Sample records for dense gps array

  1. Dynamic strain and rotation ground motions of the 2011 Tohoku earthquake from dense high-rate GPS observations in Taiwan

    NASA Astrophysics Data System (ADS)

    Huang, B. S.; Rau, R. J.; Lin, C. J.; Kuo, L. C.

    2017-12-01

    Seismic waves generated by the 2011 Mw 9.0 Tohoku, Japan earthquake were well recorded by continuous GPS in Taiwan. Those GPS were operated in one hertz sampling rate and densely distributed in Taiwan Island. Those continuous GPS observations and the precise point positioning technique provide an opportunity to estimate spatial derivatives from absolute ground motions of this giant teleseismic event. In this study, we process and investigate more than one and half hundred high-rate GPS displacements and its spatial derivatives, thus strain and rotations, to compare to broadband seismic and rotational sensor observations. It is shown that continuous GPS observations are highly consistent with broadband seismic observations during its surface waves across Taiwan Island. Several standard Geodesy and seismic array analysis techniques for spatial gradients have been applied to those continuous GPS time series to determine its dynamic strain and rotation time histories. Results show that those derivate GPS vertical axis ground rotations are consistent to seismic array determined rotations. However, vertical rotation-rate observations from the R1 rotational sensors have low resolutions and could not compared with GPS observations for this special event. For its dese spatial distribution of GPS stations in Taiwan Island, not only wavefield gradient time histories at individual site was obtained but also 2-D spatial ground motion fields were determined in this study also. In this study, we will report the analyzed results of those spatial gradient wavefields of the 2011 Tohoku earthquake across Taiwan Island and discuss its geological implications.

  2. GPS Array as a Sensor of Lithosphere, Troposphere and Ionosphere

    NASA Astrophysics Data System (ADS)

    Heki, K.

    2011-12-01

    The Japanese dense array of GPS receivers (GEONET) started operation in 1993, and is currently composed of ~1200 stations. GPS (or GNSS in general) receivers can be compared to a Swiss army knife: it could be used not only for positioning (a knife) but also for various purposes, e.g. remote sensing of tropospheric water vapor or ionospheric electrons (screw driver, tin opener etc). Dense GPS arrays have been found extremely useful for variety of geophysical studies. In this lecture, I briefly review their historical achievements, recent highlights, and future perspectives. In Japan, first generation GPS stations were implemented in 1993 (the Kanto-Tokai region) and 1994 (nationwide) by GSI, Japan. Shortly after the launch, they successfully caught coseismic crustal movement of several major earthquakes, the 1994 October Shikotan (Mw8.3), the 1994 December Sanriku (Mw7.6), and the 1995 January Kobe (Mw7.0) earthquakes. These earthquakes accelerated the densification of the GPS network, achieving 1000 in the number of stations within the following 2-3 years. In addition to coseismic jumps, important discoveries continued in 1990s, e.g. large-scale afterslip of interplate thrust earthquakes and slow slip events (SSE). Later it was shown that tilt- and strainmeter can better observe short-term SSEs, and InSAR can draw more detailed maps of coseismic crustal movements. Now GPS array is recognized as a good tool to measure crustal movement with high temporal resolution and stability and with moderate sensitivity and spatial resolution. GPS data are also useful to study hydrosphere. Seasonal crustal movements in Japan mainly reflect changes in hydrological loads. Multipath signatures in GPS data also provide useful information on the environment around the antenna, e.g. soil moisture, snow depth and vegetation. I will compare the snow depth record over a winter inferred by analyzing GPS multipath signatures, and observed by a conventional apparatus. GPS can also measure precipitable water vapor (PWV) of troposphere. After intense feasibility studies of GPS meteorology in 1990s, PWV information from GEONET has been routinely assimilated in the operational mesoscale model of the Japan Meteorological Agency since 2009. It is found useful in predicting localized heavy rainfalls that often attack Japan in summer. It is fairly easy to measure ionospheric total electron content (TEC) by using phase differences between L1 and L2 carriers from GPS satellites. Applications of GPS for upper atmospheric studies started for ionospheric disturbances of space weather origins. In 2003, clear coseismic ionospheric disturbances of the Tokachi-Oki earthquake were found, and the GPS-TEC technique has been extensively used to study ionospheric disturbances of solid earth origins, e.g. earthquakes and volcanic eruptions. There are also several recent examples of artificial ionospheric disturbances caused by rocket launches and passage of ballistic missiles from North Korea above NE Japan. In the last part of the lecture, I summarize what the GPS array saw before, during and after the 2011 Tohoku-Oki earthquake. The topic covers not only pre-, co- and postseismic crustal movements, but also results of high-rate sampling, and possible detection of precursory changes in ionospheric TEC immediately before the earthquake.

  3. Permanent GPS Geodetic Array in Southern California (PGGA) and GPS observations in Indonesia

    NASA Technical Reports Server (NTRS)

    Bock, Yehuds

    1994-01-01

    The Permanent GPS Geodetic Array (PGGA) is a network of permanent monitoring GPS stations in southern California devoted to the continuous measurement of crustal deformation in near real-time. The PGGA plays a unique role in studies of the kinematics of crustal deformation and the earthquake cycle in southern California because it is also providing temporally dense geodetic measurements of crustal motion over periods of minutes to variations in regional crustal strain. As it expands and matures the PGGA will play an increasingly important role in the study of active tectonics of southern California by bridging the frequency range between seismology, observatory geodesy, paleoseismology, and geology. In Indonesia GPS data is used for measurement of a large scale crustal deformation, extending from north China to the Indonesian archipelago. Indonesia offers a tremendous laboratory to study some of the processes that build continents, and mountains are active there. We began GPS observations in August 1989 on mainland Sumatra and the Mentawai Islands to study the phenomena of oblique plate convergence. We have analyzed the Indonesian data in conjunction with data collected on Christmas and Cocos Islands and at Darwin, Australia, and with the triangulation data in Sumatra.

  4. Ionospheric holes made by ballistic missiles from North Korea detected with a Japanese dense GPS array

    NASA Astrophysics Data System (ADS)

    Ozeki, Masaru; Heki, Kosuke

    2010-09-01

    A dense array of global positioning system (GPS) receivers is a useful tool to study ionospheric disturbances. Here we report observations by a Japanese GPS array of ionospheric holes, i.e., localized electron depletion. They were made by neutral molecules in exhaust plumes (e.g., water) of ballistic missiles from North Korea, Taepodong-1 and -2, launched on 31 August, 1998, and 5 April, 2009, respectively. Negative anomaly of electron density emerged ˜6 min after the launches in the middle of the Japan Sea, and extended eastward along the missile tracks. By comparing the numerical simulation of electron depletion and the observed change in ionospheric total electron content, we suggest that the exhaust plumes from the Taepodong-2 second stage effused up to ˜1.5 × 1026 water molecules per second. The ionospheric hole signature was used to constrain the Taepodong-2 trajectory together with other information, e.g., coordinates of the launch pad, time and coordinates of the first stage splashdown, and height and time of the second stage passage over Japan. The Taepodong-2 is considered to have reached the ionospheric F region in ˜6 min, flown above northeastern Japan ˜7 min after the launch, and crashed to the Pacific Ocean without attaining the first astronautical velocity. The ionospheric hole in the 1998 Taepodong-1 launch was much less in size, but it is difficult to compare directly the thrusts of the two missiles due to uncertainty of the Taepodong-1 trajectory.

  5. Evidence of the Dampening Effect of Dense E-region Structures on E-F Coupling

    NASA Astrophysics Data System (ADS)

    Helmboldt, J.

    2012-12-01

    Results from a combination of instruments including ionosondes, GPS receivers, the Very Large Array (VLA), and the Long Wavelength Array (LWA) are used to demonstrate the role structure within the E-region plays in coupling between instabilities within the E and F regions at midlatitudes. VLA observations of cosmic sources at 74 MHz during summer nighttime in 2002 detected northwest-to-southeast aligned wavefronts, consistent with medium-scale traveling ionospheric disturbances (MSTIDs). These waves were only found when contemporaneous observations from nearby ionosondes detected echoes from sporadic-E layers. However, when the peak density of these layers was high (foEs> 3 MHz), there were no MSTIDs detected. Similar results are presented using the first station of the LWA, LWA1, to perform all-sky imaging of dense E-region structures (sporadic-E "clouds") via coherent scattering of distant analog TV broadcasts at 55 MHz. These observations were conducted during summer/autumn 2012 and include simultaneous GPS-based observations of F-region disturbances.Left: LWA1 all-sky image of ionospheric echoes of analog TV transmissions at 55.25 MHz. Right: Doppler speed maps for the brightest echoes.

  6. Generation of High Resolution Water Vapour Fields from GPS Observations and Integration With ECMWF and MODIS

    NASA Astrophysics Data System (ADS)

    Yu, C.; Li, Z.; Penna, N. T.

    2016-12-01

    Precipitable water vapour (PWV) can be routinely retrieved from ground-based GPS arrays in all-weather conditions and also in real-time. But to provide dense spatial coverage maps, for example for calibrating SAR images, for correcting atmospheric effects in Network RTK GPS positioning and which may be used for numerical weather prediction, the pointwise GPS PWV measurements must be interpolated. Several previous interpolation studies have addressed the importance of the elevation dependency of water vapour, but it is often a challenge to separate elevation-dependent tropospheric delays from turbulent components. We present a tropospheric turbulence iterative decomposition model that decouples the total PWV into (i) a stratified component highly correlated with topography which therefore delineates the vertical troposphere profile, and (ii) a turbulent component resulting from disturbance processes (e.g., severe weather) in the troposphere which trigger uncertain patterns in space and time. We will demonstrate that the iterative decoupled interpolation model generates improved dense tropospheric water vapour fields compared with elevation dependent models, with similar accuracies obtained over both flat and mountainous terrain, as well as for both inland and coastal areas. We will also show that our GPS-based model may be enhanced with ECMWF zenith tropospheric delay and MODIS PWV, producing multi-data sources high temporal-spatial resolution PWV fields. These fields were applied to Sentinel-1 SAR interferograms over the Los Angeles region, for which a maximum noise reduction due to atmosphere artifacts reached 85%. The results reveal that the turbulent troposphere noise, especially those in a SAR image, often occupy more than 50% of the total zenith tropospheric delay and exert systematic, rather than random patterns.

  7. Evaluation of a dense seismic array for acquisition of high quality data in the ACROSS observation

    NASA Astrophysics Data System (ADS)

    Tsuruga, K.; Kunitomo, T.; Hasada, Y.; Kumazawa, M.; Shigeta, N.; Kasahara, J.

    2004-12-01

    ACROSS is an active monitoring methodology to detect any subtle temporal change of physical properties in the Earth's interior. We demonstrate the potentiality of the ACROSS observation with a dense sensor array. We have conducted a dense seismic array observation at the distance of 1 km from the ACROSS source since 2003. The array is composed of 36 three-component velocity seismometers buried at 1.8 m deep in an area 25 m square. All the data are recorded accurately referring to a GPS clock. We derived and analyzed a transfer function (TF) from the source to a receiver by the following steps: (1) evaluating a force vector as source characteristics, (2) converting the observed data to the displacement vectors by incorporating all the corrections of the instruments, (3) stacking the observed data for an enough time to suppress the temporal noise, (4) extracting ACROSS signal and evaluating noise level, (5) representing TF in a tensor form with the estimated errors, (6) slant-stacking with variable ray parameters, (7) estimating the travel times and amplitudes of the wave arrivals by Sompi Event Analysis (Hasada et al., 2001) and representing the result by a pulse sequence, and (8) deriving the polarization vector for each arrival to identify all the wave modes. We analyzed TF of SH-wave component from 16 to 20 Hz as an example. We obtained good quality TF with S/N ratio up to 104 by stacking for 12 days at the step (3). The spatial noise originated from the local heterogeneity around the array was eliminated by the step (6). Several arrivals were recognized within the time windows from 0.6 to 1.8 s. The maximum amplitude of event traces was detected at the travel time of 1.064 s with a ray parameter of 7.9x10-4 s/m. We also found the scattered waves probably generated by the heterogeneities around the array. The ACROSS dense array observation would provide a lot of information on the underground heterogeneities. Consequently, we have the important and challenging subjects: (1) optimum designing of ACROSS array to acquire the better data and (2) development of new theoretical method to deal with the variable types of the wave.

  8. Development And Test of A Digitally Steered Antenna Array for The Navigator GPS Receiver

    NASA Technical Reports Server (NTRS)

    Pinto, Heitor David; Valdez, Jennifer E.; Winternitz, Luke M. B.; Hassouneh, Munther A.; Price, Samuel R.

    2012-01-01

    Global Positioning System (GPS)-based navigation has become common for low-Earth orbit spacecraft as the signal environment is similar to that on the Earth s surface. The situation changes abruptly, however, for spacecraft whose orbital altitudes exceed that of the GPS constellation. Visibility is dramatically reduced and signals that are present may be very weak and more susceptible to interference. GPS receivers effective at these altitudes require increased sensitivity, which often requires a high-gain antenna. Pointing such an antenna can pose a challenge. One efficient approach to mitigate these problems is the use of a digitally steered antenna array. Such an antenna can optimally allocate gain toward desired signal sources and away from interferers. This paper presents preliminary results in the development and test of a digitally steered antenna array for the Navigator GPS research program at NASA s Goddard Space Flight Center. In particular, this paper highlights the development of an array and front-end electronics, the development and test of a real-time software GPS receiver, and implementation of three beamforming methods for combining the signals from the array. Additionally, this paper discusses the development of a GPS signal simulator which produces digital samples of the GPS L1C/A signals as they would be received by an arbitrary antenna array configuration. The simulator models transmitter and receiver dynamics, near-far and multipath interference, and has been a critical component in both the development and test of the GPS receiver. The GPS receiver system was tested with real and simulated GPS signals. Preliminary results show that performance improvement was achieved in both the weak signal and interference environments, matching analytical predictions. This paper summarizes our initial findings and discusses the advantages and limitations of the antenna array and the various beamforming methods.

  9. Impact of Ionospheric Scintillation on Spaceborne SAR Observations Studied Using GNSS

    NASA Technical Reports Server (NTRS)

    Pi, Xiaoqing; Meyer, Franz J.; Chotoo, Kancham; Freeman, Anthony; Caton, Ronald G.; Bridgewood, Christopher T.

    2012-01-01

    A survey of artifacts seen in JAXA's Phase Array type L-band synthetic aperture radar (PALSAR) data over South America during a low solar activity year is reported in this paper. A significant impact on the radar data is revealed: about 14% of the surveyed PALSAR images (totally 2779) are affected by the artifacts during a month and the artifacts occur on 74.2% of the surveyed days. The characteristics of the artifacts have led to a consideration that the artifacts are the effects of ionospheric scintillation. This raises not only a concern about scintillation effects on radar but also a question about active scintillation conditions during a low solar activity year. To assess and verify the scintillation conditions, GPS data collected from the constellation of FORMOSAT-3/COSMIC satellites and three ground-based GPS networks are processed and analyzed. The GPS data provides a global context and regional dense converge, respectively, of ionospheric irregularity and scintillation measurements. It is concluded tat even during a low solar activity year, L-band scintillation at low latitudes can occur frequently and affect L-band SAR significantly.

  10. A Real-Time Capable Software-Defined Receiver Using GPU for Adaptive Anti-Jam GPS Sensors

    PubMed Central

    Seo, Jiwon; Chen, Yu-Hsuan; De Lorenzo, David S.; Lo, Sherman; Enge, Per; Akos, Dennis; Lee, Jiyun

    2011-01-01

    Due to their weak received signal power, Global Positioning System (GPS) signals are vulnerable to radio frequency interference. Adaptive beam and null steering of the gain pattern of a GPS antenna array can significantly increase the resistance of GPS sensors to signal interference and jamming. Since adaptive array processing requires intensive computational power, beamsteering GPS receivers were usually implemented using hardware such as field-programmable gate arrays (FPGAs). However, a software implementation using general-purpose processors is much more desirable because of its flexibility and cost effectiveness. This paper presents a GPS software-defined radio (SDR) with adaptive beamsteering capability for anti-jam applications. The GPS SDR design is based on an optimized desktop parallel processing architecture using a quad-core Central Processing Unit (CPU) coupled with a new generation Graphics Processing Unit (GPU) having massively parallel processors. This GPS SDR demonstrates sufficient computational capability to support a four-element antenna array and future GPS L5 signal processing in real time. After providing the details of our design and optimization schemes for future GPU-based GPS SDR developments, the jamming resistance of our GPS SDR under synthetic wideband jamming is presented. Since the GPS SDR uses commercial-off-the-shelf hardware and processors, it can be easily adopted in civil GPS applications requiring anti-jam capabilities. PMID:22164116

  11. A real-time capable software-defined receiver using GPU for adaptive anti-jam GPS sensors.

    PubMed

    Seo, Jiwon; Chen, Yu-Hsuan; De Lorenzo, David S; Lo, Sherman; Enge, Per; Akos, Dennis; Lee, Jiyun

    2011-01-01

    Due to their weak received signal power, Global Positioning System (GPS) signals are vulnerable to radio frequency interference. Adaptive beam and null steering of the gain pattern of a GPS antenna array can significantly increase the resistance of GPS sensors to signal interference and jamming. Since adaptive array processing requires intensive computational power, beamsteering GPS receivers were usually implemented using hardware such as field-programmable gate arrays (FPGAs). However, a software implementation using general-purpose processors is much more desirable because of its flexibility and cost effectiveness. This paper presents a GPS software-defined radio (SDR) with adaptive beamsteering capability for anti-jam applications. The GPS SDR design is based on an optimized desktop parallel processing architecture using a quad-core Central Processing Unit (CPU) coupled with a new generation Graphics Processing Unit (GPU) having massively parallel processors. This GPS SDR demonstrates sufficient computational capability to support a four-element antenna array and future GPS L5 signal processing in real time. After providing the details of our design and optimization schemes for future GPU-based GPS SDR developments, the jamming resistance of our GPS SDR under synthetic wideband jamming is presented. Since the GPS SDR uses commercial-off-the-shelf hardware and processors, it can be easily adopted in civil GPS applications requiring anti-jam capabilities.

  12. Can GRACE detect winter snows in Japan?

    NASA Astrophysics Data System (ADS)

    Heki, Kosuke

    2010-05-01

    Current spatial resolution of the GRACE (Gravity Recovery and Climate Experiment) satellites is 300-400 km, and so its hydrological applications have been limited to continents and large islands. The Japanese Islands have width slightly smaller than this spatial resolution, but are known to show large amplitude seasonal changes in surface masses due mainly to winter snow. Such loads are responsible for seasonal crustal deformation observed with GEONET, a dense array of GPS (Global Positioning System) receivers in Japan (Heki, 2001). There is also a dense network of surface meteorological sensors for, e.g. snow depths, atmospheric pressures, etc. Heki (2004) showed that combined effects of surface loads, i.e. snow (predominant), atmosphere, soil moisture, dam impoundment, can explain seasonal crustal deformation observed by GPS to a large extent. The total weight of the winter snow in the Japanese Islands in its peak season may reach ~50 Gt. This is comparable to the annual loss of mountain glaciers in the Asian high mountains (Matsuo & Heki, 2010), and is above the detection level of GRACE. In this study, I use GRACE Level-2 Release-4 data from CSR, Univ. Texas, up to 2009 November, and evaluated seasonal changes in surface loads in and around the Japanese Islands. After applying a 350 km Gaussian filter and a de-striping filter, the peak-to-peak change of the water depth becomes ~4 cm in northern Japan. The maximum value is achieved in February-March. The region of large winter load spans from Hokkaido, Japan, to northeastern Honshu, which roughly coincides with the region of deep snow in Japan. Next I compiled snow depth data from surface meteorological observations, and converted them to loads using time-dependent snow density due to compaction. By applying the same spatial filter as the GRACE data, its spatial pattern becomes similar to the GRACE results. The present study suggests that GRACE is capable of detecting seasonal mass changes in an island arc not wider than a few hundreds of kilometers. References: Heki, K., Seasonal modulation of interseismic strain buildup in Northeastern Japan driven by snow loads, Science, 293, 89-92, 2001. Heki, K., Dense GPS array as a new sensor of seasonal changes of surface loads, AGU Monograph, 150, 177-196, 2004. Matsuo, K. and K. Heki, Time-variable ice loss in Asian high mountains from satellite gravimetry, Earth Planet. Sci. Lett., doi:10.1016/j.epsl.2009.11.053, 2010.

  13. Determination of the Trajectory of Ballistic Missiles Using a Dense GPS Array

    NASA Astrophysics Data System (ADS)

    Heki, K.; Ozeki, M.

    2009-12-01

    The dense array of ~1000 Global Positioning System (GPS) receivers in Japan provides useful information on atmosphere and ionosphere in terms of delays of microwaves in propagation media. Here we introduce its brand-new application, determination of the trajectories of ballistic missiles by using their electron depletion signatures in ionosphere. Booker (1961) first detected F-region ion depletion associated with a missile passage. Later, formation of an ionospheric hole by the launch of Skylab was observed, and Mendillo et al. (1975) attributed the electron depletion to the water molecules in the rocket exhaust. In Japan, ionospheric depletion after the launch of the H-IIA rocket was observed at GPS receivers in southern Japan using differences in phases between the two carrier frequencies L1 and L2 (Furuya & Heki, 2008). The so-called Taepodong-1, and -2 (the North Korean government claims that they successfully launched satellites), ballistic missiles with liquid fuel engines, were launched from Musudanri, North Korea, in August 1998, and April 2009, respectively. Their first stage engines splashed down onto the Japan Sea, and their second stage engines flew over northeastern Japan and reached the Pacific Ocean. We investigated GPS data before and after the launches, and detected that linear electron depletion areas appear in the northern part of the Japan Sea (~300 km east of the launch pad) approximately six minutes after the launch. Such electron depletion occurs as a result of exchange of positive charges between oxygen ions and water molecules, and dissociative recombination of water with electrons. The ionospheric hole rapidly grows and gradually decays as the water molecules diffuse. By comparing the numerical simulation results of ionospheric hole formation (water diffusion and chemical reaction) and the observed change in ionospheric total electron content (TEC), we conclude that the Taepodong-1 exhaust included water molecules ~0.5 percent of those in the H-IIA rocket. Taepodong-2, on the other hand, made a larger and longer-lasting hole and water molecules in its exhaust appear to be eight times as many as in Taepodong-1. This perhaps reflects improvement in thrust of the Taepodong series. We estimated the most likely trajectory of the Taepodong-2 constraining the coordinates of the launch pad and splashdown point. The missile reached the ionospheric F region in six minutes after the launch and flew above northeastern Japan about 9-10 minutes after the launch.

  14. First light from a kilometer-baseline Scintillation Auroral GPS Array.

    PubMed

    Datta-Barua, S; Su, Y; Deshpande, K; Miladinovich, D; Bust, G S; Hampton, D; Crowley, G

    2015-05-28

    We introduce and analyze the first data from an array of closely spaced Global Positioning System (GPS) scintillation receivers established in the auroral zone in late 2013 to measure spatial and temporal variations in L band signals at 100-1000 m and subsecond scales. The seven receivers of the Scintillation Auroral GPS Array (SAGA) are sited at Poker Flat Research Range, Alaska. The receivers produce 100 s scintillation indices and 100 Hz carrier phase and raw in-phase and quadrature-phase samples. SAGA is the largest existing array with baseline lengths of the ionospheric diffractive Fresnel scale at L band. With an initial array of five receivers, we identify a period of simultaneous amplitude and phase scintillation. We compare SAGA power and phase data with collocated 630.0 nm all-sky images of an auroral arc and incoherent scatter radar electron precipitation measurements, to illustrate how SAGA can be used in multi-instrument observations for subkilometer-scale studies. A seven-receiver Scintillation Auroral GPS Array (SAGA) is now at Poker Flat, Alaska SAGA is the largest subkilometer array to enable phase/irregularities studies Simultaneous scintillation, auroral arc, and electron precipitation are observed.

  15. First light from a kilometer-baseline Scintillation Auroral GPS Array

    PubMed Central

    Datta-Barua, S; Su, Y; Deshpande, K; Miladinovich, D; Bust, G S; Hampton, D; Crowley, G

    2015-01-01

    We introduce and analyze the first data from an array of closely spaced Global Positioning System (GPS) scintillation receivers established in the auroral zone in late 2013 to measure spatial and temporal variations in L band signals at 100–1000 m and subsecond scales. The seven receivers of the Scintillation Auroral GPS Array (SAGA) are sited at Poker Flat Research Range, Alaska. The receivers produce 100 s scintillation indices and 100 Hz carrier phase and raw in-phase and quadrature-phase samples. SAGA is the largest existing array with baseline lengths of the ionospheric diffractive Fresnel scale at L band. With an initial array of five receivers, we identify a period of simultaneous amplitude and phase scintillation. We compare SAGA power and phase data with collocated 630.0 nm all-sky images of an auroral arc and incoherent scatter radar electron precipitation measurements, to illustrate how SAGA can be used in multi-instrument observations for subkilometer-scale studies. Key Points A seven-receiver Scintillation Auroral GPS Array (SAGA) is now at Poker Flat, Alaska SAGA is the largest subkilometer array to enable phase/irregularities studies Simultaneous scintillation, auroral arc, and electron precipitation are observed PMID:26709318

  16. Towards Integrated Marmara Strong Motion Network

    NASA Astrophysics Data System (ADS)

    Durukal, E.; Erdik, M.; Safak, E.; Ansal, A.; Ozel, O.; Alcik, H.; Mert, A.; Kafadar, N.; Korkmaz, A.; Kurtulus, A.

    2009-04-01

    Istanbul has a 65% chance of having a magnitude 7 or above earthquake within the next 30 years. As part of the preparations for the future earthquake, strong motion networks have been installed in and around Istanbul. The Marmara Strong Motion Network, operated by the Department of Earthquake Engineering of Kandilli Observatory and Earthquake Research Institute, encompasses permanent systems outlined below. It is envisaged that the networks will be run by a single entity responsible for technical management and maintanence, as well as for data management, archiving and dissemination through dedicated web-based interfaces. • Istanbul Earthquake Rapid Response and Early Warning System - IERREWS (one hundred 18-bit accelerometers for rapid response; ten 24-bit accelerometers for early warning) • IGDAŞ Gas Shutoff Network (100 accelerometers to be installed in 2010 and integrated with IERREWS) • Structural Monitoring Arrays - Fatih Sultan Mehmet Suspension Bridge (1200m-long suspension bridge across the Bosphorus, five 3-component accelerometers + GPS sensors) - Hagia Sophia Array (1500-year-old historical edifice, 9 accelerometers) - Süleymaniye Mosque Array (450-year-old historical edifice,9 accelerometers) - Fatih Mosque Array (237-year-old historical edifice, 9 accelerometers) - Kanyon Building Array (high-rise office building, 5 accelerometers) - Isbank Tower Array (high-rise office building, 5 accelerometers) - ENRON Array (power generation facility, 4 acelerometers) - Mihrimah Sultan Mosque Array (450-year-old historical edifice,9 accelerometers + tiltmeters, to be installed in 2009) - Sultanahmet Mosque Array, (390-year-old historical edifice, 9 accelerometers + tiltmeters, to be installed in 2009) • Special Arrays - Atakoy Vertical Array (four 3-component accelerometers at 25, 50, 75, and 150 m depths) - Marmara Tube Tunnel (1400 m long submerged tunnel, 128 ch. accelerometric data, 24 ch. strain data, to be installed in 2010) - Air-Force Academy Array (72 ch. dense accelerometric array to be installed in 2010) - Gemlik Array (a dense basin array of 8 stations, to be installed in 2010) The objectives of these systems and networks are: (1) to produce rapid earthquake intensity, damage and loss assessment information after an earthquake (in the case of IERREWS), (2) to monitor conditions of structural systems, (3) to develop real-time data processing, analysis, and damage detection and location tools (in the case of structural networks) after an extreme event, (4) to assess spatial properties of strong ground motion and ground strain, and to characterise basin response (in the case of special arrays), (5) to investigate site response and wave propagation (in the case of vertical array). Ground motion data obtained from these strong motion networks have and are being used for investigations of attenuation, spatial variation (coherence), simulation benchmarking, source modeling, site response, seismic microzonation, system identification and structural model verification and structural health control. In addition to the systems and networks outlined above there are two temporary networks: KIMNET - a dense urban noise and microtremor network consisting of 50 broadband stations expected to be operational in mid 2009, and SOSEWIN - a 20-station, self-organizing structural integrated array at Ataköy in Istanbul.

  17. Broadband Array Analysis of the 2005 Episodic Tremor and Slip Event in Northern Cascadia

    NASA Astrophysics Data System (ADS)

    Wech, A.; Creager, K.; McCausland, W.; Frassetto, A.; Qamar, A.; Derosier, S.; Carmichael, J.; Malone, S.; Johnson, D.

    2005-12-01

    The region of Cascadia from the Olympic Mountains through southern Vancouver Island and down-dip of the subduction megathrust has repeatedly experienced episodes of slow slip. This episodic slip, which has been observed to take place over a period of two to several weeks, is accompanied by a seismic tremor signal. Based on the average recurrence interval of 14 months, the next episodic tremor and slip (ETS) event should occur within six weeks of mid-September, 2005. Indeed, it appears to have begun on September 3, as this abstract was being written. In order to record this anticipated event, we deployed an array of 11 three-component seismometers on the northern side of the Olympic Peninsula augmenting Pacific Northwest Seismographic Network stations as well as the first few EarthScope BigFoot stations and Plate Boundary Observatory borehole seismometers. This seismic array was comprised of six short-period and five broadband instruments with spacings of 500 m and 2200 m respectively. In conjunction with this Earthscope seismic deployment, we also installed a dense network of 29 temporary, continuous GPS stations across the entire Olympic Peninsula to integrate seismic and geodetic observations. One of the primary goals of this research is to utilize the broadband instrumentation in the array to investigate the possible correlation of low frequency energy with the rest of the tremor activity. ETS has been carefully investigated at high-frequency (seismic tremor at 2-6 Hz) and very low-frequency (slip occurring over weeks, observed by GPS). An important goal of this experiment is to investigate the possibility that the tremor generates intermediate, low-frequency signals. Preliminary analysis of short-period array recordings of the July, 2004 ETS event suggests that the tremor displays signs of lower-frequency energy (~0.5 Hz) correlated with its higher frequency activity. Our array should enable us to distinguish low- frequency signals originating in the direction of high-frequency tremor from noise in other directions. We will present an analysis of the low-frequency energy associated with this slip event.

  18. Task-Level Control for a Full Semi-Autonomous Mission: Test Platform Development and Demonstration

    NASA Technical Reports Server (NTRS)

    Rock, Stephen M.; LeMaster, Edward A.

    2001-01-01

    Pseudolites can extend the availability of GPS-type positioning systems to a wide range of applications not possible with satellite-only GPS, including indoor and deep-space applications. Conventional GPS pseudolite arrays require that the devices be pre-calibrated through a survey of their locations, typically to sub-centimeter accuracy. This can sometimes be a difficult task, especially in remote or hazardous environments. By using the GPS signals that the pseudolites broadcast, however, it is possible to have the array self-survey its own relative locations, creating a Self-Calibrating Pseudolite Array (SCPA). In order to provide the bi-directional ranging signals between devices necessary for array self-calibration, pseudolite transceivers must be used. The basic principles behind the use of transceivers to create an SCPA were first presented in paper presented to the Institute of Navigation GPS-98 Conference. This paper begins with a brief review of the transceiver architecture and the fundamental direct-ranging algorithm presented in that paper. This is followed by a description of a prototype self-differencing transceiver system that has been constructed, and a presentation of experimental code- and carrier-phase ranging data obtained using that system. A second algorithm is then described which uses these fundamental range measurements between transceiver pairs to self-calibrate a larger stationary array and to provide positioning information for a vehicle moving within that array. Simulation results validating the accuracy and effective convergence of this algorithm are also presented.

  19. Compaction of Aquifer at Different Depths: Observations from a Vertical GPS Array in the Coastal Center of the University of Houston, Texas

    NASA Astrophysics Data System (ADS)

    Lee, D.; Kearns, T.; Yang, L.; Wang, G.

    2014-12-01

    Houston and the surrounding Harris County have experienced the detrimental effects of subsidence even prior to World War II, to the extent that the land along Galveston Bay had sunk as much as 20 feet since 1906. One dramatic example is the Brownwood subdivision, a coastal community in Baytown where continuous flooding due to subsidence forced the area to be deemed unlivable and consequently abandoned. Thus, Houston's changes in groundwater and compaction of its aquifers are of relatively high concern to those in the public (infrastructure), private (oil & gas), and international (Port of Houston Authority) sectors. One of the key questions related to the subsidence issue in Houston area is what are the contributions of sediments at different depths, and what particularly is the contribution from shallow sediments? To address these questions, University of Houston has installed a vertical GPS array in the UH Coastal Center in March 2014. The GPS array includes four permanent GPS stations with the antenna pole foundations anchored at different depths below ground surface (-10 m, -7m, -4m, 0 m). A special, double-pipe GPS antenna monument was designed for GPS stations with the array. This project was funded by an NSF grant and a UH internal grant. Five groundwater wells with the depths ranging from 2 m to 100 m below the ground surface were also installed at the UH Coastal Center site. This study will investigate continuous GPS and groundwater level measurements (March-November, 2014) at the UHCC site. It is expected that the GPS array will provide total information on subsidence as well as compaction of aquifers within different depth ranges (0 to -4m, -4 to -7 m, -7 to -10m, and below -10 m). Correlation of land subsidence and groundwater fluctuation will also be investigated.

  20. Interpretation of Offshore Crustal Movements Following the 2011 Tohoku-Oki Earthquake by the Combined Effect of Afterslip and Viscoelastic Stress Relaxation

    NASA Astrophysics Data System (ADS)

    Noda, Akemi; Takahama, Tsutomu; Kawasato, Takeshi; Matsu'ura, Mitsuhiro

    2018-02-01

    On the 11th March 2011, a megathrust event, called the Tohoku-oki earthquake, occurred at the North American-Pacific plate interface off northeast Japan. Transient crustal movements following this earthquake were clearly observed by a dense GPS network (GEONET) on land and a sparse GPS/Acoustic positioning network on seafloor. The observed crustal movements are in accordance with ordinary expectations on land, but not on seafloor; that is, slowly decaying landward movements above the main rupture area and rapidly decaying trench-ward movements in its southern extension. To reveal the cause of such curious offshore crustal movements, we analyzed the coseismic and postseismic GPS array data on land with a sequential stepwise inversion method considering viscoelastic stress relaxation in the asthenosphere, and obtained the following results: The afterslip of the Tohoku-oki earthquake rapidly proceeds for the first 1 year on a high-angle downdip extension of the main rupture, which occurred on the low-angle offshore plate interface. The theoretical patterns of seafloor horizontal movements due to the afterslip and the viscoelastic relaxation of coseismic stress changes in the asthenosphere are essentially different both in space and time; inshore trench-ward movements and offshore landward movements for the afterslip, while overall landward movements for the viscoelastic stress relaxation. General agreement between the computed horizontal movements and the GPS/Acoustic observations demonstrates that the postseismic curious offshore crustal movements can be ascribed to the combined effect of afterslip on a high-angle downdip extension of the main rupture and viscoelastic stress relaxation in the asthenosphere.

  1. Accommodation of missing shear strain in the Central Walker Lane, western North America: Constraints from dense GPS measurements

    NASA Astrophysics Data System (ADS)

    Bormann, Jayne M.; Hammond, William C.; Kreemer, Corné; Blewitt, Geoffrey

    2016-04-01

    We present 264 new interseismic GPS velocities from the Mobile Array of GPS for Nevada Transtension (MAGNET) and continuous GPS networks that measure Pacific-North American plate boundary deformation in the Central Walker Lane. Relative to a North America-fixed reference frame, northwestward velocities increase smoothly from ∼4 mm/yr in the Basin and Range province to 12.2 mm/yr in the central Sierra Nevada resulting in a Central Walker Lane deformation budget of ∼8 mm/yr. We use an elastic block model to estimate fault slip and block rotation rates and patterns of deformation from the GPS velocities. Right-lateral shear is distributed throughout the Central Walker Lane with strike-slip rates generally <1.5 mm/yr predicted by the block model, but extension rates are highest near north-striking normal faults found along the Sierra Nevada frontal fault system and in a left-stepping, en-echelon series of asymmetric basins that extend from Walker Lake to Lake Tahoe. Neotectonic studies in the western Central Walker Lane find little evidence of strike-slip or oblique faulting in the asymmetric basins, prompting the suggestion that dextral deformation in this region is accommodated through clockwise block rotations. We test this hypothesis and show that a model relying solely on the combination of clockwise block rotations and normal faulting to accommodate dextral transtensional strain accumulation systematically misfits the GPS data in comparison with our preferred model. This suggests that some component of oblique or partitioned right-lateral fault slip is needed to accommodate shear in the asymmetric basins of the western Central Walker Lane. Present-day clockwise vertical axis rotation rates in the Bodie Hills, Carson Domain, and Mina Deflection are between 1-4°/Myr, lower than published paleomagnetic rotation rates, suggesting that block rotation rates have decreased since the Late to Middle Miocene.

  2. Broadband Spectral Modeling of the Extreme Gigahertz-peaked Spectrum Radio Source PKS B0008-421

    NASA Astrophysics Data System (ADS)

    Callingham, J. R.; Gaensler, B. M.; Ekers, R. D.; Tingay, S. J.; Wayth, R. B.; Morgan, J.; Bernardi, G.; Bell, M. E.; Bhat, R.; Bowman, J. D.; Briggs, F.; Cappallo, R. J.; Deshpande, A. A.; Ewall-Wice, A.; Feng, L.; Greenhill, L. J.; Hazelton, B. J.; Hindson, L.; Hurley-Walker, N.; Jacobs, D. C.; Johnston-Hollitt, M.; Kaplan, D. L.; Kudrayvtseva, N.; Lenc, E.; Lonsdale, C. J.; McKinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Oberoi, D.; Offringa, A. R.; Ord, S. M.; Pindor, B.; Prabu, T.; Procopio, P.; Riding, J.; Srivani, K. S.; Subrahmanyan, R.; Udaya Shankar, N.; Webster, R. L.; Williams, A.; Williams, C. L.

    2015-08-01

    We present broadband observations and spectral modeling of PKS B0008-421 and identify it as an extreme gigahertz-peaked spectrum (GPS) source. PKS B0008-421 is characterized by the steepest known spectral slope below the turnover, close to the theoretical limit of synchrotron self-absorption, and the smallest known spectral width of any GPS source. Spectral coverage of the source spans from 0.118 to 22 GHz, which includes data from the Murchison Widefield Array and the wide bandpass receivers on the Australia Telescope Compact Array. We have implemented a Bayesian inference model fitting routine to fit the data with internal free-free absorption (FFA), single- and double-component FFA in an external homogeneous medium, FFA in an external inhomogeneous medium, or single- and double-component synchrotron self-absorption models, all with and without a high-frequency exponential break. We find that without the inclusion of a high-frequency break these models cannot accurately fit the data, with significant deviations above and below the peak in the radio spectrum. The addition of a high-frequency break provides acceptable spectral fits for the inhomogeneous FFA and double-component synchrotron self-absorption models, with the inhomogeneous FFA model statistically favored. The requirement of a high-frequency spectral break implies that the source has ceased injecting fresh particles. Additional support for the inhomogeneous FFA model as being responsible for the turnover in the spectrum is given by the consistency between the physical parameters derived from the model fit and the implications of the exponential spectral break, such as the necessity of the source being surrounded by a dense ambient medium to maintain the peak frequency near the gigahertz region. This implies that PKS B0008-421 should display an internal H i column density greater than 1020 cm-2. The discovery of PKS B0008-421 suggests that the next generation of low radio frequency surveys could reveal a large population of GPS sources that have ceased activity, and that a portion of the ultra-steep-spectrum source population could be composed of these GPS sources in a relic phase.

  3. Crustal anisotropy from Moho converted Ps wave splitting and geodynamic implications in Northeastern margin of Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Xie, Z.; Wu, Q.; Zhang, R.

    2017-12-01

    Collision between Indian and Eurasian result in intense deformation and crustal shortening in the Tibetan Plateau. NE margin of Tibetan Plateau experienced complex deformation between Qilian orogen and its adjacent blocks, Alxa Block in the north and Ordos Block in the east. We focus on if there any evidences exist in the NE margin of Tibetan Plateau, which can support crustal channel flow model. China Earthquake Administration had deployed temporary seismic array which is called ChinaArray Phase Ⅱ, dense seismic stations covered NE margin of Tibetan Plateau. Seismic data recorded by 81 seismic stations is applied in this research. We calculated receiver functions with time-domain deconvolution. We selected RFs which have clear Ps phase both in radial and transverse components to measure Ps splitting owing to crustal anisotropy, and 130 pairs of anisotropy parameters of 51 seismic stations were obtained. We would like to discuss about dynamic mechanism of this area using crustal anisotropy associated with the result of SKS-splitting and surface constrains like GPS velocity. The result can be summarized as follows. The large scale of delay time imply that the crustal anisotropy mainly derives from middle to lower crust rather than upper crust. In the southeastern part of the research area, crustal anisotropy is well agree with the result computed form SKS-splitting and GPS velocity directions trending NWW-SEE or E-W direction. This result imply a vertically coherent deformation in the area as the directions of crustal anisotropy trend to be perpendicular to the direction of normal stress. In the middle and north part of the research area, the fast polarization direction of crustal anisotropy is NEE-SWW or E-W direction, parallels with direction of GPS velocity, but differ to the direction of the result of SKS-splitting. This result may imply that decoupled deformation in this area associated with middle to lower crustal flow.

  4. A small hemispherical helical antenna array for two-dimensional GPS beam-forming

    NASA Astrophysics Data System (ADS)

    Hui, H. T.; Aditya, S.; Mohamed, F. Bin S.; Hafiedz-Ul, A. Bin T.

    2005-02-01

    A small hemispherical helical antenna array with multibeam output for GPS beam-forming is designed and characterized. A Butler matrix beam-forming network is designed to provide four spatial beams in a two-dimensional directional space. The original design of the hemispherical helical antenna elements is modified in order to match it to the system impedance. Our study shows that even after an ˜30° scan from the normal direction, the maximum change in beam width is only 6°, the maximum change in axial ratio is 1.4 dB, and the maximum change in power gain is 1.1 dB. These characteristics indicate that the array can be potentially used for GPS beam-forming.

  5. Data analysis of a dense GPS network operated during the ESCOMPTE campaign: first results

    NASA Astrophysics Data System (ADS)

    Walpersdorf, A.; Bock, O.; Doerflinger, E.; Masson, F.; van Baelen, J.; Somieski, A.; Bürki, B.

    The experiment GPS/H 2O involving 17 GPS receivers has been operated for two weeks in June 2001 in a dense network around Marseille. This project was integrated into the ESCOMPTE campaign. This paper will focus on the GPS analysis in preparation of the tomographic inversion of GPS slant delays. As first results, GPS tropospheric parameters zenith delays and horizontal gradients have been extracted. For a first visualization of the humidity field overlying the network, zenith delays have been transformed into precipitable water. Successive humidity fields are presented for a period of sudden drop in humidity, indicating some spatial resolution in the small network. The time series of horizontal gradients evaluated at individual sites are compared to correlated zenith delay variations over the whole network (horizontal gradient of zenith delays), showing that in the small size network horizontal atmospheric structure is reflected by both types of parameters. To compare these two quantities, scaling of zenith delays due to different station altitudes was necessary. In this way, a GPS internal validation of the individual gradients by comparison with the horizontal gradient of zenith delays has been established. Differential features along transects across the network indicate a good spatial resolution of tropospheric phenomena, encouraging for the further tomographic exploitation of the data. Moreover, individual and zenith delay gradients weight differently atmospheric horizontal gradients occurring at different heights. This different sensitivity has been used for a first identification of a vertical atmospheric structure from GPS tropospheric delays, by observing an inclined frontal zone crossing the network.

  6. Eavesdropping on elephants

    NASA Astrophysics Data System (ADS)

    Payne, Katy

    2004-05-01

    The Elephant Listening Project is creating an acoustic monitoring program for African forest elephants, an endangered species that lives in dense forests where visual censusing is impossible. In 2002, a 21/2-month continuous recording was made on an array of autonomous recording units (ARUs) surrounding a forest clearing in the Central African Republic. Each day between 10 and 160 forest elephants (Loxodonta cyclotis), the subjects of Andrea Turkalo's 13-year demographic study, were present on the clearing. Thousands of vocalizations were recorded, most of which contained infrasonic energy. The calls were located in space using software developed in the Bioacoustics Research Program. During daylight hours simultaneous video recordings were made. GPS time-synchronization of video cameras and the ARUs made it possible to identify the elephants responsible for many calls and to examine associated circumstances and behaviors. Recordings were also made on a second acoustic array, permitting a preliminary estimate of propagation and an indication of source level for selected elephant calls. Automatic detection of elephant calls is increasing the feasibility of analyzing long acoustic recordings, and paving the way for finer-tuned analyses, with an ultimate goal of describing forest elephants' acoustic repertoire.

  7. The Continuous Generation of Equatorial Plasma Bubbles during the Passage of the Solar Terminator, Observed with a Densely-Clustered Network of GPS Receivers in Southeast Asia.

    NASA Astrophysics Data System (ADS)

    Buhari, S. M.; Tsunoda, R. T.; Abdullah, M.; Hasbi, A. M.; Otsuka, Y.; Yokoyama, T.; Nishioka, M.; Tsugawa, T.

    2014-12-01

    Equatorial plasma bubbles (EPBs) are three-dimensional structures of depleted plasma density that are often observed in the nighttime equatorial ionosphere. They are initiated near the magnetic dip equator, in the bottomside of the F layer, and develop with time, upward in altitude and poleward in latitude (into both hemispheres), taking the form of longitudinally-narrow, vertically-extended wedges that penetrate deep into the topside of the F layer. Moreover, these structures drift zonally as they evolve in time. Much of what is not yet known about EPBs stems from our inability (1) to capture spatial descriptions of these structures, and (2) to monitor their evolution as a function of time. An objective of this presentation is to report the existence and availability of total electron content (TEC) data from densely-clustered networks of GPS receivers that are capable of providing time-continuous descriptions of EPBs with both high spatial resolution and broad geographical coverage. The networks include the Malaysia Real-Time Kinematics GNSS Network (MyRTKnet), Sumatera GPS Array (SUGAR) network and International GNSS Service (IGS) located in Southeast Asia (SEA). These networks contain 127 GPS receivers with average spacing of about 50 to 100 km. With the ability to resolve space-time ambiguities, we are able to follow the temporal evolution of EPB structures over an extended longitude sector (90 to 120 degrees, East longitude). We will present results from a case study (April 5, 2011) in which 16 EPBs were detected in longitude and tracked in time. We show, for the first time, that the births of 10 out of 16 observed EPBs coincided with the time of passage of the solar terminator across the longitude of birth. The distance between birth locations varied between 100 and 550 km with 10-minute interval. These EPBs were found to persist for 50 minutes to 7 hours, while drifting eastward at a speed of 92 to 150 ms-1. The finding that as many as 16 EPBs can be generated in a continuous sequence over 30 degree of longitude is new. The implications of these findings in terms of seeding and amplification will be discussed.

  8. Development and Demonstration of a Self-Calibrating Pseudolite Array for Task Level Control of a Planetary Rover

    NASA Technical Reports Server (NTRS)

    Rock, Stephen M.; LeMaster, Edward A.

    2001-01-01

    Pseudolites can extend the availability of GPS-type positioning systems to a wide range of applications not possible with satellite-only GPS. One such application is Mars exploration, where the centimeter-level accuracy and high repeatability of CDGPS would make it attractive for rover positioning during autonomous exploration, sample collection, and habitat construction if it were available. Pseudolites distributed on the surface would allow multiple rovers and/or astronauts to share a common navigational reference. This would help enable cooperation for complicated science tasks, reducing the need for instructions from Earth and increasing the likelihood of mission success. Conventional GPS Pseudolite arrays require that the devices be pre-calibrated through a Survey of their locations, typically to sub-centimeter accuracy. This is a problematic task for robots on the surface of another planet. By using the GPS signals that the Pseudolites broadcast, however, it is possible to have the array self-survey its own relative locations, creating a SelfCalibrating Pseudolite Array (SCPA). This requires the use of GPS transceivers instead of standard pseudolites. Surveying can be done either at carrier- or code-phase levels. An overview of SCPA capabilities, system requirements, and self-calibration algorithms is presented in another work. The Aerospace Robotics Laboratory at Statif0id has developed a fully operational prototype SCPA. The array is able to determine the range between any two transceivers with either code- or carrier-phase accuracy, and uses this inter-transceiver ranging to determine the at-ray geometry. This paper presents results from field tests conducted at Stanford University demonstrating the accuracy of inter-transceiver ranging and its viability and utility for array localization, and shows how transceiver motion may be utilized to refine the array estimate by accurately determining carrier-phase integers and line biases. It also summarizes the overall system requirements and architecture, and describes the hardware and software used in the prototype system.

  9. Advanced GPS Technologies (AGT)

    DTIC Science & Technology

    2015-05-01

    Distribution A GPS Ill Developmental Optical Clock Deployable Antenna Concept 3 \\.J Science and Technology for GPS •:• Spacecraft • AFRL has funded a...Digital Waveform Generators New antenna concepts Supporting electronics Algorithms and new signal combining methods Satellite bus technologies...GPS Military High Gain Antenna Developing Options for Ground Testing 1) Deployable phased array • Low profile element • High efficiency phase

  10. A systematic method of interconnection optimization for dense-array concentrator photovoltaic system.

    PubMed

    Siaw, Fei-Lu; Chong, Kok-Keong

    2013-01-01

    This paper presents a new systematic approach to analyze all possible array configurations in order to determine the most optimal dense-array configuration for concentrator photovoltaic (CPV) systems. The proposed method is fast, simple, reasonably accurate, and very useful as a preliminary study before constructing a dense-array CPV panel. Using measured flux distribution data, each CPV cells' voltage and current values at three critical points which are at short-circuit, open-circuit, and maximum power point are determined. From there, an algorithm groups the cells into basic modules. The next step is I-V curve prediction, to find the maximum output power of each array configuration. As a case study, twenty different I-V predictions are made for a prototype of nonimaging planar concentrator, and the array configuration that yields the highest output power is determined. The result is then verified by assembling and testing of an actual dense-array on the prototype. It was found that the I-V curve closely resembles simulated I-V prediction, and measured maximum output power varies by only 1.34%.

  11. A Systematic Method of Interconnection Optimization for Dense-Array Concentrator Photovoltaic System

    PubMed Central

    Siaw, Fei-Lu

    2013-01-01

    This paper presents a new systematic approach to analyze all possible array configurations in order to determine the most optimal dense-array configuration for concentrator photovoltaic (CPV) systems. The proposed method is fast, simple, reasonably accurate, and very useful as a preliminary study before constructing a dense-array CPV panel. Using measured flux distribution data, each CPV cells' voltage and current values at three critical points which are at short-circuit, open-circuit, and maximum power point are determined. From there, an algorithm groups the cells into basic modules. The next step is I-V curve prediction, to find the maximum output power of each array configuration. As a case study, twenty different I-V predictions are made for a prototype of nonimaging planar concentrator, and the array configuration that yields the highest output power is determined. The result is then verified by assembling and testing of an actual dense-array on the prototype. It was found that the I-V curve closely resembles simulated I-V prediction, and measured maximum output power varies by only 1.34%. PMID:24453823

  12. GPS water vapor project associated to the ESCOMPTE programme: description and first results of the field experiment

    NASA Astrophysics Data System (ADS)

    Bock, O.; Doerflinger, E.; Masson, F.; Walpersdorf, A.; Van-Baelen, J.; Tarniewicz, J.; Troller, M.; Somieski, A.; Geiger, A.; Bürki, B.

    A dense network of 17 dual frequency GPS receivers has been operated for two weeks during June 2001 within a 20 km × 20 km area around Marseille, France, as part of the ESCOMPTE field campaign ([Cros et al., 2004. The ESCOMPTE program: an overview. Atmos. Res. 69, 241-279]; http://medias.obs-mip.fr/escompte). The goal of this GPS experiment was to provide GPS data allowing for tomographic inversions and their validation within a well-documented observing period (the ESCOMPTE campaign). Simultaneous water vapor radiometer, solar spectrometer, Raman lidar and radiosonde data are used for comparison and validation. In this paper, we highlight the motivation, issues and describe the GPS field experiment. Some first results of integrated water vapor retrievals from GPS and the other sensing techniques are presented. The strategies for GPS data processing and tomographic inversions are discussed.

  13. Directional antenna array (DAA) for communications, control, and data link protection

    NASA Astrophysics Data System (ADS)

    Molchanov, Pavlo A.; Contarino, Vincent M.

    2013-06-01

    A next generation of Smart antennas with point-to-point communication and jam, spoof protection capability by verification of spatial position is offered. A directional antenna array (DAA) with narrow irradiation beam provides counter terrorism protection for communications, data link, control and GPS. Communications are "invisible" to guided missiles because of 20 dB smaller irradiation outside the beam and spatial separation. This solution can be implemented with current technology. Directional antennas have higher gain and can be multi-frequency or have wide frequency band in contrast to phase antenna arrays. This multi-directional antenna array provides a multi-functional communication network and simultaneously can be used for command control, data link and GPS.

  14. Remote monitoring of primates using automated GPS technology in open habitats.

    PubMed

    Markham, A Catherine; Altmann, Jeanne

    2008-05-01

    Automated tracking using a satellite global position system (GPS) has major potential as a research tool in studies of primate ecology. However, implementation has been limited, at least partly because of technological difficulties associated with the dense forest habitat of many primates. In contrast, primates inhabiting relatively open environments may provide ideal subjects for use of GPS collars, yet no empirical tests have evaluated this proposition. Here, we used an automated GPS collar to record the locations, approximate body surface temperature, and activity for an adult female baboon during 90 days in the savannah habitat of Amboseli, Kenya. Given the GPS collar's impressive reliability, high spatial accuracy, other associated measurements, and low impact on the study animal, our results indicate the great potential of applying GPS technology to research on wild primates. © 2008 Wiley-Liss, Inc.

  15. Self-calibrating pseudolite arrays: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Lemaster, Edward Alan

    Tasks envisioned for future-generation Mars rovers---sample collection, area survey, resource mining, habitat construction, etc.---will require greatly enhanced navigational capabilities over those possessed by the 1997 Mars Sojourner rover. Many of these tasks will involve cooperative efforts by multiple rovers and other agents, necessitating both high accuracy and the ability to share navigation information among different users. On Earth, satellite-based carrier-phase differential GPS provides a means of delivering centimeter-level, drift-free positioning to multiple users in contact with a reference base station. It would be highly desirable to have a similar navigational capability for use in Mars exploration. This research has originated a new local-area navigation system---a Self-Calibrating Pseudolite Array (SCPA)---that can provide centimeter-level localization to multiple rovers by utilizing GPS-based pseudolite transceivers deployed in a ground-based array. Such a system of localized beacons can replace or augment a system based on orbiting satellite transmitters. Previous pseudolite arrays have relied upon a priori information to survey the locations of the pseudolites, which must be accurately known to enable navigation within the array. In contrast, an SCPA does not rely upon other measurement sources to determine these pseudolite locations. This independence is a key requirement for autonomous deployment on Mars, and is accomplished through the use of GPS transceivers containing both transmit and receive components and through algorithms that utilize limited motion of a transceiver-bearing rover to determine the locations of the stationary transceivers. This dissertation describes the theory and operation of GPS transceivers, and how they can be used for navigation within a Self-Calibrating Pseudolite Array. It presents new algorithms that can be used to self-survey such arrays robustly using no a priori information, even under adverse conditions such as high-multipath environments. It then describes the experimental SCPA prototype developed at Stanford University and used in conjunction with the K9 Mars rover operated by NASA Ames Research Center. Using this experimental system, it provides experimental validation of both successful positioning using GPS transceivers and full calibration of an SCPA following deployment in an unknown configuration.

  16. Anti-Jam GPS Antennas for Wearable Dismounted Soldier Navigation Systems

    DTIC Science & Technology

    2016-06-01

    in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents. Citation...Approaches for the design and fabrication of a wearable anti-jam global positioning system (GPS) antenna are explored to support accurate and uninterrupted...including GPS antenna element and array designs , and algorithms for jammer mitigation, and the candidate technologies best fit for wearable anti-jam GPS

  17. Water vapour tomography using GPS phase observations: Results from the ESCOMPTE experiment

    NASA Astrophysics Data System (ADS)

    Nilsson, T.; Gradinarsky, L.; Elgered, G.

    2007-10-01

    Global Positioning System (GPS) tomography is a technique for estimating the 3-D structure of the atmospheric water vapour using data from a dense local network of GPS receivers. Several current methods utilize estimates of slant wet delays between the GPS satellites and the receivers on the ground, which are difficult to obtain with millimetre accuracy from the GPS observations. We present results of applying a new tomographic method to GPS data from the Expériance sur site pour contraindre les modèles de pollution atmosphérique et de transport d'emissions (ESCOMPTE) experiment in southern France. This method does not rely on any slant wet delay estimates, instead it uses the GPS phase observations directly. We show that the estimated wet refractivity profiles estimated by this method is on the same accuracy level or better compared to other tomographic methods. The results are in agreement with earlier simulations, for example the profile information is limited above 4 km.

  18. A large-aperture low-cost hydrophone array for tracking whales from small boats.

    PubMed

    Miller, B; Dawson, S

    2009-11-01

    A passive sonar array designed for tracking diving sperm whales in three dimensions from a single small vessel is presented, and the advantages and limitations of operating this array from a 6 m boat are described. The system consists of four free floating buoys, each with a hydrophone, built-in recorder, and global positioning system receiver (GPS), and one vertical stereo hydrophone array deployed from the boat. Array recordings are post-processed onshore to obtain diving profiles of vocalizing sperm whales. Recordings are synchronized using a GPS timing pulse recorded onto each track. Sensitivity analysis based on hyperbolic localization methods is used to obtain probability distributions for the whale's three-dimensional location for vocalizations received by at least four hydrophones. These localizations are compared to those obtained via isodiachronic sequential bound estimation. Results from deployment of the system around a sperm whale in the Kaikoura Canyon in New Zealand are shown.

  19. A Ground-Based Near Infrared Camera Array System for UAV Auto-Landing in GPS-Denied Environment.

    PubMed

    Yang, Tao; Li, Guangpo; Li, Jing; Zhang, Yanning; Zhang, Xiaoqiang; Zhang, Zhuoyue; Li, Zhi

    2016-08-30

    This paper proposes a novel infrared camera array guidance system with capability to track and provide real time position and speed of a fixed-wing Unmanned air vehicle (UAV) during a landing process. The system mainly include three novel parts: (1) Infrared camera array and near infrared laser lamp based cooperative long range optical imaging module; (2) Large scale outdoor camera array calibration module; and (3) Laser marker detection and 3D tracking module. Extensive automatic landing experiments with fixed-wing flight demonstrate that our infrared camera array system has the unique ability to guide the UAV landing safely and accurately in real time. Moreover, the measurement and control distance of our system is more than 1000 m. The experimental results also demonstrate that our system can be used for UAV automatic accurate landing in Global Position System (GPS)-denied environments.

  20. Using cluster analysis to organize and explore regional GPS velocities

    USGS Publications Warehouse

    Simpson, Robert W.; Thatcher, Wayne; Savage, James C.

    2012-01-01

    Cluster analysis offers a simple visual exploratory tool for the initial investigation of regional Global Positioning System (GPS) velocity observations, which are providing increasingly precise mappings of actively deforming continental lithosphere. The deformation fields from dense regional GPS networks can often be concisely described in terms of relatively coherent blocks bounded by active faults, although the choice of blocks, their number and size, can be subjective and is often guided by the distribution of known faults. To illustrate our method, we apply cluster analysis to GPS velocities from the San Francisco Bay Region, California, to search for spatially coherent patterns of deformation, including evidence of block-like behavior. The clustering process identifies four robust groupings of velocities that we identify with four crustal blocks. Although the analysis uses no prior geologic information other than the GPS velocities, the cluster/block boundaries track three major faults, both locked and creeping.

  1. Performance optimization of dense-array concentrator photovoltaic system considering effects of circumsolar radiation and slope error.

    PubMed

    Wong, Chee-Woon; Chong, Kok-Keong; Tan, Ming-Hui

    2015-07-27

    This paper presents an approach to optimize the electrical performance of dense-array concentrator photovoltaic system comprised of non-imaging dish concentrator by considering the circumsolar radiation and slope error effects. Based on the simulated flux distribution, a systematic methodology to optimize the layout configuration of solar cells interconnection circuit in dense array concentrator photovoltaic module has been proposed by minimizing the current mismatch caused by non-uniformity of concentrated sunlight. An optimized layout of interconnection solar cells circuit with minimum electrical power loss of 6.5% can be achieved by minimizing the effects of both circumsolar radiation and slope error.

  2. Characters of Vertical Variability with Geodetic Satellites and Ground-based Continuous GPS in Taiwan

    NASA Astrophysics Data System (ADS)

    Yang, C.-C.; Wu, Y.-H.; Chao, B. F.; Yu, S.-B.

    2009-04-01

    Present-day GPS network have been extensively used to monitor crustal deformation due to various geodynamic mechanisms. Situated among the Pacific Ring of Fire on the suture zone of Eurasian and Philippine Sea Plates, the island of Taiwan with a dense continuous GPS network since ~1996 and now over 300 stations sees plenty of geophysical phenomena including particularly prominent crustal motions. We assessed daily solution of each station's coordinate time series, and made the routine corrections, such as orbital, EOP, atmospheric and tidal corrections, using GAMIT/GLOBK software (with ITRF05). We then employ the Quasi-Observation Combination Analysis (QOCA) package to obtain the variability and trend after removing occasional earthquake "disruptions". Preliminary results show strong seasonal variations. We then utilize the numerical method of Empirical Orthogonal Function (EOF) to analysis the geophysical signals from the continuous and dense GPS vertical crustal motion observations. We wish to be able to characterize both the seasonal and non-seasonal variability in the vertical crustal motion, in terms of the EOF modes in the spatial domain over Taiwan (plus a few offshore islets) with time evolution spanning the entire period of time. Corraborating with time-variable gravity data from the geodetic satellite mission GRACE, we can further obtain vertical components of both mass-induced loading with respect to the precipitation minus evaporation and the crustal motion caused by the active tectonic processes on Taiwan.

  3. Very shallow source of the October 2010 Mentawai tsunami earthquake from tsunami field data and high-rate GPS

    NASA Astrophysics Data System (ADS)

    Hill, E. M.; Qiu, Q.; Borrero, J. C.; Huang, Z.; Banerjee, P.; Elosegui, P.; Fritz, H. M.; Macpherson, K. A.; Li, L.; Sieh, K. E.

    2011-12-01

    "Tsunami earthquakes," which produce very large tsunamis compared to those expected from their magnitude, have long puzzled geoscientists, in part because only a handful have occurred within the time of modern instrumentation. The Mw 7.8 Mentawai earthquake of 25 October 2010, which occurred seaward of the southern Mentawai islands of Sumatra, was such an event. This earthquake triggered a very large tsunami, causing substantial damage and 509 casualties. Detailed field surveys we conducted immediately after the earthquake reveal maximum runup in excess of 16 m. The Sumatra GPS Array (SuGAr) recorded beautiful 1-sec data for this event at sites on the nearby islands, making this the first tsunami earthquake to be recorded by a dense, high-rate, and proximal GPS network, and giving us a unique opportunity to study these rare events from a new perspective. We estimate a maximum horizontal coseismic GPS displacement of 22 cm, at a site ~50 km from the epicenter. Vertical displacements show subsidence of the islands, but are on the order of only a few cm. Comparison of coseismic offsets from 1-sec and 24-hr GPS solutions indicates that rapid afterslip following the earthquake amounts to ~30% of the displacement estimated by the 24-hr solutions. The coseismic displacements are smaller than expected, and an unconstrained inversion of the GPS displacements indicates maximum fault slip of ~90 cm. Slip of this magnitude will produce maximum seafloor uplift of <15 cm, which is clearly not enough to produce tsunami runup of 16 m. However, investigation of the model resolution from GPS indicates that we are limited in our ability to resolve slip very close to the trench. We therefore deduce that to obtain the adequate level of slip and seafloor uplift to trigger the tsunami, the rupture must have occurred outside the resolution of the GPS network, i.e., at very shallow depths close to the trench. We therefore place prior slip constraints on the GPS inversion, based on preferred values from tsunami modeling of the field data. In the constrained inversion, the small GPS displacements force any slip close to the islands back down to much lower values than the a priori estimates, leaving only a very narrow and shallow strip of high slip close to the trench. In this presentation we will show several possible models that include slip on either the megathrust itself or a shallow splay fault, with maximum slip of ~7 m and ~4 m, respectively. This very shallow slip raises questions about the seismic hazard potential of a region of the fault that is often considered to be aseismic. Particularly, these results suggest that when model resolution is not adequate for making determinations of the updip limit of the seismogenic zone of subduction faults, it may be best to assume that it extends all the way to the trench.

  4. Linking the global positioning system (GPS) to a personal digital assistant (PDA) to support tuberculosis control in South Africa: a pilot study

    PubMed Central

    Dwolatzky, Barry; Trengove, Estelle; Struthers, Helen; McIntyre, James A; Martinson, Neil A

    2006-01-01

    Background Tuberculosis (TB) is the leading clinical manifestation of HIV infection and caseloads continue to increase in high HIV prevalence settings. TB treatment is prolonged and treatment interruption has serious individual and public health consequences. We assessed the feasibility of using a handheld computing device programmed with customised software and linked to a GPS receiver, to assist TB control programmes to trace patients who interrupt treatment in areas without useful street maps. In this proof of concept study, we compared the time taken to re-find a home comparing given residential addresses with a customised personalised digital assistant linked to a global positioning system (PDA/GPS) device. Additionally, we assessed the feasibility of using aerial photographs to locate homes. Results The study took place in two communities in Greater Johannesburg, South Africa: Wheillers Farm, a relatively sparsely populated informal settlement, and a portion of Alexandra, an urban township with densely populated informal settlements. Ten participants in each community were asked to locate their homes on aerial photographs. Nine from Wheillers Farm and six from Alexandra were able to identify their homes. The total time taken by a research assistant, unfamiliar with the area, to locate 10 homes in each community using the given addresses was compared with the total time taken by a community volunteer with half an hour of training to locate the same homes using the device. Time taken to locate the ten households was reduced by 20% and 50% in each community respectively using the PDA/GPS device. Conclusion In this pilot study we show that it is feasible to use a simple PDA/GPS device to locate the homes of patients. We found that in densely populated informal settlements, GPS technology is more accurate than aerial photos in identifying homes and more efficient than addresses provided by participants. Research assessing issues of, confidentiality and cost effectiveness would have to be undertaken before implementing PDA/GPS – based technology for this application. However, this PDA/GPS device could be used to reduce part of the burden on TB control programs. PMID:16911806

  5. Locating sources within a dense sensor array using graph clustering

    NASA Astrophysics Data System (ADS)

    Gerstoft, P.; Riahi, N.

    2017-12-01

    We develop a model-free technique to identify weak sources within dense sensor arrays using graph clustering. No knowledge about the propagation medium is needed except that signal strengths decay to insignificant levels within a scale that is shorter than the aperture. We then reinterpret the spatial coherence matrix of a wave field as a matrix whose support is a connectivity matrix of a graph with sensors as vertices. In a dense network, well-separated sources induce clusters in this graph. The geographic spread of these clusters can serve to localize the sources. The support of the covariance matrix is estimated from limited-time data using a hypothesis test with a robust phase-only coherence test statistic combined with a physical distance criterion. The latter criterion ensures graph sparsity and thus prevents clusters from forming by chance. We verify the approach and quantify its reliability on a simulated dataset. The method is then applied to data from a dense 5200 element geophone array that blanketed of the city of Long Beach (CA). The analysis exposes a helicopter traversing the array and oil production facilities.

  6. Seafloor horizontal positioning from a continuously operating buoy-based GPS-acoustic array

    NASA Astrophysics Data System (ADS)

    Chadwell, C. D.; Brown, K. M.; Tryon, M. D.; Send, U.

    2009-12-01

    Seafloor horizontal positions in a global frame were estimated daily from an autonomous buoy operating continuously over several months. The buoy (GEOCE) was moored offshore San Diego in 100-m-deep waters above an array of 4 seafloor transponders. Dual-frequency GPS data were collected at 1-Hz at a main antenna on the buoy and at 3 shore stations to provide continuous 2-3 cm positions of the buoy main antenna. Two single-frequency antennas on the buoy along with the main antenna were used to estimate the buoy attitude and short-term velocity. At one minute intervals the two-way acoustic travel time was measured between the buoy and transponders. During this few second span when transmitting and receiving acoustic signals, 10-Hz attitude and velocity were collected to locate the position of the transducer mounted approximately 2 m below the water line. The GPS and acoustic data were recorded internally and transmitted to shore over a cell-phone link and/or a wireless Ethernet. GPS data were combined with the acoustic data to estimate the array location at 1 minute intervals. The 1-minute positions are combined to provide a daily estimate of the array position. The buoy is autonomous, solar-powered and in addition to the GPS and acoustic data collects air pressure, temperature, wind speed/direction as well as water level at the surface and conductivity and temperature along the mooring line from near the sea surface to just above the sea floor. Here we report results from the horizontal positioning effort from Phase I of the project in shallow waters. The project also includes a vertical deformation sensor and physical oceanographic monitoring. A deep water (nominally 1000 m) test is planned for 2010. This work is supported by NSF-OCE-0551363 of the Ocean Technology and Interdisciplinary Coordination Program.

  7. LightDenseYOLO: A Fast and Accurate Marker Tracker for Autonomous UAV Landing by Visible Light Camera Sensor on Drone.

    PubMed

    Nguyen, Phong Ha; Arsalan, Muhammad; Koo, Ja Hyung; Naqvi, Rizwan Ali; Truong, Noi Quang; Park, Kang Ryoung

    2018-05-24

    Autonomous landing of an unmanned aerial vehicle or a drone is a challenging problem for the robotics research community. Previous researchers have attempted to solve this problem by combining multiple sensors such as global positioning system (GPS) receivers, inertial measurement unit, and multiple camera systems. Although these approaches successfully estimate an unmanned aerial vehicle location during landing, many calibration processes are required to achieve good detection accuracy. In addition, cases where drones operate in heterogeneous areas with no GPS signal should be considered. To overcome these problems, we determined how to safely land a drone in a GPS-denied environment using our remote-marker-based tracking algorithm based on a single visible-light-camera sensor. Instead of using hand-crafted features, our algorithm includes a convolutional neural network named lightDenseYOLO to extract trained features from an input image to predict a marker's location by visible light camera sensor on drone. Experimental results show that our method significantly outperforms state-of-the-art object trackers both using and not using convolutional neural network in terms of both accuracy and processing time.

  8. Analysis of High Precision GPS Time Series and Strain Rates for the Geothermal Play Fairway Analysis of Washington State Prospects Project

    DOE Data Explorer

    Michael Swyer

    2015-02-22

    Global Positioning System (GPS) time series from the National Science Foundation (NSF) Earthscope’s Plate Boundary Observatory (PBO) and Central Washington University’s Pacific Northwest Geodetic Array (PANGA). GPS station velocities were used to infer strain rates using the ‘splines in tension’ method. Strain rates were derived separately for subduction zone locking at depth and block rotation near the surface within crustal block boundaries.

  9. GPS Signal Corruption by the Discrete Aurora: Precise Measurements From the Mahali Experiment

    NASA Astrophysics Data System (ADS)

    Semeter, Joshua; Mrak, Sebastijan; Hirsch, Michael; Swoboda, John; Akbari, Hassan; Starr, Gregory; Hampton, Don; Erickson, Philip; Lind, Frank; Coster, Anthea; Pankratius, Victor

    2017-10-01

    Measurements from a dense network of GPS receivers have been used to clarify the relationship between substorm auroras and GPS signal corruption as manifested by loss of lock on the received signal. A network of nine receivers was deployed along roadways near the Poker Flat Research Range in central Alaska, with receiver spacing between 15 and 30 km. Instances of large-amplitude phase fluctuations and signal loss of lock were registered in space and time with auroral forms associated with a sequence of westward traveling surges associated with a substorm onset over central Canada. The following conclusions were obtained: (1) The signal corruption originated in the ionospheric E region, between 100 and 150 km altitude, and (2) the GPS links suffering loss of lock were confined to a narrow band (<20 km wide) along the trailing edge of the moving auroral forms. The results are discussed in the context of mechanisms typically cited to account for GPS phase scintillation by auroral processes.

  10. A Novel Sensor for Attitude Determination Using Global Positioning System Signals

    NASA Technical Reports Server (NTRS)

    Crassidis, John L.; Quinn, David A.; Markley, F. Landis; McCullough, Jon D.

    1998-01-01

    An entirely new sensor approach for attitude determination using Global Positioning System (GPS) signals is developed. The concept involves the use of multiple GPS antenna elements arrayed on a single sensor head to provide maximum GPS space vehicle availability. A number of sensor element configurations are discussed. In addition to the navigation function, the array is used to find which GPS space vehicles are within the field-of-view of each antenna element. Attitude determination is performed by considering the sightline vectors of the found GPS space vehicles together with the fixed boresight vectors of the individual antenna elements. This approach has clear advantages over the standard differential carrier-phase approach. First, errors induced by multipath effects can be significantly reduced or eliminated altogether. Also, integer ambiguity resolution is not required, nor do line biases need to be determined through costly and cumbersome self-surveys. Furthermore, the new sensor does not require individual antennas to be physically separated to form interferometric baselines to determine attitude. Finally, development potential of the new sensor is limited only by antenna and receiver technology development unlike the physical limitations of the current interferometric attitude determination scheme. Simulation results indicate that accuracies of about 1 degree (3 omega) are possible.

  11. Few millimeter precision for baselines in the California Permanent GPS Geodetic Array

    NASA Technical Reports Server (NTRS)

    Lindqwister, Ulf J.; Zumberge, James F.; Webb, Frank H.; Blewitt, Geoffrey

    1991-01-01

    Geodetic measurements with Rogue GPS receivers from sites in the California Permanent GPS geodetic Array (PGGA) have been analyzed using the GIPSY orbit-determination and baseline-estimation software. Based on an unbiased selection of 23 daily measurements spanning 8 months, the LF contributions to the long-term repeatabilities of baseline measurements are approximately 5, 3, and 8 mm for the east, north, and vertical components. Short-term contributions to the long-term repeatabilities were evaluated by examining data from the week of October 21, 1990, which showed the lowest short-term scatter. For this week, daily repeatabilities of 2-3 mm in the horizontal and 4 mm in the vertical have been achieved for the 172-km JPL-Pinyon baseline, consistent with carrier phase date noise of about 6 mm. High quality (less than about 5 mm) repeatabilities have been achieved for all components of the other baselines as well.

  12. Observation and Modeling of Storm Generated Acoustic Waves in the Ionosphere Revealed in a Dense Network of GPS Receivers

    NASA Astrophysics Data System (ADS)

    Walterscheid, R. L.; Azeem, S. I.

    2017-12-01

    Acoustic waves generated in the lower atmosphere may become an important source of variably in the upper atmosphere. Although they are excited with small amplitudes they are minimally subject to viscous dissipation and may reach significant amplitudes at F-region altitudes. A number of studies in the 1970s showed clear signatures in ionosonde data in the infrasonic period range attributable to thunder storm activity. We have examined Total Electron Content data from a dense network of over 4000 ground-based GPS receivers over the continental United States during an outbreak of severe weather, including tornados, over Kansas in May 2015. A sequence of GPS TEC images showed clear Traveling Ionospheric Disturbances (TIDs) in the form of concentric rings moving outward from the center of the storm region. The characteristics of the disturbance (phase speed and frequency) were consistent with acoustic waves in the infrasonic range. We have modeled the disturbance by including a tropospheric heat source representing latent heat release from a large thunderstorm. The disturbance at ionospheric altitudes resembles the observed disturbance in terms of phase speed, frequency and horizontal wavelength. We conclude that the observed TIDs in TEC were caused by an acoustic wave generated by deep convection.

  13. SPECTRE (www.noveltis.fr/spectre): a web Service for Ionospheric Products

    NASA Astrophysics Data System (ADS)

    Jeansou, E.; Crespon, F.; Garcia, R.; Helbert, J.; Moreaux, G.; Lognonne, P.

    2005-12-01

    The dense GPS networks developed for geodesic applications appear to be very efficient ionospheric sensors because of interaction between plasma and electromagnetic waves. Indeed, the dual frequency receivers provide data from which the Slant Total Electron Content (STEC) can be easily extracted to compute Vertical Total Electron Content (VTEC) maps. The SPECTRE project, Service and Products for ionospheric Electron Content and Tropospheric Refractivity over Europe, is currently a pre-operational service providing VTEC maps with high time and space resolution after 3 days time delay (http://www.noveltis.fr/spectre and http://ganymede.ipgp.jussieu.fr/spectre). This project is a part of SWENET, SpaceWeather European Network, initiated by the European Space Agency. The SPECTRE data products are useful for many applications. We will present these applications in term of interest for the scientific community with a special focus on spaceweather and transient ionospheric perturbations related to Earthquakes. Moreover, the pre-operational extensions of SPECTRE to the californian (SCIGN/BARD) and japanese (GEONET) dense GPS networks will be presented. Then the method of 3D tomography of the electron density from GPS data will be presented and its resolution discussed. The expected improvements of the 3D tomographic images by new tomographic reconstruction algorithms and by the advent of the Galileo system will conclude the presentation.

  14. GPS World, Innovation: Autonomous Navigation at High Earth Orbits

    NASA Technical Reports Server (NTRS)

    Bamford, William; Winternitz, Luke; Hay, Curtis

    2005-01-01

    Calculating a spacecraft's precise location at high orbital altitudes-22,000 miles (35,800 km) and beyond-is an important and challenging problem. New and exciting opportunities become possible if satellites are able to autonomously determine their own orbits. First, the repetitive task of periodically collecting range measurements from terrestrial antennas to high altitude spacecraft becomes less important-this lessens competition for control facilities and saves money by reducing operational costs. Also, autonomous navigation at high orbital altitudes introduces the possibility of autonomous station keeping. For example, if a geostationary satellite begins to drift outside of its designated slot it can make orbit adjustments without requiring commands from the ground. Finally, precise onboard orbit determination opens the door to satellites flying in formation-an emerging concept for many scientific space applications. The realization of these benefits is not a trivial task. While the navigation signals broadcast by GPS satellites are well suited for orbit and attitude determination at lower altitudes, acquiring and using these signals at geostationary (GEO) and highly elliptical orbits is much more difficult. The light blue trace describes the GPS orbit at approximately 12,550 miles (20,200 km) altitude. GPS satellites were designed to provide navigation signals to terrestrial users-consequently the antenna array points directly toward the earth. GEO and HE0 orbits, however, are well above the operational GPS constellation, making signal reception at these altitudes more challenging. The nominal beamwidth of a Block II/IIA GPS satellite antenna array is approximately 42.6 degrees. At GEO and HE0 altitudes, most of these primary beam transmissions are blocked by the Earth, leaving only a narrow region of nominal signal visibility near opposing limbs of the earth. This region is highlighted in gray. If GPS receivers at GEO and HE0 orbits were designed to use these higher power signals only, precise orbit determination would not be practical. Fortunately, the GPS satellite antenna array also produces side lobe signals at much lower power levels. NASA has designed and tested the Navigator, a new GPS receiver that can acquire and track these weaker signals, thereby dramatically increasing the signal visibility at these altitudes. While using much weaker signals is a fundamental requirement for a high orbital altitude GPS receiver, it is certainly not the only challenge. There are other unique characteristics of this application that must also be considered. For example, Position Dilution of Precision (PDOP) figures are much higher at GEO and HE0 altitudes because visible GPS satellites are concentrated in a much smaller area with respect to the spacecraft antenna. These poor PDOP values contribute considerable error to the point solutions calculated by the spacecraft GPS receiver. Finally, spacecraft GPS receivers must be designed to withstand a variety of extreme environmental conditions. Variations in acceleration between launch and booster separation are extreme. Temperature gradients in the space environment are also severe. Furthermore, radiation effects are a major concern-spacecraft-borne GPS receivers must be designed with radiation-hardened electronics to guard against this phenomenon, otherwise they simply will not work. Perhaps most importantly, there are no opportunities to repair or modify any space-borne GPS receiver after it has been launched. Great care must be taken to ensure all performance characteristics have been analyzed prior to liftoff.

  15. Recent crustal deformation of İzmir, Western Anatolia and surrounding regions as deduced from repeated GPS measurements and strain field

    NASA Astrophysics Data System (ADS)

    Aktuğ, Bahadır; Kılıçoğlu, Ali

    2006-07-01

    To investigate contemporary neotectonic deformation in İzmir, Western Anatolia and in its neighborhood, a relatively dense Global Positioning System (GPS) monitoring network was established in 2001. Combination of three spatially dense GPS campaigns in 2001, 2003 and 2004 with temporally dense campaigns between 1992 and 2004 resulted in a combined velocity field representing active deformation rate in the region. We computed horizontal and vertical velocity fields with respect to Earth-centered, Earth-fixed ITRF2000, to Eurasia and to Anatolia as well. The rates of principal and shear strains along with rigid-body rotation rates were derived from velocity field. Results show east-west shortening between Karaburun Peninsula and northern part of İzmir Bay together with the extension of İzmir Bay in accordance with general extension regime of Western Anatolia and Eastern Agea. East-west shortening and north-south extension of Karaburun Peninsula are closely related to right-lateral faulting and a clockwise rotation. There exists a block in the middle of the peninsula with a differential motion at a rate of 3-5 ± 1 mm/year and 5-6 ± 1 mm/year to the east and south, respectively. As is in Western Anatolia, north-south extension is dominant in almost all parts of the region despite the fact that they exhibit significantly higher rates in the middle of the peninsula. Extensional rates along Tuzla Fault lying nearly perpendicular to İzmir Bay and in its west are maximum in the region with an extension rate of 300-500 ± 80-100 nanostrain/year and confirm its active state. Extensional rates in other parts of the region are at level of 50-150 nanostrain/year as expected in the other parts of Western Anatolia.

  16. SLR tracking of GPS-35

    NASA Technical Reports Server (NTRS)

    Pavlis, Erricos C.

    1994-01-01

    An experiment was designed to launch a corner cube retroreflector array on one of the Global Positioning Satellites (GPS). The launch on Aug. 31, 1993 ushered in the era of SLR tracking of GPS spacecraft. Once the space operations group finished the check-out procedures for the new satellite, the agreed upon SLR sites were allowed to track it. The first site to acquire GPS-35 was the Russian system at Maidanak and closely after the MLRS system at McDonald Observatory, Texas. The laser tracking network is currently tracking the GPS spacecraft known as GPS-35 or PRN 5 with great success. From the NASA side there are five stations that contribute data regularly and nearly as many from the international partners. Upcoming modifications to the ground receivers will allow for a further increase in the tracking capabilities of several additional sites and add some desperately needed southern hemisphere tracking. We are analyzing the data and are comparing SLR-derived orbits to those determined on the basis of GPS radiometric data.

  17. Elastic-Waveform Inversion with Compressive Sensing for Sparse Seismic Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Youzuo; Huang, Lianjie

    2015-01-28

    Accurate velocity models of compressional- and shear-waves are essential for geothermal reservoir characterization and microseismic imaging. Elastic-waveform inversion of multi-component seismic data can provide high-resolution inversion results of subsurface geophysical properties. However, the method requires seismic data acquired using dense source and receiver arrays. In practice, seismic sources and/or geophones are often sparsely distributed on the surface and/or in a borehole, such as 3D vertical seismic profiling (VSP) surveys. We develop a novel elastic-waveform inversion method with compressive sensing for inversion of sparse seismic data. We employ an alternating-minimization algorithm to solve the optimization problem of our new waveform inversionmore » method. We validate our new method using synthetic VSP data for a geophysical model built using geologic features found at the Raft River enhanced-geothermal-system (EGS) field. We apply our method to synthetic VSP data with a sparse source array and compare the results with those obtained with a dense source array. Our numerical results demonstrate that the velocity models produced with our new method using a sparse source array are almost as accurate as those obtained using a dense source array.« less

  18. Nanosecond-level time synchronization of autonomous radio detector stations for extensive air showers

    NASA Astrophysics Data System (ADS)

    The Pierre Auger Collaboration

    2016-01-01

    To exploit the full potential of radio measurements of cosmic-ray air showers at MHz frequencies, a detector timing synchronization within 1 ns is needed. Large distributed radio detector arrays such as the Auger Engineering Radio Array (AERA) rely on timing via the Global Positioning System (GPS) for the synchronization of individual detector station clocks. Unfortunately, GPS timing is expected to have an accuracy no better than about 5 ns. In practice, in particular in AERA, the GPS clocks exhibit drifts on the order of tens of ns. We developed a technique to correct for the GPS drifts, and an independent method is used to cross-check that indeed we reach a nanosecond-scale timing accuracy by this correction. First, we operate a ``beacon transmitter'' which emits defined sine waves detected by AERA antennas recorded within the physics data. The relative phasing of these sine waves can be used to correct for GPS clock drifts. In addition to this, we observe radio pulses emitted by commercial airplanes, the position of which we determine in real time from Automatic Dependent Surveillance Broadcasts intercepted with a software-defined radio. From the known source location and the measured arrival times of the pulses we determine relative timing offsets between radio detector stations. We demonstrate with a combined analysis that the two methods give a consistent timing calibration with an accuracy of 2 ns or better. Consequently, the beacon method alone can be used in the future to continuously determine and correct for GPS clock drifts in each individual event measured by AERA.

  19. Nanosecond-level time synchronization of autonomous radio detector stations for extensive air showers

    DOE PAGES

    Aab, Alexander

    2016-01-29

    To exploit the full potential of radio measurements of cosmic-ray air showers at MHz frequencies, a detector timing synchronization within 1 ns is needed. Large distributed radio detector arrays such as the Auger Engineering Radio Array (AERA) rely on timing via the Global Positioning System (GPS) for the synchronization of individual detector station clocks. Unfortunately, GPS timing is expected to have an accuracy no better than about 5 ns. In practice, in particular in AERA, the GPS clocks exhibit drifts on the order of tens of ns. We developed a technique to correct for the GPS drifts, and an independentmore » method used for cross-checks that indeed we reach nanosecond-scale timing accuracy by this correction. First, we operate a “beacon transmitter” which emits defined sine waves detected by AERA antennas recorded within the physics data. The relative phasing of these sine waves can be used to correct for GPS clock drifts. In addition to this, we observe radio pulses emitted by commercial airplanes, the position of which we determine in real time from Automatic Dependent Surveillance Broadcasts intercepted with a software-defined radio. From the known source location and the measured arrival times of the pulses we determine relative timing offsets between radio detector stations. We demonstrate with a combined analysis that the two methods give a consistent timing calibration with an accuracy of 2 ns or better. Consequently, the beacon method alone can be used in the future to continuously determine and correct for GPS clock drifts in each individual event measured by AERA.« less

  20. Determining Sea-Level Rise and Coastal Subsidence in the Canadian Arctic Using a Dense GPS Velocity Field for North America

    NASA Astrophysics Data System (ADS)

    Craymer, M.; Forbes, D.; Henton, J.; Lapelle, E.; Piraszewski, M.; Solomon, S.

    2005-12-01

    With observed climate warming in the western Canadian Arctic and potential increases in regional sea level, we anticipate expansion of the coastal region subject to rising relative sea level and increased flooding risk. This is a concern for coastal communities such as Tuktoyaktuk and Sachs Harbour and for the design and safety of hydrocarbon production facilities on the Mackenzie Delta. To provide a framework in which to monitor these changes, a consistent velocity field has been determined from GPS observations throughout North America, including the Canadian Arctic Archipelago and the Mackenzie Delta region. An expanded network of continuous GPS sites and multi-epoch (episodic) sites has enabled an increased density that enhances the application to geophysical studies including the discrimination of crustal motion, other components of coastal subsidence, and sea-level rise. To obtain a dense velocity field consistent at all scales, we have combined weekly solutions of continuous GPS sites from different agencies in Canada and the USA, together with the global reference frame under the North American Reference Frame initiative. Although there is already a high density of continuous GPS sites in the conterminous United States, there are many fewer such sites in Canada. To make up for this lack of density, we have incorporated high-accuracy episodic GPS observations on stable monuments distributed throughout Canada. By combining up to ten years of repeated, episodic GPS observations at such sites, together with weekly solutions from the continuous sites, we have obtained a highly consistent velocity field with a significantly increased spatial sampling of crustal deformation throughout Canada. This exhibits a spatially coherent pattern of uplift and subsidence in Canada that is consistent with the expected rates of glacial isostatic adjustment. To determine the contribution of vertical motion to sea-level rise under climate warming in the Canadian Arctic, we have established co-located tide gauges and continuous GPS at a number of sites across the Canadian Arctic, including Tuktoyaktuk on the eastern side of the Mackenzie Delta. We are also investigating additional sources of subsidence in the delta, including sediment loading, compaction of unfrozen and discontinuously ice-bonded sediments, and anticipated subsidence resulting from future natural gas production. Further densification of the velocity field, including the addition of new sites in the delta, and regular reoccupation of episodic sites will assist in determining local rates of motion. Strategies for discriminating the various components of subsidence in this large delta include episodic GPS on monuments and borehole casing penetrating to various depths and supporting InSAR analysis and geological data. Coastal flooding hazards will be evaluated using digital elevation models derived from real-time kinematic GPS, airborne LiDAR surveys, and synthetic aperture radar flood mapping.

  1. The North American Monsoon GPS Hydrometeorological Network 2017: A New Look at an Old Problem

    NASA Astrophysics Data System (ADS)

    Adams, D. K.

    2017-12-01

    Quantifying moisture recycling and determining water vapor source regions for deep convective precipitation have been problematic, particular in tropical continental regions. More than an academic concern, modeling convective precipitation, from cloud-resolving to global climate models, depends critically on properly representing atmospheric water vapor transport, its vertical distribution, as well as surface latent heat flux contributions. The North American Monsoon region, given its complex topography, proximity to warm oceans, striking vegetation "green up" and oftentimes subtle dynamical forcing is particular challenging in this regard. Recent studies, employing modeling and observational approaches, give a prominent role for moisture recycling in fomenting deep convective precipitation. Likewise, these studies argue for the increased importance of transport from the Gulf of Mexico/Central America and the Atlantic Ocean, relative to the Pacific Ocean/Gulf of California. In this presentation, we critically review these studies which served to motivate the NAM GPS Hydrometeorological Network 2017, detailed here. This bi-national (Mexico-US) 3-month campaign to examine water vapor source regions, and specifically, land-surface water vapor fluxes consists of 10 experimental GPS meteorological sites as well as TLALOCNet and Suominet GPS sites in the Mexican states of Sonora, Chihuahua, Sinaloa, and Baja California and in Arizona and New Mexico. Near Rayón Sonora, inside the larger regional GPSmet array, a 30km eddy covariance flux tower triangular array, with collocated GPSmet, measures continuous energy fluxes and precipitable water vapor. Preliminary results examining the local flux contribution in the triangular array to total precipitable water vapor measured are presented. Further research is then outlined.

  2. Ionosphere Profile Estimation Using Ionosonde & GPS Data in an Inverse Refraction Calculation

    NASA Astrophysics Data System (ADS)

    Psiaki, M. L.

    2014-12-01

    A method has been developed to assimilate ionosonde virtual heights and GPS slant TEC data to estimate the parameters of a local ionosphere model, including estimates of the topside and of latitude and longitude variations. This effort seeks to better assimilate a variety of remote sensing data in order to characterize local (and eventually regional and global) ionosphere electron density profiles. The core calculations involve a forward refractive ray-tracing solution and a nonlinear optimal estimation algorithm that inverts the forward model. The ray-tracing calculations solve a nonlinear two-point boundary value problem for the curved ionosonde or GPS ray path through a parameterized electron density profile. It implements a full 3D solution that can handle the case of a tilted ionosphere. These calculations use Hamiltonian equivalents of the Appleton-Hartree magneto-plasma refraction index model. The current ionosphere parameterization is a modified Booker profile. It has been augmented to include latitude and longitude dependencies. The forward ray-tracing solution yields a given signal's group delay and beat carrier phase observables. An auxiliary set of boundary value problem solutions determine the sensitivities of the ray paths and observables with respect to the parameters of the augmented Booker profile. The nonlinear estimation algorithm compares the measured ionosonde virtual-altitude observables and GPS slant-TEC observables to the corresponding values from the forward refraction model. It uses the parameter sensitivities of the model to iteratively improve its parameter estimates in a way the reduces the residual errors between the measurements and their modeled values. This method has been applied to data from HAARP in Gakona, AK and has produced good TEC and virtual height fits. It has been extended to characterize electron density perturbations caused by HAARP heating experiments through the use of GPS slant TEC data for an LOS through the heated zone. The next planned extension of the method is to estimate the parameters of a regional ionosphere profile. The input observables will be slant TEC from an array of GPS receivers and group delay and carrier phase observables from an array of high-frequency beacons. The beacon array will function as a sort of multi-static ionosonde.

  3. Uniform, dense arrays of vertically aligned, large-diameter single-walled carbon nanotubes.

    PubMed

    Han, Zhao Jun; Ostrikov, Kostya

    2012-04-04

    Precisely controlled reactive chemical vapor synthesis of highly uniform, dense arrays of vertically aligned single-walled carbon nanotubes (SWCNTs) using tailored trilayered Fe/Al(2)O(3)/SiO(2) catalyst is demonstrated. More than 90% population of thick nanotubes (>3 nm in diameter) can be produced by tailoring the thickness and microstructure of the secondary catalyst supporting SiO(2) layer, which is commonly overlooked. The proposed model based on the atomic force microanalysis suggests that this tailoring leads to uniform and dense arrays of relatively large Fe catalyst nanoparticles on which the thick SWCNTs nucleate, while small nanotubes and amorphous carbon are effectively etched away. Our results resolve a persistent issue of selective (while avoiding multiwalled nanotubes and other carbon nanostructures) synthesis of thick vertically aligned SWCNTs whose easily switchable thickness-dependent electronic properties enable advanced applications in nanoelectronic, energy, drug delivery, and membrane technologies.

  4. Dense Array Optimization of Cross-Flow Turbines

    NASA Astrophysics Data System (ADS)

    Scherl, Isabel; Strom, Benjamin; Brunton, Steven; Polagye, Brian

    2017-11-01

    Cross-flow turbines, where the axis of rotation is perpendicular to the freestream flow, can be used to convert the kinetic energy in wind or water currents to electrical power. By taking advantage of mean and time-resolved wake structures, the optimal density of an array of cross-flow turbines has the potential for higher power output per unit area of land or sea-floor than an equivalent array of axial-flow turbines. In addition, dense arrays in tidal or river channels may be able to further elevate efficiency by exploiting flow confinement and surface proximity. In this work, a two-turbine array is optimized experimentally in a recirculating water channel. The spacing between turbines, as well as individual and coordinated turbine control strategies are optimized. Array efficiency is found to exceed the maximum efficiency for a sparse array (i.e., no interaction between turbines) for stream-wise rotor spacing of less than two diameters. Results are discussed in the context of wake measurements made behind a single rotor.

  5. New Estimates of Crustal Velocity in the Solomon Islands

    NASA Astrophysics Data System (ADS)

    Phillips, D. A.; Bevis, M.; Taylor, F. W.; Papabatu, A. K.; Basi, S.; Kendrick, E.

    2002-12-01

    We present crustal velocity estimates derived from a dense GPS network in the western Solomon Islands. Initial crustal motion estimates reported by Tregoning et al. (1998) showed convergence between the Australian Plate and the Solomon Arc at the San Cristobal Trench. Active deformation between the Pacific Plate and the Solomon Arc block was also detected. In 1997, we established a continuous GPS (CGPS) site on Guadalcanal and five rover GPS sites in the New Georgia Group. The Guadalcanal site was short-lived due to vandalism so we established a new CGPS site in the New Georgia Group in 1999. The original rover sites were re-occupied in 1999 and 2001. We have analyzed this four-year time series using GAMIT/GLOBK software. Our measurements show convergence with the Australian Plate as well as motion between the Solomon Arc and the Pacific Plate. Possible intra-arc deformation is also observed. Regional tectonic interpretations based upon our GPS measurements and other data will be discussed.

  6. GPS compound eye attitude and navigation sensor and method

    NASA Technical Reports Server (NTRS)

    Quinn, David A. (Inventor)

    2003-01-01

    The present invention is a GPS system for navigation and attitude determination, comprising a sensor array including a convex hemispherical mounting structure having a plurality of mounting surfaces, and a plurality of antennas mounted to the mounting surfaces for receiving signals from space vehicles of a GPS constellation. The present invention also includes a receiver for collecting the signals and making navigation and attitude determinations. In an alternate embodiment the present invention may include two opposing convex hemispherical mounting structures, each of the mounting structures having a plurality of mounting surfaces, and a plurality of antennas mounted to the mounting surfaces.

  7. The strong ground motion in Mexico City: array and borehole data analysis.

    NASA Astrophysics Data System (ADS)

    Roullé, A.; Chávez-García, F. J.

    2003-04-01

    Site response at Mexico City has been intensively studied for the last 15 years, since the disastrous 1985 earthquakes. After those events, more than 100 accelerographs were installed, and their data have been extremely useful in quantifying amplification and in the subsequent upgrading of the building code. However, detailed analysis of the wavefield has been hampered by the lack of absolute time in the records and the large spacing between stations in terms of dominant wavelengths. In 2001, thanks to the support of CONACYT, Mexico, a new dense accelerographic network was installed in the lake bed zone of Mexico City. The entire network, including an existing network of 3 surface and 2 borehole stations operated by CENAPRED, consists in 12 surface and 4 borehole stations (at 30, 102 and 50 meters). Each station has a 18 bits recorder and a GPS receiver so that the complete network is a 3D array with absolute time. The main objective of this array is to provide data that can help us to better understand the wavefield that propagates in Mexico City during large earthquakes. Last year, a small event of magnitude 6.0 was partially recorded by 6 of the 12 surface stations and all the borehole stations. We analysed the surface data using different array processing techniques such as f-k methods and MUSIC algorithm and the borehole ones using a cross-correlation method. For periods inferior to the site resonance period, the soft clay layer with very low propagation velocities (less than 500 m/s) and a possible multipathing rule the wavefield pattern. For the large period range, the dominant surface wave comes from the epicentral direction and propagates with a quicker velocity (more than 1500 m/s) that corresponds to the velocity of deep layers. The analysis of borehole data shows the presence of different quick wavetrains in the short period range that could correspond to the first harmonic modes of Rayleigh waves. To complete this study, four others events recorded in 1994 by a temporal dense network installed in the firm rock zone of Mexico City were analysed using the same techniques. The results confirm the presence of a diffracting zone south of the valley. These results confirm the hypothesis of a possible interaction between the soft clay layers resonance and diffracted wavetrains of Rayleigh waves to explain both the amplification and the long duration of strong ground motion in Mexico City.

  8. A comprehensive approach to monitoring volcano deformation as a window on the eruption cycle

    USGS Publications Warehouse

    Dzurisin, D.

    2003-01-01

    Since the 1980 eruption of Mount St. Helens, volcanologists have made considerable progress toward predicting eruptions on the basis of precursors that typically start a few days to several months in advance. Although accurate eruption prediction is by no means routine, it may now be possible in some cases to extend the effective warning period by anticipating the onset of short-term precursors. Three promising indicators of deep magmatic processes are (1) deep, long-period earthquakes and tremor that indicate the ascent of magma through the crust, (2) magmatic CO2 emission rate as a proxy for magma supply rate, and (3) relatively broad, generally aseismic surface uplift caused by magmatic intrusions. In the latter case it is essential to sample the deformation field thoroughly in both time and space to adequately constrain source models. Until recently, this has been nearly impossible because high-precision sensors could not be deployed in sufficient numbers, nor could extensive geodetic surveys be conducted often enough. Advances in instrumentation, interferometric synthetic aperture radar (InSAR), and telecommunications are helping to overcome these limitations. As a result, comprehensive geodetic monitoring of selected volcanoes is now feasible. A combination of InSAR, large-aperture GPS surveys, microgravity surveys, and dense arrays of continuous GPS stations, strain meters, and tiltmeters can reveal both spatial and temporal patterns of ground deformation throughout the eruption cycle. Improved geodetic monitoring of many of the world's volcanoes would be a major stride toward better understanding of magmatic processes and longer-term eruption forecasts.

  9. Real-time detection of moving objects from moving vehicles using dense stereo and optical flow

    NASA Technical Reports Server (NTRS)

    Talukder, Ashit; Matthies, Larry

    2004-01-01

    Dynamic scene perception is very important for autonomous vehicles operating around other moving vehicles and humans. Most work on real-time object tracking from moving platforms has used sparse features or assumed flat scene structures. We have recently extended a real-time, dense stereo system to include realtime, dense optical flow, enabling more comprehensive dynamic scene analysis. We describe algorithms to robustly estimate 6-DOF robot egomotion in the presence of moving objects using dense flow and dense stereo. We then use dense stereo and egomotion estimates to identify & other moving objects while the robot itself is moving. We present results showing accurate egomotion estimation and detection of moving people and vehicles under general 6-DOF motion of the robot and independently moving objects. The system runs at 18.3 Hz on a 1.4 GHz Pentium M laptop, computing 160x120 disparity maps and optical flow fields, egomotion, and moving object segmentation. We believe this is a significant step toward general unconstrained dynamic scene analysis for mobile robots, as well as for improved position estimation where GPS is unavailable.

  10. Real-time detection of moving objects from moving vehicles using dense stereo and optical flow

    NASA Technical Reports Server (NTRS)

    Talukder, Ashit; Matthies, Larry

    2004-01-01

    Dynamic scene perception is very important for autonomous vehicles operating around other moving vehicles and humans. Most work on real-time object tracking from moving platforms has used sparse features or assumed flat scene structures. We have recently extended a real-time, dense stereo system to include real-time, dense optical flow, enabling more comprehensive dynamic scene analysis. We describe algorithms to robustly estimate 6-DOF robot egomotion in the presence of moving objects using dense flow and dense stereo. We then use dense stereo and egomotion estimates to identity other moving objects while the robot itself is moving. We present results showing accurate egomotion estimation and detection of moving people and vehicles under general 6-DOF motion of the robot and independently moving objects. The system runs at 18.3 Hz on a 1.4 GHz Pentium M laptop, computing 160x120 disparity maps and optical flow fields, egomotion, and moving object segmentation. We believe this is a significant step toward general unconstrained dynamic scene analysis for mobile robots, as well as for improved position estimation where GPS is unavailable.

  11. Real-time Detection of Moving Objects from Moving Vehicles Using Dense Stereo and Optical Flow

    NASA Technical Reports Server (NTRS)

    Talukder, Ashit; Matthies, Larry

    2004-01-01

    Dynamic scene perception is very important for autonomous vehicles operating around other moving vehicles and humans. Most work on real-time object tracking from moving platforms has used sparse features or assumed flat scene structures. We have recently extended a real-time. dense stereo system to include realtime. dense optical flow, enabling more comprehensive dynamic scene analysis. We describe algorithms to robustly estimate 6-DOF robot egomotion in the presence of moving objects using dense flow and dense stereo. We then use dense stereo and egomotion estimates to identify other moving objects while the robot itself is moving. We present results showing accurate egomotion estimation and detection of moving people and vehicles under general 6DOF motion of the robot and independently moving objects. The system runs at 18.3 Hz on a 1.4 GHz Pentium M laptop. computing 160x120 disparity maps and optical flow fields, egomotion, and moving object segmentation. We believe this is a significant step toward general unconstrained dynamic scene analysis for mobile robots, as well as for improved position estimation where GPS is unavailable.

  12. Astronaut James Newman works with computers and GPS

    NASA Image and Video Library

    1993-09-20

    STS051-16-028 (12-22 Sept 1993) --- On Discovery's middeck, astronaut James H. Newman, mission specialist, works with an array of computers, including one devoted to Global Positioning System (GPS) operations, a general portable onboard computer displaying a tracking map, a portable audio data modem and another payload and general support computer. Newman was joined by four other NASA astronauts for almost ten full days in space.

  13. Scintillation-Hardened GPS Receiver

    NASA Technical Reports Server (NTRS)

    Stephens, Donald R.

    2015-01-01

    CommLargo, Inc., has developed a scintillation-hardened Global Positioning System (GPS) receiver that improves reliability for low-orbit missions and complies with NASA's Space Telecommunications Radio System (STRS) architecture standards. A software-defined radio (SDR) implementation allows a single hardware element to function as either a conventional radio or as a GPS receiver, providing backup and redundancy for platforms such as the International Space Station (ISS) and high-value remote sensing platforms. The innovation's flexible SDR implementation reduces cost, weight, and power requirements. Scintillation hardening improves mission reliability and variability. In Phase I, CommLargo refactored an open-source GPS software package with Kalman filter-based tracking loops to improve performance during scintillation and also demonstrated improved navigation during a geomagnetic storm. In Phase II, the company generated a new field-programmable gate array (FPGA)-based GPS waveform to demonstrate on NASA's Space Communication and Navigation (SCaN) test bed.

  14. Joint IRIS/PASSCAL UNAVCO Seismic and GPS Installations, Testing, and Development

    NASA Astrophysics Data System (ADS)

    Fowler, J.; Alvarez, M.; Beaudoin, B.; Jackson, M.; Feaux, K.; Ruud, O.; Andreatta, V.; Meertens, C.; Ingate, S.

    2002-12-01

    Future large-scale deformation initiatives such as EarthScope (http://www.earthscope.org/) will provide an opportunity for collocation and integration of GPS receivers and broadband and short period seismic instruments. Example integration targets include PBO backbone and cluster sites with USArray Transportable (Bigfoot) and Permanent Array. A GPS seismic integration and testing facility at the IRIS/PASSCAL Instrument Center in Socorro, NM is currently performing side-by-side testing of different seismometers, GPS receivers, communications hardware, power systems and data streaming software. One configuration tested uses an integrated VSAT data communications system and a broadband seismometer collocated with a geodetic quality GPS system. Data are routed through a VSAT hub and distributed to the UNAVCO Data Archive in Boulder and the IRIS Data Management Center in Seattle. Preliminary results indicate data availability approaching 100% with a maximum latency of 5 sec.

  15. Microchannel cross load array with dense parallel input

    DOEpatents

    Swierkowski, Stefan P.

    2004-04-06

    An architecture or layout for microchannel arrays using T or Cross (+) loading for electrophoresis or other injection and separation chemistry that are performed in microfluidic configurations. This architecture enables a very dense layout of arrays of functionally identical shaped channels and it also solves the problem of simultaneously enabling efficient parallel shapes and biasing of the input wells, waste wells, and bias wells at the input end of the separation columns. One T load architecture uses circular holes with common rows, but not columns, which allows the flow paths for each channel to be identical in shape, using multiple mirror image pieces. Another T load architecture enables the access hole array to be formed on a biaxial, collinear grid suitable for EDM micromachining (square holes), with common rows and columns.

  16. Sub-millimeter Signal Detection by GPS: Cross Validation using GIPSY and GAMIT Solutions for the Yucca Mountain Network

    NASA Astrophysics Data System (ADS)

    Hill, E.; Bennett, R. A.; Blewitt, G.; Davis, J. L.; Wernicke, B. P.

    2002-12-01

    A continuous and densely spaced GPS network has been installed at Yucca Mountain, southern Nevada, as part of the BARGEN array. It was funded by the Department of Energy to characterize strain at the proposed nuclear waste repository. Each GPS antenna is deep-mounted into solid bedrock and atmospheric effects in the desert climate of the region are relatively low, making this an ideal network to explore the potential precision of GPS. Due to the importance of obtaining an accurate and reliable set of velocity measurements at Yucca Mountain, two separate groups using entirely different methods have independently processed the GPS data from this network. The UNR group has utilized JPL's GIPSY-OASIS II, employing a precise point positioning technique, whereas the CfA group has used MIT's GAMIT software and a double-differencing approach. Comparison of the two sets of results for 28 stations and 2.8 years of data has revealed only small differences in horizontal velocity estimates, with formal errors for both groups less than 0.17 mm/yr and an RMS of residual velocity differences of 0.23 mm/yr. The two solutions are consistent with one another at the two sigma level. Relative horizontal velocities at stations within 40 km of Yucca Mountain itself are on the order of <0.5 mm/yr, with a smooth pattern of NNW shear. In order to obtain negligible differences in results both groups had to account for coseismic offsets caused by the 1999 Hector Mine earthquake. It was also necessary to perform ambiguity resolution in GIPSY. Without ambiguity resolution, the GIPSY results were significantly different to those produced by GAMIT. The data was processed in GIPSY on a line-by-line basis, relative to a station in the center of the Yucca Mountain network, to produce a regionally-referenced solution free of common mode signals. It was evident in both solutions that radome changes produce a measurable effect in the vertical component, giving an apparent vertical swell of approximately 2 mm/yr in the Yucca Mountain region if left unaccounted for. With the radome effect removed, vertical velocities within 40 km of Yucca Mountain are minimal, with an RMS of 0.56 mm/yr, which also suggests a high degree of precision. This study has not only given us a high degree of confidence in our estimated velocities for the Yucca Mountain area, but also indicates a measure of the success of both GIPSY and GAMIT. We have shown that solutions produced through these different GPS processing packages, each containing over 1 million lines of code, can produce accurate and virtually identical results at the level of <0.5 mm/yr, and have demonstrated that it is possible to confidently detect sub-millimeter per year signals over an approximately 200 km wide area using GPS.

  17. Using Network Theory to Understand Seismic Noise in Dense Arrays

    NASA Astrophysics Data System (ADS)

    Riahi, N.; Gerstoft, P.

    2015-12-01

    Dense seismic arrays offer an opportunity to study anthropogenic seismic noise sources with unprecedented detail. Man-made sources typically have high frequency, low intensity, and propagate as surface waves. As a result attenuation restricts their measurable footprint to a small subset of sensors. Medium heterogeneities can further introduce wave front perturbations that limit processing based on travel time. We demonstrate a non-parametric technique that can reliably identify very local events within the array as a function of frequency and time without using travel-times. The approach estimates the non-zero support of the array covariance matrix and then uses network analysis tools to identify clusters of sensors that are sensing a common source. We verify the method on simulated data and then apply it to the Long Beach (CA) geophone array. The method exposes a helicopter traversing the array, oil production facilities with different characteristics, and the fact that noise sources near roads tend to be around 10-20 Hz.

  18. Polarization Analysis of the September 2005 Northern Cascadia Episodic Tremor and Slip Event

    NASA Astrophysics Data System (ADS)

    Wech, A. G.; Creager, K. C.

    2006-12-01

    The region of Northern Cascadia, extending from the Olympic Mountains and Puget Sound to southern Vancouver Island, down-dip of the subduction "locked" zone has repeatedly experienced episodes of slow slip. This episodic slip, observed to take place over a period of two to several weeks, is accompanied by a seismic tremor signal. Based on the average recurrence interval of 14 months, the last episodic tremor and slip (ETS) event was expected to occur in September, 2005. Indeed, it began on September 3. In order to record this event, we deployed an array of 11 three-component seismometers on the northern side of the Olympic Peninsula augmenting Pacific Northwest Seismographic Network stations as well as the first few EarthScope BigFoot stations and Plate Boundary Observatory borehole seismometers. This seismic array was comprised of six short-period and five broadband instruments with average spacings of 500 m and 2200 m respectively. In conjunction with this Earthscope seismic deployment, we also installed a dense network of 29 temporary, continuous GPS stations across the entire Olympic Peninsula to integrate seismic and geodetic observations. Based on past geodetic observations, a dominant assumption for the source of tremor is fault-slip in the direction of subduction, which can be tested using polarization of the seismic tremor. Using waveform cross- correlation to invert for the direction of slowness, we observed the tremor signal to migrate directly under our array. As the source passed beneath the array, tremor polarization stabilized to coincide with the direction of subduction. During a four day period starting September 8, the normalized eigenvalue associated with the dominant linear polarization jumped from ~0.7 to a stable 0.9 value. Also during this time, the polarization azimuth stabilized to a value of 57 +/- 8 degrees, close to the angle of subduction (56 degrees) suggesting that the tremor is caused by slip in the direction of relative plate motion on one or more faults.

  19. Method for attitude determination using GPS carrier phase measurements from nonaligned antennas

    NASA Technical Reports Server (NTRS)

    Lightsey, Edgar Glenn (Inventor)

    1999-01-01

    A correction to a differential phase measurement used for vehicle attitude determination on nonaligned antenna arrays is determined by calculating a carrier phase angle of carrier signals received by each antenna, and correcting the measurement for the right-hand circular polarization effect on the nonaligned antennas. Accordingly, circular polarization effects of the carrier signals are removed from a nonaligned antenna array, allowing the nonaligned antenna array to be used for vehicle attitude determination.

  20. Accessing sparse arrays in parallel memories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, U.; Gajski, D.; Kuck, D.

    The concept of dense and sparse execution of arrays is introduced. Arrays themselves can be stored in a dense or sparse manner in a parallel memory with m memory modules. The paper proposes hardware for speeding up the execution of array operations of the form c(c/sub 0/+ci)=a(a/sub 0/+ai) op b(b/sub 0/+bi), where a/sub 0/, a, b/sub 0/, b, c/sub 0/, c are integer constants and i is an index variable. The hardware handles 'sparse execution', in which the operation op is not executed for every value of i. The hardware also makes provision for 'sparse storage', in which memory spacemore » is not provided for every array element. It is shown how to access array elements of the above form without conflict in an efficient way. The efficiency is obtained by using some specialised units which are basically smart memories with priority detection, one's counting or associative searching. Generalisation to multidimensional arrays is shown possible under restrictions defined in the paper. 12 references.« less

  1. Detection and Discrimination in One-Pass Using the OPTEMA Towed-Array

    DTIC Science & Technology

    2014-11-01

    pitch, roll , and yaw measurements for the OPTEMA sensor head. The IMU is co-located with the GPS receiver. OPTEMA sensor electronics include the...subtracted from subsequent data sets to isolate the anomaly response. In addition to a background subtraction, a transmitter current normalization is...the survey area. EM3DAcquire provides line following based on the sensor head GPS and IMU data. Using the line following display, the OPTEMA is

  2. Direct measurements on imaging riometer antenna array beam directivities

    NASA Astrophysics Data System (ADS)

    Wilson, A.; Nel, J. J.; Mathews, M. J.; Stoker, P. H.

    2001-01-01

    Spatial structures in enhanced ionization of the ionosphere are observed by absorption of cosmic radio waves. These structures are resolved by using theoretically derived imaging riometer antenna array directivities. These directivities are calculated from beam phasing of 64 crossed dipole elements of the 38.2-MHz antenna array at SANAE IV, Antarctica. In order to ensure that these derived directivities are representative of the actual viewing directions of the 64-beams, a radio transmitter was flown by helicopter across the antenna array. In this paper variations in the receiver signal strengths, recorded when flying across beam-viewing directions, are compared with the spatial and angular-dependent profiles of expected receiver output responses, derived theoretically from the directivities of the antenna array. A Global Positioning System (GPS) device on board the helicopter was used for positional recording. The derived and recorded profiles did coincide occasionally, but at other instances relative displacements and differences in magnitude of responses were observed. These displacements and differences could be attributed to degradation in position fixes imposed deliberately by selective availability on the GPS system. Excellent coincidence for a number of beam crossings proved that the viewing directions are accurate in all the beam directions, since the multi-dimensional Butler matrix produces 64 simultaneous beams.

  3. The Commercial TREMOR Strong-Motion Seismograph

    NASA Astrophysics Data System (ADS)

    Evans, J. R.; Hamstra, R. H.; Kuendig, C.; Camina, P.

    2001-12-01

    The emergence of major seismological and earthquake-engineering problems requiring large, dense instrument arrays led several of us to investigate alternate solutions. Evans and Rogers (USGS Open File Report 95-555, 1995) and Evans (USGS Open File Report 98-109, 1998) demonstrated the efficacy of low-cost robust silicon accelerometers in strong-motion seismology, making possible a vast increase in the spatial density of such arrays. The 1998 design displays true 16-bit performance and excellent robustness and linearity---13 of these prototype near-real-time instruments are deployed in Oakland, California, and have recorded data from seven small events (up to 5.7 %g). Since this technology is a radical departure from past efforts, it was necessary for the USGS to develop the sensor and demonstrate its efficacy thoroughly. Since it is neither practical nor appropriate for the USGS to produce instrumentation beyond a demonstration phase, the US Geological Survey and GeoSIG Ltd undertook a collaborative effort (a ``CRAD'') to commercialize the new technology. This effort has resulted in a fully temperature-compensated 16-bit system, the GeoSIG GT-316, announced in April, 2001, combining the ICS-3028 TM-based USGS sensor, temperature compensation technique, and peak ground velocity (PGV) computation with a highly customized 16-bit GeoSIG recorder. The price has not been set but is likely to be around \\2000 in large quantities. The result is a near-real-time instrument telemetering peak ground acceleration (PGA) and PGV about 90 s after onset of the P wave, then minutes later transmitting the waveform. The receiving software, ``HomeBase()'', also computes spectral acceleration, S_{a}. PGA, PGV, S_{a}, and waveforms are forwarded immediately by HomeBase() for ShakeMap generation and other uses. Shaking metrics from the prototypes in Oakland are consistently among the first to arrive for the northern California ShakeMap. For telemetry we use a low-cost always-connected cell-phone-based Internet technology (CDPD), but any RS-232 connected telemetry system is a viable candidate (spread spectrum, CDMA, GSM, POT). The instruments can be synchronized via CDPD to a few tenths of a second, or to full precision with an optional GPS receiver. Sensor RMS noise is 33 \\mathrm \\mu g over the band 0.1 to 35 Hz, 11 \\mathrm \\mu g$ over the band 0.1 to 1.0 Hz; the sensor is extremely linear (far better than 1% of full scale); temperature compensation is to better than 1% of full scale. TREMOR-class instruments are intended to fill the niche of high spatial resolution with an economical low-maintenance device, while conventional instruments continue to pursue maximum amplitude resolution. The TREMOR instrument also has applications in areas where budget or access limitations require lower purchase, installation, or maintenance cost (commercial ANSS partners, remote sites, on-call aftershock arrays, extremely dense arrays, and organizations with limited budgets). However, we primarily envision large, mixed arrays of conventional and TREMOR instruments in urban areas, the former providing better early information from small events and the TREMOR instruments guaranteeing better spatial resolution and more near-field recording of large events. Together, they would meet the ANSS goal of dense near-real-time urban monitoring and the collection of requisite data for risk mitigation.

  4. Deformation analysis of Aceh April 11{sup th} 2012 earthquake using GPS observation data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maulida, Putra, E-mail: putra.maulida@gmail.com; Meilano, Irwan; Sarsito, Dina A.

    This research tries to estimate the co-seismic deformation of intraplate earthquake occurred off northern Sumatra coast which is about 100-200 km southwest of Sumatrasubduction zone. The earthquake mechanism was strike-slip with magnitude 8.6 and triggering aftershock with magnitude 8.2 two hours later. We estimated the co-seismic deformation by using the GPS (Global Positioning System) continuous data along western Sumatra coast. The GPS observation derived from Sumatran GPS Array (SuGAr) and Geospatial Information Agency (BIG). For data processing we used GPS Analyze at Massachusetts Institute of Technology (GAMIT) software and Global Kalman Filter (GLOBK) to estimate the co-seismic deformation. From themore » GPS daily solution, the result shows that the earthquake caused displacement for the GPS stations in Sumatra. GPS stations in northern Sumatra showed the displacement to the northeast with the average displacement was 15 cm. The biggest displacement was found at station BSIM which is located at Simeuleu Island off north west Sumatra coast. GPS station in middle part of Sumatra, the displacement was northwest. The earthquake also caused subsidence for stations in northern Sumatra, but from the time series there was not sign of subsidence was found at middle part of Sumatra. In addition, the effect of the earthquake was worldwide and affected the other GPS Stations around Hindia oceanic.« less

  5. Retrieving Coherent Receiver Function Images with Dense Arrays

    NASA Astrophysics Data System (ADS)

    Zhong, M.; Zhan, Z.

    2016-12-01

    Receiver functions highlight converted phases (e.g., Ps, PpPs, sP) and have been widely used to study seismic interfaces. With a dense array, receiver functions (RFs) at multiple stations form a RF image that can provide more robust/detailed constraints. However, due to noise in data, non-uniqueness of deconvolution, and local structures that cannot be detected across neighboring stations, traditional RF images are often noisy and hard to interpret. Previous attempts to enhance coherence by stacking RFs from multiple events or post-filtering the RF images have not produced satisfactory improvements. Here, we propose a new method to retrieve coherent RF images with dense arrays. We take advantage of the waveform coherency at neighboring stations and invert for a small number of coherent arrivals for their RFs. The new RF images contain only the coherent arrivals required to fit data well. Synthetic tests and preliminary applications on real data demonstrate that the new RF images are easier to interpret and improve our ability to infer Earth structures using receiver functions.

  6. A Generic and Efficient E-field Parallel Imaging Correlator for Next-Generation Radio Telescopes

    NASA Astrophysics Data System (ADS)

    Thyagarajan, Nithyanandan; Beardsley, Adam P.; Bowman, Judd D.; Morales, Miguel F.

    2017-05-01

    Modern radio telescopes are favouring densely packed array layouts with large numbers of antennas (NA ≳ 1000). Since the complexity of traditional correlators scales as O(N_A^2), there will be a steep cost for realizing the full imaging potential of these powerful instruments. Through our generic and efficient E-field Parallel Imaging Correlator (epic), we present the first software demonstration of a generalized direct imaging algorithm, namely the Modular Optimal Frequency Fourier imager. Not only does it bring down the cost for dense layouts to O(N_A log _2N_A) but can also image from irregular layouts and heterogeneous arrays of antennas. epic is highly modular, parallelizable, implemented in object-oriented python, and publicly available. We have verified the images produced to be equivalent to those from traditional techniques to within a precision set by gridding coarseness. We have also validated our implementation on data observed with the Long Wavelength Array (LWA1). We provide a detailed framework for imaging with heterogeneous arrays and show that epic robustly estimates the input sky model for such arrays. Antenna layouts with dense filling factors consisting of a large number of antennas such as LWA, the Square Kilometre Array, Hydrogen Epoch of Reionization Array, and Canadian Hydrogen Intensity Mapping Experiment will gain significant computational advantage by deploying an optimized version of epic. The algorithm is a strong candidate for instruments targeting transient searches of fast radio bursts as well as planetary and exoplanetary phenomena due to the availability of high-speed calibrated time-domain images and low output bandwidth relative to visibility-based systems.

  7. A Performance Improvement Method for Low-Cost Land Vehicle GPS/MEMS-INS Attitude Determination

    PubMed Central

    Cong, Li; Li, Ercui; Qin, Honglei; Ling, Keck Voon; Xue, Rui

    2015-01-01

    Global positioning system (GPS) technology is well suited for attitude determination. However, in land vehicle application, low-cost single frequency GPS receivers which have low measurement quality are often used, and external factors such as multipath and low satellite visibility in the densely built-up urban environment further degrade the quality of the GPS measurements. Due to the low-quality receivers used and the challenging urban environment, the success rate of the single epoch ambiguity resolution for dynamic attitude determination is usually quite low. In this paper, a micro-electro-mechanical system (MEMS)—inertial navigation system (INS)-aided ambiguity resolution method is proposed to improve the GPS attitude determination performance, which is particularly suitable for land vehicle attitude determination. First, the INS calculated baseline vector is augmented with the GPS carrier phase and code measurements. This improves the ambiguity dilution of precision (ADOP), resulting in better quality of the unconstrained float solution. Second, the undesirable float solutions caused by large measurement errors are further filtered and replaced using the INS-aided ambiguity function method (AFM). The fixed solutions are then obtained by the constrained least squares ambiguity decorrelation (CLAMBDA) algorithm. Finally, the GPS/MEMS-INS integration is realized by the use of a Kalman filter. Theoretical analysis of the ADOP is given and experimental results demonstrate that our proposed method can significantly improve the quality of the float ambiguity solution, leading to high success rate and better accuracy of attitude determination. PMID:25760057

  8. Using GPS TEC measurements to probe ionospheric spatial spectra at mid-latitudes

    NASA Astrophysics Data System (ADS)

    Lay, E. H.; Parker, P. A.; Light, M. E.; Carrano, C. S.; Debchoudhury, S.; Haaser, R. A.

    2017-12-01

    The physics of how random ionospheric structure causes signal degradation is well understood as weak forward scattering through an effective diffraction grating created by plasma irregularities in the ionosphere. However, the spatial scale spectrum of those irregularities required for input into scintillation models and models of traveling ionospheric disturbances is poorly characterized, particularly at the kilometer to tens of kilometer scale lengths important for very-high-frequency (VHF) scintillation prediction. Furthermore, the majority of characterization studies have been performed in low-latitude or high-latitude regions where geomagnetic activity dominates the physical processes. At mid-latitudes, tropospheric and geomagnetic phenomena compete in disturbing the ionosphere, and it is not well understood how these multiple sources affect the drivers that influence the spatial spectrum. In this study, we are interested in mid-latitude electron density irregularities on the order of 10s of kilometers that would affect VHF signals. Data from the GPS networks Japan GEONET and the Plate Boundary Observatory (PBO, UNAVCO) in the western United States were analyzed for this study. Japan GEONET is a dense network of GPS receivers (station spacing of tens of km), with fairly evenly spaced positions over all of Japan. The PBO, on the other hand, has several pockets of extremely dense coverage (station spacing within a few km), but is less dense on average. We analyze a day with a large solar storm (2015/03/17, St. Patrick's Day Storm) to allow high scintillation potential at mid-latitudes, a day with low geomagnetic activity and low thunderstorm activity (2016/01/31), and a day with low geomagnetic activity and high thunderstorm activity (2015/08/02). We then perform two-dimensional spatial analyses on the TEC data from these two networks on scale lengths of 20 to 200 km to infer the spatial scale spectra.

  9. Deployment of a seismic array for volcano monitoring during the ongoing submarine eruption at El Hierro, Canary Islands

    NASA Astrophysics Data System (ADS)

    Abella, R.; Almendros, J.; Carmona, E.; Martin, R.

    2012-04-01

    On 17 July 2011 there was an important increase of the seismic activity at El Hierro (Canary Islands, Spain). This increase was detected by the Volcano Monitoring Network (Spanish national seismic network) run by the Instituto Geográfico Nacional (IGN). As a consequence, the IGN immediately deployed a dense, complete monitoring network that included seismometers, GPS stations, geochemical equipment, magnetometers, and gravity meters. During the first three months of activity, the seismic network recorded over ten thousand volcano-tectonic earthquakes, with a maximum magnitude of 4.6. On 10 October 2011 an intense volcanic tremor started. It was a monochromatic signal, with variable amplitude and frequency content centered at about 1-2 Hz. The tremor onset was correlated with the initial stages of the submarine eruption that occurred from a vent located south of El Hierro island, near the village of La Restinga. At that point the IGN, in collaboration with the Instituto Andaluz de Geofísica, deployed a seismic array intended for volcanic tremor monitoring and analysis. The seismic array is located about 7 km NW of the submarine vent. It has a 12-channel, 24-bit data acquisition system sampling each channel at 100 sps. The array is composed by 1 three-component and 9 vertical-component seismometers, distributed in a flat area with an aperture of 360 m. The data provided by the seismic array are going to be processed using two different approaches: (1) near-real-time, to produce information that can be useful in the management of the volcanic crisis; and (2) detailed investigations, to study the volcanic tremor characteristics and relate them to the eruption dynamics. At this stage we are mostly dedicated to produce fast, near-real-time estimates. Preliminary results have been obtained using the maximum average cross-correlation method. They indicate that the tremor wavefronts are highly coherent among array stations and propagate across the seismic array with an apparent slowness of ~0.8 s/km and a back-azimuth of 135°N. These estimates have remained approximately constant since the onset of volcanic tremor, indicating a unique source and thus a single, continuing eruptive center.

  10. Constraining slip distributions and onset of shallow slow slip in New Zealand by joint inversions of onshore and offshore geodetic data.

    NASA Astrophysics Data System (ADS)

    Yohler, R. M.; Bartlow, N. M.; Wallace, L. M.; Williams, C. A.

    2017-12-01

    Investigation of slow slip events (SSEs) has become a useful tool for understanding plate boundary fault mechanics in subduction zones where the largest earthquakes occur. An area of specific importance is along the Hikurangi subduction zone in New Zealand, where repeating, known offshore and onshore slow slip patches have been identified since 2002 from the GeoNet cGPS array. Most models of offshore SSEs in New Zealand and elsewhere are solely constrained by these land-based cGPS arrays. This has led to models with poor resolution out near the trench of the subduction zone, where tsunami hazards are greatest. However, a year-long deployment of seafloor pressure sensors (titled "Hikurangi Ocean Bottom Investigation of Tremor and Slow Slip" (HOBITSS)) took place from mid-2014 to mid-2015 offshore of Gisborne, New Zealand and the northern Hikurangi subduction margin. In September 2014, a large SSE was recorded by the HOBITSS and onshore cGPS arrays which allowed for a slip model with better resolution near the trench [Wallace et al., Science, 2016]. Here we investigate the static and time-dependent slip distribution and propagation during the 2014 SSE by joint inversion of the HOBITSS ocean bottom pressure data and onshore cGPS data using the Network Inversion Filter (NIF). This inversion also incorporates more realistic elastic properties by generating Greens functions using the PyLith finite element code with material properties inferred from the New-Zealand wide seismic velocity model. The addition of the APG data and realistic elastic properties not only increased the slip amplitude during the SSE, but also suggests that the onset of the SSE is several days earlier than models predicted by only cGPS. Moreover, the addition of the APG data increased model resolution directly over the SSE by several cm. Additionally, we will also test ranges of possible slip distributions by using the moment bounding technique described in Johnson et al. 1994. While the NIF relies on smoothing parameters for a best fit model, this technique is free from smoothing constraints and will ultimately aid in understanding the range of SSE slip magnitudes that can be fit by the GPS and APG data.

  11. Fault model of the M7.1 intraslab earthquake on April 7 following the 2011 Great Tohoku earthquake (M9.0) estimated by the dense GPS network data

    NASA Astrophysics Data System (ADS)

    Miura, S.; Ohta, Y.; Ohzono, M.; Kita, S.; Iinuma, T.; Demachi, T.; Tachibana, K.; Nakayama, T.; Hirahara, S.; Suzuki, S.; Sato, T.; Uchida, N.; Hasegawa, A.; Umino, N.

    2011-12-01

    We propose a source fault model of the large intraslab earthquake with M7.1 deduced from a dense GPS network. The coseismic displacements obtained by GPS data analysis clearly show the spatial pattern specific to intraslab earthquakes not only in the horizontal components but also the vertical ones. A rectangular fault with uniform slip was estimated by a non-linear inversion approach. The results indicate that the simple rectangular fault model can explain the overall features of the observations. The amount of moment released is equivalent to Mw 7.17. The hypocenter depth of the main shock estimated by the Japan Meteorological Agency is slightly deeper than the neutral plane between down-dip compression (DC) and down-dip extension (DE) stress zones of the double-planed seismic zone. This suggests that the depth of the neutral plane was deepened by the huge slip of the 2011 M9.0 Tohoku earthquake, and the rupture of the thrust M7.1 earthquake was initiated at that depth, although more investigations are required to confirm this idea. The estimated fault plane has an angle of ~60 degrees from the surface of subducting Pacific plate. It is consistent with the hypothesis that intraslab earthquakes are thought to be reactivation of the preexisting hydrated weak zones made in bending process of oceanic plates around outer-rise regions.

  12. Development of GPS/A Seafloor Geodetic Network Along Japan Trench and Onset of Its Operation

    NASA Astrophysics Data System (ADS)

    Kido, M.; Fujimoto, H.; Osada, Y.; Ohta, Y.; Yamamoto, J.; Tadokoro, K.; Okuda, T.; Watanabe, T.; Nagai, S.; Kenji, Y.

    2012-12-01

    The Tohoku-oki earthquake in 2011 revealed that an M9-class giant earthquake could occur even in the old subduction zone and that coseismic slip can reach its frontal wedge, where we considered no significant stress had been accumulated in. One of the leading figure of such finding is in situ seafloor geodetic measurement, such as GPS/A technique for horizontal displacement and pressure gauge for vertical displacement. Japan Coast Guard and Japanese university group had developed several GPS/A sites near the source region of the Tohoku-oki earthquake and detected quite large coseismic movements over 20 m in there. Displacement vectors observed these sites showed systematic variation, i.e., mainly confined in the off-Miyagi area and getting larger near the trench. However, subsequent post-seismic deformation shows inexplicable distribution. In order to elucidate this complex feature, MEXT Japan has decided to construct dense and widely-extended GPS/A network along Japan trench, including deep area (~6000m). We, Tohoku and Nagoya universities, have firstly developed high-powered seafloor transponders with an omnidirectional acoustic unit that works at 6000 m deep ocean and enable acoustic ranging over 13 km slant length. In addition, using high-energy density battery, its lifetime is expected 10 years with normal operation. Secondly, we examined the optimal distribution of GPS/A sites forming a network, taken pre-existing sites into consideration. The new network consists of 20 sites (roughly four transponders at a single site and 86 transponders in total). The distribution is dense near the area of complex post-seismic deformation and extended over 400 km to cover the adjacent area of the source region, in where induced earthquake may be expected. The largest obstacle to draw network plan is seafloor topography. Because a GPS/A site is a seafloor benchmark, its installation must be on flat and locally stable spot. Since a single GPS/A site consists of three or more transponders in an area extending roughly the same dimension of its depth, flat spot is quite limited especially near the trench. The positions of the 20 sites were carefully determined using a high-definition bathymetry map. We already have constructed two sites, one of which is 5500 m depth, and successfully obtained acoustic data. In September, we will install rest of the sites (18 sites) and begin initial campaign survey. The second campaign is planned in November. We will introduce details of the network and report updated result in the talk.

  13. Ultrahigh density alignment of carbon nanotube arrays by dielectrophoresis.

    PubMed

    Shekhar, Shashank; Stokes, Paul; Khondaker, Saiful I

    2011-03-22

    We report ultrahigh density assembly of aligned single-walled carbon nanotube (SWNT) two-dimensional arrays via AC dielectrophoresis using high-quality surfactant-free and stable SWNT solutions. After optimization of frequency and trapping time, we can reproducibly control the linear density of the SWNT between prefabricated electrodes from 0.5 SWNT/μm to more than 30 SWNT/μm by tuning the concentration of the nanotubes in the solution. Our maximum density of 30 SWNT/μm is the highest for aligned arrays via any solution processing technique reported so far. Further increase of SWNT concentration results in a dense array with multiple layers. We discuss how the orientation and density of the nanotubes vary with concentrations and channel lengths. Electrical measurement data show that the densely packed aligned arrays have low sheet resistances. Selective removal of metallic SWNTs via controlled electrical breakdown produced field-effect transistors with high current on-off ratio. Ultrahigh density alignment reported here will have important implications in fabricating high-quality devices for digital and analog electronics.

  14. Dynamic Deformation of ETNA Volcano Observed by GPS and SAR Interferometry

    NASA Technical Reports Server (NTRS)

    Lundgren, P.; Rosen, P.; Webb, F.; Tesauro, M.; Lanari, R.; Sansosi, E.; Puglisi, G.; Bonforte, A.; Coltelli, M.

    1999-01-01

    Synthetic aperture radar (SAR) interferometry and GPS have shown that during the quiescent period from 1993-1995 Mt. Etna volcano, Italy, inflated. Since the initiation of eruptive activity since late 1995 the deformation has been more contentious. We will explore the detailed deformation during the period from 1995-1996 spanning the late stages of inflation and the beginning of eruptive activity. We use SAR interferometry and GPS data to measure the volcano deformation. We invert the observed deformation for both simple point source. le crack elastic sources or if warranted for a spheroidal pressure So In particular, we will examine the evolution of the inflation and the transition to a lesser deflation observed at the end of 1995. We use ERS-1/2 SAR data from both ascending and descending passes to allow for dense temporal 'sampling of the deformation and to allow us to critically assess atmospheric noise. Preliminary results from interferometry suggest that the inflation rate accelerated prior to resumption of activity in 1995, while GPS data suggest a more steady inflation with some fluctuation following the start of activity. This study will compare and contrast the interferometric SAR and GPS results and will address the strengths and weaknesses of each technique towards volcano deformation studies.

  15. A new local GPS water vapor tomography imaging technique using spectral functions w.r.t space and time: initial tests and results for the Tahiti Island case (French Polynesia)

    NASA Astrophysics Data System (ADS)

    Sichoix, L.; Barriot, J.; Fadil, A.; Ortega, P.

    2009-12-01

    In this study, we present the initial tests and validation results performed on a newly-developed GPS water vapor tomography inversion code based on a spectral approach tailored to coarse networks of GPS stations. Our work is mainly motivated by the lack of dense GPS coverage in Tahiti Island. Firstly, we use the GAMIT software to estimate the tropospheric slant wet delays (SWD) from a single GPS ground-based receiver to each visible satellite. SWD values are our model input. Secondly, the refractivity along ray paths is written as 3D Zernike radial and spherical harmonic series as well as sinusoidal time series and then inserted into the Radon transform linking slant delays and refractivity. This approach is in contrast with usual previous approaches where the atmosphere is divided into voxels (3D pixels). These approaches may exhibit instabilities as a voxel is crossed by more than one ray. Thirdly, we overcome the ill-posedness of the Radon transform by adding a priori constraints in the form of a full covariance matrix of the atmospheric refractivity taking into account the transport and mixing processes in the atmosphere.

  16. The ionospheric disturbances caused by the explosion of the Mount Tongariro volcano in 2012

    NASA Astrophysics Data System (ADS)

    Po Cheng, C.; Lin, C.; Chang, L. C.; Chen, C.

    2013-12-01

    Volcanic explosions are known to trigger acoustic waves that propagate in the atmosphere at infrasonic speeds. At ionospheric heights, coupling between neutral particles and free electrons induces variations of electron density detectable by dual-frequency Global Positioning System (GPS) measurements. In November 21 2012, the explosion of the Mount Tongariro volcano in New Zealand occurred at UT 0:20, when there were active synoptic waves passing over north New Zealand. The New Zealand dense array of Global Positioning System recorded ionospheric disturbances reflected in total electron content (TEC) ~10 minutes after the eruption, and the concentric spread of disturbances also can be observed this day. The velocity of disturbances varies from 130m/s to 700m/s. A spectral analysis of the rTEC time series shows two peaks. The larger amplitudes are centered at 800 and 1500 seconds, in the frequency range of acoustic waves and gravity waves. On the other hand, to model the rTEC perturbation created by the acoustic wave caused by the explosive eruption of the Mount Tongariro, we perform acoustic ray tracing and obtain sound speed at subionospheric height in a horizontally stratified atmosphere model (MSIS-E-90). The result show that the velocity of the disturbances is slower than sound speed range. Through using the MSIS-E-90 Atmosphere Model and Horizontal Wind Model(HWM), we obtain the vertical wave number and indicate that the gravity waves could propagate at subionospheric height for this event, suggesting that the ionospheric disturbances caused by the explosive eruption is gravity-wave type. This work demonstrates that GPS are useful for near real-time ionospheric disturbances monitoring, and help to understand the mechanism of the gravity wave caused by volcano eruption in the future.

  17. Inferred Rheology and Petrology of Southern California and Northwest Mexico Mantle from Postseismic Deformation following the 2010 El Mayor-Cucapah Earthquake

    NASA Astrophysics Data System (ADS)

    Freed, A. M.; Dickinson, H.; Huang, M. H.; Fielding, E. J.; Burgmann, R.; Andronicos, C.

    2015-12-01

    The Mw 7.2 El Mayor-Cucapah (EMC) earthquake ruptured a ~120 km long series of faults striking northwest from the Gulf of California to the Sierra Cucapah. Five years after the EMC event, a dense network of GPS stations in southern California and a sparse array of sites installed after the earthquake in northern Mexico measure ongoing surface deformation as coseismic stresses relax. We use 3D finite element models of seismically inferred crustal and mantle structure with earthquake slip constrained by GPS, InSAR range change and SAR and SPOT image sub-pixel offset measurements to infer the rheologic structure of the region. Model complexity, including 3D Moho structure and distinct geologic regions such as the Peninsular Ranges and Salton Trough, enable us to explore vertical and lateral heterogeneities of crustal and mantle rheology. We find that postseismic displacements can be explained by relaxation of a laterally varying, stratified rheologic structure controlled by temperature and crustal thickness. In the Salton Trough region, particularly large postseismic displacements require a relatively weak mantle column that weakens with depth, consistent with a strong but thin (22 km thick) crust and high regional temperatures. In contrast, beneath the neighboring Peninsular Ranges a strong, thick (up to 35 km) crust and cooler temperatures lead to a rheologically stronger mantle column. Thus, we find that the inferred rheologic structure corresponds with observed seismic structure and thermal variations. Significant afterslip is not required to explain postseismic displacements, but cannot be ruled out. Combined with isochemical phase diagrams, our results enable us to go beyond rheologic structure and infer some basic properties about the regional mantle, including composition, water content, and the degree of partial melting.

  18. Towards GPS orbit accuracy of tens of centimeters

    NASA Technical Reports Server (NTRS)

    Lichten, Stephen M.

    1990-01-01

    In this paper, CASA Uno orbit results are presented utilizing data from four continents. Refinements in orbit modeling, combined with the availability of a worldwide tracking network and the dense distribution of tracking sites in North and South America, have improved orbit determination precision to about 60 cm (per component) for four of the seven GPS satellites tracked in CASA Uno. The orbit results are consistent with California baseline repeatabilities, which are at the few mm level in horizontal and length, and 1-2 cm in the vertical. Baseline comparisons with VLBI provide a measure of orbit accuracy, showing sub-cm agreement in length and 1.5 cm agreement in the horizontal.

  19. Seismicity and Fault Zone Structure Near the Xinfengjiang Water Reservoir, Guangdong, China

    NASA Astrophysics Data System (ADS)

    Yang, H.; Sun, X.; He, L.; Wang, S.

    2015-12-01

    Xingfengjiang Water Reservoir (XWR) was built in 1958 and the first impoundment was conducted in 1959. Immediately following the reservoir impoundment, a series of earthquakes occurred in the vicinity of the XWR, including the 1962 M6.1 earthquake that occurred ~1 km next to the dam. Numerous small earthquakes take place in this region presently, making it one of the most active seismic zones in Guangdong. To investigate the present seismicity and associated fault zone structure, we deployed a temporary seismic network, including a dense linear array across the Ren-Zi-Shi fault southwest to the reservoir. The temporary network is consisted of 42 stations that are operated in the field for more than one month. Because of the mountainous terrain, it is impossible to deploy broadband sensors. Here we use DDV-5 seismometer with a central frequency of 120Hz-5s that is independent on external GPS and battery. During our deployment, numerous earthquakes were recorded. Preliminary results of travel time analysis have shown the characteristic of low velocity fault zone. More detailed analysis, including relocation of earthquakes, ambient noise cross correlation, and modeling body waves, will be presented.

  20. GPS Water Vapor Tomography Based on Accurate Estimations of the GPS Tropospheric Parameters

    NASA Astrophysics Data System (ADS)

    Champollion, C.; Masson, F.; Bock, O.; Bouin, M.; Walpersdorf, A.; Doerflinger, E.; van Baelen, J.; Brenot, H.

    2003-12-01

    The Global Positioning System (GPS) is now a common technique for the retrieval of zenithal integrated water vapor (IWV). Further applications in meteorology need also slant integrated water vapor (SIWV) which allow to precisely define the high variability of tropospheric water vapor at different temporal and spatial scales. Only precise estimations of IWV and horizontal gradients allow the estimation of accurate SIWV. We present studies developed to improve the estimation of tropospheric water vapor from GPS data. Results are obtained from several field experiments (MAP, ESCOMPTE, OHM-CV, IHOP, .). First IWV are estimated using different GPS processing strategies and results are compared to radiosondes. The role of the reference frame and the a priori constraints on the coordinates of the fiducial and local stations is generally underestimated. It seems to be of first order in the estimation of the IWV. Second we validate the estimated horizontal gradients comparing zenith delay gradients and single site gradients. IWV, gradients and post-fit residuals are used to construct slant integrated water delays. Validation of the SIWV is under progress comparing GPS SIWV, Lidar measurements and high resolution meteorological models (Meso-NH). A careful analysis of the post-fit residuals is needed to separate tropospheric signal from multipaths. The slant tropospheric delays are used to study the 3D heterogeneity of the troposphere. We develop a tomographic software to model the three-dimensional distribution of the tropospheric water vapor from GPS data. The software is applied to the ESCOMPTE field experiment, a dense network of 17 dual frequency GPS receivers operated in southern France. Three inversions have been successfully compared to three successive radiosonde launches. Good resolution is obtained up to heights of 3000 m.

  1. Tectonic movements along the Anegada Passage derived from GPS Observations (2008-2017)

    NASA Astrophysics Data System (ADS)

    Liu, H.; Wang, G.

    2017-12-01

    The Anegada Passage system, mainly includes the Virgin Islands Basin (VIB), Anegada Gap, and the Sombrero Basin, are located within the tectonically complex plate boundary zone between the North America and Caribbean plates. It separated the Puerto Rico and Northern Virgin Islands (PRNVI) block from St. Croix and Anguilla. Long-term seismic observations indicated that this region still faces high risk from earthquakes. This study used current GPS geodesy infrastructure in the Northeastern Caribbean region, which includes high densely GPS stations on PRNVI block and northern Lesser Antilles and a stable PRNVI reference frame (SPRNVIRF). Current GPS geodesy infrastructure in the PRVI region makes it possible to precisely delineate minor tectonic motions (1 to 2 mm/year) within the northeastern Caribbean region. The carrier phase Double-Difference (DD) and Precise Point Positioning (PPP) post-processing methods are both used to processing GPS data. Over ten years of GPS observations indicate that the St. Croix Island is moving away from the PRVI block toward southeast with a velocity of 1.8 ± 0.2 mm/year; there is not considerable relative motions between the Saint Martin Island and the PRVI block. The Saint Martin Island is located at the south side of the Anegada Gap. The GPS and seismic observations along the two sides of the Anegada passage suggest that the west segment (VIB) of the passage retains active, while the east segment is presently inactive. The Virgin Islands basin presently experiences left-lateral motion in a nearly east-west direction with a velocity of about 1.2 mm/year and an extension in a nearly north-south direction with a velocity of about 1.3 mm/year. The quantitative measurements derived from GPS observations would improve seismic hazard assessment in the Anegada Passage region.

  2. GPS and GLONASS 1 Hz phase rate observations to study high latitudes ionospheric irregularities

    NASA Astrophysics Data System (ADS)

    Ghoddousi-Fard, R.; Prikryl, P.; Jacobsen, K. S.; Lahaye, F.

    2016-12-01

    It has been shown that dual frequency 1 Hz GPS phase rate observations can serve as a promising proxy for phase scintillation over high latitudes (see e.g. Ghoddousi-Fard et al., 2013, 2015). However signals from other GNSS constellations including GLONASS have been available and widely used for positioning applications. Usage of additional GNSS constellations should allow improved sampling of the ionosphere, a critical advantage to study small scale ionospheric irregularities over high latitudes. Migration of global GPS networks to multi-GNSS are now underway such as International GNSS Service (IGS) Multi-GNSS Experiment (MGEX) and other national, public and private sector networks. In this presentation, GPS and GLONASS observations from high latitude MGEX stations as well as a dense regional network over Norway are used to map high latitude ionospheric irregularities by means of standard deviation of phase rate variations. Occurrence of GPS phase irregularities as a function of magnetic latitude and local time are compared with those from both GPS and GLONASS. By including 1 Hz GLONASS measurements at about 185 stations over Norway during geomagnetic storm of March 17-18, 2015, this study complements a recently submitted paper that examined the GPS phase scintillation occurrence in the context of solar wind coupling to the magnetosphere-ionosphere system and auroral electrojet currents (Prikryl et al., 2016). Ghoddousi-Fard et al. (2013). GPS phase difference variation statistics: A comparison between phase scintillation index and proxy indices. Adv. Space Res., 52, 1397-1405, doi: 10.1016/j.asr.2013.06.035. Ghoddousi-Fard et al. (2015). Analysis of GPS phase rate variations in response to geomagnetic field perturbations over the Canadian auroral region. Adv. Space Res., 55, 1372-1381, doi: 10.1016/j.asr.2014.12.021. Prikryl et al. (2016). GPS phase scintillation at high latitudes during the geomagnetic storm of March 17-18, 2015, submitted to J. Geophys. Res. ESS contribution number: 20160112

  3. Placebo use in the UK: a qualitative study exploring GPs' views on placebo effects in clinical practice.

    PubMed

    Bishop, Felicity L; Howick, Jeremy; Heneghan, Carl; Stevens, Sarah; Hobbs, F D Richard; Lewith, George

    2014-06-01

    Surveys show GPs use placebos in clinical practice and reported prevalence rates vary widely. To explore GPs' perspectives on clinical uses of placebos. A web-based survey of 783 UK GPs' use of placebos in clinical practice. Qualitative descriptive analysis of written responses ('comments') to three open-ended questions. Comments were classified into three categories: (i) defining placebos and their effects in general practice; (ii) ethical, societal and regulatory issues faced by doctors and (iii) reasons why a doctor might use placebos and placebo effects in clinical practice. GPs typically defined placebos as lacking something, be that adverse or beneficial effects, known mechanism of action and/or scientific evidence. Some GPs defined placebos positively as having potential to benefit patients, primarily through psychological mechanisms. GPs described a broad array of possible harms and benefits of placebo prescribing, reflecting fundamental bioethical principles, at the level of the individual, the doctor-patient relationship, the National Health Service and society. While some GPs were adamant that there was no place for placebos in clinical practice, others focused on the clinically beneficial effects of placebos in primary care. This study has elucidated specific costs, benefits and ethical barriers to placebo use as perceived by a large sample of UK GPs. Stand-alone qualitative work would provide a more in-depth understanding of GPs' views. Continuing education and professional guidance could help GPs update and contextualize their understanding of placebos and their clinical effects. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Vertically Aligned Co9 S8 Nanotube Arrays onto Graphene Papers as High-Performance Flexible Electrodes for Supercapacitors.

    PubMed

    Xiong, Dongbin; Li, Xifei; Bai, Zhimin; Li, Jianwei; Han, Yan; Li, Dejun

    2018-02-16

    Paper-like electrodes are emerging as a new category of advanced electrodes for flexible supercapacitors (SCs). Graphene, a promising two-dimensional material with high conductivity, can be easily processed into papers. Here, we report a rational design of flexible architecture with Co 9 S 8 nanotube arrays (NAs) grown onto graphene paper (GP) via a facile two-step hydrothermal method. When employed as flexible free-standing electrode for SCs, the proposed architectured Co 9 S 8 /GPs exhibits superior electrochemical performance with ultrahigh capacitance and outstanding rate capability (469 F g -1 at 10 A g -1 ). These results demonstrate that the new nanostructured Co 9 S 8 /GPs can be potentially applied in high performance flexible supercapacitors. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Development of a UAV-mounted Light Source for Fluorescence Detector Calibration of the Telescope Array Experiment

    NASA Astrophysics Data System (ADS)

    Hayashi, Motoki; Tameda, Yuichiro; Tomida, Takayuki; Tsunesada, Yoshiki; Seki, Terutsugu; Saito, Yoshinori

    We are developing a unmanned aerial vehicle (UAV), which is called "Opt-copter", carrying a calibrated light source for fluorescence detector (FD) calibration of the Telescope Array (TA) experiment. Opt-copter is equipped with a high accuracy GPS device and a LED light source in the shape of a dodecahedron. A positioning accuracy of the GPS mounted on the UAV is 0.1 m, which meets the requirement for the calibration of the FDs at the distance of 100 m. The light source consists of 12 UV LEDs attached on each side of the dodecahedron, and it is covered with a spherical diffuser to improve the spatial uniformity of the light intensity. We report the status of Opt-copter development and the results of its test at the TA site.

  6. Operational field evaluation of the PAC-MAG man-portable magnetometer array

    NASA Astrophysics Data System (ADS)

    Keranen, Joe; Topolosky, Zeke; Schultz, Gregory; Miller, Jonathan

    2013-06-01

    Detection and discrimination of unexploded ordnance (UXO) in areas of prior conflict is of high importance to the international community and the United States government. For humanitarian applications, sensors and processing methods need to be robust, reliable, and easy to train and implement using indigenous UXO removal personnel. This paper describes system characterization, system testing, and a continental United States (CONUS) Operational Field Evaluations (OFE) of the PAC-MAG man-portable UXO detection system. System testing occurred at a government test facility in June, 2010 and December, 2011 and the OFE occurred at the same location in June, 2012. NVESD and White River Technologies personnel were present for all testing and evaluation. The PAC-MAG system is a manportable magnetometer array for the detection and characterization of ferrous UXO. System hardware includes four Cesium vapor magnetometers for detection, a Real-time Kinematic Global Position System (RTK-GPS) for sensor positioning, an electronics module for merging array data and WiFi communications and a tablet computer for transmitting and logging data. An odometer, or "hipchain" encoder, provides position information in GPS-denied areas. System software elements include data logging software and post-processing software for detection and characterization of ferrous anomalies. The output of the post-processing software is a dig list containing locations of potential UXO(s), formatted for import into the system GPS equipment for reacquisition of anomalies. Results from system characterization and the OFE will be described.

  7. Accuracy in GPS/Acoustic positioning on a moored buoy moving around far from the optimal position

    NASA Astrophysics Data System (ADS)

    Imano, M.; Kido, M.; Ohta, Y.; Takahashi, N.; Fukuda, T.; Ochi, H.; Hino, R.

    2015-12-01

    For detecting the seafloor crustal deformation and Tsunami associated with large earthquakes in real-time, it is necessary to monitor them just above the possible source region. For this purpose, we have been dedicated in developing a real-time continuous observation system using a multi-purpose moored buoy. Sea-trials of the system have been carried out near the Nanakai trough in 2013 and 2014 (Takahashi et al., 2014). We especially focused on the GPS/Acoustic measurement (GPS/A) in the system for horizontal crustal movement. The GPS/A on a moored buoy has a critical drawback compared to the traditional ones, in which the data can be stacked over ranging points fixed at an optimal position. Accuracy in positioning with a single ranging from an arbitrary point is the subject to be improved in this study. Here, we report the positioning results in the buoy system using data in the 2014 sea-trial and demonstrate the improvement of the result. We also address the potential resolving power in the positioning using synthetic tests. The target GPS/A site consists of six seafloor transponders (PXPs) forming a small inner- and a large outer-triangles. The bottom of the moored cable is anchored nearly the center of the triangles. In the sea-trial, 11 times successive ranging was scheduled once a week, and we plotted positioning results from different buoy position. We confirmed that scatter in positioning using six PXPs simultaneously is ten times smaller than that using individual triangle separately. Next, we modified the definition of the PXP array geometry using data obtained in a campaign observation. Definition of an array geometry is insensitive as far as ranging is made in the same position, however, severely affects the positioning when ranging is made from various positions like the moored buoy. The modified PXP array is slightly smaller and 2m deeper than the original one. We found that the scatter of positioning results in the sea-trial is reduced from 4m to 1.7m with the modified geometry. Finally we produced a synthetic data with an artificial error in the array geometry and evaluated its effect on the positioning as a function of ranging point. This is interpreted with potential resolving power formulated in Kido (2007). In the presentation, we will show the results of synthetic test for systematic variation of the error condition.

  8. Evaluation of mobile micro-sensing devices for GPS-based personal exposure monitoring of heat and particulate matter - a matter of context

    NASA Astrophysics Data System (ADS)

    Ueberham, Maximilian; Schlink, Uwe; Weiland, Ulrike

    2017-04-01

    The application of mobile micro-sensing devices (MSDs) for human health and personal exposure monitoring (PEM) is an emerging topic of interest in urban air quality research. In the context of climate change, urban population growth and related anthropogenic activities, an increase is expected for the intensity of citizens' exposure to heat and particulate matter (PM). Therefore more focus on the small-scale perspective of spatio-temporal distribution of air quality parameters is important to complement fixed-monitoring site data. Mobile sensors for PEM are useful for both, the investigation of the local distribution of air quality and the personal exposure profiles of individuals moving within their activity spaces. An evaluation of MSDs' accuracy is crucial, before their sophisticated application in measurement campaigns. To detect variations of exposure at small scales, it is even more important to consider the accuracy of Global Positioning System (GPS) devices within different urban structure types (USTs). We present an assessment of the performance of GPS-based MSDs under indoor laboratory conditions and outdoor testing within different USTs. The aim was to evaluate the accuracy of several GPS devices and MSDs for heat and PM 2.5 in relation to reliable standard sensing devices as part of a PhD-project. The performance parameters are summary measures (mean value, standard deviation), correlation (Pearson r), difference measures (mean bias error, mean absolute error, index of agreement) and Bland-Altman plots. The MSDs have been tested in a climate chamber under constant temperature and relative humidity. For temperature MSDs reaction time was tested because of its relevance to detect temperature variations during mobile measurements. For interpretation of the results we considered the MSDs design and technology (e.g. passive vs. active ventilation). GPS-devices have been tested within low/high dense urban residential areas and low/high dense urban green areas and have been compared according to their deviation from the original test route and according to their technology (GPS, A-GPS, GSM, WLAN). In result the performance of the MSDs varies spatially and temporally. Variations mainly depend on the USTs, meteorological conditions, device design and technology. However, the sensors' variation for GPS (3-7m) temperature (1-1.3°C) and PM (800-1100 particles/cu ft) is quite stable over the whole range of value records. Difference measures can be used to consider and correct for mean errors. Furthermore we show that smartphone based GPS-tracking in combination with connected MSDs are a reliable easy-to-use method for PEM. In conclusion our evaluation underpins the applicability of MSDs in combination with GPS for PEM. We observed that especially relative changes in the environmental conditions can be well detected by the devices. Nevertheless, data quality of MSDs remains a relevant concern that needs more investigation especially for applications in citizen science. Eventually the usefulness of mobile MSDs mainly needs to be evaluated depending on the context of application.

  9. A province-scale block model of Walker Lane and western Basin and Range crustal deformation constrained by GPS observations (Invited)

    NASA Astrophysics Data System (ADS)

    Hammond, W. C.; Bormann, J.; Blewitt, G.; Kreemer, C.

    2013-12-01

    The Walker Lane in the western Great Basin of the western United States is an 800 km long and 100 km wide zone of active intracontinental transtension that absorbs ~10 mm/yr, about 20% of the Pacific/North America plate boundary relative motion. Lying west of the Sierra Nevada/Great Valley microplate (SNGV) and adjoining the Basin and Range Province to the east, deformation is predominantly shear strain overprinted with a minor component of extension. The Walker Lane responds with faulting, block rotations, structural step-overs, and has distinct and varying partitioned domains of shear and extension. Resolving these complex deformation patterns requires a long term observation strategy with a dense network of GPS stations (spacing ~20 km). The University of Nevada, Reno operates the 373 station Mobile Array of GPS for Nevada transtension (MAGNET) semi-continuous network that supplements coverage by other networks such as EarthScope's Plate Boundary Observatory, which alone has insufficient density to resolve the deformation patterns. Uniform processing of data from these GPS mega-networks provides a synoptic view and new insights into the kinematics and mechanics of Walker Lane tectonics. We present velocities for thousands of stations with time series between 3 to 17 years in duration aligned to our new GPS-based North America fixed reference frame NA12. The velocity field shows a rate budget across the southern Walker Lane of ~10 mm/yr, decreasing northward to ~7 mm/yr at the latitude of the Mohawk Valley and Pyramid Lake. We model the data with a new block model that estimates rotations and slip rates of known active faults between the Mojave Desert and northern Nevada and northeast California. The density of active faults in the region requires including a relatively large number of blocks in the model to accurately estimate deformation patterns. With 49 blocks, our the model captures structural detail not represented in previous province-scale models, and improves our ability to compare results to geologic fault slip rates. Modeling the kinematics on this scale has the advantages of 1) reducing the impact of poorly constrained boundaries on small geographically limited models, 2) consistent modeling of rotations across major structural step-overs near the Mina deflection and Carson domain, 3) tracking the kinematics of the south-to-north varying budget of Walker Lane deformation by solving for extension in the Basin and Range to the east, and 4) using a contiguous SNGV as a uniform western kinematic boundary condition. We compare contemporary deformation to geologic slip rates and longer term rotation rates estimated from rock paleomagnetism. GPS-derived block rotation rates are somewhat dependent on model regularization, but are generally within 1° per million years, and tend to be slower than published paleomagnetic rotations rates. GPS data, together with neotectonic and rock paleomagnetism studies provide evidence that the relative importance of Walker Lane block rotations and fault slip continues to evolve, giving way to a more through-going system with slower rotation rates and higher slip rates on individual faults.

  10. A novel hydrogel electrolyte extender for rapid application of EEG sensors and extended recordings.

    PubMed

    Kleffner-Canucci, Killian; Luu, Phan; Naleway, John; Tucker, Don M

    2012-04-30

    Dense-array EEG recordings are now commonplace in research and gaining acceptance in clinical settings. Application of many sensors with traditional electrolytes is time consuming. Saline electrolytes can be used to minimize application time but recording duration is limited due to evaporation. In the present study, we evaluate a NIPAm (N-isopropyl acrylamide:acrylic acid) base electrolyte extender for use with saline electrolytes. Sensor-scalp impedances and EEG data quality acquired with the electrolyte extender are compared with those obtained for saline and an EEG electrolyte commonly used in clinical exams (Elefix). The results show that when used in conjunction with saline, electrode-scalp impedances and data across the EEG spectrum are comparable with those obtained using Elefix EEG paste. When used in conjunction with saline, the electrolyte extender permits rapid application of dense-sensor arrays and stable, high-quality EEG data to be obtained for at least 4.5 h. This is an enabling technology that will make benefits of dense-array EEG recordings practical for clinical applications. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Evaluating GPS biologging technology for studying spatial ecology of large constricting snakes

    USGS Publications Warehouse

    Smith, Brian; Hart, Kristen M.; Mazzotti, Frank J.; Basille, Mathieu; Romagosa, Christina M.

    2018-01-01

    Background: GPS telemetry has revolutionized the study of animal spatial ecology in the last two decades. Until recently, it has mainly been deployed on large mammals and birds, but the technology is rapidly becoming miniaturized, and applications in diverse taxa are becoming possible. Large constricting snakes are top predators in their ecosystems, and accordingly they are often a management priority, whether their populations are threatened or invasive. Fine-scale GPS tracking datasets could greatly improve our ability to understand and manage these snakes, but the ability of this new technology to deliver high-quality data in this system is unproven. In order to evaluate GPS technology in large constrictors, we GPS-tagged 13 Burmese pythons (Python bivittatus) in Everglades National Park and deployed an additional 7 GPS tags on stationary platforms to evaluate habitat-driven biases in GPS locations. Both python and test platform GPS tags were programmed to attempt a GPS fix every 90 min.Results: While overall fix rates for the tagged pythons were low (18.1%), we were still able to obtain an average of 14.5 locations/animal/week, a large improvement over once-weekly VHF tracking. We found overall accuracy and precision to be very good (mean accuracy = 7.3 m, mean precision = 12.9 m), but a very few imprecise locations were still recorded (0.2% of locations with precision > 1.0 km). We found that dense vegetation did decrease fix rate, but we concluded that the low observed fix rate was also due to python microhabitat selection underground or underwater. Half of our recovered pythons were either missing their tag or the tag had malfunctioned, resulting in no data being recovered.Conclusions: GPS biologging technology is a promising tool for obtaining frequent, accurate, and precise locations of large constricting snakes. We recommend future studies couple GPS telemetry with frequent VHF locations in order to reduce bias and limit the impact of catastrophic failures on data collection, and we recommend improvements to GPS tag design to lessen the frequency of these failures.

  12. GPS-Like Phasing Control of the Space Solar Power System Transmission Array

    NASA Technical Reports Server (NTRS)

    Psiaki, Mark L.

    2003-01-01

    The problem of phasing of the Space Solar Power System's transmission array has been addressed by developing a GPS-like radio navigation system. The goal of this system is to provide power transmission phasing control for each node of the array that causes the power signals to add constructively at the ground reception station. The phasing control system operates in a distributed manner, which makes it practical to implement. A leader node and two radio navigation beacons are used to control the power transmission phasing of multiple follower nodes. The necessary one-way communications to the follower nodes are implemented using the RF beacon signals. The phasing control system uses differential carrier phase relative navigation/timing techniques. A special feature of the system is an integer ambiguity resolution procedure that periodically resolves carrier phase cycle count ambiguities via encoding of pseudo-random number codes on the power transmission signals. The system is capable of achieving phasing accuracies on the order of 3 mm down to 0.4 mm depending on whether the radio navigation beacons operate in the L or C bands.

  13. GreenCube and RocketCube: Low-Resource Sensorcraft for Atmospheric and Ionospheric Science

    NASA Astrophysics Data System (ADS)

    Bracikowski, P. J.; Lynch, K. A.; Slagle, A. K.; Fagin, M. H.; Currey, S. R.; Siddiqui, M. U.

    2009-12-01

    In situ atmospheric and ionospheric studies benefit greatly from the ability to separate variations in space from variations in time. Arrays of many probes are a method of doing this, but because of the technical character and expense of developing large arrays, so far probe arrays have been the domain of well-funded science missions. CubeSats and low-resource craft (``Picosats") are an avenue for bringing array-based studies of the atmosphere and ionosphere into the mainstream. The Lynch Rocket Lab at Dartmouth College is attempting to develop the instruments, experience, and heritage to implement arrays of many low-resource sensorcraft while doing worthwhile science in the development process. We are working on two CubeSat projects to reach this goal: GreenCube for atmospheric studies and RocketCube for ionospheric studies. GreenCube is an undergraduate student-directed high-altitude balloon-borne 3U CubeSat. GreenCube I was a bus, telemetry, and mechanical system development project. GreenCube I flew in the fall of 2008. The flight was successfully recovered and tracked over the 97km range and through the 29km altitude rise. GreenCube I carried six thermal housekeeping sensors, a GPS, a magnetometer, and a HAM radio telemetry system with a reporting rate of once every 30 seconds. The velocity profile obtained from the GPS data implies the presence of atmospheric gravity waves during the flight. GreenCube II flew in August 2009 with the science goal of detecting atmospheric gravity waves over the White Mountains of New Hampshire. Two balloons with identical payloads were released 90 seconds apart to make 2-point observations. Each payload carried a magnetometer, 5 thermistors for ambient temperature readings, a GPS, and an amateur radio telemetry system with a 7 second reporting cadence. A vertically oriented video camera on one payload and a horizontally oriented video camera on the other recorded the characteristics of gravity waves in the nearby clouds. We expect to be able to detect atmospheric gravity waves from the GPS-derived position and velocity of the two balloons and the ambient temperature profiles. Preliminary analysis of the temperature data shows indications of atmospheric gravity waves. RocketCube is a graduate student-designed low-resource sensorcraft development project being designed for future ionospheric multi-point missions. The FPGA-based bus system, based on GreenCube’s systems, will be able to control and digitize analog data from any low voltage instrument and telemeter that data. RocketCube contains a GPS and high-resolution magnetometer for position and orientation information. The Lynch Rocket Lab's initial interest in developing RocketCube is to investigate the k-spectrum of density irregularities in the auroral ionosphere. To this end, RocketCube will test a new Petite retarding potential analyzer Ion Probe (PIP) for examining subsonic and supersonic thermal ion populations in the ionosphere. The tentatively planned launch will be from a Wallops Flight Facility sounding rocket test flight in 2011. RocketCube serves as a step toward a scientific auroral sounding rocket mission that will feature an array of subpayloads to study the auroral ionosphere.

  14. Biasing, acquisition, and interpretation of a dense Langmuir probe array in NSTX.

    PubMed

    Jaworski, M A; Kallman, J; Kaita, R; Kugel, H; LeBlanc, B; Marsala, R; Ruzic, D N

    2010-10-01

    A dense array of 99 Langmuir probes has been installed in the lower divertor region of the National Spherical Torus Experiment (NSTX). This array is instrumented with a system of electronics that allows flexibility in the choice of probes to bias as well as the type of measurement (including standard swept, single probe, triple probe, and operation as passive floating potential and scrape-off-layer SOL current monitors). The use of flush-mounted probes requires careful interpretation. The time dependent nature of the SOL makes swept-probe traces difficult to interpret. To overcome these challenges, the single- and triple-Langmuir probe signals are used in complementary fashion to determine the temperature and density at the probe location. A comparison to midplane measurements is made.

  15. Mathematical Description of the GPS (Global Positioning System) Multisatellite Filter/Smoother

    DTIC Science & Technology

    1987-10-01

    the change is known exactly. This event affects the nominal clock as follows: For the first time t at, Ao,o is replaced by Asok + All subsequent...tN are given by p-x information array y information array NpNZ NY 1 NY I (112)(RP RP, it, NP (AY y,v )~ N, 0 k" RAy i N. where A,,/t•, and A are

  16. Going Up. A GPS Receiver Adapts to Space

    NASA Technical Reports Server (NTRS)

    Lightsey, E. Glenn; Simpson, James E.

    2000-01-01

    Current plans for the space station call for the GPS receiver to be installed on the U.S. lab module of the station in early 2001 (ISS Assembly Flight SA), followed by the attachment of the antenna array in late 2001 (Flight 8A). At that point the U.S. ISS guidance and control system will be operational. The flight of SIGI on the space station represents a "coming of age" for GPS technology on spacecraft. For at least a decade, the promise of using GPS receivers to automate spacecraft operations, simplify satellite design, and reduce mission costs has enticed satellite designers. Integration of this technology onto spacecraft has been slower than some originally anticipated. However, given the complexity of the GPS sensor, and the importance of the functions it performs, its incorporation into mainstream satellite design has probably occurred at a very reasonable pace. Going from providing experimental payloads on small, unmanned satellites to performing critical operational functions on manned vehicles has been a major evolution. If all goes as planned in the next few months, GPS receivers will soon provide those critical functions on one of the most complex spacecraft in history, the International Space Station.

  17. The application of GPS precise point positioning technology in aerial triangulation

    NASA Astrophysics Data System (ADS)

    Yuan, Xiuxiao; Fu, Jianhong; Sun, Hongxing; Toth, Charles

    In traditional GPS-supported aerotriangulation, differential GPS (DGPS) positioning technology is used to determine the 3-dimensional coordinates of the perspective centers at exposure time with an accuracy of centimeter to decimeter level. This method can significantly reduce the number of ground control points (GCPs). However, the establishment of GPS reference stations for DGPS positioning is not only labor-intensive and costly, but also increases the implementation difficulty of aerial photography. This paper proposes aerial triangulation supported with GPS precise point positioning (PPP) as a way to avoid the use of the GPS reference stations and simplify the work of aerial photography. Firstly, we present the algorithm for GPS PPP in aerial triangulation applications. Secondly, the error law of the coordinate of perspective centers determined using GPS PPP is analyzed. Thirdly, based on GPS PPP and aerial triangulation software self-developed by the authors, four sets of actual aerial images taken from surveying and mapping projects, different in both terrain and photographic scale, are given as experimental models. The four sets of actual data were taken over a flat region at a scale of 1:2500, a mountainous region at a scale of 1:3000, a high mountainous region at a scale of 1:32000 and an upland region at a scale of 1:60000 respectively. In these experiments, the GPS PPP results were compared with results obtained through DGPS positioning and traditional bundle block adjustment. In this way, the empirical positioning accuracy of GPS PPP in aerial triangulation can be estimated. Finally, the results of bundle block adjustment with airborne GPS controls from GPS PPP are analyzed in detail. The empirical results show that GPS PPP applied in aerial triangulation has a systematic error of half-meter level and a stochastic error within a few decimeters. However, if a suitable adjustment solution is adopted, the systematic error can be eliminated in GPS-supported bundle block adjustment. When four full GCPs are emplaced in the corners of the adjustment block, then the systematic error is compensated using a set of independent unknown parameters for each strip, the final result of the bundle block adjustment with airborne GPS controls from PPP is the same as that of bundle block adjustment with airborne GPS controls from DGPS. Although the accuracy of the former is a little lower than that of traditional bundle block adjustment with dense GCPs, it can still satisfy the accuracy requirement of photogrammetric point determination for topographic mapping at many scales.

  18. Optical Pumping of High Power Lasers with an Array of Plasma Pinches.

    DTIC Science & Technology

    1986-04-01

    Two dense plasma focus systems, the hypocycloidal pinch and the Mather type were investigated as the potential excitation light sources for high...was also performed for the first time using the Mather type dense plasma focus (MDPF) sucsessfully. Results thus fare indicate that both HCP and MDPF

  19. A combined method to calculate co-seismic displacements through strong motion acceleration baseline correction

    NASA Astrophysics Data System (ADS)

    Zhan, W.; Sun, Y.

    2015-12-01

    High frequency strong motion data, especially near field acceleration data, have been recorded widely through different observation station systems among the world. Due to tilting and a lot other reasons, recordings from these seismometers usually have baseline drift problems when big earthquake happens. It is hard to obtain a reasonable and precision co-seismic displacement through simply double integration. Here presents a combined method using wavelet transform and several simple liner procedures. Owning to the lack of dense high rate GNSS data in most of region of the world, we did not contain GNSS data in this method first but consider it as an evaluating mark of our results. This semi-automatic method unpacks a raw signal into two portions, a summation of high ranks and a low ranks summation using a cubic B-spline wavelet decomposition procedure. Independent liner treatments are processed against these two summations, which are then composed together to recover useable and reasonable result. We use data of 2008 Wenchuan earthquake and choose stations with a near GPS recording to validate this method. Nearly all of them have compatible co-seismic displacements when compared with GPS stations or field survey. Since seismometer stations and GNSS stations from observation systems in China are sometimes quite far from each other, we also test this method with some other earthquakes (1999 Chi-Chi earthquake and 2011 Tohoku earthquake). And for 2011 Tohoku earthquake, we will introduce GPS recordings to this combined method since the existence of a dense GNSS systems in Japan.

  20. Development of a GPS buoy system for monitoring tsunami, sea waves, ocean bottom crustal deformation and atmospheric water vapor

    NASA Astrophysics Data System (ADS)

    Kato, Teruyuki; Terada, Yukihiro; Nagai, Toshihiko; Koshimura, Shun'ichi

    2010-05-01

    We have developed a GPS buoy system for monitoring tsunami for over 12 years. The idea was that a buoy equipped with a GPS antenna and placed offshore may be an effective way of monitoring tsunami before its arrival to the coast and to give warning to the coastal residents. The key technology for the system is real-time kinematic (RTK) GPS technology. We have successfully developed the system; we have detected tsunamis of about 10cm in height for three large earthquakes, namely, the 23 June 2001 Peru earthquake (Mw8.4), the 26 September 2003 Tokachi earthquake (Mw8.3) and the 5 September 2004 earthquake (Mw7.4). The developed GPS buoy system is also capable of monitoring sea waves that are mainly caused by winds. Only the difference between tsunami and sea waves is their frequency range and can be segregated each other by a simple filtering technique. Given the success of GPS buoy experiments, the system has been adopted as a part of the Nationwide Ocean Wave information system for Port and HArborS (NOWPHAS) by the Ministry of Land, Infrastructure, Transport and Tourism of Japan. They have established more than eight GPS buoys along the Japanese coasts and the system has been operated by the Port and Airport Research Institute. As a future scope, we are now planning to implement some other additional facilities for the GPS buoy system. The first application is a so-called GPS/Acoustic system for monitoring ocean bottom crustal deformation. The system requires acoustic waves to detect ocean bottom reference position, which is the geometrical center of an array of transponders, by measuring distances between a position at the sea surface (vessel) and ocean bottom equipments to return the received sonic wave. The position of the vessel is measured using GPS. The system was first proposed by a research group at the Scripps Institution of Oceanography in early 1980's. The system was extensively developed by Japanese researchers and is now capable of detecting ocean bottom positions with a few centimeters in accuracy. The system is now operational for more than ten sites along the Japanese coasts. Currently, however, the measurements are not continuous but have been done once to several times a year using a boat. If a GPS and acoustic system is placed on a buoy, ocean bottom position could be monitored in near real-time and continuous manner. This will allow us to monitor more detailed and short term crustal deformations at the sea bottom. Another application plan is for an atmospheric research. Previous researchers have shown that GPS is capable of measuring atmospheric water vapor through estimating tropospheric zenith delay measurements of GPS at the sea surface. Information of water vapor content and its temporal variation over sea surface will much contribute to weather forecast on land which has mostly been conducted only by land observations. Considering that the atmospheric mass moves from west to east in general in and around Japanese islands, information of water vapor together with other atmospheric data from an array of GPS buoy placed in the west of Japanese Islands, will much improve weather forecast. We try to examine if this is also feasible. As a conclusion of a series of GPS buoy experiments, we could assert that GPS buoy system will be a powerful tool to monitor ocean surface and much contribute to provide safe and secure life of people.

  1. GPS Water Vapor Tomography: First results from the ESCOMPTE Field Experiment

    NASA Astrophysics Data System (ADS)

    Masson, F.; Champollion, C.; Bouin, M.-N.; Walpersdorf, A.; van Baelen, J.; Doerflinger, E.; Bock, O.

    2003-04-01

    We develop a tomographic software to model the spatial distribution of the tropospheric water vapor from GPS data. First we present simulations based on a real GPS station distribution and simple tropospheric models, which prove the potentiality of the method. Second we apply the software to the ESCOMPTE data. During the ESCOMPTE field experiment, a dense network of 17 dual frequency GPS receivers has been operated for two weeks within a 20 km x 20 km area around Marseille (Southern France). The network extends from the sea level to the top of the Etoile chain (~700 m high). The input data are the slant delay values obtained by combining the estimated zenith delay values with the horizontal gradients. The effect of the initial tropospheric water vapor model, the number and thickness of the layers of the model, the a priori model and data covariance and some other parameters will be discussed. Simultaneously water vapor radiometer, solar spectrometer, Raman lidar and radiosondes have been deployed to get a data set usable for comparison with the tomographic inversion results and validation of the method. Comparison with meteorological models (MesoNH - Meteo-France) will be shown.

  2. Newly velocity field of Sulawesi Island from GPS observation

    NASA Astrophysics Data System (ADS)

    Sarsito, D. A.; Susilo, Simons, W. J. F.; Abidin, H. Z.; Sapiie, B.; Triyoso, W.; Andreas, H.

    2017-07-01

    Sulawesi microplate Island is located at famous triple junction area of the Eurasian, India-Australian, and Philippine Sea plates. Under the influence of the northward moving Australian plate and the westward motion of the Philippine plate, the island at Eastern part of Indonesia is collide and with the Eurasian plate and Sunda Block. Those recent microplate tectonic motions can be quantitatively determine by GNSS-GPS measurement. We use combine GNSS-GPS observation types (campaign type and continuous type) from 1997 to 2015 to derive newly velocity field of the area. Several strategies are applied and tested to get the optimum result, and finally we choose regional strategy to reduce error propagation contribution from global multi baseline processing using GAMIT/GLOBK 10.5. Velocity field are analyzed in global reference frame ITRF 2008 and local reference frame by fixing with respect alternatively to Eurasian plate - Sunda block, India-Australian plate and Philippine Sea plates. Newly results show dense distribution of velocity field. This information is useful for tectonic deformation studying in geospatial era.

  3. Strain Variation along Cimandiri Fault, West Java Based on Continuous and Campaign GPS Observation From 2006-2016

    NASA Astrophysics Data System (ADS)

    Safitri, A. A.; Meilano, I.; Gunawan, E.; Abidin, H. Z.; Efendi, J.; Kriswati, E.

    2018-03-01

    The Cimandiri fault which is running in the direction from Pelabuhan Ratu to Padalarang is the longest fault in West Java with several previous shallow earthquakes in the last 20 years. By using continues and campaign GPS observation from 2006-2016, we obtain the deformation pattern along the fault through the variation of strain tensor. We use the velocity vector of GPS station which is fixed in stable International Terrestrial Reference Frame 2008 to calculate horizontal strain tensor. Least Square Collocation is applied to produce widely dense distributed velocity vector and optimum scale factor for the Least Square Weighting matrix. We find that the strain tensor tend to change from dominantly contraction in the west to dominantly extension to the east of fault. Both the maximum shear strain and dilatation show positive value along the fault and increasing from the west to the east. The findings of strain tensor variation along Cimandiri Fault indicate the post seismic effect of the 2006 Java Earthquake.

  4. Optoelectronic Integrated Circuits For Neural Networks

    NASA Technical Reports Server (NTRS)

    Psaltis, D.; Katz, J.; Kim, Jae-Hoon; Lin, S. H.; Nouhi, A.

    1990-01-01

    Many threshold devices placed on single substrate. Integrated circuits containing optoelectronic threshold elements developed for use as planar arrays of artificial neurons in research on neural-network computers. Mounted with volume holograms recorded in photorefractive crystals serving as dense arrays of variable interconnections between neurons.

  5. A long-term assessment of the variability in winter use of dense conifer cover by female white-tailed deer.

    PubMed

    Delgiudice, Glenn D; Fieberg, John R; Sampson, Barry A

    2013-01-01

    Long-term studies allow capture of a wide breadth of environmental variability and a broader context within which to maximize our understanding of relationships to specific aspects of wildlife behavior. The goal of our study was to improve our understanding of the biological value of dense conifer cover to deer on winter range relative to snow depth and ambient temperature. We examined variation among deer in their use of dense conifer cover during a 12-year study period as potentially influenced by winter severity and cover availability. Female deer were fitted with a mixture of very high frequency (VHF, n = 267) and Global Positioning System (GPS, n = 24) collars for monitoring use of specific cover types at the population and individual levels, respectively. We developed habitat composites for four study sites. We fit multinomial response models to VHF (daytime) data to describe population-level use patterns as a function of snow depth, ambient temperature, and cover availability. To develop alternative hypotheses regarding expected spatio-temporal patterns in the use of dense conifer cover, we considered two sets of competing sub-hypotheses. The first set addressed whether or not dense conifer cover was limiting on the four study sites. The second set considered four alternative sub-hypotheses regarding the potential influence of snow depth and ambient temperature on space use patterns. Deer use of dense conifer cover increased the most with increasing snow depth and most abruptly on the two sites where it was most available, suggestive of an energy conservation strategy. Deer use of dense cover decreased the most with decreasing temperatures on the sites where it was most available. At all four sites deer made greater daytime use (55 to >80% probability of use) of open vegetation types at the lowest daily minimum temperatures indicating the importance of thermal benefits afforded from increased exposure to solar radiation. Date-time plots of GPS data (24 hr) allowed us to explore individual diurnal and seasonal patterns of habitat use relative to changes in snow depth. There was significant among-animal variability in their propensity to be found in three density classes of conifer cover and other open types, but little difference between diurnal and nocturnal patterns of habitat use. Consistent with our findings reported elsewhere that snow depth has a greater impact on deer survival than ambient temperature, herein our population-level results highlight the importance of dense conifer cover as snow shelter rather than thermal cover. Collectively, our findings suggest that maximizing availability of dense conifer cover in an energetically beneficial arrangement with quality feeding sites should be a prominent component of habitat management for deer.

  6. A Long-Term Assessment of the Variability in Winter Use of Dense Conifer Cover by Female White-Tailed Deer

    PubMed Central

    DelGiudice, Glenn D.; Fieberg, John R.; Sampson, Barry A.

    2013-01-01

    Backgound Long-term studies allow capture of a wide breadth of environmental variability and a broader context within which to maximize our understanding of relationships to specific aspects of wildlife behavior. The goal of our study was to improve our understanding of the biological value of dense conifer cover to deer on winter range relative to snow depth and ambient temperature. Methodology/Principal Findings We examined variation among deer in their use of dense conifer cover during a 12-year study period as potentially influenced by winter severity and cover availability. Female deer were fitted with a mixture of very high frequency (VHF, n = 267) and Global Positioning System (GPS, n = 24) collars for monitoring use of specific cover types at the population and individual levels, respectively. We developed habitat composites for four study sites. We fit multinomial response models to VHF (daytime) data to describe population-level use patterns as a function of snow depth, ambient temperature, and cover availability. To develop alternative hypotheses regarding expected spatio-temporal patterns in the use of dense conifer cover, we considered two sets of competing sub-hypotheses. The first set addressed whether or not dense conifer cover was limiting on the four study sites. The second set considered four alternative sub-hypotheses regarding the potential influence of snow depth and ambient temperature on space use patterns. Deer use of dense conifer cover increased the most with increasing snow depth and most abruptly on the two sites where it was most available, suggestive of an energy conservation strategy. Deer use of dense cover decreased the most with decreasing temperatures on the sites where it was most available. At all four sites deer made greater daytime use (55 to >80% probability of use) of open vegetation types at the lowest daily minimum temperatures indicating the importance of thermal benefits afforded from increased exposure to solar radiation. Date-time plots of GPS data (24 hr) allowed us to explore individual diurnal and seasonal patterns of habitat use relative to changes in snow depth. There was significant among-animal variability in their propensity to be found in three density classes of conifer cover and other open types, but little difference between diurnal and nocturnal patterns of habitat use. Conclusions/Significance Consistent with our findings reported elsewhere that snow depth has a greater impact on deer survival than ambient temperature, herein our population-level results highlight the importance of dense conifer cover as snow shelter rather than thermal cover. Collectively, our findings suggest that maximizing availability of dense conifer cover in an energetically beneficial arrangement with quality feeding sites should be a prominent component of habitat management for deer. PMID:23785421

  7. A Teachable Moment in Earth Deformation: An Undergraduate Strain Module Incorporating GPS Measurement of the August 24, 2014 M6.0 South Napa Earthquake

    NASA Astrophysics Data System (ADS)

    Resor, P. G.; Cronin, V. S.; Hammond, W. C.; Pratt-Sitaula, B.; Olds, S. E.

    2014-12-01

    The August 24, 2014 M 6.0 South Napa Earthquake was the largest earthquake to occur in the San Francisco Bay Area, home to more than 7 million people, in almost 25 years. The event occurred within an area of dense GPS instrumentation including continuous stations from the EarthScope Plate Boundary Observatory, Bay Area Regional Deformation Network and other networks. Coseismic displacements of up to 3 cm were rapidly estimated within one day after the event, providing a map of Earth shape change at over one hundred stations around the epicenter. The earthquake thus presets as an excellent "teachable moment" to introduce students to basic geoscience concepts, modern geophysical methods, and the state of knowledge in earthquake science. We have developed an example exercise that uses GPS-derived interseismic velocities and coseismic offsets to explore deformation in the vicinity of the earthquake rupture. This exercise builds on the UNAVCO education resource "Infinitesimal Strain Analysis Using GPS Data" (http://www.unavco.org/education/resources/educational-resources/lesson/majors-gps-strain/majors-gps-strain.html), a module designed to introduce undergraduate geoscience majors to concepts of crustal deformation using GPS velocity data. In the module students build their intuition about infinitesimal strain through manipulation of physical models, apply this intuition to interpret maps of GPS velocity vectors, and ultimately calculate the instantaneous deformation rate of triangles on the Earth's surface defined by three GPS sites. The South Napa data sets provide an example with clear societal relevance that can be used to explore the basic concepts of deformation, but may also be extended to explore topics such as strain accumulation, release, and transfer associated with the earthquake cycle. The UNAVCO module could be similarly extended to create additional exercises in response to future events with clear geodetic signals.

  8. Comparative efficiency analysis of fiber-array and conventional beam director systems in volume turbulence.

    PubMed

    Vorontsov, Mikhail; Filimonov, Grigory; Ovchinnikov, Vladimir; Polnau, Ernst; Lachinova, Svetlana; Weyrauch, Thomas; Mangano, Joseph

    2016-05-20

    The performance of two prominent laser beam projection system types is analyzed through wave-optics numerical simulations for various atmospheric turbulence conditions, propagation distances, and adaptive optics (AO) mitigation techniques. Comparisons are made between different configurations of both a conventional beam director (BD) using a monolithic-optics-based Cassegrain telescope and a fiber-array BD that uses an array of densely packed fiber collimators. The BD systems considered have equal input power and aperture diameters. The projected laser beam power inside the Airy size disk at the target plane is used as the performance metric. For the fiber-array system, both incoherent and coherent beam combining regimes are considered. We also present preliminary results of side-by-side atmospheric beam projection experiments over a 7-km propagation path using both the AO-enhanced beam projection system with a Cassegrain telescope and the coherent fiber-array BD composed of 21 densely packed fiber collimators. Both wave-optics numerical simulation and experimental results demonstrate that, for similar system architectures and turbulence conditions, coherent fiber-array systems are more efficient in mitigation of atmospheric turbulence effects and generation of a hit spot of the smallest possible size on a remotely located target.

  9. Self-assembled nanoparticle arrays as nanomasks for pattern transfer

    NASA Astrophysics Data System (ADS)

    Sachan, M.; Bonnoit, C.; Hogg, C.; Evarts, E.; Bain, J. A.; Majetich, S. A.; Park, J.-H.; Zhu, J.-G.

    2008-07-01

    Argon ion milling was used to transfer the pattern of sparse 12 nm iron oxide nanoparticles into underlying thin films of Pt and magnetic tunnel junction stacks and quantify their etching rates and morphological evolution. Under typical milling conditions, Pt milled at 10 nm min-1, while the isolated particles of iron oxide used for the mask milled at 5 nm min-1. Dilute dispersions of nanoparticles were used to produce the sparse nanomasks, and high resolution scanning electron microscopy (SEM) and atomic force microscopy were used to monitor the evolution of etched structures as a function of milling time. SEM measurements indicate an apparent 20% increase in feature diameter before the features began to diminish under additional milling, suggesting redeposition as a limiting feature in the milling of dense arrays. Simulations of the milling process in nanoparticle arrays that include redeposition are consistent with this observation. These simulations predict that an edge-to-edge spacing of 3 nm in a dense array is feasible, but that redeposition reduces the final structure aspect ratio from that of the masking array by as much as a factor of two.

  10. TOGA - A GNSS Reflections Instrument for Remote Sensing Using Beamforming

    NASA Technical Reports Server (NTRS)

    Esterhuizen, S.; Meehan, T. K.; Robison, D.

    2009-01-01

    Remotely sensing the Earth's surface using GNSS signals as bi-static radar sources is one of the most challenging applications for radiometric instrument design. As part of NASA's Instrument Incubator Program, our group at JPL has built a prototype instrument, TOGA (Time-shifted, Orthometric, GNSS Array), to address a variety of GNSS science needs. Observing GNSS reflections is major focus of the design/development effort. The TOGA design features a steerable beam antenna array which can form a high-gain antenna pattern in multiple directions simultaneously. Multiple FPGAs provide flexible digital signal processing logic to process both GPS and Galileo reflections. A Linux OS based science processor serves as experiment scheduler and data post-processor. This paper outlines the TOGA design approach as well as preliminary results of reflection data collected from test flights over the Pacific ocean. This reflections data demonstrates observation of the GPS L1/L2C/L5 signals.

  11. Method of steering the gain of a multiple antenna global positioning system receiver

    NASA Astrophysics Data System (ADS)

    Evans, Alan G.; Hermann, Bruce R.

    1992-06-01

    A method for steering the gain of a multiple antenna Global Positioning System (GPS) receiver toward a plurality of a GPS satellites simultaneously is provided. The GPS signals of a known wavelength are processed digitally for a particular instant in time. A range difference or propagation delay between each antenna for GPS signals received from each satellite is first resolved. The range difference consists of a fractional wavelength difference and an integer wavelength difference. The fractional wavelength difference is determined by each antenna's tracking loop. The integer wavelength difference is based upon the known wavelength and separation between each antenna with respect to each satellite position. The range difference is then used to digitally delay the GPS signals at each antenna with respect to a reference antenna. The signal at the reference antenna is then summed with the digitally delayed signals to generate a composite antenna gain. The method searches for the correct number of integer wavelengths to maximize the composite gain. The range differences are also used to determine the attitude of the array.

  12. Location of space debris by infrasound

    NASA Astrophysics Data System (ADS)

    Asming, Vladimir; Vinogradov, Yuri

    2013-04-01

    After an exhausted stage has separated from a rocket it comes back to the dense atmosphere. It burns and divides into many pieces moving separately. Ballisticians can calculate an approximate trace of a falling stage and outline a supposed area where the debris can fall (target ellipse). Such ellipses are usually rather big in sizes (something like 60 x 100 km). For safety reasons all local inhabitants should be evacuated from a target area during rocket's launch. One of problems is that the ballistician can not compute the traces and areas exactly. There were many cases when debris had fallen outside the areas. Rescue teams must check such cases to make changes in rockets. The largest pieces can contain remains of toxic rocket fuel and therefore must be found and deactivated. That is why the problem of debris location is of significant importance for overland fall areas. It is more or less solved in Kazakhstan where large fragments of 1st stages can be seen in the Steppe but it is very difficult to find fragments of 2nd stages in Altai, Tomsk region and Komi republic (taiga, mountains, swamps). The rocket debris produces strong infrasonic shock waves during their reentry. Since 2009 the Kola Branch of Geophysical Survey of RAS participates in joint project with Khrunichev Space Center concerning with infrasound debris location. We have developed mobile infrasound arrays consisting of 3 microphones, analog-to-digit converter, GPS and notebook. The aperture is about 200 m, deployment time is less than 1 hour. Currently we have 4 such arrays, one of them is wireless and consists of 3 units comprising a microphone, GPS and radio-transmitter. We have made several field measurements by 3 or 4 such arrays placed around target ellipses of falling rocket stages in Kazakhstan ("Soyuz" rocket 1st stage), Altai and Tomsk region ("Proton" rocket 2nd stages). If was found that a typical 2nd stage divides into hundreds of pieces and each one generates a shock wave. This is a complicated problem to associate signals registered by different arrays. We developed an approach based on modeling of realistic fragment trajectories. We assume that until some time t0 all stage is moving along the predicted theoretical trajectory. At the time t0 (disintegration) the pieces receive different ballistic coefficients and random increments of velocity. We continue the trajectory (solving 2nd order differential equation) using the coordinates at t0 and velocities with random increments as initial conditions and with different ballistic coefficients. Thus we obtain a 'pipe' of trajectories each one can in principle occur in reality. For each trajectory of the pipe we compute theoretical times and azimuths of shock wave arrivals to the arrays. If they are in agreement with the measured arrivals we consider that the trajectory has occurred in reality and its end is the landing place of a rocket fragment. The experiment of "Soyuz" 1st stage location in Kazakhstan has shown that errors of such location are less than 2 km that is acceptable to use the method in practice.

  13. Three Dimensional High-Resolution Reconstruction of the Ionosphere Over the Very Large Array

    DTIC Science & Technology

    2010-12-15

    Watts Progress Report, Dec 10; 1 Final Report: Three Dimensional High-Resolution Reconstruction of the Ionosphere over the Very Large Array...proposed research is reconstruct the three-dimensional regional electron density profile of Earth’s ionosphere with spatial resolution of better than 10 km...10x better sensitivity to total electron content (TEC, or chord integrated density) in the ionosphere that does GPS. The proposal funds the

  14. A Plasma Ultraviolet Source for Short Wavelength Lasers.

    DTIC Science & Technology

    1986-03-10

    A high power blue-green laser was pumped with an array of the dense plasma focus . As the result of optimizing the operating conditions of the dense... plasma focus and laser system, the maximum untuned laser output exceeded 2.lmJ corresponding to the energy density 3J/cu cm which is much higher than

  15. Seismicity in the Wake of the April 2016 Pedernales Earthquake

    NASA Astrophysics Data System (ADS)

    Meltzer, A.; Beck, S. L.; Ruiz, M. C.; Hernandez, S.; Alvarado, A. P.; Regnier, M. M.; Rietbrock, A.; Font, Y.; Charvis, P.; Yepes, H. A.; Lynner, C.; Porritt, R. W.

    2016-12-01

    On April 16th 2016 a Mw7.8 earthquake struck along the Colombia-Ecuador trench near Pedernales, Ecuador. The epicentral region lies just north of the intersection of the Carnegie Ridge with the subduction zone where the orientation of the trench shifts from N20°E to N32°E. This portion of the subduction zone has ruptured on decadal time scales; Mw7.8 (1942), Mw 7.7 (1958), and Mw 8.8 (1906). The rupture zone of the 2016 Pedernales earthquake falls within the rupture area of the 1906 event and appears to overlap with the previous 1942 event. In the wake of the earthquake an international response coordinated by the Instituto Geofisico EPN in Quito deployed accelerometers, seismometers, OBS, and GPS receivers to record aftershocks and post-seismic deformation. These data provide the opportunity to examine the persistence of asperities for large to great earthquakes over multiple seismic cycles, the role of asperities in promoting or inhibiting rupture propagation, and the relationship between locked and creeping parts of the subduction interface. Onland, a dense array of 64 broadband and intermediate period seismometers cover the 2016 rupture zone, extending north to the section that ruptured in 1958 and covers the contiguous area that ruptured in 1906. The US portion of the response supported by the NSF includes 19 broadband seismic stations to record aftershocks for a year, an eGPS survey, and five cGPS stations to enhance the existing network in Ecuador. Data from the NSF supported stations are open access. We examine the distribution of seismicity from the aftershock deployment in relationship to the 1942, 1958, and 1906 ruptures. Preliminary locations from the IG-EPN aftershock catalog outline the rupture zone and initially exhibited an abrupt termination to the north at 1°N. Along this northern boundary a series of aftershocks that took place over a period of several hours along a very linear trend culminated in one of several ≥Mw 6.0 aftershocks. To the south, a significant cluster of events is observed 100 km south of the area that ruptured in the mainshock. This area lies south of an area of low coupling observed in GPS data suggesting that stress is being transmitted across a zone that is freely slipping. In July a series of events occurred north of the rupture zone close to the edge of the segment that ruptured in 1958.

  16. Combination of Vlbi, GPS and Slr Observations At The Observation Level For The Realization of Terrestrial and Celestial Reference Frames

    NASA Astrophysics Data System (ADS)

    Andersen, P. H.

    Forsvarets forskningsinstitutt (FFI, the Norwegian Defence Research Establishment) has during the last 17 years developed a software system called GEOSAT, for the analysis of any type of high precision space geodetic observations. A unique feature of GEOSAT is the possibility of combining any combination of different space geode- tic data at the observation level with one consistent model and one consistent strategy. This is a much better strategy than the strategy in use today where different types of observations are processed separately using analysis software developed specifically for each technique. The results from each technique are finally combined a posteriori. In practice the models implemented in the software packages differ at the 1-cm level which is almost one order of magnitude larger than the internal precision of the most precise techniques. Another advantage of the new proposed combination method is that for example VLBI and GPS can use the same tropospheric model with common parameterization. The same is the case for the Earth orientation parameters, the geo- center coordinates and other geodetic or geophysical parameters where VLBI, GPS and SLR can have a common estimate for each of the parameters. The analysis with GEOSAT is automated for the combination of VLBI, SLR and GPS observations. The data are analyzed in batches of one day where the result from each daily arc is a SRIF array (Square Root Information Filter). A large number of SRIF arrays can be combined into a multi-year solution using the CSRIFS program (Com- bination Square Root Information Filter and Smoother). Four parameter levels are available and any parameter can, at each level, either be represented as a constant or a stochastic parameter (white noise, colored noise, or random walk). The batch length (i.e. the time interval between the addition of noise to the SRIF array) can be made time- and parameter dependent. GEOSAT and CSRIFS have been applied in the analysis of selected VLBI and SLR data (LAGEOS I &II) from the period January 1993 to July 2001. A selected number of arcs also include GPS data. Earth orientation parameters, geocenter motion, sta- tion coordinates and velocities were estimated simultaneously with the coordinates of the radio sources and satellite orbital parameters. Recent software improvements and 1 results of analyses will be presented at the meeting. 2

  17. Insights into the dynamics of Etna volcano from 20-year time span microgravity and GPS observations

    NASA Astrophysics Data System (ADS)

    Bonforte, Alessandro; Fanizza, Giovanni; Greco, Filippo; Matera, Alfredo; Sulpizio, Roberto

    2016-04-01

    A common ground deformation and microgravity array of benchmarks lies on the southern slope of Mt. Etna volcano and is routinely measured by GPS and relative gravimetry methods. The array was installed for monitoring the ground motion and underground mass changes along the southern rift of the volcano and data are usually processed and interpreted independently. The benchmarks have been installed mainly along a main road crossing the southern side of the volcano with an E-W direction and reaching 2000 m of altitude. The gravity array covers the entire path of the road, while the ground deformation one only the upper one, due to the woods at lower altitude preventing good GPS measurements. Furthermore, microgravity surveys are usually carried out more frequently with respect to the GPS ones. In this work, an integrated analysis of microgravity and ground deformation is performed over a 20-year time span (1994-2014). Gravity variations have been first corrected for the free-air effect using the GPS observed vertical deformation and the theoretical vertical gravity gradient (-308.6 μGal/m). The free-air corrected gravity changes were then reduced from the high frequency variations (noise) and the seasonal fluctuations, mainly due to water-table fluctuations. This long-term dataset constitutes a unique opportunity to examine the behavior of Etna in a period in which the volcano exhibited different styles of activity characterized by recharging phases, flank eruptions and fountaining episodes. The gravity and deformation data allow investigating the response of the volcano in a wider perspective providing insights into the definition of its dynamic behavior and posing the basis to track the unrest evolution and to forecast the style of the eruption. The joint analysis highlights common periods, in which the signals underwent contemporaneous changes occurring mainly in the central and eastern stations. On the other hand, no significant changes in the behavior of deformation and gravity signals have been observed in the westernmost stations. Specifically, we observed at least four periods characterized by different correlation between the two time series. Indeed, the integrated analysis of the spatio-temporal variations of the gravity and the ground deformation data highlights different volcanic processes controlling the dynamical behavior of Etna volcano in this sector.

  18. Software Defined GPS Receiver for International Space Station

    NASA Technical Reports Server (NTRS)

    Duncan, Courtney B.; Robison, David E.; Koelewyn, Cynthia Lee

    2011-01-01

    JPL is providing a software defined radio (SDR) that will fly on the International Space Station (ISS) as part of the CoNNeCT project under NASA's SCaN program. The SDR consists of several modules including a Baseband Processor Module (BPM) and a GPS Module (GPSM). The BPM executes applications (waveforms) consisting of software components for the embedded SPARC processor and logic for two Virtex II Field Programmable Gate Arrays (FPGAs) that operate on data received from the GPSM. GPS waveforms on the SDR are enabled by an L-Band antenna, low noise amplifier (LNA), and the GPSM that performs quadrature downconversion at L1, L2, and L5. The GPS waveform for the JPL SDR will acquire and track L1 C/A, L2C, and L5 GPS signals from a CoNNeCT platform on ISS, providing the best GPS-based positioning of ISS achieved to date, the first use of multiple frequency GPS on ISS, and potentially the first L5 signal tracking from space. The system will also enable various radiometric investigations on ISS such as local multipath or ISS dynamic behavior characterization. In following the software-defined model, this work will create a highly portable GPS software and firmware package that can be adapted to another platform with the necessary processor and FPGA capability. This paper also describes ISS applications for the JPL CoNNeCT SDR GPS waveform, possibilities for future global navigation satellite system (GNSS) tracking development, and the applicability of the waveform components to other space navigation applications.

  19. ROSA deploy

    NASA Image and Video Library

    2017-06-18

    iss052e002857 (6/18/2017) --- The Roll-Out Solar Array (ROSA) is a new type of solar panel that rolls open in space like a party favor and is more compact than current rigid panel designs. The ROSA investigation tests deployment and retraction, shape changes when the Earth blocks the sun, and other physical challenges to determine the array’s strength and durability. ROSA has the potential to replace solar arrays on future satellites, making them more compact and lighter weight. Satellite radio and television, weather forecasting, GPS and other services used on Earth would all benefit from high-performance solar arrays.

  20. ROSA deploy

    NASA Image and Video Library

    2017-06-18

    iss052e004379 (6/18/2017) --- The Roll-Out Solar Array (ROSA) is a new type of solar panel that rolls open in space like a party favor and is more compact than current rigid panel designs. The ROSA investigation tests deployment and retraction, shape changes when the Earth blocks the sun, and other physical challenges to determine the array’s strength and durability. ROSA has the potential to replace solar arrays on future satellites, making them more compact and lighter weight. Satellite radio and television, weather forecasting, GPS and other services used on Earth would all benefit from high-performance solar arrays.

  1. ROSA deploy

    NASA Image and Video Library

    2017-06-18

    iss052e002871 (6/18/2017) --- The Roll-Out Solar Array (ROSA) is a new type of solar panel that rolls open in space like a party favor and is more compact than current rigid panel designs. The ROSA investigation tests deployment and retraction, shape changes when the Earth blocks the sun, and other physical challenges to determine the array’s strength and durability. ROSA has the potential to replace solar arrays on future satellites, making them more compact and lighter weight. Satellite radio and television, weather forecasting, GPS and other services used on Earth would all benefit from high-performance solar arrays.

  2. Constraints on the mechanism of long-term, steady subsidence at Medicine Lake volcano, northern California, from GPS, leveling, and InSAR

    USGS Publications Warehouse

    Poland, Michael P.; Burgmann, Roland; Dzurisin, Daniel; Lisowski, Michael; Masterlark, Timothy; Owen, Susan; Fink, Jonathan

    2006-01-01

    Leveling surveys across Medicine Lake volcano (MLV) have documented subsidence that is centered on the summit caldera and decays symmetrically on the flanks of the edifice. Possible mechanisms for this deformation include fluid withdrawal from a subsurface reservoir, cooling/crystallization of subsurface magma, loading by the volcano and dense intrusions, and crustal thinning due to tectonic extension (Dzurisin et al., 1991 [Dzurisin, D., Donnelly-Nolan, J.M., Evans, J.R., Walter, S.R., 1991. Crustal subsidence, seismicity, and structure near Medicine Lake Volcano, California. Journal of Geophysical Research 96, 16, 319-16, 333.]; Dzurisin et al., 2002 [Dzurisin, D., Poland, M.P., Bürgmann, R., 2002. Steady subsidence of Medicine Lake Volcano, Northern California, revealed by repeated leveling surveys. Journal of Geophysical Research 107, 2372, doi:10.1029/2001JB000893.]). InSAR data that approximate vertical displacements are similar to the leveling results; however, vertical deformation data alone are not sufficient to distinguish between source mechanisms. Horizontal displacements from GPS were collected in the Mt. Shasta/MLV region in 1996, 1999, 2000, 2003, and 2004. These results suggest that the region is part of the western Oregon block that is rotating about an Euler pole in eastern Oregon. With this rotation removed, most sites in the network have negligible velocities except for those near MLV caldera. There, measured horizontal velocities are less than predicted from ∼10 km deep point and dislocation sources of volume loss based on the leveling data; therefore volumetric losses simulated by these sources are probably not causing the observed subsidence at MLV. This result demonstrates that elastic models of subsurface volume change can provide misleading results where additional geophysical and geological constraints are unavailable, or if only vertical deformation is known. The deformation source must be capable of causing broad vertical deformation with comparatively smaller horizontal displacements. Thermoelastic contraction of a column of hot rock beneath the volcano cannot reproduce the observed ratio of vertical to horizontal surface displacements. Models that determine deformation due to loading by the volcano and dense intrusions can be made to fit the pattern of vertical displacements by assuming a weak upper crust beneath MLV, though the subsidence rates due to surface loading must be lower than the observed displacements. Tectonic extension is almost certainly occurring based on fault orientations and focal mechanisms, but does not appear to be a major contributor to the observed deformation. We favor a model that includes a combination of sources, including extension and loading of a hot weak crust with thermal contraction of a cooling mass of rock beneath MLV, which are processes that are probably occurring at MLV. Future microgravity surveys and the planned deployment of an array of continuous GPS stations as part of a Plate Boundary Observatory volcano cluster will help to refine this model.

  3. Sweetwater, Texas Large N Experiment

    NASA Astrophysics Data System (ADS)

    Sumy, D. F.; Woodward, R.; Barklage, M.; Hollis, D.; Spriggs, N.; Gridley, J. M.; Parker, T.

    2015-12-01

    From 7 March to 30 April 2014, NodalSeismic, Nanometrics, and IRIS PASSCAL conducted a collaborative, spatially-dense seismic survey with several thousand nodal short-period geophones complemented by a backbone array of broadband sensors near Sweetwater, Texas. This pilot project demonstrates the efficacy of industry and academic partnerships, and leveraged a larger, commercial 3D survey to collect passive source seismic recordings to image the subsurface. This innovative deployment of a large-N mixed-mode array allows industry to explore array geometries and investigate the value of broadband recordings, while affording academics a dense wavefield imaging capability and an operational model for high volume instrument deployment. The broadband array consists of 25 continuously-recording stations from IRIS PASSCAL and Nanometrics, with an array design that maximized recording of horizontal-traveling seismic energy for surface wave analysis over the primary target area with sufficient offset for imaging objectives at depth. In addition, 2639 FairfieldNodal Zland nodes from NodalSeismic were deployed in three sub-arrays: the outlier, backbone, and active source arrays. The backbone array consisted of 292 nodes that covered the entire survey area, while the outlier array consisted of 25 continuously-recording nodes distributed at a ~3 km distance away from the survey perimeter. Both the backbone and outlier array provide valuable constraints for the passive source portion of the analysis. This project serves as a learning platform to develop best practices in the support of large-N arrays with joint industry and academic expertise. Here we investigate lessons learned from a facility perspective, and present examples of data from the various sensors and array geometries. We will explore first-order results from local and teleseismic earthquakes, and show visualizations of the data across the array. Data are archived at the IRIS DMC under stations codes XB and 1B.

  4. Tracking magma volume recovery at okmok volcano using GPS and an unscented kalman filter

    USGS Publications Warehouse

    Fournier, T.; Freymueller, Jeffrey T.; Cervelli, Peter

    2009-01-01

    Changes beneath a volcano can be observed through position changes in a GPS network, but distinguishing the source of site motion is not always straightforward. The records of continuous GPS sites provide a favorable data set for tracking magma migration. Dense campaign observations usually provide a better spatial picture of the overall deformation field, at the expense of an episodic temporal record. Combining these observations provides the best of both worlds. A Kalman filter provides a means for integrating discrete and continuous measurements and for interpreting subtle signals. The unscented Kalman filter (UKF) is a nonlinear method for time-dependent observations. We demonstrate the application of this technique to deformation data by applying it to GPS data collected at Okmok volcano. Seven years of GPS observations at Okmok are analyzed using a Mogi source model and the UKF. The deformation source at Okmok is relatively stable at 2.5 km depth below sea level, located beneath the center of the caldera, which means the surface deformation is caused by changes in the strength of the source. During the 7 years of GPS observations more than 0.5 m of uplift has occurred, a majority of that during the time period January 2003 to July 2004. The total volume recovery at Okmok since the last eruption in 1997 is ??60-80%. The UKF allows us to solve simultaneously for the time-dependence of the source strength and for the location without a priori information about the source. ?? 2009 by the American Geophysical Union.

  5. GPS Tomography: Water Vapour Monitoring for Germany

    NASA Astrophysics Data System (ADS)

    Bender, Michael; Dick, Galina; Wickert, Jens; Raabe, Armin

    2010-05-01

    Ground based GPS atmosphere sounding provides numerous atmospheric quantities with a high temporal resolution for all weather conditions. The spatial resolution of the GPS observations is mainly given by the number of GNSS satellites and GPS ground stations. The latter could considerably be increased in the last few years leading to more reliable and better resolved GPS products. New techniques such as the GPS water vapour tomography gain increased significance as data from large and dense GPS networks become available. The GPS tomography has the potential to provide spatially resolved fields of different quantities operationally, i. e. the humidity or wet refractivity as required for meteorological applications or the refraction index which is important for several space based observations or for precise positioning. The number of German GPS stations operationally processed by the GFZ in Potsdam was recently enlarged to more than 300. About 28000 IWV observations and more than 1.4 millions of slant total delay data are now available per day with a temporal resolution of 15 min and 2.5 min, respectively. The extended network leads not only to a higher spatial resolution of the tomographically reconstructed 3D fields but also to a much higher stability of the inversion process and with that to an increased quality of the results. Under these improved conditions the GPS tomography can operate continuously over several days or weeks without applying too tight constraints. Time series of tomographically reconstructed humidity fields will be shown and different initialisation strategies will be discussed: Initialisation with a simple exponential profile, with a 3D humidity field extrapolated from synoptic observations and with the result of the preceeding reconstruction. The results are compared to tomographic reconstructions initialised with COSMO-DE analyses and to the corresponding model fields. The inversion can be further stabilised by making use of independent adequately weighted observations, such as synoptic observations or IWV data. The impact of such observations on the quality of the tomographic reconstruction will be discussed together with different alternatives for weighting different types of observations.

  6. Large-eddy simulation of dense gas dispersion over a simplified urban area

    NASA Astrophysics Data System (ADS)

    Wingstedt, E. M. M.; Osnes, A. N.; Åkervik, E.; Eriksson, D.; Reif, B. A. Pettersson

    2017-03-01

    Dispersion of neutral and dense gas over a simplified urban area, comprising four cubes, has been investigated by the means of large-eddy simulations (LES). The results have been compared to wind tunnel experiments and both mean and fluctuating quantities of velocity and concentration are in very good agreement. High-quality inflow profiles are necessary to achieve physically realistic LES results. In this study, profiles matching the atmospheric boundary layer flow in the wind tunnel, are generated by means of a separate precursor simulation. Emission of dense gas dramatically alters the flow in the near source region and introduces an upstream dispersion. The resulting dispersion patterns of neutral and dense gas differ significantly, where the plume in the latter case is wider and shallower. The dense gas is highly affected by the cube array, which seems to act as a barrier, effectively deflecting the plume. This leads to higher concentrations outside of the array than inside. On the contrary, the neutral gas plume has a Gaussian-type shape, with highest concentrations along the centreline. It is found that the dense gas reduces the vertical and spanwise turbulent momentum transport and, as a consequence, the turbulence kinetic energy. The reduction coincides with the area where the gradient Richardson number exceeds its critical value, i.e. where the flow may be characterized as stably stratified. Interestingly, this region does not correspond to where the concentration of dense gas is the highest (close to the ground), as this is also where the largest velocity gradients are to be found. Instead there is a layer in the middle of the dense gas cloud where buoyancy is dynamically dominant.

  7. Nanowire array and nanowire solar cells and methods for forming the same

    DOEpatents

    Yang, Peidong [Berkeley, CA; Greene, Lori [Berkeley, CA; Law, Matthew [Berkeley, CA

    2007-09-04

    Homogeneous and dense arrays of nanowires are described. The nanowires can be formed in solution and can have average diameters of 40-300 nm and lengths of 1-3 .mu.m. They can be formed on any suitable substrate. Photovoltaic devices are also described.

  8. Nanowire array and nanowire solar cells and methods for forming the same

    DOEpatents

    Yang, Peidong; Greene, Lori E.; Law, Matthew

    2009-06-09

    Homogeneous and dense arrays of nanowires are described. The nanowires can be formed in solution and can have average diameters of 40-300 nm and lengths of 1-3 .mu.m. They can be formed on any suitable substrate. Photovoltaic devices are also described.

  9. M&A For Lithography Of Sparse Arrays Of Sub-Micrometer Features

    DOEpatents

    Brueck, Steven R.J.; Chen, Xiaolan; Zaidi, Saleem; Devine, Daniel J.

    1998-06-02

    Methods and apparatuses are disclosed for the exposure of sparse hole and/or mesa arrays with line:space ratios of 1:3 or greater and sub-micrometer hole and/or mesa diameters in a layer of photosensitive material atop a layered material. Methods disclosed include: double exposure interferometric lithography pairs in which only those areas near the overlapping maxima of each single-period exposure pair receive a clearing exposure dose; double interferometric lithography exposure pairs with additional processing steps to transfer the array from a first single-period interferometric lithography exposure pair into an intermediate mask layer and a second single-period interferometric lithography exposure to further select a subset of the first array of holes; a double exposure of a single period interferometric lithography exposure pair to define a dense array of sub-micrometer holes and an optical lithography exposure in which only those holes near maxima of both exposures receive a clearing exposure dose; combination of a single-period interferometric exposure pair, processing to transfer resulting dense array of sub-micrometer holes into an intermediate etch mask, and an optical lithography exposure to select a subset of initial array to form a sparse array; combination of an optical exposure, transfer of exposure pattern into an intermediate mask layer, and a single-period interferometric lithography exposure pair; three-beam interferometric exposure pairs to form sparse arrays of sub-micrometer holes; five- and four-beam interferometric exposures to form a sparse array of sub-micrometer holes in a single exposure. Apparatuses disclosed include arrangements for the three-beam, five-beam and four-beam interferometric exposures.

  10. Vertically aligned carbon nanotubes for microelectrode arrays applications.

    PubMed

    Castro Smirnov, J R; Jover, Eric; Amade, Roger; Gabriel, Gemma; Villa, Rosa; Bertran, Enric

    2012-09-01

    In this work a methodology to fabricate carbon nanotube based electrodes using plasma enhanced chemical vapour deposition has been explored and defined. The final integrated microelectrode based devices should present specific properties that make them suitable for microelectrode arrays applications. The methodology studied has been focused on the preparation of highly regular and dense vertically aligned carbon nanotube (VACNT) mat compatible with the standard lithography used for microelectrode arrays technology.

  11. Magmatic processes evidenced by borehole dilatometer data at Campi Flegrei, Italy.

    NASA Astrophysics Data System (ADS)

    Di Lieto, Bellina; Romano, Pierdomenico; Scarpa, Roberto; Orazi, Massimo

    2017-04-01

    Since spring 2004 a joint research project (AMRA, UniSa, INGV) has been developed in Italy to install borehole strainmeters aimed at enhanced INGV monitoring systems. Six Sacks-Evertson dilatometers were installed around Campi Flegrei and Vesuvius during 2004-2005, and in 2008 these were supplemented by two arrays of long-baseline underground water tube tiltmeters. Renewed activity started since 2004-2005, characterized by a low rate of vertical displacement, amounting initially to a few cm/year. Recent deformation in the Campi Flegrei caldera is dominated by aseismic inflation, interrupted by minor transient aseismic reversals in rate. These are typically below the noise level or are poorly sampled by the low sampling frequency of most geodetic techniques, but can be quantified relatively easily using high sensitivity strainmeters and tiltmeters. These instruments provide coherent views of deformation at several different time scales capturing reversals in rate with periods from minutes to months. Monotonic uplift episodes have been recorded with durations of several weeks to a few years. During the summer of 2006 a long term strain episode related to an increase of CO2 emission, evidenced by borehole tiltmeters and continuous GPS sensors, has been observed by the borehole dilatometers array. This strain episode preceded caldera microseismic activity by few months, as was also observed during the 1982 period of unrest. Other aseismic slip episodes were recorded in October 2006 and in March 2010, several minutes before the most significant seismic swarms (VT and/or LP events) occurred after the 1982-1984 uplift. The time scale of these transient strain events lasted less than one hour, putting further constraints on the origin of ground uplifts at Campi Flegrei. Their locations are compatible with the source inferred from long term deformation signals, at about 4 km depth beneath Pozzuoli. The current array provides us with a glimpse of the potential utility of a dense array of strainmeters and tiltmeters surrounding the Campi Flegrei region. An expanded array of tiltmeters and strainmeters operating continuously would permit the details of magma-transfer and the underlying cause of subsequent seismic activity to be monitored. Despite the small number of sensors, a preliminary mechanism model for aseismic strain episodes can be defined, correlating these episodes with magma growth in reservoirs with occasional pressure relief associated with the leakage of gas.

  12. Biasing, Acquisition and Interpretation of a Dense Langmuir Probe Array in NSTX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaworski, M. A.; Kallman, J.; Kaita, R.

    2010-09-22

    A dense array of 99 Langmuir probes has been installed in the lower divertor region of the National Spherical Torus Experiments (NSTX). This array is instrumented with a system of elec- tronics that allows flexibility in the choice of probes to bias as well as the type of measurement (including standard swept, single probe, triple probe and operation as passive floating potential and scrape-off-layer (SOL) current monitors). The use of flush-mounted probes requires careful inter- pretation. The time dependent nature of the SOL makes swept-probe traces difficult to interpret. To overcome these challenges, the single- and triple-Langmuir probe signals aremore » used in comple- mentary fashion to determine the temperature and density at the probe location. A comparison to mid-plane measurements is made. Work is supported by DOE contracts DE-AC02-09CHI1466 and DE-PS02-07ER07-29.« less

  13. The August 21, 2017 American total solar eclipse through the eyes of GPS

    NASA Astrophysics Data System (ADS)

    Kundu, Bhaskar; Panda, Dibyashakti; Gahalaut, Vineet K.; Catherine, J. K.

    2018-04-01

    We explored spatio-temporal variation in Total Electron Contents (TEC) in the ionosphere caused by the recent August 21, 2017 total solar eclipse, which was observed over the United States of America. The path of total solar eclipse passes through the continental parts of the United States of America, starting in the northwestern state of Oregon and ending in the southeastern state of South Carolina, approximately covering 4000 km length. Across this length EarthScope Plate Boundary Observatory (PBO) has been operating a dense cGPS/GNSS networks. During the course of passage of the solar eclipse, the sudden decline in solar radiation by temporarily obscuration by the Moon caused a drop of ˜6-9 × 1016 electrons/m2in the ionosphere with time-delay at the cGPS sites. The significant drop in TEC at cGPS sites captured the average migration velocity of shadow along the eclipse path (0.74 km/s), from which we estimated the Moon's orbital velocity (˜1 km/s). Further, this event also caused some marginal increase in TEC during the eclipse in the Earth's ionosphere in the magnetically conjugate region at the tip of South America and Antarctica, consistent with the model predictions of SAMI3 by Naval Research Laboratory.

  14. Landslide Monitoring Using Insar Time-Series and GPS Observations, Case Study: Shabkola Landslide in Northern Iran

    NASA Astrophysics Data System (ADS)

    Mirzaee, S.; Motagh, M.; Akbari, B.

    2017-05-01

    Shabkola is a village located in Mazandaran province of northern Iran that suffers from the mass movement happening in the upstream. Deforestation and changes to land use are the main reasons for the soil instability in this region, which together with steep slope, relatively high precipitation rate and natural erosion has led to such a condition. The area of mass movement is approximately 90 hectares which is a big threat for people living in the region. In this study, we have utilized two different geodetic techniques including InSAR time-series analysis and GPS measurements to assess slope stability in Shabkola. The SAR dataset includes 19 ALOS/PALSAR images spanning from July 2007 to February 2011 while GPS observations are collected in 5 campaigns from September 2011 to May 2014. Displacement as much as approximately 11.7 m in slope direction was detected by GPS observations for the 2011-2014 time period. Most of the slope geometry is in north-south direction, for which the sensitivity of InSAR for displacement detection is low. However, ALOS PALSAR data analysis revealed a previously unknown landslide, covered by dense vegetation in the northern part of main Shabkola landslide, showing line-of-sight velocity of approximately 2cm/year in the time period 2007-2011.

  15. GPS & GLONASS Observations of Large-Scale Traveling Ionospheric Disturbances during the 2015 St. Patrick's Day Storm

    NASA Astrophysics Data System (ADS)

    Zakharenkova, I.; Astafyeva, E.; Cherniak, I.

    2016-12-01

    We investigate signatures of the large-scale travelling ionospheric disturbances (LSTIDs) that they leave in the ground-based total electron content (TEC) during the 2015 St. Patrick's Day Storm. We take advantage of a large number of the ground-based GPS/GNSS receivers to analyze simultaneous LSTIDs propagation in different sectors from very dense and multipoint observations. The region of interest includes the both Northern and Southern American sectors, as well as the whole European sector. We use measurements derived from more than 5000 GPS/GNSS receivers of numerous global and regional GNSS networks. We considerably increase number of available observations by processing signals from not only GPS but also from GLONASS. We retrieve a perturbation component of the resulted TEC maps constructed with high spatial and temporal resolution. LSTIDs originating in the auroral oval and propagating equatorward were clearly identified in both hemispheres. In this report we discuss features of the observed LSTIDs, in particular, 1) similarities and differences of their simultaneous propagation over American and European sectors ; 2) interhemispheric LSTIDs propagation in the American sector; 3) dependence of the LSTIDs characteristic parameters (velocity, wavelength) on the intensification of the auroral activity during the main phase of this storm.

  16. Three methods to retrieve slant total electron content measurements from ground-based GPS receivers and performance assessment

    NASA Astrophysics Data System (ADS)

    Zhang, Baocheng

    2016-07-01

    The high sampling rate along with the global coverage of ground-based receivers makes Global Positioning System (GPS) data particularly ideal for sensing the Earth's ionosphere. Retrieval of slant total electron content measurements (TECMs) constitutes a key first step toward extracting various ionospheric parameters from GPS data. Within the ionospheric community, the interpretation of TECM is widely recognized as the slant total electron content along the satellite receiver line of sight, biased by satellite and receiver differential code biases (DCBs). The Carrier-to-Code Leveling (CCL) has long been used as a geometry-free method for retrieving TECM, mainly because of its simplicity and effectiveness. In fact, however, the CCL has proven inaccurate as it may give rise to TECM very susceptible to so-called leveling errors. With the goal of attaining more accurate TECM retrieval, we report in this contribution two other methods than the CCL, namely, the Precise Point Positioning (PPP) and the Array-aided PPP (A-PPP). The PPP further exploits the International GPS Service (IGS) orbit and clock products and turns out to be a geometry-based method. The A-PPP is designed to retrieve TECM from an array of colocated receivers, taking advantage of the broadcast orbit and clock products. Moreover, A-PPP also takes into account the fact that the ionospheric effects measured from one satellite to all colocated receivers ought to be the same, thus leading to the estimability of interreceiver DCB. We perform a comparative study of the formal precision and the empirical accuracy of the TECM that are retrieved, respectively, by three methods from the same set of GPS data. Results of such a study can be used to assess the actual performance of the three methods. In addition, we check the temporal stability in A-PPP-derived interreceiver DCB estimates over time periods ranging from 1 to 3 days.

  17. A GPS based fawn saving system using relative distance and angle determination

    NASA Astrophysics Data System (ADS)

    Ascher, A.; Eberhardt, M.; Lehner, M.; Biebl, E.

    2016-09-01

    Active UHF RFID systems are often used for identifying, tracking and locating objects. In the present publication a GPS- based localization system for saving fawns during pasture mowing was introduced and tested. Fawns were first found by a UAV before mowing began. They were then tagged with small active RFID transponders, and an appropriate reader was installed on a mowing machine. Conventional direction-of-arrival approaches require a large antenna array with multiple elements and a corresponding coherent receiver, which introduces a large degree of complexity on the reader-side. Instead, our transponders were equipped with a small GPS module, allowing a transponder to determine its own position on request from the reader. A UHF link was used to transmit the location to a machine- mounted reader, where a second GPS receiver was installed. Using information from this second position and a machine- mounted magnetometer for determining the relative north direction of a vehicle, relative distance, and angle between GPS receivers can be calculated. The accuracy and reliability of this novel method were tested under realistic operating conditions, considering critical factors such as the height of grass, the lying position of a fawn, humidity and geographical area.

  18. Tomography of the upper mantle beneath the African/Iberian collision zone

    NASA Astrophysics Data System (ADS)

    Bonnin, Mickael; Nolet, Guust; Thomas, Christine; Villaseñor, Antonio; Gallart, Josep; Levander, Alan

    2013-04-01

    In this study we take advantage of the dense broadband-station networks available in western Mediterranean region (IberArray, PICASSO and MOROCCO-MUENSTER networks) to develop a high-resolution 3D tomographic P velocity model of the upper mantle beneath the African/Iberian collision zone. This model is based on teleseismic arrival times recorded between 2008 and 2012 for which cross-correlation delays are measured with a new technique in different frequency bands centered between 0.03 and 1.0 Hz, and interpreted using multiple frequency tomography. Such a tomography is required to scrutinize the nature and extent of the thermal anomalies inferred beneath Northern Africa, especially in the Atlas ranges region and associated to sparse volcanic activities. Tomography is notably needed to help in determining the hypothetical connection between those hot anomalies and the Canary Island hotspot as proposed by geochemistry studies. It also provides new insights on the geometry of the subducting slab previously inferred from tomography, GPS measurements or shear-wave splitting patterns beneath the Alboran Sea and the Betic ranges and is indispensable for deciphering the complex geodynamic history of the Western Mediterranean region. We shall present the overall statistics of the delays, their geographical distribution, as well as the first inversion results.

  19. TLALOCNet: A Continuous GPS-Met Array in Mexico for Seismotectonic and Atmospheric Research

    NASA Astrophysics Data System (ADS)

    Cabral-Cano, E.; Salazar-Tlaczani, L.; Galetzka, J.; DeMets, C.; Serra, Y. L.; Feaux, K.; Mattioli, G. S.; Miller, M. M.

    2015-12-01

    TLALOCNet is a network of continuous Global Positioning System (cGPS) and meteorology stations in Mexico for the interrogation of the earthquake cycle, tectonic processes, land subsidence, and atmospheric processes of Mexico. Once completed, TLALOCNet will span all of Mexico and will link existing GPS infrastructure in North America and the Caribbean aiming towards creating a continuous, federated network of networks in the Americas. Phase 1 (2014-2015), funded by NSF and UNAM, is building and upgrading 30+ cGPS-Met sites to the high standard of the EarthScope Plate Boundary Observatory (PBO). Phase 2 (2016) will add ~25 more cGPS-Met stations to be funded through CONACyT. TLALOCNet provides open and freely available raw GPS data, GPS-PWV, surface meteorology measurements, time series of daily positions, as well as a station velocity field to support a broad range of geoscience investigations. This is accomplished through the development of the TLALOCNet data center (http://tlalocnet.udg.mx) that serves as a collection and distribution point. This data center is based on UNAVCO's Dataworks-GSAC software and can work as part of UNAVCO's seamless archive for discovery, sharing, and access to data.The TLALOCNet data center also contains contributed data from several regional networks in Mexico. By using the same protocols and structure as the UNAVCO and other COCONet regional data centers, the geodetic community has the capability of accessing data from a large number of scientific and academically operated Mexican GPS sites. This archive provides a fully querable and scriptable GPS and Meteorological data retrieval point. Additionally Real-time 1Hz streams from selected TLALOCNet stations are available in BINEX, RTCM 2.3 and RTCM 3.1 formats via the Networked Transport of RTCM via Internet Protocol (NTRIP).

  20. L-Band Ionosphere Scintillations Observed by A GNSS Receiver Array at HAARP

    NASA Astrophysics Data System (ADS)

    Morton, Y.; Pelgrum, W.; van Graas, F.

    2011-12-01

    As we enter a new solar maximum period, GNSS receivers, especially the ones operating in high latitude and equatorial regions, are facing an increasing threat from ionosphere scintillations. The increased solar activities, however, also offer a great opportunity to collect scintillation data to gain better understandings of scintillation effects on GNSS signals. During the past decade, many GPS receivers have been deployed around the globe to monitor ionosphere scintillations. Most of these GPS receivers are commercial receivers whose tracking mechanisms are not designed to operate under ionosphere scintillation. When strong scintillations occur, these receivers will either generate erroneous outputs or completely lose lock. Even when the scintillation is mild, the tracking loop outputs are not true representation of the signal parameters due the tracking loop transfer function. High quality, unprocessed GNSS receiver front end raw IF samples collected during ionosphere scintillations are necessary to produce realistic scintillation signal parameter estimations. In this presentation, we will update our effort in establishing a unique GNSS receiver array at HAARP, Alaska to collect GPS and GLONASS satellite signals at various stages of the GNSS receiver processing. Signal strength, carrier phase, and relative TEC measurements generated by the receiver array as well as additional on-site diagnostic instrumentation measurements obtained from two active heating experiment campaigns conducted in 2011 will be presented. Additionally, we will also highlight and contrast the artificial heating experiment results with observations of natural scintillation events captured by our receivers using an automatic event trigger mechanism during the past year. These interesting results demonstrate the feasibility and effectiveness of our experimental data collection system in providing insightful details of ionosphere responses to active perturbations and natural disturbances.

  1. GPS/Acoustic seafloor observation in eastern Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, H. Y.; Ando, M.; Lin, C. H.

    2017-12-01

    Two sets of transponder arrays, around 100 km off-Ilan and off-Hualien, respectively, have been establisted to estimate the movement behaviors at the upper part of the subduction zone between the Philippine sea plate and Ryukyu islands arc collision boundary in eastern Taiwan since 2012 and 2014. Ten seafloor geodetic surveys have been conducted for off-Ilan array on July 2012, April, July, September 2013, September 2014, July, September 2015, June, August 2016, August 2017, and Four campaigns on September 2015, June, August 2016, August 2017 for off-Hualien array. The positioning results have been acquired on root-mean-square (rms) in 0.06 and 0.10 msec (i.e. 7 and 12 cm) of positioning accuracy. Compare the accuracy with further studies on Peru-Chile trench and Nankai Trough of Japan, the results is slight worse in 2-3 cm level. The primary velocity shows 6.0±1.2 cm to the south 7.1±2.2 cm to the west and 1.7±1.9 downward from July 2012 to August 2017 in the off-Ilan array, and 6.1±11.8 cm to the south 5.2±10.6 cm to the west and 47.0±16.0 downward from September 2015 to August 2017 in the off-Hualien array. The movement behavior of this result is similar to the onshore vectors estimated by GPS, but the uncertainty of the velocity is still slight large to determine the positions precisely. However, the accuracy has been improved by extending the experience time spend and prolonging the observation periods.

  2. NASA's global differential GPS system and the TDRSS augmentation service for satellites

    NASA Technical Reports Server (NTRS)

    Bar-Sever, Yoaz; Young, Larry; Stocklin, Frank; Rush, John

    2004-01-01

    NASA is planning to launch a new service for Earth satellites providing them with precise GPS differential corrections and other ancillary information enabling decimeter level orbit determination accuracy, and nanosecond time-transfer accuracy, onboard, in real-time. The TDRSS Augmentation Service for Satellites (TASS) will broadcast its message on the S-band multiple access channel of NASA's Tracking and Data Relay Satellite System (TDRSS). The satellite's phase array antenna has been configured to provide a wide beam, extending coverage up to 1000 km altitude over the poles. Global coverage will be ensured with broadcast from three or more TDRSS satellites. The GPS differential corrections are provided by the NASA Global Differential GPS (GDGPS) System, developed and operated by NASA's Jet Propulsion Laboratory. The GDGPS System employs a global ground network of more than 70 GPS receivers to monitor the GPS constellation in real time. The system provides real-time estimates of the GPS satellite states, as well as many other real-time products such as differential corrections, global ionospheric maps, and integrity monitoring. The unique multiply redundant architecture of the GDGPS System ensures very high reliability, with 99.999% demonstrated since the inception of the system in Early 2000. The estimated real time GPS orbit and clock states provided by the GDGPS system are accurate to better than 20 cm 3D RMS, and have been demonstrated to support sub-decimeter real time positioning and orbit determination for a variety of terrestrial, airborne, and spaceborne applications. In addition to the GPS differential corrections, TASS will provide real-time Earth orientation and solar flux information that enable precise onboard knowledge of the Earth-fixed position of the spacecraft, and precise orbit prediction and planning capabilities. TASS will also provide 5 seconds alarms for GPS integrity failures based on the unique GPS integrity monitoring service of the GDGPS System.

  3. Optimization of focality and direction in dense electrode array transcranial direct current stimulation (tDCS)

    NASA Astrophysics Data System (ADS)

    Guler, Seyhmus; Dannhauer, Moritz; Erem, Burak; Macleod, Rob; Tucker, Don; Turovets, Sergei; Luu, Phan; Erdogmus, Deniz; Brooks, Dana H.

    2016-06-01

    Objective. Transcranial direct current stimulation (tDCS) aims to alter brain function non-invasively via electrodes placed on the scalp. Conventional tDCS uses two relatively large patch electrodes to deliver electrical current to the brain region of interest (ROI). Recent studies have shown that using dense arrays containing up to 512 smaller electrodes may increase the precision of targeting ROIs. However, this creates a need for methods to determine effective and safe stimulus patterns as the number of degrees of freedom is much higher with such arrays. Several approaches to this problem have appeared in the literature. In this paper, we describe a new method for calculating optimal electrode stimulus patterns for targeted and directional modulation in dense array tDCS which differs in some important aspects with methods reported to date. Approach. We optimize stimulus pattern of dense arrays with fixed electrode placement to maximize the current density in a particular direction in the ROI. We impose a flexible set of safety constraints on the current power in the brain, individual electrode currents, and total injected current, to protect subject safety. The proposed optimization problem is convex and thus efficiently solved using existing optimization software to find unique and globally optimal electrode stimulus patterns. Main results. Solutions for four anatomical ROIs based on a realistic head model are shown as exemplary results. To illustrate the differences between our approach and previously introduced methods, we compare our method with two of the other leading methods in the literature. We also report on extensive simulations that show the effect of the values chosen for each proposed safety constraint bound on the optimized stimulus patterns. Significance. The proposed optimization approach employs volume based ROIs, easily adapts to different sets of safety constraints, and takes negligible time to compute. An in-depth comparison study gives insight into the relationship between different objective criteria and optimized stimulus patterns. In addition, the analysis of the interaction between optimized stimulus patterns and safety constraint bounds suggests that more precise current localization in the ROI, with improved safety criterion, may be achieved by careful selection of the constraint bounds.

  4. Teleseismic array analysis of upper mantle compressional velocity structure. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Walck, M. C.

    1984-01-01

    Relative array analysis of upper mantle lateral velocity variations in southern California, analysis techniques for dense data profiles, the P-wave upper mantle structure beneath an active spreading center: the Gulf of California, and the upper mantle under the Cascade ranges: a comparison with the Gulf of California are presented.

  5. Charge injection and discharging of Si nanocrystals and arrays by atomic force microscopy

    NASA Technical Reports Server (NTRS)

    Boer, E.; Ostraat, M.; Brongersma, M. L.; Flagan, R. C.; Atwater, H. A.

    2000-01-01

    Charge injection and storage in dense arrays of silicon nanocrystals in SiO(sub 2) is a critical aspect of the performance of potential nanocrystal flash memory structures. The ultimate goal for this class of devices is few-or single- electron storage in a small number of nanocrystal elements.

  6. High-Throughput Fabrication of Ultradense Annular Nanogap Arrays for Plasmon-Enhanced Spectroscopy.

    PubMed

    Cai, Hongbing; Meng, Qiushi; Zhao, Hui; Li, Mingling; Dai, Yanmeng; Lin, Yue; Ding, Huaiyi; Pan, Nan; Tian, Yangchao; Luo, Yi; Wang, Xiaoping

    2018-06-13

    The confinement of light into nanometer-sized metallic nanogaps can lead to an extremely high field enhancement, resulting in dramatically enhanced absorption, emission, and surface-enhanced Raman scattering (SERS) of molecules embedded in nanogaps. However, low-cost, high-throughput, and reliable fabrication of ultra-high-dense nanogap arrays with precise control of the gap size still remains a challenge. Here, by combining colloidal lithography and atomic layer deposition technique, a reproducible method for fabricating ultra-high-dense arrays of hexagonal close-packed annular nanogaps over large areas is demonstrated. The annular nanogap arrays with a minimum diameter smaller than 100 nm and sub-1 nm gap width have been produced, showing excellent SERS performance with a typical enhancement factor up to 3.1 × 10 6 and a detection limit of 10 -11 M. Moreover, it can also work as a high-quality field enhancement substrate for studying two-dimensional materials, such as MoSe 2 . Our method provides an attractive approach to produce controllable nanogaps for enhanced light-matter interaction at the nanoscale.

  7. Observation of Air Shower in Uijeongbu Area using the COREA Prototype Detector System

    NASA Astrophysics Data System (ADS)

    Cho, Wooram; Shin, Jae-ik; Kwon, Youngjoon; Yang, Jongmann; Nam, Shinwoo; Park, Il H.; Cheon, ByungGu; Kim, Hang Bae; Bhang, Hyoung Chan; Park, Cheolyoung; Kim, Gyhyuk; Choi, Wooseok; Hwang, MyungJin; Shin, Gwangsik

    2018-06-01

    We report the study of high energy cosmic rays in Uijeongbu area using a cosmic-ray detector array system. The array consists of three detector stations, each of which contains a set of three scintillators and PMTs, a GPS antenna along with data acquisition system. To identify air shower signals originating from a single cosmic ray, time coincidence information is used. We devised a method for estimating the energy range of air shower data detected by an array of only three detectors, using air shower simulation and citing already known energy spectrum. Also, Fast Fourier Transform(FFT) was applied to study isotropy.

  8. Capturing Postseismic Processes of the 2016 Mw 7.1 Kumamoto Earthquake, Japan, Using Dense, Continuous GPS and Short-repeat Time ALOS-2 InSAR Data: Implications for the Shallow Slip Deficit Problem

    NASA Astrophysics Data System (ADS)

    Milliner, C. W. D.; Burgmann, R.; Wang, T.; Inbal, A.; Bekaert, D. P.; Liang, C.; Fielding, E. J.

    2017-12-01

    Separating the contribution of shallow coseismic slip from rapidly decaying, postseismic afterslip in surface rupturing events has been difficult to resolve due to the typically sparse configuration of GPS networks and long-repeat time of InSAR acquisitions. Whether shallow fault motion along surface ruptures is a result of coseismic slip, or largely a product of rapid afterslip occurring within the first minutes to days, has significant implications for our understanding of the mechanics and frictional behavior of faulting in the shallow crust. To test this behavior in the case of a major surface rupturing event, we attempt to quantify the co- and postseismic slip of the 2016 Mw 7.1 Kumamoto earthquake sequence using a dense and continuous GPS network ( 10 km spacing), with short-repeat time, ALOS-2 InSAR data. Using the Network Inversion Filter method, we jointly invert the GPS and InSAR data to obtain a time history of afterslip in the first minutes to months following the mainshock. From our initial results, we find no clear evidence of significant shallow afterslip (i.e., no observable slip > 30 cm at depths of < 3 km, a minimum resolvable value), that could account for the 1 m of coseismic deficit of shallow slip inferred from our static finite-fault inversion. Our results show, aside from significant volumetric changes related to poroelastic processes, the majority of shallow fault slip was largely complete after rupture cessation. We also attempt to improve our coseismic slip model by implementing a method that inverts changes in seismicity rates for coseismic slip, helping constrain parts of the model space at depth where geodetic data loses resolving power. The use of geodetic data with the ability to resolve near-field, coseismic deformation and rapidly decaying postseismic processes will aid in our understanding of the frictional properties of shallow faulting, giving more reliable predictions for ground motion simulations and seismic hazard assessments.

  9. TLALOCNet continuous GPS-Met Array in Mexico supporting the 2017 NAM GPS Hydrometeorological Network.

    NASA Astrophysics Data System (ADS)

    Cabral-Cano, E.; Salazar-Tlaczani, L.; Adams, D. K.; Vivoni, E. R.; Grutter, M.; Serra, Y. L.; DeMets, C.; Galetzka, J.; Feaux, K.; Mattioli, G. S.; Miller, M. M.

    2017-12-01

    TLALOCNet is a network of continuous GPS and meteorology stations in Mexico to study atmospheric and solid earth processes. This recently completed network spans most of Mexico with a strong coverage emphasis on southern and western Mexico. This network, funded by NSF, CONACyT and UNAM, recently built 40 cGPS-Met sites to EarthScope Plate Boundary Observatory standards and upgraded 25 additional GPS stations. TLALOCNet provides open and freely available raw GPS data, and high frequency surface meteorology measurements, and time series of daily positions. This is accomplished through the development of the TLALOCNet data center (http://tlalocnet.udg.mx) that serves as a collection and distribution point. This data center is based on UNAVCO's Dataworks-GSAC software and also works as part of UNAVCO's seamless archive for discovery, sharing, and access to GPS data. The TLALOCNet data center also contains contributed data from several regional GPS networks in Mexico for a total of 100+ stations. By using the same protocols and structure as the UNAVCO and other COCONet regional data centers, the scientific community has the capability of accessing data from the largest Mexican GPS network. This archive provides a fully queryable and scriptable GPS and Meteorological data retrieval point. In addition, real-time 1Hz streams from selected TLALOCNet stations are available in BINEX, RTCM 2.3 and RTCM 3.1 formats via the Networked Transport of RTCM via Internet Protocol (NTRIP) for real-time seismic and weather forecasting applications. TLALOCNet served as a GPS-Met backbone for the binational Mexico-US North American Monsoon GPS Hydrometeorological Network 2017 campaign experiment. This innovative experiment attempts to address water vapor source regions and land-surface water vapor flux contributions to precipitation (i.e., moisture recycling) during the 2017 North American Monsoon in Baja California, Sonora, Chihuahua, and Arizona. Models suggest that moisture recycling is a large contributor to summer rainfall. This experiment represents a first attempt to quantify the surface water vapor flux contribution to GPS-derived precipitable water vapor. Preliminary results from this campaign are presented.

  10. A system for household enumeration and re-identification in densely populated slums to facilitate community research, education, and advocacy.

    PubMed

    Thomson, Dana R; Shitole, Shrutika; Shitole, Tejal; Sawant, Kiran; Subbaraman, Ramnath; Bloom, David E; Patil-Deshmukh, Anita

    2014-01-01

    We devised and implemented an innovative Location-Based Household Coding System (LBHCS) appropriate to a densely populated informal settlement in Mumbai, India. LBHCS codes were designed to double as unique household identifiers and as walking directions; when an entire community is enumerated, LBHCS codes can be used to identify the number of households located per road (or lane) segment. LBHCS was used in community-wide biometric, mental health, diarrheal disease, and water poverty studies. It also facilitated targeted health interventions by a research team of youth from Mumbai, including intensive door-to-door education of residents, targeted follow-up meetings, and a full census. In addition, LBHCS permitted rapid and low-cost preparation of GIS mapping of all households in the slum, and spatial summation and spatial analysis of survey data. LBHCS was an effective, easy-to-use, affordable approach to household enumeration and re-identification in a densely populated informal settlement where alternative satellite imagery and GPS technologies could not be used.

  11. Core Emergence in a Massive Infrared Dark Cloud: A Comparison between Mid-IR Extinction and 1.3 mm Emission

    NASA Astrophysics Data System (ADS)

    Kong, Shuo; Tan, Jonathan C.; Arce, Héctor G.; Caselli, Paola; Fontani, Francesco; Butler, Michael J.

    2018-03-01

    Stars are born from dense cores in molecular clouds. Observationally, it is crucial to capture the formation of cores in order to understand the necessary conditions and rate of the star formation process. The Atacama Large Millimeter/submillimeter Array (ALMA) is extremely powerful for identifying dense gas structures, including cores, at millimeter wavelengths via their dust continuum emission. Here, we use ALMA to carry out a survey of dense gas and cores in the central region of the massive (∼105 M ⊙) infrared dark cloud (IRDC) G28.37+0.07. The observation consists of a mosaic of 86 pointings of the 12 m array and produces an unprecedented view of the densest structures of this IRDC. In this first Letter about this data set, we focus on a comparison between the 1.3 mm continuum emission and a mid-infrared (MIR) extinction map of the IRDC. This allows estimation of the “dense gas” detection probability function (DPF), i.e., as a function of the local mass surface density, Σ, for various choices of thresholds of millimeter continuum emission to define “dense gas.” We then estimate the dense gas mass fraction, f dg, in the central region of the IRDC and, via extrapolation with the DPF and the known Σ probability distribution function, to the larger-scale surrounding regions, finding values of about 5% to 15% for the fiducial choice of threshold. We argue that this observed dense gas is a good tracer of the protostellar core population and, in this context, estimate a star formation efficiency per free-fall time in the central IRDC region of ɛ ff ∼ 10%, with approximately a factor of two systematic uncertainties.

  12. Estimating seismic site response in Christchurch City (New Zealand) from dense low-cost aftershock arrays

    USGS Publications Warehouse

    Kaiser, Anna E.; Benites, Rafael A.; Chung, Angela I.; Haines, A. John; Cochran, Elizabeth S.; Fry, Bill

    2011-01-01

    The Mw 7.1 September 2010 Darfield earthquake, New Zealand, produced widespread damage and liquefaction ~40 km from the epicentre in Christchurch city. It was followed by the even more destructive Mw 6.2 February 2011 Christchurch aftershock directly beneath the city’s southern suburbs. Seismic data recorded during the two large events suggest that site effects contributed to the variations in ground motion observed throughout Christchurch city. We use densely-spaced aftershock recordings of the Darfield earthquake to investigate variations in local seismic site response within the Christchurch urban area. Following the Darfield main shock we deployed a temporary array of ~180 low-cost 14-bit MEMS accelerometers linked to the global Quake-Catcher Network (QCN). These instruments provided dense station coverage (spacing ~2 km) to complement existing New Zealand national network strong motion stations (GeoNet) within Christchurch city. Well-constrained standard spectral ratios were derived for GeoNet stations using a reference station on Miocene basalt rock in the south of the city. For noisier QCN stations, the method was adapted to find a maximum likelihood estimate of spectral ratio amplitude taking into account the variance of noise at the respective stations. Spectral ratios for QCN stations are similar to nearby GeoNet stations when the maximum likelihood method is used. Our study suggests dense low-cost accelerometer aftershock arrays can provide useful information on local-scale ground motion properties for use in microzonation. Preliminary results indicate higher amplifications north of the city centre and strong high-frequency amplification in the small, shallower basin of Heathcote Valley.

  13. Study of ionospheric disturbances over the China mid- and low-latitude region with GPS observations

    NASA Astrophysics Data System (ADS)

    Ning, Yafei; Tang, Jun

    2018-01-01

    Ionospheric disturbances constitute the main restriction factor for precise positioning techniques based on global positioning system (GPS) measurements. Simultaneously, GPS observations are widely used to determine ionospheric disturbances with total electron content (TEC). In this paper, we present an analysis of ionospheric disturbances over China mid- and low-latitude area before and during the magnetic storm on 17 March 2015. The work analyses the variation of magnetic indices, the amplitude of ionospheric irregularities observed with four arrays of GPS stations and the influence of geomagnetic storm on GPS positioning. The results show that significant ionospheric TEC disturbances occurred between 10:30 and 12:00 UT during the main phase of the large storm, and the static position reliability for this period are little affected by these disturbances. It is observed that the positive and negative disturbances propagate southward along the meridian from mid-latitude to low-latitude regions. The propagation velocity is from about 200 to 700 m s-1 and the amplitude of ionospheric disturbances is from about 0.2 to 0.9 TECU min-1. Moreover, the position dilution of precession (PDOP) with static precise point positioning (PPP) on storm and quiet days is 1.8 and 0.9 cm, respectively. This study is based on the analysis of ionospheric variability with differential rate of vertical TEC (DROVT) and impact of ionospheric storm on positioning with technique of GPS PPP.

  14. Fiducial Marker Detection and Pose Estimation From LIDAR Range Data

    DTIC Science & Technology

    2010-03-01

    of View FPA Focal Plane Array FPS Frames Per Second FRE Fiducial Registration Error GIS Geographic Information Systems GPS Global...applications to image analysis and automated cartography. Communications of the ACM, 24(6), 381–395. Bradski, G., & Kaehler, A. (2008). Learning OpenCV

  15. Localization of dense intracranial electrode arrays using magnetic resonance imaging

    PubMed Central

    Doyle, Werner K.; Halgren, Eric; Carlson, Chad; Belcher, Thomas L.; Cash, Sydney S.; Devinsky, Orrin; Thesen, Thomas

    2013-01-01

    Intracranial electrode arrays are routinely used in the pre-surgical evaluation of patients with medically refractory epilepsy, and recordings from these electrodes have been increasingly employed in human cognitive neurophysiology due to their high spatial and temporal resolution. For both researchers and clinicians, it is critical to localize electrode positions relative to the subject-specific neuroanatomy. In many centers, a post-implantation MRI is utilized for electrode detection because of its higher sensitivity for surgical complications and the absence of radiation. However, magnetic susceptibility artifacts surrounding each electrode prohibit unambiguous detection of individual electrodes, especially those that are embedded within dense grid arrays. Here, we present an efficient method to accurately localize intracranial electrode arrays based on pre- and post-implantation MR images that incorporates array geometry and the individual's cortical surface. Electrodes are directly visualized relative to the underlying gyral anatomy of the reconstructed cortical surface of individual patients. Validation of this approach shows high spatial accuracy of the localized electrode positions (mean of 0.96 mm±0.81 mm for 271 electrodes across 8 patients). Minimal user input, short processing time, and utilization of radiation-free imaging are strong incentives to incorporate quantitatively accurate localization of intracranial electrode arrays with MRI for research and clinical purposes. Co-registration to a standard brain atlas further allows inter-subject comparisons and relation of intracranial EEG findings to the larger body of neuroimaging literature. PMID:22759995

  16. A Demonstration of GPS Landslide Monitoring Using Online Positioning User Service (OPUS)

    NASA Astrophysics Data System (ADS)

    Wang, G.

    2011-12-01

    Global Positioning System (GPS) technologies have been frequently applied to landslide study, both as a complement, and as an alternative to conventional surveying methods. However, most applications of GPS for landslide monitoring have been limited to the academic community for research purposes. High-accuracy GPS has not been widely equipped in geotechnical companies and used by technicians. The main issue that limits the applications of GPS in the practice of high-accuracy landslide monitoring is the complexity of GPS data processing. This study demonstrated an approach using the Online Positioning User Service (OPUS) (http://www.ngs.noaa.gov/OPUS) provided by the National Geodetic Survey (NGS) of National Oceanic and Atmospheric Administration (NOAA) to process GPS data and conduct long-term landslide monitoring in the Puerto Rico and Virgin Islands Region. Continuous GPS data collected at a creeping landslide site during two years were used to evaluate different scenarios for landslide surveying: continuous or campaign, long duration or short duration, morning or afternoon (different weather conditions). OPUS uses Continuously Operating Reference Station (CORS) managed by NGS (http://www.ngs.noaa.giv/CORS/) as references and user data as a rover to solve a position. There are 19 CORS permanent GPS stations in the Puerto Rico and Virgin Islands region. The dense GPS network provides a precise and reliable reference frame for subcentimeter-accuracy landslide monitoring in this region. Our criterion for the accuracy was the root-mean-square (RMS) of OPUS solutions over a 2-year period with respect to true landslide displacement time series overt the same period. The true landslide displacements were derived from a single-baseline (130 m) GPS processing by using 24-hour continuous data. If continuous GPS surveying is performed in the field, then OPUS static processing can provide 0.6 cm horizontal and 1.1 cm vertical precision with few outliers. If repeated campaign-style surveying is performed in the field, then the choice of observation time window and duration are very important. In order to detect a suspected sliding mass and track the kinematics of a creeping landslide, sub-centimeter horizontal accuracy is often required. OPUS static solutions for sessions of 4 hours or longer and OPUS rapid-static solutions for sessions as short as 15 minutes can achieve accuracy at this level if data collection during extreme weather conditions is avoided, such as rainfall and storm time. This study also indicated that rainfall events can seriously degrade the performance of high-accuracy GPS. Field GPS landslide surveying should avoid rainfall time that is usually accompanied by thunderstorms and the passage of weather fronts.

  17. GPS determination of diurnal and semidiurnal variations in earth rotation parameters and the geocenter

    NASA Astrophysics Data System (ADS)

    Nam, Young-Sun

    One year of GPS data collected from the dense, global network of the International GPS Service for Geodynamics (IGS) stations are processed to generate a continuous time series of Earth Rotation Parameters (ERP: Polar Motion and UT1) and Geocenter (GC) with a time resolution of one hour. The spectral analysis of the time series shows that the high-frequency variations in ERP are dominated by the tidal terms at nearly diurnal and semidiurnal frequencies due to ocean tides. The amplitudes and phases of ERP variations at the 8 major diurnal and semidiurnal tidal frequencies (Q 1, O1, P1, K1, N2, M 2, S2 and K2) are estimated and compared with the results from GPS, VLBI, SLR and ocean tide models. The agreement between GPS results from this study and others is about 20 muas for PM and 2 mus for UT1. However, the. GPS results show substantial discrepancies at or near the orbit period, K2 and S2 , and less substantial but considerable discrepancies at or near twice the orbit period, K1 and P 1. The impacts of three different force models---ROCK, RTN and RPR---on the HF-ERP estimation are evaluated. The RTN and RPR model improves the orbit repeatability and accuracy of the HF-ERP/GC estimation. Diurnal and semidiurnal ERP coefficients from the RTN model augmented by the RPR model in semidiurnal retrograde PM is presented as the best GPS HF-ERP model. One year of IGS data with the currently available force models could not successfully determine HF-GC. The annual or semiannual variations in the force parameters as the function of the attitude of the satellite to the Sun are identified. Anomalies in Y-bias during eclipsing season are explained by the effects of noon-turns.

  18. Tensor Toolbox for MATLAB v. 3.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kola, Tamara; Bader, Brett W.; Acar Ataman, Evrim NMN

    Tensors (also known as multidimensional arrays or N-way arrays) are used in a variety of applications ranging from chemometrics to network analysis. The Tensor Toolbox provides classes for manipulating dense, sparse, and structured tensors using MATLAB's object-oriented features. It also provides algorithms for tensor decomposition and factorization, algorithms for computing tensor eigenvalues, and methods for visualization of results.

  19. Radar Resource Management in a Dense Target Environment

    DTIC Science & Technology

    2014-03-01

    problem faced by networked MFRs . While relaxing our assumptions concerning information gain presents numerous challenges worth exploring, future research...linear programming MFR multifunction phased array radar MILP mixed integer linear programming NATO North Atlantic Treaty Organization PDF probability...1: INTRODUCTION Multifunction phased array radars ( MFRs ) are capable of performing various tasks in rapid succession. The performance of target search

  20. Ambient Vehicular Noise recorded on a 2D Distributed Fiber Optic Sensing Array :Applications to Permafrost Thaw Detection and Imaging

    NASA Astrophysics Data System (ADS)

    Ajo Franklin, J. B.; Lindsey, N.; Wagner, A. M.; Dou, S.; Martin, E. R.; Ekblaw, I.; Ulrich, C.; James, S. R.; Freifeld, B. M.; Daley, T. M.

    2016-12-01

    Distributed Acoustic Sensing (DAS) is a recently developed technique that allows the spatially dense ( 1m) continuous recording of seismic signals on long strands of commercial fiber optic cables. The availability of continuous recording on dense arrays offers unique possibilities for long-term timelapse monitoring of environmental processes in arctic environments. In the absence of a repeatable semi-permanent seismic source, the use of ambient surface wave noise from infrastructure use (e.g. moving vehicles) for seismic imaging allows tomographic monitoring of evolving subsurface systems. Challenges in such scenarios include (1) the processing requirements for dense (1000+ channel) arrays recording weeks to months of seismic data, (2) appropriate methods to retrieve empirical noise correlation functions (NCFs) in environments with non-optimal array geometries and both coherent as well as incoherent noise, and (3) semi-automated approaches to invert timelapse NCFs for near-surface soil properties.We present an exploratory study of data from a sparse 2D DAS array acquisition on 4000 linear meters of trenched fiber deployed in 10 crossing profiles. The dataset, collected during July and August of 2016, covers a zone of permafrost undergoing a controlled thaw induced by an array of resistive heaters. The site, located near a heavily used road, has a high level of infrastructure noise but exhibits distance-dependent variation in both noise amplitude and spectrum. We apply seismic interferometry to retrieve the empirical NCF across array subsections, and use collocated geophone and broadband sensors to measure the NCF against the true impulse response function of the medium. We demonstrate that the combination of vehicle tracking and data windowing allows improved reconstruction of stable NCFs appropriate for dispersion analysis and inversion. We also show both spatial and temporal patterns of background noise at the site using 2D beamforming and spectral analysis. Our results suggest that valuable information can be extracted from ambient noise recorded with DAS, particularly in the context of monitoring transformations in cold region environments.

  1. Comparison of GPS derived TEC with the TEC predicted by IRI 2012 model in the southern Equatorial Ionization Anomaly crest within the Eastern Africa region

    NASA Astrophysics Data System (ADS)

    Sulungu, Emmanuel D.; Uiso, Christian B. S.; Sibanda, Patrick

    2018-04-01

    We have compared the TEC obtained from the IRI-2012 model with the GPS derived TEC data recorded within southern crest of the EIA in the Eastern Africa region using the monthly means of the 5 international quiet days for equinoxes and solstices months for the period of 2012 - 2013. GPS-derived TEC data have been obtained from the Africa array and IGS network of ground based dual-frequency GPS receivers from four stations (Kigali (1.95°S, 30.09°E; Geom. Lat. 11.63°S), Malindi (2.99°S, 40.19°E; Geom. Lat. 12.42°S), Mbarara (0.60°S, 30.74°E; Geom. Lat. 10.22°S) and Nairobi (1.22°S, 36.89°E; Geom. Lat. 10.69°S)) located within the EIA crest in this region. All the three options for topside Ne of IRI-2012 model and ABT-2009 for bottomside thickness have been used to compute the IRI TEC. Also URSI coefficients were considered in this study. These results are compared with the TEC estimated from GPS measurements. Correlation Coefficients between the two sets of data, the Root-Mean Square Errors (RMSE) of the IRI-TEC from the GPS-TEC, and the percentage RMSE of the IRI-TEC from the GPS-TEC have been computed. Our general results show that IRI-2012 model with all three options overestimates the GPS-TEC for all seasons and at all stations, and IRI-2001 overestimates GPS-TEC more compared with other options. IRI-Neq and IRI-01-corr are closely matching in most of the time. The observation also shows that, GPS TEC are underestimated by TEC from IRI model during noon hours, especially during equinoctial months. Further, GPS-TEC values and IRI-TEC values using all the three topside Ne options show very good correlation (above 0.8). On the other hand, the TEC using IRI-Neq and IRI-01- corr had smaller deviations from the GPS-TEC compared to the IRI-2001.

  2. The Parsec-Scale Morphology of Southern GPS Sources

    NASA Astrophysics Data System (ADS)

    Edwards, P. G.; Tingay, S. J.

    2016-12-01

    Multi-frequency, multi-epoch ATCA observations of a sample of AGN resulted in the identification of nine new candidate Giga-hertz Peaked Spectrum sources. Here, we present Long Baseline Array observations at 4.8 GHz of the four candidates with no previously published VLBI image, and consider these together with previously published VLBI images of the other five sources. We find core-jet or compact double morphologies dominate, with further observations required to distinguish between these two possibilities for some sources. One of the nine candidates, PKS 1831-711, displays appreciable variability, suggesting its GPS spectrum is more ephemeral in nature. We focus in particular on the apparent relationship between a narrow spectral width and `compact double' parsec-scale morphology, finding further examples, but also exceptions to this trend. An examination of the VLBI morphologies high-redshift (z > 3) sub-class of GPS sources suggests that core-jet morphologies predominate in this class.

  3. Studies of infrasound propagation using the USArray seismic network (Invited)

    NASA Astrophysics Data System (ADS)

    Hedlin, M. A.; Degroot-Hedlin, C. D.; Walker, K. T.

    2010-12-01

    Although there are currently ~ 100 infrasound arrays worldwide, more than ever before, the station density is still insufficient to provide validation for detailed propagation modeling. Much structure in the atmosphere is short-lived and occurs at spatial scales much smaller than the average distance between infrasound stations. Relatively large infrasound signals can be observed on seismic channels due to coupling at the Earth's surface. Recent research, using data from the 70-km spaced 400-station USArray and other seismic network deployments, has shown the value of dense seismic network data for filling in the gaps between infrasound arrays. The dense sampling of the infrasound wavefield has allowed us to observe complete travel-time branches of infrasound signals and shed more light on the nature of infrasound propagation. We present early results from our studies of impulsive atmospheric sources, such as series of UTTR rocket motor detonations in Utah. The Utah blasts have been well recorded by USArray seismic stations and infrasound arrays in Nevada and Washington State. Recordings of seismic signals from a series of six events in 2007 are used to pinpoint the shot times to < 1 second. Variations in the acoustic branches and signal arrival times at the arrays are used to probe variations in atmospheric structure. Although we currently use coupled signals we anticipate studying dense acoustic network recordings as the USArray is currently being upgraded with infrasound microphones. These new sensors will allow us to make semi-continental scale network recordings of infrasound signals free of concerns about how the signals observed on seismic channels were modified when being coupled to seismic.

  4. GFZ Wireless Seismic Array (GFZ-WISE), a Wireless Mesh Network of Seismic Sensors: New Perspectives for Seismic Noise Array Investigations and Site Monitoring

    PubMed Central

    Picozzi, Matteo; Milkereit, Claus; Parolai, Stefano; Jaeckel, Karl-Heinz; Veit, Ingo; Fischer, Joachim; Zschau, Jochen

    2010-01-01

    Over the last few years, the analysis of seismic noise recorded by two dimensional arrays has been confirmed to be capable of deriving the subsoil shear-wave velocity structure down to several hundred meters depth. In fact, using just a few minutes of seismic noise recordings and combining this with the well known horizontal-to-vertical method, it has also been shown that it is possible to investigate the average one dimensional velocity structure below an array of stations in urban areas with a sufficient resolution to depths that would be prohibitive with active source array surveys, while in addition reducing the number of boreholes required to be drilled for site-effect analysis. However, the high cost of standard seismological instrumentation limits the number of sensors generally available for two-dimensional array measurements (i.e., of the order of 10), limiting the resolution in the estimated shear-wave velocity profiles. Therefore, new themes in site-effect estimation research by two-dimensional arrays involve the development and application of low-cost instrumentation, which potentially allows the performance of dense-array measurements, and the development of dedicated signal-analysis procedures for rapid and robust estimation of shear-wave velocity profiles. In this work, we present novel low-cost wireless instrumentation for dense two-dimensional ambient seismic noise array measurements that allows the real–time analysis of the surface-wavefield and the rapid estimation of the local shear-wave velocity structure for site response studies. We first introduce the general philosophy of the new system, as well as the hardware and software that forms the novel instrument, which we have tested in laboratory and field studies. PMID:22319298

  5. GPS-based exposure to greenness and walkability and accelerometry-based physical activity

    PubMed Central

    James, Peter; Hart, Jaime E.; Hipp, J. Aaron; Mitchell, Jonathan A.; Kerr, Jacqueline; Hurvitz, Philip M.; Glanz, Karen; Laden, Francine

    2017-01-01

    Background Physical inactivity is a risk factor for cancer that may be influenced by environmental factors. Indeed, dense and well-connected built environments and environments with natural vegetation may create opportunities for higher routine physical activity. However, studies have focused primarily on residential environments to define exposure and self-reported methods to estimate physical activity. The current study explores the momentary association between minute-level global positioning systems (GPS)-based greenness exposure and time-matched objectively measured physical activity. Methods Adult women were recruited from sites across the US. Participants wore a GPS device and accelerometer on the hip for 7 days to assess location and physical activity at minute-level epochs. GPS records were linked to 250m resolution satellite-based vegetation data and Census Block Group-level EPA Smart Location Database walkability data. Minute-level generalized additive mixed models were conducted to test for associations between GPS measures and accelerometer count data, accounting for repeated measures within participant and allowing for deviations from linearity using splines. Results Among 360 adult women (mean age of 55.3 ± 10.2 years), we observed positive nonlinear relationships between physical activity and both greenness and walkability. In exploratory analyses, the relationship between environmental factors and physical activity were strongest among those who were White, had higher incomes, and who were middle-aged. Conclusions Our results indicate that higher levels of physical activity occurred in areas with higher greenness and higher walkability. Impact Findings suggest that planning and design policies should focus on these environments to optimize opportunities for physical activity. PMID:28196848

  6. InSAR tropospheric delay mitigation by GPS observations: A case study in Tokyo area

    NASA Astrophysics Data System (ADS)

    Xu, Caijun; Wang, Hua; Ge, Linlin; Yonezawa, Chinatsu; Cheng, Pu

    2006-03-01

    Like other space geodetic techniques, interferometric synthetic aperture radar (InSAR) is limited by the variations of tropospheric delay noise. In this paper, we analyze the double-difference (DD) feature of tropospheric delay noise in SAR interferogram. By processing the ERS-2 radar pair, we find some tropospheric delay fringes, which have similar patterns with the GMS-5 visible-channel images acquired at almost the same epoch. Thirty-five continuous GPS (CGPS) stations are distributed in the radar scene. We analyze the GPS data by GIPSY-OASIS (II) software and extract the wet zenith delay (WZD) parameters at each station at the same epoch with the master and the slave image, respectively. A cosine mapping function is applied to transform the WZD to wet slant delay (WSD) in line-of-sight direction. Based on the DD WSD parameters, we establish a two-dimensional (2D) semi-variogram model, with the parameters 35.2, 3.6 and 0.88. Then we predict the DD WSD parameters by the kriging algorithm for each pixel of the interferogram, and subtract it from the unwrapped phase. Comparisons between CGPS and InSAR range changes in LOS direction show that the root of mean squares (RMS) decreased from 1.33 cm before correction to 0.87 cm after correction. From the result, we can conclude that GPS WZD parameters can be effectively used to identify and mitigate the large-scale InSAR tropospheric delay noise if the spatial resolution of GPS stations is dense enough.

  7. GPS Metric Tracking Unit

    NASA Technical Reports Server (NTRS)

    2008-01-01

    As Global Positioning Satellite (GPS) applications become more prevalent for land- and air-based vehicles, GPS applications for space vehicles will also increase. The Applied Technology Directorate of Kennedy Space Center (KSC) has developed a lightweight, low-cost GPS Metric Tracking Unit (GMTU), the first of two steps in developing a lightweight, low-cost Space-Based Tracking and Command Subsystem (STACS) designed to meet Range Safety's link margin and latency requirements for vehicle command and telemetry data. The goals of STACS are to improve Range Safety operations and expand tracking capabilities for space vehicles. STACS will track the vehicle, receive commands, and send telemetry data through the space-based asset, which will dramatically reduce dependence on ground-based assets. The other step was the Low-Cost Tracking and Data Relay Satellite System (TDRSS) Transceiver (LCT2), developed by the Wallops Flight Facility (WFF), which allows the vehicle to communicate with a geosynchronous relay satellite. Although the GMTU and LCT2 were independently implemented and tested, the design collaboration of KSC and WFF engineers allowed GMTU and LCT2 to be integrated into one enclosure, leading to the final STACS. In operation, GMTU needs only a radio frequency (RF) input from a GPS antenna and outputs position and velocity data to the vehicle through a serial or pulse code modulation (PCM) interface. GMTU includes one commercial GPS receiver board and a custom board, the Command and Telemetry Processor (CTP) developed by KSC. The CTP design is based on a field-programmable gate array (FPGA) with embedded processors to support GPS functions.

  8. Horizontal Displacement Vector Analysis in Ujong Muloh GPS Station (UMLH) Sumatra Island on March 27 – April 25, 2012

    NASA Astrophysics Data System (ADS)

    Pamungkas, S. S.; Koesuma, S.; Legowo, Budi

    2018-03-01

    Sumatra Island is an area that has high tectonic activities. This is because the island of Sumatra is located in two major plates of the world, the Indo-Australian plate and the Eurasia plate. The subduction zone causes Sumatra to deform from time to time. The deformation of Sumatra Island can be observed by continuous recording coordinates using the GPS Station. Continous-GPS (C-GPS) in Sumatra Island is named Sumatran GPS Array (SuGAr), one of them named UMLH. The UMLH GPS station used to observe the displacement in the Aceh City of Sumatra Island, is located in Ujung Muloh. The changes of GPS coordinate recording data can represent the deformation pattern that occurred in Sumatra. On April 11, 2012, according to USGS data, there had been an earthquake in the city of Aceh about 8.6 at coordinates of 2.433°N, 93.072°E. The purpose of this research is to analyze the horizontal displacement due to the occurrence of the earthquake. Data processing is carried out using software GAMIT/GLOBK. The magnitude of the displacement of Sumatra Island before the earthquake, during the earthquake, and after the quake on component X were respectively: 0.04 mm/day, 56.63 mm/day, and 8.28 mm/day; while on component Y were respectively: 0.03 mm/day, 23.78 mm/day, and 1.22 mm/day. The direction of displacement was 253.8° towards Southwest with the assumption that 0° was in the North.

  9. Low-cost silver capped polystyrene nanotube arrays as super-hydrophobic substrates for SERS applications.

    PubMed

    Lovera, Pierre; Creedon, Niamh; Alatawi, Hanan; Mitchell, Micki; Burke, Micheal; Quinn, Aidan J; O'Riordan, Alan

    2014-05-02

    In this paper, we describe the fabrication, simulation and characterization of dense arrays of freestanding silver capped polystyrene nanotubes, and demonstrate their suitability for surface enhanced Raman scattering (SERS) applications. Substrates are fabricated in a rapid, low-cost and scalable way by melt wetting of polystyrene (PS) in an anodized alumina (AAO) template, followed by silver evaporation. Scanning electron microscopy reveals that substrates are composed of a dense array of freestanding polystyrene nanotubes topped by silver nanocaps. SERS characterization of the substrates, employing a monolayer of 4-aminothiophenol (4-ABT) as a model molecule, exhibits an enhancement factor of ∼1.6 × 10(6), in agreement with 3D finite difference time domain simulations. Contact angle measurements of the substrates revealed super-hydrophobic properties, allowing pre-concentration of target analyte into a small volume. These super-hydrophobic properties of the samples are taken advantage of for sensitive detection of the organic pollutant crystal violet, with detection down to ∼400 ppt in a 2 μl aliquot demonstrated.

  10. A dense array stimulator to generate arbitrary spatio-temporal tactile stimuli

    PubMed Central

    Killebrew, Justin H.; Bensmaïa, Sliman J.; Dammann, John F.; Denchev, Peter; Hsiao, Steven S.; Craig, James C.

    2007-01-01

    The generation and presentation of tactile stimuli presents a unique challenge. Unlike vision and audition, in which standard equipment such as monitors and audio systems can be used for most experiments, tactile stimuli and/or stimulators often have to be tailor-made for a given study. Here, we present a novel tactile stimulator designed to present arbitrary spatio-temporal stimuli to the skin. The stimulator consists of 400 pins, arrayed over a 1 cm2 area, each under independent computer control. The dense array allows for an unprecedented number of stimuli to be presented within an experimental session (e.g., up to 1200 stimuli per minute) and for stimuli to be generated adaptively. The stimulator can be used in a variety of modes and can deliver indented and scanned patterns as well as stimuli defined by mathematical spatio-temporal functions (e.g., drifting sinusoids). We describe the hardware and software of the system, and discuss previous and prospective applications. PMID:17134760

  11. Size and space controlled hexagonal arrays of superparamagnetic iron oxide nanodots: magnetic studies and application

    PubMed Central

    Ghoshal, Tandra; Maity, Tuhin; Senthamaraikannan, Ramsankar; Shaw, Matthew T.; Carolan, Patrick; Holmes, Justin D.; Roy, Saibal; Morris, Michael A.

    2013-01-01

    Highly dense hexagonally arranged iron oxide nanodots array were fabricated using PS-b-PEO self-assembled patterns. The copolymer molecular weight, composition and choice of annealing solvent/s allows dimensional and structural control of the nanopatterns at large scale. A mechanism is proposed to create scaffolds through degradation and/or modification of cylindrical domains. A methodology based on selective metal ion inclusion and subsequent processing was used to create iron oxide nanodots array. The nanodots have uniform size and shape and their placement mimics the original self-assembled nanopatterns. For the first time these precisely defined and size selective systems of ordered nanodots allow careful investigation of magnetic properties in dimensions from 50 nm to 10 nm, which delineate the nanodots are superparamagnetic, well-isolated and size monodispersed. This diameter/spacing controlled iron oxide nanodots systems were demonstrated as a resistant mask over silicon to fabricate densely packed, identical ordered, high aspect ratio silicon nanopillars and nanowire features. PMID:24072037

  12. A Highly Efficient Sensor Platform Using Simply Manufactured Nanodot Patterned Substrates

    PubMed Central

    Rasappa, Sozaraj; Ghoshal, Tandra; Borah, Dipu; Senthamaraikannan, Ramsankar; Holmes, Justin D.; Morris, Michael A.

    2015-01-01

    Block copolymer (BCP) self-assembly is a low-cost means to nanopattern surfaces. Here, we use these nanopatterns to directly print arrays of nanodots onto a conducting substrate (Indium Tin Oxide (ITO) coated glass) for application as an electrochemical sensor for ethanol (EtOH) and hydrogen peroxide (H2O2) detection. The work demonstrates that BCP systems can be used as a highly efficient, flexible methodology for creating functional surfaces of materials. Highly dense iron oxide nanodots arrays that mimicked the original BCP pattern were prepared by an ‘insitu’ BCP inclusion methodology using poly(styrene)-block-poly(ethylene oxide) (PS-b-PEO). The electrochemical behaviour of these densely packed arrays of iron oxide nanodots fabricated by two different molecular weight PS-b-PEO systems was studied. The dual detection of EtOH and H2O2 was clearly observed. The as-prepared nanodots have good long term thermal and chemical stability at the substrate and demonstrate promising electrocatalytic performance. PMID:26290188

  13. Uplift of the Western Transverse Ranges and Ventura Area of Southern California: A Four-Technique Geodetic Study Combining GPS, InSAR, Leveling, and Tide Gauges

    NASA Astrophysics Data System (ADS)

    Hammond, William C.; Burgette, Reed J.; Johnson, Kaj M.; Blewitt, Geoffrey

    2018-01-01

    We estimate the rate of vertical land motion (VLM) in the region around the Western Transverse Ranges (WTR), Ventura, and Big Bend of the San Andreas Fault (SAF) of southern California using data from four geodetic techniques: GPS, interferometric synthetic aperture radar (InSAR), leveling, and tide gauges. We use a new analysis technique called GPS Imaging to combine the techniques and leverage the synergy between (1) high geographic resolution of InSAR, (2) precision, stability, and geocentric reference frame of GPS, (3) decades long observation of VLM with respect to the sea surface from tide gauges, and (4) relative VLM along dense leveling lines. The uncertainty in the overall rate field is 1 mm/yr, though some individual techniques have uncertainties as small as 0.2 mm/yr. The most rapid signals are attributable to subsidence in aquifers and groundwater changes. Uplift of the WTR is geographically continuous, adjacent to the SAF and appears related to active crustal contraction across Pacific/North America plate boundary fault system. Uplift of the WTR and San Gabriel Mountains is 2 mm/yr and is asymmetrically focused west of the SAF, consistent with interseismic strain accumulation across thrust faults in the Ventura area and Santa Barbara channel that accommodate contraction against the near vertical SAF.

  14. Reconstructing 3D coastal cliffs from airborne oblique photographs without ground control points

    NASA Astrophysics Data System (ADS)

    Dewez, T. J. B.

    2014-05-01

    Coastal cliff collapse hazard assessment requires measuring cliff face topography at regular intervals. Terrestrial laser scanner techniques have proven useful so far but are expensive to use either through purchasing the equipment or through survey subcontracting. In addition, terrestrial laser surveys take time which is sometimes incompatible with the time during with the beach is accessible at low-tide. By comparison, structure from motion techniques (SFM) are much less costly to implement, and if airborne, acquisition of several kilometers of coastline can be done in a matter of minutes. In this paper, the potential of GPS-tagged oblique airborne photographs and SFM techniques is examined to reconstruct chalk cliff dense 3D point clouds without Ground Control Points (GCP). The focus is put on comparing the relative 3D point of views reconstructed by Visual SFM with their synchronous Solmeta Geotagger Pro2 GPS locations using robust estimators. With a set of 568 oblique photos, shot from the open door of an airplane with a triplet of synchronized Nikon D7000, GPS and SFM-determined view point coordinates converge to X: ±31.5 m; Y: ±39.7 m; Z: ±13.0 m (LE66). Uncertainty in GPS position affects the model scale, angular attitude of the reference frame (the shoreline ends up tilted by 2°) and absolute positioning. Ground Control Points cannot be avoided to orient such models.

  15. A wideband software reconfigurable modem

    NASA Astrophysics Data System (ADS)

    Turner, J. H., Jr.; Vickers, H.

    A wideband modem is described which provides signal processing capability for four Lx-band signals employing QPSK, MSK and PPM waveforms and employs a software reconfigurable architecture for maximum system flexibility and graceful degradation. The current processor uses a 2901 and two 8086 microprocessors per channel and performs acquisition, tracking, and data demodulation for JITDS, GPS, IFF and TACAN systems. The next generation processor will be implemented using a VHSIC chip set employing a programmable complex array vector processor module, a GP computer module, customized gate array modules, and a digital array correlator. This integrated processor has application to a wide number of diverse system waveforms, and will bring the benefits of VHSIC technology insertion into avionic antijam communications systems.

  16. Integrated Reconfigurable Aperture, Digital Beam Forming, and Software GPS Receiver for UAV Navigation

    DTIC Science & Technology

    2007-12-11

    Implemented both carrier and code phase tracking loop for performance evaluation of a minimum power beam forming algorithm and null steering algorithm...4 Antennal Antenna2 Antenna K RF RF RF ct, Ct~2 ChKx1 X2 ....... Xk A W ~ ~ =Z, x W ,=1 Fig. 5. Schematics of a K-element antenna array spatial...adaptive processor Antennal Antenna K A N-i V/ ( Vil= .i= VK Fig. 6. Schematics of a K-element antenna array space-time adaptive processor Two additional

  17. Separating light absorption layer from channel in ZnO vertical nanorod arrays based photodetectors for high-performance image sensors

    NASA Astrophysics Data System (ADS)

    Ma, Yang; Wu, Congjun; Xu, Zhihao; Wang, Fei; Wang, Min

    2018-05-01

    Photoconductor arrays with both high responsivity and large ON/OFF ratios are of great importance for the application of image sensors. Herein, a ZnO vertical nanorod array based photoconductor with a light absorption layer separated from the device channel has been designed, in which the photo-generated carriers along the axial ZnO nanorods drive to the external electrodes through nanorod-nanorod junctions in the dense layer at the bottom. This design allows us to enhance the photocurrent with unchanged dark current by increasing the ratio between the ZnO nanorod length and the thickness of the dense layer to achieve both high responsivity and large ON/OFF ratios. As a result, the as-fabricated devices possess a high responsivity of 1.3 × 105 A/W, a high ON/OFF ratio of 790, a high detectivity of 1.3 × 1013 Jones, and a low detectable light intensity of 1 μW/cm2. More importantly, the developed approach enables the integration of ZnO vertical nanorod array based photodetectors as image sensors with uniform device-to-device performance.

  18. Fast-Acquisition/Weak-Signal-Tracking GPS Receiver for HEO

    NASA Technical Reports Server (NTRS)

    Wintemitz, Luke; Boegner, Greg; Sirotzky, Steve

    2004-01-01

    A report discusses the technical background and design of the Navigator Global Positioning System (GPS) receiver -- . a radiation-hardened receiver intended for use aboard spacecraft. Navigator is capable of weak signal acquisition and tracking as well as much faster acquisition of strong or weak signals with no a priori knowledge or external aiding. Weak-signal acquisition and tracking enables GPS use in high Earth orbits (HEO), and fast acquisition allows for the receiver to remain without power until needed in any orbit. Signal acquisition and signal tracking are, respectively, the processes of finding and demodulating a signal. Acquisition is the more computationally difficult process. Previous GPS receivers employ the method of sequentially searching the two-dimensional signal parameter space (code phase and Doppler). Navigator exploits properties of the Fourier transform in a massively parallel search for the GPS signal. This method results in far faster acquisition times [in the lab, 12 GPS satellites have been acquired with no a priori knowledge in a Low-Earth-Orbit (LEO) scenario in less than one second]. Modeling has shown that Navigator will be capable of acquiring signals down to 25 dB-Hz, appropriate for HEO missions. Navigator is built using the radiation-hardened ColdFire microprocessor and housing the most computationally intense functions in dedicated field-programmable gate arrays. The high performance of the algorithm and of the receiver as a whole are made possible by optimizing computational efficiency and carefully weighing tradeoffs among the sampling rate, data format, and data-path bit width.

  19. Channel length scaling behavior in transistors based on individual versus dense arrays of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Brady, Gerald J.; Jinkins, Katherine R.; Arnold, Michael S.

    2017-09-01

    Recent advances in the solution-phase sorting and assembly of semiconducting single-walled carbon nanotubes (SWCNTs) have enabled significant gains in the performance of field-effect transistors (FETs) constructed from dense arrays of aligned SWCNTs. However, the channel length (LCH) downscaling behaviors of these arrays, which contain some organizational disorder (i.e., rotational misalignment and non-uniform pitch), have not yet been studied in detail below LCH of 100 nm. This study compares the behaviors of individualized SWCNTs with arrays of aligned, solution-cast SWCNTs in FETs with LCH ranging from 30 to 240 nm. The on-state conductance of both individual and array SWCNTs rises with decreasing LCH. Nearly ballistic transport is observed for LCH < 40 nm in both cases, reaching a conductance of 0.82 Go per SWCNT in arrays, where Go = 2e2/h is the quantum conductance. In the off-state, the off-current and subthreshold swing of the individual SWCNTs remain nearly invariant with decreasing LCH whereas array SWCNT FETs suffer from increasing off-state current and deteriorating subthreshold swing for LCH below 100 nm. We analyze array disorder using atomic force microscopy, which shows that crossing SWCNTs that arise from misoriented alignment raise SWCNTs off of the substrate for large portions of the channel when LCH is small. Electrostatics modeling analysis indicates that these raised SWCNTs are a likely contributor to the deteriorating off-current and subthreshold characteristics of arrays. These results demonstrate that improved inter-SWCNT pitch uniformity and alignment with minimal inter-SWCNT interactions will be necessary in order for solution processed SWCNT arrays to reach subthreshold performance on par with isolated SWCNTs. These results are also promising because they show that arrays of solution-processed SWCNTs can nearly reach ballistic conductance in the on-state despite imperfections in pitch and alignment.

  20. Growth of large-scale nanotwinned Cu nanowire arrays from anodic aluminum oxide membrane by electrochemical deposition process: controllable nanotwin density and growth orientation with enhanced electrical endurance performance

    NASA Astrophysics Data System (ADS)

    Chan, Tsung-Cheng; Lin, Yen-Miao; Tsai, Hung-Wei; Wang, Zhiming M.; Liao, Chien-Neng; Chueh, Yu-Lun

    2014-06-01

    Densely nanotwinned Cu nanowire (NW) arrays with an identical diameter of ~55 nm were fabricated by pulse electrochemical deposition at low temperature using anodic aluminum oxide as a template. Different growth orientations of nanotwinned Cu nanowire arrays were investigated. The endurance of the electrical current density before breakdown of the nanotwinned Cu NWs can reach up to 2.4 × 108 A cm-2. The formation of highly dense nanotwins is attributed to relaxation of coalescence induced stress and twin fault stacking when Cu NWs grow by two-dimensional kinetics. A mechanism based on the twinning structure effect on the electromigration was proposed to explain the improved electrical endurance of Cu. The result demonstrates that the formation of nanotwins into Cu NWs can effectively suppress the void growth, leading to extended life time for use in electronic devices.Densely nanotwinned Cu nanowire (NW) arrays with an identical diameter of ~55 nm were fabricated by pulse electrochemical deposition at low temperature using anodic aluminum oxide as a template. Different growth orientations of nanotwinned Cu nanowire arrays were investigated. The endurance of the electrical current density before breakdown of the nanotwinned Cu NWs can reach up to 2.4 × 108 A cm-2. The formation of highly dense nanotwins is attributed to relaxation of coalescence induced stress and twin fault stacking when Cu NWs grow by two-dimensional kinetics. A mechanism based on the twinning structure effect on the electromigration was proposed to explain the improved electrical endurance of Cu. The result demonstrates that the formation of nanotwins into Cu NWs can effectively suppress the void growth, leading to extended life time for use in electronic devices. Electronic supplementary information (ESI) available: X-ray diffraction spectra of Cu NWs grown by electrochemical deposition with a current density of 1.5 A cm-2 at -1 °C and room temperature; bright-field TEM images of Cu NWs deposited at -1 °C with a current density of 0.4, 0.8, 1.8, and 1.5 A cm-2, respectively; illustration of the effect of twin density on the MTTF of Cu NWs. See DOI: 10.1039/c3nr06194a

  1. Field Emission Study of Carbon Nanotubes: High Current Density from Nanotube Bundle Arrays

    NASA Technical Reports Server (NTRS)

    Bronikowski, Micheal J.; Manohara, Harish M.; Siegel, Peter H.; Hunt, Brian D.

    2004-01-01

    We have investigated the field emission behavior of lithographically patterned bundles of multiwalled carbon nanotubes arranged in a variety of array geometries. Such arrays of nanotube bundles are found to perform significantly better in field emission than arrays of isolated nanotubes or dense, continuous mats of nanotubes, with the field emission performance depending on the bundle diameter and inter-bundle spacing. Arrays of 2-micrometers diameter nanotube bundles spaced 5 micrometers apart (edge-to-edge spacing) produced the largest emission densities, routinely giving 1.5 to 1.8 A/cm(sup 2) at approximately 4 V/micrometer electric field, and greater than 6 A/cm(sup 2) at 20 V/micrometers.

  2. A Low-Cost Energy-Efficient Cableless Geophone Unit for Passive Surface Wave Surveys.

    PubMed

    Dai, Kaoshan; Li, Xiaofeng; Lu, Chuan; You, Qingyu; Huang, Zhenhua; Wu, H Felix

    2015-09-25

    The passive surface wave survey is a practical, non-invasive seismic exploration method that has increasingly been used in geotechnical engineering. However, in situ deployment of traditional wired geophones is labor intensive for a dense sensor array. Alternatively, stand-alone seismometers can be used, but they are bulky, heavy, and expensive because they are usually designed for long-term monitoring. To better facilitate field applications of the passive surface wave survey, a low-cost energy-efficient geophone system was developed in this study. The hardware design is presented in this paper. To validate the system's functionality, both laboratory and field experiments were conducted. The unique feature of this newly-developed cableless geophone system allows for rapid field applications of the passive surface wave survey with dense array measurements.

  3. Modern Uplift of the Transantarctic Mountains: Preliminary Results of an Autonomous GPS Array

    NASA Technical Reports Server (NTRS)

    Raymond, C. A.; Heflin, M. B.; Ivins, E. R.; James, T. S.

    1998-01-01

    An autonomous GPS array is being implemented in the Transantarctic Mountains, sponsored by NSF and NASA, for the purpose of measuring uplift resulting from post-glacial rebound (PGR). The rebound of the solid earth due to unloading of ice since the Last Glacial Maximum is expected to dominate the measured uplift for most of West Antarctica, dwarfing the signals due to present-day ice sheet mass balance changes and tectonic motion, as long as mantle viscosity is greater than about 10(exp 20) Pa-s. Predicted uplift patterns have been calculated for a range of model scenarios, which illustrate how the uplift pattern might distinguish between different-sized ice sheets and deglaciation histories as represented by the competing models. The scenarios considered by James and Ivins (1998) include ICE-3G, CLIMAP and a variation of the CLIMAP model by Denton et al. For these models, peak uplift rates occur in the Transantarctic Mountains, and differences between models is often large there. Thus, the Transantarctic Mountains are an ideal place to obtain uplift measurements to constrain deglaciation models.

  4. Performance metrics for state-of-the-art airborne magnetic and electromagnetic systems for mapping and detection of unexploded ordnance

    NASA Astrophysics Data System (ADS)

    Doll, William E.; Bell, David T.; Gamey, T. Jeffrey; Beard, Les P.; Sheehan, Jacob R.; Norton, Jeannemarie

    2010-04-01

    Over the past decade, notable progress has been made in the performance of airborne geophysical systems for mapping and detection of unexploded ordnance in terrestrial and shallow marine environments. For magnetometer systems, the most significant improvements include development of denser magnetometer arrays and vertical gradiometer configurations. In prototype analyses and recent Environmental Security Technology Certification Program (ESTCP) assessments using new production systems the greatest sensitivity has been achieved with a vertical gradiometer configuration, despite model-based survey design results which suggest that dense total-field arrays would be superior. As effective as magnetometer systems have proven to be at many sites, they are inadequate at sites where basalts and other ferrous geologic formations or soils produce anomalies that approach or exceed those of target ordnance items. Additionally, magnetometer systems are ineffective where detection of non-ferrous ordnance items is of primary concern. Recent completion of the Battelle TEM-8 airborne time-domain electromagnetic system represents the culmination of nearly nine years of assessment and development of airborne electromagnetic systems for UXO mapping and detection. A recent ESTCP demonstration of this system in New Mexico showed that it was able to detect 99% of blind-seeded ordnance items, 81mm and larger, and that it could be used to map in detail a bombing target on a basalt flow where previous airborne magnetometer surveys had failed. The probability of detection for the TEM-8 in the blind-seeded study area was better than that reported for a dense-array total-field magnetometer demonstration of the same blind-seeded site, and the TEM-8 system successfully detected these items with less than half as many anomaly picks as the dense-array total-field magnetometer system.

  5. Detection of Traveling Ionospheric Disturbances by Medium Frequency Doppler Sounding Using AM Radio Transmissions

    NASA Astrophysics Data System (ADS)

    Chilcote, M. A.; Labelle, J. W.; Lind, F. D.; Coster, A. J.; Galkin, I. A.; Miller, E.; Weatherwax, A. T.

    2013-12-01

    Nighttime traveling ionosphere disturbances (TIDs) propagating in the lower F region of the ionosphere were detected from time variations in the Doppler shifts of commercial AM radio broadcast stations. Three separately deployed receivers, components of the Intercepted Signals for Ionospheric Science (ISIS) Array software radio instrumentation network, recorded signals from two radio stations during eleven nights in March-April, 2012. Combining these measurements established that variations in the frequencies of the received signals, with amplitudes up to a few tenths of a Hertz, resulted from Doppler shifts produced by the ionosphere. At times, TIDs were detected as large amplitude variations in the Doppler shift with approximately 40-minute period correlated across the array. For one study interval, 0000-0400 UT on April 13, 2012, simultaneous GPS-TEC, digisonde, and superDARN coherent backscatter radar measurements confirmed the detection of TIDs with the same period. Detection of the AM signals at widely spaced receivers allowed the phase velocity and wavelength of the TIDs to be inferred, with some limitations due to differing reflection heights for the different frequencies. These measurements will be compared to phase velocities and wavelengths determined from combining an array of GPS receivers; discrepancies due to the altitude sensitivity of the techniques or other effects will be discussed. These results demonstrate that AM radio signals can be used for detection of nighttime TIDs.

  6. Southern California Permanent GPS Geodetic Array: Continuous measurements of regional crustal deformation between the 1992 Landers and 1994 Northridge earthquakes

    USGS Publications Warehouse

    Bock, Y.; Wdowinski, S.; Fang, P.; Zhang, Jiahua; Williams, S.; Johnson, H.; Behr, J.; Genrich, J.; Dean, J.; Van Domselaar, M.; Agnew, D.; Wyatt, F.; Stark, K.; Oral, B.; Hudnut, K.; King, R.; Herring, T.; Dinardo, S.; Young, W.; Jackson, D.; Gurtner, W.

    1997-01-01

    The southern California Permanent GPS Geodetic Array (PGGA) was established in 1990 across the Pacific-North America plate boundary to continuously monitor crustal deformation. We describe the development of the array and the time series of daily positions estimated for its first 10 sites in the 19-month period between the June 28, 1992 (Mw=7.3), Landers and January 17, 1994 (Mw=6.7), Northridge earthquakes. We compare displacement rates at four site locations with those reported by Feigl et al. [1993], which were derived from an independent set of Global Positioning System (GPS) and very long baseline interferometry (VLBI) measurements collected over nearly a decade prior to the Landers earthquake. The velocity differences for three sites 65-100 km from the earthquake's epicenter are of order of 3-5 mm/yr and are systematically coupled with the corresponding directions of coseismic displacement. The fourth site, 300 km from the epicenter, shows no significant velocity difference. These observations suggest large-scale postseismic deformation with a relaxation time of at least 800 days. The statistical significance of our observations is complicated by our incomplete knowledge of the noise properties of the two data sets; two possible noise models fit the PGGA data equally well as described in the companion paper by Zhang et al. [this issue]; the pre-Landers data are too sparse and heterogeneous to derive a reliable noise model. Under a fractal white noise model for the PGGA data we find that the velocity differences for all three sites are statistically different at the 99% significance level. A white noise plus flicker noise model results in significance levels of only 94%, 43%, and 88%. Additional investigations of the pre-Landers data, and analysis of longer spans of PGGA data, could have an important effect on the significance of these results and will be addressed in future work. Copyright 1997 by the American Geophysical Union.

  7. The Data Acquisition System of the Stockholm Educational Air Shower Array

    NASA Astrophysics Data System (ADS)

    Hofverberg, P.; Johansson, H.; Pearce, M.; Rydstrom, S.; Wikstrom, C.

    2005-12-01

    The Stockholm Educational Air Shower Array (SEASA) project is deploying an array of plastic scintillator detector stations on school roofs in the Stockholm area. Signals from GPS satellites are used to time synchronise signals from the widely separated detector stations, allowing cosmic ray air showers to be identified and studied. A low-cost and highly scalable data acquisition system has been produced using embedded Linux processors which communicate station data to a central server running a MySQL database. Air shower data can be visualised in real-time using a Java-applet client. It is also possible to query the database and manage detector stations from the client. In this paper, the design and performance of the system are described

  8. Estimation and partitioning of (co)heritability of inflammatory bowel disease from GWAS and immunochip data.

    PubMed

    Chen, Guo-Bo; Lee, Sang Hong; Brion, Marie-Jo A; Montgomery, Grant W; Wray, Naomi R; Radford-Smith, Graham L; Visscher, Peter M

    2014-09-01

    As custom arrays are cheaper than generic GWAS arrays, larger sample size is achievable for gene discovery. Custom arrays can tag more variants through denser genotyping of SNPs at associated loci, but at the cost of losing genome-wide coverage. Balancing this trade-off is important for maximizing experimental designs. We quantified both the gain in captured SNP-heritability at known candidate regions and the loss due to imperfect genome-wide coverage for inflammatory bowel disease using immunochip (iChip) and imputed GWAS data on 61,251 and 38.550 samples, respectively. For Crohn's disease (CD), the iChip and GWAS data explained 19 and 26% of variation in liability, respectively, and SNPs in the densely genotyped iChip regions explained 13% of the SNP-heritability for both the iChip and GWAS data. For ulcerative colitis (UC), the iChip and GWAS data explained 15 and 19% of variation in liability, respectively, and the dense iChip regions explained 10 and 9% of the SNP-heritability in the iChip and the GWAS data. From bivariate analyses, estimates of the genetic correlation in risk between CD and UC were 0.75 (SE 0.017) and 0.62 (SE 0.042) for the iChip and GWAS data, respectively. We also quantified the SNP-heritability of genomic regions that did or did not contain the previous 163 GWAS hits for CD and UC, and SNP-heritability of the overlapping loci between the densely genotyped iChip regions and the 163 GWAS hits. For both diseases, over different genomic partitioning, the densely genotyped regions on the iChip tagged at least as much variation in liability as in the corresponding regions in the GWAS data, however a certain amount of tagged SNP-heritability in the GWAS data was lost using the iChip due to the low coverage at unselected regions. These results imply that custom arrays with a GWAS backbone will facilitate more gene discovery, both at associated and novel loci. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. High performance architecture design for large scale fibre-optic sensor arrays using distributed EDFAs and hybrid TDM/DWDM

    NASA Astrophysics Data System (ADS)

    Liao, Yi; Austin, Ed; Nash, Philip J.; Kingsley, Stuart A.; Richardson, David J.

    2013-09-01

    A distributed amplified dense wavelength division multiplexing (DWDM) array architecture is presented for interferometric fibre-optic sensor array systems. This architecture employs a distributed erbium-doped fibre amplifier (EDFA) scheme to decrease the array insertion loss, and employs time division multiplexing (TDM) at each wavelength to increase the number of sensors that can be supported. The first experimental demonstration of this system is reported including results which show the potential for multiplexing and interrogating up to 4096 sensors using a single telemetry fibre pair with good system performance. The number can be increased to 8192 by using dual pump sources.

  10. GPS-Based Exposure to Greenness and Walkability and Accelerometry-Based Physical Activity.

    PubMed

    James, Peter; Hart, Jaime E; Hipp, J Aaron; Mitchell, Jonathan A; Kerr, Jacqueline; Hurvitz, Philip M; Glanz, Karen; Laden, Francine

    2017-04-01

    Background: Physical inactivity is a risk factor for cancer that may be influenced by environmental factors. Indeed, dense and well-connected built environments and environments with natural vegetation may create opportunities for higher routine physical activity. However, studies have focused primarily on residential environments to define exposure and self-reported methods to estimate physical activity. This study explores the momentary association between minute-level global positioning systems (GPS)-based greenness exposure and time-matched objectively measured physical activity. Methods: Adult women were recruited from sites across the United States. Participants wore a GPS device and accelerometer on the hip for 7 days to assess location and physical activity at minute-level epochs. GPS records were linked to 250 m resolution satellite-based vegetation data and Census Block Group-level U.S. Environmental Protection Agency (EPA) Smart Location Database walkability data. Minute-level generalized additive mixed models were conducted to test for associations between GPS measures and accelerometer count data, accounting for repeated measures within participant and allowing for deviations from linearity using splines. Results: Among 360 adult women (mean age of 55.3 ± 10.2 years), we observed positive nonlinear relationships between physical activity and both greenness and walkability. In exploratory analyses, the relationships between environmental factors and physical activity were strongest among those who were white, had higher incomes, and who were middle-aged. Conclusions: Our results indicate that higher levels of physical activity occurred in areas with higher greenness and higher walkability. Impact: Findings suggest that planning and design policies should focus on these environments to optimize opportunities for physical activity. Cancer Epidemiol Biomarkers Prev; 26(4); 525-32. ©2017 AACR See all the articles in this CEBP Focus section, "Geospatial Approaches to Cancer Control and Population Sciences." ©2017 American Association for Cancer Research.

  11. Transient Volcano Deformation Event Detection over Variable Spatial Scales in Alaska

    NASA Astrophysics Data System (ADS)

    Li, J. D.; Rude, C. M.; Gowanlock, M.; Herring, T.; Pankratius, V.

    2016-12-01

    Transient deformation events driven by volcanic activity can be monitored using increasingly dense networks of continuous Global Positioning System (GPS) ground stations. The wide spatial extent of GPS networks, the large number of GPS stations, and the spatially and temporally varying scale of deformation events result in the mixing of signals from multiple sources. Typical analysis then necessitates manual identification of times and regions of volcanic activity for further study and the careful tuning of algorithmic parameters to extract possible transient events. Here we present a computer-aided discovery system that facilitates the discovery of potential transient deformation events at volcanoes by providing a framework for selecting varying spatial regions of interest and for tuning the analysis parameters. This site specification step in the framework reduces the spatial mixing of signals from different volcanic sources before applying filters to remove interfering signals originating from other geophysical processes. We analyze GPS data recorded by the Plate Boundary Observatory network and volcanic activity logs from the Alaska Volcano Observatory to search for and characterize transient inflation events in Alaska. We find 3 transient inflation events between 2008 and 2015 at the Akutan, Westdahl, and Shishaldin volcanoes in the Aleutian Islands. The inflation event detected in the first half of 2008 at Akutan is validated other studies, while the inflation events observed in early 2011 at Westdahl and in early 2013 at Shishaldin are previously unreported. Our analysis framework also incorporates modelling of the transient inflation events and enables a comparison of different magma chamber inversion models. Here, we also estimate the magma sources that best describe the deformation observed by the GPS stations at Akutan, Westdahl, and Shishaldin. We acknowledge support from NASA AIST-NNX15AG84G (PI: V. Pankratius).

  12. Estimating snow water equivalent from GPS vertical site-position observations in the western United States

    PubMed Central

    Ouellette, Karli J; de Linage, Caroline; Famiglietti, James S

    2013-01-01

    [1] Accurate estimation of the characteristics of the winter snowpack is crucial for prediction of available water supply, flooding, and climate feedbacks. Remote sensing of snow has been most successful for quantifying the spatial extent of the snowpack, although satellite estimation of snow water equivalent (SWE), fractional snow covered area, and snow depth is improving. Here we show that GPS observations of vertical land surface loading reveal seasonal responses of the land surface to the total weight of snow, providing information about the stored SWE. We demonstrate that the seasonal signal in Scripps Orbit and Permanent Array Center (SOPAC) GPS vertical land surface position time series at six locations in the western United States is driven by elastic loading of the crust by the snowpack. GPS observations of land surface deformation are then used to predict the water load as a function of time at each location of interest and compared for validation to nearby Snowpack Telemetry observations of SWE. Estimates of soil moisture are included in the analysis and result in considerable improvement in the prediction of SWE. Citation: Ouellette, K. J., C. de Linage, and J. S. Famiglietti (2013), Estimating snow water equivalent from GPS vertical site-position observations in the western United States, Water Resour. Res., 49, 2508–2518, doi:10.1002/wrcr.20173. PMID:24223442

  13. Transient deformation of karst aquifers observed by GPS: improved knowledge from Central Apennines (Italy)

    NASA Astrophysics Data System (ADS)

    Silverii, F.; D'Agostino, N.; Borsa, A. A.

    2017-12-01

    The redistribution of water masses due to temporal variations of hydrological conditions can produce observable deformation of the shallow crust. Space geodesy, e.g., GPS and InSAR, has provided a considerable improvement in terms of data accuracy and spatial and temporal resolution for the detection and investigation of this kind of deformation. In particular, in the areas where snow and water accumulate for long periods, such as aquifers, relatively high deformation (up to several millimeters) has been observed. Karst aquifers are able to store huge amounts of water and a clear deformation related to the groundwater storage variations has been observed in some regions. In a recent study we showed that the karst aquifers of Southern Apennines deform in response of seasonal and interannual variations of groundwater content, producing a visible transient signal in the time series of the surrounding GPS sites. In this work, we analyze the GPS time series and hydrological data of Central Italy, an interesting and complex area which hosts huge karst aquifers and is characterized by high seismic activity. We show that a noticeable transient signal with features similar to those of Southern Apennines affects also the time series of Central Apennines, suggesting that the large karst aquifers of this region experience a process analogue to the ones in Southern Italy. Thanks to the availability of a dense GPS network and different kinds of hydrological data (rainfall, spring discharge, groundwater level) we focus on the process causing the observed deformation. In particular, we model the observed deformation by inverting the GPS data using Green's functions for finite strain cuboid sources (Barbot et al. 2017). An enhanced understanding of the causes and implications of the highlighted deformation of karst aquifers is of primary interest for an improved management of this important water resource and for a better understanding of the possible interactions between groundwater variations, variations of pore pressure in the crust and seismicity.

  14. Role of structural inheritance on present-day deformation in intraplate domains

    NASA Astrophysics Data System (ADS)

    Tarayoun, A.; Mazzotti, S.; Gueydan, F.

    2017-12-01

    Understanding the role of structural inheritance on present day surface deformation is a key element for better characterizing the dynamism of intraplate earthquakes. Current deformation and seismicity are poorly understood phenomenon in intra-continental domains. A commonly used hypothesis, based on observations, suggests that intraplate deformation is related to the reactivation of large tectonic paleo-structures, which can act as locally weakened domains. The objective of our study is to quantify the impact of these weakened areas on present-day strain localizations and rates. We combine GPS observations and numerical modeling to analyze the role of structural inheritance on strain rates, with specific observations along the St. Lawrence Valley of eastern Canada. We processed 143 GPS stations from five different networks, in particular one dense campaign network situated along a recognized major normal faults system of the Iapetus paleo-rift, in order to accurately determine the GPS velocities and strain rates. Results of strain rates show magnitude varying from 1.5x10-10 to 6.8x10-9 yr-1 in the St Lawrence valley. Weakened area strain rates are up to one order of magnitude higher than surrounding areas. We compare strain rates inferred from GPS and the new postglacial rebound model. We found that GPS signal is one order of magnitude higher in the weakened zone, which is likely due to structural inheritance. The numerical modeling investigates the steady-state deformation of the continental lithosphere with presence of a weak area. Our new approach integrates ductile structural inheritance using a weakening coefficient that decreases the lithosphere strength at different depths. This allows studying crustal strain rates mainly as a function of rheological contrast and geometry of the weakened domains. Comparison between model predictions and observed GPS strain rates will allow us to investigate the respective role of crustal and mantle tectonic inheritance.

  15. The X-Ray Weakness of GPS Radio Galaxies: A Volume-Limited Complete Sample

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard F. (Technical Monitor); Siemiginowska, Aneta (Principal Investigator)

    2004-01-01

    The XMM observations of Mkn 668 have been analyzed. We found soft X-ray signatures of a hot plasma (kT approximately 10^7 approximately K) and a hard X-ray emission from the nucleus. The X-ray spectrum above 2.5 approximately keV is characterized by a very flat (observed photon index, Gamma approximately 0.5) power-law continuum, alongside with a strong Fe-K-alpha neutral iron fluorescent line (EW approximately 600 approximately eV). The best explanation for the origin of this high energy X-ray emission is in terms of the Compton-reflection of the nuclear emission. The primary X-ray emission is obscured by a Compton-thick (N_H approximately 10^24 approximately cm-2) matter which becomes transparent at higher energies. The observed above 2.5-keV X-rays are mostly due to reflection which is indicated by a strong Fe-K-alpha line. This represents the second hard X-ray detection of the GPS galaxy ever (the first one being 1345+125; O Dea et al. 2000). Interestingly, the both such trend is confirmed by our on going XMM-Newton observations of a larger GPS sample, it would lead us to looking into the question on how the dense nuclear environment impacts the nature and evolution of a GPS source, and more generally, on the history of radio power in the universe. The paper summarizing the results has been submitted to Astronomy and Astrophysics in December 2003.

  16. GPS water vapour tomography: preliminary results from the ESCOMPTE field experiment

    NASA Astrophysics Data System (ADS)

    Champollion, C.; Masson, F.; Bouin, M.-N.; Walpersdorf, A.; Doerflinger, E.; Bock, O.; Van Baelen, J.

    2005-03-01

    Water vapour plays a major role in atmospheric processes but remains difficult to quantify due to its high variability in time and space and the sparse set of available measurements. The GPS has proved its capacity to measure the integrated water vapour at zenith with the same accuracy as other methods. Recent studies show that it is possible to quantify the integrated water vapour in the line of sight of the GPS satellite. These observations can be used to study the 3D heterogeneity of the troposphere using tomographic techniques. We develop three-dimensional tomographic software to model the three-dimensional distribution of the tropospheric water vapour from GPS data. First, the tomographic software is validated by simulations based on the realistic ESCOMPTE GPS network configuration. Without a priori information, the absolute value of water vapour is less resolved as opposed to relative horizontal variations. During the ESCOMPTE field experiment, a dense network of 17 dual frequency GPS receivers was operated for 2 weeks within a 20×20-km area around Marseille (southern France). The network extends from sea level to the top of the Etoile chain (˜700 m high). Optimal results have been obtained with time windows of 30-min intervals and input data evaluation every 15 min. The optimal grid for the ESCOMTE geometrical configuration has a horizontal step size of 0.05°×0.05° and 500 m vertical step size. Second, we have compared the results of real data inversions with independent observations. Three inversions have been compared to three successive radiosonde launches and shown to be consistent. A good resolution compared to the a priori information is obtained up to heights of 3000 m. A humidity spike at 4000-m altitude remains unresolved. The reason is probably that the signal is spread homogeneously over the whole network and that such a feature is not resolvable by tomographic techniques. The results of our pure GPS inversion show a correlation with meteorological phenomena. Our measurements could be related to the land-sea breeze. Undoubtedly, tomography has some interesting potential for the water vapour cycle studies at small temporal and spatial scales.

  17. Re-investigation of slip rate along the southern part of the Sumatran Fault Zone using SuMo GPS network

    NASA Astrophysics Data System (ADS)

    Hermawan, I.; Lubis, A. M.; Sahputra, R.; Hill, E.; Sieh, K.; Feng, L.; Salman, R.; Hananto, N.

    2015-12-01

    The Sumatran Fault Zone (SFZ) accommodates a significant component of the strike-slip motion of oblique convergence along the Sumatra subduction zone. Previous studies have suggested that the slip rates of the SFZ increase from south to north. However, recent work shows that the slip rates may not vary along the SFZ [Bradley et al., 2015]. New data are needed to help confirm these results, and to assess slip-rate variability and fault segmentation in more detail. This information is vital for seismic hazard assessment for the region. We have therefore installed and operated the SuMo (Sumatran Fault Monitoring) network, a dense GPS campaign network focused around the SFZ. From 2013-2015 we selected and installed 32 GPS monuments over the southern part of the SFZ. The network comprises of three transects. The first transect is around the location of the great 1900 earthquake, at the Musi segment. Two transects cover the Manna segment, which saw its last great earthquake in 1893, and the Kumering segment, which saw two great earthquakes in 1933 (M 7.5) and 1994 (M 7.0). We have now conducted three GPS campaign surveys for these stations (3-4 days of measurement for each occupation site), and established 5 semi-permanent cGPS stations in the area. The processed data show that the campaigns sites are still too premature to be used for estimating slip rates, but from the preliminary results for the semi-permanent stations we may see our first signal of deformation. More data from future survey campaigns will help us to estimated revised slip rates. In addition to the science goals for our project, we are this year starting a project called "SuMo Goes to School," which will aim to disseminate information on our science to the schools that house the SuMo GPS stations. The SuMo project also achieves capacity building by training students from Bengkulu University in geodesy and campaign GPS survey techniques.

  18. Characteristics of offshore extreme wind-waves detected by surface drifters with a low-cost GPS wave sensor

    NASA Astrophysics Data System (ADS)

    Komatsu, Kosei

    Wind-generated waves have been recognized as one of the most important factors of the sea surface roughness which plays crucial roles in various air-sea interactions such as energy, mo-mentum, heat and gas exchanges. At the same time, wind waves with extreme wave heights representatively called as freak or rogue waves have been a matter of great concern for many people involved in shipping, fishing, constracting, surfing and other marine activities, because such extreme waves frequently affect on the marine activities and sometimes cause serious dis-asters. Nevertheless, investigations of actual conditions for the evolution of wind waves in the offshore region are less and sparse in contrast to dense monitoring networks in the coastal re-gions because of difficulty of offshore observation with high accuracy. Recently accurate in situ observation of offshore wind waves is getting possible at low cost owing to a wave height and di-rection sensor developed by Harigae et al. (2004) by installing a point-positioning GPS receiver on a surface drifting buoy. The point-positioning GPS sensor can extract three dimensional movements of the buoy excited by ocean waves with minimizing effects of GPS point-positioning errors through the use of a high-pass filter. Two drifting buoys equipped with the GPS-based wave sensor charged by solar cells were drifted in the western North Pacific and one of them continued to observe wind waves during 16 months from Sep. 2007. The RMSE of the GPS-based wave sensor was less than 10cm in significant wave height and about 1s in significant wave period in comparison with other sensors, i.e. accelerometers installed on drifting buoys of Japan Meteorological Agency, ultrasonic sensors placed at the Hiratsuka observation station of the University of Tokyo and altimeter of the JASON-1. The GPS-based wave buoys enabled us to detect freak waves defined as waves whose height is more than twice the significant wave height. The observation conducted by the wave buoys in 2007-2008 indicated a little more frequent occurrence of freak waves comparing with Forristall's (1978) empirical formula and Naess's (1985) distribution for a narrow-band Gaussian sea.

  19. A Low-Cost Energy-Efficient Cableless Geophone Unit for Passive Surface Wave Surveys

    PubMed Central

    Dai, Kaoshan; Li, Xiaofeng; Lu, Chuan; You, Qingyu; Huang, Zhenhua; Wu, H. Felix

    2015-01-01

    The passive surface wave survey is a practical, non-invasive seismic exploration method that has increasingly been used in geotechnical engineering. However, in situ deployment of traditional wired geophones is labor intensive for a dense sensor array. Alternatively, stand-alone seismometers can be used, but they are bulky, heavy, and expensive because they are usually designed for long-term monitoring. To better facilitate field applications of the passive surface wave survey, a low-cost energy-efficient geophone system was developed in this study. The hardware design is presented in this paper. To validate the system’s functionality, both laboratory and field experiments were conducted. The unique feature of this newly-developed cableless geophone system allows for rapid field applications of the passive surface wave survey with dense array measurements. PMID:26404270

  20. Optical characterization of nonimaging dish concentrator for the application of dense-array concentrator photovoltaic system.

    PubMed

    Tan, Ming-Hui; Chong, Kok-Keong; Wong, Chee-Woon

    2014-01-20

    Optimization of the design of a nonimaging dish concentrator (NIDC) for a dense-array concentrator photovoltaic system is presented. A new algorithm has been developed to determine configuration of facet mirrors in a NIDC. Analytical formulas were derived to analyze the optical performance of a NIDC and then compared with a simulated result obtained from a numerical method. Comprehensive analysis of optical performance via analytical method has been carried out based on facet dimension and focal distance of the concentrator with a total reflective area of 120 m2. The result shows that a facet dimension of 49.8 cm, focal distance of 8 m, and solar concentration ratio of 411.8 suns is the most optimized design for the lowest cost-per-output power, which is US$1.93 per watt.

  1. Internal structure of the San Jacinto fault zone in the trifurcation area southeast of Anza, California, from data of dense seismic arrays

    NASA Astrophysics Data System (ADS)

    Qin, L.; Ben-Zion, Y.; Qiu, H.; Share, P.-E.; Ross, Z. E.; Vernon, F. L.

    2018-04-01

    We image the internal structure of the San Jacinto fault zone (SJFZ) in the trifurcation area southeast of Anza, California, with seismic records from dense linear and rectangular arrays. The examined data include recordings from more than 20 000 local earthquakes and nine teleseismic events. Automatic detection algorithms and visual inspection are used to identify P and S body waves, along with P- and S-types fault zone trapped waves (FZTW). The location at depth of the main branch of the SJFZ, the Clark fault, is identified from systematic waveform changes across lines of sensors within the dense rectangular array. Delay times of P arrivals from teleseismic and local events indicate damage asymmetry across the fault, with higher damage to the NE, producing a local reversal of the velocity contrast in the shallow crust with respect to the large-scale structure. A portion of the damage zone between the main fault and a second mapped surface trace to the NE generates P- and S-types FZTW. Inversions of high-quality S-type FZTW indicate that the most likely parameters of the trapping structure are width of ˜70 m, S-wave velocity reduction of 60 per cent, Q value of 60 and depth of ˜2 km. The local reversal of the shallow velocity contrast across the fault with respect to large-scale structure is consistent with preferred propagation of earthquake ruptures in the area to the NW.

  2. Proving and Improving Wave Models in the Arctic Ocean and its MIZ

    DTIC Science & Technology

    2013-09-30

    wave buoy was deployed in the ocean near the berg throughout the experiment, and recorded a persistent swell from the SE. An array of tiltmeters and GPS...vertical movement sensors was placed on the berg near the edge. These recorded the berg response to the waves, and on one occasion a calving event

  3. Dark Current Reduction of IR Detectors

    DTIC Science & Technology

    2017-10-19

    demonstrating a novel dark current reduction approach for dense infrared detector arrays. This technique is based on the diffusion control junction (DCJ...fabricate and test detector arrays with and without DCJs on the same wafer and demonstrate the effectiveness of the DCJ approach in reducing dark current...subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE

  4. Plenoptic projection fluorescence tomography.

    PubMed

    Iglesias, Ignacio; Ripoll, Jorge

    2014-09-22

    A new method to obtain the three-dimensional localization of fluorochrome distributions in micrometric samples is presented. It uses a microlens array coupled to the image port of a standard microscope to obtain tomographic data by a filtered back-projection algorithm. Scanning of the microlens array is proposed to obtain a dense data set for reconstruction. Simulation and experimental results are shown and the implications of this approach in fast 3D imaging are discussed.

  5. REDUNDANT ARRAY CONFIGURATIONS FOR 21 cm COSMOLOGY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dillon, Joshua S.; Parsons, Aaron R., E-mail: jsdillon@berkeley.edu

    Realizing the potential of 21 cm tomography to statistically probe the intergalactic medium before and during the Epoch of Reionization requires large telescopes and precise control of systematics. Next-generation telescopes are now being designed and built to meet these challenges, drawing lessons from first-generation experiments that showed the benefits of densely packed, highly redundant arrays—in which the same mode on the sky is sampled by many antenna pairs—for achieving high sensitivity, precise calibration, and robust foreground mitigation. In this work, we focus on the Hydrogen Epoch of Reionization Array (HERA) as an interferometer with a dense, redundant core designed followingmore » these lessons to be optimized for 21 cm cosmology. We show how modestly supplementing or modifying a compact design like HERA’s can still deliver high sensitivity while enhancing strategies for calibration and foreground mitigation. In particular, we compare the imaging capability of several array configurations, both instantaneously (to address instrumental and ionospheric effects) and with rotation synthesis (for foreground removal). We also examine the effects that configuration has on calibratability using instantaneous redundancy. We find that improved imaging with sub-aperture sampling via “off-grid” antennas and increased angular resolution via far-flung “outrigger” antennas is possible with a redundantly calibratable array configuration.« less

  6. Redundant Array Configurations for 21 cm Cosmology

    NASA Astrophysics Data System (ADS)

    Dillon, Joshua S.; Parsons, Aaron R.

    2016-08-01

    Realizing the potential of 21 cm tomography to statistically probe the intergalactic medium before and during the Epoch of Reionization requires large telescopes and precise control of systematics. Next-generation telescopes are now being designed and built to meet these challenges, drawing lessons from first-generation experiments that showed the benefits of densely packed, highly redundant arrays—in which the same mode on the sky is sampled by many antenna pairs—for achieving high sensitivity, precise calibration, and robust foreground mitigation. In this work, we focus on the Hydrogen Epoch of Reionization Array (HERA) as an interferometer with a dense, redundant core designed following these lessons to be optimized for 21 cm cosmology. We show how modestly supplementing or modifying a compact design like HERA’s can still deliver high sensitivity while enhancing strategies for calibration and foreground mitigation. In particular, we compare the imaging capability of several array configurations, both instantaneously (to address instrumental and ionospheric effects) and with rotation synthesis (for foreground removal). We also examine the effects that configuration has on calibratability using instantaneous redundancy. We find that improved imaging with sub-aperture sampling via “off-grid” antennas and increased angular resolution via far-flung “outrigger” antennas is possible with a redundantly calibratable array configuration.

  7. Imaging San Jacinto Fault damage zone structure using dense linear arrays: application of ambient noise tomography, Rayleigh wave ellipticity, and site amplification

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Lin, F. C.; Allam, A. A.; Ben-Zion, Y.

    2017-12-01

    The San Jacinto fault is presently the most seismically active component of the San Andreas Transform system in Southern California. To study the damage zone structure, two dense linear geophone arrays (BS and RR) were deployed across the Clark segment of the San Jacinto Fault between Anza and Hemet during winter 2015 and Fall 2016, respectively. Both arrays were 2 km long with 20 m station spacing. Month-long three-component ambient seismic noise data were recorded and used to calculate multi-channel cross-correlation functions. All three-component noise records of each array were normalized simultaneously to retain relative amplitude information between different stations and different components. We observed clear Rayleigh waves and Love waves on the cross-correlations of both arrays at 0.3 - 1 s period. The phase travel times of the Rayleigh waves on both arrays were measured by frequency-time analysis (FTAN), and inverted for Rayleigh wave phase velocity profiles of the upper 500 m depth. For both arrays, we observe prominent asymmetric low velocity zones which narrow with depth. At the BS array near the Hemet Stepover, an approximately 250m wide slow zone is observed to be offset by 75m to the northeast of the surface fault trace. At the RR array near the Anza segment of the fault, a similar low velocity zone width and offset are observed, along with a 10% across-fault velocity contrast. Analyses of Rayleigh wave ellipticity (H/V ratio), Love wave phase travel times, and site amplification are in progress. By using multiple measurements from ambient noise cross-correlations, we can obtain strong constraints on the local damage zone structure of the San Jacinto Fault. The results contribute to improved understanding of rupture directivity, maximum earthquake magnitude and more generally seismic hazard associated with the San Jacinto fault zone.

  8. Development and validation of a high density SNP genotyping array for Atlantic salmon (Salmo salar).

    PubMed

    Houston, Ross D; Taggart, John B; Cézard, Timothé; Bekaert, Michaël; Lowe, Natalie R; Downing, Alison; Talbot, Richard; Bishop, Stephen C; Archibald, Alan L; Bron, James E; Penman, David J; Davassi, Alessandro; Brew, Fiona; Tinch, Alan E; Gharbi, Karim; Hamilton, Alastair

    2014-02-06

    Dense single nucleotide polymorphism (SNP) genotyping arrays provide extensive information on polymorphic variation across the genome of species of interest. Such information can be used in studies of the genetic architecture of quantitative traits and to improve the accuracy of selection in breeding programs. In Atlantic salmon (Salmo salar), these goals are currently hampered by the lack of a high-density SNP genotyping platform. Therefore, the aim of the study was to develop and test a dense Atlantic salmon SNP array. SNP discovery was performed using extensive deep sequencing of Reduced Representation (RR-Seq), Restriction site-Associated DNA (RAD-Seq) and mRNA (RNA-Seq) libraries derived from farmed and wild Atlantic salmon samples (n = 283) resulting in the discovery of > 400 K putative SNPs. An Affymetrix Axiom® myDesign Custom Array was created and tested on samples of animals of wild and farmed origin (n = 96) revealing a total of 132,033 polymorphic SNPs with high call rate, good cluster separation on the array and stable Mendelian inheritance in our sample. At least 38% of these SNPs are from transcribed genomic regions and therefore more likely to include functional variants. Linkage analysis utilising the lack of male recombination in salmonids allowed the mapping of 40,214 SNPs distributed across all 29 pairs of chromosomes, highlighting the extensive genome-wide coverage of the SNPs. An identity-by-state clustering analysis revealed that the array can clearly distinguish between fish of different origins, within and between farmed and wild populations. Finally, Y-chromosome-specific probes included on the array provide an accurate molecular genetic test for sex. This manuscript describes the first high-density SNP genotyping array for Atlantic salmon. This array will be publicly available and is likely to be used as a platform for high-resolution genetics research into traits of evolutionary and economic importance in salmonids and in aquaculture breeding programs via genomic selection.

  9. Development and validation of a high density SNP genotyping array for Atlantic salmon (Salmo salar)

    PubMed Central

    2014-01-01

    Background Dense single nucleotide polymorphism (SNP) genotyping arrays provide extensive information on polymorphic variation across the genome of species of interest. Such information can be used in studies of the genetic architecture of quantitative traits and to improve the accuracy of selection in breeding programs. In Atlantic salmon (Salmo salar), these goals are currently hampered by the lack of a high-density SNP genotyping platform. Therefore, the aim of the study was to develop and test a dense Atlantic salmon SNP array. Results SNP discovery was performed using extensive deep sequencing of Reduced Representation (RR-Seq), Restriction site-Associated DNA (RAD-Seq) and mRNA (RNA-Seq) libraries derived from farmed and wild Atlantic salmon samples (n = 283) resulting in the discovery of > 400 K putative SNPs. An Affymetrix Axiom® myDesign Custom Array was created and tested on samples of animals of wild and farmed origin (n = 96) revealing a total of 132,033 polymorphic SNPs with high call rate, good cluster separation on the array and stable Mendelian inheritance in our sample. At least 38% of these SNPs are from transcribed genomic regions and therefore more likely to include functional variants. Linkage analysis utilising the lack of male recombination in salmonids allowed the mapping of 40,214 SNPs distributed across all 29 pairs of chromosomes, highlighting the extensive genome-wide coverage of the SNPs. An identity-by-state clustering analysis revealed that the array can clearly distinguish between fish of different origins, within and between farmed and wild populations. Finally, Y-chromosome-specific probes included on the array provide an accurate molecular genetic test for sex. Conclusions This manuscript describes the first high-density SNP genotyping array for Atlantic salmon. This array will be publicly available and is likely to be used as a platform for high-resolution genetics research into traits of evolutionary and economic importance in salmonids and in aquaculture breeding programs via genomic selection. PMID:24524230

  10. Evolution of offshore wind waves tracked by surface drifters with a point-positioning GPS sensor

    NASA Astrophysics Data System (ADS)

    Komatsu, K.

    2009-12-01

    Wind-generated waves have been recognized as one of the most important factors of the sea surface roughness which plays crucial roles in various air-sea interactions such as energy, momentum, heat and gas exchanges. At the same time, wind waves with extreme wave heights representatively called as freak or rogue waves have been a matter of great concern for many people involved in shipping, fishing, constracting, surfing and other marine activities, because such extreme waves frequently affect on the marine activities and sometimes cause serious disasters. Nevertheless, investigations of actual conditions for the evolution of wind waves in the offshore region are less and sparse in contrast to dense monitoring networks in the coastal regions because of difficulty of offshore observation with high accuracy. Recently accurate in situ observation of offshore wind waves is getting possible at low cost owing to a wave height and direction sensor developed by Harigae et al. (2004) by installing a point-positioning GPS receiver on a surface drifting buoy. The point-positioning GPS sensor can extract three dimensional movements of the buoy excited by ocean waves with minimizing effects of GPS point-positioning errors through the use of a high-pass filter. Two drifting buoys equipped with the GPS-based wave sensor charged by solar cells were drifted in the western North Pacific and one of them continued to observe wind waves during 16 months from Sep. 2007. The RMSE of the GPS-based wave sensor was less than 10cm in significant wave height and about 1s in significant wave period in comparison with other sensors, i.e. accelerometers installed on drifting buoys of Japan Meteorological Agency, ultrasonic sensors placed at the Hiratsuka observation station of the University of Tokyo and altimeter of the JASON-1. The GPS-based wave buoys enabled us to detect freak waves defined as waves whose height is more than twice the significant wave height. The observation conducted by the wave buoys in 2007-2008 indicated a little more frequent occurrence of freak waves comparing with Forristall’s (1978) empirical formula and Naess’s (1985) distribution for a narrow-band Gaussian sea. Fig.1. Time series of the ratio of the significant wave height to the maximum wave height in 20 minutes sampling period observed by a drifting buoy with a GPS sensor

  11. Array-based satellite phase bias sensing: theory and GPS/BeiDou/QZSS results

    NASA Astrophysics Data System (ADS)

    Khodabandeh, A.; Teunissen, P. J. G.

    2014-09-01

    Single-receiver integer ambiguity resolution (IAR) is a measurement concept that makes use of network-derived non-integer satellite phase biases (SPBs), among other corrections, to recover and resolve the integer ambiguities of the carrier-phase data of a single GNSS receiver. If it is realized, the very precise integer ambiguity-resolved carrier-phase data would then contribute to the estimation of the receiver’s position, thus making (near) real-time precise point positioning feasible. Proper definition and determination of the SPBs take a leading part in developing the idea of single-receiver IAR. In this contribution, the concept of array-based between-satellite single-differenced (SD) SPB determination is introduced, which is aimed to reduce the code-dominated precision of the SD-SPB corrections. The underlying model is realized by giving the role of the local reference network to an array of antennas, mounted on rigid platforms, that are separated by short distances so that the same ionospheric delay is assumed to be experienced by all the antennas. To that end, a closed-form expression of the array-aided SD-SPB corrections is presented, thereby proposing a simple strategy to compute the SD-SPBs. After resolving double-differenced ambiguities of the array’s data, the variance of the SD-SPB corrections is shown to be reduced by a factor equal to the number of antennas. This improvement in precision is also affirmed by numerical results of the three GNSSs GPS, BeiDou and QZSS. Experimental results demonstrate that the integer-recovered ambiguities converge to integers faster, upon increasing the number of antennas aiding the SD-SPB corrections.

  12. Copper-encapsulated vertically aligned carbon nanotube arrays.

    PubMed

    Stano, Kelly L; Chapla, Rachel; Carroll, Murphy; Nowak, Joshua; McCord, Marian; Bradford, Philip D

    2013-11-13

    A new procedure is described for the fabrication of vertically aligned carbon nanotubes (VACNTs) that are decorated, and even completely encapsulated, by a dense network of copper nanoparticles. The process involves the conformal deposition of pyrolytic carbon (Py-C) to stabilize the aligned carbon-nanotube structure during processing. The stabilized arrays are mildly functionalized using oxygen plasma treatment to improve wettability, and they are then infiltrated with an aqueous, supersaturated Cu salt solution. Once dried, the salt forms a stabilizing crystal network throughout the array. After calcination and H2 reduction, Cu nanoparticles are left decorating the CNT surfaces. Studies were carried out to determine the optimal processing parameters to maximize Cu content in the composite. These included the duration of Py-C deposition and system process pressure as well as the implementation of subsequent and multiple Cu salt solution infiltrations. The optimized procedure yielded a nanoscale hybrid material where the anisotropic alignment from the VACNT array was preserved, and the mass of the stabilized arrays was increased by over 24-fold because of the addition of Cu. The procedure has been adapted for other Cu salts and can also be used for other metal salts altogether, including Ni, Co, Fe, and Ag. The resulting composite is ideally suited for application in thermal management devices because of its low density, mechanical integrity, and potentially high thermal conductivity. Additionally, further processing of the material via pressing and sintering can yield consolidated, dense bulk composites.

  13. Seismic Imaging of a Prospective Geothermal Play, Using a Dense Geophone Array

    NASA Astrophysics Data System (ADS)

    Trow, A.; Pankow, K. L.; Wannamaker, P. E.; Lin, F. C.; Ward, K. M.

    2017-12-01

    In the summer of 2016 a dense array of 48 Nodal Seismic geophones was deployed near Beaver, Utah on the eastern flank of the Mineral Mountains. The array aperture was approximately 20 kilometers and recorded continuous seismic data for 30 days. Geophones were centered on a previously known shallow (5km depth) magnetolluric (MT) low-resistivity body. This region of low resistivity was interpreted to possibly contain hydrothermal/geothermal fluids and was targeted for further seismic investigation. The seismic array geometry was designed to optimize seismic event detection for small (magnitude of completeness zero) earthquakes and to facilitate seismic imaging at depths of 5 km and deeper. For the duration of the experiment, one ML 1 earthquake was detected underneath the array with 15 other earthquakes detected to the east and south in the more seismically active Pavant Range. Different passive imaging techniques, including ambient noise and earthquake tomography are being explored in order to produce a seismic velocity image. Understanding the subsurface, specifically the fracture network and fluid content of the bedrock is important for characterization of a geothermal prospect. If it is rich in fluids, it can be assumed that some fracture network is in place to accommodate such fluids. Both fractures and fluid content of the prospect will have an effect on the seismic velocities in the basement structure. These properties can help determine the viability of a geothermal system for power production.

  14. Design and integration of a solar AMTEC power system with an advanced global positioning satellite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, G.; Hunt, M.E.; Determan, W.R.

    1996-12-31

    A 1,200-W solar AMTEC (alkali metal thermal-to-electric conversion) power system concept was developed and integrated with an advanced global positioning system (GPS) satellite. The critical integration issues for the SAMTEC with the GPS subsystems included (1) packaging within the Delta 2 launch vehicle envelope, (2) deployment and start-up operations for the SAMTEC, (3) SAMTEC operation during all mission phases, (4) satellite field of view restrictions with satellite operations, and (5) effect of the SAMTEC requirements on other satellite subsystems. The SAMTEC power system was compared with a conventional planar solar array/battery power system to assess the differences in system weight,more » size, and operations. Features of the design include the use of an advanced multitube, vapor anode AMTEC cell design with 24% conversion efficiency, and a direct solar insolation receiver design with integral LiF salt canisters for energy storage to generate power during the maximum solar eclipse cycle. The modular generator design consists of an array of multitube AMTEC cells arranged into a parallel/series electrical network with built-in cell redundancy. The preliminary assessment indicates that the solar generator design is scalable over a 500 to 2,500-W range. No battery power is required during the operational phase of the GPS mission. SAMTEC specific power levels greater than 5 We/kg and 160 We/m{sup 2} are anticipated for a mission duration of 10 to 12 yr in orbits with high natural radiation backgrounds.« less

  15. Magma chamber deflation recorded by the Global Positioning System - The Hekla 1991 eruption

    NASA Astrophysics Data System (ADS)

    Sigmundsson, Freysteinn; Einarsson, Pall; Bilham, Roger

    1992-07-01

    Between January 17 and March 11, 1991, 0.15 cu km of lava erupted initially from several radial fissures and subsequently from a single fissure on the SE flank of Hekla volcano, Iceland. Hekla is surrounded by an array of control points measured in 1989 using GPS geodesy and re-measured after the eruption. These measurements indicate that the eruption was associated with a surface deflation volume of 0.1 + 0.08 - 0.04 centered on Hekla (63.995 deg N +4 -3 km, 19.69 deg W +1.5 -2 km). The depth to the magma reservoir is 9 +6 -7 km, poorly constrained due to the absence of GPS control points close to the volcano.

  16. Global Positioning System : significant challenges in sustaining and upgrading widely used capabilities : report to the Subcommittee on National Security and Foreign Affairs, Committee on Oversight and Government Reform, House of Representatives.

    DOT National Transportation Integrated Search

    2009-04-01

    The Global Positioning System (GPS), which provides positioning, navigation, and timing data to users worldwide, has become essential to U.S. national security and a key tool in an expanding array of public service and commercial applications at home...

  17. Characteristics of High Latitude Ionosphere Scintillations

    NASA Astrophysics Data System (ADS)

    Morton, Y.

    2012-12-01

    As we enter a new solar maximum period, global navigation satellite systems (GNSS) receivers, especially the ones operating in high latitude and equatorial regions, are facing an increasing threat from ionosphere scintillations. The increased solar activities, however, also offer a great opportunity to collect scintillation data to characterize scintillation signal parameters and ionosphere irregularities. While there are numerous GPS receivers deployed around the globe to monitor ionosphere scintillations, most of them are commercial receivers whose signal processing mechanisms are not designed to operate under ionosphere scintillation. As a result, they may distort scintillation signal parameters or lose lock of satellite signals under strong scintillations. Since 2008, we have established and continuously improved a unique GNSS receiver array at HAARP, Alaska. The array contains high ends commercial receivers and custom RF front ends which can be automatically triggered to collect high quality GPS and GLONASS satellite signals during controlled heating experiments and natural scintillation events. Custom designed receiver signal tracking algorithms aim to preserve true scintillation signatures are used to process the raw RF samples. Signal strength, carrier phase, and relative TEC measurements generated by the receiver array since its inception have been analyzed to characterize high latitude scintillation phenomena. Daily, seasonal, and solar events dependency of scintillation occurrence, spectral contents of scintillation activities, and plasma drifts derived from these measurements will be presented. These interesting results demonstrate the feasibility and effectiveness of our experimental data collection system in providing insightful details of ionosphere responses to active perturbations and natural disturbances.

  18. CMZoom: The Submillimeter Array Survey of our Galaxy’s Central Molecular Zone

    NASA Astrophysics Data System (ADS)

    Battersby, Cara; CMZoom Team

    2018-01-01

    The inner few hundred parsecs of the Milky Way, the Central Molecular Zone (CMZ), is our closest laboratory for understanding star formation in the extreme environments (hot, dense, turbulent gas) that once dominated the universe. We present an update on the first large-area survey to expose the sites of star formation across the CMZ at high-resolution in submillimeter wavelengths: the CMZoom survey with the Submillimeter Array (SMA). We identify the locations of dense cores and search for signatures of embedded star formation. CMZoom is a three-year survey, completed this year, and has mapped out the highest column density regions of the CMZ in dust continuum and a variety of spectral lines around 1.3 mm. CMZoom combines SMA compact and subcompact configurations with single-dish data from BGPS and the APEX telescope, achieving an angular resolution of about 4” (0.2 pc) and good image fidelity up to large spatial scales.

  19. Search for transient ultralight dark matter signatures with networks of precision measurement devices using a Bayesian statistics method

    NASA Astrophysics Data System (ADS)

    Roberts, B. M.; Blewitt, G.; Dailey, C.; Derevianko, A.

    2018-04-01

    We analyze the prospects of employing a distributed global network of precision measurement devices as a dark matter and exotic physics observatory. In particular, we consider the atomic clocks of the global positioning system (GPS), consisting of a constellation of 32 medium-Earth orbit satellites equipped with either Cs or Rb microwave clocks and a number of Earth-based receiver stations, some of which employ highly-stable H-maser atomic clocks. High-accuracy timing data is available for almost two decades. By analyzing the satellite and terrestrial atomic clock data, it is possible to search for transient signatures of exotic physics, such as "clumpy" dark matter and dark energy, effectively transforming the GPS constellation into a 50 000 km aperture sensor array. Here we characterize the noise of the GPS satellite atomic clocks, describe the search method based on Bayesian statistics, and test the method using simulated clock data. We present the projected discovery reach using our method, and demonstrate that it can surpass the existing constrains by several order of magnitude for certain models. Our method is not limited in scope to GPS or atomic clock networks, and can also be applied to other networks of precision measurement devices.

  20. On Fast Post-Processing of Global Positioning System Simulator Truth Data and Receiver Measurements and Solutions Data

    NASA Technical Reports Server (NTRS)

    Kizhner, Semion; Day, John H. (Technical Monitor)

    2000-01-01

    Post-Processing of data related to a Global Positioning System (GPS) simulation is an important activity in qualification of a GPS receiver for space flight. Because a GPS simulator is a critical resource it is desirable to move off the pertinent simulation data from the simulator as soon as a test is completed. The simulator data files are usually moved to a Personal Computer (PC), where the post-processing of the receiver logged measurements and solutions data and simulated data is performed. Typically post-processing is accomplished using PC-based commercial software languages and tools. Because of commercial software systems generality their general-purpose functions are notoriously slow and more than often are the bottleneck problem even for short duration experiments. For example, it may take 8 hours to post-process data from a 6-hour simulation. There is a need to do post-processing faster, especially in order to use the previous test results as feedback for a next simulation setup. This paper demonstrates that a fast software linear interpolation algorithm is applicable to a large class of engineering problems, like GPS simulation data post-processing, where computational time is a critical resource and is one of the most important considerations. An approach is developed that allows to speed-up post-processing by an order of magnitude. It is based on improving the post-processing bottleneck interpolation algorithm using apriori information that is specific to the GPS simulation application. The presented post-processing scheme was used in support of a few successful space flight missions carrying GPS receivers. A future approach to solving the post-processing performance problem using Field Programmable Gate Array (FPGA) technology is described.

  1. Simulating GPS radio signal to synchronize network--a new technique for redundant timing.

    PubMed

    Shan, Qingxiao; Jun, Yang; Le Floch, Jean-Michel; Fan, Yaohui; Ivanov, Eugene N; Tobar, Michael E

    2014-07-01

    Currently, many distributed systems such as 3G mobile communications and power systems are time synchronized with a Global Positioning System (GPS) signal. If there is a GPS failure, it is difficult to realize redundant timing, and thus time-synchronized devices may fail. In this work, we develop time transfer by simulating GPS signals, which promises no extra modification to original GPS-synchronized devices. This is achieved by applying a simplified GPS simulator for synchronization purposes only. Navigation data are calculated based on a pre-assigned time at a fixed position. Pseudo-range data which describes the distance change between the space vehicle (SV) and users are calculated. Because real-time simulation requires heavy-duty computations, we use self-developed software optimized on a PC to generate data, and save the data onto memory disks while the simulator is operating. The radio signal generation is similar to the SV at an initial position, and the frequency synthesis of the simulator is locked to a pre-assigned time. A filtering group technique is used to simulate the signal transmission delay corresponding to the SV displacement. Each SV generates a digital baseband signal, where a unique identifying code is added to the signal and up-converted to generate the output radio signal at the centered frequency of 1575.42 MHz (L1 band). A prototype with a field-programmable gate array (FPGA) has been built and experiments have been conducted to prove that we can realize time transfer. The prototype has been applied to the CDMA network for a three-month long experiment. Its precision has been verified and can meet the requirements of most telecommunication systems.

  2. Insight into the rupture process of a rare tsunami earthquake from near-field high-rate GPS

    NASA Astrophysics Data System (ADS)

    Macpherson, K. A.; Hill, E. M.; Elosegui, P.; Banerjee, P.; Sieh, K. E.

    2011-12-01

    We investigated the rupture duration and velocity of the October 25, 2010 Mentawai earthquake by examining high-rate GPS displacement data. This Mw=7.8 earthquake appears to have ruptured either an up-dip part of the Sumatran megathrust or a fore-arc splay fault, and produced tsunami run-ups on nearby islands that were out of proportion with its magnitude. It has been described as a so-called "slow tsunami earthquake", characterised by a dearth of high-frequency signal and long rupture duration in low-strength, near-surface media. The event was recorded by the Sumatran GPS Array (SuGAr), a network of high-rate (1 sec) GPS sensors located on the nearby islands of the Sumatran fore-arc. For this study, the 1 sec time series from 8 SuGAr stations were selected for analysis due to their proximity to the source and high-quality recordings of both static displacements and dynamic waveforms induced by surface waves. The stations are located at epicentral distances of between 50 and 210 km, providing a unique opportunity to observe the dynamic source processes of a tsunami earthquake from near-source, high-rate GPS. We estimated the rupture duration and velocity by simulating the rupture using the spectral finite-element method SPECFEM and comparing the synthetic time series to the observed surface waves. A slip model from a previous study, derived from the inversion of GPS static offsets and tsunami data, and the CRUST2.0 3D velocity model were used as inputs for the simulations. Rupture duration and velocity were varied for a suite of simulations in order to determine the parameters that produce the best-fitting waveforms.

  3. Electronic switching spherical array antenna

    NASA Technical Reports Server (NTRS)

    Stockton, R.

    1978-01-01

    This work was conducted to demonstrate the performance levels attainable with an ESSA (Electronic Switching Spherical Array) antenna by designing and testing an engineering model. The antenna was designed to satisfy general spacecraft environmental requirements and built to provide electronically commandable beam pointing capability throughout a hemisphere. Constant gain and beam shape throughout large volumetric coverage regions are the principle characteristics. The model is intended to be a prototype of a standard communications and data handling antenna for user scientific spacecraft with the Tracking and Data Relay Satellite System (TDRSS). Some additional testing was conducted to determine the feasibility of an integrated TDRSS and GPS (Global Positioning System) antenna system.

  4. A Multipath Mitigation Algorithm for vehicle with Smart Antenna

    NASA Astrophysics Data System (ADS)

    Ji, Jing; Zhang, Jiantong; Chen, Wei; Su, Deliang

    2018-01-01

    In this paper, the antenna array adaptive method is used to eliminate the multipath interference in the environment of GPS L1 frequency. Combined with the power inversion (PI) algorithm and the minimum variance no distortion response (MVDR) algorithm, the anti-Simulation and verification of the antenna array, and the program into the FPGA, the actual test on the CBD road, the theoretical analysis of the LCMV criteria and PI and MVDR algorithm principles and characteristics of MVDR algorithm to verify anti-multipath interference performance is better than PI algorithm, The satellite navigation in the field of vehicle engineering practice has some guidance and reference.

  5. Potential and Pitfalls of High-Rate GPS

    NASA Astrophysics Data System (ADS)

    Smalley, R.

    2008-12-01

    With completion of the Plate Boundary Observatory (PBO), we are poised to capture a dense sampling of strong motion displacement time series from significant earthquakes in western North America with High-Rate GPS (HRGPS) data collected at 1 and 5 Hz. These data will provide displacement time series at potentially zero epicentral distance that, if valid, have great potential to contribute to understanding earthquake rupture processes. The caveat relates to whether or not the data are aliased: is the sampling rate fast enough to accurately capture the displacement's temporal history? Using strong motion recordings in the immediate epicentral area of several 6.77.5 events, which can be reasonably expected in the PBO footprint, even the 5 Hz data may be aliased. Some sort of anti-alias processing, currently not applied, will therefore necessary at the closest stations to guarantee the veracity of the displacement time series. We discuss several solutions based on a-priori knowledge of the expected ground motion and practicality of implementation.

  6. Vertical coherence of deformation in lithosphere in the eastern Himalayan syntaxis using GPS, Quaternary fault slip rates, and shear wave splitting data

    NASA Astrophysics Data System (ADS)

    Chang, Lijun; Flesch, Lucy M.; Wang, Chun-Yung; Ding, Zhifeng

    2015-07-01

    We present 59 new SKS/SKKS and combine them with 69 previously published data to infer the mantle deformation field in SE Tibet. The dense set of anisotropy measurements in the eastern Himalayan syntaxis (EHS) are oriented along a NE-SW azimuth and rotate clockwise in the surround regions. We use GPS measurements and geologic data to determine a continuous surface deformation field that is then used to predict shear wave spitting directions at each station. Comparison of splitting observations with predictions yields an average misfit of 11.7° illustrating that deformation is vertically coherent, consistent with previous studies. Within the central EHS in areas directly surrounding the Namche-Barwa metamorphic massif, the average misfit of 11 stations increases to 60.8°, and vertical coherence is no longer present. The complexity of the mantle anisotropy and surface observations argues for local alteration of the strain fields here associated with recent rapid exhumation of the Indian crust.

  7. A study of risk in the metropolitan area of Guadalajara through dense GPS geodesy

    NASA Astrophysics Data System (ADS)

    Marquez-Azua, B.; Saldana-Hernandez, F.; Medina de La Pena, H.

    2007-05-01

    Geodesic measurements from the Global Positioning System (GPS) are used extensively for basic earth science research into natural hazards and seismic risk. In the private sector, GPS technology is additionally used for cadastral and photogrammetric mapping surveys, definition of political-administrative limits, space analysis with thematic cartography, GIS, and land-use planning, with a wide variety of applied social, economic, and political purposes, including conservation of the environment. The city of Guadalajara and its surrounding urban area has expanded greatly in the last three decades as a result of industrial, commercial and housing activity that have substantially changed in their urban morphology. This period of unprecedented growth has occurred primarily in an unplanned and sometimes disarticulated and unbalanced manner, incongruous with the development of the most important city in western Mexico. The Department of Geography of the University of Guadalajara and the Institute of Territorial Information of the State of Jalisco (IITJ) have initiated a study of 89 geodetic sites that are located in the metropolitan zone of Guadalajara to assist in future planning and regulation of urban development, including urban and rural cadastral surveys and the establishment of diverse public services. Our work includes careful examination and evaluation of the quality and distribution of these geodetic sites with regard to anticipated growth of the metropolitan municipalities, and the vulnerability of urban zones to ground subsidence or landslides. Guadalajara is also located in a seismic zone, making precise continuous GPS measurements useful for identifying rates of strain accumulation and aseismic strain events that cannot be measured by seismographs.

  8. Virtual source reflection imaging of the Socorro Magma Body, New Mexico, using a dense seismic array

    NASA Astrophysics Data System (ADS)

    Finlay, T. S.; Worthington, L. L.; Schmandt, B.; Hansen, S. M.; Bilek, S. L.; Aster, R. C.; Ranasinghe, N. R.

    2017-12-01

    The Socorro Magma Body (SMB) is one of the largest known actively inflating continental magmatic intrusions. Previous studies have relied on sparse instrument coverage to determine its spatial extent, depth, and seismic signature, which characterized the body as a thin sill with a surface at 19 km below the Earth's surface. However, over the last two decades, InSAR and magneto-telluric (MT) studies have shed new light on the SMB and invigorated the scientific debate of the spatial distribution and uplift rate of the SMB. We return to seismic imaging of the SMB with the Sevilleta Array, a 12-day deployment of approximately 800 vertical component, 10-Hz geophones north of Socorro, New Mexico above and around the estimated northern half of the SMB. Teleseismic virtual source reflection profiling (TVR) employs the free surface reflection off of a teleseismic P as a virtual source in dense arrays, and has been used successfully to image basin structure and the Moho in multiple tectonic environments. The Sevilleta Array recorded 62 teleseismic events greater than M5. Applying TVR to the data collected by the Sevilleta Array, we present stacks from four events that produced the with high signal-to-noise ratios and simple source-time functions: the February 11, 2015 M6.7 in northern Argentina, the February 19, 2015 M5.4 in Kamchatka, Russia, and the February 21, 2015 M5.1 and February 22, 2015 M5.5 in western Colombia. Preliminary results suggest eastward-dipping reflectors at approximately 5 km depth near the Sierra Ladrones range in the northwestern corner of the array. Further analysis will focus on creating profiles across the area of maximum SMB uplift and constraining basin geometry.

  9. Hemispherical array of sensors with contractively wrapped polymer petals for flow sensing

    NASA Astrophysics Data System (ADS)

    Kanhere, Elgar; Wang, Nan; Kottapalli, Ajay Giri Prakash; Miao, Jianmin; Triantafyllou, Michael

    2017-11-01

    Hemispherical arrays have inherent advantages that allow simultaneous detection of flow speed and direction due to their shape. Though MEMS technology has progressed leaps and bounds, fabrication of array of sensors on a hemispherical surface is still a challenge. In this work, a novel approach of constructing hemispherical array is presented which employs a technique of contractively wrapping a hemispherical surface with flexible liquid crystal polymer petals. This approach also leverages the offerings from rapid prototyping technology and established standard MEMS fabrication processes. Hemispherical arrays of piezoresistive sensors are constructed with two types of petal wrappings, 4-petals and 8-petals, on a dome. The flow sensing and direction detection abilities of the dome are evaluated through experiments in wind tunnel. Experimental results demonstrate that a dome equipped with a dense array of sensors can provide information pertaining to the stimulus, through visualization of output profile over the entire surface.

  10. The Green Canyon Event as Recorded by the Atlantis OBS Node Survey

    NASA Astrophysics Data System (ADS)

    Dellinger, J. A.; Ehlers, J.; Clarke, R.

    2006-12-01

    On 10 February, 2006, a magnitude 5.2 earthquake occurred 260~km South of New Orleans, Louisiana, in the Green Canyon area of the United States Gulf of Mexico. Fortuitously, at the time of the earthquake an array of nearly 500 ocean-bottom-seismic nodes happened to be recording about 40~km SouthEast of the epicenter. These nodes were part of an ongoing oil-exploration 3D-seismic survey ("Atlantis patch 2"), and were designed to record oil-exploration air-gun seismic signals (with a dominant frequency of about 15~Hz), not low-frequency earthquake signals (1~Hz). The survey's own air guns, located about 7~km to the SouthEast of the array at the time of the event, were also repeatedly firing, generating large amounts of "noise" (at least for the purposes of analyzing the earthquake signal). Not surprisingly, when the data are plotted at their original sample rate they are dominated by the Atlantis survey's air-gun signal. When low passed with an upper cutoff of 2~Hz, however, the air-gun signals essentially vanish and underlying natural signals are clearly revealed. In land-seismic exploration dense 3D arrays of single geophones are used to characterize unwanted surface-wave energy. Beam forming the dense array allows the directions and phase velocities of wavefronts propagating across the array to be identified and localized so that receiver arrays can be designed that best attenuate the surface-wave noise. The 400-meter spacing of the Atlantis node array was designed to be optimally sparse for reflection-seismic processing. At 1~Hz, however, a 400-meter spacing becomes "dense" and we were able to use the same toolkit of programs originally developed for analyzing surface waves in land-seismic data to analyze the earthquake waves. The analysis reveals a complex and protracted series of arrivals spanning nearly 20~minutes of time. The expected sequence of earthquake arrivals from the North-NorthWest are followed by weaker sequences of arrivals of unknown origin from first the SouthEast and then from the East. It is hoped that these data can be used to help constrain the location, depth, and mechanism of the Green Canyon event. The authors wish to thank BP and BHPB for their permission to present this work, Fairfield for their enthusiasm in preserving the data, and CGG, WesternGeco, and Fugro for their cooperation in identifying other sources of man-made signals in the data.

  11. A GPS Receiver for Lunar Missions

    NASA Technical Reports Server (NTRS)

    Bamford, William A.; Heckler, Gregory W.; Holt, Greg N.; Moreau, Michael C.

    2008-01-01

    Beginning with the launch of the Lunar Reconnaissance Orbiter (LRO) in October of 2008, NASA will once again begin its quest to land humans on the Moon. This effort will require the development of new spacecraft which will safely transport people from the Earth to the Moon and back again, as well as robotic probes tagged with science, re-supply, and communication duties. In addition to the next-generation spacecraft currently under construction, including the Orion capsule, NASA is also investigating and developing cutting edge navigation sensors which will allow for autonomous state estimation in low Earth orbit (LEO) and cislunar space. Such instruments could provide an extra layer of redundancy in avionics systems and reduce the reliance on support and on the Deep Space Network (DSN). One such sensor is the weak-signal Global Positioning System (GPS) receiver "Navigator" being developed at NASA's Goddard Space Flight Center (GSFC). At the heart of the Navigator is a Field Programmable Gate Array (FPGA) based acquisition engine. This engine allows for the rapid acquisition/reacquisition of strong GPS signals, enabling the receiver to quickly recover from outages due to blocked satellites or atmospheric entry. Additionally, the acquisition algorithm provides significantly lower sensitivities than a conventional space-based GPS receiver, permitting it to acquire satellites well above the GPS constellation. This paper assesses the performance of the Navigator receiver based upon three of the major flight regimes of a manned lunar mission: Earth ascent, cislunar navigation, and entry. Representative trajectories for each of these segments were provided by NASA. The Navigator receiver was connected to a Spirent GPS signal generator, to allow for the collection of real-time, hardware-in-the-loop results for each phase of the flight. For each of the flight segments, the Navigator was tested on its ability to acquire and track GPS satellites under the dynamical environment unique to that trajectory.

  12. A Comparison of Earthquake Back-Projection Imaging Methods for Dense Local Arrays, and Application to the 2011 Virginia Aftershock Sequence

    NASA Astrophysics Data System (ADS)

    Beskardes, G. D.; Hole, J. A.; Wang, K.; Wu, Q.; Chapman, M. C.; Davenport, K. K.; Michaelides, M.; Brown, L. D.; Quiros, D. A.

    2016-12-01

    Back-projection imaging has recently become a practical method for local earthquake detection and location due to the deployment of densely sampled, continuously recorded, local seismograph arrays. Back-projection is scalable to earthquakes with a wide range of magnitudes from very tiny to very large. Local dense arrays provide the opportunity to capture very tiny events for a range applications, such as tectonic microseismicity, source scaling studies, wastewater injection-induced seismicity, hydraulic fracturing, CO2 injection monitoring, volcano studies, and mining safety. While back-projection sometimes utilizes the full seismic waveform, the waveforms are often pre-processed to overcome imaging issues. We compare the performance of back-projection using four previously used data pre-processing methods: full waveform, envelope, short-term averaging / long-term averaging (STA/LTA), and kurtosis. The goal is to identify an optimized strategy for an entirely automated imaging process that is robust in the presence of real-data issues, has the lowest signal-to-noise thresholds for detection and for location, has the best spatial resolution of the energy imaged at the source, preserves magnitude information, and considers computational cost. Real data issues include aliased station spacing, low signal-to-noise ratio (to <1), large noise bursts and spatially varying waveform polarity. For evaluation, the four imaging methods were applied to the aftershock sequence of the 2011 Virginia earthquake as recorded by the AIDA array with 200-400 m station spacing. These data include earthquake magnitudes from -2 to 3 with highly variable signal to noise, spatially aliased noise, and large noise bursts: realistic issues in many environments. Each of the four back-projection methods has advantages and disadvantages, and a combined multi-pass method achieves the best of all criteria. Preliminary imaging results from the 2011 Virginia dataset will be presented.

  13. A comparison of earthquake backprojection imaging methods for dense local arrays

    NASA Astrophysics Data System (ADS)

    Beskardes, G. D.; Hole, J. A.; Wang, K.; Michaelides, M.; Wu, Q.; Chapman, M. C.; Davenport, K. K.; Brown, L. D.; Quiros, D. A.

    2018-03-01

    Backprojection imaging has recently become a practical method for local earthquake detection and location due to the deployment of densely sampled, continuously recorded, local seismograph arrays. While backprojection sometimes utilizes the full seismic waveform, the waveforms are often pre-processed and simplified to overcome imaging challenges. Real data issues include aliased station spacing, inadequate array aperture, inaccurate velocity model, low signal-to-noise ratio, large noise bursts and varying waveform polarity. We compare the performance of backprojection with four previously used data pre-processing methods: raw waveform, envelope, short-term averaging/long-term averaging and kurtosis. Our primary goal is to detect and locate events smaller than noise by stacking prior to detection to improve the signal-to-noise ratio. The objective is to identify an optimized strategy for automated imaging that is robust in the presence of real-data issues, has the lowest signal-to-noise thresholds for detection and for location, has the best spatial resolution of the source images, preserves magnitude, and considers computational cost. Imaging method performance is assessed using a real aftershock data set recorded by the dense AIDA array following the 2011 Virginia earthquake. Our comparisons show that raw-waveform backprojection provides the best spatial resolution, preserves magnitude and boosts signal to detect events smaller than noise, but is most sensitive to velocity error, polarity error and noise bursts. On the other hand, the other methods avoid polarity error and reduce sensitivity to velocity error, but sacrifice spatial resolution and cannot effectively reduce noise by stacking. Of these, only kurtosis is insensitive to large noise bursts while being as efficient as the raw-waveform method to lower the detection threshold; however, it does not preserve the magnitude information. For automatic detection and location of events in a large data set, we therefore recommend backprojecting kurtosis waveforms, followed by a second pass on the detected events using noise-filtered raw waveforms to achieve the best of all criteria.

  14. Structure of the North Anatolian Fault Zone from the Auto-Correlation of Ambient Seismic Noise Recorded at a Dense Seismometer Array

    NASA Astrophysics Data System (ADS)

    Taylor, D. G.; Rost, S.; Houseman, G.

    2015-12-01

    In recent years the technique of cross-correlating the ambient seismic noise wavefield at two seismometers to reconstruct empirical Green's Functions for the determination of Earth structure has been a powerful tool to study the Earth's interior without earthquake or man-made sources. However, far less attention has been paid to using auto-correlations of seismic noise to reveal body wave reflections from interfaces in the subsurface. In principle, the Green's functions thus derived should be comparable to the Earth's impulse response to a co-located source and receiver. We use data from a dense seismic array (Dense Array for Northern Anatolia - DANA) deployed across the northern branch of the North Anatolian Fault Zone (NAFZ) in the region of the 1999 magnitude 7.6 Izmit earthquake in western Turkey. The NAFZ is a major strike-slip system that extends ~1200 km across northern Turkey and continues to pose a high level of seismic hazard, in particular to the mega-city of Istanbul. We construct reflection images for the entire crust and upper mantle over the ~35 km by 70 km footprint of the 70-station DANA array. Using auto-correlations of vertical and horizontal components of ground motion, both P- and S-wave velocity information can be retrieved from the wavefield to constrain crustal structure further to established methods. We show that clear P-wave reflections from the crust-mantle boundary (Moho) can be retrieved using the autocorrelation technique, indicating topography on the Moho on horizontal scales of less than 10 km. Offsets in crustal structure can be identified that seem to be correlated with the surface expression of the fault zone in the region. The combined analysis of auto-correlations using vertical and horizontal components will lead to further insight into the fault zone structure throughout the crust and upper mantle.

  15. Electrochemical properties of Ti3+ doped Ag-Ti nanotube arrays coated with hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Zhang, Hangzhou; Shi, Xiaoguo; Tian, Ang; Wang, Li; Liu, Chuangwei

    2018-04-01

    Ag-Ti nanotube array was prepared by simple anodic oxidation method and uniform hydroxyapatite were electrochemically deposited on the nanotubes, and then characterized by SEM, XRD, XPS and EIS. In order to investigate the influence of Ti3+ on the electrochemical deposition of hydroxyapatite on the nanotubes, the Ag-Ti nanotube array self-doped with Ti3+ was prepared by one step reduction method. The experiment results revealed that the Ti3+ can promote the grow rate of hydroxyapatite coatings on nanotube surface. The hydroxyapatite coated Ag-Ti nanotube arrays with Ti3+ exhibit excellent stability and higher corrosion resistance. Moreover, the compact and dense hydroxyapatite coating can also prevent the Ag atom erosion from the Ag-Ti nanotube.

  16. Magnetic Calorimeter Arrays with High Sensor Inductance and Dense Wiring

    NASA Astrophysics Data System (ADS)

    Stevenson, T. R.; Balvin, M. A.; Bandler, S. R.; Devasia, A. M.; Nagler, P. C.; Smith, S. J.; Yoon, W.

    2018-05-01

    We describe prototype arrays of magnetically coupled microcalorimeters fabricated with an approach scalable to very large format arrays. The superconducting interconnections and sensor coils have sufficiently low inductance in the wiring and sufficiently high inductance in the coils in each pixel, to enable arrays containing greater than 4000 sensors and 100,000 X-ray absorbers to be used in future astrophysics missions such as Lynx. We have used projection lithography to create submicron patterns (e.g., 400 nm lines and spaces) in our niobium sensor coils and wiring, integrated with gold-erbium sensor films and gold X-ray absorbers. Our prototype devices will explore the device physics of metallic magnetic calorimeters as feature sizes are reduced to nanoscale.

  17. Crowding-facilitated macromolecular transport in attractive micropost arrays.

    PubMed

    Chien, Fan-Tso; Lin, Po-Keng; Chien, Wei; Hung, Cheng-Hsiang; Yu, Ming-Hung; Chou, Chia-Fu; Chen, Yeng-Long

    2017-05-02

    Our study of DNA dynamics in weakly attractive nanofabricated post arrays revealed crowding enhances polymer transport, contrary to hindered transport in repulsive medium. The coupling of DNA diffusion and adsorption to the microposts results in more frequent cross-post hopping and increased long-term diffusivity with increased crowding density. We performed Langevin dynamics simulations and found maximum long-term diffusivity in post arrays with gap sizes comparable to the polymer radius of gyration. We found that macromolecular transport in weakly attractive post arrays is faster than in non-attractive dense medium. Furthermore, we employed hidden Markov analysis to determine the transition of macromolecular adsorption-desorption on posts and hopping between posts. The apparent free energy barriers are comparable to theoretical estimates determined from polymer conformational fluctuations.

  18. Mahali: Space Weather Monitoring Using Multicore Mobile Devices

    NASA Astrophysics Data System (ADS)

    Pankratius, V.; Lind, F. D.; Coster, A. J.; Erickson, P. J.; Semeter, J. L.

    2013-12-01

    Analysis of Total Electron Content (TEC) measurements derived from Global Positioning System (GPS) signals has led to revolutionary new data products for space weather monitoring and ionospheric research. However, the current sensor network is sparse, especially over the oceans and in regions like Africa and Siberia, and the full potential of dense, global, real-time TEC monitoring remains to be realized. The Mahali project will prototype a revolutionary architecture that uses mobile devices, such as phones and tablets, to form a global space weather monitoring network. Mahali exploits the existing GPS infrastructure - more specifically, delays in multi-frequency GPS signals observed at the ground - to acquire a vast set of global TEC projections, with the goal of imaging multi-scale variability in the global ionosphere at unprecedented spatial and temporal resolution. With connectivity available worldwide, mobile devices are excellent candidates to establish crowd sourced global relays that feed multi-frequency GPS sensor data into a cloud processing environment. Once the data is within the cloud, it is relatively straightforward to reconstruct the structure of the space environment, and its dynamic changes. This vision is made possible owing to advances in multicore technology that have transformed mobile devices into parallel computers with several processors on a chip. For example, local data can be pre-processed, validated with other sensors nearby, and aggregated when transmission is temporarily unavailable. Intelligent devices can also autonomously decide the most practical way of transmitting data with in any given context, e.g., over cell networks or Wifi, depending on availability, bandwidth, cost, energy usage, and other constraints. In the long run, Mahali facilitates data collection from remote locations such as deserts or on oceans. For example, mobile devices on ships could collect time-tagged measurements that are transmitted at a later point in time when some connectivity is available. Our concept of the overall Mahali system will employ both auto-tuning and machine learning techniques to cope with the opportunistic nature of data collection, computational load distribution on mobile devices and in the cloud, and fault-tolerance in a dynamically changing network. "Kila Mahali" means "everywhere" in the Swahili language. This project will follow that spirit by enabling space weather data collection even in the most remote places, resulting in dramatic improvements in observational gaps that exist in space weather research today. The dense network may enable the use of the entire ionosphere as a sensor to monitor geophysical events from earthquakes to tsunamis, and other natural disasters.

  19. Utilizing new GNSS capabilities for exploring Geospace

    NASA Astrophysics Data System (ADS)

    Coster, A. J.

    2015-12-01

    In 2000 the density of GPS receivers across the continental United States increased to the point that strictly data-driven regional maps of total electron content (TEC) could be constructed. These data-driven maps allowed the TEC to be monitored throughout the course of geomagnetic storms and to observe the progression of traveling ionospheric disturbances. This allowed studies of the development of storm enhanced density plumes in both hemispheres and of the dynamic changes in the equatorial TEC following stratospheric warming events. Currently, GPS TEC maps have become recognized as one of the premier tools to monitor coupling of atmospheric regions from both below and above the ionosphere. The number of available scientific dual-frequency receivers across the globe now exceeds 3000. However this number is anticipated to increase rapidly in part due to the numerous arrays being fielded for commercial applications such as precision farming and highway surveying. In addition, there will be a rapid increase in the number of GNSS signals available in the near future. Besides GPS, the European Union is building a system named GALILEO, which will consist of a 30-satellite constellation. The Russians have a system based on a 24-satellite constellation named GLONASS. The Chinese are developing a system called Beidou, which means "stars of the Big Dipper". The Beidou system will consist of 35 satellites. By 2023, there will be more than 160 GNSS satellites and 400 signals. Multi-constellation, multi-band GNSS will be a major enabler for space weather studies. This talk will focus on the potential of using the multiple new GNSS signals and the new higher density receiver arrays for measurements of plasma drift, detailed studies of traveling ionospheric disturbances (TIDS) and expanded studies of atmospheric coupling. We will conclude by describing the tremendous potential of merging GNSS observations with observations collected by arrays of low-cost, low-power, and small form factor ionosondes. In the future, we predict that new ionosonde and GNSS receiver networks will enable unprecedented mesoscale real-time tomographic observations of the ionosphere.

  20. Three dimensional metafilms with dual channel unit cells

    DOE PAGES

    Burckel, D. Bruce; Campione, Salvatore; Davids, Paul S.; ...

    2017-04-04

    Three-dimensional (3D) metafilms composed of periodic arrays of silicon unit cells containing single and multiple micrometer-scale vertical split ring resonators (SRRs) per unit cell were fabricated. In contrast to planar and stacked planar structures, these 3D metafilms have a thickness t ~λ d/4, allowing for classical thin film effects in the long wavelength limit. The infrared specular far-field scattering response was measured for metafilms containing one and two resonators per unit cell and compared to numerical simulations. Excellent agreement in the frequency region below the onset of diffractive scattering was obtained. For dense arrays of unit cells containing single SRRs,more » normally incident linearly polarized plane waves which do not excite a resonant response result in thin film interference fringes in the reflected spectra and are virtually indistinguishable from the scattering response of an undecorated array of unit cells. For the resonant linear polarization, the specular reflection for arrays is highly dependent on the SRR orientation on the vertical face for gap-up, gap-down, and gap-right orientations. For dense arrays of unit cells containing two SRRs per unit cell positioned on adjacent faces, the specular reflection spectra are slightly modified due to near-field coupling between the orthogonally oriented SRRs but otherwise exhibit reflection spectra largely representative of the corresponding single-SRR unit cell structures. Lastly, the ability to pack the unit cell with multiple inclusions which can be independently excited by choice of incident polarization suggests the construction of dual-channel films where the scattering response is selected by altering the incident polarization.« less

  1. Adaptive and mobile ground sensor array.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holzrichter, Michael Warren; O'Rourke, William T.; Zenner, Jennifer

    The goal of this LDRD was to demonstrate the use of robotic vehicles for deploying and autonomously reconfiguring seismic and acoustic sensor arrays with high (centimeter) accuracy to obtain enhancement of our capability to locate and characterize remote targets. The capability to accurately place sensors and then retrieve and reconfigure them allows sensors to be placed in phased arrays in an initial monitoring configuration and then to be reconfigured in an array tuned to the specific frequencies and directions of the selected target. This report reviews the findings and accomplishments achieved during this three-year project. This project successfully demonstrated autonomousmore » deployment and retrieval of a payload package with an accuracy of a few centimeters using differential global positioning system (GPS) signals. It developed an autonomous, multisensor, temporally aligned, radio-frequency communication and signal processing capability, and an array optimization algorithm, which was implemented on a digital signal processor (DSP). Additionally, the project converted the existing single-threaded, monolithic robotic vehicle control code into a multi-threaded, modular control architecture that enhances the reuse of control code in future projects.« less

  2. GPS Ocean Reflection Experiment on Spartan 251

    NASA Technical Reports Server (NTRS)

    Garrison, James L; Russo, Angela; Mickler, Dave; Armatys, Michael; Ferebee, Melvin J.

    1999-01-01

    It has recently been demonstrated that the GPS signal which has reflected from the ocean surface contains useful geophysical data from which the sea surface wind speed and other parameters can be extracted. This can be used for remote sensing, similar to present day use of radar altimeters or scatterometers, but with significantly smaller instrumentation because of the utilization of the existing GPS broadcast signal for illumination. Several campaigns of aircraft experimentation have been completed demonstrating this technique and reflected GPS data has been reliably collected from 25 km altitude on a balloon. However, there has not yet been a demonstration that the reflected GPS signal can be detected from orbit with sufficient signal to noise ratio (SNR) to make useful remote sensing measurements. A technology demonstration experiment was planned for a Space Shuttle flight in the late 2000 using the Spartan 251 recoverable carrier. This experiment would also have been the first flight validation of the PiVoT GPS receiver developed in house at the Goddard Space Flight Center. The "open-architecture" design of this receiver would allow the software modifications to be made which control code-correlator spacing to map out the shape of the reflected signal waveform, which is the most basic data product generated by this instrumentation. A moderate gain left-hand circularly polarized antenna, constructed from an array of off-the-shelf hemispherical antennas was to be used to give approximately 3 to 6 dB of additional gain. Preliminary SNR predictions have been done indicating that this antenna would offer sufficient gain to record waveform measurements. A system level description of the experiment instrumentation, including the receiver, antenna and data storage and retrieval will be given. The visibility of GPS reflections over the mission duration of several hours will be studied, including the effects of the limited beamwidth of the antenna. Spartan 251 has now been postponed with the earliest opportunity in the year 2002. The results of this study however, have been 2 used to further the define the requirements and expected performance of reflected GPS receivers in orbit. Several other space flight opportunities are being considered based upon this new information.

  3. Ground robotic measurement of aeolian processes

    USDA-ARS?s Scientific Manuscript database

    Models of aeolian processes rely on accurate measurements of the rates of sediment transport by wind, and careful evaluation of the environmental controls of these processes. Existing field approaches typically require intensive, event-based experiments involving dense arrays of instruments. These d...

  4. The Terceira island (Azores) crustal deformations from GPS data

    NASA Astrophysics Data System (ADS)

    Navarro, A.; Catalão, J.; Fernandes, R.; Miranda, M.; Bastos, L.

    2003-04-01

    Several GPS campaigns performed, for the last few years, in the Azores region have proved the utility of GPS data in the evaluation of the relative motion among the Eurasian, North-American and African plates. The study here presented was developed in the scope of the STAMINA project. This project main intention is the study of the deformation pattern of the area along the Terceira Axis, which is considered nowadays as the most active tectonic area of the Azores region. To achieve that, a dense GPS network was implemented on the Terceira Island in October 2000. The network has 23 stations spread uniformly throughout the island, ten of which had already been implemented on 1999 (1 in 1988) in the scope of the TANGO project. These 10 stations were observed for the first time in 1999 and re-observed in 2000 and 2001. The complete network was observed for the first time in March/April of 2001. GPS data from 2 epochs, 1999 and 2001, were used to evaluate the horizontal deformation of the Island for a period of one and a half year. Both campaigns last for 9 days, each station being observed for at least 3 sessions of 12 to 24 hours. One of the stations, located at the Terceira Astronomic Observatory (TERC), was continuously measured during both campaigns. The data processing was performed using the GAMIT and FONDA software. Data from six IGS/EUREF permanent stations were considered to link the local network to the ITRF97 reference system. Precise orbits from the IGS were used in the GPS data processing. The results exhibit repeatabilities of about 3 mm and 2 mm for both components of the horizontal position, respectively for 1999 and 2001. The resulting estimation of the main strain rates for the Island indicates N, NNE and NE directions for the extension of the Island. However, these results are not yet conclusive due to the poor geometry of the 10 stations network and to the short interval of observation. To establish a more reliable deformation pattern for the Island, the 23 stations network are intended to be re-observed during 2003.

  5. Landslide monitoring using Geocubes, a wireless network of low-cost GPS receivers

    NASA Astrophysics Data System (ADS)

    Benoit, Lionel; Thom, Christian; Martin, Olivier

    2013-04-01

    Many geophysical structures such as landslides, glaciers or even volcanoes are features characterized by small extend area and deformation rate in the order of 1 to 10cm per day. Their study needs ever more accurate positioning data with an increased space and time resolution. Using an ublox LEA-6T GPS receiver, the French national mapping agency IGN developed its own wireless multi-sensor geo-monitoring system named Geocube. The basic device is equipped with a GPS and a wireless communication media and can be completed with various sensor modules such as meteorological sensors, ground humidity and pressure or seismograph. Due to the low cost of each receiver, spatial dense surveying networks are deployed. Data are then continuously collected and transmitted to a processing computer in real-time as well as saved in situ on a Micro-SD card. Among them, raw GPS carrier phase data give access to real-time accurate relative positioning on all mesh nodes if small baselines are used. In order to achieve a high accuracy, a dedicated GPS data processing method based on a Kalman filter is proposed. It allows an epoch by epoch positioning providing a high time resolution. Special attention is paid on two points : adaptation to wireless networks of low-cost GPS and real-time ability. A first test of Geocubes usability under field conditions was carried out during summer 2012. A fifteen receivers network was deployed on the landslide of Super-Sauze (French Alps) for a two months trial. The experimental area, the deployed network and the acquisition protocol are presented. Position time series with a 30 seconds sampling rate are then derived from raw data for 10 mobile receivers on a forty days session. A sub-centimetric accuracy on an epoch by epoch positioning is reached despite difficult field conditions due to a 40° elevation mask in the south direction. Then, the measured deformations are compared with in situ rainfall measurements collected by a dedicated sensor added to a Geocube on a network's node.

  6. Landslide monitoring using Geocubes, a wireless network of low-cost GPS receivers.

    NASA Astrophysics Data System (ADS)

    Benoit, Lionel; Thom, Christian; Martin, Olivier

    2013-04-01

    Many geophysical structures such as landslides, glaciers or even volcanoes are features characterized by small extend area and deformation rate in the order of 1 to 10cm per day. Their study needs ever more accurate positioning data with an increased space and time resolution. Using an Ublox LEA-6T GPS receiver, the French national mapping agency IGN developed its own wireless multi-sensor geo-monitoring system named Geocube. The basic device is equipped with a GPS and a wireless communication media and can be completed with various sensor modules such as meteorological sensors, ground humidity and pressure or seismograph. Due to the low cost of each receiver, spatial dense surveying networks are deployed. Data are then continuously collected and transmitted to a processing computer in real-time as well as saved in situ on a Micro-SD card. Among them, raw GPS carrier phase data give access to real-time accurate relative positioning on all mesh nodes if small baselines are used. In order to achieve a high accuracy, a dedicated GPS data processing method based on a Kalman filter is proposed. It allows an epoch by epoch positioning providing a high time resolution. Special attention is paid on two points : adaptation to wireless networks of low-cost GPS and real-time ability. A first test of Geocubes usability under field conditions was carried out during summer 2012. A fifteen receivers network was deployed on the landslide of Super-Sauze (French Alps) for a two months trial. The experimental area, the deployed network and the acquisition protocol are presented. Position time series with a 30 seconds sampling rate are then derived from raw data for 10 mobile receivers on a forty days session. A sub-centimetric accuracy on an epoch by epoch positioning is reached despite difficult field conditions due to a 40° elevation mask in the south direction. Then, the measured deformations are compared with in situ rainfall measurements collected by a dedicated sensor added to a Geocube on a network's node.

  7. A multi-data stream assimilation framework for the assessment of volcanic unrest

    NASA Astrophysics Data System (ADS)

    Gregg, Patricia M.; Pettijohn, J. Cory

    2016-01-01

    Active volcanoes pose a constant risk to populations living in their vicinity. Significant effort has been spent to increase monitoring and data collection campaigns to mitigate potential volcano disasters. To utilize these datasets to their fullest extent, a new generation of model-data fusion techniques is required that combine multiple, disparate observations of volcanic activity with cutting-edge modeling techniques to provide efficient assessment of volcanic unrest. The purpose of this paper is to develop a data assimilation framework for volcano applications. Specifically, the Ensemble Kalman Filter (EnKF) is adapted to assimilate GPS and InSAR data into viscoelastic, time-forward, finite element models of an evolving magma system to provide model forecasts and error estimations. Since the goal of this investigation is to provide a methodological framework, our efforts are focused on theoretical development and synthetic tests to illustrate the effectiveness of the EnKF and its applicability in physical volcanology. The synthetic tests provide two critical results: (1) a proof of concept for using the EnKF for multi dataset assimilation in investigations of volcanic activity; and (2) the comparison of spatially limited, but temporally dense, GPS data with temporally limited InSAR observations for evaluating magma chamber dynamics during periods of volcanic unrest. Results indicate that the temporally dense information provided by GPS observations results in faster convergence and more accurate model predictions. However, most importantly, the synthetic tests illustrate that the EnKF is able to swiftly respond to data updates by changing the model forecast trajectory to match incoming observations. The synthetic results demonstrate a great potential for utilizing the EnKF model-data fusion method to assess volcanic unrest and provide model forecasts. The development of these new techniques provides: (1) a framework for future applications of rapid data assimilation and model development during volcanic crises; (2) a method for hind-casting to investigate previous volcanic eruptions, including potential eruption triggering mechanisms and precursors; and (3) an approach for optimizing survey designs for future data collection campaigns at active volcanic systems.

  8. Recovering the Full Afterslip Following the 2012 Mw 7.6 Nicoya, Costa Rica Earthquake

    NASA Astrophysics Data System (ADS)

    Hobbs, T. E.; Kyriakopoulos, C.; Newman, A. V.; Yao, D.; Dixon, T. H.; Protti, M.

    2016-12-01

    The nearfield deformation before, during and after major megathrust events, though they generate destructive earthquake shaking and tsunami waves, has proven difficult to observe due to the prohibitive cost of sea-floor geodesy. The Nicoya Peninsula in Costa Rica, however, is ideal for study as the seismogenic zone sits directly below the peninsula allowing for dense proximal instrumentation (18 continuous and 22 campaign GPS sites). Furthermore, rapid convergence of the Cocos and Caribbean plates results in M≥7 earthquakes approximately every 50-60 years, including the 2012 Mw 7.6 Nicoya event. By combining all available continuous GPS data with 3 postseismic GPS campaigns, we captured postseismic surface deformation on and around the Nicoya Peninsula. The main signal is nearly fault-normal trenchward motion of between 6 and 24 cm amongst 40 stations in the 3.5 years following the earthquake. By mid-2014 this signal diminishes, and by 2016 appears to have reversed. We invert the first 2.5 years to determine corresponding slip on a 3D interface that includes detailed microseismic structure [Kyriakopoulos et al., 2015]. Results show significant and well-resolved up- and downdip afterslip that terminates at the periphery of the 2012 coseismic rupture zone. The updip portion (up to 1.7 m) corresponds to about 1/3 the maximum coseismic slip and may be an important mechanism to address unrelieved interseismic locking [Feng et al., 2012]. Updip slip is concentrated in two patches at 15-25 km depth and correlates well with repeating aftershocks, which represent an independent measurement of continued slip activity in the updip afterslip region. Curiously, the downdip afterslip zone is devoid of repeating aftershocks, warranting further study of the relation between these supposedly linked phenomena [i.e. Uchida & Matsuzawa, 2013]. In coming years we expect to record accelerating landward motion as the subduction zone relocks. We intend to use these measurements to differentiate afterslip from the time-dependent, postseismic, viscous response of the mantle. Understanding nuanced postseismic behavior of the Nicoya peninsula may aid interpretation of more fragmented observations in areas with less dense instrumentation.

  9. Estimating snow depth in real time using unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Niedzielski, Tomasz; Mizinski, Bartlomiej; Witek, Matylda; Spallek, Waldemar; Szymanowski, Mariusz

    2016-04-01

    In frame of the project no. LIDER/012/223/L-5/13/NCBR/2014, financed by the National Centre for Research and Development of Poland, we elaborated a fully automated approach for estimating snow depth in real time in the field. The procedure uses oblique aerial photographs taken by the unmanned aerial vehicle (UAV). The geotagged images of snow-covered terrain are processed by the Structure-from-Motion (SfM) method which is used to produce a non-georeferenced dense point cloud. The workflow includes the enhanced RunSFM procedure (keypoint detection using the scale-invariant feature transform known as SIFT, image matching, bundling using the Bundler, executing the multi-view stereo PMVS and CMVS2 software) which is preceded by multicore image resizing. The dense point cloud is subsequently automatically georeferenced using the GRASS software, and the ground control points are borrowed from positions of image centres acquired from the UAV-mounted GPS receiver. Finally, the digital surface model (DSM) is produced which - to improve the accuracy of georeferencing - is shifted using a vector obtained through precise geodetic GPS observation of a single ground control point (GCP) placed on the Laboratory for Unmanned Observations of Earth (mobile lab established at the University of Wroclaw, Poland). The DSM includes snow cover and its difference with the corresponding snow-free DSM or digital terrain model (DTM), following the concept of the digital elevation model of differences (DOD), produces a map of snow depth. Since the final result depends on the snow-free model, two experiments are carried out. Firstly, we show the performance of the entire procedure when the snow-free model reveals a very high resolution (3 cm/px) and is produced using the UAV-taken photographs and the precise GCPs measured by the geodetic GPS receiver. Secondly, we perform a similar exercise but the 1-metre resolution light detection and ranging (LIDAR) DSM or DTM serves as the snow-free model. Thus, the main objective of the paper is to present the performance of the new procedure for estimating snow depth and to compare the two experiments.

  10. On-line monitoring system of PV array based on internet of things technology

    NASA Astrophysics Data System (ADS)

    Li, Y. F.; Lin, P. J.; Zhou, H. F.; Chen, Z. C.; Wu, L. J.; Cheng, S. Y.; Su, F. P.

    2017-11-01

    The Internet of Things (IoT) Technology is used to inspect photovoltaic (PV) array which can greatly improve the monitoring, performance and maintenance of the PV array. In order to efficiently realize the remote monitoring of PV operating environment, an on-line monitoring system of PV array based on IoT is designed in this paper. The system includes data acquisition, data gateway and PV monitoring centre (PVMC) website. Firstly, the DSP-TMS320F28335 is applied to collect indicators of PV array using sensors, then the data are transmitted to data gateway through ZigBee network. Secondly, the data gateway receives the data from data acquisition part, obtains geographic information via GPS module, and captures the scenes around PV array via USB camera, then uploads them to PVMC website. Finally, the PVMC website based on Laravel framework receives all data from data gateway and displays them with abundant charts. Moreover, a fault diagnosis approach for PV array based on Extreme Learning Machine (ELM) is applied in PVMC. Once fault occurs, a user alert can be sent via E-mail. The designed system enables users to browse the operating conditions of PV array on PVMC website, including electrical, environmental parameters and video. Experimental results show that the presented monitoring system can efficiently real-time monitor the PV array, and the fault diagnosis approach reaches a high accuracy of 97.5%.

  11. A Contribution For The Understanding of The Deformation Pattern Across The Terceira Axis

    NASA Astrophysics Data System (ADS)

    Navarro, A.; Catalão, J.; Miranda, J. M.

    In spite of several geodynamics studies performed in the Azores region, little is known about the deformation pattern of the tectonically more active sector around the Ter- ceira Axis. GPS campaigns performed in the area, in the last few years, were mainly concerned to the study of the relative motions between the Eurasian, African and North-American plates. This study, developed in the scope of the STAMINA project, has as main purpose the establishment of a dense GPS network to study the crustal deformation pattern in the area between the North Hirondelle basin and the East Gra- ciosa basin. The GPS network consists of 20 stations uniformly distributed throughout the island. The first GPS survey was carried out during days 90 to 98 of 2001. TERC and TCAT stations were used as reference stations, recording continuously throughout the survey. All the other stations were occupied for at least three sessions, except for cases of receiver malfunction, each session has a duration of 12 to 24 hours. The GPS data processing approach consisted of three main steps: (1) first, all sessions were processed separately using GAMIT in order to obtain a daily solution for two local sites (TERC and TCAT) and six global tracking stations (CCV3, RABT, SAV1, SFER, STJO and WSRT) using precise orbits from the IGS; (2) then, all stations of the local network are processed together and (3) finally, all station, including the global tracking ones, are reprocessed again. Precise orbits from the IGS were used in the processing. In each step a compensation program was used to compute a least squares network adjusted solution for the campaign, where all sessions are combined to yield estimates of improved station coordinates. The final solution achieved with the described methodology is documented in this paper. Further geodetic observations are needed in order to estimate the stations ve- locities and displacements and consequently to determine the rate of deformation of the island.

  12. Guided neuronal growth on arrays of biofunctionalized GaAs/InGaAs semiconductor microtubes

    NASA Astrophysics Data System (ADS)

    Bausch, Cornelius S.; Koitmäe, Aune; Stava, Eric; Price, Amanda; Resto, Pedro J.; Huang, Yu; Sonnenberg, David; Stark, Yuliya; Heyn, Christian; Williams, Justin C.; Dent, Erik W.; Blick, Robert H.

    2013-10-01

    We demonstrate embedded growth of cortical mouse neurons in dense arrays of semiconductor microtubes. The microtubes, fabricated from a strained GaAs/InGaAs heterostructure, guide axon growth through them and potentially enable electrical and optical probing of propagating action potentials. The coaxial nature of the microtubes—similar to myelin—is expected to enhance the signal transduction along the axon. We present a technique of suppressing arsenic toxicity and prove the success of this technique by overgrowing neuronal mouse cells.

  13. Nanofabrication of Arrays of Silicon Field Emitters with Vertical Silicon Nanowire Current Limiters and Self-Aligned Gates

    DTIC Science & Technology

    2016-08-19

    in a dielectric matrix. This paper explores the electronic device applications of dense arrays of silicon nanowires that are embedded in Nanotechnology ... Nanotechnology 27 (2016) 295302 (11pp) doi:10.1088/0957-4484/27/29/295302 Original content from this work may be used under the terms of the Creative...compared 2 Nanotechnology 27 (2016) 295302 S A Guerrera and A I Akinwande to the device reported by Velasquez-Garcia et al, but it also reduces the

  14. Replication-guided nucleosome packing and nucleosome breathing expedite the formation of dense arrays

    PubMed Central

    Osberg, Brendan; Nuebler, Johannes; Korber, Philipp; Gerland, Ulrich

    2014-01-01

    The first level of genome packaging in eukaryotic cells involves the formation of dense nucleosome arrays, with DNA coverage near 90% in yeasts. How cells achieve such high coverage within a short time, e.g. after DNA replication, remains poorly understood. It is known that random sequential adsorption of impenetrable particles on a line reaches high density extremely slowly, due to a jamming phenomenon. The nucleosome-shifting action of remodeling enzymes has been proposed as a mechanism to resolve such jams. Here, we suggest two biophysical mechanisms which assist rapid filling of DNA with nucleosomes, and we quantitatively characterize these mechanisms within mathematical models. First, we show that the ‘softness’ of nucleosomes, due to nucleosome breathing and stepwise nucleosome assembly, significantly alters the filling behavior, speeding up the process relative to ‘hard’ particles with fixed, mutually exclusive DNA footprints. Second, we explore model scenarios in which the progression of the replication fork could eliminate nucleosome jamming, either by rapid filling in its wake or via memory of the parental nucleosome positions. Taken together, our results suggest that biophysical effects promote rapid nucleosome filling, making the reassembly of densely packed nucleosomes after DNA replication a simpler task for cells than was previously thought. PMID:25428353

  15. Extragalactic Peaked-spectrum Radio Sources at Low Frequencies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callingham, J. R.; Gaensler, B. M.; Sadler, E. M.

    We present a sample of 1483 sources that display spectral peaks between 72 MHz and 1.4 GHz, selected from the GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey. The GLEAM survey is the widest fractional bandwidth all-sky survey to date, ideal for identifying peaked-spectrum sources at low radio frequencies. Our peaked-spectrum sources are the low-frequency analogs of gigahertz-peaked spectrum (GPS) and compact-steep spectrum (CSS) sources, which have been hypothesized to be the precursors to massive radio galaxies. Our sample more than doubles the number of known peaked-spectrum candidates, and 95% of our sample have a newly characterized spectral peak.more » We highlight that some GPS sources peaking above 5 GHz have had multiple epochs of nuclear activity, and we demonstrate the possibility of identifying high-redshift ( z > 2) galaxies via steep optically thin spectral indices and low observed peak frequencies. The distribution of the optically thick spectral indices of our sample is consistent with past GPS/CSS samples but with a large dispersion, suggesting that the spectral peak is a product of an inhomogeneous environment that is individualistic. We find no dependence of observed peak frequency with redshift, consistent with the peaked-spectrum sample comprising both local CSS sources and high-redshift GPS sources. The 5 GHz luminosity distribution lacks the brightest GPS and CSS sources of previous samples, implying that a convolution of source evolution and redshift influences the type of peaked-spectrum sources identified below 1 GHz. Finally, we discuss sources with optically thick spectral indices that exceed the synchrotron self-absorption limit.« less

  16. USGS Menlo Park GPS Data Processing Techniques and Derived North America Velocity Field (Invited)

    NASA Astrophysics Data System (ADS)

    Svarc, J. L.; Murray-Moraleda, J. R.; Langbein, J. O.

    2010-12-01

    The U.S. Geological Survey in Menlo Park routinely conducts repeated GPS surveys of geodetic markers throughout the western United States using dual-frequency geodetic GPS receivers. We combine campaign, continuous, and semi-permanent data to present a North America fixed velocity field for regions in the western United States. Mobile campaign-based surveys require less up-front investment than permanently monumented and telemetered GPS systems, and hence have achieved a broad and dense spatial coverage. The greater flexibility and mobility comes at the cost of greater uncertainties in individual daily position solutions. We also routinely process continuous GPS data collected at PBO stations operated by UNAVCO along with data from other continuous GPS networks such as BARD, PANGA, and CORS operated by other agencies. We have broken the Western US into several subnetworks containing approximately 150-250 stations each. The data are processed using JPL’s GIPSY-OASIS II release 5.0 software using a modified precise positioning strategy (Zumberge and others, 1997). We use the “ambizap” code provided by Geoff Blewitt (Blewitt, 2008) to fix phase ambiguities in continuous networks. To mitigate the effect of common mode noise we use the positions of stations in the network with very long, clean time series (i.e. those with no large outliers or offsets) to transform all position estimates into “regionally filtered” results following the approach of Hammond and Thatcher (2007). Velocity uncertainties from continuously operated GPS stations tend to be about 3 times smaller than those from campaign data. Langbein (2004) presents a maximum likelihood method for fitting a time series employing a variety of temporal noise models. We assume that GPS observations are contaminated by a combination of white, flicker, and random walk noise. For continuous and semi-permanent time series longer than 2 years we estimate these values, otherwise we fix the amplitudes of these processes to 0.85 mm, 1.7 mm/yr1/4, and 0.4 mm/yr1/2 respectively for the north components, 0.84 mm, 1.4 mm/yr1/4, and 0.6 mm/yr1/2 respectively for the east components and 3.2 mm, 6.4 mm/yr1/4, and 0.0 mm/yr1/2 respectively for the vertical. We have also deployed “semi-permanent” stations in selected regions of California. Semi-permanent stations have the advantage of increasing the density of coverage without the high cost of monumentation and telemetry associated with continuous GPS stations. Also, because of the increased temporal coverage of these stations, accurate estimates of station velocities can be achieved in a far shorter time period than from campaign mode surveys.

  17. Modeling and characterization of multipath in global navigation satellite system ranging signals

    NASA Astrophysics Data System (ADS)

    Weiss, Jan Peter

    The Global Positioning System (GPS) provides position, velocity, and time information to users in anywhere near the earth in real-time and regardless of weather conditions. Since the system became operational, improvements in many areas have reduced systematic errors affecting GPS measurements such that multipath, defined as any signal taking a path other than the direct, has become a significant, if not dominant, error source for many applications. This dissertation utilizes several approaches to characterize and model multipath errors in GPS measurements. Multipath errors in GPS ranging signals are characterized for several receiver systems and environments. Experimental P(Y) code multipath data are analyzed for ground stations with multipath levels ranging from minimal to severe, a C-12 turboprop, an F-18 jet, and an aircraft carrier. Comparisons between receivers utilizing single patch antennas and multi-element arrays are also made. In general, the results show significant reductions in multipath with antenna array processing, although large errors can occur even with this kind of equipment. Analysis of airborne platform multipath shows that the errors tend to be small in magnitude because the size of the aircraft limits the geometric delay of multipath signals, and high in frequency because aircraft dynamics cause rapid variations in geometric delay. A comprehensive multipath model is developed and validated. The model integrates 3D structure models, satellite ephemerides, electromagnetic ray-tracing algorithms, and detailed antenna and receiver models to predict multipath errors. Validation is performed by comparing experimental and simulated multipath via overall error statistics, per satellite time histories, and frequency content analysis. The validation environments include two urban buildings, an F-18, an aircraft carrier, and a rural area where terrain multipath dominates. The validated models are used to identify multipath sources, characterize signal properties, evaluate additional antenna and receiver tracking configurations, and estimate the reflection coefficients of multipath-producing surfaces. Dynamic models for an F-18 landing on an aircraft carrier correlate aircraft dynamics to multipath frequency content; the model also characterizes the separate contributions of multipath due to the aircraft, ship, and ocean to the overall error statistics. Finally, reflection coefficients for multipath produced by terrain are estimated via a least-squares algorithm.

  18. Accurate Vehicle Location System Using RFID, an Internet of Things Approach.

    PubMed

    Prinsloo, Jaco; Malekian, Reza

    2016-06-04

    Modern infrastructure, such as dense urban areas and underground tunnels, can effectively block all GPS signals, which implies that effective position triangulation will not be achieved. The main problem that is addressed in this project is the design and implementation of an accurate vehicle location system using radio-frequency identification (RFID) technology in combination with GPS and the Global system for Mobile communication (GSM) technology, in order to provide a solution to the limitation discussed above. In essence, autonomous vehicle tracking will be facilitated with the use of RFID technology where GPS signals are non-existent. The design of the system and the results are reflected in this paper. An extensive literature study was done on the field known as the Internet of Things, as well as various topics that covered the integration of independent technology in order to address a specific challenge. The proposed system is then designed and implemented. An RFID transponder was successfully designed and a read range of approximately 31 cm was obtained in the low frequency communication range (125 kHz to 134 kHz). The proposed system was designed, implemented, and field tested and it was found that a vehicle could be accurately located and tracked. It is also found that the antenna size of both the RFID reader unit and RFID transponder plays a critical role in the maximum communication range that can be achieved.

  19. Accurate Vehicle Location System Using RFID, an Internet of Things Approach

    PubMed Central

    Prinsloo, Jaco; Malekian, Reza

    2016-01-01

    Modern infrastructure, such as dense urban areas and underground tunnels, can effectively block all GPS signals, which implies that effective position triangulation will not be achieved. The main problem that is addressed in this project is the design and implementation of an accurate vehicle location system using radio-frequency identification (RFID) technology in combination with GPS and the Global system for Mobile communication (GSM) technology, in order to provide a solution to the limitation discussed above. In essence, autonomous vehicle tracking will be facilitated with the use of RFID technology where GPS signals are non-existent. The design of the system and the results are reflected in this paper. An extensive literature study was done on the field known as the Internet of Things, as well as various topics that covered the integration of independent technology in order to address a specific challenge. The proposed system is then designed and implemented. An RFID transponder was successfully designed and a read range of approximately 31 cm was obtained in the low frequency communication range (125 kHz to 134 kHz). The proposed system was designed, implemented, and field tested and it was found that a vehicle could be accurately located and tracked. It is also found that the antenna size of both the RFID reader unit and RFID transponder plays a critical role in the maximum communication range that can be achieved. PMID:27271638

  20. GPS and seismological constraints on active tectonics and arc-continent collision in Papua New Guinea: Implications for mechanics of microplate rotations in a plate boundary zone

    NASA Astrophysics Data System (ADS)

    Wallace, Laura M.; Stevens, Colleen; Silver, Eli; McCaffrey, Rob; Loratung, Wesley; Hasiata, Suvenia; Stanaway, Richard; Curley, Robert; Rosa, Robert; Taugaloidi, Jones

    2004-05-01

    The island of New Guinea is located within the deforming zone between the Pacific and Australian plates that converge obliquely at ˜110 mm/yr. New Guinea has been fragmented into a complex array of microplates, some of which rotate rapidly about nearby vertical axes. We present velocities from a network of 38 Global Positioning System (GPS) sites spanning much of the nation of Papua New Guinea (PNG). The GPS-derived velocities are used to explain the kinematics of major tectonic blocks in the region and the nature of strain accumulation on major faults in PNG. We simultaneously invert GPS velocities, earthquake slip vectors on faults, and transform orientations in the Woodlark Basin for the poles of rotation of the tectonic blocks and the degree of elastic strain accumulation on faults in the region. The data are best explained by six distinct tectonic blocks: the Australian, Pacific, South Bismarck, North Bismarck, and Woodlark plates and a previously unrecognized New Guinea Highlands Block. Significant portions of the Ramu-Markham Fault appear to be locked, which has implications for seismic hazard determination in the Markham Valley region. We also propose that rapid clockwise rotation of the South Bismarck plate is controlled by edge forces initiated by the collision between the Finisterre arc and the New Guinea Highlands.

  1. Ambient seismic noise monitoring of the Super-Sauze landslide from a very dense temporary seismic array

    NASA Astrophysics Data System (ADS)

    Chtouki, Toufik; Vergne, Jerome; Provost, Floriane; Malet, Jean-Philippe; Burtin, Arnaud; Hibert, Clément

    2017-04-01

    The Super-Sauze landslide is located on the southern part of the Barcelonnette Basin (French Alps) and has developed in a soft clay-shale environment. It is one of the four sites continuously monitored through a wide variety of geophysical and hydro-geological techniques in the framework of the OMIV French national landslide observatory. From early June to mid-July 2016, a temporary dense seismic array has been installed in the most active part of the landslide and at its surroundings. 50 different sites with an average inter-station distance of 50m have been instrumented with 150 miniaturized and autonomous seismic stations (Zland nodes), allowing a continuous record of the seismic signal at frequencies higher than 0.2Hz over an almost regular grid. Concurrently, a Ground-Based InSAR device allowed for a precise and continuous monitoring of the surface deformation. Overall, this experiment is intended to better characterize the spatio-temporal evolution of the deformation processes related to various type of forcing. We analyze the continuous records of ambient seismic noise recorded by the dense array. Using power spectral densities, we characterize the various types of natural and anthropogenic seismic sources, including the effect of water turbulence and bedload transport in the small nearby torrents. We also compute the correlation of the ambient diffuse seismic noise in various frequency bands for the 2448 station pairs to recover the empirical Green functions between them. The temporal evolution of the coda part of these noise correlation functions allows monitoring and localizing shear wave velocity variations in the sliding mass. Here we present some preliminary results of this analysis and compare the seismic variations to meteorological data and surface deformation.

  2. Carbon nanotubes on a substrate

    DOEpatents

    Gao, Yufei [Kennewick, WA; Liu, Jun [West Richland, WA

    2002-03-26

    The present invention includes carbon nanotubes whose hollow cores are 100% filled with conductive filler. The carbon nanotubes are in uniform arrays on a conductive substrate and are well-aligned and can be densely packed. The uniformity of the carbon nanotube arrays is indicated by the uniform length and diameter of the carbon nanotubes, both which vary from nanotube to nanotube on a given array by no more than about 5%. The alignment of the carbon nanotubes is indicated by the perpendicular growth of the nanotubes from the substrates which is achieved in part by the simultaneous growth of the conductive filler within the hollow core of the nanotube and the densely packed growth of the nanotubes. The present invention provides a densely packed carbon nanotube growth where each nanotube is in contact with at least one nearest-neighbor nanotube. The substrate is a conductive substrate coated with a growth catalyst, and the conductive filler can be single crystals of carbide formed by a solid state reaction between the substrate material and the growth catalyst. The present invention further provides a method for making the filled carbon nanotubes on the conductive substrates. The method includes the steps of depositing a growth catalyst onto the conductive substrate as a prepared substrate, creating a vacuum within a vessel which contains the prepared substrate, flowing H2/inert (e.g. Ar) gas within the vessel to increase and maintain the pressure within the vessel, increasing the temperature of the prepared substrate, and changing the H2/Ar gas to ethylene gas such that the ethylene gas flows within the vessel. Additionally, varying the density and separation of the catalyst particles on the conductive substrate can be used to control the diameter of the nanotubes.

  3. Method of making carbon nanotubes on a substrate

    DOEpatents

    Gao, Yufei; Liu, Jun

    2006-03-14

    The present invention includes carbon nanotubes whose hollow cores are 100% filled with conductive filler. The carbon nanotubes are in uniform arrays on a conductive substrate and are well-aligned and can be densely packed. The uniformity of the carbon nanotube arrays is indicated by the uniform length and diameter of the carbon nanotubes, both which vary from nanotube to nanotube on a given array by no more than about 5%. The alignment of the carbon nanotubes is indicated by the perpendicular growth of the nanotubes from the substrates which is achieved in part by the simultaneous growth of the conductive filler within the hollow core of the nanotube and the densely packed growth of the nanotubes. The present invention provides a densely packed carbon nanotube growth where each nanotube is in contact with at least one nearest-neighbor nanotube. The substrate is a conductive substrate coated with a growth catalyst, and the conductive filler can be single crystals of carbide formed by a solid state reaction between the substrate material and the growth catalyst. The present invention further provides a method for making the filled carbon nanotubes on the conductive substrates. The method includes the steps of depositing a growth catalyst onto the conductive substrate as a prepared substrate, creating a vacuum within a vessel which contains the prepared substrate, flowing H2/inert (e.g. Ar) gas within the vessel to increase and maintain the pressure within the vessel, increasing the temperature of the prepared substrate, and changing the H2/Ar gas to ethylene gas such that the ethylene gas flows within the vessel. Additionally, varying the density and separation of the catalyst particles on the conductive substrate can be used to control the diameter of the nanotubes.

  4. Systematic detection of seismic events at Mount St. Helens with an ultra-dense array

    NASA Astrophysics Data System (ADS)

    Meng, X.; Hartog, J. R.; Schmandt, B.; Hotovec-Ellis, A. J.; Hansen, S. M.; Vidale, J. E.; Vanderplas, J.

    2016-12-01

    During the summer of 2014, an ultra-dense array of 900 geophones was deployed around the crater of Mount St. Helens and continuously operated for 15 days. This dataset provides us an unprecedented opportunity to systematically detect seismic events around an active volcano and study their underlying mechanisms. We use a waveform-based matched filter technique to detect seismic events from this dataset. Due to the large volume of continuous data ( 1 TB), we performed the detection on the GPU cluster Stampede (https://www.tacc.utexas.edu/systems/stampede). We build a suite of template events from three catalogs: 1) the standard Pacific Northwest Seismic Network (PNSN) catalog (45 events); 2) the catalog from Hansen&Schmandt (2015) obtained with a reverse-time imaging method (212 events); and 3) the catalog identified with a matched filter technique using the PNSN permanent stations (190 events). By searching for template matches in the ultra-dense array, we find 2237 events. We then calibrate precise relative magnitudes for template and detected events, using a principal component fit to measure waveform amplitude ratios. The magnitude of completeness and b-value of the detected catalog is -0.5 and 1.1, respectively. Our detected catalog shows several intensive swarms, which are likely driven by fluid pressure transients in conduits or slip transients on faults underneath the volcano. We are currently relocating the detected catalog with HypoDD and measuring the seismic velocity changes at Mount St. Helens using the coda wave interferometry of detected repeating earthquakes. The accurate temporal-spatial migration pattern of seismicity and seismic property changes should shed light on the physical processes beneath Mount St. Helens.

  5. High-density CMOS Microelectrode Array System for Impedance Spectroscopy and Imaging of Biological Cells.

    PubMed

    Vijay, Viswam; Raziyeh, Bounik; Amir, Shadmani; Jelena, Dragas; Alicia, Boos Julia; Axel, Birchler; Jan, Müller; Yihui, Chen; Andreas, Hierlemann

    2017-01-26

    A monolithic measurement platform was implemented to enable label-free in-vitro electrical impedance spectroscopy measurements of cells on multi-functional CMOS microelectrode array. The array includes 59,760 platinum microelectrodes, densely packed within a 4.5 mm × 2.5 mm sensing region at a pitch of 13.5 μm. The 32 on-chip lock-in amplifiers can be used to measure the impedance of any arbitrarily chosen electrodes on the array by applying a sinusoidal voltage, generated by an on-chip waveform generator with a frequency range from 1 Hz to 1 MHz, and measuring the respective current. Proof-of-concept measurements of impedance sensing and imaging are shown in this paper. Correlations between cell detection through optical microscopy and electrochemical impedance scanning were established.

  6. The Extensive Air Shower Experiment Kascade-Grande

    NASA Astrophysics Data System (ADS)

    Kang, Donghwa; Apel, W. D.; Arteaga, J. C.; Badea, F.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Brüggemann, M.; Buchholz, P.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Fuhrmann, D.; Ghia, P. L.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kickelbick, D.; Klages, H. O.; Kolotaev, Y.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Navarra, G.; Nehls, S.; Oehlschläger, J.; Ostapchenko, S.; Over, S.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schatz, G.; Schieler, H.; Schröder, F.; Sima, O.; Stümpert, M.; Toma, G.; Trinchero, G. C.; Ulrich, H.; van Buren, J.; Walkowiak, W.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.

    The extensive air shower experiment KASCADE-Grande (KArlsruhe Shower Core and Array DEtector and Grande array) is located on site of the Forschungszentrum Karlsruhe in Germany. The original KASCADE experiment consisted of a densely packed scintillator array with unshielded and shielded detectors for the measurement of the electromagnetic and muonic shower component independently, as well as muon tracking devices and a hadron calorimeter. The Grande array as an extension of KASCADE consists of 37 scintillation detector stations covering an area of 700×700 m2. The main goal for the combined measurements of KASCADE and Grande is the investigation of the energy spectrum and composition of primary cosmic rays in the energy range of 1016 to 1018 eV. In this paper an overview of the KASCADE-Grande experiment and recent results will be presented.

  7. Lessons Learned in over Two Decades of GPS/GNSS Data Center Support

    NASA Astrophysics Data System (ADS)

    Boler, F. M.; Estey, L. H.; Meertens, C. M.; Maggert, D.

    2014-12-01

    The UNAVCO Data Center in Boulder, Colorado, curates, archives, and distributes geodesy data and products, mainly GPS/GNSS data from 3,000 permanent stations and 10,000 campaign sites around the globe. Although now having core support from NSF and NASA, the archive began around 1992 as a grass-roots effort of a few UNAVCO staff and community members to preserve data going back to 1986. Open access to this data is generally desired, but the Data Center in fact operates under an evolving suite of data access policies ranging from open access to nondisclosure for special cases. Key to processing this data is having the correct equipment metadata; reliably obtaining this metadata continues to be a challenge, in spite of modern cyberinfrastructure and tools, mostly due to human errors or lack of consistent operator training. New metadata problems surface when trying to design and publish modern Digital Object Identifiers for data sets where PIs, funding sources, and historical project names now need to be corrected and verified for data sets going back almost three decades. Originally, the data was GPS-only based on three signals on two carrier frequencies. Modern GNSS covers GPS modernization (three more signals and one additional carrier) as well as open signals and carriers of additional systems such as GLONASS, Galileo, BeiDou, and QZSS, requiring ongoing adaptive strategies to assess the quality of modern datasets. Also, new scientific uses of these data benefit from higher data rates than was needed for early tectonic applications. In addition, there has been a migration from episodic campaign sites (hence sparse data) to continuously operating stations (hence dense data) over the last two decades. All of these factors make it difficult to realistically plan even simple data center functions such as on-line storage capacity.

  8. Cemento-osseous dysplasia of the jaw bones: key radiographic features

    PubMed Central

    Alsufyani, NA; Lam, EWN

    2011-01-01

    Objective The purpose of this study is to assess possible diagnostic differences between general dentists (GPs) and oral and maxillofacial radiologists (RGs) in the identification of pathognomonic radiographic features of cemento-osseous dysplasia (COD) and its interpretation. Methods Using a systematic objective survey instrument, 3 RGs and 3 GPs reviewed 50 image sets of COD and similarly appearing entities (dense bone island, cementoblastoma, cemento-ossifying fibroma, fibrous dysplasia, complex odontoma and sclerosing osteitis). Participants were asked to identify the presence or absence of radiographic features and then to make an interpretation of the images. Results RGs identified a well-defined border (odds ratio (OR) 6.67, P < 0.05); radiolucent periphery (OR 8.28, P < 0.005); bilateral occurrence (OR 10.23, P < 0.01); mixed radiolucent/radiopaque internal structure (OR 10.53, P < 0.01); the absence of non-concentric bony expansion (OR 7.63, P < 0.05); and the association with anterior and posterior teeth (OR 4.43, P < 0.05) as key features of COD. Consequently, RGs were able to correctly interpret 79.3% of COD cases. In contrast, GPs identified the absence of root resorption (OR 4.52, P < 0.05) and the association with anterior and posterior teeth (OR 3.22, P = 0.005) as the only key features of COD and were able to correctly interpret 38.7% of COD cases. Conclusions There are statistically significant differences between RGs and GPs in the identification and interpretation of the radiographic features associated with COD (P < 0.001). We conclude that COD is radiographically discernable from other similarly appearing entities only if the characteristic radiographic features are correctly identified and then correctly interpreted. PMID:21346079

  9. Cemento-osseous dysplasia of the jaw bones: key radiographic features.

    PubMed

    Alsufyani, N A; Lam, E W N

    2011-03-01

    The purpose of this study is to assess possible diagnostic differences between general dentists (GPs) and oral and maxillofacial radiologists (RGs) in the identification of pathognomonic radiographic features of cemento-osseous dysplasia (COD) and its interpretation. Using a systematic objective survey instrument, 3 RGs and 3 GPs reviewed 50 image sets of COD and similarly appearing entities (dense bone island, cementoblastoma, cemento-ossifying fibroma, fibrous dysplasia, complex odontoma and sclerosing osteitis). Participants were asked to identify the presence or absence of radiographic features and then to make an interpretation of the images. RGs identified a well-defined border (odds ratio (OR) 6.67, P < 0.05); radiolucent periphery (OR 8.28, P < 0.005); bilateral occurrence (OR 10.23, P < 0.01); mixed radiolucent/radiopaque internal structure (OR 10.53, P < 0.01); the absence of non-concentric bony expansion (OR 7.63, P < 0.05); and the association with anterior and posterior teeth (OR 4.43, P < 0.05) as key features of COD. Consequently, RGs were able to correctly interpret 79.3% of COD cases. In contrast, GPs identified the absence of root resorption (OR 4.52, P < 0.05) and the association with anterior and posterior teeth (OR 3.22, P = 0.005) as the only key features of COD and were able to correctly interpret 38.7% of COD cases. There are statistically significant differences between RGs and GPs in the identification and interpretation of the radiographic features associated with COD (P < 0.001). We conclude that COD is radiographically discernable from other similarly appearing entities only if the characteristic radiographic features are correctly identified and then correctly interpreted.

  10. On the feasibility to integrate low-cost MEMS accelerometers and GNSS receivers

    NASA Astrophysics Data System (ADS)

    Benedetti, Elisa; Dermanis, Athanasios; Crespi, Mattia

    2017-06-01

    The aim of this research was to investigate the feasibility of merging the benefits offered by low-cost GNSS and MEMS accelerometers technology, in order to promote the diffusion of low-cost monitoring solutions. A merging approach was set up at the level of the combination of kinematic results (velocities and displacements) coming from the two kinds of sensors, whose observations were separately processed, following to the so called loose integration, which sounds much more simple and flexible thinking about the possibility of an easy change of the combined sensors. At first, the issues related to the difference in reference systems, time systems and measurement rate and epochs for the two sensors were faced with. An approach was designed and tested to transform into unique reference and time systems the outcomes from GPS and MEMS and to interpolate the usually (much) more dense MEMS observation to common (GPS) epochs. The proposed approach was limited to time-independent (constant) orientation of the MEMS reference system with respect to the GPS one. Then, a data fusion approach based on the use of Discrete Fourier Transform and cubic splines interpolation was proposed both for velocities and displacements: MEMS and GPS derived solutions are firstly separated by a rectangular filter in spectral domain, and secondly back-transformed and combined through a cubic spline interpolation. Accuracies around 5 mm for slow and fast displacements and better than 2 mm/s for velocities were assessed. The obtained solution paves the way to a powerful and appealing use of low-cost single frequency GNSS receivers and MEMS accelerometers for structural and ground monitoring applications. Some additional remarks and prospects for future investigations complete the paper.

  11. Rapid Synthesis of Thin and Long Mo17O47 Nanowire-Arrays in an Oxygen Deficient Flame

    PubMed Central

    Allen, Patrick; Cai, Lili; Zhou, Lite; Zhao, Chenqi; Rao, Pratap M.

    2016-01-01

    Mo17O47 nanowire-arrays are promising active materials and electrically-conductive supports for batteries and other devices. While high surface area resulting from long, thin, densely packed nanowires generally leads to improved performance in a wide variety of applications, the Mo17O47 nanowire-arrays synthesized previously by electrically-heated chemical vapor deposition under vacuum conditions were relatively thick and short. Here, we demonstrate a method to grow significantly thinner and longer, densely packed, high-purity Mo17O47 nanowire-arrays with diameters of 20–60 nm and lengths of 4–6 μm on metal foil substrates using rapid atmospheric flame vapor deposition without any chamber or walls. The atmospheric pressure and 1000 °C evaporation temperature resulted in smaller diameters, longer lengths and order-of-magnitude faster growth rate than previously demonstrated. As explained by kinetic and thermodynamic calculations, the selective synthesis of high-purity Mo17O47 nanowires is achieved due to low oxygen partial pressure in the flame products as a result of the high ratio of fuel to oxidizer supplied to the flame, which enables the correct ratio of MoO2 and MoO3 vapor concentrations for the growth of Mo17O47. This flame synthesis method is therefore a promising route for the growth of composition-controlled one-dimensional metal oxide nanomaterials for many applications. PMID:27271194

  12. Ultra-high-aspect-orthogonal and tunable three dimensional polymeric nanochannel stack array for BioMEMS applications

    NASA Astrophysics Data System (ADS)

    Heo, Joonseong; Kwon, Hyukjin J.; Jeon, Hyungkook; Kim, Bumjoo; Kim, Sung Jae; Lim, Geunbae

    2014-07-01

    Nanofabrication technologies have been a strong advocator for new scientific fundamentals that have never been described by traditional theory, and have played a seed role in ground-breaking nano-engineering applications. In this study, we fabricated ultra-high-aspect (~106 with O(100) nm nanochannel opening and O(100) mm length) orthogonal nanochannel array using only polymeric materials. Vertically aligned nanochannel arrays in parallel can be stacked to form a dense nano-structure. Due to the flexibility and stretchability of the material, one can tune the size and shape of the nanochannel using elongation and even roll the stack array to form a radial-uniformly distributed nanochannel array. The roll can be cut at discretionary lengths for incorporation with a micro/nanofluidic device. As examples, we demonstrated ion concentration polarization with the device for Ohmic-limiting/overlimiting current-voltage characteristics and preconcentrated charged species. The density of the nanochannel array was lower than conventional nanoporous membranes, such as anodic aluminum oxide membranes (AAO). However, accurate controllability over the nanochannel array dimensions enabled multiplexed one microstructure-on-one nanostructure interfacing for valuable biological/biomedical microelectromechanical system (BioMEMS) platforms, such as nano-electroporation.Nanofabrication technologies have been a strong advocator for new scientific fundamentals that have never been described by traditional theory, and have played a seed role in ground-breaking nano-engineering applications. In this study, we fabricated ultra-high-aspect (~106 with O(100) nm nanochannel opening and O(100) mm length) orthogonal nanochannel array using only polymeric materials. Vertically aligned nanochannel arrays in parallel can be stacked to form a dense nano-structure. Due to the flexibility and stretchability of the material, one can tune the size and shape of the nanochannel using elongation and even roll the stack array to form a radial-uniformly distributed nanochannel array. The roll can be cut at discretionary lengths for incorporation with a micro/nanofluidic device. As examples, we demonstrated ion concentration polarization with the device for Ohmic-limiting/overlimiting current-voltage characteristics and preconcentrated charged species. The density of the nanochannel array was lower than conventional nanoporous membranes, such as anodic aluminum oxide membranes (AAO). However, accurate controllability over the nanochannel array dimensions enabled multiplexed one microstructure-on-one nanostructure interfacing for valuable biological/biomedical microelectromechanical system (BioMEMS) platforms, such as nano-electroporation. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr00350k

  13. Directed self-assembly of block copolymers for nanolithography: fabrication of isolated features and essential integrated circuit geometries.

    PubMed

    Stoykovich, Mark P; Kang, Huiman; Daoulas, Kostas Ch; Liu, Guoliang; Liu, Chi-Chun; de Pablo, Juan J; Müller, Marcus; Nealey, Paul F

    2007-10-01

    Self-assembling block copolymers are of interest for nanomanufacturing due to the ability to realize sub-100 nm dimensions, thermodynamic control over the size and uniformity and density of features, and inexpensive processing. The insertion point of these materials in the production of integrated circuits, however, is often conceptualized in the short term for niche applications using the dense periodic arrays of spots or lines that characterize bulk block copolymer morphologies, or in the long term for device layouts completely redesigned into periodic arrays. Here we show that the domain structure of block copolymers in thin films can be directed to assemble into nearly the complete set of essential dense and isolated patterns as currently defined by the semiconductor industry. These results suggest that block copolymer materials, with their intrinsically advantageous self-assembling properties, may be amenable for broad application in advanced lithography, including device layouts used in existing nanomanufacturing processes.

  14. Thermoelectrics. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics.

    PubMed

    Kim, Sang Il; Lee, Kyu Hyoung; Mun, Hyeon A; Kim, Hyun Sik; Hwang, Sung Woo; Roh, Jong Wook; Yang, Dae Jin; Shin, Weon Ho; Li, Xiang Shu; Lee, Young Hee; Snyder, G Jeffrey; Kim, Sung Wng

    2015-04-03

    The widespread use of thermoelectric technology is constrained by a relatively low conversion efficiency of the bulk alloys, which is evaluated in terms of a dimensionless figure of merit (zT). The zT of bulk alloys can be improved by reducing lattice thermal conductivity through grain boundary and point-defect scattering, which target low- and high-frequency phonons. Dense dislocation arrays formed at low-energy grain boundaries by liquid-phase compaction in Bi(0.5)Sb(1.5)Te3 (bismuth antimony telluride) effectively scatter midfrequency phonons, leading to a substantially lower lattice thermal conductivity. Full-spectrum phonon scattering with minimal charge-carrier scattering dramatically improved the zT to 1.86 ± 0.15 at 320 kelvin (K). Further, a thermoelectric cooler confirmed the performance with a maximum temperature difference of 81 K, which is much higher than current commercial Peltier cooling devices. Copyright © 2015, American Association for the Advancement of Science.

  15. Optimized design and research of secondary microprism for dense array concentrating photovoltaic module

    NASA Astrophysics Data System (ADS)

    Yang, Guanghui; Chen, Bingzhen; Liu, Youqiang; Guo, Limin; Yao, Shun; Wang, Zhiyong

    2015-10-01

    As the critical component of concentrating photovoltaic module, secondary concentrators can be effective in increasing the acceptance angle and incident light, as well as improving the energy uniformity of focal spots. This paper presents a design of transmission-type secondary microprism for dense array concentrating photovoltaic module. The 3-D model of this design is established by Solidworks and important parameters such as inclination angle and component height are optimized using Zemax. According to the design and simulation results, several secondary microprisms with different parameters are fabricated and tested in combination with Fresnel lens and multi-junction solar cell. The sun-simulator IV test results show that the combination has the highest output power when secondary microprism height is 5mm and top facet side length is 7mm. Compared with the case without secondary microprism, the output power can improve 11% after the employment of secondary microprisms, indicating the indispensability of secondary microprisms in concentrating photovoltaic module.

  16. Automatic Parallelization of Numerical Python Applications using the Global Arrays Toolkit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daily, Jeffrey A.; Lewis, Robert R.

    2011-11-30

    Global Arrays is a software system from Pacific Northwest National Laboratory that enables an efficient, portable, and parallel shared-memory programming interface to manipulate distributed dense arrays. The NumPy module is the de facto standard for numerical calculation in the Python programming language, a language whose use is growing rapidly in the scientific and engineering communities. NumPy provides a powerful N-dimensional array class as well as other scientific computing capabilities. However, like the majority of the core Python modules, NumPy is inherently serial. Using a combination of Global Arrays and NumPy, we have reimplemented NumPy as a distributed drop-in replacement calledmore » Global Arrays in NumPy (GAiN). Serial NumPy applications can become parallel, scalable GAiN applications with only minor source code changes. Scalability studies of several different GAiN applications will be presented showing the utility of developing serial NumPy codes which can later run on more capable clusters or supercomputers.« less

  17. Dense arrays of millimeter-sized glass lenses fabricated at wafer-level.

    PubMed

    Albero, Jorge; Perrin, Stéphane; Bargiel, Sylwester; Passilly, Nicolas; Baranski, Maciej; Gauthier-Manuel, Ludovic; Bernard, Florent; Lullin, Justine; Froehly, Luc; Krauter, Johann; Osten, Wolfgang; Gorecki, Christophe

    2015-05-04

    This paper presents the study of a fabrication technique of lenses arrays based on the reflow of glass inside cylindrical silicon cavities. Lenses whose sizes are out of the microfabrication standards are considered. In particular, the case of high fill factor arrays is discussed in detail since the proximity between lenses generates undesired effects. These effects, not experienced when lenses are sufficiently separated so that they can be considered as single items, are corrected by properly designing the silicon cavities. Complete topographic as well as optical characterizations are reported. The compatibility of materials with Micro-Opto-Electromechanical Systems (MOEMS) integration processes makes this technology attractive for the miniaturization of inspection systems, especially those devoted to imaging.

  18. Black GE based on crystalline/amorphous core/shell nanoneedle arrays

    DOEpatents

    Javey, Ali; Chueh, Yu-Lun; Fan, Zhiyong

    2014-03-04

    Direct growth of black Ge on low-temperature substrates, including plastics and rubber is reported. The material is based on highly dense, crystalline/amorphous core/shell Ge nanoneedle arrays with ultrasharp tips (.about.4 nm) enabled by the Ni catalyzed vapor-solid-solid growth process. Ge nanoneedle arrays exhibit remarkable optical properties. Specifically, minimal optical reflectance (<1%) is observed, even for high angles of incidence (.about.75.degree.) and for relatively short nanoneedle lengths (.about.1 .mu.m). Furthermore, the material exhibits high optical absorption efficiency with an effective band gap of .about.1 eV. The reported black Ge can have important practical implications for efficient photovoltaic and photodetector applications on nonconventional substrates.

  19. A Prospective Split-Face Study of the Picosecond Alexandrite Laser With Specialized Lens Array for Facial Photoaging in Chinese.

    PubMed

    Ge, Yiping; Guo, Lifang; Wu, Qiuju; Zhang, Mengli; Zeng, Rong; Lin, Tong

    2016-11-01

    A 755nm picosecond alexandrite laser with a diffractive lens array has been reported for the treatment of acne scar and photoaging with clinical ef cacy. In this study, we evaluated the application of the 755nm picosecond alexandrite laser with a diffractive lens array for facial photoaging in Chinese. Ten subjects with moderate facial photoaging were enrolled in a prospective, evaluator-blinded, open-label, and split-face trial to assess the ef cacy and safety of the 755nm picosecond alexandrite laser with a diffractive lens array for facial photoaging. Each subject received a series of four treatment sessions on the right side of the face at two-week intervals. The left side of the face served as the control side. Blinded evaluation of baseline, pre-treatment, and two-month follow-up visit was performed by two independent dermatologists on a 5-point global photoaging scale (GPS) and a 6/8-point Asian photographic scale (APS). Adverse events and discomfort associated with the treatment were also assessed. Signi cant improvement in photoaged tissue was observed on the treated side of the face, with a mean GPS score decrease from 2.67 to 1.44 at the two-month follow-up visit. A greater improvement in wrinkles was observed (2.78 vs 1.89; P less than 0.05) when com- pared to the improvement in pigmentation (2.67 vs 2.11; P less than 0.05). No changes were observed on the control side. Treatment results improved gradually throughout the treatment program and continued to the two-month follow up. In addition, skin tightening was perceived in all subjects, and shallower nasolabial folds were observed in 60% of the subjects on the treated side of face. Moderate pain and transient erythema were observed as the two main discomforts associated with the treatment. The 755nm picosecond alexandrite laser with a diffractive lens array is efficacious and safe for rejuvenation of photodamaged facial tissue in Chinese. J Drugs Dermatol. 2016;15(11):1390-1396..

  20. Observations of basin ground motions from a dense seismic array in San Jose, California

    USGS Publications Warehouse

    Frankel, A.; Carver, D.; Cranswick, E.; Bice, T.; Sell, R.; Hanson, S.

    2001-01-01

    We installed a dense array of 41 digital seismographs in San Jose, California, to evaluate in detail the effects of a deep sedimentary basin and shallow sedimentary deposits on earthquake ground motions. This urban array is located near the eastern edge of the Santa Clara Valley and spans the Evergreen sedimentary basin identified by gravity data. Average station spacing is 1 km, with three stations initially spaced 110 m apart. Despite the high-noise urban environment, the stations of the array successfully triggered on and recorded small local earthquakes (M 2.5-2.8 at 10-25 km distance) and larger regional events such as the M 5.0 Bolinas earthquake (90 km distance), M 4.6-5.6 earthquakes near Mammoth Lakes (270 km distance), M 4.9-5.6 events in western Nevada (420 km distance) and the M 7.1 Hector Mine earthquake (590 km distance). Maps of spectral ratios across the array show that the highest amplitudes in all frequency bands studied (0.125-8 Hz) are generally observed at stations farther from the eastern edge of the Santa Clara Valley. Larger spectral amplitudes are often observed above the western edge of the Evergreen Basin. Snapshots of the recorded wavefield crossing the array for regional events to the east reveal that large, low-frequency (0.125-0.5 Hz) arrivals after the S-wave travel from south to north across the array. A moving-window, cross-correlation analysis finds that these later arrivals are surface waves traveling from the south. The timing and propagation direction of these arrivals indicates that they were likely produced by scattering of incident S waves at the border of the Santa Clara Valley to the south of the array. It is remarkable that the largest low-frequency phases at many of the valley sites for regional events to the east are basin surface waves coming from a direction about 70 degrees different from that of the epicenters. Basin surface waves emanating from the eastern edge of the valley are also identified by the cross-correlation analysis.

  1. Predictability of GNSS signal observations in support of Space Situational Awareness using passive radar

    NASA Astrophysics Data System (ADS)

    Mahmud, M. S.; Lambert, A.; Benson, C.

    2015-07-01

    GNSS signals have been proposed as emitters of opportunity to enhance Space Situational Awareness (SSA) by tracking small items of space debris using bistatic radar. Although the scattered GNSS signal levels from small items of space debris are incredibly low, the dynamic disturbances of the observed object are very small, and the phase of the scattered signals is well behaved. It is therefore plausible that coherent integration periods on the order of many minutes could be achieved. However, even with long integration periods, very large receiver arrays with extensive, but probably viable, processing are required to recover the scattered signal. Such large arrays will be expensive, and smaller more affordable arrays will collect insufficient signal power to detect the small objects (relative to wavelength) that are necessary to maintain the necessary phase coherency. The investments necessary to build a large receiver array are unlikely without substantial risk reduction. Pini and Akos have previously reported on use of very large radio telescopes to analyse the short-term modulation performance of GNSS satellite signals. In this work we report on tracking of GPS satellites with a radio-astronomy VLBI antenna system to assess the stability of the observed GPS signal over a time period indicative of that proposed for passive radar. We also confirm some of the processing techniques that may be used in both demonstrations and the final system. We conclude from the limited data set that the signal stability when observed by a high-gain tracking antenna and compared against a high quality, low phase-noise clock is excellent, as expected. We conclude by framing further works to reduce risk for a passive radar SSA capability using GNSS signals. http://www.ignss.org/Conferences/PastConferencePapers/2015ConferencePastPapers/2015PeerReviewedPapers/tabid/147/Default.aspx

  2. Large-scale fabrication of vertically aligned ZnO nanowire arrays

    DOEpatents

    Wang, Zhong Lin; Hu, Youfan; Zhang, Yan; Xu, Chen; Zhu, Guang

    2014-09-09

    A generator includes a substrate, a first electrode layer, a dense plurality of vertically-aligned piezoelectric elongated nanostructures, an insulating layer and a second electrode layer. The substrate has a top surface and the first electrode layer is disposed on the top surface of the substrate. The dense plurality of vertically-aligned piezoelectric elongated nanostructures extends from the first electrode layer. Each of the nanostructures has a top end. The insulating layer is disposed on the top ends of the nanostructures. The second electrode layer is disposed on the non-conductive layer and is spaced apart from the nanostructures.

  3. Gnss Geodetic Monitoring as Support of Geodynamics Research in Colombia, South America

    NASA Astrophysics Data System (ADS)

    Mora-Paez, H.; Acero-Patino, N.; Rodriguez-Zuluaga, J. S.; Diederix, H.; Bohorquez-Orozco, O. P.; Martinez-Diaz, G. P.; Diaz-Mila, F.; Giraldo-Londono, L. S.; Cardozo-Giraldo, S.; Vasquez-Ospina, A. F.; Lizarazo, S. C.

    2013-05-01

    To support the geodynamics research at the northwestern corner of South America, GEORED, the acronym for "Geodesia: Red de Estudios de Deformación" has been adopted for the Project "Implementation of the National GNSS Network for Geodynamics" carried out by the Colombian Geological Survey, (SGC), formerly INGEOMINAS. Beginning in 2007, discussions within the GEORED group led to a master plan for the distribution of the base permanent GPS/GNSS station array and specific areas of interest for campaign site construction. The use of previously identified active faults as preferred structures along which stresses are transferred through the deformational area led to the idea of segmentation of the North Andes within Colombia into 20 tectonic sub-blocks. Each of the 20 sub-blocks is expected to have, at least, three-four permanent GPS/GNSS stations within the block along with construction of campaign sites along the boundaries. Currently, the GEORED Network is managing 46 continuously including: 40 GEORED GPS/GNSS continuously operating stations; 4 GNSS continuously operating stations provided by the COCONet (Continuously Operating Caribbean GPS Observational Network) Project; the Bogotá IGS GPS station (BOGT), installed in 1994 under the agreement between JPL-NASA and the SGC; and the San Andres Island station, installed in 2007 under the MOU between UCAR and the SGC. In addition to the permanent installations, more than 230 GPS campaign sites have been constructed and are being occupied one time per year. The Authority of the Panama Canal and the Escuela Politecnica de Quito have also provided data of 4 and 5 GPS/GNSS stations respectively. The GPS data are processed using the GIPSY-OASIS II software, and the GPS time series of daily station positions give fundamental information for both regional and local geodynamics studies. Until now, we have obtained 100 quality vector velocities for Colombia, 23 of them as part of the permanent network. The GPS/GNSS stations are located on the three major plates that interact within the Wide Plate Margin Deformation Zone including existing permanent installations on IGS Galapagos and Malpelo Islands on the Nazca Plate, and San Andres Island on the Caribbean plate. The velocity vectors confirm the oblique subduction of the Nazca Plate and Carnegie aseismic ridge collision processes at the Colombia-Ecuador trench which are assumed to be the mechanism for the transpressional deformation and the "escape" of the North Andes Block (NAB). The northernmost vectors in Colombia are indicative of the ongoing collision of the Panama Arc with northwestern Colombia. Planned for the year 2013 is the installation of 10 additional GNSS continuously operating stations, and construction of 20 GPS campaign sites.

  4. Infrasound research at Kola Regional Seismological Centre, Russia

    NASA Astrophysics Data System (ADS)

    Asming, Vladimir; Kremenetskaya, Elena

    2013-04-01

    A small-aperture infrasound array has been installed in Kola Peninsula, Russia 17 km far from the town of Apatity in the year 2000. It comprises 3 Chaparral V microbarographs placed closely to the APA seismic array sensors and equipped with pipe wind reducing filters. The data are digitized at the array site and transmitted in real time to a processing center in Apatity. To search for infrasound events (arrivals of coherent signals) a beamforming-style detector has been developed. Now it works in near real time. We analyzed the detecting statistics for different frequency bands. Most man-made events are detected in 1-5 Hz band, microbaromes are typically detected in 0.2-1 Hz band. In lower frequencies we record mostly a wind noise. A data base of samples of infrasound signals of different natures has been collected. It contains recordings of microbaromes, industrial and military explosions, airplane shock waves, infrasound of airplanes, thunders, rocket launches and reentries, bolides etc. The most distant signals we have detected are associated with Kursk Magnetic Anomaly explosions (1700 km far from Apatity). We implemented an algorithm for association of infrasound signals and preliminary location of infrasound events by several arrays. It was tested with Apatity data together with data of Sweden - Finnish infrasound network operated by the Institute of Space Physics in Umea (Sweden). By agreement with NORSAR we have a real-time access to the data of Norwegian experimental infrasound installation situated in Karasjok (North Norway). Currently our detection and location programs work both with Apatity and Norwegian data. The results are available in Internet. Finnish militaries routinely destroy out-of-date weapon in autumns at the same compact site in North Finland. This is a great source of repeating infrasound signals of the same magnitude and origin. We recorded several hundreds of such explosions. The signals have been used for testing our location routines. Some factors were observed enabling or disabling first (tropospheric) arrivals of such signals depending on weather conditions. Systematic backazimuth deviations for stratospheric arrivals have been observed caused by strong stratospheric winds. In 2009 mobile infrasound arrays were developed in KRSC. Each array comprises 3 low-frequency microphones, GPS, digitizer and PC with data acquisition system. Aperture of such arrays is about 250 m, deployment time is less than 1 hour. These arrays are used in experimental work with Roskosmos space agency to search space debris reentering places. In 2012 a wireless version of such mobile array was created. Each acquisition point comprises a microphone, GPS and ADC chips, microcontroller and radio modem to send data to a central unit. This enabled us to increase aperture (up to 500 m) and decrease deployment time.

  5. NoWMex: Continuous GNSS Sites in Northwest Mexico

    NASA Astrophysics Data System (ADS)

    Gonzalez-Garcia, J. J.; Gonzalez-Ortega, J. A.

    2008-05-01

    Nowadays GPS has become part of daily life activities. In the near future, with the GPS modernization and the use of Glonass and Galileo as a Global Navigation Satellite System will give relative location precision from decimeters to millimeters in near real time applications. In order to realize this, we need a global array of continuously operating GNSS stations built to meet the standards of the geophysical communities and linked with gravimetric local measurements to discern the vertical component of our active Earth. Trying to follow this revolution, CICESE has been working with GPS since 1985. The GPS site CICE was built as an IGS reference station in 1995. Afterward we built 5 more continuous GPS sites in Northwest Mexico with the support of SCIGN. The CGPS NoWMex network is currently made up of six sites: CIC1, SPMX, CORX, GUAX, USMX and YESX (sopac.ucsd.edu). Recently, we implemented an experimental GPS processing lab as part of the Geodesy and Geodynamics Laboratory in the Seismology Department at CICESE. 30 stations are now currently processed from the network Red Geodesica Nacional Activa (RGNA-INEGI), NoWMex, and sites in neighbor countries. Fiducials solutions in ITRF2000 are obtained using GAMIT/GLOBK 10.31 with final igs orbits, every month since 2006. In order to make a contribution to densification of ITRF and support NAREF, SIRGAS and SNARF issues related to scientific and geomatics results; we are looking for internal (Mexican) and external colleagues as well as funding for maintenance and increase the number of CGNSS in NoWMeX including southern Basin and Ranger (Sonora, Chihuahua, Sinaloa and Durango), Gulf of California islands, Peninsular Californias, Nayarit, Jalisco, Colima and the Mexican Pacific islands: Guadalupe (2 more sites), Cedros, Socorro (DORIS site), Clarion and Tres Marias. We must to build more and free available CGNSS sites in and around Mexico to contribute to sea level rise and global change studies.

  6. GPS measurements of crustal deformation across the southern Arava Valley section of the Dead Sea Fault and implications to regional seismic hazard assessment

    NASA Astrophysics Data System (ADS)

    Hamiel, Yariv; Masson, Frederic; Piatibratova, Oksana; Mizrahi, Yaakov

    2018-01-01

    Detailed analysis of crustal deformation along the southern Arava Valley section of the Dead Sea Fault is presented. Using dense GPS measurements we obtain the velocities of new near- and far-field campaign stations across the fault. We find that this section is locked with a locking depth of 19.9 ± 7.7 km and a slip rate of 5.0 ± 0.8 mm/yr. The geodetically determined locking depth is found to be highly consistent with the thickness of the seismogenic zone in this region. Analysis of instrumental seismic record suggests that only 1% of the total seismic moment accumulated since the last large event occurred about 800 years ago, was released by small to moderate earthquakes. Historical and paleo-seismic catalogs of this region together with instrumental seismic data and calculations of Coulomb stress changes induced by the 1995 Mw 7.2 Nuweiba earthquake suggest that the southern Arava Valley section of the Dead Sea Fault is in the late stage of the current interseismic period.

  7. Towards a Millennial Time-scale Vertical Deformation Field in Taiwan

    NASA Astrophysics Data System (ADS)

    Bordovaos, P. A.; Johnson, K. M.

    2015-12-01

    Pete Bordovalos and Kaj M. Johnson To better understand the feedbacks between erosion and deformation in Taiwan, we need constraints on the millennial time-scale vertical field. Dense GPS and leveling data sets in Taiwan provide measurements of the present-day vertical deformation field over the entire Taiwan island. However, it is unclear how much of this vertical field is transient (varies over earthquake cycle) or steady (over millennial time scale). A deformation model is required to decouple transient from steady deformation. This study takes a look at how the 82 mm/yr of convergence motion between the Eurasian plate and the Philippine Sea plate is distributed across the faults on Taiwan. We build a plate flexure model that consists of all known active faults and subduction zones cutting through an elastic plate supported by buoyancy. We use horizontal and vertical GPS data, leveling data, and geologic surface uplift rates with a Monte Carlo probabilistic inversion method to infer fault slip rates and locking depths on all faults. Using our model we examine how different fault geometries influence the estimates of distribution of slip along faults and deformation patterns.

  8. Near-Real Time Monitoring of TEC Over Japan at NICT (RWC Tokyo OF ISES)

    NASA Astrophysics Data System (ADS)

    Miyake, W.; Jin, H.

    2010-05-01

    The world wide use of global navigation satellite systems such as GPS offers unique opportunities for a permanent monitoring of the total electron content (TEC) of the ionosphere. We have developed a system of the rapid derivation of TEC from GEONET (a dense GPS receiver network in Japan). In addition to a previous plot of TEC temporal variation over Japan, we have recently developed a near-real-time two-dimensional TEC map and have used it for the daily operation of Space Weather Forecast Center at NICT (Regional Warning Center Tokyo of International Space Environment Service). The TEC map can be used to continuously monitor the ionospheric disturbances over Japan, including spatial and temporal development of ionospheric storms, large-amplitude traveling ionospheric disturbances, and plasma bubbles intruding over Japan, with high time resolution. The development of the real-time monitoring system of TEC enables us to monitor large ionospheric disturbances, ranging from global- to small-scale disturbances, expected in the next solar maximum. The plot and maps are open to the public and are available on http://wdc.nict.go.jp/IONO/index_E.html.

  9. GNSS Monitoring of Deformation within heavy civil infrastructure

    NASA Astrophysics Data System (ADS)

    Montillet, Jean-Philippe; Melbourne, Timothy; Szeliga, Walter; Schrock, Gavin

    2015-04-01

    The steady increase in precision simultaneous with the decreasing of continuous GPS monitoring has enabled the deployment of receivers for a host of new activities. Here we discuss the precision obtained from several multi-station installations operated over a five-year period on several heavy civil-engineered structures, including two earthen-fill dams and subsiding highway overpass damaged by seismic shaking. In the past 5 years, the Cascadia Hazards Institute (Pacific Northwest Geodetic Array) at Central Washington University together with the Washington department of public utilities (Land Survey) have been monitoring several structures around Seattle area including two dams (Howard Hansen and Tolt). One aim of this study is to test the use of continuous GNSS in order to detect any deformations due to rapid pool level rises or to monitor the safety of a structure when an Earthquake strikes it. In this study, data is processed using Real Time Kinematic GPS with short baseline (d < 500 m) and GPS daily position (PPP). However, multipath is the most limiting factor on accuracy for very precise positioning applications with GPS. It is very often present indoors and outdoors, especially in narrow valleys with a limited view of the sky. As a result, multipath can amount to an error of a few centimetres. Unfortunately, the accuracy requirements of precision deformation monitoring are generally at the sub centimetre level, which is presently a big challenge on an epoch-by-epoch basis with regular, carrier phase techniques. Thus, it needs to be properly mitigated. In this study, several stations are set up on the dams (4 stations on the Tolt reservoir and 10 stations on the Howard Hansen dam), and spatial filtering can then be used to mitigate multipath. In addition, several signal processing techniques are also investigated (i.e. Empirical mode decomposition, sidereal filtering, adaptive filtering). RTK GPS should allow to monitor rapid deformations, whereas GPS daily position is used to detect long-term deformations such as the pool level rises due to the melting of ice cap on surrounding mountains. Note that RTK measurements are processed with the MIT software TRACK and the GPS daily positions estimated with GAMIT-GLOBK.

  10. Large-Scale Precise Printing of Ultrathin Sol-Gel Oxide Dielectrics for Directly Patterned Solution-Processed Metal Oxide Transistor Arrays.

    PubMed

    Lee, Won-June; Park, Won-Tae; Park, Sungjun; Sung, Sujin; Noh, Yong-Young; Yoon, Myung-Han

    2015-09-09

    Ultrathin and dense metal oxide gate di-electric layers are reported by a simple printing of AlOx and HfOx sol-gel precursors. Large-area printed indium gallium zinc oxide (IGZO) thin-film transistor arrays, which exhibit mobilities >5 cm(2) V(-1) s(-1) and gate leakage current of 10(-9) A cm(-2) at a very low operation voltage of 2 V, are demonstrated by continuous simple bar-coated processes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Assessment of Radiometer Calibration with GPS Radio Occultation for the MiRaTA CubeSat Mission.

    PubMed

    Marinan, Anne D; Cahoy, Kerri L; Bishop, Rebecca L; Lui, Susan S; Bardeen, James R; Mulligan, Tamitha; Blackwell, William J; Leslie, R Vincent; Osaretin, Idahosa; Shields, Michael

    2016-12-01

    The Microwave Radiometer Technology Acceleration (MiRaTA) is a 3U CubeSat mission sponsored by the NASA Earth Science Technology Office (ESTO). The science payload on MiRaTA consists of a tri-band microwave radiometer and Global Positioning System (GPS) radio occultation (GPSRO) sensor. The microwave radiometer takes measurements of all-weather temperature (V-band, 50-57 GHz), water vapor (G-band, 175-191 GHz), and cloud ice (G-band, 205 GHz) to provide observations used to improve weather forecasting. The Aerospace Corporation's GPSRO experiment, called the Compact TEC (Total Electron Content) and Atmospheric GPS Sensor (CTAGS), measures profiles of temperature and pressure in the upper troposphere/lower stratosphere (∼20 km) and electron density in the ionosphere (over 100 km). The MiRaTA mission will validate new technologies in both passive microwave radiometry and GPS radio occultation: (1) new ultra-compact and low-power technology for multi-channel and multi-band passive microwave radiometers, (2) the application of a commercial off the shelf (COTS) GPS receiver and custom patch antenna array technology to obtain neutral atmospheric GPSRO retrieval from a nanosatellite, and (3) a new approach to spaceborne microwave radiometer calibration using adjacent GPSRO measurements. In this paper, we focus on objective (3), developing operational models to meet a mission goal of 100 concurrent radiometer and GPSRO measurements, and estimating the temperature measurement precision for the CTAGS instrument based on thermal noise. Based on an analysis of thermal noise of the CTAGS instrument, the expected temperature retrieval precision is between 0.17 K and 1.4 K, which supports the improvement of radiometric calibration to 0.25 K.

  12. Assessment of Radiometer Calibration with GPS Radio Occultation for the MiRaTA CubeSat Mission

    PubMed Central

    Marinan, Anne D.; Cahoy, Kerri L.; Bishop, Rebecca L.; Lui, Susan S.; Bardeen, James R.; Mulligan, Tamitha; Blackwell, William J.; Leslie, R. Vincent; Osaretin, Idahosa; Shields, Michael

    2017-01-01

    The Microwave Radiometer Technology Acceleration (MiRaTA) is a 3U CubeSat mission sponsored by the NASA Earth Science Technology Office (ESTO). The science payload on MiRaTA consists of a tri-band microwave radiometer and Global Positioning System (GPS) radio occultation (GPSRO) sensor. The microwave radiometer takes measurements of all-weather temperature (V-band, 50-57 GHz), water vapor (G-band, 175-191 GHz), and cloud ice (G-band, 205 GHz) to provide observations used to improve weather forecasting. The Aerospace Corporation's GPSRO experiment, called the Compact TEC (Total Electron Content) and Atmospheric GPS Sensor (CTAGS), measures profiles of temperature and pressure in the upper troposphere/lower stratosphere (∼20 km) and electron density in the ionosphere (over 100 km). The MiRaTA mission will validate new technologies in both passive microwave radiometry and GPS radio occultation: (1) new ultra-compact and low-power technology for multi-channel and multi-band passive microwave radiometers, (2) the application of a commercial off the shelf (COTS) GPS receiver and custom patch antenna array technology to obtain neutral atmospheric GPSRO retrieval from a nanosatellite, and (3) a new approach to spaceborne microwave radiometer calibration using adjacent GPSRO measurements. In this paper, we focus on objective (3), developing operational models to meet a mission goal of 100 concurrent radiometer and GPSRO measurements, and estimating the temperature measurement precision for the CTAGS instrument based on thermal noise. Based on an analysis of thermal noise of the CTAGS instrument, the expected temperature retrieval precision is between 0.17 K and 1.4 K, which supports the improvement of radiometric calibration to 0.25 K. PMID:28828144

  13. First results of geodetic deformation monitoring after commencement of CO2 injection at the Aquistore underground CO2 storage site

    NASA Astrophysics Data System (ADS)

    Craymer, M.; White, D.; Piraszewski, M.; Zhao, Y.; Henton, J.; Silliker, J.; Samsonov, S.

    2015-12-01

    Aquistore is a demonstration project for the underground storage of CO2 at a depth of ~3350 m near Estevan, Saskatchewan, Canada. An objective of the project is to design, adapt, and test non-seismic monitoring methods that have not been systematically utilized to date for monitoring CO2 storage projects, and to integrate the data from these various monitoring tools to obtain quantitative estimates of the change in subsurface fluid distributions, pressure changes and associated surface deformation. Monitoring methods being applied include satellite-, surface- and wellbore-based monitoring systems and comprise natural- and controlled-source electromagnetic methods, gravity monitoring, continuous GPS, synthetic aperture radar interferometry (InSAR), tiltmeter array analysis, and chemical tracer studies. Here we focus on the GPS, InSAR and gravity monitoring. Five monitoring sites were installed in 2012 and another six in 2013, each including GPS and InSAR corner reflector monuments (some collocated on the same monument). The continuous GPS data from these stations have been processed on a daily basis in both baseline processing mode using the Bernese GPS Software and precise point positioning mode using CSRS-PPP. Gravity measurements at each site have also been performed in fall 2013, spring 2014 and fall 2015, and at two sites in fall 2014. InSAR measurements of deformation have been obtained for a 5 m footprint at each site as well as at the corner reflector point sources. Here we present the first results of this geodetic deformation monitoring after commencement of CO2 injection on April 14, 2015. The time series of these sites are examined, compared and analyzed with respect to monument stability, seasonal signals, longer term trends, and any changes in motion and mass since CO2 injection.

  14. Computationally Efficient Radio Frequency Source Localization for Radio Interferometric Arrays

    NASA Astrophysics Data System (ADS)

    Steeb, J.-W.; Davidson, David B.; Wijnholds, Stefan J.

    2018-03-01

    Radio frequency interference (RFI) is an ever-increasing problem for remote sensing and radio astronomy, with radio telescope arrays especially vulnerable to RFI. Localizing the RFI source is the first step to dealing with the culprit system. In this paper, a new localization algorithm for interferometric arrays with low array beam sidelobes is presented. The algorithm has been adapted to work both in the near field and far field (only the direction of arrival can be recovered when the source is in the far field). In the near field the computational complexity of the algorithm is linear with search grid size compared to cubic scaling of the state-of-the-art 3-D MUltiple SIgnal Classification (MUSIC) method. The new method is as accurate as 3-D MUSIC. The trade-off is that the proposed algorithm requires a once-off a priori calculation and storing of weighting matrices. The accuracy of the algorithm is validated using data generated by low-frequency array while a hexacopter was flying around it and broadcasting a continuous-wave signal. For the flight, the mean distance between the differential GPS positions and the corresponding estimated positions of the hexacopter is 2 m at a wavelength of 6.7 m.

  15. Optics and Nonlinear Buckling Mechanics in Large-Area, Highly Stretchable Arrays of Plasmonic Nanostructures.

    PubMed

    Gao, Li; Zhang, Yihui; Zhang, Hui; Doshay, Sage; Xie, Xu; Luo, Hongying; Shah, Deesha; Shi, Yan; Xu, Siyi; Fang, Hui; Fan, Jonathan A; Nordlander, Peter; Huang, Yonggang; Rogers, John A

    2015-06-23

    Large-scale, dense arrays of plasmonic nanodisks on low-modulus, high-elongation elastomeric substrates represent a class of tunable optical systems, with reversible ability to shift key optical resonances over a range of nearly 600 nm at near-infrared wavelengths. At the most extreme levels of mechanical deformation (strains >100%), nonlinear buckling processes transform initially planar arrays into three-dimensional configurations, in which the nanodisks rotate out of the plane to form linear arrays with "wavy" geometries. Analytical, finite-element, and finite-difference time-domain models capture not only the physics of these buckling processes, including all of the observed modes, but also the quantitative effects of these deformations on the plasmonic responses. The results have relevance to mechanically tunable optical systems, particularly to soft optical sensors that integrate on or in the human body.

  16. Tailoring uniform gold nanoparticle arrays and nanoporous films for next-generation optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Farid, Sidra; Kuljic, Rade; Poduri, Shripriya; Dutta, Mitra; Darling, Seth B.

    2018-06-01

    High-density arrays of gold nanodots and nanoholes on indium tin oxide (ITO)-coated glass surfaces are fabricated using a nanoporous template fabricated by the self-assembly of diblock copolymers of poly (styrene-block-methyl methacrylate) (PS-b-PMMA) structures. By balancing the interfacial interactions between the polymer blocks and the substrate using random copolymer, cylindrical block copolymer microdomains oriented perpendicular to the plane of the substrate have been obtained. Nanoporous PS films are created by selectively etching PMMA cylinders, a straightforward route to form highly ordered nanoscale porous films. Deposition of gold on the template followed by lift off and sonication leaves a highly dense array of gold nanodots. These materials can serve as templates for the vapor-liquid-solid (VLS) growth of semiconductor nanorod arrays for next generation hybrid optoelectronic applications.

  17. Report 11HL: Technologies for Trusted Maritime Situational Awareness

    DTIC Science & Technology

    2011-10-01

    Olympics. The AIS antenna can be seen on the wooden pole to the right. The ASIA camera is contained within the Pelco enclosure (i.e., white case) on...tracks based on GPS and radar. The physical deployment of ASIA, radar and the acoustic array are also shown...the 2010 Vancouver Olympics. The AIS antenna can be seen on the wooden pole to the right. The ASIA camera is contained within the Pelco enclosure

  18. Ensuring Operational Readiness: Private Military Contractor Support for the United States Air Force

    DTIC Science & Technology

    2017-03-15

    range, supersonic, low altitude terrain following bomber that could evade Soviet detection. It is now loaded with conventional bombs and flown hundreds... bombs that commercially available single engine propeller planes can employ. The Airmen who perform this endeavor are America’s finest. They...array of weapons, to include laser, electro optical, and infrared guided missiles, laser and GPS guided bombs , 2.75” rockets, and a 20mm Gatling gun

  19. Space Superiority, Down to the Nanosecond: Why the Global Positioning System Remains Essential to Modern Warfare

    DTIC Science & Technology

    2013-10-01

    innovations such as adaptive antenna arrays, narrowband fre- quency filters, and “tight” integration with inertial sensors. Unlike commercial receivers...that will provide a return on investment. For example, lithium ion batteries greatly reduce the weight of the satel - lite, and improved solar cells...Affordability and Innovation Even with all of these improvements, affordability demands innova- tive ways to deliver the GPS to war fighters. More than

  20. Cluster Computing For Real Time Seismic Array Analysis.

    NASA Astrophysics Data System (ADS)

    Martini, M.; Giudicepietro, F.

    A seismic array is an instrument composed by a dense distribution of seismic sen- sors that allow to measure the directional properties of the wavefield (slowness or wavenumber vector) radiated by a seismic source. Over the last years arrays have been widely used in different fields of seismological researches. In particular they are applied in the investigation of seismic sources on volcanoes where they can be suc- cessfully used for studying the volcanic microtremor and long period events which are critical for getting information on the volcanic systems evolution. For this reason arrays could be usefully employed for the volcanoes monitoring, however the huge amount of data produced by this type of instruments and the processing techniques which are quite time consuming limited their potentiality for this application. In order to favor a direct application of arrays techniques to continuous volcano monitoring we designed and built a small PC cluster able to near real time computing the kinematics properties of the wavefield (slowness or wavenumber vector) produced by local seis- mic source. The cluster is composed of 8 Intel Pentium-III bi-processors PC working at 550 MHz, and has 4 Gigabytes of RAM memory. It runs under Linux operating system. The developed analysis software package is based on the Multiple SIgnal Classification (MUSIC) algorithm and is written in Fortran. The message-passing part is based upon the LAM programming environment package, an open-source imple- mentation of the Message Passing Interface (MPI). The developed software system includes modules devote to receiving date by internet and graphical applications for the continuous displaying of the processing results. The system has been tested with a data set collected during a seismic experiment conducted on Etna in 1999 when two dense seismic arrays have been deployed on the northeast and the southeast flanks of this volcano. A real time continuous acquisition system has been simulated by a pro- gram which reads data from disk files and send them to a remote host by using the Internet protocols.

  1. Amelogenin-assisted ex vivo remineralization of human enamel: effects of supersaturation degree and fluoride concentration

    PubMed Central

    Fan, Yuwei; Nelson, James R.; Alvarez, Jason R.; Hagan, Joseph; Berrier, Allison; Xu, Xiaoming

    2011-01-01

    The formation of organized nanocrystals that resemble enamel is crucial for successful enamel remineralization. Calcium, phosphate and fluoride ions and amelogenin are important ingredients for the formation of organized hydroxyapatite (HAP) crystals in vitro. However, the effects of these remineralization agents on the enamel crystal morphology have not been thoroughly studied. The objective of this study was to investigate the effects of fluoride ions, supersaturation degree and amelogenin on the crystal morphology and organization of ex vivo remineralized human enamel. Extracted third molars were sliced thin and acid-etched to provide the enamel surface for immersion in different remineralization solutions. The crystal morphology and mineral phase of the remineralized enamel surface were analyzed by FE-SEM, ATR-FTIR and XRD. The concentration of fluoride and supersaturation degree of hydroxyapatite had significant effects on the crystal morphology and crystal organization, which varied from plate-like loose crystals to rod-like densely packed nanocrystal arrays. Densely packed arrays of fluoridated hydroxyapatite nanorods were observed under the following conditions: σ(HAP) = 10.2±2.0 with fluoride 1.5±0.5 mg/L and amelogenin 40±10 µg/mL, pH 6.8±0.4. A phase diagram summarized the conditions that form dense or loose hydroxyapatite nanocrystal structures. This study provides the basis for the development of novel dental materials for caries management. PMID:21256987

  2. En route to controlled catalytic CVD synthesis of densely packed and vertically aligned nitrogen-doped carbon nanotube arrays.

    PubMed

    Boncel, Slawomir; Pattinson, Sebastian W; Geiser, Valérie; Shaffer, Milo S P; Koziol, Krzysztof K K

    2014-01-01

    The catalytic chemical vapour deposition (c-CVD) technique was applied in the synthesis of vertically aligned arrays of nitrogen-doped carbon nanotubes (N-CNTs). A mixture of toluene (main carbon source), pyrazine (1,4-diazine, nitrogen source) and ferrocene (catalyst precursor) was used as the injection feedstock. To optimize conditions for growing the most dense and aligned N-CNT arrays, we investigated the influence of key parameters, i.e., growth temperature (660, 760 and 860 °C), composition of the feedstock and time of growth, on morphology and properties of N-CNTs. The presence of nitrogen species in the hot zone of the quartz reactor decreased the growth rate of N-CNTs down to about one twentieth compared to the growth rate of multi-wall CNTs (MWCNTs). As revealed by electron microscopy studies (SEM, TEM), the individual N-CNTs (half as thick as MWCNTs) grown under the optimal conditions were characterized by a superior straightness of the outer walls, which translated into a high alignment of dense nanotube arrays, i.e., 5 × 10(8) nanotubes per mm(2) (100 times more than for MWCNTs grown in the absence of nitrogen precursor). In turn, the internal crystallographic order of the N-CNTs was found to be of a 'bamboo'-like or 'membrane'-like (multi-compartmental structure) morphology. The nitrogen content in the nanotube products, which ranged from 0.0 to 3.0 wt %, was controlled through the concentration of pyrazine in the feedstock. Moreover, as revealed by Raman/FT-IR spectroscopy, the incorporation of nitrogen atoms into the nanotube walls was found to be proportional to the number of deviations from the sp(2)-hybridisation of graphene C-atoms. As studied by XRD, the temperature and the [pyrazine]/[ferrocene] ratio in the feedstock affected the composition of the catalyst particles, and hence changed the growth mechanism of individual N-CNTs into a 'mixed base-and-tip' (primarily of the base-type) type as compared to the purely 'base'-type for undoped MWCNTs.

  3. UAVSAR Active Electronically Scanned Array

    NASA Technical Reports Server (NTRS)

    Sadowy, Gregory, A.; Chamberlain, Neil F.; Zawadzki, Mark S.; Brown, Kyle M.; Fisher, Charles D.; Figueroa, Harry S.; Hamilton, Gary A.; Jones, Cathleen E.; Vorperian, Vatche; Grando, Maurio B.

    2011-01-01

    The Uninhabited Airborne Vehicle Synthetic Aperture Radar (UAVSAR) is a pod-based, L-band (1.26 GHz), repeatpass, interferometric, synthetic aperture radar (InSAR) used for Earth science applications. Repeat-pass interferometric radar measurements from an airborne platform require an antenna that can be steered to maintain the same angle with respect to the flight track over a wide range of aircraft yaw angles. In order to be able to collect repeat-pass InSAR data over a wide range of wind conditions, UAVSAR employs an active electronically scanned array (AESA). During data collection, the UAVSAR flight software continuously reads the aircraft attitude state measured by the Embedded GPS/INS system (EGI) and electronically steers the beam so that it remains perpendicular to the flight track throughout the data collection

  4. GeoSEA: Geodetic Earthquake Observatory on the Seafloor

    NASA Astrophysics Data System (ADS)

    Kopp, Heidrun; Lange, Dietrich; Flueh, Ernst R.; Petersen, Florian; Behrmann, Jan-Hinrich; Devey, Colin

    2014-05-01

    Space geodetic observations of crustal deformation have contributed greatly to our understanding of plate tectonic processes in general, and plate subduction in particular. Measurements of interseismic strain have documented the active accumulation of strain, and subsequent strain release during earthquakes. However, techniques such as GPS cannot be applied below the water surface because the electromagnetic energy is strongly attenuated in the water column. Evidence suggests that much of the elastic strain build up and release (and particularly that responsible for both tsunami generation and giant earthquakes) occurs offshore. To quantify strain accumulation and assess the resultant hazard potential we urgently need systems to resolve seafloor crustal deformation. Here we report on first results of sea trials of a newly implemented seafloor geodesy array. The GeoSEA (Geodetic Earthquake Observatory on the Seafloor) array consists of a seafloor transponder network comprising 35 units and a wave glider acting as a surface unit (GeoSURF) to ensure satellite correspondence, data transfer and monitor system health. Seafloor displacement occurs in the horizontal (x,y) and vertical direction (z). The vertical displacement is measured by monitoring pressure variations at the seafloor. Horizontal seafloor displacement can be measured either using an acoustic/GPS combination to provide absolute positioning (requiring a suitably equipped vessel to perform repeated cruises to provide the GPS fixes) or by long-term acoustic telemetry between different beacons fixed on the seafloor to determine relative distances by using the travel time observations to each other, which is the technique tested during our short sea trials. For horizontal direct path measurements, the system utilizes acoustic ranging techniques with a ranging precision better than 15 mm and long term stability over 2 km distances. Vertical motion is obtained from pressure gauges. Integrated inclinometers monitor station settlement in two horizontal directions. Data can be acquired and recorded autonomously subsea without system or human intervention for up to 6 years. These data can then be recovered via the integrated high-speed acoustic telemetry link without recovering the seafloor units. When requested to do so, the stored data will be transmitted wirelessly up to the sea surface to the GeoSURF wave glider for onward transmission via a satellite link. Targets for GeoSEA are the marine sector of the North Anatolian fault zone in the Marmara Sea, where a joint French-German array will be installed in late 2014 as well as the central sector of the South America - Nazca convergent plate boundary along the Iquique segment, offshore Northern Chile. Here, the GeoSEA array will be installed in late 2015 to monitor crustal deformation. Mobile autonomous seafloor arrays for continuous measurement of active seafloor deformation in hazard zones have the potential to lead to transformative discoveries of plate boundary/fault zone tectonic processes and address a novel element of marine geophysical research.

  5. Hierarchical Branched Vanadium Oxide Nanorod@Si Nanowire Architecture for High Performance Supercapacitors.

    PubMed

    Li, Zhaodong; Wang, Fei; Wang, Xudong

    2017-01-01

    Vanadium oxide (VO x ) nanorods are uniformly synthesized on dense Si nanowire arrays. This 3D hierarchical nanoarchitecture offers a novel high-performance supercapacitor electrode design with significantly improved specific capacitance and high-rate capability. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A Multi-Walled Carbon Nanotube-based Biosensor for Monitoring Microcystin-LR in Sources of Drinking Water Supplies

    EPA Science Inventory

    A multi-walled carbon nanotube-based electrochemical biosensor is developed for monitoring microcystin-LR (MC-LR), a toxic cyanobacterial toxin, in sources of drinking water supplies. The biosensor electrodes are fabricated using dense, mm-long multi-walled CNT (MWCNT) arrays gro...

  7. Low cost sensors for PM and related air pollutants in the US and India

    EPA Science Inventory

    Emerging air quality sensors have a variety of possible applications. If accurate and reliable, they have a number of benefits over conventional monitors. They are low-cost, lightweight, and have low power consumption. Because of their low cost, a dense array of sensors instal...

  8. The Molecular Gas Environment in the 20 km s{sup −1} Cloud in the Central Molecular Zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Xing; Gu, Qiusheng; Zhang, Qizhou

    We recently reported a population of protostellar candidates in the 20 km s{sup −1} cloud in the Central Molecular Zone of the Milky Way, traced by H{sub 2}O masers in gravitationally bound dense cores. In this paper, we report molecular line studies with high angular resolution (∼3″) of the environment of star formation in this cloud. Maps of various molecular line transitions as well as the continuum at 1.3 mm are obtained using the Submillimeter Array. Five NH{sub 3} inversion lines and the 1.3 cm continuum are observed with the Karl G. Jansky Very Large Array. The interferometric observations aremore » complemented with single-dish data. We find that the CH{sub 3}OH, SO, and HNCO lines, which are usually shock tracers, are better correlated spatially with the compact dust emission from dense cores among the detected lines. These lines also show enhancement in intensities with respect to SiO intensities toward the compact dust emission, suggesting the presence of slow shocks or hot cores in these regions. We find gas temperatures of ≳100 K at 0.1 pc scales based on RADEX modeling of the H{sub 2}CO and NH{sub 3} lines. Although no strong correlations between temperatures and linewidths/H{sub 2}O maser luminosities are found, in high-angular-resolution maps we note several candidate shock-heated regions offset from any dense cores, as well as signatures of localized heating by protostars in several dense cores. Our findings suggest that at 0.1 pc scales in this cloud star formation and strong turbulence may together affect the chemistry and temperature of the molecular gas.« less

  9. Combination of Insar and GPS to Measure Ground Motions and Atmospheric Signals

    NASA Astrophysics Data System (ADS)

    Zerbini, S.; Prati, C.; Errico, M.; Ferri, S.; Novali, F.; Scirpoli, S.; Tiberi, L.

    2010-12-01

    The combination of different techniques such as InSAR and GPS is characterized by the added value of taking advantage of their complementary strengths and of minimizing their respective weaknesses, thus allowing for the full exploitation of the complementary aspects by overcoming the limitations inherent in the use of each technique alone. Another important aspect of the GPS/InSAR integration regards the fact that today’s application of interferometric SAR techniques is limited by the knowledge of the wet tropospheric path delay in microwave observations. GPS-based estimates of tropospheric delays may help in obtaining better corrections which will enhance the coherence and will allow the application of InSAR in a wider range of applications. The area selected for the InSAR/GPS comparison/integration is in northeastern Italy and includes the town of Bologna, and two nearby sites Medicina (agricultural area) and Loiano (a small city on the Apennines) where a small network of permanent GPS stations is operated by the University of Bologna. The InSAR data used are the COSMO-SkyMed (CSK) images made available by the Italian Space Agency (ASI) in the framework of the research contract AO-1140. The Permanent Scatterers (PS) technique will be applied to a number of repeated CSK strip map SAR images acquired over a 40x40 square km area encompassing the towns mentioned above. Ultimately this work will contribute demonstrating the CSK capabilities to operate in a repeated interferometric survey mode for measuring ground deformation with millimeter accuracy in different environments. A PS is a target whose radar signature is stable with time. Such targets can be identified by means of multiple SAR observations and they can be exploited for jointly estimating their relative motion and the atmospheric artifacts on a grid that can be quite dense in space but not in time (depending on the SAR revisiting time interval). On the contrary the GPS can provide very frequent time measurements in correspondence of a few measuring points. Elevation, ground deformation and atmospheric artifacts estimated in correspondence of the identified PS will be compared with independent measurements carried out at the same acquisition time by permanent GPS stations in the area of Bologna, Medicina and Loiano. The comparison of these independent measurements is itself a cross-validation of the obtained results. The value of cross-validation of different and compatible techniques is to provide reliable vertical crustal motion determinations in space and time. Urban areas such as that of Bologna will be examined to evaluate CSK capabilities to measure extended subsidence (or up-swelling) and single building deformation.

  10. Robust real-time fault tracking for the 2011 Mw 9.0 Tohoku earthquake based on the phased-array-interference principle

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Wang, Rongjiang; Parolai, Stefano; Zschau, Jochen

    2013-04-01

    Based on the principle of the phased array interference, we have developed an Iterative Deconvolution Stacking (IDS) method for real-time kinematic source inversion using near-field strong-motion and GPS networks. In this method, the seismic and GPS stations work like an array radar. The whole potential fault area is scanned patch by patch by stacking the apparent source time functions, which are obtained through deconvolution between the recorded seismograms and synthetic Green's functions. Once some significant source signals are detected any when and where, their signatures are removed from the observed seismograms. The procedure is repeated until the accumulative seismic moment being found converges and the residual seismograms are reduced below the noise level. The new approach does not need any artificial constraint used in the source parameterization such as, for example, fixing the hypocentre, restricting the rupture velocity and rise time, etc. Thus, it can be used for automatic real-time source inversion. In the application to the 2011 Tohoku earthquake, the IDS method is proved to be robust and reliable on the fast estimation of moment magnitude, fault area, rupture direction, and maximum slip, etc. About at 100 s after the rupture initiation, we can get the information that the rupture mainly propagates along the up-dip direction and causes a maximum slip of 17 m, which is enough to release a tsunami early warning. About two minutes after the earthquake occurrence, the maximum slip is found to be 31 m, and the moment magnitude reaches Mw8.9 which is very close to the final moment magnitude (Mw9.0) of this earthquake.

  11. Strain accumulation across the Coast Ranges at the latitude of San Francisco, 1994-2000

    USGS Publications Warehouse

    Savage, J.C.; Gan, Weijun; Prescott, W.H.; Svarc, J.L.

    2004-01-01

    A 66-monument geodetic array spanning the Coast Ranges near San Francisco has been surveyed more than eight times by GIPS between late 1993 and early 2001. The measured horizontal velocities of the monuments are well represented by uniform, right-lateral, simple shear parallel to N29??W. (The local strike of the San Andreas Fault is ???N34??W. The observed areal dilatation rate of 6.9 ?? 10.0 nstrain yr-1 (quoted uncertainty is one standard deviation and extension is reckoned positive) is not significantly different from zero, which implies that the observed strain accumulation could be released by strike-slip faulting alone. Our results are consistent with the slip rates assigned by the Working Group on California Earthquake Probabilities [2003] to the principal faults (San Gregorio, San Andreas, Hayward-Rodgers Creek, Calaveras-Concord-Green Valley, and Greenville Faults) cutting across the GPS array. The vector sum of those slip rates is 39.8 ?? 2.6 mm yr-1 N29.8??W ?? 2.8??, whereas the motion across the GPS array (breadth 120 km) inferred from the uniform strain rate approximation is 38.7 ?? 1.2 mm yr-1 N29.0?? ?? 0.9?? right-lateral shear and 0.4 ?? 0.9 mm yr-1 N61??E ?? 0.9?? extension. We interpret the near coincidence of these rates and the absence of significant accumulation of areal dilatation to imply that right-lateral slip on the principal faults can release the accumulating strain; major strain release on reverse faults subparallel to the San Andreas Fault within the Coast Ranges is not required. Copyright 2004 by the American Geophysical union.

  12. Mechanical Design and Development of TES Bolometer Detector Arrays for the Advanced ACTPol Experiment

    NASA Technical Reports Server (NTRS)

    Ward, Jonathan T.; Austermann, Jason; Beall, James A.; Choi, Steve K.; Crowley, Kevin T.; Devlin, Mark J.; Duff, Shannon M.; Gallardo, Patricio M.; Henderson, Shawn W.; Ho, Shuay-Pwu Patty; hide

    2016-01-01

    The next generation Advanced ACTPol (AdvACT) experiment is currently underway and will consist of four Transition Edge Sensor (TES) bolometer arrays, with three operating together, totaling 5800 detectors on the sky. Building on experience gained with the ACTPol detector arrays, AdvACT will utilize various new technologies, including 150 mm detector wafers equipped with multichroic pixels, allowing for a more densely packed focal plane. Each set of detectors includes a feedhorn array of stacked silicon wafers which form a spline pro le leading to each pixel. This is then followed by a waveguide interface plate, detector wafer, back short cavity plate, and backshort cap. Each array is housed in a custom designed structure manufactured from high purity copper and then gold plated. In addition to the detector array assembly, the array package also encloses cryogenic readout electronics. We present the full mechanical design of the AdvACT high frequency (HF) detector array package along with a detailed look at the detector array stack assemblies. This experiment will also make use of extensive hardware and software previously developed for ACT, which will be modi ed to incorporate the new AdvACT instruments. Therefore, we discuss the integration of all AdvACT arrays with pre-existing ACTPol infrastructure.

  13. Mechanical designs and development of TES bolometer detector arrays for the Advanced ACTPol experiment

    NASA Astrophysics Data System (ADS)

    Ward, Jonathan T.; Austermann, Jason; Beall, James A.; Choi, Steve K.; Crowley, Kevin T.; Devlin, Mark J.; Duff, Shannon M.; Gallardo, Patricio A.; Henderson, Shawn W.; Ho, Shuay-Pwu Patty; Hilton, Gene; Hubmayr, Johannes; Khavari, Niloufar; Klein, Jeffrey; Koopman, Brian J.; Li, Dale; McMahon, Jeffrey; Mumby, Grace; Nati, Federico; Niemack, Michael D.; Page, Lyman A.; Salatino, Maria; Schillaci, Alessandro; Schmitt, Benjamin L.; Simon, Sara M.; Staggs, Suzanne T.; Thornton, Robert; Ullom, Joel N.; Vavagiakis, Eve M.; Wollack, Edward J.

    2016-07-01

    The next generation Advanced ACTPol (AdvACT) experiment is currently underway and will consist of four Transition Edge Sensor (TES) bolometer arrays, with three operating together, totaling 5800 detectors on the sky. Building on experience gained with the ACTPol detector arrays, AdvACT will utilize various new technologies, including 150 mm detector wafers equipped with multichroic pixels, allowing for a more densely packed focal plane. Each set of detectors includes a feedhorn array of stacked silicon wafers which form a spline profile leading to each pixel. This is then followed by a waveguide interface plate, detector wafer, back short cavity plate, and backshort cap. Each array is housed in a custom designed structure manufactured from high purity copper and then gold plated. In addition to the detector array assembly, the array package also encloses cryogenic readout electronics. We present the full mechanical design of the AdvACT high frequency (HF) detector array package along with a detailed look at the detector array stack assemblies. This experiment will also make use of extensive hardware and software previously developed for ACT, which will be modified to incorporate the new AdvACT instruments. Therefore, we discuss the integration of all AdvACT arrays with pre-existing ACTPol infrastructure.

  14. Gigahertz-peaked spectra pulsars in Pulsar Wind Nebulae

    NASA Astrophysics Data System (ADS)

    Basu, R.; RoŻko, K.; Kijak, J.; Lewandowski, W.

    2018-04-01

    We have carried out a detailed study of the spectral nature of six pulsars surrounded by pulsar wind nebulae (PWNe). The pulsar flux density was estimated using the interferometric imaging technique of the Giant Metrewave Radio Telescope at three frequencies 325, 610, and 1280 MHz. The spectra showed a turnover around gigahertz frequency in four out of six pulsars. It has been suggested that the gigahertz-peaked spectrum (GPS) in pulsars arises due to thermal absorption of the pulsar emission in surrounding medium like PWNe, H II regions, supernova remnants, etc. The relatively high incidence of GPS behaviour in pulsars surrounded by PWNe imparts further credence to this view. The pulsar J1747-2958 associated with the well-known Mouse nebula was also observed in our sample and exhibited GPS behaviour. The pulsar was detected as a point source in the high-resolution images. However, the pulsed emission was not seen in the phased-array mode. It is possible that the pulsed emission was affected by extreme scattering causing considerable smearing of the emission at low radio frequencies. The GPS spectra were modelled using the thermal free-free absorption and the estimated absorber properties were largely consistent with PWNe. The spatial resolution of the images made it unlikely that the point source associated with J1747-2958 was the compact head of the PWNe, but the synchrotron self-absorption seen in such sources was a better fit to the estimated spectral shape.

  15. Bats aggregate to improve prey search but might be impaired when their density becomes too high.

    PubMed

    Cvikel, Noam; Egert Berg, Katya; Levin, Eran; Hurme, Edward; Borissov, Ivailo; Boonman, Arjan; Amichai, Eran; Yovel, Yossi

    2015-01-19

    Social foraging is a very common yet extremely complex behavior. Numerous studies attempted to model it with little supporting evidence. Studying it in the wild is difficult because it requires monitoring the animal's movement, its foraging success, and its interactions with conspecifics. We present a novel system that enables full night ultrasonic recording of freely foraging bats, in addition to GPS tracking. As they rely on echolocation, audio recordings of bats allow tapping into their sensory acquisition of the world. Rapid changes in echolocation allowed us to reveal the bats' dynamic reactions in response to prey or conspecifics—two key behaviors that are extremely difficult to assess in most animals. We found that bats actively aggregate and forage as a group. However, we also found that when the group became too dense, bats were forced to devote sensory attention to conspecifics that frequently entered their biosonar "field of view," impairing the bats' prey detection performance. Why then did bats fly in such high densities? By emitting echolocation calls, bats constantly provide public information about their detection of prey. Bats could therefore benefit from intentionally flying at a distance that enables eavesdropping on conspecifics. Group foraging, therefore, probably allowed bats to effectively operate as an array of sensors, increasing their searching efficiency. We suggest that two opposing forces are at play in determining the efficient foraging density: on the one hand, higher densities improve prey detection, but on the other hand, they increase conspecific interference. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Aspects of the optical system relevant for the KM3NeT timing calibration

    NASA Astrophysics Data System (ADS)

    Kieft, Gerard

    2016-04-01

    KM3NeT is a future research infrastructure in the Mediterranean Sea housing the large Cherenkov telescope arrays of optical modules for neutrino detection. The detector control and data transmission system is based on fibre optical technology. For timing calibration of the detector signals the optical system is used to send and fan-out an onshore clock signal, derived from a GPS receiver, to all optical modules in the deep sea. The optical modules use this clock signal to time stamp the light pulses detected by the photomultipliers inside the modules. The delay time between the GPS clock on shore and the clock in each optical module is measured with sub-nanosecond precision using a White Rabbit based timing calibration system. The aspects of the optical system relevant for the timing calibration and the quantification of their effect will be presented.

  17. Clogging and jamming transitions in periodic obstacle arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Hong; Reichhardt, Charles; Olson Reichhardt, Cynthia Jane

    2017-03-29

    We numerically examine clogging transitions for bidisperse disks flowing through a two-dimensional periodic obstacle array. Here, we show that clogging is a probabilistic event that occurs through a transition from a homogeneous flowing state to a heterogeneous or phase-separated jammed state where the disks form dense connected clusters. The probability for clogging to occur during a fixed time increases with increasing particle packing and obstacle number. For driving at different angles with respect to the symmetry direction of the obstacle array, we show that certain directions have a higher clogging susceptibility. It is also possible to have a size-specific cloggingmore » transition in which one disk size becomes completely immobile while the other disk size continues to flow.« less

  18. New insights into the kinematics and seismotectonics of the Adria-Eurasia boundary in the eastern Alps from geodetic and seismic data

    NASA Astrophysics Data System (ADS)

    Serpelloni, Enrico; Vannucci, Gianfranco; Bennett, Richard A.; Anderlini, Letizia; Cavaliere, Adriano

    2015-04-01

    In this work we describe a new kinematic and seismotectonic model of the eastern Alps, at the boundary between Italy, Austria, Slovenia and Croatia, obtained from the analysis of geodetic (GPS) and seismological data. We use a dense GPS velocity field, obtained from integration of continuous, semi-continuous and survey-mode networks (~200 GPS stations between longitude 10°E and 17°E and latitude 44.5°N and 47.5°N) and an updated seismic and focal mechanisms catalogue, with uniformly calibrated moment magnitudes from ~1000 B.C.. Improved accuracies and precisions of GPS motion rates have been obtained by filtering displacement time-series for the spatially correlated common mode errors. The eastern Alps mark the boundary between the Adriatic microplate and the Eurasian plate through a wide zone of distributed deformation. Geodetic deformation and seismic release are more localized, and characterized by larger earthquakes, along the southeastern Alps fold-and-thrust belt, which accommodates the large part of the ~N-S Adria-Eurasia convergence, and in Slovenia, where a transition from ~N-S shortening to the eastward escape of the Pannonian Basin units occurs through a complex pattern of crustal deformation. GPS velocities well describe the overall kinematics, with a transition from NNW-ward to NE-ward motion trends (in a Eurasian frame) across Slovenia and Austria, but also show small but significant crustal deformation far from the major blocks boundaries. This may suggest internal continuous deformation or a more complex configuration of interacting tectonic blocks in the eastern Alps. This second hypothesis is taken into account and tested in this work. We use seismic moment release rate maps, active faults databases and inspections of GPS velocities in different local frames to define the geometry of a kinematic block model, constrained by GPS horizontal velocities, in order to estimate blocks rotations and elastic strain at blocks bounding faults. The improved GPS velocity field highlights significant strain accumulation off the main thrust fault segments in the southeastern Alps, in regions stroke by large (M>6.5) historical earthquakes (e.g., the 1117 Verona and the 1695 Asolo events). This is evident in the Venetian plain, where GPS highlights significant shortening in areas that are tens of km southward of the south Alpine mountain front. In the Italian southeastern Alps results from the block model, constrained by a denser GPS velocity field (e.g., around the Montello fault), put new lights on i) the way the Adria-Eurasia convergence is partitioned across the southeast Alpine mountain range, ii) about interseismic coupling along the main thrust faults and iii) the way N-S shortening is transferred, through right-lateral shear across the Dinaric system, to shortening across the Sava folds in Slovenia. In the end, a comparison of the estimated seismic moment release rates and the seismic moment accumulation rates, estimated from the model velocities, provide new insights into the seismic potential of the study region.

  19. Towards the Crowdsourcing of Massive Smartphone Assisted-GPS Sensor Ground Observations for the Production of Digital Terrain Models

    PubMed Central

    Massad, Ido

    2018-01-01

    Digital Terrain Models (DTMs) used for the representation of the bare earth are produced from elevation data obtained using high-end mapping platforms and technologies. These require the handling of complex post-processing performed by authoritative and commercial mapping agencies. In this research, we aim to exploit user-generated data to produce DTMs by handling massive volumes of position and elevation data collected using ubiquitous smartphone devices equipped with Assisted-GPS sensors. As massive position and elevation data are collected passively and straightforwardly by pedestrians, cyclists, and drivers, it can be transformed into valuable topographic information. Specifically, in dense and concealed built and vegetated areas, where other technologies fail, handheld devices have an advantage. Still, Assisted-GPS measurements are not as accurate as high-end technologies, requiring pre- and post-processing of observations. We propose the development and implementation of a 2D Kalman filter and smoothing on the acquired crowdsourced observations for topographic representation production. When compared to an authoritative DTM, results obtained are very promising in producing good elevation values. Today, open-source mapping infrastructures, such as OpenStreetMap, rely primarily on the global authoritative SRTM (Shuttle Radar Topography Mission), which shows similar accuracy but inferior resolution when compared to the results obtained in this research. Accordingly, our crowdsourced methodology has the capacity for reliable topographic representation production that is based on ubiquitous volunteered user-generated data. PMID:29562627

  20. Searching for geodetic transient slip signals along the Parkfield segment of the San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Rousset, B.; Burgmann, R.

    2017-12-01

    The Parkfield section of the San Andreas fault is at the transition between a segment locked since the 1857 Mw 7.9 Fort Tejon earthquake to its south and a creeping segment to the north. It is particularly well instrumented since it is the many previous studies have focused on studying the coseismic and postseismic phases of the two most recent earthquake cycles, the interseismic phase is exhibiting interesting dynamics at the down-dip edge of the seismogenic zone, characterized by a very large number of low frequency earthquakes (LFE) with different behaviors depending on location. Interseismic fault creep rates appear to vary over a wide range of spatial and temporal scales, from the Earth's surface to the base of crust. In this study, we take advantage of the dense Global Positioning System (GPS) network, with 77 continuous stations located within a circle of radius 80 km centered on Parkfield. We correct these time series for the co- and postseismic signals of the 2003 Mw 6.3 San Simeon and 2004 Mw 6.0 Parkfield earthquakes. We then cross-correlate the residual time series with synthetic slow-slip templates following the approach of Rousset et al. (2017). Synthetic tests with transient events contained in GPS time series with realistic noise show the limit of detection of the method. In the application with real GPS time series, the highest correlation amplitudes are compared with micro-seismicity rates, as well as tremor and LFE observations.

  1. THE GREEN BANK TELESCOPE MAPS THE DENSE, STAR-FORMING GAS IN THE NEARBY STARBURST GALAXY M82

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kepley, Amanda A.; Frayer, David; Leroy, Adam K.

    Observations of the Milky Way and nearby galaxies show that dense molecular gas correlates with recent star formation, suggesting that the formation of this gas phase may help regulate star formation. A key test of this idea requires wide-area, high-resolution maps of dense molecular gas in galaxies to explore how local physical conditions drive dense gas formation, but these observations have been limited because of the faintness of dense gas tracers like HCN and HCO{sup +}. Here we demonstrate the power of the Robert C. Byrd Green Bank Telescope (GBT)—the largest single-dish millimeter radio telescope—for mapping dense gas in galaxiesmore » by presenting the most sensitive maps yet of HCN and HCO{sup +} in the starburst galaxy M82. The HCN and HCO{sup +} in the disk of this galaxy correlates with both recent star formation and more diffuse molecular gas and shows kinematics consistent with a rotating torus. The HCO{sup +} emission extending to the north and south of the disk is coincident with the outflow previously identified in CO and traces the eastern edge of the hot outflowing gas. The central starburst region has a higher ratio of star formation to dense gas than the outer regions, pointing to the starburst as a key driver of this relationship. These results establish that the GBT can efficiently map the dense molecular gas at 90 GHz in nearby galaxies, a capability that will increase further with the 16 element feed array under construction.« less

  2. Temporal-Spectral Characterization and Classification of Marine Mammal Vocalizations and Diesel-Electric Ships Radiated Sound over Continental Shelf Scale Regions with Coherent Hydrophone Array Measurements

    NASA Astrophysics Data System (ADS)

    Huang, Wei

    The passive ocean acoustic waveguide remote sensing (POAWRS) technology is capable of monitoring a large variety of underwater sound sources over instantaneous wide areas spanning continental-shelf scale regions. POAWRS uses a large-aperture densely-sampled coherent hydrophone array to significantly enhance the signal-to-noise ratio via beamforming, enabling detection of sound sources roughly two-orders of magnitude more distant in range than that possible with a single hydrophone. The sound sources detected by POAWRS include ocean biology, geophysical processes, and man-made activities. POAWRS provides detection, bearing-time estimation, localization, and classification of underwater sound sources. The volume of underwater sounds detected by POAWRS is immense, typically exceeding a million unique signal detections per day, in the 10-4000 Hz frequency range, making it a tremendously challenging task to distinguish and categorize the various sound sources present in a given region. Here we develop various approaches for characterizing and clustering the signal detections for various subsets of data acquired using the POAWRS technology. The approaches include pitch tracking of the dominant signal detections, time-frequency feature extraction, clustering and categorization methods. These approaches are essential for automatic processing and enhancing the efficiency and accuracy of POAWRS data analysis. The results of the signal detection, clustering and classification analysis are required for further POAWRS processing, including localization and tracking of a large number of oceanic sound sources. Here the POAWRS detection, localization and clustering approaches are applied to analyze and elucidate the vocalization behavior of humpback, sperm and fin whales in the New England continental shelf and slope, including the Gulf of Maine from data acquired using coherent hydrophone arrays. The POAWRS technology can also be applied for monitoring ocean vehicles. Here the approach is calibrated by application to known ships present in the Gulf of Maine and in the Norwegian Sea from their underwater sounds received using a coherent hydrophone array. The vocalization behavior of humpback whales was monitored over vast areas of the Gulf of Maine using the POAWRS technique over multiple diel cycles in Fall 2006. The humpback vocalizations, received at a rate of roughly 1800+/-1100 calls per day, comprised of both song and non-song. The song vocalizations, composed of highly structured and repeatable set of phrases, are characterized by inter-pulse intervals of 3.5 +/- 1.8 s. Songs were detected throughout the diel cycle, occuring roughly 40% during the day and 60% during the night. The humpback non-song vocalizations, dominated by shorter duration (≤3 s) downsweep and bow-shaped moans, as well as a small fraction of longer duration (˜5 s) cries, have significantly larger mean and more variable inter-pulse intervals of 14.2 +/- 11 s. The non-song vocalizations were detected at night with negligible detections during the day, implying they probably function as nighttime communication signals. The humpback song and non-song vocalizations are separately localized using the moving array triangulation and array invariant techniques. The humpback song and non-song moan calls are both consistently localized to a dense area on northeastern Georges Bank and a less dense region extended from Franklin Basin to the Great South Channel. Humpback cries occur exclusively on northeastern Georges Bank and during nights with coincident dense Atlantic herring shoaling populations, implying the cries are feeding-related. Sperm whales in the New England continental shelf and slope were passively localized and classified from their vocalizations received using a single low-frequency (<2500 Hz) densely-sampled horizontal coherent hydrophone array deployed in Spring 2013 in Gulf of Maine. Whale bearings were estimated using time-domain beamforming that provided high coherent array gain in sperm whale click signal-to-noise ratio. Whale ranges from the receiver array center were estimated using the moving array triangulation technique from a sequence of whale bearing measurements. Multiple concurrently vocalizing sperm whales, in the far-field of the horizontal receiver array, were distinguished and classified based on their horizontal spatial locations and the inter-pulse intervals of their vocalized click signals. We provide detailed analysis of over 15,000 fin whale 20 Hz vocalizations received on Oct 1-3, 2006 in the Gulf of Maine. These vocalizations are separated into 16 clusters following the clustering approaches. Seven of these types are prominent, each acounting for between 8% to 16% and together comprise roughly 85% of all the analyzed vocalizations. The 7 prominent clusters are each more abundant during nighttime hours by a factor of roughly 2.5 times than that of the daytime. The diel-spatial correlation of the 7 prominent clusters to the simultaneously observed densities of their fish prey, the Atlantic herring in the Gulf of Maine, is provided which implies that the factor of roughly 2.5 increase in call rate during night-time hours can be attributed to increased fish-feeding activities. (Abstract shortened by ProQuest.).

  3. Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo.

    PubMed

    Viventi, Jonathan; Kim, Dae-Hyeong; Vigeland, Leif; Frechette, Eric S; Blanco, Justin A; Kim, Yun-Soung; Avrin, Andrew E; Tiruvadi, Vineet R; Hwang, Suk-Won; Vanleer, Ann C; Wulsin, Drausin F; Davis, Kathryn; Gelber, Casey E; Palmer, Larry; Van der Spiegel, Jan; Wu, Jian; Xiao, Jianliang; Huang, Yonggang; Contreras, Diego; Rogers, John A; Litt, Brian

    2011-11-13

    Arrays of electrodes for recording and stimulating the brain are used throughout clinical medicine and basic neuroscience research, yet are unable to sample large areas of the brain while maintaining high spatial resolution because of the need to individually wire each passive sensor at the electrode-tissue interface. To overcome this constraint, we developed new devices that integrate ultrathin and flexible silicon nanomembrane transistors into the electrode array, enabling new dense arrays of thousands of amplified and multiplexed sensors that are connected using fewer wires. We used this system to record spatial properties of cat brain activity in vivo, including sleep spindles, single-trial visual evoked responses and electrographic seizures. We found that seizures may manifest as recurrent spiral waves that propagate in the neocortex. The developments reported here herald a new generation of diagnostic and therapeutic brain-machine interface devices.

  4. Argus: A W-band 16-pixel focal plane array for the Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    Devaraj, Kiruthika; Church, Sarah; Cleary, Kieran; Frayer, David; Gawande, Rohit; Goldsmith, Paul; Gundersen, Joshua; Harris, Andrew; Kangaslahti, Pekka; Readhead, Tony; Reeves, Rodrigo; Samoska, Lorene; Sieth, Matt; Voll, Patricia

    2015-05-01

    We are building Argus, a 16-pixel square-packed focal plane array that will cover the 75-115.3 GHz frequency range on the Robert C. Byrd Green Bank Telescope (GBT). The primary research area for Argus is the study of star formation within our Galaxy and nearby galaxies. Argus will map key molecules that trace star formation, including carbon monoxide (CO) and hydrogen cyanide (HCN). An additional key science area is astrochemistry, which will be addressed by observing complex molecules in the interstellar medium, and the study of formation of solar systems, which will be addressed by identifying dense pre-stellar cores and by observing comets in our solar system. Argus has a highly scalable architecture and will be a technology path finder for larger arrays. The array is modular in construction, which will allow easy replacement of malfunctioning and poorly performing components.

  5. MEMS-Based Solid Propellant Rocket Array Thruster

    NASA Astrophysics Data System (ADS)

    Tanaka, Shuji; Hosokawa, Ryuichiro; Tokudome, Shin-Ichiro; Hori, Keiichi; Saito, Hirobumi; Watanabe, Masashi; Esashi, Masayoshi

    The prototype of a solid propellant rocket array thruster for simple attitude control of a 10 kg class micro-spacecraft was completed and tested. The prototype has 10×10 φ0.8 mm solid propellant micro-rockets arrayed at a pitch of 1.2 mm on a 20×22 mm substrate. To realize such a dense array of micro-rockets, each ignition heater is powered from the backside of the thruster through an electrical feedthrough which passes along a propellant cylinder wall. Boron/potassium nitrate propellant (NAB) is used with/without lead rhodanide/potassium chlorate/nitrocellulose ignition aid (RK). Impulse thrust was measured by a pendulum method in air. Ignition required electric power of at least 3 4 W with RK and 4 6 W without RK. Measured impulse thrusts were from 2×10-5 Ns to 3×10-4 Ns after the calculation of compensation for air dumping.

  6. GPS Imaging of Time-Variable Earthquake Hazard: The Hilton Creek Fault, Long Valley California

    NASA Astrophysics Data System (ADS)

    Hammond, W. C.; Blewitt, G.

    2016-12-01

    The Hilton Creek Fault, in Long Valley, California is a down-to-the-east normal fault that bounds the eastern edge of the Sierra Nevada/Great Valley microplate, and lies half inside and half outside the magmatically active caldera. Despite the dense coverage with GPS networks, the rapid and time-variable surface deformation attributable to sporadic magmatic inflation beneath the resurgent dome makes it difficult to use traditional geodetic methods to estimate the slip rate of the fault. While geologic studies identify cumulative offset, constrain timing of past earthquakes, and constrain a Quaternary slip rate to within 1-5 mm/yr, it is not currently possible to use geologic data to evaluate how the potential for slip correlates with transient caldera inflation. To estimate time-variable seismic hazard of the fault we estimate its instantaneous slip rate from GPS data using a new set of algorithms for robust estimation of velocity and strain rate fields and fault slip rates. From the GPS time series, we use the robust MIDAS algorithm to obtain time series of velocity that are highly insensitive to the effects of seasonality, outliers and steps in the data. We then use robust imaging of the velocity field to estimate a gridded time variable velocity field. Then we estimate fault slip rate at each time using a new technique that forms ad-hoc block representations that honor fault geometries, network complexity, connectivity, but does not require labor-intensive drawing of block boundaries. The results are compared to other slip rate estimates that have implications for hazard over different time scales. Time invariant long term seismic hazard is proportional to the long term slip rate accessible from geologic data. Contemporary time-invariant hazard, however, may differ from the long term rate, and is estimated from the geodetic velocity field that has been corrected for the effects of magmatic inflation in the caldera using a published model of a dipping ellipsoidal magma chamber. Contemporary time-variable hazard can be estimated from the time variable slip rate estimated from the evolving GPS velocity field.

  7. Multi-instrumental Study of Storm-induced Ionospheric Irregularities at Midlatitudes

    NASA Astrophysics Data System (ADS)

    Cherniak, I.; Zakharenkova, I.; Sokolovskiy, S. V.

    2017-12-01

    We present multi-instrumental analysis of the unusually intense plasma density irregularities occurred over European midlatitudes during geomagnetic storm of 22-23 June 2015. We combine GPS/GLONASS observations derived from the dense ground-based networks ( 1500 stations) with in situ plasma density onboard Swarm and DMSP satellites and COSMIC Radio Occultation (RO) ionospheric electron density profiles. During this geomagnetic storm, the strong ionospheric irregularities of auroral origin were registered over the Northern Europe sub-auroral and midlatitudes. Meanwhile, another kind of ionospheric irregularities of equatorial origin reached European midlatitudes from the south. The prompt penetration electric fields caused the occurrence of plasma bite-outs in the post-sunset sector over the Western Africa low latitudes and extension of the large-scale plasma bubbles toward Europe. Using GPS/GLONASS observations, the plasma bubble signatures were mapped in Europe. They were observed for more than 8 h (20-04 UT) and covered a broad area within 30o-40o N and 20o W-10o E. In this region, the steep plasma gradients, as large as 5-10 TECU/degree, and numerous embedded deep plasma depletions were developed on the background of high plasma density. For low latitude region, the bite-out signature was recognized in the form of the significantly modified shape of the COSMIC-derived ionospheric electron density profiles. These unique results were confirmed by the in situ density and upward-looking GPS data onboard the Swarm satellites at 500 km altitude, in situ density measured by DMSP and ground-based absolute TEC observations. It was found that close similarity between in situ Ne and Swarm-derived topside vertical TEC suggests that plasma density enhancements and depletions are developed in the topside ionosphere (>500 km). The intensity of plasma gradients at different altitudes was also estimated by COSMIC-based measurements of GPS signal intensity and phase fluctuations as well as by rate of TEC changes on COSMIC-GPS links. Occurrence of the plasma bubbles in Europe affected GNSS measurements over number of reference stations and led to performance degradation of SBAS EGNOS.

  8. Optical design of GaN nanowire arrays for photocatalytic applications

    NASA Astrophysics Data System (ADS)

    Winnerl, Julia; Hudeczek, Richard; Stutzmann, Martin

    2018-05-01

    GaN nanowire (NW) arrays are interesting candidates for photocatalytic applications due to their high surface-to-volume ratio and their waveguide character. The integration of GaN NW arrays on GaN-based light emitting diodes (LEDs), serving as a platform for electrically driven NW-based photocatalytic devices, enables an efficient coupling of the light from the planar LED to the GaN NWs. Here, we present a numerical study of the influence of the NW geometries, i.e., the NW diameter, length, and period, and the illumination wavelength on the transmission of GaN NW arrays on transparent substrates. A detailed numerical analysis reveals that the transmission characteristics for large periods are determined by the waveguide character of the single NW, whereas for dense GaN NW arrays inter-wire coupling and diffraction effects originating from the periodic arrangement of the GaN NWs dominate the transmission. The numerically simulated results are confirmed by experimental transmission measurements. We also investigate the influence of a dielectric NW shell and of the surrounding medium on the transmission characteristics of a GaN NW array.

  9. Optimizing the beam pattern of a forward-viewing ring-annular ultrasound array for intravascular imaging.

    PubMed

    Wang, Yao; Stephens, Douglas N; O'Donnell, Matthew

    2002-12-01

    Intravascular ultrasound (IVUS) imaging systems using circumferential arrays mounted on cardiac catheter tips fire beams orthogonal to the principal axis of the catheter. The system produces high resolution cross-sectional images but must be guided by conventional angioscopy. A real-time forward-viewing array, integrated into the same catheter, could greatly reduce radiation exposure by decreasing angiographic guidance. Unfortunately, the mounting requirement of a catheter guide wire prohibits a full-disk imaging aperture. Given only an annulus of array elements, prior theoretical investigations have only considered a circular ring of point transceivers and focusing strategies using all elements in the highly dense array, both impractical assumptions. In this paper, we consider a practical array geometry and signal processing architecture for a forward-viewing IVUS system. Our specific design uses a total of 210 transceiver firings with synthetic reconstruction for a given 3-D image frame. Simulation results demonstrate this design can achieve side-lobes under -40 dB for on-axis situations and under -30 dB for steering to the edge of a 80 degrees cone.

  10. Using a coherent hydrophone array for observing sperm whale range, classification, and shallow-water dive profiles.

    PubMed

    Tran, Duong D; Huang, Wei; Bohn, Alexander C; Wang, Delin; Gong, Zheng; Makris, Nicholas C; Ratilal, Purnima

    2014-06-01

    Sperm whales in the New England continental shelf and slope were passively localized, in both range and bearing, and classified using a single low-frequency (<2500 Hz), densely sampled, towed horizontal coherent hydrophone array system. Whale bearings were estimated using time-domain beamforming that provided high coherent array gain in sperm whale click signal-to-noise ratio. Whale ranges from the receiver array center were estimated using the moving array triangulation technique from a sequence of whale bearing measurements. Multiple concurrently vocalizing sperm whales, in the far-field of the horizontal receiver array, were distinguished and classified based on their horizontal spatial locations and the inter-pulse intervals of their vocalized click signals. The dive profile was estimated for a sperm whale in the shallow waters of the Gulf of Maine with 160 m water-column depth located close to the array's near-field where depth estimation was feasible by employing time difference of arrival of the direct and multiply reflected click signals received on the horizontal array. By accounting for transmission loss modeled using an ocean waveguide-acoustic propagation model, the sperm whale detection range was found to exceed 60 km in low to moderate sea state conditions after coherent array processing.

  11. A spatially resolved pyrometer for measuring the blackbody temperature of a warm dense plasma

    DOE PAGES

    Coleman, Joshua Eugene

    2016-12-30

    A pyrometer has been developed to spatially resolve the blackbody temperature of a radiatively cooling warm dense plasma. The pyrometer is composed of a lens coupled fiber array, Czerny-Turner visible spectrometer, and an intensified gated CCD for the detector. The radiatively cooling warm dense plasma is generated by a ~100-ns-long intense relativistic electron bunch with an energy of 19.1 MeV and a current of 0.2 kA interacting with 100-μm-thick low-Z foils. The continuum spectrum is measured over 250 nm with a low groove density grating. These plasmas emit visible light or blackbody radiation on relatively long time scales (~0.1 tomore » 100 μs). Finally, we presented the diagnostic layout, calibration, and proof-of-principle measurement of a radiatively cooling aluminum plasma, which includes a spatially resolved temperature gradient and the ability to temporally resolve it also.« less

  12. Dense Vertically Aligned Copper Nanowire Composites as High Performance Thermal Interface Materials.

    PubMed

    Barako, Michael T; Isaacson, Scott G; Lian, Feifei; Pop, Eric; Dauskardt, Reinhold H; Goodson, Kenneth E; Tice, Jesse

    2017-12-06

    Thermal interface materials (TIMs) are essential for managing heat in modern electronics, and nanocomposite TIMs can offer critical improvements. Here, we demonstrate thermally conductive, mechanically compliant TIMs based on dense, vertically aligned copper nanowires (CuNWs) embedded into polymer matrices. We evaluate the thermal and mechanical characteristics of 20-25% dense CuNW arrays with and without polydimethylsiloxane infiltration. The thermal resistance achieved is below 5 mm 2 K W -1 , over an order of magnitude lower than commercial heat sink compounds. Nanoindentation reveals that the nonlinear deformation mechanics of this TIM are influenced by both the CuNW morphology and the polymer matrix. We also implement a flip-chip bonding protocol to directly attach CuNW composites to copper surfaces, as required in many thermal architectures. Thus, we demonstrate a rational design strategy for nanocomposite TIMs that simultaneously retain the high thermal conductivity of aligned CuNWs and the mechanical compliance of a polymer.

  13. HCN and HCO(+) images of the photodissociation region in the Orion Bar

    NASA Technical Reports Server (NTRS)

    Youngowl, Rolaine C.; Meixner, Margaret; Tielens, Alexander G. G. M.; Tauber, Jan A.

    1995-01-01

    We present preliminary millimeter-wavelength images of the photodissociation region (PDR) in the Orion Bar, observed with the Berkeley- Illinois-Maryland array (BIMA). These new BIMA observations have attained 5 arc sec resolution in the J=l-O emission lines of HCO+ (formyl ion) and HCN (hydrogen cyanide). The results are compared with previous observations of the J=1-0 transition lines of (13)CO. We find that the HCO+ and HCN have different spatial distributions. HCN appears to lie primarily inside dense clumps of gas, which are defined by areas of intense (13)CO emission. However, the HCO+ emission appears to be only loosely associated with the surfaces of the gas clumps. We suggest that HCO+ abundance is enhanced by the presence of vibrationally excited H2 on the surfaces of dense clumps, and that the HCN abundance is attenuated by photo destruction outside the cores of dense clumps of gas.

  14. Production of dense plasmas in a hypocycloidal pinch apparatus

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Mcfarland, D. R.; Hohl, F.

    1977-01-01

    A high-power pinch apparatus consisting of disk electrodes was developed, and diagnostic measurements to study its mechanism of dense plasma production have been made. The collapse fronts of the current sheets are well organized, and dense plasma foci are produced on the axis with radial stability in excess of 5 microsec. A plasma density greater than 10 to the 18th power per cu cm is determined with Stark broadening and CO2 laser absorption. Essentially complete absorption of a high-energy CO2 laser beam has been observed. A plasma temperature of approximately 1 keV is measured with differential transmission of soft X-rays through thin foils. The advantages of this apparatus over the coaxial plasma focus are improvements in (1) plasma volume, (2) stability, (3) containment time, (4) access to additional heating by laser or electron beams, and (5) the possibility of scaling up to a multiple array for high-power operation.

  15. Dense plasma focus production in a hypocycloidal pinch

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Mcfarland, D. R.; Hohl, F.

    1975-01-01

    A type of high-power pinch apparatus consisting of disk electrodes was developed, and diagnostic measurements to study its mechanism of dense plasma production were made. The collapse fronts of the current sheets are well organized, and dense plasma focuses are produced on the axis with radial stability in excess of 5 microns. A plasma density greater than 10 to the 18th power/cubic cm was determined with Stark broadening and CO2 laser absorption. A plasma temperature of approximately 1 keV was measured with differential transmission of soft X-rays through thin foils. Essentially complete absorption of a high-energy CO2 laser beam was observed. The advantages of this apparatus over the coaxial plasma focus are in (1) the plasma volume, (2) the stability, (3) the containment time, (4) the easy access to additional heating by laser or electron beams, and (5) the possibility of scaling up to a multiple array for high-power operation.

  16. Detecting Micro-seismicity and Long-duration Tremor-like Events from the Oklahoma Wavefield Experiment

    NASA Astrophysics Data System (ADS)

    Li, C.; Li, Z.; Peng, Z.; Zhang, C.; Nakata, N.

    2017-12-01

    Oklahoma has experienced abrupt increase of induced seismicity in the last decade. An important way to fully understand seismic activities in Oklahoma is to obtain more complete earthquake catalogs and detect different types of seismic events. The IRIS Community Wavefield Demonstration Experiment was deployed near Enid, Oklahoma in Summer of 2016. The dataset from this ultra-dense array provides an excellent opportunity for detecting microseismicity in that region with wavefield approaches. Here we examine continuous waveforms recorded by 3 seismic lines using local coherence for ultra-dense arrays (Li et al., 2017), which is a measure of cross-correlation of waveform at each station with its nearby stations. So far we have detected more than 5,000 events from 06/22/2016 to 07/20/2016, and majority of them are not listed on the regional catalog of Oklahoma or global catalogs, indicating that they are local events. We also identify 15-20 long-period long-duration events, some of them lasting for more than 500 s. Such events have been found at major plate-boundary faults (also known as deep tectonic tremor), as well as during hydraulic fracturing, slow-moving landslides and glaciers. Our next step is to locate these possible tremor-like events with their relative arrival times across the array and compare their occurrence times with solid-earth tides and injection histories to better understand their driving mechanisms.

  17. Multicolor, time-gated, soft x-ray pinhole imaging of wire array and gas puff Z pinches on the Z and Saturn pulsed power generators.

    PubMed

    Jones, B; Coverdale, C A; Nielsen, D S; Jones, M C; Deeney, C; Serrano, J D; Nielsen-Weber, L B; Meyer, C J; Apruzese, J P; Clark, R W; Coleman, P L

    2008-10-01

    A multicolor, time-gated, soft x-ray pinhole imaging instrument is fielded as part of the core diagnostic set on the 25 MA Z machine [M. E. Savage et al., in Proceedings of the Pulsed Power Plasma Sciences Conference (IEEE, New York, 2007), p. 979] for studying intense wire array and gas puff Z-pinch soft x-ray sources. Pinhole images are reflected from a planar multilayer mirror, passing 277 eV photons with <10 eV bandwidth. An adjacent pinhole camera uses filtration alone to view 1-10 keV photons simultaneously. Overlaying these data provides composite images that contain both spectral as well as spatial information, allowing for the study of radiation production in dense Z-pinch plasmas. Cu wire arrays at 20 MA on Z show the implosion of a colder cloud of material onto a hot dense core where K-shell photons are excited. A 528 eV imaging configuration has been developed on the 8 MA Saturn generator [R. B. Spielman et al., and A. I. P. Conf, Proc. 195, 3 (1989)] for imaging a bright Li-like Ar L-shell line. Ar gas puff Z pinches show an intense K-shell emission from a zippering stagnation front with L-shell emission dominating as the plasma cools.

  18. The PBO Nucleus: Integration of the Existing Continuous GPS Networks in the Western U.S.

    NASA Astrophysics Data System (ADS)

    Blume, F.; Anderson, G.; Freymueller, J. T.; Herring, T. A.; Melbourne, T. I.; Murray, M. H.; Prescott, W. H.; Smith, R. B.; Wernicke, B.

    2004-12-01

    Tectonic and earthquake research in the US has experienced a quiet revolution over the last decade precipitated by the recognition that slow-motion faulting events can both trigger and be triggered by regular earthquakes. Transient motion has now been found in essentially all tectonic environments, and the detection and analysis of such events is the first-order science target of the EarthScope Project. Because of this and a host of other fundamental tectonics questions that can be answered only with long-duration geodetic time series, the incipient 1400-station EarthScope Plate Boundary Observatory (PBO) network has been designed to leverage 432 existing continuous GPS stations whose measurements extend back over a decade. The irreplaceable recording history of these stations will accelerate EarthScope scientific return by providing the highest possible resolution. This resolution will be used to detect and understand transients, to determine the three-dimensional velocity field (particularly vertical motion), and to improve measurement precision by understanding the complex noise sources inherent in GPS. The PBO Nucleus Project is designed operate, maintain and upgrade a subset of six western U.S. geodetic networks: the Alaska Deformation Array (AKDA), Bay Area Regional Deformation network (BARD), the Basin and Range Geodetic Network (BARGEN), the Eastern Basin and Range/Yellowstone network (EBRY), the Pacific Northwest Geodetic Array (PANGA), and the Southern California Integrated Geodetic Network (SCIGN), until they are subsumed by PBO in 2008. Uninterrupted data flow from these stations will effectively double the time-series length of PBO over the expected life of EarthScope, and create, for the first time, a single GPS-based geodetic network in the US. Other existing sites will remain in operation under support from non-NSF sources (e.g. the USGS), and EarthScope will benefit from their continued operation. On the grounds of relevance to EarthScope science goals, geographic distribution and data quality, 209 of the 432 existing stations have been selected as the nucleus upon which to build PBO. We have begun converting these stations to a PBO-compatible mode of operation; data now flow directly to PBO archives and processing centers while maintenance, operations, and meta-data requirements are currently under upgrade to PBO standards.

  19. Age-Related Changes in Transient and Oscillatory Brain Responses to Auditory Stimulation during Early Adolescence

    ERIC Educational Resources Information Center

    Poulsen, Catherine; Picton, Terence W.; Paus, Tomas

    2009-01-01

    Maturational changes in the capacity to process quickly the temporal envelope of sound have been linked to language abilities in typically developing individuals. As part of a longitudinal study of brain maturation and cognitive development during adolescence, we employed dense-array EEG and spatiotemporal source analysis to characterize…

  20. Fault zone property near Xinfengjiang Reservoir using dense, across-fault seismic array

    NASA Astrophysics Data System (ADS)

    Lee, M. H. B.; Yang, H.; Sun, X.

    2017-12-01

    Properties of fault zones are important to the understanding of earthquake process. Around the fault zone is a damaged zone which is characterised by a lower seismic velocity. This is detectable as a low velocity zone and measure some physical property of the fault zone, which is otherwise difficult sample directly. A dense, across-fault array of short period seismometer is deployed on an inactive fault near Xinfengjiang Reservoir. Local events were manually picked. By computing the synthetic arrival time, we were able to constrain the parameters of the fault zone Preliminary result shows that the fault zone is around 350 m wide with a P and S velocity increase of around 10%. The fault is geologically inferred, and this result suggested that it may be a geological layer. The other possibility is that the higher velocity is caused by a combination of fault zone healing and fluid intrusion. Whilst the result was not able to tell us the nature of the fault, it demonstrated that this method is able to derive properties from a fault zone.

  1. Optical response of nanostructured metal/dielectric composites and multilayers

    NASA Astrophysics Data System (ADS)

    Smith, Geoffrey B.; Maaroof, Abbas I.; Allan, Rodney S.; Schelm, Stefan; Anstis, Geoffrey R.; Cortie, Michael B.

    2004-08-01

    The homogeneous optical response in conducting nanostructured layers, and in insulating layers containing dense arrays of self assembled conducting nanoparticles separated by organic linkers, is examined experimentally through their effective complex indices (n*, k*). Classical effective medium models, modified to account for the 3-phase nanostructure, are shown to explain (n*, k*) in dense particulate systems but not inhomogeneous layers with macroscopic conductance for which a different approach to homogenisation is discussed. (n*, k*) data on thin granular metal films, thin mesoporous gold, and on thin metal layers containing ordered arrays of voids, is linked to properties of the surface plasmon states which span the nanostructured film. Coupling between evanescent waves at either surface counterbalanced by electron scattering losses must be considered. Virtual bound states for resonant photons result, with the associated transit delay leading to a large rise in n* in many nanostructures. Overcoating n-Ag with alumina is shown to alter (n*, k*) through its impact on the SP coupling. In contrast to classical optical homogenisation, effective indices depend on film thickness. Supporting high resolution SEM images are presented.

  2. RESIF Seismology Datacentre : Recently Released Data and New Services. Computing with Dense Seisimic Networks Data.

    NASA Astrophysics Data System (ADS)

    Volcke, P.; Pequegnat, C.; Grunberg, M.; Lecointre, A.; Bzeznik, B.; Wolyniec, D.; Engels, F.; Maron, C.; Cheze, J.; Pardo, C.; Saurel, J. M.; André, F.

    2015-12-01

    RESIF is a nationwide french project aimed at building a high quality observation system to observe and understand the inner earth. RESIF deals with permanent seismic networks data as well as mobile networks data, including dense/semi-dense arrays. RESIF project is distributed among different nodes providing qualified data to the main datacentre in Université Grenoble Alpes, France. Data control and qualification is performed by each individual nodes : the poster will provide some insights on RESIF broadband seismic component data quality control. We will then present data that has been recently made publicly available. Data is distributed through worldwide FDSN and european EIDA standards protocols. A new web portal is now opened to explore and download seismic data and metadata. The RESIF datacentre is also now connected to Grenoble University High Performance Computing (HPC) facility : a typical use-case will be presented using iRODS technologies. The use of dense observation networks is increasing, bringing challenges in data growth and handling : we will present an example where HDF5 data format was used as an alternative to usual seismology data formats.

  3. A multidisciplinary study of the 2014-2015 Bárðarbunga caldera collapse, Iceland

    NASA Astrophysics Data System (ADS)

    Tumi Gudmundsson, Magnus; Jonsdóttir, Kristin; Hooper, Andy; Holohan, Eoghan; Halldorsson, Saemundur

    2016-04-01

    The collapse of the ice-filled Bárðarbunga caldera in central Iceland occurred in autumn and winter, when weather was highly unsettled and conditions for monitoring in many ways difficult. Nevertheless several detailed time series could be obtained on the collapse and to a degree the associated flood-basalt eruption in Holuhraun. This was achieved through applying an array of sensors, that were ground, air and satellite based, partly made possible through the EU-funded FUTUREVOLC supersite project. This slow caldera collapse lasted six months, ending in February 2015. The array of sensors used, coupled with the long duration of the event, allowed unprecedented detail in observing a caldera collapse. The deciphering of the course of events required the use of aircraft altimeter surveys of the ice surface, seismic and GPS monitoring, the installation of a GPS station on the glacier surface in the centre of the caldera that continuously recorded the subsidence. Full Stokes 3-D modelling of the 700-800 m thick ice in the caldera, constrained by observations, was applied to remove the component of ice deformation that had a minor effect on the measured subsidence. The maximum subsidence of the subglacial caldera floor was about 65 meters. The combined interpretation of geochemical geobarometers, subsidence geometry with GPS and InSAR deformation signals, seismicity and distinct element deformation modelling of the subsidence provided unprecedented detail of the process and mechanism of caldera collapse. The collapse involved the re-activation of pre-existing ring faults, and was initiated a few days after magma started to drain from underneath the caldera towards the eventual eruption site in Holuhraun, 45 km to the northeast. The caldera collapse was slow and gradual, and the flow rate from underneath the caldera correlates well with the lava flow rate in Holuhraun, both in terms of total volume and variations in time.

  4. Recording Plate Boundary Deformation Processes Around The San Jacinto Fault, California

    NASA Astrophysics Data System (ADS)

    Hodgkinson, K.; Mencin, D.; Borsa, A.; Fox, O.; Walls, C.; Van Boskirk, E.

    2012-04-01

    The San Jacinto Fault is one of the major faults which form the San Andreas Fault System in southern California. The fault, which lies to the west of the San Andreas, is one of the most active in the region. While strain rates are higher along the San Andreas, 23-37 mm/yr compared to 12-22 mm/yr along the San Jacinto, there have been 11 earthquakes of M6 and greater along the San Jacinto in the past 150 years while there have been none of this magnitude on the San Andreas in this region. UNAVCO has installed an array of geodetic and seismic instruments along the San Jacinto as part of the Plate Boundary Observatory (PBO). The network includes 25 GPS stations within 20 km of the surface trace with a concentration of borehole instrumentation in the Anza region where there are nine boreholes sites. Most of the borehole sites contain a GTSM21 4-component strainmeter, a Sonde-2 seismometer, a MEMS accelerometer and a pore pressure sensor. Thus, the array has the capability to capture plate boundary deformation processes with periods of milliseconds (seismic) to decades (GPS). On July 7th 2010 a M5.4 earthquake occurred on the Coyote Creek segment of the fault. The event was preceded by a M4.9 earthquake in the same area four weeks earlier and four earthquakes of M5 and greater within a 20 km radius of the epicenter in the past 50 years. In this study we will present the signals recorded by the different instrument types for the July 7th 2010 event and will compare the coseismic displacements recorded by the GPS and strainmeters with the displacement field predicted by Okada [1992]. All data recorded as part of the PBO observatory are publically available from the UNAVCO, the IRIS Data Management Center and the Northern California Earthquake Data Center.

  5. Strong Ionospheric Disturbances Observed by a Dense GPS Array After Large Earthquakes: Case Study of the 2003 Tokachi-oki Earthquake and its Geophysical Mechanism

    NASA Astrophysics Data System (ADS)

    Heki, K.; Ping, J.

    2004-12-01

    Ionospheric disturbances have been detected after, e.g. Northridge (Calais and Minster, 1995) and Denali (Ducic et al., 2003) earthquakes. Similar signals observed after the 2003 Tokachi-Oki Earthquake, the largest earthquake in Japan after the completion of GEONET, a nationwide array composed of over 1000 CGPS stations. We followed a standard procedure: applying a band-pass filter for the ionospheric combination of the L1 and L2 phase signals and calculating subioonospheric points (SIP) assuming thin ionosphere at the height of 350 km. Owing to the high density of SIP, many interesting features are observed and several important parameters were constrained, e.g. (1) apparent propagation speed, (2) directivity of disturbance signals, (3) decay during propagation, etc. As for (1), the observed speed of about 1 km/sec is significantly smaller than the Rayleigh Wave velocity, significantly faster than Travelling Ionospheric Disturbances (TID), but is consistent with the sound velocity at the ionospheric heights. The acoustic wave generated by sudden vertical movement of the Earth's surface first propagate upward. Then it will be refracted by height-dependent velocity structure resulting in horizontally propagating wave through the ionosphere. The observed TEC variation, with a wavelength of a few hundred km, may reflect electron density oscillation caused by the passage of such an acoustic wave. Regarding (2), there was a clear indication that the wave does not propagate northward. As first suggested by Calais et al. (1998), such a blocking is considered to be due to interaction between the geomagnetic field and the movement of charged particles comprising the ionosphere associated with the acoustic wave propagation. The model predicts that there will be no southward propagation of ionospheric disturbances caused by earthquakes in southern hemisphere mid-latitudes, which needs be confirmed by future earthquakes. The point (3) enabled the authors to define the empirical equation to calculate "Ionospheric disturbance magnitude" using the focal distance and disturbance amplitudes. Because the ionospheric disturbance monitoring does not require precise orbit information, such magnitudes could be determined near real time. This may help us, e.g. issue early warning message of Tsunami.

  6. C%2B%2B tensor toolbox user manual.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plantenga, Todd D.; Kolda, Tamara Gibson

    2012-04-01

    The C++ Tensor Toolbox is a software package for computing tensor decompositions. It is based on the Matlab Tensor Toolbox, and is particularly optimized for sparse data sets. This user manual briefly overviews tensor decomposition mathematics, software capabilities, and installation of the package. Tensors (also known as multidimensional arrays or N-way arrays) are used in a variety of applications ranging from chemometrics to network analysis. The Tensor Toolbox provides classes for manipulating dense, sparse, and structured tensors in C++. The Toolbox compiles into libraries and is intended for use with custom applications written by users.

  7. Improvement in the observation system for the GPS/A seafloor positioning

    NASA Astrophysics Data System (ADS)

    Fujimoto, H.; Kido, M.; Osada, Y.

    2010-12-01

    GPS/Acoustic seafloor positioning has become an indispensable geodetic observation for the monitoring of crustal activities near plate boundaries. There remain, however, substantial differences from GPS observation on land. Our group in Tohoku University has been working to cope with the problems under the program of the DONET, JAMSTEC.One of critical problems regarding the present GPS/A observation lies in the campaign style observation spending one or two days to measure the position of an array of acoustic transponders (PXPs) once or twice a year. It is similar to the triangulation observation on land before the age of the GPS. Chadwell et al. (2009, AGU Fall Meeting) made a step forward for this problem by carrying out a continuous GPS/A observation with a moored buoy. We are also developing a system using a moored small buoy. Precision of seafloor positioning by GPS/A is another critical problems. Considering that plate motions are several centimeters per year in most cases, precision of a few centimeters by GPS/A is a big difference from a few millimeters by GPS on land. We estimate that lateral variations in the sound velocity in the ocean can be a key to improve the precision in the positioning and to reduce the required time for the measurement, we have tried to estimate the lateral variations in the acoustic velocity by using 4-5 PXPs (Kido et al., 2006; Kido et al., this meeting). Long-term attitude stability of the position of a PXP deployed on thick sediment has been a basic problem in the GPS/A observation. While a pillar of a GPS antenna for an observation point is set up firmly on the ground, a PXP is deployed on the seafloor after a free fall from the sea surface. It is a serious problem to detect coseismic crustal movements on the seafloor. M7-class earthquakes occurred in 2004 off Kii Peninsula, Central Japan, gave us an opportunity to study the problem. By using an ROV (remotely operated vehicle), we visually observed ten PXPs in 2006, seven of which had been used to detect coseismic seafloor crustal movements of 20 cm or more as was reported by Kido et al. (2006) and by Tadokoro et al. (2006). The diving survey confirmed that all of the seven PXPs stood stably on the flat sediment, no effects of the earthquakes being recognized. Even if slight tilts of the PXPs were caused by the earthquakes, the effect on the seafloor positioning by GPS/A was estimated to be 1 cm or less (Fujimoto et al., in press). A PXP has been deployed for a permanent (actually several to 10 years) use. Therefore, it is not equipped with a recovery system as is used for an ocean bottom seismometers or pressure recorders. From our experience we have often wished to retrieve a PXP to revise its performance, to slightly change its position, or to reuse it after the battery is exhausted. We tried to use a long-life acoustic recovery system for three PXPs. We successfully recovered all of them 4.5 years after their deployment.

  8. Highly organised and dense vertical silicon nanowire arrays grown in porous alumina template on <100> silicon wafers

    PubMed Central

    2013-01-01

    In this work, nanoimprint lithography combined with standard anodization etching is used to make perfectly organised triangular arrays of vertical cylindrical alumina nanopores onto standard <100>−oriented silicon wafers. Both the pore diameter and the period of alumina porous array are well controlled and can be tuned: the periods vary from 80 to 460 nm, and the diameters vary from 15 nm to any required diameter. These porous thin layers are then successfully used as templates for the guided epitaxial growth of organised mono-crystalline silicon nanowire arrays in a chemical vapour deposition chamber. We report the densities of silicon nanowires up to 9 × 109 cm−2 organised in highly regular arrays with excellent diameter distribution. All process steps are demonstrated on surfaces up to 2 × 2 cm2. Specific emphasis was made to select techniques compatible with microelectronic fabrication standards, adaptable to large surface samples and with a reasonable cost. Achievements made in the quality of the porous alumina array, therefore on the silicon nanowire array, widen the number of potential applications for this technology, such as optical detectors or biological sensors. PMID:23773702

  9. On the Viability of Using Autonomous Three-Component Nodal Geophones to Calculate Teleseismic Ps Receiver Functions with an Application to the Old Faithful Hydrothermal System and the Cascadia Subduction Zone

    NASA Astrophysics Data System (ADS)

    Ward, K. M.; Lin, F. C.

    2017-12-01

    Recent advances in seismic data-acquisition technology paired with an increasing interest from the academic passive source seismological community have opened up new scientific targets and imaging possibilities, often referred to as Large-N experiments (large number of instruments). The success of these and other deployments has motivated individual researchers, as well as the larger seismological community, to invest in the next generation of nodal geophones. Although the new instruments have battery life and bandwidth limitations compared to broadband instruments, the relatively low deployment and procurement cost of these new nodal geophones provides an additional novel tool for researchers. Here, we explore the viability of using autonomous three-component nodal geophones to calculate teleseismic Ps receiver functions by comparison of co-located broadband stations and highlight some potential advantages with a dense nodal array deployed around the Upper Geyser basin in Yellowstone National Park. Two key findings from this example include (1) very dense nodal arrays can be used to image small-scale features in the shallow crust that typical broadband station spacing would alias, and (2) nodal arrays with a larger footprint could be used to image deeper features with greater or equal detail as typical broadband deployments but at a reduced deployment cost. The success of the previous example has motivated a larger 2-D line across the Cascadia subduction zone. In the summer of 2017, we deployed 174 nodal geophones with an average site spacing of 750 m. Synthetic tests with dense station spacing ( 1 km) reveal subtler features of the system that is consistent with our preliminary receiver function results from our Cascadia deployment. With the increasing availability of nodal geophones to individual researchers and the successful demonstration that nodal geophones are a viable instrument for receiver function studies, numerous scientific targets can be investigated at reduced costs or in expanded detail.

  10. geoPebble: Combined Seismic, Acoustic, and GPS Sensor with Wireless Communications for Glaciological Applications

    NASA Astrophysics Data System (ADS)

    Anandakrishnan, S.; Burkett, P. G.; Long, B.

    2009-12-01

    Glaciologist and geophysicists study many dynamic processes in glaciated environments such as sliding, crevasse formation, and water flow. These processes generate signals that can be interpreted for fundamental parameters needed for numerical models of glacier and ice sheet flow. These signals include microearthquakes beneath glaciers and ice streams during stick-slip processes; seismically identifiable harmonic tremors associated with subglacial water flow; supraglacial lake drainage which can produce rapid uplift of the 1 m/hr. In addition, researchers use active seismic experiments to determine bed properties such as roughness and lubrication. Currently, each process requires different instrumentation and/or different field equipment to collect the data such as a GPS receiver for displacement, a passive seismic instrument for microearthquakes, and a multichannel seismic recorder for active seismic experiments. We report on the development of an instrument specifically designed for observing dynamic glaciated environments in a single platform, reducing the need for multiple field systems and reducing the cost considerably. The geoPebble wireless seismic acquisition system, designed and built at the Pennsylvania State University, comprises 4 channels of 24-bit seismic and acoustic digitizing, an L1 GPS engine, onboard data storage and an 802.15 ZigBee radio. Three of the four ADC channels are intended to be used with a 3 component seismic sensor. The fourth channel is a dedicated to an audio frequency microphone. The 1 Hz L1 GPS system is capable of horizontal position accuracy to better than 10 cm when post-processed against L1/L2 stations within 10 km. Onboard storage is achieved with a Secure Digital card where volumes now exceed 32 GB. The ZigBee radio is capable of forming a mesh network which reduces transmit and receive power requirements while maintaing communication throughout the array and provides state-of-health information as well as sufficient data to determine proper functionality of the unit. This single platform is flexible enough to be used for deployments where sample rates are low (~500 Hz) but continuous data is required such as basal seismicity or stick-slip experiments, as well as active source experiments where sampling rates are higher (>10 Khz) but recording is triggered rather than continuous. In addition to being a single platform capable of high sample rate acquisition, as needed in active source experiments, this system has the advantage of being wireless, which makes deployment and configuration of the array much simpler. In either mode, the L1 GPS data are collected so that surveying the station location is not necessary. We report on the field testing of the instrument in Greenland where the data were compared to commercial instruments.

  11. Studies Of Infrasonic Propagation Using Dense Seismic Networks

    NASA Astrophysics Data System (ADS)

    Hedlin, M. A.; deGroot-Hedlin, C. D.; Drob, D. P.

    2011-12-01

    Although there are approximately 100 infrasonic arrays worldwide, more than ever before, the station density is still insufficient to provide validation for detailed propagation modeling. Relatively large infrasonic signals can be observed on seismic channels due to coupling at the Earth's surface. Recent research, using data from the 70-km spaced 400-station USArray and other seismic network deployments, has shown the value of dense seismic network data for filling in the gaps between infrasonic arrays. The dense sampling of the infrasonic wavefield has allowed us to observe complete travel-time branches of infrasound and address important research problems in infrasonic propagation. We present our analysis of infrasound created by a series of rocket motor detonations that occurred at the UTTR facility in Utah in 2007. These data were well recorded by the USArray seismometers. We use the precisely located blasts to assess the utility of G2S mesoscale models and methods to synthesize infrasonic propagation. We model the travel times of the branches using a ray-based approach and the complete wavefield using a FDTD algorithm. Although results from both rays and FDTD approaches predict the travel times to within several seconds, only about 40% of signals are predicted using rays largely due to penetration of sound into shadow zones. FDTD predicts some sound penetration into the shadow zone, but the observed shadow zones, as defined by the seismic data, have considerably narrower spatial extent than either method predicts, perhaps due to un-modeled small-scale structure in the atmosphere.

  12. Hydrologic applications of GPS site-position observations in the Western U.S

    NASA Astrophysics Data System (ADS)

    Ouellette, Karli J.

    Permanent Global Positioning System (GPS) networks have been established around the globe for a variety of uses, most notably to monitor the activity of fault lines and tectonic plate motion. A model for utilizing GPS as a tool for hydrologic monitoring is also developed. First, observations of the recent movement of the land surface throughout California by the Scripps Orbit and Permanent Array Center (SOPAC) GPS network are explored. Significant seasonal cycles and long term trends are related to historical observations of land subsidence. The pattern of deformation throughout the state appears to be caused by the occurrence of poroelastic deformation of the aquifer in the Central Valley, and elastic crustal loading by surface water and the winter snowpack in the Sierra Nevada Mountains. The result is a sort of teeter-totter motion between the Valley and the mountains where the Valley sinks in the dry season while the mountains lift, and the mountains sink in the wet season while the Valley lifts. Next, the elastic crustal deformation caused by the winter snowpack is explored more thoroughly at 6 high elevations throughout the Western United States. Expected annual deformation as a result of thermoelastic and snow water equivalent are calculated using SNOTEL observations and an elastic half-space model. The results demonstrate the dominance of snow loading on the seasonal vertical land surface deformation at all 6 GPS stations. The model is then reversed and applied to the GPS vertical site-position observations in order to predict snow water equivalent. The results are compared to SNOTEL observations of snow water equivalent and soil moisture. The study concludes that GPS site-position observations are able to predict variations in snow water equivalent and soil moisture with good accuracy. Then a model which incorporates both elastic crustal loading and poroelastic deformation was used to predict groundwater storage variations at 54 GPS stations throughout the Central Valley, CA. The results are compared to USGS water table observations from 43 wells. The predictions and observations show a similar magnitude and spatial pattern of groundwater depletion on both a seasonal and long term timescales. Depletion is focused on the southernmost part of the Valley where GPS reveals seasonal fluctuation of the water table around 2 m and 8 m/yr of water table decline during the study period. GPS also appears to respond to deformation from peat soils and changing reservoir storage in the northern parts of the Valley. Finally, preliminary work exploring the potential for using GPS as a tool for monitoring snowmelt runoff and infiltration is explored at one station in Eastern Idaho. Taking the difference between the change in GPS water storage estimates with time and the change in SNOTEL observed snow water equivalent with time produces a time series of infiltration, or the amount of water added to storage in the geologic profile. Then subtracting the estimated infiltration and snow water equivalent from the total precipitation observed by SNOTEL produces a time series of runoff. The estimated runoff at the GPS site was compared to observations from a nearby stream gauge and the foundation for a more extensive comparison is laid out. The overall impact of this work is to introduce the unique hydrologic information and monitoring capabilities which can be accessed through monitoring of the land surface position using GPS. As GPS networks grow and expand worldwide, the available data should be harnessed by the hydrologic community for the benefit of local water management as well as improvements to data assimilated models. The work presented here represents only a small fraction of the wealth of knowledge that could result from a budding field of GPS hydrologic remote sensing. (Abstract shortened by UMI.)

  13. Reconstruction of Microraptor and the evolution of iridescent plumage.

    PubMed

    Li, Quanguo; Gao, Ke-Qin; Meng, Qingjin; Clarke, Julia A; Shawkey, Matthew D; D'Alba, Liliana; Pei, Rui; Ellison, Mick; Norell, Mark A; Vinther, Jakob

    2012-03-09

    Iridescent feather colors involved in displays of many extant birds are produced by nanoscale arrays of melanin-containing organelles (melanosomes). Data relevant to the evolution of these colors and the properties of melanosomes involved in their generation have been limited. A data set sampling variables of extant avian melanosomes reveals that those forming most iridescent arrays are distinctly narrow. Quantitative comparison of these data with melanosome imprints densely sampled from a previously unknown specimen of the Early Cretaceous feathered Microraptor predicts that its plumage was predominantly iridescent. The capacity for simple iridescent arrays is thus minimally inferred in paravian dinosaurs. This finding and estimation of Microraptor feathering consistent with an ornamental function for the tail suggest a centrality for signaling in early evolution of plumage and feather color.

  14. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Fuerstenau, Stephen D. (Inventor); Yee, Karl Y. (Inventor); Chutjian, Ara (Inventor); Orient, Otto J. (Inventor); Rice, John T. (Inventor)

    2002-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter, or pole array, for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device.

  15. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Rice, John T. (Inventor); Fuerstenau, Stephen D. (Inventor); Orient, Otto J. (Inventor); Yee, Karl Y. (Inventor)

    2000-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter, or pole array, for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device.

  16. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Yee, Karl Y. (Inventor); Fuerstenau, Stephen D. (Inventor); Orient, Otto J. (Inventor); Rice, John T. (Inventor); Chutjian, Ara (Inventor)

    2001-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter, or pole array, for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device.

  17. High yield of self-catalyzed GaAs nanowire arrays grown on silicon via gallium droplet positioning.

    PubMed

    Plissard, S; Larrieu, G; Wallart, X; Caroff, P

    2011-07-08

    We report and detail a method to achieve growth of vertical self-catalyzed GaAs nanowires directly on Si(111) with a near-perfect vertical yield, using electron-beam-defined arrays of holes in a dielectric layer and molecular beam epitaxy. In our conditions, GaAs nanowires are grown along a vapor-liquid-solid mechanism, using in situ self-forming Ga droplets. The focus of this paper is to understand the role of the substrate preparation and of the pre-growth conditioning. Without changing temperature or the V/III ratio, the yield of vertical nanowires is increased incrementally up to 95%. The possibility to achieve very dense arrays, with center-to-center inter-wire distances less than 100 nm, is demonstrated.

  18. Pixel detectors for use in retina neurophysiology studies

    NASA Astrophysics Data System (ADS)

    Cunningham, W.; Mathieson, K.; Horn, M.; Melone, J.; McEwan, F. A.; Blue, A.; O'Shea, V.; Smith, K. M.; Litke, A.; Chichilnisky, E. J.; Rahman, M.

    2003-08-01

    One area of major inter-disciplinary co-operation is between the particle physics and bio-medical communities. The type of large detector arrays and fast electronics developed in laboratories like CERN are becoming used for a wide range of medical and biological experiments. In the present work fabrication technology developed for producing semiconductor radiation detectors has been applied to produce arrays which have been used in neuro-physiological experiments on retinal tissue. We have exploited UVIII, a low molecular weight resist, that has permitted large area electron beam lithography. This allows the resolution to go below that of conventional photolithography and hence the production of densely packed ˜500 electrode arrays with feature sizes down to below 2 μm. The neural signals from significant areas of the retina may thus be captured.

  19. Demonstration of Advanced Geophysics and Classification Methods on Munitions Response Sites: Closed Castner Range Fort Bliss, TX

    DTIC Science & Technology

    2016-04-01

    Program ft foot/feet GPS Global Positioning System HE High Explosive ID Identification IDA Institute for Defense Analysis IMU Inertial Measurement Unit ISO...were replaced with two ski-shaped runners, and a new mount above the array was used to hold the Inertial Measurement Unit (IMU) and Trimble R8 Real...to collect a cued data measurement (Figure 9). The instrument’s pitch, roll , and yaw angles automatically were measured by the IMU. These angles and

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, Jr-Wei; Simonetti, John H.; Bear, Brandon

    The first station of the Long Wavelength Array was used to study PSR B0031-07 with simultaneous observations at 38 and 74 MHz. We found that 158 (0.35%) of the observed pulses at 38 MHz and 221 (0.49%) of the observed pulses at 74 MHz qualified as giant pulses (GPs) in a total of 12 hr of observations. GPs are defined as having flux densities of a factor of ≥90 times that of an average pulse (AP) at 38 MHz and ≥80 times that of an AP at 74 MHz. The cumulative distribution of pulse strength follows a power law, with anmore » index of −4.2 at 38 MHz and −4.9 at 74 MHz. This distribution has a much more gradual slope than would be expected if observing the tail of a Gaussian distribution of normal pulses. The dispersion measure (DM) value which resulted in the largest signal to noise for dedispersed pulses was DM = 10.9 pc cm{sup −3}. No other transient pulses were detected in the data in the wide DM range from 1 to 5000 pc cm{sup −3}. There were 12 GPs detected within the same period from both 38 and 74 MHz, meaning that the majority of them are not generated in a wide band.« less

  1. Research Technology

    NASA Image and Video Library

    2002-08-01

    An array of components in a laboratory at NASA's Marshall Space Flight Center (MSFC) is being tested by the Flight Mechanics Office to develop an integrated navigation system for the second generation reusable launch vehicle. The laboratory is testing Global Positioning System (GPS) components, a satellite-based location and navigation system, and Inertial Navigation System (INS) components, sensors on a vehicle that determine angular velocity and linear acceleration at various points. The GPS and INS components work together to provide a space vehicle with guidance and navigation, like the push of the OnStar button in your car assists you with directions to a specific address. The integration will enable the vehicle operating system to track where the vehicle is in space and define its trajectory. The use of INS components for navigation is not new to space technology. The Space Shuttle currently uses them. However, the Space Launch Initiative is expanding the technology to integrate GPS and INS components to allow the vehicle to better define its position and more accurately determine vehicle acceleration and velocity. This advanced technology will lower operational costs and enhance the safety of reusable launch vehicles by providing a more comprehensive navigation system with greater capabilities. In this photograph, Dr. Jason Chuang of MSFC inspects an INS component in the laboratory.

  2. Fly's eye condenser based on chirped microlens arrays

    NASA Astrophysics Data System (ADS)

    Wippermann, Frank C.; Zeitner, Uwe-D.; Dannberg, Peter; Bräuer, Andreas; Sinzinger, Stefan

    2007-09-01

    Lens array arrangements are commonly used for the beam shaping of almost arbitrary input intensity distributions into a top-hat. The setup usually consists of a Fourier lens and two identical regular microlens arrays - often referred to as tandem lens array - where the second one is placed in the focal plane of the first microlenses. Due to the periodic structure of regular arrays the output intensity distribution is modulated by equidistant sharp intensity peaks which are disturbing the homogeneity. The equidistantly located intensity peaks can be suppressed when using a chirped and therefore non-periodic microlens array. A far field speckle pattern with more densely and irregularly located intensity peaks results leading to an improved homogeneity of the intensity distribution. In contrast to stochastic arrays, chirped arrays consist of individually shaped lenses defined by a parametric description of the cells optical function which can be derived completely from analytical functions. This gives the opportunity to build up tandem array setups enabling to achieve far field intensity distribution with an envelope of a top-hat. We propose a new concept for fly's eye condensers incorporating a chirped tandem microlens array for the generation of a top-hat far field intensity distribution with improved homogenization under coherent illumination. The setup is compliant to reflow of photoresist as fabrication technique since plane substrates accommodating the arrays are used. Considerations for the design of the chirped microlens arrays, design rules, wave optical simulations and measurements of the far field intensity distributions are presented.

  3. Joint Geodetic and Seismic Analysis of the effects of Englacial and Subglacial Hydraulics on Surface Crevassing near a Seasonal, Glacier-Dammed Lake on Gornergletscher, Switzerland

    NASA Astrophysics Data System (ADS)

    Garcia, L.; Luttrell, K. M.; Kilb, D. L.; Walter, F.

    2017-12-01

    Glacial outburst floods are difficult to predict and threaten human life and property near glaciated regions. These events are characterized by rapid draining of glacier-dammed lakes via the sub/englacial hydraulic network to the proglacial stream. The glacier-dammed lake on Gornergletscher in Switzerland, which fills and drains each summer, provides an opportunity to study this hazard. For three drainages (2004, 2006, and 2007), we track icequakes (IQ) and on-ice GPS movement. Our seasonal seismic networks had 8 - 24 three component stations and apertures of about 300 - 400 m on the glacier surface. The seasonal GPS arrays contained 4 - 8 GPS antennae on the glacier surface. Using Rayleigh wave coherence surface IQ location, we located 2924, 7822 and 3782 IQs, in 2004, 2006 and 2007, respectively. The GPS data were smoothed using a nonparametric protocol, with average station velocities of 10 - 90 mm/day. In 2006, strains were calculated using five stations within 500 m of the lake, co-located with the seismic network. IQ productivity increased substantially during lake drainage only in 2004, which was the only year when the lake drainage was rapid ( 6 days) and primarily subglacial. In 2006, there was no obvious increase in GPS speeds with slow ( 21 days), supraglacial lake drainage. However, when drainage was subglacial as in 2004 and 2007 (sub/englacial over 11 days), GPS speed increased up to 160%. This speed increase is evidence for basal sliding induced by subglacial drainage. In general, we find that when the strain increase on the principle extension axis aligns with the crevasse opening direction, IQ are more prolific. We also observe a diurnal signal in both IQ occurrence and surface strain, with peak strain occurring in the mid- to late-afternoon (15:00 - 19:00 local) across the study area in 2006. We interpret this time-shift in strain and spatiotemporal dependence of IQs to be caused by diurnal variations in melt-induced sliding. Our analysis sheds light on crevasse formation on short time scales where glacier flow is controlled by sliding variations in response to water input into the subglacial drainage system. Coupled seismic and GPS monitoring can thus make a key contribution to our understanding of brittle deformation and crevassing of glacier ice.

  4. Application of Seismic Array Processing to Tsunami Early Warning

    NASA Astrophysics Data System (ADS)

    An, C.; Meng, L.

    2015-12-01

    Tsunami wave predictions of the current tsunami warning systems rely on accurate earthquake source inversions of wave height data. They are of limited effectiveness for the near-field areas since the tsunami waves arrive before data are collected. Recent seismic and tsunami disasters have revealed the need for early warning to protect near-source coastal populations. In this work we developed the basis for a tsunami warning system based on rapid earthquake source characterisation through regional seismic array back-projections. We explored rapid earthquake source imaging using onshore dense seismic arrays located at regional distances on the order of 1000 km, which provides faster source images than conventional teleseismic back-projections. We implement this method in a simulated real-time environment, and analysed the 2011 Tohoku earthquake rupture with two clusters of Hi-net stations in Kyushu and Northern Hokkaido, and the 2014 Iquique event with the Earthscope USArray Transportable Array. The results yield reasonable estimates of rupture area, which is approximated by an ellipse and leads to the construction of simple slip models based on empirical scaling of the rupture area, seismic moment and average slip. The slip model is then used as the input of the tsunami simulation package COMCOT to predict the tsunami waves. In the example of the Tohoku event, the earthquake source model can be acquired within 6 minutes from the start of rupture and the simulation of tsunami waves takes less than 2 min, which could facilitate a timely tsunami warning. The predicted arrival time and wave amplitude reasonably fit observations. Based on this method, we propose to develop an automatic warning mechanism that provides rapid near-field warning for areas of high tsunami risk. The initial focus will be Japan, Pacific Northwest and Alaska, where dense seismic networks with the capability of real-time data telemetry and open data accessibility, such as the Japanese HiNet (>800 instruments) and the Earthscope USArray Transportable Array (~400 instruments), are established.

  5. Quality of Green's Functions Improved by Automatic Detection and Removal of Coherent Anthropogenic Noise

    NASA Astrophysics Data System (ADS)

    Williams, E. F.; Martin, E. R.; Biondi, B. C.; Lindsey, N.; Ajo Franklin, J. B.; Wagner, A. M.; Bjella, K.; Daley, T. M.; Dou, S.; Freifeld, B. M.; Robertson, M.; Ulrich, C.

    2016-12-01

    We analyze the impact of identifying and removing coherent anthropogenic noise on synthetic Green's functions extracted from ambient noise recorded on a dense linear distributed acoustic sensing (DAS) array. Low-cost, low-impact urban seismic surveys are possible with DAS, which uses dynamic strain sensing to record seismic waves incident to a buried fiber optic cable. However, interferometry and tomography of ambient noise data recorded in urban areas include coherent noise from near-field infrastructure such as cars and trains passing the array, in some cases causing artifacts in estimated Green's functions and potentially incorrect surface wave velocities. Based on our comparison of several methods, we propose an automated, real-time data processing workflow to detect and reduce the impact of these events on data from a dense array in an urban environment. We utilize a recursive STA/LTA (short-term average/long-term average) algorithm on each channel to identify sharp amplitude changes typically associated with an event arrival. In order to distinguish between optical noise and physical events, an event is cataloged only if STA/LTA is triggered on enough channels across the array in a short time window. For each event in the catalog, a conventional semblance analysis is performed across a straight segment of the array to determine whether the event has a coherent velocity signature. Events that demonstrate a semblance peak at low apparent velocities (5-50 m/s) are assumed to represent coherent transportation-related noise and are down-weighted in the time domain before cross-correlation. We show the impact of removing such noise on estimated Green's functions from ambient noise data recorded in Richmond, CA in December 2014. This method has been developed for use on a continuous time-lapse ambient noise survey collected with DAS near Fairbanks, AK, and an upcoming ambient noise survey on the Stanford University campus using DAS with a re-purposed telecommunications fiber optic cable.

  6. InSAR Time Series Analysis of Dextral Strain Partitioning Across the Burma Plate

    NASA Astrophysics Data System (ADS)

    Reitman, N. G.; Wang, Y.; Lin, N.; Lindsey, E. O.; Mueller, K. J.

    2017-12-01

    Oblique convergence between the India and Sunda plates creates partitioning of strike-slip and compressional strain across the Burma plate. GPS data indicate up to 40 mm/yr (Steckler et al 2016) of dextral strain exists between the India and Sunda plates. The Sagaing fault in Myanmar accommodates 20 mm/yr at the eastern boundary of the Burma plate, but the location and magnitude of dextral strain on other faults remains an open question, as does the relative importance of seismic vs aseismic processes. The remaining 20 mm/yr of dextral strain may be accommodated on one or two faults or widely distributed on faults across the Burma plate, scenarios that have a major impact on seismic hazard. However, the dense GPS data necessary for precise determination of which faults accommodate how much strain do not exist yet. Previous studies using GPS data ascribe 10-18 mm/yr dextral strain on the Churachandpur Mao fault in India (Gahaluat et al 2013, Steckler et al 2016) and 18-22 mm/yr on the northern Sagaing fault (Maurin et al 2010, Steckler et al 2016), leaving up to 10 mm/yr unconstrained. Several of the GPS results are suggestive of shallow aseismic slip along parts of these faults, which, if confirmed, would have a significant impact on our understanding of hazard in the area. Here, we use differential InSAR analyzed in time series to investigate dextral strain on the Churachandpur Mao fault and across the Burma plate. Ascending ALOS-1 imagery spanning 2007-2010 were processed in time series for three locations. Offsets in phase and a strong gradient in line-of-sight deformation rate are observed across the Churachandpur Mao fault, and work is ongoing to determine if these are produced by shallow fault movement, topographic effects, or both. The results of this study will provide further constraints for strain rate on the Churachandpur Mao fault, and yield a more complete understanding of strain partitioning across the Burma plate.

  7. Plasmapause Variations During the 17 March 2013 Identified by Ground-based and Space-based GPS Signals

    NASA Astrophysics Data System (ADS)

    Bishop, R. L.; Coster, A. J.; Turner, D. L.; Nikoukar, R.; Lemon, C.; Bust, G. S.; Roeder, J. L.

    2016-12-01

    Earth's plasmasphere is a region of cold (T ≤ 1 eV), dense (n 101 to 104 cm-3) plasma located in the inner magnetosphere and coincident with a portion of the ionosphere that co-rotates with the planet in the geomagnetic field. Plasmaspheric plasma originates in the ionosphere and fills the magnetic flux tubes on which the corotation electric field dominates over the convection electric field. The corotation electric field results from Earth's spinning magnetic field while the convection electric field results from the solar wind driving of global plasma convection within the magnetosphere. The outer boundary of the plasmasphere is the plasmapause, and it corresponds to the transition region between corotation-driven vs. convection-driven plasmas. During quiet periods of low solar wind speed and weak interplanetary magnetic field (IMF), ionospheric outflow from lower altitudes can fill the plasmasphere over the course of several days with the plasmapause expanding to higher L-shells. However, when the convection electric field is enhanced during active solar wind periods, such as magnetic storms, the plasmasphere can be rapidly eroded to L 2.5 or less leading to many interesting magnetospheric and ionospheric features such as plasmapause erosion, plasmaspheric plumes and ionospheric plasma outflows. In this presentation, we focus on the dynamics of the plasmapause as observed by ground-based and space-borne GPS receivers. We will focus on the period 15 March to 19 March 2013, which includes the on-set and recovery periods of a strong geomagnetic storm. We will examine the location and erosion time scales of the plasmapause during the active portion of the storm. An extensive global network of ground-based scientific receivers ( 4000) will be utilized in the study. Space-based observations will be obtained from data from the CORISS GPS radio occultation (RO) sensor on the C/NOFS satellite as well as the COSMIC GPS RO sensors.

  8. Kinematics, seismotectonics and seismic potential of the eastern sector of the European Alps from GPS and seismic deformation data

    NASA Astrophysics Data System (ADS)

    Serpelloni, E.; Vannucci, G.; Anderlini, L.; Bennett, R. A.

    2016-10-01

    We present a first synoptic view of the seismotectonics and kinematics of the eastern sector of the European Alps using geodetic and seismological data. The study area marks the boundary between the Adriatic and the Eurasian plates, through a wide zone of deformation including a variety of tectonic styles within a complex network of crustal and lithospheric faults. A new dense GPS velocity field, new focal mechanisms and seismic catalogues, with uniformly re-calibrated magnitudes (from 1005), are used to estimate geodetic and seismic deformation rates and to develop interseismic kinematic and fault locking models. Kinematic indicators from seismological and geodetic data are remarkably consistent at different spatial scales. In addition to large-scale surface motion, GPS velocities highlight more localized deformation features revealing a complex configuration of interacting tectonic blocks, for which new constraints are provided in this work accounting for elastic strain build up at faults bonding rotating blocks. The geodetic and seismological data highlight two belts of higher deformation rates running WSW-ENE along the Eastern Southern Alps (ESA) in Italy and E-W in Slovenia, where deformation is more distributed. The highest geodetic strain-rates are observed in the Montello-Cansiglio segment of the ESA thrust front, for which the higher density of the GPS network provides indications of limited interseismic locking. Most of the dextral shear between the Eastern Southern Alps and the Eastern Alps blocks is accommodated along the Fella-Sava fault rather than the Periadriatic fault. In northern Croatia and Slovenia geodetic and seismological data allow constraining the kinematics of the active structures bounding the triangular-shaped region encompassing the Sava folds, which plays a major role in accommodating the transition from Adria- to Pannonian-like motion trends. The analysis of the seismic and geodetic moment rates provides new insights into the seismic potential along the ESA front.

  9. Use of Microtremor Array Recordings for Mapping Subsurface Soil Structure, Singapore

    NASA Astrophysics Data System (ADS)

    Walling, M.

    2012-12-01

    Microtremor array recordings are carried out in Singapore, for different geology, to study the influence of each site in modeling the subsurface structure. The Spatial Autocorrelation (SPAC) method is utilized for the computation of the soil profiles. The array configuration of the recording consists of 7 seismometers, recording the vertical component of the ground motion, and the recording at each site is carried out for 30 minutes. The results from the analysis show that the soil structure modeled for the young alluvial of Kallang Formation (KF), in terms of shear wave velocity (Vs), gives a good correlation with borehole information, while for the older geological formation of Jurong Formation (JF) (sedimentary rock sequence) and Old Alluvial (OA) (dense alluvium formation), the correlation is not very clear due to the lack of impedance contrast. The older formation of Bukit Timah Granite (BTG) show contrasting results within the formation, with the northern BTG suggesting a low Vs upper layer of about 20m - 30m while the southern BTG reveals a dense formation. The discrepancy in the variation within BTG is confirmed from borehole data that reveals the northern BTG to have undergone intense weathering while the southern BTG have not undergone noticeable weathering. Few sites with bad recording quality could not resolve the soil structure. Microtremor array recording is good for mapping sites with soft soil formation and weathered rock formation but can be limited in the absence of subsurface velocity contrast and bad quality of microtremor records.; The correlation between the Vs30 estimated from SPAC method and borehole data for the four major geological formations of Singapore. The encircled sites are the sites with recording error.

  10. High-resolution shallow structure revealed with ambient noise tomography on a dense array

    NASA Astrophysics Data System (ADS)

    Zeng, X.; Thurber, C. H.; Luo, Y.; Matzel, E.; Team, P.

    2016-12-01

    A dense seismic array was deployed by the PoroTomo research team at Brady Hot Springs, Nevada in March 2016. The array consisted of 238 short-period three-component geophones (5-Hz corner frequency) with about 60 m spacing. Over the 15 day deployment, the array recorded over 6,000 active source signals (vibroseis sweeps) and ambient noise that was dominated by traffic noise.We adopted the one-bit method to better reduce the effect of the active source. Spectral whitening was performed between 0.5 and 2 Hz. The continuous record was chopped into 1 minute segments. The 1-minute cross-correlation functions were initially stacked linearly, and then the phase-weighted stacking method was applied to improve signal quality. More than two million noise correlation functions (NCFs) have been obtained.The Rayleigh wave group velocity was measured on the symmetric component of the NCFs with the frequency-time analysis method. The average group velocity is about 400 m/s at 4 Hz, which is consistent with preliminary active source result. To avoid mis-picking possible precursors, the arrival time was picked at the peak in a two-second time window predicted with the average group velocity of the fundamental mode. The quality of the arrival measurements is defined by the signal-to-noise ratio. We were able to pick reliable arrivals at about 35% of the station-pairs. Since the straight-ray assumption may not be valid in a strongly heterogeneous medium, the wave path was traced with a finite difference scheme and the LSQR method was utilized to invert group velocity. The heterogeneous features of the group velocity map are consistent with a local geologic map. The PoroTomo project is funded by a grant from the U.S. Department of Energy.

  11. Do Circumnuclear Dense Gas Disks Drive Mass Accretion onto Supermassive Black Holes?

    NASA Astrophysics Data System (ADS)

    Izumi, Takuma; Kawakatu, Nozomu; Kohno, Kotaro

    2016-08-01

    We present a positive correlation between the mass of dense molecular gas ({M}{{dense}}) of ˜100 pc scale circumnuclear disks (CNDs) and the black hole mass accretion rate ({\\dot{M}}{{BH}}) in a total of 10 Seyfert galaxies, based on data compiled from the literature and an archive (median aperture θ med = 220 pc). A typical {M}{{dense}} of CNDs is 107-8 {M}⊙ , estimated from the luminosity of the dense gas tracer, the HCN(1-0) emission line. Because dense molecular gas is the site of star formation, this correlation is virtually equivalent to the one between the nuclear star-formation rate and {\\dot{M}}{{BH}} revealed previously. Moreover, the {M}{{dense}}{--}{\\dot{M}}{{BH}} correlation was tighter for CND-scale gas than for the gas on kiloparsec or larger scales. This indicates that CNDs likely play an important role in fueling black holes, whereas greater than kiloparesec scale gas does not. To demonstrate a possible approach for studying the CND-scale accretion process with the Atacama Large Millimeter/submillimeter Array, we used a mass accretion model where angular momentum loss due to supernova explosions is vital. Based on the model prediction, we suggest that only the partial fraction of the mass accreted from the CND ({\\dot{M}}{{acc}}) is consumed as {\\dot{M}}{{BH}}. However, {\\dot{M}}{{acc}} agrees well with the total nuclear mass flow rate (I.e., {\\dot{M}}{{BH}} + outflow rate). Although these results are still tentative with large uncertainties, they support the view that star formation in CNDs can drive mass accretion onto supermassive black holes in Seyfert galaxies.

  12. Surface rupture and slip distribution of the 2016 Mw7.8 Kaikoura earthquake (New Zealand) from optical satellite image correlation using MicMac

    NASA Astrophysics Data System (ADS)

    Champenois, Johann; Klinger, Yann; Grandin, Raphaël; Satriano, Claudio; Baize, Stéphane; Delorme, Arthur; Scotti, Oona

    2017-04-01

    Remote sensing techniques, like optical satellite image correlation, are very efficient methods to localize and quantify surface displacements due to earthquakes. In this study, we use the french sub-pixel correlator MicMac (Multi Images Correspondances par Méthodes Automatiques de Corrélation). This free open-source software, developed by IGN, was recently adapted to process satellite images. This correlator uses regularization, and that provides good results especially in near-fault area with a high spatial resolution. We use co-seismic pair of ortho-images to measure the horizontal displacement field during the recent 2016 Mw7.8 Kaikoura earthquake. Optical satellite images from different satellites are processed (Sentinel-2A, Landsat8, etc.) to present a dense map of the surface ruptures and to analyze high density slip distribution along all major ruptures. We also provide a detail pattern of deformation along these main surface ruptures. Moreover, 2D displacement from optical correlation is compared to co-seismic measurements from GPS, static displacement from accelerometric records, geodetic marks and field investigations. Last but not least, we investigate the reconstruction of 3D displacement from combining InSAR, GPS and optic.

  13. Solo but Not Separate: Preparing 21st-Century School Library Professionals Who Can "Go It Alone"

    ERIC Educational Resources Information Center

    Pasco, Becky

    2011-01-01

    Preparing school librarians for a diverse array of 21st-century educational environments is a daunting task. Faculty in school library preparation programs send candidates out into sparsely populated rural areas, dense urban settings, and everything in between. Some candidates will provide services and resources in updated, modern facilities,…

  14. Terrestrial Gamma Flashes at Ground Level - TETRA-II Instrumentation

    NASA Astrophysics Data System (ADS)

    Pleshinger, D. J.; Adams, C.; Al-Nussirat, S.; Bai, S.; Banadaki, Y.; Bitzer, P. M.; Cherry, M. L.; Hoffmann, J.; Khosravi, E.; Legault, M.; Orang, M.; Rodriguez, R.; Smith, D.; Trepanier, J. C.; Sunda-Meya, A.; Zimmer, N.

    2017-12-01

    The TGF and Energetic Thunderstorm Rooftop Array (TETRA-II) consists of an array of BGO scintillators to detect bursts of gamma rays from thunderstorms. TETRA-II will have approximately an order of magnitude greater sensitivity for individual flashes than TETRA-I, an original array of NaI scintillators at Louisiana State University that detected 37 millisecond-scale bursts of gamma rays from 2010-2015. The BGO scintillators increase the energy range of particles detected to 10 MeV and are placed in 20 detectors boxes, each with 1180 cm3 of BGO, at 4 separate locations: the campus of Louisiana State University in Baton Rouge, Louisiana; the campus of the University of Puerto Rico at Utuado, Puerto Rico; the Centro Nacional de Metrologia de Panama (CENAMEP) in Panama City, Panama; and the Severe Weather Institute and Radar & Lightning Laboratories in Huntsville, Alabama. The data are read out with 12 microsecond resolution by National Instruments PCIe 6351 high speed data acquisition cards, with timestamps determined from a 20 MHz clock and a GPS board recording a pulse per second. Details of the array and its instrumentation, along with an overview of initial results, will be presented.

  15. Observations with the GISMOS Airborne Radio Occultation System

    NASA Astrophysics Data System (ADS)

    Muradyan, Paytsar; Haase, Jennifer; Garrison, James; Lulich, Tyler; Xie, Feiqin

    2010-05-01

    The spatial sample density of temperature and moisture profiles derived from the current spaceborne GPS radio occultation (RO) constellation is limited by the number of occultation satellites in operation. With the current RO satellite configuration, only one RO profile per day is typically available in a 160,000 square kilometer area in the mid-latitude and tropics and slightly more in high latitudes. The airborne RO technique, which has the GPS receiver onboard an airplane, offers flexibility and much denser sampling for targeted observation within 400 km of the aircraft, and provides comparable high vertical resolution to that of the spaceborne case. With an airborne system, targeted measurements can be planned in an optimal geometry to study the accuracy of RO measurements in the lower troposphere where strong vertical gradients in moisture might lead to disruption of signal tracking. These dense measurements can also be used to test assimilation techniques of refractivity and lower tropospheric moisture derived from RO data. In February 2008, the GNSS Instrument System for Multistatic and Occultation Sensing (GISMOS), developed at Purdue University, was successfully deployed on the NSF HIAPER aircraft for series of research flights in the Gulf of Mexico coastal region to validate the airborne observing system. During this campaign, occultation observations were collected in conjunction with supplemental radiosonde and dropsonde soundings. RO signals were recorded using side-looking GPS antennas and dual frequency GPS receivers. However, these conventional phase-locked-loop GPS receivers cannot always track the signal in the lower troposphere, where there are rapid phase accelerations caused by highly variable moisture structures. To extend the observations deeper into the atmosphere, the raw signal from occulting satellites is recorded at 10MHz sampling interval by a GPS recording system (GRS). Open-loop (OL) tracking, which replaces the traditional GPS receiver feedback loop using an a priori estimate of Doppler frequency, was implemented in a software receiver and the data was post-processed after the flight. Such an extensive dataset can be of importance in studies aimed at improving signal processing performance for spaceborne as well as airborne RO measurements. We present data from the February 2008 campaign, and show several examples of occultations with clear atmospheric signals in the excess phase and Doppler. Many recordings that were made with conventional receivers descend below 5 km in the atmosphere. With an OL tracking procedure using the data recorded by the GRS, the measurements extended deeper into the atmosphere (~ 2km above surface). Raytracing was used to simulate the atmospheric excess phase profile from a nearby radiosonde sounding. The excess phase profiles acquired with both closed-loop and open-loop tracking show consistent patterns compared to the radiosonde observations.

  16. The History and Evolution of Young and Distant Radio Sources

    NASA Astrophysics Data System (ADS)

    Collier, Jordan

    We study two classes of object to gain a better understanding of the evolution of Active Galactic Nuclei (AGN): Infrared-Faint Radio Sources (IFRSs) and Gigahertz Peaked Spectrum (GPS) / Compact Steep Spectrum (CSS) sources. IFRSs are a recently discovered rare class of object, which were found to be strong in the radio but undetectable in extremely sensitive infrared observations from the Spitzer Space Telescope, even in stacked images with sigma < 1muJy. IFRSs were found to exhibit a relatively high sky density, and were thought to represent AGN at z > 3. Therefore, IFRSs may significantly increase the number of known high-redshift galaxies. However, their non-detections in the optical and infrared prevented confirmation of their nature. Previous studies of IFRSs focused on very sensitive observations of a few small regions of the sky, and the largest sample consisted of 55 IFRSs. However, we follow the strategy of combining radio data with IR and optical data for a large region of the sky. Using these data, we discover a population of >1300 brighter IFRSs which are, for the first time, reliably detected in the infrared and optical. We present the first spectroscopic redshifts of IFRSs and show that the brightest IFRSs are at z > 2. Furthermore, we rule out that IFRSs are Star Forming Galaxies, hotspots, lobes or misidentifications. We find the first X-ray counterparts of IFRSs, and increase the number of known polarised IFRSs five-fold. We present an analysis of their radio spectra and show that IFRSs consist of GPS, CSS and ultra-steep-spectrum sources. We follow up >50 of these using VLBI observations, and confirm the AGN status of IFRSs. GPS and CSS sources are compact radio sources with a convex radio spectrum. They are widely thought to represent young and evolving radio galaxies that have recently launched their jets. However, good evidence exists in individual cases that GPS and CSS sources are one of the following: 1) frustrated by interactions with dense gas and dust in their environment; 2) prematurely dying radio sources; 3) recurrent radio galaxies. Their convex spectrum is generally thought to be caused by Synchrotron Self Absorption (SSA), an internal process in which the same population of electrons is responsible for the synchrotron emission and self-absorption. However, recent studies have shown that the convex spectrum may be caused by Free-Free Absorption (FFA), an external process in which an inhomogeneous screen absorbs the synchrotron emission. The majority of GPS and CSS samples consist of Jy-level and therefore, high-luminosity sources. VLBI images show that GPS and CSS sources typically have double-lobed, edge-brightened morphologies on mas scales, appearing as scaled down versions of Fanaroff-Riley Class II (FR II) galaxies. Recently, two low-luminosity GPS sources were found to have jet-brightened morphologies, which appeared as scaled down versions of Fanaroff-Riley Class I (FR I) galaxies. From this, it was proposed that there exists a morphology-luminosity break analogous to the FR I/II break and that low-luminosity GPS and CSS sources are the compact counterparts of FR I galaxies. However, this hypothesis remains unconfirmed, since very few samples of low-luminosity GPS and CSS sources exist. We conclude that, despite being historically favoured, single inhomogeneous SSA is not the dominant form of absorption amongst a large fraction of GPS and CSS sources. We find that FFA provides a good model for the majority of the spectra with observable turnovers, suggesting an inhomogeneous and clumpy ambient medium. Furthermore, we conclude that the majority of our GPS and CSS sources are young and evolving and may undergo recurrent activity over small time scales. We conclude that a very small fraction of GPS and CSS sources consists of frustrated, dying or restarted radio galaxies. (Abstract shortened by ProQuest.).

  17. Using Airborne Laser Altimetry to Detect Topographic Change at Long Valley Caldera, California

    NASA Technical Reports Server (NTRS)

    Hofton, M. A.; Minster, J.-B.; Ridgway, J. R.; Williams, N. P.; Blair, J.-B.; Rabine, D. L.; Bufton, J. L.

    1999-01-01

    The topography of the Long Valley caldera, California, was sampled using airborne laser altimetry in 1993, 1995, and 1997 to test the feasibility of using airborne laser altimetry for monitoring deformation of volcanic origin. Results show the laser altimeters are able to resolve subtle topographic features such as a gradual slope and to detect small transient changes in lake elevation. Crossover and repeat pass analyses of laser tracks indicate decimeter-level vertical precision is obtained over flat and low-sloped terrain for altimeter systems performing waveform digitization. Comparisons with complementary, ground-based GPS data at a site close to Bishop airport indicate that the laser and GPS-derived elevations agree to within the error inherent in the measurement and that horizontal locations agree to within the radius of the laser footprint. A comparison of the data at two sites, one where no change and the other where the maximum amount of vertical uplift is expected, indicates approximately 10 cm of relative uplift occurred 1993-1997, in line with predictions from continuous GPS measurements in the region. Extensive terrain mapping flights during the 1995 and 1997 missions demonstrate some of the unique abilities of laser altimetry; the straightforward creation of high resolution, high accuracy digital elevation models of overflown terrain, and the ability to determine ground topography in the presence of significant ground cover such as dense tree canopies. These capabilities make laser altimetry an attractive technique for quantifying topographic change of volcanic origin, especially in forested regions of the world where other remote sensing instruments have difficulty detecting the underlying topography.

  18. Global model of the F2 layer peak height for low solar activity based on GPS radio-occultation data

    NASA Astrophysics Data System (ADS)

    Shubin, V. N.; Karpachev, A. T.; Tsybulya, K. G.

    2013-11-01

    We propose a global median model SMF2 (Satellite Model of the F2 layer) of the ionospheric F2-layer height maximum (hmF2), based on GPS radio-occultation data for low solar activity periods (F10.7A<80). The model utilizes data provided by GPS receivers onboard satellites CHAMP (~100,000 hmF2 values), GRACE (~70,000) and COSMIC (~2,000,000). The data were preprocessed to remove cases where the absolute maximum of the electron density lies outside the F2 region. Ground-based ionospheric sounding data were used for comparison and validation. Spatial dependence of hmF2 is modeled by a Legendre-function expansion. Temporal dependence, as a function of Universal Time (UT), is described by a Fourier expansion. Inputs of the model are: geographical coordinates, month and F10.7A solar activity index. The model is designed for quiet geomagnetic conditions (Kр=1-2), typical for low solar activity. SMF2 agrees well with the International Reference Ionosphere model (IRI) in those regions, where the ground-based ionosonde network is dense. Maximal difference between the models is found in the equatorial belt, over the oceans and the polar caps. Standard deviations of the radio-occultation and Digisonde data from the predicted SMF2 median are 10-16 km for all seasons, against 13-29 km for IRI-2012. Average relative deviations are 3-4 times less than for IRI, 3-4% against 9-12%. Therefore, the proposed hmF2 model is more accurate than IRI-2012.

  19. Assessing the detection capability of a dense infrasound network in the southern Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Che, Il-Young; Le Pichon, Alexis; Kim, Kwangsu; Shin, In-Cheol

    2017-08-01

    The Korea Infrasound Network (KIN) is a dense seismoacoustic array network consisting of eight small-aperture arrays with an average interarray spacing of ∼100 km. The processing of the KIN historical recordings over 10 yr in the 0.05-5 Hz frequency band shows that the dominant sources of signals are microbaroms and human activities. The number of detections correlates well with the seasonal and daily variability of the stratospheric wind dynamics. The quantification of the spatiotemporal variability of the KIN detection performance is simulated using a frequency-dependent semi-empirical propagation modelling technique. The average detection thresholds predicted for the region of interest by using both the KIN arrays and the International Monitoring System (IMS) infrasound station network at a given frequency of 1.6 Hz are estimated to be 5.6 and 10.0 Pa for two- and three-station coverage, respectively, which was about three times lower than the thresholds predicted by using only the IMS stations. The network performance is significantly enhanced from May to August, with detection thresholds being one order of magnitude lower than the rest of the year due to prevailing steady stratospheric winds. To validate the simulations, the amplitudes of ground-truth repeated surface mining explosions at an open-pit limestone mine were measured over a 19-month period. Focusing on the spatiotemporal variability of the stratospheric winds which control to first order where infrasound signals are expected to be detected, the predicted detectable signal amplitude at the mine and the detection capability at one KIN array located at a distance of 175 km are found to be in good agreement with the observations from the measurement campaign. The detection threshold in summer is ∼2 Pa and increases up to ∼300 Pa in winter. Compared with the low and stable thresholds in summer, the high temporal variability of the KIN performance is well predicted throughout the year. Simulations show that the performance of the global infrasound network of the IMS is significantly improved by adding KIN. This study shows the usefulness of dense regional networks to enhance detection capability in regions of interest in the context of future verification of the Comprehensive Nuclear-Test-Ban Treaty.

  20. GPS and InSAR Observations of Active Mountain Growth Across the Sierra Nevada/Great Basin Transition

    NASA Astrophysics Data System (ADS)

    Hammond, W. C.; Blewitt, G.; Li, Z.; Kreemer, C. W.; Plag, H.

    2010-12-01

    Topographic relief across the Sierra Nevada Mountains and Great Basin of the western United States is dominated by mountain ranges and valleys that are the product of active tectonic deformation. The contemporary rate of uplift of the Sierra Nevada via slip on range front faults and/or tilting of the Sierra Nevada/Great Valley microplate (SNGV) has been the subject of controversy. For example, geologic estimates of the age of the modern range topography vary by one order of magnitude, from 3 to 30 million years. With present elevations near 3 km, the more rapid of these implied rates is large enough to be detected by the most precise GPS measurements. We use GPS vertical and horizontal components, and InSAR time series analysis to address these long standing questions about the rates of Sierran uplift. The data are from western U.S. high precision GPS networks including the EarthScope Plate Boundary Observatory, its nucleus networks, the University of Nevada Mobile Array of GPS for Nevada Transtension, and from integrated InSAR+GPS time series analysis of ERS and ENVISAT scenes acquired between 1992 and 2010 from the GeoEarthScope and WinSAR data archives. GPS data are processed using the GIPSY OASIS II software, with ambiguities resolved, ocean tidal loading, latest GMF troposphere model and antenna calibrations applied. InSAR time series analysis results provide enhanced geographic resolution, improving our ability to locate the boundary of SNGV block-like behavior. Vertical velocities from long-running continuous stations in eastern Nevada are very similar to one another, averaging -0.1 mm/yr, with standard deviation of 0.27 mm/yr, placing an upper bound on the uncertainty in vertical rates. We find agreement between the results of InSAR time series analysis aligned to GPS and GPS line of site rates at the level of 0.35 mm/yr, placing an upper bound on the uncertainty of InSAR time series results. Because we seek to infer long-term uplift rates, applicable over millions of years, we correct the geodetic velocity field for postseismic transients from earthquakes that can cause long-wavelength distortions of the GPS velocity field. The signal of viscoelastic relaxation from historic earthquakes in Central Nevada is clearly visible in the data. We remove this transient relaxation by subtracting the predictions from a published model, although the effect on SNGV vertical motion is negligible. There is general agreement among stations on the west slope of the Sierra Nevada, near the central and southern Sierra between latitude 36° and 39°, that the rates are between 0.8 and 1.6 mm/yr upward with respect to eastern Nevada. These rates are in broad agreement with normal slip rates on the range front faults along the eastern edge of the SNGV estimated using block models constrained by horizontal GPS measurements. Thus our results agree with models that call for a Sierra Nevada uplift rate near 1 mm/yr, and a younger Sierra Nevada whose age is on the order of 3 Ma.

  1. The Brave New World of Real-time GPS for Hazards Mitigation

    NASA Astrophysics Data System (ADS)

    Melbourne, T. I.; Szeliga, W. M.; Santillan, V. M.; Scrivner, C. W.

    2015-12-01

    Over 600 continuously-operating, real-time telemetered GPS receivers operate throughout California, Oregon, Washington and Alaska. These receivers straddle active crustal faults, volcanoes and landslides, the magnitude-9 Cascadia and northeastern Alaskan subduction zones and their attendant tsunamigenic regions along the Pacific coast. Around the circum-Pacific, there are hundreds more and the number is growing steadily as real-time networks proliferate. Despite offering the potential for sub-cm positioning accuracy in real-time useful for a broad array of hazards mitigation, these GPS stations are only now being incorporated into routine seismic, tsunami, volcanic, land-slide, space-weather, or meterologic monitoring. We will discuss NASA's READI (Real-time Earthquake Analysis for DIsasters) initiative. This effort is focussed on developing all aspects of real-time GPS for hazards mitigation, from establishing international data-sharing agreements to improving basic positioning algorithms. READI's long-term goal is to expand real-time GPS monitoring throughout the circum-Pacific as overseas data become freely available, so that it may be adopted by NOAA, USGS and other operational agencies responsible for natural hazards monitoring. Currently ~100 stations are being jointly processed by CWU and Scripps Inst. of Oceanography for algorithm comparison and downstream merging purposes. The resultant solution streams include point-position estimates in a global reference frame every second with centimeter accuracy, ionospheric total electron content and tropospheric zenith water content. These solutions are freely available to third-party agencies over several streaming protocols to enable their incorporation and use in hazards monitoring. This number will ramp up to ~400 stations over the next year. We will also discuss technical efforts underway to develop a variety of downstream applications of the real-time position streams, including the ability to broadcast solutions to thousands of users in real time, earthquake finite-fault and tsunami excitation estimations, and several user interfaces, both stand-alone client and browser-based, that allow interaction with both real-time position streams and their derived products.

  2. Bubble Transport through Micropillar Arrays

    NASA Astrophysics Data System (ADS)

    Lee, Kenneth; Savas, Omer

    2012-11-01

    In current energy research, artificial photosynthetic devices are being designed to split water and harvest hydrogen gas using energy from the sun. In one such design, hydrogen gas bubbles evolve on the catalytic surfaces of arrayed micropillars. If these bubbles are not promptly removed from the surface, they can adversely affect gas evolution rates, water flow rates, sunlight capture, and heat management of the system. Therefore, an efficient method of collecting the evolved gas bubbles is crucial. Preliminary flow visualization has been conducted of bubbles advecting through dense arrays of pillars. Bubbles moving through square and hexagonal arrays are tracked, and the results are qualitatively described. Initial attempts to correlate bubble motion with relevant lengthscales and forces are also presented. These observations suggest how bubble transport within such pillar arrays can be managed, as well as guide subsequent experiments that investigate bubble evolution and collection. This material is based upon work performed by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy under Award Number DE-SC0004993.

  3. A simple and transparent well-aligned ZnO nanowire array ultraviolet photodetector with high responsivity

    NASA Astrophysics Data System (ADS)

    Yin, Lei; Ding, Hesheng; Yuan, Zhaolin; Huang, Wendeng; Shuai, Chunjiang; Xiong, Zhaoxin; Deng, Jianping; Lv, Tengbo

    2018-06-01

    Well-aligned zinc oxide (ZnO) nanowire arrays were grown on an interdigital patterned fluorine tin oxide (FTO)-coated glass substrate by a facile chemical bath deposition at low temperature. Morphology, crystalline structure, and optical properties of the ZnO nanowire arrays were analyzed in detail. The results revealed that the ZnO nanowires had wurtzite structure, typically ∼40-60 nm in diameter, and ∼700-800 nm in length, a great number of highly uniform and dense nanowires grew vertically on the substrate to form the well-aligned ZnO nanowire arrays, which had very high optical transmission (>86%) in the visible light region. In addition, the performance of ZnO nanowire arrays ultraviolet (UV) photodetector was systematically examined. The photosensitivity (S), responsivity (R), response and decay time of the photodetector were 703 at +0.2 V, 113 A/W at +5 V, 23 s and 73 s respectively. Also, the photoresponse mechanism of the UV photodetector was illuminated in terms of the oxygen adsorption-photodesorption process.

  4. Silicon nanowire arrays as thermoelectric material for a power microgenerator

    NASA Astrophysics Data System (ADS)

    Dávila, D.; Tarancón, A.; Fernández-Regúlez, M.; Calaza, C.; Salleras, M.; San Paulo, A.; Fonseca, L.

    2011-10-01

    A novel design of a silicon-based thermoelectric power microgenerator is presented in this work. Arrays of silicon nanowires, working as thermoelectric material, have been integrated in planar uni-leg thermocouple microstructures to convert waste heat into electrical energy. Homogeneous, uniformly dense, well-oriented and size-controlled arrays of silicon nanowires have been grown by chemical vapor deposition using the vapor-liquid-solid mechanism. Compatibility issues between the nanowire growth method and microfabrication techniques, such as electrical contact patterning, are discussed. Electrical measurements of the nanowire array electrical conductivity and the Seebeck voltage induced by a controlled thermal gradient or under harvesting operation mode have been carried out to demonstrate the feasibility of the microdevice. A resistance of 240 Ω at room temperature was measured for an array of silicon nanowires 10 µm -long, generating a Seebeck voltage of 80 mV under an imposed thermal gradient of 450 °C, whereas only 4.5 mV were generated under a harvesting operation mode. From the results presented, a Seebeck coefficient of about 150-190 µV K-1 was estimated, which corresponds to typical values for bulk silicon.

  5. Coronal plasma development in wire-array z-pinches made of twisted-pairs

    NASA Astrophysics Data System (ADS)

    Hoyt, C. L.; Greenly, J. B.; Gourdain, P. A.; Knapp, P. F.; Pikuz, S. A.; Shelkovenko, T. A.; Hammer, D. A.; Kusse, B. R.

    2009-11-01

    We have investigated coronal and core plasma development in wire array z-pinches in which single fine wires are replaced by twisted-pairs (``cable'') on the 1 MA, 100 ns rise time COBRA pulsed power generator. X-ray radiography, employed to investigate dense wire core expansion, showed periodic axial nonuniformity and evidence for shock waves developing where the individual wire plasmas collide. Laser shadowgraphy images indicated that the axial instability properties of the coronal plasma are substantially modified from ordinary wire arrays. Cable mass per unit length, material and the twist wavelength were varied in order to study their effects upon the instability wavelength. Implosion uniformity and bright-spot formation, as well as magnetic topology evolution, have also been investigated using self-emission imaging, x-ray diagnostics and small B-dot probes, respectively. Results from the cable-array z-pinches will be compared with results from ordinary wire-array z-pinches. This research was supported by the SSAA program of the National Nuclear Security Administration under DOE Cooperative agreement DE-FC03-02NA00057.

  6. Making Carbon-Nanotube Arrays Using Block Copolymers: Part 2

    NASA Technical Reports Server (NTRS)

    Bronikowski, Michael

    2004-01-01

    Some changes have been incorporated into a proposed method of manufacturing regular arrays of precisely sized, shaped, positioned, and oriented carbon nanotubes. Such arrays could be useful as mechanical resonators for signal filters and oscillators, and as electrophoretic filters for use in biochemical assays. A prior version of the method was described in Block Copolymers as Templates for Arrays of Carbon Nanotubes, (NPO-30240), NASA Tech Briefs, Vol. 27, No. 4 (April 2003), page 56. To recapitulate from that article: As in other previously reported methods, carbon nanotubes would be formed by decomposition of carbon-containing gases over nanometer-sized catalytic metal particles that had been deposited on suitable substrates. Unlike in other previously reported methods, the catalytic metal particles would not be so randomly and densely distributed as to give rise to thick, irregular mats of nanotubes with a variety of lengths, diameters, and orientations. Instead, in order to obtain regular arrays of spaced-apart carbon nanotubes as nearly identical as possible, the catalytic metal particles would be formed in predetermined regular patterns with precise spacings. The regularity of the arrays would be ensured by the use of nanostructured templates made of block copolymers.

  7. Source characterization of a small earthquake cluster at Edmond, Oklahoma using a very dense array

    NASA Astrophysics Data System (ADS)

    Ng, R.; Nakata, N.

    2017-12-01

    Recent seismicity in Oklahoma has caught the attention of the public in the last few years since seismicity is commonly related to loss in urban areas. To account for the increase in public interest, improve the understanding of damaging ground motions produced in earthquakes and develop better seismic hazard assessment, we must characterize the seismicity in Oklahoma and its associated structure and source parameters. Regional changes in subsurface stresses have increased seismic activities due to reactivation of faults in places such as central Oklahoma. It is imperative for seismic investigation and modeling to characterize subsurface structural features that may influence the damaging effects of ground motion. We analyze the full-waveform data collected from a temporary dense array of 72 portable seismometers with a 110 meter spacing that were active for a one-month period from May to June 2017, deployed at Edmond, Oklahoma. The data from this one-month duration array captured over 10,000 events and enabled us to make measurements of small-scale lateral variations of earthquake wavefields. We examine the waveform for events using advanced methods of detection, location and determine the source mechanism. We compare our results with selected events listed in the Oklahoma Geological Survey (OGS) and United States Geological Survey (USGS) catalogue. Based on the detection and located small events, we will discuss the causative fault structure at the area and present the results of the investigation.

  8. Detection of small earthquakes with dense array data: example from the San Jacinto fault zone, southern California

    NASA Astrophysics Data System (ADS)

    Meng, Haoran; Ben-Zion, Yehuda

    2018-01-01

    We present a technique to detect small earthquakes not included in standard catalogues using data from a dense seismic array. The technique is illustrated with continuous waveforms recorded in a test day by 1108 vertical geophones in a tight array on the San Jacinto fault zone. Waveforms are first stacked without time-shift in nine non-overlapping subarrays to increase the signal-to-noise ratio. The nine envelope functions of the stacked records are then multiplied with each other to suppress signals associated with sources affecting only some of the nine subarrays. Running a short-term moving average/long-term moving average (STA/LTA) detection algorithm on the product leads to 723 triggers in the test day. Using a local P-wave velocity model derived for the surface layer from Betsy gunshot data, 5 s long waveforms of all sensors around each STA/LTA trigger are beamformed for various incident directions. Of the 723 triggers, 220 are found to have localized energy sources and 103 of these are confirmed as earthquakes by verifying their observation at 4 or more stations of the regional seismic network. This demonstrates the general validity of the method and allows processing further the validated events using standard techniques. The number of validated events in the test day is >5 times larger than that in the standard catalogue. Using these events as templates can lead to additional detections of many more earthquakes.

  9. Near-field observations of microearthquake source physics using dense array

    NASA Astrophysics Data System (ADS)

    Chen, X.; Nakata, N.; Abercrombie, R. E.

    2017-12-01

    The recorded waveform includes contributions from earthquake source properties and propagation effects, leading to long-standing trade-off problems between site/path effects and source effects. This problem is especially significant for small earthquakes where the corner frequencies are within similar ranges of near-site attenuation effects. Fortunately, this problem can be remedied by dense near-field recordings at high frequency, and large databases with wide magnitude range. The 2016 IRIS wavefield experiment provides high-quality recordings of earthquake sequences in north-central Oklahoma with about 400 sensors in 15 km area. Preliminary processing of the IRIS wavefield array resulted with about 20,000 microearthquakes ranging from M-1 to M2, while only 2 earthquakes are listed in the catalog during the same time period. A preliminary examination of the catalog reveals three similar magnitude earthquakes (M 2) occurred at similar locations within 9 seconds of each other. Utilizing this catalog, we will combine individual empirical Green's function (EGF) analysis and stacking over multiple EGFs to examine if there are any systematic variations of source time functions and spectral ratios across the array, which will provide constrains of rupture complexity, directivity and earthquake interactions. For example, this would help us to understand if these three earthquakes rupture overlapping fault patches from cascading failure, or from repeated rupture at the same slip patch due to external stress loading. Deciphering the interaction at smaller scales with near-field observations is important for a controlled earthquake experiment.

  10. Basic data features and results from a spatially dense seismic array on the San Jacinto fault zone

    NASA Astrophysics Data System (ADS)

    Ben-Zion, Yehuda; Vernon, Frank L.; Ozakin, Yaman; Zigone, Dimitri; Ross, Zachary E.; Meng, Haoran; White, Malcolm; Reyes, Juan; Hollis, Dan; Barklage, Mitchell

    2015-07-01

    We discuss several outstanding aspects of seismograms recorded during >4 weeks by a spatially dense Nodal array, straddling the damage zone of the San Jacinto fault in southern California, and some example results. The waveforms contain numerous spikes and bursts of high-frequency waves (up to the recorded 200 Hz) produced in part by minute failure events in the shallow crust. The high spatial density of the array facilitates the detection of 120 small local earthquakes in a single day, most of which not detected by the surrounding ANZA and regional southern California networks. Beamforming results identify likely ongoing cultural noise sources dominant in the frequency range 1-10 Hz and likely ongoing earthquake sources dominant in the frequency range 20-40 Hz. Matched-field processing and back-projection of seismograms provide alternate event location. The median noise levels during the experiment at different stations, waves generated by Betsy gunshots, and wavefields from nearby earthquakes point consistently to several structural units across the fault. Seismic trapping structure and local sedimentary basin produce localized motion amplification and stronger attenuation than adjacent regions. Cross correlations of high-frequency noise recorded at closely spaced stations provide a structural image of the subsurface material across the fault zone. The high spatial density and broad frequency range of the data can be used for additional high resolution studies of structure and source properties in the shallow crust.

  11. Dense Array Studies of Volcano-Tectonic and Long-Period Earthquakes Beneath Mount St. Helens

    NASA Astrophysics Data System (ADS)

    Glasgow, M. E.; Hansen, S. M.; Schmandt, B.; Thomas, A.

    2017-12-01

    A 904 single-component 10-Hz geophone array deployed within 15 km of Mount St. Helens (MSH) in 2014 recorded continuously for two-weeks. Automated reverse-time imaging (RTI) was used to generate a catalog of 212 earthquakes. Among these, two distinct types of upper crustal (<8 km) earthquakes were classified. Volcano-tectonic (VT) and long-period (LP) earthquakes were identified using analysis of array spectrograms, envelope functions, and velocity waveforms. To remove analyst subjectivity, quantitative classification criteria were developed based on the ratio of power in high and low frequency bands and coda duration. Prior to the 2014 experiment, upper crustal LP earthquakes had only been reported at MSH during volcanic activity. Subarray beamforming was used to distinguish between LP earthquakes and surface generated LP signals, such as rockfall. This method confirmed 16 LP signals with horizontal velocities exceeding that of upper crustal P-wave velocities, which requires a subsurface hypocenter. LP and VT locations overlap in a cluster slightly east of the summit crater from 0-5 km below sea level. LP displacement spectra are similar to simple theoretical predictions for shear failure except that they have lower corner frequencies than VT earthquakes of similar magnitude. The results indicate a distinct non-resonant source for LP earthquakes which are located in the same source volume as some VT earthquakes (within hypocenter uncertainty of 1 km or less). To further investigate MSH microseismicity mechanisms, a 142 three-component (3-C) 5 Hz geophone array will record continuously for one month at MSH in Fall 2017 providing a unique dataset for a volcano earthquake source study. This array will help determine if LP occurrence in 2014 was transient or if it is still ongoing. Unlike the 2014 array, approximately 50 geophones will be deployed in the MSH summit crater directly over the majority of seismicity. RTI will be used to detect and locate earthquakes by back-projecting 3-C data with a local 3-D P and S velocity model. Earthquakes will be classified using the previously stated techniques, and we will seek to use the dense array of 3-C waveforms to invert for focal mechanisms and, ideally, moment tensor sources down to M0.

  12. Seismicity and Crustal Anisotropy Beneath the Western Segment of the North Anatolian Fault: Results from a Dense Seismic Array

    NASA Astrophysics Data System (ADS)

    Turkelli, N.; Teoman, U.; Altuncu Poyraz, S.; Cambaz, D.; Mutlu, A. K.; Kahraman, M.; Houseman, G. A.; Rost, S.; Thompson, D. A.; Cornwell, D. G.; Utkucu, M.; Gülen, L.

    2013-12-01

    The North Anatolian Fault (NAF) is one of the major strike slip fault systems on Earth comparable to San Andreas Fault in some ways. Devastating earthquakes have occurred along this system causing major damage and casualties. In order to comprehensively investigate the shallow and deep crustal structure beneath the western segment of NAF, a temporary dense seismic network for North Anatolia (DANA) consisting of 73 broadband sensors was deployed in early May 2012 surrounding a rectangular grid of by 70 km and a nominal station spacing of 7 km with the aim of further enhancing the detection capability of this dense seismic array. This joint project involves researchers from University of Leeds, UK, Bogazici University Kandilli Observatory and Earthquake Research Institute (KOERI), and University of Sakarya and primarily focuses on upper crustal studies such as earthquake locations (especially micro-seismic activity), receiver functions, moment tensor inversions, shear wave splitting, and ambient noise correlations. To begin with, we obtained the hypocenter locations of local earthquakes that occured within the DANA network. The dense 2-D grid geometry considerably enhanced the earthquake detection capability which allowed us to precisely locate events with local magnitudes (Ml) less than 1.0. Accurate earthquake locations will eventually lead to high resolution images of the upper crustal structure beneath the northern and southern branches of NAF in Sakarya region. In order to put additional constraints on the active tectonics of the western part of NAF, we also determined fault plane solutions using Regional Moment Tensor Inversion (RMT) and P wave first motion methods. For the analysis of high quality fault plane solutions, data from KOERI and the DANA project were merged. Furthermore, with the aim of providing insights on crustal anisotropy, shear wave splitting parameters such as lag time and fast polarization direction were obtained for local events recorded within the seismic network with magnitudes larger than 2.5.

  13. Large enhancement of X-ray excited luminescence in Ga-doped ZnO nanorod arrays by hydrogen annealing

    NASA Astrophysics Data System (ADS)

    Li, Qianli; Liu, Xiaoliln; Gu, Mu; Li, Fengrui; Zhang, Juannan; Wu, Qiang; Huang, Shiming; Liu, Si

    2018-03-01

    Highly c-axis oriented and densely packed ZnO:Ga nanorod arrays were fabricated on ZnO-seeded substrates by hydrothermal method, and the effect of hydrogen annealing on their morphology, structure and luminescence properties was investigated in detail. Under ultraviolet or X-ray excitation, an intense ultraviolet luminescence appeared in the hydrogen-annealed samples owing to the formation of a shallow hydrogen donor state, which can sharply activate the reconbination radiation. The luminescence intensity increased with the annealing temperature, and then decreased at a higher temperature due to the dissociation of the hydrogen ion. The optimum concentration and time of hydrogen annealing were acquired simultaneously. It is expected that the ZnO:Ga nanorod array is a promising candidate for application in ultrafast and high-spatial-resolution X-ray imaging detector.

  14. Supercomputing on massively parallel bit-serial architectures

    NASA Technical Reports Server (NTRS)

    Iobst, Ken

    1985-01-01

    Research on the Goodyear Massively Parallel Processor (MPP) suggests that high-level parallel languages are practical and can be designed with powerful new semantics that allow algorithms to be efficiently mapped to the real machines. For the MPP these semantics include parallel/associative array selection for both dense and sparse matrices, variable precision arithmetic to trade accuracy for speed, micro-pipelined train broadcast, and conditional branching at the processing element (PE) control unit level. The preliminary design of a FORTRAN-like parallel language for the MPP has been completed and is being used to write programs to perform sparse matrix array selection, min/max search, matrix multiplication, Gaussian elimination on single bit arrays and other generic algorithms. A description is given of the MPP design. Features of the system and its operation are illustrated in the form of charts and diagrams.

  15. Imaging with New Classic and Vision at the NPOI

    NASA Astrophysics Data System (ADS)

    Jorgensen, Anders

    2018-04-01

    The Navy Precision Optical Interferometer (NPOI) is unique among interferometric observatories for its ability to position telescopes in an equally-spaced array configuration. This configuration is optimal for interferometric imaging because it allows the use of bootstrapping to track fringes on long baselines with signal-to-noise ratio less than one. When combined with coherent integration techniques this can produce visibilities with acceptable SNR on baselines long enough to resolve features on the surfaces of stars. The stellar surface imaging project at NPOI combines the bootstrapping array configuration of the NPOI array, real-time fringe tracking, baseline- and wavelength bootstrapping with Earth rotation to provide dense coverage in the UV plane at a wide range of spatial frequencies. In this presentation, we provide an overview of the project and an update of the latest status and results from the project.

  16. Ultra-low power high precision magnetotelluric receiver array based customized computer and wireless sensor network

    NASA Astrophysics Data System (ADS)

    Chen, R.; Xi, X.; Zhao, X.; He, L.; Yao, H.; Shen, R.

    2016-12-01

    Dense 3D magnetotelluric (MT) data acquisition owns the benefit of suppressing the static shift and topography effect, can achieve high precision and high resolution inversion for underground structure. This method may play an important role in mineral exploration, geothermal resources exploration, and hydrocarbon exploration. It's necessary to reduce the power consumption greatly of a MT signal receiver for large-scale 3D MT data acquisition while using sensor network to monitor data quality of deployed MT receivers. We adopted a series of technologies to realized above goal. At first, we designed an low-power embedded computer which can couple with other parts of MT receiver tightly and support wireless sensor network. The power consumption of our embedded computer is less than 1 watt. Then we designed 4-channel data acquisition subsystem which supports 24-bit analog-digital conversion, GPS synchronization, and real-time digital signal processing. Furthermore, we developed the power supply and power management subsystem for MT receiver. At last, a series of software, which support data acquisition, calibration, wireless sensor network, and testing, were developed. The software which runs on personal computer can monitor and control over 100 MT receivers on the field for data acquisition and quality control. The total power consumption of the receiver is about 2 watts at full operation. The standby power consumption is less than 0.1 watt. Our testing showed that the MT receiver can acquire good quality data at ground with electrical dipole length as 3 m. Over 100 MT receivers were made and used for large-scale geothermal exploration in China with great success.

  17. Dispersion and Cluster Scales in the Ocean

    NASA Astrophysics Data System (ADS)

    Kirwan, A. D., Jr.; Chang, H.; Huntley, H.; Carlson, D. F.; Mensa, J. A.; Poje, A. C.; Fox-Kemper, B.

    2017-12-01

    Ocean flow space scales range from centimeters to thousands of kilometers. Because of their large Reynolds number these flows are considered turbulent. However, because of rotation and stratification constraints they do not conform to classical turbulence scaling theory. Mesoscale and large-scale motions are well described by geostrophic or "2D turbulence" theory, however extending this theory to submesoscales has proved to be problematic. One obvious reason is the difficulty in obtaining reliable data over many orders of magnitude of spatial scales in an ocean environment. The goal of this presentation is to provide a preliminary synopsis of two recent experiments that overcame these obstacles. The first experiment, the Grand LAgrangian Deployment (GLAD) was conducted during July 2012 in the eastern half of the Gulf of Mexico. Here approximately 300 GPS-tracked drifters were deployed with the primary goal to determine whether the relative dispersion of an initially densely clustered array was driven by processes acting at local pair separation scales or by straining imposed by mesoscale motions. The second experiment was a component of the LAgrangian Submesoscale Experiment (LASER) conducted during the winter of 2016. Here thousands of bamboo plates were tracked optically from an Aerostat. Together these two deployments provided an unprecedented data set on dispersion and clustering processes from 1 to 106 meter scales. Calculations of statistics such as two point separations, structure functions, and scale dependent relative diffusivities showed: inverse energy cascade as expected for scales above 10 km, a forward energy cascade at scales below 10 km with a possible energy input at Langmuir circulation scales. We also find evidence from structure function calculations for surface flow convergence at scales less than 10 km that account for material clustering at the ocean surface.

  18. Space Weather Studies Using the Low-Latitude Ionospheric Sensor Network (LISN)

    NASA Astrophysics Data System (ADS)

    Valladares, C. E.; Pacheco, E.

    2014-12-01

    LISN is an array of small instruments that operates as a real-time distributed observatory to understand the complex day-to-day variability and the extreme state of disturbance that occurs in the South American low-latitude ionosphere nearly every day after sunset. The LISN observatory aims to forecast the initiation and transport of plasma bubbles across the South American continent. The occurrence of this type of plasma structures and their embedded irregularities poses a prominent natural hazard to communication, navigation and high precision pointing systems. As commercial and military aviation is increasingly reliant on Global Navigation Satellite Systems (GNSS) any interruption due to ionospheric irregularities or errors due to large density gradients constitutes a serious threat to passengers and crew. Therefore, it is important to understand the conditions and sources that contribute to the formation of these irregularities. To achieve high quality regional nowcasts and forecasts, the LISN system was designed to include a dense coverage of the South American landmass with 47 GPS receivers, 5 flux-gate magnetometers distributed on 2 base lines and 3 Vertical Incidence Pulsed Ionospheric Radar (VIPIR) ionosondes deployed along the same magnetic meridian that intersects the magnetic equator at 68° W. This presentation will provide a summary of recent instrument installations and new processing techniques that have been developed under the LISN project. We will also present the results of recent efforts to detect TIDs and TEC plasma depletions on a near real-time basis. We will describe a method to estimate the zonal velocity and tilt of the plasma bubbles/depletions by combining observations of TEC depletions acquired with adjacent receivers, making it possible to predict precisely their future locations.

  19. Surfzone Currents Over Irregular Bathymetry: Drifter Observations and Numerical Model Results

    NASA Astrophysics Data System (ADS)

    Schmidt, W. E.; Slinn, D. N.; Guza, R. T.

    2002-12-01

    Surfzone currents on alongshore variable bathymetry were observed with recently developed GPS-tracked drifters and numerically modeled with the time-dependent, nonlinear shallow water equations. These currents, forced by alongshore inhomogeneous pressure and radiation stress gradients, contain flow features difficult to resolve with fixed instrument arrays, such as rips, eddies, and meanders. Drifters were repeatedly released and recovered near Scripps Beach, La Jolla, California, in July 2000, 2001, and 2002. The most recent deployment of 10 drifters yielded about 32 hours of drifter data for each 5 hour deployment day. Offshore wave heights were moderate, between 0.3-1.0 m. The bathymetry, measured over a 600-700 m alongshore span with a GPS- and sonar-equipped jetski (2001 and 2002 deployments), was alongshore inhomogeneous primarily where an irregularly shaped bar-trough feature spanned the surf zone. The model simulations suggest that the alongshore inhomogeneous bathymetry strongly influences the location and strength of the observed flow features. Research supported by the California Sea Grant College Program and the Office of Naval Research.

  20. Ionospheric Modelling using GPS to Calibrate the MWA. II: Regional Ionospheric Modelling using GPS and GLONASS to Estimate Ionospheric Gradients

    NASA Astrophysics Data System (ADS)

    Arora, B. S.; Morgan, J.; Ord, S. M.; Tingay, S. J.; Bell, M.; Callingham, J. R.; Dwarakanath, K. S.; For, B.-Q.; Hancock, P.; Hindson, L.; Hurley-Walker, N.; Johnston-Hollitt, M.; Kapińska, A. D.; Lenc, E.; McKinley, B.; Offringa, A. R.; Procopio, P.; Staveley-Smith, L.; Wayth, R. B.; Wu, C.; Zheng, Q.

    2016-07-01

    We estimate spatial gradients in the ionosphere using the Global Positioning System and GLONASS (Russian global navigation system) observations, utilising data from multiple Global Positioning System stations in the vicinity of Murchison Radio-astronomy Observatory. In previous work, the ionosphere was characterised using a single-station to model the ionosphere as a single layer of fixed height and this was compared with ionospheric data derived from radio astronomy observations obtained from the Murchison Widefield Array. Having made improvements to our data quality (via cycle slip detection and repair) and incorporating data from the GLONASS system, we now present a multi-station approach. These two developments significantly improve our modelling of the ionosphere. We also explore the effects of a variable-height model. We conclude that modelling the small-scale features in the ionosphere that have been observed with the MWA will require a much denser network of Global Navigation Satellite System stations than is currently available at the Murchison Radio-astronomy Observatory.

  1. AAO-based nanoreservoir arrays: A quick and easy support for TEM characterization

    NASA Astrophysics Data System (ADS)

    Mace, M.; Sahaf, H.; Moyen, E.; Bedu, F.; Masson, L.; Hanbücken, M.

    2010-12-01

    Large-scale arrays of calibrated, nanometer sized reservoirs are prepared by adapting the well-established electrochemical method used so far for the preparation of anodic aluminium oxide (AAO) membranes. The bottom plane of the assembly is prepared to be transparent for high-energy electrons, enabling their use as a universal sample support for transmission electron microscopy studies of nanoparticles. The nanoreservoir substrates can be cleaned under ultra-high-vacuum conditions and filled, by evaporating different materials. Filled nanoreservoirs can locally be sealed with a thin carbon layer using focused-ion-beam-induced deposition (FIBID). Nanoparticles, grow at various adsorption places on the walls and bottom planes inside the nanoreservoirs. They can be characterized by transmission electron microscopy (TEM) without further sample preparation in different crystallographic directions. Due to the dense array-arrangement of the reservoirs, very good statistics can already be obtained on one single sample. The controlled fabrication of the nanoreservoir array and first TEM results obtained on Au nanoparticles before and after sealing of the reservoirs, are presented.

  2. Performance bounds for modal analysis using sparse linear arrays

    NASA Astrophysics Data System (ADS)

    Li, Yuanxin; Pezeshki, Ali; Scharf, Louis L.; Chi, Yuejie

    2017-05-01

    We study the performance of modal analysis using sparse linear arrays (SLAs) such as nested and co-prime arrays, in both first-order and second-order measurement models. We treat SLAs as constructed from a subset of sensors in a dense uniform linear array (ULA), and characterize the performance loss of SLAs with respect to the ULA due to using much fewer sensors. In particular, we claim that, provided the same aperture, in order to achieve comparable performance in terms of Cramér-Rao bound (CRB) for modal analysis, SLAs require more snapshots, of which the number is about the number of snapshots used by ULA times the compression ratio in the number of sensors. This is shown analytically for the case with one undamped mode, as well as empirically via extensive numerical experiments for more complex scenarios. Moreover, the misspecified CRB proposed by Richmond and Horowitz is also studied, where SLAs suffer more performance loss than their ULA counterpart.

  3. Neural Activation Underlying Cognitive Control in the Context of Neutral and Affectively Charged Pictures in Children

    ERIC Educational Resources Information Center

    Lamm, Connie; White, Lauren K.; McDermott, Jennifer Martin; Fox, Nathan A.

    2012-01-01

    The neural correlates of cognitive control for typically developing 9-year-old children were examined using dense-array ERPs and estimates of cortical activation (LORETA) during a go/no-go task with two conditions: a neutral picture condition and an affectively charged picture condition. Activation was estimated for the entire cortex after which…

  4. NGC 7538 IRS. 1. Interaction of a Polarized Dust Spiral and a Molecular Outflow

    NASA Astrophysics Data System (ADS)

    Wright, M. C. H.; Hull, Charles L. H.; Pillai, Thushara; Zhao, Jun-Hui; Sandell, Göran

    2014-12-01

    We present dust polarization and CO molecular line images of NGC 7538 IRS 1. We combined data from the Submillimeter Array, the Combined Array for Research in Millimeter-wave Astronomy, and the James Clerk Maxwell Telescope to make images with ~2.''5 resolution at 230 and 345 GHz. The images show a remarkable spiral pattern in both the dust polarization and molecular outflow. These data dramatically illustrate the interplay between a high infall rate onto IRS 1 and a powerful outflow disrupting the dense, clumpy medium surrounding the star. The images of the dust polarization and the CO outflow presented here provide observational evidence for the exchange of energy and angular momentum between the infall and the outflow. The spiral dust pattern, which rotates through over 180° from IRS 1, may be a clumpy filament wound up by conservation of angular momentum in the infalling material. The redshifted CO emission ridge traces the dust spiral closely through the MM dust cores, several of which may contain protostars. We propose that the CO maps the boundary layer where the outflow is ablating gas from the dense gas in the spiral.

  5. Shallow subsurface structure estimated from dense aftershock records and microtremor observations in Furukawa district, Miyagi, Japan

    NASA Astrophysics Data System (ADS)

    Goto, Hiroyuki; Mitsunaga, Hitoshi; Inatani, Masayuki; Iiyama, Kahori; Hada, Koji; Ikeda, Takaaki; Takaya, Toshiyasu; Kimura, Sayaka; Akiyama, Ryohei; Sawada, Sumio; Morikawa, Hitoshi

    2017-11-01

    We conducted single-site and array observations of microtremors in order to revise the shallow subsurface structure of the Furukawa district, Miyagi, Japan, where severe residential damage was reported during the Great Eastern Japan Earthquake of 2011, off the Pacific coast of Tohoku. The phase velocities of Rayleigh waves are estimated from array observations at three sites, and S-wave velocity models are established. The spatial distribution of predominant periods is estimated for the surface layer, on the basis of the spectral ratio of horizontal and vertical components (H/V) of microtremors obtained from single-site observations. We then compared ground motion records from a dense seismometer network with results of microtremor observations, and revised a model of the shallow (~100 m) subsurface structure in the Furukawa district. The model implies that slower near-surface S-wave velocity and deeper basement are to be found in the southern and eastern areas. It was found that the damage in residential structures was concentrated in an area where the average value for the transfer functions in the frequency range of 2 to 4 Hz was large.

  6. Seismic gradiometry using ambient seismic noise in an anisotropic Earth

    NASA Astrophysics Data System (ADS)

    de Ridder, S. A. L.; Curtis, A.

    2017-05-01

    We introduce a wavefield gradiometry technique to estimate both isotropic and anisotropic local medium characteristics from short recordings of seismic signals by inverting a wave equation. The method exploits the information in the spatial gradients of a seismic wavefield that are calculated using dense deployments of seismic arrays. The application of the method uses the surface wave energy in the ambient seismic field. To estimate isotropic and anisotropic medium properties we invert an elliptically anisotropic wave equation. The spatial derivatives of the recorded wavefield are evaluated by calculating finite differences over nearby recordings, which introduces a systematic anisotropic error. A two-step approach corrects this error: finite difference stencils are first calibrated, then the output of the wave-equation inversion is corrected using the linearized impulse response to the inverted velocity anomaly. We test the procedure on ambient seismic noise recorded in a large and dense ocean bottom cable array installed over Ekofisk field. The estimated azimuthal anisotropy forms a circular geometry around the production-induced subsidence bowl. This conforms with results from studies employing controlled sources, and with interferometry correlating long records of seismic noise. Yet in this example, the results were obtained using only a few minutes of ambient seismic noise.

  7. Collective oscillations and coupled modes in confined microfluidic droplet arrays

    NASA Astrophysics Data System (ADS)

    Schiller, Ulf D.; Fleury, Jean-Baptiste; Seemann, Ralf; Gompper, Gerhard

    Microfluidic droplets have a wide range of applications ranging from analytic assays in cellular biology to controlled mixing in chemical engineering. Ensembles of microfluidic droplets are interesting model systems for non-equilibrium many-body phenomena. When flowing in a microchannel, trains of droplets can form microfluidic crystals whose dynamics are governed by long-range hydrodynamic interactions and boundary effects. In this contribution, excitation mechanisms for collective waves in dense and confined microfluidic droplet arrays are investigated by experiments and computer simulations. We demonstrate that distinct modes can be excited by creating specific `defect' patterns in flowing droplet trains. While longitudinal modes exhibit a short-lived cascade of pairs of laterally displacing droplets, transversely excited modes form propagating waves that behave like microfluidic phonons. We show that the confinement induces a coupling between longitudinal and transverse modes. We also investigate the life time of the collective oscillations and discuss possible mechanisms for the onset of instabilities. Our results demonstrate that microfluidic phonons can exhibit effects beyond the linear theory, which can be studied particularly well in dense and confined systems. This work was supported by Deutsche Forschungsgemeinschaft under Grant No. SE 1118/4.

  8. Complexity quantification of dense array EEG using sample entropy analysis.

    PubMed

    Ramanand, Pravitha; Nampoori, V P N; Sreenivasan, R

    2004-09-01

    In this paper, a time series complexity analysis of dense array electroencephalogram signals is carried out using the recently introduced Sample Entropy (SampEn) measure. This statistic quantifies the regularity in signals recorded from systems that can vary from the purely deterministic to purely stochastic realm. The present analysis is conducted with an objective of gaining insight into complexity variations related to changing brain dynamics for EEG recorded from the three cases of passive, eyes closed condition, a mental arithmetic task and the same mental task carried out after a physical exertion task. It is observed that the statistic is a robust quantifier of complexity suited for short physiological signals such as the EEG and it points to the specific brain regions that exhibit lowered complexity during the mental task state as compared to a passive, relaxed state. In the case of mental tasks carried out before and after the performance of a physical exercise, the statistic can detect the variations brought in by the intermediate fatigue inducing exercise period. This enhances its utility in detecting subtle changes in the brain state that can find wider scope for applications in EEG based brain studies.

  9. Embedded binaries and their dense cores

    NASA Astrophysics Data System (ADS)

    Sadavoy, Sarah I.; Stahler, Steven W.

    2017-08-01

    We explore the relationship between young, embedded binaries and their parent cores, using observations within the Perseus Molecular Cloud. We combine recently published Very Large Array observations of young stars with core properties obtained from Submillimetre Common-User Bolometer Array 2 observations at 850 μm. Most embedded binary systems are found towards the centres of their parent cores, although several systems have components closer to the core edge. Wide binaries, defined as those systems with physical separations greater than 500 au, show a tendency to be aligned with the long axes of their parent cores, whereas tight binaries show no preferred orientation. We test a number of simple, evolutionary models to account for the observed populations of Class 0 and I sources, both single and binary. In the model that best explains the observations, all stars form initially as wide binaries. These binaries either break up into separate stars or else shrink into tighter orbits. Under the assumption that both stars remain embedded following binary break-up, we find a total star formation rate of 168 Myr-1. Alternatively, one star may be ejected from the dense core due to binary break-up. This latter assumption results in a star formation rate of 247 Myr-1. Both production rates are in satisfactory agreement with current estimates from other studies of Perseus. Future observations should be able to distinguish between these two possibilities. If our model continues to provide a good fit to other star-forming regions, then the mass fraction of dense cores that becomes stars is double what is currently believed.

  10. A Novel Approach to Beam Steering Using Arrays Composed of Multiple Unique Radiating Modes

    NASA Astrophysics Data System (ADS)

    Labadie, Nathan Richard

    Phased array antennas have found wide application in both radar and wireless communications systems particularly as implementation costs continue to decrease. The primary advantages of electronically scanned arrays are speed of beam scan and versatility of beamforming compared to mechanically scanned fixed beam antennas. These benefits come at the cost of a few well known design issues including element pattern rolloff and mutual coupling between elements. Our primary contribution to the field of research is the demonstration of significant improvement in phased array scan performance using multiple unique radiating modes. In short, orthogonal radiating modes have minimal coupling by definition and can also be generated with reduced rolloff at wide scan angles. In this dissertation, we present a combination of analysis, full-wave electromagnetic simulation and measured data to support our claims. The novel folded ring resonator (FRR) antenna is introduced as a wideband and multi-band element embedded in a grounded dielectric substrate. Multiple radiating modes of a small ground plane excited by a four element FRR array were also investigated. A novel hemispherical null steering antenna composed of two collocated radiating elements, each supporting a unique radiating mode, is presented in the context of an anti-jam GPS receiver application. Both the antenna aperture and active feed network were fabricated and measured showing excellent agreement with analytical and simulated data. The concept of using an antenna supporting multiple radiating modes for beam steering is also explored. A 16 element hybrid linear phased array was fabricated and measured demonstrating significantly improved scan range and scanned gain compared to a conventional phased array. This idea is expanded to 2 dimensional scanning arrays by analysis and simulation of a hybrid phased array composed of novel multiple mode monopole on patch antenna sub-arrays. Finally, we fabricated and characterized the 2D scanning hybrid phased array demonstrating wide angle scanning with high antenna efficiency.

  11. Magnetic Fields in the Massive Dense Cores of the DR21 Filament: Weakly Magnetized Cores in a Strongly Magnetized Filament

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ching, Tao-Chung; Lai, Shih-Ping; Zhang, Qizhou

    We present Submillimeter Array 880 μ m dust polarization observations of six massive dense cores in the DR21 filament. The dust polarization shows complex magnetic field structures in the massive dense cores with sizes of 0.1 pc, in contrast to the ordered magnetic fields of the parsec-scale filament. The major axes of the massive dense cores appear to be aligned either parallel or perpendicular to the magnetic fields of the filament, indicating that the parsec-scale magnetic fields play an important role in the formation of the massive dense cores. However, the correlation between the major axes of the cores andmore » the magnetic fields of the cores is less significant, suggesting that during the core formation, the magnetic fields below 0.1 pc scales become less important than the magnetic fields above 0.1 pc scales in supporting a core against gravity. Our analysis of the angular dispersion functions of the observed polarization segments yields a plane-of-sky magnetic field strength of 0.4–1.7 mG for the massive dense cores. We estimate the kinematic, magnetic, and gravitational virial parameters of the filament and the cores. The virial parameters show that the gravitational energy in the filament dominates magnetic and kinematic energies, while the kinematic energy dominates in the cores. Our work suggests that although magnetic fields may play an important role in a collapsing filament, the kinematics arising from gravitational collapse must become more important than magnetic fields during the evolution from filaments to massive dense cores.« less

  12. Subglacial drainage effects on surface motion on a small surge type alpine glacier on the St. Elias range, Yukon Territory, Canada.

    NASA Astrophysics Data System (ADS)

    Rada, C.; Schoof, C.; King, M. A.; Flowers, G. E.; Haber, E.

    2017-12-01

    Subglacial drainage is known to play an important role in glacier dynamics trough its influence on basal sliding. However, drainage is also one of the most poorly understood process in glacier flow due to the difficulties of observing, identifying and modeling the physics involved. In an effort to improve understanding of subglacial processes, we have monitored a small, approximately 100 m thick surge-type alpine glacier for nine years. Over 300 boreholes were instrumented with pressure transducers over a 0.5 km² in its upper ablation area, in addition to a weather station and a permanent GPS array consisting on 16 dual-frequency receivers within the study area. We study the influence of the subglacial drainage system on the glacier surface velocity. However, pressure variations in the drainage system during the melt season are dominated by diurnal oscillations.Therefore, GPS solutions have to be computed at sub-diurnal time intervals in order to explore the effects of transient diurnal pressure variations. Due to the small displacements of the surface of the glacier over those periods (4-10 cm/day), sub-diurnal solutions are dominated by errors, making it impossible to observe the diurnal variations in glacier motion. We have found that the main source of error is GPS multipath. This error source does largely cancel out when solutions are computed over 24 hour periods (or more precisely, over a sidereal day), but solution precisions decrease quickly when computed over shorter periods of time. Here we present an inverse problem approach to remove GPS multipath errors on glaciers, and use the reconstructed glacier motion to explore how the subglacial drainage morphology and effective pressure influence glacier dynamics at multiple time scales.

  13. Rupture process of the 2010 Mw 7.8 Mentawai tsunami earthquake from joint inversion of near-field hr-GPS and teleseismic body wave recordings constrained by tsunami observations

    NASA Astrophysics Data System (ADS)

    Yue, Han; Lay, Thorne; Rivera, Luis; Bai, Yefei; Yamazaki, Yoshiki; Cheung, Kwok Fai; Hill, Emma M.; Sieh, Kerry; Kongko, Widjo; Muhari, Abdul

    2014-07-01

    The 25 October 2010 Mentawai tsunami earthquake (Mw 7.8) ruptured the shallow portion of the Sunda megathrust seaward of the Mentawai Islands, offshore of Sumatra, Indonesia, generating a strong tsunami that took 509 lives. The rupture zone was updip of those of the 12 September 2007 Mw 8.5 and 7.9 underthrusting earthquakes. High-rate (1 s sampling) GPS instruments of the Sumatra GPS Array network deployed on the Mentawai Islands and Sumatra mainland recorded time-varying and static ground displacements at epicentral distances from 49 to 322 km. Azimuthally distributed tsunami recordings from two deepwater sensors and two tide gauges that have local high-resolution bathymetric information provide additional constraints on the source process. Finite-fault rupture models, obtained by joint inversion of the high-rate (hr)-GPS time series and numerous teleseismic broadband P and S wave seismograms together with iterative forward modeling of the tsunami recordings, indicate rupture propagation ~50 km up dip and ~100 km northwest along strike from the hypocenter, with a rupture velocity of ~1.8 km/s. Subregions with large slip extend from 7 to 10 km depth ~80 km northwest from the hypocenter with a maximum slip of 8 m and from ~5 km depth to beneath thin horizontal sedimentary layers beyond the prism deformation front for ~100 km along strike, with a localized region having >15 m of slip. The seismic moment is 7.2 × 1020 N m. The rupture model indicates that local heterogeneities in the shallow megathrust can accumulate strain that allows some regions near the toe of accretionary prisms to fail in tsunami earthquakes.

  14. May tropospheric noise in satellite radar data affect decision making results?

    NASA Astrophysics Data System (ADS)

    Bloutsos, Aristeidis; Bekri, Eleni; Moschas, Fanis; Saltogianni, Vasso; Stiros, Stathis; Yannopoulos, Panayotis

    2015-04-01

    Meteorological and air pollution conditions affect the satellite positioning signals. To investigate the uncertainty introduced in these signals in various meteorological and air pollution conditions, an array of GPS/GNSS stations and another of meteorological and air pollution stations has been established. The study area is expanded next to Patraikos and Corinth Gulf (NW Peloponnisos, Greece), which is characterized by high variability sequences from hot to cold weather, low to high relative humidity and clear to cloudy or/and Sahara dusty atmosphere, as a result of the particular geographical and topographical features of the study area. The GNSS recordings from several stations with very high vertical separation (with altitude up to 1600m and with a gradient of up to 20%) are analyzed in order to control in some extend both the vertical and the horizontal variability of the atmospheric effects, as well as the noise of geodetic recordings. Then, the GPS results will be combined with meteorological and atmospheric pollution data, as well as satellite radar data, in order to evaluate the enhanced troposphere noise in satellite radar and to estimate the magnitude of uncertainty that may cause alterations to decision making results in the management of water and other natural resources. This project takes advantage of GPS stations established in wider study area in the framework of the Corinth Rift Laboratory (http://crlab.eu/) in conjunction to the air pollution and meteorological monitoring stations of the Environmental Engineering Laboratory of the Department of Civil Engineering of the University of Patras. Regarding GPS stations, the project has been partly funded by the PLATO Project of the Greek Secretariat for Research and Technology.

  15. Application of wavefield compressive sensing in surface wave tomography

    NASA Astrophysics Data System (ADS)

    Zhan, Zhongwen; Li, Qingyang; Huang, Jianping

    2018-06-01

    Dense arrays allow sampling of seismic wavefield without significant aliasing, and surface wave tomography has benefitted from exploiting wavefield coherence among neighbouring stations. However, explicit or implicit assumptions about wavefield, irregular station spacing and noise still limit the applicability and resolution of current surface wave methods. Here, we propose to apply the theory of compressive sensing (CS) to seek a sparse representation of the surface wavefield using a plane-wave basis. Then we reconstruct the continuous surface wavefield on a dense regular grid before applying any tomographic methods. Synthetic tests demonstrate that wavefield CS improves robustness and resolution of Helmholtz tomography and wavefield gradiometry, especially when traditional approaches have difficulties due to sub-Nyquist sampling or complexities in wavefield.

  16. The New NASA-STD-4005 and NASA-HDBK-4006, Essentials for Direct-Drive Solar Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.

    2007-01-01

    High voltage solar arrays are necessary for direct-drive solar electric propulsion, which has many advantages, including simplicity and high efficiency. Even when direct-drive is not used, the use of high voltage solar arrays leads to power transmission and conversion efficiencies in electric propulsion Power Management and Distribution. Nevertheless, high voltage solar arrays may lead to temporary power disruptions, through the so-called primary electrostatic discharges, and may permanently damage arrays, through the so-called permanent sustained discharges between array strings. Design guidance is needed to prevent these solar array discharges, and to prevent high power drains through coupling between the electric propulsion devices and the high voltage solar arrays. While most electric propulsion systems may operate outside of Low Earth Orbit, the plasmas produced by their thrusters may interact with the high voltage solar arrays in many ways similarly to Low Earth Orbit plasmas. A brief description of previous experiences with high voltage electric propulsion systems will be given in this paper. There are two new official NASA documents available free through the NASA Standards website to help in designing and testing high voltage solar arrays for electric propulsion. They are NASA-STD-4005, the Low Earth Orbit Spacecraft Charging Design Standard, and NASA-HDBK-4006, the Low Earth Orbit Spacecraft Charging Design Handbook. Taken together, they can both educate the high voltage array designer in the engineering and science of spacecraft charging in the presence of dense plasmas and provide techniques for designing and testing high voltage solar arrays to prevent electrical discharges and power drains.

  17. Crustal deformation associated with crustal activities in the northern Izu-islands area during the summer, 2000

    NASA Astrophysics Data System (ADS)

    Kaidzu, M.; Nishimura, T.; Murakami, M.; Ozawa, S.; Sagiya, T.; Yarai, H.; Imakiire, T.

    2000-08-01

    In the end of June, 2000, intense crustal activity took place in Miyake-jima, Niijima, Kozu-shima and their vicinity. Here we report on the crustal deformation in the area during the period from June 24 to September 4, 2000, detected with the nationwide Global Positioning System (GPS) array operated by the Geographical Survey Institute. The deformation in this area during the above period is characterized by the deflation of Miyake-jima and the extension of the crust in the northeast-southwest direction over a wide area.

  18. Geophysical Tracking of a Subglacial Flood in Near Real-Time

    NASA Astrophysics Data System (ADS)

    Eibl, Eva P. S.; Jóhannesson, Tómas; Ofeigsson, Benedikt G.; Roberts, Matthew J.; Bean, Christopher J.; Vogfjörd, Kristin S.; Jones, Morgan T.; Pfeffer, Melissa A.; Bergsson, Baldur; Pálsson, Finnur

    2017-04-01

    Subglacial lakes and volcanoes in Iceland pose a risk to people, livestock and infrastructure when water drains in subglacial floods. Many of these floods occur every year and efforts are made to forecast them and evacuate in time. The two Skaftá cauldrons are located at the southwestern part of Vatnajökull glacier and usually drain once every two years. However, following drainage in 2010, the eastern cauldron did not drain before October 2015. While water accumulated over these five years, scientists - within the EU-funded project FutureVolc - improved the monitoring network around southwest Vatnajökull in order to record the flood in great detail. The network finally comprised two seismic arrays, a GPS instrument on top of the cauldron, two GPS instruments above the flood path, gas measurements at the glaciers' edge, hydrological measurements at river gauges and osmotic sampler data. We present how the GPS, gas and hydrological instruments allow us to detect the start of and subglacial propagation of the flood. The derived timing is consistent with the approximate time of rupturing of the ice close to the glacier edge and the source movement observed in the seismic signals. The subglacial flow of water is accompanied by seismic tremor, whose source location moves downslope with the flood front. This tremor is followed by about 24 hours of stronger tremor bursts from the direction of the empty cauldron.

  19. Tightly Coupled Inertial Navigation System/Global Positioning System (TCMIG)

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Jackson, Kurt (Technical Monitor)

    2002-01-01

    Many NASA applications planned for execution later this decade are seeking high performance, miniaturized, low power Inertial Management Units (IMU). Much research has gone into Micro-Electro-Mechanical System (MEMS) over the past decade as a solution to these needs. While MEMS devices have proven to provide high accuracy acceleration measurements, they have not yet proven to have the accuracy required by many NASA missions in rotational measurements. Therefore, a new solution has been formulated integrating the best of all IMU technologies to address these mid-term needs in the form of a Tightly Coupled Micro Inertial Navigation System (INS)/Global Positioning System (GPS) (TCMIG). The TCMIG consists of an INS and a GPS tightly coupled by a Kalman filter executing on an embedded Field Programmable Gate Array (FPGA) processor. The INS consists of a highly integrated Interferometric Fiber Optic Gyroscope (IFOG) and a MEMS accelerometer. The IFOG utilizes a tightly wound fiber coil to reduce volume and the high level of integration and advanced optical components to reduce power. The MEMS accelerometer utilizes a newly developed deep etch process to increase the proof mass and yield a highly accurate accelerometer. The GPS receiver consists of a low power miniaturized version of the Blackjack receiver. Such an IMU configuration is ideal to meet the mid-term needs of the NASA Science Enterprises and the new launch vehicles being developed for the Space Launch Initiative (SLI).

  20. An EarthScope Plate Boundary Observatory Progress Report

    NASA Astrophysics Data System (ADS)

    Jackson, M.; Anderson, G.; Blume, F.; Walls, C.; Coyle, B.; Feaux, K.; Friesen, B.; Phillips, D.; Hafner, K.; Johnson, W.; Mencin, D.; Pauk, B.; Dittmann, T.

    2007-12-01

    UNAVCO is building and operating the Plate Boundary Observatory (PBO), part of the NSF-funded EarthScope project to understand the structure, dynamics, and evolution of the North American continent. When complete in October 2008, the 875 GPS, 103 strain and seismic, and 28 tiltmeters stations will comprise the largest integrated geodetic and seismic network in United States and the second largest in the world. Data from the PBO network will facilitate research into plate boundary deformation with unprecedented scope and detail. As of 1 September 2007, UNAVCO had completed 680 PBO GPS stations and had upgraded 89% of the planned PBO Nucleus stations. Highlights of the past year's work include the expansion of the Alaska subnetwork to 95 continuously-operating stations, including coverage of Akutan and Augustine volcanoes and reconnaissance for future installations on Unimak Island; the installation of nine new stations on Mt. St. Helens; and the arrival of 33 permits for station installations on BLM land in Nevada. The Augustine network provided critical data on magmatic and volcanic processes associated with the 2005-2006 volcanic crisis, and has expanded to a total of 11 stations. Please visit http://pboweb.unavco.org/?pageid=3 for further information on PBO GPS network construction activities. As of September 2007, 41 PBO borehole stations had been installed and three laser strainmeter stations were operating, with a total of 60 borehole stations and 4 laser strainmeters expected by October 2007. In response to direction from the EarthScope community, UNAVCO installed a dense network of six stations along the San Jacinto Fault near Anza, California; installed three of four planned borehole strainmeter stations on Mt. St. Helens; and has densified coverage of the Parkfield area. Please visit http://pboweb.unavco.org/?pageid=8 for more information on PBO strainmeter network construction progress. The combined PBO/Nucleus GPS network provides 350 GB of raw standard rate data, with special downloads of more than 250 GB of high-rate GPS data following large earthquakes in Russia, Tonga, and Peru, as well as for community requests. The standard rate GPS data are processed routinely to generate data products including station position time series, velocity vectors, and related information, and all data products are available from the UNAVCO Facility archive. The PBO seismic network seismic network has provided 201 GB of raw data, which are available via Antelope and Earthworm from PBO and via the IRIS Data Management Center (DMC); we provide data to seismic networks operated from Caltech, UCSD, UCSB, University of Washington, and the Pacific Geosciences Center in Sidney, BC. The PBO strainmeter network has provided 93 GB of raw data, available in both raw native format and SEED format from the Northern California Earthquake Data Center and the IRIS DMC, along with higher-level products such as cleaned strain time series and related information. Please visit http://pboweb.unavco.org/gps_data and http://pboweb.unavco.org/strain_data for more information on PBO GPS and strainmeter/seismic data products, respectively.

  1. Dike Intrusion Process of 2000 Miyakejima - Kozujima Event estimated from GPS measurements in Kozujima - Niijima Islands, central Japan

    NASA Astrophysics Data System (ADS)

    Murase, M.; Nakao, S.; Kato, T.; Tabei, T.; Kimata, F.; Fujii, N.

    2003-12-01

    Kozujima - Niijima Islands of Izu Volcano Islands are located about 180 km southeast of Tokyo, Japan. Although the last volcano eruptions in Kozujima and Niijima volcanoes are recorded more than 1000 year before, the ground deformation of 2-3 cm is detected at Kozujima - Niijima Islands by GPS measurements since 1996. On June 26, 2000, earthquake swarm and large ground deformation more than 20 cm are observed at Miyakejima volcano located 40 km east-southeastward of Kozu Island, and volcano eruption are continued since July 7. Remarkable earthquake swarm including five earthquakes more than M5 is stretching to Kozushima Island from Miyakejima Island. From the rapid ground deformation detected by continuous GPS measurements at Miyakejima Island on June 26, magma intrusion models of two or three dikes are discussed in the south and west part of Miyakejima volcano by Irwan et al.(2003) and Ueda et al.(2003). They also estimate dike intrusions are propagated from southern part of Miyakejima volcano to western part, and finally dike intrusion is stretching to 20 km distance toward Kozujima Island. From the ground deformation detected by GPS daily solution of Nation-wide dense GPS network (GEONET), some dike intrusion models are discussed. Ito et al.(2002) estimate the huge dike intrusion with length of about 20 km and volume of 1 km3 in the sea area between the Miyake Island and Kozu Island. (And) Nishimura et al.(2001) introduce not only dike but also aseismic creep source to explain the deformation in Shikinejima. Yamaoka et al.(2002) discuss the dike and spherical deflation source under the dike, because of no evidence supported large aseismic creep. They indicate a dike and spherical deflation source model is as good as dike and creep source model. In case of dike and creep, magma supply is only from the chamber under the Miyakejima volcano. In dike and spherical deflation source model, magma supply is from under Miyakejima volcano and under the dike. Furuya et al.(2003) discuss the gravity change of Miyakejima and they conclude that the magma supply from the chamber under Miyakejima volcano is too small to explain the dike intrusion. In order to discuss the local ground deformation, Nagoya University additionally operates the local GPS network of single frequency receivers at seven sites in Kozujima, Shikineshima and Niijima. Form the vertical deformation detected on local GPS network, northward tilting is observed in Kozujima. We used Genetic Algorithm (GA) for search the model parameter of dike intrusion and fault. GA is an attractive global search tool suitable for the irregular, multimodal fitness functions typically observed in nonlinear optimization problems. We discuss mechanism of Miyakejima - Kozujima event in detail using data of 20 GPS sites near field by GA. The results suggest that magma intrusion system of the dike between Miyakejima and Kozujima changes on August 18 when a large volcano eruption occurred. Until August 18 the activity of creep fault is high and after then deflation at the point source just under the dike is active.

  2. Single-Source Gravitational Wave Limits From the J1713+0747 24-hr Global Campaign

    NASA Astrophysics Data System (ADS)

    Dolch, T.; NANOGrav Collaboration; Ellis, J. A.; Chatterjee, S.; Cordes, J. M.; Lam, M. T.; Bassa, C.; Bhattacharyya, B.; Champion, D. J.; Cognard, I.; Crowter, K.; Demorest, P. B.; Hessels, J. W. T.; Janssen, G.; Jenet, F. A.; Jones, G.; Jordan, C.; Karuppusamy, R.; Keith, M.; Kondratiev, V. I.; Kramer, M.; Lazarus, P.; Lazio, T. J. W.; Lorimer, D. R.; Madison, D. R.; McLaughlin, M. A.; Palliyaguru, N.; Perrodin, D.; Ransom, S. M.; Roy, J.; Shannon, R. M.; Smits, R.; Stairs, I. H.; Stappers, B. W.; Stinebring, D. R.; Stovall, K.; Verbiest, J. P. W.; Zhu, W. W.

    2016-05-01

    Dense, continuous pulsar timing observations over a 24-hr period provide a method for probing intermediate gravitational wave (GW) frequencies from 10 microhertz to 20 millihertz. The European Pulsar Timing Array (EPTA), the North American Nanohertz Observatory for Gravitational Waves (NANOGrav), the Parkes Pulsar Timing Array (PPTA), and the combined International Pulsar Timing Array (IPTA) all use millisecond pulsar observations to detect or constrain GWs typically at nanohertz frequencies. In the case of the IPTA's nine-telescope 24-Hour Global Campaign on millisecond pulsar J1713+0747, GW limits in the intermediate frequency regime can be produced. The negligible change in dispersion measure during the observation minimizes red noise in the timing residuals, constraining any contributions from GWs due to individual sources. At 10-5 Hz, the 95% upper limit on strain is 10-11 for GW sources in the pulsar's direction.

  3. Sub-GeV dark matter detection with electron recoils in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Cavoto, G.; Luchetta, F.; Polosa, A. D.

    2018-01-01

    Directional detection of Dark Matter particles (DM) in the MeV mass range could be accomplished by studying electron recoils in large arrays of parallel carbon nanotubes. In a scattering process with a lattice electron, a DM particle might transfer sufficient energy to eject it from the nanotube surface. An external electric field is added to drive the electron from the open ends of the array to the detection region. The anisotropic response of this detection scheme, as a function of the orientation of the target with respect to the DM wind, is calculated, and it is concluded that no direct measurement of the electron ejection angle is needed to explore significant regions of the light DM exclusion plot. A compact sensor, in which the cathode element is substituted with a dense array of parallel carbon nanotubes, could serve as the basic detection unit.

  4. Observations and interpretation of fundamental mode Rayleigh wavefields recorded by the Transportable Array (USArray)

    USGS Publications Warehouse

    Pollitz, F.F.

    2008-01-01

    Broadband recordings of the dense Transportable Array (TA) in the western United States provide unparalleled detailed images of long-period seismic surface wavefields. With 400 stations spanning most of the western United States, wavefronts of fundamental mode Rayleigh waves may be visualized coherently across the array at periods ???40 s. In order to constrain the Rayleigh wave phase velocity structure in the western United States, I assemble a data set of vertical component seismograms from 53 teleseismic events recorded by the TA from April 2006 to October 2007. Complex amplitude spectra from these recordings at peni ods 27-100 s are interpreted using the multiplane wave tomographic method of Friederich and Wielandt (1995) and Pollitz (1999). This analysis yields detailed surface wave phase velocity and three-dimensional shear wave velocity patterns across the North American plate boundary zone, elucidating the active processes in the highly heterogeneous western U.S. upper mantle.

  5. Nonlinear site response in medium magnitude earthquakes near Parkfield, California

    USGS Publications Warehouse

    Rubinstein, Justin L.

    2011-01-01

    Careful analysis of strong-motion recordings of 13 medium magnitude earthquakes (3.7 ≤ M ≤ 6.5) in the Parkfield, California, area shows that very modest levels of shaking (approximately 3.5% of the acceleration of gravity) can produce observable changes in site response. Specifically, I observe a drop and subsequent recovery of the resonant frequency at sites that are part of the USGS Parkfield dense seismograph array (UPSAR) and Turkey Flat array. While further work is necessary to fully eliminate other models, given that these frequency shifts correlate with the strength of shaking at the Turkey Flat array and only appear for the strongest shaking levels at UPSAR, the most plausible explanation for them is that they are a result of nonlinear site response. Assuming this to be true, the observation of nonlinear site response in small (M M 6.5 San Simeon earthquake and the 2004 M 6 Parkfield earthquake).

  6. Assessment of ground-based monitoring techniques applied to landslide investigations

    NASA Astrophysics Data System (ADS)

    Uhlemann, S.; Smith, A.; Chambers, J.; Dixon, N.; Dijkstra, T.; Haslam, E.; Meldrum, P.; Merritt, A.; Gunn, D.; Mackay, J.

    2016-01-01

    A landslide complex in the Whitby Mudstone Formation at Hollin Hill, North Yorkshire, UK is periodically re-activated in response to rainfall-induced pore-water pressure fluctuations. This paper compares long-term measurements (i.e., 2009-2014) obtained from a combination of monitoring techniques that have been employed together for the first time on an active landslide. The results highlight the relative performance of the different techniques, and can provide guidance for researchers and practitioners for selecting and installing appropriate monitoring techniques to assess unstable slopes. Particular attention is given to the spatial and temporal resolutions offered by the different approaches that include: Real Time Kinematic-GPS (RTK-GPS) monitoring of a ground surface marker array, conventional inclinometers, Shape Acceleration Arrays (SAA), tilt meters, active waveguides with Acoustic Emission (AE) monitoring, and piezometers. High spatial resolution information has allowed locating areas of stability and instability across a large slope. This has enabled identification of areas where further monitoring efforts should be focused. High temporal resolution information allowed the capture of 'S'-shaped slope displacement-time behaviour (i.e. phases of slope acceleration, deceleration and stability) in response to elevations in pore-water pressures. This study shows that a well-balanced suite of monitoring techniques that provides high temporal and spatial resolutions on both measurement and slope scale is necessary to fully understand failure and movement mechanisms of slopes. In the case of the Hollin Hill landslide it enabled detailed interpretation of the geomorphological processes governing landslide activity. It highlights the benefit of regularly surveying a network of GPS markers to determine areas for installation of movement monitoring techniques that offer higher resolution both temporally and spatially. The small sensitivity of tilt meter measurements to translational movements limited the ability to record characteristic 'S'-shaped landslide movements at Hollin Hill, which were identified using SAA and AE measurements. This high sensitivity to landslide movements indicates the applicability of SAA and AE monitoring to be used in early warning systems, through detecting and quantifying accelerations of slope movement.

  7. Design and Implementation of a Wireless Sensor Network of GPS-enabled Seismic Sensors for the Study of Glaciers and Ice Sheets

    NASA Astrophysics Data System (ADS)

    Bilen, S. G.; Anandakrishnan, S.; Urbina, J. V.

    2012-12-01

    In an effort to provide new and improved geophysical sensing capabilities for the study of ice sheets in Antarctica and Greenland, or to study mountain glaciers, we are developing a network of wirelessly interconnected seismic and GPS sensor nodes (called "geoPebbles"), with the primary objective of making such instruments more capable and cost effective. We describe our design methodology, which has enabled us to develop these state-of-the art sensors using commercial-off-the-shelf hardware combined with custom-designed hardware and software. Each geoPebble is a self-contained, wirelessly connected sensor for collecting seismic measurements and position information. Each node is built around a three-component seismic recorder, which includes an amplifier, filter, and 24-bit analog-to-digital card that can sample up to 10 kHz. Each unit also includes a microphone channel to record the ground-coupled airwave. The timing for each node is available through a carrier-phase measurement of the L1 GPS signal at an absolute accuracy of better than a microsecond. Each geoPebble includes 16 GB of solid-state storage, wireless communications capability to a central supervisory unit, and auxiliary measurements capability (up to eight 10-bit channels at low sample rates). We will report on current efforts to test this new instrument and how we are addressing the challenges imposed by the extreme weather conditions on the Antarctic continent. After fully validating its operational conditions, the geoPebble system will be available for NSF-sponsored glaciology research projects. Geophysical experiments in the polar region are logistically difficult. With the geoPebble system, the cost of doing today's experiments (low-resolution, 2D) will be significantly reduced, and the cost and feasibility of doing tomorrow's experiments (integrated seismic, positioning, 3D, etc.) will be reasonable. Sketch of an experiment with geoPebbles scattered on the surface of the ice sheet. The seismic source can move through the array. The SQC node communicates with all the elements in the array.

  8. A Clash of Bottom-Up and Top-Down Processes in Visual Search: The Reversed Letter Effect Revisited

    ERIC Educational Resources Information Center

    Zhaoping, Li; Frith, Uta

    2011-01-01

    It is harder to find the letter "N" among its mirror reversals than vice versa, an inconvenient finding for bottom-up saliency accounts based on primary visual cortex (V1) mechanisms. However, in line with this account, we found that in dense search arrays, gaze first landed on either target equally fast. Remarkably, after first landing,…

  9. How Toddlers and Preschoolers Learn to Uniquely Identify Referents for Others: A Training Study

    ERIC Educational Resources Information Center

    Matthews, Danielle; Lieven, Elena; Tomasello, Michael

    2007-01-01

    This training study investigates how children learn to refer to things unambiguously. Two hundred twenty-four children aged 2.6, 3.6, and 4.6 years were pre- and post-tested for their ability to request stickers from a dense array. Between test sessions, children were assigned to a training condition in which they (a) asked for stickers from an…

  10. A COMPARISON OF AIRFLOW PATTERNS FROM THE QUIC MODEL AND AN ATMOSPHERIC WIND TUNNEL FOR A TWO-DIMENSIONAL BUILDING ARRAY AND A MULTI-CITY BLOCK REGION NEAR THE WORLD TRADE CENTER SITE

    EPA Science Inventory

    Dispersion of pollutants in densely populated urban areas is a research area of clear importance. Currently, few numerical tools exist capable of describing airflow and dispersion patterns in these complex regions in a time efficient manner. (QUIC), Quick Urban & Industrial C...

  11. Plastic fiber scintillator response to fast neutrons

    NASA Astrophysics Data System (ADS)

    Danly, C. R.; Sjue, S.; Wilde, C. H.; Merrill, F. E.; Haight, R. C.

    2014-11-01

    The Neutron Imaging System at NIF uses an array of plastic scintillator fibers in conjunction with a time-gated imaging system to form an image of the neutron emission from the imploded capsule. By gating on neutrons that have scattered from the 14.1 MeV DT energy to lower energy ranges, an image of the dense, cold fuel around the hotspot is also obtained. An unmoderated spallation neutron beamline at the Weapons Neutron Research facility at Los Alamos was used in conjunction with a time-gated imaging system to measure the yield of a scintillating fiber array over several energy bands ranging from 1 to 15 MeV. The results and comparison to simulation are presented.

  12. Plastic fiber scintillator response to fast neutrons.

    PubMed

    Danly, C R; Sjue, S; Wilde, C H; Merrill, F E; Haight, R C

    2014-11-01

    The Neutron Imaging System at NIF uses an array of plastic scintillator fibers in conjunction with a time-gated imaging system to form an image of the neutron emission from the imploded capsule. By gating on neutrons that have scattered from the 14.1 MeV DT energy to lower energy ranges, an image of the dense, cold fuel around the hotspot is also obtained. An unmoderated spallation neutron beamline at the Weapons Neutron Research facility at Los Alamos was used in conjunction with a time-gated imaging system to measure the yield of a scintillating fiber array over several energy bands ranging from 1 to 15 MeV. The results and comparison to simulation are presented.

  13. A unified analysis of crustal motion in Southern California, 1970-2004: The SCEC crustal motion map

    NASA Astrophysics Data System (ADS)

    Shen, Z.-K.; King, R. W.; Agnew, D. C.; Wang, M.; Herring, T. A.; Dong, D.; Fang, P.

    2011-11-01

    To determine crustal motions in and around southern California, we have processed and combined trilateration data collected from 1970 to 1992, VLBI data from 1979 to 1992, and GPS data from 1986 to 2004: a long temporal coverage required in part by the occurrence of several large earthquakes in this region. From a series of solutions for station positions, we have estimated interseismic velocities, coseismic displacements, and postseismic motions. Within the region from 31°N to 38°N. and east to 114°W, the final product includes estimated horizontal velocities for 1009 GPS, 190 trilateration, and 16 VLBI points, with ties between some of these used to stabilize the solution. All motions are relative to the Stable North American Reference Frame (SNARF) as realized through the velocities of 20 GPS stations. This provides a relatively dense set of horizontal velocity estimates, with well-tested errors, for the past quarter century over the plate boundary from 31°N to 36.5°N. These velocities agree well with those from the Plate Boundary Observatory, which apply to a later time period. We also estimated vertical velocities, 533 of which have errors below 2 mm/yr. Most of these velocities are less than 1 mm/yr, but they show 2-4 mm/yr subsidence in the Ventura and Los Angeles basins and in the Salton Trough. Our analysis also included estimates of coseismic and postseismic motions related to the 1992 Landers, 1994 Northridge, 1999 Hector Mine, and 2003 San Simeon earthquakes. Postseismic motions increase logarithmically over time with a time constant of about 10 days, and generally mimic the direction and relative amplitude of the coseismic offsets.

  14. Large-scale displacement following the 2016 Kaikōura earthquake

    NASA Astrophysics Data System (ADS)

    Wang, T.; Peng, D.; Barbot, S.; Wei, S.; Shi, X.

    2017-12-01

    The 2016 Mw 7.9 Kaikōura earthquake occurred near the southern termination of the Hikurangi subduction system, where a transition from subduction to strike-slip motion dominates the pre-seismic strain accumulation. Dense spatial coverage of the GPS measurements and large amount of Interferometric Synthetic Aperture Radar (InSAR) images provide valuable constraints, from the near field to the far field, to study how the slip is distributed among the subduction interface and the overlying fault system before, during and after the earthquake. We extract time-series deformation from the New Zealand continuous GPS network, and SAR images acquired from Japanese ALOS-2 and European Sentinel-1A/B satellites to image the surface deformation related to the 2016 Kaikōura earthquake. Both GPS and InSAR data, which cover the entire New Zealand region, show that the co-seismic and post-seismic deformations are distributed in an extraordinary large area, as far as to the north tip of the North Island. Based on a coseismic slip model derived from seismic and geodetic observations, we calculate the stress perturbation incurred by the earthquake. We explore a range of possibilities of friction laws and rheology via a linear combination of strain rate in finite volumes and slip velocity on ruptured faults. We obtain the slip distribution that can best explain our geodetic measurements using outlier-insensitive hierarchical Bayesian model, to better understand different mechanisms behind the localized shallow after slip and distributed deformation. Our results indicate that complex interactions between the subduction interface and the overlying fault system play an important role in causing such large-scale deformation during and after the earthquake event.

  15. Rupture processes of the 2012 September 5 Mw 7.6 Nicoya, Costa Rica earthquake constrained by improved geodetic and seismological observations

    NASA Astrophysics Data System (ADS)

    Liu, Chengli; Zheng, Yong; Xiong, Xiong; Wang, Rongjiang; López, Allan; Li, Jun

    2015-10-01

    On 2012 September 5, the anticipated interplate thrust earthquake ruptured beneath the Nicoya peninsula in northwestern Costa Rica close to the Middle America trench, with a magnitude Mw 7.6. Extensive co-seismic observations were provided by dense near-field strong ground motion, Global Positioning Systems (GPS) networks and teleseismic recordings from global seismic networks. The wealthy data sets available for the 2012 Mw 7.6 Nicoya earthquake provide a unique opportunity to investigate the details of the rupture process of this earthquake. By implementing a non-linear joint inversion with high-rate GPS waveform, more static GPS offsets, strong-motion data and teleseismic body waveform, we obtained a robust and accurate rupture model of the 2012 Mw 7.6 Nicoya earthquake. The earthquake is dominantly a pure thrust component with a maximum slip of 3.5 m, and the main large slip patch is located below the hypocentre, spanning ˜50 km along dip and ˜110 km along strike. The static stress drop is about 3.4 MPa. The total seismic moment of our preferred model is 3.46 × 1020 N m, which gives Mw = 7.6. Due to the fast rupture velocity, most of the seismic moment was released within 70 s. The largest slip patch directly overlaps the interseismic locked region identified by geodetic observations and extends downdip to the intersection with the upper plate Moho. We also find that there is a complementary pattern between the distribution of aftershocks and the co-seismic rupture; most aftershocks locate in the crust of the upper plate and are possibly induced by the stress change caused by the large slip patch.

  16. Analyte species and concentration identification using differentially functionalized microcantilever arrays and artificial neural networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senesac, Larry R; Datskos, Panos G; Sepaniak, Michael J

    2006-01-01

    In the present work, we have performed analyte species and concentration identification using an array of ten differentially functionalized microcantilevers coupled with a back-propagation artificial neural network pattern recognition algorithm. The array consists of ten nanostructured silicon microcantilevers functionalized by polymeric and gas chromatography phases and macrocyclic receptors as spatially dense, differentially responding sensing layers for identification and quantitation of individual analyte(s) and their binary mixtures. The array response (i.e. cantilever bending) to analyte vapor was measured by an optical readout scheme and the responses were recorded for a selection of individual analytes as well as several binary mixtures. Anmore » artificial neural network (ANN) was designed and trained to recognize not only the individual analytes and binary mixtures, but also to determine the concentration of individual components in a mixture. To the best of our knowledge, ANNs have not been applied to microcantilever array responses previously to determine concentrations of individual analytes. The trained ANN correctly identified the eleven test analyte(s) as individual components, most with probabilities greater than 97%, whereas it did not misidentify an unknown (untrained) analyte. Demonstrated unique aspects of this work include an ability to measure binary mixtures and provide both qualitative (identification) and quantitative (concentration) information with array-ANN-based sensor methodologies.« less

  17. Ontogenetic changes in the olfactory antennules of the shore crab, Hemigrapsus oregonensis, maintain sniffing function during growth

    PubMed Central

    Waldrop, Lindsay D.; Hann, Miranda; Henry, Amy K.; Kim, Agnes; Punjabi, Ayesha; Koehl, M. A. R.

    2015-01-01

    Malacostracan crustaceans capture odours using arrays of chemosensory hairs (aesthetascs) on antennules. Lobsters and stomatopods have sparse aesthetascs on long antennules that flick with a rapid downstroke when water flows between the aesthetascs and a slow return stroke when water is trapped within the array (sniffing). Changes in velocity only cause big differences in flow through an array in a critical range of hair size, spacing and speed. Crabs have short antennules bearing dense arrays of flexible aesthetascs that splay apart during downstroke and clump together during return. Can crabs sniff, and when during ontogeny are they big enough to sniff? Antennules of Hemigrapsus oregonensis representing an ontogenetic series from small juveniles to adults were used to design dynamically scaled physical models. Particle image velocimetry quantified fluid flow through each array and showed that even very small crabs capture a new water sample in their arrays during the downstroke and retain that sample during return stroke. Comparison with isometrically scaled antennules suggests that reduction in aesthetasc flexural stiffness during ontogeny, in addition to increase in aesthetasc number and decrease in relative size, maintain sniffing as crabs grow. Sniffing performance of intermediate-sized juveniles was worse than for smaller and larger crabs. PMID:25411408

  18. Ontogenetic changes in the olfactory antennules of the shore crab, Hemigrapsus oregonensis, maintain sniffing function during growth.

    PubMed

    Waldrop, Lindsay D; Hann, Miranda; Henry, Amy K; Kim, Agnes; Punjabi, Ayesha; Koehl, M A R

    2015-01-06

    Malacostracan crustaceans capture odours using arrays of chemosensory hairs (aesthetascs) on antennules. Lobsters and stomatopods have sparse aesthetascs on long antennules that flick with a rapid downstroke when water flows between the aesthetascs and a slow return stroke when water is trapped within the array (sniffing). Changes in velocity only cause big differences in flow through an array in a critical range of hair size, spacing and speed. Crabs have short antennules bearing dense arrays of flexible aesthetascs that splay apart during downstroke and clump together during return. Can crabs sniff, and when during ontogeny are they big enough to sniff? Antennules of Hemigrapsus oregonensis representing an ontogenetic series from small juveniles to adults were used to design dynamically scaled physical models. Particle image velocimetry quantified fluid flow through each array and showed that even very small crabs capture a new water sample in their arrays during the downstroke and retain that sample during return stroke. Comparison with isometrically scaled antennules suggests that reduction in aesthetasc flexural stiffness during ontogeny, in addition to increase in aesthetasc number and decrease in relative size, maintain sniffing as crabs grow. Sniffing performance of intermediate-sized juveniles was worse than for smaller and larger crabs. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  19. Identical Aftershocks from the Main Rupture Zone 10 Months After the Mw=7.6 September 5, 2012, Nicoya, Costa Rica, Earthquake

    NASA Astrophysics Data System (ADS)

    Protti, M.; Alfaro-Diaz, R.; Brenn, G. R.; Fasola, S.; Murillo, A.; Marshall, J. S.; Gardner, T. W.

    2013-12-01

    Over a two weeks period and as part of a Keck Geology Consortium summer research project, we installed a dense broad band seismic array directly over the rupture zone of the Nicoya, September 5th, 2012, Mw=7.6 earthquake. The network consisted of 5 Trillium compact seismometers and Taurus digitizers from Nanometrics, defining a triangular area of ~20 km per side. Also located within this area are 3 stations of the Nicoya permanent broadband network. One side of the triangular area, along the west coast of the Nicoya peninsula, is parallel to the trench and the apex lies 15 km landward. The plate interface and rupture zone of the Nicoya 2012 earthquake are located 16 km below the trench-parallel side and 25 km below the apex of this triangular footprint. Station spacing ranged from 3 to 14 km. This dense array operated from July 2nd to July 17th, 2013. On June 23rd, eight days before we installed this array, an Mw=5.4 aftershock (one of the only 5 aftershocks of the Nicoya Mw=7.6 earthquake with magnitudes above 5.0) occurred directly beneath the area of our temporary network. Preliminary analysis of the data shows that we recorded several identical aftershocks with magnitudes below 1.0 that locate some 18 km below our network. We will present detailed locations of these small aftershocks and their relationship with the June 23rd, 2013 aftershock and the September 5th, 2012, mainshock.

  20. New constraints on micro-seismicity and stress state in the western part of the North Anatolian Fault Zone: Observations from a dense seismic array

    NASA Astrophysics Data System (ADS)

    Altuncu Poyraz, Selda; Teoman, M. Uğur; Türkelli, Niyazi; Kahraman, Metin; Cambaz, Didem; Mutlu, Ahu; Rost, Sebastian; Houseman, Gregory A.; Thompson, David A.; Cornwell, David; Utkucu, Murat; Gülen, Levent

    2015-08-01

    With the aim of extensively investigating the crustal structure beneath the western segment of the North Anatolian Fault Zone where it splays into northern and southern branches, a temporary seismic network (dense array for North Anatolia-DANA) consisting of 70 stations was deployed in early May 2012 and operated for 18 months in the Sakarya region during the FaultLab experiment. Out of 2437 events contaminated by explosions, we extracted 1371 well located earthquakes. The enhanced station coverage having a nominal station spacing of 7 km, lead to a minimum magnitude calculation of 0.1. Horizontal and vertical location uncertainties within the array do not exceed 0.8 km and 0.9 km, respectively. We observe considerable seismic activity along both branches of the fault where the depth of the seismogenic zone was mostly confined to 15 km. Using our current earthquake catalog we obtained a b-value of 1. We also mapped the b-value variation with depth and observed a gradual decrease. Furthermore, we determined the source parameters of 41 earthquakes with magnitudes greater than 1.8 using P-wave first motion polarity method. Regional Moment Tensor Inversion method was also applied to earthquakes with magnitudes greater than 3.0. Focal mechanism solutions confirm that Sakarya and its vicinity is stressed by a compressional regime showing a primarily oblique-slip motion character. Stress tensor analysis indicates that the maximum principal stress is aligned in WNW-ESE direction and the tensional axis is aligned in NNE-SSW direction.

  1. Complete disintegration of the microtubular cytoskeleton precedes its auxin-mediated reconstruction in postmitotic maize root cells

    NASA Technical Reports Server (NTRS)

    Baluska, F.; Barlow, P. W.; Volkmann, D.

    1996-01-01

    The inhibitory action of 0.1 microM auxin (IAA) on maize root growth was closely associated with a rapid and complete disintegration of the microtubular (MT) cytoskeleton, as visualized by indirect immunofluorescence of tubulin, throughout the growth region. After 30 min of this treatment, only fluorescent spots were present in root cells, accumulating either around nuclei or along cell walls. Six h later, in addition to some background fluorescence, dense but partially oriented oblique or longitudinal arrays of cortical MTs (CMTs) were found in most growing cells of the root apex. After 24 h of treatment, maize roots had adapted to the auxin, as inferred from the slowly recovering elongation rate and from the reassembly of a dense and well-ordered MT cytoskeleton which showed only slight deviations from that of the control root cells. Taxol pretreatment (100 microM, 24 h) prevented not only the rapid auxin-mediated disintegration of the MT cytoskeleton but also a reorientation of the CMT arrays, from transversal to longitudinal. The only tissue to show MTs in their cells throughout the auxin treatment was the epidermis. Significant resistance of transverse CMT arrays in these cells towards auxin was confirmed using a higher auxin concentration (100 microM, 24 h). The latter auxin dose also revealed inter-tissue-specific responses to auxin: outer cortical cell files reoriented their CMTs from the transversal to longitudinal orientation, whereas inner cortical cell files lost their MTs. This high auxin-mediated response, associated with the swelling of root apices, was abolished with the pretreatment of maize root with taxol.

  2. A new generation of ultra-dense optical I/O for silicon photonics

    NASA Astrophysics Data System (ADS)

    Wlodawski, Mitchell S.; Kopp, Victor I.; Park, Jongchul; Singer, Jonathan; Hubner, Eric E.; Neugroschl, Daniel; Chao, Norman; Genack, Azriel Z.

    2014-03-01

    In response to the optical packaging needs of a rapidly growing silicon photonics market, Chiral Photonics, Inc. (CPI) has developed a new generation of ultra-dense-channel, bi-directional, all-optical, input/output (I/O) couplers that bridge the data transport gap between standard optical fibers and photonic integrated circuits. These couplers, called Pitch Reducing Optical Fiber Arrays (PROFAs), provide a means to simultaneously match both the mode field and channel spacing (i.e. pitch) between an optical fiber array and a photonic integrated circuit (PIC). Both primary methods for optically interfacing with PICs, via vertical grating couplers (VGCs) and edge couplers, can be addressed with PROFAs. PROFAs bring the signal-carrying cores, either multimode or singlemode, of many optical fibers into close proximity within an all-glass device that can provide low loss coupling to on-chip components, including waveguides, gratings, detectors and emitters. Two-dimensional (2D) PROFAs offer more than an order of magnitude enhancement in channel density compared to conventional one-dimensional (1D) fiber arrays. PROFAs can also be used with low vertical profile solutions that simplify optoelectronic packaging while reducing PIC I/O real estate usage requirements. PROFA technology is based on a scalable production process for microforming glass preform assemblies as they are pulled through a small oven. An innovative fiber design, called the "vanishing core," enables tailoring the mode field along the length of the PROFA to meet the coupling needs of disparate waveguide technologies, such as fiber and onchip. Examples of single- and multi-channel couplers fabricated using this technology will be presented.

  3. Image-guided ultrasound phased arrays are a disruptive technology for non-invasive therapy

    NASA Astrophysics Data System (ADS)

    Hynynen, Kullervo; Jones, Ryan M.

    2016-09-01

    Focused ultrasound offers a non-invasive way of depositing acoustic energy deep into the body, which can be harnessed for a broad spectrum of therapeutic purposes, including tissue ablation, the targeting of therapeutic agents, and stem cell delivery. Phased array transducers enable electronic control over the beam geometry and direction, and can be tailored to provide optimal energy deposition patterns for a given therapeutic application. Their use in combination with modern medical imaging for therapy guidance allows precise targeting, online monitoring, and post-treatment evaluation of the ultrasound-mediated bioeffects. In the past there have been some technical obstacles hindering the construction of large aperture, high-power, densely-populated phased arrays and, as a result, they have not been fully exploited for therapy delivery to date. However, recent research has made the construction of such arrays feasible, and it is expected that their continued development will both greatly improve the safety and efficacy of existing ultrasound therapies as well as enable treatments that are not currently possible with existing technology. This review will summarize the basic principles, current statures, and future potential of image-guided ultrasound phased arrays for therapy.

  4. Image-guided ultrasound phased arrays are a disruptive technology for non-invasive therapy.

    PubMed

    Hynynen, Kullervo; Jones, Ryan M

    2016-09-07

    Focused ultrasound offers a non-invasive way of depositing acoustic energy deep into the body, which can be harnessed for a broad spectrum of therapeutic purposes, including tissue ablation, the targeting of therapeutic agents, and stem cell delivery. Phased array transducers enable electronic control over the beam geometry and direction, and can be tailored to provide optimal energy deposition patterns for a given therapeutic application. Their use in combination with modern medical imaging for therapy guidance allows precise targeting, online monitoring, and post-treatment evaluation of the ultrasound-mediated bioeffects. In the past there have been some technical obstacles hindering the construction of large aperture, high-power, densely-populated phased arrays and, as a result, they have not been fully exploited for therapy delivery to date. However, recent research has made the construction of such arrays feasible, and it is expected that their continued development will both greatly improve the safety and efficacy of existing ultrasound therapies as well as enable treatments that are not currently possible with existing technology. This review will summarize the basic principles, current statures, and future potential of image-guided ultrasound phased arrays for therapy.

  5. Coherent array of branched filamentary scales along the wing margin of a small moth

    NASA Astrophysics Data System (ADS)

    Yoshida, Akihiro; Tejima, Shin; Sakuma, Masayuki; Sakamaki, Yositaka; Kodama, Ryuji

    2017-04-01

    In butterflies and moths, the wing margins are fringed with specialized scales that are typically longer than common scales. In the hindwings of some small moths, the posterior margins are fringed with particularly long filamentary scales. Despite the small size of these moth wings, these scales are much longer than those of large moths and butterflies. In the current study, photography of the tethered flight of a small moth, Phthorimaea operculella, revealed a wide array composed of a large number of long filamentary scales. This array did not become disheveled in flight, maintaining a coherent sheet-like structure during wingbeat. Examination of the morphology of individual scales revealed that each filamentary scale consists of a proximal stalk and distal branches. Moreover, not only long scales but also shorter scales of various lengths were found to coexist in each small section of the wing margin. Scale branches were ubiquitously and densely distributed within the scale array to form a mesh-like architecture similar to a nonwoven fabric. We propose that possible mechanical interactions among branched filamentary scales, mediated by these branches, may contribute to maintaining a coherent sheet-like structure of the scale array during wingbeat.

  6. Image-guided ultrasound phased arrays are a disruptive technology for non-invasive therapy

    PubMed Central

    Hynynen, Kullervo; Jones, Ryan M.

    2016-01-01

    Focused ultrasound offers a non-invasive way of depositing acoustic energy deep into the body, which can be harnessed for a broad spectrum of therapeutic purposes, including tissue ablation, the targeting of therapeutic agents, and stem cell delivery. Phased array transducers enable electronic control over the beam geometry and direction, and can be tailored to provide optimal energy deposition patterns for a given therapeutic application. Their use in combination with modern medical imaging for therapy guidance allows precise targeting, online monitoring, and post-treatment evaluation of the ultrasound-mediated bioeffects. In the past there have been some technical obstacles hindering the construction of large aperture, high-power, densely-populated phased arrays and, as a result, they have not been fully exploited for therapy delivery to date. However, recent research has made the construction of such arrays feasible, and it is expected that their continued development will both greatly improve the safety and efficacy of existing ultrasound therapies as well as enable treatments that are not currently possible with existing technology. This review will summarize the basic principles, current statures, and future potential of image-guided ultrasound phased arrays for therapy. PMID:27494561

  7. Source sparsity control of sound field reproduction using the elastic-net and the lasso minimizers.

    PubMed

    Gauthier, P-A; Lecomte, P; Berry, A

    2017-04-01

    Sound field reproduction is aimed at the reconstruction of a sound pressure field in an extended area using dense loudspeaker arrays. In some circumstances, sound field reproduction is targeted at the reproduction of a sound field captured using microphone arrays. Although methods and algorithms already exist to convert microphone array recordings to loudspeaker array signals, one remaining research question is how to control the spatial sparsity in the resulting loudspeaker array signals and what would be the resulting practical advantages. Sparsity is an interesting feature for spatial audio since it can drastically reduce the number of concurrently active reproduction sources and, therefore, increase the spatial contrast of the solution at the expense of a difference between the target and reproduced sound fields. In this paper, the application of the elastic-net cost function to sound field reproduction is compared to the lasso cost function. It is shown that the elastic-net can induce solution sparsity and overcomes limitations of the lasso: The elastic-net solves the non-uniqueness of the lasso solution, induces source clustering in the sparse solution, and provides a smoother solution within the activated source clusters.

  8. Broadband implementation of coprime linear microphone arrays for direction of arrival estimation.

    PubMed

    Bush, Dane; Xiang, Ning

    2015-07-01

    Coprime arrays represent a form of sparse sensing which can achieve narrow beams using relatively few elements, exceeding the spatial Nyquist sampling limit. The purpose of this paper is to expand on and experimentally validate coprime array theory in an acoustic implementation. Two nested sparse uniform linear subarrays with coprime number of elements ( M and N) each produce grating lobes that overlap with one another completely in just one direction. When the subarray outputs are combined it is possible to retain the shared beam while mostly canceling the other superfluous grating lobes. In this way a small number of microphones ( N+M-1) creates a narrow beam at higher frequencies, comparable to a densely populated uniform linear array of MN microphones. In this work beampatterns are simulated for a range of single frequencies, as well as bands of frequencies. Narrowband experimental beampatterns are shown to correspond with simulated results even at frequencies other than the arrays design frequency. Narrowband side lobe locations are shown to correspond to the theoretical values. Side lobes in the directional pattern are mitigated by increasing bandwidth of analyzed signals. Direction of arrival estimation is also implemented for two simultaneous noise sources in a free field condition.

  9. Statistical correction of lidar-derived digital elevation models with multispectral airborne imagery in tidal marshes

    USGS Publications Warehouse

    Buffington, Kevin J.; Dugger, Bruce D.; Thorne, Karen M.; Takekawa, John Y.

    2016-01-01

    Airborne light detection and ranging (lidar) is a valuable tool for collecting large amounts of elevation data across large areas; however, the limited ability to penetrate dense vegetation with lidar hinders its usefulness for measuring tidal marsh platforms. Methods to correct lidar elevation data are available, but a reliable method that requires limited field work and maintains spatial resolution is lacking. We present a novel method, the Lidar Elevation Adjustment with NDVI (LEAN), to correct lidar digital elevation models (DEMs) with vegetation indices from readily available multispectral airborne imagery (NAIP) and RTK-GPS surveys. Using 17 study sites along the Pacific coast of the U.S., we achieved an average root mean squared error (RMSE) of 0.072 m, with a 40–75% improvement in accuracy from the lidar bare earth DEM. Results from our method compared favorably with results from three other methods (minimum-bin gridding, mean error correction, and vegetation correction factors), and a power analysis applying our extensive RTK-GPS dataset showed that on average 118 points were necessary to calibrate a site-specific correction model for tidal marshes along the Pacific coast. By using available imagery and with minimal field surveys, we showed that lidar-derived DEMs can be adjusted for greater accuracy while maintaining high (1 m) resolution.

  10. An intelligent and secure system for predicting and preventing Zika virus outbreak using Fog computing

    NASA Astrophysics Data System (ADS)

    Sareen, Sanjay; Gupta, Sunil Kumar; Sood, Sandeep K.

    2017-10-01

    Zika virus is a mosquito-borne disease that spreads very quickly in different parts of the world. In this article, we proposed a system to prevent and control the spread of Zika virus disease using integration of Fog computing, cloud computing, mobile phones and the Internet of things (IoT)-based sensor devices. Fog computing is used as an intermediary layer between the cloud and end users to reduce the latency time and extra communication cost that is usually found high in cloud-based systems. A fuzzy k-nearest neighbour is used to diagnose the possibly infected users, and Google map web service is used to provide the geographic positioning system (GPS)-based risk assessment to prevent the outbreak. It is used to represent each Zika virus (ZikaV)-infected user, mosquito-dense sites and breeding sites on the Google map that help the government healthcare authorities to control such risk-prone areas effectively and efficiently. The proposed system is deployed on Amazon EC2 cloud to evaluate its performance and accuracy using data set for 2 million users. Our system provides high accuracy of 94.5% for initial diagnosis of different users according to their symptoms and appropriate GPS-based risk assessment.

  11. Contemporary crustal movement of southeastern Tibet: Constraints from dense GPS measurements

    PubMed Central

    Pan, Yuanjin; Shen, Wen-Bin

    2017-01-01

    The ongoing collision between the Indian plate and the Eurasian plate brings up N-S crustal shortening and thickening of the Tibet Plateau, but its dynamic mechanisms remain controversial yet. As one of the most tectonically active regions of the world, South-Eastern Tibet (SET) has been greatly paid attention to by many geoscientists. Here we present the latest three-dimensional GPS velocity field to constrain the present-day tectonic process of SET, which may highlight the complex vertical crustal deformation. Improved data processing strategies are adopted to enhance the strain patterns throughout SET. The crustal uplifting and subsidence are dominated by regional deep tectonic dynamic processes. Results show that the Gongga Shan is uplifting with 1–1.5 mm/yr. Nevertheless, an anomalous crustal uplifting of ~8.7 mm/yr and negative horizontal dilation rates of 40–50 nstrain/yr throughout the Longmenshan structure reveal that this structure is caused by the intracontinental subduction of the Yangtze Craton. The Xianshuihe-Xiaojiang fault is a major active sinistral strike-slip fault which strikes essentially and consistently with the maximum shear strain rates. These observations suggest that the upper crustal deformation is closely related with the regulation and coupling of deep material. PMID:28349926

  12. Light Detection and Ranging-Based Terrain Navigation: A Concept Exploration

    NASA Technical Reports Server (NTRS)

    Campbell, Jacob; UijtdeHaag, Maarten; vanGraas, Frank; Young, Steve

    2003-01-01

    This paper discusses the use of Airborne Light Detection And Ranging (LiDAR) equipment for terrain navigation. Airborne LiDAR is a relatively new technology used primarily by the geo-spatial mapping community to produce highly accurate and dense terrain elevation maps. In this paper, the term LiDAR refers to a scanning laser ranger rigidly mounted to an aircraft, as opposed to an integrated sensor system that consists of a scanning laser ranger integrated with Global Positioning System (GPS) and Inertial Measurement Unit (IMU) data. Data from the laser range scanner and IMU will be integrated with a terrain database to estimate the aircraft position and data from the laser range scanner will be integrated with GPS to estimate the aircraft attitude. LiDAR data was collected using NASA Dryden's DC-8 flying laboratory in Reno, NV and was used to test the proposed terrain navigation system. The results of LiDAR-based terrain navigation shown in this paper indicate that airborne LiDAR is a viable technology enabler for fully autonomous aircraft navigation. The navigation performance is highly dependent on the quality of the terrain databases used for positioning and therefore high-resolution (2 m post-spacing) data was used as the terrain reference.

  13. SECURE INTERNET OF THINGS-BASED CLOUD FRAMEWORK TO CONTROL ZIKA VIRUS OUTBREAK.

    PubMed

    Sareen, Sanjay; Sood, Sandeep K; Gupta, Sunil Kumar

    2017-01-01

    Zika virus (ZikaV) is currently one of the most important emerging viruses in the world which has caused outbreaks and epidemics and has also been associated with severe clinical manifestations and congenital malformations. Traditional approaches to combat the ZikaV outbreak are not effective for detection and control. The aim of this study is to propose a cloud-based system to prevent and control the spread of Zika virus disease using integration of mobile phones and Internet of Things (IoT). A Naive Bayesian Network (NBN) is used to diagnose the possibly infected users, and Google Maps Web service is used to provide the geographic positioning system (GPS)-based risk assessment to prevent the outbreak. It is used to represent each ZikaV infected user, mosquito-dense sites, and breeding sites on the Google map that helps the government healthcare authorities to control such risk-prone areas effectively and efficiently. The performance and accuracy of the proposed system are evaluated using dataset for 2 million users. Our system provides high accuracy for initial diagnosis of different users according to their symptoms and appropriate GPS-based risk assessment. The cloud-based proposed system contributed to the accurate NBN-based classification of infected users and accurate identification of risk-prone areas using Google Maps.

  14. Dynamics of conical wire array Z-pinch implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ampleford, D. J.; Lebedev, S. V.; Bland, S. N.

    2007-10-15

    A modification of the wire array Z pinch, the conical wire array, has applications to the understanding of wire array implosions and potentially to pulse shaping relevant to inertial confinement fusion. Results are presented from imploding conical wire array experiments performed on university scale 1 MA generators--the MAGPIE generator (1 MA, 240 ns) at Imperial College London [I. H. Mitchell et al., Rev. Sci Instrum. 67, 1533 (1996)] and the Nevada Terawatt Facility's Zebra generator (1 MA, 100 ns) at the University of Nevada, Reno [B. Bauer et al., in Dense Z-Pinches, edited by N. Pereira, J. Davis, and P.more » Pulsifer (AIP, New York, 1997), Vol. 409, p. 153]. This paper will discuss the implosion dynamics of conical wire arrays. Data indicate that mass ablation from the wires in this complex system can be reproduced with a rocket model with fixed ablation velocity. Modulations in the ablated plasma are present, the wavelength of which is invariant to a threefold variation in magnetic field strength. The axial variation in the array leads to a zippered precursor column formation. An initial implosion of a magnetic bubble near the cathode is followed by the implosion zippering upwards. Spectroscopic data demonstrating a variation of plasma parameters (e.g., electron temperature) along the Z-pinch axis is discussed, and experimental data are compared to magnetohydrodynamic simulations.« less

  15. Solid pole tide in global GPS and superconducting gravimeter observations: Signal retrieval and inference for mantle anelasticity

    NASA Astrophysics Data System (ADS)

    Ding, Hao; Chao, Benjamin F.

    2017-02-01

    The mantle anelasticity plays an important role in Earth's interior dynamics. Here we seek to determine the lower-mantle anelasticity through the solution of the complex Love numbers at the Chandler wobble period. The Love numbers h21, l21, δ21 and k21 are obtained in the frequency domain by dividing off the observed polar motion, or more specifically the pole tide potential, from the observed GPS 3-D displacement field and SG gravity variation. The latter signals are obtained through the array processing method of OSE (optimal sequence estimation) that results in greatly enhanced signals to be extracted from global array data. The resultant Love number estimates h21 = 0.6248 (± 5 e - 4) - 0.013 (± 5 e - 3) i, l21 = 0.0904 (± 8 e - 4) - 0.0008 (± 2 e - 3) i, δ21 = 1.156 (± 2 e - 3) - 0.003 (± 1 e - 3) i and k21 = 0.3125 (± 2 e - 3) - 0.0069 (± 3 e - 3) i are thus well-constrained in comparison to past estimates that vary considerably. They further lead to estimates of the corresponding mantle anelastic parameters fr and fi, which in turn determines, under the single-absorption band assumption, the dispersion exponent of α = 0.21 ± 0.02 with respect to the reference frequency of 5 mHz. We believe our estimate is robust and hence can better constrain the mantle anelasticity and attenuation models of the Earth interior.

  16. Millimetre Level Accuracy GNSS Positioning with the Blind Adaptive Beamforming Method in Interference Environments.

    PubMed

    Daneshmand, Saeed; Marathe, Thyagaraja; Lachapelle, Gérard

    2016-10-31

    The use of antenna arrays in Global Navigation Satellite System (GNSS) applications is gaining significant attention due to its superior capability to suppress both narrowband and wideband interference. However, the phase distortions resulting from array processing may limit the applicability of these methods for high precision applications using carrier phase based positioning techniques. This paper studies the phase distortions occurring with the adaptive blind beamforming method in which satellite angle of arrival (AoA) information is not employed in the optimization problem. To cater to non-stationary interference scenarios, the array weights of the adaptive beamformer are continuously updated. The effects of these continuous updates on the tracking parameters of a GNSS receiver are analyzed. The second part of this paper focuses on reducing the phase distortions during the blind beamforming process in order to allow the receiver to perform carrier phase based positioning by applying a constraint on the structure of the array configuration and by compensating the array uncertainties. Limitations of the previous methods are studied and a new method is proposed that keeps the simplicity of the blind beamformer structure and, at the same time, reduces tracking degradations while achieving millimetre level positioning accuracy in interference environments. To verify the applicability of the proposed method and analyze the degradations, array signals corresponding to the GPS L1 band are generated using a combination of hardware and software simulators. Furthermore, the amount of degradation and performance of the proposed method under different conditions are evaluated based on Monte Carlo simulations.

  17. Experimental damage detection of wind turbine blade using thin film sensor array

    NASA Astrophysics Data System (ADS)

    Downey, Austin; Laflamme, Simon; Ubertini, Filippo; Sarkar, Partha

    2017-04-01

    Damage detection of wind turbine blades is difficult due to their large sizes and complex geometries. Additionally, economic restraints limit the viability of high-cost monitoring methods. While it is possible to monitor certain global signatures through modal analysis, obtaining useful measurements over a blade's surface using off-the-shelf sensing technologies is difficult and typically not economical. A solution is to deploy dedicated sensor networks fabricated from inexpensive materials and electronics. The authors have recently developed a novel large-area electronic sensor measuring strain over very large surfaces. The sensing system is analogous to a biological skin, where local strain can be monitored over a global area. In this paper, we propose the utilization of a hybrid dense sensor network of soft elastomeric capacitors to detect, localize, and quantify damage, and resistive strain gauges to augment such dense sensor network with high accuracy data at key locations. The proposed hybrid dense sensor network is installed inside a wind turbine blade model and tested in a wind tunnel to simulate an operational environment. Damage in the form of changing boundary conditions is introduced into the monitored section of the blade. Results demonstrate the ability of the hybrid dense sensor network, and associated algorithms, to detect, localize, and quantify damage.

  18. Multiple View Zenith Angle Observations of Reflectance From Ponderosa Pine Stands

    NASA Technical Reports Server (NTRS)

    Johnson, Lee F.; Lawless, James G. (Technical Monitor)

    1994-01-01

    Reflectance factors (RF(lambda)) from dense and sparse ponderosa pine (Pinus ponderosa) stands, derived from radiance data collected in the solar principal plane by the Advanced Solid-State Array Spectro-radiometer (ASAS), were examined as a function of view zenith angle (theta(sub v)). RF(lambda) was maximized with theta(sub v) nearest the solar retrodirection, and minimized near the specular direction throughout the ASAS spectral region. The dense stand had much higher RF anisotropy (ma)dmurn RF is minimum RF) in the red region than did the sparse stand (relative differences of 5.3 vs. 2.75, respectively), as a function of theta(sub v), due to the shadow component in the canopy. Anisotropy in the near-infrared (NIR) was more similar between the two stands (2.5 in the dense stand and 2.25 in the sparse stand); the dense stand exhibited a greater hotspot effect than 20 the sparse stand in this spectral region. Two common vegetation transforms, the NIR/red ratio and the normalized difference vegetation index (NDVI), both showed a theta(sub v) dependence for the dense stand. Minimum values occurred near the retrodirection and maximum values occurred near the specular direction. Greater relative differences were noted for the NIR/red ratio (2.1) than for the NDVI (1.3). The sparse stand showed no obvious dependence on theta(sub v) for either transform, except for slightly elevated values toward the specular direction.

  19. Two- to three-dimensional crossover in a dense electron liquid in silicon

    NASA Astrophysics Data System (ADS)

    Matmon, Guy; Ginossar, Eran; Villis, Byron J.; Kölker, Alex; Lim, Tingbin; Solanki, Hari; Schofield, Steven R.; Curson, Neil J.; Li, Juerong; Murdin, Ben N.; Fisher, Andrew J.; Aeppli, Gabriel

    2018-04-01

    Doping of silicon via phosphine exposures alternating with molecular beam epitaxy overgrowth is a path to Si:P substrates for conventional microelectronics and quantum information technologies. The technique also provides a well-controlled material for systematic studies of two-dimensional lattices with a half-filled band. We show here that for a dense (ns=2.8 ×1014 cm-2) disordered two-dimensional array of P atoms, the full field magnitude and angle-dependent magnetotransport is remarkably well described by classic weak localization theory with no corrections due to interaction. The two- to three-dimensional crossover seen upon warming can also be interpreted using scaling concepts developed for anistropic three-dimensional materials, which work remarkably except when the applied fields are nearly parallel to the conducting planes.

  20. VizieR Online Data Catalog: Virial analysis of the dense cores in Orion A (Kirk+, 2017)

    NASA Astrophysics Data System (ADS)

    Kirk, H.; Friesen, R. K.; Pineda, J. E.; Rosolowsky, E.; Offner, S. S. R.; Matzner, C. D.; Myers, P. C.; di, Francesco J.; Caselli, P.; Alves, F. O.; Chacon-Tanarro, A.; Chen, H.-H.; Chen, M. C.-Y.; Keown, J.; Punanova, A.; Seo, Y. M.; Shirley, Y.; Ginsburg, A.; Hall, C.; Singh, A.; Arce, H. G.; Goodman, A. A.; Martin, P.; Redaelli, E.

    2018-05-01

    NH3 observations were obtained through the Green Bank Ammonia (GAS), a large project to map the ammonia (1,1), (2,2), and (3,3) rotation-inversion transitions across the high-extinction regions of nearby Gould Belt molecular clouds using the Green Bank Telescope's K-band Focal Plane Array. The survey strategy, data reduction procedure, and basic data properties are described in detail in Friesen+ (2017ApJ...843...63F). The spatial resolution is 32" (0.064pc), while the spectral resolution is 0.07km/s. For our analysis, we use the dense core catalog presented in Lane+ (2016ApJ...833...44L), which covers the entire Orion A complex with the JCMT SCUBA-2 850um. See section 2.2. (1 data file).

  1. Nanopatterning of Si(001) for bottom-up fabrication of nanostructures.

    PubMed

    Hu, Yanfang; Kalachahi, Hedieh Hosseinzadeh; Das, Amal K; Koch, Reinhold

    2012-04-27

    The epitaxial growth of Si on Si(001) under conditions at which the (2 × n) superstructure is forming has been investigated by scanning tunneling microscopy and Monte Carlo simulations. Our experiments reveal a periodic change of the surface morphology with the surface coverage of Si. A regular (2 × n) stripe pattern is observed at coverages of 0.7-0.9 monolayers that periodically alternates with less dense surface structures at lower Si surface coverages. The MC simulations show that the growth of Si is affected by step-edge barriers, which favors the formation of a rather uniform two-dimensional framework-like configuration. Subsequent deposition of Ge onto the (2 × n) stripe pattern yields a dense array of small Ge nanostructures.

  2. Characterising the Dense Molecular Gas in Exceptional Local Galaxies

    NASA Astrophysics Data System (ADS)

    Tunnard, Richard C. A.

    2016-08-01

    The interferometric facilities now coming online (the Atacama Large Millimetre Array (ALMA) and the NOrthern Extended Millimeter Array (NOEMA)) and those planned for the coming decade (the Next Generation Very Large Array (ngVLA) and the Square Kilometre Array (SKA)) in the radio to sub-millimetre regimes are opening a window to the molecular gas in high-redshift galaxies. However, our understanding of similar galaxies in the local universe is still far from complete and the data analysis techniques and tools needed to interpret the observations in consistent and comparable ways are yet to be developed. I first describe the Monte Carlo Markov Chain (MCMC) script developed to empower a public radiative transfer code. I characterise both the public code and MCMC script, including an exploration of the effect of observing molecular lines at high redshift where the Cosmic Microwave Background (CMB) can provide a significant background, as well as the effect this can have on well-known local correlations. I present two studies of ultraluminous infrared galaxies (ULIRGs) in the local universe making use of literature and collaborator data. In the first of these, NGC6240, I use the wealth of available data and the geometry of the source to develop a multi-phase, multi-species model, finding evidence for a complex medium of hot diffuse and cold dense gas in pressure equilibrium. Next, I study the prototypical ULIRG Arp 220; an extraordinary galaxy rendered especially interesting by the controversy over the power source of the western of the two merger nuclei and its immense luminosity and dust obscuration. Using traditional grid based methods I explore the molecular gas conditions within the nuclei and find evidence for chemical differentiation between the two nuclei, potentially related to the obscured power source. Finally, I investigate the potential evolution of proto-clusters over cosmic time with sub-millimetre observations of 14 radio galaxies, unexpectedly finding little to no evidence for cluster evolution.

  3. Active-Source Seismic Tomography at Bradys Geothermal Field, Nevada, with Dense Nodal and Fiber-Optic Seismic Arrays

    NASA Astrophysics Data System (ADS)

    Thurber, C. H.; Parker, L.; Li, P.; Fratta, D.; Zeng, X.; Feigl, K. L.; Ak, E.; Lord, N.

    2017-12-01

    We deployed a dense seismic array to image the shallow structure in the injection area of the Brady Hot Springs geothermal site in Nevada. The array was composed of 238 5 Hz, three-component nodal instruments and 8,700 m of distributed acoustic sensing (DAS) fiber-optic cable installed in surface trenches plus about 400 m installed in a borehole. The geophone array had about 60 m instrument spacing in the target zone, whereas DAS channel separations were about 1 m. The acquisition systems provided 15 days of continuous records including active source and ambient noise signals. A large vibroseis truck (T-Rex) was operated at 196 locations, exciting a swept-frequency signal from 5 to 80 Hz over 20 seconds using three vibration modes. Sweeps were repeated up to four times during different modes of geothermal plant operation: normal operation, shut-down, high and oscillatory injection and production, and normal operation again. The cross-correlation method was utilized to remove the sweep signal from the geophone records. The first P arrivals were automatically picked from the cross-correlation functions using a combination of methods, and the travel times were used to invert for the 3D P-wave velocity structure. Models with 100 m and 50 m horizontal node spacing were obtained, with vertical node spacing of 10 to 50 m. The travel time data were fit to about 30 ms, close to our estimated picking uncertainty. We will present our 3D Vp model and the result of our search for measurable temporal changes, along with preliminary results for a 3D Vs model. The work presented herein was funded in part by the Office of Energy Efficiency and Renewable Energy (EERE), U.S. Department of Energy, under Award Number DE-EE0006760.

  4. The dynamics and spectral characteristics of the GPS TEC wave packets excited by the solar terminator

    NASA Astrophysics Data System (ADS)

    Afraimovich, E. L.; Edemsky, I. K.; Voeykov, S. V.; Yasukevich, Y. V.; Zhivetiev, I. V.

    2009-04-01

    The great variety of solar terminator (ST) -linked phenomena in the atmosphere gave rise to a num¬ber of studies on the analysis of ionosphere parameter variations obtained by different ionosphere sounding methods. Main part of experimental data was obtained using methods for analyzing the spectrum of ionosphere parameter variations in separate local points. To identify ST-generated wave disturbances it is necessary to measure the dynamic and spectral characteristics of the wave disturbances and to compare it with spatial-temporal characteristics of ST. Using TEC measurements from the dense network of GPS sites GEONET (Japan), we have obtained the first GPS-TEC image of the space structure of medium-scale traveling wave packets (MS TWP) excited by the solar terminator. We use two known forms of the 2D GPS-TEC image for our presentation of the space structure of ST-generated MS TWP: 1) - the diagram "distance-time"; 2) - the 2D-space distribution of the values of filtered TEC series dI (λ, φ, t) on the latitude φ and longitude λ for each 30-sec TEC counts. We found that the time period and wave-length of ST-generated wave packets are about 10-20 min and 200-300 km, respectively. Dynamic images analysis of dI (λ, φ, t) gives precise estimation of velocity and azimuth of TWP wave front propagation. We use the method of determining velocity of traveling ionosphere disturbances (SADM-GPS), which take into account the relative moving of subionosphere points. We found that the velocity of the TWP phase front, traveling along GEONET sites, varies in accordance with the velocity of the ST line displacement. The space image of MS TWP manifests itself in pronounced anisotropy and high coherence over a long distance of about 2000 km. The TWP wave front extends along the ST line with the angular shift of about 20°. The hypothesis on the connection between the TWP generation and the solar terminator can be tested in the terminator local time (TLT) system: dT=TOBS-TST, where ТOBS is the observation time at the given point; TST is the arrival time of ST at the altitude of H over this point. The time delay dT of TWP appearance varies from 2.5 hrs at 30°N to 6 hrs at 45°N. We acknowledge the GEONET scientific group for providing GPS data used in this study. The work was supported by the SB RAS and FEB RAS collaboration project N 3.24, the RFBR-GFEN grant N 06-05-39026 and RFBR grant 07-05-00127.

  5. Assessing the Utility of Strong Motion Data to Determine Static Ground Displacements During Great Megathrust Earthquakes: Tohoku and Iquique

    NASA Astrophysics Data System (ADS)

    Herman, M. W.; Furlong, K. P.; Hayes, G. P.; Benz, H.

    2014-12-01

    Strong motion accelerometers can record large amplitude shaking on-scale in the near-field of large earthquake ruptures; however, numerical integration of such records to determine displacement is typically unstable due to baseline changes (i.e., distortions in the zero value) that occur during strong shaking. We use datasets from the 2011 Mw 9.0 Tohoku earthquake to assess whether a relatively simple empirical correction scheme (Boore et al., 2002) can return accurate displacement waveforms useful for constraining details of the fault slip. The coseismic deformation resulting from the Tohoku earthquake was recorded by the Kiban Kyoshin network (KiK-net) of strong motion instruments as well as by a dense network of high-rate (1 Hz) GPS instruments. After baseline correcting the KiK-net records and integrating to displacement, over 85% of the KiK-net borehole instrument waveforms and over 75% of the KiK-net surface instrument waveforms match collocated 1 Hz GPS displacement time series. Most of the records that do not match the GPS-derived displacements following the baseline correction have large, systematic drifts that can be automatically identified by examining the slopes in the first 5-10 seconds of the velocity time series. We apply the same scheme to strong motion records from the 2014 Mw 8.2 Iquique earthquake. Close correspondence in both direction and amplitude between coseismic static offsets derived from the integrated strong motion time series and those predicted from a teleseismically-derived finite fault model, as well as displacement amplitudes consistent with InSAR-derived results, suggest that the correction scheme works successfully for the Iquique event. In the absence of GPS displacements, these strong motion-derived offsets provide constraints on the overall distribution of slip on the fault. In addition, the coseismic strong motion-derived displacement time series (50-100 s long) contain a near-field record of the temporal evolution of the rupture, supplementing teleseismic data and improving resolution of the location and timing of moment in finite fault models.

  6. Analysis of Ground Displacements in Taipei Area by Using High Resolution X-band SAR Interferometry

    NASA Astrophysics Data System (ADS)

    Tung, H.; Chen, H. Y.; Hu, J. C.

    2014-12-01

    Located at the northern part of Taiwan, Taipei is the most densely populated city and the center of politic, economic, and culture of this island. North of the Taipei basin, the active Tatun volcano group with the eruptive potential to devastate the entire Taipei is only 15 km away from the capital Taipei. Furthermore, the active Shanchiao fault located in the western margin of Taipei basin. Therefore, it is not only an interesting scientific topic but also a strong social impact to better understand the assessment and mitigation of geological hazard in the metropolitan Taipei city. In this study, we use 12 high resolution X-band SAR images from the new generation COSMO-SkyMed (CSK) constellation for associating with leveling and GPS data to monitor surface deformation around the Shanchiao fault and the Tatun volcano group. The stripmap mode of CSK SAR images provides spatial resolution of 3 m x 3 m, which is one order of magnitude better than the previous available satellite SAR data. Furthermore, the more frequent revisit of the same Area of Interest (AOI) of the present X-band missions provides massive datasets to avoid the baseline limitation and temporal decorrelation to improve the temporal resolution of deformation in time series. After transferring the GPS vectors and leveling data to the LOS direction by referring to continuous GPS station BANC, the R square between PS velocities and GPS velocities is approximate to 0.9, which indicates the high reliability of our PSInSAR result. In addition, the well-fitting profiles between leveling data and PSInSAR result along two leveling routes both demonstrate that the significant deformation gradient mainly occurs along the Shanchiao fault. The severe land subsidence area is located in the western part of Taipei basin just next to the Shanchiao fault with a maximum of SRD rate of 30 mm/yr. However, the severe subsidence area, Wuku, is also one industrial area in Taipei which could be attributed to anthropogenic effect. In the future, we will use all available images to monitor the temporal and spatial variation in deformation to better understand the activity of the Shanchiao fault.

  7. Ionospheric disturbances detected by high-resolution GPS-TEC observations after an earthquake and a tornado

    NASA Astrophysics Data System (ADS)

    Tsugawa, Takuya; Otsuka, Yuichi; Saito, Akinori; Ishii, Mamoru; Nishioka, Michi

    Ionospheric disturbances following the 2011 Tohoku earthquake and the 2013 Moore tornado were observed by high-resolution GPS total electron content (TEC) observations using dense GPS receiver networks. After the 2011 Tohoku earthquake, concentric waves with short propagation distance propagated in the radial direction in the propagation velocity of 3,457, 783, 423 m/s for the first, second, third peak, respectively. Following these waves, concentric waves with long propagation distance appeared to propagate at the velocity of 138-288 m/s. In the vicinity of the epicenter, sudden TEC depletions and short-period oscillations with a period of approximately 4 minutes were also observed. The center of these ionospheric variations, termed the "ionospheric epicenter", corresponded to the tsunami source. Comparing to the results of a numerical simulation using non-hydrostatic compressible atmosphere-ionosphere model, the first peak of circular wave would be caused by the acoustic waves generated from the propagating Rayleigh wave. The second and third waves would be caused by atmospheric gravity waves excited in the lower ionosphere due to the acoustic wave propagations from the tsunami source. The fourth and following waves are considered to be caused by the atmospheric gravity waves induced by the wavefronts of traveling tsunami. After the EF5 tornado hit Moore, Oklahoma, USA, on 20 May 2013, clear concentric waves and short-period oscillations were observed. These concentric waves were non-dispersive waves with a horizontal wavelength of approximately 120 km and a period of approximately 13 minutes. They were observed for more than seven hours throughout North America. TEC oscillations with a period of approximately 4 minutes were also observed in the south of Moore for more than eight hours. Comparison between the GPS-TEC observations and the infrared cloud images from the GOES satellite indicates that the concentric waves and the short-period oscillations would be caused by supercell-induced atmospheric gravity waves and acoustic resonances, respectively. In this presentation, we will introduce the observational results of these ionospheric disturbances and discuss about the mechanism of concentric waves and short-period oscillations observed in both events.

  8. Potential for Application of PSInSAR Data for Tectonic Modelling in Subduction Areas

    NASA Astrophysics Data System (ADS)

    Musson, R. M.; Julian, B.; Mark, H.; Alessandro, F.

    2002-12-01

    Interest has been increasing over the last few years in the use of satellite radar interferometry data (InSAR) for applications in seismology and tectonics. We report here on a new technique, PSInSAR, which relies on permanent scatterers and offers the possibility of measurements of ground displacements to a degree of accuracy, and over periods of time, previously unobtainable from conventional interferometry. This technique has been developed by TeleRilevamento Europa of the Politecnico di Milano in Italy. A permanent scatterer is any large, permanent angular object, such as building roofs, metallic structures, and even large boulders. Using these data, very accurate displacement histories can be obtained for the period 1991 to the present. Calibration with GPS data show good agreement, but the PSInSAR data are less noisy. The effect is akin to suddenly having a very dense GPS network retrospectively available for the last ten years in any moderately urbanised area in a region for which a satellite data archive exists (about 50 per cent of the globe). Data have been gathered for the area around Suruga Bay, Japan, which is expected to be the locus of a future great Tokai earthquake. Previous studies have used levelling or GPS data to model the locked part of the subduction plane in this area, using the Akaike Bayesian Information Criterion (ABIC) method. This method could be used with PSInSAR data, which would be likely to yield a better result on account of the greater density of data. Furthermore, there is now the potential to use the ABIC method in any subduction area, whether there exist GPS/levelling data or not, provided only that the area is sufficiently urbanised to yield adequate permanent scatterers as data points. This work results from a European Space Agency (ESA) 'Earth Observation Market Development' project entitled 'Developing markets for EO-derived land motion measurement products', involving, NPA (lead), the British Geological Survey (UK), Imperial College (UK), TeleRilevamento Europa (Italy), ImageONE (Japan), the Geographic Survey Institute (Japan), Oyo Corporation (Japan), Fugro (Netherlands) and SARCOM (ESA data distributing entity).

  9. Observations of the Weddell Sea Anomaly in the ground-based and space-borne TEC measurements

    NASA Astrophysics Data System (ADS)

    Zakharenkova, Irina; Cherniak, Iurii; Shagimuratov, Irk

    2017-08-01

    The Weddell Sea Anomaly (WSA) is a summer ionospheric anomaly, which is characterized by a greater nighttime ionospheric density than that in daytime in the region near the Weddell Sea. We investigate the WSA signatures in the ground-based TEC (vertical total electron content) by using GPS and GLONASS measurements of the dense regional GNSS networks in South America. We constructed the high-resolution regional TEC maps for December 2014-January 2015. The WSA effects of the TEC exceed the noontime values are registered starting from 17 LT, it reaches its maximum at 01-05 LT and starts to disappear after 09 LT. Maximal TEC enhancements were as large as a factor of 2.5-3.5 and were registered at 03-04 LT. This effect was mainly localized in the geographical region of 55°S-75°S latitude and 80°W-30°W longitude, close to the Antarctic Peninsula. Further, we examined the WSA occurrence in the topside ionosphere by using GPS measurements from a zenith-looking GPS antenna on board three Swarm satellites to determine topside TEC (above ∼500 km altitude) at the topside ionosphere-plasmasphere system. Global maps of the topside TEC indicated that the zone with significant WSA effect in the topside TEC (TEC increase ∼2-4 times the noontime level) had a large spatial extent over southern Pacific and Atlantic Ocean. It was observed around 150°W-20°W and between 40°S and 70°S during 23 LT - 06 LT. For the first time, the WSA signatures were shown in the topside TEC data derived from the GPS measurements onboard the Swarm constellation. Independently, two other instruments - FORMOSAT-3/COSMIC radio occultation electron density profiles and in situ measurements by the Langmuir Probe instrument onboard Swarm satellites - were able to confirm: (1) the same location of the WSA zone as revealed in Swarm TEC; (2) the most-pronounced WSA effect, as a maximal electron density exceed over the noontime values, corresponds to altitudes above 400-500 km.

  10. Intercontinental height datum connection with GOCE and GPS-levelling data

    NASA Astrophysics Data System (ADS)

    Gruber, T.; Gerlach, C.; Haagmans, R.

    2012-12-01

    In this study an attempt is made to establish height system datum connections based upon a gravity field and steady-state ocean circulation explorer (GOCE) gravity field model and a set of global positioning system (GPS) and levelling data. The procedure applied in principle is straightforward. First local geoid heights are obtained point wise from GPS and levelling data. Then the mean of these geoid heights is computed for regions nominally referring to the same height datum. Subsequently, these local mean geoid heights are compared with a mean global geoid from GOCE for the same region. This way one can identify an offset of the local to the global geoid per region. This procedure is applied to a number of regions distributed worldwide. Results show that the vertical datum offset estimates strongly depend on the nature of the omission error, i.e. the signal not represented in the GOCE model. For a smooth gravity field the commission error of GOCE, the quality of the GPS and levelling data and the averaging control the accuracy of the vertical datum offset estimates. In case the omission error does not cancel out in the mean value computation, because of a sub-optimal point distribution or a characteristic behaviour of the omitted part of the geoid signal, one needs to estimate a correction for the omission error from other sources. For areas with dense and high quality ground observations the EGM2008 global model is a good choice to estimate the omission error correction in theses cases. Relative intercontinental height datum offsets are estimated by applying this procedure between the United State of America (USA), Australia and Germany. These are compared to historical values provided in the literature and computed with the same procedure. The results obtained in this study agree on a level of 10 cm to the historical results. The changes mainly can be attributed to the new global geoid information from GOCE, rather than to the ellipsoidal heights or the levelled heights. These historical levelling data are still in use in many countries. This conclusion is supported by other results on the validation of the GOCE models.

  11. The AlpArray Seismic Network: current status and next steps

    NASA Astrophysics Data System (ADS)

    Hetényi, György; Molinari, Irene; Clinton, John; Kissling, Edi

    2016-04-01

    The AlpArray initiative (http://www.alparray.ethz.ch) is a large-scale European collaboration to study the entire Alpine orogen at high resolution and in 3D with a large variety of geoscientific methods. The core element of the initiative is an extensive and dense broadband seismological network, the AlpArray Seismic Network (AASN), which complements the permanent seismological stations to ensure homogeneous coverage of the greater Alpine area. The some 260 temporary stations of the AlpArray Seismic Network are operated as a joint effort by a number of institutions from Austria, Bosnia-Herzegovina, Croatia, Czech Republic, France, Germany, Hungary, Italy, Slovakia and Switzerland. The first stations were installed in Spring 2015 and the full AASN is planned to be operational by early Summer 2016. In this poster we present the actual status of the deployment, the effort undertaken by the contributing groups, station performance, typical noise levels, best practices in installation as well as in data management, often encountered challenges, and planned next steps including the deployment of ocean bottom seismometers in the Ligurian Sea.

  12. An image-based array trigger for imaging atmospheric Cherenkov telescope arrays

    NASA Astrophysics Data System (ADS)

    Dickinson, Hugh; Krennrich, Frank; Weinstein, Amanda; Eisch, Jonathan; Byrum, Karen; Anderson, John; Drake, Gary

    2018-05-01

    It is anticipated that forthcoming, next generation, atmospheric Cherenkov telescope arrays will include a number of medium-sized telescopes that are constructed using a dual-mirror Schwarzschild-Couder configuration. These telescopes will sample a wide (8 °) field of view using a densely pixelated camera comprising over 104 individual readout channels. A readout frequency congruent with the expected single-telescope trigger rates would result in substantial data rates. To ameliorate these data rates, a novel, hardware-level Distributed Intelligent Array Trigger (DIAT) is envisioned. A copy of the DIAT operates autonomously at each telescope and uses reduced resolution imaging data from a limited subset of nearby telescopes to veto events prior to camera readout and any subsequent network transmission of camera data that is required for centralized storage or aggregation. We present the results of Monte-Carlo simulations that evaluate the efficacy of a "Parallax width" discriminator that can be used by the DIAT to efficiently distinguish between genuine gamma-ray initiated events and unwanted background events that are initiated by hadronic cosmic rays.

  13. The KASCADE-Grande experiment

    NASA Astrophysics Data System (ADS)

    Apel, W. D.; Arteaga, J. C.; Badea, A. F.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Buchholz, P.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Fuhrmann, D.; Ghia, P. L.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Kickelbick, D.; Klages, H. O.; Link, K.; łuczak, P.; Ludwig, M.; Mathes, H. J.; Mayer, H. J.; Melissas, M.; Milke, J.; Mitrica, B.; Morello, C.; Navarra, G.; Nehls, S.; Oehlschläger, J.; Ostapchenko, S.; Over, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schröder, F.; Sima, O.; Stümpert, M.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.

    2010-08-01

    KASCADE-Grande is the enlargement of the KASCADE extensive air shower detector, realized to expand the cosmic ray studies from the previous 10 14-10 17 eV primary energy range to 10 18 eV. This is performed by extending the area covered by the KASCADE electromagnetic array from 200×200 to 700×700 m 2 by means of 37 scintillator detector stations of 10 m 2 area each. This new array is named Grande and provides measurements of the all-charged particle component of extensive air showers ( Nch), while the original KASCADE array particularly provides information on the muon content (Nμ). Additional dense compact detector set-ups being sensitive to energetic hadrons and muons are used for data consistency checks and calibration purposes. The performance of the Grande array and its integration into the entire experimental complex is discussed. It is demonstrated that the overall observable resolutions are adequate to meet the physical requirements of the measurements, i.e. primary energy spectrum and elemental composition studies in the primary cosmic ray energy range of 10 16-10 18 eV.

  14. Ferromagnetic resonance in low interacting permalloy nanowire arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raposo, V.; Zazo, M.; Flores, A. G.

    2016-04-14

    Dipolar interactions on magnetic nanowire arrays have been investigated by various techniques. One of the most powerful techniques is the ferromagnetic resonance spectroscopy, because the resonance field depends directly on the anisotropy field strength and its frequency dependence. In order to evaluate the influence of magnetostatic dipolar interactions among ferromagnetic nanowire arrays, several densely packed hexagonal arrays of NiFe nanowires have been prepared by electrochemical deposition filling self-ordered nanopores of alumina membranes with different pore sizes but keeping the same interpore distance. Nanowires’ diameter was changed from 90 to 160 nm, while the lattice parameter was fixed to 300 nm, which wasmore » achieved by carefully reducing the pore diameter by means of Atomic Layer Deposition of conformal Al{sub 2}O{sub 3} layers on the nanoporous alumina templates. Field and frequency dependence of ferromagnetic resonance have been studied in order to obtain the dispersion diagram which gives information about anisotropy, damping factor, and gyromagnetic ratio. The relationship between resonance frequency and magnetic field can be explained by the roles played by the shape anisotropy and dipolar interactions among the ferromagnetic nanowires.« less

  15. Synthesis and characterization of barium silicide (BaSi2) nanowire arrays for potential solar applications.

    PubMed

    Pokhrel, Ankit; Samad, Leith; Meng, Fei; Jin, Song

    2015-11-07

    In order to utilize nanostructured materials for potential solar and other energy-harvesting applications, scalable synthetic techniques for these materials must be developed. Herein we use a vapor phase conversion approach to synthesize nanowire (NW) arrays of semiconducting barium silicide (BaSi2) in high yield for the first time for potential solar applications. Dense arrays of silicon NWs obtained by metal-assisted chemical etching were converted to single-crystalline BaSi2 NW arrays by reacting with Ba vapor at about 930 °C. Structural characterization by X-ray diffraction and high-resolution transmission electron microscopy confirm that the converted NWs are single-crystalline BaSi2. The optimal conversion reaction conditions allow the phase-pure synthesis of BaSi2 NWs that maintain the original NW morphology, and tuning the reaction parameters led to a controllable synthesis of BaSi2 films on silicon substrates. The optical bandgap and electrochemical measurements of these BaSi2 NWs reveal a bandgap and carrier concentrations comparable to previously reported values for BaSi2 thin films.

  16. Searching for the Signature of Wastewater Injection in continuous GPS Data from The Geysers Geothermal Field

    NASA Astrophysics Data System (ADS)

    Terry, R. L.; Funning, G.; Floyd, M.

    2017-12-01

    The Geysers geothermal field in California, which provides a large portion of northern California's power, has seen declining steam pressures over the past three decades, accompanied by surface subsidence. Together, these two phenomena are likely the result of the exploitation of the reservoir without adequate time for natural restoration. To combat the decline in steam pressures, The Geysers began injecting imported wastewater into the geothermal reservoir in 1997 and expanded injection in 2003. In 2012 and 2013, we installed three continuously recording GPS stations in The Geysers to closely monitor crustal deformation due to both the extraction of steam and the injection of wastewater. To assess the impact of the current injection and extraction activities on the geothermal reservoir, we analyze the position time-series from these GPS stations alongside wastewater injection and steam extraction data. We use common-mode filtering to remove any regionally-correlated noise from our GPS time series, and also estimate and subtract any seasonal signals present. To predict the effect of injection and production on surface movement, we summed the monthly time series of well data within a rectangular grid framework. We then use an array of Mogi sources based on each grid cell's total volume change to calculate the expected surface deformation due to these volume changes at depth. The temporal resolution provided by GPS allows us to characterize more accurately the properties of the subsurface geothermal reservoir related to forcing. For example, based on a similar spatiotemporal relationship between injection and seismicity, we hypothesize that there may be a delayed deformation response following injection, related to the permeability of the reservoir, and are undertaking detailed comparisons between our time series data to identify this response. Overall changes in the sense and rate of vertical motion in the field due to injection over time are also expected. We anticipate that the impact of discovering a relationship between injection and surface deformation will be of great importance in maintaining and managing geothermal resources in the future.

  17. Connect Global Positioning System RF Module

    NASA Technical Reports Server (NTRS)

    Franklin, Garth W.; Young, Lawrence E.; Ciminera, Michael A.; Tien, Jeffrey Y.; Gorelik, Jacob; Okihiro, Brian Bachman; Koelewyn, Cynthia L.

    2012-01-01

    The CoNNeCT Global Positioning System RF Module (GPSM) slice is part of the JPL CoNNeCT Software Defined Radio (SDR). CoNNeCT is the Communications, Navigation, and Net working reconfigurable Testbed project that is part of NASA's Space Communication and Nav igation (SCaN) Program. The CoNNeCT project is an experimental dem onstration that will lead to the advancement of SDRs and provide a path for new space communication and navigation systems for future NASA exploration missions. The JPL CoNNeCT SDR will be flying on the International Space Station (ISS) in 2012 in support of the SCaN CoNNeCT program. The GPSM is a radio-frequency sampler module (see Figure 1) that directly sub-harmonically samples the filtered GPS L-band signals at L1 (1575.42 MHz), L2 (1227.6 MHz), and L5 (1176.45 MHz). The JPL SDR receives GPS signals through a Dorne & Margolin antenna mounted onto a choke ring. The GPS signal is filtered against interference, amplified, split, and fed into three channels: L1, L2, and L5. In each of the L-band channels, there is a chain of bandpass filters and amplifiers, and the signal is fed through each of these channels to where the GPSM performs a one-bit analog-to-digital conversion (see Figure 2). The GPSM uses a sub-harmonic, single-bit L1, L2, and L5 sampler that samples at a clock rate of 38.656 MHz. The new capability is the down-conversion and sampling of the L5 signal when previous hardware did not provide this capability. The first GPS IIF Satellite was launched in 2010, providing the new L5 signal. With the JPL SDR flying on the ISS, it will be possible to demonstrate navigation solutions with 10-meter 3-D accuracy at 10-second intervals using a field-program mable gate array (FPGA)-based feedback loop running at 50 Hz. The GPS data bits will be decoded and used in the SDR. The GPSM will also allow other waveforms that are installed in the SDR to demonstrate various GNSS tracking techniques.

  18. Thermally Stabilized Transmit/Receive Modules

    NASA Technical Reports Server (NTRS)

    Hoffman, James; DelCastillo, Linda; Miller, Jennifer; Birur, Gaj

    2011-01-01

    RF-hybrid technologies enable smaller packaging and mass reduction in radar instruments, especially for subsystems with dense electronics, such as electronically steered arrays. We are designing thermally stabilized RF-hybrid T/R modules using new materials for improved thermal performance of electronics. We are combining advanced substrate and housing materials with a thermal reservoir material, and develop new packaging techniques to significantly improve thermal-cycling reliability and performance stability over temperature.

  19. RADIO TRANSIENTS FROM ACCRETION-INDUCED COLLAPSE OF WHITE DWARFS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moriya, Takashi J., E-mail: takashi.moriya@nao.ac.jp

    2016-10-20

    We investigate observational properties of accretion-induced collapse (AIC) of white dwarfs (WDs) in radio frequencies. If AIC is triggered by accretion from a companion star, a dense circumstellar medium can be formed around the progenitor system. Then, the ejecta from AIC collide with the dense circumstellar medium, creating a strong shock. The strong shock can produce synchrotron emission that can be observed in radio frequencies. Even if AIC occurs as a result of WD mergers, we argue that AIC may cause fast radio bursts (FRBs) if a certain condition is satisfied. If AIC forms neutron stars (NSs) that are somore » massive that rotation is required to support themselves (i.e., supramassive NSs), the supramassive NSs may immediately lose their rotational energy by the r-mode instability and collapse to black holes. If the collapsing supramassive NSs are strongly magnetized, they may emit FRBs, as previously proposed. The AIC radio transients from single-degenerate systems may be detected in future radio transient surveys like the Very Large Array Sky Survey or the Square Kilometer Array transient survey. Because AIC has been proposed as a source of gravitational waves (GWs), GWs from AIC may be accompanied by radio-bright transients that can be used to confirm the AIC origin of observed GWs.« less

  20. Design and engineering of photosynthetic light-harvesting and electron transfer using length, time, and energy scales.

    PubMed

    Noy, Dror; Moser, Christopher C; Dutton, P Leslie

    2006-02-01

    Decades of research on the physical processes and chemical reaction-pathways in photosynthetic enzymes have resulted in an extensive database of kinetic information. Recently, this database has been augmented by a variety of high and medium resolution crystal structures of key photosynthetic enzymes that now include the two photosystems (PSI and PSII) of oxygenic photosynthetic organisms. Here, we examine the currently available structural and functional information from an engineer's point of view with the long-term goal of reproducing the key features of natural photosystems in de novo designed and custom-built molecular solar energy conversion devices. We find that the basic physics of the transfer processes, namely, the time constraints imposed by the rates of incoming photon flux and the various decay processes allow for a large degree of tolerance in the engineering parameters. Moreover, we find that the requirements to guarantee energy and electron transfer rates that yield high efficiency in natural photosystems are largely met by control of distance between chromophores and redox cofactors. Thus, for projected de novo designed constructions, the control of spatial organization of cofactor molecules within a dense array is initially given priority. Nevertheless, constructions accommodating dense arrays of different cofactors, some well within 1 nm from each other, still presents a significant challenge for protein design.

Top