible by consistently introducing the interpretation of the VAF frequency spectrum as a global density of states in fluids, generalizing a solid-state concept, and by giving to specific spectral components, obtained through the VAF exponential expansion, the corresponding meaning of partial densities of states relative to specific dynamical processes. The clear identification of a high-frequency oscillation of the VAF with the near-top excitation frequency in the dispersion curve of acoustic waves is a neat example of the power of the method. As for the transverse mode contribution, its analysis turns out to be particularly important, because the multiexponential expansion reveals a transition marking the onset of propagating excitations when the density is increased beyond a threshold value. While this finding agrees with the recent literature debating the issue of dynamical crossover boundaries, such as the one identified with the Frenkel line, we can add detailed information on the modes involved in this specific process in the domains of both time and frequency. This will help obtain a still missing full account of transverse dynamics, in both its nonpropagating and propagating aspects which are linked through dynamical transitions depending on both the thermodynamic states and

  17. Dynamics and stability of an extending beam attached to an axially moving base immersed in dense fluid

    NASA Astrophysics Data System (ADS)

    Yan, H.; Ni, Q.; Dai, H. L.; Wang, L.; Li, M.; Wang, Y.; Luo, Y.

    2016-11-01

    In the present study, we construct a theoretical model for investigating the dynamics and stability of a flexible slender cantilever which is attached to an axially moving base fully immersed in an incompressible fluid. Meanwhile, the cantilevered beam is subjected to a time dependent axial extension. The coordinate transformation is utilized to derive the governing equations with consideration of an axial added mass coefficient and realistic initial conditions. Based on the Galerkin approach and Runge-Kutta technique, the numerical results for the dynamical behavior of the system under conditions of steady rate of extension and speed of the moving base are displayed. It is demonstrated that there is a critical value of extension rate at which the beam loses stability in the case when the base is fixed. As the base moves beyond a certain speed, however, the beam returns to be stable even if the extension rate is above the critical value. Furthermore, the beam system can exhibit peak response as the base moving speed is much higher than the extension rate.

  18. Minimizing masses in explosively driven two-shockwave physics applications

    NASA Astrophysics Data System (ADS)

    Buttler, William; Cherne, Frank; Furlanetto, Michael; Payton, Jeremy; Stone, Joseph; Tabaka, Leonard; Vincent, Samuel

    2015-06-01

    We have experimentally investigated different two-shockwave high-explosives (HE) physics package designs to maximize the variability of the second shockwave peak stress, while minimizing the total HE load of the physics tool. A critical requirement is to also have a large radial diameter of the second shockwave to maintain its value as an HE driven two-shockwave drive. We have previously shown that we could vary the peak-stress of the second-shockwave with a 76 mm diameter HE lens driving different composite boosters of PBX 9501 and TNT. Here we report on our results with a 56- and 50-mm diameter HE lens driving Baritol. The results indicate that the 56-mm diameter HE lens works well, as does the Baritol, giving total HE loads of about 250 mg TNT equivalent explosives.

  19. Simulation of shock-induced bubble collapse with application to vascular injury in shockwave lithotripsy

    NASA Astrophysics Data System (ADS)

    Coralic, Vedran

    Shockwave lithotripsy is a noninvasive medical procedure wherein shockwaves are repeatedly focused at the location of kidney stones in order to pulverize them. Stone comminution is thought to be the product of two mechanisms: the propagation of stress waves within the stone and cavitation erosion. However, the latter mechanism has also been implicated in vascular injury. In the present work, shock-induced bubble collapse is studied in order to understand the role that it might play in inducing vascular injury. A high-order accurate, shock- and interface-capturing numerical scheme is developed to simulate the three-dimensional collapse of the bubble in both the free-field and inside a vessel phantom. The primary contributions of the numerical study are the characterization of the shock-bubble and shock-bubble-vessel interactions across a large parameter space that includes clinical shockwave lithotripsy pressure amplitudes, problem geometry and tissue viscoelasticity, and the subsequent correlation of these interactions to vascular injury. Specifically, measurements of the vessel wall pressures and displacements, as well as the finite strains in the fluid surrounding the bubble, are utilized with available experiments in tissue to evaluate damage potential. Estimates are made of the smallest injurious bubbles in the microvasculature during both the collapse and jetting phases of the bubble's life cycle. The present results suggest that bubbles larger than one micrometer in diameter could rupture blood vessels under clinical SWL conditions.

  20. Use of a multichannel collimator for structural investigation of low-Z dense liquids in a diamond anvil cell: Validation on fluid H{sub 2} up to 5 GPa

    SciTech Connect

    Weck, Gunnar; Spaulding, Dylan; Loubeyre, Paul; Garbarino, Gaston; Mezouar, Mohamed; Ninet, Sandra; Datchi, Frederic

    2013-06-15

    We report the first application of a multichannel collimator (MCC) to perform quantitative structure factor measurements of dense low-Z fluids in a diamond anvil cell (DAC) using synchrotron x-ray diffraction. The MCC design, initially developed for the Paris-Edinburgh large volume press geometry, has been modified for use with diamond anvil cells. A good selectivity of the diffracted signal of the dense fluid sample is obtained due to a large rejection of the Compton diffusion from the diamond anvils. The signal to background ratio is significantly improved. We modify previously developed analytical techniques for quantitative measurement of the structure factor of fluids in DACs [J. H. Eggert, G. Weck, P. Loubeyre, and M. Mezouar, Phys. Rev. B 65, 174105 (2002)] to account for the contribution of the MCC. We present experimental results on liquids argon and hydrogen at 296 K to validate our method and test its limits, respectively.

  1. Spall fracture of beryllium under shockwave loading

    NASA Astrophysics Data System (ADS)

    Skokov, Viktor; Arinin, Vladimir; Kryuchkov, Dmitry; Ogorodnikov, Vladimir; Raevsky, Viktor; Panov, Konstantin; Peshkov, Viktor; Tyupanova, Olga

    2012-03-01

    We present investigations of beryllium spall fracture with samples of dimensions ø 65×7 mm, which were made via vacuum hot pressing. Samples were loaded at normal incidence by a detonation wave of the explosive charge of TG 5/5 composition, 7, 14 and 30 mm in thickness, which gave shockwave stresses of 21-25 GPa within the sample. Spall fractures formed as the sample unloading at an air gap. A velocity profile was measured at the free boundary using VISAR laser interferometer, a spall layer thickness was measured with two-frame impulse X-ray radiography, and the shockwave profile was measured via a manganin-based gauge in a fluoroplastic base in the course of deceleration of a spall layer and of a basic part of beryllium. Hugoniot dynamic yield strength (YHE) and spall strength (σP) were measure as 0.69-0.73 GPa and 0.85±0.03 GPa, respectively, at a strain rate of ɛ ~104 s-1 in the unloading part of the incident pulse. A weak dependence between the spall layer thickness and HE layer thickness was recorded in tests. The weak dependence is not described through existing damage models and points to the need to develop more sophisticated models.

  2. Some aspects of shock-wave research

    NASA Astrophysics Data System (ADS)

    Glass, I. I.

    1986-01-01

    The major portion of the paper is devoted to a specific shock-wave research problem, namely, pseudostationary oblique shock-wave reflections in perfect and imperfect gases. Consideration is given to what has been achieved to date by using two- and three-shock theory to predict what type of reflection results when a planar shock wave M(S), in a shock tube, collides with a sharp compressive wedge of angle, theta(W). Expermental (interferometric and other optical) data are presented in (M(S), theta(W))-plots for argon, nitrogen, oxygen, air, carbon-dioxide, Freon-12 and sulfurhexafluoride, in order to check the validity of the analytically predicted regions and transition lines of the four types of reflection. Some disagreements are noted and discussed. The present interferometric isopycnic data are also compared with state-of-the-art computational results from a solution of the inviscid Euler equations using a CRAY I computer. Good agreement was obtained; it would be important, however, to obtain new data by solving the Navier-Stokes equations, as well as the rate equations for imperfect-gas excitations, in order to judge the improvement obtained with real-flow interferograms.

  3. Superior Mesenteric Artery Dissection after Extracorporeal Shockwave Lithotripsy

    PubMed Central

    Bakoyiannis, Christos; Anastasiou, Ioannis; Koutsoumpelis, Andreas; Fragiadis, Evangelos; Felesaki, Eleni; Kafeza, Marina; Georgopoulos, Sotirios; Tsigris, Christos

    2012-01-01

    The use of shockwave lithotripsy is currently the mainstay of treatment in renal calculosis. Several complications including vessel injuries have been implied to extracorporeal shockwave lithotripsy. We report an isolated dissection of the superior mesenteric artery in a 60-year-old male presenting with abdominal pain which occurred three days after extracorporeal shockwave lithotripsy. The patient was treated conservatively and the abdominal pain subsided 24 hours later. The patient's history, the course of his disease, and the timing may suggest a correlation between the dissection and the ESWL. PMID:23304627

  4. Dense Breasts

    MedlinePlus

    ... fatty tissue. On a mammogram, fatty tissue appears dark (radio-lucent) and the glandular and connective tissues ... white on mammography) and non-dense fatty tissue (dark on mammography) using a visual scale and assign ...

  5. Chaotic dynamics in dense fluids

    SciTech Connect

    Posch, H.A.; Hoover, W.G.

    1987-09-01

    We present calculations of the full spectra of Lyapunov exponents for 8- and 32-particle systems with periodic boundary conditions and interacting with the repulsive part of a Lennard-Jones potential both in equilibrium and nonequilibrium steady states. Lyapunov characteristic exponents lambda/sub n/ describe the mean exponential rates of divergence and convergence of neighbouring trajectories in phase-space. They are useful in characterizing the stochastic properties of a dynamical system. A new algorithm for their calculation is presented which incorporates ideas from control theory and constraint nonequilibrium molecular dynamics. 4 refs., 1 fig.

  6. [The history of extracorporeal shockwave lithotripsy in Spain].

    PubMed

    Ruíz Marcellán, Francisco Javier; Ibarz Servio, Luis

    2007-10-01

    We give a historical outline of urinary lithiasis with emphasis in the alternative therapeutic options to surgery. We expose the previous steps that led to the birth of extracorporeal shockwave lithotripsy and its implementation in our country.

  7. SHOCK-WAVE THERAPY APPLICATION IN CLINICAL PRACTICE (REVIEW).

    PubMed

    Sheveleva, N; Minbayeva, L; Belyayeva, Y

    2016-03-01

    The article presents literature review on the use of extracorporeal shock-wave therapy in physiotherapeutic practice. The basic mechanisms of shock waves influence on the organism are spotlighted. Studies proving high efficacy of the method in treatment of wide variety of inflammatory diseases and traumatic genesis are presented. The data on comparative assessment of shock-wave therapy efficacy, and results of researches on possibility of extracorporeal shock-wave therapy effect potentiating in combination with other therapeutic methods are reflected. Recent years, the range of indications for shock-wave therapy application had been significantly widened. However, further study of the method is still relevant because mechanisms of action of the factor are studied insufficiently; methods of therapy parameters selection (energy flux density, number of pulses per treatment, duration of a course) are either advisory or empirical.

  8. Influence of shockwave profile on ejecta

    SciTech Connect

    Zellner, Michael B; Dimonte, Guy; Germann, Tim C; Hammerberg, James E; Rigg, Paulo A; Buttler, William T; Stevens, Gerald D; Turley, William D

    2009-01-01

    This effort investigates the relation between shock-pulse shape and the amount of micron-scale fragments ejected (ejecta) upon shock release at the metal/vacuum interface of shocked Sn targets. Two shock-pulse shapes are considered: a supported shock created by impacting a Sn target with a sabot that was accelerated using a powder gun; and an unsupported or Taylor shockwave, created by detonation of high explosive that was press-fit to the front-side of the Sn target. Ejecta production at the back-side or free-side of the Sn coupons were characterized through use of piezoelectric pins. Assay foils, optical shadowgraphy, and x-ray attenuation.

  9. Does extracorporeal shockwave lithotripsy cause hypertension?

    PubMed

    Montgomery, B S; Cole, R S; Palfrey, E L; Shuttleworth, K E

    1989-12-01

    Several series have suggested that the incidence of hypertension following extracorporeal shockwave lithotripsy (ESWL) may be as high as 8%. In this study, changes in blood pressure and the incidence of hypertension have been observed in 733 patients 12 to 44 months after renal ESWL on the Dornier HM3. The incidence of hypertension following ESWL was 8.1%. In patients with a pre-ESWL diastolic pressure less than 90 mmHg, the incidence of those with a diastolic greater than or equal to 100 mm Hg post-operatively was significantly greater than that predicted by historical data. There was no overall change in the mean blood pressure of the group. The hypertensive risk of ESWL remains unclear. However, blood pressure surveillance should be performed following ESWL and a prospective study is required.

  10. Low-Energy Shockwave Therapy Improves Ischemic Kidney Microcirculation.

    PubMed

    Zhang, Xin; Krier, James D; Amador Carrascal, Carolina; Greenleaf, James F; Ebrahimi, Behzad; Hedayat, Ahmad F; Textor, Stephen C; Lerman, Amir; Lerman, Lilach O

    2016-12-01

    Microvascular rarefaction distal to renal artery stenosis is linked to renal dysfunction and poor outcomes. Low-energy shockwave therapy stimulates angiogenesis, but the effect on the kidney microvasculature is unknown. We hypothesized that low-energy shockwave therapy would restore the microcirculation and alleviate renal dysfunction in renovascular disease. Normal pigs and pigs subjected to 3 weeks of renal artery stenosis were treated with six sessions of low-energy shockwave (biweekly for 3 consecutive weeks) or left untreated. We assessed BP, urinary protein, stenotic renal blood flow, GFR, microvascular structure, and oxygenation in vivo 4 weeks after completion of treatment, and then, we assessed expression of angiogenic factors and mechanotransducers (focal adhesion kinase and β1-integrin) ex vivo A 3-week low-energy shockwave regimen attenuated renovascular hypertension, normalized stenotic kidney microvascular density and oxygenation, stabilized function, and alleviated fibrosis in pigs subjected to renal artery stenosis. These effects associated with elevated renal expression of angiogenic factors and mechanotransducers, particularly in proximal tubular cells. In additional pigs with prolonged (6 weeks) renal artery stenosis, shockwave therapy also decreased BP and improved GFR, microvascular density, and oxygenation in the stenotic kidney. This shockwave regimen did not cause detectable kidney injury in normal pigs. In conclusion, low-energy shockwave therapy improves stenotic kidney function, likely in part by mechanotransduction-mediated expression of angiogenic factors in proximal tubular cells, and it may ameliorate renovascular hypertension. Low-energy shockwave therapy may serve as a novel noninvasive intervention in the management of renovascular disease. Copyright © 2016 by the American Society of Nephrology.

  11. The TOPSHOCK study: effectiveness of radial shockwave therapy compared to focused shockwave therapy for treating patellar tendinopath - design of a randomised controlled trial.

    PubMed

    van der Worp, Henk; Zwerver, Johannes; van den Akker-Scheek, Inge; Diercks, Ron L

    2011-10-11

    Patellar tendinopathy is a chronic overuse injury of the patellar tendon that is especially prevalent in people who are involved in jumping activities. Extracorporeal Shockwave Therapy is a relatively new treatment modality for tendinopathies. It seems to be a safe and promising part of the rehabilitation program for patellar tendinopathy. Extracorporeal Shockwave Therapy originally used focused shockwaves. Several years ago a new kind of shockwave therapy was introduced: radial shockwave therapy. Studies that investigate the effectiveness of radial shockwave therapy as treatment for patellar tendinopathy are scarce. Therefore the aim of this study is to compare the effectiveness of focussed shockwave therapy and radial shockwave therapy as treatments for patellar tendinopathy. The TOPSHOCK study (Tendinopathy Of Patella SHOCKwave) is a two-armed randomised controlled trial in which the effectiveness of focussed shockwave therapy and radial shockwave therapy are directly compared. Outcome assessors and patients are blinded as to which treatment is given. Patients undergo three sessions of either focused shockwave therapy or radial shockwave therapy at 1-week intervals, both in combination with eccentric decline squat training. Follow-up measurements are scheduled just before treatments 2 and 3, and 1, 4, 7 and 12 weeks after the final treatment. The main outcome measure is the Dutch VISA-P questionnaire, which asks for pain, function and sports participation in subjects with patellar tendinopathy. Secondary outcome measures are pain determined with a VAS during ADL, sports and decline squats, rating of subjective improvement and overall satisfaction with the treatment. Patients will also record their sports activities, pain during and after these activities, and concurrent medical treatment on a weekly basis in a web-based diary. Results will be analysed according to the intention-to-treat principle. The TOPSHOCK study is the first randomised controlled trial that

  12. Vlasov-Fokker-Planck Simulation of a Collisional Ion-Electron Shockwave

    NASA Astrophysics Data System (ADS)

    Taitano, William; Knoll, Dana; Prinja, Anil

    2012-10-01

    There has been recent increased interest in a range of kinetic plasma physics phenomena which may be important in simulating ICF pellet performance. [1] have numerically demonstrated the limitations of the classic Spitzer, Braginski fluid closures in collisional plasmas for shockwave problems. [1] has shown the importance of modeling kinetic effects for scale lengths of shockwave much larger than the ion collision mean free path. In [1], the ions were modeled kinetically using the Fokker-Planck approximation while the electrons were modeled as a fluid. An investigation of a full kinetic treatment of electron with collision is computationally intractable with standard explicit schemes due to collision CFL limitation that requires resolving the electron-electron collision timescale. [2] has developed a new, fully implicit and discretely consistent moment based accelerator method to solve the full ion-electron kinetic Vlasov-Ampere system. A similar moment based accelerator will be extended to a collisionless shock problem in order to accelerate the Fokker-Planck collision source in the kinetic equations. In the presentation, we provide some preliminary results. [4pt] [1] M. Casanova and O. Larroche, Phys. Rev. Let. 67-(16), 1991. [0pt] [2] W.T. Taitano et al. SISC in review.

  13. Shock-Wave Compression and Joule-Thomson Expansion

    NASA Astrophysics Data System (ADS)

    Hoover, Wm. G.; Hoover, Carol G.; Travis, Karl P.

    2014-04-01

    Structurally stable atomistic one-dimensional shock waves have long been simulated by injecting fresh cool particles and extracting old hot particles at opposite ends of a simulation box. The resulting shock profiles demonstrate tensor temperature, Txx≠Tyy and Maxwell's delayed response, with stress lagging strain rate and heat flux lagging temperature gradient. Here this same geometry, supplemented by a short-ranged external "plug" field, is used to simulate steady Joule-Kelvin throttling flow of hot dense fluid through a porous plug, producing a dilute and cooler product fluid.

  14. Shock-wave compression and Joule-Thomson expansion.

    PubMed

    Hoover, Wm G; Hoover, Carol G; Travis, Karl P

    2014-04-11

    Structurally stable atomistic one-dimensional shock waves have long been simulated by injecting fresh cool particles and extracting old hot particles at opposite ends of a simulation box. The resulting shock profiles demonstrate tensor temperature, Txx≠Tyy and Maxwell's delayed response, with stress lagging strain rate and heat flux lagging temperature gradient. Here this same geometry, supplemented by a short-ranged external "plug" field, is used to simulate steady Joule-Kelvin throttling flow of hot dense fluid through a porous plug, producing a dilute and cooler product fluid.

  15. RESEARCH PAPERS : Shock-wave equation of state of rhyolite

    NASA Astrophysics Data System (ADS)

    Anderson, William W.; Yang, Wenbo; Chen, George; Ahrens, Thomas J.

    1998-01-01

    We have obtained new shock-wave equation of state (EOS) and release adiabat data for rhyolite. These data are combined with those of Swegle (1989, 1990) to give an experimental Hugoniot which is described by Us = 2.53(+/-0.08) + 3.393(+/-0.37)Up for Up ≪ 0.48 km s-1 , Us = 3.85(+/-0.05) + 0.65(+/-0.03)Up for 0.48 <= Up ≪ 2.29 km s-1 , Us = 1.52(+/-0.08) + 1.67(+/-0.02)Up for 2.29 <= Up ≪ 4.37 km s-1 , and Us = 3.40(+/-034) + 1.24(+/-0.06)Up for Up ≫= 4.37 km s-1 , with ρ0 = 2.357 +/- 0.052 Mg m-3 . We suggest that the Hugoniot data give evidence of three distinct phases-both low- and high-pressure solid phases and, possibly, a dense molten phase. EOS parameters for these phases are ρ0 = 2.494 +/- 0.002 Mg m-3 , KS0 = 37 +/- 2 GPa, K' = 6.27 +/- 0.25, and Γ = 1.0(V/V0 ) for the low-pressure solid phase; ρ0 = 3.834 +/- 0.080 Mg m-3 , KS0 = 128 +/- 20 GPa, K' = 3.7 +/- 1.4, and Γ = 1.5 +/- 0.5 for the solid high-pressure phase; and ρ0 = 3.71 +/- 0.10 Mg m-3 , KS0 = 127 +/- 25 GPa, K' = 2.1 +/- 1.0, and Γ = 1.5 +/- 1.0 for the dense liquid. Transition regions of the Hugoniot cover the ranges of 9-34 GPa for the low-pressure-high-pressure solid transition and 90-120 GPa for the high-pressure solid-liquid transition. Release paths from high-pressure states, calculated from the EOS parameters, suggest that the material remains in the high-pressure solid phase upon release. Release paths from both the high-pressure solid and liquid fall above the Hugoniot until the Hugoniot enters the low-pressure-high-pressure mixed phase region, when the release paths then cross the Hugoniot and fall below it, ending at significantly higher zero-pressure densities than that of the low-pressure phase. The low-pressure release paths fall very close to the Hugoniot. Estimates of residual heat deposition, based on shock-release path hysteresis, range from 20 to 60 per cent of the shock Hugoniot energy.

  16. Time Resolved Shadowgraph Images of Silicon during Laser Ablation:Shockwaves and Particle Generation

    SciTech Connect

    Liu, C.Y.; Mao, X.L.; Greif, R.; Russo, R.E.

    2006-05-06

    Time resolved shadowgraph images were recorded of shockwaves and particle ejection from silicon during laser ablation. Particle ejection and expansion were correlated to an internal shockwave resonating between the shockwave front and the target surface. The number of particles ablated increased with laser energy and was related to the crater volume.

  17. Shock-wave boundary layer interactions

    NASA Technical Reports Server (NTRS)

    Delery, J.; Marvin, J. G.; Reshotko, E.

    1986-01-01

    Presented is a comprehensive, up-to-date review of the shock-wave boundary-layer interaction problem. A detailed physical description of the phenomena for transonic and supersonic speed regimes is given based on experimental observations, correlations, and theoretical concepts. Approaches for solving the problem are then reviewed in depth. Specifically, these include: global methods developed to predict sudden changes in boundary-layer properties; integral or finite-difference methods developed to predict the continuous evolution of a boundary-layer encountering a pressure field induced by a shock wave; coupling methods to predict entire flow fields; analytical methods such as multi-deck techniques; and finite-difference methods for solving the time-dependent Reynolds-averaged Navier-Stokes equations used to predict the development of entire flow fields. Examples are presented to illustrate the status of the various methods and some discussion is devoted to delineating their advantages and shortcomings. Reference citations for the wide variety of subject material are provided for readers interested in further study.

  18. Cloud cavitation effects in shockwave lithotripsy

    NASA Astrophysics Data System (ADS)

    Colonius, Tim; Tanguay, Michel

    2003-10-01

    Cavitation has already been identified as an important damage mechanism in the comminution of kidney stones in shockwave lithotripsy (SWL). However, the precise conditions that maximize the damage caused by the collapsing bubbles are still unknown. Numerical simulations are used to investigate shock propagation and the consequent growth and collapse of a bubble cloud in the focal region of a lithotripter. In the simulations, a continuum two-phase flow model for the ensemble-averaged macroscale is coupled to a Gilmore model for individual spherical bubble dynamics at the microscale. The simulations show agreement with experimental pressure measurements and high-speed photography of the bubble cloud. At void fractions commensurate with experiments, it is found that the collective collapse of the bubble cloud provides a significant increase to the energy available for comminution (beyond what a single bubble would produce). Relatively small increases in the pressure at the center of the cloud in advance of collapse (two orders of magnitude smaller than the initial shock) can more than double the energy of the collapsing bubble.

  19. Sonoporation of erythrocytes by lithotripter shockwaves in vitro.

    PubMed

    Miller, D L; Williams, A R; Morris, J E; Chrisler, W B

    1998-08-01

    Sonoporation of red blood cells was examined in relation to cavitation-induced hemolysis. FITC-dextran at 580,000 MW was added to suspensions of canine erythrocytes and the mixture was exposed to lithotripter shockwaves. Exposure at 5% or 50% hematocrit in PBS or 50% in plasma yielded not only hemolysis but also FITC-dextran uptake in surviving cells. Hemolysis increased with increasing numbers of shockwaves. The numbers of cells with fluorescent dextran uptake remained roughly constant for 250-1000 shockwaves, but this represented an increasing percentage of the surviving cells. In addition, fluorescent microspheres formed spontaneously in samples with hemolysis. An air bubble was needed in the chamber to obtain substantial effects, implicating the cavitation mechanism. The exposure-response trends could be modeled by simple theory for random interaction of the cells with bubbles.

  20. Current concepts of shockwave therapy in stress fractures.

    PubMed

    Leal, Carlos; D'Agostino, Cristina; Gomez Garcia, Santiago; Fernandez, Arnold

    2015-12-01

    Stress fractures are common painful conditions in athletes, usually associated to biomechanical overloads. Low risk stress fractures usually respond well to conservative treatments, but up to one third of the athletes may not respond, and evolve into high-risk stress fractures. Surgical stabilization may be the final treatment, but it is a highly invasive procedure with known complications. Shockwave treatments (ESWT), based upon the stimulation of bone turnover, osteoblast stimulation and neovascularization by mechanotransduction, have been successfully used to treat delayed unions and avascular necrosis. Since 1999 it has also been proposed in the treatment of stress fractures with excellent results and no complications. We have used focused shockwave treatments in professional athletes and military personnel with a high rate of recovery, return to competition and pain control. We present the current concepts of shockwave treatments for stress fractures, and recommend it as the primary standard of care in low risk patients with poor response to conventional treatments.

  1. Interaction of lithotripter shockwaves with single inertial cavitation bubbles.

    PubMed

    Klaseboer, Evert; Fong, Siew Wan; Turangan, Cary K; Khoo, Boo Cheong; Szeri, Andrew J; Calvisi, Michael L; Sankin, Georgy N; Zhong, Pei

    2007-01-01

    The dynamic interaction of a shockwave (modelled as a pressure pulse) with an initially spherically oscillating bubble is investigated. Upon the shockwave impact, the bubble deforms non-spherically and the flow field surrounding the bubble is determined with potential flow theory using the boundary-element method (BEM). The primary advantage of this method is its computational efficiency. The simulation process is repeated until the two opposite sides of the bubble surface collide with each other (i.e. the formation of a jet along the shockwave propagation direction). The collapse time of the bubble, its shape and the velocity of the jet are calculated. Moreover, the impact pressure is estimated based on water-hammer pressure theory. The Kelvin impulse, kinetic energy and bubble displacement (all at the moment of jet impact) are also determined. Overall, the simulated results compare favourably with experimental observations of lithotripter shockwave interaction with single bubbles (using laser-induced bubbles at various oscillation stages). The simulations confirm the experimental observation that the most intense collapse, with the highest jet velocity and impact pressure, occurs for bubbles with intermediate size during the contraction phase when the collapse time of the bubble is approximately equal to the compressive pulse duration of the shock wave. Under this condition, the maximum amount of energy of the incident shockwave is transferred to the collapsing bubble. Further, the effect of the bubble contents (ideal gas with different initial pressures) and the initial conditions of the bubble (initially oscillating vs. non-oscillating) on the dynamics of the shockwave-bubble interaction are discussed.

  2. Developing Multimedia Courseware for the Internet's Java versus Shockwave.

    ERIC Educational Resources Information Center

    Majchrzak, Tina L.

    1996-01-01

    Describes and compares two methods for developing multimedia courseware for use on the Internet: an authoring tool called Shockwave, and an object-oriented language called Java. Topics include vector graphics, browsers, interaction with network protocols, data security, multithreading, and computer languages versus development environments. (LRW)

  3. The TOPSHOCK study: Effectiveness of radial shockwave therapy compared to focused shockwave therapy for treating patellar tendinopath - design of a randomised controlled trial

    PubMed Central

    2011-01-01

    Background Patellar tendinopathy is a chronic overuse injury of the patellar tendon that is especially prevalent in people who are involved in jumping activities. Extracorporeal Shockwave Therapy is a relatively new treatment modality for tendinopathies. It seems to be a safe and promising part of the rehabilitation program for patellar tendinopathy. Extracorporeal Shockwave Therapy originally used focused shockwaves. Several years ago a new kind of shockwave therapy was introduced: radial shockwave therapy. Studies that investigate the effectiveness of radial shockwave therapy as treatment for patellar tendinopathy are scarce. Therefore the aim of this study is to compare the effectiveness of focussed shockwave therapy and radial shockwave therapy as treatments for patellar tendinopathy. Methods/design The TOPSHOCK study (Tendinopathy Of Patella SHOCKwave) is a two-armed randomised controlled trial in which the effectiveness of focussed shockwave therapy and radial shockwave therapy are directly compared. Outcome assessors and patients are blinded as to which treatment is given. Patients undergo three sessions of either focused shockwave therapy or radial shockwave therapy at 1-week intervals, both in combination with eccentric decline squat training. Follow-up measurements are scheduled just before treatments 2 and 3, and 1, 4, 7 and 12 weeks after the final treatment. The main outcome measure is the Dutch VISA-P questionnaire, which asks for pain, function and sports participation in subjects with patellar tendinopathy. Secondary outcome measures are pain determined with a VAS during ADL, sports and decline squats, rating of subjective improvement and overall satisfaction with the treatment. Patients will also record their sports activities, pain during and after these activities, and concurrent medical treatment on a weekly basis in a web-based diary. Results will be analysed according to the intention-to-treat principle. Discussion The TOPSHOCK study is the

  4. Interaction of lithotripter shockwaves with single inertial cavitation bubbles

    PubMed Central

    Klaseboer, Evert; Fong, Siew Wan; Turangan, Cary K.; Khoo, Boo Cheong; Szeri, Andrew J.; Calvisi, Michael L.; Sankin, Georgy N.; Zhong, Pei

    2008-01-01

    The dynamic interaction of a shockwave (modelled as a pressure pulse) with an initially spherically oscillating bubble is investigated. Upon the shockwave impact, the bubble deforms non-spherically and the flow field surrounding the bubble is determined with potential flow theory using the boundary-element method (BEM). The primary advantage of this method is its computational efficiency. The simulation process is repeated until the two opposite sides of the bubble surface collide with each other (i.e. the formation of a jet along the shockwave propagation direction). The collapse time of the bubble, its shape and the velocity of the jet are calculated. Moreover, the impact pressure is estimated based on water-hammer pressure theory. The Kelvin impulse, kinetic energy and bubble displacement (all at the moment of jet impact) are also determined. Overall, the simulated results compare favourably with experimental observations of lithotripter shockwave interaction with single bubbles (using laser-induced bubbles at various oscillation stages). The simulations confirm the experimental observation that the most intense collapse, with the highest jet velocity and impact pressure, occurs for bubbles with intermediate size during the contraction phase when the collapse time of the bubble is approximately equal to the compressive pulse duration of the shock wave. Under this condition, the maximum amount of energy of the incident shockwave is transferred to the collapsing bubble. Further, the effect of the bubble contents (ideal gas with different initial pressures) and the initial conditions of the bubble (initially oscillating vs. non-oscillating) on the dynamics of the shockwave–bubble interaction are discussed. PMID:19018296

  5. Effects of high-energy shockwaves on normal human fibroblasts in suspension.

    PubMed

    Kaulesar Johannes, E J; Sukul, D M; Bijma, A M; Mulder, P G

    1994-12-01

    To gain insight in the effects of shockwaves on human cells the relationship between the energy density and the number of shockwaves as well as their effect on suspensions of normal cells was studied. At energy densities of 0.37, 0.6, 0.78, and 1.20 mJ/mm2 fibroblasts were subjected to 50, 100, 250, 500, and 1,000 shockwaves. Each test was performed three times and one sample was used as control. A decrease in viability related to the logarithm of both the number (P = 0.0000) and the energy density (P = 0.001) of the shockwaves was statistically demonstrable 1 hr after the shockwave application. The energy density of the shockwaves has less influence on the viability than the number of applied shockwaves. Seeding of viable cells 1 hr after the shockwave application showed that the decrease in the 48-hr growth potential was statistically dependent of the number of applied shockwaves only (P = 0.0007). After 24 hr no difference in the 48-hr growth potential could be demonstrated between viable shockwave-treated cells and control cells. The literature as well as our own investigations in vitro and in vivo indicate that shockwaves have a logarithmic dose-dependent destructive effect on cells in suspension, but they also seem to have a dose-dependent stimulating influence on the healing process in damaged tissues. Due to the logarithmic relationship between the viability and both the number and energy density of the applied shockwaves it might be expected that even excessive numbers of high-energy-density shockwaves don't soon lead to total destruction of all cells in the suspension.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Contraction ratio effect on boundary layer separation induced by shockwave boundary layer interactions

    NASA Astrophysics Data System (ADS)

    Im, Seongkyun; di Cristina, Giovanni; Do, Hyungrok

    2016-11-01

    Boundary layer separations induced by shockwave boundary layer interaction at various contraction ratios were investigated at a Mach 4.5 flow. Stagnation pressure and temperature condition of 10 bars and 295 K were used, and a high-speed schlieren system visualized the flow features. A shockwave generator with 12 degree wedge generated an impinging shockwave onto a laminar boundary layer on a flat plate. The contraction ratio of the flow was varied by changing the distance between the shockwave generator and the flat plate. The location of the shockwave impingement was fixed while the contraction ratios were changed. Flow visualization showed that the flow separation and its size were influenced by the contraction ratio although overall flow features were similar. At higher contraction ratio, stronger impinging shockwave and more severe flow separation were observed.

  7. Controlling femtosecond-laser-driven shock-waves in hot, dense plasma

    NASA Astrophysics Data System (ADS)

    Adak, Amitava; Singh, Prashant Kumar; Blackman, David R.; Lad, Amit D.; Chatterjee, Gourab; Pasley, John; Robinson, A. P. L.; Ravindra Kumar, G.

    2017-07-01

    Ultrafast pump-probe reflectometry and Doppler spectrometry of a supercritical density plasma layer excited by 1017-1018 W/cm2 intensity, 30 fs, and 800 nm laser pulses reveal the interplay of laser intensity contrast and inward shock wave strength. The inward shock wave velocity increases with an increase in laser intensity contrast. This trend is supported by simulations as well as by a separate independent experiment employing an external prepulse to control the inward motion of the shock wave. This kind of cost-effective control of shock wave strength using femtosecond pulses could open up new applications in medicine, science, and engineering.

  8. Complex dynamics induced by strong confinement - From tracer diffusion in strongly heterogeneous media to glassy relaxation of dense fluids in narrow slits

    NASA Astrophysics Data System (ADS)

    Mandal, Suvendu; Spanner-Denzer, Markus; Leitmann, Sebastian; Franosch, Thomas

    2017-08-01

    We provide an overview of recent advances of the complex dynamics of particles in strong confinements. The first paradigm is the Lorentz model where tracers explore a quenched disordered host structure. Such systems naturally occur as limiting cases of binary glass-forming systems if the dynamics of one component is much faster than the other. For a certain critical density of the host structure the tracers undergo a localization transition which constitutes a critical phenomenon. A series of predictions in the vicinity of the transition have been elaborated and tested versus computer simulations. Analytical progress is achieved for small obstacle densities. The second paradigm is a dense strongly interacting liquid confined to a narrow slab. Then the glass transition depends nonmonotonically on the separation of the plates due to an interplay of local packing and layering. Very small slab widths allow to address certain features of the statics and dynamics analytically.

  9. Mesoscale simulations of shockwave energy dissipation via chemical reactions.

    PubMed

    Antillon, Edwin; Strachan, Alejandro

    2015-02-28

    We use a particle-based mesoscale model that incorporates chemical reactions at a coarse-grained level to study the response of materials that undergo volume-reducing chemical reactions under shockwave-loading conditions. We find that such chemical reactions can attenuate the shockwave and characterize how the parameters of the chemical model affect this behavior. The simulations show that the magnitude of the volume collapse and velocity at which the chemistry propagates are critical to weaken the shock, whereas the energetics in the reactions play only a minor role. Shock loading results in transient states where the material is away from local equilibrium and, interestingly, chemical reactions can nucleate under such non-equilibrium states. Thus, the timescales for equilibration between the various degrees of freedom in the material affect the shock-induced chemistry and its ability to attenuate the propagating shock.

  10. Controlling shockwave dynamics using architecture in periodic porous materials

    NASA Astrophysics Data System (ADS)

    Branch, Brittany; Ionita, Axinte; Clements, Bradford E.; Montgomery, David S.; Jensen, Brian J.; Patterson, Brian; Schmalzer, Andrew; Mueller, Alexander; Dattelbaum, Dana M.

    2017-04-01

    Additive manufacturing (AM) is an attractive approach for the design and fabrication of structures capable of achieving controlled mechanical response of the underlying deformation mechanisms. While there are numerous examples illustrating how the quasi-static mechanical responses of polymer foams have been tailored by additive manufacturing, there is limited understanding of the response of these materials under shockwave compression. Dynamic compression experiments coupled with time-resolved X-ray imaging were performed to obtain insights into the in situ evolution of shockwave coupling to porous, periodic polymer foams. We further demonstrate shock wave modulation or "spatially graded-flow" in shock-driven experiments via the spatial control of layer symmetries afforded by additive manufacturing techniques at the micron scale.

  11. A shockwave approach for web-based clinical motion analysis.

    PubMed

    Lemaire, Edward

    2004-01-01

    Advances in Internet connectivity and personal multimedia computing have created opportunities for integrating simple motion analysis into clinical practice. The Macromedia Shockwave environment provides tools for creating media-rich software that runs within a Web browser. For this project, clinical motion analysis software was created using Shockwave that can load digital video clips of a client's motion, step/shuttle/play through the clip, superimpose a grid over the video image, measure relative joint angles, scale to a linear factor, measure distances, and measure average velocities. After installing the Shockwave and Quicktime video plug-ins, the Motion Analysis Tools-Shockwave program runs directly from a Web page hyperlink. Program testing involved comparing angle measurements, linear distances, stride length, and walking speed among six video clips. The first three clips were of a transtibial prosthesis being carried through the field of view (640 x 480, 320 x 240, 320 x 240 enlarged to 640 x 480). The second set of three clips was of a metal square carried through the field of view. Average root mean square errors were 2.0 degrees for angle measures and 1.2 cm for length measures. Stride length standard deviation was 4.6 cm (mean length = 212.1 cm). Average walking speed standard deviation was 0.015 m/s (mean speed = 1.15 m/s). The test results were consistent with video motion analysis results and within an acceptable range for clinical design-making. This Web-based motion analysis approach provides a useful tool for ubiquitous, quantitative, clinical gait analysis.

  12. Laser-induced shockwave propagation from ablation in a cavity

    SciTech Connect

    Zeng Xianzhong; Mao Xianglei; Mao, Samuel S.; Wen, S.-B.; Greif, Ralph; Russo, Richard E.

    2006-02-06

    The propagation of laser-induced shockwaves from ablation inside of cavities was determined from time-resolved shadowgraph images. The temperature and electron number density of the laser-induced plasma was determined from spectroscopic measurements. These properties were compared to those for laser ablation on the flat surface under the same energy and background gas condition. A theoretical model was proposed to determine the amount of energy and vaporized mass stored in the vapor plume based on these measurements.

  13. Raman study of the shockwave effect on collagens.

    PubMed

    Cárcamo, José J; Aliaga, Alvaro E; Clavijo, R Ernesto; Brañes, Manuel R; Campos-Vallette, Marcelo M

    2012-02-01

    The Raman spectra (1800-200 cm(-1)) of isolated dried collagen types I and III were recorded at different times after shockwave (SW) application in aqueous media. SWs were applied in a single session. One week after the SW application the vibrational data analysis indicates changes in the conformation of the collagens; orientational changes are also inferred. During the next three weeks collagens tended to recover the conformation and orientation existing before SW application.

  14. Efficacy of Extracorporeal Shockwave Therapy in Frozen Shoulder

    PubMed Central

    Vahdatpour, Babak; Taheri, Parisa; Zade, Abolghasem Zare; Moradian, Saeed

    2014-01-01

    Background: Frozen shoulder has always been considered important because of the impact on the quality-of-life and long period of illness. Therefore, the use of noninvasive and safe techniques that can speed up the healing process of the disease is important. Methods: This study was a randomized clinical trial study on patients suffering from frozen shoulder who were referred to Isfahan University of Medical Sciences hospitals in 2011 and 2012. A total of 36 patients were enrolled in the study. Eligible patients were allocated into two groups. Intervention group received extracorporeal shockwave therapy (ESWT) once a week for 4 weeks. The control group received sham shockwave therapy once a week for 4 weeks. On the follow-up period, changes in individual performance and the amount of pain and disability were assessed by the Shoulder Pain and Disability Index (SPADI) questionnaire and the range of motion changes were assessed by a goniometer. Data obtained were analyzed using SPSS software. Results: Variance analysis revealed a difference in the mean pain and disability score of the SPADI questionnaire, flexion, extension, and abduction, external rotation of involved shoulder between two groups before and after the shockwave therapy (P < 0.05). Improvement was more satisfactory in the intervention group, but the mean internal rotation did not differ significantly in two groups (P > 0.05). Conclusions: The use of ESWT seems to have positive effects on treatment, quicker return to daily activities, and quality-of-life improvement on frozen shoulder. PMID:25104999

  15. International Shock-Wave Database: Systematization of Experimental Data

    NASA Astrophysics Data System (ADS)

    Levashov, Pavel R.; Khishchenko, Konstantin V.; Lomonosov, Igor V.; Minakov, Dmitry V.; Zakharenkov, Alexey S.

    2011-06-01

    In this work, we announce the creation of the International Shock-Wave Database (ISWDB). Shock-wave and related dynamic material response data serve for calibrating, validating, and improving material models over very broad regions of the pressure-temperature-density phase space. Our objectives are (i) to develop a database on thermodynamic and mechanical properties of materials under conditions of shock wave and other dynamic loadings, selected related quantities of interest, and the meta-data that describes the provenance of the measurements and material models, and (ii) to make this database available internationally thru the Internet, in an interactive form. The development and operation of the ISWDB will be guided by input from a steering committee. The database will be installed on two mirrored web-servers, one in Russia and the other in USA. The database will provide access to original experimental data on shock compression, non-shock dynamic loadings, isentropic expansion, measurements of sound speed in the Hugoniot state, and time-dependent free-surface or window-interface velocity profiles. We believe that the ISWDB will be a useful tool for the shock-wave community.

  16. Shockwave-Gas bubble Interaction in Complex Configurations

    NASA Astrophysics Data System (ADS)

    Li, Fenfang; Arora, Manish; Ohl, Claus-Dieter

    2014-11-01

    Shockwave-gas bubble interaction is relevant in biomedical applications such as shock wave lithotripsy and histotripsy where cell rupture needs to be avoided or is advantageous, as well as in the mining industry for microbubble aerated explosive gels. Here we demonstrate an experimental technique to study this interaction in a well-controlled manner utilizing microfluidics and high-speed photography of up to 2 million frames per second. Micron-size gas bubbles are generated with a continuous wave laser beam modulated with a digital hologram, whereas the shockwave and an expanding cavitation bubble are created with a pulsed laser. Gas bubbles are known to generate fast jets when impacted by shockwaves and we observe jets of 125 m/s and more. Complex interactions are reported for geometric arrangements of up to 6 gas bubbles: cascaded and simultaneous collapse of gas bubbles, back reaction of the gas bubbles on the cavitation bubble, and the deflection of jets for neighbouring bubbles. Besides, we find secondary cavitation within the liquid film below the expanding cavitation bubble, which is likely due to trapped gas exposed to low pressures and high shear, i.e. a regime relevant for cavitation in lubricating films.

  17. Dense suspension splash

    NASA Astrophysics Data System (ADS)

    Dodge, Kevin M.; Peters, Ivo R.; Ellowitz, Jake; Schaarsberg, Martin H. Klein; Jaeger, Heinrich M.; Zhang, Wendy W.

    2014-11-01

    Impact of a dense suspension drop onto a solid surface at speeds of several meters-per-second splashes by ejecting individual liquid-coated particles. Suppression or reduction of this splash is important for thermal spray coating and additive manufacturing. Accomplishing this aim requires distinguishing whether the splash is generated by individual scattering events or by collective motion reminiscent of liquid flow. Since particle inertia dominates over surface tension and viscous drag in a strong splash, we model suspension splash using a discrete-particle simulation in which the densely packed macroscopic particles experience inelastic collisions but zero friction or cohesion. Numerical results based on this highly simplified model are qualitatively consistent with observations. They also show that approximately 70% of the splash is generated by collective motion. Here an initially downward-moving particle is ejected into the splash because it experiences a succession of low-momentum-change collisions whose effects do not cancel but instead accumulate. The remainder of the splash is generated by scattering events in which a small number of high-momentum-change collisions cause a particle to be ejected upwards. Current Address: Physics of Fluids Group, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.

  18. Dense Suspension Splash

    NASA Astrophysics Data System (ADS)

    Zhang, Wendy; Dodge, Kevin M.; Peters, Ivo R.; Ellowitz, Jake; Klein Schaarsberg, Martin H.; Jaeger, Heinrich M.

    2014-03-01

    Upon impact onto a solid surface at several meters-per-second, a dense suspension plug splashes by ejecting liquid-coated particles. We study the mechanism for splash formation using experiments and a numerical model. In the model, the dense suspension is idealized as a collection of cohesionless, rigid grains with finite surface roughness. The grains also experience lubrication drag as they approach, collide inelastically and rebound away from each other. Simulations using this model reproduce the measured momentum distribution of ejected particles. They also provide direct evidence supporting the conclusion from earlier experiments that inelastic collisions, rather than viscous drag, dominate when the suspension contains macroscopic particles immersed in a low-viscosity solvent such as water. Finally, the simulations reveal two distinct routes for splash formation: a particle can be ejected by a single high momentum-change collision. More surprisingly, a succession of small momentum-change collisions can accumulate to eject a particle outwards. Supported by NSF through its MRSEC program (DMR-0820054) and fluid dynamics program (CBET-1336489).

  19. Bacterial biofilm disruption using laser-generated shockwaves

    NASA Astrophysics Data System (ADS)

    Navarro, Artemio; Taylor, Zachary D.; Matolek, Anthony Z.; Weltman, Ahuva; Ramaprasad, Vidyunmala; Huang, Sean; Beenhouwer, David O.; Haake, David A.; Gupta, Vijay; Grundfest, Warren S.

    2012-03-01

    Bacterial related infections are a burden on the healthcare industry. A system was built to test the efficacy of laser generated shockwaves on S. epidermidis biofilms (RP62A) grown on polystyrene surfaces. The system is based on a Qswitched, ND:YAG pulsed laser with an output wavelength of 1.064 μm that ablates titanium-coated soda-lime glass. Results show that the system is capable of generating stress profiles that can effectively delaminate biofilm structures from polymer surfaces.

  20. Dense topological spaces and dense continuity

    NASA Astrophysics Data System (ADS)

    Aldwoah, Khaled A.

    2013-09-01

    There are several attempts to generalize (or "widen") the concept of topological space. This paper uses equivalence relations to generalize the concept of topological space via the concept of equivalence relations. By the generalization, we can introduce from particular topology on a nonempty set X many new topologies, we call anyone of these new topologies a dense topology. In addition, we formulate some simple properties of dense topologies and study suitable generalizations of the concepts of limit points, closeness and continuity, as well as Jackson, Nörlund and Hahn dense topologies.

  1. Laboratory Simulations of Supernova Shockwave Progagation and ISM Interaction

    SciTech Connect

    Hansen, J F; Edwards, M J; Robey, H F; Miles, A R; Froula, D; Gregori, G; Edens, A; Ditmire, T

    2003-08-29

    High Mach number shockwaves were launched in laboratory plasmas to simulate supernova shockwave propagation. The experiments were carried out at inertial fusion facilities using large lasers. Spherical shocks were created by focusing laser pulses onto the tip of a solid pin surrounded by ambient gas. Ablated material from the pin would rapidly expand and launch a shock through the surrounding gas. Planar shocks were created by ablating material from one end of a cylindrical shocktube. Laser pulses were typically 1 ns in duration with ablative energies ranging from <1 J to >4 kJ. Shocks were propagated through various plasmas, and observed at spatial scales of up to 5 cm using optical and x-ray cameras. Interferometry techniques were used to deduce densities, and emission spectroscopy data were obtained to infer electron temperatures. Experimental results confirm that spherical shocks are Taylor-Sedov, and that radiative shocks stall sooner than non-radiative shocks. Unexpected results include the birth of a second shock ahead of the original, stalling shock, at the edge of the radiatively preheated region. We have begun experiments to simulate the interaction between shocks and interstellar material (ISM), and the subsequent turbulent mixing. Comparisons between experimental data and numerical simulations of shock evolution, stall, second shock birth, and interstellar material (ISM) interaction will be presented.

  2. Extracorporeal shockwave treatment for chronic diabetic foot ulcers.

    PubMed

    Wang, Ching-Jen; Kuo, Yur-Ren; Wu, Re-Wen; Liu, Rue-Tsuan; Hsu, Chi-Shiung; Wang, Feng-Sheng; Yang, Kuender D

    2009-03-01

    This prospective study compared extracorporeal shockwave treatment (ESWT) with hyperbaric oxygen therapy (HBO) in chronic diabetic foot ulcers. Seventy-two patients with 72 chronic diabetic foot ulcers were randomly divided into two groups of similar demographics with 34 patients with 36 ulcers in the ESWT group and 36 patients with 36 ulcers in the HBO group. Patients in the ESWT group received 300 + 100/cm(2) impulses of shockwave at 0.11 mJ/cm(2) energy flux density every 2 wk for 6 wk, whereas patients in the HBO group received HBO daily for 20 treatments. The evaluations included clinical assessment of the ulcers with photo-documentation, blood flow perfusion scan, bacteriological examination, histological study, and immunohistochemical analysis. The overall results showed completely healed in 31%, improved in 58%, and unchanged in 11% for the ESWT group and 22% completely healed, 50% improved, and 28% unchanged for the HBO group. The ESWT group showed significantly better clinical results and local blood flow perfusion, higher cell concentration, and activity than the HBO group. On immunohistochemical analysis, the ESWT group demonstrated significant increases in endothelial nitric oxide synthase, vessel endothelial growth factor, and proliferation cell nuclear antigen expressions and a decrease in transference-mediated digoxigenin-deoxy-UTP nick end-labeling expression than the HBO group. ESWT appears to be more effective than HBO in chronic diabetic foot ulcers.

  3. Mesoscale simulations of shockwave energy dissipation via chemical reactions

    NASA Astrophysics Data System (ADS)

    Antillon, Edwin; Strachan, Alejandro

    2015-06-01

    We use a particle-based mesoscale model that incorporates chemical reactions at a coarse-grained level to study the response of materials under shockwave-loading conditions. An additional implicit variable (the particle size) is used to describe volume-reducing chemical reactions using an intra-molecular potential inspired by Transition State Theory, while the dynamics of the center-of-mass motion evolves according to inter-particle forces. The equations of motion are derived from a Hamiltonian and the model captures both: total energy conservation and Galilean invariance. We demonstrate that this model captures complex thermo-mechanical-chemical processes, and we use these features to explore materials with the capabilities to dissipate shocks-wave energy due to ballistic impacts. Our results characterize how the parameters of the chemical model affect shock-wave attenuation, and we elucidate on how the coupling between the different energy-transferring mechanisms influences nucleation of chemistry for conditions away from equilibrium.

  4. Side effects of high-energy shockwaves in the human kidney: first experience with model comparing two shockwave sources.

    PubMed

    Roessler, W; Wieland, W F; Steinbach, P; Hofstaedter, F; Thüroff, S; Chaussy, C

    1996-12-01

    The side effects of high-energy shockwaves (HESW) from two different sources on kidney parenchyma obtained from 10 patients treated by radical nephrectomy for renal cell carcinoma were examined. Immediately after nephrectomy, the kidneys were perfused with cold HTK solution and kept in hypothermia (8 degrees C) for a maximum of 4 hours. In five cases, the tumor-free parenchyma was treated at the upper or lower renal pole with 2000 shocks, energy output 21 kV, in an experimental electromagnetic shockwave system (Siemens Co., Erlangen). In the other five cases, the upper or lower poles were treated with 2000 shocks, energy output 24 kV, in an electrohydraulic spark gap system (MFL 5000; Dornier Medizintechnik, Germering). The resulting tissue defects were analyzed by histologic examinations. Changes after treatment with the electromagnetic system were found mainly in the tubules and midsized blood vessels in a well-defined focal area. Treatment with the electrohydraulic system was followed by tubular and glomerular lesions combined with vessel defects in a patchy pattern. The model is able to define the side effects of HESW in the human kidney and to test the side effects of different lithotripters.

  5. Dense Deposit Disease

    PubMed Central

    Smith, Richard J.H; Harris, Claire L.; Pickering, Matthew C.

    2011-01-01

    Dense deposit disease (DDD) is an orphan disease that primarily affects children and young adults without sexual predilection. Studies of its pathophysiology have shown conclusively that it is caused by fluid-phase dysregulation of the alternative pathway of complement, however the role played by genetics and autoantibodies like C3 nephritic factors must be more thoroughly defined if we are to make an impact in the clinical management of this disease. There are currently no mechanism-directed therapies to offer affected patients, half of whom progress to end stage renal failure disease within 10 years of diagnosis. Transplant recipients face the dim prospect of disease recurrence in their allografts, half of which ultimately fail. More detailed genetic and complement studies of DDD patients may make it possible to identify protective factors prognostic for naïve kidney and transplant survival, or conversely risk factors associated with progression to renal failure and allograft loss. The pathophysiology of DDD suggests that a number of different treatments warrant consideration. As advances are made in these areas, there will be a need to increase healthcare provider awareness of DDD by making resources available to clinicians to optimize care for DDD patients. PMID:21601923

  6. Ariel's Densely Pitted Surface

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This mosaic of the four highest-resolution images of Ariel represents the most detailed Voyager 2 picture of this satellite of Uranus. The images were taken through the clear filter of Voyager's narrow-angle camera on Jan. 24, 1986, at a distance of about 130,000 kilometers (80,000 miles). Ariel is about 1,200 km (750 mi) in diameter; the resolution here is 2.4 km (1.5 mi). Much of Ariel's surface is densely pitted with craters 5 to 10 km (3 to 6 mi) across. These craters are close to the threshold of detection in this picture. Numerous valleys and fault scarps crisscross the highly pitted terrain. Voyager scientists believe the valleys have formed over down-dropped fault blocks (graben); apparently, extensive faulting has occurred as a result of expansion and stretching of Ariel's crust. The largest fault valleys, near the terminator at right, as well as a smooth region near the center of this image, have been partly filled with deposits that are younger and less heavily cratered than the pitted terrain. Narrow, somewhat sinuous scarps and valleys have been formed, in turn, in these young deposits. It is not yet clear whether these sinuous features have been formed by faulting or by the flow of fluids.

    JPL manages the Voyager project for NASA's Office of Space Science.

  7. Radiative properties of dense nanofluids.

    PubMed

    Wei, Wei; Fedorov, Andrei G; Luo, Zhongyang; Ni, Mingjiang

    2012-09-01

    The radiative properties of dense nanofluids are investigated. For nanofluids, scattering and absorbing of electromagnetic waves by nanoparticles, as well as light absorption by the matrix/fluid in which the nanoparticles are suspended, should be considered. We compare five models for predicting apparent radiative properties of nanoparticulate media and evaluate their applicability. Using spectral absorption and scattering coefficients predicted by different models, we compute the apparent transmittance of a nanofluid layer, including multiple reflecting interfaces bounding the layer, and compare the model predictions with experimental results from the literature. Finally, we propose a new method to calculate the spectral radiative properties of dense nanofluids that shows quantitatively good agreement with the experimental results.

  8. Shock-induced bubble collapse in a vessel: Implications for vascular injury in shockwave lithotripsy

    NASA Astrophysics Data System (ADS)

    Coralic, Vedran; Colonius, Tim

    2014-11-01

    In shockwave lithotripsy, shocks are repeatedly focused on kidney stones so to break them. The process leads to cavitation in tissue, which leads to hemorrhage. We hypothesize that shock-induced collapse (SIC) of preexisting bubbles is a potential mechanism for vascular injury. We study it numerically with an idealized problem consisting of the three-dimensional SIC of an air bubble immersed in a cylindrical water column embedded in gelatin. The gelatin is a tissue simulant and can be treated as a fluid due to fast time scales and small spatial scales of collapse. We thus model the problem as a compressible multicomponent flow and simulate it with a shock- and interface-capturing numerical method. The method is high-order, conservative and non-oscillatory. Fifth-order WENO is used for spatial reconstruction and an HLLC Riemann solver upwinds the fluxes. A third-order TVD-RK scheme evolves the solution. We evaluate the potential for injury in SIC for a range of pressures, bubble and vessel sizes, and tissue properties. We assess the potential for injury by comparing the finite strains in tissue, obtained by particle tracking, to ultimate strains from experiments. We conclude that SIC may contribute to vascular rupture and discuss the smallest bubble sizes needed for injury. This research was supported by NIH Grant No. 2PO1DK043881 and utilized XSEDE, which is supported by NSF Grant No. OCI-1053575.

  9. In vitro study of the mechanical effects of shock-wave lithotripsy.

    PubMed

    Howard, D; Sturtevant, B

    1997-01-01

    Impulsive stress in repeated shock waves administered during extracorporeal shock-wave lithotripsy (ESWL) causes injury to kidney tissue. In a study of the mechanical input of ESWL, the effects of focused shock waves on thin planar polymeric membranes immersed in a variety of tissue-mimicking fluids have been examined. A direct mechanism of failure by shock compression and an indirect mechanism by bubble collapse have been observed. Thin membranes are easily damaged by bubble collapse. After propagating through cavitation-free acoustically heterogeneous media (liquids mixed with hollow glass spheres, and tissue) shock waves cause membranes to fail in fatigue by a shearing mechanism. As is characteristic of dynamic fatigue, the failure stress increases with strain rate, determined by the amplitude and rise time of the attenuated shock wave. Shocks with large amplitude and short rise time (i.e., in uniform media) cause no damage. Thus the inhomogeneity of tissue is likely to contribute to injury in ESWL. A definition of dose is proposed which yields a criterion for damage based on measurable shock wave properties.

  10. Shock-wave measurement using a calibrated interferometric fiber-tip sensor.

    PubMed

    Koch, C; Molkenstruck, W; Reibold, R

    1997-01-01

    The results of shock-wave measurements using a calibrated fiber-tip sensor based on a Michelson interferometer are presented. A transfer function, obtained by an independent experiment that describes the properties of the sensor system, was used to correct the measured shock-wave data in the Fourier frequency domain. The phase of the transfer function was determined from its amplitude by a fitting procedure using minimum-phase terms. As an example of application, the acoustic output field of an electromagnetic lithotriptor was investigated, and the shock-wave source was reliably characterized. The measured data provide a basis for estimating the hazard to which a patient is exposed during shock-wave treatment and for optimizing a lithotriptor system to produce a sharply localized and effective acoustic field.

  11. Mach reflection in a warm dense plasma

    NASA Astrophysics Data System (ADS)

    Foster, J. M.; Rosen, P. A.; Wilde, B. H.; Hartigan, P.; Perry, T. S.

    2010-11-01

    The phenomenon of irregular shock-wave reflection is of importance in high-temperature gas dynamics, astrophysics, inertial-confinement fusion, and related fields of high-energy-density science. However, most experimental studies of irregular reflection have used supersonic wind tunnels or shock tubes, and few or no data are available for Mach reflection phenomena in the plasma regime. Similarly, analytic studies have often been confined to calorically perfect gases. We report the first direct observation, and numerical modeling, of Mach stem formation for a warm, dense plasma. Two ablatively driven aluminum disks launch oppositely directed, near-spherical shock waves into a cylindrical plastic block. The interaction of these shocks results in the formation of a Mach-ring shock that is diagnosed by x-ray backlighting. The data are modeled using radiation hydrocodes developed by AWE and LANL. The experiments were carried out at the University of Rochester's Omega laser [J. M. Soures, R. L. McCrory, C. P. Verdon et al., Phys. Plasmas 3, 2108 (1996)] and were inspired by modeling [A. M. Khokhlov, P. A. Höflich, E. S. Oran et al., Astrophys J. 524, L107 (1999)] of core-collapse supernovae that suggest that in asymmetric supernova explosion significant mass may be ejected in a Mach-ring formation launched by bipolar jets.

  12. Experimental Results on Shock-Wave Interaction on Compression Ramps

    NASA Astrophysics Data System (ADS)

    Passaro, A.; Fantoni, G.; Biagioni, L.; Cardone, G.

    2005-02-01

    A set of new experimental tests was carried out with intrusive and non-intrusive measurements related to Shock-Wave Boundary-Layer Interaction (SWBLI) on a 15 deg compression ramp model in a Mach 6 flow with total enthalpy of 1.8-2.5 MJ/kg. The facility was the modified High Enthalpy Arc-heated Tunnel at Alta, Pisa, Italy, with improved performance and diagnostics, in order to provide good control on the actual properties of the tunnel flow. The model shape and test conditions were the same of the previous test campaign carried out during the FESTIP programme. The new results confirmed a good agreement between intrusive and non-intrusive measurements and were also compared with success with numerical predictions, eventually explaining the discrepancy on wall heat flux that was found on the previous test campaign.

  13. Laser Shockwave Technique For Characterization Of Nuclear Fuel Plate Interfaces

    SciTech Connect

    James A. Smith; Barry H. Rabin; Mathieu Perton; Daniel Lévesque; Jean-Pierre Monchalin; Martin Lord

    2012-07-01

    The US National Nuclear Security Agency is tasked with minimizing the worldwide use of high-enriched uranium. One aspect of that effort is the conversion of research reactors to monolithic fuel plates of low-enriched uranium. The manufacturing process includes hot isostatic press bonding of an aluminum cladding to the fuel foil. The Laser Shockwave Technique (LST) is here evaluated for characterizing the interface strength of fuel plates using depleted Uranium/Mo foils. LST is a non-contact method that uses lasers for the generation and detection of large amplitude acoustic waves and is therefore well adapted to the quality assurance of this process. Preliminary results show a clear signature of well-bonded and debonded interfaces and the method is able to classify/rank the bond strength of fuel plates prepared under different HIP conditions.

  14. Extracorporeal shockwave lithotripsy of gallstones. Possibilities and limitations.

    PubMed Central

    Vergunst, H; Terpstra, O T; Brakel, K; Laméris, J S; van Blankenstein, M; Schröder, F H

    1989-01-01

    Recently extracorporeal shockwave lithotripsy (ESWL) has been introduced as a nonoperative treatment for gallstone disease. Except for lung damage, no significant adverse effects of ESWL of gallbladder stones have been observed in animals. In clinical use ESWL of gallbladder stones is now confined to 15% to 30% of symptomatic patients. To achieve complete stone clearance, ESWL of gallbladder stones must be supplemented by an adjuvant therapy. ESWL of bile duct stones is highly effective and can be considered in patients in whom primary endoscopic or surgical stone removal fails. Second generation lithotriptors allow anesthesia-free (outpatient) treatments, but the clinical experience with most of these ESWL devices is still limited. The likelihood of gallbladder stone recurrence is a major disadvantage of ESWL treatment, which raises the issue of cost-effectiveness. ESWL for cholelithiasis is a promising treatment modality with good short-term and unknown long-term results. PMID:2684058

  15. Laser shockwave technique for characterization of nuclear fuel plate interfaces

    SciTech Connect

    Perton, M.; Levesque, D.; Monchalin, J.-P.; Lord, M.; Smith, J. A.; Rabin, B. H.

    2013-01-25

    The US National Nuclear Security Agency is tasked with minimizing the worldwide use of high-enriched uranium. One aspect of that effort is the conversion of research reactors to monolithic fuel plates of low-enriched uranium. The manufacturing process includes hot isostatic press bonding of an aluminum cladding to the fuel foil. The Laser Shockwave Technique (LST) is here evaluated for characterizing the interface strength of fuel plates using depleted Uranium/Mo foils. LST is a non-contact method that uses lasers for the generation and detection of large amplitude acoustic waves and is therefore well adapted to the quality assurance of this process. Preliminary results show a clear signature of well-bonded and debonded interfaces and the method is able to classify/rank the bond strength of fuel plates prepared under different HIP conditions.

  16. Thermal loading of laser induced plasma shockwaves on thin films in nanoparticle removal

    SciTech Connect

    Varghese, Ivin; Zhou Dong; Peri, M. D. Murthy; Cetinkaya, Cetin

    2007-06-01

    Damage concerns, such as substrate/film material alterations, damage, and delamination of thin films, have become a central problem in sub-100 nm particle removal applications. In the laser induced plasma (LIP) removal technique both LIP shockwave and radiation heating are potential sources of thermomechanical damage. The specific objective of current study is to conduct a computational investigation of the LIP shockwave effect on the thermoelastic response of a thin chromium (Cr) film deposited on a quartz substrate and to identify the conditions leading to the onset of plastic film deformations. The experimentally characterized shockwave pressure and temperature (approximated from gas dynamic relations) were prescribed as boundary conditions in the computational analysis. From the shockwave arrival times for different travel distances, the shockwave radius as well as the velocity were obtained as a function of the shockwave propagation time. Radial (and circumferential) stresses, caused by thermal expansion of the Cr film, were most dominant and, hence, of damage concern. It is determined that the resultant temperature rise utilizing a 1064 nm Nd:yttrium-aluminum-garnet (YAG) laser (450 mJ) due to the film-shockwave interactions was not sufficiently high to initiate film and/or substrate damage. No material alteration/damage of the Cr film is predicted due to the temperature and pressure of LIP shockwaves at the firing distance of 2 mm, with a high strain rate gain factor of two (minimum), though damage was observed experimentally for 1064 nm Nd:YAG laser at the pulse energy of 370 mJ. Reported results indicate that the leading cause of observed thin film damage during nanoparticle removal is almost certainly radiation heating from the LIP core.

  17. Laser induced shockwaves on flexible polymers for treatment of bacterial biofilms.

    PubMed

    Navarro, Artemio; Taylor, Zachary D; Beenhouwer, David; Haake, David A; Gupta, Vijay; Grundfest, Warren S

    2011-01-01

    Bacterial biofilm-related infections are a burden on the healthcare industry. The effect of laser generated shockwaves through polycarbonate, a flexible polymer, is explored for its ability to generate high peak stresses, and also for its ability to conform to complex wound surfaces. Shockwave pulses in Al coated polycarbonate substrates and a resulting peak stress of greater than 60 MPa was measured which should provide sufficient pressure to kill bacteria.

  18. Developing A Laser Shockwave Model For Characterizing Diffusion Bonded Interfaces

    SciTech Connect

    James A. Smith; Jeffrey M. Lacy; Barry H. Rabin

    2014-07-01

    12. Other advances in QNDE and related topics: Preferred Session Laser-ultrasonics Developing A Laser Shockwave Model For Characterizing Diffusion Bonded Interfaces 41st Annual Review of Progress in Quantitative Nondestructive Evaluation Conference QNDE Conference July 20-25, 2014 Boise Centre 850 West Front Street Boise, Idaho 83702 James A. Smith, Jeffrey M. Lacy, Barry H. Rabin, Idaho National Laboratory, Idaho Falls, ID ABSTRACT: The US National Nuclear Security Agency has a Global Threat Reduction Initiative (GTRI) which is assigned with reducing the worldwide use of high-enriched uranium (HEU). A salient component of that initiative is the conversion of research reactors from HEU to low enriched uranium (LEU) fuels. An innovative fuel is being developed to replace HEU. The new LEU fuel is based on a monolithic fuel made from a U-Mo alloy foil encapsulated in Al-6061 cladding. In order to complete the fuel qualification process, the laser shock technique is being developed to characterize the clad-clad and fuel-clad interface strengths in fresh and irradiated fuel plates. The Laser Shockwave Technique (LST) is being investigated to characterize interface strength in fuel plates. LST is a non-contact method that uses lasers for the generation and detection of large amplitude acoustic waves to characterize interfaces in nuclear fuel plates. However the deposition of laser energy into the containment layer on specimen’s surface is intractably complex. The shock wave energy is inferred from the velocity on the backside and the depth of the impression left on the surface from the high pressure plasma pulse created by the shock laser. To help quantify the stresses and strengths at the interface, a finite element model is being developed and validated by comparing numerical and experimental results for back face velocities and front face depressions with experimental results. This paper will report on initial efforts to develop a finite element model for laser

  19. Failure after shockwave lithotripsy: is outcome machine dependent?

    PubMed

    Argyropoulos, A N; Tolley, D A

    2009-10-01

    To investigate the issue of shockwave lithotripsy failure by studying the effect of machine crossover to the Technomed Sonolith Vision (TSV) lithotriptor in patients with previously unsuccessfully treated renal stones with the Dornier Compact Delta (DCD). Records were examined for the period between 1998 and 2006. Parameters analysed were: size, multiple/single stones, location, treatments/stone. Seventy-six patients fulfilled the inclusion criteria. Following lithotripsy with the TSV, the stone-free rate (SFR) at 3 months was 56.7%, and the success rate (stone-free and fragments < or = 4 mm, SR) 86.7%. Twenty-two patients had multiple stones and the majority of the stones were located in the lower calyx (59.2%). Mean size was 8.9 mm prior to treatment with the TSV machine (10.2 mm for DCD). Further analysis followed in a subgroup of 42 patients of the same stone size (+/-2 mm) before and after DCD sessions. Mean stone size was 7 mm. The SFR was 61.9% (62.9% vs. 40.9% for single and multiple stones), and the SR was 88.1%. No difference in SFR was found for single or multiple stones in any of the two groups. The term 'extracorporeal shockwave lithotripsy (ESWL)-resistant stones' needs to be re-examined, as treatment with a different lithotriptor was successful in a group of stones where another machine had failed. Lithotripters with different shock wave characteristics may result in difference in the results of ESWL. Future research in ESWL should focus on stone characteristics and development of machines with the ability to adapt to specific stone features.

  20. Endoscopic-assisted electrohydraulic shockwave lithotripsy in standing sedated horses.

    PubMed

    Röcken, Michael; Fürst, Anton; Kummer, Martin; Mosel, Gesine; Tschanz, Theo; Lischer, Christoph J

    2012-07-01

    To report use of transendoscopic electrohydraulic shockwave lithotripsy for fragmentation of urinary calculi in horses. Case series. Male horses (n = 21). Fragmentation of cystic calculi (median, 6 cm diameter; range, 4-11 cm diameter) was achieved by transurethral endoscopy in standing sedated horses using an electrohydraulic shockwave fiber introduced through the biopsy channel of an endoscope. The fiber was advanced until it contacted the calculus. Repeated activation of the fiber was used to disrupt the calculus into fragments <1 cm diameter. Visibility within the bladder was maintained by repeated lavage with saline solution. Complete calculus removal was achieved in 20 horses (95%) with mean total surgical time of 168.6 minutes (range, 45-450). In the 20 horses with single calculi, 1-6 sessions were required to completely fragment the calculus. Except for 1 horse, in which perineal urethrotomy was eventually performed for complete fragment removal, fragments calculi were excreted via the urethra. Postoperative complications included hematuria because of severe mucosal erosion (n = 2), dysuria because of a trapped urethral fragment (2), small amount of urinary debris (1). One horse was euthanatized because of bladder rupture. Complete clearance of calculi and urinary debris was confirmed endoscopically 20 (3-45) days after the last session. Telephone follow-up (mean, 18.8 months; range, 7-24 months) revealed that horses had returned to previous activity levels without recurrence of clinical signs. Transendoscopic electrohydraulic lithotripsy appears to be an effective method for fragmentation of low-density calcium carbonate cystic calculi in male horses. Copyright 2012 by The American College of Veterinary Surgeons.

  1. Shockwave treatment for musculoskeletal diseases and bone consolidation: qualitative analysis of the literature☆

    PubMed Central

    Kertzman, Paulo; Lenza, Mario; Pedrinelli, André; Ejnisman, Benno

    2015-01-01

    Shockwave treatment is an option within orthopedics. The exact mechanism through which shockwaves function for treating musculoskeletal diseases is unknown. The aim of this study was to make a qualitative analysis on the effectiveness of shockwave treatment among patients with musculoskeletal pathological conditions and pseudarthrosis. Searches were conducted in the Cochrane Library, Medline and Lilacs databases. Thirty-nine studies that reported using shockwave treatment for musculoskeletal diseases were found. Their results varied greatly, as did the types of protocol used. The studies that evaluated the effectiveness of shockwave treatment for lateral epicondylitis, shoulder tendinopathy, knee osteoarthrosis, femoral head osteonecrosis and trochanteric bursitis reported inconsistent results for most of their patients. Those that evaluated patients with calcifying tendinopathy, plantar fasciitis, Achilles tendinopathy, patellar tendinopathy and pseudarthrosis showed benefits. Shockwave treatment is a safe and non-invasive method for chronic cases in which conventional techniques have been unsatisfactory and should be used in association with other treatment methods for tendinopathy. Further quality studies are needed. PMID:26229889

  2. Shockwave treatment for musculoskeletal diseases and bone consolidation: qualitative analysis of the literature.

    PubMed

    Kertzman, Paulo; Lenza, Mario; Pedrinelli, André; Ejnisman, Benno

    2015-01-01

    Shockwave treatment is an option within orthopedics. The exact mechanism through which shockwaves function for treating musculoskeletal diseases is unknown. The aim of this study was to make a qualitative analysis on the effectiveness of shockwave treatment among patients with musculoskeletal pathological conditions and pseudarthrosis. Searches were conducted in the Cochrane Library, Medline and Lilacs databases. Thirty-nine studies that reported using shockwave treatment for musculoskeletal diseases were found. Their results varied greatly, as did the types of protocol used. The studies that evaluated the effectiveness of shockwave treatment for lateral epicondylitis, shoulder tendinopathy, knee osteoarthrosis, femoral head osteonecrosis and trochanteric bursitis reported inconsistent results for most of their patients. Those that evaluated patients with calcifying tendinopathy, plantar fasciitis, Achilles tendinopathy, patellar tendinopathy and pseudarthrosis showed benefits. Shockwave treatment is a safe and non-invasive method for chronic cases in which conventional techniques have been unsatisfactory and should be used in association with other treatment methods for tendinopathy. Further quality studies are needed.

  3. Delayed stimulatory effect of low-intensity shockwaves on human periosteal cells.

    PubMed

    Tam, Kam-Fai; Cheung, Wing-Hoi; Lee, Kwong-Man; Qin, Ling; Leung, Kwok-Sui

    2005-09-01

    We investigated the effect of shockwaves on cells explanted from normal human periosteum to study the potential mechanisms of their responses and to determine suitable treatment settings. The cells were subjected to one shockwave treatment with systematic combinations of energy intensities (range, 0.05-0.5 mJ/mm) and number of shocks (range, 500-2000) whereas control cells received no treatment. The immediate effect on cell viability and the long-lasting effect on proliferation, viable cell number at Day 18, and mineralization at Day 35 were assessed. We observed an immediate dose-dependent destructive effect of shockwaves. Energy intensity and number of shocks contributed equally to viability. Total energy dose (intensity x number of shocks) was a better reference for determining the shockwave effect. We also found a long-term stimulatory effect on proliferation, viable cell number, and calcium deposition of human periosteal cells. At the same total energy dose, low-intensity shockwaves with more shocks (0.12 mJ/mm at 1250 shocks) were more favorable for enhancing cellular activities than high-intensity waves with fewer shocks (0.5 mJ/mm at 300 shocks). These findings document some of the biochemical changes of periosteal cells during shockwave treatments.

  4. Dynamics of plasma expansion and shockwave formation in femtosecond laser-ablated aluminum plumes in argon gas at atmospheric pressures

    SciTech Connect

    Miloshevsky, Alexander; Harilal, Sivanandan S.; Miloshevsky, Gennady Hassanein, Ahmed

    2014-04-15

    Plasma expansion with shockwave formation during laser ablation of materials in a background gasses is a complex process. The spatial and temporal evolution of pressure, temperature, density, and velocity fields is needed for its complete understanding. We have studied the expansion of femtosecond (fs) laser-ablated aluminum (Al) plumes in Argon (Ar) gas at 0.5 and 1 atmosphere (atm). The expansion of the plume is investigated experimentally using shadowgraphy and fast-gated imaging. The computational fluid dynamics (CFD) modeling is also carried out. The position of the shock front measured by shadowgraphy and fast-gated imaging is then compared to that obtained from the CFD modeling. The results from the three methods are found to be in good agreement, especially during the initial stage of plasma expansion. The computed time- and space-resolved fields of gas-dynamic parameters have provided valuable insights into the dynamics of plasma expansion and shockwave formation in fs-pulse ablated Al plumes in Ar gas at 0.5 and 1 atm. These results are compared to our previous data on nanosecond (ns) laser ablation of Al [S. S. Harilal et al., Phys. Plasmas 19, 083504 (2012)]. It is observed that both fs and ns plumes acquire a nearly spherical shape at the end of expansion in Ar gas at 1 atm. However, due to significantly lower pulse energy of the fs laser (5 mJ) compared to pulse energy of the ns laser (100 mJ) used in our studies, the values of pressure, temperature, mass density, and velocity are found to be smaller in the fs laser plume, and their time evolution occurs much faster on the same time scale. The oscillatory shock waves clearly visible in the ns plume are not observed in the internal region of the fs plume. These experimental and computational results provide a quantitative understanding of plasma expansion and shockwave formation in fs-pulse and ns-pulse laser ablated Al plumes in an ambient gas at atmospheric pressures.

  5. Atoms in dense plasmas

    SciTech Connect

    More, R.M.

    1986-01-01

    Recent experiments with high-power pulsed lasers have strongly encouraged the development of improved theoretical understanding of highly charged ions in a dense plasma environment. This work examines the theory of dense plasmas with emphasis on general rules which govern matter at extreme high temperature and density. 106 refs., 23 figs.

  6. Extended asymmetric hot region formation due to shockwave interactions following void collapse in shocked high explosive

    SciTech Connect

    Shan, Tzu -Ray; Wixom, Ryan R.; Thompson, Aidan P.

    2016-08-01

    In both continuum hydrodynamics simulations and also multimillion atom reactive molecular dynamics simulations of shockwave propagation in single crystal pentaerythritol tetranitrate (PETN) containing a cylindrical void, we observed the formation of an initial radially symmetric hot spot. By extending the simulation time to the nanosecond scale, however, we observed the transformation of the small symmetric hot spot into a longitudinally asymmetric hot region extending over a much larger volume. Performing reactive molecular dynamics shock simulations using the reactive force field (ReaxFF) as implemented in the LAMMPS molecular dynamics package, we showed that the longitudinally asymmetric hot region was formed by coalescence of the primary radially symmetric hot spot with a secondary triangular hot zone. We showed that the triangular hot zone coincided with a double-shocked region where the primary planar shockwave was overtaken by a secondary cylindrical shockwave. The secondary cylindrical shockwave originated in void collapse after the primary planar shockwave had passed over the void. A similar phenomenon was observed in continuum hydrodynamics shock simulations using the CTH hydrodynamics package. Furthermore, the formation and growth of extended asymmetric hot regions on nanosecond timescales has important implications for shock initiation thresholds in energetic materials.

  7. Extended asymmetric hot region formation due to shockwave interactions following void collapse in shocked high explosive

    DOE PAGES

    Shan, Tzu -Ray; Wixom, Ryan R.; Thompson, Aidan P.

    2016-08-01

    In both continuum hydrodynamics simulations and also multimillion atom reactive molecular dynamics simulations of shockwave propagation in single crystal pentaerythritol tetranitrate (PETN) containing a cylindrical void, we observed the formation of an initial radially symmetric hot spot. By extending the simulation time to the nanosecond scale, however, we observed the transformation of the small symmetric hot spot into a longitudinally asymmetric hot region extending over a much larger volume. Performing reactive molecular dynamics shock simulations using the reactive force field (ReaxFF) as implemented in the LAMMPS molecular dynamics package, we showed that the longitudinally asymmetric hot region was formed bymore » coalescence of the primary radially symmetric hot spot with a secondary triangular hot zone. We showed that the triangular hot zone coincided with a double-shocked region where the primary planar shockwave was overtaken by a secondary cylindrical shockwave. The secondary cylindrical shockwave originated in void collapse after the primary planar shockwave had passed over the void. A similar phenomenon was observed in continuum hydrodynamics shock simulations using the CTH hydrodynamics package. Furthermore, the formation and growth of extended asymmetric hot regions on nanosecond timescales has important implications for shock initiation thresholds in energetic materials.« less

  8. Extended asymmetric hot region formation due to shockwave interactions following void collapse in shocked high explosive

    SciTech Connect

    Shan, Tzu -Ray; Wixom, Ryan R.; Thompson, Aidan P.

    2016-08-01

    In both continuum hydrodynamics simulations and also multimillion atom reactive molecular dynamics simulations of shockwave propagation in single crystal pentaerythritol tetranitrate (PETN) containing a cylindrical void, we observed the formation of an initial radially symmetric hot spot. By extending the simulation time to the nanosecond scale, however, we observed the transformation of the small symmetric hot spot into a longitudinally asymmetric hot region extending over a much larger volume. Performing reactive molecular dynamics shock simulations using the reactive force field (ReaxFF) as implemented in the LAMMPS molecular dynamics package, we showed that the longitudinally asymmetric hot region was formed by coalescence of the primary radially symmetric hot spot with a secondary triangular hot zone. We showed that the triangular hot zone coincided with a double-shocked region where the primary planar shockwave was overtaken by a secondary cylindrical shockwave. The secondary cylindrical shockwave originated in void collapse after the primary planar shockwave had passed over the void. A similar phenomenon was observed in continuum hydrodynamics shock simulations using the CTH hydrodynamics package. Furthermore, the formation and growth of extended asymmetric hot regions on nanosecond timescales has important implications for shock initiation thresholds in energetic materials.

  9. Extended asymmetric hot region formation due to shockwave interactions following void collapse in shocked high explosive

    NASA Astrophysics Data System (ADS)

    Shan, Tzu-Ray; Wixom, Ryan R.; Thompson, Aidan P.

    2016-08-01

    In both continuum hydrodynamics simulations and also multimillion atom reactive molecular dynamics simulations of shockwave propagation in single crystal pentaerythritol tetranitrate (PETN) containing a cylindrical void, we observed the formation of an initial radially symmetric hot spot. By extending the simulation time to the nanosecond scale, however, we observed the transformation of the small symmetric hot spot into a longitudinally asymmetric hot region extending over a much larger volume. Performing reactive molecular dynamics shock simulations using the reactive force field (ReaxFF) as implemented in the LAMMPS molecular dynamics package, we showed that the longitudinally asymmetric hot region was formed by coalescence of the primary radially symmetric hot spot with a secondary triangular hot zone. We showed that the triangular hot zone coincided with a double-shocked region where the primary planar shockwave was overtaken by a secondary cylindrical shockwave. The secondary cylindrical shockwave originated in void collapse after the primary planar shockwave had passed over the void. A similar phenomenon was observed in continuum hydrodynamics shock simulations using the CTH hydrodynamics package. The formation and growth of extended asymmetric hot regions on nanosecond timescales has important implications for shock initiation thresholds in energetic materials.

  10. [Trigger points - Diagnosis and treatment concepts with special reference to extracorporeal shockwaves].

    PubMed

    Gleitz, M; Hornig, K

    2012-02-01

    The 70-year-old trigger point theory has experienced a growing scientific confirmation and clinical significance as a consequence of recent muscle pain research. The trigger point pain formation is caused by high levels of vasoneuroactive substances. Depending on intensity and duration of the muscle stimulus the central pain processing is modified and leads to characteristic referred pain patterns. The most effective conventional forms of treatment are aimed at a direct mechanical manipulation of the trigger point as are new forms of therapy with focused and radial shockwaves. By using high pressures the focused shockwaves in particular are suitable to provoke local and referred pain and thus simplify the trigger point diagnosis. The empirically found therapeutic effect of shockwaves on muscles is hypothetical and can be explained in analogy with validated reactions of shockwaves in non-muscle tissues. Overall, the shockwave therapy on muscles represents a confirmation and extension of the existing trigger point therapy. It seems to be suitable for treating functional muscular disorders and myofascial pain syndromes within the locomotor system.

  11. High-speed imaging optical techniques for shockwave and droplets atomization analysis

    NASA Astrophysics Data System (ADS)

    Slangen, Pierre R.; Lauret, Pierre; Heymes, Frederic; Aprin, Laurent; Lecysyn, Nicolas

    2016-12-01

    Droplets atomization by shockwave can act as a consequence in domino effects on an industrial facility: aggression of a storage tank (projectile from previous event, for example) can cause leakage of hazardous material (toxic and flammable). As the accident goes on, a secondary event can cause blast generation, impacting the droplets and resulting in their atomization. Therefore, exchange surface increase impacts the evaporation rate. This can be an issue in case of dispersion of such a cloud. The experiments conducted in the lab generate a shockwave with an open-ended shock tube to break up liquid droplets. As the expected shockwave speed is about 400 m/s (˜Mach 1.2), the interaction with falling drops is very short. High-speed imaging is performed at about 20,000 fps. The shockwave is measured using both overpressure sensors: particle image velocimetry and pure in line shadowgraphy. The size of fragmented droplets is optically measured by direct shadowgraphy simultaneously in different directions. In these experiments, secondary breakups of a droplet into an important number of smaller droplets from the shockwave-induced flow are shown. The results of the optical characterizations are discussed in terms of shape, velocity, and size.

  12. A cumulative shear mechanism for tissue damage initiation in shock-wave lithotripsy

    PubMed Central

    Freund, Jonathan B.; Colonius, Tim; Evan, Andrew P.

    2007-01-01

    Evidence suggests that inertial cavitation plays an important role in the renal injury incurred during shock-wave lithotripsy. However, it is unclear how tissue damage is initiated, and significant injury typically occurs only after a sufficient dose of shock waves. While it has been suggested that shock-induced shearing might initiate injury, estimates indicate that individual shocks do not produce sufficient shear to do so. In this paper, we hypothesize that the cumulative shear of the many shocks is damaging. This mechanism depends upon whether there is sufficient time between shocks for tissue to relax to its unstrained state. We investigate the mechanism with a physics-based simulation model wherein the the basement membranes that define the tubules and vessels in the inner medulla are represented as elastic shells surrounded by viscous fluid. Material properties are estimated from in vitro tests of renal basement membranes and documented mechanical properties of cells and extracellular gels. Estimates for the net shear deformation from a typical lithotripter shock (~ 0.1%) are found from a separate dynamic shock simulation. The results suggest that the larger interstitial volume (~ 40%) near the papilla tip gives the tissue there a relaxation time comparable to clinical shock delivery rates (~ 1Hz), thus allowing shear to accumulate. Away from the papilla tip, where the interstitial volume is smaller (≲ 20%), the model tissue relaxes completely before the next shock would be delivered. Implications of the model are that slower delivery rates and broader focal zones should both decrease injury, consistent with some recent observations. PMID:17507147

  13. High-efficiency shock-wave generator for extracorporeal lithotripsy.

    PubMed

    Broyer, P; Cathignol, D; Theillère, Y; Mestas, J L

    1996-09-01

    In extracorporeal lithotripsy, the electro-acoustic efficiency of electrohydraulic generators is limited by the inductance of the electrical discharge circuit. A new shock-wave generator is described that uses a coaxial discharge line enabling electro-acoustic efficiency to be greatly increased. The line is built using a para-electric ceramic with a relative dielectric constant of 1700, manufactured for use in high-voltage impulse mode. A coaxial spark gap, with minimal inductance, has been developed to obtain the triggered breakdown of the discharge line. Shock waves are created with a coaxial electrode plugged directly into the spark gap and immersed in an electrolyte of degassed saline. Electrode gap and electrolyte resistivity are adjusted to match the resistivity of the electrolyte volume between the underwater electrodes to the characteristic impedance of the line. The discharge line generates in the medium a rectangular current pulse with an amplitude of about 6000 A and a rise time of 50 ns. Compared with conventional generators, measurements of the expansive peak pressure pulse show an increase of 105% at 10 kV, 86.5% at 12 kV and 34.5% at 14 kV charging voltage. Electro-acoustic efficiency is found to be 11% instead of 5.5% for a conventional discharge circuit.

  14. Shockwave Absorption using Network-forming Ionic glass

    NASA Astrophysics Data System (ADS)

    Lee, Jaejun; Yang, Ke; Moore, Jeffrey; Sottos, Nancy; MURI SWED Collaboration

    2015-06-01

    Network-forming ionic glasses composed of di-ammonium cations and citrate anions exhibit significant potential for dissipation of shock wave energy. The long alkyl side chains in the di-ammonium cation form a soft matrix, while the negatively charged heads of anions segregate into hard nanophase domains. Similar to polyurea, which has microphase separation of soft and hard domains, we hypothesize that shock wave dissipation of the ionic glass occurs by bond breaking in the hard domains and/or pressure-induced phase transition. By employing size-tunable alkyl side chains in the cations, we examine the effect of the relative soft domain size on energy dissipation. A series of thin film (ca. 50 μm) ionic glass specimens are subjected to laser-induced compressive stress waves and the transmitted response measured interferometrically. Structural changes of the ionic glass due to shock wave impact are characterized by x-ray diffraction. When compared directly to polyurea films of identical thickness and geometry, the ionic glass showed superior shock-wave mitigating performance. ONR MURI program.

  15. Detecting cavitation in vivo from shock-wave therapy devices

    NASA Astrophysics Data System (ADS)

    Matula, Thomas J.; Yu, Jinfei; Bailey, Michael R.

    2005-04-01

    Extracorporeal shock-wave therapy (ESWT) has been used as a treatment for plantar faciitis, lateral epicondylitis, shoulder tendonitis, non-unions, and other indications where conservative treatments have been unsuccessful. However, in many areas, the efficacy of SW treatment has not been well established, and the mechanism of action, particularly the role of cavitation, is not well understood. Research indicates cavitation plays an important role in other ultrasound therapies, such as lithotripsy and focused ultrasound surgery, and in some instances, cavitation has been used as a means to monitor or detect a biological effect. Although ESWT can generate cavitation easily in vitro, it is unknown whether or not cavitation is a significant factor in vivo. The purpose of this investigation is to use diagnostic ultrasound to detect and monitor cavitation generated by ESWT devices in vivo. Diagnostic images are collected at various times during and after treatment. The images are then post-processed with image-processing algorithms to enhance the contrast between bubbles and surrounding tissue. The ultimate goal of this research is to utilize cavitation as a means for optimizing shock wave parameters such as amplitude and pulse repetition frequency. [Work supported by APL internal funds and NIH DK43881 and DK55674.

  16. Developing a laser shockwave model for characterizing diffusion bonded interfaces

    NASA Astrophysics Data System (ADS)

    Lacy, Jeffrey M.; Smith, James A.; Rabin, Barry H.

    2015-03-01

    The US National Nuclear Security Agency has a Global Threat Reduction Initiative (GTRI) with the goal of reducing the worldwide use of high-enriched uranium (HEU). A salient component of that initiative is the conversion of research reactors from HEU to low enriched uranium (LEU) fuels. An innovative fuel is being developed to replace HEU in high-power research reactors. The new LEU fuel is a monolithic fuel made from a U-Mo alloy foil encapsulated in Al-6061 cladding. In order to support the fuel qualification process, the Laser Shockwave Technique (LST) is being developed to characterize the clad-clad and fuel-clad interface strengths in fresh and irradiated fuel plates. LST is a non-contact method that uses lasers for the generation and detection of large amplitude acoustic waves to characterize interfaces in nuclear fuel plates. However, because the deposition of laser energy into the containment layer on a specimen's surface is intractably complex, the shock wave energy is inferred from the surface velocity measured on the backside of the fuel plate and the depth of the impression left on the surface by the high pressure plasma pulse created by the shock laser. To help quantify the stresses generated at the interfaces, a finite element method (FEM) model is being utilized. This paper will report on initial efforts to develop and validate the model by comparing numerical and experimental results for back surface velocities and front surface depressions in a single aluminum plate representative of the fuel cladding.

  17. Shock-wave initiation of heterogeneous reactive solids

    NASA Astrophysics Data System (ADS)

    Johnson, J. N.; Tang, P. K.; Forest, C. A.

    1985-05-01

    Shock-wave initiation of solid explosives depends on localized regions of high temperature (hot spots) created by heterogeneous deformation in the vicinity of various defects. Current mathematical models of shock initiation tend to fall into two broad categories: (1) thermodynamic-state-dependent reaction-rate models, and (2) the continuum theory of multiphase mixtures. The level of generality possessed by (1) appears to be insufficient for representation of observed initiation phenomena, while that of (2) may exceed necessary requirements based on present measurement capabilities. As a means of bridging the gap between these two models, we present an internal-state-variable theory based on elementary physical principles, relying on specific limiting cases for the determination of functional forms. The appropriate minimum set of internal-state variables are the mass fraction of hot spots μ, their degree of reaction f, and their average creation temperature θ. The overall reaction rate λ˙, then depends on μ, f, and θ in addition to the usual macroscopic thermodynamic variables (current state as well as their history). Two specific forms of this set of equations are applied to time-resolved shock-initiation data on PBX-9404. Numerical solution is achieved by the method of characteristics for rate-dependent chemical reaction. Additional questions such as the effect of thermal equilibrium between phases (solid reactants and gaseous products) on the theoretical results are discussed quantitatively.

  18. Shock-Wave Acceleration of Protons on OMEGA EP

    NASA Astrophysics Data System (ADS)

    Haberberger, D.; Froula, D. H.; Pak, A.; Link, A.; Patel, P.; Fiuza, F.; Tochitsky, S.; Joshi, C.

    2016-10-01

    The creation of an electrostatic shock wave and ensuing ion acceleration is studied on the OMEGA EP Laser System at the Laboratory for Laser Energetics. Previous work using a 10- μm CO2 laser in a H2 gas jet shows promising results for obtaining narrow spectral features in the accelerated proton spectra. Scaling the shock-wave acceleration mechanism to the 1- μm-wavelength drive laser makes it possible to use petawatt-scale laser systems such as OMEGA-EP, but involves tailoring of the plasma profile. To accomplish the necessitated sharp rise to near-critical plasma density and a long exponential fall, an 1- μm-thick CH foil is illuminated on the back side by thermal x rays produced from an irradiated gold foil. The plasma density is measured using the fourth-harmonic probe system, the accelerating fields are probed using an orthogonal proton source, and the accelerated protons and ions are detected with a Thomson parabola. These results will be presented and compared with particle-in-cell simulations. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and LLNL's Laboratory Directed Research and Development program under project 15-LW-095.

  19. Shock-wave dynamics during oil-filled transformer explosions

    NASA Astrophysics Data System (ADS)

    Efremov, V. P.; Ivanov, M. F.; Kiverin, A. D.; Utkin, A. V.

    2016-08-01

    This paper presents a numerical and experimental study of the shock-wave processes evolving inside a closed vessel filled with mineral oil. Obtained experimental Hugoniot data for oil are compared with the corresponding data for water. It is found that compression of mineral oil and water can be described by approximately the same Hugoniot over a wide pressure range. Such similarity allows the use of water instead of mineral oil in the transformer explosion experiments and to describe the compression processes in both liquids using similar equations of state. The Kuznetsov equation of state for water is adopted for a numerical study of mineral oil compression. The features of the evolution of shock waves within mineral oil are analyzed using two-dimensional numerical simulations. Numerical results show that different energy sources may cause different scenarios of loading on the shell. The principal point is the phase transition taking place at relatively high temperatures for the case of high-power energy sources. In this case, a vapor-gaseous bubble emerges that qualitatively changes the dynamics of compression waves and the pattern of loads induced on the shell. Taking into account the features of the process together with the concept of water-oil similarity, the present work presents a new approach for experimental modeling of transformer shell destruction using an explosion with given characteristics in a water-filled shell.

  20. The effect of shockwave profile shape on dynamic brittle failure

    NASA Astrophysics Data System (ADS)

    Brown, E. N.; Escobedo, J. P.; Trujillo, C. P.; Gray, G. T.

    2012-08-01

    The role of shock wave loading profile is investigated for the failure processes in a brittle material. The dynamic damage response of ductile metals has been demonstrated to be critically dependent on the shockwave profile and the stress-state of the shock. Changing from a square to triangular (Taylor) profile with an identical peak compressive stress has been reported to increase the "spall strength" by over a factor of two and suppress damage mechanisms. The spall strength of tungsten heavy alloy (WHA) based on plate impact square-wave loading has been extensively reported in the literature. Here a triangular wave loading profile is achieved with a composite flyer plate of graded density in contrast to the square-wave loading. Counter to the strong dependence in wave profile in ductile metals, for WHA, both square and triangle wave profiles the failure is by brittle cleavage fracture with additional energy dissipation through crack branching in the more brittle tungsten particles, largely indistinguishable between wave profiles. The time for crack nucleation is negligible compared to the duration of the experiment and the crack propagation rate is limited to the sound speed as defined by the shock velocity.

  1. [A 10-month experience with extracorporeal shockwave therapy of urolithiasis].

    PubMed

    García Sisamón, F; Ferrer Roda, J; Tudela Bañuls, O; Ferrer Bosch, L

    1990-01-01

    From November 1987 treatment of urinary lithiasis regardless location was initiated in our Service of extracorporal renal lithofragmentation using shockwaves. Up until August 1988 (10 months), 411 patients have been treated representing a total of 590 lithiasis and 699 sessions on which the present communication is based; treatment included calculus of various chemical composition, as well as different sizes and locations. Also the relationship between sex, age, number of waves, use of analgesia, hospital stay, etc, has been considered. Results obtained after a 2.5 months follow-up are: 60.34% fragments-free and 39.41% in expulsion stage. Monotherapy was chosen in 98% cases and multiple drug therapy in the remaining 2%. There has been no case of complementary open surgical therapy. Thus, we consider extracorporal renal lithofragmentation as the ideal treatment for urinary lithiasis, as long as the indication is correct. And we believe it to be the ideal treatment since it is a simple procedure, highly effective and with few complications.

  2. Developing a laser shockwave model for characterizing diffusion bonded interfaces

    SciTech Connect

    Lacy, Jeffrey M. Smith, James A. Rabin, Barry H.

    2015-03-31

    The US National Nuclear Security Agency has a Global Threat Reduction Initiative (GTRI) with the goal of reducing the worldwide use of high-enriched uranium (HEU). A salient component of that initiative is the conversion of research reactors from HEU to low enriched uranium (LEU) fuels. An innovative fuel is being developed to replace HEU in high-power research reactors. The new LEU fuel is a monolithic fuel made from a U-Mo alloy foil encapsulated in Al-6061 cladding. In order to support the fuel qualification process, the Laser Shockwave Technique (LST) is being developed to characterize the clad-clad and fuel-clad interface strengths in fresh and irradiated fuel plates. LST is a non-contact method that uses lasers for the generation and detection of large amplitude acoustic waves to characterize interfaces in nuclear fuel plates. However, because the deposition of laser energy into the containment layer on a specimen's surface is intractably complex, the shock wave energy is inferred from the surface velocity measured on the backside of the fuel plate and the depth of the impression left on the surface by the high pressure plasma pulse created by the shock laser. To help quantify the stresses generated at the interfaces, a finite element method (FEM) model is being utilized. This paper will report on initial efforts to develop and validate the model by comparing numerical and experimental results for back surface velocities and front surface depressions in a single aluminum plate representative of the fuel cladding.

  3. Shock-wave cosmology inside a black hole.

    PubMed

    Smoller, Joel; Temple, Blake

    2003-09-30

    We construct a class of global exact solutions of the Einstein equations that extend the Oppeheimer-Snyder model to the case of nonzero pressure, inside the black hole, by incorporating a shock wave at the leading edge of the expansion of the galaxies, arbitrarily far beyond the Hubble length in the Friedmann-Robertson-Walker (FRW) spacetime. Here the expanding FRW universe emerges be-hind a subluminous blast wave that explodes outward from the FRW center at the instant of the big bang. The total mass behind the shock decreases as the shock wave expands, and the entropy condition implies that the shock wave must weaken to the point where it settles down to an Oppenheimer-Snyder interface, (bounding a finite total mass), that eventually emerges from the white hole event horizon of an ambient Schwarzschild spacetime. The entropy condition breaks the time symmetry of the Einstein equations, selecting the explosion over the implosion. These shock-wave solutions indicate a cosmological model in which the big bang arises from a localized explosion occurring inside the black hole of an asymptotically flat Schwarzschild spacetime.

  4. Shock-wave dynamics during oil-filled transformer explosions

    NASA Astrophysics Data System (ADS)

    Efremov, V. P.; Ivanov, M. F.; Kiverin, A. D.; Utkin, A. V.

    2017-05-01

    This paper presents a numerical and experimental study of the shock-wave processes evolving inside a closed vessel filled with mineral oil. Obtained experimental Hugoniot data for oil are compared with the corresponding data for water. It is found that compression of mineral oil and water can be described by approximately the same Hugoniot over a wide pressure range. Such similarity allows the use of water instead of mineral oil in the transformer explosion experiments and to describe the compression processes in both liquids using similar equations of state. The Kuznetsov equation of state for water is adopted for a numerical study of mineral oil compression. The features of the evolution of shock waves within mineral oil are analyzed using two-dimensional numerical simulations. Numerical results show that different energy sources may cause different scenarios of loading on the shell. The principal point is the phase transition taking place at relatively high temperatures for the case of high-power energy sources. In this case, a vapor-gaseous bubble emerges that qualitatively changes the dynamics of compression waves and the pattern of loads induced on the shell. Taking into account the features of the process together with the concept of water-oil similarity, the present work presents a new approach for experimental modeling of transformer shell destruction using an explosion with given characteristics in a water-filled shell.

  5. Clearance of refractory bile duct stones with extracorporeal shockwave lithotripsy

    PubMed Central

    Ellis, R; Jenkins, A; Thompson, R; Ede, R

    2000-01-01

    BACKGROUND—Extracorporeal shockwave lithotripsy (ESWL) has been used since the mid-1980s to fragment bile duct stones which cannot be removed endoscopically. Early machines required general anaesthesia and immersion in a waterbath.
AIMS—To investigate the effectiveness of the third generation Storz Modulith SL20 lithotriptor in fragmenting bile duct stones that could not be cleared by mechanical lithotripsy.
METHODS—Eighty three patients with retained bile duct stones were treated. All patients received intravenous benzodiazepine sedation and pethidine analgesia. Stones were targeted by fluoroscopy following injection of contrast via a nasobiliary drain or T tube. Residual fragments were cleared at endoscopic retrograde cholangiopancreatography.
RESULTS—Complete stone clearance was achieved in 69 (83%) patients and in 18 of 24 patients (75%) who required more than one ESWL treatment. Stone clearance was achieved in all nine patients (100%) with intrahepatic stones and also in nine patients (100%) referred following surgical exploration of the bile duct. Complications included six cases of cholangitis and one perinephric haematoma which resolved spontaneously.
CONCLUSION—Using the Storz Modulith, 83% of refractory bile duct calculi were cleared with a low rate of complications. These results confirm that ESWL is an excellent alternative to surgery in those patients in whom endoscopic techniques have failed.


Keywords: lithotripsy; bile duct calculi; extracorporeal lithotripsy PMID:11034593

  6. Unsteady relativistic shock-wave diffraction by cylinders and spheres.

    PubMed

    Tsai, I-Nan; Huang, Juan-Chen; Tsai, Shang-Shi; Yang, J Y

    2012-02-01

    The unsteady relativistic shock-wave diffraction patterns generated by a relativistic blast wave impinging on a circular cylinder and a sphere are numerically simulated using some high-resolution relativistic kinetic beam schemes in a general coordinate system for solving the relativistic Euler equations of gas dynamics. The diffraction patterns are followed through about 6 radii of travel of the incident shock past the body. The complete diffraction patterns, including regular reflection, transition from regular to Mach reflection, slip lines, and the complex shock-on-shock interaction at the wake region resulting from the Mach shocks collision behind the body are reported in detail. Computational results of several incident shock Mach numbers covering the near ultrarelativistic limit are studied. Various contours of flow properties including the Lorentz factor and velocity streamline plots are also presented to add a better understanding of the complex diffraction phenomena. The three-dimensional relieving effects of the sphere cases are evident and can be quantitatively evaluated as compared with the corresponding cylinder cases.

  7. 1D GAS-DYNAMIC SIMULATION OF SHOCK-WAVE PROCESSES VIA INTERNET

    SciTech Connect

    Khishchenko, K. V.; Levashov, P. R.; Povarnitsyn, M. E.; Zakharenkov, A. S.

    2009-12-28

    We present a Web-interface for 1D simulation of different shock-wave experiments. The choosing of initial parameters, the modeling itself and output data treatment can be made directly via the Internet. The interface is based upon the expert system on shock-wave data and equations of state and contains both the Eulerian and Lagrangian Godunov hydrocodes. The availability of equations of state for a broad set of substances makes this system a useful tool for planning and interpretation of shock-wave experiments. As an example of simulation with the system, results of modeling of multistep shock loading of potassium between polytetrafluoroethylene and stainless steel plates are presented in comparison with experimental data from Shakhray et al.(2005).

  8. D Gas-Dynamic Simulation of Shock-Wave Processes via Internet

    NASA Astrophysics Data System (ADS)

    Khishchenko, K. V.; Levashov, P. R.; Povarnitsyn, M. E.; Zakharenkov, A. S.

    2009-12-01

    We present a Web-interface for 1D simulation of different shock-wave experiments. The choosing of initial parameters, the modeling itself and output data treatment can be made directly via the Internet. The interface is based upon the expert system on shock-wave data and equations of state and contains both the Eulerian and Lagrangian Godunov hydrocodes. The availability of equations of state for a broad set of substances makes this system a useful tool for planning and interpretation of shock-wave experiments. As an example of simulation with the system, results of modeling of multistep shock loading of potassium between polytetrafluoroethylene and stainless steel plates are presented in comparison with experimental data from Shakhray et al. (2005).

  9. Extended thermodynamics of dense gases

    NASA Astrophysics Data System (ADS)

    Arima, T.; Taniguchi, S.; Ruggeri, T.; Sugiyama, M.

    2012-11-01

    We study extended thermodynamics of dense gases by adopting the system of field equations with a different hierarchy structure to that adopted in the previous works. It is the theory of 14 fields of mass density, velocity, temperature, viscous stress, dynamic pressure, and heat flux. As a result, most of the constitutive equations can be determined explicitly by the caloric and thermal equations of state. It is shown that the rarefied-gas limit of the theory is consistent with the kinetic theory of gases. We also analyze three physically important systems, that is, a gas with the virial equations of state, a hard-sphere system, and a van der Waals fluid, by using the general theory developed in the former part of the present work.

  10. Optically transparent dense colloidal gels

    PubMed Central

    Zupkauskas, M.; Lan, Y.; Joshi, D.; Ruff, Z.

    2017-01-01

    Traditionally it has been difficult to study the porous structure of dense colloidal gels and (macro) molecular transport through them simply because of the difference in refractive index between the colloid material and the continuous fluid phase surrounding it, rendering the samples opaque even at low colloidal volume fractions. Here, we demonstrate a novel colloidal gel that can be refractive index-matched in aqueous solutions owing to the low refractive index of fluorinated latex (FL)-particles (n = 1.37). Synthesizing them from heptafluorobutyl methacrylate using emulsion polymerization, we demonstrate that they can be functionalized with short DNA sequences via a dense brush-layer of polystyrene-b-poly(ethylene oxide) block-copolymers (PS-PEO). The block-copolymer, holding an azide group at the free PEO end, was grafted to the latex particle utilizing a swelling–deswelling method. Subsequently, DNA was covalently attached to the azide-end of the block copolymer via a strain-promoted alkyne–azide click reaction. For comparison, we present a structural study of single gels made of FL-particles only and composite gels made of a percolating FL-colloid gel coated with polystyrene (PS) colloids. Further we demonstrate that the diffusivity of tracer colloids dispersed deep inside a refractive index matched FL-colloidal gel can be measured as function of the local confinement using Dynamic Differential Microscopy (DDM). PMID:28970935

  11. Extracorporeal shock-wave therapy compared with surgery for hypertrophic long-bone nonunions.

    PubMed

    Cacchio, Angelo; Giordano, Lucio; Colafarina, Olivo; Rompe, Jan D; Tavernese, Emanuela; Ioppolo, Francesco; Flamini, Stefano; Spacca, Giorgio; Santilli, Valter

    2009-11-01

    The authors of several studies have recommended extracorporeal shock-wave therapy as an alternative to surgical treatment for long-bone nonunions. This study was performed to compare the results of extracorporeal shock-wave therapy produced by two different devices with those of surgical treatment in the management of long-bone nonunions. One hundred and twenty-six patients with a long-bone nonunion were randomly assigned to receive either extracorporeal shock-wave therapy (Groups 1 and 2) or surgical treatment (Group 3). The patients in the shock-wave groups received four treatments with 4000 impulses of shock waves with an energy flux density of 0.40 mJ/mm(2) (Group 1) or 0.70 mJ/mm(2) (Group 2). The patients in the three groups had similar demographic characteristics, durations of nonunion, and durations of follow-up. Radiographic results (the primary outcome) and clinical results (the secondary outcomes) were determined before and three, six, twelve, and twenty-four months after treatment. The radiographic findings did not differ among the three groups of patients. At six months, 70% of the nonunions in Group 1, 71% of the nonunions in Group 2, and 73% of the nonunions in Group 3 had healed. Three and six months after treatment, the clinical outcomes in the two shock-wave groups were significantly better than those in the surgical group (p < 0.001). However, at both twelve and twenty-four months after treatment, there were no differences among the three groups, with the exception of the DASH score, which differed significantly between Groups 1 and 3 (p = 0.038) and between Groups 2 and 3 (p = 0.021) at twelve months. Extracorporeal shock-wave therapy is as effective as surgery in stimulating union of long-bone hypertrophic nonunions and yields better short-term clinical outcomes.

  12. Superconductivity of Cu/CuOx interface formed by shock-wave pressure

    NASA Astrophysics Data System (ADS)

    Shakhray, D. V.; Avdonin, V. V.; Palnichenko, A. V.

    2016-11-01

    A mixture of powdered Cu and CuO has been subjected to shock-wave pressure of 350 kbar with following quenching of the vacuum-encapsulated product to 77 K. The ac magnetic susceptibility measurements of the samples have revealed metastable superconductivity with Tc ≈ 19 K, characterized by glassy dynamics of the shielding currents below Tc . Comparison of the ac susceptibility and the DC magnetization measurements infers that the superconductivity arises within the granular interfacial layer formed between metallic Cu and its oxides due to the shock-wave treatment.

  13. Superconductivity of Al/Al2O3 interface formed under shock-wave conditions

    NASA Astrophysics Data System (ADS)

    Shakhray, D. V.; Avdonin, V. V.; Palnichenko, A. V.; Vyaselev, O. M.

    2015-11-01

    A mixture of powdered Al and Al2O3 has been subjected to a shock-wave pressure of ≈ 170 kbar, followed by vacuum-encapsulating and quenching of the product to liquid nitrogen. The ac magnetic susceptibility measurements of the samples have revealed metastable superconductivity with Tc ≈ 37 K, characterized by glassy dynamics of the shielding currents below Tc. Comparison of the ac susceptibility and the dc magnetization measurements infers that the superconductivity arises within the interfacial granular layer formed between metallic Al and its oxide due to the shock-wave treatment.

  14. Superconductivity of Cu/CuOx interface formed by shock-wave pressure

    NASA Astrophysics Data System (ADS)

    Palnichenko, A. V.; Sidorov, N. S.; Shakhrai, D. V.; Avdonin, V. V.; Vyaselev, O. M.; Khasanov, S. S.

    2014-03-01

    A mixture of powdered Cu and CuO has been subjected to a shock-wave pressure of ≃350 kbar with following quenching of the vacuum-encapsulated product to ≈77 K. The ac magnetic susceptibility measurements of the samples have revealed metastable superconductivity with Tc≈19.5 K, characterized by glassy dynamics of the shielding currents below Tc. Comparison of the ac susceptibility and the dc magnetization measurements infers that the superconductivity arises within the granular interfacial layer formed between metallic Cu and its oxides due to the shock-wave treatment.

  15. [THE BONE DEFECT HEALING UNDER THE INFLUENCE OF RADIAL EXTRACORPOREAL SHOCK-WAVE THERAPY IN EXPERIMENT].

    PubMed

    Gertsen, G I; Se-Fey; Ostapchuk, R M; Lesovoy, A V; Zherebchuk, V V

    2016-03-01

    In experiment on 24 rabbits the processes of reparative osteogenesis in perforated defect of proximal tibial metaphysis under the influence of extracorporeal shock-wave therapy were studied. In accordance to data of clinical, roentgenological and morphological investiagations, conducted in terms 5, 15, 30 and 45 days of observation, there was established, that under the influence of extracorporeal shock-wave therapy in the bone marrow in the traumatic region a vasodilatation, as well as the blood cells exit from capillaries and sinusoid vessels with creation of massive regions of osseous endostal regenerate, guaranteeing the tibial integrity restoration, occurs.

  16. Epicardial shock-wave therapy improves ventricular function in a porcine model of ischaemic heart disease.

    PubMed

    Holfeld, Johannes; Zimpfer, Daniel; Albrecht-Schgoer, Karin; Stojadinovic, Alexander; Paulus, Patrick; Dumfarth, Julia; Thomas, Anita; Lobenwein, Daniela; Tepeköylü, Can; Rosenhek, Raphael; Schaden, Wolfgang; Kirchmair, Rudolf; Aharinejad, Seyedhossein; Grimm, Michael

    2016-12-01

    Previously we have shown that epicardial shock-wave therapy improves left ventricular ejection fraction (LVEF) in a rat model of myocardial infarction. In the present experiments we aimed to address the safety and efficacy of epicardial shock-wave therapy in a preclinical large animal model and to further evaluate mechanisms of action of this novel therapy. Four weeks after left anterior descending (LAD) artery ligation in pigs, the animals underwent re-thoracotomy with (shock-wave group, n = 6) or without (control group, n = 5) epicardial shock waves (300 impulses at 0.38 mJ/mm(2) ) applied to the infarcted anterior wall. Efficacy endpoints were improvement of LVEF and induction of angiogenesis 6 weeks after shock-wave therapy. Safety endpoints were haemodynamic stability during treatment and myocardial damage. Four weeks after LAD ligation, LVEF decreased in both the shock-wave (43 ± 3%, p < 0.001) and control (41 ± 4%, p = 0.012) groups. LVEF markedly improved in shock-wave animals 6 weeks after treatment (62 ± 9%, p = 0.006); no improvement was observed in controls (41 ± 4%, p = 0.36), yielding a significant difference. Quantitative histology revealed significant angiogenesis 6 weeks after treatment (controls 2 ± 0.4 arterioles/high-power field vs treatment group 9 ± 3; p = 0.004). No acute or chronic adverse effects were observed. As a potential mechanism of action in vitro experiments showed stimulation of VEGF receptors after shock-wave treatment in human coronary artery endothelial cells. Epicardial shock-wave treatment in a large animal model of ischaemic heart failure exerted a positive effect on LVEF improvement and did not show any adverse effects. Angiogenesis was induced by stimulation of VEGF receptors. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  17. Molecular changes after shockwave therapy in osteoarthritic knee in rats

    NASA Astrophysics Data System (ADS)

    Wang, C.-J.; Sun, Y.-C.; Wu, C.-T.; Weng, L.-H.; Wang, F.-S.

    2016-01-01

    This study investigated the molecular changes of DKK-1, MMP13, Wnt-5a and \\upbeta -catenin after extracorporeal shockwave therapy (ESWT) in anterior cruciate ligament transected (ACLT) osteoarthritic (OA) knee in rats. 27 male Spraque-Dawley rats were divided into three groups. Group I was the control one and received sham knee arthrotomy but no ACLT or ESWT. Group II underwent ACLT, but no ESWT. Group III underwent ACLT and received ESWT. The animals were killed at 12 weeks, and the harvested knee specimens were subjected to histopathological examination and immunohistochemical analysis. Radiographs of the knees were obtained at 0 and 12 weeks. At 12 weeks, radiographs of group II showed more arthritic changes with formation of osteochondral fragments, whereas very subtle arthritis was noted in groups I and III. In histopathological examination, group II showed a significant increase of Mankin score and a decrease of subchondral bone as compared to groups I and III. Group III showed a significant decrease of Mankin score and an increase of subchondral bone, with the data comparable to group I. In immunohistochemical analysis, group II showed significant increases of DKK-1 and MMP13 and decreases of Wnt-5a and \\upbeta -catenin in articular cartilage and subchondral bone as compared to groups I and III. Group III showed significant decreases of DKK-1 and MMP13 and increases of Wnt-5a and \\upbeta -catenin, with the data comparable to group I. In conclusion, the application of ESWT causes molecular changes that are consistent with the improvement in subchondral bone remodeling and chondroprotective effect in ACLT OA knees in rats.

  18. Shockwave lithotripsy with music: Less painful and more satisfactory treatment.

    PubMed

    Ordaz Jurado, D G; Budia Alba, A; Bahilo Mateu, P; Trassierra Villa, M; López-Acón, D; Boronat Tormo, F

    2017-04-12

    The objective of this study was to determine whether listening to music during a session of extracorporeal shockwave lithotripsy (ESWL) improves patients' pain. A simple, blind randomisation was undertaken of patients with kidney and ureter stones attending an ESWL session of 7,000 waves for the first time, between September and December 2014. One group was given music and the other was not. The age, gender, location of stones (kidney/ureter) were recorded and 2questionnaires: pre ESWL (questionnaire A) and postESWL (questionnaire B). Each questionnaire contained a question about anxiety and another question on pain on the Likert scale (0-10). Questionnaire B also had a question on satisfaction and comfort (Likert 0-10). Other variables included heart rate, respiratory rate, systolic and diastolic blood pressure on wave 2,000, 5,000 and 7,000, reason for halting the procedure, total pethidine (mg), secondary analgesia, energy (J) and frequency (Hz). Bivariate analysis using the Student's t-test, X(2)/Fisher test and a multiple linear regression model. The sample comprised 95 patients, with a mean age of 52 (±13) years, 35 (36.84%) females, 60 (63.2%) males. A total of 25 (26.3%) ureter stones and 70 (73.7%) kidney stones. A number of 42 (44.2%) patients were given music. There were no differences between the demographic variables or questionnaire A scores. Satisfaction and pain were better on questionnaire B with music. Music can reduce pain and improve patient satisfaction in ESWL treatment. More studies are required to confirm this effect. Copyright © 2017 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. Renal Vasoconstriction Occurs Early During Shockwave Lithotripsy in Humans.

    PubMed

    Lee, Franklin C; Hsi, Ryan S; Sorensen, Mathew D; Paun, Marla; Dunmire, Barbrina; Liu, Ziyue; Bailey, Michael; Harper, Jonathan D

    2015-12-01

    In animal models, pretreatment with low-energy shock waves and a pause decreased renal injury from shockwave lithotripsy (SWL). This is associated with an increase in perioperative renal resistive index (RI). A perioperative rise is not seen without the protective protocol, which suggests that renal vasoconstriction during SWL plays a role in protecting the kidney from injury. The purpose of our study was to investigate whether there is an increase in renal RI during SWL in humans. Subjects were prospectively recruited from two hospitals. All subjects received an initial 250 shocks at low setting, followed by a 2-minute pause. Treatment power was then increased. Measurements of the renal RI were taken before start of procedure, at 250, after 750, after 1500 shocks, and at the end of the procedure. A linear mixed-effects model was used to compare RIs at the different time points. Fifteen patients were enrolled. Average treatment time was 46 ± 8 minutes. Average RI at pretreatment, after 250, after 750, after 1500 shocks, and post-treatment was 0.67 ± 0.06, 0.69 ± 0.08, 0.71 ± 0.07, 0.73 ± 0.07, and 0.74 ± 0.06, respectively. In adjusted analyses, RI was significantly increased after 750 shocks compared with pretreatment (p = 0.05). Renal RI increases early during SWL in humans with the protective protocol. Monitoring for a rise in RI during SWL is feasible and may provide real-time feedback as to when the kidney is protected.

  20. Renal Vasoconstriction Occurs Early During Shockwave Lithotripsy in Humans

    PubMed Central

    Hsi, Ryan S.; Sorensen, Mathew D.; Paun, Marla; Dunmire, Barbrina; Liu, Ziyue; Bailey, Michael; Harper, Jonathan D.

    2015-01-01

    Abstract Introduction: In animal models, pretreatment with low-energy shock waves and a pause decreased renal injury from shockwave lithotripsy (SWL). This is associated with an increase in perioperative renal resistive index (RI). A perioperative rise is not seen without the protective protocol, which suggests that renal vasoconstriction during SWL plays a role in protecting the kidney from injury. The purpose of our study was to investigate whether there is an increase in renal RI during SWL in humans. Materials and Methods: Subjects were prospectively recruited from two hospitals. All subjects received an initial 250 shocks at low setting, followed by a 2-minute pause. Treatment power was then increased. Measurements of the renal RI were taken before start of procedure, at 250, after 750, after 1500 shocks, and at the end of the procedure. A linear mixed-effects model was used to compare RIs at the different time points. Results: Fifteen patients were enrolled. Average treatment time was 46 ± 8 minutes. Average RI at pretreatment, after 250, after 750, after 1500 shocks, and post-treatment was 0.67 ± 0.06, 0.69 ± 0.08, 0.71 ± 0.07, 0.73 ± 0.07, and 0.74 ± 0.06, respectively. In adjusted analyses, RI was significantly increased after 750 shocks compared with pretreatment (p = 0.05). Conclusion: Renal RI increases early during SWL in humans with the protective protocol. Monitoring for a rise in RI during SWL is feasible and may provide real-time feedback as to when the kidney is protected. PMID:26239232

  1. Extracorporeal shockwave therapy in osteonecrosis of femoral head

    PubMed Central

    Zhang, Qingyu; Liu, Lihua; Sun, Wei; Gao, Fuqiang; Cheng, Liming; Li, Zirong

    2017-01-01

    Abstract Background: Osteonecrosis is an incapacitating disorder with high morbidity. Though extracorporeal shockwave therapy (ESWT) provides a noninvasive treatment option, controversial subjects still exist about its effectiveness, indications, and mechanism of action. Methods: An electronic databases search was performed using PubMed, Embase, and the Cochrane library to collect clinical trials, case reports, and cases series on this topic and then useful data were extracted and appraised by experienced clinicians. We evaluated the quality of included evidences by using the Oxford Centre for evidence-based medicine (EBM) Levels of Evidence. Results: A total of 17 articles including 2 case reports, 9 open label trials, 2 cohorts, and 6 randomized controlled trials were considered to be eligible for this systematic review. Visual analog scale (VAS), Harris hip scores, and the imaging results were the frequently-used outcome estimates of included studies. Conclusion: By systematically analyzing these evidences, we could conclude that ESWT could act as a safe and effective method to improve the motor function and relieve the pain of patients with osteonecrosis of femoral hip, especially those at early stage. Imaging revealed that bone marrow edema was significantly relieved, but the necrotic bone could not be reversed after ESWT. This technique could slow or even block the progression of ONFH and therefore reduce the demand for surgery. Collaboration with other conservative modalities would not improve the curative benefits of ESWT. Meanwhile, ONFH with various risk factors showed similar reaction to this noninvasive treatment method. However, these conclusions should be interpreted carefully for the low-quality of included publications and further studies are requisite to validate the effect of ESWT in ONFH. PMID:28121934

  2. Shockwave therapy in patients with peripheral artery disease.

    PubMed

    Ciccone, Marco Matteo; Notarnicola, Angela; Scicchitano, Pietro; Sassara, Marco; Carbonara, Santa; Maiorano, Mariagrazia; Moretti, Biagio

    2012-08-01

    Previous studies support the fact that extracorporeal shockwave (SW) induces angiogenesis and improves symptoms in patients affected by limb ischemia. The aim of this study was to evaluate the effects of SW therapy in patients with peripheral artery disease (PAD). Twenty-two patients were enrolled in this study and were randomly assigned into two groups: SW treatment (12 patients, 67 ± 9 years) and control (10 patients, 68 ± 12 years). The inclusion criteria were the following: age over 40 years, PAD diagnosis, optimal medical therapy, and ankle-brachial index less than 0.9. SW therapy was administered using the Minilith® SL1 litotriptor with an ultrasound guide able to detect the target area using a B-mode technique and a 7.5 MHz convex probe emitting 2,000 impulses with an energy flux density of 0.03 mJ/mm(2). The variation in the degree of stenosis before and after treatment was statistically significant between the groups (-9% ± -10% vs. 0% ± 0%; P = 0.001). In addition, a significantly higher number of treated patients than controls showed a reduction in the Fontaine stage (12 [63%] vs. 0 [0%]; P < 0.001). This result was confirmed by analyzing the difference in patients' pain-free walking distance before and after SW therapy (76 ± 46 m vs. 0 ± 0 m for treated patients vs. controls; P < 0.001) and the difference in pain severity (measured on a pain scale; -1.4 ± 0.5 in the treated patients vs. -0.2 ± 0.4 in the controls; P < 0.001). On the basis of these results the authors hypothesized a direct effect of SW on the ultrastructural composition of the vessel walls, inducing a reduction in artery stenosis. These data support the application of SW therapy as a new medical tool to improve the natural clinical course of PAD.

  3. Superfluidity and vortices in dense quark matter

    NASA Astrophysics Data System (ADS)

    Mallavarapu, Satyanarayana Kumar

    This dissertation will elucidate specific features of superfluid behavior in dense quark matter, It will start with issues regarding spontaneous decay of superfluid vortices in dense quark matter. This will be followed by topics that explain superfluid phenomena from field theoretical viewpoint. In particular the first part of the dissertation will talk about superfluid vortices in the color-flavor-locked (CFL) phase of dense quark matter which are known to be energetically disfavored as compared to well-separated triplets of "semi-superfluid" color flux tubes. In this talk we will provide results which will identify regions in parameter space where the superfluid vortex spontaneously decays. We will also discuss the nature of the mode that is responsible for the decay of a superfluid vortex in dense quark matter. We will conclude by mentioning the implications of our results to neutron stars. In the field theoretic formulation of a zero-temperature superfluid one connects the superfluid four-velocity which is a macroscopic observable with a microscopic field variable namely the gradient of the phase of a Bose-Condensed scalar field. On the other hand, a superfluid at nonzero temperatures is usually described in terms of a two-fluid model: the superfluid and the normal fluid. In the later part of the dissertation we offer a deeper understanding of the two-fluid model by deriving it from an underlying microscopic field theory. In particular, we shall obtain the macroscopic properties of a uniform, dissipationless superfluid at low temperatures and weak coupling within the framework of a ϕ 4 model. Though our study is very general, it may also be viewed as a step towards understanding the superfluid properties of various phases of dense nuclear and quark matter in the interior of compact star.

  4. Dense Deposit Disease Mimicking a Renal Small Vessel Vasculitis

    PubMed Central

    Singh, Lavleen; Bhardwaj, Swati; Sinha, Aditi; Bagga, Arvind; Dinda, Amit

    2016-01-01

    Dense deposit disease is caused by fluid-phase dysregulation of the alternative complement pathway and frequently deviates from the classic membranoproliferative pattern of injury on light microscopy. Other patterns of injury described for dense deposit disease include mesangioproliferative, acute proliferative/exudative, and crescentic GN. Regardless of the histologic pattern, C3 glomerulopathy, which includes dense deposit disease and C3 GN, is defined by immunofluorescence intensity of C3c two or more orders of magnitude greater than any other immune reactant (on a 0–3 scale). Ultrastructural appearances distinguish dense deposit disease and C3 GN. Focal and segmental necrotizing glomerular lesions with crescents, mimicking a small vessel vasculitis such as ANCA-associated GN, are a very rare manifestation of dense deposit disease. We describe our experience with this unusual histologic presentation and distinct clinical course of dense deposit disease, discuss the pitfalls in diagnosis, examine differential diagnoses, and review the relevant literature. PMID:26361799

  5. Dense Deposit Disease Mimicking a Renal Small Vessel Vasculitis.

    PubMed

    Singh, Lavleen; Singh, Geetika; Bhardwaj, Swati; Sinha, Aditi; Bagga, Arvind; Dinda, Amit

    2016-01-01

    Dense deposit disease is caused by fluid-phase dysregulation of the alternative complement pathway and frequently deviates from the classic membranoproliferative pattern of injury on light microscopy. Other patterns of injury described for dense deposit disease include mesangioproliferative, acute proliferative/exudative, and crescentic GN. Regardless of the histologic pattern, C3 glomerulopathy, which includes dense deposit disease and C3 GN, is defined by immunofluorescence intensity of C3c two or more orders of magnitude greater than any other immune reactant (on a 0-3 scale). Ultrastructural appearances distinguish dense deposit disease and C3 GN. Focal and segmental necrotizing glomerular lesions with crescents, mimicking a small vessel vasculitis such as ANCA-associated GN, are a very rare manifestation of dense deposit disease. We describe our experience with this unusual histologic presentation and distinct clinical course of dense deposit disease, discuss the pitfalls in diagnosis, examine differential diagnoses, and review the relevant literature.

  6. Dense array expressions

    NASA Astrophysics Data System (ADS)

    Wilson, Joseph N.; Chen, LiangMing

    1999-10-01

    Various researchers have realized the value of implementing loop fusion to evaluate dense (pointwise) array expressions. Recently, the method of template metaprogramming in C++ has been used to significantly speed-up the evaluation of array expressions, allowing C++ programs to achieve performance comparable to or better than FORTRAN for numerical analysis applications. Unfortunately, the template metaprogramming technique suffers from several limitations in applicability, portability, and potential performance. We present a framework for evaluating dense array expressions in object-oriented programming languages. We demonstrate how this technique supports both common subexpression elimination and threaded implementation and compare its performance to object-library and hand-generated code.

  7. A solid-phase mechanism of shock-wave formation of dust particles of heavy metals

    NASA Astrophysics Data System (ADS)

    Lin, E. E.; Mikhailov, A. L.; Khvorostin, V. N.

    2016-08-01

    The possibility of formation of dust particles in solid as a result of shock-wave destruction of the initial crystalline material structure and subsequent coalescence of atomic clusters (nanoparticles), which leads to the aggregation of mesocrystalline particles (grains) in the shocked layer, is discussed.

  8. High-energy focussed extracorporeal shockwave therapy reduces pain in plantar fibromatosis (Ledderhose’s disease)

    PubMed Central

    2012-01-01

    Background Plantar fibromatosis is a benign disease creating nodules on the medial plantar side of affected patients. While surgical removal is regarded as the therapeutic mainstay, recurrence rates and impairment of daily activities remains substantial. High-energy focussed extracorporeal shockwave therapy has been suggested to be potentially effective in plantar fibromatosis in terms of pain reduction. Hypothesis High-energy focussed extracorporeal shockwave therapy reduces pain in plantar fibromatosis. Findings A total number of six patients (5 males, 58±4 years) were included with plantar fibromatosis (Ledderhose’s disease) associated with pain. Three patients were operated on previously, one had concomitant Dupuytren’s contracture. High-energy focussed ESWT was applied using a Storz Duolith SD1 (2000 impulses, 3 Hz, 1.24 mJ/mm2) in two sessions with 7 days between. Pain was 6±2 at baseline, 2±1 after 14 days and 1±1 after 3 months. Softening of the nodules was noted by all patients. No adverse effects were noted. Conclusions High-energy focussed extracorporeal shockwave energy reduces pain in painful plantar fibromatosis (Morbus Ledderhose). Further large-scale prospective trials are warranted to elucidate the value of high-energy focussed extracorporeal shockwave therapy (ESWT) in plantar fibromatosis in terms of recurrence and efficacy. PMID:23031080

  9. Analysis of flexible substrates for clinical translation of laser-generated shockwave therapy

    PubMed Central

    Francis, Nathan C.; Kassam, Imara; Nowroozi, Bryan; Grundfest, Warren S.; Taylor, Zach D.

    2015-01-01

    Bacteria biofilms in chronically infected wounds significantly increase the burden of healthcare costs and resources for patients and clinics. Because biofilms are such an effective barrier to standard antibiotic treatment, new methods of therapy need to be developed to combat these infections. Our group has demonstrated the potential of using Laser Generated Shockwaves as a potential therapy to mechanically disrupt the bacterial biofilms covering the wound. Previous studies have used rigid silica glass as the shockwave propagation medium, which is not compatible with the intended clinical application. This paper describes the exploration of five candidate flexible plastic films to replace the glass substrate. Each material measured 0.254 mm thick and was used to generate shockwaves of varying intensities. Shockwave characterization was performed using a high-speed Michelson displacement interferometer and peak stress values obtained in the flexible substrates were compared to glass using one-way nested Analysis of Variance and Tukey HSD post-hoc analysis. Results demonstrate statistically significant differences between substrate material and indicate that polycarbonate achieves the highest peak stress for a given laser fluence suggesting that it is optimal for clinical applications. PMID:25798307

  10. One-year treatment follow-up of plantar fasciitis: radial shockwaves vs. conventional physiotherapy

    PubMed Central

    Grecco, Marcus Vinicius; Brech, Guilherme Carlos; Greve, Júlia Maria D'Andrea

    2013-01-01

    OBJECTIVE: To compare radial shockwave treatment with conventional physiotherapy for plantar fasciitis after 12 months of follow-up. METHOD: This was a randomized, prospective, comparative clinical study. Forty patients with a diagnosis of plantar fasciitis were divided randomly into two treatment groups: group 1, with 20 patients who underwent ten physiotherapy sessions comprising ultrasound, kinesiotherapy and guidance for home-based stretching; and group 2, with 20 patients who underwent three applications of radial shockwaves, once a week, and guidance for home-based stretching. All patients were assessed regarding pain and functional abilities before treatment, immediately after and 12 months after treatment. The mean age was 49.6±11.8 years (range: 25-68 years), 85% were female, 88% were overweight, 63% were affected bilaterally, and 83% used analgesics regularly. RESULTS: At the 12-month follow-up, both treatments were effective for improving pain and functional ability among the patients with plantar fasciitis. The improvement with shockwaves was faster. CONCLUSION: Shockwave treatment was not more effective than conventional physiotherapy treatment 12 months after the end of the treatment. PMID:24037003

  11. Analysis of flexible substrates for clinical translation of laser-generated shockwave therapy.

    PubMed

    Francis, Nathan C; Kassam, Imara; Nowroozi, Bryan; Grundfest, Warren S; Taylor, Zach D

    2015-03-01

    Bacteria biofilms in chronically infected wounds significantly increase the burden of healthcare costs and resources for patients and clinics. Because biofilms are such an effective barrier to standard antibiotic treatment, new methods of therapy need to be developed to combat these infections. Our group has demonstrated the potential of using Laser Generated Shockwaves as a potential therapy to mechanically disrupt the bacterial biofilms covering the wound. Previous studies have used rigid silica glass as the shockwave propagation medium, which is not compatible with the intended clinical application. This paper describes the exploration of five candidate flexible plastic films to replace the glass substrate. Each material measured 0.254 mm thick and was used to generate shockwaves of varying intensities. Shockwave characterization was performed using a high-speed Michelson displacement interferometer and peak stress values obtained in the flexible substrates were compared to glass using one-way nested Analysis of Variance and Tukey HSD post-hoc analysis. Results demonstrate statistically significant differences between substrate material and indicate that polycarbonate achieves the highest peak stress for a given laser fluence suggesting that it is optimal for clinical applications.

  12. Ultrafast Time Response Pressure-Sensitive Paint for Unsteady Shock-Wave Research

    NASA Astrophysics Data System (ADS)

    Numata, Daiju; Asai, Keisuke

    Pressure-Sensitive Paint (PSP) is an optical pressure measurement technique widely used in aerodynamic experiments, and has been applied to unsteady shock-wave phenomena [1, 2]. However, one of the largest problems to apply PSP to high-speed and unsteady phenomena is the response time of PSP.

  13. [Extracorporeal shockwave lithotripsy of stones in lower calices of kidney].

    PubMed

    Martov, A G; Peniukova, I V; Moskalenko, S A; Peniukov, V G; Peniukov, D V; Balykov, I S

    2013-01-01

    The article presents the results of the study aimed to evaluation of possible relationship between anatomical structure of the renal pelvis of the kidney, the size of the stone and the effectiveness of extracorporeal shockwave lithotripsy (ESWL) of stones in lower calices of kidney, defined as "stone-free state". ESWL was performed in 285 patients. Sizes of stones varied from 5 to 25 mm. With interval distribution of stone sizes, the greatest number of cases was detected with size of 5 to 12 mm. The destruction of stone required one ESWL session in 196 cases, and three sessions only in 12 cases. The total number of pulses per one stone did not exceed 9500, and more than 70% of the stones have been effectively destroyed with less than 3000 pulses. The result of treatment was assessed 3-4 months after the last ESWL session on the basis of ultrasound and X-ray examination using nominal (dichotomous) scale. In addition, for verification of significant (expected and unexpected) correlations, exploratory analysis of the correlation matrices of factors possibly affecting the discharge of stone fragments was performed. Positive treatment outcome was recorded in 212 (74.4%) patients. Residual stone fragments (> or = 5 mm) were identified in 73 (25.6%) patients; in 69 patients fragments corresponded to the initial localization and 4 fragments were located in the pelvis and calices of middle and lower segments of the kidney. Statistical processing found no association between the size of the stone and the number of ESWL sessions required for its destruction (P = 0,4056). The analysis of relationship between the nature of the complications and size of stone revealed differences, but there were no significant differences in median test (p = 0.1067). Based on exploratory analysis and correlations identified, in-depth evaluation was carried out on three factors: the size of the stone, length of lower calices neck, and pyelocaliceal corner. Width of lower calices neck as a

  14. The development and performance of a message-passing version of the PAGOSA shock-wave physics code

    SciTech Connect

    Gardner, D.R.; Vaughan, C.T.

    1997-10-01

    A message-passing version of the PAGOSA shock-wave physics code has been developed at Sandia National Laboratories for multiple-instruction, multiple-data stream (MIMD) computers. PAGOSA is an explicit, Eulerian code for modeling the three-dimensional, high-speed hydrodynamic flow of fluids and the dynamic deformation of solids under high rates of strain. It was originally developed at Los Alamos National Laboratory for the single-instruction, multiple-data (SIMD) Connection Machine parallel computers. The performance of Sandia`s message-passing version of PAGOSA has been measured on two MIMD machines, the nCUBE 2 and the Intel Paragon XP/S. No special efforts were made to optimize the code for either machine. The measured scaled speedup (computational time for a single computational node divided by the computational time per node for fixed computational load) and grind time (computational time per cell per time step) show that the MIMD PAGOSA code scales linearly with the number of computational nodes used on a variety of problems, including the simulation of shaped-charge jets perforating an oil well casing. Scaled parallel efficiencies for MIMD PAGOSA are greater than 0.70 when the available memory per node is filled (or nearly filled) on hundreds to a thousand or more computational nodes on these two machines, indicating that the code scales very well. Thus good parallel performance can be achieved for complex and realistic applications when they are first implemented on MIMD parallel computers.

  15. Dense Plasma Focus Modeling

    SciTech Connect

    Li, Hui; Li, Shengtai; Jungman, Gerard; Hayes-Sterbenz, Anna Catherine

    2016-08-31

    The mechanisms for pinch formation in Dense Plasma Focus (DPF) devices, with the generation of high-energy ions beams and subsequent neutron production over a relatively short distance, are not fully understood. Here we report on high-fidelity 2D and 3D numerical magnetohydrodynamic (MHD) simulations using the LA-COMPASS code to study the pinch formation dynamics and its associated instabilities and neutron production.

  16. Fragility in dense suspensions

    NASA Astrophysics Data System (ADS)

    Mari, Romain; Cates, Mike

    Dense suspensions can jam under shear when the volume fraction of solid material is large enough. In this work we investigate the mechanical properties of shear jammed suspensions with numerical simulations. In particular, we address the issue of the fragility of these systems, i.e., the type of mechanical response (elastic or plastic) they show when subject to a mechanical load differing from the one applied during their preparation history.

  17. Are energy dense diets also nutrient dense?

    PubMed

    Nicklas, Theresa A; O'Neil, Carol E; Mendoza, Jason; Liu, Yan; Zakeri, Issa F; Berenson, Gerald S

    2008-10-01

    Some beverages are nutrient dense, but they are often excluded from nutrient density calculations. The purpose of this study was to assess whether the energy-nutrient association changed when beverages were included in these calculations. Applying a cross-sectional design, a 24-hour dietary recall was collected on each participant. Subjects/ 440 young adults (ages 19-28 years) in Bogalusa, Louisiana participated in this study. Mean nutrient intakes and food group consumption were examined across the energy density (ED) tertiles using two calculation methods: one with food and all beverages (excluding water) (ED1) and one including food and only energy containing beverages (ED2). Regression models were used and multiple comparisons were performed using the Tukey-Kramer procedure. A p-value < 0.05 was considered to be significant. With increasing ED, there was a significant increase in the consumption of total meats (ED1 p < 0.05; ED2 p < 0.01). In contrast, there was a significant decrease in consumption of fruits/juices (ED1 p < 0.01; ED2 p < 0.0001), vegetables (ED1 p < 0.01; ED2 p < 0.05), beverages (both p < 0.0001) and total sweets with increasing ED (both p < 0.0001). There was a significantly higher mean intake of total protein (grams) (ED2 p < 0.0001), amino acids (ED1 histidine/leucine p < 0.05; ED2 p < 0.0001), and total fat (grams) (ED1 p < 0.0001; ED2 p < 0.0001) with higher ED compared to lower ED. The percent energy from protein (ED1 p < 0.05; ED2 p < 0.0001), total fat (both p < 0.001) and saturated fatty acids (both p < 0.0001) significantly increased and the percent energy from carbohydrate (both p < 0.0001) and sucrose (both p < 0.0001) significantly decreased with increasing ED. This study suggests that ED may influence the ND of the diet depending on whether energy containing beverages are included or excluded in the analysis.

  18. Are Energy Dense Diets Also Nutrient Dense?

    PubMed Central

    Nicklas, Theresa A.; O’Neil, Carol E.; Mendoza, Jason; Liu, Yan; Zakeri, Issa F.; Berenson, Gerald S.

    2009-01-01

    Objective Some beverages are nutrient dense, but they are often excluded from nutrient density calculations. The purpose of this study was to assess whether the energy-nutrient association changed when beverages were included in these calculations. Design Applying a cross-sectional design, a 24-hour dietary recall was collected on each participant. Subjects/Setting 440 young adults (ages 19–28 years) in Bogalusa, Louisiana participated in this study. Statistical Analysis Mean nutrient intakes and food group consumption were examined across the energy density (ED) tertiles using two calculation methods: one with food and all beverages (excluding water) (ED1) and one including food and only energy containing beverages (ED2). Regression models were used and multiple comparisons were performed using the Tukey-Kramer procedure. A p-value < 0.05 was considered to be significant. Results With increasing ED, there was a significant increase in the consumption of total meats (ED1 p < 0.05; ED2 p < 0.01). In contrast, there was a significant decrease in consumption of fruits/juices (ED1 p < 0.01; ED2 p < 0.0001), vegetables (ED1 p < 0.01; ED2 p < 0.05), beverages (both p < 0.0001) and total sweets with increasing ED (both p < 0.0001). There was a significantly higher mean intake of total protein (grams) (ED2 p < 0.0001), amino acids (ED1 histidine/leucine p < 0.05; ED2 p < 0.0001), and total fat (grams) (ED1 p < 0.0001; ED2 p < 0.0001) with higher ED compared to lower ED. The percent energy from protein (ED1 p < 0.05; ED2 p < 0.0001), total fat (both p < 0.001) and saturated fatty acids (both p < 0.0001) significantly increased and the percent energy from carbohydrate (both p < 0.0001) and sucrose (both p < 0.0001) significantly decreased with increasing ED. Conclusion This study suggests that ED may influence the ND of the diet depending on whether energy containing beverages are included or excluded in the analysis. PMID:18845705

  19. Dense plasma heating by crossing relativistic electron beams

    NASA Astrophysics Data System (ADS)

    Ratan, N.; Sircombe, N. J.; Ceurvorst, L.; Sadler, J.; Kasim, M. F.; Holloway, J.; Levy, M. C.; Trines, R.; Bingham, R.; Norreys, P. A.

    2017-01-01

    Here we investigate, using relativistic fluid theory and Vlasov-Maxwell simulations, the local heating of a dense plasma by two crossing electron beams. Heating occurs as an instability of the electron beams drives Langmuir waves, which couple nonlinearly into damped ion-acoustic waves. Simulations show a factor 2.8 increase in electron kinetic energy with a coupling efficiency of 18%. Our results support applications to the production of warm dense matter and as a driver for inertial fusion plasmas.

  20. Dense plasma heating by crossing relativistic electron beams.

    PubMed

    Ratan, N; Sircombe, N J; Ceurvorst, L; Sadler, J; Kasim, M F; Holloway, J; Levy, M C; Trines, R; Bingham, R; Norreys, P A

    2017-01-01

    Here we investigate, using relativistic fluid theory and Vlasov-Maxwell simulations, the local heating of a dense plasma by two crossing electron beams. Heating occurs as an instability of the electron beams drives Langmuir waves, which couple nonlinearly into damped ion-acoustic waves. Simulations show a factor 2.8 increase in electron kinetic energy with a coupling efficiency of 18%. Our results support applications to the production of warm dense matter and as a driver for inertial fusion plasmas.

  1. Direct numerical simulation of shockwave and turbulent boundary layer interactions

    NASA Astrophysics Data System (ADS)

    Wu, Minwei

    Direct numerical simulations (DNS) of a shockwave/turbulent boundary layer interaction (STBLI) at Mach number 3 and Reynolds number based on the momentum thickness of 2300 are performed. A 4th-order accurate, bandwidth-optimized weighted-essentially-non-oscillatory (WENO) scheme is used and the method is found to be too dissipative for the STBLI simulation due to the over-adaptation properties of this original WENO scheme. In turn, a relative limiter is introduced to mitigate the problem. Tests on the Shu-Osher problem show that the modified WENO scheme decreases the numerical dissipation significantly. By utilizing a combination of the relative limiter and the absolute limiter described by Jiang & Shu [32], the DNS results are improved further. The DNS data agree well with the reference experiments of Bookey et al. [10] in the size of the separation bubble, the separation and reattachment point, the mean wall-pressure distribution, and the velocity profiles both upstream and downstream of the interaction region. The DNS data show that velocity profiles change dramatically along the streamwise direction. Downstream of the interaction, the velocity profiles show a characteristic "dip" in the logarithmic region, as shown by the experiments of Smits & Muck [66] at much higher Reynolds number. In the separation region, the velocity profiles are found to resemble those of a laminar flow, yet the flow does not fully relaminarize. The mass-flux turbulence intensity is amplified by a factor of about 5 throughout the interaction, which is consistent with that found in higher Reynolds experiments of Selig et al. [52]. All Reynolds stress components are greatly amplified by the interaction. Assuming that the ow is still two dimensional downstream of the interaction, the components rhou'u', rhov'v', rho w'w', and rho u'w' are amplified by factors of 6, 6, 12, and 24, respectively, where u is the streamwise and w is the wall-normal velocity. However, analyses of the turbulence

  2. Effects of extracorporeal shockwave therapy on nanostructural and biomechanical responses in the collagenase-induced Achilles tendinitis animal model.

    PubMed

    Yoo, Seung Don; Choi, Samjin; Lee, Gi-Ja; Chon, Jinmann; Jeong, Yong Seol; Park, Hun-Kuk; Kim, Hee-Sang

    2012-11-01

    The aim of this study was to quantitatively investigate the effects of extracorporeal shockwave therapy (ESWT) on the nanostructure and adhesion force of collagen fibrils in a rat model of collagenase-induced Achilles tendinitis (CIAT) using histology and atomic force microscopy. A total of 45 rats were divided into experimental groups of three rats each: a control group, 27 CIAT rats with nine time points, and 15 ESWT rats with five time points. Progressive changes in nanostructure including the fibrillary diameter and D-periodicity, and biomechanical properties including the fibrillary adhesion forces in each healing phase were investigated over a 5-week period after collagenase injection. On postoperative day 3, CIAT rats showed granulomatous tissue associated with subacute inflammation, and a deterioration in nanostructure and mechanical properties compared to controls. On postoperative day 12, the ESWT group showed increased vascularity, fibroblastic activity, lymphocyte and plasma cell infiltration, dense histocytes, and disorganization of the fibers compared to the CIAT group. The ESWT group showed and improvement in nanostructure and mechanical properties compared to controls, while the CIAT group showed a deterioration in nanostructure and mechanical properties compared to controls. On postoperative day 26, the ESWT group showed 30% inflamed tissue and 70% fibrotic tissue, while the CIAT group showed chronic inflammation. By the end of the experiments, in both groups the changes had reversed and the tissues were similar in appearance to those in the control group. Following ESWT the deformed and irregular collagen network returned to a well-aligned normal collagen network nanostructure. These results suggest that ESWT may promote the healing response in Achilles tendinitis.

  3. Blood clot disruption in vitro using shockwaves delivered by an extracorporeal generator after pre-exposure to lytic agent.

    PubMed

    Goldenstedt, Cedric; Birer, Alain; Cathignol, Dominique; Lafon, Cyril

    2009-06-01

    The standard methods for recanalyzing thrombosed vessels are vascular stenting or administration of thrombolytic drugs. However, these methods suffer from uncertain success rate and side-effects. Therefore, minimally-invasive ultrasound methods have been investigated. In this article, we propose to use shockwaves after pre-exposure to fibrinolytic agent for disrupting thrombus. Shockwaves were delivered by an extracorporeal piezocomposite generator (120 mm in diameter, focused at 97 mm, pulse length = 1.4 micros). In vitro blood clots, made from human blood, were placed at the focal point of the generator. The clots were exposed to shockwaves either with or without prior immersion in a solution of streptokinase. The percentage of lysed clot was determined by weighing the clot before and after treatment. The proportion of lysed clot increased with the pressure at the focus and with the number of shocks. A mean clot reduction of 91% was obtained for 42 MPa in 4-min treatment duration only, without using streptokinase. For a treatment of 2 min at 29 MPa, the clot reduction increased significantly (p < 0.01) from 47% without streptokinase to 82% when streptokinase was used prior to shockwaves. These results also showed no significant damage to streptokinase due to exposure to shockwaves. This study suggests that extracorporeal shockwaves combined with streptokinase is a promising pharmaco-mechanical method for treating occlusive thrombus, and should be confirmed by in vivo trials. Additional studies must also be conducted with other fibrinolytic agents, whose abilities to penetrate clots are different.

  4. Dense cold baryonic matter

    NASA Astrophysics Data System (ADS)

    Stavinskiy, A. V.

    2017-09-01

    A possibility of studying cold nuclear matter on the Nuclotron-NICA facility at baryonic densities characteristic of and higher than at the center of a neutron star is considered based on the data from cumulative processes. A special rare-event kinematic trigger for collisions of relativistic ions is proposed for effective selection of events accompanied by production of dense baryonic systems. Possible manifestations of new matter states under these unusual conditions and an experimental program for their study are discussed. Various experimental setups are proposed for these studies, and a possibility of using experimental setups at the Nuclotron-NICA facility for this purpose is considered.

  5. Chronic lateral epicondylitis of the elbow: A prospective study of low-energy shockwave therapy and low-energy shockwave therapy plus manual therapy of the cervical spine.

    PubMed

    Rompe, J D; Riedel, C; Betz, U; Fink, C

    2001-05-01

    To compare the effects of extracorporeal shockwave therapy (ESWT) alone with a combination of ESWT and manual therapy of the cervical spine in treating chronic tennis elbow. Prospective, matched single-blind control trial. University hospital clinic. Thirty patients with unilateral chronic tennis elbow, an unsuccessful conservative therapy during the 6 months before referral, and clinical signs of cervical dysfunction (eg, pressure pain at the C4-5 and/or C5-6 level, protraction of the head). Three times at weekly intervals all patients received 1000 shockwave impulses of an energy flux density of.16mJ/mm(2) at the lateral elbow. Additionally, they underwent manual therapy of the cervical spine and the cervicothoracic junction 10 times (group I). For each patient, a control matched by age (3-yr range) and gender at first conservative treatment was drawn at random from 127 patients who had undergone low-energy shockwave therapy in the same unit in the past 3 years (group II). Follow-up examinations took place at 12 weeks and at 12 months. The Roles and Maudsley outcome score at 12 months, defining an excellent or good result with no or only occasional discomfort without limitation of activity and range of motion. Neither group differed statistically before the study, with a poor rating for all patients (p >.05). At 12 months, there was still no significant difference, with the outcome being excellent or good in 56% in group I, and in 60% in group II (p >.05). Each group showed significant improvement compared with the respective prestudy evaluation (p <.0001). ESWT may be an effective conservative treatment method for unilateral chronic tennis elbow. The efficacy of additional cervical manual therapy for lateral epicondylitis remains questionable.

  6. Dense Axion Stars

    NASA Astrophysics Data System (ADS)

    Mohapatra, Abhishek; Braaten, Eric; Zhang, Hong

    2016-03-01

    If the dark matter consists of axions, gravity can cause them to coalesce into axion stars, which are stable gravitationally bound Bose-Einstein condensates of axions. In the previously known axion stars, gravity and the attractive force between pairs of axions are balanced by the kinetic pressure. If the axion mass energy is mc2 =10-4 eV, these dilute axion stars have a maximum mass of about 10-14M⊙ . We point out that there are also dense axion stars in which gravity is balanced by the mean-field pressure of the axion condensate. We study axion stars using the leading term in a systematically improvable approximation to the effective potential of the nonrelativistic effective field theory for axions. Using the Thomas-Fermi approximation in which the kinetic pressure is neglected, we find a sequence of new branches of axion stars in which gravity is balanced by the mean-field interaction energy of the axion condensate. If mc2 =10-4 4 eV, the first branch of these dense axion stars has mass ranging from about 10-11M⊙ toabout M⊙.

  7. DENSE MEDIUM CYCLONE OPTIMIZATON

    SciTech Connect

    Gerald H. Luttrell; Chris J. Barbee; Peter J. Bethell; Chris J. Wood

    2005-06-30

    Dense medium cyclones (DMCs) are known to be efficient, high-tonnage devices suitable for upgrading particles in the 50 to 0.5 mm size range. This versatile separator, which uses centrifugal forces to enhance the separation of fine particles that cannot be upgraded in static dense medium separators, can be found in most modern coal plants and in a variety of mineral plants treating iron ore, dolomite, diamonds, potash and lead-zinc ores. Due to the high tonnage, a small increase in DMC efficiency can have a large impact on plant profitability. Unfortunately, the knowledge base required to properly design and operate DMCs has been seriously eroded during the past several decades. In an attempt to correct this problem, a set of engineering tools have been developed to allow producers to improve the efficiency of their DMC circuits. These tools include (1) low-cost density tracers that can be used by plant operators to rapidly assess DMC performance, (2) mathematical process models that can be used to predict the influence of changes in operating and design variables on DMC performance, and (3) an expert advisor system that provides plant operators with a user-friendly interface for evaluating, optimizing and trouble-shooting DMC circuits. The field data required to develop these tools was collected by conducting detailed sampling and evaluation programs at several industrial plant sites. These data were used to demonstrate the technical, economic and environmental benefits that can be realized through the application of these engineering tools.

  8. Dense Axion Stars.

    PubMed

    Braaten, Eric; Mohapatra, Abhishek; Zhang, Hong

    2016-09-16

    If the dark matter particles are axions, gravity can cause them to coalesce into axion stars, which are stable gravitationally bound systems of axions. In the previously known solutions for axion stars, gravity and the attractive force between pairs of axions are balanced by the kinetic pressure. The mass of these dilute axion stars cannot exceed a critical mass, which is about 10^{-14}M_{⊙} if the axion mass is 10^{-4}  eV. We study axion stars using a simple approximation to the effective potential of the nonrelativistic effective field theory for axions. We find a new branch of dense axion stars in which gravity is balanced by the mean-field pressure of the axion Bose-Einstein condensate. The mass on this branch ranges from about 10^{-20}M_{⊙} to about M_{⊙}. If a dilute axion star with the critical mass accretes additional axions and collapses, it could produce a bosenova, leaving a dense axion star as the remnant.

  9. Dense Axion Stars

    NASA Astrophysics Data System (ADS)

    Braaten, Eric; Mohapatra, Abhishek; Zhang, Hong

    2016-09-01

    If the dark matter particles are axions, gravity can cause them to coalesce into axion stars, which are stable gravitationally bound systems of axions. In the previously known solutions for axion stars, gravity and the attractive force between pairs of axions are balanced by the kinetic pressure. The mass of these dilute axion stars cannot exceed a critical mass, which is about 10-14M⊙ if the axion mass is 10-4 eV . We study axion stars using a simple approximation to the effective potential of the nonrelativistic effective field theory for axions. We find a new branch of dense axion stars in which gravity is balanced by the mean-field pressure of the axion Bose-Einstein condensate. The mass on this branch ranges from about 10-20M⊙ to about M⊙ . If a dilute axion star with the critical mass accretes additional axions and collapses, it could produce a bosenova, leaving a dense axion star as the remnant.

  10. Warm dense crystallography

    NASA Astrophysics Data System (ADS)

    Valenza, Ryan A.; Seidler, Gerald T.

    2016-03-01

    The intense femtosecond-scale pulses from x-ray free electron lasers (XFELs) are able to create and interrogate interesting states of matter characterized by long-lived nonequilibrium semicore or core electron occupancies or by the heating of dense phases via the relaxation cascade initiated by the photoelectric effect. We address here the latter case of "warm dense matter" (WDM) and investigate the observable consequences of x-ray heating of the electronic degrees of freedom in crystalline systems. We report temperature-dependent density functional theory calculations for the x-ray diffraction from crystalline LiF, graphite, diamond, and Be. We find testable, strong signatures of condensed-phase effects that emphasize the importance of wide-angle scattering to study nonequilibrium states. These results also suggest that the reorganization of the valence electron density at eV-scale temperatures presents a confounding factor to achieving atomic resolution in macromolecular serial femtosecond crystallography (SFX) studies at XFELs, as performed under the "diffract before destroy" paradigm.

  11. Extracorporeal shock-wave treatment for tennis elbow. A randomised double-blind study.

    PubMed

    Melikyan, E Y; Shahin, E; Miles, J; Bainbridge, L C

    2003-08-01

    The efficacy of extracorporeal shock-wave therapy for tennis elbow was investigated using a single fractionated dosage in a randomised, double-blind study. Outcomes were assessed using the Disabilities of Arm, Shoulder and Hand questionnaire, measurements of grip strength, levels of pain, analgesic usage and the rate of progression to surgery. Informed consent was obtained before patients were randomised to either the treatment or placebo group. In the final assessment, 74 patients (31 men and 43 women) with a mean age of 43.4 years (35 to 71), were included. None of the outcome measures showed a statistically significant difference between the treatment and control groups (p > 0.05). All patients improved significantly over time, regardless of treatment. Our study showed no evidence that extracorporeal shock-wave therapy for tennis elbow is better than placebo.

  12. Enhancement of laser plasma extreme ultraviolet emission by shockwave-laser interaction

    SciTech Connect

    Bruijn, Rene de; Koshelev, Konstantin N.; Zakharov, Serguei V.; Novikov, Vladimir G.; Bijkerk, Fred

    2005-04-15

    A double laser pulse heating scheme has been applied to generate plasmas with enhanced emission in the extreme ultraviolet (EUV). The plasmas were produced by focusing two laser beams (prepulse and main pulse) with a small spatial separation between the foci on a xenon gas jet target. Prepulses with ps-duration were applied to obtain high shockwave densities, following indications of earlier published results obtained using ns prepulses. EUV intensities around 13.5 nm and in the range 5-20 nm were recorded, and a maximum increase in intensity exceeding 2 was measured at an optimal delay of 140 ns between prepulse and main pulse. The gain in intensity is explained by the interaction of the shockwave produced by the prepulse with the xenon in the beam waist of the main pulse. Extensive simulation was done using the radiative magnetohydrodynamic code Z{sup *}.

  13. Cylindrical shockwave-induced compression mechanism in femtosecond laser Bessel pulse micro-drilling of PMMA

    NASA Astrophysics Data System (ADS)

    Wang, Guoyan; Yu, Yanwu; Jiang, Lan; Li, Xiaowei; Xie, Qian; Lu, Yongfeng

    2017-04-01

    Femtosecond (fs) laser Bessel pulses can be employed for high-quality and high-speed fabrication of high-aspect-ratio uniform microhole arrays. This technique exhibits prominent potential in three-dimensional packaging, fluidic devices, fiber sensing, biomedical devices, and aeronautics. However, the fundamental mechanisms remain mysterious. Using the femtosecond time-resolved pump-probe shadowgraph technique, this study revealed that the generation of cylindrical shockwaves inside the bulk material and the corresponding compression mechanism play key roles in the formation of high-aspect-ratio microholes. The phenomena were observed in all experiments of Bessel beam drilling of polymethyl methacrylate. In the aforementioned cases, the compression mechanism was confirmed by measuring sample mass losses that were experimentally determined to be negligible. By contrast, neither cylindrical shockwave nor compression mechanism was observed when a fused silica or Gaussian laser beam was involved.

  14. Shock-wave equation-of-state studies at Los Alamos

    SciTech Connect

    Morris, C.E.

    1990-01-01

    A history of the shock-wave equation-of-state (EOS) studies at Los Alamos is given. Particular emphasis is placed on the pioneering research in the 1950s where many of the experimental techniques and methods of analysis were developed, which we now take for granted. A brief review of shock-wave physics is given, which illustrates important hydrodynamic and thermodynamic concepts. Recent studies on the EOS of Ti are presented with emphasis on the {alpha}-to-{omega} phase transition. VISAR wave profiles on polycrystalline Ni and single-crystal Ni are presented to determine the strengths of these materials at pressure. Low-density polystyrene foam Hugoniot experiments are described and results analyzed. 21 refs., 14 figs.

  15. Laser plasma shockwave cleaning of SiO 2 particles on gold film

    NASA Astrophysics Data System (ADS)

    Ye, Yayun; Yuan, Xiaodong; Xiang, Xia; Dai, Wei; Chen, Meng; Miao, Xinxiang; Lv, Haibing; Wang, Haijun; Zheng, Wanguo

    2011-04-01

    A Nd:YAG laser (1064 nm) induces optical breakdown of the airborne above the gold-coated K9 glass surface and the created shockwave removes the SiO2 particles contaminated on the gold films. The laser cleaning efficiency has been characterized by optical microscopy, dark field imaging, ultraviolet-visible-near infrared spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and the Image-pro software. The relationships between removal ratio and particle position and laser gap distance have been studied in the case of single pulse laser cleaning. The results show that the 1064 nm laser induced plasma shockwave can effectively remove the SiO2 particles. The removal ratio can reach above 90%. The effects of particle position and laser gap distance on the cleaning efficiency are simulated for the single pulse laser cleaning. The simulated results are consistent with the experimental ones.

  16. Tenderization of chicken and turkey breasts with electrically produced hydrodynamic shockwaves.

    PubMed

    Claus, J R; Schilling, J K; Marriott, N G; Duncan, S E; Solomon, M B; Wang, H

    2001-07-01

    Eighty early deboned (45 min, post mortem) postrigor chicken breasts were exposed (24 h post mortem) to two levels (number of pulse firing networks, PFN; 45% energy) of electrically produced hydrodynamic shockwaves (HSW). In addition, 21 turkey breasts (72 h post mortem) were HSW treated (two PFN, 72% energy). Samples were water cooked in bags (78°C internal). Two PFN's were required to decrease (P<0.05) chicken Warner-Bratzler shear (WBS) force by 22% from the control (4.67 kg). WBS force of the HSW treated turkey breast decreased (P<0.05) by 12% from the control (3.20 kg). Cooking loss was higher (P<0.05) in the turkey breast portions but not in the chicken breasts. The electrically produced shockwave process has the potential to provide chicken processors with the ability to early debone and produce tender breasts and to provide turkey processors with tenderness-enhanced fillets.

  17. New developments in shockwave technology intended for meat tenderization: Opportunities and challenges. A review.

    PubMed

    Bolumar, Tomas; Enneking, Mathias; Toepfl, Stefan; Heinz, Volker

    2013-12-01

    Meat tenderness is an important quality parameter determining consumer acceptance and price. Meat tenderness is difficult to ensure in the global meat chain because the production systems are not always aiming at this purpose (ex.: cattle derived from milk production) and by the existence within the carcass of "tough" primals. Different methods can be used by the meat industry to improve meat tenderness each with its advantages and drawbacks. The application of hydrodynamic pressure or shockwaves has showed outstanding improvements by reducing the Warner Bratzler Shear Force by 25% or more. However, the technology has not penetrated into the market as first systems were based on the use of explosives and further developments seemed to lack the robustness to fulfill industrial requirements. The present paper describes the main challenges to construct a prototype for the continuous treatment of meat by shockwaves based on electrical discharges under water. Finally, improvements on the tenderness of meat by using the novel prototype are presented.

  18. Chemical Dense Gas Modeling in Cities

    NASA Astrophysics Data System (ADS)

    Brown, M. J.; Williams, M. D.; Nelson, M. A.; Streit, G. E.

    2007-12-01

    Many industrial facilities have on-site storage of chemicals and are within a few kilometers of residential population. Chemicals are transported around the country via trains and trucks and often go through populated areas on their journey. Many of the chemicals, like chlorine and phosgene, are toxic and when released into the air are heavier-than-air dense gases that hug the ground and result in high airborne concentrations at breathing level. There is considerable concern about the vulnerability of these stored and transported chemicals to terrorist attack and the impact a release could have on highly-populated urban areas. There is the possibility that the impacts of a dense gas release within a city would be exacerbated since the buildings might act to trap the toxic cloud at street level and channel it over a large area down side streets. However, no one is quite sure what will happen for a release in cities since there is a dearth of experimental data. There are a number of fast-running dense gas models used in the air pollution and emergency response community, but there are none that account for the complex flow fields and turbulence generated by buildings. As part of this presentation, we will discuss current knowledge regarding dense gas releases around buildings and other obstacles. We will present information from wind tunnel and field experiments, as well as computational fluid dynamics modeling. We will also discuss new fast response modeling efforts which are trying to account for dense gas transport and dispersion in cities.

  19. Shock-Wave and Plasma-Pinch Mechanisms of Galactic Cosmic-Ray Production

    SciTech Connect

    Trubnikov, B.A.

    2005-07-01

    Based on recent discoveries, we show that it is appropriate to complement the standard shock-wave model for the production of galactic cosmic rays by a plasma-pinch model. The latter describes well the production of high-energy cosmic rays, yields a simple formula for their intensity, and allows the threshold pattern of the knee-type kink in the secondary particle spectrum and a number of unusual phenomena observed above the threshold to be explained.

  20. Meso-scale Computational Investigation of Polyurea Microstructure and Its Role in Shockwave Attenuation/dispersion

    DTIC Science & Technology

    2015-07-01

    an ability to attenuate and disperse shocks . Polyurea is a segmented thermoplastic elastomer which possesses a meso-scale segregated microstructure...polyurea possesses a high shockwave-mitigation capacity, i.e. an ability to attenuate and disperse shocks . Polyurea is a segmented thermoplastic...Polyurea is presently being used both in ballistic-protection and blast-/ shock -wave mitigation applications. However, the phenomena and processes behind

  1. A VISAR Velocity Interferometer System at MRL for Slapper Detonator and Shockwave Studies

    DTIC Science & Technology

    1991-12-01

    VISAR schematic diagram. 8 The transmitted fraction of the beam enters the modified Michelson -type interferometer where it is first split into equal...Thus the phase difference will be 1 2 (A.12) 30 39 2n 2If-1A.13) In the arrangement of the Michelson interferometer used for length measurements, A2...A VISAR Velocity Interferometer L System at MRL for Slapper Detonator and Shockwave Studies David J. Hatt MRL Technical Report MRL-TR-91-42 Abstract

  2. International shock-wave database project : report of the requirements workshop.

    SciTech Connect

    Aidun, John Bahram; Lomonosov, Igor V.; Levashov, Pavel R.

    2012-03-01

    We report on the requirements workshop for a new project, the International Shock-Wave database (ISWdb), which was held October 31 - November 2, 2011, at GSI, Darmstadt, Germany. Participants considered the idea of this database, its structure, technical requirements, content, and principles of operation. This report presents the consensus conclusions from the workshop, key discussion points, and the goals and plan for near-term and intermediate-term development of the ISWdb. The main points of consensus from the workshop were: (1) This international database is of interest and of practical use for the shock-wave and high pressure physics communities; (2) Intermediate state information and off-Hugoniot information is important and should be included in ISWdb; (3) Other relevant high pressure and auxiliary data should be included to the database, in the future; (4) Information on the ISWdb needs to be communicated, broadly, to the research community; and (5) Operating structure will consist of an Advisory Board, subject-matter expert Moderators to vet submitted data, and the database Project Team. This brief report is intended to inform the shock-wave research community and interested funding agencies about the project, as its success, ultimately, depends on both of these groups finding sufficient value in the database to use it, contribute to it, and support it.

  3. Thermodynamic parameters of mixtures with allowance for phase transition components under shock-wave loading

    NASA Astrophysics Data System (ADS)

    Kinelovskii, S. A.; Maevskii, K. K.

    2017-02-01

    The shock-wave synthesis and compaction using powder mixtures are the one of perspective directions of new materials creation. The results of numerical experiments on modeling of shock wave loading of mixtures with allowance for phase transition components in their composition are presented. The significant change in volume in the region of phase transition components included in the mixtures allows us to expand the range of variation of thermodynamic parameters of the mixtures under shock wave loading. The calculation model is based on the assumption that all components of mixture under shock-wave loading are in thermodynamic equilibrium (model TEC). The model TEC allows us to describe the region of the polymorphic phase transition, considering the material in the region of phase transition as a mixture of low-pressure phase and high-pressure phase. The good agreement of these model calculations with the data of different authors defined on the basis of experiments is obtained. Thermodynamic parameters of the nitrides mixture, solid and porous mixtures with quartz as component were reliably described. This model is useful for determining the compositions and volume fractions of the components of the mixture to obtain the specified parameters of solid and porous materials under shock-wave loading.

  4. Improving the antioxidant functionality of Citrus junos Tanaka (yuzu) fruit juice by underwater shockwave pretreatment.

    PubMed

    Kuraya, Eisuke; Nakada, Shina; Touyama, Akiko; Itoh, Shigeru

    2017-02-01

    Citrus junos Tanaka (yuzu) has a strong characteristic aroma, and hence, yuzu juice is used in a number of Japanese foods. We herein evaluated the functional compounds of yuzu juice to investigate whether underwater shockwave pretreatment affects its functionality. Employing the shockwave pretreatment at an increased discharge and energy of 3.5kV and 4.9kJ, respectively, resulted in an increase in the flavanone glycoside content and oxygen radical absorbance capacity (ORAC). The ORAC value of yuzu juice cultivated in Rikuzentakata increased approximately 1.7 times upon underwater shockwave pretreatment. The treatment method proposed herein exhibited reliable and good performance for the extraction of functional and antioxidant chemicals in yuzu fruits, and was comparable with traditional squeezing methods. The high applicability and reliability of this technique for improving the antioxidant functionality of yuzu fruit juice was demonstrated, confirming the potential for application to a wide range of food extraction processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Acute and chronic bioeffects of single and multiple doses of piezoelectric shockwaves (EDAP LT.01).

    PubMed

    Ryan, P C; Jones, B J; Kay, E W; Nowlan, P; Kiely, E A; Gaffney, E F; Butler, M R

    1991-02-01

    Piezoelectric second generation lithotriptors are an established means of administering extracorporeal shockwave lithotripsy (ESWL) enabling treatment to be performed without anaesthesia or analgesia, but higher shockwave doses and multiple or staged treatment are frequently required. The bioeffects of this modality of ESWL, therefore, require further assessment. Seven experimental groups of adult male rabbits were treated using the EDAP LT.01 in order to determine the acute and chronic bioeffects of clinical dose, excess dose, divided excess dose, high frequency and multiple treatment (X10) piezoelectric shockwaves (PSW). Renal function was measured before and after treatment using mercaptoacetyltriglycine (MAG 3) scans. Gross and histological morphological changes were assessed at one and 30 days following application of PSW. Application of single clinical dose PSW was not associated with any significant functional or morphological renal injury. Excess dose PSW caused transient gross renal contusion, which resolved in the majority of animals with no persistent microscopic abnormality. Divided excess dose PSW resulted in no gross or microscopic damage. High frequency PSW was associated with mild histological abnormality. Multiple PSW treatments caused small discrete fibrotic lesions in all cases, without any change in renal function.

  6. Functional and histologic alterations in growing solitary rat kidney as result of extracorporeal shockwaves.

    PubMed

    Ferreira, U; Claro, J de A; Rodrigues Netto, N; Denardi, F; Figueiredo, J F; Riccetto, C L

    1995-02-01

    The long-term effects of extracorporeal shockwave lithotripsy (SWL) on children treated for renal calculi are unclear. To study the effects on the immature animal, we evaluated 31 Wistar white rats that underwent right nephrectomy at 30 days of age. At 40 days of age they were divided into three groups: a control group of 10 rats that received no shockwaves; Group I (9 rats) that received 1000 shockwaves at 16.0 kV, and Group II (12 animals) that received 1000 shock waves at 17.2 kV. Six months later at maturity (7 months and 10 days of age), the following parameters were measured: (1) body and renal weight; (2) blood lithium, sodium, potassium, and creatinine; (3) fractional lithium, sodium, and potassium excretion; and (4) clearances of lithium and creatinine. The kidneys were studied grossly and histologically. We found no significant changes in overall animal and renal growth between the post-SWL and control groups. However, there were significant changes in renal function. The animals in Groups I and II presented significant increases in blood potassium compared with the control group. Furthermore, the 1000 x 17.2 kV group showed permanent histologic renal changes, including red cells in Bowman's capsule and glomerular congestion. The disorders caused by SWL are compatible with hyporeninemic hypoaldosteronism, inappropriately low plasma renin activity, and aldosterone deficiency.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. A new SWL titanium stent (Zebra Stent): resistance to shockwave exposure.

    PubMed

    Buchholz, Noor N P; Cannaby, Clive; Fong, Ruby; Gray, Andrew; Andrews, Henry O; Birch, Malcolm J

    2005-06-01

    Recently, a new-concept lumen-less Teflon-coated double-J wire stent (Zebra stent) has been introduced to facilitate residual stone clearance, in particular after SWL. Its metal core expresses highly mismatched acoustic impedance. It was the aim of this study to exclude damage to the stent through shockwaves. Also, its Teflon coating should to some degree prevent encrustation, and stents removed from stone formers were examined for encrustation. Series of 2000 shockwaves of an average and a maximum energy were applied to defined areas of Zebra stents in a waterbath on a Siemens Multiline Lithotriptor. Stents were then examined for core and sheath damage by digital photography, scanning electron microscopy, and microradiography. In addition, two Zebra stents and one conventional double-J stent from two stone formers were assessed in the same way for damage and encrustation. There was no damage whatsoever to either of the stents. Whereas there was considerable encrustation on the conventional double-J stent, there was none on the Zebra stents after 4 and 5 weeks in situ. Zebra stents resist shockwaves to a maximum number and energy sufficiently to be applied safely under SWL. Whether they resist encrustation to a higher degree in the short term than conventional stents remains to be established.

  8. Shockwaves induce osteogenic differentiation of human mesenchymal stem cells through ATP release and activation of P2X7 receptors.

    PubMed

    Sun, Dahui; Junger, Wolfgang G; Yuan, Changji; Zhang, Wenyan; Bao, Yi; Qin, Daming; Wang, Chengxue; Tan, Lei; Qi, Baochang; Zhu, Dong; Zhang, Xizheng; Yu, Tiecheng

    2013-06-01

    Shockwave treatment promotes bone healing of nonunion fractures. In this study, we investigated whether this effect could be due to adenosine 5'-triphosphate (ATP) release-induced differentiation of human mesenchymal stem cells (hMSCs) into osteoprogenitor cells. Cultured bone marrow-derived hMSCs were subjected to shockwave treatment and ATP release was assessed. Osteogenic differentiation and mineralization of hMSCs were evaluated by examining alkaline phosphatase activity, osteocalcin production, and calcium nodule formation. Expression of P2X7 receptors and c-fos and c-jun mRNA was determined with real-time reverse transcription polymerase chain reaction and Western blotting. P2X7-siRNA, apyrase, P2 receptor antagonists, and p38 MAPK inhibitors were used to evaluate the roles of ATP release, P2X7 receptors, and p38 MAPK signaling in shockwave-induced osteogenic hMSCs differentiation. Shockwave treatment released significant amounts (≈ 7 μM) of ATP from hMSCs. Shockwaves and exogenous ATP induced c-fos and c-jun mRNA transcription, p38 MAPK activation, and hMSC differentiation. Removal of ATP with apyrase, targeting of P2X7 receptors with P2X7-siRNA or selective antagonists, or blockade of p38 MAPK with SB203580 prevented osteogenic differentiation of hMSCs. Our findings indicate that shockwaves release cellular ATP that activates P2X7 receptors and downstream signaling events that caused osteogenic differentiation of hMSCs. We conclude that shockwave therapy promotes bone healing through P2X7 receptor signaling, which contributes to hMSC differentiation.

  9. Understanding and Predicting Shockwave and Turbulent Boundary Layer Interactions

    DTIC Science & Technology

    2008-11-30

    8. Boris, J., Grinstein, F., Oran , E., and Kolbe, R. (1992) "New insights into large-eddy simulations," Fluid Dynamics Research 10. 9. Delery, J...upstream i x<’&=7 1 (separation pant) <W5 (separated region) x/S=17 3 IrJownstreami ^WJ^W _i_ -I- Q. 10 10" 10’ 10’ 10 10’ - tl ^/U. K

  10. Development and Preclinical Testing of Laser-Generated Shockwave Therapy for Infected Wounds

    NASA Astrophysics Data System (ADS)

    Francis, Nathan Craig

    The goal of this thesis is to translate laser-generated shockwave (LGS) therapy from a bench-top, research system into a portable, clinical system for in vivo animal trials. Prior research along this topic was completed using a benchtop system, in a physical setup dissimilar to the clinical setup. So the technology required re-engineering in order to apply it to animal studies. This began with the construction of a portable LGS therapy system, mobile enough to transport from laboratory to clinical settings. Included in the portable system is a 2D scanning system to consistently treat wound areas of varying geometries with shockwaves of 3 mm diameter spot sizes. The shockwaves generated by the portable laser system were characterized, along with the varying shockwave-generating substrates possible for clinical application. A final material selection of black polyimide was chosen because of its complete absorption of laser light and its ability to conform to tight wound geometries. Since shockwaves have never been demonstrated to delaminate biofilm from a tissue surface, a proof-of-concept study was completed successfully delaminating Staphylococcus epidermidis from wounded ex vivo pigskin. Through false-colored SEM imaging, biofilm area reduction between treated and non-treated samples were calculated. A 53% reduction in biofilm area and signifcant biofilm fragmentation was seen. An in vivo safety study was conducted next to observe potential physiological effects of LGS on healthy dermal tissue. Treated subjects were observed over a 3 day period, and no physiological or inflammatory effects were seen in the histological analysis. Finally, a pilot wound healing study was com- pleted on excisional wound healing model in rats, with S. epidermidis as the infectious agent, to measure the effect of LGS on wound healing area and rate compared to other treatments. After 9 days of wound healing, no treatment or controls showed a significant difference in wound healing rate

  11. Geometrical Optics of Dense Aerosols

    SciTech Connect

    Hay, Michael J.; Valeo, Ernest J.; Fisch, Nathaniel J.

    2013-04-24

    Assembling a free-standing, sharp-edged slab of homogeneous material that is much denser than gas, but much more rare ed than a solid, is an outstanding technological challenge. The solution may lie in focusing a dense aerosol to assume this geometry. However, whereas the geometrical optics of dilute aerosols is a well-developed fi eld, the dense aerosol limit is mostly unexplored. Yet controlling the geometrical optics of dense aerosols is necessary in preparing such a material slab. Focusing dense aerosols is shown here to be possible, but the nite particle density reduces the eff ective Stokes number of the flow, a critical result for controlled focusing. __________________________________________________

  12. Anisotropic hydrodynamic function of dense confined colloids

    NASA Astrophysics Data System (ADS)

    Nygârd, Kim; Buitenhuis, Johan; Kagias, Matias; Jefimovs, Konstantins; Zontone, Federico; Chushkin, Yuriy

    2017-06-01

    Dense colloidal dispersions exhibit complex wave-vector-dependent diffusion, which is controlled by both direct particle interactions and indirect nonadditive hydrodynamic interactions mediated by the solvent. In bulk the hydrodynamic interactions are probed routinely, but in confined geometries their studies have been hitherto hindered by additional complications due to confining walls. Here we solve this issue by combining high-energy x-ray photon correlation spectroscopy and small-angle x-ray-scattering experiments on colloid-filled microfluidic channels to yield the confined fluid's hydrodynamic function in the short-time limit. Most importantly, we find the confined fluid to exhibit a strongly anisotropic hydrodynamic function, similar to its anisotropic structure factor. This observation is important in order to guide future theoretical research.

  13. Dissipation of Molecular Cloud Turbulence by Magnetohydrodynamic Shockwaves

    NASA Astrophysics Data System (ADS)

    Lehmann, Andrew; Wardle, Mark

    2015-08-01

    The character of star formation is intimately related to the supersonic magnetohydrodynamic (MHD) turbulent dynamics of the giant molecular clouds in which stars form. A significant amount of the turbulent energy dissipates in low velocity shock waves. These shocks cause molecular line cooling of the compressed and heated gas, and so their radiative signatures probe the nature of the turbulence. In MHD fluids the three distinct families of shocks—fast, intermediate and slow—differ in how they compress and heat the molecular gas, and so observational differences between them may also distinguish driving modes of turbulent regions.Here we use a two-fluid model to compare the characteristics of one-dimensional fast and slow MHD shocks. Fast MHD shocks are magnetically driven, forcing ion species to stream through the neutral gas ahead of the shock front. This magnetic precursor heats the gas sufficiently to create a large, warm transition zone where all the fluid variables only weakly change in the shock front. In contrast, slow MHD shocks are driven by gas pressure where neutral species collide with ion species in a thin hot slab that closely resembles an ordinary gas dynamic shock.We computed observational diagnostics for fast and slow shocks at velocities vs = 2-4 km/s and preshock Hydrogen nuclei densities n(H) = 102-4 cm-3. We followed the abundances of molecules relevant for a simple oxygen chemistry and include cooling by CO, H2 and H2O. Estimates of intensities of CO rotational lines show that high-J lines, above J = 6→5, are more strongly excited in slow MHD shocks. We discuss how these shocks could help interpret recently observed anomalously strong mid- and high-J CO lines emitted by warm gas in the Milky Way and external galaxies, and implications for simulations of MHD turbulence.

  14. Shock-wave proton acceleration from a hydrogen gas jet

    NASA Astrophysics Data System (ADS)

    Cook, Nathan; Pogorelsky, Igor; Polyanskiy, Mikhail; Babzien, Marcus; Tresca, Olivier; Maharjan, Chakra; Shkolnikov, Peter; Yakimenko, Vitaly

    2013-04-01

    Typical laser acceleration experiments probe the interaction of intense linearly-polarized solid state laser pulses with dense metal targets. This interaction generates strong electric fields via Transverse Normal Sheath Acceleration and can accelerate protons to high peak energies but with a large thermal spectrum. Recently, the advancement of high pressure amplified CO2 laser technology has allowed for the creation of intense (10^16 Wcm^2) pulses at λ˜10 μm. These pulses may interact with reproducible, high rep. rate gas jet targets and still produce plasmas of critical density (nc˜10^19 cm-3), leading to the transference of laser energy via radiation pressure. This acceleration mode has the advantage of producing narrow energy spectra while scaling well with pulse intensity. We observe the interaction of an intense CO2 laser pulse with an overdense hydrogen gas jet. Using two pulse optical probing in conjunction with interferometry, we are able to obtain density profiles of the plasma. Proton energy spectra are obtained using a magnetic spectrometer and scintillating screen.

  15. Mercury's Densely Cratered Surface

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Mariner 10 took this picture (FDS 27465) of the densely cratered surface of Mercury when the spacecraft was 18,200 kilometers (8085 miles) from the planet on March 29. The dark line across top of picture is a 'dropout' of a few TV lines of data. At lower left, a portion of a 61 kilometer (38 mile) crater shows a flow front extending across the crater floor and filling more than half of the crater. The smaller, fresh crater at center is about 25 kilometers (15 miles) in diameter. Craters as small as one kilometer (about one-half mile) across are visible in the picture.

    The Mariner 10 mission, managed by the Jet Propulsion Laboratory for NASA's Office of Space Science, explored Venus in February 1974 on the way to three encounters with Mercury-in March and September 1974 and in March 1975. The spacecraft took more than 7,000 photos of Mercury, Venus, the Earth and the Moon.

    Image Credit: NASA/JPL/Northwestern University

  16. High-energy extracorporeal shockwave therapy in a patellar tendon animal model: a vascularization-focused study

    PubMed Central

    Penteado, Fernando Travaglini; Faloppa, Flávio; Giusti, Guilherme; Moraes, Vinícius Ynoe; Belloti, João Carlos; dos Santos, João Baptista Gomes

    2011-01-01

    OBJECTIVE: The aim of this study was to analyze the effect of high-energy extracorporeal shockwave therapy on tendon angiogenesis in the patellar tendons of rabbits. We sought to investigate whether different voltage and number pulses modify the angiogenesis pattern. INTRODUCTION: High-energy extracorporeal shockwave therapy is an option in the treatment of orthopedic diseases such as chronic tendonitis. Despite its potential clinical applicability, there have been few studies on this technique that examine both its clinical effectiveness and its effect on angiogenesis. METHODS: High-energy extracorporeal shockwave therapy was applied at the tibial insertion of the left patellar ligament in 30 rabbits that were separated into six groups that differed in terms of the voltage and number of pulses that were applied by high-energy extracorporeal shockwave therapy. The tibial insertion in the right legs of the animals was used as the control. After six weeks, we performed histological analysis on the region and quantified the number of blood vessels. RESULTS: No significant differences in the number of blood vessels between the left and right patellar tendons were found within groups. Additionally, no significant differences in the number of blood vessels in the left patellar tendons were found between groups. CONCLUSIONS: The application of high-energy extracorporeal shockwave therapy did not cause a change in vascularization in the patellar tendon in rabbits. PMID:22179168

  17. Fluid imbalance

    MedlinePlus

    ... up in the body. This is called fluid overload (volume overload). This can lead to edema (excess fluid in ... Water imbalance; Fluid imbalance - dehydration; Fluid buildup; Fluid overload; Volume overload; Loss of fluids; Edema - fluid imbalance; ...

  18. Chelyabinsk airburst shockwave characteristics from Korkino coal mine seismic records

    NASA Astrophysics Data System (ADS)

    Popova, Olga; Rybnov, Yurij; Shuvalov, Valery; Jenniskens, Peter; Kharlamov, Vladimir; Usoltseva, Olga; Dyagilev, Ruslan

    The Chelyabinsk airburst of 15 February 2013, was exceptional because of the large kinetic energy of the impacting body and the airburst that was generated, creating significant damage and injuries in a densely populated area. The butterfly-shape of the damaged area (Popova et al., 2013) was explained from the fact that the energy was deposited over a range of altitudes. Some uncertainty remains about the source energy because it is not known precisely at what pressure glass is expected to break. Reasonable results were obtained for energies of 300-520 kt TNT and over pressures of 500-1000 Pa under assumption that energy release follows the light curve (Popova et al., 2013). There were no any instrumental records of overpressure in the damaged area. However, the coal mine at Korkino is situated in the damage area close to the meteoroid trajectory, almost immediately below the region of highest energy deposition. Its seismic control system with three-component geophones 3G4.5 recorded the blast wave from the meteoroid entry indirectly from its coupling to the ground. This is the only instrumental record of the airburst close to the meteoroid trajectory. Analysis of these records is presented, which allowed us to determine the source location and strength. The direction of the blast wave arrival coincides with the shortest distance to the trajectory. The amplitude of shock wave is evaluated and the measured values are in agreement with estimates of the source energy based on our numerical modeling of the glass damage area. Popova O.,Jenniskens P., Emel’yanenko V. et al. (the Chelyabinsk Airburst Consortium) Chelyabinsk Airburst, Damage Assessment, Meteorite Recovery, and Characterization, Science, 2013, 342, 1069-1073

  19. Conductive dense hydrogen

    NASA Astrophysics Data System (ADS)

    Eremets, M.; Troyan, I.

    2012-12-01

    Hydrogen at ambient pressures and low temperatures forms a molecular crystal which is expected to display metallic properties under megabar pressures. This metal is predicted to be superconducting with a very high critical temperature Tc of 200-400 K. The superconductor may potentially be recovered metastably at ambient pressures, and it may acquire a new quantum state as a metallic superfluid and a superconducting superfluid. Recent experiments performed at low temperatures T < 100 K showed that at record pressures of 300 GPa, hydrogen remains in the molecular state and is an insulator with a band gap of appr 2 eV. Given our current experimental and theoretical understanding, hydrogen is expected to become metallic at pressures of 400-500 GPa, beyond the current limits of static pressures achievable using diamond anvil cells. We found that at room temperature and pressure > 220 GPa, new Raman modes arose, providing evidence for the transformation to a new opaque and electrically conductive phase IV. Above 260 GPa, in the next phase V, hydrogen reflected light well. Its resistance was nearly temperature-independent over a wide temperature range, down to 30 K, indicating that the hydrogen was metallic. Releasing the pressure induced the metallic phase to transform directly into molecular hydrogen with significant hysteresis at 200 GPa and 295 K. These data were published in our paper: M. I. Eremets and I. A. Troyan "Conductive dense hydrogen." Nature Materials 10: 927-931. We will present also new results on hydrogen: phase diagram with phases IV and V determined in P,T domain up to 300 GPa and 350 K. We will also discuss possible structures of phase IV based on our Raman and infrared measurements up to 300 GPa.

  20. Extracorporeal shockwaves induce the expression of ATF3 and GAP-43 in rat dorsal root ganglion neurons.

    PubMed

    Murata, Ryo; Ohtori, Seiji; Ochiai, Nobuyasu; Takahashi, Norimasa; Saisu, Takashi; Moriya, Hideshige; Takahashi, Kazuhisa; Wada, Yuichi

    2006-07-30

    Although extracorporeal shockwave has been applied in the treatment of various diseases, the biological basis for its analgesic effect remains unclear. Therefore, we investigated the dorsal root ganglion neurons of rats following shockwave exposure to the footpad to elucidate its effect on the peripheral nervous system. We used activating transcription factor 3 (ATF3) and growth-associated phosphoprotein (GAP-43) as markers for nerve injury and axonal regeneration, respectively. The average number of neurons immunoreactive for ATF3 increased significantly in the treated rats at all experimental time points, with 78.3% of those neurons also exhibiting immunoreactivity for GAP-43. Shockwave exposure induced injury of the sensory nerve fibers within the exposed area. This phenomenon may be linked to the desensitization of the exposure area, not the cause of pain, considering clinical research with a particular absence of painful adverse effect. Subsequent active axonal regeneration may account for the reinnervation of exposed area and the amelioration of the desensitization.

  1. Extracorporeal shockwave: mechanisms of action and physiological aspects for cellulite, body shaping, and localized fat-Systematic review.

    PubMed

    Modena, Débora A Oliveira; da Silva, Caroline Nogueira; Grecco, Clovis; Guidi, Renata Michelini; Moreira, Renata Gomes; Coelho, Andresa A; Sant'Ana, Estela; de Souza, José Ricardo

    2017-10-01

    Extracorporeal Shockwave Therapy (ESWT) has had a wide use in rehabilitation, and has presented positive effects in the treatment of unaesthetic affections. The objective of the present study was to search, in the literature, the mechanisms of action and the physiological aspects of shockwaves acting on the biological tissue to improve the condition of cellulite and localized fat. The systematic review of the literature was carried out in the period of September 2016 to February 2017 based on the bibliographic databases such as Lilacs, Medline, PubMed, and SciELO. Fifteen articles were identified in that systematic review, three of which were excluded as they did not make the complete access to the article available or the theme investigated did not encompass the objective of the study. The revision demonstrated that extracorporeal shockwaves present relevant effects on the biological tissue, which leads to the restructuring of skin properties and subcutaneous tissue, thus clinically improving the aspects of cellulite and localized fat.

  2. In-vitro cell treatment with focused shockwaves-influence of the experimental setup on the sound field and biological reaction.

    PubMed

    Dietz-Laursonn, Kristin; Beckmann, Rainer; Ginter, Siegfried; Radermacher, Klaus; de la Fuente, Matías

    2016-01-01

    To improve understanding of shockwave therapy mechanisms, in vitro experiments are conducted and the correlation between cell reaction and shockwave parameters like the maximum pressure or energy density is studied. If the shockwave is not measured in the experimental setup used, it is usually assumed that the device's shockwave parameters (=manufacturer's free field measurements) are valid. But this applies only for in vitro setups which do not modify the shockwave, e.g., by reflection or refraction. We hypothesize that most setups used for in vitro shockwave experiments described in the literature influence the sound field significantly so that correlations between the physical parameters and the biological reaction are not valid. To reveal the components of common shockwave in vitro setups which mainly influence the sound field, 32 publications with 37 setups used for focused shockwave experiments were reviewed and evaluated regarding cavitation, cell container material, focal sound field size relative to cell model size, and distance between treated cells and air. For further evaluation of the severity of those influences, experiments and calculations were conducted. In 37 setups, 17 different combinations of coupling, cell container, and cell model are described. The setup used mainly is a transducer coupled via water to a tube filled with a cell suspension. As changes of the shockwaves' maximum pressure of 11 % can already induce changes of the biological reaction, the sound field and biological reactions are mainly disturbed by use of standard cell containers, use of coupling gel, air within the 5 MPa focal zone, and cell model sizes which are bigger than half the -6 dB focal dimensions. Until now, correct and sufficient information about the shockwave influencing cells in vitro is only provided in 1 of 32 publications. Based on these findings, guidelines for improved in vitro setups are proposed which help minimize the influence of the setup on the sound

  3. Shockwave turbulent boundary layer interaction control using magnetically driven surface discharges

    NASA Astrophysics Data System (ADS)

    Kalra, Chiranjeev Singh

    The dissertation demonstrates the potential for shockwave-turbulent boundary layer interaction control in air using low current DC constricted surface discharges forced by moderate strength magnetic fields. Experiments are conducted in a Mach 2.6 indraft air tunnel with discharge currents up to 300 mA and magnetic field strengths up to 5 Tesla. Separation and non-separation inducing shocks are generated with diamond shape shockwave generators located on the wall opposite to the surface electrodes, and flow properties are measured with schlieren imaging, static wall pressure probes and acetone flow visualization. Also, an efficient, time dependent, two-dimensional Navier-Stokes numerical code for shockwave boundary layer interaction in air is developed. To replicate the experiments done at high Reynolds number, the code is divided into time independent and time dependent regimes to significantly reduce computation time. The effect of plasma control on boundary layer separation depends on the direction of the Lorentz force ( j d16 xB d16 ). It is observed that by using a Lorentz force that pushes the discharge upstream, separation can be induced or further strengthened even with discharge currents as low as 30 mA in a 3 Tesla magnetic field. If shock induced separation is present, it is observed that by using a Lorentz force that pushes the discharge downstream, separation can be suppressed, but this required higher currents, greater than 80 mA. Acetone planar laser scattering is used to image the flow structure in the test section and the reduction in the size of recirculation bubble and its elimination are observed experimentally as a function of actuation current and magnetic field strength. Computational results are in good agreement with experiments in terms of the flow structure as shown by Schlieren imaging, acetone planar laser scattering, and the static pressure profile on the test section wall.

  4. Reynolds number effects on shock-wave turbulent boundary-layer interactions - A comparison of numerical and experimental results

    NASA Technical Reports Server (NTRS)

    Horstman, C. C.; Settles, G. S.; Vas, I. E.; Bogdonoff, S. M.; Hung, C. M.

    1977-01-01

    An experiment is described that tests and guides computations of a shock-wave turbulent boundary-layer interaction flow over a 20-deg compression corner at Mach 2.85. Numerical solutions of the time-averaged Navier-Stokes equations for the entire flow field, employing various turbulence models, are compared with the data. Each model is critically evaluated by comparisons with the details of the experimental data. Experimental results for the extent of upstream pressure influence and separation location are compared with numerical predictions for a wide range of Reynolds numbers and shock-wave strengths.

  5. Nonstationary phenomena in the region of shock-wave interaction with a boundary layer at transonic flow velocities

    NASA Astrophysics Data System (ADS)

    Sidorenko, A. A.; Budovskii, A. D.; Polivanov, P. A.; Vishnyakov, O. I.

    2017-06-01

    Nonstationary characteristics of detached flow have been experimentally studied during interaction of the boundary layer with a shock wave that appears on a profiled bump in transonic flow. The experiments were performed with variable shock-wave intensity and position in a T-325 wind tunnel. The flow was studied using methods of schlieren imaging, measuring average pressure and its pulsations on the surface of a model, and determining velocity fields by particle image velocimetry. Analysis of the experimental data showed that the observed shock-wave oscillations and flow pulsations in the detachment zone were related to disturbances present in the oncoming boundary layer.

  6. Shockwave therapy for the treatment of chronic proximal hamstring tendinopathy in professional athletes.

    PubMed

    Cacchio, Angelo; Rompe, Jan D; Furia, John P; Susi, Piero; Santilli, Valter; De Paulis, Fosco

    2011-01-01

    Chronic proximal hamstring tendinopathy is an overuse syndrome that is usually managed by nonoperative methods. Shockwave therapy has proved to be effective in many tendinopathies. Shockwave therapy may be more effective than other nonoperative treatments for chronic proximal hamstring tendinopathy. Randomized controlled clinical study; Level of evidence, 1. Forty professional athletes with chronic proximal hamstring tendinopathy were enrolled between February 1, 2004, and September 30, 2006. Patients were randomly assigned to receive either shockwave therapy, consisting of 2500 impulses per session at a 0.18 mJ/mm² energy flux density without anesthesia, for 4 weeks (SWT group, n = 20), or traditional conservative treatment consisting of nonsteroidal anti-inflammatory drugs, physiotherapy, and an exercise program for hamstring muscles (TCT group, n = 20). Patients were evaluated before treatment, and 1 week and 3, 6, and 12 months after the end of treatment. The visual analog scale (VAS) score for pain and Nirschl phase rating scale (NPRS) were used as primary outcome measures. The patients were observed for a mean of 10.7 months (range, 1-12 months). Six patients were lost to follow-up because they underwent a surgical intervention: 3 (all in TCT group) were lost at 3 months; 2 (1 in each group), at 6 months; and 1 (in the TCT group), at 12 months. Primary follow-up was at 3 months after the beginning of treatment. The VAS scores in the SWT and TCT groups were 7 points before treatment (P = .84), and 2 points and 5 points, respectively, 3 months after treatment (P < .001). The NPRS scores in the SWT and TCT groups were 5 points in either group before treatment (P = .48), and 2 points and 6 points, respectively, 3 months after treatment (P < .001). At 3 months after treatment, 17 of the 20 patients (85%) in the SWT group and 2 of the 20 patients (10%) in the TCT group achieved a reduction of at least 50% in pain (P < .001). There were no serious complications in

  7. Use of internal polyethylene ureteral stents in extracorporeal shock-wave lithotripsy of staghorn calculi.

    PubMed

    Pode, D; Shapiro, A; Verstandig, A; Pfau, A

    1987-01-01

    Ureteral stenting during extracorporeal shock-wave lithotripsy (ESWL) of complete staghorn calculi, using an internal polyethylene pigtail catheter, was found to be an efficient prophylactic measure against the high rate of complications in these cases. In the presence of a ureteral stent the stone fragments passed more easily into the bladder, accumulation of obstructing stone streets was prevented, and internal drainage of the urine was guaranteed. The need for auxiliary measures such as percutaneous nephrostomy, ureteroscopy or ureteral meatotomy was prevented in most cases. This prophylactic measure may turn ESWL to become the primary treatment of large staghorn calculi.

  8. Experimental study of dynamic properties of porous materials under shock-wave loading

    NASA Astrophysics Data System (ADS)

    Zubareva, A. N.; Efremov, V. P.; Mochalova, V. M.; Utkin, A. V.

    2016-11-01

    The paper presents new experimental data on properties of porous media under shock-wave loading. We considered materials with different nature of porosity. The porosity in the silicone rubber and the epoxy resin was produced by glass microspheres filler. Open porosity was realized in a fibrous material made from glass fibers with corundum. It was shown that two-wave configuration was formed in materials with closed porosity. Such structure of the pulse with a precursor was not observed in samples with open porosity. As a result of analysis of experimental data, Hugoniots for the investigated materials were obtained.

  9. Computation of sharp-fin-induced shockwave/turbulent boundary layer interactions

    NASA Technical Reports Server (NTRS)

    Horstman, C. C.

    1986-01-01

    Solutions of the Reynolds-averaged Navier-Stokes equations are presented and are compared with a family of experimental results for the three-dimensional interaction of a sharp-fin-induced shock wave with a turbulent boundary layer. The solutions predict most of the essential features of the flow fields for various shock-wave strengths. However, some features of the measured flow fields, such as secondary separation and size of the largest separated zones were not accurately computed. The computed flow fields, aided by particle tracing techniques, display a prominent vortical structure which can be correlated with the observed surface phenomena.

  10. [Effects of shock-wave lithotripsy (ESWL) on electrolytic and hormonal balance in nephrolithiasis patients].

    PubMed

    Dzhavad-Zade, S M; Abdullaev, S Sh

    1998-01-01

    Blood concentrations of parathyroid hormone, aldosterone, hydrocortisone, Na+, K+, Ca2+, 24-h urine concentration of Ca2+, blood pressure were measured on day 3 and 7 after extracorporeal shock-wave lithotripsy. A total of 54 patients with nephrolithiasis (NL) were examined. In NL patients with hypertension the above lithotripsy led to a fall in pressure by 15-20%, to correction of initial hormonal and electrolytic unbalance. There were marked changes in the levels of parathyroid hormone, total Ca2+ in the blood and 24-h urine.

  11. Shock-wave processes evolution in fused quartz under intense energy action

    NASA Astrophysics Data System (ADS)

    Efremov, V. P.; Ivanov, M. F.; Kiverin, A. D.; Yakovenko, I. S.

    2016-11-01

    The paper considers gas-dynamical processes evolving as a result of laser action in fused quartz. A conventional approach is used to construct a model for equation of state which provides an adequate description of the silica state at high densities of energy typical for local optical silica damage. Shock-wave processes generated in the medium due to the local laser energy deposition are calculated using fully conservative numerical technique. The obtained results provide relatively accurate description of the process in a wide range of parameters and allow further research to get clear interpretation of high-speed propagation of the laser absorbing front through the silica optical fiber.

  12. Femtosecond-laser-induced shockwaves in water generated at an air-water interface.

    PubMed

    Strycker, B D; Springer, M M; Traverso, A J; Kolomenskii, A A; Kattawar, G W; Sokolov, A V

    2013-10-07

    We report generation of femtosecond-laser-induced shockwaves at an air-water interface by millijoule femtosecond laser pulses. We document and discuss the main processes accompanying this phenomenon, including light emission, development of the ablation plume in the air, formation of an ablation cavity, and, subsequently, a bubble developing in water. We also discuss the possibility of remotely controlling the characteristics of laser-induced sound waves in water through linear acoustic superposition of sound waves that results from millijoule femtosecond laser-pulse interaction with an air-water interface, thus opening up the possibility of remote acoustic applications in oceanic and riverine environments.

  13. Laser-Induced Shockwave Paired with FRET: A Method to Study Cell Signaling

    PubMed Central

    GOMEZ-GODINEZ, VERONICA; PREECE, DARYL; SHI, LINDA; KHATIBZADEH, NIMA; ROSALES, DERRICK; PAN, YIJIA; LEI, LIE; WANG, YINGXIAO; BERNS, MICHAEL W.

    2015-01-01

    Cells within the body are subject to various forces; however, the details concerning the way in which cells respond to mechanical stimuli are not well understood. We demonstrate that laser-induced shockwaves (LIS) combined with biosensors based on fluorescence resonance energy transfer (FRET) is a promising new approach to study biological processes in single live cells. As “proof-of-concept,” using a FRET biosensor, we show that in response to LIS, cells release intracellular calcium. With the parameters used, cells retain their morphology and remain viable. LIS combined with FRET permits observation of the cells immediate response to a sudden shear force. PMID:25639252

  14. Modeling shockwaves and impact phenomena with Eulerian peridynamics

    DOE PAGES

    Silling, Stewart A.; Parks, Michael L.; Kamm, James R.; ...

    2017-05-09

    Most previous development of the peridynamic theory has assumed a Lagrangian formulation, in which the material model refers to an undeformed reference configuration. Here, an Eulerian form of material modeling is developed, in which bond forces depend only on the positions of material points in the deformed configuration. The formulation is consistent with the thermodynamic form of the peridynamic model and is derivable from a suitable expression for the free energy of a material. We show that the resulting formulation of peridynamic material models can be used to simulate strong shock waves and fluid response in which very large deformationsmore » make the Lagrangian form unsuitable. The Eulerian capability is demonstrated in numerical simulations of ejecta from a wavy free surface on a metal subjected to strong shock wave loading. The Eulerian and Lagrangian contributions to bond force can be combined in a single material model, allowing strength and fracture under tensile or shear loading to be modeled consistently with high compressive stresses. Furthermore, we demonstrate this capability in numerical simulation of bird strike against an aircraft, in which both tensile fracture and high pressure response are important.« less

  15. Application of CHAD hydrodynamics to shock-wave problems

    SciTech Connect

    Trease, H.E.; O`Rourke, P.J.; Sahota, M.S.

    1997-12-31

    CHAD is the latest in a sequence of continually evolving computer codes written to effectively utilize massively parallel computer architectures and the latest grid generators for unstructured meshes. Its applications range from automotive design issues such as in-cylinder and manifold flows of internal combustion engines, vehicle aerodynamics, underhood cooling and passenger compartment heating, ventilation, and air conditioning to shock hydrodynamics and materials modeling. CHAD solves the full unsteady Navier-Stoke equations with the k-epsilon turbulence model in three space dimensions. The code has four major features that distinguish it from the earlier KIVA code, also developed at Los Alamos. First, it is based on a node-centered, finite-volume method in which, like finite element methods, all fluid variables are located at computational nodes. The computational mesh efficiently and accurately handles all element shapes ranging from tetrahedra to hexahedra. Second, it is written in standard Fortran 90 and relies on automatic domain decomposition and a universal communication library written in standard C and MPI for unstructured grids to effectively exploit distributed-memory parallel architectures. Thus the code is fully portable to a variety of computing platforms such as uniprocessor workstations, symmetric multiprocessors, clusters of workstations, and massively parallel platforms. Third, CHAD utilizes a variable explicit/implicit upwind method for convection that improves computational efficiency in flows that have large velocity Courant number variations due to velocity of mesh size variations. Fourth, CHAD is designed to also simulate shock hydrodynamics involving multimaterial anisotropic behavior under high shear. The authors will discuss CHAD capabilities and show several sample calculations showing the strengths and weaknesses of CHAD.

  16. Theory and Simulation of Warm Dense Matter Targets

    SciTech Connect

    Barnard, J J; Armijo, J; More, R M; Friedman, A; Kaganovich, I; Logan, B G; Marinak, M M; Penn, G E; Sefkow, A B; Santhanam, P; Wurtele, J S

    2006-07-13

    We present simulations and analysis of the heating of warm dense matter foils by ion beams with ion energy less than one MeV per nucleon to target temperatures of order one eV. Simulations were carried out using the multi-physics radiation hydrodynamics code HYDRA and comparisons are made with analysis and the code DPC. We simulate possible targets for a proposed experiment at LBNL (the so-called Neutralized Drift Compression Experiment, NDCXII) for studies of warm dense matter. We compare the dynamics of ideally heated targets, under several assumed equation of states, exploring dynamics in the two-phase (fluid-vapor) regime.

  17. Equation of state and transport coefficients for dense plasmas.

    PubMed

    Blancard, C; Faussurier, G

    2004-01-01

    We hereby present a model to describe the thermodynamic and transport properties of dense plasmas. The electronic and ionic structures are determined self-consistently using finite-temperature density functional theory and Gibbs-Bogolyubov inequality. The main thermodynamic quantities, i.e., internal energy, pressure, entropy, and sound speed, are obtained by numerical differentiation of the plasma total Helmholtz free energy. Electronic electrical and thermal conductivities are calculated from the Ziman approach. Ionic transport coefficients are estimated using those of hard-sphere system and the Rosenfeld semiempirical "universal" correspondence between excess entropy and dimensionless transport coefficients of dense fluids. Numerical results and comparisons with experiments are presented and discussed.

  18. Dense fluids—New aspects and results

    NASA Astrophysics Data System (ADS)

    Franck, E. U.

    1986-05-01

    Dense fluids at elevated and supercritical temperatures find increased interest in science and technology. In this presentation special attention is given to binary mixtures with polar components. Methods and results of experiments with such high pressure-high temperature fluids are described. Far infrared spectra of CHCIF 2 and CHF 3 give indications of the types of molecular motion in the supercritical phases. “Enhancement factors” for the solubility of a solid solute like caffeine in high pressure CO 2 have been determined spectroscopically. The phase diagrams in the pressure-temperature-composition space and critical curves for water combined with nitrogen, oxygen, methane and helium have been measured recently to 2500 bar and 450°C. A “rational” equation of state permits calculation of critical curves and binodal surfaces for such systems. An extended investigation was made with the ternary system water-methane-sodium chloride. Small additions of salt shift critical curves by 100°C and more to higher temperatures. In water-methane mixtures between 400 and 500°C and at 1000 bar “supercritical flames” and “hydrothermal combustion” could be produced with injected oxygen. Binary liquid mixtures of cesium and cesium hydride to elevated hydrogen pressure and to 800°C show the phenomena of continuous transition from metal to ionic fluids. Electric conductance measurements in the whole range of concentrations are presented and discussed.

  19. Extracorporeal shockwave application to the distal femur of rabbits diminishes the number of neurons immunoreactive for substance P in dorsal root ganglia L5.

    PubMed

    Hausdorf, Jörg; Lemmens, Marijke A M; Kaplan, Suleyman; Marangoz, Cafer; Milz, Stefan; Odaci, Ersan; Korr, Hubert; Schmitz, Christoph; Maier, Markus

    2008-05-01

    Application of extracorporeal shockwaves to the musculoskeletal system can induce long-term analgesia in the treatment of chronic painful diseases such as calcifying tendonitis of the shoulder, tennis elbow and chronic plantar fasciitis. However, the molecular and cellular mechanisms underlying this phenomenon are largely unknown. Recently it was shown that application of extracorporeal shockwaves to the distal femur of rabbits can lead to reduced concentration of substance P in the shockwaves' focal zone. In the present study we investigated the impact of extracorporeal shockwaves on the production of substance P within dorsal root ganglia in vivo. High-energy shockwaves were applied to the ventral side of the right distal femur of rabbits. After six weeks, the dorsal root ganglia L5 to L7 were investigated with high-precision design-based stereology. The application of extracorporeal shockwaves caused a statistically significant decrease in the mean number of neurons immunoreactive for substance P within the dorsal root ganglion L5 of the treated side compared with the untreated side, without affecting the total number of neurons within this dorsal root ganglion. No effect was observed in the dorsal root ganglia L6 and L7, respectively. These data might further contribute to our understanding of the molecular and cellular mechanisms in the induction of long-term analgesia by extracorporeal shockwave application to the musculoskeletal system.

  20. Effects of extracorporeal shockwaves on the stability of the interface between bone and polymethylmethacrylate: an in vitro study on human femoral segments.

    PubMed

    Braun, W; Claes, L; Rüter, A; Paschke, D

    1992-02-01

    The increasing number of revision procedures for failed total arthroplasty requiring difficult cement removal has led to various developments of new instruments and techniques to facilitate this procedure. In this in vitro study the effect of extracorporeal shockwaves on the bone-cement interface was investigated. At first the pressure reduction caused by the passage of shockwaves through compounds consisting of cortical bone-polymethyl-methacrylate and cancellous bone-polymethylmethacrylate by means of a needle pressure probe was measured. Secondly, the mechanical and morphological effects of extracorporeal shockwaves on the polymethylmethacrylate-bone interface of human femoral segments was tested. Using bone cement, stainless steel rods were implanted into cadaveric femoral segments and the polymethylmethacrylate-bone interface was treated with extracorporeal shockwaves. When comparing the treatment and control groups mechanically, radiologically, and microscopically it was not possible to demonstrate evidence of disruption of the interface caused by extracorporeal shockwaves. Instead it was shown that intravasation of bone marrow can be induced by shockwaves. Considering these facts, shockwaves seems not to be good clinical adjunct in revision surgery of failed arthroplasty.

  1. Shockwave-turbulent boundary layer interaction control using magnetically driven surface discharges

    NASA Astrophysics Data System (ADS)

    Kalra, Chiranjeev S.; Zaidi, Sohail H.; Miles, Richard B.; Macheret, Sergey O.

    2011-03-01

    This study demonstrates the potential for shockwave-turbulent boundary layer interaction control in air using low current DC constricted surface discharges forced by moderate strength magnetic fields. An analytical model describing the physics of magnetic field forced discharge interaction with boundary layer flow is developed and compared to experiments. Experiments are conducted in a Mach 2.6 indraft air tunnel with discharge currents up to 300 mA and magnetic field strengths up to 5 Tesla. Separation- and non-separation-inducing shocks are generated with diamond-shaped shockwave generators located on the wall opposite to the surface electrodes, and flow properties are measured with schlieren imaging, static wall pressure probes and acetone flow visualization. The effect of plasma control on boundary layer separation depends on the direction of the Lorentz force ( j × B). It is observed that by using a Lorentz force that pushes the discharge upstream, separation can be induced or further strengthened even with discharge currents as low as 30 mA in a 3-Tesla magnetic field. If shock-induced separation is present, it is observed that by using Lorentz force that pushes the discharge downstream, separation can be suppressed, but this required higher currents, greater than 80 mA. Acetone planar laser scattering is used to image the flow structure in the test section and the reduction in the size of recirculation bubble and its elimination are observed experimentally as a function of actuation current and magnetic field strength.

  2. Large-Eddy Simulation of Shock-Wave Boundary Layer Interaction and its Control Using Sparkjet

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Yao, Yufeng; Fang, Jian; Gan, Tian; Lu, Lipeng

    2016-06-01

    Large-eddy simulation (LES) of an oblique shock-wave generated by an 8° sharp wedge impinging onto a spatially-developing Mach 2.3 turbulent boundary layer and their interactions has been carried out in this study. The Reynolds number based on the incoming flow property and the boundary layer displacement thickness at the impinging point without shock-wave is 20,000. The detailed numerical approaches are described and the inflow turbulence is generated using the digital filter method to avoid artificial temporal or streamwise periodicity. Numerical results are compared with the available wind tunnel PIV measurements of the same flow conditions. Further LES study on the control of flow separation due to the strong shock-viscous interaction is also conducted by using an active control actuator “SparkJet” concept. The single-pulsed characteristics of the control device are obtained and compared with the experiments. Instantaneous flowfield shows that the “SparkJet” promotes the flow mixing in the boundary layer and enhances its ability to resist the flow separation. The time and spanwise averaged skin friction coefficient distribution demonstrates that the separation bubble length is reduced by maximum 35% with the control exerted.

  3. Generation of Shock-Wave Disturbances at Plasma-Vapor Bubble Oscillation

    NASA Astrophysics Data System (ADS)

    Kuznetsova, N. S.; Yudin, A. S.; Voitenko, N. V.

    2015-11-01

    The complex physical and mathematical model describing all steps of plasma-vapor bubble evolution in the system of the water-ground condensed media is presented. Discharge circuit operation, discharge plasma channel expansion, its transformation into the vapor-plasma bubble and its pulsation, pressure wave generation and propagation of the mechanical stress waves in the ground are self-consistently considered in the model. The model allows investigation of the basic laws of stored energy transformation into the discharge plasma channel, next to the plasma-vapor bubble and transformation of this energy to the energy of pressure wave compressing the surrounding ground. Power characteristics of wave disturbances generated by gas-vapor bubble oscillation in liquid depending on the circuit parameters are analyzed for the prediction of the ground boundary displacement. The dynamics of the shock-wave propagation in water-ground condensed media depending on the rate of the plasma channel energy release is investigated. Simulation of the shock-wave phenomena at a plasma-vapor bubble oscillation in condensed media consecutively describes the physical processes underlying technology for producing piles by electro-discharge stuffing. The quantitative model verified by physical experimental tests will allow optimization of pulse generator parameters and electrode system construction of high-voltage equipment.

  4. Radial extracorporeal shockwave therapy compared with manual therapy in runners with iliotibial band syndrome.

    PubMed

    Weckström, Kristoffer; Söderström, Johan

    2016-01-01

    Although different conservative treatment options have been proposed, there is a paucity of research on the management of iliotibial band syndrome (ITBS) in runners. To compare two treatment protocols for ITBS; radial shockwave therapy (RSWT) and manual therapy (ManT). Both therapies were administered concurrently with an exercise rehabilitation programme. The study was designed as a randomised controlled clinical trial. Twenty-four runners with ITBS received 3 treatments at weekly intervals of either RSWT (n= 11) or ManT (n= 13). In addition, all subjects followed an exercise programme for at least 4 weeks. Main outcome measures were established as mean differences (MD) in pain during treadmill running. There was no significant difference in pain reduction between the two interventions at 4 weeks (p= 0.796), and 8 weeks (p= 0.155) follow-up. Thus, both groups reported similar magnitude of reduced pain during the intervention (p= 0.864). The shockwave therapy (SWT) group reported a 51% decrease in pain at week 4 (p= 0.022), and a 75% decrease at week 8 (p= 0.004). The ManT group showed a 61% reduction in pain at week 4 (p= 0.059), and a 56% reduction at week 8 (p= 0.067). RSWT and ManT were equally effective in reducing pain in subjects with ITBS.

  5. Thermodynamic parameters of heterogeneous materials under shock-wave loading in presentation of equilibrium model

    NASA Astrophysics Data System (ADS)

    Maevskii, K. K.; Kinelovskii, S. A.

    2016-11-01

    The results of numerical experiments on modeling of shock wave loading of solid and porous heterogeneous materials on the example of molybdenum and some alloys included molybdenum as a component are presented. A thermodynamically equilibrium model is applied to describe the behavior of solid and porous materials. This model ensures good compliance with the experiment in a wide range of pressures. The gas in pores, which is a component of the medium, is taken into account in this model. The equation of state of the Mie-Grüneisen type with allowance for the dependence of the Grüneisen coefficient on temperature is used for condensed phases. The applied model allows the behavior of the molybdenum with porosity from 1 to 3 to be calculated under shock-wave loading at pressures above 5 GPa in the one-velocity and one-temperature approximations, as well as on the assumption of equal pressures for all the phases. Computational results are compared with the well-known experimental results obtained by different authors. The model permits the shock-wave loading of solid and porous alloys with molybdenum in their composition to be described reliably solely by using species parameters.

  6. The value of extracorporeal shock-wave lithotripsy in the management of bile duct stones.

    PubMed

    Lee, S H; Fache, J S; Burhenne, H J

    1990-10-01

    We evaluated the role of biliary extracorporeal shock-wave lithotripsy in treating 70 symptomatic patients with bile duct stones in whom endoscopic or percutaneous radiologic attempts at basket extraction had failed. Forty-four patients had common bile and/or common hepatic duct stones, 21 patients had cystic duct stones, and five patients had intrahepatic duct stones. A total of 43 patients (61%) had complete elimination of stone fragments during the initial treatment period. If patients in whom stones were successfully fragmented yet not totally eliminated on initial hospital treatment but who were asymptomatic at follow-up times of 8-22 months are included, the overall successful treatment rate was 83%. Stones were cleared in 26 of 44 common bile/hepatic duct stone patients, spontaneously in seven patients and after endoscopic or percutaneous radiologic intervention in 19 patients. Fifteen (71%) of 21 patients had cystic duct stones successfully cleared. The fragments in two of five patients with intrahepatic duct stones also were cleared. Five patients (7%) had minor side effects. Seven (10%) of 70 patients went on to have surgery. Complications after 30 days occurred in five patients (7%); two required repeated endoscopy with fragment extraction, two required placement of an endoprosthesis, and one died. We conclude that biliary extracorporeal shock-wave lithotripsy is valuable as an adjuvant to standard interventional techniques for removing bile duct stones.

  7. Variation Coefficient of Stone Density: A Novel Predictor of the Outcome of Extracorporeal Shockwave Lithotripsy.

    PubMed

    Yamashita, Shimpei; Kohjimoto, Yasuo; Iguchi, Takashi; Nishizawa, Satoshi; Iba, Akinori; Kikkawa, Kazuro; Hara, Isao

    2017-04-01

    Although previous studies have indicated that stone heterogeneity can affect extracorporeal shockwave lithotripsy (SWL) outcomes, there is no established measurement of stone heterogeneity on CT imagery. We investigated whether variation coefficient of stone density (VCSD) can predict shockwave success. We conducted a retrospective review of 245 patients with urinary calculi who had undergone SWL. We compared the predictive powers of treatment success between VCSD and other parameters associated with CT attenuation. In addition, we performed logistic regression analysis to identify the factors contributing to treatment success. Treatment success was determined within 3 months after first treatment using noncontrast CT. The treatment success rate was 47.8% (117/245 cases). From receiver operating characteristic curves for treatment success, area under curve of VCSD (0.7181) was larger than that of mean stone density (MSD) (0.6384, p = 0.09) and standard deviation of stone density (0.5412, p < 0.01). Multivariate analysis revealed that MSD (p = 0.028) and VCSD (p < 0.001) independently predicted the outcome. Categorized by stone location, VCSD was the independent significant predictor for SWL outcomes in both kidney (p = 0.047) and ureteral calculi (p < 0.001). We found that VCSD can be a novel predictor of SWL success. The development of nomograms or scoring systems, including VCSD, can assist in the decision process for patients and minimize unnecessary delay in treatment of urolithiasis.

  8. Healing of Achilles tendon partial tear following focused shockwave: a case report and literature review

    PubMed Central

    Hsu, Yu-Chun; Wu, Wei-Ting; Chang, Ke-Vin; Han, Der-Sheng; Chou, Li-Wei

    2017-01-01

    Achilles tendinopathy is a common cause of posterior heel pain and can progress to partial tendon tear without adequate treatment. Effects of traditional treatments vary, and many recent reports focus on the use of extracorporeal shockwave therapy (ESWT) for Achilles tendinopathy but not for Achilles tendon partial tear. Here, we report the case of a 64-year-old female suffering from severe left heel pain for half a year. All treatment and rehabilitation were less effective until ESWT was applied. Each course of focused shockwave therapy included 2500 shots with energy flux density from 0.142 mJ/mm2 to 0.341 mJ/mm2. The visual analog scale decreased from nine to one degree. High-resolution musculoskeletal ultrasonography was performed before and 1 month after the treatment, which revealed healing of the torn region and decrease in inflammation. ESWT had shown to be an alternative treatment for Achilles tendon partial tear under safety procedure and ultrasound observation. PMID:28579818

  9. 1D Gas-Dynamic Simulation of Shock-Wave Processes via Internet

    NASA Astrophysics Data System (ADS)

    Levashov, Pavel; Povarnitsyn, Mikhail; Khishchenko, Konstantin

    2009-06-01

    We present a web-interface, which allows one to perform a 1-dimensional gas-dynamic simulation of typical shock-wave processes via the Internet using the database on shock-wave experiments and equations of state. In this interface a user can supply initial conditions, control the process of simulation and make a treatment of the results. Up to seven objects can take part in the experiment; for every object a substance, its initial position and velocity, equation of state and destruction pressure should be defined. The simulation itself is based upon the Eulerian second order Godunov approach. To start computations, the user also has to set the final time, grid ``coarseness'' and the number of moments in which the output of necessary parameters will take place, including initial and final. Additionally, the user can define several Lagrangian markers to trace the state of matter at a given initial coordinate. At the end of simulation the user can analyze the profiles of different values at different times or at points with the specified coordinates of Lagrangian markers both as charts and in textual form. The main advantage of this system is the possibility to use in simulation all equations of state available in the database (more than 130). The system is available freely via addresses http://teos.ficp.ac.ru/rusbank/, http://www.ihed.ras.ru/rusbank/.

  10. Working mechanism of extracorporeal shockwave therapy in non-urological disciplines

    NASA Astrophysics Data System (ADS)

    Schaden, Wolfgang

    2005-04-01

    For 32 years of extracorporeal shockwave lithotripsy (ESWL) only the mechanical strength of shockwaves were of clinical interest. For use in orthopaedics, the absence of dangerous long term effects (malignant degeneration, etc.) is the only important message. The mechanical model tries to explain the effect of shock waves by the provocation of microleasions in the tissue stimulating repairing processes. First doubts on this mechanical model came up when Schaden (2001) could show, that less energy is more efficient in the treatment of non-unions. Due to the basic research of the last years knowledge increased about the microbiological effects. Under the influence of shock waves the change of permeability of cell membranes and the liberation of free radicals was reported. Also the production of nitric oxide (NO) and different growth factors like vascular endothelial growth factor (VEGF), bone morphogenetic proteins (BMP), transforming growth factor-beta 1 (TGF-b1), insulin-like growth factor-I (IGF-I) etc. was observed. The biological model tries to explain the effect of shock waves by stimulating the ingrowth of blood vessels and liberation of growth factors. Under the influence of shock waves, biological tissues seem to be able to produce important substances to initiate healing processes.

  11. High-energy Extracorporeal Shock-Wave Therapy (ESWT) for the treatment of chronic plantar fasciitis.

    PubMed

    Metzner, Gerald; Dohnalek, Christian; Aigner, Elmar

    2010-09-01

    Few reports about the success of high-energy extracorporeal shock-wave therapy in cases of plantar fasciitis exist, even fewer about long-term results. This study investigated results of high-energy extracorporeal shock wave therapy applied to patients with recalcitrant plantar fasciitis. Ninety ESWT were applied to 63 patients (73 heels; 25 male and 38 female; average age 54 (29 to 77) years) from November 1999 to July 2003. All patients had plantar fasciitis for more than 6 months and failure of all non-surgical treatment for more than 3 months. A Dornier Lithotripter S, equipped with an electromagnetic shock-wave emitter was used. Routinely, 1000 shock wave impulses (frequency 2 per second, energy flux density (ED) 0.35 mJ/mm² at 10.5 kV, total dose 350 mJ/mm²) were applied per treatment. Followup was carried out 6 weeks after ESWT, then a second clinic evaluation and a final followup at an average of 73 months after ESWT by telephone. The success of ESWT, defined as a 30% VAS reduction, was seen in 81% at 6-week followup, at 88% at last clinic followup and in 96% at final phone followup. High-energy ESWT (0.35 mJ/mm²) was successful in the treatment of plantar fasciitis and the good short-term results seemed to be maintained over time.

  12. Explosively driven two-shockwave tools with application to ejecta formation at the Los Alamos National Laboratory Proton Radiography Facility

    NASA Astrophysics Data System (ADS)

    Buttler, William

    2013-06-01

    We present the development of an explosively driven physics tool to generate two mostly uniaxial shockwaves. The tool is being used to extend single shockwave ejecta models to a subsequent shockwave event separated by a time interval on the order of a few microseconds. We explore the possibility of varying the amplitude of both the first and second shockwaves, and we apply the tool in experimental geometries on Sn with a surface roughness of Ra = 0 . 8 μ m. We then evaluate the tool further at the Los Alamos National Laboratory Proton Radiography (pRad) Facility in an application to Sn with larger scale perturbations of wavelength 550 μ m, and various amplitudes that gave wave-number amplitude products of η0 2 π / λ = { 3 / 4 , 1 / 2 , 1 / 4 , 1 / 8 } , where the perturbation amplitude is η0, and the wave-number k = 2 π / λ . The pRad data and velocimetry imply it should be possible to develop a second shock ejecta model based on unstable Richtmyer-Meshkov physics. In collaboration with David Oro, Fesseha Mariam, Alexander Saunders, Malcolm Andrews, Frank Cherne, James Hammerberg. Robert Hixson, Christopher Morris, Russell Olson, Dean Preston, Joseph Stone, Dale Tupa, and Wendy Vogan-McNeil, Los Alamos National Laboratory,

  13. Modeling of chemical reactions in the mixture of Al-Ni powders under shock-wave compression

    SciTech Connect

    Horie, Y.; Kipp, M.E.

    1987-07-01

    Based upon microstructural observations of post-shock samples, a mathematical model was developed for chemical changes in the mixture of elemental Al and Ni powders from the passage of high-pressure shock-wave. The model was solved and illustrated using the one-dimensional Sandia code WONDY-IV.

  14. Constitutive relations for steady, dense granular flows

    NASA Astrophysics Data System (ADS)

    Vescovi, D.; Berzi, D.; di Prisco, C. G.

    2011-12-01

    In the recent past, the flow of dense granular materials has been the subject of many scientific works; this is due to the large number of natural phenomena involving solid particles flowing at high concentration (e.g., debris flows and landslides). In contrast with the flow of dilute granular media, where the energy is essentially dissipated in binary collisions, the flow of dense granular materials is characterized by multiple, long-lasting and frictional contacts among the particles. The work focuses on the mechanical response of dry granular materials under steady, simple shear conditions. In particular, the goal is to obtain a complete rheology able to describe the material behavior within the entire range of concentrations for which the flow can be considered dense. The total stress is assumed to be the linear sum of a frictional and a kinetic component. The frictional and the kinetic contribution are modeled in the context of the critical state theory [8, 10] and the kinetic theory of dense granular gases [1, 3, 7], respectively. In the critical state theory, the granular material approaches a certain attractor state, independent on the initial arrangement, characterized by the capability of developing unlimited shear strains without any change in the concentration. Given that a disordered granular packing exists only for a range of concentration between the random loose and close packing [11], a form for the concentration dependence of the frictional normal stress that makes the latter vanish at the random loose packing is defined. In the kinetic theory, the particles are assumed to interact through instantaneous, binary and uncorrelated collisions. A new state variable of the problem is introduced, the granular temperature, which accounts for the velocity fluctuations. The model has been extended to account for the decrease in the energy dissipation due to the existence of correlated motion among the particles [5, 6] and to deal with non

  15. Solids flow rate measurement in dense slurries

    SciTech Connect

    Porges, K.G.; Doss, E.D.

    1993-09-01

    Accurate and rapid flow rate measurement of solids in dense slurries remains an unsolved technical problem, with important industrial applications in chemical processing plants and long-distance solids conveyance. In a hostile two-phase medium, such a measurement calls for two independent parameter determinations, both by non-intrusive means. Typically, dense slurries tend to flow in laminar, non-Newtonian mode, eliminating most conventional means that usually rely on calibration (which becomes more difficult and costly for high pressure and temperature media). These issues are reviewed, and specific solutions are recommended in this report. Detailed calculations that lead to improved measuring device designs are presented for both bulk density and average velocity measurements. Cross-correlation, chosen here for the latter task, has long been too inaccurate for practical applications. The cause and the cure of this deficiency are discussed using theory-supported modeling. Fluid Mechanics are used to develop the velocity profiles of laminar non-Newtonian flow in a rectangular duct. This geometry uniquely allows the design of highly accurate `capacitive` devices and also lends itself to gamma transmission densitometry on an absolute basis. An absolute readout, though of less accuracy, is also available from a capacitive densitometer and a pair of capacitive sensors yields signals suitable for cross-correlation velocity measurement.

  16. Quantum molecular dynamics simulations of dense matter

    SciTech Connect

    Collins, L.; Kress, J.; Troullier, N.; Lenosky, T.; Kwon, I.

    1997-12-31

    The authors have developed a quantum molecular dynamics (QMD) simulation method for investigating the properties of dense matter in a variety of environments. The technique treats a periodically-replicated reference cell containing N atoms in which the nuclei move according to the classical equations-of-motion. The interatomic forces are generated from the quantum mechanical interactions of the (between?) electrons and nuclei. To generate these forces, the authors employ several methods of varying sophistication from the tight-binding (TB) to elaborate density functional (DF) schemes. In the latter case, lengthy simulations on the order of 200 atoms are routinely performed, while for the TB, which requires no self-consistency, upwards to 1000 atoms are systematically treated. The QMD method has been applied to a variety cases: (1) fluid/plasma Hydrogen from liquid density to 20 times volume-compressed for temperatures of a thousand to a million degrees Kelvin; (2) isotopic hydrogenic mixtures, (3) liquid metals (Li, Na, K); (4) impurities such as Argon in dense hydrogen plasmas; and (5) metal/insulator transitions in rare gas systems (Ar,Kr) under high compressions. The advent of parallel versions of the methods, especially for fast eigensolvers, presage LDA simulations in the range of 500--1000 atoms and TB runs for tens of thousands of particles. This leap should allow treatment of shock chemistry as well as large-scale mixtures of species in highly transient environments.

  17. A constitutive law for dense granular flows.

    PubMed

    Jop, Pierre; Forterre, Yoël; Pouliquen, Olivier

    2006-06-08

    A continuum description of granular flows would be of considerable help in predicting natural geophysical hazards or in designing industrial processes. However, the constitutive equations for dry granular flows, which govern how the material moves under shear, are still a matter of debate. One difficulty is that grains can behave like a solid (in a sand pile), a liquid (when poured from a silo) or a gas (when strongly agitated). For the two extreme regimes, constitutive equations have been proposed based on kinetic theory for collisional rapid flows, and soil mechanics for slow plastic flows. However, the intermediate dense regime, where the granular material flows like a liquid, still lacks a unified view and has motivated many studies over the past decade. The main characteristics of granular liquids are: a yield criterion (a critical shear stress below which flow is not possible) and a complex dependence on shear rate when flowing. In this sense, granular matter shares similarities with classical visco-plastic fluids such as Bingham fluids. Here we propose a new constitutive relation for dense granular flows, inspired by this analogy and recent numerical and experimental work. We then test our three-dimensional (3D) model through experiments on granular flows on a pile between rough sidewalls, in which a complex 3D flow pattern develops. We show that, without any fitting parameter, the model gives quantitative predictions for the flow shape and velocity profiles. Our results support the idea that a simple visco-plastic approach can quantitatively capture granular flow properties, and could serve as a basic tool for modelling more complex flows in geophysical or industrial applications.

  18. Infrared Opacities in Dense Atmospheres of Cool White Dwarf Stars

    NASA Astrophysics Data System (ADS)

    Kowalski, P. M.; Blouin, S.; Dufour, P.

    2017-03-01

    Dense, He-rich atmospheres of cool white dwarfs represent a challenge to the modeling. This is because these atmospheres are constituted of a dense fluid in which strong multi-atomic interactions determine their physics and chemistry. Therefore, the ideal-gas-based description of absorption is no longer adequate, which makes the opacities of these atmospheres difficult to model. This is illustrated with severe problems in fitting the spectra of cool, He-rich stars. Good description of the infrared (IR) opacity is essential for proper assignment of the atmospheric parameters of these stars. Using methods of computational quantum chemistry we simulate the IR absorption of dense He/H media. We found a significant IR absorption from He atoms (He-He-He CIA opacity) and a strong pressure distortion of the H2-He collision-induced absorption (CIA). We discuss the implication of these results for the interpretation of the spectra of cool stars.

  19. Ultrasound-guided, high-energy extracorporeal - shock-wave treatment of symptomatic calcareous tendinopathy of the shoulder.

    PubMed

    Jakobeit, Christian; Winiarski, Barbara; Jakobeit, Susanne; Welp, Lars; Spelsberg, Gerhard

    2002-07-01

    The objective of the present study was to test the effectiveness of ultrasound-guided high-energy extracorporeal shock-wave treatment in symptomatic chronic calcareous tendinopathy of the shoulder rotator cuff, and to assess the morphology of the hydroxyapatite deposits before and after this treatment. The study involved 80 patients who suffered from calcification of the rotator cuff. These patients were treated with an instrument with electromagnetic induction of shock-waves (Doli-Lithotripter, Dornier, Munich, Germany) under continuous ultrasound location of the treatment focus. The treatments were carried out in one to five sessions at an interval of 4-6 weeks. Each patient received a total of 1800 shock waves in each therapy. The flow density of the energy in the therapy focus was 0.08-0.42 mJ/mm2. Sixty-eight patients (85%) attained complete freedom from symptoms or only had minimal residual symptoms when stressing their shoulder joint. The calcification suffered by 57 (71.2%) patients was completely resorbed after treatment and partially resorbed in 16 patients (20%). Complete resorption of the calcareous deposits led to freedom from symptoms. In all patients with amorphous calcareous deposits, there was complete resorption of the calcification. Mixed calcareous foci were eliminated in 64.7-77% of the cases, depending on the extent of amorphous structures. Complete resorption was achieved in 44.4% of patients where homogeneous calcareous deposits were >1 cm in size. Shock-wave treatment in periarthritis of the shoulder is a new and very effective method for symptomatic calcareous tendinopathy. Extracorporeal shock-wave treatment has good prospects of success in any type of calcification. As a non-invasive technique with a high success rate, shock-wave treatment is an alternative to surgical operations in patients who remain symptomatic after exhaustive conservative treatment.

  20. Extracorporeal shockwave lithotripsy for renal stones in pediatric patients: a multivariate analysis model for estimating the stone-free probability.

    PubMed

    El-Nahas, Ahmed R; El-Assmy, Ahmed M; Awad, Bassam A; Elhalwagy, Samer M; Elshal, Ahmed M; Sheir, Khaled Z

    2013-12-01

    To define factors affecting the stone-free rate of extracorporeal shockwave lithotripsy in the treatment of pediatric renal calculi, and to establish a regression model for pretreatment prediction of stone-free probability. From January 1999 through February 2012, 207 children with mean age 6.4 ± 3.8 years underwent shockwave lithotripsy with Dornier Lithotripter S for treatment of renal stones. The stone-free rate was evaluated 3 months after the last shockwave lithotripsy session with non-contrast computed tomography. Treatment success was defined as complete clearance of the stones with no residual fragments. Multivariate logistic regression analysis was used to identify independent risk factors and to predict the probability of being stone free. The mean length of the stone was 11.6 ± 4 mm. The stone-free rate was 71%. Independent factors that adversely affect stone-free rate were increasing stone length and calyceal site of the stone. Relative risks for not being free of stones were 1.123 for stone length, 2.673 for stones in the upper or middle calyx and 4.208 for lower calyx stones. Stone length and location are prognostic factors determining stone-free rate after shockwave lithotripsy for renal calculi in pediatric patients. Based on our analysis, shockwave lithotripsy should be recommended for renal pelvis stones up to 24 mm, upper or middle calyceal stones up to 15 mm and lower calyceal stones up to 11 mm. © 2013 The Japanese Urological Association.

  1. Al 1s-2p Absorption Spectroscopy of Shock-Wave Heating and Compression in Laser-Driven Planar Foil

    SciTech Connect

    Sawada, H.; Regan, S.P.; Radha, P.B.; Epstein, R.; Li, D.; Goncharov, V.N.; Hu, S.X.; Meyerhofer, D.D.; Delettrez, J.A.; Jaanimagi, P.A.; Smalyuk, V.A.; Boehly, T.R.; Sangster, T.C.; Yaakobi, B.; Mancini, R.C.

    2009-05-19

    Time-resolved Al 1s-2p absorption spectroscopy is used to diagnose direct-drive, shock-wave heating and compression of planar targets having nearly Fermi-degenerate plasma conditions (Te ~ 10–40 eV, rho ~ 3–11 g/cm^3) on the OMEGA Laser System [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. A planar plastic foil with a buried Al tracer layer was irradiated with peak intensities of 10^14–10^15 W/cm^2 and probed with the pseudocontinuum M-band emission from a point-source Sm backlighter in the range of 1.4–1.7 keV. The laser ablation process launches 10–70 Mbar shock waves into the CH/Al/CH target. The Al 1s-2p absorption spectra were analyzed using the atomic physic code PRISMSPECT to infer Te and rho in the Al layer, assuming uniform plasma conditions during shock-wave heating, and to determine when the heat front penetrated the Al layer. The drive foils were simulated with the one-dimensional hydrodynamics code LILAC using a flux-limited (f =0.06 and f =0.1) and nonlocal thermal-transport model [V. N. Goncharov et al., Phys. Plasmas 13, 012702 (2006)]. The predictions of simulated shock-wave heating and the timing of heat-front penetration are compared to the observations. The experimental results for a wide variety of laser-drive conditions and buried depths have shown that the LILAC predictions using f = 0.06 and the nonlocal model accurately model the shock-wave heating and timing of the heat-front penetration while the shock is transiting the target. The observed discrepancy between the measured and simulated shock-wave heating at late times of the drive can be explained by the reduced radiative heating due to lateral heat flow in the corona.

  2. Fine structure of the vapor field in evaporating dense sprays

    NASA Astrophysics Data System (ADS)

    Villermaux, E.; Moutte, A.; Amielh, M.; Meunier, P.

    2017-07-01

    Making use of an original technique which permits the simultaneous measurement of both the displacement field of evaporating droplets in a spray, and of their vapor, we investigate the relevance of a scenario introduced earlier to describe the evaporation dynamics of dense sprays [Phys. Rev. Fluids 1, 014201 (2016), 10.1103/PhysRevFluids.1.014201]. A plume of dense acetone droplets evaporating in air is studied, for which the stirring field is measured by particle image velocimetry of the droplets, and the vapor field is imaged quantitatively by laser-induced fluorescence. We show, thanks to these unique in situ measurements, that the spray boundary with the diluting environment is slaved at the dynamics of its saturating vapor concentration field, whose structure is analyzed for different well defined local flow topologies.

  3. Effect of laser generated shockwaves 1 on ex-vivo pigskin.

    PubMed

    Ramaprasad, Vidyunmala; Navarro, Artemio; Patel, Shahzad; Patel, Vikash; Nowroozi, Bryan N; Taylor, Zach D; Yong, William; Gupta, Vijay; Grundfest, Warren S

    2014-10-01

    Persistent bacterial infection prolongs hospitalizations, leading to increased healthcare costs. Treatment of these infections costs several billion dollars annually. Biofilm production is one mechanism by which bacteria become resistant. With the help of biofilms, bacteria withstand the host immune response and are much less susceptible to antibiotics. Currently, there is interest in the use of laser-generated shockwaves (LGS) to delaminate biofilm from infected wound surfaces; however, the safety of such an approach has not yet been established. Of particular concern are the thermal and mechanical effects of the shockwave treatment on the epidermis and the underlying collagen structure of the dermis. The present study is a preliminary investigation of the effect of LGS on freshly harvested ex vivo porcine skin tissue samples. Tissue samples for investigation were harvested immediately post-mortem and treated with LGS within 30 minutes. Previous studies have shown that laser fluences between 100 and 500 mJ/pulse are capable of delaminating biofilms off a variety of surfaces, thus our preliminary investigation focused on this range of laser energy. For each sample, LGS were produced via laser irradiation of a thin layer (0.5 µm) of titanium sandwiched between a 50 and 100 µm thick layer of water glass and a 0.1 mm thick sheet of Mylar. The rapid thermal expansion of the irradiated titanium film generates a transient compressive wave that is coupled through a liquid layer to the surface of the ex vivo pigskin sample. Shocked samples were immediately fixed in formalin and prepared for histological analysis. A blinded pathologist evaluated and scored each section on the basis of its overall appearance (O) and presence of linear/slit-like spaces roughly parallel to the surface of the skin (S). The scores were given on a scale of 0-3. The present investigation revealed no visible difference between the tissue sections of the control sample and those that

  4. Extracorporeal shockwaves versus surgery in the treatment of pseudoarthrosis of the carpal scaphoid.

    PubMed

    Notarnicola, A; Moretti, L; Tafuri, S; Gigliotti, S; Russo, S; Musci, L; Moretti, B

    2010-08-01

    The peculiar anatomical characteristics and precarious vascularization of the carpal scaphoid are responsible for a difficult healing of fractures and a fairly frequent subsequent evolution to pseudoarthrosis. Recently, extracorporeal shockwaves therapy (ESWT) has yielded encouraging results in the treatment of pseudoarthrosis of various bone segments. We report a retrospective study comparing the results of application of three sessions of shockwaves therapy (SW) with energy flux density (EFD) impulses of 0.09 (SD = 0.02) mJ/mm(2) ESWT emitted by an electromagnetic generator in 58 patients (group I) affected by pseudoarthrosis of the carpal scaphoid, with the results of surgical treatment consisting of stabilization and bone graft according to the Matti-Russe technique, performed in 60 subjects (controls, group II). There were no statistically significant differences in the mean duration of the pseudoarthrosis (p = 0.46), sex distribution (p = 0.41) and mean age at recruitment (p = 0.95) between the two patient groups. Posttreatment clinical-functional assessment, based on the Mayo Wrist Score, showed a significantly improved score, rising from 28-74.6 in group I already after 2 mo (p < 0.001), with 86.3% of the results judged as satisfactory or excellent; in group II the mean score rose from 27.5-74.2 after 2 mo, with 83.4% of the results judged as satisfactory or excellent (p < 0.001). At the same two-months follow-up (FU), radiographic consolidation was shown in 75.9% of patients in group I and 76.7% in group II. These improvements persisted at the subsequent controls at six and 12 mo in both groups. The Mayo Wrist Score and X-rays did not show statistically significant differences at the various FU visits in the two groups (p > 0.05). On the basis of our data, we can conclude that the results of ESWT are comparable with those of surgical stabilization and bone graft in the treatment of scaphoid pseudoarthrosis. In view of their minimal invasiveness, shockwaves

  5. Particle-based simulations of bilayer membranes: self-assembly, structural analysis, and shock-wave damage

    NASA Astrophysics Data System (ADS)

    Steinhauser, Martin O.; Schindler, Tanja

    2017-01-01

    We report on the results of particle-based, coarse-grained molecular dynamics simulations of amphiphilic lipid molecules in aqueous environment where the membrane structures at equilibrium are subsequently exposed to strong shock waves, and their damage is analyzed. The lipid molecules self-assemble from unbiased random initial configurations to form stable bilayer membranes, including closed vesicles. During self-assembly of lipid molecules, we observe several stages of clustering, starting with many small clusters of lipids, gradually merging together to finally form one single bilayer membrane. We find that the clustering of lipids sensitively depends on the hydrophobic interaction h_c of the lipid tails in our model and on temperature T of the system. The self-assembled bilayer membranes are quantitatively analyzed at equilibrium with respect to their degree of order and their local structure. We also show that—by analyzing the membrane fluctuations and using a linearized theory— we obtain area compression moduli K_A and bending stiffnesses κ _B for our bilayer membranes which are within the experimental range of in vivo and in vitro measurements of biological membranes. We also discuss the density profile and the pair correlation function of our model membranes at equilibrium which has not been done in previous studies of particle-based membrane models. Furthermore, we present a detailed phase diagram of our lipid model that exhibits a sol-gel transition between quasi-solid and fluid domains, and domains where no self-assembly of lipids occurs. In addition, we present in the phase diagram the conditions for temperature T and hydrophobicity h_c of the lipid tails of our model to form closed vesicles. The stable bilayer membranes obtained at equilibrium are then subjected to strong shock waves in a shock tube setup, and we investigate the damage in the membranes due to their interaction with shock waves. Here, we find a transition from self

  6. Simulations of densely-packed cloth motion in water

    NASA Astrophysics Data System (ADS)

    Akcabay, Deniz T.

    2005-11-01

    Fluid-structure simulations of densely-packed immersed fabric model the clothes washing process. We have modified the Immersed Boundary Method (Peskin 1977) to handle the known but complex geometry of the washing machine and agitator as well as the unknown cloth structure immersed in the fluid. Extending the technique to three-dimensions has required improved computational efficiency and causes geometric singularities when cloth that is not sufficiently extensible bends in two directions. We present some preliminary comparisons to primarily two-dimensional experiments in the dilute cloth limit. Computational difficulties caused by cloth permeability and bending stiffness will be discussed.

  7. Chemical potential calculations in dense liquids using metadynamics

    NASA Astrophysics Data System (ADS)

    Perego, C.; Giberti, F.; Parrinello, M.

    2016-10-01

    The calculation of chemical potential has traditionally been a challenge in atomistic simulations. One of the most used approaches is Widom's insertion method in which the chemical potential is calculated by periodically attempting to insert an extra particle in the system. In dense systems this method fails since the insertion probability is very low. In this paper we show that in a homogeneous fluid the insertion probability can be increased using metadynamics. We test our method on a supercooled high density binary Lennard-Jones fluid. We find that we can obtain efficiently converged results even when Widom's method fails.

  8. Enhanced Productivity of Chemical Processes Using Dense Fluidized Beds

    SciTech Connect

    Sibashis Banerjee; Alvin Chen; Rutton Patel; Dale Snider; Ken Williams; Timothy O'Hern; Paul Tortora

    2008-02-29

    The work detailed in this report addresses Enabling Technologies within Computational Technology by integrating a “breakthrough” particle-fluid computational technology into traditional Process Science and Engineering Technology. The work completed under this DOE project addresses five major development areas 1) gas chemistry in dense fluidized beds 2) thermal cracking of liquid film on solids producing gas products 3) liquid injection in a fluidized bed with particle-to-particle liquid film transport 4) solid-gas chemistry and 5) first level validation of models. Because of the nature of the research using tightly coupled solids and fluid phases with a Lagrangian description of the solids and continuum description of fluid, the work provides ground-breaking advances in reactor prediction capability. This capability has been tested against experimental data where available. The commercial product arising out of this work is called Barracuda and is suitable for a wide (dense-to-dilute) range of industrial scale gas-solid flows with and without reactions. Commercial applications include dense gas-solid beds, gasifiers, riser reactors and cyclones.

  9. Parametric bleaching of dense plasmas

    NASA Astrophysics Data System (ADS)

    Gradov, O. M.; Ramazashvili, R. R.

    1981-11-01

    A mechanism is proposed for the nonlinear bleaching of a dense plasma slab. In this new mechanism, the electromagnetic wave incident on the plasma decays into plasma waves and then reappears as a result of the coalescence of the plasma waves at the second boundary of the slab.

  10. MD simulation of steady shock-wave fronts with phase transition in single-crystal iron

    NASA Astrophysics Data System (ADS)

    Zhakhovsky, V. V.; Migdal, K. P.; Inogamov, N. A.; Anisimov, S. I.

    2017-01-01

    Overdriven shock waves propagating in main crystallographic directions of single-crystal bcc iron were studied with moving-window molecular dynamics (MD) technique. To simulate correctly the shock-induced bcc-to-hcp phase transition in iron a new EAM potential fitted to the cold pressure curves and pressure transition at 13 GPa was developed with the stress matching method. We demonstrate that structure of shock fronts depends on orientation of crystal. A peculiar structure of steady shock-wave front in [100] direction is observed. While the ultra-fast α → ɛ transition initiated in uniaxially compressed crystal along [100] in elastic zone transforms bcc completely to hcp phase, transformation in other directions is performed only partially with production of metastable composition of nanometer-sized bcc-hcp-fcc grains.

  11. Shock-wave compression of silica gel as a model material for comets

    NASA Astrophysics Data System (ADS)

    Arasuna, Akane; Okuno, Masayuki; Chen, Liliang; Mashimo, Tsutomu; Okudera, Hiroki; Mizukami, Tomoyuki; Arai, Shoji

    2016-07-01

    A shock-wave compression experiment using synthesized silica gel was investigated as a model for a comet impact event on the Earth's surface. The sample shocked at 20.7 GPa showed considerable structural changes, a release of water molecules, and the dehydration of silanol (Si-OH) that led to the formation of a new Si-O-Si network structure containing larger rings (e.g., six-membered ring of SiO4 tetrahedra). The high aftershock temperature at 20.7 GPa, which could be close to 800 °C, influenced the sample structure. However, some silanols, which were presumed to be the mutually hydrogen-bonded silanol group, remained at pressures >20.7 GPa. This type of silanol along with a small number of water molecules may remain even after shock compression at 30.9 GPa, although the intermediate structure of the sample recovered was similar to that of silica glass.

  12. Comparison of treatment of renal calculi by open surgery, percutaneous nephrolithotomy, and extracorporeal shockwave lithotripsy.

    PubMed Central

    Charig, C R; Webb, D R; Payne, S R; Wickham, J E

    1986-01-01

    This study was designed to compare different methods of treating renal calculi in order to establish which was the most cost effective and successful. Of 1052 patients with renal calculi, 350 underwent open surgery, 350 percutaneous nephrolithotomy, 328 extracorporeal shockwave lithotripsy (ESWL), and 24 both percutaneous nephrolithotomy and ESWL. Treatment was defined as successful if stones were eliminated or reduced to less than 2 mm after three months. Success was achieved in 273 (78%) patients after open surgery, 289 (83%) after percutaneous nephrolithotomy, 301 (92%) after ESWL, and 15 (62%) after percutaneous nephrolithotomy and ESWL. Comparative total costs to the NHS were estimated as 3500 pounds for open surgery, 1861 pounds for percutaneous nephrolithotomy, 1789 pounds for ESWL, and 3210 pounds for both ESWL and nephrolithotomy. ESWL caused no blood loss and little morbidity and is the cheapest and quickest way of returning patients to normal life. PMID:3083922

  13. Quantum molecular dynamics simulation of shock-wave experiments in aluminum

    SciTech Connect

    Minakov, D. V.; Khishchenko, K. V.; Fortov, V. E.; Levashov, P. R.

    2014-06-14

    We present quantum molecular dynamics calculations of principal, porous, and double shock Hugoniots, release isentropes, and sound velocity behind the shock front for aluminum. A comprehensive analysis of available shock-wave data is performed; the agreement and discrepancies of simulation results with measurements are discussed. Special attention is paid to the melting region of aluminum along the principal Hugoniot; the boundaries of the melting zone are estimated using the self-diffusion coefficient. Also, we make a comparison with a high-quality multiphase equation of state for aluminum. Independent semiempirical and first-principle models are very close to each other in caloric variables (pressure, density, particle velocity, etc.) but the equation of state gives higher temperature on the principal Hugoniot and release isentropes than ab initio calculations. Thus, the quantum molecular dynamics method can be used for calibration of semiempirical equations of state in case of lack of experimental data.

  14. The Shock-Wave Patterns on a Cranked-Wing Configuration

    NASA Technical Reports Server (NTRS)

    Sammonds, Robert I.

    1960-01-01

    The shock-wave patterns of a complex configuration with cranked cruciform wings and a cone-cylinder body were examined to determine the interaction of the body bow wave with the flow field about the wing. Also of interest, was the interaction of the forward (760 sweptback) wing leading-edge wave with the rear (600 sweptback) wing leading-edge wave. The shadowgraph pictures of the model in free flight at a Mach number of 4.9, although not definitive, appear to indicate that the body bow wave crosses the outer wing panel after first being refracted either by the leading-edge wave of the 600 sweptback wing or by pressure fields in the flow crossing the wing.

  15. CHARADE: A characteristic code for calculating rate-dependent shock-wave response

    SciTech Connect

    Johnson, J.N.; Tonks, D.L.

    1991-01-01

    In this report we apply spatially one-dimensional methods and simple shock-tracking techniques to the solution of rate-dependent material response under flat-plate-impact conditions. This method of solution eliminates potential confusion of material dissipation with artificial dissipative effects inherent in finite-difference codes, and thus lends itself to accurate calculation of elastic-plastic deformation, shock-to-detonation transition in solid explosives, and shock-induced structural phase transformation. Equations are presented for rate-dependent thermoelastic-plastic deformation for (100) planar shock-wave propagation in materials of cubic symmetry (or higher). Specific numerical calculations are presented for polycrystalline copper using the mechanical threshold stress model of Follansbee and Kocks with transition to dislocation drag. A listing of the CHARADE (for characteristic rate dependence) code and sample input deck are given. 26 refs., 11 figs.

  16. The effect of shock-wave profile on dynamic brittle failure

    NASA Astrophysics Data System (ADS)

    Escobedo, J. P.; Brown, E. N.; Trujillo, C. P.; Cerreta, E. K.; Gray, G. T.

    2013-03-01

    The influence of shock-wave-loading profile on the failure processes in a brittle material has been investigated. Tungsten heavy alloy (WHA) specimens have been subjected to two shock-wave loading profiles with a similar peak stress of 15.4 GPa but different pulse durations. Contrary to the strong dependence of strength on wave profile observed in ductile metals, for WHA, specimens subjected to different loading profiles exhibited similar spall strength and damage evolution morphology. Post-mortem examination of recovered samples revealed that dynamic failure for both loading profiles is dominated by brittle cleavage fracture, with additional energy dissipation through crack branching in the more brittle tungsten particles. Overall, in this brittle material, all relevant damage kinetics and the spall strength are shown to be dominated by the shock peak stress, independent of pulse duration.

  17. On the use of shockwave models in laser produced plasma expansion

    NASA Astrophysics Data System (ADS)

    de Posada, E.; Arronte, M. A.; Ponce, L.; Rodríguez, E.; Flores, T.; Lunney, J. G.

    2011-01-01

    Interaction of medium to high peak power laser pulses with solid materials produces a plasma that expands supersonically. Expansions of such plasmas have been studied and several models have been proposed to describe it. This work presents a study of the expansion of laser produced plasmas in both vacuum and gas environment by using Langmuir probe and photography. It compares some of the most used models to identify that which better describes the expansion process. In vacuum, such process is properly described by the Anisimov model. However when expanding in a background gas it is found that the Sedov-Taylor model fits properly the position of generated shockwave but overestimates both kinetic energy and pressure of the expanding plasma. Such problem is solved by using a modification of the Freiwald-Axford model. Finally it is demonstrated that after the plasma stopping distance the plasma inters in a diffusive regime.

  18. Quantum molecular dynamics simulation of shock-wave experiments in aluminum

    NASA Astrophysics Data System (ADS)

    Minakov, D. V.; Levashov, P. R.; Khishchenko, K. V.; Fortov, V. E.

    2014-06-01

    We present quantum molecular dynamics calculations of principal, porous, and double shock Hugoniots, release isentropes, and sound velocity behind the shock front for aluminum. A comprehensive analysis of available shock-wave data is performed; the agreement and discrepancies of simulation results with measurements are discussed. Special attention is paid to the melting region of aluminum along the principal Hugoniot; the boundaries of the melting zone are estimated using the self-diffusion coefficient. Also, we make a comparison with a high-quality multiphase equation of state for aluminum. Independent semiempirical and first-principle models are very close to each other in caloric variables (pressure, density, particle velocity, etc.) but the equation of state gives higher temperature on the principal Hugoniot and release isentropes than ab initio calculations. Thus, the quantum molecular dynamics method can be used for calibration of semiempirical equations of state in case of lack of experimental data.

  19. Report on the first 1000 patients treated at St Thomas' Hospital by extracorporeal shockwave lithotripsy.

    PubMed

    Palfrey, E L; Bultitude, M I; Challah, S; Pemberton, J; Shuttleworth, K E

    1986-12-01

    Since March 1985, over 1000 patients have been treated on the lithotripter at St Thomas' Hospital. Since it is the only machine in the country offering treatment to National Health Service patients at no cost to the referring Health Authority, there has been a heavy demand for treatment and 97% of referrals have been accepted. Analysis of the first 1000 patients shows extracorporeal shockwave lithotripsy (ESWL) to be a safe procedure with a low morbidity rate and no mortality. The number of patients who were stone-free 3 months after treatment was low (44.1%) compared with the numbers reported in other series. The most likely reasons for this are the poor follow-up rate (48.9%), the stringent criteria for the diagnosis of "stone-free" and a possible skewed referral and follow-up pattern.

  20. Comparative evaluation of general, epidural and spinal anaesthesia for extracorporeal shockwave lithotripsy.

    PubMed Central

    Rickford, J. K.; Speedy, H. M.; Tytler, J. A.; Lim, M.

    1988-01-01

    The results of a prospective randomised evaluation of general anaesthesia (GA), epidural anaesthesia (EA) and spinal anaesthesia (SA) for extracorporeal shockwave lithotripsy are presented. GA provided speed and reliability but resulted in a high incidence of postoperative nausea, vomiting and sore throat. Both regional techniques conferred the advantages of an awake, cooperative patient, but EA required a longer preparation time than SA and more supplementary treatment with fentanyl or midazolam. A major drawback associated with the use of SA was a 42% incidence of postspinal headache. All three techniques were associated with hypotension on placement in the hoisl; bath immersion resulted in significant rises in blood pressure in the EA and SA groups and a more variable (overall non-significant) response in the GA group. PMID:3044238

  1. Shock-wave therapy for tennis and golfer's elbow--1 year follow-up.

    PubMed

    Krischek, O; Hopf, C; Nafe, B; Rompe, J D

    1999-01-01

    Thirty patients with chronic medial epicondylitis were treated with low-energy shock waves. They received 500 impulses of 0.08 mJ/mm2 three times at weekly intervals. At 1 year follow-up examinations were performed. According to the Verhaar criteria, only seven patients reached excellent or good results. In eight cases a fair outcome was recorded, and in 14 patients the outcome was poor. Only six patients were satisfied with the treatment. The average relief of pain was 32%. These data were significantly worse than for identically treated patients with chronic tennis elbow. Thus, the question arises as to whether extracorporal shock-wave therapy is indicated in medial epicondylitis.

  2. Shock-Wave and Finite-Strain Equations of State at Large Expansion

    NASA Astrophysics Data System (ADS)

    Jeanloz, Raymond

    The empirically observed linear relationship between shock-wave velocity and particle velocity is compatible with the Eulerian finite-strain equation of state under tension as well as compression, identifying an ideal value of dynamic strength -PH = K0S/(K0S' + 1) and dynamic cohesive energy EH - E0 = 8V0K0S/(K0S' + 1)2 (V, K and K' are volume, bulk modulus and its pressure derivative; subscripts 0, S and H refer to zero-pressure, isentrope and Hugoniot states). The corresponding finitestrain estimate of the isentropic cohesive energy is ES - E0 = 9V0K0S(2 + 2n - K0S')/(2n3), with strain parameter n = 2 for the Eulerian (spatial) frame of reference.

  3. Study of shockwave method for diagnosing the radiation fields of laser-driven gold hohlraums

    NASA Astrophysics Data System (ADS)

    Li, Yongsheng; Lan, Ke; Huo, Wenyi; Lai, Dongxian; Gao, Yaoming; Pei, Wenbing

    2013-11-01

    Besides the routinely used broad-band x-ray spectrometer (Dante or SXS), ablative shock-wave method is often used to diagnose the radiation fields of laser-driven Hohlraums. The x-ray ablation process of Aluminum and Titanium is studied numerically with a 1-D radiation hydrodynamic code RDMG [F. Tinggui et al., Chin. J. Comput. Phys. 16, 199 (1999)], based on which a new scaling relation of the equivalent radiation temperature with the ablative shock velocity in Aluminum plates is proposed, and a novel method is developed for determining simultaneously the radiation temperature and the M-band (2-4 keV) fraction in laser-driven gold Hohlraums.

  4. The isolated perfused kidney: an in vitro test system for evaluation of renal tissue damage induced by high-energy shockwaves sources.

    PubMed

    Bergsdorf, Th; Thüroff, S; Chaussy, Ch

    2005-09-01

    Most of our knowledge of shockwave-induced renal damage is based on animal experiments and clinical observation. We developed a tissue model using isolated porcine kidneys perfused with Berliner Blau dye in physiologic saline using a Ureteromat Perez-Castro peristaltic pump connected to the renal artery. Reproducible results were obtained under a variety of experimental conditions. Further refinements of the model might consist of interposition of tissue layers in the shockwave path or simulation of ventilatory movements.

  5. Shockwaves increase T-cell proliferation and IL-2 expression through ATP release, P2X7 receptors, and FAK activation.

    PubMed

    Yu, Tiecheng; Junger, Wolfgang G; Yuan, Changji; Jin, An; Zhao, Yi; Zheng, Xueqing; Zeng, Yanjun; Liu, Jianguo

    2010-03-01

    Shockwaves elicited by transient pressure disturbances are used to treat musculoskeletal disorders. Previous research has shown that shockwave treatment affects T-cell function, enhancing T-cell proliferation and IL-2 expression by activating p38 mitogen-activated protein kinase (MAPK) signaling. Here we investigated the signaling pathway by which shockwaves mediate p38 MAPK phosphorylation. We found that shockwaves at an intensity of 0.18 mJ/mm(2) induce the release of extracellular ATP from human Jurkat T-cells at least in part by affecting cell viability. ATP released into the extracellular space stimulates P2X7-type purinergic receptors that induce the activation of p38 MAPK and of focal adhesion kinase (FAK) by phosphorylation on residues Tyr397 and Tyr576/577. Elimination of released ATP with apyrase or inhibition of P2X7 receptors with the antagonists KN-62 or suramin significantly weakens FAK phosphorylation, p38 MAPK activation, IL-2 expression, and T-cell proliferation. Conversely, addition of exogenous ATP causes phosphorylation of FAK and p38 MAPK. Silencing of FAK expression also reduces these cell responses to shockwave treatment. We conclude that shockwaves enhance p38 MAPK activation, IL-2 expression, and T-cell proliferation via the release of cellular ATP and feedback mechanisms that involve P2X7 receptor activation and FAK phosphorylation.

  6. Warm Dense Matter: An Overview

    SciTech Connect

    Kalantar, D H; Lee, R W; Molitoris, J D

    2004-04-21

    This document provides a summary of the ''LLNL Workshop on Extreme States of Materials: Warm Dense Matter to NIF'' which was held on 20, 21, and 22 February 2002 at the Wente Conference Center in Livermore, CA. The warm dense matter regime, the transitional phase space region between cold material and hot plasma, is presently poorly understood. The drive to understand the nature of matter in this regime is sparking scientific activity worldwide. In addition to pure scientific interest, finite temperature dense matter occurs in the regimes of interest to the SSMP (Stockpile Stewardship Materials Program). So that obtaining a better understanding of WDM is important to performing effective experiments at, e.g., NIF, a primary mission of LLNL. At this workshop we examined current experimental and theoretical work performed at, and in conjunction with, LLNL to focus future activities and define our role in this rapidly emerging research area. On the experimental front LLNL plays a leading role in three of the five relevant areas and has the opportunity to become a major player in the other two. Discussion at the workshop indicated that the path forward for the experimental efforts at LLNL were two fold: First, we are doing reasonable baseline work at SPLs, HE, and High Energy Lasers with more effort encouraged. Second, we need to plan effectively for the next evolution in large scale facilities, both laser (NIF) and Light/Beam sources (LCLS/TESLA and GSI) Theoretically, LLNL has major research advantages in areas as diverse as the thermochemical approach to warm dense matter equations of state to first principles molecular dynamics simulations. However, it was clear that there is much work to be done theoretically to understand warm dense matter. Further, there is a need for a close collaboration between the generation of verifiable experimental data that can provide benchmarks of both the experimental techniques and the theoretical capabilities. The conclusion of this

  7. Theory for Indirect Conduction in Dense, Gas-Solid Systems

    NASA Astrophysics Data System (ADS)

    Lattanzi, Aaron; Hrenya, Christine

    2016-11-01

    Heat transfer in dense gas-solid systems is dominated by conduction, and critical to the operation of rotary-kilns, catalytic cracking, and heat exchangers with solid particles as the heat transfer fluid. In particular, the indirect conduction occurring between two bodies separated by a thin layer of fluid can significantly impact the heat transfer within gas-solid systems. Current state-of-the-art models for indirect conduction assume that particles are surrounded by a static "fluid lens" and that one-dimensional conduction occurs through the fluid lens when the lens overlaps another body. However, attempts to evaluate the effect of surface roughness and fluid lens thickness (theoretical inputs) on indirect conduction have been restricted to static, single-particle cases. By contrast, here we quantify these effects for dynamic, multi-particle systems. This analysis is compared to outputs from computational fluid dynamics and discrete element method (CFD-DEM) simulations of heat transfer in a packed bed and flow down a heated ramp. Analytical predictions for model sensitivity are found to be in agreement with simulation results and differ greatly from the static, single-particle analysis. Namely, indirect conduction in static systems is found to be most sensitive to surface roughness, while dynamic systems are sensitive to the fluid lens thickness.

  8. Boundary Preserving Dense Local Regions.

    PubMed

    Kim, Jaechul; Grauman, Kristen

    2015-05-01

    We propose a dense local region detector to extract features suitable for image matching and object recognition tasks. Whereas traditional local interest operators rely on repeatable structures that often cross object boundaries (e.g., corners, scale-space blobs), our sampling strategy is driven by segmentation, and thus preserves object boundaries and shape. At the same time, whereas existing region-based representations are sensitive to segmentation parameters and object deformations, our novel approach to robustly sample dense sites and determine their connectivity offers better repeatability. In extensive experiments, we find that the proposed region detector provides significantly better repeatability and localization accuracy for object matching compared to an array of existing feature detectors. In addition, we show our regions lead to excellent results on two benchmark tasks that require good feature matching: weakly supervised foreground discovery and nearest neighbor-based object recognition.

  9. Structural Changes in Alloys of the Al-Cu-Mg System Under Ion Bombardment and Shock-Wave Loading

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, V. V.; Gushchina, N. V.; Romanov, I. Yu.; Kaigorodova, L. I.; Grigor'ev, A. N.; Pavlenko, A. V.; Plokhoi, V. V.

    2017-02-01

    To confirm the hypothesis on the shock-wave nature of long-range effects upon corpuscular irradiation of condensed media presumably caused by emission and propagation of post-cascade shock waves, comparative experiments on ion beam modification and mechanical shock-wave loading of specimens of VD1 and D16 alloys of the Al-Cu-Mg system are performed. Direct analogy between the processes of microstructural change of cold-deformed VD1 and D16 alloys under mechanical shock loading and irradiation by beams of accelerated Ar+ ions (E = 20-40 keV) with low fluences (1015-1016 cm-2) is established. This demonstrates the important role of the dynamic long-range effects that have not yet been considered in classical radiation physics of solids.

  10. Influence of shockwave profile on ejection of micron-scale material from shocked Sn surfaces: an experimental study

    SciTech Connect

    Zellner, Michael B; Byers, Mark E; Hammerberg, James E; Germann, Tim C; Dimonte, Guy; Rigg, Paulo A; Buttler, William T

    2009-01-01

    This effort experimentally investigates the relationship between shock-breakout pressure and the amount of micron-scale fragments ejected (ejecta) upon shock release at the metal/vacuum interface of Sn targets shocked with a supported shockwave. The results are compared with an analogous set derived from HE shocked Sn targets, Taylor shockwave loading. The supported shock-pulse was created by impacting a Sn target with a Ti64 (Ti-6Al-4V) impactor that was accelerated using a powder gun. Ejecta production at the free-surface or back-side of the Sn targets were characterized through use of piezoelectric pins and Asay foils, and heterodyne velocimetry verified the time of shock release and the breakout pressure.

  11. Impact of ablator thickness and laser drive duration on a platform for supersonic, shockwave-driven hydrodynamic instability experiments

    NASA Astrophysics Data System (ADS)

    Wan, W. C.; Malamud, G.; Shimony, A.; Di Stefano, C. A.; Trantham, M. R.; Klein, S. R.; Soltis, J. D.; Shvarts, D.; Drake, R. P.; Kuranz, C. C.

    2017-03-01

    We discuss changes to a target design that improved the quality and consistency of data obtained through a novel experimental platform that enables the study of hydrodynamic instabilities in a compressible regime. The experiment uses a laser to drive steady, supersonic shockwave over well-characterized initial perturbations. Early experiments were adversely affected by inadequate experimental timescales and, potentially, an unintended secondary shockwave. These issues were addressed by extending the 4x1013 W/cm2 laser pulse from 19 ns to 28 ns, and increasing the ablator thickness from 185 μm to 500 μm. We present data demonstrating the performance of the platform.

  12. Lower calyceal and renal pelvic stones in preschool children: A comparative study of mini-percutaneous nephrolithotomy versus extracorporeal shockwave lithotripsy.

    PubMed

    ElSheemy, Mohammed S; Daw, Kareem; Habib, Enmar; Aboulela, Waseem; Fathy, Hesham; Shouman, Ahmed M; El Ghoneimy, Mohamed; Shoukry, Ahmed I; Morsi, Hany A; Badawy, Hesham

    2016-07-01

    To compare outcomes of the mini-percutaneous nephrolithotripsy technique and extracorporeal shockwave lithotripsy for lower calyceal and renal pelvic stones in preschool children. From January 2010 to December 2014, single renal pelvic or lower calyceal calculi 10-25 mm in size in children (age ≤6 years) treated by either extracorporeal shockwave lithotripsy (64 patients) or the mini-percutaneous nephrolithotripsy technique (54 patients) were included. Extracorporeal shockwave lithotripsy was carried out by using a Dornier electromagnetic lithotripter. The mini-percutaneous nephrolithotripsy technique was through 14-Fr renal access using a 9.5-Fr semirigid ureteroscope with holmium:yttrium aluminium garnet lithotripsy. The two study groups were compared using Mann-Whitney, χ(2) -test or Fisher's exact test. Stone parameters were similar in the mini-percutaneous nephrolithotripsy technique and extracorporeal shockwave lithotripsy groups in all patients, and in the pelvic (39 Miniperc, 52 extracorporeal shockwave lithotripsy) and lower calyceal (15 Miniperc, 12 extracorporeal shockwave lithotripsy) subgroups. Stone-free rates in the mini-percutaneous nephrolithotripsy technique and extracorporeal shockwave lithotripsy groups were 88.9% versus 43.8% (P < 0.001) and 94.4% versus 81.2% (P = 0.032) after first and last sessions, respectively. In the renal pelvis, they were 87.2% versus 50% (P < 0.001) and 94.9% versus 84.6% (P = 0.179), whereas in the lower calyx, they were 93.3% versus 16.7% (P < 0.001) and 93.3% versus 66.7% (P = 0.139) after first and last sessions, respectively. Retreatment rates in the mini-percutaneous nephrolithotripsy technique versus extracorporeal shockwave lithotripsy were 7.4% versus 50% (P < 0.001), 7.7% versus 46.2% (P < 0.001), and 6.7% versus 66.7% (P = 0.003) in all patients, renal pelvic and lower calyceal stones, respectively. No significant difference was found in complications (P = 0.521). Auxiliary procedures were required in 9

  13. Meso-scale Computational Investigation of Shock-Wave Attenuation by Trailing Release Wave in Different Grades of Polyurea

    NASA Astrophysics Data System (ADS)

    Grujicic, Mica; Snipes, J. S.; Ramaswami, S.; Yavari, R.; Ramasubramanian, M. K.

    2014-01-01

    Over the past several years, considerable research efforts have been made toward investigating polyurea, a segmented thermoplastic elastomer, and particularly its shock-mitigation capacity, i.e., an ability to attenuate and disperse shock-waves. These research efforts have clearly established that the shock-mitigation capacity of polyurea is closely related to its chemistry, processing route, and the resulting microstructure. Polyurea typically possesses a nano-segregated microstructure consisting of (high glass transition temperature, T g) hydrogen-bonded discrete hard domains and a (low T g) contiguous soft matrix. While the effect of polyurea microstructure on its shock-mitigation capacity is well-established, it is not presently clear what microstructure-dependent phenomena and processes control its shock-mitigation capacity. To help identify these phenomena and processes, meso-scale simulations of the formation of nano-segregated microstructure and its interaction with a leading shock-wave and a trailing release-wave is analyzed in the present work. The results obtained revealed that shock-induced hard-domain densification makes an important contribution to the superior shock-mitigation capacity of polyurea, and that the extent of densification is a sensitive function of the polyurea soft-segment molecular weight. In particular, the ability of release-waves to capture and neutralize shock-waves has been found to depend strongly on the extent of shock-induced hard-domain densification and, thus, on the polyurea soft-segment molecular weight.

  14. New sonic shockwave multi-element sensors mounted on a small airfoil flown on F-15B testbed aircraft

    NASA Technical Reports Server (NTRS)

    1996-01-01

    An experimental device to pinpoint the location of a shockwave that develops in an aircraft flying at transonic and supersonic speeds was recently flight-tested at NASA's Dryden Flight Research Center, Edwards, California. The shock location sensor, developed by TAO Systems, Hampton, Va., utilizes a multi-element hot-film sensor array along with a constant-voltage anemometer and special diagnostic software to pinpoint the exact location of the shockwave and its characteristics as it develops on an aircraft surface. For this experiment, the 45-element sensor was mounted on the small Dryden-designed airfoil shown in this illustration. The airfoil was attached to the Flight Test Fixture mounted underneath the fuselage of Dryden's F-15B testbed aircraft. Tests were flown at transonic speeds of Mach 0.7 to 0.9, and the device isolated the location of the shock wave to within a half-inch. Application of this technology could assist designers of future supersonic aircraft in improving the efficiency of engine air inlets by controlling the shockwave, with a related improvement in aircraft performance and fuel economy.

  15. Distinct metallization and atomization transitions in dense liquid hydrogen.

    PubMed

    Mazzola, Guglielmo; Sorella, Sandro

    2015-03-13

    We perform molecular dynamics simulations driven by accurate quantum Monte Carlo forces on dense liquid hydrogen. There is a recent report of a complete atomization transition between a mixed molecular-atomic liquid and a completely dissociated fluid in an almost unaccessible pressure range [Nat. Commun. 5, 3487 (2014)]. Here, instead, we identify a different transition between the fully molecular liquid and the mixed-atomic fluid at ∼400  GPa, i.e., in a much more interesting pressure range. We provide numerical evidence supporting the metallic behavior of this intermediate phase. Therefore, we predict that the metallization at finite temperature occurs in this partially dissociated molecular fluid, well before the complete atomization of the liquid. At high temperature this first-order transition becomes a crossover, in very good agreement with the experimental observation. Several systematic tests supporting the quality of our large scale calculations are also reported.

  16. Rheology of dense suspensions of non colloidal particles

    NASA Astrophysics Data System (ADS)

    Guazzelli, Élisabeth

    2017-06-01

    Dense suspensions are materials with broad applications both in industrial processes (e.g. waste disposal, concrete, drilling muds, metalworking chip transport, and food processing) and in natural phenomena (e.g. flows of slurries, debris, and lava). Despite its long research history and its practical relevance, the mechanics of dense suspensions remain poorly understood. The major difficulty is that the grains interact both by hydrodynamic interactions through the liquid and by mechanical contact. These systems thus belong to an intermediate regime between pure suspensions and granular flows. We show that we can unify suspension and granular rheology under a common framework by transferring the frictional approach of dry granular media to wet suspensions of spherical particles. We also discuss non-Newtonian behavior such as normal-stress differences and shear-induced migration. Beyond the classical problem of dense suspension of hard spheres which is far from being completely resolved, there are also entirely novel avenues of study concerning more complex mixtures of particles and fluids such as those involving other types of particles (e.g. fibers) or non-Newtonian fluids that we will also address.

  17. Constructing Dense Graphs with Unique Hamiltonian Cycles

    ERIC Educational Resources Information Center

    Lynch, Mark A. M.

    2012-01-01

    It is not difficult to construct dense graphs containing Hamiltonian cycles, but it is difficult to generate dense graphs that are guaranteed to contain a unique Hamiltonian cycle. This article presents an algorithm for generating arbitrarily large simple graphs containing "unique" Hamiltonian cycles. These graphs can be turned into dense graphs…

  18. Hugoniot measurements of double-shocked precompressed dense xenon plasmas.

    PubMed

    Zheng, J; Chen, Q F; Gu, Y J; Chen, Z Y

    2012-12-01

    The current partially ionized plasmas models for xenon show substantial differences since the description of pressure and thermal ionization region becomes a formidable task, prompting the need for an improved understanding of dense xenon plasmas behavior at above 100 GPa. We performed double-shock compression experiments on dense xenon to determine accurately the Hugoniot up to 172 GPa using a time-resolved optical radiation method. The planar strong shock wave was produced using a flyer plate impactor accelerated up to ∼6 km/s with a two-stage light-gas gun. The time-resolved optical radiation histories were acquired by using a multiwavelength channel optical transience radiance pyrometer. Shock velocity was measured and mass velocity was determined by the impedance-matching methods. The experimental equation of state of dense xenon plasmas are compared with the self-consistent fluid variational calculations of dense xenon in the region of partial ionization over a wide range of pressures and temperatures.

  19. Al 1s-2p absorption spectroscopy of shock-wave heating and compression in laser-driven planar foil

    SciTech Connect

    Sawada, H.; Regan, S. P.; Radha, P. B.; Epstein, R.; Li, D.; Goncharov, V. N.; Hu, S. X.; Meyerhofer, D. D.; Delettrez, J. A.; Jaanimagi, P. A.; Smalyuk, V. A.; Boehly, T. R.; Sangster, T. C.; Yaakobi, B.; Mancini, R. C.

    2009-05-15

    Time-resolved Al 1s-2p absorption spectroscopy is used to diagnose direct-drive, shock-wave heating and compression of planar targets having nearly Fermi-degenerate plasma conditions (T{sub e}{approx}10-40 eV, {rho}{approx}3-11 g/cm{sup 3}) on the OMEGA Laser System [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. A planar plastic foil with a buried Al tracer layer was irradiated with peak intensities of 10{sup 14}-10{sup 15} W/cm{sup 2} and probed with the pseudocontinuum M-band emission from a point-source Sm backlighter in the range of 1.4-1.7 keV. The laser ablation process launches 10-70 Mbar shock waves into the CH/Al/CH target. The Al 1s-2p absorption spectra were analyzed using the atomic physic code PRISMSPECT to infer T{sub e} and {rho} in the Al layer, assuming uniform plasma conditions during shock-wave heating, and to determine when the heat front penetrated the Al layer. The drive foils were simulated with the one-dimensional hydrodynamics code LILAC using a flux-limited (f=0.06 and f=0.1) and nonlocal thermal-transport model [V. N. Goncharov et al., Phys. Plasmas 13, 012702 (2006)]. The predictions of simulated shock-wave heating and the timing of heat-front penetration are compared to the observations. The experimental results for a wide variety of laser-drive conditions and buried depths have shown that the LILAC predictions using f=0.06 and the nonlocal model accurately model the shock-wave heating and timing of the heat-front penetration while the shock is transiting the target. The observed discrepancy between the measured and simulated shock-wave heating at late times of the drive can be explained by the reduced radiative heating due to lateral heat flow in the corona.

  20. Probing Cold Dense Nuclear Matter

    NASA Astrophysics Data System (ADS)

    Subedi, R.; Shneor, R.; Monaghan, P.; Anderson, B. D.; Aniol, K.; Annand, J.; Arrington, J.; Benaoum, H.; Benmokhtar, F.; Boeglin, W.; Chen, J.-P.; Choi, Seonho; Cisbani, E.; Craver, B.; Frullani, S.; Garibaldi, F.; Gilad, S.; Gilman, R.; Glamazdin, O.; Hansen, J.-O.; Higinbotham, D. W.; Holmstrom, T.; Ibrahim, H.; Igarashi, R.; de Jager, C. W.; Jans, E.; Jiang, X.; Kaufman, L. J.; Kelleher, A.; Kolarkar, A.; Kumbartzki, G.; LeRose, J. J.; Lindgren, R.; Liyanage, N.; Margaziotis, D. J.; Markowitz, P.; Marrone, S.; Mazouz, M.; Meekins, D.; Michaels, R.; Moffit, B.; Perdrisat, C. F.; Piasetzky, E.; Potokar, M.; Punjabi, V.; Qiang, Y.; Reinhold, J.; Ron, G.; Rosner, G.; Saha, A.; Sawatzky, B.; Shahinyan, A.; Širca, S.; Slifer, K.; Solvignon, P.; Sulkosky, V.; Urciuoli, G. M.; Voutier, E.; Watson, J. W.; Weinstein, L. B.; Wojtsekhowski, B.; Wood, S.; Zheng, X.-C.; Zhu, L.

    2008-06-01

    The protons and neutrons in a nucleus can form strongly correlated nucleon pairs. Scattering experiments, in which a proton is knocked out of the nucleus with high-momentum transfer and high missing momentum, show that in carbon-12 the neutron-proton pairs are nearly 20 times as prevalent as proton-proton pairs and, by inference, neutron-neutron pairs. This difference between the types of pairs is due to the nature of the strong force and has implications for understanding cold dense nuclear systems such as neutron stars.

  1. Probing cold dense nuclear matter.

    PubMed

    Subedi, R; Shneor, R; Monaghan, P; Anderson, B D; Aniol, K; Annand, J; Arrington, J; Benaoum, H; Benmokhtar, F; Boeglin, W; Chen, J-P; Choi, Seonho; Cisbani, E; Craver, B; Frullani, S; Garibaldi, F; Gilad, S; Gilman, R; Glamazdin, O; Hansen, J-O; Higinbotham, D W; Holmstrom, T; Ibrahim, H; Igarashi, R; de Jager, C W; Jans, E; Jiang, X; Kaufman, L J; Kelleher, A; Kolarkar, A; Kumbartzki, G; Lerose, J J; Lindgren, R; Liyanage, N; Margaziotis, D J; Markowitz, P; Marrone, S; Mazouz, M; Meekins, D; Michaels, R; Moffit, B; Perdrisat, C F; Piasetzky, E; Potokar, M; Punjabi, V; Qiang, Y; Reinhold, J; Ron, G; Rosner, G; Saha, A; Sawatzky, B; Shahinyan, A; Sirca, S; Slifer, K; Solvignon, P; Sulkosky, V; Urciuoli, G M; Voutier, E; Watson, J W; Weinstein, L B; Wojtsekhowski, B; Wood, S; Zheng, X-C; Zhu, L

    2008-06-13

    The protons and neutrons in a nucleus can form strongly correlated nucleon pairs. Scattering experiments, in which a proton is knocked out of the nucleus with high-momentum transfer and high missing momentum, show that in carbon-12 the neutron-proton pairs are nearly 20 times as prevalent as proton-proton pairs and, by inference, neutron-neutron pairs. This difference between the types of pairs is due to the nature of the strong force and has implications for understanding cold dense nuclear systems such as neutron stars.

  2. Probing Cold Dense Nuclear Matter

    SciTech Connect

    Subedi, Ramesh; Shneor, R.; Monaghan, Peter; Anderson, Bryon; Aniol, Konrad; Annand, John; Arrington, John; Benaoum, Hachemi; Benmokhtar, Fatiha; Bertozzi, William; Boeglin, Werner; Chen, Jian-Ping; Choi, Seonho; Cisbani, Evaristo; Craver, Brandon; Frullani, Salvatore; Garibaldi, Franco; Gilad, Shalev; Gilman, Ronald; Glamazdin, Oleksandr; Hansen, Jens-Ole; Higinbotham, Douglas; Holmstrom, Timothy; Ibrahim, Hassan; Igarashi, Ryuichi; De Jager, Cornelis; Jans, Eddy; Jiang, Xiaodong; Kaufman, Lisa; Kelleher, Aidan; Kolarkar, Ameya; Kumbartzki, Gerfried; LeRose, John; Lindgren, Richard; Liyanage, Nilanga; Margaziotis, Demetrius; Markowitz, Pete; Marrone, Stefano; Mazouz, Malek; Meekins, David; Michaels, Robert; Moffit, Bryan; Perdrisat, Charles; Piasetzky, Eliazer; Potokar, Milan; Punjabi, Vina; Qiang, Yi; Reinhold, Joerg; Ron, Guy; Rosner, Guenther; Saha, Arunava; Sawatzky, Bradley; Shahinyan, Albert; Sirca, Simon; Slifer, Karl; Solvignon, Patricia; Sulkosky, Vince; Sulkosky, Vincent; Sulkosky, Vince; Sulkosky, Vincent; Urciuoli, Guido; Voutier, Eric; Watson, John; Weinstein, Lawrence; Wojtsekhowski, Bogdan; Wood, Stephen; Zheng, Xiaochao; Zhu, Lingyan

    2008-06-01

    The protons and neutrons in a nucleus can form strongly correlated nucleon pairs. Scattering experiments, in which a proton is knocked out of the nucleus with high-momentum transfer and high missing momentum, show that in carbon-12 the neutron-proton pairs are nearly 20 times as prevalent as proton-proton pairs and, by inference, neutron-neutron pairs. This difference between the types of pairs is due to the nature of the strong force and has implications for understanding cold dense nuclear systems such as neutron stars.

  3. Numerical shockwave anomalies in presence of hydraulic jumps in the SWE with variable bed elevation.

    NASA Astrophysics Data System (ADS)

    Navas-Montilla, Adrian; Murillo, Javier

    2017-04-01

    When solving the shallow water equations appropriate numerical solvers must allow energy-dissipative solutions in presence of steady and unsteady hydraulic jumps. Hydraulic jumps are present in surface flows and may produce significant morphological changes. Unfortunately, it has been documented that some numerical anomalies may appear. These anomalies are the incorrect positioning of steady jumps and the presence of a spurious spike of discharge inside the cell containing the jump produced by a non-linearity of the Hugoniot locus connecting the states at both sides of the jump. Therefore, this problem remains unresolved in the context of Godunov's schemes applied to shallow flows. This issue is usually ignored as it does not affect to the solution in steady cases. However, it produces undesirable spurious oscillations in transient cases that can lead to misleading conclusions when moving to realistic scenarios. Using spike-reducing techniques based on the construction of interpolated fluxes, it is possible to define numerical methods including discontinuous topography that reduce the presence of the aforementioned numerical anomalies. References: T. W. Roberts, The behavior of flux difference splitting schemes near slowly moving shock waves, J. Comput. Phys., 90 (1990) 141-160. Y. Stiriba, R. Donat, A numerical study of postshock oscillations in slowly moving shock waves, Comput. Math. with Appl., 46 (2003) 719-739. E. Johnsen, S. K. Lele, Numerical errors generated in simulations of slowly moving shocks, Center for Turbulence Research, Annual Research Briefs, (2008) 1-12. D. W. Zaide, P. L. Roe, Flux functions for reducing numerical shockwave anomalies. ICCFD7, Big Island, Hawaii, (2012) 9-13. D. W. Zaide, Numerical Shockwave Anomalies, PhD thesis, Aerospace Engineering and Scientific Computing, University of Michigan, 2012. A. Navas-Montilla, J. Murillo, Energy balanced numerical schemes with very high order. The Augmented Roe Flux ADER scheme. Application to

  4. Is Extracorporeal Shockwave Therapy Combined With Isokinetic Exercise More Effective Than Extracorporeal Shockwave Therapy Alone for Subacromial Impingement Syndrome? A Randomized Clinical Trial.

    PubMed

    Santamato, Andrea; Panza, Francesco; Notarnicola, Angela; Cassatella, Gennaro; Fortunato, Francesca; de Sanctis, Jula Laura; Valeno, Giovanni; Kehoe, Patrick G; Seripa, Davide; Logroscino, Giancarlo; Fiore, Pietro; Ranieri, Maurizio

    2016-09-01

    Study Design Single-blind randomized trial. Background Extracorporeal shockwave therapy (ESWT) has been shown to produce good results in the treatment of subacromial impingement syndrome (SAIS). The efficacy of a combined administration of ESWT and isokinetic exercise (IE) has not yet been studied. Objectives To evaluate the efficacy of focused ESWT combined with IE for the rotator cuff versus focused ESWT alone in the treatment of SAIS. The secondary objective was to assess the isokinetic torque recovery (external rotation at 210°/s, 180°/s, and 120°/s). Methods Thirty participants with SAIS were randomly assigned to a focused-ESWT group or focused ESWT-plus-IE group. Subjects of both groups received 3 treatment sessions of focused ESWT over a period of 10 days. Participants in the second group also received IE for 10 therapy sessions. Outcome measures were the Constant-Murley score (CMS), the visual analog scale (VAS), and isokinetic parameters (peak torque and total work calculated from 5 repetitions) measured with the isokinetic test. Subjects were assessed at baseline, 10 days after the last treatment session with focused ESWT, and after 2 months of follow-up. Results At 2 months posttreatment, participants in the focused ESWT-plus-IE group showed significantly less pain (focused-ESWT VAS, 3.4 ± 0.8 versus focused ESWT-plus-IE VAS, 1.5 ± 0.5; P<.001) and greater improvement in functionality (focused-ESWT CMS, 75.9 ± 6.7 versus focused ESWT-plus-IE CMS, 92.1 ± 6.3; P<.001) and muscle endurance than the subjects in the focused-ESWT group. Conclusion In subjects with SAIS, combined administration of focused ESWT and IE for the rotator cuff resulted in greater reduction of pain, as well as superior functional recovery and muscle endurance in the short to medium term, compared with ESWT alone. Level of evidence Therapy, 2b. unregistered 2011 trial. J Orthop Sports Phys Ther 2016;46(9):714-725. Epub 5 Aug 2016. doi:10.2519/jospt.2016.4629.

  5. Oblique impact of dense granular sheets

    NASA Astrophysics Data System (ADS)

    Ellowitz, Jake; Guttenberg, Nicholas; Jaeger, Heinrich M.; Nagel, Sidney R.; Zhang, Wendy W.

    2013-11-01

    Motivated by experiments showing impacts of granular jets with non-circular cross sections produce thin ejecta sheets with anisotropic shapes, we study what happens when two sheets containing densely packed, rigid grains traveling at the same speed collide asymmetrically. Discrete particle simulations and a continuum frictional fluid model yield the same steady-state solution of two exit streams emerging from incident streams. When the incident angle Δθ is less than Δθc =120° +/-10° , the exit streams' angles differ from that measured in water sheet experiments. Below Δθc , the exit angles from granular and water sheet impacts agree. This correspondence is surprising because 2D Euler jet impact, the idealization relevant for both situations, is ill posed: a generic Δθ value permits a continuous family of solutions. Our finding that granular and water sheet impacts evolve into the same member of the solution family suggests previous proposals that perturbations such as viscous drag, surface tension or air entrapment select the actual outcome are not correct. Currently at Department of Physics, University of Oregon, Eugene, OR 97403.

  6. Evaporation in dense suspension droplets

    NASA Astrophysics Data System (ADS)

    Kim, Jin Young; Weon, Byung Mook

    2014-11-01

    When a drop on a solid surface dries, a variety of drying dynamics emerge eventually. Here we show how colloidal particles affect drying dynamics in colloidal suspensions. By comparing drying dynamics of pure and colloidal fluids using confocal microscopy and mass balance, we demonstrate that the drying dynamics of colloidal fluids strongly depend on the colloid size and the initial concentration. The role of colloidal particles is complicated in the drying processes and related to the hydrodynamics for the porous medium. This work would offer clues for the dynamic nature of colloidal fluids and help to understand the drying-mediated processes such as spreading, painting, coating, and evapotranspiration. This work (NRF-2013R1A22A04008115) was supported by Mid-career Researcher Program through NRF grant funded by the MEST.

  7. Warm dense iron equation of state from quantum molecular dynamics

    NASA Astrophysics Data System (ADS)

    Sjostrom, Travis; Crockett, Scott

    Through quantum molecular dynamics (QMD), utilizing both Kohn-Sham (orbital-based) and orbital-free density functional theory, we calculate the equation of state of warm dense iron in the density range 7-30 g/cm3 and temperatures from 1 to 100 eV. A critical examination of the iron pseudopotential is made, from which we find the previous QMD calculations of Wang et al. [Phys. Rev. E 89, 023101 (2014)] to be in error. Our results also significantly extend the ranges of density and temperature which are attempted in that prior work. We calculate the shock Hugoniot and find very good agreement with experimental results to pressures over 20 TPa. Additionally we have utilized the QMD results to generate a new SESAME tabular equation of state for fluid iron, accurate in the warm dense matter region, and also extending to much broader regions of density and temperature than can be accessed by the QMD alone.

  8. Topographic vorticity waves forced by Antarctic dense shelf water outflows

    NASA Astrophysics Data System (ADS)

    Marques, Gustavo M.; Padman, Laurie; Springer, Scott R.; Howard, Susan L.; Özgökmen, Tamay M.

    2014-02-01

    We use numerical simulations to investigate excitation of topographic vorticity waves (TVWs) along the Antarctic continental slope by outflows of dense shelf water through troughs. Idealized models show that wave frequency depends on the amount of stretching in the ambient fluid over the outflow and on background along-slope mean flow. Frequency is higher for steeper bottom slope, larger outflow density anomaly, and stronger westward mean flow. For weak stratification and weak westward along-slope flows typical of the Antarctic slope, wave energy propagates eastward, in the opposite direction from phase velocity. Our results are consistent with recent observations of TVWs in the southern Weddell Sea. In a realistic simulation of the Ross Sea, TVW properties are modulated on seasonal and shorter time scales as background ocean state varies. We expect these waves to affect mixing, cross-slope exchanges, and sea ice concentration in the vicinity of sources of dense water outflows.

  9. Shear viscosity of inhomogeneous fluids.

    PubMed

    Hoang, Hai; Galliero, Guillaume

    2012-03-28

    Using molecular dynamics simulations on inhomogeneous fluids, we have studied the effects of strong density inhomogeneities of varying wavelengths on the shear viscosity computed locally. For dense fluids, the local average density model combined with an adequate weight function yields a good description of the viscosity profiles obtained by simulations. However, for low density inhomogeneous fluids, the local average density model is unable to describe correctly the viscosity profiles obtained by simulations. It is shown that this weakness can be overcome by taking into account the density inhomogeneity in the local translational contribution to the viscosity using a density gradient like approach.

  10. Magnetism in Dense Quark Matter

    NASA Astrophysics Data System (ADS)

    Ferrer, Efrain J.; de la Incera, Vivian

    We review the mechanisms via which an external magnetic field can affect the ground state of cold and dense quark matter. In the absence of a magnetic field, at asymptotically high densities, cold quark matter is in the Color-Flavor-Locked (CFL) phase of color superconductivity characterized by three scales: the superconducting gap, the gluon Meissner mass, and the baryonic chemical potential. When an applied magnetic field becomes comparable with each of these scales, new phases and/or condensates may emerge. They include the magnetic CFL (MCFL) phase that becomes relevant for fields of the order of the gap scale; the paramagnetic CFL, important when the field is of the order of the Meissner mass, and a spin-one condensate associated to the magnetic moment of the Cooper pairs, significant at fields of the order of the chemical potential. We discuss the equation of state (EoS) of MCFL matter for a large range of field values and consider possible applications of the magnetic effects on dense quark matter to the astrophysics of compact stars.

  11. Dense crystalline packings of ellipsoids

    NASA Astrophysics Data System (ADS)

    Jin, Weiwei; Jiao, Yang; Liu, Lufeng; Yuan, Ye; Li, Shuixiang

    2017-03-01

    An ellipsoid, the simplest nonspherical shape, has been extensively used as a model for elongated building blocks for a wide spectrum of molecular, colloidal, and granular systems. Yet the densest packing of congruent hard ellipsoids, which is intimately related to the high-density phase of many condensed matter systems, is still an open problem. We discover an unusual family of dense crystalline packings of self-dual ellipsoids (ratios of the semiaxes α : √{α }:1 ), containing 24 particles with a quasi-square-triangular (SQ-TR) tiling arrangement in the fundamental cell. The associated packing density ϕ exceeds that of the densest known SM2 crystal [ A. Donev et al., Phys. Rev. Lett. 92, 255506 (2004), 10.1103/PhysRevLett.92.255506] for aspect ratios α in (1.365, 1.5625), attaining a maximal ϕ ≈0.758 06 ... at α = 93 /64 . We show that the SQ-TR phase derived from these dense packings is thermodynamically stable at high densities over the aforementioned α range and report a phase diagram for self-dual ellipsoids. The discovery of the SQ-TR crystal suggests organizing principles for nonspherical particles and self-assembly of colloidal systems.

  12. Modeling the multiphase flow in a dense medium cyclone

    SciTech Connect

    Wang, B.; Chu, K.W.; Yu, A.B.; Vince, A.

    2009-04-15

    A mathematical model is proposed to describe the multiphase flow in a dense-medium cyclone (DMC). In this model, the volume of fluid multiphase model is first used to determine the shape and position of the air core, and then the mixture multiphase model is employed to describe the flow of the dense medium (comprising finely ground magnetite in water) and the air core, where the turbulence is described by the Reynolds stress model. The results of fluid flow are finally used in the simulation of coal particle flow described by the stochastic Lagrangian particle tracking model. The validity of the proposed approach is verified by the reasonably good agreement between the measured and predicted results under different conditions. The flow features in a DMC are then examined in terms of factors such as flow field, pressure drop, particle trajectories, and separation efficiency. The results are used to explain the key characteristics of flow in DMCs, such as the origin of a short-circuit flow, the flow pattern, and the motion of coal particles. Moreover, the so-called surging phenomenon is examined in relation to the instability of fluid flow. The model offers a convenient method to investigate the effects of variables related to geometrical and operational conditions on the performance of DMCs.

  13. Radial extracorporeal shockwave therapy for the treatment of finger tenosynovitis (trigger digit)

    PubMed Central

    Malliaropoulos, Nikos; Jury, Rosanna; Pyne, Debasish; Padhiar, Nat; Turner, Jennifer; Korakakis, Vasileios; Meke, Maria; Lohrer, Heinz

    2016-01-01

    Introduction Stenosing tenosynovitis that is characterized by the inability to flex the digit smoothly, usually leads to prolonged rehabilitation or surgery. Study design This case series is a retrospective cohort study. Purpose The aim of this case series was to evaluate the effectiveness of radial extracorporeal shockwave therapy (rESWT) for the treatment of stenosing tenosynovitis of the digital flexor tendon (trigger digit). Methods A retrospective analysis of 44 patients (49 fingers) treated with an individually adapted rESWT protocol was conducted. Trigger digit pain and function were evaluated at baseline and 1-, 3-, and 12-months posttreatment. Recurrence and pretreatment symptom duration were analyzed. Results Significant reductions in pain scores and functional improvement were found between baseline and all follow-up assessments (P<0.001). Pretreatment symptom duration was significantly correlated with the number of rESWT sessions required (r=0.776, P<0.001) and 1-year posttreatment pain score (r=0.335, P=0.019). Conclusion This study provides initial evidence that rESWT is an effective treatment for trigger digit, but randomised controlled trials are required to provide further evidence of this effect. PMID:27843364

  14. Laser-induced shock-wave lithotripsy of canine urocystoliths and nephroliths

    NASA Astrophysics Data System (ADS)

    Woods, J. P.; Bartels, Kenneth E.; Stair, Ernest L.; Schafer, Steven A.; Nordquist, Robert E.

    1997-05-01

    Urolithiasis is a common disease affecting dogs which can sometimes be treated with dietary and medical protocols. In many cases, however, medical management cannot be employed because the dietary restrictions are contraindicated, effective medical dissolution protocols for the calculi (uroliths) do not exist, or obstruction by the calculi may result in deterioration of renal function during the time required for medical dissolution. At present, the management of medically untreatable calculi has been surgical removal which may result in temporary but dramatic decrease in renal function, irreversible loss of damaged nephrons, and significant risk, particularly for bilateral or recurrent nephroliths. An innovative technique for the removal of these uroliths would involve laser lithotripsy which transforms light energy into acoustical energy generating a shock wave sufficient to fragment stones (photoacoustic ablation). The laser is transmitted via quartz fibers which are small and flexible and can be used under direct vision through endoscopes resulting in effective fragmentation with little surrounding tissue damage. Lasers are becoming increasingly more utilized in veterinary medicine, in contrast to the limited availability of other non-invasive methods of treatment of nephroliths (i.e. extracorporeal shock-wave lithotripsy).

  15. Comparison of geometrical shock dynamics and kinematic models for shock-wave propagation

    NASA Astrophysics Data System (ADS)

    Ridoux, J.; Lardjane, N.; Monasse, L.; Coulouvrat, F.

    2017-09-01

    Geometrical shock dynamics (GSD) is a simplified model for nonlinear shock-wave propagation, based on the decomposition of the shock front into elementary ray tubes. Assuming small changes in the ray tube area, and neglecting the effect of the post-shock flow, a simple relation linking the local curvature and velocity of the front, known as the A{-}M rule, is obtained. More recently, a new simplified model, referred to as the kinematic model, was proposed. This model is obtained by combining the three-dimensional Euler equations and the Rankine-Hugoniot relations at the front, which leads to an equation for the normal variation of the shock Mach number at the wave front. In the same way as GSD, the kinematic model is closed by neglecting the post-shock flow effects. Although each model's approach is different, we prove their structural equivalence: the kinematic model can be rewritten under the form of GSD with a specific A{-}M relation. Both models are then compared through a wide variety of examples including experimental data or Eulerian simulation results when available. Attention is drawn to the simple cases of compression ramps and diffraction over convex corners. The analysis is completed by the more complex cases of the diffraction over a cylinder, a sphere, a mound, and a trough.

  16. Disseminated tuberculosis after extracorporeal shock-wave lithotripsy in an AIDS patient presenting with urosepsis.

    PubMed

    Tourchi, Ali; Ebadi, Maryam; Hosseinzadeh, Alireza; Shabaninia, Mahsa

    2014-03-01

    Haematogenous dissemination of undiagnosed urinary tuberculosis after performing extracorporeal shock-wave lithotripsy (ESWL) is extremely rare. Herein, we report a 41-year-old male who presented with urosepsis to the emergency room; catheterization was performed and retention resolved. He had a tattoo on his left arm and a five-year history of intravenous drug use. Blood tests indicated anaemia, leukocytosis, elevated CRP and ESR and mild hyponatraemia; haematuria, moderate bacteriuria and 2+ proteinuria on urinanalysis were observed. Chest X-ray revealed lesions suggestive of miliary tuberculosis, which was confirmed by chest CT scan. Brain CT and MRI suggested brain involvement in the setting of tuberculosis. On further investigations, HIV infection and hepatitis C seropositivity were detected and the patient remained in a coma for five days with a Glasgow Coma Scale of 6/15. Finally, the diagnosis of haematogenous dissemination of tuberculosis following lithotripsy was established. Anti-tuberculosis and anti-retroviral therapy were prescribed and monthly follow-up visits were scheduled. In conclusion, in a patient diagnosed with ureterolithiasis, a thorough history and physical examination, with specific attention to HIV and tuberculosis predisposing factors, should be carried out and preoperative screening tests considering the possibility of urinary tuberculosis are required. Finally, if urinary tuberculosis is detected, ESWL must be postponed until after appropriate treatment of tuberculosis.

  17. Radial extracorporeal shock-wave therapy in rotator cuff calcific tendinosis

    PubMed Central

    Mangone, Giuseppe; Veliaj, Altin; Postiglione, Marco; Viliani, Tamara; Pasquetti, Pietro

    2010-01-01

    The objective of the study is to evaluate the effectiveness of Radial Extracorporeal Shock-wave Therapy (RESWT) compared with High Power LASER Therapy (HPLT) for the treatment of patients with Rotator Cuff Calcific Tendinosis (RCCT). RCCT is widely diffused, it is painful and invalidating. It is an important public health problem with social and economic implications. The most common therapeutic approach is a physiotherapic one. Both HPLT and RESWT give positive results. There is a debate on which is to be preferred. Therefore there is need to obtain scientific evidence to support either case. An observational study was carried out in the period between October 2008 and September 2009 in our outpatient clinic with 62 patients, divided into 3 groups: group A 36 patients treated only with RESWT, group B 26 patients treated only with HPLT and group C 16 patients with only short term improvement with HPLT retreated with RESWT. Patients were evaluated with Constant-Murley scale before and after treatment (immediately, 1 month and 3 months) for mean constant score, pain and range of movement. Data were examined statistically with SPSS. Criteria for inclusion and exclusion were defined. Patients treated with HPLT have shown good clinical results but have returned to original syndrome 1 month after treatment. RESWT has given improvement after treatment extended in time (3 months) in terms of pain and recover of functionality with a limited number of applications. The evidence collected indicates that RESWT is the method of choice. PMID:22460011

  18. Dislocation-kinetic analysis of FCC and BCC crystal spallation under shock-wave loading

    NASA Astrophysics Data System (ADS)

    Malygin, G. A.; Ogarkov, S. L.; Andriyash, A. V.

    2015-09-01

    Within the dislocation-kinetic model of the formation and propagation of shock waves in crystals under their intense shock-wave loading, the crystal spallation mechanism at micro- and macrolevels has been discussed taking into account published empirical data. It has been shown that the spallation time t f for Cu, Ni, α-Fe, and Ta crystals in the time interval of 10-6-10-9 s at the macroscopic level changes with variations in the wave pressure σ as , where = is the plastic strain rate according to the Swegle-Grady relation; K f , K σ, and ɛ f = K f K σ ≈ 3-5% are the pressure-independent spallation coefficients and strain, respectively; and E is the Young's modulus. At the microlevel, the dislocation-kinetic calculation of plastic zones around pore nuclei as stress concentrators and plastic strain localization regions at the shock wave front has been performed. It has been shown that the pore coalescence and spall fracture formation result from the superposition of shear stresses and plastic deformations in interpore spacings when the latter decrease to a size of the order of two pore sizes.

  19. Renal morphology and function immediately after extracorporeal shock-wave lithotripsy

    SciTech Connect

    Kaude, J.V.; Williams, C.M.; Millner, M.R.; Scott, K.N.; Finlayson, B.

    1985-08-01

    The acute effects of extracorporeal shock-wave lithotripsy (ESWL) on morphology and function of the kidney were evaluated by excretory urography, quantitative radionuclide renography (QRR), and magnetic resonance imaging (MRI) in 33 consecutive patients. Excretory urograms demonstrated an enlarged kidney in seven (18%) of 41 treatments and partial or complete obstruction of the ureter by stone fragments after 15 (37%) of 41 treatments. Total effective renal plasma flow (ERPF) was not changed after ESWL, but the percentage ERPF of the treated kidney was decreased by more than 5% in 10 (30%) of 33 cases. QRR images showed partial parenchymal obstruction in 10 (25%) of 41 teated kidneys and total parenchymal obstruction in 9 (22%). MRI disclosed one or more abnormalities in 24 (63%) of 38 treated kidneys. Treated kidneys were normal by all three imaging methods in 26% and abnormal by one or more tests in 74% of cases. The morphologic and functional changes are attributed to renal contusion resulting in edema and extravasation of urine and blood into the interstitial, subcapsular, and perirenal spaces.

  20. The efficacy of a range of contact media as coupling agents in extracorporeal shockwave lithotripsy.

    PubMed

    Cartledge, J J; Cross, W R; Lloyd, S N; Joyce, A D

    2001-09-01

    To determine if the nature of the coupling agent normally used between the lithotripter and the patient affects the stone fragmentation rate during extracorporeal shock wave lithotripsy. A jig designed to hold 'phantom' 10-mm stones at the focal point was fixed against the shock wave delivery point of an electromagnetic lithotripter (Dornier Compact, Germany). A layer of either petroleum jelly (Vaseline, Cheeseborough-Ponds Ltd, London, UK) ultrasonography jelly, a eutectic mixture of local anaesthetic (EMLA) cream, Instillagel (Farco-Pharma, Cologne, Germany) or a commercial water-soluble lubricating jelly was placed between the jig and shockwave head, and the number of shock waves required to fragment the stones was recorded. Significantly more shock waves were required to fragment stones when petroleum jelly was used as the coupling agent than with all the other agents under test, whereas significantly fewer shock waves were required when using Instillagel or lubricating jelly than for all other agents. The coupling agent used in water-free lithotripsy can affect the stone fragmentation rate and should not be considered inert. Ultrasonography jelly is probably the optimum agent available for use as a lithotripsy coupling agent.

  1. CALIBRATION OF WIRE-LIKE MANGANIN GAUGES FOR USE IN PLANAR SHOCK-WAVE EXPERIMENTS

    SciTech Connect

    Chapman, David J.; Braithwaite, Christopher H.; Proud, William G.

    2009-12-28

    Piezoresistive gauges have been used extensively for many decades as in-material stress transducers during shock wave experiments. Manganin demonstrates a high piezoresistive response which is relatively temperature independent. As such manganin gauges have been widely calibrated by many authors for use during shock-wave experiments. The precise calibration has been demonstrated to depend on both the chemical composition and mechanical history of the manganin, and on the geometry of the gauge. The research presented in this paper refers to the calibration of a commercially available manganin gauge, Micro-measurements J2M-SS-580SF-025, generally referred to as the T-gauge owing to its geometry. The T-gauge has seen widespread use as a pressure transducer to measure lateral stress during plate-impact experiments. It has been previously proposed that T-gauges have a similar response to the grid foil-like manganin gauges extensively calibrated by Rosenberg et al. However, recently it has been suggested that they in fact behave in a wire-like manner. The results presented here demonstrate that the gauges' behaviour is wire-like when mounted to measure longitudinal stress. A modified calibration can be applied successfully to convert the relative resistance change to the stress normal to the gauge element. These results have important ramifications for the reduction of lateral stress measurements previously made using the T-gauge.

  2. Calibration of Wire-Like Manganin Gauges for Use in Planar Shock-Wave Experiments

    NASA Astrophysics Data System (ADS)

    Chapman, David J.; Braithwaite, Christopher H.; Proud, William G.

    2009-12-01

    Piezoresistive gauges have been used extensively for many decades as in-material stress transducers during shock wave experiments. Manganin demonstrates a high piezoresistive response which is relatively temperature independent. As such manganin gauges have been widely calibrated by many authors for use during shock-wave experiments. The precise calibration has been demonstrated to depend on both the chemical composition and mechanical history of the manganin, and on the geometry of the gauge. The research presented in this paper refers to the calibration of a commercially available manganin gauge, Micro-measurements J2M-SS-580SF-025, generally referred to as the T-gauge owing to its geometry. The T-gauge has seen widespread use as a pressure transducer to measure lateral stress during plate-impact experiments. It has been previously proposed that T-gauges have a similar response to the grid foil-like manganin gauges extensively calibrated by Rosenberg et al. However, recently it has been suggested that they in fact behave in a wire-like manner. The results presented here demonstrate that the gauges' behaviour is wire-like when mounted to measure longitudinal stress. A modified calibration can be applied successfully to convert the relative resistance change to the stress normal to the gauge element. These results have important ramifications for the reduction of lateral stress measurements previously made using the T-gauge.

  3. Reduced Pain and Anxiety with Music and Noise-Canceling Headphones During Shockwave Lithotripsy.

    PubMed

    Karalar, Mustafa; Keles, Ibrahim; Doğantekin, Engin; Kahveci, Orhan Kemal; Sarici, Hasmet

    2016-06-01

    We assessed the effects of music and noise-canceling headphones (NCHs) on perceived patient pain and anxiety from extracorporeal shockwave lithotripsy (SWL). Patients with renal calculi scheduled for SWL were prospectively enrolled. All 89 patients between the ages of 19 and 80 years were informed about this study and then randomized into three groups: Group 1 (controls), no headphones and music; Group 2, music with NCHs (patients listened to Turkish classical music with NCHs during SWL); and Group 3, music with non-NCHs (patients listened to Turkish classical music with non-NCHs during SWL). Hemodynamic and respiratory parameters were recorded before and just after the SWL session. All patient visual analog scale (VAS) and State-Trait Anxiety Inventory (STAI) scores were recorded just after the SWL procedure. There were significant differences in VAS scores among the groups (5.1, 3.6, and 4.5, respectively, p < 0.001), including between Groups 2 and 3 (p = 0.018). There were also significant differences in STAI-State anxiety scores among the groups (43.1, 33.5, and 38.9, respectively, p = 0.001), including between Groups 2 and 3 (p = 0.04). Music therapy during SWL reduced pain and anxiety. Music therapy with NCHs was more effective for pain and anxiety reduction. To reduce pain and anxiety, nonpharmacologic therapies such as music therapy with NCHs during SWL should be investigated further and used routinely.

  4. Spectroscopic diagnostics of plume rebound and shockwave dynamics of confined aluminum laser plasma plumes

    SciTech Connect

    Yeates, P.; Kennedy, E. T.

    2011-06-15

    Generation and expansion dynamics of aluminum laser plasma plumes generated between parallel plates of varying separation ({Delta}Z = 2.0, 3.2, 4.0, and 5.6 mm), which confined plume expansion normal to the ablation surface, were diagnosed. Space and time resolved visible emission spectroscopy in the spectral range {lambda} = 355-470 nm and time gated visible imaging were employed to record emission spectra and plume dynamics. Space and time resolved profiles of N{sub e} (the electron density), T{sub e} (the electron temperature), and T{sub ionz} (the ionization temperature) were compared for different positions in the plasma plume. Significant modifications of the profiles of the above parameters were observed for plasma-surface collisions at the inner surface of the front plate, which formed a barrier to the free expansion of the plasma plume generated by the laser light on the surface of the back plate. Shockwave generation at the collision interface resulted in delayed compression of the low-density plasma plume near the inner ablation surface, at late stages in the plasma history. Upon exiting the cavity formed by the two plates, through an aperture in the front plate, the plasma plume underwent a second phase of free expansion.

  5. Use of the Hugoniot elastic limit in laser shockwave experiments to relate velocity measurements

    NASA Astrophysics Data System (ADS)

    Smith, James A.; Lacy, Jeffrey M.; Lévesque, Daniel; Monchalin, Jean-Pierre; Lord, Martin

    2016-02-01

    The US National Nuclear Security Agency has a Global Threat Reduction Initiative (GTRI) with the goal of reducing the worldwide use of high-enriched uranium (HEU). A salient component of that initiative is the conversion of research reactors from HEU to low enriched uranium (LEU) fuels. An innovative fuel is being developed to replace HEU in high-power research reactors. The new LEU fuel is a monolithic fuel made from a U-Mo alloy foil encapsulated in Al-6061 cladding. In order to support the fuel qualification process, the Laser Shockwave Technique (LST) is being developed to characterize the clad-clad and fuel-clad interface strengths in fresh and irradiated fuel plates. This fuel-cladding interface qualification will ensure the survivability of the fuel plates in the harsh reactor environment even under abnormal operating conditions. One of the concerns of the project is the difficulty of calibrating and standardizing the laser shock technique. An analytical study under development and experimental testing supports the hypothesis that the Hugoniot Elastic Limit (HEL) in materials can be a robust and simple benchmark to compare stresses generated by different laser shock systems.

  6. High-energy shockwaves and extracorporeal high-intensity focused ultrasound.

    PubMed

    Madersbacher, Stephan; Marberger, Michael

    2003-10-01

    We review the physical interactions of focused ultrasound with tissue, describe technical features of current high-energy shockwave (HESW) and extracorporeal high-intensity focused ultrasound (HIFU) devices, and summarize the experimental and human data available to date. Tissue destruction by extracorporeal HIFU is not new: the first clinical attempts were made almost half a century ago for ablating brain tissue. Despite recent progress in the knowledge of the interactions between HIFU and tissue and significant device modifications, this technique is still in its infancy. The most promising targets for this kind of therapy in the field of urology are the kidney, bladder, and testis. The largest clinical experience with HIFU therapy currently available is for benign prostatic enlargement and prostate cancer using transrectal HIFU devices, which are not the topic of this summary. In parallel with HIFU, HESW therapy has been tested in numerous experimental and preclinical settings. This technique is currently not in routine clinical use. Theoretically, in parallel with HIFU, any organ accessible to conventional diagnostic ultrasound examination is a potential target for this kind of therapy.

  7. DSMC study of oxygen shockwaves based on high-fidelity vibrational relaxation and dissociation models

    NASA Astrophysics Data System (ADS)

    Borges Sebastião, Israel; Kulakhmetov, Marat; Alexeenko, Alina

    2017-01-01

    This work evaluates high-fidelity vibrational-translational (VT) energy relaxation and dissociation models for pure O2 normal shockwave simulations with the direct simulation Monte Carlo (DSMC) method. The O2-O collisions are described using ab initio state-specific relaxation and dissociation models. The Macheret-Fridman (MF) dissociation model is adapted to the DSMC framework by modifying the standard implementation of the total collision energy (TCE) model. The O2-O2 dissociation is modeled with this TCE+MF approach, which is calibrated with O2-O ab initio data and experimental equilibrium dissociation rates. The O2-O2 vibrational relaxation is modeled via the Larsen-Borgnakke model, calibrated to experimental VT rates. All the present results are compared to experimental data and previous calculations available in the literature. It is found that, in general, the ab initio dissociation model is better than the TCE model at matching the shock experiments. Therefore, when available, efficient ab initio models are preferred over phenomenological models. We also show that the proposed TCE + MF formulation can be used to improve the standard TCE model results when ab initio data are not available or limited.

  8. Loosening detection of the femoral component of hip prostheses with extracorporeal shockwaves: a pilot study.

    PubMed

    Rieger, Johannes S; Jaeger, Sebastian; Kretzer, Jan Philippe; Rupp, Rüdiger; Bitsch, Rudi G

    2015-02-01

    The diagnosis of aseptic loosening of hip implants is often challenging. A vibrational analysis of the bone-implant interface could be an alternative method to analyze the fixation of endoprostheses. We assessed an innovative and new approach for excitation by using extracorporeal shockwaves in this study. In three cadaver specimens total hip arthroplasty was performed bilaterally. Four different states of implant loosening were simulated. Three accelerometers were fixed at the medial condyle, the greater trochanter, and the crest of the ilium. The bone-implant compound was excited with highly standardized extracorporeal shock waves. Resonance spectra between 100 Hz and 5000 Hz were recorded. This technique permitted a good adaptation to varying soft tissue conditions. The main resonance frequency of the hip joints occurred at about 2000 Hz. The analysis of the measured spectra showed an interrelation between the state of loosening and the frequency values of the resonances. In case of a stem loosening, there were significant shifts of the resonance into the lower frequency area between 386 Hz and 847 Hz. With this novel technique the degree of stem loosening could be assessed in a soft tissue considering configuration. This study forms a first step for future establishment of a non-invasive, non-radiological and fast applicable diagnostic procedure for early detection of endoprostheses loosening before manifest presence of clinical signs.

  9. Shooter position estimation with muzzle blast and shockwave measurements from separate locations

    NASA Astrophysics Data System (ADS)

    Grasing, David

    2016-05-01

    There are two acoustical events associated with small arms fire: the muzzle blast (created by bullets being expelled from the barrel of the weapon), and the shockwave (created by bullets which exceed the speed of sound). Assuming the ballistics of a round are known, the times and directions of arrival of the acoustic events furnish sufficient information to determine the origin of the shot. Existing methods tacitly assume that it is a single sensor which makes measurements of the times and direction of arrival. If the sensor is located past the point where the bullet goes transonic or if the sensor is far off the axis of the shot line a single sensor localization become highly inaccurate due to the ill-conditioning of the localization problem. In this paper, a more general approach is taken which allows for localizations from measurements made at separate locations. There are considerable advantages to this approach, the most noteworthy of which is the improvement in localization accuracy due to the improvement in the conditioning of the problem. Additional benefits include: the potential to locate in cases where a single sensor has insufficient information, furnishing high quality initialization to data fusion algorithms, and the potential to identify the round from a set of possible rounds.

  10. Development of a new diagnostic sensor for extra-corporeal shock-wave lithotripsy

    NASA Astrophysics Data System (ADS)

    Fedele, F.; Coleman, A. J.; Leighton, T. G.; White, P. R.; Hurrell, A. M.

    2004-01-01

    Extracorporeal shock-wave lithotripsy is the leading technique used in urology for the non-invasive treatment of kidney and ureteric stones. The stone is comminuted by thousands of ultrasound shocks, into fragments small enough to be naturally passed. Since the technique was introduced in the 1980 different generations of lithotripters have been developed. Nevertheless the alignment systems (x-ray, ultrasound) still have some limitations (indeed, the tighter focusing of newer lithotripter reduces the tolerance for misalignment) and there is no capability for on-line monitoring of the degree of fragmentation of the stone. There is 50% incidence of re-treatments, possibly due to these deficiencies. The objective of this research is to design a new passive acoustic sensor, exploiting the secondary acoustic emission generated during the treatment, which could be used as a diagnostic device for lithotripsy. With a passive cylindrical cavitation detector, developed by the National Physical Laboratory, it was possible to detect these emissions in a laboratory lithotripter, and it was shown that they contain information on the degree of stone fragmentation and stone location. This information could be used to perform the desired monitoring and to improve the stone targeting. In collaboration with Precision Acoustic Ltd, some clinical prototypes were developed and tested to verify the relevance of these preliminary results. Clinical results are presented.

  11. Update on the efficacy of extracorporeal shockwave treatment for myofascial pain syndrome and fibromyalgia.

    PubMed

    Ramon, Silvia; Gleitz, Markus; Hernandez, Leonor; Romero, Luis David

    2015-12-01

    Chronic muscle pain syndrome is one of the main causes of musculoskeletal pathologies requiring treatment. Many terms have been used in the past to describe painful muscular syndromes in the absence of evident local nociception such as myogelosis, muscle hardening, myalgia, muscular rheumatism, fibrositis or myofascial trigger point with or without referred pain. If it persists over six months or more, it often becomes therapy resistant and frequently results in chronic generalized pain, characterized by a high degree of subjective suffering. Myofascial pain syndrome (MPS) is defined as a series of sensory, motor, and autonomic symptoms caused by a stiffness of the muscle, caused by hyperirritable nodules in musculoskeletal fibers, known as myofascial trigger points (MTP), and fascial constrictions. Fibromyalgia (FM) is a chronic condition that involves both central and peripheral sensitization and for which no curative treatment is available at the present time. Fibromyalgia shares some of the features of MPS, such as hyperirritability. Many treatments options have been described for muscle pain syndrome, with differing evidence of efficacy. Extracorporeal Shockwave Treatment (ESWT) offers a new and promising treatment for muscular disorders. We will review the existing bibliography on the evidence of the efficacy of ESWT for MPS, paying particular attention to MTP (Myofascial Trigger Point) and Fibromyalgia (FM).

  12. Impact of ureteric stent on outcome of extracorporeal shockwave lithotripsy: A propensity score analysis

    PubMed Central

    Gołąb, Adam; Słojewski, Marcin

    2016-01-01

    Introduction Extracorporeal shockwave lithotripsy (SWL) is one of the most frequently performed procedures in patients with urolithiasis. For ureter-localized stones, SWL is often preceded by a double J stent insertion. However, fear of serious complications, including sepsis associated with stents, is often expressed. The following study assessed the impact of stent insertions on the results of SWL in patients with ureteric stones. Material and methods The study group consisted of 411 ureteric stone patients who were treated with SWL from January 2010 to December 2014. In 60 cases, treatment was preceded by ureteric stent insertion. A propensity scoring system was used to pair non-stented patients with the stented group. Success rates were assessed and compared using the chi-squared test. Multivariate logistic regression analysis was used to evaluate the influence of particular variables on the stone-free rate. Results The overall success rate was 82.2%. After matching, the success rate of the stented group was not significantly different from the control group (85.0% vs. 83.3% respectively, p = 0.80). The mean number of sessions was higher in the stented group (1.88 per patient). Stones located in the lower part of the ureter have the greatest chance of being successfully treated. Conclusions The double J stent has no influence on the outcome of SWL treatment. In view of the greater likelihood of having additional sessions, this approach should be reserved for selected cases. PMID:27551556

  13. Comparison of hydrodynamic simulations with two-shockwave drive target experiments

    NASA Astrophysics Data System (ADS)

    Karkhanis, Varad; Ramaprabhu, Praveen; Buttler, William

    2015-11-01

    We consider hydrodynamic continuum simulations to mimic ejecta generation in two-shockwave target experiments, where metallic surface is loaded by two successive shock waves. Time of second shock in simulations is determined to match experimental amplitudes at the arrival of the second shock. The negative Atwood number A --> - 1 of ejecta simulations leads to two successive phase inversions of the interface corresponding to the passage of the shocks from heavy to light media in each instance. Metallic phase of ejecta (solid/liquid) depends on shock loading pressure in the experiment, and we find that hydrodynamic simulations quantify the liquid phase ejecta physics with a fair degree of accuracy, where RM instability is not suppressed by the strength effect. In particular, we find that our results of free surface velocity, maximum ejecta velocity, and maximum ejecta areal density are in excellent agreement with their experimental counterparts, as well as ejecta models. We also comment on the parametric space for hydrodynamic simulations in which they can be used to compare with the target experiments. This work was supported in part by the (U.S.) Department of Energy (DOE) under Contract No. DE-AC52-06NA2-5396.

  14. Comparison of hydrodynamic simulations with two-shockwave drive target experiments

    NASA Astrophysics Data System (ADS)

    Karkhanis, Varad; Ramaprabhu, Praveen; Buttler, William

    2015-11-01

    We consider hydrodynamic continuum simulations to mimic ejecta generation in two-shockwave target experiments, where metallic surface is loaded by two successive shock waves. Time of second shock in simulations is determined to match experimental amplitudes at the arrival of the second shock. The negative Atwood number (A --> - 1) of ejecta simulations leads to two successive phase inversions of the interface corresponding to the passage of the shocks from heavy to light media in each instance. Metallic phase of ejecta (solid/liquid) depends on shock loading pressure in the experiment, and we find that hydrodynamic simulations quantify the liquid phase ejecta physics with a fair degree of accuracy, where RM instability is not suppressed by the strength effect. In particular, we find that our results of free surface velocity, maximum ejecta velocity, and maximum ejecta areal density are in excellent agreement with their experimental counterparts, as well as ejecta models. We also comment on the parametric space for hydrodynamic simulations in which they can be used to compare with the target experiments.

  15. Extracorporeal shockwave therapy and therapeutic exercise for supraspinatus and biceps tendinopathies in 29 dogs.

    PubMed

    Leeman, J J; Shaw, K K; Mison, M B; Perry, J A; Carr, A; Shultz, R

    2016-10-15

    Supraspinatus tendinopathy (ST) and biceps tendinopathy (BT) are common causes of forelimb lameness in large-breed dogs and have historically been treated with conservative management or surgery. Extracorporeal shockwave therapy (ESWT) and therapeutic exercise (TE) are thought to be treatment options for these conditions. The objectives of this study were to report the clinical presentations of dogs treated with ESWT for shoulder tendinopathies, to determine the association between shoulder lesion severity identified on ultrasonography or MRI and outcome, and to compare the outcomes of dogs treated with ESWT with and without TE. Medical records of 29 dogs diagnosed with shoulder tendinopathies and treated with ESWT were reviewed, and 24 dogs were diagnosed with either unilateral BT or BT and ST. None were found to have unilateral ST. Five dogs were diagnosed with bilateral disease. Eighty-five per cent of dogs had good or excellent outcomes determined by owner assessment 11-220 weeks after therapy. Outcomes were found to be better as tendon lesion severity increased (P=0.0497), regardless if ESWT was performed with or without TE (P=0.92). ESWT should be considered a safe primary therapeutic option for canine shoulder tendinopathies. Larger controlled prospective studies are needed to adequately assess these findings.

  16. Path integral Monte Carlo and density functional molecular dynamics simulations of hot, dense helium

    NASA Astrophysics Data System (ADS)

    Militzer, B.

    2009-04-01

    Two first-principles simulation techniques, path integral Monte Carlo (PIMC) and density functional molecular dynamics (DFT-MD), are applied to study hot, dense helium in the density-temperature range of 0.387-5.35gcm-3 and 500K-1.28×108K . One coherent equation of state is derived by combining DFT-MD data at lower temperatures with PIMC results at higher temperatures. Good agreement between both techniques is found in an intermediate-temperature range. For the highest temperatures, the PIMC results converge to the Debye-Hückel limiting law. In order to derive the entropy, a thermodynamically consistent free-energy fit is used that reproduces the internal energies and pressure derived from the first-principles simulations. The equation of state is presented in the form of a table as well as a fit and is compared with different free-energy models. Pair-correlation functions and the electronic density of states are discussed. Shock Hugoniot curves are compared with recent laser shock-wave experiments.

  17. DPIS for warm dense matter

    SciTech Connect

    Kondo, K.; Kanesue, T.; Horioka, K.; Okamura, M.

    2010-05-23

    Warm Dense Matter (WDM) offers an challenging problem because WDM, which is beyond ideal plasma, is in a low temperature and high density state with partially degenerate electrons and coupled ions. WDM is a common state of matter in astrophysical objects such as cores of giant planets and white dwarfs. The WDM studies require large energy deposition into a small target volume in a shorter time than the hydrodynamical time and need uniformity across the full thickness of the target. Since moderate energy ion beams ({approx} 0.3 MeV/u) can be useful tool for WDM physics, we propose WDM generation using Direct Plasma Injection Scheme (DPIS). In the DPIS, laser ion source is connected to the Radio Frequency Quadrupole (RFQ) linear accelerator directly without the beam transport line. DPIS with a realistic final focus and a linear accelerator can produce WDM.

  18. Uniformly dense polymeric foam body

    DOEpatents

    Whinnery, Jr., Leroy

    2003-07-15

    A method for providing a uniformly dense polymer foam body having a density between about 0.013 g/cm.sup.3 to about 0.5 g/cm.sup.3 is disclosed. The method utilizes a thermally expandable polymer microsphere material wherein some of the microspheres are unexpanded and some are only partially expanded. It is shown that by mixing the two types of materials in appropriate ratios to achieve the desired bulk final density, filling a mold with this mixture so as to displace all or essentially all of the internal volume of the mold, heating the mold for a predetermined interval at a temperature above about 130.degree. C., and then cooling the mold to a temperature below 80.degree. C. the molded part achieves a bulk density which varies by less then about .+-.6% everywhere throughout the part volume.

  19. Velocity coherence in dense cores

    NASA Astrophysics Data System (ADS)

    Goodman, Alyssa A.; Barranco, Joseph A.; Wilner, David J.; Heyer, Mark H.

    1997-02-01

    At the meeting, we presented a summary of two papers which support the hypothesis that the molecular clouds which contain star-forming low-mass dense cores are self-similar in nature on size scales larger than an inner scale, Rcoh, and that within Rcoh, the cores are ``coherent,'' in that their filling factor is large and they are characterized by a very small, roughly constant, mildly supersonic velocity dispersion. We expect these two papers, by Barranco & Goodman [1] and Goodman, Barranco, Wilner, & Heyer, to appear in the Astrophysical Journal within the coming year. Here, we present a short summary of our results. The interested reader is urged to consult the on-line version of this work at cfa-www.harvard.edu/~agoodman/vel_coh.html [2].

  20. Neutrino Oscillations in Dense Matter

    NASA Astrophysics Data System (ADS)

    Lobanov, A. E.

    2017-03-01

    A modification of the electroweak theory, where the fermions with the same electroweak quantum numbers are combined in multiplets and are treated as different quantum states of a single particle, is proposed. In this model, mixing and oscillations of particles arise as a direct consequence of the general principles of quantum field theory. The developed approach enables one to calculate the probabilities of the processes taking place in the detector at long distances from the particle source. Calculations of higher-order processes, including computation of the contributions due to radiative corrections, can be performed in the framework of the perturbation theory using the regular diagram technique. As a result, the analog to the Dirac-Schwinger equation of quantum electrodynamics describing neutrino oscillations and its spin rotation in dense matter can be obtained.

  1. Viscoelastic behavior of dense microemulsions

    NASA Astrophysics Data System (ADS)

    Cametti, C.; Codastefano, P.; D'arrigo, G.; Tartaglia, P.; Rouch, J.; Chen, S. H.

    1990-09-01

    We have performed extensive measurements of shear viscosity, ultrasonic absorption, and sound velocity in a ternary system consisting of water-decane-sodium di(2-ethylhexyl)sulfo- succinate(AOT), in the one-phase region where it forms a water-in-oil microemulsion. We observe a rapid increase of the static shear viscosity in the dense microemulsion region. Correspondingly the sound absorption shows unambiguous evidence of a viscoelastic behavior. The absorption data for various volume fractions and temperatures can be reduced to a universal curve by scaling both the absorption and the frequency by the measured static shear viscosity. The sound absorption can be interpreted as coming from the high-frequency tail of the viscoelastic relaxation, describable by a Cole-Cole relaxation formula with unusually small elastic moduli.

  2. Exp6-polar thermodynamics of dense supercritical water

    SciTech Connect

    Bastea, S; Fried, L E

    2007-12-13

    We introduce a simple polar fluid model for the thermodynamics of dense supercritical water based on a Buckingham (exp-6) core and point dipole representation of the water molecule. The proposed exp6-polar thermodynamics, based on ideas originally applied to dipolar hard spheres, performs very well when tested against molecular dynamics simulations. Comparisons of the model predictions with experimental data available for supercritical water yield excellent agreement for the shock Hugoniot, isotherms and sound speeds, and are also quite good for the self-diffusion constant and relative dielectric constant. We expect the present approach to be also useful for other small polar molecules and their mixtures.

  3. Ionic Transport Coefficients of Dense Plasmas without Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Daligault, J.; Baalrud, S. D.; Starrett, C. E.; Saumon, D.; Sjostrom, T.

    2016-10-01

    We present a theoretical model that allows a fast and accurate evaluation of ionic transport properties of realistic plasmas spanning from warm and dense to hot and dilute conditions, including mixtures. This is achieved by combining a recent kinetic theory based on effective interaction potentials with a model for the equilibrium radial density distribution based on an average atom model and the integral equations theory of fluids. The model should find broad use in applications where nonideal plasma conditions are traversed, including inertial confinement fusion, compact astrophysical objects, solar and extrasolar planets, and numerous present-day high energy density laboratory experiments.

  4. The performance of dense medium processes

    SciTech Connect

    Horsfall, D.W.

    1993-12-31

    Dense medium washing in baths and cyclones is widely carried out in South Africa. The paper shows the reason for the preferred use of dense medium processes rather than gravity concentrators such as jigs. The factors leading to efficient separation in baths are listed and an indication given of the extent to which these factors may be controlled and embodied in the deployment of baths and dense medium cyclones in the planning stages of a plant.

  5. Dense module enumeration in biological networks

    NASA Astrophysics Data System (ADS)

    Tsuda, Koji; Georgii, Elisabeth

    2009-12-01

    Analysis of large networks is a central topic in various research fields including biology, sociology, and web mining. Detection of dense modules (a.k.a. clusters) is an important step to analyze the networks. Though numerous methods have been proposed to this aim, they often lack mathematical rigorousness. Namely, there is no guarantee that all dense modules are detected. Here, we present a novel reverse-search-based method for enumerating all dense modules. Furthermore, constraints from additional data sources such as gene expression profiles or customer profiles can be integrated, so that we can systematically detect dense modules with interesting profiles. We report successful applications in human protein interaction network analyses.

  6. Shock-wave heating model for chondrule formation: Hydrodynamic simulation of molten droplets exposed to gas flows

    NASA Astrophysics Data System (ADS)

    Miura, Hitoshi; Nakamoto, Taishi

    2007-05-01

    Millimeter-sized, spherical silicate grains abundant in chondritic meteorites, which are called as chondrules, are considered to be a strong evidence of the melting event of the dust particles in the protoplanetary disk. One of the most plausible scenarios is that the chondrule precursor dust particles are heated and melt in the high-velocity gas flow (shock-wave heating model). We developed the non-linear, time-dependent, and three-dimensional hydrodynamic simulation code for analyzing the dynamics of molten droplets exposed to the gas flow. We confirmed that our simulation results showed a good agreement in a linear regime with the linear solution analytically derived by Sekyia et al. [Sekyia, M., Uesugi, M., Nakamoto, T., 2003. Prog. Theor. Phys. 109, 717-728]. We found that the non-linear terms in the hydrodynamical equations neglected by Sekiya et al. [Sekiya, M., Uesugi, M., Nakamoto, T., 2003. Prog. Theor. Phys. 109, 717-728] can cause the cavitation by producing negative pressure in the droplets. We discussed that the fragmentation through the cavitation is a new mechanism to determine the upper limit of chondrule sizes. We also succeeded to reproduce the fragmentation of droplets when the gas ram pressure is stronger than the effect of the surface tension. Finally, we compared the deformation of droplets in the shock-wave heating with the measured data of chondrules and suggested the importance of other effects to deform droplets, for example, the rotation of droplets. We believe that our new code is a very powerful tool to investigate the hydrodynamics of molten droplets in the framework of the shock-wave heating model and has many potentials to be applied to various problems.

  7. Diagnostic features of relief formations on the nanostructured titanium VT1-0 surface after laser shock-wave treatment

    NASA Astrophysics Data System (ADS)

    Lytvynenko, I. V.; Lupenko, S. A.; Maruschak, P. O.; Panin, S. V.; Hats, Yu I.

    2017-02-01

    A new class of diagnostic features for conducting morphological analysis of relief formations induced by laser shock-wave treatment on the surface of the nanostructured titanium VT1-0 alloy is proposed. They are the coefficients of series expansions of statistical estimates for the orthogonal basis of Chebyshev, Laguerre, Kravchuk discrete polynomials and trigonometric functions. Based on the criterion of the minimum number of the diagnostic features in the above-mentioned bases, the Chebyshev one was selected as the most appropriate to solve this problem.

  8. The effect of Guinier-Preston zones on the dynamic yield stress of alloys under the shock-wave load

    NASA Astrophysics Data System (ADS)

    Malashenko, V. V.

    2017-05-01

    The movement of an ensemble of edge dislocations under shock-wave action on an alloy that contains the Guinier-Preston zones has been theoretically studied. The analytical expression for the contribution of the Guinier-Preston zones into the dynamic yield stress has been obtained and it has been shown that this contribution is affected by the density of mobile dislocations. The numerical estimates have shown that the formation of these zones lead to a substantial increase in the dynamic yield stress of alloys.

  9. Effects of Extracorporeal Shockwave Therapy in Chronic Stroke Patients With Knee Osteoarthritis: A Pilot Study

    PubMed Central

    2016-01-01

    Objective To evaluate the effects of extracorporeal shockwave therapy (ESWT) on pain, function, and ultrasonographic features of chronic stroke patients with knee osteoarthritis (OA). Methods A total of 18 chronic stroke patients (33 knee joints) with unilateral or bilateral knee OA (Kellgren-Lawrence grade ≥1) were enrolled in this study. The patients were randomly allocated to an experimental group receiving ESWT (n=9) or a control group receiving sham ESWT (n=9). For the ESWT group, patients received 1,000 pulses weekly for 3 weeks, totaling to an energy dose of 0.05 mJ/mm2 on the proximal medial tibia of the affected knee. The assessments were performed before the treatment, immediately after the first treatment, and 1 week after the last treatment using the following: the visual analog scale (VAS) for pain; patient perception of the clinical severity of OA; the Korean version of Modified Barthel Index (ambulation and chair/bed transfer); the Functional Independence Measure scale (FIM; bed/chair/wheelchair transfer, toilet transfer, walking, and stairs); and ultrasonographic features (articular cartilage thickness, Doppler activity, and joint effusion height). Results The experimental group showed a significant improvement in VAS score (4.50±1.87 to 2.71±1.38) and patient perception of the clinical severity of OA (1.87±0.83 to 2.75±0.46). The bed/chair/wheelchair transfer components of the FIM score also improved significantly (4.12±1.55 to 4.62±1.30). In terms of the ultrasonographic features, increased Doppler activity was observed in the medial knee in the experimental group immediately following ESWT. Conclusion It is suggested that ESWT may reduce pain and improve function in chronic stroke patients with OA, and may increase vascular activity at the target site. PMID:27847716

  10. Changes of articular cartilage and subchondral bone after extracorporeal shockwave therapy in osteoarthritis of the knee

    PubMed Central

    Wang, Ching-Jen; Cheng, Jai-Hong; Chou, Wen-Yi; Hsu, Shan-Ling; Chen, Jen-Hung; Huang, Chien-Yiu

    2017-01-01

    We assessed the pathological changes of articular cartilage and subchondral bone on different locations of the knee after extracorporeal shockwave therapy (ESWT) in early osteoarthritis (OA). Rat knees under OA model by anterior cruciate ligament transaction (ACLT) and medial meniscectomy (MM) to induce OA changes. Among ESWT groups, ESWT were applied to medial (M) femur (F) and tibia (T) condyles was better than medial tibia condyle, medial femur condyle as well as medial and lateral (L) tibia condyles in gross osteoarthritic areas (p<0.05), osteophyte formation and subchondral sclerotic bone (p<0.05). Using sectional cartilage area, modified Mankin scoring system as well as thickness of calcified and un-calcified cartilage analysis, the results showed that articular cartilage damage was ameliorated and T+F(M) group had the most protection as compared with other locations (p<0.05). Detectable cartilage surface damage and proteoglycan loss were measured and T+F(M) group showed the smallest lesion score among other groups (p<0.05). Micro-CT revealed significantly improved in subchondral bone repair in all ESWT groups compared to OA group (p<0.05). There were no significantly differences in bone remodeling after ESWT groups except F(M) group. In the immunohistochemical analysis, T+F(M) group significant reduced TUNEL activity, promoted cartilage proliferation by observation of PCNA marker and reduced vascular invasion through observation of CD31 marker for angiogenesis compared to OA group (P<0.001). Overall the data suggested that the order of the effective site of ESWT was T+F(M) ≧ T(M) > T(M+L) > F(M) in OA rat knees. PMID:28367081

  11. Extracorporeal shockwave therapy in osteoporotic osteoarthritis of the knee in rats: an experiment in animals

    PubMed Central

    2014-01-01

    Introduction This study investigated the effectiveness of extracorporeal shockwave therapy (ESWT) in osteoporotic (OP) osteoarthritis (OA) of rat knee. Methods Fifty-six rats were divided into seven groups including sham, OA, OP, OA + OP, OA + ESWT, OP + ESWT, and OA + OP + ESWT groups. The evaluations included gross pathology, bone mineral density (BMD), micro-computed tomography (micro-CT) scan, bone-strength test, histopathologic examination, and immunohistochemical analysis. Results On gross pathology, group OA + OP showed larger areas of osteoarthritic changes than did groups OA and OP, as compared with the sham group. BMD and bone strength significantly decreased in groups OA, OP, and OA + OP relative to the sham group, and ESWT significantly improved BMD and bone-strength changes. On micro-CT scan, the subchondral plate thickness significantly decreased, and the bone porosity increased in groups OA, OP, and OA + OP, and ESWT significantly improved the changes in subchondral-plate thickness and bone porosity. In histopathologic examination, Mankin score and safranin O score significantly increased in groups OA and group OA + OP, but not in group OP relative to the sham group, and ESWT significantly improved the changes. In immunohistochemical analysis, Dickkopf-1 (DKK-1) significantly increased, but vessel endothelial growth factor (VEGF), proliferating cell nuclear antigen (PCNA), and bone morphogenetic protein 2 (BMP-2) decreased in groups OA, OP, and OA + OP relative to the sham group, and ESWT significantly reversed the changes. Conclusions Osteoporosis increased the severity of cartilage damage in osteoarthritis of the knee. ESWT showed effectiveness in the reduction of osteoporotic osteoarthritis of the knee in rats. PMID:24994452

  12. Numerical study of shock-wave mitigation through matrices of solid obstacles

    NASA Astrophysics Data System (ADS)

    Chaudhuri, A.; Hadjadj, A.; Sadot, O.; Ben-Dor, G.

    2013-02-01

    Shock-wave propagation through different arrays of solid obstacles and its attenuation are analyzed by means of numerical simulations. The two-dimensional compressible Navier-Stokes equations are solved using a fifth-order weighted essentially non-oscillatory scheme, in conjunction with an immersed-boundary method to treat the embedded solids within a cartesian grid. The present study focuses on the geometrical aspects of the solid obstacles, particularly at lower effective flow area, where the frictional forces are expected to be important. The main objective is to analyze the controlling mechanism for shock propagation and attenuation in complex inhomogeneous and porous medium. Different parameters are investigated such as the geometry of the obstacles, their orientation in space as well as the relaxation lengths between two consecutive columns. The study highlights a number of interesting phenomena such as compressible vortices and shock-vortex interactions that are produced in the post-shock region. This also includes shock interactions, hydrodynamic instabilities and non-linear growth of the mixing. Ultimately, the Kelvin-Helmholtz instability invokes transition to a turbulent mixing region across the matrix columns and eddies of different length scales are generated in the wake region downstream of the solid blocks. The power spectrum of instantaneous dynamic pressure shows the existence of a wide range of frequencies which scales nearly with f -5/3. In terms of shock attenuation, the results indicate that the staggered matrix of reversed triangular prism (where the base of the triangular prism is facing the incoming shock) is the most efficient arrangement. In this case, both static and dynamic pressure impulses show significant reduction compared to the other studied configurations, which confirms the effectiveness of this type of barrier configuration. Furthermore, the use of combination of reverse-reverse arrangement of triangular prism obstacle maze is

  13. Clinical experience with shock-wave lithotripsy using the Siemens Modularis Vario lithotripter

    PubMed Central

    Hassouna, Mohamed E.; Oraby, Samir; Sameh, Wael; El-Abbady, Ahmed

    2011-01-01

    Purpose To assess the effectiveness of a lithotripter (Modularis Vario; Siemens, AG Healthcare, Munich, Germany) in the management of renal and ureteric stones. Patients and methods In all, 1146 adult patients with renal or ureteric stones were treated at one urological centre using the latest model of the Modularis Vario lithotripter. The effectiveness of lithotripsy and re-treatment rate were assessed. Data were obtained on stone location, stone size, shock wave usage, success rate, and complications. Results Between May 2007 and November 2009, 698 patients with renal stones and 448 with ureteric stones underwent extracorporeal shock-wave lithotripsy (ESWL). The mean (SD) renal stone size was 12.8 (3.8) mm; a mean of 1.36 sessions was required, with a mean (SD) number of 3744 (1961) shocks delivered per renal stone. After 3 months, the success rate defined as the patient being stone-free or with residual fragments of <4 mm; for renal stones the rate was 91.1%, with a 6.9% complication rate in the form of steinstrasse and severe renal colic. The mean (SD) ureteric stone size was 10.4 (2.7) mm. A mean of 1.37 sessions was required, with a mean (SD) of 4551 (2467) shocks delivered for each ureteric stone. The success rate for ureteric stones was 89.5%, with a 5.6% complication rate. The overall efficiency quotient was 0.66. Conclusion The Siemens Modularis Vario lithotripter is a safe and effective machine for treating renal and ureteric stones. PMID:26579276

  14. Extracorporeal shockwave lithotripsy without radiation: Ultrasound localization is as effective as fluoroscopy

    PubMed Central

    Smith, Hazel Elizabeth; Bryant, David Alistair; KooNg, Jenny; Chapman, Richard Alexander; Lewis, Gareth

    2016-01-01

    Context: Extracorporeal shockwave lithotripsy (SWL) is the first-line treatment for renal calculi in most cases. Recent technology has allowed lithotriptor machines to localize stones using fluoroscopy or ultrasound (US). Aim: The aim of this study is to compare stone free rates (SFR) using two techniques. Methods: This is a single center retrospective cohort study. We have studied 95 patients with renal calculi undergoing first SWL treatment with localization using US (48 pts) and fluoroscopy (47 pts). SFR was defined as fragments ≤2 m at 4 weeks post procedure on x-ray or US. Patient records were reviewed. Results: Stone size and location, age and body mass index were comparable between groups. Stones ≤7 mm had better SFR with US 86% (18/21) compared to fluoroscopy 59% (10/17) P= 0.08. Overall the US group had similar SFR to the fluoroscopy group for stones of all sizes and locations with 60% (29/48) compared to 45% (21/47)P= 0.18. Radiation exposure was the biggest difference between techniques with a mean radiation dose (mGy/cm2) in the US group of 103 (0–233) and 2113 (241–7821) in the fluoroscopy group. Radiation use in the US group was due to the use of a single shot pre- and post-procedure, this could be reduced to zero. Conclusions: Our data show equivalent outcomes using US compared to the traditional fluoroscopy localization technique. We would encourage departments to develop the use of US localization to reduce radiation exposure to patients. PMID:28057991

  15. Supersonic, shockwave-driven hydrodynamic instability experiments at OMEGA-EP

    NASA Astrophysics Data System (ADS)

    Wan, Willow

    2016-10-01

    Hydrodynamic instabilities play a dominant role in the transport of mass, momentum, and energy in nearly every plasma environment, governing the dynamics of natural and engineering systems such as solar convective zones, magnetospheric boundaries, and fusion experiments. In past decades, limitations in our understanding of hydrodynamic instabilities have led to discrepancies between observations and predictions. Since then, significant improvements have been made to our available experimental techniques, diagnostics, and simulation capabilities. Here, we present a novel experimental platform that can sustain a steady, supersonic flow across a precision-machined, well-characterized material interface for unprecedented durations We applied this platform to a series of Kelvin-Helmholtz instability experiments. The Kelvin-Helmholtz instability generates vortical structures and turbulence at an interface with shear flow. In a supersonic flow, the growth rate is inhibited and the instability structure is altered. The data were obtained at the OMEGA-EP facility by firing three laser beams in sequence to produce a 12 kJ, 28 ns stitched laser pulse. The ablation pressure sustained a steady shockwave for 70 ns over a foam-plastic, single-mode or dual-mode interface. A spherical crystal imager was used to measure the evolution of these modulations with high-resolution x-ray radiography using Cu Kα radiation at 8.0 keV. The observed structure was reproduced with 2D hydrodynamic simulations. Supported by the U.S. DOE, through NNSA Grants DE-NA0002956 (SSAA) and DE-NA0002719 (NLUF), by the LLE under DE-NA0001944, and by the LLNL under subcontract B614207 to DE-AC52-07NA27344.

  16. Structure, phase content and mechanical properties of aluminium with hard particles after shock-wave compaction

    NASA Astrophysics Data System (ADS)

    Kulkov, S.; Vorozhtsov, S.; Turuntaev, I.

    2015-04-01

    The possibilities to combine metal and metal oxide powders in various compositions open a broad range of mechanical and thermal behavior. When using in nanostructured components the resulting materials might exhibit even more interesting properties, like product effectiveness, tensile strength, wear resistance, endurance and corrosion resistance. Intermetallics like TiAl could be obtained as TiAlx in a quality similar to that obtained from melting where only eutectic mixture can be produced. Similar effects are possible when compacting nanoceramic powders whereas these can be combined with intermetallics. Currently, it is very difficult to produce wires and special shaped parts from high temperature superconducting materials. The compacting by explosives could solve this problem.The present paper uses explosion compacting of Al nanoparticles to create nanocomposite with increased physico-mechanical properties. Russian civil explosive Uglenit was chosen as high energy material (HEM) for shock-wave compaction. The different schemes and conditions were suggested to run the explosion process. Al nanoparticles as produced by electric wire explosion contain 8-10% of aluminum oxide. That aluminum oxide can serve as strengthening material in the final nanocomposite which may be generated in various compositions by explosive compacting. Further modifications of nanocomposites were obtained when including nanodiamonds into the mixture with aluminum nanoparticles with different percentages. The addition of nanodiamonds results in a substantial strengthening effect. The experiments with compacting aluminum nanoparticles by explosives are described in detail including the process variations and conditions. The physico-mechanical properties of the nanocomposites are determined and discussed by considering the applied conditions. Especially, microstructure and phases of the obtained nanocomposites are analyzed by X-ray diffraction.

  17. A Theoretical Investigation of Radial Lateral Wells with Shockwave Completion in Shale Gas Reservoirs

    NASA Astrophysics Data System (ADS)

    Shan, Jia

    As its role in satisfying the energy demand of the U.S. and as a clean fuel has become more significant than ever, the shale gas production in the U.S. has gained increasing momentum over recent years. Thus, effective and environmentally friendly methods to extract shale gas are critical. Hydraulic fracturing has been proven to be efficient in the production of shale gas. However, environmental issues such as underground water contamination and high usage of water make this technology controversial. A potential technology to eliminate the environmental issues concerning water usage and contamination is to use blast fracturing, which uses explosives to create fractures. It can be further aided by HEGF and multi-pulse pressure loading technology, which causes less crushing effect near the wellbore and induces longer fractures. Radial drilling is another relatively new technology that can bypass damage zones due to drilling and create a larger drainage area through drilling horizontal wellbores. Blast fracturing and radial drilling both have the advantage of cost saving. The successful combination of blast fracturing and radial drilling has a great potential for improving U.S. shale gas production. An analytical productivity model was built in this study, considering linear flow from the reservoir rock to the fracture face, to analyze factors affecting shale gas production from radial lateral wells with shockwave completion. Based on the model analyses, the number of fractures per lateral is concluded to be the most effective factor controlling the productivity index of blast-fractured radial lateral wells. This model can be used for feasibility studies of replacing hydraulic fracturing by blast fracturing in shale gas well completions. Prediction of fracture geometry is recommended for future studies.

  18. Experimental studies of hypersonic shock-wave boundary-layer interactions

    NASA Technical Reports Server (NTRS)

    Lu, Frank K.

    1992-01-01

    Two classes of shock-wave boundary-layer interactions were studied experimentally in a shock tunnel in which a low Reynolds number, turbulent flow at Mach 8 was developed on a cold, flat test surface. The two classes of interactions were: (1) a swept interaction generated by a wedge ('fin') mounted perpendicularly on the flat plate; and (2) a two-dimensional, unseparated interaction induced by a shock impinging near an expansion corner. The swept interaction, with wedge angles of 5-20 degrees, was separated and there was also indication that the strongest interactions prossessed secondary separation zones. The interaction spread out extensively from the inviscid shock location although no indication of quasi-conical symmetry was evident. The surface pressure from the upstream influence to the inviscid shock was relatively low compared to the inviscid downstream value but it rose rapidly past the inviscid shock location. However, the surface pressure did not reach the downstream inviscid value and reasons were proposed for this anomalous behavior compared to strongly separated, supersonic interactions. The second class of interactions involved weak shocks impinging near small expansion corners. As a prelude to studying this interaction, a hypersonic similarity parameter was identified for the pure, expansion corner flow. The expansion corner severely damped out surface pressure fluctuations. When a shock impinged upstream of the corner, no significant changes to the surface pressure were found as compared to the case when the shock impinged on a flat plate. But, when the shock impinged downstream of the corner, a close coupling existed between the two wave systems, unlike the supersonic case. This close coupling modified the upstream influence. Regardless of whether the shock impinged ahead or behind the corner, the downstream region was affected by the close coupling between the shock and the expansion. Not only was the mean pressure distribution modified but the

  19. Shock-wave thrombus ablation, a new method for noninvasive mechanical thrombolysis.

    PubMed

    Rosenschein, U; Yakubov, S J; Guberinich, D; Bach, D S; Sonda, P L; Abrams, G D; Topol, E J

    1992-11-15

    Successful experimental and clinical experience with thrombus ablation has been attained with high-power acoustic energy delivered in a catheter. The goal of this study was to investigate the feasibility of noninvasive thrombus ablation by focused high-power acoustic energy. The source for high-power acoustic energy was a shock-wave generator in a water tank equipped with an acoustic lens with a fixed focal point at 22.5 cm. Thrombus was prepared in vitro, weighed (0.24 +/- 0.08 g), and inserted in excised human femoral artery segments. The arterial segments wer ligated, positioned at the focal point and then randomized into either test (n = 8) or control (n = 7). An x-ray system verified the 3-dimensional positioning of the arterial segment at the focal point. A 5 MHz ultrasound imaging system continuously visualized the arterial segment at the focal point before, during and after each experiment. The test segments were exposed to shock waves (1,000 shocks/24 kv). The arterial segment content was then flushed and the residual thrombus weighed. The arterial segment and thrombus were fixed and submitted to histologic examination. The test group achieved a significant ablation of thrombus mass (0.25 +/- 0.15 vs 0.07 +/- 0.003 g; p = 0.0001) after application of shock waves. Arterial segments showed no gross or microscopic damage. Ultrasound imaging revealed a localized (1.9 +/- 0.5 cm2), transient (744 +/- 733 ms), cavitation field at the focal point at the time of application of focused shock waves. Thus, focused high-power acoustic energy can effect noninvasive thrombus ablation without apparent damage to the arterial wall.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Kidney stone size and hounsfield units predict successful shockwave lithotripsy in children.

    PubMed

    El-Assmy, Ahmed; El-Nahas, Ahmed R; Abou-El-Ghar, Mohamed E; Awad, Bassam A; Sheir, Khaled Z

    2013-04-01

    To define the preoperative kidney and stones characteristics on noncontrast-enhanced computed tomography that affect the success of extracorporeal shockwave lithotripsy (SWL) for treatment of renal calculi in pediatric patients. From 2005 to 2011, 57 children (age <16 years) with documented preoperative noncontrast-enhanced computed tomography scans underwent SWL for treatment of renal stones and were included in the present study. Stone size, site, multiplicity, average skin-to-stone distance, stone attenuation value, and kidney morphology were determined from the preoperative noncontrast-enhanced computed tomography scans. Success was defined as radiographically stone-free status at the 3-month follow-up examination after a single lithotripsy session without the need for additional sessions or ancillary procedures. After a single session of SWL, 24 children (42.1%) were stone free on the 3-month follow-up imaging study without the need for additional SWL sessions. Treatment failed in 33 patients (57.9), with residual fragments in 30 children, of whom 29 required repeat SWL, and 3 with stones that were considered unchanged and were finally treated with percutaneous nephrolithotomy. Logistic regression analysis revealed that stone attenuation in Hounsfield units (HU) and stone length were the only significant predictors of success. When the HU were stratified into 2 groups of ≤600 and >600 HU, the SWL success rate was 82.1% and 20%, respectively (P = .023). When length was stratified as ≤12 mm and >12 mm, the stone-free rate was 58.6% and 25.1%, respectively (P = .016). Stone attenuation ≤600 HU and stone length ≤12 mm were significant independent predictors of SWL success in children. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Cost-effectiveness comparison of ureteral calculi treated with ureteroscopic laser lithotripsy versus shockwave lithotripsy.

    PubMed

    Cone, Eugene B; Pareek, Gyan; Ursiny, Michal; Eisner, Brian

    2017-01-01

    To evaluate the cost-effectiveness of shockwave lithotripsy (SWL) versus ureteroscopic lithotripsy (URS) for patients with ureteral stones less than 1.5 cm in diameter. Patient age, stone diameter, stone location, and stone-free status were recorded for patients treated with SWL or URS for ureteral stones under 1.5 cm over a 1 year period. Institutional charges were obtained from in-house billing. A decision analysis model was constructed to compare the cost-effectiveness of SWL and URS using our results and success rates for modeling. Three separate models were created to reflect differing practice patterns. A total of 113 patients were included-51 underwent SWL and 62 underwent URS as primary treatment. Single procedure stone-free rates for SWL and URS were 47.1 and 88.7 %, respectively (p < 0.002). Decision analysis modeling demonstrated cost-effectiveness of SWL when SWL single procedure stone-free rates (SFR) were greater than or equal to 60-64 % or when URS single procedure SFRs were less than or equal to 57-76 %, depending on practice patterns. This retrospective study revealed superior SFR for ureteral stones less than 1.5 cm treated with URS compared to SWL. Our decision analysis model demonstrated that when SFR for SWL is less than 60-64 % or is greater than 57-76 % for URS, SWL is not a cost-effective treatment option. Based on these findings, careful stratification and selection of stone patients may enable surgeons to increase the cost-effectiveness of SWL.

  2. Original hypothesis: Extracorporeal shockwaves as a homeostatic autoimmune restorative treatment (HART) for Type 1 diabetes mellitus.

    PubMed

    Craig, Kenneth; d'Agostino, Cristina; Poratt, Daniel; Walker, Marjorie

    2014-09-01

    Mononuclear invasion of Langerhans islet and the ensuing insulitis triggers signal-transduction for the autoimmune mediated pancreatic beta-cell (β-cell) apoptosis that severely disrupts insulin production resulting in hyperglycemia associated with Type-1 diabetes (T1DM). Today extensive global research is being conducted to eliminate the need for insulin, and even prevent or find a cure for T1DM. The multifactorial combination of autoimmune dysfunction, Langerhans islet hypoxia, and bio-chemical disruption are seen to be contributory factors for β-cell destruction and the consequential disruption to insulin production. Regeneration of β-cells back to physiological levels may restore homeostatic insulin levels, reversing T1DM. Evidence suggests that there are still functioning pancreatic β-cells even in long standing T1DM providing the potential for their regeneration. Although the exact mechanism of extracorporeal shockwaves (ESW) is yet to be fully elucidated, it is seen to influence a complex spectrum of bio-chemical, cellular and neuronal functions (i.e. suppression of pro-inflammatory immune response, improved tissue hemodynamics, anti-microbial properties, and the induction of progenitor cell expression including proangiogenic factors and nitric oxide syntheses). The rationale for the use of ESW as a therapeutic modality in this instance is attributed to its restorative properties and safety profile demonstrated in urology, cardiology, chronic wounds, osteogenesis, complex pain syndromes, and tendinopathies. ESW may restore autoimmune homeostasis creating a suitable environment for pancreatic β-cell proliferation which in-turn may significantly increase or normalize endogenous insulin secretion reducing or totally eliminating dependency of exogenous insulin. The devastating complications, morbidity and mortality associated with T1DM warrants the exploration of homeostatic autoimmune restorative treatment (HART) modalities that may partially or fully

  3. Optimal probabilistic dense coding schemes

    NASA Astrophysics Data System (ADS)

    Kögler, Roger A.; Neves, Leonardo

    2017-04-01

    Dense coding with non-maximally entangled states has been investigated in many different scenarios. We revisit this problem for protocols adopting the standard encoding scheme. In this case, the set of possible classical messages cannot be perfectly distinguished due to the non-orthogonality of the quantum states carrying them. So far, the decoding process has been approached in two ways: (i) The message is always inferred, but with an associated (minimum) error; (ii) the message is inferred without error, but only sometimes; in case of failure, nothing else is done. Here, we generalize on these approaches and propose novel optimal probabilistic decoding schemes. The first uses quantum-state separation to increase the distinguishability of the messages with an optimal success probability. This scheme is shown to include (i) and (ii) as special cases and continuously interpolate between them, which enables the decoder to trade-off between the level of confidence desired to identify the received messages and the success probability for doing so. The second scheme, called multistage decoding, applies only for qudits ( d-level quantum systems with d>2) and consists of further attempts in the state identification process in case of failure in the first one. We show that this scheme is advantageous over (ii) as it increases the mutual information between the sender and receiver.

  4. Percolation in dense storage arrays

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, Scott; Wilcke, Winfried W.; Garner, Robert B.; Huels, Harald

    2002-11-01

    As computers and their accessories become smaller, cheaper, and faster the providers of news, retail sales, and other services we now take for granted on the Internet have met their increasing computing needs by putting more and more computers, hard disks, power supplies, and the data communications linking them to each other and to the rest of the wired world into ever smaller spaces. This has created a new and quite interesting percolation problem. It is no longer desirable to fix computers, storage or switchgear which fail in such a dense array. Attempts to repair things are all too likely to make problems worse. The alternative approach, letting units “fail in place”, be removed from service and routed around, means that a data communications environment will evolve with an underlying regular structure but a very high density of missing pieces. Some of the properties of this kind of network can be described within the existing paradigm of site or bond percolation on lattices, but other important questions have not been explored. I will discuss 3D arrays of hundreds to thousands of storage servers (something which it is quite feasible to build in the next few years), and show that bandwidth, but not percolation fraction or shortest path lengths, is the critical factor affected by the “fail in place” disorder. Redundancy strategies traditionally employed in storage systems may have to be revised. Novel approaches to routing information among the servers have been developed to minimize the impact.

  5. The rheology and microstructure of dense suspensions of elastic capsules.

    SciTech Connect

    Reasor, Daniel; Clausen, Jonathan; Aidun, Cyrus

    2010-11-01

    We use a recently developed hybrid numerical technique [MacMeccan et al. (2009)] that combines a lattice-Boltzmann (LB) fluid solver with a finite element (FE) solid-phase solver to study suspensions of elastic capsules. The LB method recovers the Navier-Stokes hydrodynamics, while the linear FE method models the deformation of fluid-filled elastic capsules for moderate levels of deformation. The simulation results focus on accurately describing the suspension rheology, including the particle pressure, and relating these changes to changes in the microstructure. Simulations are performed with hundreds of particles in unbounded shear allowing an accurate description of the bulk suspension rheology and microstructure. In contrast to rigid spherical particles, elastic capsules are capable of producing normal stresses in the dilute limit. For dense suspensions, the first normal stress difference is of particular interest. The first normal stress difference, which is negative for dense rigid spherical suspensions, undergoes a sign change at moderate levels of deformation of the suspended capsules.

  6. Use of shock-wave heating for faster and safer ablation of tissue volumes in high intensity focused ultrasound therapy

    NASA Astrophysics Data System (ADS)

    Khokhlova, V.; Yuldashev, P.; Sinilshchikov, I.; Partanen, A.; Khokhlova, T.; Farr, N.; Kreider, W.; Maxwell, A.; Sapozhnikov, O.

    2015-10-01

    Simulation of enhanced heating of clinically relevant tissue volumes using nonlinear ultrasound waves generated by a multi-element HIFU phased array were conducted based on the combined Westervelt and bio-heat equations. A spatial spectral approach using the fast Fourier transform algorithm and a corresponding analytic solution to the bioheat equation were used to optimize temperature modeling in tissue. Localized shock-wave heating within a much larger treated tissue volume and short, single HIFU pulses within a much longer overall exposure time were accounted for in the algorithm. Separation of processes with different time and spatial scales made the calculations faster and more accurate. With the proposed method it was shown that for the same time-average power, the use of high peak power pulsing schemes that produce high-amplitude shocks at the focus result in faster tissue heating compared to harmonic, continuous-wave sonications. Nonlinear effects can significantly accelerate volumetric heating while also permitting greater spatial control to reduce the impact on surrounding tissues. Such studies can be further used to test and optimize various steering trajectories of shock-wave sonications for faster and more controlled treatment of tissue volumes.

  7. Effects of extracorporeal shockwave therapy on patients with chronic low back pain and their dynamic balance ability.

    PubMed

    Lee, Sangyong; Lee, Daehee; Park, Jungseo

    2014-01-01

    [Purpose] The purpose of the present study was to examine the effects of extracorporeal shockwave therapy (ESWT) for patients with chronic low back pain and their dynamic balance ability. [Subjects] Twenty-eight patients with chronic low back were divided into an extracorporeal shockwave therapy group (ESWTG: n=13) and a conservative physical therapy group (CPTG, n=15). [Methods] An exercise program that included Williams' exercises and McKenzie's exercises was performed by both groups. The program was implemented twice a week for six weeks. The visual analog scale (VAS) was used to measure the chronic low back pain of the patients. Their dynamic balance ability was measured with BioRescue. [Results] The within-group comparison of the VAS of the ESWTG and the CPTG showed significant improvements after the intervention. In the VAS comparison between the groups after the treatment, the ESWTG showed a significantly larger improvement. In the within-group comparison of dynamic balance ability, the ESWTG showed significant improvements after the intervention in SAPLS, SAPRS, SAPFS, SAPBS, and TSA, and the CPTG showed significant improvements in SAPLS and SAPBS. In the between-group comparison of the dynamic balance ability after the treatment, the ESWTG showed significantly larger improvements in their SAPLS, SAPRS, SAPFS, and TSA. [Conclusion] The exercise program combined with the ESWT relieved chronic back pain more than the exercise program combined with the CPT. The former was also more effective at improving the patients' dynamic balance ability in terms of SAPLS, SAPRS, SAPFS, and TSA.

  8. Numerical simulations of shock-wave interaction with a boundary layer in the plane supersonic flows with jet injection

    NASA Astrophysics Data System (ADS)

    Beketaeva, A. O.; Moisseyeva, Ye. S.; Naimanova, A. Zh.

    2016-03-01

    A supersonic air flow in a plane channel with a transverse turbulent jet of hydrogen injected through a slot on the bottom wall is simulated. The algorithm for solving the Favre-averaged Navier-Stokes equations for the flow of a perfect multispecies gas on the basis of the WENO scheme is proposed. The main attention is paid to the interaction of the shock-wave structure with the boundary layers on the upper and lower duct walls under the conditions of an internal turbulent flow. Namely, a detailed study of the structure of the flow is done, and separation and mixing depending on the jet slot width are investigated. It is found that in addition to well-known shock-wave structures produced by the interaction of the free stream with the transverse jet and the bow shock interaction with the boundary layers near the walls, an additional system of shock waves and the flow separation arise on the bottom wall downstream at some distance from the jet. The comparison with the experimental data is performed.

  9. Impact of extracorporeal shockwave therapy on tooth mobility in adult orthodontic patients: a randomized single-center placebo-controlled clinical trial.

    PubMed

    Falkensammer, Frank; Rausch-Fan, Xiaohui; Schaden, Wolfgang; Kivaranovic, Danijel; Freudenthaler, Josef

    2015-03-01

    This RCT investigated the effect of non-invasive extracorporeal shockwaves on tooth mobility in orthodontic patients after active treatment. Seventy-two adult patients were included in the study. Immediately after active orthodontic treatment, patients were assigned to a treatment or a placebo group based on block randomization. The orthodontic patients were required to be otherwise healthy. The region of interest was the anterior portion of the mandible. The treatment group received a single shockwave treatment with 1000 impulses while the placebo group was treated with an acoustic sham. Tooth mobility was evaluated over a period of 6 months using a Periotest and manual testing. Pocket probing depths, bleeding on probing and the irregularity index were also assessed. Tooth mobility reduced significantly over 6 months in both groups, but shockwaves achieved significantly more rapid reduction on manual testing. Probing depth was significantly reduced while the irregularity index remained stable. Bleeding on probing was significantly reduced in the treatment group. No anti-inflammatory effect could be derived due to possible initial group differences. The mobility of teeth aligned by orthodontic treatment reduces over time. Shockwave treatment appeared to reduce tooth mobility more rapidly. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Fluctuation capture in dense gases and liquids - trapping, detrapping and non-equilibrium transport

    NASA Astrophysics Data System (ADS)

    Cocks, Daniel; White, Ron

    2016-09-01

    When charged particles travel through a background of a dense gas or liquid the correlations in the fluid significantly modify the transport of the charged particle. In particular, a new process becomes available, in which the particle is captured into a local fluctuation (bubble or cluster) of the fluid. The trapping has an influence on all transport coefficients, especially annihilation rates of positrons and positronium. Understanding fluctuation capture is important in medical diagnostics, therapy and particle detectors in the low-energy regime, but has so far been unable to be accounted for in transport simulations. We present a new framework that produces energy-resolved ``capture cross sections'' σcap(ɛ) along with ``waiting time distributions'' Θ(t) which allow transport theories to include capture as a process. We demonstrate good agreement between our ab initio calculations and experimental measurements of electrons and positrons in dense noble-gas fluids.

  11. Fluid Physics

    NASA Image and Video Library

    2002-12-12

    These are video microscope images of magnetorheological (MR) fluids, illuminated with a green light. Those on Earth, left, show the MR fluid forming columns or spikes structures. On the right, the fluids in microgravity aboard the International Space Station (ISS), formed broader columns.

  12. Fluid Mechanics.

    ERIC Educational Resources Information Center

    Drazin, Philip

    1987-01-01

    Outlines the contents of Volume II of "Principia" by Sir Isaac Newton. Reviews the contributions of subsequent scientists to the physics of fluid dynamics. Discusses the treatment of fluid mechanics in physics curricula. Highlights a few of the problems of modern research in fluid dynamics. Shows that problems still remain. (CW)

  13. Fluid Mechanics.

    ERIC Educational Resources Information Center

    Drazin, Philip

    1987-01-01

    Outlines the contents of Volume II of "Principia" by Sir Isaac Newton. Reviews the contributions of subsequent scientists to the physics of fluid dynamics. Discusses the treatment of fluid mechanics in physics curricula. Highlights a few of the problems of modern research in fluid dynamics. Shows that problems still remain. (CW)

  14. How has extracorporeal shock-wave lithotripsy changed the treatment of urinary stones in Quebec?

    PubMed Central

    Levy, A R; McGregor, M

    1995-01-01

    OBJECTIVES: To determine the number of people who underwent treatment of urinary stones in Quebec before and after the introduction of extracorporeal shock-wave lithotripsy (ESWL) and to determine how the introduction of ESWL influenced resource utilization. DESIGN: Before-after study; data were obtained from administrative databases and hospital-based cost estimates. SETTING: The 68 acute care hospitals in Quebec in which treatment of urinary stones is undertaken. PATIENTS: Quebec residents admitted to hospital for treatment of urinary stones between the fiscal years 1984 and 1992. OUTCOME MEASURES: Number of people treated for urinary stones per year, total number of procedures per year (including open surgery, percutaneous procedures, retrograde procedures and ESWL), and annual resources (including number of hospital bed-days and direct costs) for treatment of urinary stones used overall and in hospitals with and without ESWL services. RESULTS: Over the study period the number of people treated for urinary stones increased by 59%. As well, the combined frequency of ESWL and surgery (the two main treatment methods) increased by 107%. These increases were largely due to rates of treatment that grew by 52% among women and by 34% among men. The total number of hospital bed-days decreased by 28%, which reflected shorter hospital stays for ESWL. However, despite this decrease, the total direct annual costs were 7% higher in 1992 than in 1984 because of the increased numbers of people treated and procedures performed. In the three hospitals that offered ESWL the number of hospital bed-days and the direct costs of treating urinary stones increased by 49% and $2.5 million respectively. In the 65 other hospitals these figures decreased by 41% and about $2.9 million respectively. CONCLUSIONS: Because of increased intervention rates the total cost of treating urinary stones has risen since the introduction of ESWL. The introduction of ESWL has also been associated with a

  15. Stenting in extracorporeal shockwave lithotripsy; may enhance the passage of the fragments!

    PubMed

    Mustafa, Mahmoud; Ali-El-Dein, Bedier

    2009-03-01

    To prospectively evaluate the role of double J (DJ) stent in enhancing the passage of fragments in patients undergoing extracorporeal shockwave lithotripsy (SWL) for renal stones with diameters less than 2.5 cm. Between November 2005 and January 2007, 38 patients with an average age of 47.05 years (range 16-73) were included and underwent SWL for renal stones. The inclusion criteria were radio-opaque renal stone not located in the lower pole, complete disintegeration of the stone, normal renal function, no metabolic abnormalities, no major renal abnormalities and no symptomatic urinary tract infection. The patients were randomized to either a stented (11 patients) or stentless (27 patients) group. The average stone diameters in stentless and stented groups were 1.54 cm and 1.77 cm, respectively (p > 0.05). Double J stent was removed when there was no further passage of the fragments for 6 weeks after stone disintegration. All patients were given non-steroidal anti-inflammatory drugs for one week after ESWL treatment. Stone passage and the data of DJ were determined with plain X-ray of the urinary tract (UTP). The severity of lower urinary tract symptoms, loin pain and the need for intravenous or intramuscular analgesics were recorded. The overall stone-free rate at 3 months was 92.1%. Two patients in the stented and one patient in the stentless group were partially free of stones. Steinstrasse were observed in two patients (5.3%); one patient in the stentless group and another one after the removal of DJ stent. Only one patient in the stented group had severe lower urinary tract symptoms which responded neither to oral nor to other forms of analgesics, and therefore DJ stent was removed. The remaining patients were in no need for analgesics other than the oral therapy. Placement of DJ stent for the purpose of improving free stone rate or enhancing the passage of the fragments during SWL is unnecessary in renal stone with diameters less than 2.5 cm. However, further

  16. Cellulite and focused extracorporeal shockwave therapy for non-invasive body contouring: a randomized trial.

    PubMed

    Knobloch, Karsten; Joest, Beatrice; Krämer, Robert; Vogt, Peter M

    2013-12-01

    Focused extracorporeal shockwave therapy (ESWT) has been demonstrated to improve wound healing and skin regeneration such as in burn wounds and scars. We hypothesized that the combination of focused ESWT and a daily gluteal muscle strength program is superior to SHAM-ESWT and gluteal muscle strength training in moderate to severe cellulite. This was a single-center, double-blinded, randomized-controlled trial. For allocation of participants, a 1:1 ratio randomization was performed using opaque envelopes for the concealment of allocation. Eligible patients were females aged 18-65 years with cellulite. The primary outcome parameter was the photo-numeric Cellulite Severity Scale (CSS) determined by two blinded, independent assessors. The intervention group (group A) received six sessions of focused ESWT (2,000 impulses, 0.35 mJ/mm(2), every 1-2 weeks) at both gluteal and thigh regions plus specific gluteal strength exercise training. The control group (group B) received six sessions of SHAM-ESWT plus specific gluteal strength exercise training. The CSS in group A was 10.9 ± 3.8 (mean ± SE) before intervention and 8.3 ± 4.1 after 12 weeks (P = 0.001, 2.53 improvement, 95% confidence interval (CI) 1.43-3.62). The CSS in group B was 10.0 ± 3.8 before intervention and 10.1 ± 3.8 after 12 weeks (P = 0.876, 95% CI 1.1-0.97). The change of the CSS in group A versus group B was significantly different (P = 0.001, -24.3 effect size, 95% CI -36.5 to -12.1). The combination of non-invasive, focused ESWT (0.35 mJ/mm(2), 2,000 impulses, 6 sessions) in combination with gluteal strength training was superior to gluteal strength training and SHAM-ESWT in moderate to severe cellulite in terms of the CSS in a 3-month perspective. Long-term results have to be evaluated in terms of the sustainability of these effects.

  17. Cellulite and extracorporeal Shockwave therapy (CelluShock-2009)--a randomized trial.

    PubMed

    Knobloch, Karsten; Joest, Beatrice; Vogt, Peter M

    2010-10-26

    Cellulite is a widespread problem involving females' buttocks and thighs based on the female specific anatomy. Given the higher number of fat cells stored in female fatty tissue in contrast to males, and the aging process of connective tissue leads to an imbalance between lipogenesis and lipolysis with subsequent large fat cells bulging the skin. In addition, microcirculatory changes have been suggested, however remain largely unknown in a controlled clinical setting. We hypothesize that the combination of extracorporeal shockwave and a daily gluteal muscle strength program is superior to the gluteal muscle strength program alone in cellulite. Randomized-controlled trial. IRB approval was granted at Hannover Medical School, Germany on May 22, 2009. For allocation of participants, a 1:1 ratio randomization was performed using opaque envelopes for the concealment of allocation. Reporting: according to CONSORT 2010. Eligible patients were females aged 18 or over and 65 or younger with cellulite with documented cellulite 1°-4° according to the Nürnberger score. Exclusion criteria were suspected or evident pregnancy, no cellulite, no informed consent or age under 18 years or above 65 years. Patients were recruited by advertisements in local regional newspapers and via the Internet. Intention-to-treat. a) Photonumeric severity scale, b) Nürnberger Score, c) circumference measurements, d) capillary blood flow, e) tissue oxygen saturation, f) postcapillary venous blood flow. Intervention group: Six sessions of extracorporeal focused shock wave for six sessions (2000 impulses, 0,25 mJ/m2 every 1-2 weeks) at both gluteal and thigh regions plus a specific gluteal strength exercise training. Six sessions of sham extracorporeal focused shock wave for six sessions (2000 impulses, 0,01 mJ/m2 every 1-2 weeks) at both gluteal and thigh regions plus a specific gluteal strength exercise training. 12 weeks. Blinding was achieved for all participants enrolled in the trial, the

  18. Cellulite and extracorporeal Shockwave therapy (CelluShock-2009) - a Randomized Trial

    PubMed Central

    2010-01-01

    Background Cellulite is a widespread problem involving females' buttocks and thighs based on the female specific anatomy. Given the higher number of fat cells stored in female fatty tissue in contrast to males, and the aging process of connective tissue leads to an imbalance between lipogenesis and lipolysis with subsequent large fat cells bulging the skin. In addition, microcirculatory changes have been suggested, however remain largely unknown in a controlled clinical setting. We hypothesize that the combination of extracorporeal shockwave and a daily gluteal muscle strength program is superior to the gluteal muscle strength program alone in cellulite. Methods/Design Study design: Randomized-controlled trial. IRB approval was granted at Hannover Medical School, Germany on May 22, 2009. For allocation of participants, a 1:1 ratio randomization was performed using opaque envelopes for the concealment of allocation. Reporting: according to CONSORT 2010. Eligible patients were females aged 18 or over and 65 or younger with cellulite with documented cellulite 1°-4° according to the Nürnberger score. Exclusion criteria were suspected or evident pregnancy, no cellulite, no informed consent or age under 18 years or above 65 years. Patients were recruited by advertisements in local regional newspapers and via the Internet. Analysis: Intention-to-treat. Outcome parameters: a) Photonumeric severity scale, b) Nürnberger Score, c) circumference measurements, d) capillary blood flow, e) tissue oxygen saturation, f) postcapillary venous blood flow. Intervention group: Six sessions of extracorporeal focused shock wave for six sessions (2000 impulses, 0,25 mJ/m2 every 1-2 weeks) at both gluteal and thigh regions plus a specific gluteal strength exercise training. Control group: Six sessions of sham extracorporeal focused shock wave for six sessions (2000 impulses, 0,01 mJ/m2 every 1-2 weeks) at both gluteal and thigh regions plus a specific gluteal strength exercise training

  19. Electrorheological fluids

    SciTech Connect

    Adolf, D.; Anderson, R.; Garino, T.; Halsey, T.C.; Hance, B.; Martin, J.E.; Odinek, J.

    1996-10-01

    An Electrorheological fluid is normally a low-viscosity colloidal suspension, but when an electric field is applied, the fluid undergoes a reversible transition to a solid, being able to support considerable stress without yield. Commercial possibilities for such fluids are enormous, including clutches, brakes, valves,shock absorbers, and stepper motors. However, performance of current fluids is inadequate for many proposed applications. Our goal was to engineer improved fluids by investigating the key technical issues underlying the solid-phase yield stress and the liquid to solid switching time. Our studies focused on field-induced interactions between colloidal particles that lead to solidification, the relation between fluid structure and performance (viscosity, yield stress), and the time evolution of structure in the fluid as the field is switched on or off.

  20. Optimization of crystal nucleation close to a metastable fluid-fluid phase transition.

    PubMed

    Wedekind, Jan; Xu, Limei; Buldyrev, Sergey V; Stanley, H Eugene; Reguera, David; Franzese, Giancarlo

    2015-06-22

    The presence of a metastable fluid-fluid critical point is thought to dramatically influence the crystallization pathway, increasing the nucleation rate by many orders of magnitude over the predictions of classical nucleation theory. We use molecular dynamics simulations to study the kinetics of crystallization in the vicinity of this metastable critical point and throughout the metastable fluid-fluid phase diagram. To quantitatively understand how the fluid-fluid phase separation affects the crystal nucleation, we evaluate accurately the kinetics and reconstruct the thermodynamic free-energy landscape of crystal formation. Contrary to expectations, we find no special advantage of the proximity of the metastable critical point on the crystallization rates. However, we find that the ultrafast formation of a dense liquid phase causes the crystallization to accelerate both near the metastable critical point and almost everywhere below the fluid-fluid spinodal line. These results unveil three different scenarios for crystallization that could guide the optimization of the process in experiments.

  1. Propagation Of Dense Plasma Jets

    NASA Astrophysics Data System (ADS)

    Turchi, Peter J.; Davis, John F.

    1988-05-01

    A variety of schemes have been proposed over the last two decades for delivering lethal amounts of energy and/or momentum to targets such as missiles and high speed aircraft. Techniques have ranged from high energy lasers and high voltage charged-particle accelerators to less exotic but still challenging devices such as electromagnetic railguns. One class of technology involves the use of high speed plasmas. The primary attraction of such technology is the possibility of utilizing relatively compact accelerators and electrical power systems that could allow highly mobile and agile operation from rocket or aircraft platforms, or in special ordnance. Three years ago, R & D Associates examined the possibility of plasma propagation for military applications and concluded that the only viable approach consisted of long dense plasma jets, contained in radial equilibrium by the atmosphere, while propagating at speeds of about 10 km/s. Without atmospheric confinement the plasma density would diminish too rapidly for adequate range and lethality. Propagation of atmospherically-confined jets at speeds much greater than 10 km/s required significant increases in power levels and/or operating altitudes to achieve useful ranges. The present research effort has been developing the experimental conditions necessary to achieve reasonable comparison with theoretical predictions for plasma jet propagation in the atmosphere. Time-resolved measurements have been made of high speed argon plasma jets penetrating a helium background (simulating xenon jets propagating into air). Basic radial confinement of the jet has been observed by photography and spectroscopy and structures in the flow field resemble those predicted by numerical calculations. Results from our successful initial experiments have been used to design improved diagnostic procedures and arcjet source characteristics for further experiments. In experiments with a modified arcjet source, radial confinement of the jet is again

  2. A new nomogram for prediction of outcome of pediatric shock-wave lithotripsy.

    PubMed

    Dogan, Hasan Serkan; Altan, Mesut; Citamak, Burak; Bozaci, Ali Cansu; Karabulut, Erdem; Tekgul, Serdar

    2015-04-01

    Despite the fact that shock-wave lithotripsy (SWL) remains a very good treatment option for smaller stones, it is being challenged by endourologic treatment modalities, which offer similar or even higher success rates in a shorter time, with minimal morbidity and invasiveness. The present study aimed to bring a new and practical insight in order to predict the outcomes of pediatric SWL and to provide objective information about pediatric SWL outcomes. To design a nomogram for predicting the outcomes of pediatric shock-wave lithotripsy. The study was conducted with a retrospective design and included 402 renal units who underwent SWL between January 2009 and August 2013. Patients with known cystine stone disease and cystinuria, with internal or external urinary diversion, were excluded. Analysis was performed on 383 renal units. Postoperative imaging was performed by plain abdominal graphy and ultrasonography with 3-month intervals. Patients who were completely free of stones were considered to be a success and statistical analysis was done regardingly Multivariate analysis was conducted by logistic regression analysis and a nomogram was developed. The male/female distribution was 216/167, with a mean age of 48 ± 40 months and a mean stone size of 9 ± 3.5 mm. The overall stone-free rate was 70% (270/383) and efficacy quotient was 0.57. Mean follow-up was 11 ± 11 months (3-54 months). The number of shock waves and amplitude of energy were higher in failed cases. Multivariate analysis showed that gender, stone size, number of stones, age, location of the stone, and history of previous intervention were found to be the independent prognostic factors for assessing the stone clearance rates. A nomogram was developed using these parameters. In this nomogram, the points achieved from each parameter are summed and total points correspond to the risk of failure in percent. A previous nomogram study by Onal et al. showed that younger age (<5 years), smaller stone burden

  3. Dense Plasma Heating and Radiation Generation.

    DTIC Science & Technology

    The investigations under this grant consist of three parts: CO2 laser heating of dense preformed plasmas, interaction of a dense hot plasma with a...small solid pellet, and pulsed power systems and technology. The laser plasma heating experiment has demonstrated both beam guiding by the plasma and...plasma heating by the beam. These results will be useful in heating plasmas for radiation generation. Experiments have shown that the pellet-plasma

  4. Magnetic Phases in Dense Quark Matter

    SciTech Connect

    Incera, Vivian de la

    2007-10-26

    In this paper I discuss the magnetic phases of the three-flavor color superconductor. These phases can take place at different field strengths in a highly dense quark system. Given that the best natural candidates for the realization of color superconductivity are the extremely dense cores of neutron stars, which typically have very large magnetic fields, the magnetic phases here discussed could have implications for the physics of these compact objects.

  5. Dynamical theory of dense groups of galaxies

    NASA Technical Reports Server (NTRS)

    Mamon, Gary A.

    1990-01-01

    It is well known that galaxies associate in groups and clusters. Perhaps 40% of all galaxies are found in groups of 4 to 20 galaxies (e.g., Tully 1987). Although most groups appear to be so loose that the galaxy interactions within them ought to be insignificant, the apparently densest groups, known as compact groups appear so dense when seen in projection onto the plane of the sky that their members often overlap. These groups thus appear as dense as the cores of rich clusters. The most popular catalog of compact groups, compiled by Hickson (1982), includes isolation among its selection critera. Therefore, in comparison with the cores of rich clusters, Hickson's compact groups (HCGs) appear to be the densest isolated regions in the Universe (in galaxies per unit volume), and thus provide in principle a clean laboratory for studying the competition of very strong gravitational interactions. The $64,000 question here is then: Are compact groups really bound systems as dense as they appear? If dense groups indeed exist, then one expects that each of the dynamical processes leading to the interaction of their member galaxies should be greatly enhanced. This leads us to the questions: How stable are dense groups? How do they form? And the related question, fascinating to any theorist: What dynamical processes predominate in dense groups of galaxies? If HCGs are not bound dense systems, but instead 1D change alignments (Mamon 1986, 1987; Walke & Mamon 1989) or 3D transient cores (Rose 1979) within larger looser systems of galaxies, then the relevant question is: How frequent are chance configurations within loose groups? Here, the author answers these last four questions after comparing in some detail the methods used and the results obtained in the different studies of dense groups.

  6. Dissociation energy of molecules in dense gases

    NASA Technical Reports Server (NTRS)

    Kunc, J. A.

    1992-01-01

    A general approach is presented for calculating the reduction of the dissociation energy of diatomic molecules immersed in a dense (n = less than 10 exp 22/cu cm) gas of molecules and atoms. The dissociation energy of a molecule in a dense gas differs from that of the molecule in vacuum because the intermolecular forces change the intramolecular dynamics of the molecule, and, consequently, the energy of the molecular bond.

  7. Dissociation energy of molecules in dense gases

    NASA Technical Reports Server (NTRS)

    Kunc, J. A.

    1992-01-01

    A general approach is presented for calculating the reduction of the dissociation energy of diatomic molecules immersed in a dense (n = less than 10 exp 22/cu cm) gas of molecules and atoms. The dissociation energy of a molecule in a dense gas differs from that of the molecule in vacuum because the intermolecular forces change the intramolecular dynamics of the molecule, and, consequently, the energy of the molecular bond.

  8. In vitro biomechanical evaluation of single impulse and repetitive mechanical shockwave devices utilized for spinal manipulative therapy.

    PubMed

    Liebschner, Michael A K; Chun, Kwonsoo; Kim, Namhoon; Ehni, Bruce

    2014-12-01

    Mechanical shockwave therapy devices have been in clinical use for almost 40 years. While most often used to treat back pain, our understanding of their biomechanical performance is very limited. From biomechanical studies we know that biological tissue is viscoelastic and preferably excited around its resonance frequency. Targeting these frequencies has been the focus in extracorporeal shock wave lithotripsy, but these concepts are relatively new in orthopedic and rehabilitation therapies. The exact mechanism by which shockwave therapy acts is not known. Knowledge of the performance characteristics of these devices, correlated with clinical outcome studies, may lead to better patient selection, improvement of device functionality, and knowledge of the underlying working principals of therapy. The objectives of this study were to determine the ability of several commercial shockwave devices to achieve a desired thrust profile in a benchtop setting, determine the thrust profile in a clinical analog, and determine the influence of operator experience level on device performance. We conducted two different types of testing: (1) bench testing to evaluate the devices themselves, and (2) clinical equivalent testing to determine the influence of the operator. The results indicated a significant dependence of thrust output on the compliance of the test media. The Activator V-E device matched the ideal half-sine thrust profile to 94%, followed by the Impulse device (84%), the Activator IV/FS (74%), and the Activator II (48%). While most devices deviated from the ideal profile on the return path, the Impulse device exhibited a secondary peak. Moreover, the Activator V-E device provided evidence that the device performs consistently despite operator experience level. This has been a major concern in manual spinal manipulation. Based on our results, a hyper-flexible spine would receive a lower peak thrust force than a hypo-flexible spine at the same power setting. Furthermore

  9. The Dense Gas in M82

    NASA Astrophysics Data System (ADS)

    Salas, P.; Galaz, G.; Salter, D.; Bolatto, A.; Herrera-Camus, R.

    2014-10-01

    Galactic winds are responsible of carrying energy and matter from the inner regions of galaxies to the outer regions, even reaching the intergalactic medium. This process removes gas from the inner regions, the available material to form stars. How and in which amount these winds remove gas from galaxies plays an important role in galaxy evolution. To study this effect we have obtained 3 mm maps of dense gas (n_{{crit}}>10^{4} cm^{-3}) in the central region of the starburst galaxy M82. We detect line emission from the dense molecular gas tracers HCN, HCO^{+}, HNC, CS, HC_{3}N and C_{6}H. Our maps reveal a considerable amount of HCO^{+} emission extending above and bellow the central star-forming disk, indicating that the dense gas is entangled in the outflow. The mass of molecular Hydrogen outside the central starburst is M_{{out}}≍ 3 ± 1× 10^{6} M_{odot}, while in the central starburst is M_{{disk}}≍ 8 ± 2× 10^{6} M_{odot}. These maps also show variations of the amount of dense gas over the starburst disk, revealing that the gas is more concentrated towards the center of the starburst and less towards the edges. It is the average amount of dense gas what drives the observed star formation law between dense gas and star formation rate on galactic scales.

  10. METHOD OF PRODUCING DENSE CONSOLIDATED METALLIC REGULUS

    DOEpatents

    Magel, T.T.

    1959-08-11

    A methcd is presented for reducing dense metal compositions while simultaneously separating impurities from the reduced dense metal and casting the reduced parified dense metal, such as uranium, into well consolidated metal ingots. The reduction is accomplished by heating the dense metallic salt in the presence of a reducing agent, such as an alkali metal or alkaline earth metal in a bomb type reacting chamber, while applying centrifugal force on the reacting materials. Separation of the metal from the impurities is accomplished essentially by the incorporation of a constricted passageway at the vertex of a conical reacting chamber which is in direct communication with a collecting chamber. When a centrifugal force is applled to the molten metal and slag from the reduction in a direction collinear with the axis of the constricted passage, the dense molten metal is forced therethrough while the less dense slag is retained within the reaction chamber, resulting in a simultaneous separation of the reduced molten metal from the slag and a compacting of the reduced metal in a homogeneous mass.

  11. Evolution of Dense Gas with Starburst Age: When Star Formation Versus Dense Gas Relations Break Down

    NASA Astrophysics Data System (ADS)

    Meier, David S.; Turner, J. L.; Schinnerer, E.

    2011-05-01

    Dense gas correlates well with star formation on kpc scales. On smaller scales, motions of individual clouds become comparable to the 100 Myr ages of starbursts. One then expects the star formation rate vs. dense gas relations to break down on giant molecular cloud scales. We exploit this to study the evolutionary history of nuclear starburst in the nearby spiral, IC 342. Maps of the J=5-4 and 16-15 transitions of dense gas tracer HC3N at 20 pc resolution made with the VLA and the Plateau de Bure interferometer are presented. The 5-4 line of HC3N traces very dense gas in the cold phase, while the 16-15 transition traces warm, dense gas. These reveal changes in dense cloud structure on scales of 30 pc among clouds with star formation histories differing by only a few Myrs. HC3N emission does not correlate well with young star formation at these high spatial resolutions, but gas excitation does. The cold, dense gas extends well beyond the starburst region implying large amounts of dense quiescent gas not yet actively forming stars. Close to the starburst the high excitation combined with faint emission indicates that the immediate (30 pc) vicinity of the starburst lacks large masses of very dense gas and has high dense gas star formation efficiencies. The dense gas appears to be in pressure equilibrium with the starburst. We propose a scenario where the starburst is being caught in the act of dispersing or destroying the dense gas in the presence of the expanding HII region. This work is supported by the NSF through NRAO and grant AST-1009620.

  12. Hypovolemic Shock Caused by Massive Renal Hematoma After a Third Consecutive Extracorporeal Shockwave Lithotripsy Session: A Case Report

    PubMed Central

    Vander Eeckt, Kathy; Ost, Dieter; Van Den Branden, Marcel

    2016-01-01

    Abstract Extracorporeal shockwave lithotripsy (SWL) is a commonly used technique for treating urinary calculi. Although noninvasive, highly effective, and widely accepted, SWL is not without complications. Next to fragmenting the calculi, the surrounding tissue is damaged, which can result in renal hematoma, a well-described complication. In most cases, the collateral tissue damage is mild and resolves with conservative treatment. However, rarely, severe complications may arise. Here we present a case of a 46-year-old male who developed a massive hematoma, both subcapsular and retroperitoneal, after a third consecutive SWL session, resulting in hypovolemic shock. Different probable causes are proposed, of which one cause, the length of the interval between SWL sessions, is not yet studied properly. Probably, short intervals keep the damaged tissue from healing sufficiently, as proposed in our case. Possibly, life-threatening situations can be avoided if more evidence-based guidelines are available. PMID:28078329

  13. Hypovolemic Shock Caused by Massive Renal Hematoma After a Third Consecutive Extracorporeal Shockwave Lithotripsy Session: A Case Report.

    PubMed

    Sermeus, Loic; Vander Eeckt, Kathy; Ost, Dieter; Van Den Branden, Marcel

    2016-01-01

    Extracorporeal shockwave lithotripsy (SWL) is a commonly used technique for treating urinary calculi. Although noninvasive, highly effective, and widely accepted, SWL is not without complications. Next to fragmenting the calculi, the surrounding tissue is damaged, which can result in renal hematoma, a well-described complication. In most cases, the collateral tissue damage is mild and resolves with conservative treatment. However, rarely, severe complications may arise. Here we present a case of a 46-year-old male who developed a massive hematoma, both subcapsular and retroperitoneal, after a third consecutive SWL session, resulting in hypovolemic shock. Different probable causes are proposed, of which one cause, the length of the interval between SWL sessions, is not yet studied properly. Probably, short intervals keep the damaged tissue from healing sufficiently, as proposed in our case. Possibly, life-threatening situations can be avoided if more evidence-based guidelines are available.

  14. Dynamics of particle clusters at fluid/fluid interfaces

    NASA Astrophysics Data System (ADS)

    Madhavan, Srinath; Minev, Peter; Nandakumar, Krishnaswamy

    2009-11-01

    This talk is oriented toward research that describes the hydrodynamics of dense (relative to the lower fluid in a gravitational field) rigid particles at fluid-fluid interfaces through Direct Numerical Simulations (DNS). Understanding the factors that control the formation and stability of the complex rag layer (typically encountered during oil-water separation) is a motivation for the current study. The fundamental aspects of the problem at hand bear a connection with the formation of tight clusters of floating particles. Strong capillary forces are thought to promote this behavior. One of the challenges toward realizing the same in a numerical simulation is the implementation of a physically realistic boundary condition for the three phase moving contact line (MCL). To this end, we implement the recently proposed continuum form of the Generalized Navier Boundary Condition (Gerbeau and Lelievre, 2009) in a levelset and fictitious-domain based finite-element scheme and demonstrate its usefulness and accuracy through case studies.

  15. Shockwave treatment for medial tibial stress syndrome in military cadets: A single-blind randomized controlled trial.

    PubMed

    Gomez Garcia, Santiago; Ramon Rona, Silvia; Gomez Tinoco, Martha Claudia; Benet Rodriguez, Mikhail; Chaustre Ruiz, Diego Mauricio; Cardenas Letrado, Francia Piedad; Lopez-Illescas Ruiz, África; Alarcon Garcia, Juan Maria

    2017-09-05

    Medial tibial stress syndrome (MTSS) is a common injury in athletes and soldiers. Several studies have demonstrated the effectiveness of extracorporeal shockwave treatment (ESWT) in athletes with MTSS. To assess whether one session of focused ESWT is effective in the treatment of military cadets with MTSS. A randomized, prospective, controlled, single-blind, parallel-group clinical study. Ib. Military School of Cadets of the Colombian Army. Forty-two military cadets with unilateral chronic MTSS were randomly assigned to either one session of focused electromagnetic ESWT (1500 pulses at 0.20 mJ/mm(2)) plus a specific exercise programme (muscle stretching and strengthening exercises) or the exercise programme alone. The primary endpoint was change in asymptomatic running test (RT) duration at four weeks from baseline. Secondary endpoints were changes in the visual analogue scale (VAS) after running and modified Roles and Maudsley (RM) score also at four weeks from baseline. ESWT patients were able to run longer. Mean RT after four weeks was 17 min 33 s (SE: 2.36) compared to 4 min 48 s (SE: 1.03) in the exercise-only group (p = 0.000). Mean VAS after running was 2.17 (SE: 0.44) in the ESWT group versus 4.26 (SE: 0.36) in the exercise-only group (p = 0.001). The ESWT group had a significantly higher RM score, with excellent or good results for 82.6% of patients vs. 36.8% in the exercise-only group (p = 0.002). No significant adverse effects of ESWT were observed. A single application of focused shockwave treatment in combination with a specific exercise programme accelerates clinical and functional recovery in military cadets with MTSS. Copyright © 2017 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.

  16. Effects of Extracorporeal Shockwave Therapy on Patients with Chronic Low Back Pain and Their Dynamic Balance Ability

    PubMed Central

    Lee, Sangyong; Lee, Daehee; Park, Jungseo

    2014-01-01

    [Purpose] The purpose of the present study was to examine the effects of extracorporeal shockwave therapy (ESWT) for patients with chronic low back pain and their dynamic balance ability. [Subjects] Twenty-eight patients with chronic low back were divided into an extracorporeal shockwave therapy group (ESWTG: n=13) and a conservative physical therapy group (CPTG, n=15). [Methods] An exercise program that included Williams’ exercises and McKenzie’s exercises was performed by both groups. The program was implemented twice a week for six weeks. The visual analog scale (VAS) was used to measure the chronic low back pain of the patients. Their dynamic balance ability was measured with BioRescue. [Results] The within-group comparison of the VAS of the ESWTG and the CPTG showed significant improvements after the intervention. In the VAS comparison between the groups after the treatment, the ESWTG showed a significantly larger improvement. In the within-group comparison of dynamic balance ability, the ESWTG showed significant improvements after the intervention in SAPLS, SAPRS, SAPFS, SAPBS, and TSA, and the CPTG showed significant improvements in SAPLS and SAPBS. In the between-group comparison of the dynamic balance ability after the treatment, the ESWTG showed significantly larger improvements in their SAPLS, SAPRS, SAPFS, and TSA. [Conclusion] The exercise program combined with the ESWT relieved chronic back pain more than the exercise program combined with the CPT. The former was also more effective at improving the patients’ dynamic balance ability in terms of SAPLS, SAPRS, SAPFS, and TSA. PMID:24567665

  17. Potential of mean force for electrical conductivity of dense plasmas

    DOE PAGES

    Starrett, C. E.

    2017-09-28

    The electrical conductivity in dense plasmas can be calculated with the relaxation-time approximation provided that the interaction potential between the scattering electron and the ion is known. To date there has been considerable uncertainty as to the best way to define this interaction potential so that it correctly includes the effects of ionic structure, screening by electrons and partial ionization. The current approximations lead to significantly different results with varying levels of agreement when compared to bench-mark calculations and experiments. Here, we present a new way to define this potential, drawing on ideas from classical fluid theory to define amore » potential of mean force. This new potential results in significantly improved agreement with experiments and bench-mark calculations, and includes all the aforementioned physics self-consistently.« less

  18. Dynamic shear jamming in dense granular suspensions under extension

    NASA Astrophysics Data System (ADS)

    Majumdar, Sayantan; Peters, Ivo R.; Han, Endao; Jaeger, Heinrich M.

    2017-01-01

    Unlike dry granular materials, a dense granular suspension like cornstarch in water can strongly resist extensional flows. At low extension rates, such a suspension behaves like a viscous fluid, but rapid extension results in a response where stresses far exceed the predictions of lubrication hydrodynamics and capillarity. To understand this remarkable mechanical response, we experimentally measure the normal force imparted by a large bulk of the suspension on a plate moving vertically upward at a controlled velocity. We observe that, above a velocity threshold, the peak force increases by orders of magnitude. Using fast ultrasound imaging we map out the local velocity profiles inside the suspension, which reveal the formation of a growing jammed region under rapid extension. This region interacts with the rigid boundaries of the container through strong velocity gradients, suggesting a direct connection to the recently proposed shear-jamming mechanism.

  19. Splash Suppression by Solvent Viscosity in Dense Suspension Impact

    NASA Astrophysics Data System (ADS)

    Zhang, Wendy; Dodge, Kevin; Peters, Ivo; Klein Schaarsberg, Martin; Jaeger, Heinrich

    2015-03-01

    When a dense suspension droplet impacts a hard surface, it will either break apart (``splash'') or remain in a compact configuration without ejecting any particles. We use experiments and discrete particle simulations in which relative particle motions are penalized by lubrication-flow drag to analyze the influence of solvent viscosity on splashing. We find that suspension splash is driven by particle inertia. It can be suppressed in 2 different ways. At low solvent viscosity, lubrication drag due to viscous flow has a negligible effect. Splash is suppressed by surface tension overcoming particle inertia. At high solvent viscosity, lubrication drag alone suppresses splashing. Because impact produces an expanding flow that stretches the suspension radially, suppression in the high-viscosity regime is largely accomplished by lubrication-flow drag preventing initially nearby particle pairs from separating fully. Energy dissipation by viscous flow during collisions plays a smaller role. Present Address: Physics of Fluids Group, University of Twente.

  20. Rheology of dense suspensions: Insights from soft dynamics simulations

    NASA Astrophysics Data System (ADS)

    Rognon, P.; Gay, C.; Einav, I.

    2013-06-01

    Soft Dynamics is a discrete element method that we designed to simulate the flow of dense suspensions. We use it here to simulate plane shear flows of non-Brownian grains with only short range interactions: the viscous lubrication and a steric repulsion with a tunable range. We measure a macroscopic constitutive law that can be expressed, as for dry grains, through a friction law and a dilatation law. We then analyze the contribution of lubrication and repulsion forces to the macroscopic shear stress. This allows us to identity two flow regimes: depending on the shear rate and repulsion range, the shear stress may be mainly due to either repulsion or lubrication forces. This study could be useful to model the rheological behaviour of similar particulate fluids such as foams and emulsions, which comprise bubbles and droplets interacting with lubrication and steric repulsion.

  1. Jamming under rapid pulling in dense granular suspensions

    NASA Astrophysics Data System (ADS)

    Majumdar, Sayantan; Peters, Ivo R.; Jaeger, Heinrich

    2015-03-01

    It requires a lot of force to quickly pull out an object immersed in a bath of dense granular suspension like corn starch in water. To understand such striking force response, we experimentally measure the normal force required for pulling out a cylindrical rod vertically from the suspension at a controlled pulling velocity. We observe that for slow pulling velocities the force response is similar to that of highly viscous fluids but above a certain threshold velocity the force show a diverging behavior soon after the initial viscous-like response. The time delay between the initial viscous-like and the diverging force response crucially depends on the proximity of the container walls from the initial contact region of the pulling rod with the suspension. We use in-situ X-ray radiography techniques to map out the local velocity profiles inside the suspension using metallic tracer particles which reveals that the force divergence takes place under pulling when the motion inside the suspension extends up to the container walls. Although the exact mechanism remains to be explained, our experiments suggest that both the magnitude and the delay in force response under pulling are reminiscent of dynamic jamming under impact in dense granular suspensions. S.M. acknowledges support from a Kadanoff-Rice Post Doctoral fellowship from MRSEC, University of Chicago

  2. Shear-induced organization of forces in dense suspensions: signatures of discontinuous shear thickening

    NASA Astrophysics Data System (ADS)

    Sarkar, Sumantra; Shatoff, Elan; Ramola, Kabir; Mari, Romain; Morris, Jeffrey; Chakraborty, Bulbul

    2017-06-01

    Dense suspensions can exhibit an abrupt change in their viscosity in response to increasing shear rate. The origin of this discontinuous shear thickening (DST) has been ascribed to the transformation of lubricated contacts to frictional, particle-on-particle contacts. Recent research on the flowing and jamming behavior of dense suspensions has explored the intersection of ideas from granular physics and Stokesian fluid dynamics to better understand this transition from lubricated to frictional rheology. DST is reminiscent of classical phase transitions, and a key question is how interactions between the microscopic constituents give rise to a macroscopic transition. In this paper, we extend a formalism that has proven to be successful in understanding shear jamming of dry grains to dense suspensions. Quantitative analysis of the collective evolution of the contactforce network accompanying the DST transition demonstrates clear changes in the distribution of microscopic variables, and leads to the identification of an "order parameter" characterizing DST.

  3. Pressure in electronically excited warm dense metals

    NASA Astrophysics Data System (ADS)

    Stegailov, Vladimir; Zhilyaev, Petr

    2015-06-01

    Non-equilibrium two-temperature warm dense metals consist of the ion subsystem that is subjected to structural transitions and involved in the mass transfer, and the electron subsystem that in various pulsed experiments absorbs energy and then evolves together with ions to equilibrium. Definition of pressure in such non-equilibrium systems causes certain controversy. In this work we make an attempt to clarify this definition that is vital for proper description of the whole relaxation process. Using the density functional theory we analyze on examples of Al and Au electronic pressure components in warm dense metals. Appealing to the Fermi gas model we elucidate a way to find a number of free delocalized electrons in warm dense metals. First results has been published in. This work is supported by the Russian Science Foundation grant No. 14-19-01487.

  4. Coalescence preference in densely packed microbubbles

    SciTech Connect

    Kim, Yeseul; Lim, Su Jin; Gim, Bopil; Weon, Byung Mook

    2015-01-13

    A bubble merged from two parent bubbles with different size tends to be placed closer to the larger parent. This phenomenon is known as the coalescence preference. Here we demonstrate that the coalescence preference can be blocked inside a densely packed cluster of bubbles. We utilized high-speed high-resolution X-ray microscopy to clearly visualize individual coalescence events inside densely packed microbubbles with a local packing fraction of ~40%. Thus, the surface energy release theory predicts an exponent of 5 in a relation between the relative coalescence position and the parent size ratio, whereas our observation for coalescence in densely packed microbubbles shows a different exponent of 2. We believe that this result would be important to understand the reality of coalescence dynamics in a variety of packing situations of soft matter.

  5. Coalescence preference in densely packed microbubbles

    DOE PAGES

    Kim, Yeseul; Lim, Su Jin; Gim, Bopil; ...

    2015-01-13

    A bubble merged from two parent bubbles with different size tends to be placed closer to the larger parent. This phenomenon is known as the coalescence preference. Here we demonstrate that the coalescence preference can be blocked inside a densely packed cluster of bubbles. We utilized high-speed high-resolution X-ray microscopy to clearly visualize individual coalescence events inside densely packed microbubbles with a local packing fraction of ~40%. Thus, the surface energy release theory predicts an exponent of 5 in a relation between the relative coalescence position and the parent size ratio, whereas our observation for coalescence in densely packed microbubblesmore » shows a different exponent of 2. We believe that this result would be important to understand the reality of coalescence dynamics in a variety of packing situations of soft matter.« less

  6. Dynamic structure factor in warm dense beryllium

    NASA Astrophysics Data System (ADS)

    Plagemann, K.-U.; Sperling, P.; Thiele, R.; Desjarlais, M. P.; Fortmann, C.; Döppner, T.; Lee, H. J.; Glenzer, S. H.; Redmer, R.

    2012-05-01

    We calculate the dynamic structure factor (DSF) in warm dense beryllium by means of ab initio molecular dynamics simulations. The dynamic conductivity is derived from the Kubo-Greenwood formula, and a Drude-like behaviour is observed. The corresponding dielectric function is used to determine the DSF. Since the ab initio approach is so far only applicable for wavenumbers k = 0, the k-dependence of the dielectric function is modelled via the Mermin ansatz. We present the results for the dielectric function and DSF of warm dense beryllium and compare these with perturbative treatments such as the Born-Mermin approximation. We found considerable differences between the results of these approaches; this underlines the need for a first-principles determination of the DSF of warm dense matter.

  7. Eddy Viscosity in Dense Granular Flows

    NASA Astrophysics Data System (ADS)

    Miller, T.; Rognon, P.; Metzger, B.; Einav, I.

    2013-08-01

    We present a seminal set of experiments on dense granular flows in the stadium shear geometry. The advantage of this geometry is that it produces steady shear flow over large deformations, in which the shear stress is constant. The striking result is that the velocity profiles exhibit an S shape, and are not linear as local constitutive laws would predict. We propose a model that suggests this is a result of wall perturbations which span through the system due to the nonlocal behavior of the material. The model is analogous to that of eddy viscosity in turbulent boundary layers, in which the distance to the wall is introduced to predict velocity profiles. Our findings appear pivotal in a number of experimental and practical situations involving dense granular flows next to a boundary. They could further be adapted to other similar materials such as dense suspensions, foams, or emulsions.

  8. Statistical mechanics of simple fluids - Beyond van der Waals

    NASA Astrophysics Data System (ADS)

    Lebowitz, J. L.; Waisman, E. M.

    1980-03-01

    Consideration is given to recent developments in the theory of dense fluids, based on a model fluid of hard spheres. The fluid is treated as consisting of electrically neutral particles interacting through pair potentials dependent only on the distance between their centers, a macroscopic system which can be described by classical statistical mechanics. The van der Waals equation of state and the Maxwell amendment to it for temperatures less than the critical temperature are reviewed, and subsequent rigorous derivations of the amended equation are presented. A relatively simple scheme for approximating a dense, single-component simple classical fluid whose atoms interact via the Lennard-Jones potential, based on the hard sphere model and employing computer calculations is then outlined. It is noted that the approach can be easily generalized to treat quantitatively mixtures of simple fluids, and nonuniform fluids qualitatively, and that there remains much to be done to understand why the schemes presented work as well as they do.

  9. IR Spectroscopy of PAHs in Dense Clouds

    NASA Astrophysics Data System (ADS)

    Allamandola, Louis; Bernstein, Max; Mattioda, Andrew; Sandford, Scott

    2007-05-01

    Interstellar PAHs are likely to be a component of the ice mantles that form on dust grains in dense molecular clouds. PAHs frozen in grain mantles will produce IR absorption bands, not IR emission features. A couple of very weak absorption features in ground based spectra of a few objects embedded in dense clouds may be due to PAHs. Additionally spaceborne observations in the 5 to 8 ?m region, the region in which PAH spectroscopy is rich, reveal unidentified new bands and significant variation from object to object. It has not been possible to properly evaluate the contribution of PAH bands to these IR observations because the laboratory absorption spectra of PAHs condensed in realistic interstellar mixed-molecular ice analogs is lacking. This experimental data is necessary to interpret observations because, in ice mantles, the interaction of PAHs with the surrounding molecules effects PAH IR band positions, widths, profiles, and intrinsic strengths. Furthermore, PAHs are readily ionized in pure H2O ice, further altering the PAH spectrum. This laboratory proposal aims to remedy the situation by studying the IR spectroscopy of PAHs frozen in laboratory ice analogs that realistically reflect the composition of the interstellar ices observed in dense clouds. The purpose is to provide laboratory spectra which can be used to interpret IR observations. We will measure the spectra of these mixed molecular ices containing PAHs before and after ionization and determine the intrinsic band strengths of neutral and ionized PAHs in these ice analogs. This will enable a quantitative assessment of the role that PAHs can play in determining the 5-8 ?m spectrum of dense clouds and will directly address the following two fundamental questions associated with dense cloud spectroscopy and chemistry: 1- Can PAHs be detected in dense clouds? 2- Are PAH ions components of interstellar ice?

  10. Evidence for CO2-rich fluids in rocks from the type charnockite area near Pallavaram, Tamil Nadu

    NASA Technical Reports Server (NTRS)

    Hansen, E.; Hunt, W.; Jacob, S. C.; Morden, K.; Reddi, R.; Tacy, P.

    1988-01-01

    Fluid inclusion and mineral chemistry data was presented for samples from the type charnockite area near Pallavaram (Tamil Nadu, India). The results indicate the presence of a dense CO2 fluid phase, but the data cannot distinguish between influx of this fluid from elsewhere or localized migration of CO2-rich fluids associated with dehydration melting.

  11. Numerical Simulation of Fluid Mud Gravity Currents

    NASA Astrophysics Data System (ADS)

    Yilmaz, N. A.; Testik, F. Y.

    2011-12-01

    Fluid mud bottom gravity currents are simulated numerically using a commercial computational fluid dynamics software, ANSYS-Fluent. In this study, Eulerian-Eulerian multi-fluid method is selected since this method treats all phases in a multiphase system as interpenetrated continua. There are three different phases in the computational model constructed for this study: water, fluid mud, and air. Water and fluid mud are defined as two miscible fluids and the mass and momentum transfers between these two phases are taken into account. Fluid mud, which is a dense suspension of clay particles and water, is defined as a single-phase non-Newtonian fluid via user-defined-functions. These functions define the physical characteristics (density, viscosity, etc.) of the fluid mud and these characteristics vary with changing suspension concentration due to mass transfer between the fluid mud and the water phase. Results of this two-dimensional numerical model are verified with data obtained from experiments conducted in a laboratory flume with a lock-release set-up. Numerical simulations are currently being conducted to elucidate turbulent entrainment of ambient water into fluid mud gravity currents. This study is motivated by coastal dredge disposal operations.

  12. Superfluid vortices in dense quark matter

    NASA Astrophysics Data System (ADS)

    Mallavarapu, S. Kumar; Alford, Mark; Windisch, Andreas; Vachaspati, Tanmay

    2016-03-01

    Superfluid vortices in the color-flavor-locked (CFL) phase of dense quark matter are known to be energetically disfavored as compared to well-separated triplets of ``semi-superfluid'' color flux tubes. In this talk we will provide results which will identify regions in parameter space where the superfluid vortex spontaneously decays. We will also discuss the nature of the mode that is responsible for the decay of a superfluid vortex in dense quark matter. We will conclude by mentioning the implications of our results to neutron stars.

  13. Controlled Dense Coding with the W State

    NASA Astrophysics Data System (ADS)

    Yang, Xue; Bai, Ming-qiang; Mo, Zhi-wen

    2017-09-01

    The average amount of information is an important factor in implementing dense coding. Based on this, we propose two schemes for controlled dense coding by using the three-qubit entangled W state as the quantum channel in this paper. In these schemes, the controller (Charlie) can adjust the local measurement angle 𝜃 to modulate the entanglement, and consequently the average amount of information transmitted from the sender (Alice) to the receiver (Bob). Although the results for the average amounts of information are the same from the different two schemes, the second scheme has advantage over the first scheme.

  14. Fast temperature relaxation model in dense plasmas

    NASA Astrophysics Data System (ADS)

    Faussurier, Gérald; Blancard, Christophe

    2017-01-01

    We present a fast model to calculate the temperature-relaxation rates in dense plasmas. The electron-ion interaction-potential is calculated by combining a Yukawa approach and a finite-temperature Thomas-Fermi model. We include the internal energy as well as the excess energy of ions using the QEOS model. Comparisons with molecular dynamics simulations and calculations based on an average-atom model are presented. This approach allows the study of the temperature relaxation in a two-temperature electron-ion system in warm and hot dense matter.

  15. Dense gas flow in minimum length nozzles

    SciTech Connect

    Aldo, A.C.; Argrow, B.M.

    1995-06-01

    Recently, dense gases have been investigated for many engineering applications such as for turbomachinery and wind tunnels. Supersonic nozzle design can be complicated by nonclassical dense-gas behavior in the transonic flow regime. In this paper, a method of characteristics (MOC) is developed for two-dimensional (planar) and axisymmetric flow of a van der Waals gas. A minimum length nozzle design code is developed that employs the MOC procedure to generate an inviscid wall contour. The van der Waals results are compared to perfect gas results to show the real-gas effects on the flow properties and inviscid wall contours.

  16. Demagnetization effects in dense nanoparticle assemblies

    NASA Astrophysics Data System (ADS)

    Normile, P. S.; Andersson, M. S.; Mathieu, R.; Lee, S. S.; Singh, G.; De Toro, J. A.

    2016-10-01

    We highlight the relevance of demagnetizing-field corrections in the characterization of dense magnetic nanoparticle assemblies. By an analysis that employs in-plane and out-of-plane magnetometry on cylindrical assemblies, we demonstrate the suitability of a simple analytical formula-based correction method. This allows us to identify artifacts of the demagnetizing field in temperature-dependent susceptibility curves (e.g., shoulder peaks in curves from a disordered assembly of essentially bare magnetic nanoparticles). The same analysis approach is shown to be a straightforward procedure for determining the magnetic nanoparticle packing fraction in dense, disordered assemblies.

  17. The use of low-energy radial shockwave in the treatment of entrapment neuropathy of the medial calcaneal nerve: a pilot study.

    PubMed

    Barrett, Stephen L; Reese, Matthew M; Tassone, John; Buitrago, Maria

    2008-08-01

    Medial calcaneal nerve entrapment is a well-recognized cause of heel pain. In addition, the development of an amputation neuroma of the medial calcaneal nerve from prior heel surgery via an open incision on the medial aspect of the heel is a serious common postoperative complication and can be extremely difficult to treat. This preliminary pilot study demonstrates that the use of low-energy extracorporeal shockwave is safe and efficacious in the treatment of this disorder without the morbidity associated with denervation surgery, which would be one of the most common methods to treat this complicated situation. Four patients, 2 with bilateral affectation, for a total of 6 medial calcaneal nerves, had a series of treatments with low-energy radial shockwave with the Swiss DolorClast machine. All 4 patients had improvement in their pain scores, to the point that none elected surgical treatment, and there were no complications.

  18. Flexible fiber in interaction with a dense granular flow close to the jamming transition

    NASA Astrophysics Data System (ADS)

    Algarra, Nicolas; Leang, Marguerite; Lazarus, Arnaud; Vandembroucq, Damien; Kolb, Evelyne

    2017-06-01

    We propose a new fluid/structure interaction in the unusual case of a dense granular medium flowing against an elastic fiber acting as a flexible intruder. We study experimentally the reconfiguration and the forces exerted on the flexible fiber produced by the flow at a constant and low velocity of a two-dimensional disordered packing of grains close but below the jamming transition.

  19. Dense Plasma Focus - From Alternative Fusion Source to Versatile High Energy Density Plasma Source for Plasma Nanotechnology

    NASA Astrophysics Data System (ADS)

    Rawat, R. S.

    2015-03-01

    The dense plasma focus (DPF), a coaxial plasma gun, utilizes pulsed high current electrical discharge to heat and compress the plasma to very high density and temperature with energy densities in the range of 1-10 × 1010 J/m3. The DPF device has always been in the company of several alternative magnetic fusion devices as it produces intense fusion neutrons. Several experiments conducted on many different DPF devices ranging over several order of storage energy have demonstrated that at higher storage energy the neutron production does not follow I4 scaling laws and deteriorate significantly raising concern about the device's capability and relevance for fusion energy. On the other hand, the high energy density pinch plasma in DPF device makes it a multiple radiation source of ions, electron, soft and hard x-rays, and neutrons, making it useful for several applications in many different fields such as lithography, radiography, imaging, activation analysis, radioisotopes production etc. Being a source of hot dense plasma, strong shockwave, intense energetic beams and radiation, etc, the DPF device, additionally, shows tremendous potential for applications in plasma nanoscience and plasma nanotechnology. In the present paper, the key features of plasma focus device are critically discussed to understand the novelties and opportunities that this device offers in processing and synthesis of nanophase materials using, both, the top-down and bottom-up approach. The results of recent key experimental investigations performed on (i) the processing and modification of bulk target substrates for phase change, surface reconstruction and nanostructurization, (ii) the nanostructurization of PLD grown magnetic thin films, and (iii) direct synthesis of nanostructured (nanowire, nanosheets and nanoflowers) materials using anode target material ablation, ablated plasma and background reactive gas based synthesis and purely gas phase synthesis of various different types of

  20. Fluid Shifts

    NASA Technical Reports Server (NTRS)

    Stenger, M.; Hargens, A.; Dulchavsky, S.; Ebert, D.; Lee, S.; Lauriie, S.; Garcia, K.; Sargsyan, A.; Martin, D.; Ribeiro, L.; hide

    2016-01-01

    NASA is focusing on long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low-Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but more than 50% of ISS astronauts experienced more profound, chronic changes with objective structural and functional findings such as papilledema and choroidal folds. Globe flattening, optic nerve sheath dilation, and optic nerve tortuosity also are apparent. This pattern is referred to as the visual impairment and intracranial pressure (VIIP) syndrome. VIIP signs and symptoms, as well as postflight lumbar puncture data, suggest that elevated intracranial pressure (ICP) may be associated with the spaceflight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration spaceflight, and to correlate these findings with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as the VIIP-related effects of those shifts, is predicted by the crewmember's preflight conditions and responses to acute hemodynamic manipulations (such as head-down tilt). Lastly, we will evaluate the patterns of fluid distribution in ISS astronauts during acute reversal of fluid shifts through application of lower body negative pressure (LBNP) interventions to characterize and explain general and individual responses. METHODS: We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the Figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, calcaneus tissue thickness (by

  1. Wellbore fluid

    SciTech Connect

    Dorsey, D.L.; Corley, W.T.

    1983-12-27

    A clay-based or clay-free aqueous thixotropic wellbore fluid having improved fluid loss control, desirable flow characteristics and low shale sensitivity for use in drilling a well comprising water or a brine base including an effective amount of an additive comprising a crosslinked potato starch, a heteropolysaccharide derived from a carbohydrate by bacteria of the genus Xanthomonas, and hydroxyethylcellulose or carboxymethylcellulose, is disclosed. This drilling fluid has been found to be nondamaging to the formations through which the well is drilled.

  2. Fluid inflation

    SciTech Connect

    Chen, X.; Firouzjahi, H.; Namjoo, M.H.; Sasaki, M. E-mail: firouz@ipm.ir E-mail: misao@yukawa.kyoto-u.ac.jp

    2013-09-01

    In this work we present an inflationary mechanism based on fluid dynamics. Starting with the action for a single barotropic perfect fluid, we outline the procedure to calculate the power spectrum and the bispectrum of the curvature perturbation. It is shown that a perfect barotropic fluid naturally gives rise to a non-attractor inflationary universe in which the curvature perturbation is not frozen on super-horizon scales. We show that a scale-invariant power spectrum can be obtained with the local non-Gaussianity parameter f{sub NL} = 5/2.

  3. Simulation of Droplet Generation in a Non-Newtonian Dense Granular Suspension

    NASA Astrophysics Data System (ADS)

    Mårtensson, Gustaf; Svensson, Martin; Mark, Andreas; Edelvik, Fredrik

    2015-11-01

    As with the jet printing of dyes and other low-viscosity fluids, the jetting of dense fluid suspensions is dependent on the repeatable break-off of the fluid filament into well-formed droplets. It is well known that the break-off of dense suspensions is dependent on the volume fraction of the solid phase, particle size and morphology, fluid phase viscosity et cetera, see for example van Deen et al. (2013). The purpose of this study is to propose a novel simulation framework and to show that it captures the main effects such as droplet shape, volume and speed in a cylindrical duct test configuration. The granular suspension is modelled as a mixed single phase suspension, where the local thermodynamic properties are determined by the mixture level. The simulations are performed with IBOFlow, a multiphase flow solver, coupled with LaStFEM, a large strain FEM solver. To study how the droplet generation is affected by the acceleration of the fluid, simulations are performed for a series of actuation profiles. The simulation results were compared to experimental data obtained from an industrial jetting head. The simulations exhibit qualitative agreement with the experimental data. A sensitivity to the inlet boundary condition with respect to the resulting droplet speed was observed. Thanks to Swedish Research Council (Grant 2010-4334).

  4. A meta-analysis of the effects of shockwave and high pressure processing on color and cook loss of fresh meat.

    PubMed

    Ha, Minh; Dunshea, Frank R; Warner, Robyn D

    2017-10-01

    Meta-analysis is a statistical approach for investigating experimental differences across studies. Meta-analyses were performed to examine the effects of hydrodynamic processing (shockwave; n=12 papers) and high pressure processing (HPP; n=8 papers) on the color and cook loss of fresh meat. Shockwave did not affect color (L*, a*), whereas cook loss was increased by 0.6% relative to untreated meat. HPP resulted in an increase in lightness (L*) and a decrease in redness (a*), with the effect being greater at higher pressures (>300MPa vs <300MPa). In addition, HPP applied at moderate pressure (<300MPa) reduced cook loss but at high pressure (>300MPa) the cook loss was increased (-1.5% vs 3.0% respectively). The increased cook loss with shockwave and high pressure (>300MPa) processing needs to be balanced against benefits in texture if this technology is applied to meat. The reduced cook loss of meat treated at moderate pressures (<300MPa) is an advantage which would likely improve sensory traits. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. [The results of the combined application of extracorporeal shock-wave therapy and radon baths during the rehabilitative treatment of the patients presenting with gonarthrosis].

    PubMed

    Razumov, A N; Puriga, A O; Yurova, O V

    2015-01-01

    Osteoarthritis (OA) is one of the leading diseases of the musculoskeletal system and the main cause of arthritic joint damage. The objective of the present study was to evaluate the effectiveness of the combined application of radon baths and shock-wave therapy in the patients suffering from knee OA. The study involved 75 patients at the age of 35 to 62 years with the confirmed diagnosis of stage II and III gonarthrosis; they were divided into 3 groups. The patients of the main group received the combined treatment including extracorporeal shock-wave therapy and radon baths The patients comprising the group of comparison were given the course of radon therapy alone while those in the control group were offered the standard treatment including physiotherapy, magnetic therapy, and NSAIDs. The study has demonstrated the high effectiveness of the combined application of the radon baths and extracorporeal shock-wave therapy for the rehabilitation of the patients with deforming arthrosis of the knee that was apparent from the substantial decrease of pain syndrome, the increase of the range of motions in the knee joints, and the overall improvement of the quality of life. These beneficial changes persisted for a period of up to 6 months. The results of the present study give reason to recommend the proposed method of the remedial treatment for the wide practical application as a component in the framework of the medical rehabilitation programs.

  6. Bonding and structure in dense multi-component molecular mixtures

    DOE PAGES

    Meyer, Edmund R.; Ticknor, Christopher; Bethkenhagen, Mandy; ...

    2015-10-30

    We have performed finite-temperature density functional theory molecular dynamics simulations on dense methane, ammonia, and water mixtures (CH4:NH3:H2O) for various compositions and temperatures (2000 K ≤ T ≤ 10000 K) that span a set of possible conditions in the interiors of ice-giant exoplanets. The equation-of-state, pair distribution functions, and bond autocorrelation functions (BACF) were used to probe the structure and dynamics of these complex fluids. In particular, an improvement to the choice of the cutoff in the BACF was developed that allowed analysis refinements for density and temperature effects. We note the relative changes in the nature of these systemsmore » engendered by variations in the concentration ratios. As a result, a basic tenet emerges from all these comparisons that varying the relative amounts of the three heavy components (C,N,O) can effect considerable changes in the nature of the fluid and may in turn have ramifications for the structure and composition of various planetary layers.« less

  7. Bonding and structure in dense multi-component molecular mixtures

    SciTech Connect

    Meyer, Edmund R.; Ticknor, Christopher; Bethkenhagen, Mandy; Hamel, Sebastien; Redmer, Ronald; Kress, Joel D.; Collins, Lee A.

    2015-10-30

    We have performed finite-temperature density functional theory molecular dynamics simulations on dense methane, ammonia, and water mixtures (CH4:NH3:H2O) for various compositions and temperatures (2000 K ≤ T ≤ 10000 K) that span a set of possible conditions in the interiors of ice-giant exoplanets. The equation-of-state, pair distribution functions, and bond autocorrelation functions (BACF) were used to probe the structure and dynamics of these complex fluids. In particular, an improvement to the choice of the cutoff in the BACF was developed that allowed analysis refinements for density and temperature effects. We note the relative changes in the nature of these systems engendered by variations in the concentration ratios. As a result, a basic tenet emerges from all these comparisons that varying the relative amounts of the three heavy components (C,N,O) can effect considerable changes in the nature of the fluid and may in turn have ramifications for the structure and composition of various planetary layers.

  8. Experiments on the global instability of confined axisymmetric dense wakes.

    NASA Astrophysics Data System (ADS)

    Li, Larry; Juniper, Matthew

    2007-11-01

    Recent theoretical studies [M. Juniper, J. Fluid Mech. 565, 171-195 (2006); M. Juniper and S. Candel, J. Fluid Mech. 482, 257-269 (2003)] predict that confinement increases the hydrodynamic instability of wakes by causing the transition from convective to absolute instability to occur at lower values of shear. Experimental evidence supporting this prediction is presented here for a confined, axisymmetric wake at density ratios, S ≡ ρ1 /ρ2> 1 (i.e. dense wake). The wake was produced by a pair of convergent nozzles mounted concentrically, one within the other, in a low-turbulence wind tunnel facility. Variations in S were achieved by employing two high density gases (S = 1.53 and 5.11) in the inner flow with air in the outer flow. For a fixed S, there existed a critical value of shear above which dominant peaks appeared abruptly in the near-wake velocity spectra, as quantified by hot-wire anemometry. Corresponding high-speed video sequences revealed large-scale, sinuous wake motions. Results on the confined wake's response to externally-applied, acoustic forcing are also presented. The presence of discrete spectral peaks and coordinated instability oscillations suggests the emergence of a self-sustained, global mode.

  9. Flow of Dense Granular Media; A Peculiar Liquid

    NASA Astrophysics Data System (ADS)

    Pouliquen, Olivier

    2007-11-01

    Rice flowing out of a silo, rocks tumbling down a slope, sand avalanching on a dune, are examples of simple granular flows. Their description still represents a challenge due to the lack of constitutive laws able to describe the rich phenomenology observed with granular materials. However, the numerous experiments and simulations carried out during the last ten years have given keys for a better understanding. This talk will review the general properties of granular flows, before focusing on the dense flow regime where granular media flow like a liquid. In this regime, simple constitutive laws can be proposed, in which the granular fluid is described as a peculiar visco-plastic liquid. This talk will show that this approach gives quantitative predictions in several configurations, providing a relevant framework for adressing granular hydrodynamic problems. The second part of this presentation will discuss the limits of this approach, the important open problems, and the consequences of this development for the more complex case of mixture of grains and fluid. This work has been done with Pierre Jop, Yoel Forterre and Mickael Paihla.

  10. Workover fluid

    SciTech Connect

    Shell, F. J.

    1985-12-17

    The high temperature water loss property of alkaline well completion and well workover fluids is improved by the addition of an effective amount of a naphthalene sulfonate formaldehyde condensate in the form of its monovalent or bivalent metal salts.

  11. DENSE NONAQUEOUS PHASE LIQUIDS -- A WORKSHOP SUMMARY

    EPA Science Inventory

    site characterization, and, therefore, DNAPL remediation, can be expected. Dense nonaqueous phase liquids (DNAPLs) in the subsurface are long-term sources of ground-water contamination, and may persist for centuries before dissolving completely in adjacent ground water. In respo...

  12. Coalescence preference in dense packing of bubbles

    NASA Astrophysics Data System (ADS)

    Kim, Yeseul; Gim, Bopil; Gim, Bopil; Weon, Byung Mook

    2015-11-01

    Coalescence preference is the tendency that a merged bubble from the contact of two original bubbles (parent) tends to be near to the bigger parent. Here, we show that the coalescence preference can be blocked by densely packing of neighbor bubbles. We use high-speed high-resolution X-ray microscopy to clearly visualize individual coalescence phenomenon which occurs in micro scale seconds and inside dense packing of microbubbles with a local packing fraction of ~40%. Previous theory and experimental evidence predict a power of -5 between the relative coalescence position and the parent size. However, our new observation for coalescence preference in densely packed microbubbles shows a different power of -2. We believe that this result may be important to understand coalescence dynamics in dense packing of soft matter. This work (NRF-2013R1A22A04008115) was supported by Mid-career Researcher Program through NRF grant funded by the MEST and also was supported by Ministry of Science, ICT and Future Planning (2009-0082580) and by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry and Education, Science and Technology (NRF-2012R1A6A3A04039257).

  13. Dense peripheral corneal clouding in Scheie syndrome.

    PubMed

    Summers, C G; Whitley, C B; Holland, E J; Purple, R L; Krivit, W

    1994-05-01

    A 28-year-old woman with Scheie syndrome (MPS I-S) presented with the unusual feature of extremely dense peripheral corneal clouding, allowing maintenance of good central visual acuity. Characteristic systemic features, an abnormal electroretinogram result, and absent alpha-L-iduronidase activity confirmed the diagnosis despite the unusual corneal pattern of clouding.

  14. Dense matter at RAON: Challenges and possibilities

    NASA Astrophysics Data System (ADS)

    Lee, Yujeong; Lee, Chang-Hwan; Gaitanos, T.; Kim, Youngman

    2016-11-01

    Dense nuclear matter is ubiquitous in modern nuclear physics because it is related to many interesting microscopic and macroscopic phenomena such as heavy ion collisions, nuclear structure, and neutron stars. The on-going rare isotope science project in Korea will build up a rare isotope accelerator complex called RAON. One of the main goals of RAON is to investigate rare isotope physics including dense nuclear matter. Using the relativistic Boltzmann-Uehling-Uhlenbeck (RBUU) transport code, we estimate the properties of nuclear matter that can be created from low-energy heavyion collisions at RAON.We give predictions for the maximum baryon density, the isospin asymmetry and the temperature of nuclear matter that would be formed during 197Au+197Au and 132Sn+64Ni reactions. With a large isospin asymmetry, various theoretical studies indicate that the critical densities or temperatures of phase transitions to exotic states decrease. Because a large isospin asymmetry is expected in the dense matter created at RAON, we discuss possibilities of observing exotic states of dense nuclear matter at RAON for large isospin asymmetry.

  15. Preparation of a dense, polycrystalline ceramic structure

    SciTech Connect

    Cooley, Jason; Chen, Ching-Fong; Alexander, David

    2010-12-07

    Ceramic nanopowder was sealed inside a metal container under a vacuum. The sealed evacuated container was forced through a severe deformation channel at an elevated temperature below the melting point of the ceramic nanopowder. The result was a dense nanocrystalline ceramic structure inside the metal container.

  16. Dense high temperature ceramic oxide superconductors

    DOEpatents

    Landingham, R.L.

    1993-10-12

    Dense superconducting ceramic oxide articles of manufacture and methods for producing these articles are described. Generally these articles are produced by first processing these superconducting oxides by ceramic processing techniques to optimize materials properties, followed by reestablishing the superconducting state in a desired portion of the ceramic oxide composite.

  17. Dense high temperature ceramic oxide superconductors

    DOEpatents

    Landingham, Richard L.

    1993-01-01

    Dense superconducting ceramic oxide articles of manufacture and methods for producing these articles are described. Generally these articles are produced by first processing these superconducting oxides by ceramic processing techniques to optimize materials properties, followed by reestablishing the superconducting state in a desired portion of the ceramic oxide composite.

  18. Improvements in accuracy of dense OPC models

    NASA Astrophysics Data System (ADS)

    Kallingal, Chidam; Oberschmidt, James; Viswanathan, Ramya; Abdo, Amr; Park, OSeo

    2008-10-01

    Performing model-based optical proximity correction (MBOPC) on layouts has become an integral part of patterning advanced integrated circuits. Earlier technologies used sparse OPC, the run times of which explode when the density of layouts increases. With the move to 45 nm technology node, this increase in run time has resulted in a shift to dense simulation OPC, which is pixel-based. The dense approach becomes more efficient at 45nm technology node and beyond. New OPC model forms can be used with the dense simulation OPC engine, providing the greater accuracy required by smaller technology nodes. Parameters in the optical model have to be optimized to achieve the required accuracy. Dense OPC uses a resist model with a different set of parameters than sparse OPC. The default search ranges used in the optimization of these resist parameters do not always result in the best accuracy. However, it is possible to improve the accuracy of the resist models by understanding the restrictions placed on the search ranges of the physical parameters during optimization. This paper will present results showing the correlation between accuracy of the models and some of these optical and resist parameters. The results will show that better optimization can improve the model fitness of features in both the calibration and verification set.

  19. DNS of turbulent flows of dense gases

    NASA Astrophysics Data System (ADS)

    Sciacovelli, L.; Cinnella, P.; Gloerfelt, X.; Grasso, F.

    2017-03-01

    The influence of dense gas effects on compressible turbulence is investigated by means of numerical simulations of the decay of compressible homogeneous isotropic turbulence (CHIT) and of supersonic turbulent flows through a plane channel (TCF). For both configurations, a parametric study on the Mach and Reynolds numbers is carried out. The dense gas considered in these parametric studies is PP11, a heavy fluorocarbon. The results are systematically compared to those obtained for a diatomic perfect gas (air). In our computations, the thermodynamic behaviour of the dense gases is modelled by means of the Martin-Hou equation of state. For CHIT cases, initial turbulent Mach numbers up to 1 are analyzed using mesh resolutions up to 5123. For TCF, bulk Mach numbers up to 3 and bulk Reynolds numbers up to 12000 are investigated. Average profiles of the thermodynamic quantities exhibit significant differences with respect to perfect-gas solutions for both of the configurations. For high-Mach CHIT, compressible structures are modified with respect to air, with weaker eddy shocklets and stronger expansions. In TCF, the velocity profiles of dense gas flows are much less sensitive to the Mach number and collapse reasonably well in the logarithmic region without any special need for compressible scalings, unlike the case of air, and the overall flow behaviour is midway between that of a variable-property liquid and that of a gas.

  20. DENSE NONAQUEOUS PHASE LIQUIDS -- A WORKSHOP SUMMARY

    EPA Science Inventory

    site characterization, and, therefore, DNAPL remediation, can be expected. Dense nonaqueous phase liquids (DNAPLs) in the subsurface are long-term sources of ground-water contamination, and may persist for centuries before dissolving completely in adjacent ground water. In respo...

  1. Burning Of Dense Clusters Of Fuel Drops

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Harstad, Kenneth G.

    1992-01-01

    Report presents theoretical study of evaporation, ignition, and combustion of rich and relatively dense clusters of drops of liquid fuel. Focus on interactions between heterogenous liquid/gas mixture in cluster and flame surrounding it. Theoretical model of evaporation, ignition, and combustion presented.

  2. Fluid Shifts

    NASA Technical Reports Server (NTRS)

    Stenger, M. B.; Hargens, A.; Dulchavsky, S.; Ebert, D.; Lee, S.; Laurie, S.; Garcia, K.; Sargsyan, A.; Martin, D.; Lui, J.; hide

    2015-01-01

    INTRODUCTION: Mechanisms responsible for the ocular structural and functional changes that characterize the visual impairment and intracranial pressure (ICP) syndrome (VIIP) are unclear, but hypothesized to be secondary to the cephalad fluid shift experienced in spaceflight. This study will relate the fluid distribution and compartmentalization associated with long-duration spaceflight with VIIP symptoms. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as the VIIP-related effects of those shifts, can be predicted preflight with acute hemodynamic manipulations, and also if lower body negative pressure (LBNP) can reverse the VIIP effects. METHODS: Physiologic variables will be examined pre-, in- and post-flight in 10 International Space Station crewmembers including: fluid compartmentalization (D2O and NaBr dilution); interstitial tissue thickness (ultrasound); vascular dimensions and dynamics (ultrasound and MRI (including cerebrospinal fluid pulsatility)); ocular measures (optical coherence tomography, intraocular pressure, ultrasound); and ICP measures (tympanic membrane displacement, otoacoustic emissions). Pre- and post-flight measures will be assessed while upright, supine and during 15 deg head-down tilt (HDT). In-flight measures will occur early and late during 6 or 12 month missions. LBNP will be evaluated as a countermeasure during HDT and during spaceflight. RESULTS: The first two crewmembers are in the preflight testing phase. Preliminary results characterize the acute fluid shifts experienced from upright, to supine and HDT postures (increased stroke volume, jugular dimensions and measures of ICP) which are reversed with 25 millimeters Hg LBNP. DISCUSSION: Initial results indicate that acute cephalad fluid shifts may be related to VIIP symptoms, but also may be reversible by LBNP. The effect of a chronic fluid shift has yet to be evaluated. Learning Objectives: Current spaceflight VIIP research is described

  3. Flexure modelling at seamounts with dense cores

    NASA Astrophysics Data System (ADS)

    Kim, Seung-Sep; Wessel, Paul

    2010-08-01

    The lithospheric response to seamounts and ocean islands has been successfully described by deformation of an elastic plate induced by a given volcanic load. If the shape and mass of a seamount are known, the lithospheric flexure due to the seamount is determined by the thickness of an elastic plate, Te, which depends on the load density and the age of the plate at the time of seamount construction. We can thus infer important thermomechanical properties of the lithosphere from Te estimates at seamounts and their correlation with other geophysical inferences, such as cooling of the plate. Whereas the bathymetry (i.e. shape) of a seamount is directly observable, the total mass often requires an assumption of the internal seamount structure. The conventional approach considers the seamount to have a uniform density (e.g. density of the crust). This choice, however, tends to bias the total mass acting on an elastic plate. In this study, we will explore a simple approximation to the seamount's internal structure that considers a dense core and a less dense outer edifice. Although the existence of a core is supported by various gravity and seismic studies, the role of such volcanic cores in flexure modelling has not been fully addressed. Here, we present new analytic solutions for plate flexure due to axisymmetric dense core loads, and use them to examine the effects of dense cores in flexure calculations for a variety of synthetic cases. Comparing analytic solutions with and without a core indicates that the flexure model with uniform density underestimates Te by at least 25 per cent. This bias increases when the uniform density is taken to be equal to the crustal density. We also propose a practical application of the dense core model by constructing a uniform density load of same mass as the dense core load. This approximation allows us to compute the flexural deflection and gravity anomaly of a seamount in the wavenumber domain and minimize the limitations

  4. Electrorheological fluids

    SciTech Connect

    Halsey, T.C.; Martin, J.E.

    1993-10-01

    An electrorheological fluid is a substance whose form changes in the presence of electric fields. Depending on the strength of the field to which it is subjected, an electrorheological fluid can run freely like water, ooze like honey or solidify like gelatin. Indeed, the substance can switch from ne state to another within a few milliseconds. Electrorheological fluids are easy to make; they consist of microscopic particles suspended in an insulating liquid. Yet they are not ready for most commercial applications. They tend to suffer from a number of problems, including structural weakness as solids, abrasiveness as liquids and chemical breakdown, especially at high temperatures. Automotive engineers could imagine, for instance, constructing an electrorheological clutch. It was also hoped that electrorheological fluids would lead to valveless hydraulic systems, in which solidifying fluid would shut off flow through a thin section of pipe. Electrorheological fluids also offer the possibility of a shock absorber that provides response times of milliseconds and does not require mechanical adjustments. 3 refs.

  5. Fluid Management System (FMS) fluid systems overview

    NASA Technical Reports Server (NTRS)

    Baird, R. S.

    1990-01-01

    Viewgraphs on fluid management system (FMS) fluid systems overview are presented. Topics addressed include: fluid management system description including system requirements (integrated nitrogen system, integrated water system, and integrated waste gas system) and physical description; and fluid management system evolution.

  6. Physics of High Temperature, Dense Plasmas.

    DTIC Science & Technology

    1984-01-01

    34Investigation of the High-Energy Acceleration Mode in the Coaxial Gun," Phys. Fluids, Suppl., S28, (1964). I. 9. Dattner, A. and Eninger J...34Studies of a Coaxial Plasma Gun," Phys. Fluids, Suppl., S41, (1964). II. 10. Wilcox, J. M., Pugh, E., Dattner, A. and Eninger , J., "Experimental Study of

  7. No effect of extracorporeal shockwave therapy on patellar tendinopathy in jumping athletes during the competitive season: a randomized clinical trial.

    PubMed

    Zwerver, Johannes; Hartgens, Fred; Verhagen, Evert; van der Worp, Henk; van den Akker-Scheek, Inge; Diercks, Ron L

    2011-06-01

    Patellar tendinopathy is a common overuse injury among jumping athletes. No evidence-based treatment guidelines exist. Extracorporeal shockwave therapy (ESWT) appears to be a promising treatment but its effectiveness has not been studied in athletes with patellar tendinopathy who have symptoms for 3 to 12 months and are still playing. The TOPGAME study was created to determine the effectiveness of ESWT on pain, symptoms, and function in athletes with early symptomatic patellar tendinopathy who are still in training and competition. Randomized controlled trial; Level of evidence, 1. Athletes playing volleyball, basketball, or handball with patellar tendinopathy for 3 to 12 months were randomized into the ESWT or placebo group during the first half of the season. The ESWT group received 3 ESWT treatments while the placebo group received sham ESWT. In-season follow-up measurements were 1, 12, and 22 weeks after treatment. The primary outcome was severity of patellar tendinopathy determined with the Victorian Institute of Sport Assessment-Patella (VISA-P) questionnaire. Secondary outcome measures were pain during activities of daily living and sports and after functional knee-loading tests rated on a visual analog scale and subjective improvement. Multilevel analyses were performed to determine differences between groups over time. Of the 127 symptomatic athletes invited to participate, 62 were eligible, gave consent, and were randomized into the ESWT (n = 31) or placebo group (n = 31). Mean VISA-P scores before and 1, 12, and 22 weeks after treatment were 59.4 (±11.7), 66.8 (±16.2), 66.7 (±17.5), and 70.5 (±18.9) for the ESWT group and 62.4 (±13.4), 66.3 (±19.0), 68.9 (±20.3), and 72.7 (±18.0) for the placebo group. For the VISA-P, there was a significant effect for time (P < .01) but no treatment × time interaction effect (P = .82). The same pattern was seen in visual analog scale pain scores. One week after final treatment, significantly more athletes in

  8. Prognostic variables for shockwave lithotripsy (SWL) treatment success: no impact of body mass index (BMI) using a third generation lithotripter.

    PubMed

    Hatiboglu, Gencay; Popeneciu, Valentin; Kurosch, Martin; Huber, Johannes; Pahernik, Sascha; Pfitzenmaier, Jesco; Haferkamp, Axel; Hohenfellner, Markus

    2011-10-01

    • To investigate the effect of different variables including body mass index (BMI) on therapy outcome in patients with upper urinary tract stones treated with a third generation lithotripter, as BMI has been reported to be an independent predictor for stone-free status after extracorporeal shockwave lithotripsy (SWL) performed with first or second generation lithotripters. • In all, 172 patients with kidney stones with a mean (range) size of 9.2 (3.0-32.0) mm were included in the study. • In all, 91 patients (52.9%) were treated with a ureteric stent in situ. • For SWL therapy a third generation, electromagnetic lithotripter (Siemens Lithoskop™) was used. Stone-free status was reached, when no more treatable stones were present (no stone or stone < 3 mm). • BMI, stone size and localization, age, gender, treatment parameters and ureteric stent in situ were evaluated for their prognostic relevance on therapy success. • The mean (range) BMI of all patients was 27.8 (19.0-58.6) kg/m(2). • Patients were categorized into two groups: A) patients that were stone free after one treatment; B) patients with residual stones. The mean (sd) BMI was 27.4 (4.6) kg/m(2) and 28.4 (6.1) kg/m(2) for A and B, respectively. • Univariate and multivariate analysis for freedom of stones showed that only stone size (P < 0.01) and presence of a ureteric stent (P = 0.01) were independent prognostic variables. • BMI had no significant influence on therapy outcome (P = 0.51). • Using a third generation lithotripter, BMI was not an independent predictor of stone-free rate after SWL therapy of kidney stones. • This effect might be attributed to a greater penetration depth of the shockwave energy. Stone size and a ureteric stent in situ were the only variables with prognostic significance. © 2010 THE AUTHORS. BJU INTERNATIONAL © 2010 BJU INTERNATIONAL.

  9. Extracorporeal shockwave therapy shows a number of treatment related chondroprotective effect in osteoarthritis of the knee in rats

    PubMed Central

    2013-01-01

    Background Extracorporeal shockwave therapy (ESWT) shows chondroprotective effect in osteoarthritis of the rat knees. However, the ideal number of ESWT is unknown. This study investigated the effects of different numbers of ESWT in osteoarthritis of the knee in rats. Methods Forty-five male Sprague-Dawley rats were divided into five groups. Group I underwent sham arthrotomy without anterior cruciate ligament transection (ACLT) or medial meniscectomy (MM) and received no ESWT. Group II underwent ACLT + MM and received no ESWT. Group III underwent ACLT + MM, and received ESWT once a week for one treatment. Group IV underwent ACLT + MM and received ESWT twice a week for 2 treatments. Group V underwent ACLT + MM and received ESWT three times a week for 3 treatments. Each treatment consisted of 800 impulses of shockwave at 14 Kv to the medial tibia condyle. The evaluations included radiographs of the knee, histomorphological examination and immunohistochemical analysis at 12 weeks. Results At 12 weeks, group II and V showed more radiographic arthritis than groups I, III and IV. On histomorphological examination, the Safranin O matrix staining in groups III and IV are significantly better than in groups II and V, and the Mankin scores in groups III and IV are less than groups II and V. Groups III and IV showed significant decreases of Mankin score and increase of Safranin O stain as compared to group I. Group V showed significant increases of Mankin score and a decrease of Safranin O stain as compared to group II. In articular cartilage, group II showed significant increase of MMP13 and decrease of collagen II as compared to group I. Groups III and IV showed significant decrease of MMP13 and increase of collagen II as compared to group I. Group V showed significant increase of MMP13 and decrease of collagen II as compared to group II. In subchondral bone, vWF, VEGF, BMP-2 and osteocalcin significantly decreased in groups II and V, but increased in groups

  10. IR Spectroscopy of PANHs in Dense Clouds

    NASA Astrophysics Data System (ADS)

    Allamandola, Louis; Mattioda, Andrew; Sandford, Scott

    2008-03-01

    Interstellar PAHs are likely to be frozen into ice mantles on dust grains in dense clouds. These PAHs will produce IR absorption bands, not emission features. A couple of very weak absorption features in ground based spectra of a few objects in dense clouds may be due to PAHs. It is now thought that aromatic molecules in which N atoms are substituted for a few of the C atoms in a PAH's hexagonal skeletal network (PANHs) may well be as abundant and ubiquitous throughout the interstellar medium as PAHs. Spaceborne observations in the 5 to 8 um region, the region in which PAH spectroscopy is rich, reveal unidentified new bands and significant variation from object to object. It is not possible to analyze these observations because lab spectra of PANHs and PAHs condensed in realistic interstellar ice analogs are lacking. This lab data is necessary to interpret observations because, in ice mantles, the surrounding molecules affect PANH and PAH IR band positions, widths, profiles, and intrinsic strengths. Further, PAHs (and PANHs?) are readily ionized in pure H2O ice, further altering the spectrum. This proposal starts to address this situation by studying the IR spectra of PANHs frozen in laboratory ice analogs that reflect the composition of the interstellar ices observed in dense clouds. Thanks to Spitzer Cycle-4 support, we are now measuring the spectra of PAHs in interstellar ice analogs to provide laboratory spectra that can be used to interpret IR observations. Here we propose to extend this work to PANHs. We will measure the spectra of these interstellar ice analogs containing PANHs before and after ionization and determine the band strengths of neutral and ionized PANHs in these ices. This will enable a quantitative assessment of the role that PANHs can play in the 5-8 um spectrum of dense clouds and address the following two fundamental questions associated with dense cloud spectroscopy and chemistry: 1- Can PANHs be detected in dense clouds? 2- Are PANH ions

  11. WARM EXTENDED DENSE GAS AT THE HEART OF A COLD COLLAPSING DENSE CORE

    SciTech Connect

    Shinnaga, Hiroko; Phillips, Thomas G.; Furuya, Ray S.; Kitamura, Yoshimi E-mail: tgp@submm.caltech.ed E-mail: kitamura@isas.jaxa.j

    2009-12-01

    In order to investigate when and how the birth of a protostellar core occurs, we made survey observations of four well-studied dense cores in the Taurus molecular cloud using CO transitions in submillimeter bands. We report here the detection of unexpectedly warm (approx30-70 K), extended (radius of approx2400 AU), dense (a few times 10{sup 5} cm{sup -3}) gas at the heart of one of the dense cores, L1521F (MC27), within the cold dynamically collapsing components. We argue that the detected warm, extended, dense gas may originate from shock regions caused by collisions between the dynamically collapsing components and outflowing/rotating components within the dense core. We propose a new stage of star formation, 'warm-in-cold core stage (WICCS)', i.e., the cold collapsing envelope encases the warm extended dense gas at the center due to the formation of a protostellar core. WICCS would constitute a missing link in evolution between a cold quiescent starless core and a young protostar in class 0 stage that has a large-scale bipolar outflow.

  12. Fluid Shifts

    NASA Technical Reports Server (NTRS)

    Stenger, Michael; Hargens, A.; Dulchavsky, S.; Ebert, D.; Lee, S.; Sargsyan, A.; Martin, D.; Lui, J.; Macias, B.; Arbeille, P.; hide

    2014-01-01

    NASA is focusing on long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but more than 30% of ISS astronauts experience more profound, chronic changes with objective structural and functional findings such as papilledema and choroidal folds. Globe flattening, optic nerve sheath dilation, and optic nerve tortuosity also are apparent. This pattern is referred to as the visual impairment and intracranial pressure (VIIP) syndrome. VIIP signs and symptoms, as well as postflight lumbar puncture data, suggest that elevated intracranial pressure (ICP) may be associated with the space flight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration space flight, and to correlate these findings with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during space flight, as well as the VIIP-related effects of those shifts, is predicted by the crewmember's pre-flight condition and responses to acute hemodynamic manipulations (such as head-down tilt). Lastly, we will evaluate the patterns of fluid distribution in ISS astronauts during acute reversal of fluid shifts through application of lower body negative pressure (LBNP) interventions to characterize and explain general and individual responses. We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the Figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, calcaneus tissue thickness (by ultrasound

  13. Topological Surface States in Dense Solid Hydrogen.

    PubMed

    Naumov, Ivan I; Hemley, Russell J

    2016-11-11

    Metallization of dense hydrogen and associated possible high-temperature superconductivity represents one of the key problems of physics. Recent theoretical studies indicate that before becoming a good metal, compressed solid hydrogen passes through a semimetallic stage. We show that such semimetallic phases predicted to be the most stable at multimegabar (∼300  GPa) pressures are not conventional semimetals: they exhibit topological metallic surface states inside the bulk "direct" gap in the two-dimensional surface Brillouin zone; that is, metallic surfaces may appear even when the bulk of the material remains insulating. Examples include hydrogen in the Cmca-12 and Cmca-4 structures; Pbcn hydrogen also has metallic surface states but they are of a nontopological nature. The results provide predictions for future measurements, including probes of possible surface superconductivity in dense hydrogen.

  14. Topological Surface States in Dense Solid Hydrogen

    NASA Astrophysics Data System (ADS)

    Naumov, Ivan I.; Hemley, Russell J.

    2016-11-01

    Metallization of dense hydrogen and associated possible high-temperature superconductivity represents one of the key problems of physics. Recent theoretical studies indicate that before becoming a good metal, compressed solid hydrogen passes through a semimetallic stage. We show that such semimetallic phases predicted to be the most stable at multimegabar (˜300 GPa ) pressures are not conventional semimetals: they exhibit topological metallic surface states inside the bulk "direct" gap in the two-dimensional surface Brillouin zone; that is, metallic surfaces may appear even when the bulk of the material remains insulating. Examples include hydrogen in the Cmca-12 and Cmca-4 structures; Pbcn hydrogen also has metallic surface states but they are of a nontopological nature. The results provide predictions for future measurements, including probes of possible surface superconductivity in dense hydrogen.

  15. Dense Deposit Disease and C3 Glomerulopathy

    PubMed Central

    Barbour, Thomas D.; Pickering, Matthew C.; Terence Cook, H.

    2013-01-01

    Summary C3 glomerulopathy refers to those renal lesions characterized histologically by predominant C3 accumulation within the glomerulus, and pathogenetically by aberrant regulation of the alternative pathway of complement. Dense deposit disease is distinguished from other forms of C3 glomerulopathy by its characteristic appearance on electron microscopy. The extent to which dense deposit disease also differs from other forms of C3 glomerulopathy in terms of clinical features, natural history, and outcomes of treatment including renal transplantation is less clear. We discuss the pathophysiology of C3 glomerulopathy, with evidence for alternative pathway dysregulation obtained from affected individuals and complement factor H (Cfh)-deficient animal models. Recent linkage studies in familial C3 glomerulopathy have shown genomic rearrangements in the Cfh-related genes, for which the novel pathophysiologic concept of Cfh deregulation has been proposed. PMID:24161036

  16. Active fluidization in dense glassy systems.

    PubMed

    Mandal, Rituparno; Bhuyan, Pranab Jyoti; Rao, Madan; Dasgupta, Chandan

    2016-07-20

    Dense soft glasses show strong collective caging behavior at sufficiently low temperatures. Using molecular dynamics simulations of a model glass former, we show that the incorporation of activity or self-propulsion, f0, can induce cage breaking and fluidization, resulting in the disappearance of the glassy phase beyond a critical f0. The diffusion coefficient crosses over from being strongly to weakly temperature dependent as f0 is increased. In addition, we demonstrate that activity induces a crossover from a fragile to a strong glass and a tendency of active particles to cluster. Our results are of direct relevance to the collective dynamics of dense active colloidal glasses and to recent experiments on tagged particle diffusion in living cells.

  17. Hydrodynamic stellar interactions in dense star clusters

    NASA Technical Reports Server (NTRS)

    Rasio, Frederic A.

    1993-01-01

    Highly detailed HST observations of globular-cluster cores and galactic nuclei motivate new theoretical studies of the violent dynamical processes which govern the evolution of these very dense stellar systems. These processes include close stellar encounters and direct physical collisions between stars. Such hydrodynamic stellar interactions are thought to explain the large populations of blue stragglers, millisecond pulsars, X-ray binaries, and other peculiar sources observed in globular clusters. Three-dimensional hydrodynamics techniques now make it possible to perform realistic numerical simulations of these interactions. The results, when combined with those of N-body simulations of stellar dynamics, should provide for the first time a realistic description of dense star clusters. Here I review briefly current theoretical work on hydrodynamic stellar interactions, emphasizing its relevance to recent observations.

  18. Impacts by Compact Ultra Dense Objects

    NASA Astrophysics Data System (ADS)

    Birrell, Jeremey; Labun, Lance; Rafelski, Johann

    2012-03-01

    We propose to search for nuclear density or greater compact ultra dense objects (CUDOs), which could constitute a significant fraction of the dark matter [1]. Considering their high density, the gravitational tidal forces are significant and atomic-density matter cannot stop an impacting CUDO, which punctures the surface of the target body, pulverizing, heating and entraining material near its trajectory through the target [2]. Because impact features endure over geologic timescales, the Earth, Moon, Mars, Mercury and large asteroids are well-suited to act as time-integrating CUDO detectors. There are several potential candidates for CUDO structure such as strangelet fragments or more generally dark matter if mechanisms exist for it to form compact objects. [4pt] [1] B. J. Carr, K. Kohri, Y. Sendouda, & J.'i. Yokoyama, Phys. Rev. D81, 104019 (2010). [0pt] [2] L. Labun, J. Birrell, J. Rafelski, Solar System Signatures of Impacts by Compact Ultra Dense Objects, arXiv:1104.4572.

  19. Quantum kinetic equation for nonequilibrium dense systems

    NASA Astrophysics Data System (ADS)

    Morozov, V. G.; Röpke, G.

    1995-02-01

    Using the density matrix method in the form developed by Zubarev, equations of motion for nonequilibrium quantum systems with continuous short range interactions are derived which describe kinetic and hydrodynamic processes in a consistent way. The T-matrix as well as the two-particle density matrix determining the nonequilibrium collision integral are obtained in the ladder approximation including the Hartree-Fock corrections and the Pauli blocking for intermediate states. It is shown that in this approximation the total energy is conserved. The developed approach to the kinetic theory of dense quantum systems is able to reproduce the virial corrections consistent with the generalized Beth-Uhlenbeck approximation in equilibrium. The contribution of many-particle correlations to the drift term in the quantum kinetic equation for dense systems is discussed.

  20. PHOTOCHEMICAL HEATING OF DENSE MOLECULAR GAS

    SciTech Connect

    Glassgold, A. E.; Najita, J. R.

    2015-09-10

    Photochemical heating is analyzed with an emphasis on the heating generated by chemical reactions initiated by the products of photodissociation and photoionization. The immediate products are slowed down by collisions with the ambient gas and then heat the gas. In addition to this direct process, heating is also produced by the subsequent chemical reactions initiated by these products. Some of this chemical heating comes from the kinetic energy of the reaction products and the rest from collisional de-excitation of the product atoms and molecules. In considering dense gas dominated by molecular hydrogen, we find that the chemical heating is sometimes as large, if not much larger than, the direct heating. In very dense gas, the total photochemical heating approaches 10 eV per photodissociation (or photoionization), competitive with other ways of heating molecular gas.