Prediction of a Densely Loaded Particle-Laden Jet using a Euler-Lagrange Dense Spray Model
NASA Astrophysics Data System (ADS)
Pakseresht, Pedram; Apte, Sourabh V.
2017-11-01
Modeling of a dense spray regime using an Euler-Lagrange discrete-element approach is challenging because of local high volume loading. A subgrid cluster of droplets can lead to locally high void fractions for the disperse phase. Under these conditions, spatio-temporal changes in the carrier phase volume fractions, which are commonly neglected in spray simulations in an Euler-Lagrange two-way coupling model, could become important. Accounting for the carrier phase volume fraction variations, leads to zero-Mach number, variable density governing equations. Using pressure-based solvers, this gives rise to a source term in the pressure Poisson equation and a non-divergence free velocity field. To test the validity and predictive capability of such an approach, a round jet laden with solid particles is investigated using Direct Numerical Simulation and compared with available experimental data for different loadings. Various volume fractions spanning from dilute to dense regimes are investigated with and without taking into account the volume displacement effects. The predictions of the two approaches are compared and analyzed to investigate the effectiveness of the dense spray model. Financial support was provided by National Aeronautics and Space Administration (NASA).
Dynamic passive pressure on abutments and pile caps.
DOT National Transportation Integrated Search
2010-08-01
This study investigated the lateral load response of a full-scale pile cap with nine different backfill conditions, more specifically being: 1) no backfill present (baseline response), 2) densely compacted clean sand, 3) loosely compacted clean sand,...
Wieding, Jan; Fritsche, Andreas; Heinl, Peter; Körner, Carolin; Cornelsen, Matthias; Seitz, Hermann; Mittelmeier, Wolfram; Bader, Rainer
2013-12-16
The repair of large segmental bone defects caused by fracture, tumor or infection remains challenging in orthopedic surgery. The capability of two different bone scaffold materials, sintered tricalciumphosphate and a titanium alloy (Ti6Al4V), were determined by mechanical and biomechanical testing. All scaffolds were fabricated by means of additive manufacturing techniques with identical design and controlled pore geometry. Small-sized sintered TCP scaffolds (10 mm diameter, 21 mm length) were fabricated as dense and open-porous samples and tested in an axial loading procedure. Material properties for titanium alloy were determined by using both tensile (dense) and compressive test samples (open-porous). Furthermore, large-sized open-porous TCP and titanium alloy scaffolds (30 mm in height and diameter, 700 µm pore size) were tested in a biomechanical setup simulating a large segmental bone defect using a composite femur stabilized with an osteosynthesis plate. Static physiologic loads (1.9 kN) were applied within these tests. Ultimate compressive strength of the TCP samples was 11.2 ± 0.7 MPa and 2.2 ± 0.3 MPa, respectively, for the dense and the open-porous samples. Tensile strength and ultimate compressive strength was 909.8 ± 4.9 MPa and 183.3 ± 3.7 MPa, respectively, for the dense and the open-porous titanium alloy samples. Furthermore, the biomechanical results showed good mechanical stability for the titanium alloy scaffolds. TCP scaffolds failed at 30% of the maximum load. Based on recent data, the 3D printed TCP scaffolds tested cannot currently be recommended for high load-bearing situations. Scaffolds made of titanium could be optimized by adapting the biomechanical requirements.
Dynamic Failure Processes Under Confining Stress in AlON, a Transparent Polycrystalline Ceramic
2008-12-01
axes, the dynamic loading is imposed (using MKB) along the second specimen axis and the third axis is used for the ultra-high-speed photography. The...to its optically isotropic cubic crystal structure, fully dense, polycrystalline bodies can be rendered completely transparent, making it a viable... tribological loading conditions. During indentation, the region beneath the indenter is effectively confined due to the surrounding medium, and it
Puetzer, Jennifer L; Bonassar, Lawrence J
2016-07-01
The meniscus is a dense fibrocartilage tissue that withstands the complex loads of the knee via a unique organization of collagen fibers. Attempts to condition engineered menisci with compression or tensile loading alone have failed to reproduce complex structure on the microscale or anatomic scale. Here we show that axial loading of anatomically shaped tissue-engineered meniscus constructs produced spatial distributions of local strain similar to those seen in the meniscus when the knee is loaded at full extension. Such loading drove formation of tissue with large organized collagen fibers, levels of mechanical anisotropy, and compressive moduli that match native tissue. Loading accelerated the development of native-sized and aligned circumferential and radial collagen fibers. These loading patterns contained both tensile and compressive components that enhanced the major biochemical and functional properties of the meniscus, with loading significantly improved glycosaminoglycan (GAG) accumulation 200-250%, collagen accumulation 40-55%, equilibrium modulus 1000-1800%, and tensile moduli 500-1200% (radial and circumferential). Furthermore, this study demonstrates local changes in mechanical environment drive heterogeneous tissue development and organization within individual constructs, highlighting the importance of recapitulating native loading environments. Loaded menisci developed cartilage-like tissue with rounded cells, a dense collagen matrix, and increased GAG accumulation in the more compressively loaded horns, and fibrous collagen-rich tissue in the more tensile loaded outer 2/3, similar to native menisci. Loaded constructs reached a level of organization not seen in any previous engineered menisci and demonstrate great promise as meniscal replacements.
History and legacy of fire effects in the South Carolina piedmont and coastal regions
Lindsay H. Fairchilds; Carl C. Trettin
2006-01-01
Agriculture, fire suppression, and urbanization have drastically altered natural forest processes and conditions since humankind settled in the Southeastern United States. Today, many of South Carolinaâs forests are dense and overstocked, with high fuel loads. These conditions increase the susceptibility of forests to southern pine beetle attack and wildfire. These...
Influence of Particle Morphology on 3D Kinematic Behavior and Strain Localization of Sheared Sand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alshibli, Khalid A.; Jarrar, Maha F.; Druckrey, Andrew M.
The constitutive behavior of sheared sand is highly influenced by particle morphology, gradation, mineralogy, specimen density, loading condition, stress path, and boundary conditions. The current literature lacks a three-dimensional (3D) systematic experimental study that investigates the influence of particle morphology, confining pressure, and specimen density on the failure mode of sheared sand. In this paper, surface texture, roundness, and sphericity of three uniform sands and glass beads with similar grain size were quantified by using 3D images of particles. In situ nondestructive 3D synchrotron microcomputed tomography (SMT) was used to monitor the deformation of medium-dense and very dense dry sandmore » specimens that were tested under axisymmetric triaxial loading condition at 15 and 400 kPa confining pressures. The particles were identified and tracked in 3D as shearing progressed within the specimens, and maps of incremental particle translation and rotation were developed and used to uncover the relationship between particle morphology, specimen density, and confining pressure on the deformation and failure mode of sheared sand. This paper discusses the relationship between the failure mode and particle morphology, specimen density, and confining pressure.« less
Dynamic Failure Processes Under Confining Stress in AlON, a Transparent Polycrystalline Ceramic
2009-09-01
in a prismatic specimen along one of the three specimen axes, the dynamic loading is imposed (using MKB) along the second specimen axis and the third ...AlON are generally comparable to those of α-Al2O3. Owing to its optically isotropic cubic crystal structure, fully dense, polycrystalline bodies can...illustrated in indentation experiments on Al2O3 [46]) or under tribological loading conditions. During indentation, the region beneath the indenter is
Constitutive Models Based on Compressible Plastic Flows
NASA Technical Reports Server (NTRS)
Rajendran, A. M.
1983-01-01
The need for describing materials under time or cycle dependent loading conditions has been emphasized in recent years by several investigators. In response to the need, various constitutive models describing the nonlinear behavior of materials under creep, fatigue, or other complex loading conditions were developed. The developed models for describing the fully dense (non-porous) materials were mostly based on uncoupled plasticity theory. The improved characterization of materials provides a better understanding of the structual response under complex loading conditions. The pesent studies demonstrate that the rate or time dependency of the response of a porous aggregate can be incorporated into the nonlinear constitutive behavior of a porous solid by appropriately modeling the incompressible matrix behavior. It is also sown that the yield function which wads determined by a continuum mechanics approach must be verified by appropriate experiments on void containing sintered materials in order to obtain meaningful numbers for the constants that appear in the yield function.
Wireless sensing system for bridge condition assessment and health monitoring
NASA Astrophysics Data System (ADS)
Gangone, Michael V.; Whelan, Matthew J.; Janoyan, Kerop D.
2009-03-01
Discussed in this paper is the deployment of a universal and low-cost dense wireless sensor system for structural monitoring, load rating and condition assessment of bridges. The wireless sensor system developed is designed specifically for diagnostic bridge monitoring, providing independent conditioning for both accelerometers and strain transducers in addition to high-rate wireless data transmission. The system was field deployed on a three span simply supported bridge superstructure, where strain and acceleration measurements were obtained simultaneously and in realtime at critical locations under several loading conditions, providing reliable quantitative information as to the actual performance level of the bridge. Monitoring was also conducted as the bridge was subjected to various controlled damage scenarios on the final day of testing. Select cases of detected damage using strain and modal based analysis are presented.
Sobrin, Lucia; Maller, Julian B; Neale, Benjamin M; Reynolds, Robyn C; Fagerness, Jesen A; Daly, Mark J; Seddon, Johanna M
2010-01-01
About 40% of the genetic variance of age-related macular degeneration (AMD) can be explained by a common variation at five common single-nucleotide polymorphisms (SNPs). We evaluated the degree to which these known variants explain the clustering of AMD in a group of densely affected families. We sought to determine whether the actual number of risk alleles at the five variants in densely affected families matched the expected number. Using data from 322 families with AMD, we used a simulation strategy to generate comparison groups of families and determined whether their genetic profile at the known AMD risk loci differed from the observed genetic profile, given the density of disease observed. Overall, the genotypic loads for the five SNPs in the families did not deviate significantly from the genotypic loads predicted by the simulation. However, for a subset of densely affected families, the mean genotypic load in the families was significantly lower than the expected load determined from the simulation. Given that these densely affected families may harbor rare, more penetrant variants for AMD, linkage analyses and resequencing targeting these families may be an effective approach to finding additional implicated genes. PMID:19844262
Opening Switch Research on a Dense Plasma Focus.
Several experiments were performed to enhance power coupling to the load by placing the load electrode opposite the muzzle end of the Dense Plasma ... Focus plasma gun. The impaler concept, whereby the current sheath is run into a knife edge insulator, was tested in two configurations. However, the
NASA Astrophysics Data System (ADS)
Airoldi, A.; Marelli, L.; Bettini, P.; Sala, G.; Apicella, A.
2017-04-01
Technologies based on optical fibers provide the possibility of installing relatively dense networks of sensors that can perform effective strain sensing functions during the operational life of structures. A contemporary trend is the increasing adoption of composite materials in aerospace constructions, which leads to structural architectures made of large monolithic elements. The paper is aimed at showing the feasibility of a detailed reconstruction of the strain field in a composite spar, which is based on the development of reference finite element models and the identification of load modes, consisting of a parameterized set of forces. The procedure is described and assessed in ideal conditions. Thereafter, a surrogate model is used to obtain realistic representation of the data acquired by the strain sensing system, so that the developed procedure is evaluated considering local effects due to the introduction of loads, significant modelling discrepancy in the development of the reference model and the presence of measurement noise. Results show that the method can obtain a robust and quite detailed reconstruction of strain fields, even at the level of local distributions, of the internal forces in the spars and of the displacements, by identifying an equivalent set of load parameters. Finally, the trade-off between the number of sensor and the accuracy, and the optimal position of the sensors for a given maximum number of sensors is evaluated by performing a multi-objective optimization, thus showing that even a relative dense network of externally applied sensors can be used to achieve good quality results.
Communication requirements of sparse Cholesky factorization with nested dissection ordering
NASA Technical Reports Server (NTRS)
Naik, Vijay K.; Patrick, Merrell L.
1989-01-01
Load distribution schemes for minimizing the communication requirements of the Cholesky factorization of dense and sparse, symmetric, positive definite matrices on multiprocessor systems are presented. The total data traffic in factoring an n x n sparse symmetric positive definite matrix representing an n-vertex regular two-dimensional grid graph using n exp alpha, alpha not greater than 1, processors are shown to be O(n exp 1 + alpha/2). It is O(n), when n exp alpha, alpha not smaller than 1, processors are used. Under the conditions of uniform load distribution, these results are shown to be asymptotically optimal.
NASA Astrophysics Data System (ADS)
Wei, Shiyin; Zhang, Zhaohui; Li, Shunlong; Li, Hui
2017-10-01
Strain is a direct indicator of structural safety. Therefore, strain sensors have been used in most structural health monitoring systems for bridges. However, until now, the investigation of strain response has been insufficient. This paper conducts a comprehensive study of the strain features of the U ribs and transverse diaphragm on an orthotropic steel deck and proposes a statistical paradigm for crack detection based on the features of vehicle-induced strain response by using the densely distributed optic fibre Bragg grating (FBG) strain sensors. The local feature of strain under vehicle load is highlighted, which enables the use of measurement data to determine the vehicle loading event and to make a decision regarding the health status of a girder near the strain sensors via technical elimination of the load information. Time-frequency analysis shows that the strain contains three features: the long-term trend item, the short-term trend item, and the instantaneous vehicle-induced item (IVII). The IVII is the wheel-induced strain with a remarkable local feature, and the measured wheel-induced strain is only influenced by the vehicle near the FBG sensor, while other vehicles slightly farther away have no effect on the wheel-induced strain. This causes the local strain series, among the FBG strain sensors in the same transverse locations of different cross-sections, to present similarities in shape to some extent and presents a time delay in successive order along the driving direction. Therefore, the strain series induced by an identical vehicle can be easily tracked and compared by extracting the amplitude and calculating the mutual ratio to eliminate vehicle loading information, leaving the girder information alone. The statistical paradigm for crack detection is finally proposed, and the detection accuracy is then validated by using dense FBG strain sensors on a long-span suspension bridge in China.
A Comparative Study of the Behaviour of Five Dense Glass Materials Under Shock Loading Conditions
NASA Astrophysics Data System (ADS)
Radford, Darren D.; Proud, William G.; Field, John E.
2001-06-01
Previous work at the Cavendish Laboratory on the properties of glasses under shock loading has demonstrated that the material response is highly dependent upon the composition of the glass. The shock response of glass materials with an open structure, such as borosilicate, exhibits a ramping behaviour in the longitudinal stress histories due to structural collapse. Glass materials with a “filled” microstructure, as in the case of Type-D, Extra Dense Flint (DEDF) do not exhibit a ramping behaviour and behave in a manner similar to polycrystalline ceramics [1]. The current investigation compares the behaviour of five such glasses (SF15, DEDF, LACA, SF57 and DEDF-927210) under shock loading conditions. It is observed that slight changes in material composition can have a large affect on the inelastic behaviour. Principal Hugoniot and shear strength data are presented for all of the materials for pressures ranging from 2 to 14 GPa. Evidence of the so-called failure-front [2] is presented via lateral stress histories measured using manganin stress gauges and confirmed with high-speed photography. 1. Bourne, N.K., Millett, J.C.F., and Field, J.E., “On the strength of shocked glasses” Proc. R. Soc. Lond. A 455 (1999) 1275-1282 2. Brar, N.S., “Failure Waves in Glass and Ceramics Under Shock Compression”, in "Shock Compression of Condensed Matter 1999", ed. M.D. Furnish, L.C. Chhabildas, and R.S. Hixson, American Institute of Physics, Woodbury, New York, (1999) 601-606
NASA Technical Reports Server (NTRS)
Harder, Bryan James; Zhu, Dongming; Schmitt, Michael P.; Wolfe, Douglas E.
2014-01-01
Si-based ceramic matrix composites (CMCs) require environmental barrier coatings (EBCs) in combustion environments to avoid rapid material loss. Candidate EBC materials have use temperatures only marginally above current technology, but the addition of a columnar oxide topcoat can substantially increase the durability. Plasma Spray-Physical Vapor Deposition (PS-PVD) allows application of these multilayer EBCs in a single process. The PS-PVD technique is a unique method that combines conventional thermal spray and vapor phase methods, allowing for tailoring of thin, dense layers or columnar microstructures by varying deposition conditions. Multilayer coatings were deposited on CMC specimens and assessed for durability under high heat flux and load. Coated samples with surface temperatures ranging from 2400-2700F and 10 ksi loads using the high heat flux laser rigs at NASA Glenn. Coating morphology was characterized in the as-sprayed condition and after thermomechanical loading using electron microscopy and the phase structure was tracked using X-ray diffraction.
Microgravity Stress: Bone and Connective Tissue.
Bloomfield, Susan A; Martinez, Daniel A; Boudreaux, Ramon D; Mantri, Anita V
2016-03-15
The major alterations in bone and the dense connective tissues in humans and animals exposed to microgravity illustrate the dependency of these tissues' function on normal gravitational loading. Whether these alterations depend solely on the reduced mechanical loading of zero g or are compounded by fluid shifts, altered tissue blood flow, radiation exposure, and altered nutritional status is not yet well defined. Changes in the dense connective tissues and intervertebral disks are generally smaller in magnitude but occur more rapidly than those in mineralized bone with transitions to 0 g and during recovery once back to the loading provided by 1 g conditions. However, joint injuries are projected to occur much more often than the more catastrophic bone fracture during exploration class missions, so protecting the integrity of both tissues is important. This review focuses on the research performed over the last 20 years in humans and animals exposed to actual spaceflight, as well as on knowledge gained from pertinent ground-based models such as bed rest in humans and hindlimb unloading in rodents. Significant progress has been made in our understanding of the mechanisms for alterations in bone and connective tissues with exposure to microgravity, but intriguing questions remain to be solved, particularly with reference to biomedical risks associated with prolonged exploration missions. Copyright © 2016 John Wiley & Sons, Inc.
Bouet, G; Cruel, M; Laurent, C; Vico, L; Malaval, L; Marchat, D
2015-05-15
An engineered three dimensional (3D) in vitro cell culture system was designed with the goal of inducing and controlling in vitro osteogenesis in a reproducible manner under conditions more similar to the in vivo bone microenvironment than traditional two-dimensional (2D) models. This bioreactor allows efficient mechanical loading and perfusion of an original cubic calcium phosphate bioceramic of highly controlled composition and structure. This bioceramic comprises an internal portion containing homogeneously interconnected macropores surrounded by a dense layer, which minimises fluid flow bypass around the scaffold. This dense and flat layer permits the application of a homogeneous loading on the bioceramic while also enhancing its mechanical strength. Numerical modelling of constraints shows that the system provides direct mechanical stimulation of cells within the scaffold. Experimental results establish that under perfusion at a steady flow of 2 µL/min, corresponding to 3 ≤ Medium velocity ≤ 23 µm/s, mouse calvarial cells grow and differentiate as osteoblasts in a reproducible manner, and lay down a mineralised matrix. Moreover, cells respond to mechanical loading by increasing C-fos expression, which demonstrates the effective mechanical stimulation of the culture within the scaffold. In summary, we provide a "proof-of-concept" for osteoblastic cell culture in a controlled 3D culture system under perfusion and mechanical loading. This model will be a tool to analyse bone cell functions in vivo, and will provide a bench testing system for the clinical assessment of bioactive bone-targeting molecules under load.
Performance evaluation of a second-generation elastic loop mobility system
NASA Technical Reports Server (NTRS)
Melzer, K. J.; Swanson, G. D.
1974-01-01
Tests were conducted to evaluate the mobility performance of a second-generation Elastic Loop Mobility System (ELMS II). Performance on level test lanes and slopes of lunar soil simulant (LSS) and obstacle-surmounting and crevasse-crossing capabilities were investigated. In addition, internal losses and contact pressure distributions were evaluated. To evaluate the soft-soil performance, two basic soil conditions were tested: loose (LSS1) and dense (LSS5). These conditions embrace the spectrum of soil strengths tested during recent studies for NASA related to the mobility performance of the LRV. Data indicated that for the tested range of the various performance parameters, performance was independent of unit load (contact pressure) and ELMS II drum angular velocity, but was influenced by soil strength and ELMS pitch mode. Power requirements were smaller at a given system output for dense soil than for loose soil. The total system output in terms of pull developed or slope-climbing capability was larger for the ELMS II operating in restrained-pitch mode than in free-pitch mode.
An evaluation of methods for estimating decadal stream loads
NASA Astrophysics Data System (ADS)
Lee, Casey J.; Hirsch, Robert M.; Schwarz, Gregory E.; Holtschlag, David J.; Preston, Stephen D.; Crawford, Charles G.; Vecchia, Aldo V.
2016-11-01
Effective management of water resources requires accurate information on the mass, or load of water-quality constituents transported from upstream watersheds to downstream receiving waters. Despite this need, no single method has been shown to consistently provide accurate load estimates among different water-quality constituents, sampling sites, and sampling regimes. We evaluate the accuracy of several load estimation methods across a broad range of sampling and environmental conditions. This analysis uses random sub-samples drawn from temporally-dense data sets of total nitrogen, total phosphorus, nitrate, and suspended-sediment concentration, and includes measurements of specific conductance which was used as a surrogate for dissolved solids concentration. Methods considered include linear interpolation and ratio estimators, regression-based methods historically employed by the U.S. Geological Survey, and newer flexible techniques including Weighted Regressions on Time, Season, and Discharge (WRTDS) and a generalized non-linear additive model. No single method is identified to have the greatest accuracy across all constituents, sites, and sampling scenarios. Most methods provide accurate estimates of specific conductance (used as a surrogate for total dissolved solids or specific major ions) and total nitrogen - lower accuracy is observed for the estimation of nitrate, total phosphorus and suspended sediment loads. Methods that allow for flexibility in the relation between concentration and flow conditions, specifically Beale's ratio estimator and WRTDS, exhibit greater estimation accuracy and lower bias. Evaluation of methods across simulated sampling scenarios indicate that (1) high-flow sampling is necessary to produce accurate load estimates, (2) extrapolation of sample data through time or across more extreme flow conditions reduces load estimate accuracy, and (3) WRTDS and methods that use a Kalman filter or smoothing to correct for departures between individual modeled and observed values benefit most from more frequent water-quality sampling.
An evaluation of methods for estimating decadal stream loads
Lee, Casey; Hirsch, Robert M.; Schwarz, Gregory E.; Holtschlag, David J.; Preston, Stephen D.; Crawford, Charles G.; Vecchia, Aldo V.
2016-01-01
Effective management of water resources requires accurate information on the mass, or load of water-quality constituents transported from upstream watersheds to downstream receiving waters. Despite this need, no single method has been shown to consistently provide accurate load estimates among different water-quality constituents, sampling sites, and sampling regimes. We evaluate the accuracy of several load estimation methods across a broad range of sampling and environmental conditions. This analysis uses random sub-samples drawn from temporally-dense data sets of total nitrogen, total phosphorus, nitrate, and suspended-sediment concentration, and includes measurements of specific conductance which was used as a surrogate for dissolved solids concentration. Methods considered include linear interpolation and ratio estimators, regression-based methods historically employed by the U.S. Geological Survey, and newer flexible techniques including Weighted Regressions on Time, Season, and Discharge (WRTDS) and a generalized non-linear additive model. No single method is identified to have the greatest accuracy across all constituents, sites, and sampling scenarios. Most methods provide accurate estimates of specific conductance (used as a surrogate for total dissolved solids or specific major ions) and total nitrogen – lower accuracy is observed for the estimation of nitrate, total phosphorus and suspended sediment loads. Methods that allow for flexibility in the relation between concentration and flow conditions, specifically Beale’s ratio estimator and WRTDS, exhibit greater estimation accuracy and lower bias. Evaluation of methods across simulated sampling scenarios indicate that (1) high-flow sampling is necessary to produce accurate load estimates, (2) extrapolation of sample data through time or across more extreme flow conditions reduces load estimate accuracy, and (3) WRTDS and methods that use a Kalman filter or smoothing to correct for departures between individual modeled and observed values benefit most from more frequent water-quality sampling.
Antibacterial activation of hydroxyapatite (HA) with controlled porosity by different antibiotics.
Chai, F; Hornez, J-C; Blanchemain, N; Neut, C; Descamps, M; Hildebrand, H F
2007-11-01
In order to prevent the increasing frequency of per-operative infections, bioceramics can be loaded with anti-bacterial agents, which will release with respect to their chemical characteristics. A novel hydroxyapatite (HA) was elaborated with specific internal porosities for using as a bone-bioactive antibiotic (ATB) carrier material. UV spectrophotometry and bacteria inhibition tests were performed for testing the ATB adsorption and the microbiological effectiveness after loading with different antibiotics. The impregnation time, ATB impregnating concentration, impregnation condition and other factors, which might influence the ATB loading effect, were studied by exposure to different releasing solvents and different pathogenic bacteria: Staphylococcus aureus, Staphylococcus epidermidis and Escherichia coli. It clearly showed that the facility of ATB loading on this porous HA is even possible just under simple non-vacuum impregnation conditions in a not-so-long impregnating interval. The results also showed that, for all three types of ATB (vancomycin, ciprofloxacin and gentamicin), adsorbed amount on the micro-porous HA were hugely higher than that on dense HA. The micro-porosity of test HA had also significantly prolonged the release time of antibiotics even under mimic physiological conditions. Furthermore, it also has primarily proved by a pilot test that the antibacterial efficiency of crude micro-porous HA could be further significantly improved by other methods of functionalization such as cold plasma technique.
Microchannel cross load array with dense parallel input
Swierkowski, Stefan P.
2004-04-06
An architecture or layout for microchannel arrays using T or Cross (+) loading for electrophoresis or other injection and separation chemistry that are performed in microfluidic configurations. This architecture enables a very dense layout of arrays of functionally identical shaped channels and it also solves the problem of simultaneously enabling efficient parallel shapes and biasing of the input wells, waste wells, and bias wells at the input end of the separation columns. One T load architecture uses circular holes with common rows, but not columns, which allows the flow paths for each channel to be identical in shape, using multiple mirror image pieces. Another T load architecture enables the access hole array to be formed on a biaxial, collinear grid suitable for EDM micromachining (square holes), with common rows and columns.
Numerical analysis of dense narrow backfills for increasing lateral passive resistance.
DOT National Transportation Integrated Search
2010-08-01
Previously, full-scale lateral load tests conducted on pile caps with different aspect ratios showed that placement : of a narrow, dense backfill zone against the cap could substantially increase the passive resistance. The objective : of this study ...
Radiation- and pair-loaded shocks
NASA Astrophysics Data System (ADS)
Lyutikov, Maxim
2018-06-01
We consider the structure of mildly relativistic shocks in dense media, taking into account the radiation and pair loading, and diffusive radiation energy transfer within the flow. For increasing shock velocity (increasing post-shock temperature), the first important effect is the efficient energy redistribution by radiation within the shock that leads to the appearance of an isothermal jump, whereby the flow reaches the final state through a discontinuous isothermal transition. The isothermal jump, on scales much smaller than the photon diffusion length, consists of a weak shock and a quick relaxation to the isothermal conditions. Highly radiation-dominated shocks do not form isothermal jump. Pair production can mildly increase the overall shock compression ratio to ≈10 (4 for matter-dominated shocks and 7 of the radiation-dominated shocks).
Optimal Base Station Density of Dense Network: From the Viewpoint of Interference and Load.
Feng, Jianyuan; Feng, Zhiyong
2017-09-11
Network densification is attracting increasing attention recently due to its ability to improve network capacity by spatial reuse and relieve congestion by offloading. However, excessive densification and aggressive offloading can also cause the degradation of network performance due to problems of interference and load. In this paper, with consideration of load issues, we study the optimal base station density that maximizes the throughput of the network. The expected link rate and the utilization ratio of the contention-based channel are derived as the functions of base station density using the Poisson Point Process (PPP) and Markov Chain. They reveal the rules of deployment. Based on these results, we obtain the throughput of the network and indicate the optimal deployment density under different network conditions. Extensive simulations are conducted to validate our analysis and show the substantial performance gain obtained by the proposed deployment scheme. These results can provide guidance for the network densification.
Geophysical Age Dating of Seamounts using Dense Core Flexure Model
NASA Astrophysics Data System (ADS)
Hwang, Gyuha; Kim, Seung-Sep
2016-04-01
Lithospheric flexure of oceanic plate is thermo-mechanical response of an elastic plate to the given volcanic construct (e.g., seamounts and ocean islands). If the shape and mass of such volcanic loads are known, the flexural response is governed by the thickness of elastic plate, Te. As the age of oceanic plate increases, the elastic thickness of oceanic lithosphere becomes thicker. Thus, we can relate Te with the age of plate at the time of loading. To estimate the amount of the driving force due to seamounts on elastic plate, one needs to approximate their density structure. The most common choice is uniform density model, which utilizes constant density value for a seamount. This approach simplifies computational processes for gravity prediction and error estimates. However, the uniform density model tends to overestimate the total mass of the seamount and hence produces more positive gravitational contributions from the load. Minimization of gravity misfits using uniform density, therefore, favors thinner Te in order to increase negative contributions from the lithospheric flexure, which can compensate for the excessive positives from the seamount. An alternative approach is dense core model, which approximate the heterogeneity nature of seamount density as three bodies of infill sediment, edifice, and dense core. In this study, we apply the dense core model to the Louisville Seamount Chain for constraining flexural deformation. We compare Te estimates with the loading time of the examined seamounts to redefine empirical geophysical age dating of seamounts.
Roy, Sandipan; Panda, Debojyoti; Khutia, Niloy; Chowdhury, Amit Roy
2014-01-01
The present study investigates the mechanical response of representative volume elements of porous Ti-6Al-4V alloy, to arrive at a desired range of pore geometries that would optimize the reduction in stiffness necessary for biocompatibility with the stress concentration arising around the pore periphery, under physiological loading conditions with respect to orthopedic hip implants. A comparative study of the two is performed with the aid of a newly defined optimizing parameter called pore efficiency that takes into consideration both the stiffness quantity and the stress localization around pores. To perform a detailed analysis of the response of the porous structure over the entire spectrum of loading conditions that a hip implant is subjected to in vivo, the mechanical responses of 3D finite element models of cubic and rectangular parallelepiped geometries, with porosities varying over a range of 10% to 60%, are simulated under representative compressive, flexural as well as combined loading conditions. The results that are obtained are used to suggest a range of pore diameters that lower the effective stiffness and modulus of the implant to around 60% of the stiffness and modulus of dense solid implants while keeping the stress levels within permissible limits. PMID:25400663
Whole eggs enhance antioxidant activity when combined with energy dense, cooked breakfast foods
USDA-ARS?s Scientific Manuscript database
Acute metabolic changes following the consumption of energy dense foods high in saturated fat (SFA) and glycemic load (GL) may contribute to the pathogenesis of several chronic diseases. Eggs provide highly digestible protein, unsaturated fatty acids, carotenoids, and other antioxidant compounds tha...
Effect of default menus on food selection and consumption in a college dining hall simulation study.
Radnitz, Cynthia; Loeb, Katharine L; Keller, Kathleen L; Boutelle, Kerri; Schwartz, Marlene B; Todd, Lauren; Marcus, Sue
2018-05-01
To test an obesity prevention strategy derived from behavioural economics (optimal defaults plus delay), focused on changing the college dining hall service method. After a uniform pre-load, participants attended an experimental lunch in groups randomized to one of three conditions: a nutrient-dense, lower-fat/energy lunch as an optimal default (OD); a less-nutrient-dense, higher-fat/energy lunch as a suboptimal default (SD); or a free array (FA) lunch. In the OD condition, students were presented a menu depicting healthier vegetarian and omnivore foods as default, with opt-out alternatives (SD menu) available on request with a 15 min wait. In the SD condition, the same menu format was used with the positioning of food items switched. In the FA condition, all choices were presented in uniform fonts and were available immediately. Private rooms designed to provide a small version of a college dining hall, on two campuses of a Northeastern US university. First-year college students (n 129). There was a significant main effect for condition on percentage of optimal choices selected, with 94 % of food choices in the OD condition optimal, 47 % in the FA condition optimal and none in the SD condition optimal. Similarly, energy intake for those in the SD condition significantly exceeded that in the FA condition, which exceeded that in the OD condition. Presenting menu items as optimal defaults with a delay had a significant impact on choice and consumption, suggesting that further research into its long-term applicability is warranted.
Devitt, A A; Kuevi, A; Coelho, S B; Lartey, A; Lokko, P; Costa, N; Bressan, J; Mattes, R D
2011-01-01
Background. Energy-dense foods are inconsistently implicated in elevated energy intake (EI). This may stem from other food properties and/or differences in dietary incorporation, that is, as snacks or with meals. Objective. Assess intake pattern and food properties on acute appetitive ratings (AR) and EI. Design. 201 normal and overweight adults consuming a standard lunch. Test loads of 1255.2 kJ (300 kcal) were added to the lunch or provided as snack. Loads (peanuts, snack mix, and snack mix with peanuts) were energy, macronutrient, and volumetrically matched with a lunch portion as control. Participants completed meal and snack sessions of their randomly assigned load. Results. No differences were observed in daily EI or AR for meal versus snack or treatment versus control. Consumption of peanuts as a snack tended to strengthen dietary compensation compared to peanuts or other loads with a meal. Conclusions. Inclusion of an energy-dense food as a snack or meal component had comparable influence on AR and EI. Peanuts tended to elicit stronger dietary compensation when consumed as a snack versus with a meal. If substantiated, this latter observation suggests that properties other than those controlled here (energy, macronutrient content, and volume) modify AR and EI.
Pressure Induced Phase Transformations of Silica Polymorphs and Glasses
NASA Astrophysics Data System (ADS)
Cagin, Tahir; Demiralp, Ersan; Goddard, William A., III
1998-03-01
Silica, SiO_2, is one of the most widely studied substance, and it has some complex and unusual properties. We have used a recently developed 2-body interaction force field (E. Demiralp, T. Cagin, W.A. Goddard, III, unpublished.) to study the structural phase transformations in silica under various pressure loading conditions. The specific transformations we studied are α-quartz to stishovite, coesite to stishovite and fused glass to stishovite-like dense, a dominantly six-coordinated glassy phase. Molecular dynamics simulations are performed under the constant loading rates ranging from 0.1 GPa/ps to 2.0 GPa/ps, pressures upto 100 GPa and at temperatures 300, 500, 700 and 900 K. We observe the crystal to crystal transformations to occur reconstructively, whereas it occurs in a smooth and displacive manner from glass to a stishovite-like phase confirming earlier conjectures. (E.M. Stolper and T.J. Ahrens, Geophys. Res. Let.) 14, 1231 (1987). To elucidate the shock loading experiments, we studied the dependence of transition pressure on the loading rate and the temperature. To assess the hysterisis effect we also studied the unloading behavior of each transformation.
Evaluation of heat and particle controllability on the JT-60SA divertor
NASA Astrophysics Data System (ADS)
Kawashima, H.; Hoshino, K.; Shimizu, K.; Takizuka, T.; Ide, S.; Sakurai, S.; Asakura, N.
2011-08-01
The JT-60SA divertor design has been established on the basis of engineering requirements and physics analysis. Heat and particle fluxes under the full input power of 41 MW can give severe heat loads on the divertor targets, while the allowable heat load is limited below 15 MW/m2. Dependence of the heat flux mitigation on a D2 gas-puff is evaluated by SONIC simulations for high density (ne_ave ˜ 1 × 1020 m-3) high current plasmas. It is found that the peak heat load 10 MW/m2 with dense (ned > 4 × 1020 m-3) and cold (Ted, Tid ⩽ 1 eV) divertor plasmas are obtained at a moderate gas-puff of Γpuff = 15 × 1021 s-1. Divertor plasmas are controlled from attached to detached condition using the divertor pump with pumping-speed below 100 m3/s. In full non-inductive current drive plasmas with low density (ne_ave ˜ 5 × 1019 m-3), the reduction of divertor heat load is achieved with the Ar injection.
NASA Technical Reports Server (NTRS)
Wohlen, R. L.
1976-01-01
A listing of the source deck of each dense FORMA subroutine is given to remove the 'black-box' aura of the subroutines so that the analyst may better understand the detail operations of each subroutine. The FORTRAN 4 programming language is used throughout.
1985-06-01
Research on this grant has focused on plasma focus experiments in the areas of particle beam generation and as a potential repetitive opening switch...as were scaling laws for the increase of electron energy and current with input energy. The potential of the plasma focus as an opening switch was...delay line technique. The observed frequencies were most consistent with the lower hybrid frequency. Keywords include: Dense Plasma Focus , Particle Beam Generation, Opening Switch, Load Experiments, Pulsed Power.
Jamieson, E.C.; Rennie, C.D.; Jacobson, R.B.; Townsend, R.D.
2011-01-01
Detailed mapping of bathymetry and apparent bed load velocity using a boat-mounted acoustic Doppler current profiler (ADCP) was carried out along a 388-m section of the lower Missouri River near Columbia, Missouri. Sampling transects (moving boat) were completed at 5- and 20-m spacing along the study section. Stationary (fixed-boat) measurements were made by maintaining constant boat position over a target point where the position of the boat did not deviate more than 3 m in any direction. For each transect and stationary measurement, apparent bed load velocity (vb) was estimated using ADCP bottom tracking data and high precision real-time kinematic (RTK) global positioning system (GPS). The principal objectives of this research are to (1) determine whether boat motion introduces a bias in apparent bed load velocity measurements; and (2) evaluate the reliability of ADCP bed velocity measurements for a range of sediment transport environments. Results indicate that both high transport (vb>0.6 m/s) and moving-boat conditions (for both high and low transport environments) increase the relative variability in estimates of mean bed velocity. Despite this, the spatially dense single-transect measurements were capable of producing detailed bed velocity maps that correspond closely with the expected pattern of sediment transport over large dunes. ?? 2011 American Society of Civil Engineers.
PEO-b-P4VP/Yttrium Hydroxide Hybrid Nanotubes as Supporter for Catalyst Gold Nanoparticles
NASA Astrophysics Data System (ADS)
Yang, Qian; Chen, Dao-yong
2012-06-01
The adsorption of poly (ethylene oxide)-b-poly(4-vinylpyridine)(PEO-b-P4VP) micelles onto the surface of yttrium hydroxide nanotubes (YNTs) resulted in the hybrid nanotubes with a dense P4VP inner layer and a stretched PEO outer layer surrounding YNTs. The dense P4VP layer was further stabilized by the crosslinking using 1,4-dibromobutane as the crosslinker. Then, the crosslinked hybrid nanotubes (CHNTs) were used as a novel nano supporter for loading the catalyst gold nanoparticles (GNPs) within the crosslinked P4VP layer. The resultant GNPs/CHNTs (GNTs loaded on CHNTs) were applied to catalyze the reduction reaction of p-nitrophenol. The results indicate that this novel nano supporter has advantages such as good dispersity in the suspension, high capacity in loading GNPs (0.87 mmol/g), high catalytic activity of the loaded GNPs (12.9 μmol-1min-1), and good reusability of GNTs/CHNTs.
NASA Astrophysics Data System (ADS)
Garzanti, Eduardo; Andó, Sergio; France-Lanord, Christian; Censi, Paolo; Vignola, Pietro; Galy, Valier; Lupker, Maarten
2011-02-01
Sediments carried in suspension represent a fundamental part of fluvial transport. Nonetheless, largely because of technical problems, they have been hitherto widely neglected in provenance studies. In order to determine with maximum possible precision the mineralogy of suspended load collected in vertical profiles from water surface to channel bottom of Rivers Ganga and Brahmaputra, we combined Raman spectroscopy with traditional heavy-mineral and X-ray diffraction analyses, carried out separately on low-density and dense fractions of all significant size classes in each sample (multiple-window approach). Suspended load resulted to be a ternary mixture of dominant silt enriched in phyllosilicates, subordinate clay largely derived from weathered floodplains, and sand mainly produced by physical erosion and mechanical grinding during transport in Himalayan streams. Sediment concentration and grain size increase steadily with water depth. Whereas absolute concentration of clay associated with Fe-oxyhydroxides and organic matter is almost depth-invariant, regular mineralogical and consequently chemical changes from shallow to deep load result from marked increase of faster-settling, coarser, denser, or more spherical grains toward the bed. Such steady intersample compositional variability can be modeled as a mixture of clay, silt and sand modes with distinct mineralogical and chemical composition. With classical formulas describing sediment transport by turbulent diffusion, absolute and relative concentrations can be predicted at any depth for each textural mode and each detrital component. Based on assumptions on average chemistry of detrital minerals and empirical formulas to calculate their settling velocities, the suspension-sorting model successfully reproduces mineralogy and chemistry of suspended load at different depths. Principal outputs include assessment of contributions by each detrital mineral to the chemical budget, and calibration of dense minerals too rare to be precisely estimated by optical or Raman analysis but crucial in both detrital-geochronology and settling-equivalence studies. Hydrodynamic conditions during monsoonal discharge could also be evaluated. Understanding compositional variability of suspended load is a fundamental pre-requisite to correctly interpret mineralogical and geochemical data in provenance analysis of modern and ancient sedimentary deposits, to accurately assess weathering processes, sediment fluxes and erosion patterns, and to unambiguously evaluate the effects of anthropogenic modifications on the natural environment.
Lateral pile cap load tests with gravel backfill of limited width.
DOT National Transportation Integrated Search
2010-08-01
This study investigated the increase in passive force produced by compacting a dense granular fill adjacent to a pile cap or abutment wall when the surrounding soil is in a relative loose state. Lateral load tests were performed on a pile cap with th...
NASA Astrophysics Data System (ADS)
Porwal, Harshit; Tatarko, Peter; Grasso, Salvatore; Hu, Chunfeng; Boccaccini, Aldo R.; Dlouhý, Ivo; Reece, Mike J.
2013-10-01
The processing conditions for preparing well dispersed silica-graphene nanoplatelets and silica-graphene oxide nanoplatelets (GONP) composites were optimized using powder and colloidal processing routes. Fully dense silica-GONP composites with up to 2.5 vol% loading were consolidated using spark plasma sintering. The GONP aligned perpendicularly to the applied pressure during sintering. The fracture toughness of the composites increased linearly with increasing concentration of GONP and reached a value of ˜0.9 MPa m1/2 for 2.5 vol% loading. Various toughening mechanisms including GONP necking, GONP pull-out, crack bridging, crack deflection and crack branching were observed. GONP decreased the hardness and brittleness index (BI) of the composites by ˜30 and ˜50% respectively. The decrease in BI makes silica-GONP composites machinable compared to pure silica. When compared to silica-Carbon nanotube composites, silica-GONP composites show better process-ability and enhanced mechanical properties.
Porwal, Harshit; Tatarko, Peter; Grasso, Salvatore; Hu, Chunfeng; Boccaccini, Aldo R; Dlouhý, Ivo; Reece, Mike J
2013-01-01
The processing conditions for preparing well dispersed silica–graphene nanoplatelets and silica–graphene oxide nanoplatelets (GONP) composites were optimized using powder and colloidal processing routes. Fully dense silica–GONP composites with up to 2.5 vol% loading were consolidated using spark plasma sintering. The GONP aligned perpendicularly to the applied pressure during sintering. The fracture toughness of the composites increased linearly with increasing concentration of GONP and reached a value of ∼0.9 MPa m1/2 for 2.5 vol% loading. Various toughening mechanisms including GONP necking, GONP pull-out, crack bridging, crack deflection and crack branching were observed. GONP decreased the hardness and brittleness index (BI) of the composites by ∼30 and ∼50% respectively. The decrease in BI makes silica–GONP composites machinable compared to pure silica. When compared to silica–Carbon nanotube composites, silica–GONP composites show better process-ability and enhanced mechanical properties. PMID:27877614
How to form planetesimals from mm-sized chondrules and chondrule aggregates
NASA Astrophysics Data System (ADS)
Carrera, Daniel; Johansen, Anders; Davies, Melvyn B.
2015-07-01
The size distribution of asteroids and Kuiper belt objects in the solar system is difficult to reconcile with a bottom-up formation scenario due to the observed scarcity of objects smaller than ~100 km in size. Instead, planetesimals appear to form top-down, with large 100-1000 km bodies forming from the rapid gravitational collapse of dense clumps of small solid particles. In this paper we investigate the conditions under which solid particles can form dense clumps in a protoplanetary disk. We used a hydrodynamic code to model the interaction between solid particles and the gas inside a shearing box inside the disk, considering particle sizes from submillimeter-sized chondrules to meter-sized rocks. We found that particles down to millimeter sizes can form dense particle clouds through the run-away convergence of radial drift known as the streaming instability. We made a map of the range of conditions (strength of turbulence, particle mass-loading, disk mass, and distance to the star) that are prone to producing dense particle clumps. Finally, we estimate the distribution of collision speeds between mm-sized particles. We calculated the rate of sticking collisions and obtain a robust upper limit on the particle growth timescale of ~105 years. This means that mm-sized chondrule aggregates can grow on a timescale much smaller than the disk accretion timescale (~106-107 years). Our results suggest a pathway from the mm-sized grains found in primitive meteorites to fully formed asteroids. We speculate that asteroids may form from a positive feedback loop in which coagualation leads to particle clumping driven by the streaming instability. This clumping, in turn, reduces collision speeds and enhances coagulation. Future simulations should model coagulation and the streaming instability together to explore this feedback loop further. Appendices are available in electronic form at http://www.aanda.org
Enhanced water use efficiency in global terrestrial ecosystems under increasing aerosol loadings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Xiaoliang; Chen, Min; Liu, Yaling
Aerosols play a crucial role in the climate system, affecting incoming radiation and cloud formation. Based on a modelling framework that couples ecosystem processes with the atmospheric transfer of radiation, we analyze the effect of aerosols on surface incoming radiation, gross primary productivity (GPP), water losses from ecosystems through evapotranspiration (ET) and ecosystem water use efficiency (WUE, defined as GPP/ET) for 2003–2010 and validate them at global FLUXNET sites. The total diffuse radiation increases under relatively low or intermediate aerosol loadings, but decreases under more polluted conditions. We find that aerosol-induced changes in GPP depend on leaf area index, aerosolmore » loading and cloudiness. Specifically, low and moderate aerosol loadings cause increases in GPP for all plant types, while heavy aerosol loadings result in enhancement (decrease) in GPP for dense (sparse) vegetation. On the other hand, ET is mainly negatively affected by aerosol loadings due to the reduction in total incoming radiation. Finally, WUE shows a consistent rise in all plant types under increasing aerosol loadings. Overall, the simulated daily WUE compares well with observations at 43 eddy-covariance tower sites (R 2=0.84 and RMSE=0.01gC (kg H 2O) -1) with better performance at forest sites. In addition to the increasing portions of diffuse light, the rise in WUE is also favored by the reduction in radiation- and heat-stress caused by the aerosols, especially for wet and hot climates.« less
Greenawalt, John W.; Rossi, Carlo S.; Lehninger, Albert L.
1964-01-01
Rat liver mitochondria allowed to accumulate maximal amounts of Ca++ and HPO4 = ions from the suspending medium in vitro during respiration have a considerably higher specific gravity than normal mitochondria and may be easily separated from the latter by isopycnic centrifugation in density gradients of sucrose or cesium chloride. When the mitochondria are allowed to accumulate less than maximal amounts of Ca++ and HPO4 = from the medium, they have intermediate specific gravities which are roughly proportional to their content of calcium phosphate. Maximally "loaded" mitochondria are relatively homogeneous with respect to specific gravity. Correlated biochemical and electron microscopic studies show that Ca++-loaded mitochondria contain numerous dense granules, of which some 85 per cent are over 500 A in diameter. These granules are electron-opaque not only following fixation and staining with heavy metal reagents, but also following fixation with formaldehyde, demonstrating that the characteristic granules in Ca++-loaded mitochondria have intrinsic electron-opacity. The dense granules are almost always located within the inner compartment of the mitochondria and not in the space between the inner and outer membranes. They are frequently located at or near the cristae and they often show electron-transparent "cores." Such granules appear to be made up of clusters of smaller dense particles, but preliminary x-ray diffraction analysis and electron diffraction studies have revealed no evidence of crystallinity in the deposits. The electron-opaque granules decrease in number when the Ca++-loaded mitochondria are incubated with 2,4-dinitrophenol; simultaneously there is discharge of Ca++ and phosphate from the mitochondria into the medium. PMID:14228516
Processing and mechanical characterization of alumina laminates
NASA Astrophysics Data System (ADS)
Montgomery, John K.
2002-08-01
Single-phase ceramics that combine property gradients or steps in monolithic bodies are sought as alternatives to ceramic composites made of dissimilar materials. This work describes novel processing methods to produce stepped-density (or laminated) alumina single-phase bodies that maintain their mechanical integrity. One arrangement consists of a stiff, dense bulk material with a thin, flaw tolerant, porous exterior layer. Another configuration consists of a lightweight, low-density bulk material with a thin, hard, wear resistant exterior layer. Alumina laminates with strong interfaces have been successfully produced in this work using two different direct-casting processes. Gelcasting is a useful near-net shape processing technique that has been combined with several techniques, such as reaction bonding of aluminum oxide and the use of starch as a fugative filler, to successfully produced stepped-density alumina laminates. The other direct casting process that has been developed in this work is thermoreversible gelcasting (TRG). This is a reversible gelation process that has been used to produce near-net shape dense ceramic bodies. Also, individual layers can be stacked together and heated to produce laminates. Bilayer laminate samples were produced with varied thickness of porous and dense layers. It was shown that due to the difference in modulus and hardness, transverse cracking is found upon Hertzian contact when the dense layer is on the exterior. In the opposite arrangement, compacted damage zones formed in the porous material and no damage occurred in the underlying dense layer. Flaw tolerant behavior of the porous exterior/dense underlayer was examined by measuring biaxial strength as a function of Vickers indentation load. It was found that the thinnest layer of porous material results in the greatest flaw tolerance. Also, higher strength was exhibited at large indentation loads when compared to dense monoliths. The calculated stresses on the surfaces and interface afforded an explanation of the behavior that failure initiates at the interface between the layers for the thinnest configuration, rather than the sample surface.
Changes in soil nitrogen dynamics caused by prescribed fires in dense gorse lands in SW Pyrenees.
Múgica, Leire; Canals, Rosa M; San Emeterio, Leticia
2018-05-18
Rural depopulation, abandonment of traditional land uses and decrease of extensive stockfarming is accelerating shrub encroachment in mountain areas. In NW Spain, gorse (Ulex gallii Planch.) is expanding, developing dense shrublands that accumulate high fuel-loads, ignite easily and persist during long periods as alternate stable states. Under this scenario, traditional bush-to-bush farming fires are being replaced by high fuel-load burnings performed by specialised teams to reduce fuels and promote mosaic landscapes. This research analyses the effects on soil function and nitrogen (N)-cycling of these new generation of prescribed fires practiced under similar conditions to traditional fires (winter time, moist soils), but differing in the biomass and the continuity of the surface burnt. The results showed significant changes in N-cycle parameters, such as increases in inorganic N and dissolved organic nitrogen (DON), but declines in N microbial biomass and urease activity. At the ecosystem level, potential N losses were high because the pulse of water-soluble forms, DON and nitrate, following fire overlaps with periods of low biological N retention by microorganisms and plants. Although most effects were similar to those observed in traditional burnings done in the same region, the primary concern is the high potential for DON losses following prescribed burning in highly gorse-encroached areas. In N-limited ecosystems, a crucial issue is to attain an equilibrium between frequent burnings, which may prevent an optimal recovery of the soil function, and uneven burnings, which burn high amounts of accumulated fuel and increase the risk of removing large quantities of dissolved N from the ecosystem in a unique fire event. Overall, the use of different techniques combined with fire are needed to promote and consolidate desired changes in dense gorse lands. Copyright © 2018 Elsevier B.V. All rights reserved.
Data traffic reduction schemes for sparse Cholesky factorizations
NASA Technical Reports Server (NTRS)
Naik, Vijay K.; Patrick, Merrell L.
1988-01-01
Load distribution schemes are presented which minimize the total data traffic in the Cholesky factorization of dense and sparse, symmetric, positive definite matrices on multiprocessor systems with local and shared memory. The total data traffic in factoring an n x n sparse, symmetric, positive definite matrix representing an n-vertex regular 2-D grid graph using n (sup alpha), alpha is equal to or less than 1, processors are shown to be O(n(sup 1 + alpha/2)). It is O(n(sup 3/2)), when n (sup alpha), alpha is equal to or greater than 1, processors are used. Under the conditions of uniform load distribution, these results are shown to be asymptotically optimal. The schemes allow efficient use of up to O(n) processors before the total data traffic reaches the maximum value of O(n(sup 3/2)). The partitioning employed within the scheme, allows a better utilization of the data accessed from shared memory than those of previously published methods.
Mano, J F; Vaz, C M; Mendes, S C; Reis, R L; Cunha, A M
1999-12-01
It has been shown that blends of starch with a poly(ethylene-vinyl-alcohol) copolymer, EVOH, designated as SEVA-C, present an interesting combination of mechanical, degradation and biocompatible properties, specially when filled with hydroxyapatite (HA). Consequently, they may find a range of applications in the biomaterials field. This work evaluated the influence of HA fillers and of blowing agents (used to produce porous architectures) over the viscoelastic properties of SEVA-C polymers, as seen by dynamic mechanical analysis (DMA), in order to speculate on their performances when withstanding cyclic loading in the body. The composite materials presented a promising performance under dynamic mechanical solicitation conditions. Two relaxations were found being attributed to the starch and EVOH phases. The EVOH relaxation process may be very useful in vivo improving the implants performance under cyclic loading. DMA results also showed that it is possible to produce SEVA-C compact surface/porous core architectures with a mechanical performance similar to that of SEVA-C dense materials. This may allow for the use of these materials as bone replacements or scaffolds that must withstand loads when implanted. Copyright 1999 Kluwer Academic Publishers
NASA Astrophysics Data System (ADS)
Balakrishnan, Kaushik
The flow field behind chemical explosions in multiphase environments is investigated using a robust, state-of-the-art simulation strategy that accounts for the thermodynamics, gas dynamics and fluid mechanics of relevance to the problem. Focus is laid on the investigation of blast wave propagation, growth of hydrodynamic instabilities behind explosive blasts, the mixing aspects behind explosions, the effects of afterburn and its quantification, and the role played by solid particles in these phenomena. In particular, the confluence and interplay of these different physical phenomena are explored from a fundamental perspective, and applied to the problem of chemical explosions. A solid phase solver suited for the study of high-speed, two-phase flows has been developed and validated. This solver accounts for the inter-phase mass, momentum and energy transfer through empirical laws, and ensures two-way coupling between the two phases, viz. solid particles and gas. For dense flow fields, i.e., when the solid volume fraction becomes non-negligible (˜60%), the finite volume method with a Godunov type shock-capturing scheme requires modifications to account for volume fraction gradients during the computation of cell interface gas fluxes. To this end, the simulation methodology is extended with the formulation of an Eulerian gas, Lagrangian solid approach, thereby ensuring that the so developed two-phase simulation strategy can be applied for both flow conditions, dilute and dense alike. Moreover, under dense loading conditions the solid particles inevitably collide, which is accounted for in the current research effort with the use of an empirical collision/contact model from literature. Furthermore, the post-detonation flow field consists of gases under extreme temperature and pressure conditions, necessitating the use of real gas equations of state in the multiphase model. This overall simulation strategy is then extended to the investigation of chemical explosions in multiphase environments, with emphasis on the study of hydrodynamic instability growth, mixing, afterburn effects ensuing from the process, particle ignition and combustion (if reactive), dispersion, and their interaction with the vortices in the mixing layer. The post-detonation behavior of heterogeneous explosives is addressed by using three parts to the investigation. In the first part, only one-dimensional effects are considered, with the goal to assess the presently developed dense two-phase formulation. The total deliverable impulsive loading from heterogeneous explosive charges containing inert steel particles is estimated for a suite of operating parameters and compared, and it is demonstrated that heterogeneous explosive charges deliver a higher near-field impulse than homogeneous explosive charges containing the same mass of the high explosive. In the second part, three-dimensional effects such as hydrodynamic instabilities are accounted for, with the focus on characterizing the mixing layer ensuing from the detonation of heterogeneous explosive charges containing inert steel particles. It is shown that particles introduce significant amounts of hydrodynamic instabilities in the mixing layer, resulting in additional physical phenomena that play a prominent role in the flow features. In particular, the fluctuation intensities, fireball size and growth rates are augmented for heterogeneous explosions vis-a-vis homogeneous explosions, thereby demonstrating that solid particles enhance the perturbation intensities in the flow. In the third part of the investigation of heterogeneous explosions, dense, aluminized explosions are considered, and the particles are observed to burn in two phases, with an initial quenching due to the rarefaction wave, and a final quenching outside the fireball. Due to faster response time scales, smaller particles are observed to heat and accelerate more during early times, and also cool and decelerate more at late times, compared to counterpart larger particle sizes. Furthermore, the average particle velocities at late times are observed to be independent of the initial solid volume fraction in the explosive charge, as the particles eventually reach an equilibrium with the local gas. These studies have provided some crucial insights to the flow physics of dense, aluminized explosives. (Abstract shortened by UMI.)
Endothelial cell response to biomechanical forces under simulated vascular loading conditions.
Punchard, M A; Stenson-Cox, C; O'cearbhaill, E D; Lyons, E; Gundy, S; Murphy, L; Pandit, A; McHugh, P E; Barron, V
2007-01-01
In vivo, endothelial cells (EC) are constantly exposed to the haemodynamic forces (HF) of pressure, wall shear stress and hoop stress. The main aim of this study was to design, create and validate a novel perfusion bioreactor capable of delivering shear stress and intravascular pressure to EC in vitro and to characterise their morphology, orientation and gene expression. Here we report the creation and validation of such a simulator and the dual application of pressure (120/60 mmHg) and low shear stress (5 dyn/cm(2)) to a monolayer of EC established on a non-compliant silicone tube. Under these conditions, EC elongated and realigned obliquely to the direction of applied shear stress in a time-dependent manner. Furthermore, randomly distributed F-actin microfilaments reorganised into long, dense stress fibres crossing the cells in a direction perpendicular to that of flow. Finally, combinatorial biomechanical conditioning of EC induced the expression of the inflammatory-associated E-selectin gene.
Rocker, Melissa M; Francis, David S; Fabricius, Katharina E; Willis, Bette L; Bay, Line K
2017-06-30
This study explores how plasticity in biochemical attributes, used as indicators of health and condition, enables the coral Acropora tenuis to respond to differing water quality regimes in inshore regions of the Great Barrier Reef. Health attributes were monitored along a strong and weak water quality gradient, each with three reefs at increasing distances from a major river source. Attributes differed significantly only along the strong gradient; corals grew fastest, had the least dense skeletons, highest symbiont densities and highest lipid concentrations closest to the river mouth, where water quality was poorest. High nutrient and particulate loads were only detrimental to skeletal density, which decreased as linear extension increased, highlighting a trade-off. Our study underscores the importance of assessing multiple health attributes in coral reef monitoring. For example, autotrophic indices are poor indicators of coral health and condition, but improve when combined with attributes like lipid content and biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.
Walford, T; Musa, F I
2015-01-01
Background and Purpose Recently, we demonstrated that a pericellular Ca2+ recycling system potentiates agonist‐evoked Ca2+ signalling and granule secretion in human platelets and hypothesized a role for the membrane complex (MC) in orchestrating the accumulation of Ca2+ in the pericellular region. Previous work has demonstrated that treatment with high concentrations of nicergoline may disrupt the MC through an ability to trigger a re‐organization of the dense tubular system. Experiments were therefore performed to assess whether nicergoline‐induced changes in platelet ultrastructure affects thrombin‐evoked Ca2+ fluxes and dense granule secretion. Experimental Approach Thrombin‐evoked Ca2+ fluxes were monitored in Fura‐2‐ or Fluo‐5N‐loaded human platelets, or using platelet suspensions containing Fluo‐4 or Rhod‐5N K+ salts. Fluorescence microscopy was utilized to monitor microtubule structure and intracellular Ca2+ store distribution in TubulinTracker‐ and Fluo‐5N‐loaded platelets respectively. Dense granule secretion was monitored using luciferin–luciferase. Key Results Nicergoline treatment inhibited thrombin‐evoked Ca2+ signalling and induced alterations in the microtubule structure and the distribution of intracellular Ca2+ stores in platelets. Nicergoline altered the generation and spreading of thrombin‐induced pericellular Ca2+ signals and almost completely prevented dense granule secretion. Stabilization of microtubules using taxol reversed most effects of nicergoline on platelet Ca2+ signalling and partially reversed its effects on dense granule secretion. Conclusions and Implications Nicergoline‐induced alterations to platelet ultrastructure disrupt platelet Ca2+ signalling in a manner that would be predicted if the MC had been disrupted. These data suggest that nicergoline may be a useful prototype for the discovery of novel MC‐disrupting anti‐thrombotics. PMID:26450366
Walford, T; Musa, F I; Harper, A G S
2016-01-01
Recently, we demonstrated that a pericellular Ca(2+) recycling system potentiates agonist-evoked Ca(2+) signalling and granule secretion in human platelets and hypothesized a role for the membrane complex (MC) in orchestrating the accumulation of Ca(2+) in the pericellular region. Previous work has demonstrated that treatment with high concentrations of nicergoline may disrupt the MC through an ability to trigger a re-organization of the dense tubular system. Experiments were therefore performed to assess whether nicergoline-induced changes in platelet ultrastructure affects thrombin-evoked Ca(2+) fluxes and dense granule secretion. Thrombin-evoked Ca(2+) fluxes were monitored in Fura-2- or Fluo-5N-loaded human platelets, or using platelet suspensions containing Fluo-4 or Rhod-5N K(+) salts. Fluorescence microscopy was utilized to monitor microtubule structure and intracellular Ca(2+) store distribution in TubulinTracker- and Fluo-5N-loaded platelets respectively. Dense granule secretion was monitored using luciferin-luciferase. Nicergoline treatment inhibited thrombin-evoked Ca(2+) signalling and induced alterations in the microtubule structure and the distribution of intracellular Ca(2+) stores in platelets. Nicergoline altered the generation and spreading of thrombin-induced pericellular Ca(2+) signals and almost completely prevented dense granule secretion. Stabilization of microtubules using taxol reversed most effects of nicergoline on platelet Ca(2+) signalling and partially reversed its effects on dense granule secretion. Nicergoline-induced alterations to platelet ultrastructure disrupt platelet Ca(2+) signalling in a manner that would be predicted if the MC had been disrupted. These data suggest that nicergoline may be a useful prototype for the discovery of novel MC-disrupting anti-thrombotics. © 2015 The British Pharmacological Society.
Load Designs For MJ Dense Plasma Foci
NASA Astrophysics Data System (ADS)
Link, A.; Povlius, A.; Anaya, R.; Anderson, M. G.; Angus, J. R.; Cooper, C. M.; Falabella, S.; Goerz, D.; Higginson, D.; Holod, I.; McMahon, M.; Mitrani, J.; Koh, E. S.; Pearson, A.; Podpaly, Y. A.; Prasad, R.; van Lue, D.; Watson, J.; Schmidt, A. E.
2017-10-01
Dense plasma focus (DPF) Z-pinches are compact pulse power driven devices with coaxial electrodes. The discharge of DPF consists of three distinct phases: first generation of a plasma sheath, plasma rail gun phase where the sheath is accelerated down the electrodes and finally an implosion phase where the plasma stagnates into a z-pinch geometry. During the z-pinch phase, DPFs can produce MeV ion beams, x-rays and neutrons. Megaampere class DPFs with deuterium fills have demonstrated neutron yields in the 1012 neutrons/shot range with pulse durations of 10-100 ns. Kinetic simulations using the code Chicago are being used to evaluate various load configurations from initial sheath formation to the final z-pinch phase for DPFs with up to 5 MA and 1 MJ coupled to the load. Results will be presented from the preliminary design simulations. LLNL-ABS-734785 This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory (LLNL) under Contract DE-AC52-07NA27344 and with support from the Computing Grand Challenge program at LLNL.
NASA Astrophysics Data System (ADS)
van Tussenbroek, B. I.; van Katwijk, M. M.; Bouma, T. J.; van der Heide, T.; Govers, L. L.; Leuven, R. S. E. W.
2016-09-01
Seagrasses comprise 78 species and are rarely invasive. But the seagrass Halophila stipulacea, firstly recorded in the Caribbean in the year 2002, has spread quickly throughout the region. Previous works have described this species as invasive in the Caribbean, forming dense mats that exclude native seagrass species. During a reconnaissance field survey of Caribbean seagrass meadows at the islands of Bonaire and Sint Maarten in 2013, we observed that this species was only extremely dense at 5 out of 10 studied meadows. Compared to areas with sparse growth of H. stipulacea, these dense meadows showed consistently higher nutrient concentrations, as indicated by higher leaf tissue N contents of the seagrass Thalassia testudinum (dense when C:N < 22.5) and sediments (dense when %N > 11.3). Thus, the potential invasiveness of this non-native seagrass most likely depends on the environmental conditions, especially the nutrient concentrations.
Wilén, Britt-Marie; Liébana, Raquel; Persson, Frank; Modin, Oskar; Hermansson, Malte
2018-06-01
Granular activated sludge has gained increasing interest due to its potential in treating wastewater in a compact and efficient way. It is well-established that activated sludge can form granules under certain environmental conditions such as batch-wise operation with feast-famine feeding, high hydrodynamic shear forces, and short settling time which select for dense microbial aggregates. Aerobic granules with stable structure and functionality have been obtained with a range of different wastewaters seeded with different sources of sludge at different operational conditions, but the microbial communities developed differed substantially. In spite of this, granule instability occurs. In this review, the available literature on the mechanisms involved in granulation and how it affects the effluent quality is assessed with special attention given to the microbial interactions involved. To be able to optimize the process further, more knowledge is needed regarding the influence of microbial communities and their metabolism on granule stability and functionality. Studies performed at conditions similar to full-scale such as fluctuation in organic loading rate, hydrodynamic conditions, temperature, incoming particles, and feed water microorganisms need further investigations.
Developing Cost-Effective Dense Continuous SDC Barrier Layers for SOFCs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Hoang Viet P.; Hardy, John S.; Coyle, Christopher A.
Significantly improved performance during electrochemical testing of a cell with a dense continuous pulsed laser deposited (PLD) samarium doped ceria (SDC) layer spurred investigations into the fabrication of dense continuous SDC barrier layers by means of cost-effective deposition using screen printing which is amenable to industrial production of SOFCs. Many approaches to improve the SDC density have been explored including the use of powder with reduced particle sizes, inks with increased solids loading, and doping with sintering aids (1). In terms of sintering aids, dopants like Mo or binary systems of Mo+Cu or Fe+Co greatly enhance SDC sinterability. In fact,more » adding dopants to a screen printed, prefired, porous SDC layer made it possible to achieve a dense continuous barrier layer atop the YSZ electrolyte without sintering above 1200°C. Although the objective of fabricating a dense continuous layer was achieved, additional studies have been initiated to improve the cell performance. Underlying issues with constrained sintering and dopant-enhanced ceria-zirconia solid solubility are also addressed in this paper.« less
Onset of sediment transport is a continuous transition driven by fluid shear and granular creep.
Houssais, Morgane; Ortiz, Carlos P; Durian, Douglas J; Jerolmack, Douglas J
2015-03-09
Fluid-sheared granular transport sculpts landscapes and undermines infrastructure, yet predicting the onset of sediment transport remains notoriously unreliable. For almost a century, this onset has been treated as a discontinuous transition at which hydrodynamic forces overcome gravity-loaded grain-grain friction. Using a custom laminar-shear flume to image slow granular dynamics deep into the bed, here we find that the onset is instead a continuous transition from creeping to granular flow. This transition occurs inside the dense granular bed at a critical viscous number, similar to granular flows and colloidal suspensions and inconsistent with hydrodynamic frameworks. We propose a new phase diagram for sediment transport, where 'bed load' is a dense granular flow bounded by creep below and suspension above. Creep is characteristic of disordered solids and reminiscent of soil diffusion on hillslopes. Results provide new predictions for the onset and dynamics of sediment transport that challenge existing models.
High frequency flow-structural interaction in dense subsonic fluids
NASA Technical Reports Server (NTRS)
Liu, Baw-Lin; Ofarrell, J. M.
1995-01-01
Prediction of the detailed dynamic behavior in rocket propellant feed systems and engines and other such high-energy fluid systems requires precise analysis to assure structural performance. Designs sometimes require placement of bluff bodies in a flow passage. Additionally, there are flexibilities in ducts, liners, and piping systems. A design handbook and interactive data base have been developed for assessing flow/structural interactions to be used as a tool in design and development, to evaluate applicable geometries before problems develop, or to eliminate or minimize problems with existing hardware. This is a compilation of analytical/empirical data and techniques to evaluate detailed dynamic characteristics of both the fluid and structures. These techniques have direct applicability to rocket engine internal flow passages, hot gas drive systems, and vehicle propellant feed systems. Organization of the handbook is by basic geometries for estimating Strouhal numbers, added mass effects, mode shapes for various end constraints, critical onset flow conditions, and possible structural response amplitudes. Emphasis is on dense fluids and high structural loading potential for fatigue at low subsonic flow speeds where high-frequency excitations are possible. Avoidance and corrective measure illustrations are presented together with analytical curve fits for predictions compiled from a comprehensive data base.
Mechanical properties in crumple-formed paper derived materials subjected to compression.
Hanaor, D A H; Flores Johnson, E A; Wang, S; Quach, S; Dela-Torre, K N; Gan, Y; Shen, L
2017-06-01
The crumpling of precursor materials to form dense three dimensional geometries offers an attractive route towards the utilisation of minor-value waste materials. Crumple-forming results in a mesostructured system in which mechanical properties of the material are governed by complex cross-scale deformation mechanisms. Here we investigate the physical and mechanical properties of dense compacted structures fabricated by the confined uniaxial compression of a cellulose tissue to yield crumpled mesostructuring. A total of 25 specimens of various densities were tested under compression. Crumple formed specimens exhibited densities in the range 0.8-1.3 g cm -3 , and showed high strength to weight characteristics, achieving ultimate compressive strength values of up to 200 MPa under both quasi-static and high strain rate loading conditions and deformation energy that compares well to engineering materials of similar density. The materials fabricated in this work and their mechanical attributes demonstrate the potential of crumple-forming approaches in the fabrication of novel energy-absorbing materials from low-cost precursors such as recycled paper. Stiffness and toughness of the materials exhibit density dependence suggesting this forming technique further allows controllable impact energy dissipation rates in dynamic applications.
Failure mechanism of coated biomaterials under high impact-sliding contact stresses
NASA Astrophysics Data System (ADS)
Chen, Ying
This study uses a newly developed testing method--- inclined cyclic impact-sliding test to investigate the failure behaviors of different types of biomaterials, (SS316L, Ti6Al4V and CoCr) coated by different coatings (TiN, DLC and PEO), under extremely high dynamic contact stress conditions. This test method can simulate the combined impact and sliding/rolling loading conditions, which is very practical in many aspects of commercial usages. During the tests, fatigue cracking, chipping, peeling and material transferring were observed in damaged area. This research is mainly focused on the failure behaviors of load-bearing materials which cyclic impacting and sliding are always involved. This purpose was accomplished in the three stages: First, impact-sliding test was carried out on TiN coated unhardened M2. It was found that soft substrate can cause early failure of coating due to the considerable plastic deformation in the substrate. In this case, stronger substrate is required to support coating better when tested under high contact stresses. Second, PEO coated Ti-6Al-4V was tested under pure sliding and impact-sliding wear conditions. PEO coating was found not strong enough to afford the high contact pressure under cyclic impact-sliding wear test due to its porous surface structure. However, the wear performance of PEO coating was enhanced due to the sub-stoichiometric oxide. To sum up, for load-bearing biomedical implants involved in high impacting movement, PEO coating may not be a promising surface protection. Third, the dense, smooth PVD/CVD bio-inert coatings were reconsidered. DLC and TiN coatings, combined by different substrates together with different interface materials were tested under the cyclic impact-sliding test using a set of proper loading. The results show that to choose a proper combination of coating, interface and substrate based on their mechanical properties is of great importance under the test condition. Hard substrates provide support to coating better and a ductile and adhesive interface layer can delay the cracked coating from peeled-off.
1975-06-01
Explosive forces are completely through undisturbed air where appreciable dominant and the plate is rotated through an aerodynamic forces retard its...are relatively of the explosive system drops rapidly with dense compared to air , do produce sufficient flyer thickness, little is gained by increasing...impulsive loadings generated by a fuel air explosive . A membrane model based on a total plastic strain energy function, a rigid strain hardening
Po River plume and Northern Adriatic Dense Waters: a modeling and statistical approach.
NASA Astrophysics Data System (ADS)
Marcello Falcieri, Francesco; Benetazzo, Alvise; Sclavo, Mauro; Carniel, Sandro; Bergamasco, Andrea; Bonaldo, Davide; Barbariol, Francesco; Russo, Aniello
2014-05-01
The semi enclosed Adriatic Sea, located in the North-Eastern part of the Mediterranean Sea, is a small regional sea strongly influenced by riverine inputs. In its northern shallow sub-basin both the physical and biogeochemical features are strongly influenced by the Po River (together with some other minor ones) through its freshwater plume, by buoyancy changes and nutrients and sediments loads. The major outcomes of this interaction are on primary production, on the rising of hypoxic and anoxic bottom water conditions, on the formation of strong salinity gradients (that influence the water column structure and both coastal and basinwide circulation) and on the formation processes of the Northern Adriatic Dense Water (NAdDW). The NAdDW is a dense water mass that is formed during winter in the shallow Northern Adriatic under buoyancy loss conditions; it then travels southwardly along the Italian coasts reaching the Southern Adriatic after a few months. The NAdDW formation process is mostly locally wind driven but it has been proved that freshwater discharges play an important preconditioning role, starting since the summer previous to the formation period. To investigate the relationship between the Po plume (as a preconditioning factor) and the subsequent dense water formation, the results obtained by a numerical simulation with the Regional Ocean Modelling System (ROMS) have been statistically analyzed. The model has been implemented over the whole basin with a 2 km regular grid, and surface fluxes computed through a bulk fluxes formulation using an high resolution meteorological model (COSMO I7). The only open boundary (the Otranto Strait) is imposed from an operational Mediterranean model (MFS) and main rivers discharges are introduced as a freshwater mass fluxes measured by river gauges closest to the rivers' mouths. The model was run for 8 years, from 2003 to 2010. The Po plume was analysed with a 2x3 Self-Organizing Map (SOM) and two major antithetic patterns were found: i) a wide plume that extends well into the basin; ii) a smaller one confined to the coastal area. We speculate that, beside the freshwater amount discharged, also the plume shape (i.e. its spreading) can play a role in preconditioning the wintertime NAdDW formation. To test this hypothesis, the probability distribution of the 6 SOM's Best Matching Units during the period of preconditoning are compared to the heat losses and the amount of dense water formed during the subsequent winter.
Osawa, Yoko; Fujita, Kazuhiko; Umezawa, Yu; Kayanne, Hajime; Ide, Yoichi; Nagaoka, Tatsutoshi; Miyajima, Toshihiro; Yamano, Hiroya
2010-08-01
Human impacts on sand-producing, large benthic foraminifers were investigated on ocean reef flats at the northeast Majuro Atoll, Marshall Islands, along a human population gradient. The densities of dominant foraminifers Calcarina and Amphistegina declined with distance from densely populated islands. Macrophyte composition on ocean reef flats differed between locations near sparsely or densely populated islands. Nutrient concentrations in reef-flat seawater and groundwater were high near or on densely populated islands. delta(15)N values in macroalgal tissues indicated that macroalgae in nearshore lagoons assimilate wastewater-derived nitrogen, whereas those on nearshore ocean reef flats assimilate nitrogen from other sources. These results suggest that increases in the human population result in high nutrient loading in groundwater and possibly into nearshore waters. High nutrient inputs into ambient seawater may have both direct and indirect negative effects on sand-producing foraminifers through habitat changes and/or the collapse of algal symbiosis. Copyright 2010 Elsevier Ltd. All rights reserved.
Dense chitosan surgical membranes produced by a coincident compression-dehydration process
Dooley, Thomas P.; Ellis, April L.; Belousova, Maria; Petersen, Don; DeCarlo, Arthur A.
2012-01-01
High density chitosan membranes were produced via a novel manufacturing process for use as implantable resorbable surgical membranes. The innovative method utilizes the following three sequential steps: (1) casting an acidic chitosan solution within a silicon mold, followed by freezing; (2) neutralizing the frozen acidic chitosan solution in alkaline solution to facilitate polymerization; and (3) applying coincident compression-dehydration under a vacuum. Resulting membranes of 0.2 – 0.5 mm thickness have densities as high as 1.6 g/cm3. Inclusion of glycerol prior to the compression-dehydration step provides additional physical and clinical handling benefits. The biomaterials exhibit tensile strength with a maximum load as high as 10.9 N at ~ 2.5 mm width and clinically-relevant resistance to suture pull-out with a maximum load as high as 2.2 N. These physical properties were superior to those of a commercial reconstituted collagen membrane. The dense chitosan membranes have excellent clinical handling characteristics, such as pliability and “memory” when wet. They are semi-permeable to small molecules, biodegradable in vitro in lysozyme solution, and the rates of degradation are inversely correlated to the degree of deacetylation. Furthermore, the dense chitosan membranes are biocompatible and resorbable in vivo as demonstrated in a rat oral wound healing model. The unique combination of physical, in vitro, in vivo, and clinical handling properties demonstrate the high utility of dense chitosan membranes produced by this new method. The materials may be useful as surgical barrier membranes, scaffolds for tissue engineering, wound dressings, and as delivery devices for active ingredients. PMID:23565872
Protein cage assisted metal-protein nanocomposite synthesis: Optimization of loading conditions
NASA Astrophysics Data System (ADS)
Sana, Barindra; Calista, Marcia; Lim, Sierin
2012-11-01
Ferritin is an iron-storage protein in most living systems with a cage-like structure. It has inherent property to form metallic nanocore within its cavity. The metallic core formed within the Archaeoglobus fulgidus ferritin cavity is stabilized by modulating the protein structure by site directed mutagenesis. Encapsulation protocol of various metals within the engineered ferritin cage (AfFtn-AA) is optimized. Dense metallic cores are visualized using electron microscopy and the bound metal was quantified by ICP-spectrometry. The AfFtn-AA is loaded with up to about 350 cobalt, 2000 chromium, and as high as 7000 iron atoms, separately. The metal-protein nanocomposites formed by encapsulation of cobalt, chromium, and iron are studied. Magnetic resonance imaging of the agarose embedded nanocomposites shows brightening of T1-weighted images and signal loss of T2-weighted images with increasing concentration of the nanocomposites. Shortening of magnetic relaxation times in the presence of the nanocomposites confirm their ability to enhance magnetic relaxation rate and suggests that the nanocomposites have potential application as MRI contrast agent.
Can GRACE detect winter snows in Japan?
NASA Astrophysics Data System (ADS)
Heki, Kosuke
2010-05-01
Current spatial resolution of the GRACE (Gravity Recovery and Climate Experiment) satellites is 300-400 km, and so its hydrological applications have been limited to continents and large islands. The Japanese Islands have width slightly smaller than this spatial resolution, but are known to show large amplitude seasonal changes in surface masses due mainly to winter snow. Such loads are responsible for seasonal crustal deformation observed with GEONET, a dense array of GPS (Global Positioning System) receivers in Japan (Heki, 2001). There is also a dense network of surface meteorological sensors for, e.g. snow depths, atmospheric pressures, etc. Heki (2004) showed that combined effects of surface loads, i.e. snow (predominant), atmosphere, soil moisture, dam impoundment, can explain seasonal crustal deformation observed by GPS to a large extent. The total weight of the winter snow in the Japanese Islands in its peak season may reach ~50 Gt. This is comparable to the annual loss of mountain glaciers in the Asian high mountains (Matsuo & Heki, 2010), and is above the detection level of GRACE. In this study, I use GRACE Level-2 Release-4 data from CSR, Univ. Texas, up to 2009 November, and evaluated seasonal changes in surface loads in and around the Japanese Islands. After applying a 350 km Gaussian filter and a de-striping filter, the peak-to-peak change of the water depth becomes ~4 cm in northern Japan. The maximum value is achieved in February-March. The region of large winter load spans from Hokkaido, Japan, to northeastern Honshu, which roughly coincides with the region of deep snow in Japan. Next I compiled snow depth data from surface meteorological observations, and converted them to loads using time-dependent snow density due to compaction. By applying the same spatial filter as the GRACE data, its spatial pattern becomes similar to the GRACE results. The present study suggests that GRACE is capable of detecting seasonal mass changes in an island arc not wider than a few hundreds of kilometers. References: Heki, K., Seasonal modulation of interseismic strain buildup in Northeastern Japan driven by snow loads, Science, 293, 89-92, 2001. Heki, K., Dense GPS array as a new sensor of seasonal changes of surface loads, AGU Monograph, 150, 177-196, 2004. Matsuo, K. and K. Heki, Time-variable ice loss in Asian high mountains from satellite gravimetry, Earth Planet. Sci. Lett., doi:10.1016/j.epsl.2009.11.053, 2010.
Method and article for primary containment of cesium wastes. [DOE patent application
Angelini, P.; Lackey, W.J.; Stinton, D.P.; Blanco, R.E.; Bond, W.D.; Arnold, W.D. Jr.
1981-09-03
A method for producing a cesium-retentive waste form, characterized by a high degree of compositional stability and mechanical integrity, is provided by subjecting a cesium-loaded zeolite to heat under conditions suitable for stabilizing the zeolite and immobilizing the cesium, and coating said zeolite for sufficient duration within a suitable environment with at least one dense layer of pyrolytic carbon to seal therein said cesium to produce a final, cesium-bearing waste form. Typically, the zolite is stabilized and the cesium immobilized in less than four hours by confinement within an air environment maintained at about 600/sup 0/C. Coatings are thereafter applied by confining the calcined zeolite within a coating environment comprising inert fluidizing and carbon donor gases maintained at 1000/sup 0/C for a suitable duration.
Method for primary containment of cesium wastes
Angelini, Peter; Lackey, Walter J.; Stinton, David P.; Blanco, Raymond E.; Bond, Walter D.; Arnold, Jr., Wesley D.
1983-01-01
A method for producing a cesium-retentive waste form, characterized by a high degree of compositional stability and mechanical integrity, is provided by subjecting a cesium-loaded zeolite to heat under conditions suitable for stabilizing the zeolite and immobilizing the cesium, and coating said zeolite for sufficient duration within a suitable environment with at least one dense layer of pyrolytic carbon to seal therein said cesium to produce a final, cesium-bearing waste form. Typically, the zeolite is stabilized and the cesium immobilized in less than four hours by confinement within an air environment maintained at about 600.degree. C. Coatings are thereafter applied by confining the calcined zeolite within a coating environment comprising inert fluidizing and carbon donor gases maintained at 1,000.degree. C. for a suitable duration.
The effects of time on the capacity of pipe piles in dense marine sand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chow, F.C.; Jardine, R.J.; Brucy, F.
Investigations into pile behavior in dense marine sand have been performed by IFP and IC at Dunkirk, North France. In the most recent series of tests, strain-gauged, open-ended pipe piles, driven and statically load tested in 1989, were retested in 1994. Surprisingly large increases in shaft capacity were measured. The possible causes are evaluated in relation to previous case histories, laboratory soil tests, pile corrosion and new effective stress analyses developed using smaller, more intensively instrumented piles. The shaft capacities predicted by existing design methods are also assessed. 51 refs., 12 figs., 4 tabs.
NASA Astrophysics Data System (ADS)
Ruaud, M.; Wakelam, V.; Gratier, P.; Bonnell, I. A.
2018-04-01
Aim. We study the effect of large scale dynamics on the molecular composition of the dense interstellar medium during the transition between diffuse to dense clouds. Methods: We followed the formation of dense clouds (on sub-parsec scales) through the dynamics of the interstellar medium at galactic scales. We used results from smoothed particle hydrodynamics (SPH) simulations from which we extracted physical parameters that are used as inputs for our full gas-grain chemical model. In these simulations, the evolution of the interstellar matter is followed for 50 Myr. The warm low-density interstellar medium gas flows into spiral arms where orbit crowding produces the shock formation of dense clouds, which are held together temporarily by the external pressure. Results: We show that depending on the physical history of each SPH particle, the molecular composition of the modeled dense clouds presents a high dispersion in the computed abundances even if the local physical properties are similar. We find that carbon chains are the most affected species and show that these differences are directly connected to differences in (1) the electronic fraction, (2) the C/O ratio, and (3) the local physical conditions. We argue that differences in the dynamical evolution of the gas that formed dense clouds could account for the molecular diversity observed between and within these clouds. Conclusions: This study shows the importance of past physical conditions in establishing the chemical composition of the dense medium.
Performance testing of asphalt concrete containing crumb rubber modifier and warm mix additives
NASA Astrophysics Data System (ADS)
Ikpugha, Omo John
Utilisation of scrap tire has been achieved through the production of crumb rubber modified binders and rubberised asphalt concrete. Terminal and field blended asphalt rubbers have been developed through the wet process to incorporate crumb rubber into the asphalt binder. Warm mix asphalt technologies have been developed to curb the problem associated with the processing and production of such crumb rubber modified binders. Also the lowered production and compaction temperatures associated with warm mix additives suggests the possibility of moisture retention in the mix, which can lead to moisture damage. Conventional moisture sensitivity tests have not effectively discriminated good and poor mixes, due to the difficulty of simulating field moisture damage mechanisms. This study was carried out to investigate performance properties of crumb rubber modified asphalt concrete, using commercial warm mix asphalt technology. Commonly utilised asphalt mixtures in North America such as dense graded and stone mastic asphalt were used in this study. Uniaxial Cyclic Compression Testing (UCCT) was used to measure permanent deformation at high temperatures. Indirect Tensile Testing (IDT) was used to investigate low temperature performance. Moisture Induced Sensitivity Testing (MiST) was proposed to be an effective method for detecting the susceptibility of asphalt mixtures to moisture damage, as it incorporates major field stripping mechanisms. Sonnewarm(TM), Sasobit(TM) and Evotherm(TM) additives improved the resistance to permanent deformation of dense graded mixes at a loading rate of 0.5 percent by weight of the binder. Polymer modified mixtures showed superior resistance to permanent deformation compared to asphalt rubber in all mix types. Rediset(TM) WMX improves low temperature properties of dense graded mixes at 0.5 percent loading on the asphalt cement. Rediset LQ and Rediset WMX showed good anti stripping properties at 0.5 percent loading on the asphalt cement. The American Association of State Highway and Transportation Official's Mechanistic-Empirical Pavement Design Guide (AASHTO MEPDG) software was used to predict long term low temperature performance of the mixtures in various areas of Ontario. Sasobit, Rediset LQ and Rediset WMX gave good 15 years prediction with stone mastic asphalt mixtures but the performance of dense graded mixtures was less satisfactory.
NASA Astrophysics Data System (ADS)
Makhorin, Oleg I.; Pustovalov, Alexey A.; Zhabin, Vladimir N.; Greenberg, Edward I.; Nilolaev, Vadim S.; Sokolov, Nikolay A.
1996-03-01
This paper describes results of investigations of questions concerning integrity keeping for an ampula containing radionuclide fuel (Pu-238) under conditions of emergency landing in dense layers of the atmosphere and under conditions of fire on launching pad.
FORMATION OF A PROPELLER STRUCTURE BY A MOONLET IN A DENSE PLANETARY RING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michikoshi, Shugo; Kokubo, Eiichiro, E-mail: michikoshi@cfca.jp, E-mail: kokubo@th.nao.ac.jp
2011-05-10
The Cassini spacecraft discovered a propeller-shaped structure in Saturn's A. This propeller structure is thought to be formed by gravitational scattering of ring particles by an unseen embedded moonlet. Self-gravity wakes are prevalent in dense rings due to gravitational instability. Strong gravitational wakes affect the propeller structure. Here, we derive the condition for the formation of a propeller structure by a moonlet embedded in a dense ring with gravitational wakes. We find that a propeller structure is formed when the wavelength of the gravitational wakes is smaller than the Hill radius of the moonlet. We confirm this formation condition bymore » performing numerical simulations. This condition is consistent with observations of propeller structures in Saturn's A.« less
Insulator-to-conducting transition in dense fluid helium.
Celliers, P M; Loubeyre, P; Eggert, J H; Brygoo, S; McWilliams, R S; Hicks, D G; Boehly, T R; Jeanloz, R; Collins, G W
2010-05-07
By combining diamond-anvil-cell and laser-driven shock wave techniques, we produced dense He samples up to 1.5 g/cm(3) at temperatures reaching 60 kK. Optical measurements of reflectivity and temperature show that electronic conduction in He at these conditions is temperature-activated (semiconducting). A fit to the data suggests that the mobility gap closes with increasing density, and that hot dense He becomes metallic above approximately 1.9 g/cm(3). These data provide a benchmark to test models that describe He ionization at conditions found in astrophysical objects, such as cold white dwarf atmospheres.
Ota, Shuhei; Yoshihara, Mai; Yamazaki, Tomokazu; Takeshita, Tsuyoshi; Hirata, Aiko; Konomi, Mami; Oshima, Kenshiro; Hattori, Masahira; Bišová, Kateřina; Zachleder, Vilém; Kawano, Shigeyuki
2016-01-01
Phosphorus is an essential element for life on earth and is also important for modern agriculture, which is dependent on inorganic fertilizers from phosphate rock. Polyphosphate is a biological polymer of phosphate residues, which is accumulated in organisms during the biological wastewater treatment process to enhance biological phosphorus removal. Here, we investigated the relationship between polyphosphate accumulation and electron-dense bodies in the green alga Parachlorella kessleri. Under sulfur-depleted conditions, in which some symporter genes were upregulated, while others were downregulated, total phosphate accumulation increased in the early stage of culture compared to that under sulfur-replete conditions. The P signal was detected only in dense bodies by energy dispersive X-ray analysis. Transmission electron microscopy revealed marked ultrastructural variations in dense bodies with and without polyphosphate. Our findings suggest that the dense body is a site of polyphosphate accumulation, and P. kessleri has potential as a phosphate-accumulating organism. PMID:27180903
NASA Astrophysics Data System (ADS)
Sicart, J. E.; Ramseyer, V.; Lejeune, Y.; Essery, R.; Webster, C.; Rutter, N.
2017-12-01
At high altitudes and latitudes, snow has a large influence on hydrological processes. Large fractions of these regions are covered by forests, which have a strong influence on snow accumulation and melting processes. Trees absorb a large part of the incoming shortwave radiation and this heat load is mostly dissipated as longwave radiation. Trees shelter the snow surface from wind, so sub-canopy snowmelt depends mainly on the radiative fluxes: vegetation attenuates the transmission of shortwave radiation but enhances longwave irradiance to the surface. An array of 13 pyranometers and 11 pyrgeometers was deployed on the snow surface below a coniferous forest at the CEN-MeteoFrance Col de Porte station in the French Alps (1325 m asl) during the 2017 winter in order to investigate spatial and temporal variabilities of solar and infrared irradiances in different meteorological conditions. Sky view factors measured with hemispherical photographs at each radiometer location were in a narrow range from 0.2 to 0.3. The temperature of the vegetation was measured with IR thermocouples and an IR camera. In clear sky conditions, the attenuation of solar radiation by the canopy reached 96% and its spatial variability exceeded 100 W m-2. Longwave irradiance varied by 30 W m-2 from dense canopy to gap areas. In overcast conditions, the spatial variabilities of solar and infrared irradiances were reduced and remained closely related to the sky view factor. A simple radiative model taking into account the penetration through the canopy of the direct and diffuse solar radiation, and isotropic infrared emission of the vegetation as a blackbody emitter, accurately reproduced the dynamics of the radiation fluxes at the snow surface. Model results show that solar transmissivity of the canopy in overcast conditions is an excellent proxy of the sky view factor and the emitting temperature of the vegetation remained close to the air temperature in this typically dense Alpine forest.
Time-resolved X-ray Absorption Spectroscopy for Electron Transport Study in Warm Dense Gold
NASA Astrophysics Data System (ADS)
Lee, Jong-Won; Bae, Leejin; Engelhorn, Kyle; Heimann, Philip; Ping, Yuan; Barbrel, Ben; Fernandez, Amalia; Beckwith, Martha Anne; Cho, Byoung-Ick; GIST Team; IBS Team; LBNL Collaboration; SLAC Collaboration; LLNL Collaboration
2015-11-01
The warm dense Matter represents states of which the temperature is comparable to Fermi energy and ions are strongly coupled. One of the experimental techniques to create such state in the laboratory condition is the isochoric heating of thin metal foil with femtosecond laser pulses. This concept largely relies on the ballistic transport of electrons near the Fermi-level, which were mainly studied for the metals in ambient conditions. However, they were barely investigated in warm dense conditions. We present a time-resolved x-ray absorption spectroscopy measured for the Au/Cu dual layered sample. The front Au layer was isochorically heated with a femtosecond laser pulse, and the x-ray absorption changes around L-edge of Cu, which was attached on the backside of Au, was measured with a picosecond resolution. Time delays between the heating of the `front surface' of Au layer and the alternation of x-ray spectrum of Cu attached on the `rear surface' of Au indicate the energetic electron transport mechanism through Au in the warm dense conditions. IBS (IBS-R012-D1) and the NRF (No. 2013R1A1A1007084) of Korea.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallace, G. M.; Fitzgerald, E.; Johnson, D. K.
2014-02-12
Active stub tuning with a fast ferrite tuner (FFT) allows for the system to respond dynamically to changes in the plasma impedance such as during the L-H transition or edge localized modes (ELMs), and has greatly increased the effectiveness of fusion ion cyclotron range of frequency systems. A high power waveguide double-stub tuner is under development for use with the Alcator C-Mod lower hybrid current drive (LHCD) system. Exact impedance matching with a double-stub is possible for a single radiating element under most load conditions, with the reflection coefficient reduced from Γ to Γ{sup 2} in the “forbidden region.” Themore » relative phase shift between adjacent columns of a LHCD antenna is critical for control of the launched n{sub ∥} spectrum. Adding a double-stub tuning network will perturb the phase of the forward wave particularly if the unmatched reflection coefficient is high. This effect can be compensated by adjusting the phase of the low power microwave drive for each klystron amplifier. Cross-coupling of the reflected power between columns of the launcher must also be considered. The problem is simulated by cascading a scattering matrix for the plasma provided by a linear coupling model with the measured launcher scattering matrix and that of the FFTs. The solution is advanced in an iterative manner similar to the time-dependent behavior of the real system. System performance is presented under a range of edge density conditions from under-dense to over-dense and a range of launched n{sub ∥}.« less
Gammons, Christopher H.; Shope, Christopher L.; Duaime, Terence E.
2005-01-01
Changes in water quality during a storm event were continuously monitored over a 24 h period at a single location along an urban stormwater drain in Butte, Montana. The Butte Metro Storm Drain (MSD) collects groundwater baseflow and stormwater draining Butte Hill, a densely populated site that has been severely impacted by 130 years of mining, milling, and smelting of copper-rich, polymetallic mineral deposits. On the afternoon of 26 June 2002, a heavy thunderstorm caused streamflow in the MSD to increase 100-fold, from 0·2 ft3 s−1 to more than 20 ft3 s−1. Hourly discharge and water quality data were collected before, during, and following the storm. The most significant finding was that the calculated loads (grams per hour) of both dissolved and particulate copper passing down the MSD increased more than 100-fold in the first hour following the storm, and remained elevated over baseline conditions for the remainder of the study period. Other metals, such as zinc, cadmium, and manganese, showed a decrease in load from pre-storm to post-storm conditions. In addition to the large flush of copper, loads of soluble phosphorus increased during the storm, whereas dissolved oxygen dropped to low levels (<2 mg l−1). These results show that infrequent storm events in Butte have the potential to generate large volumes of runoff that exceed Montana water quality standards for acute exposure of aquatic life to copper, as well as depressed levels of dissolved oxygen. This study has important implications to ongoing reclamation activities in the upper Clark Fork Superfund site, particularly with respect to management of storm flow, and may be applicable to other watersheds impacted by mining activities.
δ15N as a Potential Paleoenvironmental Proxy for Nitrogen Loading in Chesapeake Bay
NASA Astrophysics Data System (ADS)
Black, H. D.; Andrus, C. F.; Rick, T.; Hines, A.
2013-12-01
Stable isotope analysis of Eastern Oyster (Crassostrea virginica) and other mollusk shells from archaeological sites is a useful means of acquiring paleoenvironmental data. Recently, nitrogen isotopes have been identified as a potential new proxy in these shells. δ15N content in mollusk shells is affected by numerous anthropogenic and natural influences and may be used as an environmental proxy for nitrogen loading conditions. Chesapeake Bay is well known for both historic and modern pollution problems from numerous anthropogenic sources, such as fertilizer runoff, sewage discharge, and densely populated land use and serves as an ideal study location for long-term nitrogen loading processes. Longer records of these processes may be recorded in abundant archaeological remains around the bay, however, little is known about the stability of δ15N and %N in shell material over recent geologic time. In this study, 90 archaeological C. virginica shells were collected by the Smithsonian Institution from the Rhode River Estuary within Chesapeake Bay and range in age from ~150 to 3200 years old. Twenty-two modern C. virginica shells were also collected from nearby beds in the bay. All shell samples were subsampled from the resilifer region of the calcitic shell using a hand-held micro drill and were analyzed using EA-IRMS analysis to determine the potential temporal variability of δ15N and %N as well as creating a baseline for ancient nitrogen conditions in the bay area. Modern POM water samples and C. virginica soft tissues were also analyzed in this study to determine the degree of seasonal variation of δ15N and %N in Chesapeake Bay.
Plasma in Saturn's Nightside Magnetosphere and the Implications for Global Circulation
NASA Technical Reports Server (NTRS)
McAndrews, H.J.; Thomsen, M.F.; Arridge, C.S.; Jackman, C.M.; Wilson, R.J.; Henderson, M.G.; Tokar, R.L.; Khurana, K.K.; Sittler, E. C.; Coates, A.J.;
2009-01-01
We present a bulk ion flow map from the nightside, equatorial region of Saturn's magnetosphere derived from the Cassini CAPS ion mass spectrometer data. The map clearly demonstrates the dominance of corotation flow over radial flow and suggests that the flux tubes sampled are still closed and attached to the planet up to distances of 50RS. The plasma characteristics in the near-midnight region are described and indicate a transition between the region of the magnetosphere containing plasma on closed drift paths and that containing flux tubes which may not complete a full rotation around the planet. Data from the electron spectrometer reveal two plasma states of high and low density. These are attributed either to the sampling of mass-loaded and depleted flux tubes, respectively, or to the latitudinal structure of the plasma sheet. Depleted, returning flux tubes are not, in general, directly observed in the ions, although the electron observations suggest that such a process must take place in order to produce the low-density population. Flux-tube content is conserved below a limit defined by the mass-loading and magnetic field strength and indicates that the flux tubes sampled may survive their passage through the tail. The conditions for mass-release are evaluated using measured densities, angular velocities and magnetic field strength. The results suggest that for the relatively dense ion populations detectable by the ion mass spectrometer (IMS), the condition for flux-tube breakage has not yet been exceeded. However, the low-density regimes observed in the electron data suggest that loaded flux tubes at greater distances do exceed the threshold for mass-loss and subsequently return to the inner magnetosphere significantly depleted of plasma.
Bae, L. J.; Zastrau, U.; Chung, H. -K.; ...
2018-03-01
Warm dense conditions in titanium foils irradiated with intense femtosecond laser pulses are diagnosed using an x-ray imaging spectroscopy technique. The line shapes of radially resolved titanium Kα spectra are measured with a toroidally bent GaAs crystal and an x-ray charge-coupled device. Measured spectra are compared with the K-shell emissions modeled using an atomic kinetics – spectroscopy simulation code. Kα line shapes are strongly affected by warm (5-40 eV) bulk electron temperatures and imply multiple temperature distributions in the targets. Finally, the spatial distribution of temperature is dependent on the target thickness, and a thin target shows an advantage tomore » generate uniform warm dense conditions in a large area.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bae, L. J.; Zastrau, U.; Chung, H. -K.
Warm dense conditions in titanium foils irradiated with intense femtosecond laser pulses are diagnosed using an x-ray imaging spectroscopy technique. The line shapes of radially resolved titanium Kα spectra are measured with a toroidally bent GaAs crystal and an x-ray charge-coupled device. Measured spectra are compared with the K-shell emissions modeled using an atomic kinetics – spectroscopy simulation code. Kα line shapes are strongly affected by warm (5-40 eV) bulk electron temperatures and imply multiple temperature distributions in the targets. Finally, the spatial distribution of temperature is dependent on the target thickness, and a thin target shows an advantage tomore » generate uniform warm dense conditions in a large area.« less
Projecting avian responses to landscape managment along the middle RIO GRANDE, New Mexico
USDA-ARS?s Scientific Manuscript database
Lack of flooding due to river impoundments on the middle Rio Grande has contributed to the spread of exotic vegetation with dense understory fuel loads. Restoration has focused on understory vegetation thinning but it is unclear how these actions impact bird populations. We quantified densities of ...
Fire applications in ecosystem management
Michael G. Harrington
2000-01-01
Decades of fire absence from ponderosa pine/Douglas-fir forests has resulted in overstocked, unhealthy, and severe fireprone stands requiring management attention. Prescribed fire can be used in three general situations during restoration management. First is when fuel loadings are excessive from either natural accumulation or harvest slash. Second is when dense...
Gray, John R.; Laronne, Jonathan B.; Marr, Jeffrey D.G.
2007-01-01
The International Bedload-Surrogate Monitoring Workshop (http://www.nced.umn.edu/BRIC_2007.html), organized by the Bedload Research International Cooperative (BRIC; www.bedloadresearch.org), was held to assess and abet progress in continuous, semiautomated, or fully automated (surrogate) technologies for monitoring bed load discharge in gravel-, sand-, and mixed gravel-sand-bedded rivers. Direct bed load measurements, particularly at medium and high flows, during which most bed load occurs, tend to be time-consuming, expensive, and potentially hazardous. Surrogate technologies developed largely over the past decade and used at a number of research sites around the world show considerable promise toward providing relatively dense, robust, and quantifiably reliable bed load data sets. However, information on the efficacy of selected technologies for use in monitoring programs is needed, as is identification of the ways and means for bringing the most promising and practical of the technologies to fruition.
NASA Astrophysics Data System (ADS)
Doisneau, François; Arienti, Marco; Oefelein, Joseph C.
2017-01-01
For sprays, as described by a kinetic disperse phase model strongly coupled to the Navier-Stokes equations, the resolution strategy is constrained by accuracy objectives, robustness needs, and the computing architecture. In order to leverage the good properties of the Eulerian formalism, we introduce a deterministic particle-based numerical method to solve transport in physical space, which is simple to adapt to the many types of closures and moment systems. The method is inspired by the semi-Lagrangian schemes, developed for Gas Dynamics. We show how semi-Lagrangian formulations are relevant for a disperse phase far from equilibrium and where the particle-particle coupling barely influences the transport; i.e., when particle pressure is negligible. The particle behavior is indeed close to free streaming. The new method uses the assumption of parcel transport and avoids to compute fluxes and their limiters, which makes it robust. It is a deterministic resolution method so that it does not require efforts on statistical convergence, noise control, or post-processing. All couplings are done among data under the form of Eulerian fields, which allows one to use efficient algorithms and to anticipate the computational load. This makes the method both accurate and efficient in the context of parallel computing. After a complete verification of the new transport method on various academic test cases, we demonstrate the overall strategy's ability to solve a strongly-coupled liquid jet with fine spatial resolution and we apply it to the case of high-fidelity Large Eddy Simulation of a dense spray flow. A fuel spray is simulated after atomization at Diesel engine combustion chamber conditions. The large, parallel, strongly coupled computation proves the efficiency of the method for dense, polydisperse, reacting spray flows.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doisneau, François, E-mail: fdoisne@sandia.gov; Arienti, Marco, E-mail: marient@sandia.gov; Oefelein, Joseph C., E-mail: oefelei@sandia.gov
For sprays, as described by a kinetic disperse phase model strongly coupled to the Navier–Stokes equations, the resolution strategy is constrained by accuracy objectives, robustness needs, and the computing architecture. In order to leverage the good properties of the Eulerian formalism, we introduce a deterministic particle-based numerical method to solve transport in physical space, which is simple to adapt to the many types of closures and moment systems. The method is inspired by the semi-Lagrangian schemes, developed for Gas Dynamics. We show how semi-Lagrangian formulations are relevant for a disperse phase far from equilibrium and where the particle–particle coupling barelymore » influences the transport; i.e., when particle pressure is negligible. The particle behavior is indeed close to free streaming. The new method uses the assumption of parcel transport and avoids to compute fluxes and their limiters, which makes it robust. It is a deterministic resolution method so that it does not require efforts on statistical convergence, noise control, or post-processing. All couplings are done among data under the form of Eulerian fields, which allows one to use efficient algorithms and to anticipate the computational load. This makes the method both accurate and efficient in the context of parallel computing. After a complete verification of the new transport method on various academic test cases, we demonstrate the overall strategy's ability to solve a strongly-coupled liquid jet with fine spatial resolution and we apply it to the case of high-fidelity Large Eddy Simulation of a dense spray flow. A fuel spray is simulated after atomization at Diesel engine combustion chamber conditions. The large, parallel, strongly coupled computation proves the efficiency of the method for dense, polydisperse, reacting spray flows.« less
NASA Astrophysics Data System (ADS)
Pandey, Mukesh Kumar; Lin, Yen-Chang; Ho, Yew Kam
2017-02-01
The effects of weakly coupled or classical and dense quantum plasmas environment on charge exchange and ionization processes in Na+ + Rb(5s) atom collision at keV energy range have been investigated using classical trajectory Monte Carlo (CTMC) method. The interaction of three charged particles are described by the Debye-Hückel screen potential for weakly coupled plasma, whereas exponential cosine-screened Coulomb potential have been used for dense quantum plasma environment and the effects of both conditions on the cross sections are compared. It is found that screening effects on cross sections in high Debye length condition is quite small in both plasma environments. However, enhanced screening effects on cross sections are observed in dense quantum plasmas for low Debye length condition, which becomes more effective while decreasing the Debye length. Also, we have found that our calculated results for plasma-free case are comparable with the available theoretical results. These results are analyzed in light of available theoretical data with the choice of model potentials.
Non-Gurney Scaling of Explosives Heavily Loaded with Dense Inert Additives
NASA Astrophysics Data System (ADS)
Loiseau, Jason; Higgins, Andrew; Frost, David
2017-06-01
For most high explosives, the ability to accelerate material to some terminal velocity scales with the ratio of material-mass to charge-mass (M/C) according to the Gurney equations. Generally, the Gurney equation for planar geometry accurately predicts the terminal velocity of the driven material until the M/C ratio is reduced to roughly 0.15 or lower; at which point gasdynamic departures from the assumptions in the model result in systematic underpredictions of the material velocity. The authors conducted a series of open-face sandwich flyer plate experiments to measure the scaling of flyer terminal velocity with M/C for a heterogeneous explosive composed of a packed bed of 280 μm steel particles saturated with amine-sensitized nitromethane (90% NM, 10% diethylenetriamine). The propulsive capability of this explosive did not scale according to a modified form of the Gurney equation. Rather, propulsive efficiency increased as the flyer plate became relatively thicker. In the present study the authors have conducted further experiments using this explosive in symmetric sandwiches as well as for normally-incident detonations initiated via a slapping foil to examine how flyer terminal velocity scales with M/C for alternative geometries and loading conditions.
Nederkoorn, Chantal; Havermans, Remco C; Giesen, Janneke C A H; Jansen, Anita
2011-06-01
The present study examined whether a high tax on high calorie dense foods effectively reduces the purchased calories of high energy dense foods in a web based supermarket, and whether this effect is moderated by budget and weight status. 306 participants purchased groceries in a web based supermarket, with an individualized budget based on what they normally spend. Results showed that relative to the no tax condition, the participants in the tax condition bought less calories. The main reduction was found in high energy dense products and in calories from carbohydrates, but not in calories from fat. BMI and budget did not influence the effectiveness of the tax. The reduction in calories occurred regardless of budget or BMI implying that a food tax may be a beneficial tool, along with other measures, in promoting a diet with fewer calories. Copyright © 2011 Elsevier Ltd. All rights reserved.
Harmonic analysis of dense time series of landsat imagery for modeling change in forest conditions
Barry Tyler Wilson
2015-01-01
This study examined the utility of dense time series of Landsat imagery for small area estimation and mapping of change in forest conditions over time. The study area was a region in north central Wisconsin for which Landsat 7 ETM+ imagery and field measurements from the Forest Inventory and Analysis program are available for the decade of 2003 to 2012. For the periods...
Reconstruction of in-plane strain maps using hybrid dense sensor network composed of sensing skin
NASA Astrophysics Data System (ADS)
Downey, Austin; Laflamme, Simon; Ubertini, Filippo
2016-12-01
The authors have recently developed a soft-elastomeric capacitive (SEC)-based thin film sensor for monitoring strain on mesosurfaces. Arranged in a network configuration, the sensing system is analogous to a biological skin, where local strain can be monitored over a global area. Under plane stress conditions, the sensor output contains the additive measurement of the two principal strain components over the monitored surface. In applications where the evaluation of strain maps is useful, in structural health monitoring for instance, such signal must be decomposed into linear strain components along orthogonal directions. Previous work has led to an algorithm that enabled such decomposition by leveraging a dense sensor network configuration with the addition of assumed boundary conditions. Here, we significantly improve the algorithm’s accuracy by leveraging mature off-the-shelf solutions to create a hybrid dense sensor network (HDSN) to improve on the boundary condition assumptions. The system’s boundary conditions are enforced using unidirectional RSGs and assumed virtual sensors. Results from an extensive experimental investigation demonstrate the good performance of the proposed algorithm and its robustness with respect to sensors’ layout. Overall, the proposed algorithm is seen to effectively leverage the advantages of a hybrid dense network for application of the thin film sensor to reconstruct surface strain fields over large surfaces.
Arbib, Zouhayr; de Godos Crespo, Ignacio; Corona, Enrique Lara; Rogalla, Frank
2017-06-01
Microalgae culture in high rate algae ponds (HRAP) is an environmentally friendly technology for wastewater treatment. However, for the implementation of these systems, a better understanding of the oxygenation potential and the influence of climate conditions is required. In this work, the rates of oxygen production, consumption, and exchange with the atmosphere were calculated under varying conditions of solar irradiance and dilution rate during six months of operation in a real scale unit. This analysis allowed determining the biological response of these dynamic systems. The rates of oxygen consumption measured were considerably higher than the values calculated based on the organic loading rate. The response to light intensity in terms of oxygen production in the bioreactor was described with one of the models proposed for microalgae culture in dense concentrations. This model is based on the availability of light inside the culture and the specific response of microalgae to this parameter. The specific response to solar radiation intensity showed a reasonable stability in spite of the fluctuations due to meteorological conditions. The methodology developed is a useful tool for optimization and prediction of the performance of these systems.
Electron-ion temperature equilibration in warm dense tantalum
Doppner, T; LePape, S.; Ma, T.; ...
2014-11-05
We present measurements of electron-ion temperature equilibration in proton-heated tantalum, under warm dense matter conditions. Our results agree with theoretical predictions for metals calculated using input data from ab initio simulations. Furthermore, the fast relaxation observed in the experiment contrasts with much longer equilibration times found in proton heated carbon, indicating that the energy flow pathways in warm dense matter are far from being fully understood.
Relating quantum discord with the quantum dense coding capacity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xin; Qiu, Liang, E-mail: lqiu@cumt.edu.cn; Li, Song
2015-01-15
We establish the relations between quantum discord and the quantum dense coding capacity in (n + 1)-particle quantum states. A necessary condition for the vanishing discord monogamy score is given. We also find that the loss of quantum dense coding capacity due to decoherence is bounded below by the sum of quantum discord. When these results are restricted to three-particle quantum states, some complementarity relations are obtained.
Carbonate system parameters and anthropogenic CO2 in the North Aegean Sea during October 2013
NASA Astrophysics Data System (ADS)
Krasakopoulou, E.; Souvermezoglou, E.; Giannoudi, L.; Goyet, C.
2017-10-01
Data of AT (total alkalinity) and CT (total inorganic carbon) collected during October 2013, on a N-S transect crossing the North of Lemnos basin allowed to identify the peculiarities of the CO2 system in the North Aegean Sea and estimate the anthropogenic CO2 (CANT) concentrations. Extremely high concentrations of AT and CT were recorded in the upper layer of the North Aegean reflecting the high loads of AT and CT by the brackish BSW (Black Sea Water) outflowing through the Dardanelles strait and by the rivers runoff. Both AT and CT exhibit strong negative linear correlation with salinity in the upper layer (0-20 m). Investigation of the AT-S relationship along with the salinity adjustment of AT revealed excess alkalinity throughout the water column in relation to the surface waters implying a possible occurrence of non-carbonate alkalinity inputs as well as of other processes that take place probably over the extended shelves and contribute to the alkalinity surplus. The intermediate layer occupied by the Modified Levantine Intermediate Water (MLIW) mass exhibits the lowest CT and AT concentrations, while rather elevated AT and CT concentrations characterize the North Aegean Deep Water (NAgDW) mass filling the deep layer of the North of Lemnos basin linked to previous dense water formation episodes. High anthropogenic CO2 content was detected at intermediate and deep layers of the North Aegean reflecting the effective transportation of the absorbed atmospheric CO2 from the surface to the deeper waters via the dense water formation episodes. The MLIW layer is more affected by the penetration of CANT than the NAgDW that fills the deep part of the basin. The observed variability of CANT distribution reflects the influence of the intensity of dense water formation events, of the different θ/S properties of the newly formed dense waters as well as of the diverse submarine pathways followed by the cascading dense waters. The invasion of CANT has lead to more acidic conditions and to lower saturation degree of calcium carbonate in relation to the preindustrial era. The findings of this study provide baseline information about the carbonate system properties of the North Aegean and highlight its active role in sequestering and storing anthropogenic CO2.
ERIC Educational Resources Information Center
Tsai, Wen-Tien
2012-01-01
With the rapid industrialization and economic development in the past decades, heavy environmental loads caused some serious environmental scenarios in Taiwan, an island country with a dense population and only limited natural resources. As a result, environmental education in Taiwan has been a leading tool to promote sustainable development since…
Nanoparticle packing within block copolymer micelles prepared by the interfacial instability method.
Nabar, Gauri M; Winter, Jessica O; Wyslouzil, Barbara E
2018-05-02
The interfacial instability method has emerged as a viable approach for encapsulating high concentrations of nanoparticles (NPs) within morphologically diverse micelles. In this method, transient interfacial instabilities at the surface of an emulsion droplet guide self-assembly of block co-polymers and NP encapsulants. Although used by many groups, there are no systematic investigations exploring the relationship between NP properties and micelle morphology. Here, the effect of quantum dot (QD) and superparamagnetic iron oxide NP (SPION) concentration on the shape, size, and surface deformation of initially spherical poly(styrene-b-ethylene oxide) (PS-b-PEO) micelles was examined. Multi-NP encapsulation and uniform dispersion within micelles was obtained even at low NP concentrations. Increasing NP concentration initially resulted in larger numbers of elongated micelles and cylinders with tightly-controlled diameters smaller than those of spherical micelles. Beyond a critical NP concentration, micelle formation was suppressed; the dominant morphology became densely-loaded NP structures that were coated with polymer and exhibited increased polydispersity. Transmission electron microscopy (TEM) and small angle X-ray scattering (SAXS) revealed that NPs in densely-loaded structures can be well-ordered, with packing volume fractions of up to 24%. These effects were enhanced in magnetic composites, possibly by dipole interactions. Mechanisms governing phase transitions triggered by NP loading in the interfacial instability process were proposed. The current study helps establish and elucidate the active role played by NPs in directing block copolymer assembly in the interfacial instability process, and provides important guiding principles for the use of this approach in generating NP-loaded block copolymer composites.
NASA Astrophysics Data System (ADS)
Berntsen, Jarle; Alendal, Guttorm; Avlesen, Helge; Thiem, Øyvind
2018-05-01
The flow of dense water along continental slopes is considered. There is a large literature on the topic based on observations and laboratory experiments. In addition, there are many analytical and numerical studies of dense water flows. In particular, there is a sequence of numerical investigations using the dynamics of overflow mixing and entrainment (DOME) setup. In these papers, the sensitivity of the solutions to numerical parameters such as grid size and numerical viscosity coefficients and to the choices of methods and models is investigated. In earlier DOME studies, three different bottom boundary conditions and a range of vertical grid sizes are applied. In other parts of the literature on numerical studies of oceanic gravity currents, there are statements that appear to contradict choices made on bottom boundary conditions in some of the DOME papers. In the present study, we therefore address the effects of the bottom boundary condition and vertical resolution in numerical investigations of dense water cascading on a slope. The main finding of the present paper is that it is feasible to capture the bottom Ekman layer dynamics adequately and cost efficiently by using a terrain-following model system using a quadratic drag law with a drag coefficient computed to give near-bottom velocity profiles in agreement with the logarithmic law of the wall. Many studies of dense water flows are performed with a quadratic bottom drag law and a constant drag coefficient. It is shown that when using this bottom boundary condition, Ekman drainage will not be adequately represented. In other studies of gravity flow, a no-slip bottom boundary condition is applied. With no-slip and a very fine resolution near the seabed, the solutions are essentially equal to the solutions obtained with a quadratic drag law and a drag coefficient computed to produce velocity profiles matching the logarithmic law of the wall. However, with coarser resolution near the seabed, there may be a substantial artificial blocking effect when using no-slip.
Extracting Communities from Complex Networks by the k-Dense Method
NASA Astrophysics Data System (ADS)
Saito, Kazumi; Yamada, Takeshi; Kazama, Kazuhiro
To understand the structural and functional properties of large-scale complex networks, it is crucial to efficiently extract a set of cohesive subnetworks as communities. There have been proposed several such community extraction methods in the literature, including the classical k-core decomposition method and, more recently, the k-clique based community extraction method. The k-core method, although computationally efficient, is often not powerful enough for uncovering a detailed community structure and it produces only coarse-grained and loosely connected communities. The k-clique method, on the other hand, can extract fine-grained and tightly connected communities but requires a substantial amount of computational load for large-scale complex networks. In this paper, we present a new notion of a subnetwork called k-dense, and propose an efficient algorithm for extracting k-dense communities. We applied our method to the three different types of networks assembled from real data, namely, from blog trackbacks, word associations and Wikipedia references, and demonstrated that the k-dense method could extract communities almost as efficiently as the k-core method, while the qualities of the extracted communities are comparable to those obtained by the k-clique method.
Modelling reduction of urban heat load in Vienna by modifying surface properties of roofs
NASA Astrophysics Data System (ADS)
Žuvela-Aloise, Maja; Andre, Konrad; Schwaiger, Hannes; Bird, David Neil; Gallaun, Heinz
2018-02-01
The study examines the potential of urban roofs to reduce the urban heat island (UHI) effect by changing their reflectivity and implementing vegetation (green roofs) using the example of the City of Vienna. The urban modelling simulations are performed based on high-resolution orography and land use data, climatological observations, surface albedo values from satellite imagery and registry of the green roof potential in Vienna. The modelling results show that a moderate increase in reflectivity of roofs (up to 0.45) reduces the mean summer temperatures in the densely built-up environment by approximately 0.25 °C. Applying high reflectivity materials (roof albedo up to 0.7) leads to average cooling in densely built-up area of approximately 0.5 °C. The green roofs yield a heat load reduction in similar order of magnitude as the high reflectivity materials. However, only 45 % of roof area in Vienna is suitable for greening and the green roof potential mostly applies to industrial areas in city outskirts and is therefore not sufficient for substantial reduction of the UHI effect, particularly in the city centre which has the highest heat load. The strongest cooling effect can be achieved by combining the green roofs with high reflectivity materials. In this case, using 50 or 100 % of the green roof potential and applying high reflectivity materials on the remaining surfaces have a similar cooling effect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makhorin, O.I.; Pustovalov, A.A.; Zhabin, V.N.
1996-03-01
This paper describes results of investigations of questions concerning integrity keeping for an ampula containing radionuclide fuel (Pu-238) under conditions of emergency landing in dense layers of the atmosphere and under conditions of fire on launching pad. {copyright} {ital 1996 American Institute of Physics.}
Dynamometer Testing of Planar Mixed-Potential Sensors
Kreller, C. R.; Sekhar, P. K.; Prikhodko, V.; ...
2014-09-22
Mixed-potential sensors for vehicle on-board emissions monitoring applications have been fabricated in an automotive planar sensor configuration using high temperature ceramic co-fire methods. The sensing element consists of dense Pt and LaSrCrO electrodes and a porous 3 mol% YSZ electrolyte. This sensor construct exhibits preferential selectivity to NO x (NO+NO 2) when operated at a positive current bias. The performance of the planar sensors under engine-out conditions was recently evaluated at the Oak Ridge National Laboratory National Transportation Research Center on a GM 1.9L CIDI diesel engine. The sensor response qualitatively tracked transients in NO x measured via FTIR undermore » transient engine operation. Additionally, quantitative correlation between sensor voltage response and total NO x concentration was obtained under steady-state engine speed and load while varying exhaust gas recirculation (EGR) levels.« less
Using the tritium plasma experiment to evaluate ITER PFC safety
NASA Astrophysics Data System (ADS)
Longhurst, Glen R.; Anderl, Robert A.; Bartlit, John R.; Causey, Rion A.; Haines, John R.
1993-06-01
The Tritium Plasma Experiment was assembled at Sandia National Laboratories, Livermore and is being moved to the Tritium Systems Test Assembly facility at Los Alamos National Laboratory to investigate interactions between dense plasmas at low energies and plasma-facing component materials. This apparatus has the unique capabilty of replicating plasma conditions in a tokamak divertor with particle flux densities of 2 × 1023 ions/m2.s and a plasma temperature of about 15 eV using a plasma that includes tritium. An experimental program has been initiated using the Tritium Plasma Experiment to examine safety issues related to tritium in plasma-facing components, particularly the ITER divertor. Those issues include tritium retention and release characteristics, tritium permeation rates and transient times to coolant streams, surface modification and erosion by the plasma, the effects of thermal loads and cycling, and particulate production. An industrial consortium led by McDonnell Douglas will design and fabricate the test fixtures.
Conditioning 3D object-based models to dense well data
NASA Astrophysics Data System (ADS)
Wang, Yimin C.; Pyrcz, Michael J.; Catuneanu, Octavian; Boisvert, Jeff B.
2018-06-01
Object-based stochastic simulation models are used to generate categorical variable models with a realistic representation of complicated reservoir heterogeneity. A limitation of object-based modeling is the difficulty of conditioning to dense data. One method to achieve data conditioning is to apply optimization techniques. Optimization algorithms can utilize an objective function measuring the conditioning level of each object while also considering the geological realism of the object. Here, an objective function is optimized with implicit filtering which considers constraints on object parameters. Thousands of objects conditioned to data are generated and stored in a database. A set of objects are selected with linear integer programming to generate the final realization and honor all well data, proportions and other desirable geological features. Although any parameterizable object can be considered, objects from fluvial reservoirs are used to illustrate the ability to simultaneously condition multiple types of geologic features. Channels, levees, crevasse splays and oxbow lakes are parameterized based on location, path, orientation and profile shapes. Functions mimicking natural river sinuosity are used for the centerline model. Channel stacking pattern constraints are also included to enhance the geological realism of object interactions. Spatial layout correlations between different types of objects are modeled. Three case studies demonstrate the flexibility of the proposed optimization-simulation method. These examples include multiple channels with high sinuosity, as well as fragmented channels affected by limited preservation. In all cases the proposed method reproduces input parameters for the object geometries and matches the dense well constraints. The proposed methodology expands the applicability of object-based simulation to complex and heterogeneous geological environments with dense sampling.
In vitro fatigue resistance of glass ionomer cements used in post-and-core applications.
Gateau, P; Sabek, M; Dailey, B
2001-08-01
New glass ionomer cements exhibit better mechanical properties than their older counterparts. However, there is concern about their use as a core material in post-and-core applications. This in vitro study evaluated the fatigue resistance of 2 new glass ionomer cements, Shofu Hi-Dense and Fuji IX GP, and compared their mechanical behavior as a core material under masticatory load with a silver-reinforced glass ionomer (ESPE Ketac-Silver) and a silver amalgam (Cavex Avaloy LC). A total of 100 commercial plastic teeth were divided into 4 groups of 25 specimens each. Titanium posts were placed in the prepared root canals, and cores were built up in amalgam, silver-reinforced glass ionomer cement, and the 2 new glass ionomer cements. The post-and-core specimens were prepared for full cast metal crowns, which were fabricated and cemented with glass ionomer cement. Twenty specimens from each group were placed in a mastication simulator and cyclically loaded with a 400 N force for 1.5 million cycles. The 5 remaining specimens were used as controls. The specimens were sectioned and observed macroscopically and microscopically to determine the number of defects (alterations) in each material. Observed defects were verified with the Kruskal-Wallis test, and the 4 core materials were ranked with the Tukey multiple comparisons test. The mean rank sum values of the defects were as follows: Cavex Avaloy LC Amalgam (16.75), Fuji IX GP (38.50), Shofu Hi-Dense (39.53), and ESPE Ketac-Silver (67.22). The amalgam alloy was significantly different (P< .05) from the others. Under the conditions of this study, the 2 new glass ionomer cements used as core materials showed a higher number of defects than amalgam. These results suggest that their fatigue resistance may be inadequate for post-and-core applications.
Impact of regulated secretion on anti-parasitic CD8 T cell responses
Grover, Harshita Satija; Chu, H. Hamlet; Kelly, Felice D.; Yang, Soo Jung; Reese, Michael L.; Blanchard, Nicolas; Gonzalez, Federico; Chan, Shiao Wei; Boothroyd, John C.; Shastri, Nilabh; Robey, Ellen A.
2014-01-01
Summary CD8 T cells play a key role in defense against the intracellular parasite Toxoplasma but why certain CD8 responses are more potent than others is not well understood. Here, we describe a parasite antigen ROP5 that elicits a modest CD8 T cell response in genetically susceptible mice. ROP5 is secreted via parasite organelles termed rhoptries that are injected directly into host cells during invasion, whereas the protective, dense granule antigen, GRA6, is constitutively secreted into the parasitophorous vacuole. Transgenic parasites in which the ROP5 antigenic epitope was targeted for secretion through dense granules led to enhanced CD8 T cell responses, whereas targeting the GRA6 epitope to rhoptries led to reduced CD8 responses. CD8 T cell responses to the dense granule-targeted ROP5 epitope resulted in reduced parasite load in the brain. These data suggest that the mode of secretion impacts the efficacy of parasite-specific CD8 T cell responses. PMID:24857659
2008-12-01
respectively. 2.3.1.2 Brushless DC Motor Brushless direct current ( BLDC ) motors feature high efficiency, ease of control , and astonishingly high power...modeling purposes, we ignore the modeling complexity of the BLDC controller and treat the motor and controller “as commutated”, i.e. we assume the...High Performance, High Power Density Solid Oxide Fuel Cells− Materials and Load Control Stephen W. Sofie, Steven R. Shaw, Peter A. Lindahl, and Lee H
Kiln time and temperature affect shrinkage, warp, and mechanical properties of southern pine lumber
E.W. Price; P. Koch
1980-01-01
Four hundred and eighty No.2 Dense southern pine 2 by 6's, 95 inches long, were kiln-dried in 4-foot-wide loads with a 3,000-pound top load restraint. The kiln-drying regimes consisted of dry-bulb temperatures of 180°, 240°, and 270°F with wet-bulb temperature of 160°F and kiln times of 120 hours at 180°F; 36 and 120 hours at 240°F; and 9, 36, and 120 hours at 270...
Carbon Dioxide Clouds at High Altitude in the Tropics and in an Early Dense Martian Atmosphere
NASA Technical Reports Server (NTRS)
Colaprete, Anthony; Toon, Owen B.
2001-01-01
We use a time dependent, microphysical cloud model to study the formation of carbon dioxide clouds in the Martian atmosphere. Laboratory studies by Glandor et al. show that high critical supersaturations are required for cloud particle nucleation and that surface kinetic growth is not limited. These conditions, which are similar to those for cirrus clouds on Earth, lead to the formation of carbon dioxide ice particles with radii greater than 500 micrometers and concentrations of less than 0.1 cm(exp -3) for typical atmospheric conditions. Within the current Martian atmosphere, CO2 cloud formation is possible at the poles during winter and at high altitudes in the tropics during periods of increased atmospheric dust loading. In both cases, temperature perturbations of several degrees below the CO2 saturation temperature are required to nucleate new cloud particles suggesting that dynamical processes are the most common initiators of carbon dioxide clouds rather than diabatic cooling. The microphysical cloud model, coupled to a two-stream radiative transfer model, is used to reexamine the impact of CO2 clouds on the surface temperature within a dense CO2 atmosphere. The formation of carbon dioxide clouds leads to a warmer surface than what would be expected for clear sky conditions. The amount of warming is sensitive to the presence of dust and water vapor in the atmosphere, both of which act to dampen cloud effects. The radiative warming associated with cloud formation, as well as latent heating, work to dissipate the clouds when present. Thus, clouds never last for periods much longer than several days, limiting their overall effectiveness for warming the surface. The time average cloud optical depth is approximately unity leading to a 5-10 K warming, depending on the surface pressure. However, the surface temperature does not rise about the freezing point of liquid water even for pressures as high as 5 bars, at a solar luminosity of 75% the current value.
First-principles calculations of K-shell X-ray absorption spectra for warm dense nitrogen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zi; Zhang, Shen; Kang, Wei
2016-05-15
X-ray absorption spectrum is a powerful tool for atomic structure detection on warm dense matter. Here, we perform first-principles molecular dynamics and X-ray absorption spectrum calculations on warm dense nitrogen along a Hugoniot curve. From the molecular dynamics trajectory, the detailed atomic structures are examined for each thermodynamical condition. The K-shell X-ray absorption spectrum is calculated, and its changes with temperature and pressure along the Hugoniot curve are discussed. The warm dense nitrogen systems may contain isolated nitrogen atoms, N{sub 2} molecules, and nitrogen clusters, which show quite different contributions to the total X-ray spectrum due to their different electronmore » density of states. The changes of X-ray spectrum along the Hugoniot curve are caused by the different nitrogen structures induced by the temperature and the pressure. Some clear signatures on X-ray spectrum for different thermodynamical conditions are pointed out, which may provide useful data for future X-ray experiments.« less
Generation of dense plume fingers in saturated-unsaturated homogeneous porous media
NASA Astrophysics Data System (ADS)
Cremer, Clemens J. M.; Graf, Thomas
2015-02-01
Flow under variable-density conditions is widespread, occurring in geothermal reservoirs, at waste disposal sites or due to saltwater intrusion. The migration of dense plumes typically results in the formation of vertical plume fingers which are known to be triggered by material heterogeneity or by variations in source concentration that causes the density variation. Using a numerical groundwater model, six perturbation methods are tested under saturated and unsaturated flow conditions to mimic heterogeneity and concentration variations on the pore scale in order to realistically generate dense fingers. A laboratory-scale sand tank experiment is numerically simulated, and the perturbation methods are evaluated by comparing plume fingers obtained from the laboratory experiment with numerically simulated fingers. Dense plume fingering for saturated flow can best be reproduced with a spatially random, time-constant perturbation of the solute source. For unsaturated flow, a spatially and temporally random noise of solute concentration or a random conductivity field adequately simulate plume fingering.
APPARATUS FOR CHARGING A RECEPTACLE WITH A DENSE SUBLIMATE FORM OF URANIUM CHLORIDE
Davidson, P.H.
1959-08-18
An apparatus for filling a tubular storage receptacle with a dense massive form of uranium chloride is described. The apparatus includes an evacuated housing divided into a vaporizing chamber and a portion adapted to receive the receptacle. A nozzle conducts vaporized uranium chloride from the chamber to the interior of the receptacle. The nozzle is withdrawable to progressively deposit the uranium chloride under controlled conditions to produce a dense sublimate which fills the receptacle.
Searing the rhizosphere: belowground impacts of prescribed fires.
Jonathan Thompson
2006-01-01
A century of fire suppression has resulted in dense fuel loads within the dry pine forests of eastern Oregon . To alleviate the risk of stand-replacing wildfire, forest managers are using prescribed fire and thinning treatments. Until recently, the impact of these fuel treatments on soil productivity has been largely unknown. Such information is essential for making...
Massive Infrared-Quiet Dense Cores: Unveiling the Initial Conditions of High-Mass Star Formation
NASA Astrophysics Data System (ADS)
Motte, F.; Bontemps, S.; Schneider, N.; Schilke, P.; Menten, K. M.
2008-05-01
As Th. Henning said at the conference, cold precursors of high-mass stars are now ``hot topics''. We here propose some observational criteria to identify massive infrared-quiet dense cores which can host the high-mass analogs of Class~0 protostars and pre-stellar condensations. We also show how far-infrared to millimeter imaging surveys of entire complexes forming OB stars are starting to unveil the initial conditions of high-mass star formation.
NASA Astrophysics Data System (ADS)
Tadić, Bosiljka; Thurner, Stefan; Rodgers, G. J.
2004-03-01
We study the microscopic time fluctuations of traffic load and the global statistical properties of a dense traffic of particles on scale-free cyclic graphs. For a wide range of driving rates R the traffic is stationary and the load time series exhibits antipersistence due to the regulatory role of the superstructure associated with two hub nodes in the network. We discuss how the superstructure affects the functioning of the network at high traffic density and at the jamming threshold. The degree of correlations systematically decreases with increasing traffic density and eventually disappears when approaching a jamming density Rc. Already before jamming we observe qualitative changes in the global network-load distributions and the particle queuing times. These changes are related to the occurrence of temporary crises in which the network-load increases dramatically, and then slowly falls back to a value characterizing free flow.
Edge delamination of composite laminates subject to combined tension and torsional loading
NASA Technical Reports Server (NTRS)
Hooper, Steven J.
1990-01-01
Delamination is a common failure mode of laminated composite materials. Edge delamination is important since it results in reduced stiffness and strength of the laminate. The tension/torsion load condition is of particular significance to the structural integrity of composite helicopter rotor systems. Material coupons can easily be tested under this type of loading in servo-hydraulic tension/torsion test stands using techniques very similar to those used for the Edge Delamination Tensile Test (EDT) delamination specimen. Edge delamination of specimens loaded in tension was successfully analyzed by several investigators using both classical laminate theory and quasi-three dimensional (Q3D) finite element techniques. The former analysis technique can be used to predict the total strain energy release rate, while the latter technique enables the calculation of the mixed-mode strain energy release rates. The Q3D analysis is very efficient since it produces a three-dimensional solution to a two-dimensional domain. A computer program was developed which generates PATRAN commands to generate the finite element model. PATRAN is a pre- and post-processor which is commonly used with a variety of finite element programs such as MCS/NASTRAN. The program creates a sufficiently dense mesh at the delamination crack tips to support a mixed-mode fracture mechanics analysis. The program creates a coarse mesh in those regions where the gradients in the stress field are low (away from the delamination regions). A transition mesh is defined between these regions. This program is capable of generating a mesh for an arbitrarily oriented matrix crack. This program significantly reduces the modeling time required to generate these finite element meshes, thus providing a realistic tool with which to investigate the tension torsion problem.
A micro-mechanical model to determine changes of collagen fibrils under cyclic loading
NASA Astrophysics Data System (ADS)
Chen, Michelle L.; Susilo, Monica E.; Ruberti, Jeffrey A.; Nguyen, Thao D.
Dynamic mechanical loading induces growth and remodeling in biological tissues. It can alter the degradation rate and intrinsic mechanical properties of collagen through cellular activity. Experiments showed that repeated cyclic loading of a dense collagen fibril substrate increased collagen stiffness and strength, lengthened the substrate, but did not significantly change the fibril areal fraction or fibril anisotropy (Susilo, et al. ``Collagen Network Hardening Following Cyclic Tensile Loading'', Interface Focus, submitted). We developed a model for the collagen fibril substrate (Tonge, et al. ``A micromechanical modeling study of the mechanical stabilization of enzymatic degradation of collagen tissues'', Biophys J, in press.) to probe whether changes in the fibril morphology and mechanical properties can explain the tissue-level properties observed during cyclic loading. The fibrils were modeled as a continuous distribution of wavy elastica, based on experimental measurements of fibril density and collagen anisotropy, and can experience damage after a critical stress threshold. Other mechanical properties in the model were fit to the stress response measured before and after the extended cyclic loading to determine changes in the strength and stiffness of collagen fibrils.
Factors controlling stream water nitrate and phosphor loads during precipitation events
NASA Astrophysics Data System (ADS)
Rozemeijer, J. C.; van der Velde, Y.; van Geer, F. G.; de Rooij, G. H.; Broers, H. P.; Bierkens, M. F. P.
2009-04-01
Pollution of surface waters in densely populated areas with intensive land use is a serious threat to their ecological, industrial and recreational utilization. European and national manure policies and several regional and local pilot projects aim at reducing pollution loads to surface waters. For the evaluation of measures, water authorities and environmental research institutes are putting a lot of effort into monitoring surface water quality. Fro regional surface water quality monitoring, the measurement locations are usually situated in the downstream part of the catchment to represent a larger area. The monitoring frequency is usually low (e.g. monthly), due to the high costs for sampling and analysis. As a consequence, human induced trends in nutrient loads and concentrations in these monitoring data are often concealed by the large variability of surface water quality caused by meteorological variations. Because natural surface water quality variability is poorly understood, large uncertainties occur in the estimates of (trends in) nutrient loads or average concentrations. This study aims at uncertainty reduction in the estimates of mean concentrations and loads of N and P from regional monitoring data. For this purpose, we related continuous N and P records of stream water to variations in precipitation, discharge, groundwater level and tube drain discharge. A specially designed multi scale experimental setup was installed in an agricultural lowland catchment in The Netherlands. At the catchment outlet, continuous measurements of water quality and discharge were performed from July 2007-January 2009. At an experimental field within the catchment continuous measurements of precipitation, groundwater levels and tube drain discharges were collected. 20 significant rainfall events with a variety of antecedent conditions, durations and intensities were selected for analysis. Singular and multiple regression analysis was used to identify relations between the continuous N and P records and characteristics of the dynamics of discharge, precipitation, groundwater level and tube drain discharge. From this study, we conclude that generally available and easy to measure explanatory data (such as continuous records of discharge, precipitation and groundwater level) can reduce uncertainty in estimations of N and P loads and mean concentrations. However, for capturing the observed short load pulses of P, continuous or discharge proportional sampling is needed.
Mei, Lei; Zhu, Guizhi; Qiu, Liping; Wu, Cuichen; Chen, Huapei; Liang, Hao; Cansiz, Sena; Lv, Yifan; Zhang, Xiaobing; Tan, Weihong
2015-11-01
Cancer chemotherapy has been impeded by side effects and multidrug resistance (MDR) partially caused by drug efflux from cancer cells, which call for targeted drug delivery systems additionally able to circumvent MDR. Here we report multifunctional DNA nanoflowers (NFs) for targeted drug delivery to both chemosensitive and MDR cancer cells and circumvent MDR in both leukemia and breast cancer cell models. NFs are self-assembled via liquid crystallization of DNA generated by Rolling Circle Replication, during which NFs are incorporated with aptamers for specific cancer cell recognition, fluorophores for bioimaging, and Doxorubicin (Dox)-binding DNA for drug delivery. NF sizes are tunable (down to ~200 nm in diameter), and the densely packed drug-binding motifs and porous intrastructures endow NFs with high drug loading capacity (71.4%, wt/wt). The Dox-loaded NFs (NF-Dox) are stable at physiological pH, yet drug release is facilitated in acidic or basic conditions. NFs deliver Dox into target chemosensitive and MDR cancer cells, preventing drug efflux and enhancing drug retention in MDR cells. Consequently, NF-Dox induces potent cytotoxicity in both target chemosensitive cells and MDR cells, but not nontarget cells, thus concurrently circumventing MDR and reducing side effects. Overall, these NFs are promising to circumvent MDR in targeted cancer therapy.
Ten years after wildfires: How does varying tree mortality impact fire hazard and forest resiliency?
Camille S. Stevens-Rumann; Carolyn H. Sieg; Molly E. Hunter
2012-01-01
Severe wildfires across the western US have lead to concerns about heavy surface fuel loading and the potential for high-intensity reburning. Ponderosa pine (Pinus ponderosa) forests, often overly dense from a century of fire suppression, are increasingly susceptible to large and severe wildfires especially given warmer and drier climate projections for the future....
Mechanical mid-story reduction treatments for forest fuel management
B. Rummer; K. Outcalt; D. Brockway
2002-01-01
There are many forest stands where exclusion of fire or lack of management has led to dense understorys and fuel accumulation. Generally, the least expensive treatment is to introduce a regime of prescribed fire as a surrogate for natural forest fire processes in these stands. However, in some cases prescribed fire is not an option. For example, heavy fuel loadings may...
Managed wildfire effects on forest resilience and water in the Sierra Nevada
Gabrielle Boisramé; Sally Thompson; Brandon Collins; Scott Stephens
2017-01-01
Fire suppression in many dry forest types has left a legacy of dense, homogeneous forests. Such landscapes have high water demands and fuel loads, and when burned can result in catastrophically large fires. These characteristics are undesirable in the face of projected warming and drying in the western US. Alternative forest and fire treatments based on managed...
The national fire and fire surrogate study: early results and future challenges
Thomas A. Waldrop; James McIver
2006-01-01
Fire-adapted ecosystems today have dense plant cover and heavy fuel loads as a result of fire exclusion and other changes in land use practices. Mechanical fuel treatments and prescribed fire are powerful tools for reducing wildfire potential, but the ecological consequences of their use is unknown. The National Fire and Fire Surrogate Study examines the effects of...
NASA Astrophysics Data System (ADS)
Chamieh, Frédéric; Collignon, Anne-Margaux; Coyac, Benjamin R.; Lesieur, Julie; Ribes, Sandy; Sadoine, Jérémy; Llorens, Annie; Nicoletti, Antonino; Letourneur, Didier; Colombier, Marie-Laure; Nazhat, Showan N.; Bouchard, Philippe; Chaussain, Catherine; Rochefort, Gael Y.
2016-12-01
Therapies using mesenchymal stem cell (MSC) seeded scaffolds may be applicable to various fields of regenerative medicine, including craniomaxillofacial surgery. Plastic compression of collagen scaffolds seeded with MSC has been shown to enhance the osteogenic differentiation of MSC as it increases the collagen fibrillary density. The aim of the present study was to evaluate the osteogenic effects of dense collagen gel scaffolds seeded with mesenchymal dental pulp stem cells (DPSC) on bone regeneration in a rat critical-size calvarial defect model. Two symmetrical full-thickness defects were created (5 mm diameter) and filled with either a rat DPSC-containing dense collagen gel scaffold (n = 15), or an acellular scaffold (n = 15). Animals were imaged in vivo by microcomputer tomography (Micro-CT) once a week during 5 weeks, whereas some animals were sacrificed each week for histology and histomorphometry analysis. Bone mineral density and bone micro-architectural parameters were significantly increased when DPSC-seeded scaffolds were used. Histological and histomorphometrical data also revealed significant increases in fibrous connective and mineralized tissue volume when DPSC-seeded scaffolds were used, associated with expression of type I collagen, osteoblast-associated alkaline phosphatase and osteoclastic-related tartrate-resistant acid phosphatase. Results demonstrate the potential of DPSC-loaded-dense collagen gel scaffolds to benefit of bone healing process.
Heavy metal contamination of coastal lagoon sediments: Fongafale Islet, Funafuti Atoll, Tuvalu.
Fujita, Masafumi; Ide, Yoichi; Sato, Daisaku; Kench, Paul S; Kuwahara, Yuji; Yokoki, Hiromune; Kayanne, Hajime
2014-01-01
To evaluate contamination of coastal sediments along Fongafale Islet, Central Pacific, a field survey was conducted in densely populated, sparsely populated, open dumping and undisturbed natural areas. Current measurements in shallow water of the lagoon indicated that contaminants from the densely populated area would only be transported for a small proportion of a tidal cycle. Acid-volatile sulfides were detected in both the intertidal beach and nearshore zones of the densely populated area, whereas these were no detection in the other areas. This observation lends support to argument that the coastal pollution mechanism that during ebb tide, domestic wastewater leaking from poorly constructed sanitary facilities seeps into the coast. The total concentrations of Cr, Mn, Ni, Cu, Zn, Cd and Pb were relatively high in all of the areas except the undisturbed natural area. The indices of contamination factor, pollution load index and geoaccumulation index were indicative of heavy metal pollution in the three areas. The densely populated area has the most significant contamination; domestic wastewater led to significant contamination of coastal sediments with Cr, Zn, Cu, Pb and Cd. The open dumping area is noteworthy with respect to Mn and Ni, which can be derived from disposed batteries. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Quantum Dense Coding About a Two-Qubit Heisenberg XYZ Model
NASA Astrophysics Data System (ADS)
Xu, Hui-Yun; Yang, Guo-Hui
2017-09-01
By taking into account the nonuniform magnetic field, the quantum dense coding with thermal entangled states of a two-qubit anisotropic Heisenberg XYZ chain are investigated in detail. We mainly show the different properties about the dense coding capacity ( χ) with the changes of different parameters. It is found that dense coding capacity χ can be enhanced by decreasing the magnetic field B, the degree of inhomogeneity b and temperature T, or increasing the coupling constant along z-axis J z . In addition, we also find χ remains the stable value as the change of the anisotropy of the XY plane Δ in a certain temperature condition. Through studying different parameters effect on χ, it presents that we can properly turn the values of B, b, J z , Δ or adjust the temperature T to obtain a valid dense coding capacity ( χ satisfies χ > 1). Moreover, the temperature plays a key role in adjusting the value of dense coding capacity χ. The valid dense coding capacity could be always obtained in the lower temperature-limit case.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ritchie, IAltenberger, RKNalla, YSano LWagner, RO
The effect of surface treatment on the stress/life fatigue behavior of a titanium Ti-6Al-4V turbine fan blade alloy is investigated in the regime of 102 to 106 cycles to failure under fully reversed stress-controlled isothermal push-pull loading between 25? and 550?C at a frequency of 5 Hz. Specifically, the fatigue behavior was examined in specimens in the deep-rolled and laser-shock peened surface conditions, and compared to results on samples in the untreated (machined and stress annealed) condition. Although the fatigue resistance of the Ti-6Al-4V alloy declined with increasing test temperature regardless of surface condition, deep-rolling and laser-shock peening surface treatmentsmore » were found to extend the fatigue lives by factors of more than 30 and 5-10, respectively, in the high-cycle and low-cycle fatigue regimes at temperatures as high as 550?C. At these temperatures, compressive residual stresses are essentially relaxed; however, it is the presence of near-surface work hardened layers, with a nanocystalline structure in the case of deep-rolling and dense dislocation tangles in the case of laser-shock peening, which remain fairly stable even after cycling at 450?-550?C, that provide the basis for the beneficial role of mechanical surface treatments on the fatigue strength of Ti-6Al-4V at elevated temperatures.« less
Automated acoustic intensity measurements and the effect of gear tooth profile on noise
NASA Technical Reports Server (NTRS)
Atherton, William J.; Pintz, Adam; Lewicki, David G.
1987-01-01
Acoustic intensity measurements were made at NASA Lewis Research Center on a spur gear test apparatus. The measurements were obtained with the Robotic Acoustic Intensity Measurement System developed by Cleveland State University. This system provided dense spatial positioning, and was calibrated against a high quality acoustic intensity system. The measured gear noise compared gearsets having two different tooth profiles. The tests evaluated the sound field of the different gears for two speeds and three loads. The experimental results showed that gear tooth profile had a major effect on measured noise. Load and speed were found to have an effect on noise also.
Investigation of a robust tendon-sheath mechanism for flexible membrane wing application in mini-UAV
NASA Astrophysics Data System (ADS)
Lee, Shian; Tjahjowidodo, Tegoeh; Lee, Hsuchew; Lai, Benedict
2017-02-01
Two inherent issues manifest themselves in flying mini-unmanned aerial vehicles (mini-UAV) in the dense area at tropical climate regions, namely disturbances from gusty winds and limited space for deployment tasks. Flexible membrane wing (FMW) UAVs are seen to be potentials to mitigate these problems. FMWs are adaptable to gusty airflow as the wings are able to flex according to the gust load to reduce the effective angle-of-attack, thus, reducing the aerodynamic loads on the wing. On the other hand, the flexible structure is allowing the UAV to fold in a compact package, and later on, the mini-UAV can be deployed instantly from the storage tube, e.g. through a catapult mechanism. This paper discusses the development of an FMW UAV actuated by a tendon-sheath mechanism (TSM). This approach allows the wing to morph to generate a rolling moment, while still allowing the wing to fold. Dynamic characteristics of the mechanism that exhibits the strong nonlinear phenomenon of friction on TSM are modeled and compensated for. A feed-forward controller was implemented based on the identified nonlinear behavior to control the warping position of the wing. The proposed strategy is validated experimentally in a wind tunnel facility by creating a gusty environment that is imitating a realistic gusty condition based upon the results of computational fluid dynamics (CFD) simulation. The results demonstrate a stable and robust wing-warping actuation, even in gusty conditions. Accurate wing-warping can be achieved via the TSM, while also allowing the wings to fold.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rozemeijer, J. C.; Visser, A.; Borren, W.
High nitrogen (N) and phosphorus (P) fluxes from upstream agriculture threaten aquatic ecosystems in surface waters and estuaries, especially in areas characterized by high agricultural N and P inputs and densely drained catchments like the Netherlands. Controlled drainage has been recognized as an effective option to optimize soil moisture conditions for agriculture and to reduce unnecessary losses of fresh water and nutrients. This is achieved by introducing control structures with adjustable overflow levels into subsurface tube drain systems. A small-scale (1 ha) field experiment was designed to investigate the hydrological and chemical changes after introducing controlled drainage. Precipitation rates andmore » the response of water tables and drain fluxes were measured in the periods before the introduction of controlled drainage (2007–2008) and after (2009–2011). For the N and P concentration measurements, auto-analyzers for continuous records were combined with passive samplers for time-averaged concentrations at individual drain outlets. The experimental setup enabled the quantification of changes in the water and solute balance after introducing controlled drainage. The results showed that introducing controlled drainage reduced the drain discharge and increased the groundwater storage in the field. To achieve this, the overflow levels have to be elevated in early spring, before the drain discharge stops due to dryer conditions and falling groundwater levels. The groundwater storage in the field would have been larger if the water levels in the adjacent ditch were controlled as well by an adjustable weir. The N concentrations and loads increased, which was largely related to elevated concentrations in one of the three monitored tube drains. The P loads via the tube drains reduced due to the reduction in discharge after introducing controlled drainage. Furthermore, this may be counteracted by the higher groundwater levels and the larger contribution of N- and P-rich shallow groundwater and overland flow to the surface water.« less
Rozemeijer, J. C.; Visser, A.; Borren, W.; ...
2016-01-19
High nitrogen (N) and phosphorus (P) fluxes from upstream agriculture threaten aquatic ecosystems in surface waters and estuaries, especially in areas characterized by high agricultural N and P inputs and densely drained catchments like the Netherlands. Controlled drainage has been recognized as an effective option to optimize soil moisture conditions for agriculture and to reduce unnecessary losses of fresh water and nutrients. This is achieved by introducing control structures with adjustable overflow levels into subsurface tube drain systems. A small-scale (1 ha) field experiment was designed to investigate the hydrological and chemical changes after introducing controlled drainage. Precipitation rates andmore » the response of water tables and drain fluxes were measured in the periods before the introduction of controlled drainage (2007–2008) and after (2009–2011). For the N and P concentration measurements, auto-analyzers for continuous records were combined with passive samplers for time-averaged concentrations at individual drain outlets. The experimental setup enabled the quantification of changes in the water and solute balance after introducing controlled drainage. The results showed that introducing controlled drainage reduced the drain discharge and increased the groundwater storage in the field. To achieve this, the overflow levels have to be elevated in early spring, before the drain discharge stops due to dryer conditions and falling groundwater levels. The groundwater storage in the field would have been larger if the water levels in the adjacent ditch were controlled as well by an adjustable weir. The N concentrations and loads increased, which was largely related to elevated concentrations in one of the three monitored tube drains. The P loads via the tube drains reduced due to the reduction in discharge after introducing controlled drainage. Furthermore, this may be counteracted by the higher groundwater levels and the larger contribution of N- and P-rich shallow groundwater and overland flow to the surface water.« less
NASA Astrophysics Data System (ADS)
Rozemeijer, J. C.; Visser, A.; Borren, W.; Winegram, M.; van der Velde, Y.; Klein, J.; Broers, H. P.
2016-01-01
High nitrogen (N) and phosphorus (P) fluxes from upstream agriculture threaten aquatic ecosystems in surface waters and estuaries, especially in areas characterized by high agricultural N and P inputs and densely drained catchments like the Netherlands. Controlled drainage has been recognized as an effective option to optimize soil moisture conditions for agriculture and to reduce unnecessary losses of fresh water and nutrients. This is achieved by introducing control structures with adjustable overflow levels into subsurface tube drain systems. A small-scale (1 ha) field experiment was designed to investigate the hydrological and chemical changes after introducing controlled drainage. Precipitation rates and the response of water tables and drain fluxes were measured in the periods before the introduction of controlled drainage (2007-2008) and after (2009-2011). For the N and P concentration measurements, auto-analyzers for continuous records were combined with passive samplers for time-averaged concentrations at individual drain outlets. The experimental setup enabled the quantification of changes in the water and solute balance after introducing controlled drainage. The results showed that introducing controlled drainage reduced the drain discharge and increased the groundwater storage in the field. To achieve this, the overflow levels have to be elevated in early spring, before the drain discharge stops due to dryer conditions and falling groundwater levels. The groundwater storage in the field would have been larger if the water levels in the adjacent ditch were controlled as well by an adjustable weir. The N concentrations and loads increased, which was largely related to elevated concentrations in one of the three monitored tube drains. The P loads via the tube drains reduced due to the reduction in discharge after introducing controlled drainage. However, this may be counteracted by the higher groundwater levels and the larger contribution of N- and P-rich shallow groundwater and overland flow to the surface water.
14 CFR 25.485 - Side load conditions.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Side load conditions. 25.485 Section 25.485... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Ground Loads § 25.485 Side load conditions. In addition to § 25.479(d)(2) the following conditions must be considered: (a) For the side load condition, the...
14 CFR 25.485 - Side load conditions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Side load conditions. 25.485 Section 25.485... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Ground Loads § 25.485 Side load conditions. In addition to § 25.479(d)(2) the following conditions must be considered: (a) For the side load condition, the...
14 CFR 25.485 - Side load conditions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Side load conditions. 25.485 Section 25.485... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Ground Loads § 25.485 Side load conditions. In addition to § 25.479(d)(2) the following conditions must be considered: (a) For the side load condition, the...
A Plasma Ultraviolet Source for Short Wavelength Lasers.
1986-03-10
A high power blue-green laser was pumped with an array of the dense plasma focus . As the result of optimizing the operating conditions of the dense... plasma focus and laser system, the maximum untuned laser output exceeded 2.lmJ corresponding to the energy density 3J/cu cm which is much higher than
Nuclear quantum effects on structure and transport properties of dense liquid helium
NASA Astrophysics Data System (ADS)
Kang, Dongdong; Dai, Jiayu; Yuan, Jianmin
2015-11-01
Transport properties of dense liquid helium under the conditions of planet's core and cool atmosphere of white dwarfs are important for determining the structure and evolution of these astrophysical objects. We have investigated these properties of dense liquid helium by using the improved centroid path-integral simulations combined with density functional theory. The results show that with the inclusion of nuclear quantum effects (NQEs), the self-diffusion is largely higher while the shear viscosity is notably lower than the results of without the inclusion of NQEs due to the lower collision cross sections even when the NQEs have little effects on the static structures. The potential surface of helium atom along the simulation trajectory is quite different between MD and PIMD simulations. We have shown that the quantum nuclear character induces complex behaviors for ionic transport properties of dense liquid helium. NQEs bring more fluctuations of local electronic density of states than the classical treatment. Therefore, in order to construct more reasonable structure and evolution model for the planets and WDs, NQEs must be reconsidered when calculating the transport properties at certain temperature and density conditions.
NASA Astrophysics Data System (ADS)
Nurul Misbah, Mohammad; Setyawan, Dony; Murti Dananjaya, Wisnu
2018-03-01
This research aims to determine the longitudinal strength of passenger ship which was converted from Landing Craft Tank with 54 m of length as stated by BKI (Biro Klasifikasi Indonesia / Indonesian Classification Bureau). Verification of strength value is done to 4 (four) loading conditions which are (1) empty load condition during sagging wave, (2) empty load condition during hogging wave, (3) full load condition during sagging wave and (4) full load condition during hogging wave. Analysis is done using Finite Element Analysis (FEA) software by modeling the entire part of passenger ship and its loading condition. The back and upfront part of ship centerline were used as the boundary condition. From that analysis it can be concluded that the maximum stress for load condition (1) is 72,393 MPa, 74,792 MPa for load condition (2), 129,92 MPa for load condition (3), and 132,4 MPa for load condition (4). Longitudinal strength of passenger ship fulfilled the criteria of empty load condition having smaller stress value than allowable stress which is 90 MPa, and during full load condition with smaller stress value than allowable stress which is 150 MPa. Analysis on longitudinal strength comparison with entire ship plate thickness variation of ± 2 mm from initial plate was also done during this research. From this research it can be concluded that plate thickness reduction causes the value of longitudinal strength to decrease, while plate thickness addition causes the value of longitudinal strength to increase.
Astrophysical Nuclear Reaction Rates in the Dense Metallic Environments
NASA Astrophysics Data System (ADS)
Kilic, Ali Ihsan
2017-09-01
Nuclear reaction rates can be enhanced by many orders of magnitude in dense and relatively cold astrophysical plasmas such as in white dwarfs, brown dwarfs, and giant planets. Similar conditions are also present in supernova explosions where the ignition conditions are vital for cosmological models. White dwarfs are compact objects that have both extremely high interior densities and very strong local magnetic fields. For the first time, a new formula has been developed to explain cross section and reaction rate quantities for light elements that includes not only the nuclear component but also the material dependence, magnetic field, and crystal structure dependency in dense metallic environments. I will present the impact of the developed formula on the cross section and reaction rates for light elements. This could have possible technological applications in energy production using nuclear fusion reactions.
Dense pigmentation of the posterior lens capsule associated with the pigment dispersion syndrome.
Lin, Danny Y; Volpicelli, Mark; Singh, Kuldev
2003-12-01
To report an unusual case of pigment dispersion syndrome associated with unilateral dense pigmentation of the posterior lens capsule. Case report. A 59-year-old male with bilateral pigment dispersion syndrome presented with progressive decrease in visual acuity in the left eye over the past 10 to 20 years. Clinical examination revealed the typical findings of pigment dispersion syndrome including the presence of bilateral Krunkenberg spindles, iris transillumination defects, and heavy trabecular meshwork pigmentation. Of note, there was remarkably dense pigmentation of the posterior lens capsule in the eye with decreased visual acuity. Pigmentation of the posterior lens capsule may be a rare finding associated with pigment dispersion syndrome. Such a finding suggests that there may be aqueous flow into the retrolental space in some patients with this condition. The optimal treatment of this unusual condition remains undetermined.
Rising CO2 Levels Will Intensify Phytoplankton Blooms in Eutrophic and Hypertrophic Lakes
Verspagen, Jolanda M. H.; Van de Waal, Dedmer B.; Finke, Jan F.; Visser, Petra M.; Van Donk, Ellen; Huisman, Jef
2014-01-01
Harmful algal blooms threaten the water quality of many eutrophic and hypertrophic lakes and cause severe ecological and economic damage worldwide. Dense blooms often deplete the dissolved CO2 concentration and raise pH. Yet, quantitative prediction of the feedbacks between phytoplankton growth, CO2 drawdown and the inorganic carbon chemistry of aquatic ecosystems has received surprisingly little attention. Here, we develop a mathematical model to predict dynamic changes in dissolved inorganic carbon (DIC), pH and alkalinity during phytoplankton bloom development. We tested the model in chemostat experiments with the freshwater cyanobacterium Microcystis aeruginosa at different CO2 levels. The experiments showed that dense blooms sequestered large amounts of atmospheric CO2, not only by their own biomass production but also by inducing a high pH and alkalinity that enhanced the capacity for DIC storage in the system. We used the model to explore how phytoplankton blooms of eutrophic waters will respond to rising CO2 levels. The model predicts that (1) dense phytoplankton blooms in low- and moderately alkaline waters can deplete the dissolved CO2 concentration to limiting levels and raise the pH over a relatively wide range of atmospheric CO2 conditions, (2) rising atmospheric CO2 levels will enhance phytoplankton blooms in low- and moderately alkaline waters with high nutrient loads, and (3) above some threshold, rising atmospheric CO2 will alleviate phytoplankton blooms from carbon limitation, resulting in less intense CO2 depletion and a lesser increase in pH. Sensitivity analysis indicated that the model predictions were qualitatively robust. Quantitatively, the predictions were sensitive to variation in lake depth, DIC input and CO2 gas transfer across the air-water interface, but relatively robust to variation in the carbon uptake mechanisms of phytoplankton. In total, these findings warn that rising CO2 levels may result in a marked intensification of phytoplankton blooms in eutrophic and hypertrophic waters. PMID:25119996
The Production of Porous Hydroxyapatite Scaffolds with Graded Porosity by Sequential Freeze-Casting.
Lee, Hyun; Jang, Tae-Sik; Song, Juha; Kim, Hyoun-Ee; Jung, Hyun-Do
2017-03-31
Porous hydroxyapatite (HA) scaffolds with porosity-graded structures were fabricated by sequential freeze-casting. The pore structures, compressive strengths, and biocompatibilities of the fabricated porous HA scaffolds were evaluated. The porosities of the inner and outer layers of the graded HA scaffolds were controlled by adjusting the initial HA contents of the casting slurries. The interface between the dense and porous parts was compact and tightly adherent. The porosity and compressive strengths of the scaffold were controlled by the relative thicknesses of the dense/porous parts. In addition, the porous HA scaffolds showed good biocompatibility in terms of preosteoblast cell attachment and proliferation. The results suggest that porous HA scaffolds with load-bearing parts have potential as bone grafts in hard-tissue engineering.
The Production of Porous Hydroxyapatite Scaffolds with Graded Porosity by Sequential Freeze-Casting
Lee, Hyun; Jang, Tae-Sik; Song, Juha; Kim, Hyoun-Ee; Jung, Hyun-Do
2017-01-01
Porous hydroxyapatite (HA) scaffolds with porosity-graded structures were fabricated by sequential freeze-casting. The pore structures, compressive strengths, and biocompatibilities of the fabricated porous HA scaffolds were evaluated. The porosities of the inner and outer layers of the graded HA scaffolds were controlled by adjusting the initial HA contents of the casting slurries. The interface between the dense and porous parts was compact and tightly adherent. The porosity and compressive strengths of the scaffold were controlled by the relative thicknesses of the dense/porous parts. In addition, the porous HA scaffolds showed good biocompatibility in terms of preosteoblast cell attachment and proliferation. The results suggest that porous HA scaffolds with load-bearing parts have potential as bone grafts in hard-tissue engineering. PMID:28772735
Julie E. Korb; Nancy C. Johnson; W. W. Covington
2004-01-01
Ponderosa pine forest restoration consists of thinning trees and reintroducing prescribed fire to reduce unnaturally high tree densities and fuel loads to restore ecosystem structure and function. A current issue in ponderosa pine restoration is what to do with the large quantity of slash that is created from thinning dense forest stands. Slash piling burning is...
Rhonda Mazza
2008-01-01
The fire hazard in many western forests is unacceptably high, posing risks to human health and property, wildlife habitat, and air and water quality. Cost is an inhibiting factor for reducing hazardous fuel, given the amount of acreage needing treatment. Thinning overly dense forests is one way to reduce fuel loads. Much of the product removed during these treatments...
Simulations of Biomechanical Phenomena
NASA Astrophysics Data System (ADS)
Gonzalez, Jose Cruz
Recent studies have published breakthroughs in the application of finite element (FEA) studies in the design and analysis of advanced orthodontics. However, FEA has not captured bone remodeling responses to advanced orthodontics. The results of these simulations report unrealistic displacement around the nasal bridge, which impeded correlation with clinical data. Bone remodeling has been previously documented in FEA and has shown bone response to mechanical stimulus in femur bone models. However, the relationship between mechanical stimulus and bone remodeling has not been reported in orthodontic studies due to the complexity of the skull. In the current study, strain energy is used as the mechanical stimulus to control remodeling, from which density and modulus evolve. Due to the localization of forces in orthodontics, current remodeling algorithms have limited application. In turn, we developed an algorithm that dynamically collects, sorts, and bins stresses in all elements for regional remodeling based on the proximity of the element to the load. The results demonstrate that bone response to orthodontic appliances is different than that of an FEA without bone remodeling, due to load path changes based upon evolution of the bone properties. It was also found that density and moduli proximal to the load application site exhibit faster remodeling than those located remotely. Modeling another biomechanical phenomena, a 3D simulation was created to simulate recent experimental results that discovered a difference in impact mitigation properties of dense-polymer/foam bilayer structure based on the orientation of the dense-polymer with respect to the impact site. The impact energy transmitted varied in time of arrival and amplitude depending on the orientation of the structure (thin layer up or down). By creating a 3D explicit dynamic FEA simulation, it is expected to reduce costly experiments and time consumed in set up, and offer opportunities for optimization for future applications in armor. The results agreed with the experimental results, displaying a delay in impact wave arrival, depending on the orientation of the structure. The FEA revealed also revealed that mid-body strains showed an increase at different time intervals, indicating the dense polymer's engagement and impact mitigation.
Gervasio, Michelle; Lu, Kathy; Davis, Richey
2015-09-15
This study is the first that focuses on solvent migration in a polydimethylsiloxane (PDMS) stamp during the imprint lithography of ZnO-poly(methyl methacrylate) (PMMA) hybrid suspensions. Using suspensions with varying solids loading levels and ZnO/PMMA ratios, the uptake of the anisole solvent in the stamp is evaluated as a function of time. Laser confocal microscopy is employed as a unique technique to measure the penetration depth of the solvent into the stamp. The suspension solids loading affects the anisole saturation depth in the PDMS stamp. For the suspensions with low solids loading, the experimental data agree with the model for non-Fickian diffusion through a rubbery-elastic polymer. For the suspensions with high solids loading, the data agree more with a sigmoidal diffusion curve, reflecting the rubbery-viscous behavior of a swelling polymer. This difference is due to the degree of swelling in the PDMS. Higher solids loadings induce more swelling because the rate of anisole diffusing into the stamp is increased, likely due to the less dense buildup of the solids as the suspension dries.
On parametrized cold dense matter equation-of-state inference
NASA Astrophysics Data System (ADS)
Riley, Thomas E.; Raaijmakers, Geert; Watts, Anna L.
2018-07-01
Constraining the equation of state of cold dense matter in compact stars is a major science goal for observing programmes being conducted using X-ray, radio, and gravitational wave telescopes. We discuss Bayesian hierarchical inference of parametrized dense matter equations of state. In particular, we generalize and examine two inference paradigms from the literature: (i) direct posterior equation-of-state parameter estimation, conditioned on observations of a set of rotating compact stars; and (ii) indirect parameter estimation, via transformation of an intermediary joint posterior distribution of exterior spacetime parameters (such as gravitational masses and coordinate equatorial radii). We conclude that the former paradigm is not only tractable for large-scale analyses, but is principled and flexible from a Bayesian perspective while the latter paradigm is not. The thematic problem of Bayesian prior definition emerges as the crux of the difference between these paradigms. The second paradigm should in general only be considered as an ill-defined approach to the problem of utilizing archival posterior constraints on exterior spacetime parameters; we advocate for an alternative approach whereby such information is repurposed as an approximative likelihood function. We also discuss why conditioning on a piecewise-polytropic equation-of-state model - currently standard in the field of dense matter study - can easily violate conditions required for transformation of a probability density distribution between spaces of exterior (spacetime) and interior (source matter) parameters.
On parametrised cold dense matter equation of state inference
NASA Astrophysics Data System (ADS)
Riley, Thomas E.; Raaijmakers, Geert; Watts, Anna L.
2018-04-01
Constraining the equation of state of cold dense matter in compact stars is a major science goal for observing programmes being conducted using X-ray, radio, and gravitational wave telescopes. We discuss Bayesian hierarchical inference of parametrised dense matter equations of state. In particular we generalise and examine two inference paradigms from the literature: (i) direct posterior equation of state parameter estimation, conditioned on observations of a set of rotating compact stars; and (ii) indirect parameter estimation, via transformation of an intermediary joint posterior distribution of exterior spacetime parameters (such as gravitational masses and coordinate equatorial radii). We conclude that the former paradigm is not only tractable for large-scale analyses, but is principled and flexible from a Bayesian perspective whilst the latter paradigm is not. The thematic problem of Bayesian prior definition emerges as the crux of the difference between these paradigms. The second paradigm should in general only be considered as an ill-defined approach to the problem of utilising archival posterior constraints on exterior spacetime parameters; we advocate for an alternative approach whereby such information is repurposed as an approximative likelihood function. We also discuss why conditioning on a piecewise-polytropic equation of state model - currently standard in the field of dense matter study - can easily violate conditions required for transformation of a probability density distribution between spaces of exterior (spacetime) and interior (source matter) parameters.
Factors controlling stream water nitrate and phosphor loads during precipitation events
NASA Astrophysics Data System (ADS)
Rozemeijer, J.; van der Velde, Y.; van Geer, F.; de Rooij, G. H.; Broers, H.; Bierkens, M. F.
2009-12-01
Pollution of surface waters in densely populated areas with intensive land use is a serious threat to their ecological, industrial and recreational utilization. European and national manure policies and several regional and local pilot projects aim at reducing pollution loads to surface waters. For the evaluation of measures, water authorities and environmental research institutes are putting a lot of effort into monitoring surface water quality. Within regional surface water quality monitoring networks, the measurement locations are usually situated in the downstream part of the catchment to represent a larger area. The monitoring frequency is usually low (e.g. monthly), due to the high costs for sampling and analysis. As a consequence, human induced trends in nutrient loads and concentrations in these monitoring data are often concealed by the large variability of surface water quality caused by meteorological variations. Because this natural variability in surface water quality is poorly understood, large uncertainties occur in the estimates of (trends in) nutrient loads or average concentrations. This study aims at uncertainty reduction in the estimates of mean concentrations and loads of N and P from regional monitoring data. For this purpose, we related continuous records of stream water N and P concentrations to easier and cheaper to collect quantitative data on precipitation, discharge, groundwater level and tube drain discharge. A specially designed multi scale experimental setup was installed in an agricultural lowland catchment in The Netherlands. At the catchment outlet, continuous measurements of water quality and discharge were performed from July 2007-January 2009. At an experimental field within the catchment we collected continuous measurements of precipitation, groundwater levels and tube drain discharges. 20 significant rainfall events with a variety of antecedent conditions, durations and intensities were selected for analysis. Singular and multiple regression analysis were used to identify relations between the N and P response to the rainfall events and the quantitative event characteristics. We successfully used these relations to predict the N and P responses to events and to improve the interpolation between low frequency grab sample measurements. Incorporating the predicted concentration changes during high discharge events dramatically improved the precision of our load estimations.
Load Adaptation of Lamellipodial Actin Networks.
Mueller, Jan; Szep, Gregory; Nemethova, Maria; de Vries, Ingrid; Lieber, Arnon D; Winkler, Christoph; Kruse, Karsten; Small, J Victor; Schmeiser, Christian; Keren, Kinneret; Hauschild, Robert; Sixt, Michael
2017-09-21
Actin filaments polymerizing against membranes power endocytosis, vesicular traffic, and cell motility. In vitro reconstitution studies suggest that the structure and the dynamics of actin networks respond to mechanical forces. We demonstrate that lamellipodial actin of migrating cells responds to mechanical load when membrane tension is modulated. In a steady state, migrating cell filaments assume the canonical dendritic geometry, defined by Arp2/3-generated 70° branch points. Increased tension triggers a dense network with a broadened range of angles, whereas decreased tension causes a shift to a sparse configuration dominated by filaments growing perpendicularly to the plasma membrane. We show that these responses emerge from the geometry of branched actin: when load per filament decreases, elongation speed increases and perpendicular filaments gradually outcompete others because they polymerize the shortest distance to the membrane, where they are protected from capping. This network-intrinsic geometrical adaptation mechanism tunes protrusive force in response to mechanical load. Copyright © 2017 Elsevier Inc. All rights reserved.
The effects of particle loading on turbulence structure and modelling
NASA Technical Reports Server (NTRS)
Squires, Kyle D.; Eaton, J. K.
1989-01-01
The objective of the present research was to extend the Direct Numerical Simulation (DNS) approach to particle-laden turbulent flows using a simple model of particle/flow interaction. The program addressed the simplest type of flow, homogeneous, isotropic turbulence, and examined interactions between the particles and gas phase turbulence. The specific range of problems examined include those in which the particle is much smaller than the smallest length scales of the turbulence yet heavy enough to slip relative to the flow. The particle mass loading is large enough to have a significant impact on the turbulence, while the volume loading was small enough such that particle-particle interactions could be neglected. Therefore, these simulations are relevant to practical problems involving small, dense particles conveyed by turbulent gas flows at moderate loadings. A sample of the results illustrating modifications of the particle concentration field caused by the turbulence structure is presented and attenuation of turbulence by the particle cloud is also illustrated.
14 CFR 23.485 - Side load conditions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Side load conditions. 23.485 Section 23.485... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure Ground Loads § 23.485 Side load conditions. (a) For the side load condition, the airplane is assumed to be in a level attitude...
14 CFR 23.485 - Side load conditions.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Side load conditions. 23.485 Section 23.485... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure Ground Loads § 23.485 Side load conditions. (a) For the side load condition, the airplane is assumed to be in a level attitude...
14 CFR 23.485 - Side load conditions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Side load conditions. 23.485 Section 23.485... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure Ground Loads § 23.485 Side load conditions. (a) For the side load condition, the airplane is assumed to be in a level attitude...
Densely ionizing radiation affects DNA methylation of selective LINE-1 elements1
Prior, Sara; Miousse, Isabelle R.; Nzabarushimana, Etienne; Pathak, Rupak; Skinner, Charles; Kutanzi, Kristy R.; Allen, Antiño R.; Raber, Jacob; Tackett, Alan J.; Hauer-Jensen, Martin; Nelson, Gregory A.; Koturbash, Igor
2016-01-01
Long Interspersed Nucleotide Element 1 (LINE-1) retrotransposons are heavily methylated and are the most abundant transposable elements in mammalian genomes. Here, we investigated the differential DNA methylation within the LINE-1 under normal conditions and in response to environmentally relevant doses of sparsely and densely ionizing radiation. We demonstrate that DNA methylation of LINE-1 elements in the lungs of C57BL6 mice is dependent on their evolutionary age, where the elder age of the element is associated with the lower extent of DNA methylation. Exposure to 5-aza-2′-deoxycytidine and methionine-deficient diet affected DNA methylation of selective LINE-1 elements in an age- and promoter type-dependent manner. Exposure to densely IR, but not sparsely IR, resulted in DNA hypermethylation of older LINE-1 elements, while the DNA methylation of evolutionary younger elements remained mostly unchanged. We also demonstrate that exposure to densely IR increased mRNA and protein levels of LINE-1 via the loss of the histone H3K9 dimethylation and an increase in the H3K4 trimethylation at the LINE-1 5′-untranslated region, independently of DNA methylation. Our findings suggest that DNA methylation is important for regulation of LINE-1 expression under normal conditions, but histone modifications may dictate the transcriptional activity of LINE-1 in response to exposure to densely IR. PMID:27419368
NASA Astrophysics Data System (ADS)
Nykyri, K.; Chu, C.; Dimmock, A. P.
2017-12-01
Previous studies have shown that plasma sheet in tenuous and hot during southward IMF, whereas northward IMF conditions are associated with cold, dense plasma. The cold, dense plasma sheet (CDPS) has strong influence on magnetospheric dynamics. Closer to Earth, the CDPS could be formed via double high-latitude reconnection, while at increasing tailward distance reconnection, diffusion and kinetic Alfven waves in association with Kelvin-Helmholtz Instability are suggested as dominant source for cold-dense plasma sheet formation. In this paper we present statistical correlation study between Solar Wind, Magnetosheath and Plasma sheet properties using 9+ years of THEMIS data in aberrated GSM frame, and in a normalized coordinate system that takes into account the changes of the magnetopause and bow shock location with respect to changing solar wind conditions. We present statistical results of the plasma sheet density dependence on IMF orientation and other solar wind properties.
Chamieh, Frédéric; Collignon, Anne-Margaux; Coyac, Benjamin R.; Lesieur, Julie; Ribes, Sandy; Sadoine, Jérémy; Llorens, Annie; Nicoletti, Antonino; Letourneur, Didier; Colombier, Marie-Laure; Nazhat, Showan N.; Bouchard, Philippe; Chaussain, Catherine; Rochefort, Gael Y.
2016-01-01
Therapies using mesenchymal stem cell (MSC) seeded scaffolds may be applicable to various fields of regenerative medicine, including craniomaxillofacial surgery. Plastic compression of collagen scaffolds seeded with MSC has been shown to enhance the osteogenic differentiation of MSC as it increases the collagen fibrillary density. The aim of the present study was to evaluate the osteogenic effects of dense collagen gel scaffolds seeded with mesenchymal dental pulp stem cells (DPSC) on bone regeneration in a rat critical-size calvarial defect model. Two symmetrical full-thickness defects were created (5 mm diameter) and filled with either a rat DPSC-containing dense collagen gel scaffold (n = 15), or an acellular scaffold (n = 15). Animals were imaged in vivo by microcomputer tomography (Micro-CT) once a week during 5 weeks, whereas some animals were sacrificed each week for histology and histomorphometry analysis. Bone mineral density and bone micro-architectural parameters were significantly increased when DPSC-seeded scaffolds were used. Histological and histomorphometrical data also revealed significant increases in fibrous connective and mineralized tissue volume when DPSC-seeded scaffolds were used, associated with expression of type I collagen, osteoblast-associated alkaline phosphatase and osteoclastic-related tartrate-resistant acid phosphatase. Results demonstrate the potential of DPSC-loaded-dense collagen gel scaffolds to benefit of bone healing process. PMID:27934940
Shadwick, Robert E; Goldbogen, Jeremy A; Pyenson, Nicholas D; Whale, James C A
2017-11-01
The mandibles of rorqual whales are highly modified to support loads associated with lunge-feeding, a dynamic filter feeding mechanism that is characterized by rapid changes in gape angle and acceleration. Although these structures are the largest ossified elements in animals and an important part of the rorqual engulfment apparatus, details of internal structure are limited and no direct measurements of mechanical properties exist. Likewise, the forces that are sustained by the mandibles are unknown. Here we report on the structure and mechanical behavior of the mandible of an adult fin whale. A series of transverse sections were cut at locations along the entire length of a 3.6-m left mandible recovered post-mortem from a 16-m fin whale, and CT scanned to make density maps. Cored samples 6-8 mm in diameter were tested in compression to determine the Young's modulus and strength. In addition, wet density, dry density and mineral density were measured. Dense cortical bone occupies only a relatively narrow peripheral layer while much less dense and oil-filled trabecular bone occupies the rest. Mineral density of both types is strongly correlated with dry density and CT Hounsfield units. Compressive strength is strongly correlated with Young's modulus, while strength and stiffness are both correlated with mineral density. It appears that the superficial compact layer is the main load bearing element, and that the mandible is reinforced against dorso-vental flexion that would occur during the peak loads while feeding. Anat Rec, 300:1953-1962, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Energy transfer dynamics in strongly inhomogeneous hot-dense-matter systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stillman, C. R.; Nilson, P. M.; Sefkow, A. B.
Direct measurements of energy transfer across steep density and temperature gradients in a hot-dense-matter system are presented. Hot dense plasma conditions were generated by high-intensity laser irradiation of a thin-foil target containing a buried metal layer. Energy transfer to the layer was measured using picosecond time-resolved x-ray emission spectroscopy. Here, the data show two x-ray flashes in time. Fully explicit, coupled particle-in-cell and collisional-radiative atomic kinetics model predictions reproduce these observations, connecting the two x-ray flashes with staged radial energy transfer within the target.
Energy transfer dynamics in strongly inhomogeneous hot-dense-matter systems
Stillman, C. R.; Nilson, P. M.; Sefkow, A. B.; ...
2018-06-25
Direct measurements of energy transfer across steep density and temperature gradients in a hot-dense-matter system are presented. Hot dense plasma conditions were generated by high-intensity laser irradiation of a thin-foil target containing a buried metal layer. Energy transfer to the layer was measured using picosecond time-resolved x-ray emission spectroscopy. Here, the data show two x-ray flashes in time. Fully explicit, coupled particle-in-cell and collisional-radiative atomic kinetics model predictions reproduce these observations, connecting the two x-ray flashes with staged radial energy transfer within the target.
NASA Astrophysics Data System (ADS)
Li, M.; Yuan, T.; Xu, Y. X.; Luo, S. N.
2018-05-01
When an intense picosecond laser pulse is loaded upon a dense plasma, a high energy density plasma bunch, including electron bunch and ion bunch, can be generated in the target. We simulate this process through one-dimensional particle-in-cell simulation and find that the electron bunch generation is mainly due to a local high energy density electron sphere originated in the plasma skin layer. Once generated the sphere rapidly expands to compress the surrounding electrons and induce high density electron layer, coupled with that, hot electrons are efficiently triggered in the local sphere and traveling in the whole target. Under the compressions of light pressure, forward-running and backward-running hot electrons, a high energy density electron bunch generates. The bunch energy density is as high as TJ/m3 order of magnitude in our conditions, which is significant in laser driven dynamic high pressure generation and may find applications in high energy density physics.
Subcritical crack growth behavior of Al2O3-glass dental composites.
Zhu, Qingshan; de With, Gijsbertus; Dortmans, Leonardus J M G; Feenstra, Frits
2003-05-15
The purpose of this study is to investigate the subcritical crack growth (SCG) behavior of alumina-glass dental composites. Alumina-glass composites were fabricated by infiltrating molten glass to porous alumina preforms. Rectangular bars of the composite were subject to dynamic loading in air, with stressing rates ranging from 0.01 MPa/s to 2 MPa/s. The SCG parameter n was determined to be 22.1 for the composite, which is substantially lower than those of high-purity dense alumina. Investigations showed that glass phases are responsible for the low n value as cracks propagate preferentially within glass phases or along the interface between glass phases and alumina phases, due to the fact that glasses are more vulnerable to chemical attacks by water molecules under stress corrosion conditions. The SCG behavior of the infiltration glass was also investigated and the SCG parameter n was determined to be 18.7. Copyright 2003 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 65B: 233-238, 2003
Shock-adiabatic to quasi-isentropic compression of warm dense helium up to 150 GPa
NASA Astrophysics Data System (ADS)
Zheng, J.; Chen, Q. F.; Gu, Y. J.; Li, J. T.; Li, Z. G.; Li, C. J.; Chen, Z. Y.
2017-06-01
Multiple reverberation compression can achieve higher pressure, higher temperature, but lower entropy. It is available to provide an important validation for the elaborate and wider planetary models and simulate the inertial confinement fusion capsule implosion process. In the work, we have developed the thermodynamic and optical properties of helium from shock-adiabatic to quasi-isentropic compression by means of a multiple reverberation technique. By this technique, the initial dense gaseous helium was compressed to high pressure and high temperature and entered the warm dense matter (WDM) region. The experimental equation of state (EOS) of WDM helium in the pressure-density-temperature (P-ρ -T) range of 1 -150 GPa , 0.1 -1.1 g c m-3 , and 4600-24 000 K were measured. The optical radiations emanating from the WDM helium were recorded, and the particle velocity profiles detecting from the sample/window interface were obtained successfully up to 10 times compression. The optical radiation results imply that dense He has become rather opaque after the 2nd compression with a density of about 0.3 g c m-3 and a temperature of about 1 eV. The opaque states of helium under multiple compression were analyzed by the particle velocity measurements. The multiple compression technique could efficiently enhanced the density and the compressibility, and our multiple compression ratios (ηi=ρi/ρ0,i =1 -10 ) of helium are greatly improved from 3.5 to 43 based on initial precompressed density (ρ0) . For the relative compression ratio (ηi'=ρi/ρi -1) , it increases with pressure in the lower density regime and reversely decreases in the higher density regime, and a turning point occurs at the 3rd and 4th compression states under the different loading conditions. This nonmonotonic evolution of the compression is controlled by two factors, where the excitation of internal degrees of freedom results in the increasing compressibility and the repulsive interactions between the particles results in the decreasing compressibility at the onset of electron excitation and ionization. In the P-ρ -T contour with the experiments and the calculations, our multiple compression states from insulating to semiconducting fluid (from transparent to opaque fluid) are illustrated. Our results give an elaborate validation of EOS models and have applications for planetary and stellar opaque atmospheres.
Li, Ling; Jones, Kodey E.; Sales, Brian C.; ...
2018-04-03
Magnetically isotropic bonded magnets with a high loading fraction of 70 vol.% Nd-Fe-B are fabricated via an extrusion-based additive manufacturing, or 3D printing system that enables rapid production of large parts. The density of the printed magnet is ~5.2 g/cm 3. The room temperature magnetic properties are: intrinsic coercivity Hci = 8.9 kOe (708.2 kA/m), remanence Br = 5.8 kG (0.58 T), and energy product (BH)max = 7.3 MGOe (58.1 kJ/m 3). The as-printed magnets are then coated with two types of polymers, both of which improve the thermal stability as revealed by flux aging loss measurements. Tensile tests performedmore » at 25 °C and 100 °C show that the ultimate tensile stress (UTS) increases with increasing loading fraction of the magnet powder, and decreases with increasing temperature. AC magnetic susceptibility and resistivity measurements show that the 3D printed Nd-Fe-B bonded magnets exhibit extremely low eddy current loss and high resistivity. Lastly, we demonstrate the performance of the 3D printed magnets in a DC motor configuration via back electromotive force measurements.« less
Shock interactions with heterogeneous energetic materials
NASA Astrophysics Data System (ADS)
Yarrington, Cole D.; Wixom, Ryan R.; Damm, David L.
2018-03-01
The complex physical phenomenon of shock wave interaction with material heterogeneities has significant importance and nevertheless remains little understood. In many materials, the observed macroscale response to shock loading is governed by characteristics of the microstructure. Yet, the majority of computational studies aimed at predicting phenomena affected by these processes, such as the initiation and propagation of detonation waves in explosives or shock propagation in geological materials, employ continuum material and reactive burn model treatment. In an effort to highlight the grain-scale processes that underlie the observable effects in an energetic system, a grain-scale model for hexanitrostilbene (HNS) has been developed. The measured microstructures were used to produce synthetic computational representations of the pore structure, and a density functional theory molecular dynamics derived equation of state (EOS) was used for the fully dense HNS matrix. The explicit inclusion of the microstructure along with a fully dense EOS resulted in close agreement with historical shock compression experiments. More recent experiments on the dynamic reaction threshold were also reproduced by inclusion of a global kinetics model. The complete model was shown to reproduce accurately the expected response of this heterogeneous material to shock loading. Mesoscale simulations were shown to provide a clear insight into the nature of threshold behavior and are a way to understand complex physical phenomena.
Shock interactions with heterogeneous energetic materials
Yarrington, Cole D.; Wixom, Ryan R.; Damm, David L.
2018-03-14
The complex physical phenomenon of shock wave interaction with material heterogeneities has significant importance and nevertheless remains little understood. In many materials, the observed macroscale response to shock loading is governed by characteristics of the microstructure. Yet the majority of computational studies aimed at predicting phenomena affected by these processes, such as initiation and propagation of detonation waves in explosives, or shock propagation in geological materials, employ continuum material and reactive burn model treatment. In an effort to highlight the grain-scale processes that underlie the observable effects in an energetic system, a grain-scale model for hexanitrostilbene (HNS) has been developed.more » Measured microstructures were used to produce synthetic computational representations of the pore structure, and a density functional theory molecular dynamics (DFT-MD) derived equation of state (EOS) was used for the fully dense HNS matrix. The explicit inclusion of microstructure along with a fully-dense EOS resulted in close agreement with historical shock compression experiments. More recent experiments on dynamic reaction threshold were also reproduced by inclusion of a global kinetics model. The complete model was shown to reproduce accurately the expected response of this heterogeneous material to shock loading. Mesoscale simulations were shown to provide clear insight into the nature of threshold behavior, and are a way to understand complex physical phenomena.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Ling; Jones, Kodey E.; Sales, Brian C.
Magnetically isotropic bonded magnets with a high loading fraction of 70 vol.% Nd-Fe-B are fabricated via an extrusion-based additive manufacturing, or 3D printing system that enables rapid production of large parts. The density of the printed magnet is ~5.2 g/cm 3. The room temperature magnetic properties are: intrinsic coercivity Hci = 8.9 kOe (708.2 kA/m), remanence Br = 5.8 kG (0.58 T), and energy product (BH)max = 7.3 MGOe (58.1 kJ/m 3). The as-printed magnets are then coated with two types of polymers, both of which improve the thermal stability as revealed by flux aging loss measurements. Tensile tests performedmore » at 25 °C and 100 °C show that the ultimate tensile stress (UTS) increases with increasing loading fraction of the magnet powder, and decreases with increasing temperature. AC magnetic susceptibility and resistivity measurements show that the 3D printed Nd-Fe-B bonded magnets exhibit extremely low eddy current loss and high resistivity. Lastly, we demonstrate the performance of the 3D printed magnets in a DC motor configuration via back electromotive force measurements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yarrington, Cole D.; Wixom, Ryan R.; Damm, David L.
The complex physical phenomenon of shock wave interaction with material heterogeneities has significant importance and nevertheless remains little understood. In many materials, the observed macroscale response to shock loading is governed by characteristics of the microstructure. Yet the majority of computational studies aimed at predicting phenomena affected by these processes, such as initiation and propagation of detonation waves in explosives, or shock propagation in geological materials, employ continuum material and reactive burn model treatment. In an effort to highlight the grain-scale processes that underlie the observable effects in an energetic system, a grain-scale model for hexanitrostilbene (HNS) has been developed.more » Measured microstructures were used to produce synthetic computational representations of the pore structure, and a density functional theory molecular dynamics (DFT-MD) derived equation of state (EOS) was used for the fully dense HNS matrix. The explicit inclusion of microstructure along with a fully-dense EOS resulted in close agreement with historical shock compression experiments. More recent experiments on dynamic reaction threshold were also reproduced by inclusion of a global kinetics model. The complete model was shown to reproduce accurately the expected response of this heterogeneous material to shock loading. Mesoscale simulations were shown to provide clear insight into the nature of threshold behavior, and are a way to understand complex physical phenomena.« less
Cyanobacteria blooms: effects on aquatic ecosystems.
Havens, Karl E
2008-01-01
Cyanobacteria become increasingly dominant as concentrations of TP and TN increase during eutrophication of lakes, rivers and estuaries. Temporal dynamics of cyanobacteria blooms are variable--in some systems persistent blooms occur in summer to fall, whereas in other systems blooms are more sporadic. Cyanobacteria blooms have a wide range of possible biological impacts including potential toxic effects on other algae, invertebrates and fish, impacts to plants and benthic algae due to shading, and impacts to food web function as large inedible algae produce a bottleneck to C and energy flow in the plankton food web. In lakes with dense blooms of cyanobacteria, accumulation of organic material in lake sediments and increased bacterial activity also may lead to anoxic conditions that alter the structure of benthic macro-invertebrates. Diffusive internal P loading may increase, and hypolimnetic anoxia may lead to a loss of piscivorous fish that require a summer cold water refuge in temperate lakes. Ecosystem changes associated with frequent blooms may result in delayed response of lakes, rivers and estuaries to external nutrient load reduction. Despite numerous case studies and a vast literature on species-specific responses, community level effects of cyanobacterial blooms are not well understood--in particular the realized impacts of toxins and changes in food web structure/function. These areas require additional research given the prevalence of toxic blooms in the nation's lakes, rivers and coastal waters--systems that provide a wide range of valued ecosystem services.
NASA Astrophysics Data System (ADS)
Rogante, Massimo; Söllradl, Stefan
2016-09-01
A complicated structural organization of polyurethanes may have a strong influence on the materials functional properties. Under particular conditions such as mechanical and thermal loading and aging, it leads to the material degradation, even in fresh-prepared bulk polymers and especially if defects are present in the material. Unwanted bubbles can be observed, which form during the expansion of the mixture during its chemical reaction and remain present in the final product. These macro-, micro- and nano-bubbles influence the material's performance. In this work, neutron radiography and tomography have been adopted to characterize at a macro-scale level the bulk of commercially available polyurethane samples, obtained from dissimilar- mixture ratios with different densities and branching levels as well as from different zones of the production mould. The characterisation allowed an estimation of the different dense materials - as they are used, e.g., in soles of shoes - as well as the invisible defects like pores and cracks, responsible for the materials fracture by mechanical loading. The obtained information are expected to be useful for various industrial sectors such as automotive and footwear industry. It will be completed by applying SANS, which has already proved to characterize the microstructure of the bulk-polymer with respect to nano-pores, micro-cracks and their arrangement in the polymer matrix.
Implementation and Re nement of a Comprehensive Model for Dense Granular Flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sundaresan, Sankaran
2015-09-30
Dense granular ows are ubiquitous in both natural and industrial processes. They manifest three di erent ow regimes, each exhibiting its own dependence on solids volume fraction, shear rate, and particle-level properties. This research project sought to develop continuum rheological models for dense granular ows that bridges multiple regimes of ow, implement them in open-source platforms for gas-particle ows and perform test simulations. The rst phase of the research covered in this project involved implementation of a steady- shear rheological model that bridges quasi-static, intermediate and inertial regimes of ow into MFIX (Multiphase Flow with Interphase eXchanges - a generalmore » purpose computer code developed at the National Energy Technology Laboratory). MFIX simulations of dense granular ows in hourglass-shaped hopper were then performed as test examples. The second phase focused on formulation of a modi ed kinetic theory for frictional particles that can be used over a wider range of particle volume fractions and also apply for dynamic, multi- dimensional ow conditions. To guide this work, simulations of simple shear ows of identical mono-disperse spheres were also performed using the discrete element method. The third phase of this project sought to develop and implement a more rigorous treatment of boundary e ects. Towards this end, simulations of simple shear ows of identical mono-disperse spheres con ned between parallel plates were performed and analyzed to formulate compact wall boundary conditions that can be used for dense frictional ows at at frictional boundaries. The fourth phase explored the role of modest levels of cohesive interactions between particles on the dense phase rheology. The nal phase of this project focused on implementation and testing of the modi ed kinetic theory in MFIX and running bin-discharge simulations as test examples.« less
Densely ionizing radiation affects DNA methylation of selective LINE-1 elements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prior, Sara; Miousse, Isabelle R.
Long Interspersed Nucleotide Element 1 (LINE-1) retrotransposons are heavily methylated and are the most abundant transposable elements in mammalian genomes. Here, we investigated the differential DNA methylation within the LINE-1 under normal conditions and in response to environmentally relevant doses of sparsely and densely ionizing radiation. We demonstrate that DNA methylation of LINE-1 elements in the lungs of C57BL6 mice is dependent on their evolutionary age, where the elder age of the element is associated with the lower extent of DNA methylation. Exposure to 5-aza-2′-deoxycytidine and methionine-deficient diet affected DNA methylation of selective LINE-1 elements in an age- and promotermore » type-dependent manner. Exposure to densely IR, but not sparsely IR, resulted in DNA hypermethylation of older LINE-1 elements, while the DNA methylation of evolutionary younger elements remained mostly unchanged. We also demonstrate that exposure to densely IR increased mRNA and protein levels of LINE-1 via the loss of the histone H3K9 dimethylation and an increase in the H3K4 trimethylation at the LINE-1 5′-untranslated region, independently of DNA methylation. Our findings suggest that DNA methylation is important for regulation of LINE-1 expression under normal conditions, but histone modifications may dictate the transcriptional activity of LINE-1 in response to exposure to densely IR. - Highlights: • DNA methylation of LINE-1 elements is dependent on their evolutionary age. • Densely ionizing radiation affects DNA methylation of selective LINE-1 elements. • Radiation-induced reactivation of LINE-1 is DNA methylation-independent. • Histone modifications dictate the transcriptional activity of LINE-1.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cryns, Jackson W.; Hatchell, Brian K.; Santiago-Rojas, Emiliano
Formal journal article Experimental analysis of a piezoelectric energy harvesting system for harmonic, random, and sine on random vibration Abstract: Harvesting power with a piezoelectric vibration powered generator using a full-wave rectifier conditioning circuit is experimentally compared for varying sinusoidal, random and sine on random (SOR) input vibration scenarios. Additionally, the implications of source vibration characteristics on harvester design are discussed. Studies in vibration harvesting have yielded numerous alternatives for harvesting electrical energy from vibrations but piezoceramics arose as the most compact, energy dense means of energy transduction. The rise in popularity of harvesting energy from ambient vibrations has mademore » piezoelectric generators commercially available. Much of the available literature focuses on maximizing harvested power through nonlinear processing circuits that require accurate knowledge of generator internal mechanical and electrical characteristics and idealization of the input vibration source, which cannot be assumed in general application. In this manuscript, variations in source vibration and load resistance are explored for a commercially available piezoelectric generator. We characterize the source vibration by its acceleration response for repeatability and transcription to general application. The results agree with numerical and theoretical predictions for in previous literature that load optimal resistance varies with transducer natural frequency and source type, and the findings demonstrate that significant gains are seen with lower tuned transducer natural frequencies for similar source amplitudes. Going beyond idealized steady state sinusoidal and simplified random vibration input, SOR testing allows for more accurate representation of real world ambient vibration. It is shown that characteristic interactions from more complex vibrational sources significantly alter power generation and power processing requirements by increasing harvested power, shifting optimal conditioning impedance, inducing significant voltage supply fluctuations and ultimately rendering idealized sinusoidal and random analyses insufficient.« less
NASA Astrophysics Data System (ADS)
Lee, Cheng-Hsien; Huang, Zhenhua
2018-05-01
The collapse process of a submerged granular column is strongly affected by its initial packing. Previous models for particle response time, which is used to quantify the drag force between the solid and liquid phases in rheology-based two-phase flow models, have difficulty in simulating the collapse process of granular columns with different initial concentrations (initial packing conditions). This study introduces a new model for particle response time, which enables us to satisfactorily model the drag force between the two phases for a wide range of volume concentration. The present model can give satisfactory results for both loose and dense packing conditions. The numerical results have shown that (i) the initial packing affects the occurrence of contractancy/diltancy behavior during the collapse process, (ii) the general buoyancy and drag force are strongly affected by the initial packing through contractancy and diltancy, and (iii) the general buoyancy and drag force can destabilize the granular material in loose packing condition but stabilize the granular material in dense packing condition. The results have shown that the collapse process of a densely-packed granular column is more sensitive to particle response time than that of a loosely-packed granular column.
The Physics of the Dense Z-Pinch in Theory and in Experiment With Application to Fusion Reactor
NASA Astrophysics Data System (ADS)
Haines, M. G.
1982-01-01
A new generation of Z-pinches employing high voltage, high current pulsed lines as power sources produce dense hot plasmas with enhanced stability properties. Three methods of Z-pinch formation are currently in use: (1) cylindrical collapse and compression of a pre-ionised gas; (2) laser initiation and Joule heating of a gas embedded pinch, and (3) hollow gas puff and subsequent collapse to the axis. The first method shows no dynamic bounce and no instability over about ten radial Alfvén transit times. The laser initiated Z-pinch shows benign helical structures, whilst the gas puff experiments are known for their high X-ray energy conversion associated with m = 0 instabilities. The first two experimental conditions are relevant for fusion. A calculation of energy balance for satisfying Lawson conditions with axial and radial energy losses and radiation loss shows that a current I of ~ 106 A and a line density N of 6 × 1018m-1 are required. This leads to two coincidences of physical quantities that are very favourable for controlled fusion. The first is that at this line density and under pressure balance the ratio of the ion Larmor radius to pinch radius is of order 1 so that a marked stabilisation of the configuration is expected. The second coincidence is that the current is only just below the Pease-Braginskii limit; this will permit the possibility of radiative collapse to attain the high density (~ 4 × 1027 m-3) and small radius (~ 20 μm) required for a compact (0.1 m long) discharge. The confining self-magnetic field is 104 T, the confinement time ~ 100 ns, and a matrix of pulsed discharges is envisaged in a moderator and breeding medium which does not have the wall-loading limitations of tokamaks.
Working memory load modulates microsaccadic rate.
Dalmaso, Mario; Castelli, Luigi; Scatturin, Pietro; Galfano, Giovanni
2017-03-01
Microsaccades are tiny eye movements that individuals perform unconsciously during fixation. Despite that the nature and the functions of microsaccades are still lively debated, recent evidence has shown an association between these micro eye movements and higher order cognitive processes. Here, in two experiments, we specifically focused on working memory and addressed whether differential memory load could be reflected in a modulation of microsaccade dynamics. In Experiment 1, participants memorized a numerical sequence composed of either two (low-load condition) or five digits (high-load condition), appearing at fixation. The results showed a reduction in the microsaccadic rate in the high-load compared to the low-load condition. In Experiment 2, five red or green digits were always presented at fixation. Participants either memorized the color (low-load condition) or the five digits (high-load condition). Hence, visual stimuli were exactly the same in both conditions. Consistent with Experiment 1, microsaccadic rate was lower in the high-load than in the low-load condition. Overall, these findings reveal that an engagement of working memory can have an impact on microsaccadic rate, consistent with the view that microsaccade generation is pervious to top-down processes.
Brian Beckage; James S. Clark; Barton D. Clinton; Bruce L. Haines
2000-01-01
We examined the importance of intermediate-sized gaps and a dense shrub layer on tree seedling recruitment in a Southern Appalachian deciduous forest. We created 12 canopy gaps under two contrasting understory conditions: 6 gaps were dominated by the dense, shade-producing shrub, Rhododendron maximum L., while the remaining gaps were relatively open...
Stephen R. Shifley; W. Keith Moser; David J. Nowak; Patrick D. Miles; Brett J. Butler; Francisco X. Aguilar; Ryan D. DeSantis; Eric J. Greenfield
2014-01-01
The Northern United States includes the 20 states bounded by Maine, Maryland, Missouri, and Minnesota. With 70 million ha of forestland and 124 million people, it is the most densely forested (42% of land area) and most densely populated (74 people/km2) quadrant of the United States. Three recent, large-scale, multiresource assessments of forest...
Compilation of load spectrum of loader drive axle
NASA Astrophysics Data System (ADS)
Wei, Yongxiang; Zhu, Haoyue; Tang, Heng; Yuan, Qunwei
2018-03-01
In order to study the preparation method of gear fatigue load spectrum for loaders, the load signal of four typical working conditions of loader is collected. The signal that reflects the law of load change is obtained by preprocessing the original signal. The torque of the drive axle is calculated by using the rain flow counting method. According to the operating time ratio of each working condition, the two dimensional load spectrum based on the real working conditions of the drive axle of loader is established by the cycle extrapolation and synthesis method. The two-dimensional load spectrum is converted into one-dimensional load spectrum by means of the mean of torque equal damage method. Torque amplification includes the maximum load torque of the main reduction gear. Based on the theory of equal damage, the accelerated cycles are calculated. In this way, the load spectrum of the loading condition of the drive axle is prepared to reflect loading condition of the loader. The load spectrum can provide reference for fatigue life test and life prediction of loader drive axle.
Browne, N K
2012-06-01
Coral growth rates (linear extension, density, calcification rates) of three fast-growing corals (Acropora, Montipora, Turbinaria) were studied in situ on Middle Reef, an inshore reef located on the central Great Barrier Reef (GBR), to assess the influence of changing environmental conditions on coral condition and reef growth. Middle Reef is subjected to both local (e.g. high sediment loads) and global (e.g. coral bleaching) disturbance events, usually associated with reduced coral growth. Results indicated, however, that Acropora growth rates (mean linear extension = 6.3 cm/year) were comparable to those measured at similar depths on offshore reefs on the GBR. Montipora linear extension (2.9 cm/year) was greater than estimates available from both clear-water and turbid reefs, and Turbinaria's dense skeleton (1.3 g/cm(3)) may be more resilient to physical damage as ocean pH falls. Coral growth was found to vary between reef habitats due to spatial differences in water motion and sediment dynamics, and temporally with lower calcification rates during the summer months when SSTs (monthly average 29 °C) and rainfall (monthly total >500 mm) were high. In summary, corals on Middle Reef are robust and resilient to their marginal environmental conditions, but are susceptible to anthropogenic disturbances during the summer months. Copyright © 2012 Elsevier Ltd. All rights reserved.
Influence of triaxial braid denier on ribbon-based fiber reinforced dental composites.
Karbhari, Vistasp M; Wang, Qiang
2007-08-01
The aim of the study was to compare the mechanical characteristics of two ultrahigh molecular weight polyethylene (UHMWPE) fiber-based triaxial braided reinforcements having different denier braider yarns used in fiber reinforced dental composites to elucidate differences in response and damage under flexural loading. Two commercially available triaxial braided reinforcing systems, differing in denier of the axial and braider yarns, using ultra high molecular weight polyethylene (UHMWPE) were used to reinforce rectangular bars towards the tensile surface which were tested in flexure. Mechanical characteristics including energy absorption were determined and results were compared based on Tukey post-test analysis and Weibull probability. Limited fatigue testing was also conducted for 100, 1000, and 10,000 cycles at a level of 75% of peak load. The effect of the braid denier on damage mechanisms was studied microscopically. The use of the triaxially braided ribbon as fiber reinforcement in the dental composite results in significant enhancement in flexural performance over that of the unreinforced dental composite (179% and 183% increase for the "thin" and "dense" braid reinforced specimens, respectively), with a fairly ductile, non-catastrophic post-peak response. With the exception of strain at peak load, there was very little difference between the performance from the two braid architectures. The intrinsic nature of the triaxial braid also results in very little decrease in flexural strength as a result of fatigue cycling at 75% of peak load. Use of the braids results in peak load levels which are substantially higher than those corresponding to points at which the dentin and unreinforced dental composites would fail. The total energy at peak load level is 56.8 and 60.7 times that at the level that dentin would fail if the reinforcement were not placed for the "thin" and "dense" reinforced braid reinforced composites, respectively. The research shows that in addition to enhancement in flexural performance characteristics, the use of a triaxial braid provides significant damage tolerance and fatigue resistance through its characteristic architecture wherein axial fibers are uncrimped and braider yarns provide shear resistance and enable local arrest of microcracks. Further, it is demonstrated that the decrease in braider yarn denier does not have a detrimental effect, with differences in performance characteristics, being in the main, statistically insignificant. This allows use of thinner reinforcement which provides ease of placement and better bonding without loss in performance.
NASA Technical Reports Server (NTRS)
Kussner, H G; Thalau, Karl
1933-01-01
Load factors and loading conditions are presented for German aircraft. Loading conditions under various stress factors are presented along with a breakdown of individual aircraft components such as landing gear, wings, etc.
Junwei Ma; Han Yuan; Sunderam, Sridhar; Besio, Walter; Lei Ding
2017-07-01
Neural activity inside the human brain generate electrical signals that can be detected on the scalp. Electroencephalograph (EEG) is one of the most widely utilized techniques helping physicians and researchers to diagnose and understand various brain diseases. Due to its nature, EEG signals have very high temporal resolution but poor spatial resolution. To achieve higher spatial resolution, a novel tri-polar concentric ring electrode (TCRE) has been developed to directly measure Surface Laplacian (SL). The objective of the present study is to accurately calculate SL for TCRE based on a realistic geometry head model. A locally dense mesh was proposed to represent the head surface, where the local dense parts were to match the small structural components in TCRE. Other areas without dense mesh were used for the purpose of reducing computational load. We conducted computer simulations to evaluate the performance of the proposed mesh and evaluated possible numerical errors as compared with a low-density model. Finally, with achieved accuracy, we presented the computed forward lead field of SL for TCRE for the first time in a realistic geometry head model and demonstrated that it has better spatial resolution than computed SL from classic EEG recordings.
Mapping the rheology of the Central Chile subduction zone with aftershocks
NASA Astrophysics Data System (ADS)
Frank, William B.; Poli, Piero; Perfettini, Hugo
2017-06-01
The postseismic deformation following a large (Mw >7) earthquake is expressed both seismically and aseismically. Recent studies have appealed to a model that suggests that the aseismic slip on the plate interface following the mainshock can be the driving factor in aftershock sequences, reproducing both the geodetic (afterslip) and seismic (aftershocks) observables of postseismic deformation. Exploiting this model, we demonstrate how a dense catalog of aftershocks following the 2015 Mw 8.3 Illapel earthquake in Central Chile can constrain the frictional and rheological properties of the creeping regions of the subduction interface. We first expand the aftershock catalog via a 19 month continuous matched-filter search and highlight the log-time expansion of seismicity following the mainshock, suggestive of afterslip as the main driver of aftershock activity. We then show how the time history of aftershocks can constrain the temporal evolution of afterslip. Finally, we use our dense aftershock catalog to estimate the rate and state rheological parameter (a - b)σ as a function of depth and demonstrate that this low value is compatible either with a nearly velocity-neutral friction (a≈b) in the regions of the megathrust that host afterslip, or an elevated pore fluid pressure (low effective normal stress σ) along the plate interface. Our results present the first snapshot of rheology in depth together with the evolution of the tectonic stressing rate along a plate boundary. The framework described here can be generalized to any tectonic context and provides a novel way to constrain the frictional properties and loading conditions of active faults.
NASA Astrophysics Data System (ADS)
Nanson, Gerald C.; Barbetti, Mike; Taylor, Gillian
1995-09-01
The Stanley River in western Tasmania, Australia, contains sub-fossil rainforest logs within the channel and floodplain. Of the more than 85 radiocarbon dates obtained, all but 3 date from 17 ka to the present and permit an interpretation of fluvial and related environmental changes over this period. Particular attention is focused on the interactive relationship between the river and its riparian rainforest. Following the Last Glacial Maximum, the Stanley River was a laterally active gravel-load system reworking most of its valley floor in the upstream reaches. With ameliorating conditions at the end of the Pleistocene, climate became less seasonal and flow regimes less energetic. Huon pines already present in the catchment, re-asserted themselves in the form of dense tree cover along the river banks and floodplains with basal floodplain deposition shifting from gravels to coarse sands and granules. By about 3.5 ka, a further change in climate reduced stream discharges substantially. As a result the channel reduced in size, transported finer sediment, became laterally stable, and the floodplain accreted with overbank deposits of sand and silt. Huon pines falling into the channel formed obstructions of woody debris, some surviving for 2 ka. These have reduced stream power and boundary shear stress, further contributing to channel stability. Generational sequences of Huon pines on the river banks, some extending back 1-2 ka, are additional evidence of this stability. Since the Pleistocene, changing climate and the re-establishment of dense riparian rainforest appear to have stabilised the river channels and floodplains of western Tasmania.
Bridge damage detection using spatiotemporal patterns extracted from dense sensor network
NASA Astrophysics Data System (ADS)
Liu, Chao; Gong, Yongqiang; Laflamme, Simon; Phares, Brent; Sarkar, Soumik
2017-01-01
The alarmingly degrading state of transportation infrastructures combined with their key societal and economic importance calls for automatic condition assessment methods to facilitate smart management of maintenance and repairs. With the advent of ubiquitous sensing and communication capabilities, scalable data-driven approaches is of great interest, as it can utilize large volume of streaming data without requiring detailed physical models that can be inaccurate and computationally expensive to run. Properly designed, a data-driven methodology could enable fast and automatic evaluation of infrastructures, discovery of causal dependencies among various sub-system dynamic responses, and decision making with uncertainties and lack of labeled data. In this work, a spatiotemporal pattern network (STPN) strategy built on symbolic dynamic filtering (SDF) is proposed to explore spatiotemporal behaviors in a bridge network. Data from strain gauges installed on two bridges are generated using finite element simulation for three types of sensor networks from a density perspective (dense, nominal, sparse). Causal relationships among spatially distributed strain data streams are extracted and analyzed for vehicle identification and detection, and for localization of structural degradation in bridges. Multiple case studies show significant capabilities of the proposed approach in: (i) capturing spatiotemporal features to discover causality between bridges (geographically close), (ii) robustness to noise in data for feature extraction, (iii) detecting and localizing damage via comparison of bridge responses to similar vehicle loads, and (iv) implementing real-time health monitoring and decision making work flow for bridge networks. Also, the results demonstrate increased sensitivity in detecting damages and higher reliability in quantifying the damage level with increase in sensor network density.
Early- and late-onset Alzheimer disease: Are they the same entity?
Tellechea, P; Pujol, N; Esteve-Belloch, P; Echeveste, B; García-Eulate, M R; Arbizu, J; Riverol, M
2018-05-01
Early-onset Alzheimer disease (EOAD), which presents in patients younger than 65 years, has frequently been described as having different features from those of late-onset Alzheimer disease (LOAD). This review analyses the most recent studies comparing the clinical presentation and neuropsychological, neuropathological, genetic, and neuroimaging findings of both types in order to determine whether EOAD and LOAD are different entities or distinct forms of the same entity. We observed consistent differences between clinical findings in EOAD and in LOAD. Fundamentally, the onset of EOAD is more likely to be marked by atypical symptoms, and cognitive assessments point to poorer executive and visuospatial functioning and praxis with less marked memory impairment. Alzheimer-type features will be more dense and widespread in neuropathology studies, with structural and functional neuroimaging showing greater and more diffuse atrophy extending to neocortical areas (especially the precuneus). In conclusion, available evidence suggests that EOAD and LOAD are 2 different forms of a single entity. LOAD is likely to be influenced by ageing-related processes. Copyright © 2015 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.
NASA Astrophysics Data System (ADS)
Karvatte, Nivaldo; Klosowski, Elcio Silvério; de Almeida, Roberto Giolo; Mesquita, Eduardo Eustáquio; de Oliveira, Caroline Carvalho; Alves, Fabiana Villa
2016-12-01
The objective of this paper was to perform a microclimate evaluation and determine the indexes of thermal comfort indexes, in sun and shade, in integrated crop-livestock-forest systems with different arrangements of eucalyptus and native trees, in the Brazilian Midwest. The experiment was conducted at Embrapa Beef Cattle in Campo Grande, state of Mato Grosso do Sul, Brazil, from July to September 2013. The evaluations were conducted on four consecutive days, from 8:00 a.m. to 5:00 p.m., local time (GMT -4:00), with 1 hour intervals, recording the microclimate parameters: air temperature (°C), black globe temperature (°C), wet bulb temperature (°C), relative humidity (%), and wind speed (m.s-1), for the subsequent calculation of the Temperature and Humidity Index, the Black Globe Temperature and Humidity Index, and the Radiant Thermal Load. The largest changes in microclimate parameters were found in the full sun, between 12:00 p.m. and 1:00 p.m., in less dense eucalyptus system, followed by the scattered native trees system, resulting in a maximum Temperature and Humidity Index of 81, Black Globe Temperature and Humidity Index of 88 and Radiant Thermal Load of 794 W m-2. Therefore, it is observed that with the presence of trees in pastures were possible reductions of up to 3.7 % in Temperature and Humidity Index, 10.2 % in the Black Globe Temperature and Humidity Index, and 28.3 % of the Radiant Thermal Load in the shade. Thus, one can conclude that the presence of trees and their arrangement in the systems provide better microclimate conditions and animal thermal comfort in pastures.
Karvatte, Nivaldo; Klosowski, Elcio Silvério; de Almeida, Roberto Giolo; Mesquita, Eduardo Eustáquio; de Oliveira, Caroline Carvalho; Alves, Fabiana Villa
2016-12-01
The objective of this paper was to perform a microclimate evaluation and determine the indexes of thermal comfort indexes, in sun and shade, in integrated crop-livestock-forest systems with different arrangements of eucalyptus and native trees, in the Brazilian Midwest. The experiment was conducted at Embrapa Beef Cattle in Campo Grande, state of Mato Grosso do Sul, Brazil, from July to September 2013. The evaluations were conducted on four consecutive days, from 8:00 a.m. to 5:00 p.m., local time (GMT -4:00), with 1 hour intervals, recording the microclimate parameters: air temperature (°C), black globe temperature (°C), wet bulb temperature (°C), relative humidity (%), and wind speed (m.s -1 ), for the subsequent calculation of the Temperature and Humidity Index, the Black Globe Temperature and Humidity Index, and the Radiant Thermal Load. The largest changes in microclimate parameters were found in the full sun, between 12:00 p.m. and 1:00 p.m., in less dense eucalyptus system, followed by the scattered native trees system, resulting in a maximum Temperature and Humidity Index of 81, Black Globe Temperature and Humidity Index of 88 and Radiant Thermal Load of 794 W m -2 . Therefore, it is observed that with the presence of trees in pastures were possible reductions of up to 3.7 % in Temperature and Humidity Index, 10.2 % in the Black Globe Temperature and Humidity Index, and 28.3 % of the Radiant Thermal Load in the shade. Thus, one can conclude that the presence of trees and their arrangement in the systems provide better microclimate conditions and animal thermal comfort in pastures.
NASA Astrophysics Data System (ADS)
Simmonds, Tegan; Hayes, Peter C.
2017-12-01
In the carbon looping combustion process the oxygen carrier is regenerated through oxidation in air; this process has been simulated by the oxidation of dense synthetic magnetite for selected temperatures and times. The oxidation of magnetite in air is shown to occur through the formation of dense hematite layers on the particle surface. This dense hematite forms through lath type shear transformations or solid-state diffusion through the product layer. Cyclic reduction in CO-CO2/oxidation in air of hematite single crystals has been carried out under controlled laboratory conditions at 1173 K (900 °C). It has been shown that the initial reduction step is critical to determining the product microstructure, which consists of gas pore dendrites in the magnetite matrix with blocky hematite formed on the pore surfaces. The progressive growth of the magnetite layer with the application of subsequent cycles appears to continue until no original hematite remains, after which physical disintegration of the particles takes place.
Curvature methods of damage detection using digital image correlation
NASA Astrophysics Data System (ADS)
Helfrick, Mark N.; Niezrecki, Christopher; Avitabile, Peter
2009-03-01
Analytical models have shown that local damage in a structure can be detected by studying changes in the curvature of the structure's displaced shape while under an applied load. In order for damage to be detected, located, and quantified using curvature methods, a spatially dense set of measurement points is required on the structure of interest and the change in curvature must be measurable. Experimental testing done to validate the theory is often plagued by sparse data sets and experimental noise. Furthermore, the type of load, the location and severity of the damage, and the mechanical properties (material and geometry) of the structure have a significant effect on how much the curvature will change. Within this paper, three-dimensional (3D) Digital Image Correlation (DIC) as one possible method for detecting damage through curvature methods is investigated. 3D DIC is a non-contacting full-field measurement technique which uses a stereo pair of digital cameras to capture surface shape. This approach allows for an extremely dense data set across the entire visible surface of an object. A test is performed to validate the approach on an aluminum cantilever beam. A dynamic load is applied to the beam which allows for measurements to be made of the beam's response at each of its first three resonant frequencies, corresponding to the first three bending modes of the structure. DIC measurements are used with damage detection algorithms to predict damage location with varying levels of damage inflicted in the form of a crack with a prescribed depth. The testing demonstrated that this technique will likely only work with structures where a large displaced shape is easily achieved and in cases where the damage is relatively severe. Practical applications and limitations of the technique are discussed.
The support of long wavelength loads on Venus
NASA Astrophysics Data System (ADS)
Benerdt, W. B.; Saunders, R. S.
1985-04-01
One of the great surprises of the Pioneer Venus mission was the high degree of correlation between topography and gravity found at all wavelengths. This implies a close relationship between topography and lateral subsurface density anomalies, such as those due to passive or dynamic compensation. Sleep-Phillips type compensation model with a variable crustal thickness and a variable upper mantle density was developed. The thin shell theory was used to investigate three end member cases: (1) loading by topographic construction, resulting in a downward deflection of the surface (no mantle support); (2) completely compensated support of a constructional load (no surface deflection); and (3) topography due entirely to upward deflection of the surface supported by a low density upper mantle (no surface load). In general, the models imply relatively thick crust and dense upper mantle for Ishtar Terra and Ovda Regio (western Aphrodite), thinned crust and buoyant upper mantle for Tethus Regio and regions near Sappho and Alpha Regio, and a nearly uniform crust with a buoyant upper mantle for Beta Regio and Atla Regio (eastern Aphrodite).
The Support of Long Wavelength Loads on Venus
NASA Technical Reports Server (NTRS)
Benerdt, W. B.; Saunders, R. S.
1985-01-01
One of the great surprises of the Pioneer Venus mission was the high degree of correlation between topography and gravity found at all wavelengths. This implies a close relationship between topography and lateral subsurface density anomalies, such as those due to passive or dynamic compensation. Sleep-Phillips type compensation model with a variable crustal thickness and a variable upper mantle density was developed. The thin shell theory was used to investigate three end member cases: (1) loading by topographic construction, resulting in a downward deflection of the surface (no mantle support); (2) completely compensated support of a constructional load (no surface deflection); and (3) topography due entirely to upward deflection of the surface supported by a low density upper mantle (no surface load). In general, the models imply relatively thick crust and dense upper mantle for Ishtar Terra and Ovda Regio (western Aphrodite), thinned crust and buoyant upper mantle for Tethus Regio and regions near Sappho and Alpha Regio, and a nearly uniform crust with a buoyant upper mantle for Beta Regio and Atla Regio (eastern Aphrodite).
Combined sewer overflows to surface waters detected by the anthropogenic marker caffeine.
Buerge, Ignaz J; Poiger, Thomas; Müller, Markus D; Buser, Hans-Rudolf
2006-07-01
Continuous progress in wastewater treatment technology and the growing number of households connected to wastewater treatment plants (WWTPs) have generally resulted in decreased environmental loading of many pollutants. Nonetheless, further reduction of pollutant inputs is required to improve the quality of surface waters in densely populated areas. In this context, the relative contribution of combined sewer overflows as sources of wastewater-derived contaminants has attracted more and more attention, but the quantitative importance of these overflows has barely been investigated. In this study, caffeine was successfully used as a chemical marker to estimate the fraction of sewer overflows in the catchment area of lake Greifensee, Switzerland. Caffeine is a ubiquitous compound in raw, domestic wastewater with typical per capita loads of approximately 16 mg person(-1) d(-1). In WWTPs of the Greifensee region, caffeine is largely eliminated (>99%), resulting in much smaller loads of < or = 0.15 mg person(-1) d(-1) in treated wastewater. However, in receiving streams as in the inflows to Greifensee, caffeine loads (0.1-1.6 mg person(-1) d(-1)) were higher than those in WWTP effluents, indicating additional sources. As the loads in the streams correlated with precipitation during sampling, it was concluded that combined sewer overflows were the most likely source of caffeine. Using a mass balance approach, it was possible to determine the fraction of wastewater (in dry weather equivalents) discharged untreated to the receiving streams (up to 10%, annual mean, approximately 2-3%). The concept of caffeine as a marker for combined sewer overflows was then applied to estimate phosphorus inputs to Greifensee with untreated and treated wastewater (approximately 1.5 and 2.0 t P y(-1), respectively), which corresponded well with P inputs determined in a separate study based on hydraulic considerations. For compounds with high elimination in WWTPs such as phosphorus (96-98% in the Greifensee area), inputs from combined sewer overflows are thus of similar magnitude as inputs from treated wastewater. The study demonstrated that caffeine is a suitable marker for untreated wastewater (from combined sewer overflows, direct discharges, etc.), but its sensitivity depends on regional conditions and decreases with decreasing elimination efficiency in WWTPs.
NASA Technical Reports Server (NTRS)
Kussner, H G; Thalau, Karl
1933-01-01
Load factors and loading conditions are presented for Germany, England, and the United States. Results of tests are presented and loading conditions are presented under various stress categories like freight, commercial, aerobatics, and training.
The effects of acute stress and perceptual load on distractor interference.
Sato, Hirotsune; Takenaka, Ippei; Kawahara, Jun I
2012-01-01
Selective attention can be improved under conditions in which a high perceptual load is assumed to exhaust cognitive resources, leaving scarce resources for distractor processing. The present study examined whether perceptual load and acute stress share common attentional resources by manipulating perceptual and stress loads. Participants identified a target within an array of nontargets that were flanked by compatible or incompatible distractors. Attentional selectivity was measured by longer reaction times in response to the incompatible than to the compatible distractors. Participants in the stress group participated in a speech test that increased anxiety and threatened self-esteem. The effect of perceptual load interacted with the stress manipulation in that participants in the control group demonstrated an interference effect under the low perceptual load condition, whereas such interference disappeared under the high perceptual load condition. Importantly, the stress group showed virtually no interference under the low perceptual load condition, whereas substantial interference occurred under the high perceptual load condition. These results suggest that perceptual and stress related demands consume the same attentional resources.
Multifunctional nanocomposite hollow fiber membranes by solvent transfer induced phase separation.
Haase, Martin F; Jeon, Harim; Hough, Noah; Kim, Jong Hak; Stebe, Kathleen J; Lee, Daeyeon
2017-11-01
The decoration of porous membranes with a dense layer of nanoparticles imparts useful functionality and can enhance membrane separation and anti-fouling properties. However, manufacturing of nanoparticle-coated membranes requires multiple steps and tedious processing. Here, we introduce a facile single-step method in which bicontinuous interfacially jammed emulsions are used to form nanoparticle-functionalized hollow fiber membranes. The resulting nanocomposite membranes prepared via solvent transfer-induced phase separation and photopolymerization have exceptionally high nanoparticle loadings (up to 50 wt% silica nanoparticles) and feature densely packed nanoparticles uniformly distributed over the entire membrane surfaces. These structurally well-defined, asymmetric membranes facilitate control over membrane flux and selectivity, enable the formation of stimuli responsive hydrogel nanocomposite membranes, and can be easily modified to introduce antifouling features. This approach forms a foundation for the formation of advanced nanocomposite membranes comprising diverse building blocks with potential applications in water treatment, industrial separations and as catalytic membrane reactors.
Preparation and biomedical applications of programmable and multifunctional DNA nanoflowers
Lv, Yifan; Hu, Rong; Zhu, Guizhi; Zhang, Xiaobing; Mei, Lei; Liu, Qiaoling; Qiu, Liping; Wu, Cuichen; Tan, Weihong
2016-01-01
We describe a comprehensive protocol for the preparation of multifunctional DNA nanostructures termed nanoflowers (NFs), which are self-assembled from long DNA building blocks generated via rolling-circle replication (RCR) of a designed template. NF assembly is driven by liquid crystallization and dense packaging of building blocks, which eliminates the need for conventional Watson-Crick base pairing. As a result of dense DNA packaging, NFs are resistant to nuclease degradation, denaturation or dissociation at extremely low concentrations. By manually changing the template sequence, many different functional moieties including aptamers, bioimaging agents and drug-loading sites could be easily integrated into NF particles, making NFs ideal candidates for a variety of applications in biomedicine. In this protocol, the preparation of multifunctional DNA NFs with highly tunable sizes is described for applications in cell targeting, intracellular imaging and drug delivery. Preparation and characterization of functional DNA NFs takes ~5 d; the following biomedical applications take ~10 d. PMID:26357007
The Importance of the Initial State in Understanding Shocked Porous Materials
NASA Astrophysics Data System (ADS)
Mattsson, Thomas R.; Cochrane, Kyle R.; Lane, J. Matthew D.; Weck, Philippe F.; Vogler, Tracy J.; Shulenburger, Luke
Modeling the response of porous materials to shock loading presents a variety of theoretical challenges, however if done well it can open a whole new area of phase space for probing the equation of state of materials. Shocked porous materials achieve significantly hotter temperatures for the same drive than fully dense ones. By combining ab initio calculations of fully dense material with a model of porosity we show the critical importance of an accurate treatment of the initial state in understanding these experiments. This approach is also directly applicable to present application of tabular equations of state to the modeling of porous material. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Kitamura, M.; Takahashi, M.; Takagi, K.; Hirano, N.; Tsuchiya, N.
2017-12-01
To extract geothermal energy effectively and safely from magma and/or adjacent hot rock, we need to tackle many issues which require new technology development, such as a technique to control a risk from induced-earthquakes. On a development of induced-earthquake mitigation technology, it is required to understand roles of factors on occurrences of the induced-earthquake (e.g., strength, crack density, and fluid-rock reaction) and their intercorrelations (e.g., Asanuma et al., 2012). Our purpose of this series of experiments is to clarify a relationship between the rock strength and the crack density under supercritical conditions. We conducted triaxial deformation test on intact granite rock strength under high-temperature (250 - 750°C), high-pressure (104 MPa) condition at a constant load velocity (0.1 μm/sec) using a gas-rig at AIST. We used Oshima granite, which has initially <0.2 % of the porosity, 4.29±0.55 km/s in Vp (dry), and 2.49±0.19 km/s in Vs (dry). All experimental products showed the brittle feature having several oblique fracture surfaces, but the amount of stress drop became smaller at higher temperature. Young's modulus increased with decreasing the temperature from 32.3 GPa at 750°C to 57.4 GPa at 250°C. At 400 °C, the stress drop accelerated the deformation with 98 times faster velocity than that at load-point. In contrast, at 650°C and 750°C, the velocity during stress drop kept the same order of the load-point velocity. Therefore, the deformation mechanism may start to be changed from brittle to ductile when the temperature exceeds 650°C. Highly dense cracked granite specimens were formed by a rapid decompression test (RDT) using an autoclave settled at Tohoku University (Hirano et al., 2016JpGU), caused by a reduction of fluid pressure within 1-2 sec from vapor/supercritical state (10 - 48 MPa, 550 °C) to ambient pressure. The specimens after RDT show numerous microcracks on X-ray CT images. The RDT imposed the porosity increasing towards 3.75 % and Vp and Vs decreasing towards 1.37±0.52 km/s and 0.97±0.25 km/s. The Poisson's ratio shows the negative values in dry and 0.5 in wet. In the meeting, we will present results of triaxial deformation test on such cracked granites and show the relationship between strength and crack density under supercritical conditions.
14 CFR 23.521 - Water load conditions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Water load conditions. 23.521 Section 23... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure Water Loads § 23.521 Water load conditions. (a) The structure of seaplanes and amphibians must be designed for water...
14 CFR 23.521 - Water load conditions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Water load conditions. 23.521 Section 23... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure Water Loads § 23.521 Water load conditions. (a) The structure of seaplanes and amphibians must be designed for water...
14 CFR 23.521 - Water load conditions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Water load conditions. 23.521 Section 23... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure Water Loads § 23.521 Water load conditions. (a) The structure of seaplanes and amphibians must be designed for water...
14 CFR 23.521 - Water load conditions.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Water load conditions. 23.521 Section 23... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure Water Loads § 23.521 Water load conditions. (a) The structure of seaplanes and amphibians must be designed for water...
Jammed Clusters and Non-locality in Dense Granular Flows
NASA Astrophysics Data System (ADS)
Kharel, Prashidha; Rognon, Pierre
We investigate the micro-mechanisms underpinning dense granular flow behaviour from a series of DEM simulations of pure shear flows of dry grains. We observe the development of transient clusters of jammed particles within the flow. Typical size of such clusters is found to scale with the inertial number with a power law that is similar to the scaling of shear-rate profile relaxation lengths observed previously. Based on the simple argument that transient clusters of size l exist in the dense flow regime, the formulation of steady state condition for non-homogeneous shear flow results in a general non-local relation, which is similar in form to the non-local relation conjectured for soft glassy flows. These findings suggest the formation of jammed clusters to be the key micro-mechanism underpinning non-local behaviour in dense granular flows. Particles and Grains Laboratory, School of Civil Engineering, The University of Sydney, Sydney, NSW 2006, Australia.
Vázquez-Guerrero, Jairo; Moras, Gerard; Baeza, Jennifer; Rodríguez-Jiménez, Sergio
2016-01-01
The purpose of the study was to compare the force outputs achieved during a squat exercise using a rotational inertia device in stable versus unstable conditions with different loads and in concentric and eccentric phases. Thirteen male athletes (mean ± SD: age 23.7 ± 3.0 years, height 1.80 ± 0.08 m, body mass 77.4 ± 7.9 kg) were assessed while squatting, performing one set of three repetitions with four different loads under stable and unstable conditions at maximum concentric effort. Overall, there were no significant differences between the stable and unstable conditions at each of the loads for any of the dependent variables. Mean force showed significant differences between some of the loads in stable and unstable conditions (P < 0.010) and peak force output differed between all loads for each condition (P < 0.045). Mean force outputs were greater in the concentric than in the eccentric phase under both conditions and with all loads (P < 0.001). There were no significant differences in peak force between concentric and eccentric phases at any load in either stable or unstable conditions. In conclusion, squatting with a rotational inertia device allowed the generation of similar force outputs under stable and unstable conditions at each of the four loads. The study also provides empirical evidence of the different force outputs achieved by adjusting load conditions on the rotational inertia device when performing squats, especially in the case of peak force. Concentric force outputs were significantly higher than eccentric outputs, except for peak force under both conditions. These findings support the use of the rotational inertia device to train the squatting exercise under unstable conditions for strength and conditioning trainers. The device could also be included in injury prevention programs for muscle lesions and ankle and knee joint injuries.
Vázquez-Guerrero, Jairo; Moras, Gerard
2016-01-01
The purpose of the study was to compare the force outputs achieved during a squat exercise using a rotational inertia device in stable versus unstable conditions with different loads and in concentric and eccentric phases. Thirteen male athletes (mean ± SD: age 23.7 ± 3.0 years, height 1.80 ± 0.08 m, body mass 77.4 ± 7.9 kg) were assessed while squatting, performing one set of three repetitions with four different loads under stable and unstable conditions at maximum concentric effort. Overall, there were no significant differences between the stable and unstable conditions at each of the loads for any of the dependent variables. Mean force showed significant differences between some of the loads in stable and unstable conditions (P < 0.010) and peak force output differed between all loads for each condition (P < 0.045). Mean force outputs were greater in the concentric than in the eccentric phase under both conditions and with all loads (P < 0.001). There were no significant differences in peak force between concentric and eccentric phases at any load in either stable or unstable conditions. In conclusion, squatting with a rotational inertia device allowed the generation of similar force outputs under stable and unstable conditions at each of the four loads. The study also provides empirical evidence of the different force outputs achieved by adjusting load conditions on the rotational inertia device when performing squats, especially in the case of peak force. Concentric force outputs were significantly higher than eccentric outputs, except for peak force under both conditions. These findings support the use of the rotational inertia device to train the squatting exercise under unstable conditions for strength and conditioning trainers. The device could also be included in injury prevention programs for muscle lesions and ankle and knee joint injuries. PMID:27111766
Devaney chaos, Li-Yorke chaos, and multi-dimensional Li-Yorke chaos for topological dynamics
NASA Astrophysics Data System (ADS)
Dai, Xiongping; Tang, Xinjia
2017-11-01
Let π : T × X → X, written T↷π X, be a topological semiflow/flow on a uniform space X with T a multiplicative topological semigroup/group not necessarily discrete. We then prove: If T↷π X is non-minimal topologically transitive with dense almost periodic points, then it is sensitive to initial conditions. As a result of this, Devaney chaos ⇒ Sensitivity to initial conditions, for this very general setting. Let R+↷π X be a C0-semiflow on a Polish space; then we show: If R+↷π X is topologically transitive with at least one periodic point p and there is a dense orbit with no nonempty interior, then it is multi-dimensional Li-Yorke chaotic; that is, there is a uncountable set Θ ⊆ X such that for any k ≥ 2 and any distinct points x1 , … ,xk ∈ Θ, one can find two time sequences sn → ∞ ,tn → ∞ with Moreover, let X be a non-singleton Polish space; then we prove: Any weakly-mixing C0-semiflow R+↷π X is densely multi-dimensional Li-Yorke chaotic. Any minimal weakly-mixing topological flow T↷π X with T abelian is densely multi-dimensional Li-Yorke chaotic. Any weakly-mixing topological flow T↷π X is densely Li-Yorke chaotic. We in addition construct a completely Li-Yorke chaotic minimal SL (2 , R)-acting flow on the compact metric space R ∪ { ∞ }. Our various chaotic dynamics are sensitive to the choices of the topology of the phase semigroup/group T.
Predicting the safe load on backpacker's arm using Lagrange multipliers method
NASA Astrophysics Data System (ADS)
Abdalla, Faisal Saleh; Rambely, Azmin Sham
2014-09-01
In this study, a technique has been suggested to reduce a backpack load by transmitting determined loads to the children arm. The purpose of this paper is to estimate school children arm muscles while load carriage as well as to determine the safe load can be carried at wrist while walking with backpack. A mathematical model, as three DOFs model, was investigated in the sagittal plane and Lagrange multipliers method (LMM) was utilized to minimize a quadratic objective function of muscle forces. The muscle forces were minimized with three different load conditions which are termed as 0-L=0 N, 1-L=21.95 N, and 2-L=43.9 N. The investigated muscles were estimated and compared to their maximum forces throughout the load conditions. Flexor and extensor muscles were estimated and the results showed that flexor muscles were active while extensor muscles showed inactivity. The estimated muscle forces were didn't exceed their maximum forces with 0-L and 1-L conditions whereas biceps and FCR muscles exceeded their maximum forces with 2-L condition. Consequently, 1-L condition is quiet safe to be carried by hand whereas 2-L condition is not. Thus to reduce the load in the backpack the transmitted load shouldn't exceed 1-L condition.
NASA Technical Reports Server (NTRS)
Poole, Lamont R.; Councill, Earl L., Jr.
1972-01-01
A series of tests has been conducted to investigate the elastic behavior of Viking-type suspension-line material under dynamic loading conditions. Results indicate that there is a decrease in both rupture-load capability and elongation at rupture as the test strain rate is increased. Preliminary examination of force-strain characteristics indicates that, on the average, the material exhibits some type of viscous effect which results in a greater force being produced, for a particular value of strain, under dynamic loading conditions than that produced under quasi-static loading conditions. A great deal of uncertainty exists in defining a priori the tensile properties of viscoelastic materials, such as nylon or dacron, under dynamic loading conditions. Additional uncertainty enters the picture when woven configurations such as suspension,line material are considered. To eliminate these uncertainties, with respect to the Viking parachute configuration, a test program has been conducted to obtain data on the tensile properties of Viking-type suspension-line material over a wide range of strain rates. Based on preliminary examination of these data, the following conclusions can be drawn: 1. Material rupture-load capability decreases as strain-rate is increased. At strain rates above 75 percent/sec, no rupture loads were observed which would meet the minimum tensile strength specification of 880 pounds. 2. The material, on the average, exhibits some type of viscous effect which, for a particular value of strain, produces a greater load under dynamic loading conditions than that produced under quasi-static loading conditions.
[Triton X-100 induces heritable changes of morphological characters in Triticum aestivum L].
Makhmudova, K Kh; Bogdanova, E D; Levites, E V
2009-04-01
The effect of the nonionic detergent polyethylene glycol octylphenyl ester (Triton X-100, TX-100) on the spring common wheat cultivar Alem was studied under laboratory and field conditions. Treatment of seeds and vegetating plants with 0.1 or 0.01% TX-100 (aqueous solution) changed the spike morphology in all plants of the first posttreatment generation. The changes were inherited by the second generation without additional treatment with TX-100. Square-headed dense spikes with doubled spikelets of the duospiculum type (an additional spikelet at the top of the main one), elongate dense and lax spikes, mid-dense spikes, and fusiform spikes were observed. An epigenetic nature was assumed for the observed changes.
Classical dense matter physics: some basic methods and results
NASA Astrophysics Data System (ADS)
Čelebonović, Vladan
2002-07-01
This is an introduction to the basic notions, some methods and open problems of dense matter physics and their applications in astrophysics. Experimental topics cover the range from the work of P. W. Bridgman to the discovery and basic results of use of the diamond anvil cell. On the theoretical side, the semiclassical method of P. Savić and R. Kašanin is described. The choice of these topics is conditioned by their applicability in astrophysics and the author's research experience. At the end of the paper is presented a list of some unsolved problems in dense matter physics and astrophysics, some (or all) of which could form a basis of future collaborations.
Stress and Displacement Analysis of Microreactors during Thermal and Vacuum Loading
2017-09-07
and extend the available energy density well beyond state-of-the-art battery technology (140 W·h/kg for rechargeable lithium [Li]- ion technology).1...time. In the 10–100 W+ power range, battery technology is the best solution currently available, but higher-energy dense technologies are needed to...augment batteries and extend the available energy density well beyond state-of-the-art battery technology. One way to approach this is to take
An Investigation of DC-DC Converter Power Density Using Si and SiC MOSFETS
2010-05-07
submarine or small surface combatant, volumetric constraints quickly become extremely prohibitive. Dedicating generators for high power loads takes...thermal compounds were applied to the MOSFET-heat sink interface. For the Si APT26F120B2, MG Chemicals TC-450ML thermal epoxy was used to connect the... submarines , bus converter modules must be made optimally power dense in order to decrease volumetric requirements of the modules for a rated throughput
Transient effects of sudden changes of heat load in a naturally ventilated room
NASA Astrophysics Data System (ADS)
Caulfield, C. P.; Bower, D. J.; Fitzgerald, S.; Woods, A. W.
2006-11-01
Using reduced numerical models and small-scale laboratory experiments, we investigate the transient effects of changing isolated heat loads discontinuously within a large, ventilated space. We consider the emptying filling box (with high and low openings) driven by a single isolated source of buoyancy. The original steady state consists of a buoyant layer, whose depth (for the simplest case of a point source plume) is determined by the geometric properties of the room alone. When the buoyancy flux of the source is increased, a new layer `fills' the room from the top with a more buoyant layer. The original layer disappears due to entrainment by the rising plume. The behaviour is qualitatively different when the source buoyancy flux is decreased. In this case, the rising plume fluid is now relatively dense, and so it inevitably collapses back to `intrude' below the original layer. In this case, the original layer disappears due to both draining through the upper opening, and penetrative entrainment by the dense plume. We compare the predictions of three numerical models using different penetrative entrainment parametrizations to a sequence of laboratory experiments. This entrainment reduces the density of the intruding layer, and so the rising plume eventually stalls, and no longer reaches the (draining) original layer. We demonstrate that it is necessary to consider the transient effects of penetrative entrainment when the reduction in source buoyancy flux is sufficiently small.
Maziade, M; Gingras, N; Rouleau, N; Poulin, S; Jomphe, V; Paradis, M-E; Mérette, C; Roy, M-A
2008-02-01
The follow-up since 1989 of a large sample of multigenerational families of eastern Québec that are densely affected by schizophrenia (SZ) or bipolar disorder (BP) has permitted to look at the rates of DSM diagnoses in the young offspring of a SZ parent (HRSZ) and of a BP parent (HRBP) who had an extremely loaded family history. The sample (average age of 17.5, SD 4.5) consisted of 54 high-risk offspring (HR) having one parent affected by a DSM-IV SZ or BP. The parents descended from 21 multigenerational families that constitute a quasi-total sample of such kindred in eastern Québec. The HRs were administered a lifetime best estimate DSM-IV diagnosis. We observed that the rates, the diversity of diagnoses, the high comorbidity, the severity and the age of onset of the clinical diagnoses tended to be similar with those already reported in the offspring of affected parents with a low familial loading. Although the sample size was small, HRSZ and HRBP also tended to show similarities in their clinical status. Overall, taking into account methodological limitations, the observation early in life of some shared characteristics among HRSZ and HRBP in terms of non-psychotic diagnosis may be congruent with the accumulating evidence that several phenotypic features are shared in adulthood by the two major psychoses.
1994-06-03
transport , the effects of technology, terrain and weather, and physical conditioning. Load, Soidier’s Load, Rucksack, Physical Conditioning, Combat Load...Fighting Load, Sustainment Load, Approach March Load, Fear, Fatigue, Risk, Training, Transport , Techn-logy UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED I .1 THE...standards, myths of peacetime training, the nature of the soldier, lack of transport , the effects of technology, terrain and weather, and physical
Folkvord, Frans; Anschütz, Doeschka J; Buijzen, Moniek; Valkenburg, Patti M
2013-02-01
Previous studies have focused on the effects of television advertising on the energy intake of children. However, the rapidly changing food-marketing landscape requires research to measure the effects of nontraditional forms of marketing on the health-related behaviors of children. The main aim of this study was to examine the effect of advergames that promote energy-dense snacks or fruit on children's ad libitum snack and fruit consumption and to examine whether this consumption differed according to brand and product type (energy-dense snacks and fruit). The second aim was to examine whether advergames can stimulate fruit intake. We used a randomized between-subject design with 270 children (age: 8-10 y) who played an advergame that promoted energy-dense snacks (n = 69), fruit (n = 67), or nonfood products (n = 65) or were in the control condition (n = 69). Subsequently, we measured the free intake of energy-dense snacks and fruit. The children then completed questionnaire measures, and we weighed and measured them. The main finding was that playing an advergame containing food cues increased general energy intake, regardless of the advertised brand or product type (energy-dense snacks or fruit), and this activity particularly increased the intake of energy-dense snack foods. Children who played the fruit version of the advergame did not eat significantly more fruit than did those in the other groups. The findings suggest that playing advergames that promote food, including either energy-dense snacks or fruit, increases energy intake in children.
THE GREEN BANK TELESCOPE MAPS THE DENSE, STAR-FORMING GAS IN THE NEARBY STARBURST GALAXY M82
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kepley, Amanda A.; Frayer, David; Leroy, Adam K.
Observations of the Milky Way and nearby galaxies show that dense molecular gas correlates with recent star formation, suggesting that the formation of this gas phase may help regulate star formation. A key test of this idea requires wide-area, high-resolution maps of dense molecular gas in galaxies to explore how local physical conditions drive dense gas formation, but these observations have been limited because of the faintness of dense gas tracers like HCN and HCO{sup +}. Here we demonstrate the power of the Robert C. Byrd Green Bank Telescope (GBT)—the largest single-dish millimeter radio telescope—for mapping dense gas in galaxiesmore » by presenting the most sensitive maps yet of HCN and HCO{sup +} in the starburst galaxy M82. The HCN and HCO{sup +} in the disk of this galaxy correlates with both recent star formation and more diffuse molecular gas and shows kinematics consistent with a rotating torus. The HCO{sup +} emission extending to the north and south of the disk is coincident with the outflow previously identified in CO and traces the eastern edge of the hot outflowing gas. The central starburst region has a higher ratio of star formation to dense gas than the outer regions, pointing to the starburst as a key driver of this relationship. These results establish that the GBT can efficiently map the dense molecular gas at 90 GHz in nearby galaxies, a capability that will increase further with the 16 element feed array under construction.« less
High-Energy Two-Stage Pulsed Plasma Thruster
NASA Technical Reports Server (NTRS)
Markusic, Tom
2003-01-01
A high-energy (28 kJ per pulse) two-stage pulsed plasma thruster (MSFC PPT-1) has been constructed and tested. The motivation of this project is to develop a high power (approximately 500 kW), high specific impulse (approximately 10000 s), highly efficient (greater than 50%) thruster for use as primary propulsion in a high power nuclear electric propulsion system. PPT-1 was designed to overcome four negative characteristics which have detracted from the utility of pulsed plasma thrusters: poor electrical efficiency, poor propellant utilization efficiency, electrode erosion, and reliability issues associated with the use of high speed gas valves and high current switches. Traditional PPTs have been plagued with poor efficiency because they have not been operated in a plasma regime that fully exploits the potential benefits of pulsed plasma acceleration by electromagnetic forces. PPTs have generally been used to accelerate low-density plasmas with long current pulses. Operation of thrusters in this plasma regime allows for the development of certain undesirable particle-kinetic effects, such as Hall effect-induced current sheet canting. PPT-1 was designed to propel a highly collisional, dense plasma that has more fluid-like properties and, hence, is more effectively pushed by a magnetic field. The high-density plasma loading into the second stage of the accelerator is achieved through the use of a dense plasma injector (first stage). The injector produces a thermal plasma, derived from a molten lithium propellant feed system, which is subsequently accelerated by the second stage using mega-amp level currents, which eject the plasma at a speed on the order of 100 kilometers per second. Traditional PPTs also suffer from dynamic efficiency losses associated with snowplow loading of distributed neutral propellant. The twostage scheme used in PPT-I allows the propellant to be loaded in a manner which more closely approximates the optimal slug loading. Lithium propellant was chosen to test whether or not the reduced electrode erosion found in the Lithium Lorentz Force Accelerator (LiLFA) could also be realized in a pulsed plasma thruster. The use of the molten lithium dense plasma injector also eliminates the need for a gas valve and electrical switch; the injector design fulfills both roles, and uses no moving parts to provide, in principle, a highly reliable propellant feed and electrical switching system. Experimental results reported in this paper include: second-stage current traces, high-speed photographic and holographic imaging of the thruster exit plume, and internal mapping of the discharge chamber magnetic field from B-dot probe data. The magnetic field data is used to create a two-dimensional description of the evolution of the current sheet inside the thruster.
How does cognitive load influence speech perception? An encoding hypothesis.
Mitterer, Holger; Mattys, Sven L
2017-01-01
Two experiments investigated the conditions under which cognitive load exerts an effect on the acuity of speech perception. These experiments extend earlier research by using a different speech perception task (four-interval oddity task) and by implementing cognitive load through a task often thought to be modular, namely, face processing. In the cognitive-load conditions, participants were required to remember two faces presented before the speech stimuli. In Experiment 1, performance in the speech-perception task under cognitive load was not impaired in comparison to a no-load baseline condition. In Experiment 2, we modified the load condition minimally such that it required encoding of the two faces simultaneously with the speech stimuli. As a reference condition, we also used a visual search task that in earlier experiments had led to poorer speech perception. Both concurrent tasks led to decrements in the speech task. The results suggest that speech perception is affected even by loads thought to be processed modularly, and that, critically, encoding in working memory might be the locus of interference.
Continental hydrology loading observed by VLBI measurements
NASA Astrophysics Data System (ADS)
Eriksson, David; MacMillan, D. S.
2014-07-01
Variations in continental water storage lead to loading deformation of the crust with typical peak-to-peak variations at very long baseline interferometry (VLBI) sites of 3-15 mm in the vertical component and 1-2 mm in the horizontal component. The hydrology signal at VLBI sites has annual and semi-annual components and clear interannual variations. We have calculated the hydrology loading series using mass loading distributions derived from the global land data assimilation system (GLDAS) hydrology model and alternatively from a global grid of equal-area gravity recovery and climate experiment (GRACE) mascons. In the analysis of the two weekly VLBI 24-h R1 and R4 network sessions from 2003 to 2010 the baseline length repeatabilities are reduced in 79 % (80 %) of baselines when GLDAS (GRACE) loading corrections are applied. Site vertical coordinate repeatabilities are reduced in about 80 % of the sites when either GLDAS or GRACE loading is used. In the horizontal components, reduction occurs in 70-80 % of the sites. Estimates of the annual site vertical amplitudes were reduced for 16 out of 18 sites if either loading series was applied. We estimated loading admittance factors for each site and found that the average admittances were 1.01 0.05 for GRACE and 1.39 0.07 for GLDAS. The standard deviations of the GRACE admittances and GLDAS admittances were 0.31 and 0.68, respectively. For sites that have been observed in a set of sufficiently temporally dense daily sessions, the average correlation between VLBI vertical monthly averaged series and GLDAS or GRACE loading series was 0.47 and 0.43, respectively.
The Effects of Load Carriage and Physical Fatigue on Cognitive Performance
Eddy, Marianna D.; Hasselquist, Leif; Giles, Grace; Hayes, Jacqueline F.; Howe, Jessica; Rourke, Jennifer; Coyne, Megan; O’Donovan, Meghan; Batty, Jessica; Brunyé, Tad T.; Mahoney, Caroline R.
2015-01-01
In the current study, ten participants walked for two hours while carrying no load or a 40 kg load. During the second hour, treadmill grade was manipulated between a constant downhill or changing between flat, uphill, and downhill grades. Throughout the prolonged walk, participants performed two cognitive tasks, an auditory go no/go task and a visual target detection task. The main findings were that the number of false alarms increased over time in the loaded condition relative to the unloaded condition on the go no/go auditory task. There were also shifts in response criterion towards responding yes and decreased sensitivity in responding in the loaded condition compared to the unloaded condition. In the visual target detection there were no reliable effects of load carriage in the overall analysis however, there were slower reaction times in the loaded compared to unloaded condition during the second hour. PMID:26154515
Effects of cognitive load on neural and behavioral responses to smoking cue distractors
MacLean, R. Ross; Nichols, Travis T.; LeBreton, James M.; Wilson, Stephen J.
2017-01-01
Smoking cessation failures are frequently thought to reflect poor top-down regulatory control over behavior. Previous studies suggest that smoking cues occupy limited working memory resources, an effect that may contribute to difficulty achieving abstinence. Few studies have evaluated the effects of cognitive load on the ability to actively maintain information in the face of distracting smoking cues. The current study adapted an fMRI probed recall task under low and high cognitive load with three distractor conditions: control, neutral images, or smoking-related images. Consistent with a limited-resource model of cue reactivity, we predicted that performance of daily smokers (n=17) would be most impaired when high load was paired with smoking distractors. Results demonstrated a main effect of load, with decreased accuracy under high, compared to low, cognitive load. Surprisingly, an interaction revealed the effect of load was weakest in the smoking cue distractor condition. Along with this behavioral effect, we observed significantly greater activation of the right inferior frontal gyrus (rIFG) in the low load condition relative to the high load condition for trials containing smoking cue distractors. Furthermore, load-related changes in rIFG activation partially mediated the effects of load on task accuracy in the smoking cue distractor condition. These findings are discussed in the context of prevailing cognitive and cue reactivity theories. Results suggest that high cognitive load does not necessarily make smokers more susceptible to interference from smoking-related stimuli, and that elevated load may even have a buffering effect in the presence of smoking cues under certain conditions. PMID:27012714
A detailed investigation of proposed gas-phase syntheses of ammonia in dense interstellar clouds
NASA Technical Reports Server (NTRS)
Herbst, Eric; Defrees, D. J.; Mclean, A. D.
1987-01-01
The initial reactions of the Herbst and Klemperer (1973) and the Dalgarno (1974) schemes (I and II, respectively) for the gas-phase synthesis of ammonia in dense interstellar clouds were investigated. The rate of the slightly endothermic reaction between N(+) and H2 to yield NH(+) and H (scheme I) under interstellar conditions was reinvestigated under thermal and nonthermal conditions based on laboratory data. It was found that the relative importance of this reaction in synthesizing ammonia is determined by how the laboratory data at low temperature are interpreted. On the other hand, the exothermic reaction between N and H3(+) to form NH2(+) + H (scheme II) was calculated to possess significant activation energy and, therefore, to have a negligible rate coefficient under interstellar conditions. Consequently, this reaction cannot take place appreciably in interstellar clouds.
Instantaneous angular speed monitoring of gearboxes under non-cyclic stationary load conditions
NASA Astrophysics Data System (ADS)
Stander, C. J.; Heyns, P. S.
2005-07-01
Recent developments in the condition monitoring and asset management market have led to the commercialisation of online vibration-monitoring systems. These systems are primarily utilised to monitor large mineral mining equipment such as draglines, continuous miners and hydraulic shovels. Online monitoring systems make diagnostic information continuously available for asset management, production outsourcing and maintenance alliances with equipment manufacturers. However, most online vibration-monitoring systems are based on conventional vibration-monitoring technologies, which are prone to giving false equipment deterioration warnings on gears that operate under fluctuating load conditions. A simplified mathematical model of a gear system was developed to illustrate the feasibility of monitoring the instantaneous angular speed (IAS) as a means of monitoring the condition of gears that are subjected to fluctuating load conditions. A distinction is made between cyclic stationary load modulation and non-cyclic stationary load modulation. It is shown that rotation domain averaging will suppress the modulation caused by non-cyclic stationary load conditions but will not suppress the modulation caused by cyclic stationary load conditions. An experimental investigation on a test rig indicated that the IAS of a gear shaft could be monitored with a conventional shaft encoder to indicate a deteriorating gear fault condition.
2013-01-01
REPORT Friction Stir Weld Failure Mechanisms in Aluminum -Armor Structures Under Ballistic Impact Loading Conditions 14. ABSTRACT 16. SECURITY...Stir Weld Failure Mechanisms in Aluminum -Armor Structures Under Ballistic Impact Loading Conditions M. Grujicic, B. Pandurangan, A. Arakere, C-F. Yen...K.O. Pedersen, Fracture Mechanisms of Aluminum Alloy AA7075-T651 Under Various Loading Conditions , Int. J. Impact Eng., 2010, 37, p 537–551 24. T
14 CFR 23.473 - Ground load conditions and assumptions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... vertical inertia load factor at the center of gravity of the airplane for the ground load conditions... through the center of gravity. The ground reaction load factor may be equal to the inertia load factor..., these tests must be made under § 23.723(a). (g) No inertia load factor used for design purposes may be...
14 CFR 23.473 - Ground load conditions and assumptions.
Code of Federal Regulations, 2014 CFR
2014-01-01
... vertical inertia load factor at the center of gravity of the airplane for the ground load conditions... through the center of gravity. The ground reaction load factor may be equal to the inertia load factor..., these tests must be made under § 23.723(a). (g) No inertia load factor used for design purposes may be...
14 CFR 23.473 - Ground load conditions and assumptions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... vertical inertia load factor at the center of gravity of the airplane for the ground load conditions... through the center of gravity. The ground reaction load factor may be equal to the inertia load factor..., these tests must be made under § 23.723(a). (g) No inertia load factor used for design purposes may be...
14 CFR 23.473 - Ground load conditions and assumptions.
Code of Federal Regulations, 2011 CFR
2011-01-01
... vertical inertia load factor at the center of gravity of the airplane for the ground load conditions... through the center of gravity. The ground reaction load factor may be equal to the inertia load factor..., these tests must be made under § 23.723(a). (g) No inertia load factor used for design purposes may be...
14 CFR 23.473 - Ground load conditions and assumptions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... vertical inertia load factor at the center of gravity of the airplane for the ground load conditions... through the center of gravity. The ground reaction load factor may be equal to the inertia load factor..., these tests must be made under § 23.723(a). (g) No inertia load factor used for design purposes may be...
Intercomparison of granular stress and turbulence models for unidirectional sheet flow applications
NASA Astrophysics Data System (ADS)
Chauchat, J.; Cheng, Z.; Hsu, T. J.
2016-12-01
The intergranular stresses are one of the key elements in two-phase sediment transport models. There are two main existing approaches, the kinetic theory of granular flows (Jenkins and Hanes, 1998; Hsu et al., 2004) and the phenomenological rheology such as the one proposed by Bagnold (Hanes and Bowen, 1985) or the μ(I) dense granular flow rheology (Revil-Baudard and Chauchat, 2013). Concerning the turbulent Reynolds stress, mixing length and k-ɛ turbulence models have been validated by previous studies (Revil-Baudard and Chauchat, 2013; Hsu et al., 2004). Recently, sedFoam was developed based on kinetic theory of granular flows and k-ɛ turbulence models (Cheng and Hsu, 2014). In this study, we further extended sedFoam by implementing the mixing length and the dense granular flow rheology by following Revil-Baudard and Chauchat (2013). This allows us to objectively compare the different combinations of intergranular stresses (kinetic theory or the dense granular flow rheology) and turbulence models (mixing length or k-ɛ) under unidirectional sheet flow conditions. We found that the calibrated mixing length and k-ɛ models predicts similar velocity and concentration profiles. The differences observed between the kinetic theory and the dense granular flow rheology requires further investigation. In particular, we hypothesize that the extended kinetic theory proposed by Berzi (2011) would probably improve the existing combination of the kinetic theory with a simple Coulomb frictional model in sedFoam. A semi-analytical solution proposed by Berzi and Fraccarollo(2013) for sediment transport rate and sheet layer thickness versus the Shields number is compared with the results obtained by using the dense granular flow rheology and the mixing length model. The results are similar which demonstrate that both the extended kinetic theory and the dense granular flow rheology can be used to model intergranular stresses under sheet flow conditions.
Influence of central set on anticipatory and triggered grip-force adjustments
NASA Technical Reports Server (NTRS)
Winstein, C. J.; Horak, F. B.; Fisher, B. E.; Peterson, B. W. (Principal Investigator)
2000-01-01
The effects of predictability of load magnitude on anticipatory and triggered grip-force adjustments were studied as nine normal subjects used a precision grip to lift, hold, and replace an instrumented test object. Experience with a predictable stimulus has been shown to enhance magnitude scaling of triggered postural responses to different amplitudes of perturbations. However, this phenomenon, known as a central-set effect, has not been tested systematically for grip-force responses in the hand. In our study, predictability was manipulated by applying load perturbations of different magnitudes to the test object under conditions in which the upcoming load magnitude was presented repeatedly or under conditions in which the load magnitudes were presented randomly, each with two different pre-load grip conditions (unconstrained and constrained). In constrained conditions, initial grip forces were maintained near the minimum level necessary to prevent pre-loaded object slippage, while in unconstrained conditions, no initial grip force restrictions were imposed. The effect of predictable (blocked) and unpredictable (random) load presentations on scaling of anticipatory and triggered grip responses was tested by comparing the slopes of linear regressions between the imposed load and grip response magnitude. Anticipatory and triggered grip force responses were scaled to load magnitude in all conditions. However, regardless of pre-load grip force constraint, the gains (slopes) of grip responses relative to load magnitudes were greater when the magnitude of the upcoming load was predictable than when the load increase was unpredictable. In addition, a central-set effect was evidenced by the fewer number of drop trials in the predictable relative to unpredictable load conditions. Pre-load grip forces showed the greatest set effects. However, grip responses showed larger set effects, based on prediction, when pre-load grip force was constrained to lower levels. These results suggest that anticipatory processes pertaining to load magnitude permit the response gain of both voluntary and triggered rapid grip force adjustments to be set, at least partially, prior to perturbation onset. Comparison of anticipatory set effects for reactive torque and lower extremity EMG postural responses triggered by surface translation perturbations suggests a more general rule governing anticipatory processes.
NASA Astrophysics Data System (ADS)
Turcu, Rodica; Craciunescu, Izabell; Garamus, Vasil M.; Janko, Christina; Lyer, Stefan; Tietze, Rainer; Alexiou, Christoph; Vekas, Ladislau
2015-04-01
Magnetoresponsive microgels with high saturation magnetization values have been obtained by a strategy based on the miniemulsion method using high colloidal stability organic carrier ferrofluid as primary material. Hydrophobic nanoparticles Fe3O4/oleic acid are densely packed into well-defined spherical nanoparticle clusters coated with polymers with sizes in the range 40-350 nm. Physical-chemical characteristics of magnetic microgels were investigated by TEM, SAXS, XPS and VSM measurements with the focus on the structure-properties relationship. The impact of magnetic microgels loaded with anticancer drug mitoxantrone (MTO) on the non-adherent human T cell leukemia line Jurkat was investigated in multiparameter flow cytometry. We showed that both MTO and microgel-loaded MTO penetrate into cells and both induce apoptosis and later secondary necrosis in a time- and dose dependent manner. In contrast, microgels without MTO are not cytotoxic in the corresponding concentrations. Our results show that MTO-loaded microgels are promising structures for application in magnetic drug targeting.
NASA Astrophysics Data System (ADS)
Woodrow, Kim A.; Cu, Yen; Booth, Carmen J.; Saucier-Sawyer, Jennifer K.; Wood, Monica J.; Mark Saltzman, W.
2009-06-01
Vaginal instillation of small-interfering RNA (siRNA) using liposomes has led to silencing of endogenous genes in the genital tract and protection against challenge from infectious disease. Although siRNA lipoplexes are easily formulated, several of the most effective transfection agents available commercially may be toxic to the mucosal epithelia and none are able to provide controlled or sustained release. Here, we demonstrate an alternative approach using nanoparticles composed entirely of FDA-approved materials. To render these materials effective for gene silencing, we developed novel approaches to load them with high amounts of siRNA. A single dose of siRNA-loaded nanoparticles to the mouse female reproductive tract caused efficient and sustained gene silencing. Knockdown of gene expression was observed proximal (in the vaginal lumen) and distal (in the uterine horns) to the site of topical delivery. In addition, nanoparticles penetrated deep into the epithelial tissue. This is the first report demonstrating that biodegradable polymer nanoparticles are effective delivery vehicles for siRNA to the vaginal mucosa.
Interaction between the compact tori and coated stainless-steel samples
NASA Astrophysics Data System (ADS)
Rohollahi, A.; Khatir, S.; Xiao, C.; Hirose, A.
2017-02-01
The surface damages due to the transient heat load and particle fluxes on the surface of the coated stainless-steel (SS) samples have been investigated. University of Saskatchewan compact torus injector has been used to inject the high heat load and the particle flux on the surface of stainless samples with three different types of coatings. The type 1 samples were made from a SS plate coated by tungsten. The other two samples had additional films of either nickel (type 2) or chromium (type 3) on the type 1 samples. The vacuum plasma spray technique has been applied for the coating of the samples. Surface cracking and melting have been observed on the surface after the samples were impacted by many high-speed and dense plasmoids.
NASA Astrophysics Data System (ADS)
Kumara, G. R. A.; Deshapriya, U.; Ranasinghe, C. S. K.; Jayaweera, E. N.; Rajapakse, R. M. G.
2018-03-01
Dye-sensitized solar cells (DSCs) have attracted a great deal of attention due to their low-cost and high power conversion efficiencies. They usually utilize an interconnected nanoparticle layer of TiO2 as the electron transport medium. From the fundamental point of view, faster mobility of electrons in ZnO is expected to contribute to better performance in DSCs than TiO2, though the actual practical situation is quite the opposite. In this research, we addressed this problem by first applying a dense layer of ZnO on FTO followed by a mesoporous layer of interconnected ZnO nanoparticle layer, both were prepared by spray pyrolysis technique. The best cell shows a power conversion efficiency of 5.2% when the mesoporous layer thickness is 14 μm and the concentration of the N719 dye in dye coating solution is 0.3 mM, while a cell without a dense layer shows 4.2% under identical conditions. The surface concentration of dye adsorbed in the cell with a dense layer and that without a dense layer are 5.00 × 10‑7 and 3.34 × 10‑7 mol/cm2, respectively. The cell with the dense layer has an electron lifetime of 54.81 ms whereas that without the dense layer is 11.08 ms. As such, the presence of the dense layer improves DSC characteristics of ZnO-based DSCs.
Attentional selection within and across hemispheres: implications for the perceptual load theory.
Wei, Ping; Kang, Guanlan; Zhou, Xiaolin
2013-03-01
The perceptual load of a given task affects attentional selection, with the selection occurring earlier when the load is high and later when the load is low. Recent evidence suggests that local competitive interaction may underlie the perceptual load effect and determine to what extent a task-irrelevant distractor is processed. Here, we asked participants to search for a target bar among homogeneously oriented bars (the low load conditions) or heterogeneously oriented bars (the high load conditions) in the central display, while ignoring a congruent or incongruent flanker bar presented to the left or right side of the central display, or a bar presented at one of the six positions outer to the central display. Importantly, we differentiated conditions in which the target in the central display and the peripheral flanker was presented within the same hemifield or across different hemifields. Results showed a significant flanker effect for the low load condition, but not for the high load condition, when the target and the flanker were across hemifields. However, when the target and the flanker were presented within the same hemifield, there was no flanker effect for either low or high load conditions. These findings demonstrate that the ability to ignore the task-irrelevant distractor is affected by local competition within hemisphere and that the perceptual load theory needs to be supplemented with detailed analysis of cognitive processes and mechanisms underlying the consumption of attentional resources.
NASA Astrophysics Data System (ADS)
ELBAZ-POULICHET, F.; SEIDEL, J.
2001-05-01
Recent evidence of perturbation of REE signature marked by pronounced positive Gd anomalies have been found in surface waters of densely populated and industrialised regions, in Germany and Japan. This study presents REE data in water from a small Mediterranean basin (the Thau lagoon) located on the southwestern French Mediterranean coast, which is a densely populated region.. Positive Gd anomalies (up to 5) are observed in the major river feeding the lagoon and in the lagoon where the highest values are encountered in the close vicinity of the continental sources. The systematic and concomitant observation of similar anomalies, in sewage treatment plant effluents, suggests that they have an anthropogenic origin. The suspended load does not display any Gd anomaly indicating that the Gd input occurs mainly in the dissolved phase. In addition, the appearance of Gd anomaly is not accompanied by an overall increase of REE concentrations. The gadopentetic acid, Gd(DTPA)2- used as a contrasting agent in magnetic resonance imaging could account for such anomalies but remains to be confirmed. Finally positive Gd anomalies appear a common feature in waters of densely populated regions with high standard of living . These anomalies may have an application in water resource management as a tracer of anthropogenic impacts.
NASA Astrophysics Data System (ADS)
Gupta, Mohit; Kumara, Chamara; Nylén, Per
2017-08-01
Suspension plasma spraying (SPS) has been shown as a promising process to produce porous columnar strain tolerant coatings for thermal barrier coatings (TBCs) in gas turbine engines. However, the highly porous structure is vulnerable to crack propagation, especially near the topcoat-bondcoat interface where high stresses are generated due to thermal cycling. A topcoat layer with high toughness near the topcoat-bondcoat interface could be beneficial to enhance thermal cyclic lifetime of SPS TBCs. In this work, a bilayer coating system consisting of first a dense layer near the topcoat-bondcoat interface followed by a porous columnar layer was fabricated by SPS using Yttria-stabilised zirconia suspension. The objective of this work was to investigate if the bilayer topcoat architecture could enhance the thermal cyclic lifetime of SPS TBCs through experiments and to understand the effect of the column gaps/vertical cracks and the dense layer on the generated stresses in the TBC during thermal cyclic loading through finite element modeling. The experimental results show that the bilayer TBC had significantly higher lifetime than the single-layer TBC. The modeling results show that the dense layer and vertical cracks are beneficial as they reduce the thermally induced stresses which thus increase the lifetime.
Flash X-Ray measurements on the shock-induced dispersal of a dense particle curtain
Wagner, Justin L.; Kearney, Sean P.; Beresh, Steven J.; ...
2015-11-23
The interaction of a Mach 1.67 shock wave with a dense particle curtain is quantified using flash radiography. These new data provide a view of particle transport inside a compressible, dense gas–solid flow of high optical opacity. The curtain, composed of 115-µm glass spheres, initially spans 87 % of the test section width and has a streamwise thickness of about 2 mm. Radiograph intensities are converted to particle volume fraction distributions using the Beer–Lambert law. The mass in the particle curtain, as determined from the X-ray data, is in reasonable agreement with that given from a simpler method using amore » load cell and particle imaging. Following shock impingement, the curtain propagates downstream and the peak volume fraction decreases from about 23 to about 4 % over a time of 340 µs. The propagation occurs asymmetrically, with the downstream side of the particle curtain experiencing a greater volume fraction gradient than the upstream side, attributable to the dependence of particle drag on volume fraction. Bulk particle transport is quantified from the time-dependent center of mass of the curtain. Furthermore, the bulk acceleration of the curtain is shown to be greater than that predicted for a single 115-µm particle in a Mach 1.67 shock-induced flow.« less
Flash X-Ray measurements on the shock-induced dispersal of a dense particle curtain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, Justin L.; Kearney, Sean P.; Beresh, Steven J.
The interaction of a Mach 1.67 shock wave with a dense particle curtain is quantified using flash radiography. These new data provide a view of particle transport inside a compressible, dense gas–solid flow of high optical opacity. The curtain, composed of 115-µm glass spheres, initially spans 87 % of the test section width and has a streamwise thickness of about 2 mm. Radiograph intensities are converted to particle volume fraction distributions using the Beer–Lambert law. The mass in the particle curtain, as determined from the X-ray data, is in reasonable agreement with that given from a simpler method using amore » load cell and particle imaging. Following shock impingement, the curtain propagates downstream and the peak volume fraction decreases from about 23 to about 4 % over a time of 340 µs. The propagation occurs asymmetrically, with the downstream side of the particle curtain experiencing a greater volume fraction gradient than the upstream side, attributable to the dependence of particle drag on volume fraction. Bulk particle transport is quantified from the time-dependent center of mass of the curtain. Furthermore, the bulk acceleration of the curtain is shown to be greater than that predicted for a single 115-µm particle in a Mach 1.67 shock-induced flow.« less
Flash X-ray measurements on the shock-induced dispersal of a dense particle curtain
NASA Astrophysics Data System (ADS)
Wagner, Justin L.; Kearney, Sean P.; Beresh, Steven J.; DeMauro, Edward P.; Pruett, Brian O.
2015-12-01
The interaction of a Mach 1.67 shock wave with a dense particle curtain is quantified using flash radiography. These new data provide a view of particle transport inside a compressible, dense gas-solid flow of high optical opacity. The curtain, composed of 115-µm glass spheres, initially spans 87 % of the test section width and has a streamwise thickness of about 2 mm. Radiograph intensities are converted to particle volume fraction distributions using the Beer-Lambert law. The mass in the particle curtain, as determined from the X-ray data, is in reasonable agreement with that given from a simpler method using a load cell and particle imaging. Following shock impingement, the curtain propagates downstream and the peak volume fraction decreases from about 23 to about 4 % over a time of 340 µs. The propagation occurs asymmetrically, with the downstream side of the particle curtain experiencing a greater volume fraction gradient than the upstream side, attributable to the dependence of particle drag on volume fraction. Bulk particle transport is quantified from the time-dependent center of mass of the curtain. The bulk acceleration of the curtain is shown to be greater than that predicted for a single 115-µm particle in a Mach 1.67 shock-induced flow.
Dynamic Consolidation and Investigation of Nanostructural W-Cu / W-Y Cylindrical Billets
NASA Astrophysics Data System (ADS)
Godibadze, B.; Dgebuadze, A.; Chagelishvili, E.; Mamniashvili, G.; Peikrishvili, A.
2018-03-01
The main purpose of presented work is to obtain W-Cu & W-Y cylindrical bulk nanostructured billets by explosive consolidation technology (ECT) in hot condition, with low porosity near to theoretical densities and improved physical / mechanical properties. Nanocomposites were subjected to densification into cylindrical steel tube containers using hot explosive consolidation (HEC) technology to fabricate high dense cylindrical billets. The first stage : Preliminary explosive densification of the precursor powder blend is carried out at room temperature with a loading intensity up to 10GPa to increase the initial density and to activate the particle surfaces in the blend. The second stage investigation were carried out for the same already predensified billets, but consolidation were conducted in hot conditions, after heating of samples in between 940-11000C, the intensity of loading was equal to 10GPa. Consolidated different type of W-Cu composition containing 10-40% of nanoscale W, during investigation showed that the combination of high temperatures (above 940°C) and two-stage shock wave compression was beneficial to the consolidation of the incompatible pair W-Cu composites, resulting in high densities, good integrity and good electronic properties. The structure and property of the samples obtained, depended on the sizes of tungsten particles. It was established that in comparison with W-Cu composites with coarse tungsten the application of nanoscale W precursors and depending of content of W gives different result. Tungsten is a prime material candidate for the first wall of a future fusion reactor. In this study, the microstructure and microhardness of tungsten-yttrium (W-Y) composites were investigated as a function of Y doping content (0.5÷2 wt. %). It was found that the crystallite sizes and the powder particle sizes were increased as a result of the increase of Y content. Nearly fully dense materials were obtained for W-Y alloys when the Y content was higher than 0.5 wt. %. Investigation revealed that the Y rich phases were complex (W-Y) oxides formed during the sintering process. Also very interesting to use doping chromium with yttrium-containing alloys. e.g. (W - 10÷12 Cr -0.5÷2 Y) wt. %. The extent up to which yttrium acts as an active element improving the adherence and stability of the protective Cr 2 O 3 layer formed during oxidation is assessed. The structure and characteristics of the obtained samples depends on the phase content, distribution of phases and processing parameters during explosive synthesis and consolidation. Cu – (10-30%) W powder mixtures were formed into cylindrical rods using a hot shock wave consolidation (HSWC) process. Different type of Cu - W precursor composition containing 10, 20 and 30% of nanoscale W were consolidated near theoretical density under 900°C The loading intensity was under 10 GPa. The investigation showed that the combination of high temperatures (above 800°C) and two stage shock wave compression was beneficial to the consolidation of the W-Cu & W-Y composites, resulting in high densities, good integrity and good electronic properties.
Brantley, Meredith; Schumacher, Christina; Fields, Errol L; Perin, Jamie; Safi, Amelia Greiner; Ellen, Jonathan M; Muvva, Ravikiran; Chaulk, Patrick; Jennings, Jacky M
2017-06-01
Baltimore, Maryland ranks among U.S. cities with the highest incidence of HIV infection among men who have sex with men (MSM). HIV screening at sex partner meeting places or venues frequented by MSM with new diagnoses and/or high HIV viral load may reduce transmission by identifying and linking infected individuals to care. We investigated venue-based clustering of newly diagnosed MSM to identify high HIV transmission venues. HIV surveillance data from MSM diagnosed between October 2012-June 2014 and reporting ≥1 sex partner meeting place were examined. Venue viral load was defined according to the geometric mean viral load of the cluster of cases that reported the venue and classified as high (>50,000 copies/mL), moderate (1500-50,000 copies/mL), and low (<1500 copies/mL). 143 MSM provided information on ≥1 sex partner meeting place, accounting for 132 unique venues. Twenty-six venues were reported by > 1 MSM; of these, a tightly connected cluster of six moderate viral load sex partner meeting places emerged, representing 66% of reports. Small, dense networks of moderate to high viral load venues may be important for targeted HIV control among MSM. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fuel properties and engine performance of biodiesel from waste cooking oil collected in Dhaka city
NASA Astrophysics Data System (ADS)
Islam, R. B.; Islam, R.; Uddin, M. N.; Ehsan, Md.
2016-07-01
Waste cooking oil can be a potential source of biodiesel that has least effect on the edible oil consumption. Increasing number of hotel-restaurants and more active monitoring by health authorities have increased the generation of waste cooking oil significantly in densely populated cities like Dhaka. If not used or disposed properly, waste cooking oil itself may generate lot of environmental issues. In this work, waste cooking oils from different restaurants within Dhaka City were collected and some relevant properties of these waste oils were measured. Based on the samples studied one with the highest potential as biodiesel feed was identified and processed for engine performance. Standard trans-esterification process was used to produce biodiesel from the selected waste cooking oil. Biodiesel blends of B20 and B40 category were made and tested on a single cylinder direct injection diesel engine. Engine performance parameters included - bhp, bsfc and exhaust emission for rated and part load conditions. Results give a quantitative assessment of the potential of using biodiesel from waste cooking oil as fuel for diesel engines in Bangladesh.
Kumar, Amit; Dewulf, Jo; Vercruyssen, Aline; Van Langenhove, Herman
2009-04-01
In this study, a membrane biofilm reactor performance for toluene as a model pollutant is presented. A composite membrane consisting of a porous polyacrylonitrile (PAN) support layer coated with a very thin (0.3 microm) dense polydimethylsiloxane (PDMS) top layer was used. Batch experiments were performed to select an appropriate inocula (slaughterhouse wastewater treatment sludge with a specific toluene consumption rate of 118+/-23 microg g(-1) VSS L(-1)) among the three available sources of inoculums. The maximum elimination capacity gas-side reactor volume based (EC)v and membrane based (EC)(m, max) obtained were 609 g m(-3) h(-1) and 1.2 g m(-2) h(-1) respectively, which is much higher than other membrane bioreactors. Further experiments involved the study of the membrane biofilm reactor flexibility when operational parameters as temperature, loading rate etc. were modified. In all cases, the membrane biofilm reactor showed a rapid adaptation and new steady-states were obtained within hours. Overall, the results illustrate that membrane bioreactors can potentially be a good option for treatment of air pollutants such as toluene.
Extension lifetime for dye-sensitized solar cells through multiple dye adsorption/desorption process
NASA Astrophysics Data System (ADS)
Chiang, Yi-Fang; Chen, Ruei-Tang; Shen, Po-Shen; Chen, Peter; Guo, Tzung-Fang
2013-03-01
In this study, we propose a novel concept of extending the lifetime of dye-sensitized solar cells (DSCs) and reducing the costs of re-conditioning DSCs by recycling the FTO/TiO2 substrates. The photovoltaic performances of DSCs using substrates with various cycles of dye uptake and rinse off history are tested. The results show that dye adsorption and Voc are significantly increased under multiple dye adsorption/desorption process and resulted in the improvement of power conversion efficiency. Moreover, the dyeing kinetics is faster after multiple recycling processes, which is favorable for the industrial application. With surface analysis and charge transport characteristics, we also demonstrate the optimal functionality of TiO2/dye interface for the improved Voc and efficiency. The results confirm that the improved performances are due to increased dye loading and dense packing of dye molecules. Our results are beneficial for the understanding on the extension of DSCs lifetime after long-term operation in the application of DSC modules. This approach may also be applied in the replacement of newly synthesized photosensitizes to the active cells.
PIV measurement of internal structure of diesel fuel spray
NASA Astrophysics Data System (ADS)
Cao, Z.-M.; Nishino, K.; Mizuno, S.; Torii, K.
2000-12-01
This paper reports particle image velocimetry (PIV) measurements of diesel fuel spray injected from a single-hole nozzle at injection pressures ranging from 30 to 70MPa, which are comparable to partial-load operating conditions of commercial diesel engines. The fuel is injected into a non-combusting environment pressurized up to 2.0MPa. A laser-induced fluorescent (LIF) technique is utilized to visualize internal structures of fuel sprays formed by densely-distributing droplets. A specially designed synchronization system is developed to acquire double-frame spray images at an arbitrary time delay after injection. A direct cross-correlation PIV technique is applied to measure instantaneous droplet velocity distribution. Unique large-scale structures in droplet concentration, called `branch-like structures' by Azetsu etal. (1990), are observed and shown to be associated with active vortical motions, which appear to be responsible for the mixing between droplets and the surrounding gas. It is found that the droplets tend to move out of the vortical structures and accumulate in the regions of low vorticity. Some other interesting features concerning droplet velocity fields are also presented.
PIV measurement of internal structure of diesel fuel spray
NASA Astrophysics Data System (ADS)
Cao, Z.-M.; Nishino, K.; Mizuno, S.; Torii, K.
This paper reports particle image velocimetry (PIV) measurements of diesel fuel spray injected from a single-hole nozzle at injection pressures ranging from 30 to 70MPa, which are comparable to partial-load operating conditions of commercial diesel engines. The fuel is injected into a non-combusting environment pressurized up to 2.0MPa. A laser-induced fluorescent (LIF) technique is utilized to visualize internal structures of fuel sprays formed by densely-distributing droplets. A specially designed synchronization system is developed to acquire double-frame spray images at an arbitrary time delay after injection. A direct cross-correlation PIV technique is applied to measure instantaneous droplet velocity distribution. Unique large-scale structures in droplet concentration, called `branch-like structures' by Azetsu etal. (1990), are observed and shown to be associated with active vortical motions, which appear to be responsible for the mixing between droplets and the surrounding gas. It is found that the droplets tend to move out of the vortical structures and accumulate in the regions of low vorticity. Some other interesting features concerning droplet velocity fields are also presented.
Interaction of two laser shocks inside iron samples
NASA Astrophysics Data System (ADS)
de Rességuier, T.; Hallouin, M.
2001-11-01
The interaction of two plane symmetric shocks in a solid sample induces a significant increase of both the pressure and the temperature in the central zone where the incident compressive pulses cross each other. In iron samples, such loading conditions may produce typical structural defects (twins, dislocations) and phase transitions that can be revealed by posttest examination of the recovered targets. We have used two high-power laser beams to irradiate simultaneously both surfaces of thin iron foils. The recovered samples have been sectioned and observed in optical microscopy. A very dense twin distribution in the central zone has confirmed the pressure amplification due to the interaction of the incident shocks. The occurrence of a phase transition has been inferred from the presence of short characteristic twins. Spall fraction has been observed near both irradiated surfaces, and additional damage has been evidenced at the center of the samples. Numerical tools have been adapted to simulate the experiments. Computations have provided estimates of the stress histories inside the samples, and the ability of simple twin, phase change, and spall models has been tested to predict the observed results.
A Non Rigid Reusable Surface Insulation Concept for the Space Shuttle Thermal Protection System
NASA Technical Reports Server (NTRS)
Alexander, J. G.
1973-01-01
A reusable thermal protection system concept was developed for the space shuttle that utilizes a flexible, woven ceramic mat insulation beneath an aerodynamic skin and moisture barrier consisting of either a dense ceramic coating or a super alloy metallic foil. The resulting heat shield material has unique structural characteristics. The shear modulus of the woven mat is very low such that bending and membrane loads introduced into the underlying structural panel remain isolated from the surface skin.
The Contribution of Prohibitin 1 to Prostate Cancer Chemoresistance
2015-10-01
ceramide-PEG5K in normal BALB/c mice after i.v. injection. The siRNA was labeled with near infrared (NIR) dye DY647. (B) Ex vivo fluorescence image of...ceramide-PEG5K (Right) siRNA NPs at 18 h. The siRNA was labeled with dye DY547. (Scale bar, 10 μm.) Zhu et al. PNAS | June 23, 2015 | vol. 112 | no...Woodrow KA, et al. (2009) Intravaginal gene silencing using biodegradable polymer nanoparticles densely loaded with small-interfering RNA. Nat Mater
Thermophoretic separation of aerosol particles from a sampled gas stream
Postma, A.K.
1984-09-07
This disclosure relates to separation of aerosol particles from gas samples withdrawn from within a contained atmosphere, such as containment vessels for nuclear reactors or other process equipment where remote gaseous sampling is required. It is specifically directed to separation of dense aerosols including particles of any size and at high mass loadings and high corrosivity. The United States Government has rights in this invention pursuant to Contract DE-AC06-76FF02170 between the US Department of Energy and Westinghouse Electric Corporation.
Pericellular Ca2+ recycling potentiates thrombin-evoked Ca2+ signals in human platelets
Sage, Stewart O; Pugh, Nicholas; Farndale, Richard W; Harper, Alan G S
2013-01-01
We have previously demonstrated that Na+/Ca2+ exchangers (NCXs) potentiate Ca2+ signaling evoked by thapsigargin in human platelets, via their ability to modulate the secretion of autocoids from dense granules. This link was confirmed in platelets stimulated with the physiological agonist, thrombin, and experiments were performed to examine how Ca2+ removal by the NCX modulates platelet dense granule secretion. In cells loaded with the near-membrane indicator FFP-18, thrombin stimulation was observed to elicit an NCX-dependent accumulation of Ca2+ in a pericellular region around the platelets. To test whether this pericellular Ca2+ accumulation might be responsible for the influence of NCXs over platelet function, platelets were exposed to fast Ca2+ chelators or had their glycocalyx removed. Both manipulations of the pericellular Ca2+ rise reduced thrombin-evoked Ca2+ signals and dense granule secretion. Blocking Ca2+-permeable ion channels had a similar effect, suggesting that Ca2+ exported into the pericellular region is able to recycle back into the platelet cytosol. Single cell imaging with extracellular Fluo-4 indicated that thrombin-evoked rises in extracellular [Ca2+] occurred within the boundary described by the cell surface, suggesting their presence within the open canalicular system (OCS). FFP-18 fluorescence was similarly distributed. These data suggest that upon thrombin stimulation, NCX activity creates a rise in [Ca2+] within the pericellular region of the platelet from where it recycles back into the platelet cytosol, acting to both accelerate dense granule secretion and maintain the initial rise in cytosolic [Ca2+]. PMID:24303163
The effect of perceptual load on tactile spatial attention: Evidence from event-related potentials.
Gherri, Elena; Berreby, Fiona
2017-10-15
To investigate whether tactile spatial attention is modulated by perceptual load, behavioural and electrophysiological measures were recorded during two spatial cuing tasks in which the difficulty of the target/non-target discrimination was varied (High and Low load tasks). Moreover, to study whether attentional modulations by load are sensitive to the availability of visual information, the High and Low load tasks were carried out under both illuminated and darkness conditions. ERPs to cued and uncued non-targets were compared as a function of task (High vs. Low load) and illumination condition (Light vs. Darkness). Results revealed that the locus of tactile spatial attention was determined by a complex interaction between perceptual load and illumination conditions during sensory-specific stages of processing. In the Darkness, earlier effects of attention were present in the High load than in the Low load task, while no difference between tasks emerged in the Light. By contrast, increased load was associated with stronger attention effects during later post-perceptual processing stages regardless of illumination conditions. These findings demonstrate that ERP correlates of tactile spatial attention are strongly affected by the perceptual load of the target/non-target discrimination. However, differences between illumination conditions show that the impact of load on tactile attention depends on the presence of visual information. Perceptual load is one of the many factors that contribute to determine the effects of spatial selectivity in touch. Copyright © 2017 Elsevier B.V. All rights reserved.
Effects of cognitive load on neural and behavioral responses to smoking-cue distractors.
MacLean, R Ross; Nichols, Travis T; LeBreton, James M; Wilson, Stephen J
2016-08-01
Smoking cessation failures are frequently thought to reflect poor top-down regulatory control over behavior. Previous studies have suggested that smoking cues occupy limited working memory resources, an effect that may contribute to difficulty achieving abstinence. Few studies have evaluated the effects of cognitive load on the ability to actively maintain information in the face of distracting smoking cues. For the present study, we adapted an fMRI probed recall task under low and high cognitive load with three distractor conditions: control, neutral images, or smoking-related images. Consistent with a limited-resource model of cue reactivity, we predicted that the performance of daily smokers (n = 17) would be most impaired when high load was paired with smoking distractors. The results demonstrated a main effect of load, with decreased accuracy under high, as compared to low, cognitive load. Surprisingly, an interaction revealed that the effect of load was weakest in the smoking cue distractor condition. Along with this behavioral effect, we observed significantly greater activation of the right inferior frontal gyrus (rIFG) in the low-load condition than in the high-load condition for trials containing smoking cue distractors. Furthermore, load-related changes in rIFG activation partially mediated the effects of load on task accuracy in the smoking-cue distractor condition. These findings are discussed in the context of prevailing cognitive and cue reactivity theories. These results suggest that high cognitive load does not necessarily make smokers more susceptible to interference from smoking-related stimuli, and that elevated load may even have a buffering effect in the presence of smoking cues under certain conditions.
Pressure-induced amorphization of a dense coordination polymer and its impact on proton conductivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Umeyama, Daiki; Hagi, Keisuke; Ogiwara, Naoki
2014-12-01
The proton conductivity of a dense coordination polymer (CP) was investigated under high-pressure conditions. Impedance measurements under high pressures revealed that the proton conductivity of the CP decreased more than 1000-fold at pressures of 3–7 GPa and that the activation energy for proton conduction almost doubled compared with that at ambient pressure. A synchrotron X-ray study under high pressure identified the amorphization process of the CP during compression, which rationally explains the decrease in conductivity and increase in activation energy. This phenomenon is categorized as reversible pressure-induced amorphization of a dense CP and is regarded as a demonstration of themore » coupling of the mechanical and electrical properties of a CP.« less
NASA Astrophysics Data System (ADS)
Ahmad, S.; Ata-ur-Rahman; Khan, S. A.; Hadi, F.
2017-12-01
We have investigated the properties of three-dimensional electrostatic ion solitary structures in highly dense collisional plasma composed of ultra-relativistically degenerate electrons and non-relativistic degenerate ions. In the limit of low ion-neutral collision rate, we have derived a damped Kadomtsev-Petviashvili (KP) equation using perturbation analysis. Supplemented by vanishing boundary conditions, the time varying solution of damped KP equation leads to a weakly dissipative compressive soliton. The real frequency behavior and linear damping of solitary pulse due to ion-neutral collisions is discussed. In the presence of weak transverse perturbations, soliton evolution with damping parameter and plasma density is delineated pointing out the extent of propagation using typical parameters of dense plasma in the interior of white dwarfs.
Measurement of charged-particle stopping in warm-dense plasma
Zylstra, A. B.; Frenje, J. A.; Grabowski, P. E.; ...
2015-05-27
We measured the stopping of energetic protons in an isochorically-heated solid-density Be plasma with an electron temperature of ~32 eV, corresponding to moderately-coupled [(e²/a/(k BT e + E F ) ~ 0.3] and moderately-degenerate [k BT e/E F ~2] 'warm dense matter' (WDM) conditions. We present the first high-accuracy measurements of charged-particle energy loss through dense plasma, which shows an increased loss relative to cold matter, consistent with a reduced mean ionization potential. The data agree with stopping models based on an ad-hoc treatment of free and bound electrons, as well as the average-atom local-density approximation; this work is themore » first test of these theories in WDM plasma.« less
Wettstein, Zachary S; Hoshiko, Sumi; Fahimi, Jahan; Harrison, Robert J; Cascio, Wayne E; Rappold, Ana G
2018-04-11
Wildfire smoke is known to exacerbate respiratory conditions; however, evidence for cardiovascular and cerebrovascular events has been inconsistent, despite biological plausibility. A population-based epidemiologic analysis was conducted for daily cardiovascular and cerebrovascular emergency department (ED) visits and wildfire smoke exposure in 2015 among adults in 8 California air basins. A quasi-Poisson regression model was used for zip code-level counts of ED visits, adjusting for heat index, day of week, seasonality, and population. Satellite-imaged smoke plumes were classified as light, medium, or dense based on model-estimated concentrations of fine particulate matter. Relative risk was determined for smoky days for lag days 0 to 4. Rates of ED visits by age- and sex-stratified groups were also examined. Rates of all-cause cardiovascular ED visits were elevated across all lags, with the greatest increase on dense smoke days and among those aged ≥65 years at lag 0 (relative risk 1.15, 95% confidence interval [1.09, 1.22]). All-cause cerebrovascular visits were associated with smoke, especially among those 65 years and older, (1.22 [1.00, 1.49], dense smoke, lag 1). Respiratory conditions were also increased, as anticipated (1.18 [1.08, 1.28], adults >65 years, dense smoke, lag 1). No association was found for the control condition, acute appendicitis. Elevated risks for individual diagnoses included myocardial infarction, ischemic heart disease, heart failure, dysrhythmia, pulmonary embolism, ischemic stroke, and transient ischemic attack. Analysis of an extensive wildfire season found smoke exposure to be associated with cardiovascular and cerebrovascular ED visits for all adults, particularly for those over aged 65 years. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
NASA Astrophysics Data System (ADS)
Singh, R. P.; Prasad, A. K.; Kafatos, M.
2005-12-01
The Indo-Gangetic (IG) basin is one of the largest basins in the world which is densely populated and suffers with dense fog, haze and smog during winter season. About 500 million people live in the IG basin and due to the dense fog, haze and smog day to day life suffers. India is the third largest producer of the coal in the world and a large share is used in power and industrial sector. The coal used in the power plants is of poor quality (mostly E-F grade or lignite) with high ash content (35-50%) and low calorific value. India's energy consumption has increased 208% from 4.16 quadrillion Btu (quads) in 1980 to 12.8 quads in 2001 with a coal share of ~50.9%. Recent studies using satellite (Moderate Resolution Imaging Spectroradiometer (MODIS) and Multiangle Imaging SpectroRadiometer (MISR)) and AERONET measurements show high aerosol optical depth (AOD) representing the intense air pollution over the IG basin that persists throughout the year. Such high concentrations of AOD show spatial and temporal variations which are controlled by the meteorological conditions (wind pattern, relative humidity, air temperature etc.) and topography. The high AOD observed over the IG basin is attributed to the emissions of fossil fuel SO2 and black carbon which has increased about 6 fold since 1930. The high AOD over the IG basin is attributed to the huge emission from the dense network of coal based thermal power plants in the IG basin and its surroundings that may be the probable cause for the atmospheric brown clouds (ABC). The impact of aerosol parameters on the climatic conditions will be discussed.
Kang, K-T.; Koh, Y-G.; Jung, M.; Nam, J-H.; Son, J.; Lee, Y.H.
2017-01-01
Objectives The aim of the current study was to analyse the effects of posterior cruciate ligament (PCL) deficiency on forces of the posterolateral corner structure and on tibiofemoral (TF) and patellofemoral (PF) contact force under dynamic-loading conditions. Methods A subject-specific knee model was validated using a passive flexion experiment, electromyography data, muscle activation, and previous experimental studies. The simulation was performed on the musculoskeletal models with and without PCL deficiency using a novel force-dependent kinematics method under gait- and squat-loading conditions, followed by probabilistic analysis for material uncertain to be considered. Results Comparison of predicted passive flexion, posterior drawer kinematics and muscle activation with experimental measurements showed good agreement. Forces of the posterolateral corner structure, and TF and PF contact forces increased with PCL deficiency under gait- and squat-loading conditions. The rate of increase in PF contact force was the greatest during the squat-loading condition. The TF contact forces increased on both medial and lateral compartments during gait-loading conditions. However, during the squat-loading condition, the medial TF contact force tended to increase, while the lateral TF contact forces decreased. The posterolateral corner structure, which showed the greatest increase in force with deficiency of PCL under both gait- and squat-loading conditions, was the popliteus tendon (PT). Conclusion PCL deficiency is a factor affecting the variability of force on the PT in dynamic-loading conditions, and it could lead to degeneration of the PF joint. Cite this article: K-T. Kang, Y-G. Koh, M. Jung, J-H. Nam, J. Son, Y.H. Lee, S-J. Kim, S-H. Kim. The effects of posterior cruciate ligament deficiency on posterolateral corner structures under gait- and squat-loading conditions: A computational knee model. Bone Joint Res 2017;6:31–42. DOI: 10.1302/2046-3758.61.BJR-2016-0184.R1. PMID:28077395
Intermetallic Nickel-Titanium Alloys for Oil-Lubricated Bearing Applications
NASA Technical Reports Server (NTRS)
DellaCorte, C.; Pepper, S. V.; Noebe, R.; Hull, D. R.; Glennon, G.
2009-01-01
An intermetallic nickel-titanium alloy, NITINOL 60 (60NiTi), containing 60 wt% nickel and 40 wt% titanium, is shown to be a promising candidate material for oil-lubricated rolling and sliding contact applications such as bearings and gears. NiTi alloys are well known and normally exploited for their shape memory behavior. When properly processed, however, NITINOL 60 exhibits excellent dimensional stability and useful structural properties. Processed via high temperature, high-pressure powder metallurgy techniques or other means, NITINOL 60 offers a broad combination of physical properties that make it unique among bearing materials. NITINOL 60 is hard, electrically conductive, highly corrosion resistant, less dense than steel, readily machined prior to final heat treatment, nongalling and nonmagnetic. No other bearing alloy, metallic or ceramic encompasses all of these attributes. Further, NITINOL 60 has shown remarkable tribological performance when compared to other aerospace bearing alloys under oil-lubricated conditions. Spiral orbit tribometer (SOT) tests were conducted in vacuum using NITINOL 60 balls loaded between rotating 440C stainless steel disks, lubricated with synthetic hydrocarbon oil. Under conditions considered representative of precision bearings, the performance (life and friction) equaled or exceeded that observed with silicon nitride or titanium carbide coated 440C bearing balls. Based upon this preliminary data, it appears that NITINOL 60, despite its high titanium content, is a promising candidate alloy for advanced mechanical systems requiring superior and intrinsic corrosion resistance, electrical conductivity and nonmagnetic behavior under lubricated contacting conditions.
Folkvord, Frans; Anschütz, Doeschka J; Buijzen, Moniek
2016-02-09
Previous studies have focused on the acute effects of food advertisements on the caloric intake of children; however, the long-term effects of this food cue reactivity on weight gain have not been examined. The main aim of this study was to explore if reactivity to food cues in an advertisement was associated with weight status two years later. Children wo had previously taken part in an experiment investigating the impact of advergames on food intake had their height and weight re-measured two years later, for assessment of body mass index (BMI). A within-subject design was used to test the associations between food choices and BMI over time. In the previous experiment, children played an advergame that promoted energy-dense snacks, fruit, or nonfood products, or did not play an advergame (control condition). After playing the game, the free intake of energy-dense snacks and fruits was measured. Children who ate more apple after playing an advergame promoting energy-dense snacks had a lower BMI two years later. Consumption of energy-dense snacks after playing an advergame promoting energy-dense snacks was not associated with BMI two years later. In other condition, no association was found between food intake and BMI after two years . The findings suggest that coping with environmental cues that trigger unhealthy eating behavior is associated with the body mass index of young children two years later. This might imply that learning to respond to food cues by choosing healthy options might prevent children from excessive weight gain. This trial was registered at as ISRCTN17013832 .
Kovochich, Michael; Fung, Ernest S; Donovan, Ellen; Unice, Kenneth M; Paustenbach, Dennis J; Finley, Brent L
2018-04-01
Advantages of second-generation metal-on-metal (MoM) hip implants include low volumetric wear rates and the release of nanosized wear particles that are chemically inert and readily cleared from local tissue. In some patients, edge loading conditions occur, which result in higher volumetric wear. The objective of this study was to characterize the size, morphology, and chemistry of wear particles released from MoM hip implants during normal (40° angle) and edge-loading (65° angle with microseparation) conditions. The mean primary particle size by volume under normal wear was 35 nm (range: 9-152 nm) compared with 95 nm (range: 6-573 nm) under edge-loading conditions. Hydrodynamic diameter analysis by volume showed that particles from normal wear were in the nano- (<100 nm) to submicron (<1000 nm) size range, whereas edge-loading conditions generated particles that ranged from <100 nm up to 3000-6000 nm in size. Particles isolated from normal wear were primarily chromium (98.5%) and round to oval in shape. Edge-loading conditions generated more elongated particles (4.5%) (aspect ratio ≥ 2.5) and more CoCr alloy particles (9.3%) compared with normal wear conditions (1.3% CoCr particles). By total mass, edge-loading particles contained approximately 640-fold more cobalt than normal wear particles. Our findings suggest that high wear conditions are a potential risk factor for adverse local tissue effects in MoM patients who experience edge loading. This study is the first to characterize both the physical and chemical characteristics of MoM wear particles collected under normal and edge-loading conditions. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 986-996, 2018. © 2017 Wiley Periodicals, Inc.
The influence of panic on the efficiency of escape
NASA Astrophysics Data System (ADS)
Shen, Jia-Quan; Wang, Xu-Wen; Jiang, Luo-Luo
2018-02-01
Whenever we (such as pedestrians) perceive a high density or imminent danger in a confined space, we tend to be panic, which can lead to severe injuries even in the absence of real dangers. Although it is difficult to measure panics in real conditions, we introduced a simple model to study the collective behaviors in condition of fire with dense smoke. Owing to blocking the sight with dense smoke, pedestrians in this condition have two strategies to escape: random-walking or walking along the wall. When the pedestrians are in moderate panic that mean the two types of behaviors are mixed(random-walking and walking along the wall). Our simulation results show that moderate panic, meaning that two escape strategies are mixed, reduces the escape time. In addition, the results indicate that moderate panic can improve the efficiency of escape, this theory also can be useful in a real escape situation. We hope that our research provides the theoretical understanding of underlying mechanisms of panic escape in the condition of poor sight.
Fluorescence and absorption spectroscopy for warm dense matter studies and ICF plasma diagnostics
NASA Astrophysics Data System (ADS)
Hansen, S. B.; Harding, E. C.; Knapp, P. F.; Gomez, M. R.; Nagayama, T.; Bailey, J. E.
2018-05-01
The burning core of an inertial confinement fusion (ICF) plasma produces bright x-rays at stagnation that can directly diagnose core conditions essential for comparison to simulations and understanding fusion yields. These x-rays also backlight the surrounding shell of warm, dense matter, whose properties are critical to understanding the efficacy of the inertial confinement and global morphology. We show that the absorption and fluorescence spectra of mid-Z impurities or dopants in the warm dense shell can reveal the optical depth, temperature, and density of the shell and help constrain models of warm, dense matter. This is illustrated by the example of a high-resolution spectrum collected from an ICF plasma with a beryllium shell containing native iron impurities. Analysis of the iron K-edge provides model-independent diagnostics of the shell density (2.3 × 1024 e/cm3) and temperature (10 eV), while a 12-eV red shift in Kβ and 5-eV blue shift in the K-edge discriminate among models of warm dense matter: Both shifts are well described by a self-consistent field model based on density functional theory but are not fully consistent with isolated-atom models using ad-hoc density effects.
Density of a semigroup in a Banach space
NASA Astrophysics Data System (ADS)
Borodin, P. A.
2014-12-01
We study conditions on a set M in a Banach space X which are necessary or sufficient for the set R(M) of all sums x_1+\\dots+x_n, x_k\\in M, to be dense in X. We distinguish conditions under which the closure \\overline{R(M)} is an additive subgroup of X, and conditions under which this additive subgroup is dense in X. In particular, we prove that if M is a closed rectifiable curve in a uniformly convex and uniformly smooth Banach space X, and does not lie in a closed half-space \\{x\\in X\\colon f(x)≥0\\}, f\\in X^*, and is minimal in the sense that every proper subarc of M lies in an open half-space \\{x\\in X\\colon f(x)>0\\}, then \\overline{R(M)}=X. We apply our results to questions of approximation in various function spaces.
NASA Technical Reports Server (NTRS)
Kalluri, Sreeramesh
2013-01-01
Structural materials used in engineering applications routinely subjected to repetitive mechanical loads in multiple directions under non-isothermal conditions. Over past few decades, several multiaxial fatigue life estimation models (stress- and strain-based) developed for isothermal conditions. Historically, numerous fatigue life prediction models also developed for thermomechanical fatigue (TMF) life prediction, predominantly for uniaxial mechanical loading conditions. Realistic structural components encounter multiaxial loads and non-isothermal loading conditions, which increase potential for interaction of damage modes. A need exists for mechanical testing and development verification of life prediction models under such conditions.
Mechanical Behavior of Spray-Coated Metallic Laminates
NASA Astrophysics Data System (ADS)
Vackel, Andrew; Nakamura, Toshio; Sampath, Sanjay
2016-06-01
Thermal spray (TS) coatings have been extensively utilized for various surface modifications such as enhancing wear/erosion resistance and thermal protection. In the present study, a new function of TS material is explored by studying its load-carrying capability. Due to the inherent microstructures containing voids and interfaces, it has been presumed TS materials were not suitable to bear loads. However, the recent advances in TS technology to manufacture near fully dense TS coatings have expanded their potential applications. In the current experiments, TS nickel coatings are deposited onto metallic substrates, and their mechanical behaviors are closely examined. Based on the measured data, the estimated elastic modulus of TS Ni is about 130 GPa (35% less than bulk value), and the maximum tensile strength is about 500 MPa (comparable to bulk value). It was found that such a high value is attainable because the coating is deposited onto a substrate, enabling a load-transfer mechanism and preventing coating failure at a much lower stress level. Three distinct deformation stages are identified to describe this behavior. Such a clarification is critical for enabling TS process to restore structural parts as well as to additively manufacture load-bearing components.
Perceptual load, voluntary attention, and aging: an event-related potential study
Wang, Yan; Fu, Shimin; Greenwood, Pamela; Luo, Yuejia; Parasuraman, Raja
2012-01-01
The locus of attentional selection is known to vary with perceptual load (Lavie et al., 2004). Under voluntary attention, perceptual load modulates selective visual processing at an early cortical stage, as reflected in the posterior P1 and N1 components of the event-related potentials (ERPs). Adult aging also affects both behavioral and ERP signs of attentional selection. However, it is not known whether perceptual load modulates this relationship. Accordingly, in the present study ERPs were recorded in a voluntary attention task. Young and old participants were asked to discriminate the direction of a target line embedded within a display of four lines that appeared in the left or right visual field. Participants responded faster and more accurately to valid relative to invalid trials and to low-load relative to high-load condition. Older participants responded more slowly and with lower accuracy than young participants in all conditions. The amplitudes of the posterior contralateral P1 and N1 components in valid trials were larger than that in invalid trials in all conditions. N1 amplitude was larger under the high load condition than that in the low load condition. Moreover, in the high perceptual load condition, the old group had a larger N1 than the young group at contralateral sites. The findings suggest that under voluntary attention, perceptual load and aging modulates attentional selection at an early but not the earliest stage, during the N1 (120–200ms) time range. Increased N1 amplitude in older adults may reflect increased demands on target discrimination in high perceptual load. PMID:22248536
Nonlinear extraordinary wave in dense plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krasovitskiy, V. B., E-mail: krasovit@mail.ru; Turikov, V. A.
2013-10-15
Conditions for the propagation of a slow extraordinary wave in dense magnetized plasma are found. A solution to the set of relativistic hydrodynamic equations and Maxwell’s equations under the plasma resonance conditions, when the phase velocity of the nonlinear wave is equal to the speed of light, is obtained. The deviation of the wave frequency from the resonance frequency is accompanied by nonlinear longitudinal-transverse oscillations. It is shown that, in this case, the solution to the set of self-consistent equations obtained by averaging the initial equations over the period of high-frequency oscillations has the form of an envelope soliton. Themore » possibility of excitation of a nonlinear wave in plasma by an external electromagnetic pulse is confirmed by numerical simulations.« less
Robust Criterion for the Existence of Nonhyperbolic Ergodic Measures
NASA Astrophysics Data System (ADS)
Bochi, Jairo; Bonatti, Christian; Díaz, Lorenzo J.
2016-06-01
We give explicit C 1-open conditions that ensure that a diffeomorphism possesses a nonhyperbolic ergodic measure with positive entropy. Actually, our criterion provides the existence of a partially hyperbolic compact set with one-dimensional center and positive topological entropy on which the center Lyapunov exponent vanishes uniformly. The conditions of the criterion are met on a C 1-dense and open subset of the set of diffeomorphisms having a robust cycle. As a corollary, there exists a C 1-open and dense subset of the set of non-Anosov robustly transitive diffeomorphisms consisting of systems with nonhyperbolic ergodic measures with positive entropy. The criterion is based on a notion of a blender defined dynamically in terms of strict invariance of a family of discs.
Patil, Narendra G; Rebrov, Evgeny V; Eränen, Kari; Benaskar, Faysal; Meuldijk, Jan; Mikkola, Jyri-Pekka; Hessel, Volker; Hulshof, Lumbertus A; Murzin, Dmitry Yu; Schouten, Jaap C
2012-01-01
A novel heating efficiency analysis of the microwave heated stop-flow (i.e. stagnant liquid) and continuous-flow reactors has been presented. The thermal losses to the surrounding air by natural convection have been taken into account for heating efficiency calculation of the microwave heating process. The effect of the load diameter in the range of 4-29 mm on the heating efficiency of ethylene glycol was studied in a single mode microwave cavity under continuous flow and stop-flow conditions. The variation of the microwave absorbing properties of the load with temperature was estimated. Under stop-flow conditions, the heating efficiency depends on the load diameter. The highest heating efficiency has been observed at the load diameter close to the half wavelength of the electromagnetic field in the corresponding medium. Under continuous-flow conditions, the heating efficiency increased linearly. However, microwave leakage above the propagation diameter restricted further experimentation at higher load diameters. Contrary to the stop-flow conditions, the load temperature did not raise monotonously from the inlet to outlet under continuous-flow conditions. This was due to the combined effect of lagging convective heat fluxes in comparison to volumetric heating. This severely disturbs the uniformity of the electromagnetic field in the axial direction and creates areas of high and low field intensity along the load Length decreasing the heating efficiency as compared to stop-flow conditions.
Hollands, Gareth J; Prestwich, Andrew; Marteau, Theresa M
2011-03-01
To examine the effect of communicating images of energy-dense snack foods paired with aversive images of the potential health consequences of unhealthy eating, on implicit and explicit attitudes and food choice behavior. Participants were randomly allocated to either an evaluative conditioning (EC) procedure that paired images of snack foods with images of potential adverse health consequences or a control condition that featured images of snack foods alone. Implicit attitudes were assessed pre- and post-intervention. Explicit attitudes and food choice behavior were assessed post-intervention. The conditioning intervention made implicit attitudes toward energy-dense snacks more negative, with this effect greatest in those with relatively more favorable implicit attitudes toward these snacks at baseline. Participants in the conditioning intervention were more likely to choose fruit rather than snacks in a behavioral choice task, a relationship mediated by changes in implicit attitudes. Presenting aversive images of potential health consequences with those of specific foodstuffs can change implicit attitudes, which impacts on subsequent food choice behavior. (c) 2011 APA, all rights reserved
Kawaguchi, Yasuyuki; Kondo, Eiji; Takeda, Ryo; Akita, Keiichi; Yasuda, Kazunori; Amis, Andrew A
2015-03-01
The purpose was to clarify the load-bearing functions of the fibers of the femoral anterior cruciate ligament (ACL) attachment in resisting tibial anterior drawer and rotation. A sequential cutting study was performed on 8 fresh-frozen human knees. The femoral attachment of the ACL was divided into a central area that had dense fibers inserting directly into the femur and anterior and posterior fan-like extension areas. The ACL fibers were cut sequentially from the bone: the posterior fan-like area in 2 stages, the central dense area in 4 stages, and then the anterior fan-like area in 2 stages. Each knee was mounted in a robotic joint testing system that applied tibial anteroposterior 6-mm translations and 10° or 15° of internal rotation at 0° to 90° of flexion. The reduction of restraining force or moment was measured after each cut. The central area resisted 82% to 90% of the anterior drawer force; the anterior fan-like area, 2% to 3%; and the posterior fan-like area, 11% to 15%. Among the 4 central areas, most load was carried close to the roof of the intercondylar notch: the anteromedial bundle resisted 66% to 84% of the force and the posterolateral bundle resisted 16% to 9% from 0° to 90° of flexion. There was no clear pattern for tibial internal rotation, with the load shared among the posterodistal and central areas near extension and mostly the central areas in flexion. Under the experimental conditions described, 66% to 84% of the resistance to tibial anterior drawer arose from the ACL fibers at the central-proximal area of the femoral attachment, corresponding to the anteromedial bundle; the fan-like extension fibers contributed very little. This work did not support moving a single-bundle ACL graft to the side wall of the notch or attempting to cover the whole attachment area if the intention was to mimic how the natural ACL resists tibial displacements. There is ongoing debate about how best to reconstruct the ACL to restore normal knee function, including where is the best place for ACL graft tunnels. This study found that the most important area on the femur, in terms of resisting displacement of the tibia, was in the central-anterior part of the femoral ACL attachment, near the roof of the intercondylar notch. The testing protocol did not lead to data that would support using a large ACL graft tunnel that attempts to cover the whole natural femoral attachment area. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Kawaguchi, Yasuyuki; Kondo, Eiji; Takeda, Ryo; Akita, Keiichi; Yasuda, Kazunori; Amis, Andrew A.
2015-01-01
Purpose The purpose was to clarify the load-bearing functions of the fibers of the femoral anterior cruciate ligament (ACL) attachment in resisting tibial anterior drawer and rotation. Methods A sequential cutting study was performed on 8 fresh-frozen human knees. The femoral attachment of the ACL was divided into a central area that had dense fibers inserting directly into the femur and anterior and posterior fan-like extension areas. The ACL fibers were cut sequentially from the bone: the posterior fan-like area in 2 stages, the central dense area in 4 stages, and then the anterior fan-like area in 2 stages. Each knee was mounted in a robotic joint testing system that applied tibial anteroposterior 6-mm translations and 10° or 15° of internal rotation at 0° to 90° of flexion. The reduction of restraining force or moment was measured after each cut. Results The central area resisted 82% to 90% of the anterior drawer force; the anterior fan-like area, 2% to 3%; and the posterior fan-like area, 11% to 15%. Among the 4 central areas, most load was carried close to the roof of the intercondylar notch: the anteromedial bundle resisted 66% to 84% of the force and the posterolateral bundle resisted 16% to 9% from 0° to 90° of flexion. There was no clear pattern for tibial internal rotation, with the load shared among the posterodistal and central areas near extension and mostly the central areas in flexion. Conclusions Under the experimental conditions described, 66% to 84% of the resistance to tibial anterior drawer arose from the ACL fibers at the central-proximal area of the femoral attachment, corresponding to the anteromedial bundle; the fan-like extension fibers contributed very little. This work did not support moving a single-bundle ACL graft to the side wall of the notch or attempting to cover the whole attachment area if the intention was to mimic how the natural ACL resists tibial displacements. Clinical Relevance There is ongoing debate about how best to reconstruct the ACL to restore normal knee function, including where is the best place for ACL graft tunnels. This study found that the most important area on the femur, in terms of resisting displacement of the tibia, was in the central-anterior part of the femoral ACL attachment, near the roof of the intercondylar notch. The testing protocol did not lead to data that would support using a large ACL graft tunnel that attempts to cover the whole natural femoral attachment area. PMID:25530509
14 CFR 27.505 - Ski landing conditions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... the pedestal bearings. Water Loads ... the pedestal bearings; and (2) A vertical load of 1.33 P is applied at the pedestal bearings. (b) A side-load condition in which a side load of 0.35 Pn is applied at the pedestal bearings in a horizontal...
14 CFR 27.505 - Ski landing conditions.
Code of Federal Regulations, 2014 CFR
2014-01-01
... the pedestal bearings. Water Loads ... the pedestal bearings; and (2) A vertical load of 1.33 P is applied at the pedestal bearings. (b) A side-load condition in which a side load of 0.35 Pn is applied at the pedestal bearings in a horizontal...
14 CFR 27.505 - Ski landing conditions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... the pedestal bearings. Water Loads ... the pedestal bearings; and (2) A vertical load of 1.33 P is applied at the pedestal bearings. (b) A side-load condition in which a side load of 0.35 Pn is applied at the pedestal bearings in a horizontal...
Development of bus-stop time models in dense urban areas : a case study in Washington DC.
DOT National Transportation Integrated Search
2015-08-01
Bus transit reliability depends on several factors including the route of travel, traffic conditions, time of day, and conditions at : the bus stops along the route. The number of passengers alighting or boarding, fare payment method, dwell time (DT)...
NASA Astrophysics Data System (ADS)
Williams, C. J.; Pierson, F. B.; Robichaud, P. R.; Boll, J.; Al-Hamdan, O. Z.
2011-12-01
The increased role of wildland fire across the rangeland-xeric forest continuum in the western United States (US) presents landscape-scale consequences relative runoff and erosion. Concomitant climate conditions and altered plant community transitions in recent decades along grassland-shrubland-woodland-xeric forest transitions have promoted frequent and large wildland fires, and the continuance of the trend appears likely if current or warming climate conditions prevail. Much of the Great Basin and Intermountain West in the US now exists in a state in which rangeland and woodland wildfires stimulated by invasive cheatgrass and dense, horizontal and vertical fuel layers have a greater likelihood of progressing upslope into xeric forests. Drier moisture conditions and warmer seasonal air temperatures, along with dense fuel loads, have lengthened fire seasons and facilitated an increase in the frequency, severity and area burned in mid-elevation western US forests. These changes potentially increase the overall hydrologic vulnerability across the rangeland-xeric forest continuum by spatially and temporally increasing soil surface exposure to runoff and erosion processes. Plot-to-hillslope scale studies demonstrate burning may increase event runoff and/or erosion by factors of 2-40 over small-plots scales and more than 100-fold over large-plot to hillslope scales. Anecdotal reports of large-scale flooding and debris-flow events from rangelands and xeric forests following burning document the potential risk to resources (soil loss, water quality, degraded aquatic habitat, etc.), property and infrastructure, and human life. Such risks are particularly concerning for urban centers near the urban-wildland interface. We do not yet know the long-term ramifications of frequent soil loss associated with commonly occurring runoff events on repeatedly burned sites. However, plot to landscape-scale post-fire erosion rate estimates suggest potential losses of biologically important surface soils may be critically damaging for rangelands given inherent slow soil formation rates. This study presents a summary of fire effects on runoff and erosion across the rangeland-xeric forest continuum of the western US and highlights how that knowledge addresses post-fire hydrologic modeling needs. Further, we present a conceptual framework for advancing post-fire hydrologic vulnerability assessment and identify key areas for future research.
14 CFR 23.497 - Supplementary conditions for tail wheels.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Structure Ground Loads § 23.497 Supplementary conditions for tail wheels. In determining the ground loads on the tail wheel and affected supporting structures, the following apply: (a) For the obstruction load, the limit ground reaction obtained in the tail down landing condition is assumed to act up and aft...
14 CFR 23.497 - Supplementary conditions for tail wheels.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Structure Ground Loads § 23.497 Supplementary conditions for tail wheels. In determining the ground loads on the tail wheel and affected supporting structures, the following apply: (a) For the obstruction load, the limit ground reaction obtained in the tail down landing condition is assumed to act up and aft...
77 FR 45518 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-01
... structure not supporting the limit load condition, which could lead to loss of structural integrity of the... wing structure not supporting the limit load condition, which could lead to loss of the structural... wing structure not supporting the limit load condition, which could lead to loss of structural...
24 CFR 3285.315 - Special snow load conditions.
Code of Federal Regulations, 2010 CFR
2010-04-01
... HOUSING AND URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Foundations § 3285.315 Special snow load conditions. (a) General. Foundations for homes designed for and located in areas with roof live loads greater than 40 psf must be designed by the manufacturer for the special snow load...
Electrical conductivity modeling and experimental study of densely packed SWCNT networks.
Jack, D A; Yeh, C-S; Liang, Z; Li, S; Park, J G; Fielding, J C
2010-05-14
Single-walled carbon nanotube (SWCNT) networks have become a subject of interest due to their ability to support structural, thermal and electrical loadings, but to date their application has been hindered due, in large part, to the inability to model macroscopic responses in an industrial product with any reasonable confidence. This paper seeks to address the relationship between macroscale electrical conductivity and the nanostructure of a dense network composed of SWCNTs and presents a uniquely formulated physics-based computational model for electrical conductivity predictions. The proposed model incorporates physics-based stochastic parameters for the individual nanotubes to construct the nanostructure such as: an experimentally obtained orientation distribution function, experimentally derived length and diameter distributions, and assumed distributions of chirality and registry of individual CNTs. Case studies are presented to investigate the relationship between macroscale conductivity and nanostructured variations in the bulk stochastic length, diameter and orientation distributions. Simulation results correspond nicely with those available in the literature for case studies of conductivity versus length and conductivity versus diameter. In addition, predictions for the increasing anisotropy of the bulk conductivity as a function of the tube orientation distribution are in reasonable agreement with our experimental results. Examples are presented to demonstrate the importance of incorporating various stochastic characteristics in bulk conductivity predictions. Finally, a design consideration for industrial applications is discussed based on localized network power emission considerations and may lend insight to the design engineer to better predict network failure under high current loading applications.
Unknown loads affect force production capacity in early phases of bench press throws.
Hernández Davó, J L; Sabido Solana, R; Sarabia Marínm, J M; Sánchez Martos, Á; Moya Ramón, M
2015-10-01
Explosive strength training aims to improve force generation in early phases of movement due to its importance in sport performance. The present study examined the influence of lack of knowledge about the load lifted in explosive parameters during bench press throws. Thirteen healthy young men (22.8±2.0 years) participated in the study. Participants performed bench press throws with three different loads (30, 50 and 70% of 1 repetition maximum) in two different conditions (known and unknown loads). In unknown condition, loads were changed within sets in each repetition and participants did not know the load, whereas in known condition the load did not change within sets and participants had knowledge about the load lifted. Results of repeated-measures ANOVA revealed that unknown conditions involves higher power in the first 30, 50, 100 and 150 ms with the three loads, higher values of ratio of force development in those first instants, and differences in time to reach maximal rate of force development with 50 and 70% of 1 repetition maximum. This study showed that unknown conditions elicit higher values of explosive parameters in early phases of bench press throws, thereby this kind of methodology could be considered in explosive strength training.
Bernstein, Andrey; Wang, Cong; Dall'Anese, Emiliano; ...
2018-01-01
This paper considers unbalanced multiphase distribution systems with generic topology and different load models, and extends the Z-bus iterative load-flow algorithm based on a fixed-point interpretation of the AC load-flow equations. Explicit conditions for existence and uniqueness of load-flow solutions are presented. These conditions also guarantee convergence of the load-flow algorithm to the unique solution. The proposed methodology is applicable to generic systems featuring (i) wye connections; (ii) ungrounded delta connections; (iii) a combination of wye-connected and delta-connected sources/loads; and, (iv) a combination of line-to-line and line-to-grounded-neutral devices at the secondary of distribution transformers. Further, a sufficient condition for themore » non-singularity of the load-flow Jacobian is proposed. Finally, linear load-flow models are derived, and their approximation accuracy is analyzed. Theoretical results are corroborated through experiments on IEEE test feeders.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernstein, Andrey; Wang, Cong; Dall'Anese, Emiliano
This paper considers unbalanced multiphase distribution systems with generic topology and different load models, and extends the Z-bus iterative load-flow algorithm based on a fixed-point interpretation of the AC load-flow equations. Explicit conditions for existence and uniqueness of load-flow solutions are presented. These conditions also guarantee convergence of the load-flow algorithm to the unique solution. The proposed methodology is applicable to generic systems featuring (i) wye connections; (ii) ungrounded delta connections; (iii) a combination of wye-connected and delta-connected sources/loads; and, (iv) a combination of line-to-line and line-to-grounded-neutral devices at the secondary of distribution transformers. Further, a sufficient condition for themore » non-singularity of the load-flow Jacobian is proposed. Finally, linear load-flow models are derived, and their approximation accuracy is analyzed. Theoretical results are corroborated through experiments on IEEE test feeders.« less
Heyland, Mark; Trepczynski, Adam; Duda, Georg N; Zehn, Manfred; Schaser, Klaus-Dieter; Märdian, Sven
2015-12-01
Selection of boundary constraints may influence amount and distribution of loads. The purpose of this study is to analyze the potential of inertia relief and follower load to maintain the effects of musculoskeletal loads even under large deflections in patient specific finite element models of intact or fractured bone compared to empiric boundary constraints which have been shown to lead to physiological displacements and surface strains. The goal is to elucidate the use of boundary conditions in strain analyses of bones. Finite element models of the intact femur and a model of clinically relevant fracture stabilization by locking plate fixation were analyzed with normal walking loading conditions for different boundary conditions, specifically re-balanced loading, inertia relief and follower load. Peak principal cortex surface strains for different boundary conditions are consistent (maximum deviation 13.7%) except for inertia relief without force balancing (maximum deviation 108.4%). Influence of follower load on displacements increases with higher deflection in fracture model (from 3% to 7% for force balanced model). For load balanced models, follower load had only minor influence, though the effect increases strongly with higher deflection. Conventional constraints of fixed nodes in space should be carefully reconsidered because their type and position are challenging to justify and for their potential to introduce relevant non-physiological reaction forces. Inertia relief provides an alternative method which yields physiological strain results. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
Onset of sediment transport is a continuous transition driven by fluid shear and granular creep
Houssais, Morgane; Ortiz, Carlos P.; Durian, Douglas J.; Jerolmack, Douglas J.
2015-01-01
Fluid-sheared granular transport sculpts landscapes and undermines infrastructure, yet predicting the onset of sediment transport remains notoriously unreliable. For almost a century, this onset has been treated as a discontinuous transition at which hydrodynamic forces overcome gravity-loaded grain–grain friction. Using a custom laminar-shear flume to image slow granular dynamics deep into the bed, here we find that the onset is instead a continuous transition from creeping to granular flow. This transition occurs inside the dense granular bed at a critical viscous number, similar to granular flows and colloidal suspensions and inconsistent with hydrodynamic frameworks. We propose a new phase diagram for sediment transport, where ‘bed load’ is a dense granular flow bounded by creep below and suspension above. Creep is characteristic of disordered solids and reminiscent of soil diffusion on hillslopes. Results provide new predictions for the onset and dynamics of sediment transport that challenge existing models. PMID:25751296
Cracks and nanodroplets produced on tungsten surface samples by dense plasma jets
NASA Astrophysics Data System (ADS)
Ticoş, C. M.; Galaţanu, M.; Galaţanu, A.; Luculescu, C.; Scurtu, A.; Udrea, N.; Ticoş, D.; Dumitru, M.
2018-03-01
Small samples of 12.5 mm in diameter made from pure tungsten were exposed to a dense plasma jet produced by a coaxial plasma gun operated at 2 kJ. The surface of the samples was analyzed using a scanning electron microscope (SEM) before and after applying consecutive plasma shots. Cracks and craters were produced in the surface due to surface tensions during plasma heating. Nanodroplets and micron size droplets could be observed on the samples surface. An energy-dispersive spectroscopy (EDS) analysis revealed that the composition of these droplets coincided with that of the gun electrode material. Four types of samples were prepared by spark plasma sintering from powders with the average particle size ranging from 70 nanometers up to 80 μm. The plasma power load to the sample surface was estimated to be ≈4.7 MJ m-2 s-1/2 per shot. The electron temperature and density in the plasma jet had peak values 17 eV and 1.6 × 1022 m-3, respectively.
A new biodegradable sisal fiber-starch packing composite with nest structure.
Xie, Qi; Li, Fangyi; Li, Jianfeng; Wang, Liming; Li, Yanle; Zhang, Chuanwei; Xu, Jie; Chen, Shuai
2018-06-01
A new completely biodegradable sisal fiber-starch packing composite was proposed. The effects of fiber content and alkaline treatment on the cushioning property of the composites were studied from energy absorption efficiency, cellular microstructure and compatibility between fiber and starch. With increasing fiber content, the nest structure of composites becomes dense first and then loosens, resulting in initial enhancement and subsequent weakening of the cushioning property of the composites. The composite with 4:13 mass ratio of fiber and thermoplastic starch (TPS) exhibit the optimal cushioning property. Alkaline treatment increases the compatibility between sisal fiber and TPS, promotes the formation of dense nest structure, thereby enhances the cushioning property of the composites. After biodegradability tests for 28 days, the weight loss of the composites was 62.36%. It's found that the composites are a promising replacement for expandable polystyrene (EPS) as packing material, especially under large compression load (0.7-6 MPa). Copyright © 2018 Elsevier Ltd. All rights reserved.
Retrieval and Validation of Aerosol Optical Depth by using the GF-1 Remote Sensing Data
NASA Astrophysics Data System (ADS)
Zhang, L.; Xu, S.; Wang, L.; Cai, K.; Ge, Q.
2017-05-01
Based on the characteristics of GF-1 remote sensing data, the method and data processing procedure to retrieve the Aerosol Optical Depth (AOD) are developed in this study. The surface contribution over dense vegetation and urban bright target areas are respectively removed by using the dark target and deep blue algorithms. Our method is applied for the three serious polluted Beijing-Tianjin-Hebei (BTH), Yangtze River Delta (YRD) and Pearl River Delta (PRD) regions. The retrieved AOD are validated by ground-based AERONET data from Beijing, Hangzhou, Hong Kong sites. Our results show that, 1) the heavy aerosol loadings are usually distributed in high industrial emission and dense populated cities, with the AOD value near 1. 2) There is a good agreement between satellite-retrievals and in-site observations, with the coefficient factors of 0.71 (BTH), 0.55 (YRD) and 0.54(PRD). 3) The GF-1 retrieval uncertainties are mainly from the impact of cloud contamination, high surface reflectance and assumed aerosol model.
A reanalysis of the HCO(+)/HOC(+) abundance ratio in dense interstellar clouds
NASA Technical Reports Server (NTRS)
Jarrold, M. F.; Bowers, M. T.; Defrees, D. J.; Mclean, A. D.; Herbst, E.
1986-01-01
New theoretical and experimental results have prompted a reinvestigation of the HCO(+)/HOC(+) abundance ratio in dense interstellar clouds. These results pertain principally but not exclusively to the reaction between HOC(+) and H2, which was previously calculated by DeFrees et al. (1984) to possess a large activation energy barrier. New calculations, reported here, indicate that this activation energy barrier is quite small and may well be zero. In addition, experimental results at higher energy and temperature indicate strongly that the reaction proceeds efficiently at interstellar temperatures. If HOC(+) does indeed react efficiently with H2 in interstellar clouds, the calculated HCO(+)/HOC(+) abundance ratio rises to a substantially greater value under standard dense cloud conditions than is deduced via the tentative observation of HOC(+) in Sgr B2.
Jen Y. Liu; S. Cheng
1979-01-01
A plane-stress analysis of orthotropic or isotropic beams is presented. The loading conditions considered are: (1) a concentrated normal load arbitrarily located on the beam, and (2) a distributed normal load covering an arbitrary length of the beam. exhibit close agreement with existing experimental data from Sitka spruce beams. Other loading conditions can similarly...
DOT National Transportation Integrated Search
2015-01-01
The performance of a microwave radar system for vehicle detection at a railroad grade crossing with quadrant gates was evaluated in : adverse weather conditions: rain (light and torrential), snow (light and heavy), dense fog, and wind. The first part...
ERIC Educational Resources Information Center
Lamm, Connie; White, Lauren K.; McDermott, Jennifer Martin; Fox, Nathan A.
2012-01-01
The neural correlates of cognitive control for typically developing 9-year-old children were examined using dense-array ERPs and estimates of cortical activation (LORETA) during a go/no-go task with two conditions: a neutral picture condition and an affectively charged picture condition. Activation was estimated for the entire cortex after which…
Association of nutrient-dense snack combinations with calories and vegetable intake.
Wansink, Brian; Shimizu, Mitsuru; Brumberg, Adam
2013-01-01
With other factors such as general diet and insufficient exercise, eating non-nutrient dense snack foods such as potato chips contributes to childhood obesity. We examined whether children consumed fewer calories when offered high-nutrient dense snacks consisting of cheese and vegetables than children who were offered non-nutrient dense snacks (ie, potato chips). Two hundred one children (115 girls) entering the third to sixth grades were randomly assigned to 1 of 4 snacking conditions: (1) potato chips only, (2) cheese-only, (3) vegetables only, and (4) cheese and vegetables. Children were allowed to eat snacks freely provided while watching 45-minute TV programs. Satiety was measured before they started eating snacks, in the middle of the study, and 20 minutes after they finished eating the snacks. Parents completed a questionnaire regarding their family environment. Children consumed 72% fewer calories when eating a combined snack compared with when they were served potato chips, P < .001. Children who ate the combination snack needed significantly fewer calories to achieve satiety than those who ate potato chips, P < .001. The effects of the snack conditions on caloric intake were more pronounced among overweight or obese children (P = .02) and those from low-involvement families (P = .049) The combination snack of vegetables and cheese can be an effective means for children to reduce caloric intake while snacking. The effect was more pronounced among children who were overweight or obese and children from low-involvement families.
Sekiya, Sachiko; Shimizu, Tatsuya; Yamato, Masayuki; Okano, Teruo
2011-03-01
In the field of tissue engineering, the induction of microvessels into tissues is an important task because of the need to overcome diffusion limitations of oxygen and nutrients within tissues. Powerful methods to create vessels in engineered tissues are needed for creating real living tissues. In this study, we utilized three-dimensional (3D) highly cell dense tissues fabricated by cell sheet technology. The 3D tissue constructs are close to living-cell dense tissue in vivo. Additionally, creating an endothelial cell (EC) network within tissues promoted neovascularization promptly within the tissue after transplantation in vivo. Compared to the conditions in vivo, however, common in vitro cell culture conditions provide a poor environment for creating lumens within 3D tissue constructs. Therefore, for determining adequate conditions for vascularizing engineered tissue in vitro, our 3D tissue constructs were cultured under a "deep-media culture conditions." Compared to the control conditions, the morphology of ECs showed a visibly strained cytoskeleton, and the density of lumen formation within tissues increased under hydrostatic pressure conditions. Moreover, the increasing expression of vascular endothelial cadherin in the lumens suggested that the vessels were stabilized in the stimulated tissues compared with the control. These findings suggested that deep-media culture conditions improved lumen formation in engineered tissues in vitro.
Satiating properties of meat-preparations: role of protein content and energy density.
Berti, Cristiana; Riso, Patrizia; Porrini, Marisa
2008-04-01
To investigate the effects of three beef-based preparations (roast-beef, boiled beef, canned beef in jelly) on satiety and eating behavior. Ten male and ten female healthy volunteers (normal weight for height) were recruited. Three different studies were conducted, all with a within-subjects design. In Study 1, the effect of the beef-preparations on the specific satiety was evaluated by ad libitum consumption. In Study 2, the effect of the beef-preparations, proposed as a first course (preload) of a complete meal, on the total energy intake was explored. Subjects were asked to eat the beef-preloads (260g for women; 400g for men) in full, and then to consume as much as they wanted of a test meal. A no-load condition (ad libitum test meal consumption without any meat-preload) was included. In Study 3, the contribution of three different amounts of canned beef, served with a fixed amount of salad, on the desire to eat and satiety sensations over time was evaluated. In Study 1, energy, weight and protein intakes were significantly affected by the type of beef-preparation, but not by pleasantness. In fact, specific satiety was reached with comparable amount of boiled meat and roast-beef, whilst canned meat was eaten in a higher amount, despite a lower rating of pleasantness. In Study 2, total energy was independent of the type of beef-preparation and was always lower than in the no-load condition; on the contrary, weight intake was similar in all conditions. From Study 3, a significant effect of time and low-energy protein food portion/time interaction on satiety ratings was observed. The satiating properties of the beef-preparations did not depend strictly on protein content; on the contrary, physical characteristics and, mainly, energy density seemed the most effective determinants. However, small portions of low-energy dense-protein foods seemed to be useful in modulating satiety sensations. On the whole, our results suggest that high protein intakes are not necessarily the only way to control food intake.
Gravity-Driven Hydraulic Fractures
NASA Astrophysics Data System (ADS)
Germanovich, L. N.; Garagash, D.; Murdoch, L. C.; Robinowitz, M.
2014-12-01
This study is motived by a new method for disposing of nuclear waste by injecting it as a dense slurry into a hydraulic fracture that grows downward to great enough depth to permanently isolate the waste. Disposing of nuclear waste using gravity-driven hydraulic fractures is mechanically similar to the upward growth of dikes filled with low density magma. A fundamental question in both applications is how the injected fluid controls the propagation dynamics and fracture geometry (depth and breadth) in three dimensions. Analog experiments in gelatin [e.g., Heimpel and Olson, 1994; Taisne and Tait, 2009] show that fracture breadth (the short horizontal dimension) remains nearly stationary when the process in the fracture "head" (where breadth is controlled) is dominated by solid toughness, whereas viscous fluid dissipation is dominant in the fracture tail. We model propagation of the resulting gravity-driven (buoyant or sinking), finger-like fracture of stationary breadth with slowly varying opening along the crack length. The elastic response to fluid loading in a horizontal cross-section is local and can be treated similar to the classical Perkins-Kern-Nordgren (PKN) model of hydraulic fracturing. The propagation condition for a finger-like crack is based on balancing the global energy release rate due to a unit crack extension with the rock fracture toughness. It allows us to relate the net fluid pressure at the tip to the fracture breadth and rock toughness. Unlike the PKN fracture, where breadth is known a priori, the final breadth of a finger-like fracture is a result of processes in the fracture head. Because the head is much more open than the tail, viscous pressure drop in the head can be neglected leading to a 3D analog of Weertman's hydrostatic pulse. This requires relaxing the local elasticity assumption of the PKN model in the fracture head. As a result, we resolve the breadth, and then match the viscosity-dominated tail with the 3-D, toughness-dominated head to obtain a complete closed-form solution. We then analyze the gravity fracture propagation in conditions of either continuous injection or finite volume release for sets of parameters representative of dense waste injection technique and low viscosity magma diking.
Measuring fish body condition with or without parasites: does it matter?
Lagrue, C; Poulin, R
2015-10-01
A fish body condition index was calculated twice for each individual fish, including or excluding parasite mass from fish body mass, and index values were compared to test the effects of parasite mass on measurement of body condition. Potential correlations between parasite load and the two alternative fish condition index values were tested to assess how parasite mass may influence the perception of the actual effects of parasitism on fish body condition. Helminth parasite mass was estimated in common bully Gobiomorphus cotidianus from four New Zealand lakes and used to assess the biasing effects of parasite mass on body condition indices. Results showed that the inclusion or exclusion of parasite mass from fish body mass in index calculations significantly influenced correlation patterns between parasite load and fish body condition indices. When parasite mass was included, there was a positive correlation between parasite load and fish body condition, seemingly indicating that fish in better condition supported higher parasite loads. When parasite mass was excluded, there was no correlation between parasite load and fish body condition, i.e. there was no detectable effect of helminth parasites on fish condition or fish condition on parasite load. Fish body condition tended to be overestimated when parasite mass was not accounted for; results showed a positive correlation between relative parasite mass and the degree to which individual fish condition was overestimated. Regardless of the actual effects of helminth parasites on fish condition, parasite mass contained within a fish should be taken into account when estimating fish condition. Parasite tissues are not host tissues and should not be included in fish mass when calculating a body condition index, especially when looking at potential effects of helminth infections on fish condition. © 2015 The Fisheries Society of the British Isles.
77 FR 45515 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-01
... could result in the wing structure not supporting the limit load condition, which could lead to loss of... the limit load condition, which could lead to loss of the structural integrity of the wing. Relevant... could result in the wing structure not supporting the limit load condition, which could lead to loss of...
Gearbox Reliability Collaborative Investigation of Gearbox Motion and High-Speed-Shaft Loads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keller, Jon; Guo, Yi; Sethuraman, Latha
2016-03-18
This paper extends a model-to-test validation effort to examine the effect of different constant rotor torque and moment conditions and intentional generator misalignment on the gearbox motion and high-speed-shaft loads. Fully validating gearbox motion and high-speed-shaft loads across a range of test conditions is a critical precursor to examining the bearing loads, as the gearbox motion and high-speed-shaft loads are the drivers of these bearing loads.
Measuring Plasma Formation Field Strength and Current Loss in Pulsed Power Diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, Mark D.; Patel, Sonal G.; Falcon, Ross Edward
This LDRD investigated plasma formation, field strength, and current loss in pulsed power diodes. In particular the Self-Magnetic Pinch (SMP) e-beam diode was studied on the RITS-6 accelerator. Magnetic fields of a few Tesla and electric fields of several MV/cm were measured using visible spectroscopy techniques. The magnetic field measurements were then used to determine the current distribution in the diode. This distribution showed that significant beam current extends radially beyond the few millimeter x-ray focal spot diameter. Additionally, shielding of the magnetic field due to dense electrode surface plasmas was observed, quantified, and found to be consistent with themore » calculated Spitzer resistivity. In addition to the work on RITS, measurements were also made on the Z-machine looking to quantify plasmas within the power flow regions. Measurements were taken in the post-hole convolute and final feed gap regions on Z. Dopants were applied to power flow surfaces and measured spectroscopically. These measurements gave species and density/temperature estimates. Preliminary B-field measurements in the load region were attempted as well. Finally, simulation work using the EMPHASIS, electromagnetic particle in cell code, was conducted using the Z MITL conditions. The purpose of these simulations was to investigate several surface plasma generations models under Z conditions for comparison with experimental data.« less
High Temperature Deformation Mechanisms in a DLD Nickel Superalloy
Davies, Sean; Jeffs, Spencer; Lancaster, Robert; Baxter, Gavin
2017-01-01
The realisation of employing Additive Layer Manufacturing (ALM) technologies to produce components in the aerospace industry is significantly increasing. This can be attributed to their ability to offer the near-net shape fabrication of fully dense components with a high potential for geometrical optimisation, all of which contribute to subsequent reductions in material wastage and component weight. However, the influence of this manufacturing route on the properties of aerospace alloys must first be fully understood before being actively applied in-service. Specimens from the nickel superalloy C263 have been manufactured using Powder Bed Direct Laser Deposition (PB-DLD), each with unique post-processing conditions. These variables include two build orientations, vertical and horizontal, and two different heat treatments. The effects of build orientation and post-process heat treatments on the materials’ mechanical properties have been assessed with the Small Punch Tensile (SPT) test technique, a practical test method given the limited availability of PB-DLD consolidated material. SPT testing was also conducted on a cast C263 variant to compare with PB-DLD derivatives. At both room and elevated temperature conditions, differences in mechanical performances arose between each material variant. This was found to be instigated by microstructural variations exposed through microscopic and Energy Dispersive X-ray Spectroscopy (EDS) analysis. SPT results were also compared with available uniaxial tensile data in terms of SPT peak and yield load against uniaxial ultimate tensile and yield strength. PMID:28772817
NASA Astrophysics Data System (ADS)
Yamashita, F.; Fukuyama, E.; Xu, S.; Kawakata, H.; Mizoguchi, K.; Takizawa, S.
2017-12-01
We report two types of foreshock activities observed on meter-scale laboratory experiments: slow-slip-driven type and cascade-up type. We used two rectangular metagabbro blocks as experimental specimens, whose nominal contacting area was 1.5 m long and 0.1 m wide. To monitor stress changes and seismic activities on the fault, we installed dense arrays of 32 triaxial rosette strain gauges and 64 PZT seismic sensors along the fault. We repeatedly conducted experiments with the same pair of rock specimens, causing the evolution of damage on the fault. We focus on two experiments successively conducted under the same loading condition (normal stress of 6.7 MPa and loading rate of 0.01 mm/s) but different initial fault surface conditions; the first experiment preserved the gouge generated from the previous experiment while the second experiment started with all gouge removed. Note that the distribution of gouge was heterogeneous, because we did not make the gouge layer uniform. We observed many foreshocks in both experiments, but found that the b-value of foreshocks was smaller in the first experiment with pre-existing gouge (PEG). In the second experiment without PEG, we observed premonitory slow slip associated with nucleation process preceding most main events by the strain measurements. We also found that foreshocks were triggered by the slow slip at the end of the nucleation process. In the experiment with PEG, on the contrary, no clear premonitory slow slips were found. Instead, foreshock activity accelerated towards the main event, as confirmed by a decreasing b-value. Spatiotemporal distribution of foreshock hypocenters suggests that foreshocks migrated and cascaded up to the main event. We infer that heterogeneous gouge distribution caused stress-concentrated and unstable patches, which impeded stable slow slip but promoted foreshocks on the fault. Further, our results suggest that b-value is a useful parameter for characterizing these observations.
Turbulent Mixing and Afterburn in Post-Detonation Flow with Dense Particle Clouds
NASA Astrophysics Data System (ADS)
Menon, Suresh
2015-06-01
Reactive metal particles are used as additives in most explosives to enhance afterburn and augment the impact of the explosive. The afterburn is highly dependent on the particle dispersal and mixing in the post-detonation flow. The post-detonation flow is generally characterized by hydrodynamic instabilities emanating from the interaction of the blast waves with the detonation product gases and the ambient air. Further, influenced by the particles, the flow evolves and develops turbulent structures, which play vital role in determining mixing and combustion. Past studies in the field in open literature are reviewed along with some recent studies conducted using three dimensional numerical simulations of particle dispersal and combustion in the post-detonation flow. Spherical nitromethane charges enveloped by particle shells of varying thickness are considered along with dense loading effects. In dense flows, the particles block the flow of the gases and therefore, the role of the inter-particle interactions on particle dispersal cannot be ignored. Thus, both dense and dilute effects must be modeled simultaneously to simulate the post-detonation flow. A hybrid equation of state is employed to study the evolution of flow from detonation initiation till the late time mixing and afterburn. The particle dispersal pattern in each case is compared with the available experimental results. The burn rate and the energy release in each case is quantified and the effect of total mass of the particles and the particle size is analyzed in detail. Strengths and limitations of the various methods used for such studies as well as the uncertainties in the modeling strategies are also highlighted. Supported by Defense Threat Reduction Agency.
Revisiting the functional roles of the surgeonfish Acanthurus nigrofuscus and Ctenochaetus striatus
NASA Astrophysics Data System (ADS)
Marshell, A.; Mumby, P. J.
2012-12-01
Investigating the functional role of herbivorous fish species is important for understanding reef resilience and developing targeted management plans. Among the most abundant fish species on Indo-Pacific coral reefs are the surgeonfishes Acanthurus nigrofuscus and Ctenochaetus striatus. A. nigrofuscus is an herbivorous grazer that crops filamentous algae from the epilithic algal matrix, while C. striatus is detritivorous and was thought to `brush' detritus from the surface of filamentous algae, causing little damage to algal strands. Although the foraging mechanisms and general diet of these surgeonfishes have been established, their grazing impact on epilithic algal turfs has been unclear. This is the first study to quantify the grazing impact of A. nigrofuscus and C. striatus on algal turfs. Through aquaria trials using epilithic algal turf grown on experimental tiles, we found that both A. nigrofuscus and C. striatus consistently fed more intensively upon sparse/short algal turfs even though the yield of algae per bite was greater for dense/long algal turfs. As there was no difference in the nutritional value of sparse and dense algal turfs, we hypothesise that A. nigrofuscus avoided dense turf due to its significantly greater sediment load than sparse turf, while C. striatus likely avoided dense turf as it would become entangled in their bristle-like teeth. Unexpectedly, despite its dental morphology, C. striatus removed significantly more algal turf per hour than A. nigrofuscus, irrespective of canopy height. The capability of C. striatus to remove significant quantities of algal turf through their foraging activity implies that this abundant and widespread species may substantially affect algal turf dynamics. If this is the case, the exclusion of detritivorous Ctenochaetus species from herbivorous fish functional groups used in resilience monitoring will need to be re-evaluated.
14 CFR 23.529 - Hull and main float landing conditions.
Code of Federal Regulations, 2014 CFR
2014-01-01
... landing. For symmetrical step, bow, and stern landings, the limit water reaction load factors are those....25 tan β times the resultant load in the corresponding symmetrical landing condition; and (2) The... at one float times the step landing load reached under § 23.527. The side load is directed inboard...
14 CFR 27.521 - Float landing conditions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... water reaction passes vertically through the center of gravity; and (2) The vertical load prescribed in paragraph (a)(1) of this section is applied simultaneously with an aft component of 0.25 times the vertical component. (b) A side-load condition in which— (1) A vertical load of 0.75 times the total vertical load...
14 CFR 27.521 - Float landing conditions.
Code of Federal Regulations, 2011 CFR
2011-01-01
... water reaction passes vertically through the center of gravity; and (2) The vertical load prescribed in paragraph (a)(1) of this section is applied simultaneously with an aft component of 0.25 times the vertical component. (b) A side-load condition in which— (1) A vertical load of 0.75 times the total vertical load...
14 CFR 23.529 - Hull and main float landing conditions.
Code of Federal Regulations, 2011 CFR
2011-01-01
... landing. For symmetrical step, bow, and stern landings, the limit water reaction load factors are those....25 tan β times the resultant load in the corresponding symmetrical landing condition; and (2) The... at one float times the step landing load reached under § 23.527. The side load is directed inboard...
14 CFR 27.521 - Float landing conditions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... water reaction passes vertically through the center of gravity; and (2) The vertical load prescribed in paragraph (a)(1) of this section is applied simultaneously with an aft component of 0.25 times the vertical component. (b) A side-load condition in which— (1) A vertical load of 0.75 times the total vertical load...
14 CFR 27.521 - Float landing conditions.
Code of Federal Regulations, 2014 CFR
2014-01-01
... water reaction passes vertically through the center of gravity; and (2) The vertical load prescribed in paragraph (a)(1) of this section is applied simultaneously with an aft component of 0.25 times the vertical component. (b) A side-load condition in which— (1) A vertical load of 0.75 times the total vertical load...
14 CFR 27.521 - Float landing conditions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... water reaction passes vertically through the center of gravity; and (2) The vertical load prescribed in paragraph (a)(1) of this section is applied simultaneously with an aft component of 0.25 times the vertical component. (b) A side-load condition in which— (1) A vertical load of 0.75 times the total vertical load...
Multisensory Cues Capture Spatial Attention Regardless of Perceptual Load
ERIC Educational Resources Information Center
Santangelo, Valerio; Spence, Charles
2007-01-01
We compared the ability of auditory, visual, and audiovisual (bimodal) exogenous cues to capture visuo-spatial attention under conditions of no load versus high perceptual load. Participants had to discriminate the elevation (up vs. down) of visual targets preceded by either unimodal or bimodal cues under conditions of high perceptual load (in…
14 CFR 23.415 - Ground gust conditions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... and System Loads § 23.415 Ground gust conditions. (a) The control system must be investigated as... control system for ground gust loads is not required by paragraph (a)(2) of this section, but the applicant elects to design a part of the control system of these loads, these loads need only be carried...
Fox, Elaine; Yates, Alan; Ashwin, Chris
2012-01-01
The impact of trait anxiety and perceptual load on selective attention was examined in a fear conditioning paradigm. A fear-conditioned angry face (CS+), an unconditioned angry face (CS−), or an unconditioned face with a neutral or happy expression were used in distractor interference and attentional probe tasks. In Experiments 1 and 2, participants classified centrally presented letters under two conditions of perceptual load. When perceptual load was high, distractors had no effect on selective attention, even with aversive conditioning. However, when perceptual load was low, strong response interference effects for CS+ face distractors were found for low trait-anxious participants. Across both experiments, this enhanced distractor interference reversed to strong facilitation effects for those reporting high trait anxiety. Thus, high trait-anxious participants were faster, rather than slower, when ignoring CS+ distractors. Using an attentional probe task in Experiment 3, it was found that fear conditioning resulted in strong attentional avoidance in a high trait-anxious group, which contrasted with enhanced vigilance in a low trait-anxious group. These results demonstrate that the impact of fear conditioning on attention is modulated by individual variation in trait anxiety when perceptual load is low. Fear conditioning elicits an avoidance of threat-relevant stimuli in high trait-anxious participants. PMID:21875186
Bypassing the malfunction junction in warm dense matter simulations
NASA Astrophysics Data System (ADS)
Cangi, Attila; Pribram-Jones, Aurora
2015-03-01
Simulation of warm dense matter requires computational methods that capture both quantum and classical behavior efficiently under high-temperature and high-density conditions. The state-of-the-art approach to model electrons and ions under those conditions is density functional theory molecular dynamics, but this method's computational cost skyrockets as temperatures and densities increase. We propose finite-temperature potential functional theory as an in-principle-exact alternative that suffers no such drawback. In analogy to the zero-temperature theory developed previously, we derive an orbital-free free energy approximation through a coupling-constant formalism. Our density approximation and its associated free energy approximation demonstrate the method's accuracy and efficiency. A.C. has been partially supported by NSF Grant CHE-1112442. A.P.J. is supported by DOE Grant DE-FG02-97ER25308.
NASA Astrophysics Data System (ADS)
Viktorov, Mikhail; Golubev, Sergey; Mansfeld, Dmitry; Vodopyanov, Alexander
2016-04-01
Interaction of dense supersonic plasma flows with an inhomogeneous arched magnetic field is one of the key problems in near-Earth and space plasma physics. It can influence on the energetic electron population formation in magnetosphere of the Earth, movement of plasma flows in magnetospheres of planets, energy release during magnetic reconnection, generation of electromagnetic radiation and particle precipitation during solar flares eruption. Laboratory study of this interaction is of big interest to determine the physical mechanisms of processes in space plasmas and their detailed investigation under reproducible conditions. In this work a new experimental approach is suggested to study interaction of supersonic (ion Mach number up to 2.7) dense (up to 1015 cm-3) plasma flows with inhomogeneous magnetic field (an arched magnetic trap with a field strength up to 3.3 T) which opens wide opportunities to model space plasma processes in laboratory conditions. Fully ionized plasma flows with density from 1013 cm-3 to 1015 cm-3 are created by plasma generator on the basis of pulsed vacuum arc discharge. Then plasma is injected in an arched open magnetic trap along or across magnetic field lines. The filling of the arched magnetic trap with dense plasma and further magnetic field lines break by dense plasma flow were experimentally demonstrated. The process of plasma deceleration during the injection of plasma flow across the magnetic field lines was experimentally demonstrated. Pulsed plasma microwave emission at the electron cyclotron frequency range was observed. It was shown that frequency spectrum of plasma emission is determined by position of deceleration region in the magnetic field of the magnetic arc, and is affected by plasma density. Frequency spectrum shifts to higher frequencies with increasing of arc current (plasma density) because the deceleration region of plasma flow moves into higher magnetic field. The observed emission can be related to the cyclotron mechanism of generation by non-equilibrium energetic electrons in dense plasma. The reported study was funded by RFBR, according to the research project No. 16-32-60056 mol_a_dk.
Reynolds, L.V.; Cooper, D.J.
2010-01-01
Questions: Exotic plant invasion may be aided by facilitation and broad tolerance of environmental conditions, yet these processes are poorly understood in species-rich ecosystems such as riparian zones. In the southwestern United States (US) two plant species have invaded riparian zones: tamarisk (Tamarix ramosissima, T. chinensis, and their hybrids) and Russian olive (Elaeagnus angustifolia). We addressed the following questions: (1) is Russian olive able to tolerate drier and shadier conditions than cottonwood and tamarisk? (2) Can tamarisk and cottonwood facilitate Russian olive invasion? Location: Arid riparian zones, southwestern US. Methods: We analyzed riparian tree seedling requirements in a controlled experiment, performed empirical field studies, and analyzed stable oxygen isotopes to determine the water sources used by Russian olive. Results: Russian olive survival was significantly higher in dense shade and low moisture conditions than tamarisk and cottonwood. Field observations indicated Russian olive established where flooding cannot occur, and under dense canopies of tamarisk, cottonwood, and Russian olive. Tamarisk and native riparian plant species seedlings cannot establish in these dry, shaded habitats. Russian olive can rely on upper soil water until 15 years of age, before utilizing groundwater. Conclusions: We demonstrate that even though there is little evidence of facilitation by cottonwood and tamarisk, Russian olive is able to tolerate dense shade and low moisture conditions better than tamarisk and cottonwood. There is great potential for continued spread of Russian olive throughout the southwestern US because large areas of suitable habitat exist that are not yet inhabited by this species. ?? 2010 International Association for Vegetation Science.
Effects of thigh holster use on kinematics and kinetics of active duty police officers.
Larsen, Louise Bæk; Tranberg, Roy; Ramstrand, Nerrolyn
2016-08-01
Body armour, duty belts and belt mounted holsters are standard equipment used by the Swedish police and have been shown to affect performance of police specific tasks, to decrease mobility and to potentially influence back pain. This study aimed to investigate the effects on gait kinematics and kinetics associated with use of an alternate load carriage system incorporating a thigh holster. Kinematic, kinetic and temporospatial data were collected using three dimensional gait analysis. Walking tests were conducted with nineteen active duty police officers under three different load carriage conditions: a) body armour and duty belt, b) load bearing vest, body armour and thigh holster and c) no equipment (control). No significant differences between testing conditions were found for temporospatial parameters. Range of trunk rotation was reduced for both load carriage conditions compared to the control condition (p<0.017). Range of hip rotation was more similar to the control condition when wearing thigh holster rather than the belt mounted hip holster (p<0.017). Moments and powers for both left and right ankles were significantly greater for both of the load carriage conditions compared to the control condition (p<0.017). This study confirms that occupational loads carried by police have a significant effect on gait kinematics and kinetics. Although small differences were observed between the two load carriage conditions investigated in this study, results do not overwhelmingly support selection of one design over the other. Copyright © 2016 Elsevier Ltd. All rights reserved.
Working memory load modulates the neural response to other's pain: Evidence from an ERP study.
Cui, Fang; Zhu, Xiangru; Luo, Yuejia; Cheng, Jiaping
2017-03-22
The present study investigated the time course of processing other's pain under different conditions of working memory (WM) load. Event-related potentials (ERPs) were recorded while the participants held two digits (low WM load) or six digits (high WM load) in WM and viewed pictures that showed others who were in painful or non-painful situations. Robust WM-load×Picture interactions were found for the N2 and LPP components. In the high WM-load condition, painful pictures elicited significantly larger amplitudes than non-painful pictures. In the low WM load condition, the difference between the painful and non-painful pictures was not significant. These ERP results indicate that WM load can influence both the early automatic N2 component and late cognitive LPP component. Compared with high WM load, low WM load reduced affective arousal and emotional sharing in response to other's pain and weakened the cognitive evaluation of task irrelevant stimuli. These findings are explained from the load theory perspective. Copyright © 2017 Elsevier B.V. All rights reserved.
Computing rank-revealing QR factorizations of dense matrices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bischof, C. H.; Quintana-Orti, G.; Mathematics and Computer Science
1998-06-01
We develop algorithms and implementations for computing rank-revealing QR (RRQR) factorizations of dense matrices. First, we develop an efficient block algorithm for approximating an RRQR factorization, employing a windowed version of the commonly used Golub pivoting strategy, aided by incremental condition estimation. Second, we develop efficiently implementable variants of guaranteed reliable RRQR algorithms for triangular matrices originally suggested by Chandrasekaran and Ipsen and by Pan and Tang. We suggest algorithmic improvements with respect to condition estimation, termination criteria, and Givens updating. By combining the block algorithm with one of the triangular postprocessing steps, we arrive at an efficient and reliablemore » algorithm for computing an RRQR factorization of a dense matrix. Experimental results on IBM RS/6000 SGI R8000 platforms show that this approach performs up to three times faster that the less reliable QR factorization with column pivoting as it is currently implemented in LAPACK, and comes within 15% of the performance of the LAPACK block algorithm for computing a QR factorization without any column exchanges. Thus, we expect this routine to be useful in may circumstances where numerical rank deficiency cannot be ruled out, but currently has been ignored because of the computational cost of dealing with it.« less
A high-speed tracking algorithm for dense granular media
NASA Astrophysics Data System (ADS)
Cerda, Mauricio; Navarro, Cristóbal A.; Silva, Juan; Waitukaitis, Scott R.; Mujica, Nicolás; Hitschfeld, Nancy
2018-06-01
Many fields of study, including medical imaging, granular physics, colloidal physics, and active matter, require the precise identification and tracking of particle-like objects in images. While many algorithms exist to track particles in diffuse conditions, these often perform poorly when particles are densely packed together-as in, for example, solid-like systems of granular materials. Incorrect particle identification can have significant effects on the calculation of physical quantities, which makes the development of more precise and faster tracking algorithms a worthwhile endeavor. In this work, we present a new tracking algorithm to identify particles in dense systems that is both highly accurate and fast. We demonstrate the efficacy of our approach by analyzing images of dense, solid-state granular media, where we achieve an identification error of 5% in the worst evaluated cases. Going further, we propose a parallelization strategy for our algorithm using a GPU, which results in a speedup of up to 10 × when compared to a sequential CPU implementation in C and up to 40 × when compared to the reference MATLAB library widely used for particle tracking. Our results extend the capabilities of state-of-the-art particle tracking methods by allowing fast, high-fidelity detection in dense media at high resolutions.
Fluorescence and absorption spectroscopy for warm dense matter studies and ICF plasma diagnostics
Hansen, Stephanie B.; Harding, Eric C.; Knapp, Patrick F.; ...
2018-03-07
The burning core of an inertial confinement fusion (ICF) plasma produces bright x-rays at stagnation that can directly diagnose core conditions essential for comparison to simulations and understanding fusion yields. These x-rays also backlight the surrounding shell of warm, dense matter, whose properties are critical to understanding the efficacy of the inertial confinement and global morphology. In this work, we show that the absorption and fluorescence spectra of mid-Z impurities or dopants in the warm dense shell can reveal the optical depth, temperature, and density of the shell and help constrain models of warm, dense matter. This is illustrated bymore » the example of a high-resolution spectrum collected from an ICF plasma with a beryllium shell containing native iron impurities. Lastly, analysis of the iron K-edge provides model-independent diagnostics of the shell density (2.3 × 10 24 e/cm 3) and temperature (10 eV), while a 12-eV red shift in Kβ and 5-eV blue shift in the K-edge discriminate among models of warm dense matter: Both shifts are well described by a self-consistent field model based on density functional theory but are not fully consistent with isolated-atom models using ad-hoc density effects.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-25
... Conditions No. 25-441-SC] Special Conditions: Gulfstream Model GVI Airplane; Limit Engine Torque Loads for... transient dynamic loads resulting from: (a) The loss of any fan, compressor, or turbine blade; and (b...;Federal Register / Vol. 76, No. 142 / Monday, July 25, 2011 / Rules and Regulations#0;#0; [[Page 44245...
Single-Lap-Joint Screening of Hysol EA 9309NA Epoxy Adhesive
2017-05-01
1 Fig. 2 Load vs. displacement for RT (no conditioning) samples .................... 6 Fig. 3...Load vs. displacement for RT (hot/wet conditioning) samples ............ 7 Fig. 5 Failure surface for RT (hot/wet conditioning) samples. MSAT ID...20140469, mode of failure = adhesive. ................................................. 8 Fig. 6 Load vs. displacement for ET samples (66 °C postcure
The Presence of Dense Material in the Deep Mantle: Implications for Plate Motion
NASA Astrophysics Data System (ADS)
Stein, C.; Hansen, U.
2017-12-01
The dense material in the deep mantle strongly interacts with the convective flow in the mantle. On the one hand, it has a restoring effect on rising plumes. On the other hand, the dense material is swept about by the flow forming dense piles. Consequently this affects the plate motion and, in particular, the onset time and the style of plate tectonics varies considerably for different model scenarios. In this study we apply a thermochemical mantle convection model combined with a rheological model (temperature- and stress-dependent viscosity) that allows for plate formation according to the convective flow. The model's starting condition is the post-magma ocean period. We analyse a large number of model scenarios ranging from variations in thickness, density and depth of a layer of dense material to different initial temperatures.Furthermore, we present a mechanism in which the dense layer at the core-mantle boundary forms without prescribing the thickness or the density contrast. Due to advection-assisted diffusion, long-lived piles can be established that act on the style of convection and therefore on plate motion. We distinguish between the subduction-triggered regime with early plate tectonics and the plume-triggered regime with a late onset of plate tectonics. The formation of piles by advection-assisted diffusion is a typical phenomenon that appears not only at the lower boundary, but also at internal boundaries that form in the layering phase during the evolution of the system.
The contractile adaption to preload depends on the amount of afterload
Schotola, Hanna; Sossalla, Samuel T.; Renner, André; Gummert, Jan; Danner, Bernhard C.; Schott, Peter
2017-01-01
Abstract Aims The Frank–Starling mechanism (rapid response (RR)) and the secondary slow response (SR) are known to contribute to increases contractile performance. The contractility of the heart muscle is influenced by pre‐load and after‐load. Because of the effect of pre‐load vs. after‐load on these mechanisms in not completely understood, we studied the effect in isolated muscle strips. Methods and results Progressive stretch lead to an increase in shortening/force development under isotonic (only pre‐load) and isometric conditions (pre‐ and after‐load). Muscle length with maximal function was reached earlier under isotonic (L max‐isotonic) compared with isometric conditions (L max‐isometric) in nonfailing rabbit, in human atrial and in failing ventricular muscles. Also, SR after stretch from slack to L max‐isotonic was comparable under isotonic and isometric conditions (human: isotonic 10 ± 4%, isometric 10 ± 4%). Moreover, a switch from isotonic to isometric conditions at L max‐isometric showed no SR proving independence of after‐load. To further analyse the degree of SR on the total contractile performance at higher pre‐load muscles were stretched from slack to 98% L max‐isometric under isotonic conditions. Thereby, the SR was 60 ± 9% in rabbit and 51 ± 14% in human muscle strips. Conclusions This work shows that the acute contractile response largely depends on the degree and type of mechanical load. Increased filling of the heart elevates pre‐load and prolongs the isotonic part of contraction. The reduction in shortening at higher levels of pre‐load is thereby partially compensated by the pre‐load‐induced SR. After‐load shifts the contractile curve to a better ‘myofilament function’ by probably influencing thin fibers and calcium sensitivity, but has no effect on the SR. PMID:29154423
Vasquez, Eduardo A; Howard-Field, Joanna
2016-11-01
Inhibitory information can be expected to reduce triggered displaced aggression by signaling the potential for negative consequences as a result of acting aggressively. We examined how cognitive load might interfere with these aggression-reducing effects of inhibitory cues. Participants (N = 80) were randomly assigned to a condition in a 2 (cognitive load: high/low) × 2 (inhibiting cues: yes/no) between-subjects design. Following procedures in the TDA paradigm, participants received an initial provocation from the experimenter and a subsequent triggering annoyance from another individual. In the inhibitory cue condition, participants were told, before they had the opportunity to aggress, that others would learn of their aggressive responses. In the high cognitive load condition, participants rehearsed a 10-digit number while aggressing. Those in the low cognitive load condition rehearsed a three digit number. We found significant main effects of cognitive load and inhibitory cue, which were qualified by the expected load × inhibitory cue interaction. Thus, inhibitory cues reduced displaced aggression under low-cognitive load. However, when participants in the inhibitory cue condition were under cognitive load, aggression increased, suggesting that mental busyness interfered with the full use of inhibitory information. Aggr. Behav. 42:598-604, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Cathodic protection of a remote river pipeline
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, B.A.
1994-03-01
The 261-km long 500-mm diam Kutubu pipeline, which runs through dense jungle swamps in Papua, New Guinea, was built for Chevron Niugini to transport oil from the remote Kutubu oil production facility in the Southern Highlands to an offshore loading facility. The pipeline was laid with a section in the bed of a wide, fast-flowing river. This section was subject to substantial telluric effects and current density variations from changing water resistivities. The cathodic protection system's effectiveness was monitored by coupon off'' potentials and required an innovative approach.
2010-04-01
aluminum titanate has evolved from a coefficient of thermal expansion (CTE) lowering additive in traditional nickel/YSZ cermets to an anchoring...provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently...volumetric concentrations well below percolation for traditional cermets . The coarsening of nickel after high temperature thermal treatment poses
Woodrow, Kim A.; Cu, Yen; Booth, Carmen J.; Saucier-Sawyer, Jennifer K.; Wood, Monica J.; Saltzman, W. Mark
2009-01-01
Vaginal instillation of small-interfering RNA (siRNA) using liposomes has led to silencing of endogenous genes in the genital tract and protected against challenge from infectious disease. Although siRNA lipoplexes are easily formulated, several of the most effective transfection agents available commercially may be toxic to the mucosal epithelia and none are able to provide controlled or sustained release. Here, we demonstrate an alternate approach, using nanoparticles composed entirely of FDA-approved materials. To render these materials effective for gene silencing we developed novel approaches to load them with high amounts of siRNA. A single dose of siRNA-loaded nanoparticles to the mouse female reproductive tract caused efficient and sustained gene silencing. Knockdown of gene expression was observed proximal (in the vaginal lumen) and distal (in the uterine horns) to the site of topical delivery. In addition, nanoparticles penetrated deep into the epithelial tissue. This is the first report demonstrating that biodegradable polymer nanoparticles are effective delivery vehicles for siRNA in the vaginal mucosa. PMID:19404239
NASA Astrophysics Data System (ADS)
Marshaline Seles, M.; Suryanarayanan, R.; Vivek, S. S.; Dhinakaran, G.
2017-07-01
The conventional concrete when used for structures having dense congested reinforcement, the problems such as external compaction and vibration needs special attention. In such case, the self compacting concrete (SCC) which has the properties like flow ability, passing and filling ability would be an obvious answer. All those SCC flow behavior was governed by EFNARC specifications. In present study, the combination type of SCC was prepared by replacing cement with silica fume (SF) and metakaolin (MK) along with optimum dosages of chemical admixtures. From the fresh property test, cube compressive strength and cylinder split tensile strength, optimum ternary mix was obtained. In order to study the flexural behavior, the optimum ternary mix was taken in which beam specimens of size 1200 mm x 100 mm x 200 mm was designed as singly reinforced section according to IS: 456-2000, Limit state method. Finally the comparative experimental analysis was made between conventional RCC and SCC beams of same grade in terms of flexural strength namely yield load & ultimate load, load- deflection curve, crack size and pattern respectively.
Yang, Yongqiang; Zhan, Xuan; Wu, Shijun; Kang, Mingliang; Guo, Jianan; Chen, Fanrong
2016-04-01
The low hydraulic loading rate (HLR) greatly restricts the wide application of subsurface wastewater infiltration system (SWIS) in densely populated areas. To increase the HLR, an innovative SWIS was developed using cyclic operation mode. In each cycle, a wastewater feeding period is followed by a drying period, in which the aeration is conducted by a medium-pressure fan. Results indicated that the removal rate of TOC and NH4(+)-N were more than 85% at HLR of 0.5m(3)/m(2)d, whereas the TN removal rate was lower than 20%, indicating that the aeration was efficient and denitrification process was largely limited in the SWIS. When HLR decreased from 0.5 to 0.2m(3)/m(2)d, the pollutant removal efficiency enhanced slightly except for TN. Overall, the intermittent operation and micro-power aeration, combined with shunting the pollutant loading were really helpful for SWIS to achieve higher HLR, which offers a reference for the design of innovative SWIS. Copyright © 2016 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Stevenson, Paul
1980-01-01
Compares various nutrient media, growth conditions, and stock solutions used in culturing protozoa. A hay infusion in Chalkey's solution maintained at a stable temperature is recommended for producing the most dense and diverse cultures. (WB)
Dense grid sibling frames with linear phase filters
NASA Astrophysics Data System (ADS)
Abdelnour, Farras
2013-09-01
We introduce new 5-band dyadic sibling frames with dense time-frequency grid. Given a lowpass filter satisfying certain conditions, the remaining filters are obtained using spectral factorization. The analysis and synthesis filterbanks share the same lowpass and bandpass filters but have different and oversampled highpass filters. This leads to wavelets approximating shift-invariance. The filters are FIR, have linear phase, and the resulting wavelets have vanishing moments. The filters are designed using spectral factorization method. The proposed method leads to smooth limit functions with higher approximation order, and computationally stable filterbanks.
MacPherson, Megan K; Abur, Defne; Stepp, Cara E
2017-07-01
This study aimed to determine the relationship among cognitive load condition and measures of autonomic arousal and voice production in healthy adults. A prospective study design was conducted. Sixteen healthy young adults (eight men, eight women) produced a sentence containing an embedded Stroop task in each of two cognitive load conditions: congruent and incongruent. In both conditions, participants said the font color of the color words instead of the word text. In the incongruent condition, font color differed from the word text, creating an increase in cognitive load relative to the congruent condition in which font color and word text matched. Three physiologic measures of autonomic arousal (pulse volume amplitude, pulse period, and skin conductance response amplitude) and four acoustic measures of voice (sound pressure level, fundamental frequency, cepstral peak prominence, and low-to-high spectral energy ratio) were analyzed for eight sentence productions in each cognitive load condition per participant. A logistic regression model was constructed to predict the cognitive load condition (congruent or incongruent) using subject as a categorical predictor and the three autonomic measures and four acoustic measures as continuous predictors. It revealed that skin conductance response amplitude, cepstral peak prominence, and low-to-high spectral energy ratio were significantly associated with cognitive load condition. During speech produced under increased cognitive load, healthy young adults show changes in physiologic markers of heightened autonomic arousal and acoustic measures of voice quality. Future work is necessary to examine these measures in older adults and individuals with voice disorders. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kong, Shuo; Tan, Jonathan C.; Arce, Héctor G.; Caselli, Paola; Fontani, Francesco; Butler, Michael J.
2018-03-01
Stars are born from dense cores in molecular clouds. Observationally, it is crucial to capture the formation of cores in order to understand the necessary conditions and rate of the star formation process. The Atacama Large Millimeter/submillimeter Array (ALMA) is extremely powerful for identifying dense gas structures, including cores, at millimeter wavelengths via their dust continuum emission. Here, we use ALMA to carry out a survey of dense gas and cores in the central region of the massive (∼105 M ⊙) infrared dark cloud (IRDC) G28.37+0.07. The observation consists of a mosaic of 86 pointings of the 12 m array and produces an unprecedented view of the densest structures of this IRDC. In this first Letter about this data set, we focus on a comparison between the 1.3 mm continuum emission and a mid-infrared (MIR) extinction map of the IRDC. This allows estimation of the “dense gas” detection probability function (DPF), i.e., as a function of the local mass surface density, Σ, for various choices of thresholds of millimeter continuum emission to define “dense gas.” We then estimate the dense gas mass fraction, f dg, in the central region of the IRDC and, via extrapolation with the DPF and the known Σ probability distribution function, to the larger-scale surrounding regions, finding values of about 5% to 15% for the fiducial choice of threshold. We argue that this observed dense gas is a good tracer of the protostellar core population and, in this context, estimate a star formation efficiency per free-fall time in the central IRDC region of ɛ ff ∼ 10%, with approximately a factor of two systematic uncertainties.
Cloud photogrammetry with dense stereo for fisheye cameras
NASA Astrophysics Data System (ADS)
Beekmans, Christoph; Schneider, Johannes; Läbe, Thomas; Lennefer, Martin; Stachniss, Cyrill; Simmer, Clemens
2016-11-01
We present a novel approach for dense 3-D cloud reconstruction above an area of 10 × 10 km2 using two hemispheric sky imagers with fisheye lenses in a stereo setup. We examine an epipolar rectification model designed for fisheye cameras, which allows the use of efficient out-of-the-box dense matching algorithms designed for classical pinhole-type cameras to search for correspondence information at every pixel. The resulting dense point cloud allows to recover a detailed and more complete cloud morphology compared to previous approaches that employed sparse feature-based stereo or assumed geometric constraints on the cloud field. Our approach is very efficient and can be fully automated. From the obtained 3-D shapes, cloud dynamics, size, motion, type and spacing can be derived, and used for radiation closure under cloudy conditions, for example. Fisheye lenses follow a different projection function than classical pinhole-type cameras and provide a large field of view with a single image. However, the computation of dense 3-D information is more complicated and standard implementations for dense 3-D stereo reconstruction cannot be easily applied. Together with an appropriate camera calibration, which includes internal camera geometry, global position and orientation of the stereo camera pair, we use the correspondence information from the stereo matching for dense 3-D stereo reconstruction of clouds located around the cameras. We implement and evaluate the proposed approach using real world data and present two case studies. In the first case, we validate the quality and accuracy of the method by comparing the stereo reconstruction of a stratocumulus layer with reflectivity observations measured by a cloud radar and the cloud-base height estimated from a Lidar-ceilometer. The second case analyzes a rapid cumulus evolution in the presence of strong wind shear.
Survival Predictions of Ceramic Crowns Using Statistical Fracture Mechanics
Nasrin, S.; Katsube, N.; Seghi, R.R.; Rokhlin, S.I.
2017-01-01
This work establishes a survival probability methodology for interface-initiated fatigue failures of monolithic ceramic crowns under simulated masticatory loading. A complete 3-dimensional (3D) finite element analysis model of a minimally reduced molar crown was developed using commercially available hardware and software. Estimates of material surface flaw distributions and fatigue parameters for 3 reinforced glass-ceramics (fluormica [FM], leucite [LR], and lithium disilicate [LD]) and a dense sintered yttrium-stabilized zirconia (YZ) were obtained from the literature and incorporated into the model. Utilizing the proposed fracture mechanics–based model, crown survival probability as a function of loading cycles was obtained from simulations performed on the 4 ceramic materials utilizing identical crown geometries and loading conditions. The weaker ceramic materials (FM and LR) resulted in lower survival rates than the more recently developed higher-strength ceramic materials (LD and YZ). The simulated 10-y survival rate of crowns fabricated from YZ was only slightly better than those fabricated from LD. In addition, 2 of the model crown systems (FM and LD) were expanded to determine regional-dependent failure probabilities. This analysis predicted that the LD-based crowns were more likely to fail from fractures initiating from margin areas, whereas the FM-based crowns showed a slightly higher probability of failure from fractures initiating from the occlusal table below the contact areas. These 2 predicted fracture initiation locations have some agreement with reported fractographic analyses of failed crowns. In this model, we considered the maximum tensile stress tangential to the interfacial surface, as opposed to the more universally reported maximum principal stress, because it more directly impacts crack propagation. While the accuracy of these predictions needs to be experimentally verified, the model can provide a fundamental understanding of the importance that pre-existing flaws at the intaglio surface have on fatigue failures. PMID:28107637
Epting, Jannis; Scheidler, Stefan; Affolter, Annette; Borer, Paul; Mueller, Matthias H; Egli, Lukas; García-Gil, Alejandro; Huggenberger, Peter
2017-10-15
Shallow subsurface thermal regimes in urban areas are increasingly impacted by anthropogenic activities, which include infrastructure development like underground traffic lines as well as industrial and residential subsurface buildings. In combination with the progressive use of shallow geothermal energy systems, this results in the so-called subsurface urban heat island effect. This article emphasizes the importance of considering the thermal impact of subsurface structures, which commonly is underestimated due to missing information and of reliable subsurface temperature data. Based on synthetic heat-transport models different settings of the urban environment were investigated, including: (1) hydraulic gradients and conductivities, which result in different groundwater flow velocities; (2) aquifer properties like groundwater thickness to aquitard and depth to water table; and (3) constructional features, such as building depths and thermal properties of building structures. Our results demonstrate that with rising groundwater flow velocities, the heat-load from building structures increase, whereas down-gradient groundwater temperatures decrease. Thermal impacts on subsurface resources therefore have to be related to the permeability of aquifers and hydraulic boundary conditions. In regard to the urban settings of Basel, Switzerland, flow velocities of around 1 md -1 delineate a marker where either down-gradient temperature deviations or heat-loads into the subsurface are more relevant. Furthermore, no direct thermal influence on groundwater resources should be expected for aquifers with groundwater thicknesses larger 10m and when the distance of the building structure to the groundwater table is higher than around 10m. We demonstrate that measuring temperature changes down-gradient of subsurface structures is insufficient overall to assess thermal impacts, particularly in urban areas. Moreover, in areas which are densely urbanized, and where groundwater flow velocities are low, appropriate measures for assessing thermal impacts should specifically include a quantification of heat-loads into the subsurface which result in a more diffuse thermal contamination of urban groundwater resources. Copyright © 2017 Elsevier B.V. All rights reserved.
Matthews, Martyn; O'Conchuir, Cian; Comfort, Paul
2009-10-01
The aim of this study was to investigate the acute effect of high-load and low-load complex training on upper-body performance-determined by the flight time of a basketball push-pass. Twelve competitive male athletes (21.8 +/- 4.5 years, 82.0 +/- 11.7 kg, 181.6 +/- 5.6 cm), with at least 6 months weight training experience and no musculoskeletal disorders, undertook 3 testing conditions. Condition 1 involved 5 repetitions at 85% of a 1 repetition maximum (1RM) bench press; Condition 2 involved 5 repetitions of a 2.3-kg medicine ball push-pass; and Condition 3 was the control, where participants rested for the equivalent time of the other conditions ( approximately 20 seconds). Each condition was preceded and followed by an electronically timed basketball push-pass. Results indicate a significant (3.99%, P = 0.001) reduction in flight time following the completion of Condition 1 (85% 1RM) but no significant changes (1.96%, P = 0.154) were seen following Condition 2 (medicine ball push-pass). Furthermore, there was a significant difference (P = 0.016) between Condition 1 (85% 1RM) and Condition 2 (medicine ball throw). This study appears to confirm previous research suggesting that high loads are required to elicit a potentiation effect. For those athletes wishing to produce a short-term enhancement of power, they should consider loads in the region of 85% 1RM. Results with the lower load showed greater variation, with some individuals responding and others not. Because there appears to be an individual potentiation response to lighter loads, we recommend that, when equipment is limited, athletes and coaches experiment with a range of loads when performing contrast training.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koh, J. H.; Robertson, A.; Jonkman, J.
Need to modify simulated system behavior to the measured data, but the tower wind loads improved the comparison for nonoperating conditions. the SWAY system in both turbine operating and nonoperating conditions. Mixed results were observed when comparing the simulated system behavior to the measured data, but the tower wind loads improved the comparison for nonoperating conditions. without the new tower-load capability to examine its influence on the response characteristics of the system. This is important in situations when the turbine is parked in survival conditions. The simulation results were then compared to measured data from the SWAY system in bothmore » turbine operating and nonoperating conditions. Mixed results were observed when comparing the simulated system behavior to the measured data, but the tower wind loads improved the comparison for nonoperating conditions.« less
NASA Astrophysics Data System (ADS)
Sornin, D.; Giroux, P.-F.; Rigal, E.; Fabregue, D.; Soulas, R.; Hamon, D.
2017-11-01
Oxide dispersion-strengthened ferritic stainless steels are foreseen as fuel cladding tube materials for the new generation of sodium fast nuclear reactors. Those materials, which exhibit remarkable creep properties at high temperature, are reinforced by a dense precipitation of nanometric oxides. This precipitation is obtained by mechanical alloying of a powder and subsequent consolidation. Before consolidation, to obtain a fully dense material, the powder is vacuumed to outgas trapped gases and species adsorbed at the surface of the powder particles. This operation is commonly done at moderate to high temperature to evacuate as much as possible volatile species. This paper focuses on the influence of outgassing conditions on some properties of the further consolidated materials. Chemical composition and microstructural characterization of different materials obtained from various outgassing cycles are compared. Finally, impact toughness of those materials is evaluated by using Charpy testing. This study shows a significant influence of the outgassing conditions on the mechanical properties of the consolidated material. However, microstructure and oxygen contents seem poorly impacted by the various outgassing conditions.
Propagation of monochromatic light in a hot and dense medium
NASA Astrophysics Data System (ADS)
Masood, Samina S.
2017-12-01
Photons, as quanta of electromagnetic fields, determine the electromagnetic properties of an extremely hot and dense medium. Considering the properties of the photons in the interacting medium of charged particles, we explicitly calculate the electromagnetic properties such as the electric permittivity, magnetic permeability, refractive index and the propagation speed of electromagnetic signals in an extremely hot and dense background. Photons acquire a dynamically generated mass in such a medium. The screening mass of the photon, the Debye shielding length and the plasma frequency are calculated as functions of the statistical parameters of the medium. We study the properties of the propagating particles in astrophysical systems of distinct statistical conditions. The modifications in the properties of the medium lead to the equation of state of the system. We mainly calculate all these parameters for extremely high temperatures of the early universe.
Carrying asymmetric loads during stair negotiation.
Wang, Junsig; Gillette, Jason
2017-03-01
Individuals often carry items in one hand instead of both hands during activities of daily living. The combined effects of carrying asymmetric loads and stair negotiation may create even higher demands on the low back and lower extremity. The purpose of this study was to investigate the effect of symmetric and asymmetric loading conditions on L5/S1 and lower extremity moments during stair negotiation. Twenty-two college students performed stair ascent and stair descent on a three-step staircase (step height 18.5cm, tread depth 29.5cm) at preferred pace under five load conditions: no load, 10% body weight (BW) unilateral load, 20% BW unilateral load, 10% BW bilateral load, and 20% BW bilateral load. Video cameras and force platforms were used to collect kinematic and kinetic data. Inverse dynamics was used to calculate frontal plane moments for the L5/S1 and lower extremity. A 20% BW unilateral load resulted in significantly higher peak L5/S1 lateral bending, hip abduction, and external knee varus moments than nearly all other loading conditions during stair ascent and stair descent. Therefore, we suggest potential benefits when carrying symmetrical loads as compared to an asymmetric load in order to decrease the frontal joint moments, particularly at 20% BW load. Copyright © 2017 Elsevier B.V. All rights reserved.
Numerical optimization of composite hip endoprostheses under different loading conditions
NASA Technical Reports Server (NTRS)
Blake, T. A.; Davy, D. T.; Saravanos, D. A.; Hopkins, D. A.
1992-01-01
The optimization of composite hip implants was investigated. Emphasis was placed on the effect of shape and material tailoring of the implant to improve the implant-bone interaction. A variety of loading conditions were investigated to better understand the relationship between loading and optimization outcome. Comparisons of the initial and optimal models with more complex 3D finite element models were performed. The results indicate that design improvements made using this method result in similar improvements in the 3D models. Although the optimization outcomes were significantly affected by the choice of loading conditions, certain trends were observed that were independent of the applied loading.
Maloney, Sean J; Turner, Anthony N; Miller, Stuart
2014-10-01
It has previously been shown that a loaded warm-up may improve power performances. We examined the acute effects of loaded dynamic warm-up on change of direction speed (CODS), which had not been previously investigated. Eight elite badminton players participated in three sessions during which they performed vertical countermovement jump and CODS tests before and after undertaking the dynamic warm-up. The three warm-up conditions involved wearing a weighted vest (a) equivalent to 5% body mass, (b) equivalent to 10% body mass, and (c) a control where a weighted vest was not worn. Vertical jump and CODS performances were then tested at 15 seconds and 2, 4, and 6 minutes post warm-up. Vertical jump and CODS significantly improved following all warm-up conditions (P < .05). Post warm-up vertical jump performance was not different between conditions (P = .430). Post warm-up CODS was significantly faster following the 5% (P = .02) and 10% (P < .001) loaded conditions compared with the control condition. In addition, peak CODS test performances, independent of recovery time, were faster than the control condition following the 10% loaded condition (P = .012). In conclusion, the current study demonstrates that a loaded warm-up augmented CODS, but not vertical jump performance, in elite badminton players.
NASA Astrophysics Data System (ADS)
Zhu, X.; He, J.; Xiao, J.
2017-12-01
The Altyn Tagh (ATF) and the Kunlun (KLF) fault distribute around the northern Tibetan plateau from west to east about 2000 km and 1200 km in length, and deform predominately with left-lateral strike-slip motion. Previous geological and geodetic observations suggested that over at least 800-km length of the faults, the slip rate averaged on active deformation period is quite uniform, for the ATF being about 9-10 mm/yr and the KLF about 10-12mm/yr. Strike-slip deformation of these faults is undoubtedly result from regional loading by ongoing collision between the India and the Eurasia continent. Whereas, dense GPS measurements show that along the central Tibetan plateau from west to east, the GPS velocity field changes greatly both on magnitude and on direction, suggesting that tectonic loading to the ATF and the KLF could be changed along their strike directions. To investigate how a non-uniform tectonic loading condition as documented by the GPS velocity field could cause a relatively uniform slip rate of the two active faults, we built a three-dimensional viscoelastic finite element model, in which motion of the strike-slip fault is governed by frictional strength. Given a reasonable bound of model parameters, we at first test the numerical calculation with uniform frictional coefficient of the faults. At this condition, the predicted slip rate is inevitably largest near center of the faults and gradually decreasing to the fault ends. To better fitting the observed uniform slip rate along the faults over 1000km length, variation of fault strength along the ATF and the KLF must be invoked. By testing numerous models, an optimum result was obtained, among which the frictional coefficient for the ATF is varied from 0.02 to 0.12 between 820E and 1000E with its maximum at 840E, and for the KLF from 0.02 to 0.10 with its maximum between 950E and 970E. This means that the strength of the two large-scale strike-slip faults exists significant difference along their strikes. We believe that the predicted fault pattern could play an important role on partitioning strain aside the fault, together on determination of potential rupture during an earthquake.
The Impact of Perceptual Load on the Non-Conscious Processing of Fearful Faces
Wang, Lili; Feng, Chunliang; Mai, Xiaoqin; Jia, Lina; Zhu, Xiangru; Luo, Wenbo; Luo, Yue-jia
2016-01-01
Emotional stimuli can be processed without consciousness. In the current study, we used event-related potentials (ERPs) to assess whether perceptual load influences non-conscious processing of fearful facial expressions. Perceptual load was manipulated using a letter search task with the target letter presented at the fixation point, while facial expressions were presented peripherally and masked to prevent conscious awareness. The letter string comprised six letters (X or N) that were identical (low load) or different (high load). Participants were instructed to discriminate the letters at fixation or the facial expression (fearful or neutral) in the periphery. Participants were faster and more accurate at detecting letters in the low load condition than in the high load condition. Fearful faces elicited a sustained positivity from 250 ms to 700 ms post-stimulus over fronto-central areas during the face discrimination and low-load letter discrimination conditions, but this effect was completely eliminated during high-load letter discrimination. Our findings imply that non-conscious processing of fearful faces depends on perceptual load, and attentional resources are necessary for non-conscious processing. PMID:27149273
Study of Stand-Alone Microgrid under Condition of Faults on Distribution Line
NASA Astrophysics Data System (ADS)
Malla, S. G.; Bhende, C. N.
2014-10-01
The behavior of stand-alone microgrid is analyzed under the condition of faults on distribution feeders. During fault since battery is not able to maintain dc-link voltage within limit, the resistive dump load control is presented to do so. An inverter control is proposed to maintain balanced voltages at PCC under the unbalanced load condition and to reduce voltage unbalance factor (VUF) at load points. The proposed inverter control also has facility to protect itself from high fault current. Existing maximum power point tracker (MPPT) algorithm is modified to limit the speed of generator during fault. Extensive simulation results using MATLAB/SIMULINK established that the performance of the controllers is quite satisfactory under different fault conditions as well as unbalanced load conditions.
NASA Astrophysics Data System (ADS)
Weijtjens, Wout; Lataire, John; Devriendt, Christof; Guillaume, Patrick
2014-12-01
Periodical loads, such as waves and rotating machinery, form a problem for operational modal analysis (OMA). In OMA only the vibrations of a structure of interest are measured and little to nothing is known about the loads causing these vibrations. Therefore, it is often assumed that all dynamics in the measured data are linked to the system of interest. Periodical loads defy this assumption as their periodical behavior is often visible within the measured vibrations. As a consequence most OMA techniques falsely associate the dynamics of the periodical load with the system of interest. Without additional information about the load, one is not able to correctly differentiate between structural dynamics and the dynamics of the load. In several applications, e.g. turbines and helicopters, it was observed that because of periodical loads one was unable to correctly identify one or multiple modes. Transmissibility based OMA (TOMA) is a completely different approach to OMA. By using transmissibility functions to estimate the structural dynamics of the system of interest, all influence of the load-spectrum can be eliminated. TOMA therefore allows to identify the modal parameters without being influenced by the presence of periodical loads, such as harmonics. One of the difficulties of TOMA is that the analyst is required to find two independent datasets, each associated with a different loading condition of the system of interest. This poses a dilemma for TOMA; how can an analyst identify two different loading conditions when little is known about the loads on the system? This paper tackles that problem by assuming that the loading conditions vary continuously over time, e.g. the changing wind directions. From this assumption TOMA is developed into a time-varying framework. This development allows TOMA to not only cope with the continuously changing loading conditions. The time-varying framework also enables the identification of the modal parameters from a single dataset. Moreover, the time-varying TOMA approach can be implemented in such a way that the analyst no longer has to identify different loading conditions. For these combined reasons the time-varying TOMA is less dependent on the user and requires less testing time than the earlier TOMA-technique.
Fluorescence Approaches to Growing Macromolecule Crystals
NASA Technical Reports Server (NTRS)
Pusey, Marc; Forsythe, Elizabeth; Achari, Aniruddha
2006-01-01
Trace fluorescent labeling, typically < 1%, can be a powerful aid in macromolecule crystallization. Precipitation concentrates a solute, and crystals are the most densely packed solid form. The more densely packed the fluorescing material, the more brightly the emission from it, and thus fluorescence intensity of a solid phase is a good indication of whether one has crystals or not. The more brightly fluorescing crystalline phase is easily distinguishable, even when embedded in an amorphous precipitate. This approach conveys several distinct advantages: one can see what the protein is doing in response to the imposed conditions, and distinguishing between amorphous and microcrystalline precipitated phases are considerably simpler. The higher fluorescence intensity of the crystalline phase led us to test if we could derive crystallization conditions from screen outcomes which had no obvious crystalline material, but simply "bright spots" in the precipitated phase. Preliminary results show that the presence of these bright spots, not observable under white light, is indeed a good indicator of potential crystallization conditions.
Fox, Elaine; Yates, Alan; Ashwin, Chris
2012-04-01
The impact of trait anxiety and perceptual load on selective attention was examined in a fear conditioning paradigm. A fear-conditioned angry face (CS+), an unconditioned angry face (CS-), or an unconditioned face with a neutral or happy expression were used in distractor interference and attentional probe tasks. In Experiments 1 and 2, participants classified centrally presented letters under two conditions of perceptual load. When perceptual load was high, distractors had no effect on selective attention, even with aversive conditioning. However, when perceptual load was low, strong response interference effects for CS+ face distractors were found for low trait-anxious participants. Across both experiments, this enhanced distractor interference reversed to strong facilitation effects for those reporting high trait anxiety. Thus, high trait-anxious participants were faster, rather than slower, when ignoring CS+ distractors. Using an attentional probe task in Experiment 3, it was found that fear conditioning resulted in strong attentional avoidance in a high trait-anxious group, which contrasted with enhanced vigilance in a low trait-anxious group. These results demonstrate that the impact of fear conditioning on attention is modulated by individual variation in trait anxiety when perceptual load is low. Fear conditioning elicits an avoidance of threat-relevant stimuli in high trait-anxious participants. (PsycINFO Database Record (c) 2012 APA, all rights reserved).
The significance of relative density for particle damage in loaded and sheared gravels
NASA Astrophysics Data System (ADS)
Fityus, Stephen; Imre, Emőke
2017-06-01
For granular assemblages of strong particles, an increase in the relative density usually leads to a significant increase in shear strength, which is evident as a peak strength, accompanied by significant dilation as the peak strength is attained. This paper describes an experimental study of shearing in assemblages of weak particles, where particle breakage offsets dilation for all but the lowest of confining stresses. In such materials, prone to particle breakage, the shear strengths of loose and dense assemblages rapidly converge to similar values as confining stress increases, and any benefit of greater relative density is lost. This is attributed to the densification effect associated with the loading under a high stress prior to shearing, which is characterised by widespread particle breakage and the formation of smaller particles to occupy space between coarser ones. Interestingly, under both low and high stresses, there was a tendency for greater particle breakage in the loose samples, as a result of both shearing and compression. This result suggests that, despite the denser assemblage having its particles more rigidly constrained and less able to rearrange to avoid direct loading, the influence of greater load-spreading capacity afforded by an increased number of particle contacts in a denser sample, is more dominant in controlling breakage.
Akumuntu, Jean Baptiste; Wehn, Uta; Mulenga, Martin; Brdjanovic, Damir
2017-08-01
The lack of access to basic sanitation is a global concern and alarmingly prevalent in low- and middle- income countries. In the densely populated settlements of these countries, on-site sanitation systems are usually the only feasible option because dwellers there have no sewers in place to connect to. Using on-site sanitation facilities results in an accumulation of faecal sludge which needs to be properly managed to ensure the well-being of the users as well as the surrounding environment. Unfortunately, often the conditions for faecal sludge management (FSM) within dense settlements are adverse and thus hamper sustainable FSM. We use the normative framework of the FSM enabling environment to gather empirical evidence from densely populated settlements of Kigali city in Rwanda to examine current FSM practices and the extent to which these are being influenced and affected by the setting within which they are taking place. The analysis of the study findings confirms that the existing conditions for FSM in these settlements are inadequate. The specific constraints that hinder the achievement of sustainable FSM include limited government focus on the sanitation sector, high turnover of staff in relevant government institutions, pit sludge management is not placed on the sanitation projects agenda, the existing relevant bylaws are not pro-poor oriented, a lack of clear responsibilities, a lack of relevant local professional training opportunities, unaffordability of FSM services and an inhibition to discuss FSM. Drawing on the involved stakeholders' own perceptions and suggestions, we identify possible approaches to overcome the identified constraints and to allow all actors in the FSM chain to contribute effectively to the management of faecal sludge in densely populated low-income urban settlements. Finally, our study also presents a contribution to the theoretical conceptualisation of the enabling environment for sustainable FSM. Copyright © 2017 Elsevier GmbH. All rights reserved.
1985-01-01
Sympathetic neurons taken from rat superior cervical ganglia and grown in culture acquire cholinergic function under certain conditions. These cholinergic sympathetic neurons, however, retain a number of adrenergic properties, including the enzymes involved in the synthesis of norepinephrine (NE) and the storage of measurable amounts of NE. These neurons also retain a high affinity uptake system for NE; despite this, the majority of the synaptic vesicles remain clear even after incubation in catecholamines. The present study shows, however, that if these neurons are depolarized before incubation in catecholamine, the synaptic vesicles acquire dense cores indicative of amine storage. These manipulations are successful when cholinergic function is induced with either a medium that contains human placental serum and embryo extract or with heart-conditioned medium, and when the catecholamine is either NE or 5-hydroxydopamine. In some experiments, neurons are grown at low densities and shown to have cholinergic function by electrophysiological criteria. After incubation in NE, only 6% of the synaptic vesicles have dense cores. In contrast, similar neurons depolarized (80 mM K+) before incubation in catecholamine contain 82% dense-cored vesicles. These results are confirmed in network cultures where the percentage of dense-cored vesicles is increased 2.5 to 6.5 times by depolarizing the neurons before incubation with catecholamine. In both single neurons and in network cultures, the vesicle reloading is inhibited by reducing vesicle release during depolarization with an increased Mg++/Ca++ ratio or by blocking NE uptake either at the plasma membrane (desipramine) or at the vesicle membrane (reserpine). In addition, choline appears to play a competitive role because its presence during incubation in NE or after reloading results in decreased numbers of dense-cored vesicles. We conclude that the depolarization step preceding catecholamine incubation acts to empty the vesicles of acetylcholine, thus allowing them to reload with catecholamine. These data also suggest that the same vesicles may contain both neurotransmitters simultaneously. PMID:4008529
NASA Astrophysics Data System (ADS)
Liu, W. C.; Wu, B.
2018-04-01
High-resolution 3D modelling of lunar surface is important for lunar scientific research and exploration missions. Photogrammetry is known for 3D mapping and modelling from a pair of stereo images based on dense image matching. However dense matching may fail in poorly textured areas and in situations when the image pair has large illumination differences. As a result, the actual achievable spatial resolution of the 3D model from photogrammetry is limited by the performance of dense image matching. On the other hand, photoclinometry (i.e., shape from shading) is characterised by its ability to recover pixel-wise surface shapes based on image intensity and imaging conditions such as illumination and viewing directions. More robust shape reconstruction through photoclinometry can be achieved by incorporating images acquired under different illumination conditions (i.e., photometric stereo). Introducing photoclinometry into photogrammetric processing can therefore effectively increase the achievable resolution of the mapping result while maintaining its overall accuracy. This research presents an integrated photogrammetric and photoclinometric approach for pixel-resolution 3D modelling of the lunar surface. First, photoclinometry is interacted with stereo image matching to create robust and spatially well distributed dense conjugate points. Then, based on the 3D point cloud derived from photogrammetric processing of the dense conjugate points, photoclinometry is further introduced to derive the 3D positions of the unmatched points and to refine the final point cloud. The approach is able to produce one 3D point for each image pixel within the overlapping area of the stereo pair so that to obtain pixel-resolution 3D models. Experiments using the Lunar Reconnaissance Orbiter Camera - Narrow Angle Camera (LROC NAC) images show the superior performances of the approach compared with traditional photogrammetric technique. The results and findings from this research contribute to optimal exploitation of image information for high-resolution 3D modelling of the lunar surface, which is of significance for the advancement of lunar and planetary mapping.
Molecular dynamics simulation of shock-wave loading of copper and titanium
NASA Astrophysics Data System (ADS)
Bolesta, A. V.; Fomin, V. M.
2017-10-01
At extreme pressures and temperatures common materials form new dense phases with compacted atomic arrangements. By classical molecular dynamics simulation we observe that FCC copper undergo phase transformation to BCC structure. The transition occurs under shock wave loading at the pressures above 80 GPa and corresponding temperatures above 2000 K. We calculate phase diagram, show that at these pressures and low temperature FCC phase of copper is still stable and discuss the thermodynamic reason for phase transformation at high temperature shock wave regime. Titanium forms new hexagonal phase at high pressure as well. We calculate the structure of shock wave in titanium and observe that shock front splits in three parts: elastic, plastic and phase transformation. The possibility of using a phase transition behind a shock wave with further unloading for designing nanocrystalline materials with a reduced grain size is also shown.
A high-density lipoprotein-mediated drug delivery system.
Mo, Zhong-Cheng; Ren, Kun; Liu, Xing; Tang, Zhen-Li; Yi, Guang-Hui
2016-11-15
High-density lipoprotein (HDL) is a comparatively dense and small lipoprotein that can carry lipids as a multifunctional aggregate in plasma. Several studies have shown that increasing the levels or improving the functionality of HDL is a promising target for treating a wide variety of diseases. Among lipoproteins, HDL particles possess unique physicochemical properties, including naturally synthesized physiological components, amphipathic apolipoproteins, lipid-loading and hydrophobic agent-incorporating characteristics, specific protein-protein interactions, heterogeneity, nanoparticles, and smaller size. Recently, the feasibility and superiority of using HDL particles as drug delivery vehicles have been of great interest. In this review, we summarize the structure, constituents, biogenesis, remodeling, and reconstitution of HDL drug delivery systems, focusing on their delivery capability, characteristics, applications, manufacturing, and drug-loading and drug-targeting characteristics. Finally, the future prospects are presented regarding the clinical application and challenges of using HDL as a pharmacodelivery carrier. Copyright © 2016 Elsevier B.V. All rights reserved.
Characteristics of dynamic triaxial testing of asphalt mixtures
NASA Astrophysics Data System (ADS)
Ulloa Calderon, Alvaro
Due to the increasing traffic loads and tire pressures, a serious detrimental impact has occurred on flexible pavements in the form of excessive permanent deformation once the critical combination of loading and environmental conditions are reached. This distress, also known as rutting, leads to an increase in road roughness and ultimately jeopardizes the road users' safety. The flow number (FN) simple performance test for asphalt mixtures was one of the final three tests selected for further evaluation from the twenty-four test/material properties initially examined under the NCHRP 9-19 project. Currently, no standard triaxial testing conditions in terms of the magnitude of the deviator and confining stresses have been specified. In addition, a repeated haversine axial compressive load pulse of 0.1 second and a rest period of 0.9 second are commonly used as part of the triaxial testing conditions. The overall objective of this research was to define the loading conditions that created by a moving truck load in the hot mixed asphalt (HMA) layer. The loading conditions were defined in terms of the triaxial stress levels and the corresponding loading time. Dynamic mechanistic analysis with circular stress distribution was used to closely simulate field loading conditions. Extensive mechanistic analyses of three different asphalt pavement structures subjected to moving traffic loads at various speeds and under braking and non-braking conditions were conducted using the 3D-Move model. Prediction equations for estimating the anticipated deviator and confining stresses along with the equivalent deviator stress pulse duration as a function of pavement temperature, vehicle speed, and asphalt mixture's stiffness have been developed. The magnitude of deviator stress, sigmad and confining stress, sigmac, were determined by converting the stress tensor computed in the HMA layer at 2" below pavement surface under a moving 18-wheel truck using the octahedral normal and shear stresses. In addition, the characteristics of the loading pulse were determined by best-fitting a haversine wave shape for the equivalent triaxial deviator stress pulse. The tandem axle was proven to generate the most critical combination of deviator and confining stresses for braking and non-braking conditions at 2 inches below the pavement surface. Thus, this study is focused on developing the stress state and pulse characteristics required to determine the critical conditions on HMA mixtures under the loading of the tandem axle. An increase of 40% was observed in the deviator stress when braking conditions are incorporated. A preliminary validation of the recommended magnitudes for the deviator and confining stresses on a field mixture from WesTrack showed consistent results between the flow number test results and field performance. Based on laboratory experiments, the critical conditions of different field mixtures from the WesTrack project and also lab produced samples at different air-voids levels were determined. The results indicate that the tertiary stage will occur under the FN test when a combination of a critical temperature and a given loading conditions for specific air voids content occurs.
Creep crack growth by grain boundary cavitation under monotonic and cyclic loading
NASA Astrophysics Data System (ADS)
Wen, Jian-Feng; Srivastava, Ankit; Benzerga, Amine; Tu, Shan-Tung; Needleman, Alan
2017-11-01
Plane strain finite deformation finite element calculations of mode I crack growth under small scale creep conditions are carried out. Attention is confined to isothermal conditions and two time histories of the applied stress intensity factor: (i) a monononic increase to a plateau value subsequently held fixed; and (ii) a cyclic time variation. The crack growth calculations are based on a micromechanics constitutive relation that couples creep deformation and damage due to grain boundary cavitation. Grain boundary cavitation, with cavity growth due to both creep and diffusion, is taken as the sole failure mechanism contributing to crack growth. The influence on the crack growth rate of loading history parameters, such as the magnitude of the applied stress intensity factor, the ratio of the applied minimum to maximum stress intensity factors, the loading rate, the hold time and the cyclic loading frequency, are explored. The crack growth rate under cyclic loading conditions is found to be greater than under monotonic creep loading with the plateau applied stress intensity factor equal to its maximum value under cyclic loading conditions. Several features of the crack growth behavior observed in creep-fatigue tests naturally emerge, for example, a Paris law type relation is obtained for cyclic loading.
Surface modification and fatigue behavior of nitinol for load bearing implants
NASA Astrophysics Data System (ADS)
Bernard, Sheldon A.
Musculoskeletal disorders are recognized amongst the most significant human health problems that exist today. Even though considerable research and development has gone towards understanding musculoskeletal disorders, there is still lack of bone replacement materials that are appropriate for restoring lost structures and functions, particularly for load-bearing applications. Many materials on the market today, such as titanium and stainless steel, suffer from significantly higher modulus than natural bone and low bioactivity leading to stress shielding and implant loosening over longer time use. Nitinol (NiTi) is an equiatomic intermetallic compound of nickel and titanium whose unique biomechanical and biological properties contributed to its increasing use as a biomaterial. An innovative method for creating dense and porous net shape NiTi alloy parts has been developed to improve biological properties while maintaining comparable or better mechanical properties than commercial materials that are currently in use. Laser engineered net shaping (LENS(TM)) and surface electrochemistry modification was used to create dense/porous samples and micro textured surfaces on NiTi parts, respectively. Porous implants are known to promote cell adhesion and have a low elastic modulus, a combination that can significantly increase the life of an implant. However, porosity can significantly reduce the fatigue life of an implant, and very little work has been reported on the fatigue behavior of bulk porous metals, specifically on porous nitinol alloy. High-cycle rotating bending and compression-compression fatigue behavior of porous NiTi fabricated using LENS(TM) were studied. In cyclic compression loading, plastic strain increased with increasing porosity and it was evident that maximum strain was achieved during the first 50000 cycles and remained constant throughout the remaining loading. No failures were observed due to loading up to 150% of the yield strength. When subjected to rotary bending fatigue, samples demonstrated a high tolerance to failure, up to 50% of the yield stress. Using anodization, improvements to the surface wettability were made by lowering the contact angle from 32° to less than 5°, which prove to enhance the bioactivity of the nitinol surface in the cell study. The surface free energy was also calculated to show comparable properties to that of cpTi. Ni ion release was studied over a 8 week duration and found that anodization not only reduces the amount of metal ion release but also decreases the rate of release as well. This work was aimed at understanding the effects of porosity characteristics, microstructure, surface morphology and fatigue behavior of nitinol on its mechanical and biological properties.
Young, Bradley; Banihashemi, Bahman; Forrest, Daina; Kennedy, Kevin; Stintzi, Alain; Delatolla, Robert
2016-03-15
This study investigates the effects of three specific moving bed biofilm reactor (MBBR) carrier types and two surface area loading rates on biofilm thickness, morphology and bacterial community structure of post carbon removal nitrifying MBBR systems along with the effects of carrier type and loading on ammonia removal rates and effluent solids settleability. The meso and micro analyses show that the AOB kinetics vary based on loading condition, but irrespective of carrier type. The meso-scale response to increases in loading was shown to be an increase in biofilm thickness with higher surface area carriers being more inclined to develop and maintain thicker biofilms. The pore spaces of these higher surface area to volume carriers also demonstrated the potential to become clogged at higher loading conditions. Although the biofilm thickness increased during higher loading conditions, the relative percentages of both the embedded viable and non-viable cells at high and conventional loading conditions remained stable; indicating that the reduced ammonia removal kinetics observed during carrier clogging events is likely due to the observed reduction in the surface area of the attached biofilm. Microbial community analyses demonstrated that the dominant ammonia oxidizing bacteria for all carriers is Nitrosomonas while the dominant nitrite oxidizing bacteria is Nitrospira. The research showed that filamentous species were abundant under high loading conditions, which likely resulted in the observed reduction in effluent solids settleability at high loading conditions as opposed to conventional loading conditions. Although the settleability of the effluent solids was correlated to increases in abundances of filamentous organisms in the biofilm, analyzed using next generation sequencing, the ammonia removal rate was not shown to be directly correlated to specific meso or micro-scale characteristics. Instead post carbon removal MBBR ammonia removal kinetics were shown to be related to the viable AOB cell coverage of the carriers; which was calculated by normalizing the surface area removal rate by the biofilm thickness, the bacterial percent abundance of ammonia oxidizing bacteria and the percentage of viable cells. Copyright © 2016 Elsevier Ltd. All rights reserved.
Buck, Stephanie D.
2014-01-01
The Poteau Valley Improvement Authority uses Wister Lake in southeastern Oklahoma as a public water supply. Total phosphorus, total nitrogen, and suspended sediments from agricultural runoff and discharges from wastewater treatment plants and other sources have degraded water quality in the lake. As lake-water quality has degraded, water-treatment cost, chemical usage, and sludge production have increased for the Poteau Valley Improvement Authority. The U.S. Geological Survey (USGS), in cooperation with the Poteau Valley Improvement Authority, investigated and summarized concentrations of total phosphorus, total nitrogen, suspended sediment, and bacteria (Escherichia coli and Enterococcus sp.) in surface water flowing to Wister Lake. Estimates of total phosphorus, total nitrogen, and suspended sediment loads, yields, and flow-weighted mean concentrations of total phosphorus and total nitrogen concentrations were made for the Wister Lake Basin for a 3-year period from October 2010 through September 2013. Data from water samples collected at fixed time increments during base-flow conditions and during runoff conditions at the Poteau River at Loving, Okla. (USGS station 07247015), the Poteau River near Heavener, Okla. (USGS station 07247350), and the Fourche Maline near Leflore, Okla. (USGS station 07247650), water-quality stations were used to evaluate water quality over the range of streamflows in the basin. These data also were collected to estimate annual constituent loads and yields by using regression models. At the Poteau River stations, total phosphorus, total nitrogen, and suspended sediment concentrations in surface-water samples were significantly larger in samples collected during runoff conditions than in samples collected during base-flow conditions. At the Fourche Maline station, in contrast, concentrations of these constituents in water samples collected during runoff conditions were not significantly larger than concentrations during base-flow conditions. Flow-weighted mean total phosphorus concentrations at all three stations from 2011 to 2013 were several times larger than the Oklahoma State Standard for Scenic Rivers (0.037 milligrams per liter [mg/L]), with the largest flow-weighted phosphorus concentrations typically being measured at the Poteau River at Loving, Okla., station. Flow-weighted mean total nitrogen concentrations did not vary substantially between the Poteau River stations and the Fourche Maline near Leflore, Okla., station. At all of the sampled water-quality stations, bacteria (Escherichia coli and Enterococcus sp.) concentrations were substantially larger in water samples collected during runoff conditions than in water samples collected during base-flow conditions from 2011 to 2013. Estimated annual loads of total phosphorus, total nitrogen, and suspended sediment in the Poteau River stations during runoff conditions ranged from 82 to 98 percent of the total annual loads of those constituents. Estimated annual loads of total phosphorus, total nitrogen, and suspended sediment in the Fourche Maline during runoff conditions ranged from 86 to nearly 100 percent of the total annual loads. Estimated seasonal total phosphorus loads generally were smallest during base-flow and runoff conditions in autumn. Estimated seasonal total phosphorus loads during base-flow conditions tended to be largest in winter and during runoff conditions tended to be largest in the spring. Estimated seasonal total nitrogen loads tended to be smallest in autumn during base-flow and runoff conditions and largest in winter during runoff conditions. Estimated seasonal suspended sediment loads tended to be smallest during base-flow conditions in the summer and smallest during runoff conditions in the autumn. The largest estimated seasonal suspended sediment loads during runoff conditions typically were in the spring. The estimated mean annual total phosphorus yield was largest at the Poteau River at Loving, Okla., water-quality station. The estimated mean annual total phosphorus yield was largest during base flow at the Poteau River at Loving, Okla., water-quality station and at both of the Poteau River water-quality stations during runoff conditions. The estimated mean annual total nitrogen yields were largest at the Poteau River water-quality stations. Estimated mean annual total nitrogen yields were largest during base-flow and runoff conditions at the Poteau River at Loving, Okla., water-quality station. The estimated mean annual suspended sediment yield was largest at the Poteau River near Heavener, Okla., water-quality station during base-flow and runoff conditions. Flow-weighted mean concentrations indicated that total phosphorus inputs from the Poteau River Basin in the Wister Lake Basin were larger than from the Fourche Maline Basin. Flow-weighted mean concentrations of total nitrogen did not vary spatially in a consistent manner. The Poteau River and the Fourche Maline contributed estimated annual total phosphorus loads of 137 to 278 tons per year (tons/yr) to Wister Lake. Between 89 and 95 percent of the annual total phosphorus loads were transported to Wister Lake during runoff conditions. The Poteau River and the Fourche Maline contributed estimated annual total nitrogen loads of 657 to 1,294 tons/yr, with 86 to 94 percent of the annual total nitrogen loads being transported to Wister Lake during runoff conditions. The Poteau River and the Fourche Maline contributed estimated annual total suspended sediment loads of 110,919 to 234,637 tons/yr, with 94 to 99 percent of the annual suspended sediment loads being transported to Wister Lake during runoff conditions. Most of the total phosphorus and suspended sediment were delivered to Wister Lake during runoff conditions in the spring. The majority of the total nitrogen was delivered to Wister Lake during runoff conditions in winter.
Zhou, Jie; Ning, Xiaopeng; Nimbarte, Ashish D; Dai, Fei
2015-01-01
As a major risk factor of low back injury, sudden loading often occurs when performing manual material-handling tasks on uneven ground surfaces. Therefore, the purpose of the current study was to investigate the effects of a laterally slanted ground on trunk biomechanical responses during sudden loading events. Thirteen male subjects were subjected to suddenly released loads of 3.4 and 6.8 kg, while standing on a laterally slanted ground of 0°, 15° and 30°. The results showed that 8.3% and 5.6% larger peak L5/S1 joint compression forces were generated in the 30° condition compared with the 0° and 15° conditions, respectively. The increase of L5/S1 joint moment in the 30° condition was 8.5% and 5.0% greater than the 0° and 15° conditions, respectively. Findings of this study suggest that standing on a laterally slanted ground could increase mechanical loading on the spine when experiencing sudden loading. Practitioner Summary: Sudden loading is closely related to occupational low back injuries. The results of this study showed that the increase of slanted ground angle and magnitude of load significantly increase the mechanical loading on the spine during sudden loading. Therefore, both of these two components should be controlled in task design.
NASA Astrophysics Data System (ADS)
Mamouri, Rodanthi-Elisavet; Ansmann, Albert; Nisantzi, Argyro; Solomos, Stavros; Kallos, George; Hadjimitsis, Diofantos G.
2016-11-01
A record-breaking dust storm originating from desert regions in northern Syria and Iraq occurred over the eastern Mediterranean in September 2015. In this contribution of a series of two articles (part 1, observations; part 2, atmospheric modeling), we provide a comprehensive overview of the aerosol conditions during this extreme dust outbreak in the Cyprus region. These observations are based on satellite observations (MODIS, moderate resolution imaging spectroradiometer) of aerosol optical thickness (AOT) and Ångström exponent, surface particle mass (PM10) concentrations measured at four sites in Cyprus, visibility observations at three airports in southern Cyprus and corresponding conversion products (particle extinction coefficient, dust mass concentrations), EARLINET (European Aerosol Research Lidar Network) lidar observations of dust vertical layering over Limassol, particle optical properties (backscatter, extinction, lidar ratio, linear depolarization ratio), and derived profiles of dust mass concentrations. Maximum 550 nm AOT exceeded values of 5.0, according to MODIS, and the mass loads were correspondingly > 10 g m-2 over Larnaca and Limassol during the passage of an extremely dense dust front on 8 September 2015. Hourly mean PM10 values were close to 8000 µg m-3 and the observed meteorological optical range (visibility) was reduced to 300-750 m at Larnaca and Limassol. The visibility observations suggest peak values of the near-surface total suspended particle (TSP) extinction coefficients of 6000 Mm-1 and thus TSP mass concentrations of 10 000 µg m-3. The Raman polarization lidar observations mainly indicated a double layer structure of the dust plumes (reaching to about 4 km height), pointing to at least two different dust source regions. Dust particle extinction coefficients (532 nm) already exceeded 1000 Mm-1 and the mass concentrations reached 2000 µg m-3 in the elevated dust layers on 7 September, more than 12 h before the peak dust front on 8 September reached the Limassol lidar station around local noon. Typical Middle Eastern dust lidar ratios around 40 sr were observed in the dense dust plumes. The particle depolarization ratio decreased from around 0.3 in the lofted dense dust layers to 0.2 at the end of the dust period (11 September), indicating an increasing impact of anthropogenic haze.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winkler, Jon; Booten, Chuck
Residential building codes and voluntary labeling programs are continually increasing the energy efficiency requirements of residential buildings. Improving a building's thermal enclosure and installing energy-efficient appliances and lighting can result in significant reductions in sensible cooling loads leading to smaller air conditioners and shorter cooling seasons. However due to fresh air ventilation requirements and internal gains, latent cooling loads are not reduced by the same proportion. Thus, it's becoming more challenging for conventional cooling equipment to control indoor humidity at part-load cooling conditions and using conventional cooling equipment in a non-conventional building poses the potential risk of high indoor humidity.more » The objective of this project was to investigate the impact the chosen design condition has on the calculated part-load cooling moisture load, and compare calculated moisture loads and the required dehumidification capacity to whole-building simulations. Procedures for sizing whole-house supplemental dehumidification equipment have yet to be formalized; however minor modifications to current Air-Conditioner Contractors of America (ACCA) Manual J load calculation procedures are appropriate for calculating residential part-load cooling moisture loads. Though ASHRAE 1% DP design conditions are commonly used to determine the dehumidification requirements for commercial buildings, an appropriate DP design condition for residential buildings has not been investigated. Two methods for sizing supplemental dehumidification equipment were developed and tested. The first method closely followed Manual J cooling load calculations; whereas the second method made more conservative assumptions impacting both sensible and latent loads.« less
Doherty, Irene A; Serre, Marc L; Gesink, Dionne; Adimora, Adaora A; Muth, Stephen Q; Leone, Peter A; Miller, William C
2012-11-01
Sexually transmitted infections (STIs) spread along sexual networks whose structural characteristics promote transmission that routine surveillance may not capture. Cases who have partners from multiple localities may operate as spatial network bridges, thereby facilitating geographical dissemination. We investigated how surveillance, sexual networks, and spatial bridges relate to each other for syphilis outbreaks in rural counties of North Carolina. We selected from the state health department's surveillance database cases diagnosed with primary, secondary, or early latent syphilis during October 1998 to December 2002 and who resided in central and southeastern North Carolina, along with their sex partners and their social contacts irrespective of infection status. We applied matching algorithms to eliminate duplicate names and create a unique roster of partnerships from which networks were compiled and graphed. Network members were differentiated by disease status and county of residence. In the county most affected by the outbreak, densely connected networks indicative of STI outbreaks were consistent with increased incidence and a large case load. In other counties, the case loads were low with fluctuating incidence, but network structures suggested the presence of outbreaks. In a county with stable, low incidence and a high number of cases, the networks were sparse and dendritic, indicative of endemic spread. Outbreak counties exhibited densely connected networks within well-defined geographic boundaries and low connectivity between counties; spatial bridges did not seem to facilitate transmission. Simple visualization of sexual networks can provide key information to identify communities most in need of resources for outbreak investigation and disease control.
Force Transmission Modes of Non-Cohesive and Cohesive Materials at the Critical State.
Wang, Ji-Peng
2017-08-31
This paper investigates the force transmission modes, mainly described by probability density distributions, in non-cohesive dry and cohesive wet granular materials by discrete element modeling. The critical state force transmission patterns are focused on with the contact model effect being analyzed. By shearing relatively dense and loose dry specimens to the critical state in the conventional triaxial loading path, it is observed that there is a unique critical state force transmission mode. There is a universe critical state force distribution pattern for both the normal contact forces and tangential contact forces. Furthermore, it is found that using either the linear Hooke or the non-linear Hertz model does not affect the universe force transmission mode, and it is only related to the grain size distribution. Wet granular materials are also simulated by incorporating a water bridge model. Dense and loose wet granular materials are tested, and the critical state behavior for the wet material is also observed. The critical state strength and void ratio of wet granular materials are higher than those of a non-cohesive material. The critical state inter-particle distribution is altered from that of a non-cohesive material with higher probability in relatively weak forces. Grains in non-cohesive materials are under compressive stresses, and their principal directions are mainly in the axial loading direction. However, for cohesive wet granular materials, some particles are in tension, and the tensile stresses are in the horizontal direction on which the confinement is applied. The additional confinement by the tensile stress explains the macro strength and dilatancy increase in wet samples.
Force Transmission Modes of Non-Cohesive and Cohesive Materials at the Critical State
2017-01-01
This paper investigates the force transmission modes, mainly described by probability density distributions, in non-cohesive dry and cohesive wet granular materials by discrete element modeling. The critical state force transmission patterns are focused on with the contact model effect being analyzed. By shearing relatively dense and loose dry specimens to the critical state in the conventional triaxial loading path, it is observed that there is a unique critical state force transmission mode. There is a universe critical state force distribution pattern for both the normal contact forces and tangential contact forces. Furthermore, it is found that using either the linear Hooke or the non-linear Hertz model does not affect the universe force transmission mode, and it is only related to the grain size distribution. Wet granular materials are also simulated by incorporating a water bridge model. Dense and loose wet granular materials are tested, and the critical state behavior for the wet material is also observed. The critical state strength and void ratio of wet granular materials are higher than those of a non-cohesive material. The critical state inter-particle distribution is altered from that of a non-cohesive material with higher probability in relatively weak forces. Grains in non-cohesive materials are under compressive stresses, and their principal directions are mainly in the axial loading direction. However, for cohesive wet granular materials, some particles are in tension, and the tensile stresses are in the horizontal direction on which the confinement is applied. The additional confinement by the tensile stress explains the macro strength and dilatancy increase in wet samples. PMID:28858238
INPIStron switched pulsed power for dense plasma pinches
NASA Technical Reports Server (NTRS)
Han, Kwang S.; Lee, Ja H.
1993-01-01
The inverse plasma switch INPIStron was employed for 10kJ/40kV capacitor bank discharge system to produce focused dense plasmas in hypocycloidal-pinch (HCP) devices. A single unit and an array of multiple HCP's were coupled as the load of the pulsed power circuit. The geometry and switching plasma dynamics were found advantageous and convenient for commutating the large current pulse from the low impedance transmission line to the low impedance plasma load. The pulse power system with a single unit HCP, the system A, was used for production of high temperature plasma focus and its diagnostics. The radially running down plasma dynamics, revealed in image converter photographs, could be simulated by a simple snow-plow model with a correction for plasma resistivity. The system B with an array of 8-HCP units which forms a long coaxial discharge chamber was used for pumping a Ti-sapphire laser. The intense UV emission from the plasma was frequency shifted with dye-solution jacket to match the absorption band of the Ti crystal laser near 500 nm. An untuned laser pulse energy of 0.6 J/pulse was obtained for 6.4 kJ/40 kV discharge, or near 103 times of the explosion limit of conventional flash lamps. For both systems the advantages of the INPIStron were well demonstrated: a single unit is sufficient for a large current (greater than 50 kA) without increasing the system impedance, highly reliable and long life operation and implied scalability for the high power ranges above I(sub peak) = 1 MA and V(sub hold) = 100 kV.
Neighborhood Immigrant Acculturation and Diet among Hispanic Female Residents of NYC
Park, Yoosun; Neckerman, Kathryn; Quinn, James; Weiss, Christopher; Jacobson, Judith; Rundle, Andrew
2013-01-01
Objective To identify predominant dietary patterns among Hispanic women and to determine whether adherence to dietary patterns is predicted by neighborhood level factors: linguistic isolation, poverty rate and the retail food environment. Design Cross-sectional analyses of predictors of adherence to dietary patterns identified from principle component analyses of data collected using the Study of Women’s Health Across the Nation (SWAN) food frequency questionnaire. Census data were used to measure poverty rates and the percent of Spanish speaking families in the neighborhood in which no one ≥ 14 years old spoke English very well (linguistic isolation) and the retail food environment was measured using business listings data. Setting New York City. Subjects 345 Hispanic women. Results Two major dietary patterns were identified: a healthy diet pattern loading high for vegetable, legumes, potato, fish, and other seafood which explained 17% of the variance in the FFQ data and an energy dense diet pattern loading high for red meat, poultry, pizza, french fries, and high energy drink, which explained 9% of the variance in the FFQ data. Adherence to the healthy diet pattern was positively associated with neighborhood linguistic isolation and negatively associated with neighborhood poverty. More fast food restaurants per Km2 in the neighborhood was significantly associated with lower adherence to the healthy diet. Adherence to the energy dense diet pattern was inversely, but not significantly, associated with neighborhood linguistic isolation. Conclusions These results are consistent with the hypothesis that living in immigrant enclaves is associated with healthy diet patterns among Hispanics. PMID:21414245
An investigation of the load distribution on a timber deck-steel girder bridge.
DOT National Transportation Integrated Search
1975-01-01
The load distribution on a 48.5-ft. span timber deck-steel girder bridge built to the Virginia Department of Highways and Transportation standard SS-4 requirements was investigated under two conditions. The first condition was concerned with the load...
NASA Astrophysics Data System (ADS)
Komori, Masaharu; Kubo, Aizoh; Suzuki, Yoshitomo
The alignment condition of automotive gears changes considerably during operation due to the deformation of shafts, bearings, and gear box by transmission of load. Under such conditions, the gears are required to satisfy not only reliability in strength and durability under maximum loading conditions, but also low vibrational characteristics under light loading conditions during the cruising of a car. In this report, the characteristics of the optimum tooth flank form of gears in terms of both vibration and load carrying capacity are clarified. The local optimum tooth flank form appears in each excitation valley, where the vibrational excitation is low and the actual contact ratio takes a specific value. The influence of the choice of different local optimum solutions on the vibrational performance of the optimized gears is investigated. The practical design algorithm for the optimum tooth flank form of a gear set in terms of both vibration and load carrying capacity is then proposed and its result is evaluated by field experience.
Becker, B S; Bolton, J D
1997-12-01
Artificial hip joints have an average lifetime of 10 years due to aseptic loosening of the femoral stem attributed to polymeric wear debris; however, there is a steadily increasing demand from younger osteoarthritis patients aged between 15 and 40 year for a longer lasting joint of 25 years or more. Compliant layers incorporated into the acetabular cup generate elastohydrodynamic lubrication conditions between the bearing surfaces, reduce joint friction coefficients and wear debris production and could increase the average life of total hip replacements, and other human load-bearing joint replacements, i.e. total knee replacements. Poor adhesion between a fully dense substrate and the compliant layer has so far prevented any further exploitation. This work investigated the possibility of producing porous metallic, functionally gradient type acetabular cups using powder metallurgy techniques - where a porous surface was supported by a denser core - into which the compliant layers could be incorporated. The corrosion behaviour and mechanical properties of three biomedically approved alloys containing two levels of total porosity (>30% and <10%) were established, resulting in Ti-6Al-4V being identified as the most promising biocompatible functionally graded material, not only for this application but for other hard-tissue implants.
Biomechanics and functional morphology of a climbing monocot
Hesse, Linnea; Wagner, Sarah T.; Neinhuis, Christoph
2016-01-01
Plants with a climbing growth habit possess unique biomechanical properties arising from adaptations to changing loading conditions connected with close attachment to mechanical supports. In monocot climbers, mechanical adaptation is restricted by the absence of a bifacial vascular cambium. Flagellaria indica was used to investigate the mechanical properties and adaptations of a monocot climber that, uniquely, attaches to the surrounding vegetation via leaf tendrils. Biomechanical methods such as three-point bending and torsion tests were used together with anatomical studies on tissue development, modification and distribution. In general, the torsional modulus was lower than the bending modulus; hence, torsional stiffness was less than flexural stiffness. Basal parts of mature stems showed the greatest stiffness while that of more apical stem segments levelled off. Mechanical properties were modulated via tissue maturation processes mainly affecting the peripheral region of the stem. Peripheral vascular bundles showed a reduction in the amount of conducting tissue while the proportion and density of the bundle sheath increased. Furthermore, adjacent bundle sheaths merged resulting in a dense ring of fibrous tissue. Although F. indica lacks secondary cambial growth, the climbing habit is facilitated by a complex interaction of tissue maturation and attachment. PMID:26819259
Lenucci, Marcello Salvatore; De Caroli, Monica; Marrese, Pier Paolo; Iurlaro, Andrea; Rescio, Leonardo; Böhm, Volker; Dalessandro, Giuseppe; Piro, Gabriella
2015-03-01
This work reports a novel enzyme-assisted process for lycopene concentration into a freeze-dried tomato matrix and describes the results of laboratory scale lycopene supercritical CO2 (SC-CO2) extractions carried out with untreated (control) and enzyme-digested matrices. The combined use of food-grade commercial plant cell-wall glycosidases (Celluclast/Novozyme plus Viscozyme) allows to increase lycopene (∼153%) and lipid (∼137%) concentration in the matrix and rises substrate load onto the extraction vessel (∼46%) compared to the control. The addition of an oleaginous co-matrix (hazelnut seeds) to the tomato matrix (1:1 by weight) increases CO2 diffusion through the highly dense enzyme-treated matrix bed and provides lipids that are co-extracted increasing lycopene yield. Under the same operative conditions (50 MPa, 86 °C, 4 mL min(-1) SC-CO2 flow) extraction yield from control and Celluclast/Novozyme+Viscozyme-treated tomato matrix/co-matrix mixtures was similar, exceeding 75% after 4.5h of extraction. However, the total extracted lycopene was ∼3 times higher in enzyme-treated matrix than control. Copyright © 2014 Elsevier Ltd. All rights reserved.
Visser, Peter; Liu, Yanwen; Zhou, Xiaorong; Hashimoto, Teruo; Thompson, George E; Lyon, Stuart B; van der Ven, Leendert G J; Mol, Arjan J M C; Terryn, Herman A
2015-01-01
Lithium carbonate and lithium oxalate were incorporated as leachable corrosion inhibitors in model organic coatings for the protection of AA2024-T3. The coated samples were artificially damaged with a scribe. It was found that the lithium-salts are able to leach from the organic coating and form a protective layer in the scribe on AA2024-T3 under neutral salt spray conditions. The present paper shows the first observation and analysis of these corrosion protective layers, generated from lithium-salt loaded organic coatings. The scribed areas were examined by scanning and transmission electron microscopy before and after neutral salt spray exposure (ASTM-B117). The protective layers typically consist of three different layered regions, including a relatively dense layer near the alloy substrate, a porous middle layer and a flake-shaped outer layer, with lithium uniformly distributed throughout all three layers. Scanning electron microscopy and white light interferometry surface roughness measurements demonstrate that the formation of the layer occurs rapidly and, therefore provides an effective inhibition mechanism. Based on the observation of this work, a mechanism is proposed for the formation of these protective layers.
Character of shell beds flanking Herod Point shoal, southeastern Long Island Sound, New York
Poppe, L.J.; Williams, S.J.; Babb, Ivar G.
2011-01-01
High biogenic productivity, strong tidal currents, shoal topography, and short transport distances combine to favor shell-bed formation along the lower flanks of a cape-associated shoal off Herod Point on Long Island, New York. This shell bed has a densely packed, clast-supported fabric composed largely of undegraded surf clam (Spisula solidissima) valves. It is widest along the central part of the western flank of the shoal where topographic gradients are steep and a stronger flood tide results in residual flow. The bed is narrower and thinner toward the landward margins where currents are too weak to transport larger valves and topographic gradients are gentle, limiting bed-load transport mechanisms by which the shells are concentrated. Reconnaissance mapping off Roanoke Point suggests that shell beds are also present at the other cape-associated shoals off northeastern Long Island, where relatively similar geomorphic and oceanographic conditions exist. These shell beds are important to the Long Island Sound ecosystem because they provide complex benthic habitats of rough and hard substrates at the boundary between the muddy basin floor and mobile sand of the shoals. ?? 2011, the Coastal Education & Research Foundation (CERF).
Phycoremediation of Tannery Wastewater Using Microalgae Scenedesmus Species.
Ajayan, Kayil Veedu; Selvaraju, Muthusamy; Unnikannan, Pachikaran; Sruthi, Palliyath
2015-01-01
A number of microalgae species are efficient in removing toxicants from wastewater. Many of these potential species are a promising, eco-friendly, and sustainable option for tertiary wastewater treatment with a possible advantage of improving the economics of microalgae cultivation for biofuel production. The present study deals with the phycoremediation of tannery wastewater (TWW) using Scenedesmus sp. isolated from a local habitat. The test species was grown in TWW under laboratory conditions and harvested on the 12th day. The results revealed that the algal biomass during the growth period not only reduced the pollution load of heavy metals (Cr-81.2-96%, Cu-73.2-98%, Pb-75-98% and Zn-65-98%) but also the nutrients (NO3 >44.3% and PO4 >95%). Fourier Transform Infrared (FTIR) spectrums of Scenedesmus sp. biomass revealed the involvement of hydroxyl amino, carboxylic and carbonyl groups. The scanning electron micrograph (SEM) and Energy Dispersive X-ray Spectroscopic analysis (EDS) revealed the surface texture, morphology and element distribution of the biosorbent. Furthermore, the wastewater generated during wet-blue tanning process can support dense population of Scenedesmus sp., making it a potential growth medium for biomass production of the test alga for phycoremediation of toxicants in tannery wastewaters.
Fatigue flaw growth behavior in stiffened and unstiffened panels loaded in biaxial tension
NASA Technical Reports Server (NTRS)
Beck, E. J.
1973-01-01
The effect was investigated of biaxial loading on the flaw growth rate of 2219-T87 aluminum alloy that would be typical of Space Shuttle cryogenic tankage design. The stress distribution and stress concentration factors for several integrally stiffened panels under various loading conditions were obtained. The flaw growth behavior of both stiffened and unstiffened panels under biaxial loading conditions was determined. The effect of a complex stress state was studied by introducing flaws in fillet areas of biaxially loaded stiffened panels.
Nedea, S V; van Steenhoven, A A; Markvoort, A J; Spijker, P; Giordano, D
2014-05-01
The influence of gas-surface interactions of a dilute gas confined between two parallel walls on the heat flux predictions is investigated using a combined Monte Carlo (MC) and molecular dynamics (MD) approach. The accommodation coefficients are computed from the temperature of incident and reflected molecules in molecular dynamics and used as effective coefficients in Maxwell-like boundary conditions in Monte Carlo simulations. Hydrophobic and hydrophilic wall interactions are studied, and the effect of the gas-surface interaction potential on the heat flux and other characteristic parameters like density and temperature is shown. The heat flux dependence on the accommodation coefficient is shown for different fluid-wall mass ratios. We find that the accommodation coefficient is increasing considerably when the mass ratio is decreased. An effective map of the heat flux depending on the accommodation coefficient is given and we show that MC heat flux predictions using Maxwell boundary conditions based on the accommodation coefficient give good results when compared to pure molecular dynamics heat predictions. The accommodation coefficients computed for a dilute gas for different gas-wall interaction parameters and mass ratios are transferred to compute the heat flux predictions for a dense gas. Comparison of the heat fluxes derived using explicit MD, MC with Maxwell-like boundary conditions based on the accommodation coefficients, and pure Maxwell boundary conditions are discussed. A map of the heat flux dependence on the accommodation coefficients for a dense gas, and the effective accommodation coefficients for different gas-wall interactions are given. In the end, this approach is applied to study the gas-surface interactions of argon and xenon molecules on a platinum surface. The derived accommodation coefficients are compared with values of experimental results.
Ductile Crack Initiation Criterion with Mismatched Weld Joints Under Dynamic Loading Conditions.
An, Gyubaek; Jeong, Se-Min; Park, Jeongung
2018-03-01
Brittle failure of high toughness steel structures tends to occur after ductile crack initiation/propagation. Damages to steel structures were reported in the Hanshin Great Earthquake. Several brittle failures were observed in beam-to-column connection zones with geometrical discontinuity. It is widely known that triaxial stresses accelerate the ductile fracture of steels. The study examined the effects of geometrical heterogeneity and strength mismatches (both of which elevate plastic constraints due to heterogeneous plastic straining) and loading rate on critical conditions initiating ductile fracture. This involved applying the two-parameter criterion (involving equivalent plastic strain and stress triaxiality) to estimate ductile cracking for strength mismatched specimens under static and dynamic tensile loading conditions. Ductile crack initiation testing was conducted under static and dynamic loading conditions using circumferentially notched specimens (Charpy type) with/without strength mismatches. The results indicated that the condition for ductile crack initiation using the two parameter criterion was a transferable criterion to evaluate ductile crack initiation independent of the existence of strength mismatches and loading rates.
DOT National Transportation Integrated Search
2016-06-01
Load and Resistance Factor Rating (LRFR) is a reliability-based rating procedure complementary to Load and Resistance Factor Design (LRFD). The intent of LRFR is to provide consistent reliability for all bridges regardless of in-situ condition. The p...
Measurement of Preheat Due to Nonlocal Electron Transport in Warm Dense Matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Falk, K.; Holec, M.; Fontes, C. J.
This work presents a novel approach to study electron transport in warm dense matter. It also includes the first x-ray Thomson scattering (XRTS) measurement from low-density CH foams compressed by a strong laser-driven shock at the OMEGA laser facility. The XRTS measurement is combined with velocity interferometry (VISAR) and optical pyrometry (SOP) providing a robust measurement of thermodynamic conditions in the shock. Evidence of significant preheat contributing to elevated temperatures reaching 17.5–35 eV in shocked CH foam is measured by XRTS. These measurements are complemented by abnormally high shock velocities observed by VISAR and early emission seen by SOP. Thesemore » results are compared to radiation hydrodynamics simulations that include first-principles treatment of nonlocal electron transport in warm dense matter with excellent agreement. Additional simulations confirm that the x-ray contribution to this preheat is negligible.« less
Measurement of Preheat Due to Nonlocal Electron Transport in Warm Dense Matter
Falk, K.; Holec, M.; Fontes, C. J.; ...
2018-01-10
This work presents a novel approach to study electron transport in warm dense matter. It also includes the first x-ray Thomson scattering (XRTS) measurement from low-density CH foams compressed by a strong laser-driven shock at the OMEGA laser facility. The XRTS measurement is combined with velocity interferometry (VISAR) and optical pyrometry (SOP) providing a robust measurement of thermodynamic conditions in the shock. Evidence of significant preheat contributing to elevated temperatures reaching 17.5–35 eV in shocked CH foam is measured by XRTS. These measurements are complemented by abnormally high shock velocities observed by VISAR and early emission seen by SOP. Thesemore » results are compared to radiation hydrodynamics simulations that include first-principles treatment of nonlocal electron transport in warm dense matter with excellent agreement. Additional simulations confirm that the x-ray contribution to this preheat is negligible.« less
Booth, N.; Robinson, A. P. L.; Hakel, P.; ...
2015-11-06
Since the observation of the first brown dwarf in 1995, numerous studies have led to a better understanding of the structures of these objects. Here we present a method for studying material resistivity in warm dense plasmas in the laboratory, which we relate to the microphysics of brown dwarfs through viscosity and electron collisions. Here we use X-ray polarimetry to determine the resistivity of a sulphur-doped plastic target heated to Brown Dwarf conditions by an ultra-intense laser. The resistivity is determined by matching the plasma physics model to the atomic physics calculations of the measured large, positive, polarization. Furthermore, themore » inferred resistivity is larger than predicted using standard resistivity models, suggesting that these commonly used models will not adequately describe the resistivity of warm dense plasma related to the viscosity of brown dwarfs.« less
Measurement of Preheat Due to Nonlocal Electron Transport in Warm Dense Matter
NASA Astrophysics Data System (ADS)
Falk, K.; Holec, M.; Fontes, C. J.; Fryer, C. L.; Greeff, C. W.; Johns, H. M.; Montgomery, D. S.; Schmidt, D. W.; Šmíd, M.
2018-01-01
This Letter presents a novel approach to study electron transport in warm dense matter. It also includes the first x-ray Thomson scattering (XRTS) measurement from low-density CH foams compressed by a strong laser-driven shock at the OMEGA laser facility. The XRTS measurement is combined with velocity interferometry (VISAR) and optical pyrometry (SOP) providing a robust measurement of thermodynamic conditions in the shock. Evidence of significant preheat contributing to elevated temperatures reaching 17.5-35 eV in shocked CH foam is measured by XRTS. These measurements are complemented by abnormally high shock velocities observed by VISAR and early emission seen by SOP. These results are compared to radiation hydrodynamics simulations that include first-principles treatment of nonlocal electron transport in warm dense matter with excellent agreement. Additional simulations confirm that the x-ray contribution to this preheat is negligible.
Modeling of Dense Plasma Effects in Short-Pulse Laser Experiments
NASA Astrophysics Data System (ADS)
Walton, Timothy; Golovkin, Igor; Macfarlane, Joseph; Prism Computational Sciences, Madison, WI Team
2016-10-01
Warm and Hot Dense Matter produced in short-pulse laser experiments can be studied with new high resolving power x-ray spectrometers. Data interpretation implies accurate modeling of the early-time heating dynamics and the radiation conditions that are generated. Producing synthetic spectra requires a model that describes the major physical processes that occur inside the target, including the hot-electron generation and relaxation phases and the effect of target heating. An important issue concerns the sensitivity of the predicted K-line shifts to the continuum lowering model that is used. We will present a set of PrismSPECT spectroscopic simulations using various continuum lowering models: Hummer/Mihalas, Stewart-Pyatt, and Ecker-Kroll and discuss their effect on the formation of K-shell features. We will also discuss recently implemented models for dense plasma shifts for H-like, He-like and neutral systems.
Phan, Xuan; Grisbrook, Tiffany L; Wernli, Kevin; Stearne, Sarah M; Davey, Paul; Ng, Leo
2017-08-01
This study aimed to determine if a quantifiable relationship exists between the peak sound amplitude and peak vertical ground reaction force (vGRF) and vertical loading rate during running. It also investigated whether differences in peak sound amplitude, contact time, lower limb kinematics, kinetics and foot strike technique existed when participants were verbally instructed to run quietly compared to their normal running. A total of 26 males completed running trials for two sound conditions: normal running and quiet running. Simple linear regressions revealed no significant relationships between impact sound and peak vGRF in the normal and quiet conditions and vertical loading rate in the normal condition. t-Tests revealed significant within-subject decreases in peak sound, peak vGRF and vertical loading rate during the quiet compared to the normal running condition. During the normal running condition, 15.4% of participants utilised a non-rearfoot strike technique compared to 76.9% in the quiet condition, which was corroborated by an increased ankle plantarflexion angle at initial contact. This study demonstrated that quieter impact sound is not directly associated with a lower peak vGRF or vertical loading rate. However, given the instructions to run quietly, participants effectively reduced peak impact sound, peak vGRF and vertical loading rate.
Udall, John H; Fitzpatrick, Michael J; McGarry, Michelle H; Leba, Thu-Ba; Lee, Thay Q
2009-01-01
The medial ulnar collateral ligament (MUCL) is an important passive stabilizer to the valgus stresses that athletes experience during overhead throwing motion. However, the role of the flexor-pronator muscles as active stabilizers to valgus stress is not well defined in the literature. The objectives of this study were to quantify the relative contribution of the individual flexor-pronator muscles to valgus stability of the elbow and how this relationship was affected by ligament status. A custom elbow testing system and Microscribe 3DLX were used for biomechanical testing. Flexor-pronator muscles were loaded to simulate contraction, and the valgus angle of the elbow was measured in eight cadaveric specimens at 30 degrees , 60 degrees , and 90 degrees of elbow flexion with 3 different valgus torques applied to the forearm. Loads based on muscle cross-sectional area were applied to the flexor carpi ulnaris (FCU), flexor digitorum superficialis (FDS), and pronator teres (PT). The effect of each muscle was evaluated by unloading the individual muscle while the other 2 remained loaded, resulting in 5 loading conditions: no muscles loaded, all muscles loaded, unloaded FCU, unloaded FDS, and unloaded PT. Valgus angle was measured for 3 MUCL ligament conditions: intact, stretched, and cut. The effect of muscle loading on valgus angle was similar for each ligament condition. Loading the flexor-pronator muscles significantly decreased valgus angle of the elbow in all testing conditions (P < .01). Unloading the FDS significantly increased valgus angle compared to all muscles loaded in all testing conditions (P < .016). Unloading the FCU and PT significantly increased valgus angle in less than half of the testing conditions. The FDS, PT, and FCU are all active stabilizers of the elbow to valgus stress. The FDS is the biggest contributor amongst the flexor-pronator muscles.
NASA Astrophysics Data System (ADS)
Ma, L. X.; Tan, J. Y.; Zhao, J. M.; Wang, F. Q.; Wang, C. A.; Wang, Y. Y.
2017-07-01
Due to the dependent scattering and absorption effects, the radiative transfer equation (RTE) may not be suitable for dealing with radiative transfer in dense discrete random media. This paper continues previous research on multiple and dependent scattering in densely packed discrete particle systems, and puts emphasis on the effects of particle complex refractive index. The Mueller matrix elements of the scattering system with different complex refractive indexes are obtained by both electromagnetic method and radiative transfer method. The Maxwell equations are directly solved based on the superposition T-matrix method, while the RTE is solved by the Monte Carlo method combined with the hard sphere model in the Percus-Yevick approximation (HSPYA) to consider the dependent scattering effects. The results show that for densely packed discrete random media composed of medium size parameter particles (equals 6.964 in this study), the demarcation line between independent and dependent scattering has remarkable connections with the particle complex refractive index. With the particle volume fraction increase to a certain value, densely packed discrete particles with higher refractive index contrasts between the particles and host medium and higher particle absorption indexes are more likely to show stronger dependent characteristics. Due to the failure of the extended Rayleigh-Debye scattering condition, the HSPYA has weak effect on the dependent scattering correction at large phase shift parameters.
NASA Astrophysics Data System (ADS)
de Cassagnac, Raphael Granier
I present here a concise review of the experimental results obtained at the Relativistic Heavy Ion Collider (RHIC), which shed light on the hot and dense quark gluon matter produced at these high temperature and density conditions.
Automatic Ability Attribution after Failure: A Dual Process View of Achievement Attribution
Sakaki, Michiko; Murayama, Kou
2013-01-01
Causal attribution has been one of the most influential frameworks in the literature of achievement motivation, but previous studies considered achievement attribution as relatively deliberate and effortful processes. In the current study, we tested the hypothesis that people automatically attribute their achievement failure to their ability, but reduce the ability attribution in a controlled manner. To address this hypothesis, we measured participants’ causal attribution belief for their task failure either under the cognitive load (load condition) or with full attention (no-load condition). Across two studies, participants attributed task performance to their ability more in the load than in the no-load condition. The increased ability attribution under cognitive load further affected intrinsic motivation. These results indicate that cognitive resources available after feedback play crucial roles in determining causal attribution belief, as well as achievement motivations. PMID:23667576
Automatic ability attribution after failure: a dual process view of achievement attribution.
Sakaki, Michiko; Murayama, Kou
2013-01-01
Causal attribution has been one of the most influential frameworks in the literature of achievement motivation, but previous studies considered achievement attribution as relatively deliberate and effortful processes. In the current study, we tested the hypothesis that people automatically attribute their achievement failure to their ability, but reduce the ability attribution in a controlled manner. To address this hypothesis, we measured participants' causal attribution belief for their task failure either under the cognitive load (load condition) or with full attention (no-load condition). Across two studies, participants attributed task performance to their ability more in the load than in the no-load condition. The increased ability attribution under cognitive load further affected intrinsic motivation. These results indicate that cognitive resources available after feedback play crucial roles in determining causal attribution belief, as well as achievement motivations.
NASA Astrophysics Data System (ADS)
Stavinskiy, A. V.
2017-09-01
A possibility of studying cold nuclear matter on the Nuclotron-NICA facility at baryonic densities characteristic of and higher than at the center of a neutron star is considered based on the data from cumulative processes. A special rare-event kinematic trigger for collisions of relativistic ions is proposed for effective selection of events accompanied by production of dense baryonic systems. Possible manifestations of new matter states under these unusual conditions and an experimental program for their study are discussed. Various experimental setups are proposed for these studies, and a possibility of using experimental setups at the Nuclotron-NICA facility for this purpose is considered.
Where have we gone wrong? Perceptual load does not affect selective attention.
Benoni, Hanna; Tsal, Yehoshua
2010-06-18
The theory of perceptual load (Lavie & Tsal, 1994) proposes that with low load in relevant processing left over resources spill over to process irrelevant distractors. Interference could only be prevented under High-Load Conditions where relevant processing exhausts attentional resources. The theory is based primarily on the finding that distractor interference obtained in low load displays, when the target appears alone, is eliminated in high load displays when it is embedded among neutral letters. However, a possible alternative interpretation of this effect is that the distractor is similarly processed in both displays, yet its interference in the large displays is diluted by the presence of the neutral letters. We separated the possible effects of load and dilution by adding dilution displays that were high in dilution and low in perceptual load. In the first experiment these displays contained as many letters as the high load displays, but their neutral letters were clearly distinguished from the target, thereby allowing for a low load processing mode. In the second experiment we presented identical multicolor displays in the Dilution and High-Load Conditions. However, in the former the target color was known in advance (thereby preserving a low load processing mode) whereas in the latter it was not. In both experiments distractor interference was completely eliminated under the Dilution Condition. Thus, it is dilution not perceptual load affecting distractor processing. 2010 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2011 CFR
2011-01-01
... equilibrium. For limit ground loads— (1) The limit ground loads obtained in the landing conditions in this part must be considered to be external loads that would occur in the rotorcraft structure if it were acting as a rigid body; and (2) In each specified landing condition, the external loads must be placed in...
Postural Stability Assessment of University Marching Musicians Using Force Platform Measures.
Magnotti, Trevor D; McElhiney, Danielle; Russell, Jeffrey A
2016-09-01
Lower extremity injury is prevalent in marching musicians, and poor postural stability is a possible risk factor for this. The external load of an instrument may predispose these performers to injury by decreasing postural stability. The purpose of this study was to determine the relationship between instrument load and static and dynamic postural stability in this population. Fourteen university marching musicians were recruited and completed a balance assessment protocol on a force platform with and without their instrument. Mean center of pressure (CoP) displacement was then calculated for each exercise in the anterior/posterior and medial/lateral planes. Mean anterior/posterior CoP displacement significantly increased in the instrument condition for the static surface, eyes closed, 2 feet condition (p≤0.005; d=0.89). No significant differences were found in the medial/lateral plane between non-instrument and instrument conditions. Significant differences were not found between test stance conditions independent of group. Comparisons between the non-instrument-loaded and instrument-loaded conditions revealed possible significance of instrument load on postural stability in the anterior/posterior plane. Mean differences indicated that an unstable surface created a greater destabilizing effect on postural stability than instrument load.
NASA Technical Reports Server (NTRS)
Rouse, Marshall; Ambur, Damodar R.; Bodine, Jerry; Dopker, Bernhard
1997-01-01
The results from an experimental and analytical study of a composite sandwich fuselage side panel for a transport aircraft are presented. The panel has two window cutouts and three frames, and has been evaluated with internal pressure loads that generate biaxial tension loading conditions. Design limit load and design ultimate load tests have been performed on the graphite-epoxy sandwich panel with the middle frame removed to demonstrate the suitability of this two-frame design for supporting the prescribed biaxial loading conditions with twice the initial frame spacing of 20 inches. The two-frame panel was damaged by cutting a notch that originates at the edge of a cutout and extends in the panel hoop direction through the window-belt area. This panel with a notch was tested in a combined-load condition to demonstrate the structural damage tolerance at the design limit load condition. The two panel configurations successfully satisfied all design load requirements in the experimental part of the study, and the three-frame and two-frame panel responses are fully explained by the analysis results. The results of this study suggest that there is potential for using sandwich structural concepts with greater than the usual 20-in.-wide frame spacing to further reduce aircraft fuselage structural weight.
Krekelberg, William P; Siderius, Daniel W; Shen, Vincent K; Truskett, Thomas M; Errington, Jeffrey R
2017-12-12
Using molecular simulations, we investigate the relationship between the pore-averaged and position-dependent self-diffusivity of a fluid adsorbed in a strongly attractive pore as a function of loading. Previous work (Krekelberg, W. P.; Siderius, D. W.; Shen, V. K.; Truskett, T. M.; Errington, J. R. Connection between thermodynamics and dynamics of simple fluids in highly attractive pores. Langmuir 2013, 29, 14527-14535, doi: 10.1021/la4037327) established that pore-averaged self-diffusivity in the multilayer adsorption regime, where the fluid exhibits a dense film at the pore surface and a lower density interior pore region, is nearly constant as a function of loading. Here we show that this puzzling behavior can be understood in terms of how loading affects the fraction of particles that reside in the film and interior pore regions as well as their distinct dynamics. Specifically, the insensitivity of pore-averaged diffusivity to loading arises from the approximate cancellation of two factors: an increase in the fraction of particles in the higher diffusivity interior pore region with loading and a corresponding decrease in the particle diffusivity in that region. We also find that the position-dependent self-diffusivities scale with the position-dependent density. We present a model for predicting the pore-average self-diffusivity based on the position-dependent self-diffusivity, which captures the unusual characteristics of pore-averaged self-diffusivity in strongly attractive pores over several orders of magnitude.
The Role of Cognitive Load in Intentional Forgetting Using the Think/No-Think Task.
Noreen, Saima; de Fockert, Jan W
2017-01-01
We investigated the role of cognitive control in intentional forgetting by manipulating working memory load during the think/no-think task. In two experiments, participants learned a series of cue-target word pairs and were asked to recall the target words associated with some cues or to avoid thinking about the target associated with other cues. In addition to this, participants also performed a modified version of the n-back task which required them to respond to the identity of a single target letter present in the currently presented cue word (n = 0 condition, low working memory load), and in either the previous cue word (n = 1 condition, high working memory load, Experiment 1) or the cue word presented two trials previously (n = 2 condition, high working memory load, Experiment 2). Participants' memory for the target words was subsequently tested using same and novel independent probes. In both experiments it was found that although participants were successful at forgetting on both the same and independent-probe tests in the low working memory load condition, they were only successful at forgetting on the same-probe test in the high working memory load condition. We argue that our findings suggest that the high load working memory task diverted attention from direct suppression and acted as an interference-based strategy. Thus, when cognitive resources are limited participants can switch between the strategies they use to prevent unwanted memories from coming to mind.
Stauffer, R W; McCarter, M; Campbell, J L; Wheeler, L F
1987-11-01
Twenty-four first year United States Military Academy (USMA) men and women were studied to compare metabolic response differences in seven horizontal walking velocities, under three military load bearing conditions. The treadmill protocol consisted of walking or jogging on a horizontal treadmill surface for 3-min intervals at velocities of 3, 3.5, 4, 4.5, 5, 5.5, and 6 mph. The three military load bearing conditions weighed 5, 12, and 20 kg. Metabolic measurements taken at each speed in each of the military load bearing conditions were: minute volume, tidal volume, respiratory rate, absolute and relative to body weight oxygen consumption, and respiratory quotient. Two three-way analyses of variance for repeated measures tests with main effects of gender, military load, and speed revealed that USMA men and women metabolically respond to different military load bearing conditions; they metabolically respond to different walking and jogging velocities under military load bearing conditions; and they have identifiable and quantifiable metabolic response differences to military load bearing. This study was designed to improve USMA physical and military training programs by providing information to equally and uniformly administer the USMA Doctrine of Comparable Training to men and women alike; and additionally to clarify the "...minimal essential adjustments...required because of physiological differences between male and female individuals ..." portion of Public Law 94-106 providing for the admission of women to America's Service Academies.
The dynamic failure behavior of tungsten heavy alloys subjected to transverse loads
NASA Astrophysics Data System (ADS)
Tarcza, Kenneth Robert
Tungsten heavy alloys (WHA), a category of particulate composites used in defense applications as kinetic energy penetrators, have been studied for many years. Even so, their dynamic failure behavior is not fully understood and cannot be predicted by numerical models presently in use. In this experimental investigation, a comprehensive understanding of the high-rate transverse-loading fracture behavior of WHA has been developed. Dynamic fracture events spanning a range of strain rates and loading conditions were created via mechanical testing and used to determine the influence of surface condition and microstructure on damage initiation, accumulation, and sample failure under different loading conditions. Using standard scanning electron microscopy metallographic and fractographic techniques, sample surface condition is shown to be extremely influential to the manner in which WHA fails, causing a fundamental change from externally to internally nucleated failures as surface condition is improved. Surface condition is characterized using electron microscopy and surface profilometry. Fracture surface analysis is conducted using electron microscopy, and linear elastic fracture mechanics is used to understand the influence of surface condition, specifically initial flaw size, on sample failure behavior. Loading conditions leading to failure are deduced from numerical modeling and experimental observation. The results highlight parameters and considerations critical to the understanding of dynamic WHA fracture and the development of dynamic WHA failure models.
Assessing Footwear Effects from Principal Features of Plantar Loading during Running.
Trudeau, Matthieu B; von Tscharner, Vinzenz; Vienneau, Jordyn; Hoerzer, Stefan; Nigg, Benno M
2015-09-01
The effects of footwear on the musculoskeletal system are commonly assessed by interpreting the resultant force at the foot during the stance phase of running. However, this approach overlooks loading patterns across the entire foot. An alternative technique for assessing foot loading across different footwear conditions is possible using comprehensive analysis tools that extract different foot loading features, thus enhancing the functional interpretation of the differences across different interventions. The purpose of this article was to use pattern recognition techniques to develop and use a novel comprehensive method for assessing the effects of different footwear interventions on plantar loading. A principal component analysis was used to extract different loading features from the stance phase of running, and a support vector machine (SVM) was used to determine whether and how these loading features were different across three shoe conditions. The results revealed distinct loading features at the foot during the stance phase of running. The loading features determined from the principal component analysis allowed successful classification of all three shoe conditions using the SVM. Several differences were found in the location and timing of the loading across each pairwise shoe comparison using the output from the SVM. The analysis approach proposed can successfully be used to compare different loading patterns with a much greater resolution than has been reported previously. This study has several important applications. One such application is that it would not be relevant for a user to select a shoe or for a manufacturer to alter a shoe's construction if the classification across shoe conditions would not have been significant.
Coseismic Damage Generation in Fault Zones by Successive High Strain Rate Loading Experiments
NASA Astrophysics Data System (ADS)
Aben, F. M.; Doan, M. L.; Renard, F.; Toussaint, R.; Reuschlé, T.; Gratier, J. P.
2014-12-01
Damage zones of active faults control both resistance to rupture and transport properties of the fault. Hence, knowing the rock damage's origin is important to constrain its properties. Here we study experimentally the damage generated by a succession of dynamic loadings, a process mimicking the stress history of a rock sample located next to an active fault. A propagating rupture generates high frequency stress perturbations next to its tip. This dynamic loading creates pervasive damage (pulverization), as multiple fractures initiate and grow simultaneously. Previous single loading experiments have shown a strain rate threshold for pulverization. Here, we focus on conditions below this threshold and the dynamic peak stress to constrain: 1) if there is dynamic fracturing at these conditions and 2) if successive loadings (cumulative seismic events) result in pervasive fracturing, effectively reducing the pulverization threshold to milder conditions. Monzonite samples were dynamically loaded (strain rate > 50 s-1) several times below the dynamic peak strength, using a Split Hopkinson Pressure Bar apparatus. Several quasi-static experiments were conducted as well (strain rate < 10-5-s). Samples loaded up to stresses above the quasi-static uniaxial compressive strength (qsUCS) systematically fragmented or pulverized after four successive loadings. We measured several damage proxies (P-wave velocity, porosity), that show a systematic increase in damage with each load. In addition, micro-computed tomography acquisition on several damage samples revealed the growth of a pervasive fracture network between ensuing loadings. Samples loaded dynamically below the qsUCS failed along one fracture after a variable amount of loadings and damage proxies do not show any a systematic trend. Our conclusions is that milder dynamic loading conditions, below the dynamic peak strength, result in pervasive dynamic fracturing. Also, successive loadings effectively lower the pulverization threshold of the rock. However, the peak loading stress must exceed the qsUCS of the rock, otherwise quasi-static fracturing occurs. Pulverized rocks found in the field are therefore witnesses of previous large earthquakes.
A quantitative method for evaluating inferior glenohumeral joint stiffness using ultrasonography.
Tsai, Wen-Wei; Lee, Ming-Yih; Yeh, Wen-Lin; Cheng, Shih-Chung; Soon, Kok-Soon; Lei, Kin Fong; Lin, Wen-Yen
2013-02-01
Subluxation of the affected shoulder in post-stroke patients is associated with nerve disorders and muscle fatigue. Clinicians must be able to accurately and reliably measure inferior glenohumeral subluxation in patients to provide appropriate treatment. However, quantitative methods for evaluating the laxity and stiffness of the glenohumeral joint (GHJ) are still being developed. The aim of this study was to develop a new protocol for evaluating the laxity and stiffness of the inferior GHJ using ultrasonography under optimal testing conditions and to investigate changes in the GHJ from a commercially available humerus brace and shoulder brace. Multistage inferior displacement forces were applied to create a glide between the most cephalad point on the visible anterosuperior surface of the humeral head and coracoid process in seven healthy volunteers. GHJ stiffness was defined as the slope of the linear regression line between the glides and different testing loads. The testing conditions were defined by different test loading mechanisms (n=2), shoulder constraining conditions (n=2), and loading modes (n=4). The optimal testing condition was defined as the condition with the least residual variance of measured laxity to the calculated stiffness under different testing loads. A paired t-test was used to compare the laxity and stiffness of the inferior GHJ using different braces. No significant difference was identified between the two test loading mechanisms (t=0.218, p=0.831) and two shoulder constraining conditions (t=-0.235, p=0.818). We concluded that ultrasonographic laxity measurements performed using a pulley set loading mechanism was as reliable as direct loading. Additionally, constraining the unloaded shoulder was proposed due to the lower mean residual variance value. Moreover, pulling the elbow downward with loading on the upper arm was suggested, as pulling the elbow downward with the elbow flexed and loading on the forearm may overestimate stiffness and pain in the inferior GHJ at the loading point due to friction between the wide belt and skin. Furthermore, subjects wearing a humerus brace with a belt, which creates the effect of lifting the humerus toward the acromion, had greater GHJ stiffness compared to subjects wearing a shoulder brace without a belt to lift the humerus under the proposed testing conditions. This study provides experimental evidence that shoulder braces may reduce GHJ laxity under an external load, implying that the use of a humeral brace can prevent subluxation in post-stroke patients. The resulting optimal testing conditions for measuring the laxity and stiffness of the GHJ is to constrain the unloaded shoulder and bend the loaded arm at the elbow with loading on the upper arm using a pulley system. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.
Measurement of intact-core length of atomizing liquid jets by image deconvolution
NASA Technical Reports Server (NTRS)
Woodward, Roger; Burch, Robert; Kuo, Kenneth; Cheung, Fan-Bill
1993-01-01
The investigation of liquid jet breakup and spray development is critical to the understanding of combustion phenomena in liquid propellant rocket engines. Much work has been done to characterize low-speed liquid jet breakup and dilute sprays, but atomizing jets and dense sprays have yielded few quantitative measurements due to their high liquid load fractions and hence their optical opacity. Focus was on a characteristic of the primary breakup process of round liquid jets, namely the length of the intact-liquid core. The specific application considered is that of shear-coaxial-type rocket engine injectors in which liquid oxygen is injected through the center post while high velocity gaseous hydrogen is injected through a concentric annulus, providing a shear force to the liquid jet surface. Real-time x ray radiography, capable of imaging through the dense two-phase region surrounding the liquid core, is used to make the measurements. The intact-liquid-core length data were obtained and interpreted using two conceptually different methods to illustrate the effects of chamber pressure, gas-to-liquid momentum ratio, and cavitation.
Formation of a disordered solid via a shock-induced transition in a dense particle suspension
NASA Astrophysics Data System (ADS)
Petel, Oren E.; Frost, David L.; Higgins, Andrew J.; Ouellet, Simon
2012-02-01
Shock wave propagation in multiphase media is typically dominated by the relative compressibility of the two components of the mixture. The difference in the compressibility of the components results in a shock-induced variation in the effective volume fraction of the suspension tending toward the random-close-packing limit for the system, and a disordered solid can take form within the suspension. The present study uses a Hugoniot-based model to demonstrate this variation in the volume fraction of the solid phase as well as a simple hard-sphere model to investigate the formation of disordered structures within uniaxially compressed model suspensions. Both models are discussed in terms of available experimental plate impact data in dense suspensions. Through coordination number statistics of the mesoscopic hard-sphere model, comparisons are made with the trends of the experimental pressure-volume fraction relationship to illustrate the role of these disordered structures in the bulk properties of the suspensions. A criterion for the dynamic stiffening of suspensions under high-rate dynamic loading is suggested as an analog to quasi-static jamming based on the results of the simulations.
NASA Astrophysics Data System (ADS)
Caballero Bendixsen, Luis; Bott-Suzuki, Simon; Cordaro, Samuel; Krishnan, Mahadevan; Chapman, Stephen; Coleman, Phil; Chittenden, Jeremy
2015-11-01
Results will be shown on coordinated experiments and MHD simulations on magnetically driven implosions, with an emphasis on current diffusion and heat transport. Experiments are run at a Mather-type dense plasma focus (DPF-3, Vc: 20 kV, Ip: 480 kA, E: 5.8 kJ). Typical experiments are run at 300 kA and 0.33 Hz repetition rate with different gas loads (Ar, Ne, and He) at pressures of ~ 1-3 Torr, usually gathering 1000 shots per day. Simulations are run at a 96-core HP blade server cluster using 3GHz processors with 4GB RAM per node.Preliminary results show axial and radial phase plasma sheath velocity of ~ 1x105 m/s. These are in agreement with the snow-plough model of DPFs. Peak magnetic field of ~ 1 Tesla in the radial compression phase are measured. Electron densities on the order of 1018 cm-3 anticipated. Comparison between 2D and 3D models with empirical results show a good agreement in the axial and radial phase.
Acceleration of plates using non-conventional explosives heavily-loaded with inert materials
NASA Astrophysics Data System (ADS)
Loiseau, J.; Petel, O. E.; Huneault, J.; Serge, M.; Frost, D. L.; Higgins, A. J.
2014-05-01
The detonation behavior of high explosives containing quantities of dense additives has been previously investigated with the observation that such systems depart dramatically from the approximately "gamma law" behavior typical of conventional explosives due to momentum transfer and thermalization between particles and detonation products. However, the influence of this non-ideal detonation behavior on the divergence speed of plates has been less thoroughly studied and existing literature suggests that the effect of dense additives cannot be explained solely through the straightforward application of the Gurney method with energy and density averaging of the explosive. In the current study, the acceleration history and terminal velocity of aluminum flyers launched by packed beds of granular material saturated by amine-sensitized nitromethane is reported. It was observed that terminal flyer velocity scales primarily with the ratio of flyer mass to mass of the explosive component; a fundamental feature of the Gurney method. Velocity decrement from the addition of particles was only 20%-30% compared to the resulting velocity if propelled by an equivalent quantity of neat explosive.
Measurement of intact-core length of atomizing liquid jets by image deconvolution
NASA Astrophysics Data System (ADS)
Woodward, Roger; Burch, Robert; Kuo, Kenneth; Cheung, Fan-Bill
1993-11-01
The investigation of liquid jet breakup and spray development is critical to the understanding of combustion phenomena in liquid propellant rocket engines. Much work has been done to characterize low-speed liquid jet breakup and dilute sprays, but atomizing jets and dense sprays have yielded few quantitative measurements due to their high liquid load fractions and hence their optical opacity. Focus was on a characteristic of the primary breakup process of round liquid jets, namely the length of the intact-liquid core. The specific application considered is that of shear-coaxial-type rocket engine injectors in which liquid oxygen is injected through the center post while high velocity gaseous hydrogen is injected through a concentric annulus, providing a shear force to the liquid jet surface. Real-time x ray radiography, capable of imaging through the dense two-phase region surrounding the liquid core, is used to make the measurements. The intact-liquid-core length data were obtained and interpreted using two conceptually different methods to illustrate the effects of chamber pressure, gas-to-liquid momentum ratio, and cavitation.
In vivo remineralization of dentin using an agarose hydrogel biomimetic mineralization system
NASA Astrophysics Data System (ADS)
Han, Min; Li, Quan-Li; Cao, Ying; Fang, Hui; Xia, Rong; Zhang, Zhi-Hong
2017-02-01
A novel agarose hydrogel biomimetic mineralization system loaded with calcium and phosphate was used to remineralize dentin and induce the oriented densely parallel packed HA layer on defective dentin surface in vivo in a rabbit model. Firstly, the enamel of the labial surface of rabbits’ incisor was removed and the dentin was exposed to oral environment. Secondly, the hydrogel biomimetic mineralization system was applied to the exposed dentin surface by using a custom tray. Finally, the teeth were extracted and evaluated by scanning electron microscopy, X-ray diffraction, and nanoindentation test after a certain time of mineralization intervals. The regenerated tissue on the dentin surface was composed of highly organised HA crystals. Densely packed along the c axis, these newly precipitated HA crystals were perpendicular to the underlying dental surface with a tight bond. The demineralized dentin was remineralized and dentinal tubules were occluded by the grown HA crystals. The nanohardness and elastic modulus of the regenerated tissue were similar to natural dentin. The results indicated a potential clinical use for repairing dentin-exposed related diseases, such as erosion, wear, and dentin hypersensitivity.
Diluting the burden of load: perceptual load effects are simply dilution effects.
Tsal, Yehoshua; Benoni, Hanna
2010-12-01
The substantial distractor interference obtained for small displays when the target appears alone is reduced in large displays when the target is embedded among neutral letters. This finding has been interpreted as reflecting low-load and high-load processing, respectively, thereby supporting the theory of perceptual load (Lavie & Tsal, 1994). However, a possible alternative interpretation of this effect is that the distractor is similarly processed in both displays, yet its interference in the large ones is diluted by the presence of the neutral letters. We separated the effects of load and dilution by introducing dilution displays. They contained as many letters as the high-load displays but were clearly distinguished from the target, thus allowing for a low-load processing mode. Distractor interference obtained under both the low-load and high-load conditions disappeared under the dilution condition. Hence, the display size effect traditionally misattributed to perceptual load is fully accounted for by dilution. Furthermore, when dilution is controlled for, it is high load not low load producing greater interference.
NASA Astrophysics Data System (ADS)
Jiang, Huifeng; Chen, Xuedong; Fan, Zhichao; Dong, Jie; Jiang, Heng; Lu, Shouxiang
2009-08-01
Stress controlled fatigue-creep tests were carried out for 316L stainless steel under different loading conditions, i.e. different loading levels at the fixed temperature (loading condition 1, LC1) and different temperatures at the fixed loading level (loading condition 2, LC2). Cyclic deformation behaviors were investigated with respect to the evolutions of strain amplitude and mean strain. Abrupt mean strain jumps were found during cyclic deformation, which was in response to the dynamic strain aging effect. Moreover, as to LC1, when the minimum stress is negative at 550 °C, abrupt mean strain jumps occur at the early stage of cyclic deformation and there are many jumps during the whole process. While the minimum stress is positive, mean strain only jumps once at the end of deformation. Similar results were also found in LC2, when the loading level is fixed at -100 to 385 MPa, at higher temperatures (560, 575 °C), abrupt mean strain jumps occur at the early stage of cyclic deformation and there are many jumps during the whole process. While at lower temperature (540 °C), mean strain only jumps once at the end of deformation.
Research Based on AMESim of Electro-hydraulic Servo Loading System
NASA Astrophysics Data System (ADS)
Li, Jinlong; Hu, Zhiyong
2017-09-01
Electro-hydraulic servo loading system is a subject studied by many scholars in the field of simulation and control at home and abroad. The electro-hydraulic servo loading system is a loading device simulation of stress objects by aerodynamic moment and other force in the process of movement, its function is all kinds of gas in the lab condition to analyze stress under dynamic load of objects. The purpose of this paper is the design of AMESim electro-hydraulic servo system, PID control technology is used to configure the parameters of the control system, complete the loading process under different conditions, the optimal design parameters, optimization of dynamic performance of the loading system.
Bhattacharyya, Debojyoti; Pal, Madhusudan; Chatterjee, Tirthankar; Majumdar, Dhurjati
2017-10-01
Correct decision making is a critical component of cognitive performance of a soldier, which may be influenced by the load carriage and terrain conditions during their deployment in desert environment. The present study was aimed to investigate the effects of loads and terrain conditions on the cognitive performance in a group of twelve healthy heat acclimatized infantry soldiers under natural desert environment. The soldiers participated in a 10min walking trial during carrying no load and also carrying 10.7, 21.4 and 30kg at two terrain conditions viz., sandy and hard. We studied attention, memory and executive function, which are having immense functional importance in military operations. Standardized cognitive test battery was applied to the participants after carrying each magnitude of load at each terrain. Baseline cognitive performance was recorded on a separate day and was compared with the performances recorded after the load carriage trials. An attempt was made to reveal the relationship between physiological workload (relative workload) and cognitive performance at the point of completion of load carriage trials. Load, terrains and load×terrain interaction did not produce any significant effect (p>0.05) on the cognitive performance. Attention and relative workload were found significantly correlated at hard terrain under no load, 21.4kg and 30kg. Significant correlation was found between executive function and relative workload at hard terrain under no load. Carrying upto 30kg load for 10min at 3.5-4kmph walking speed resulted in improvement in attention at sandy terrain, decrement in memory at both sandy and hard terrains and improvement in executive function at sandy terrain. Copyright © 2017 Elsevier Inc. All rights reserved.
Analytical study of pressure balancing in gas film seals
NASA Technical Reports Server (NTRS)
Zuk, J.
1973-01-01
The load factor is investigated for subsonic and choked flow conditions, laminar and turbulent flows, and various seal entrance conditions. Both parallel sealing surfaces and surfaces with small linear deformation were investigated. The load factor for subsonic flow depends strongly on pressure ratio; under choked flow conditions, however the load factor is found to depend more strongly on film thickness and flow entrance conditions rather than pressure ratio. The importance of generating hydrodynamic forces to keep the seal balanced under severe and multipoint operation is also discussed.
Femoral stem incorporating a diamond cubic lattice structure: Design, manufacture and testing.
Jetté, Bruno; Brailovski, Vladimir; Dumas, Mathieu; Simoneau, Charles; Terriault, Patrick
2018-01-01
The current total hip prostheses with dense femoral stems are considerably stiffer than the host bones, which leads to such long-term complications as aseptic loosening, and eventually, the need for a revision. Consequently, the lifetime of the implantation does not match the lifetime expectation of young patients. A femoral stem design featuring a porous structure is proposed to lower its stiffness and allow bone tissue ingrowth. The porous structure is based on a diamond cubic lattice in which the pore size and the strut thickness are selected to meet the biomechanical requirements of the strength and the bone ingrowth. A porous stem and its fully dense counterpart are produced by laser powder-bed fusion using Ti-6Al-4V alloy. To evaluate the stiffness reduction, static testing based on the ISO standard 7206-4 is performed. The experimental results recorded by digital image correlation are analyzed and compared to the numerical model. The numerical and experimental force-displacement characteristics of the porous stem show a 31% lower stiffness as compared to that of its dense counterpart. Moreover, the correlation analysis of the total displacement and equivalent strain fields allows the preliminary validation of the numerical model of the porous stem. Finally, the analysis of the surface-to-volume and the strength-to-stiffness ratios of diamond lattice structures allow the assessment of their potential as biomimetic constructs for load-bearing orthopaedic implants. Copyright © 2017 Elsevier Ltd. All rights reserved.
Is Managed Wildfire Protecting Yosemite National Park from Drought?
NASA Astrophysics Data System (ADS)
Boisrame, G. F. S.; Thompson, S. E.; Stephens, S.; Collins, B.; Kelly, M.; Tague, N.
2016-12-01
Fire suppression in many dry forest types has left a legacy of dense, homogeneous forests. Such landscapes have high water demands and fuel loads, and when burned can result in catastrophically large fires. These characteristics are undesirable in the face of projected warming and drying in the Western US. This project explores the potential of managed wildfire - a forest management strategy in which fires caused by lightning are allowed to burn naturally as long as certain safety parameters are met - to reverse the effects of fire suppression. The Illilouette Creek Basin in Yosemite National Park has experienced 40 years of managed wildfire, reducing forest cover and increasing meadow and shrubland areas. We have collected evidence from field measurements and remote sensing which suggest that managed wildfire increases landscape and hydrologic heterogeneity, and likely improves resilience to disturbances such as fire and drought. Vegetation maps created from aerial photos show an increase in landscape heterogeneity following the introduction of managed wildfire. Soil moisture observations during the drought years of 2013-2016 suggest that transitions from dense forest to shrublands or meadows can increase summer soil moisture. In the winter of 2015-2016, snow depth measurements showed deeper spring snowpacks in burned areas compared to dense forests. Our study provides a unique view of relatively long-term effects of managed wildfire on vegetation change, ecohydrology, and drought resistance. Understanding these effects is increasingly important as the use of managed wildfire becomes more widely accepted, and as the likelihood of both drought and wildfire increases.
Data traffic reduction schemes for Cholesky factorization on asynchronous multiprocessor systems
NASA Technical Reports Server (NTRS)
Naik, Vijay K.; Patrick, Merrell L.
1989-01-01
Communication requirements of Cholesky factorization of dense and sparse symmetric, positive definite matrices are analyzed. The communication requirement is characterized by the data traffic generated on multiprocessor systems with local and shared memory. Lower bound proofs are given to show that when the load is uniformly distributed the data traffic associated with factoring an n x n dense matrix using n to the alpha power (alpha less than or equal 2) processors is omega(n to the 2 + alpha/2 power). For n x n sparse matrices representing a square root of n x square root of n regular grid graph the data traffic is shown to be omega(n to the 1 + alpha/2 power), alpha less than or equal 1. Partitioning schemes that are variations of block assignment scheme are described and it is shown that the data traffic generated by these schemes are asymptotically optimal. The schemes allow efficient use of up to O(n to the 2nd power) processors in the dense case and up to O(n) processors in the sparse case before the total data traffic reaches the maximum value of O(n to the 3rd power) and O(n to the 3/2 power), respectively. It is shown that the block based partitioning schemes allow a better utilization of the data accessed from shared memory and thus reduce the data traffic than those based on column-wise wrap around assignment schemes.
Detection of Steel Fatigue Cracks with Strain Sensing Sheets Based on Large Area Electronics
Yao, Yao; Glisic, Branko
2015-01-01
Reliable early-stage damage detection requires continuous monitoring over large areas of structure, and with sensors of high spatial resolution. Technologies based on Large Area Electronics (LAE) can enable direct sensing and can be scaled to the level required for Structural Health Monitoring (SHM) of civil structures and infrastructure. Sensing sheets based on LAE contain dense arrangements of thin-film strain sensors, associated electronics and various control circuits deposited and integrated on a flexible polyimide substrate that can cover large areas of structures. This paper presents the development stage of a prototype strain sensing sheet based on LAE for crack detection and localization. Two types of sensing-sheet arrangements with size 6 × 6 inch (152 × 152 mm) were designed and manufactured, one with a very dense arrangement of sensors and the other with a less dense arrangement of sensors. The sensing sheets were bonded to steel plates, which had a notch on the boundary, so the fatigue cracks could be generated under cyclic loading. The sensors within the sensing sheet that were close to the notch tip successfully detected the initialization of fatigue crack and localized the damage on the plate. The sensors that were away from the crack successfully detected the propagation of fatigue cracks based on the time history of the measured strain. The results of the tests have validated the general principles of the proposed sensing sheets for crack detection and identified advantages and challenges of the two tested designs. PMID:25853407
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chance, Ronald; Koros, William J.; McCool, Benjamin
The invention provides systems and methods for the delivery of carbon to photoautotrophs. The invention utilizes low energy regeneration of adsorbent for CO.sub.2 capture and provides for effective CO.sub.2 loading into liquids useful for photoautotroph growth and/or production of photosynthetic products, such as biofuels, via photoautotrophic culture media. The inventive system comprises a fluid/membrane/fluid contactor that provides selective transfer of molecular CO.sub.2 via a dense (non-porous) membrane from a carbonate-based CO.sub.2 snipping solution to a culture medium where the CO.sub.2 is consumed by a photoautotroph for the production of biofuels, biofuel precursors or other commercial products.
Process Produces Low-Secondary-Electron-Emission Surfaces
NASA Technical Reports Server (NTRS)
Curren, A. N.; Jensen, K. A.; Roman, R. F.
1986-01-01
Textured carbon layer applied to copper by sputtering. Carbon surface characterized by dense, random array of needle-like spires or peaks that extend perpendicularly from local copper surface. Spires approximately 7 micrometers in height and spaced approximately 3 micrometers apart, on average. Copper substrate essentially completely covered by carbon layer, is tenacious and not damaged by vibration loadings representative of multistage depressed collector (MDC) applications. Process developed primarily to provide extremely low-secondary-electron-emission surface for copper for use as highefficiency electrodes in MDC's for microwave amplifier traveling-wave tubes (TWT's). Tubes widely used in space communications, aircraft, and terrestrial applications.
Hydrology, water quality, trophic status, and aquatic plants of Fowler Lake, Wisconsin
Hughes, P.E.
1993-01-01
The low annual phosphorus input (28 pounds per square mile) to the lake from the Oconomowoc River shows the benefit of upstream lakes on the Oconomowoc River. Fourteen percent of the phosphorus input load to Fowler Lake is deposited in the lake sediments and the rest is transported through the lake by surface-water flow to downstream Lac La Belle. Dense growths of macrophytes in the lake change in composition seasonally; chara sp. (muskgrass) and Myriophyllum sp. (milfoil) are abundant in June and Najas marina and Vallesneria Americana (wild celery) are abundant in August.
Towards the mass production of slow, trappable molecules
NASA Astrophysics Data System (ADS)
McCarron, Daniel J.
2018-05-01
The Fast Track Communication by Petzold et al (2018 New J. Phys. 20 042001) demonstrates the first Zeeman slowing scheme for species with type-II optical cycling transitions. This new approach is directly applicable to those 2Σ molecules that have recently been captured and cooled in molecular magneto-optical traps (MOTs) and has the potential to efficiently and continuously load these traps for the first time. This advance could produce molecular MOTs with populations comparable to their atomic counterparts and realize an ideal platform for a wide range of studies using large, dense samples of ultracold molecules.
NASA Astrophysics Data System (ADS)
Li, Zhi-Guo; Chen, Qi-Feng; Gu, Yun-Jun; Zheng, Jun; Chen, Xiang-Rong
2016-10-01
The accurate hydrodynamic description of an event or system that addresses the equations of state, phase transitions, dissociations, ionizations, and compressions, determines how materials respond to a wide range of physical environments. To understand dense matter behavior in extreme conditions requires the continual development of diagnostic methods for accurate measurements of the physical parameters. Here, we present a comprehensive diagnostic technique that comprises optical pyrometry, velocity interferometry, and time-resolved spectroscopy. This technique was applied to shock compression experiments of dense gaseous deuterium-helium mixtures driven via a two-stage light gas gun. The advantage of this approach lies in providing measurements of multiple physical parameters in a single experiment, such as light radiation histories, particle velocity profiles, and time-resolved spectra, which enables simultaneous measurements of shock velocity, particle velocity, pressure, density, and temperature and expands understanding of dense high pressure shock situations. The combination of multiple diagnostics also allows different experimental observables to be measured and cross-checked. Additionally, it implements an accurate measurement of the principal Hugoniots of deuterium-helium mixtures, which provides a benchmark for the impedance matching measurement technique.
Molecular gas in high-mass filament WB673
NASA Astrophysics Data System (ADS)
Kirsanova, Maria S.; Salii, Svetlana V.; Sobolev, Andrej M.; Olofsson, Anders Olof Henrik; Ladeyschikov, Dmitry A.; Thomasson, Magnus
2017-12-01
We studied the distribution of dense gas in a filamentary molecular cloud containing several dense clumps. The center of the filament is given by the dense clump WB673. The clumps are high-mass and intermediate-mass starforming regions. We observed CS (2-1), 13CO (1-0), C18O(1-0), and methanol lines at 96 GHz toward WB673 with the Onsala Space Observatory 20-m telescope. We found CS (2-1) emission in the inter-clump medium so the clumps are physically connected and the whole cloud is indeed a filament. Its total mass is 104 M⊙ and mass-to-length ratio is 360M⊙ pc-1 from 13CO (1-0) data. Mass-to-length ratio for the dense gas is 3.4 - 34M⊙ pc-1 from CS (2-1) data. The PV-diagram of the filament is V-shaped. We estimated physical conditions in the molecular gas using methanol lines. Location of the filament on the sky between extended shells suggests that it could be a good example to test theoretical models of formation of the filaments via multiple compression of interstellar gas by supersonic waves.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Stephanie B.; Harding, Eric C.; Knapp, Patrick F.
The burning core of an inertial confinement fusion (ICF) plasma produces bright x-rays at stagnation that can directly diagnose core conditions essential for comparison to simulations and understanding fusion yields. These x-rays also backlight the surrounding shell of warm, dense matter, whose properties are critical to understanding the efficacy of the inertial confinement and global morphology. In this work, we show that the absorption and fluorescence spectra of mid-Z impurities or dopants in the warm dense shell can reveal the optical depth, temperature, and density of the shell and help constrain models of warm, dense matter. This is illustrated bymore » the example of a high-resolution spectrum collected from an ICF plasma with a beryllium shell containing native iron impurities. Lastly, analysis of the iron K-edge provides model-independent diagnostics of the shell density (2.3 × 10 24 e/cm 3) and temperature (10 eV), while a 12-eV red shift in Kβ and 5-eV blue shift in the K-edge discriminate among models of warm dense matter: Both shifts are well described by a self-consistent field model based on density functional theory but are not fully consistent with isolated-atom models using ad-hoc density effects.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holmlid, Leif, E-mail: holmlid@chem.gu.se; Kotzias, Bernhard
Ultra-dense hydrogen H(0) with its typical H-H bond distance of 2.3 pm is superfluid at room temperature as expected for quantum fluids. It also shows a Meissner effect at room temperature, which indicates that a transition point to a non-superfluid state should exist above room temperature. This transition point is given by a disappearance of the superfluid long-chain clusters H{sub 2N}(0). This transition point is now measured for several metal carrier surfaces at 405 - 725 K, using both ultra-dense protium p(0) and deuterium D(0). Clusters of ordinary Rydberg matter H(l) as well as small symmetric clusters H{sub 4}(0) andmore » H{sub 3}(0) (which do not give a superfluid or superconductive phase) all still exist on the surface at high temperature. This shows directly that desorption or diffusion processes do not remove the long superfluid H{sub 2N}(0) clusters. The two ultra-dense forms p(0) and D(0) have different transition temperatures under otherwise identical conditions. The transition point for p(0) is higher in temperature, which is unexpected.« less
The support system of the firefighter's activity by detecting objects in smoke space
NASA Astrophysics Data System (ADS)
Sakai, Masaki; Aoki, Yoshimitsu; Takagi, Mikio
2005-12-01
In recent years, crisis management's response to terrorist attacks and natural disasters, as well as accelerating rescue operations has become an important issue. We aim to make a support system for firefighters using the application of various engineering techniques such as information technology and radar technology. In rescue operations, one of the biggest problems is that the view of firefighters is obstructed by dense smoke. One of the current measures against this condition is the use of search sticks, like a blind man walking in town. The most important task for firefighters is to understand inside situation of a space with dense smoke. Therefore, our system supports firefighters' activity by visualizing the space with dense smoke. First, we scan target space with dense smoke by using millimeter-wave radar combined with a gyro sensor. Then multiple directional scan data can be obtained, and we construct a 3D map from high-reflection point dataset using 3D image processing technologies (3D grouping and labeling processing). In this paper, we introduce our system and report the results of the experiment in the real smoke space situation and practical achievements.
Study on load test of 100m cross-reinforced deck type concrete box arch bridge
NASA Astrophysics Data System (ADS)
Shi, Jing Xian; Cheng, Ying Jie
2018-06-01
Found in the routine quality inspection of highway bridge that many vertical fractures on the main beam (10mT beam) of the steel reinforced concrete arch bridge near the hydropower station. In order to grasp the bearing capacity of this bridge under working conditions with cracks, the static load and dynamic load test of box arch bridge are carried out. The Midas civil theory is calculated by using the special plate trailer - 300 as the calculation load, and the deflection and stress of the critical section are tested by the equivalent cloth load in the test vehicle. The pulsation test, obstacles and no obstacle driving test were carried out. Experimental results show that the bridge under the condition of the test loads is in safe condition, main bearing component of the strength and stiffness meet the design requirements, the crack width does not increase, in the process of loading bridge overall work performance is good.
Atmospheric Science Data Center
2016-05-27
... are in turn influenced by vegetation structure, terrain and soil type, and by the different solar illumination conditions on the two dates. ... wavelenths is strongly scattered between the leaf layers of the dense canopies, and the influence of shadows between the tree ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kitagawa, Akira; Takeoka, Masahiro; Sasaki, Masahide
2005-08-15
We study the measurement-induced non-Gaussian operation on the single- and two-mode Gaussian squeezed vacuum states with beam splitters and on-off type photon detectors, with which mixed non-Gaussian states are generally obtained in the conditional process. It is known that the entanglement can be enhanced via this non-Gaussian operation on the two-mode squeezed vacuum state. We show that, in the range of practical squeezing parameters, the conditional outputs are still close to Gaussian states, but their second order variances of quantum fluctuations and correlations are effectively suppressed and enhanced, respectively. To investigate an operational meaning of these states, especially entangled states,more » we also evaluate the quantum dense coding scheme from the viewpoint of the mutual information, and we show that non-Gaussian entangled state can be advantageous compared with the original two-mode squeezed state.« less
Smooth muscle architecture within cell-dense vascular tissues influences functional contractility.
Win, Zaw; Vrla, Geoffrey D; Steucke, Kerianne E; Sevcik, Emily N; Hald, Eric S; Alford, Patrick W
2014-12-01
The role of vascular smooth muscle architecture in the function of healthy and dysfunctional vessels is poorly understood. We aimed at determining the relationship between vascular smooth muscle architecture and contractile output using engineered vascular tissues. We utilized microcontact printing and a microfluidic cell seeding technique to provide three different initial seeding conditions, with the aim of influencing the cellular architecture within the tissue. Cells seeded in each condition formed confluent and aligned tissues but within the tissues, the cellular architecture varied. Tissues with a more elongated cellular architecture had significantly elevated basal stress and produced more contractile stress in response to endothelin-1 stimulation. We also found a correlation between the contractile phenotype marker expression and the cellular architecture, contrary to our previous findings in non-confluent tissues. Taken with previous results, these data suggest that within cell-dense vascular tissues, smooth muscle contractility is strongly influenced by cell and tissue architectures.
Carolyn Sieg; Kurt Allen; Joel McMillin; Chad Hoffman
2014-01-01
Landscape-scale bark beetle outbreaks have occurred throughout the Western United States during recent years in response to dense forest conditions, climatic conditions, and wildfire (Fettig and others 2007, Bentz and others 2010). Previous studies, mostly conducted in moist forest types (such as lodgepole pine [Pinus contorta]) suggest that bark beetle...
Thinning balsam fir thickets with soil sterilants
Arthur C. Hart
1961-01-01
Under certain conditions that we do not yet fully understand, balsam fir has a tendency to form dense thickets that cause stagnation of growth. This condition is common throughout the spruce-fir region, and it presents the landowner with one of his most perplexing management problems. A typical thicket averaging 15 feet tall may contain 5,000 to 10,000 stems per acre (...
Composite load spectra for select space propulsion structural components
NASA Technical Reports Server (NTRS)
Newell, J. F.; Kurth, R. E.; Ho, H.
1991-01-01
The objective of this program is to develop generic load models with multiple levels of progressive sophistication to simulate the composite (combined) load spectra that are induced in space propulsion system components, representative of Space Shuttle Main Engines (SSME), such as transfer ducts, turbine blades, and liquid oxygen posts and system ducting. The first approach will consist of using state of the art probabilistic methods to describe the individual loading conditions and combinations of these loading conditions to synthesize the composite load spectra simulation. The second approach will consist of developing coupled models for composite load spectra simulation which combine the deterministic models for composite load dynamic, acoustic, high pressure, and high rotational speed, etc., load simulation using statistically varying coefficients. These coefficients will then be determined using advanced probabilistic simulation methods with and without strategically selected experimental data.
Production of LEU Fully Ceramic Microencapsulated Fuel for Irradiation Testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terrani, Kurt A; Kiggans Jr, James O; McMurray, Jake W
2016-01-01
Fully Ceramic Microencapsulated (FCM) fuel consists of tristructural isotropic (TRISO) fuel particles embedded inside a SiC matrix. This fuel inherently possesses multiple barriers to fission product release, namely the various coating layers in the TRISO fuel particle as well as the dense SiC matrix that hosts these particles. This coupled with the excellent oxidation resistance of the SiC matrix and the SiC coating layer in the TRISO particle designate this concept as an accident tolerant fuel (ATF). The FCM fuel takes advantage of uranium nitride kernels instead of oxide or oxide-carbide kernels used in high temperature gas reactors to enhancemore » heavy metal loading in the highly moderated LWRs. Production of these kernels with appropriate density, coating layer development to produce UN TRISO particles, and consolidation of these particles inside a SiC matrix have been codified thanks to significant R&D supported by US DOE Fuel Cycle R&D program. Also, surrogate FCM pellets (pellets with zirconia instead of uranium-bearing kernels) have been neutron irradiated and the stability of the matrix and coating layer under LWR irradiation conditions have been established. Currently the focus is on production of LEU (7.3% U-235 enrichment) FCM pellets to be utilized for irradiation testing. The irradiation is planned at INL s Advanced Test Reactor (ATR). This is a critical step in development of this fuel concept to establish the ability of this fuel to retain fission products under prototypical irradiation conditions.« less
14 CFR 29.521 - Float landing conditions.
Code of Federal Regulations, 2014 CFR
2014-01-01
... level attitude, the resultant water reaction passes vertically through the center of gravity; and (2... component of 0.25 times the vertical component (b) A side load condition in which— (1) A vertical load of 0.75 times the total vertical load specified in paragraph (a)(1) of this section is divided equally...
14 CFR 29.521 - Float landing conditions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... level attitude, the resultant water reaction passes vertically through the center of gravity; and (2... component of 0.25 times the vertical component (b) A side load condition in which— (1) A vertical load of 0.75 times the total vertical load specified in paragraph (a)(1) of this section is divided equally...
14 CFR 29.521 - Float landing conditions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... level attitude, the resultant water reaction passes vertically through the center of gravity; and (2... component of 0.25 times the vertical component (b) A side load condition in which— (1) A vertical load of 0.75 times the total vertical load specified in paragraph (a)(1) of this section is divided equally...
14 CFR 29.521 - Float landing conditions.
Code of Federal Regulations, 2011 CFR
2011-01-01
... level attitude, the resultant water reaction passes vertically through the center of gravity; and (2... component of 0.25 times the vertical component (b) A side load condition in which— (1) A vertical load of 0.75 times the total vertical load specified in paragraph (a)(1) of this section is divided equally...
14 CFR 29.521 - Float landing conditions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... level attitude, the resultant water reaction passes vertically through the center of gravity; and (2... component of 0.25 times the vertical component (b) A side load condition in which— (1) A vertical load of 0.75 times the total vertical load specified in paragraph (a)(1) of this section is divided equally...
14 CFR 25.485 - Side load conditions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... accordance with figure 5 of appendix A. (b) Side loads of 0.8 of the vertical reaction (on one side) acting inward and 0.6 of the vertical reaction (on the other side) acting outward must be combined with one-half of the maximum vertical ground reactions obtained in the level landing conditions. These loads are...
14 CFR 25.485 - Side load conditions.
Code of Federal Regulations, 2011 CFR
2011-01-01
... accordance with figure 5 of appendix A. (b) Side loads of 0.8 of the vertical reaction (on one side) acting inward and 0.6 of the vertical reaction (on the other side) acting outward must be combined with one-half of the maximum vertical ground reactions obtained in the level landing conditions. These loads are...
14 CFR 29.497 - Ground loading conditions: landing gear with tail wheels.
Code of Federal Regulations, 2010 CFR
2010-01-01
... designed for loading conditions as prescribed in this section. (b) Level landing attitude with only the forward wheels contacting the ground. In this attitude— (1) The vertical loads must be applied under §§ 29... be resisted by angular inertia forces. (c) Level landing attitude with all wheels contacting the...
14 CFR 27.497 - Ground loading conditions: landing gear with tail wheels.
Code of Federal Regulations, 2010 CFR
2010-01-01
... designed for loading conditions as prescribed in this section. (b) Level landing attitude with only the forward wheels contacting the ground. In this attitude— (1) The vertical loads must be applied under §§ 27... be resisted by angular inertia forces. (c) Level landing attitude with all wheels contacting the...
NASA Technical Reports Server (NTRS)
Schuster, David M.; Panda, Jayanta; Ross, James C.; Roozeboom, Nettie H.; Burnside, Nathan J.; Ngo, Christina L.; Kumagai, Hiro; Sellers, Marvin; Powell, Jessica M.; Sekula, Martin K.;
2016-01-01
This NESC assessment examined the accuracy of estimating buffet loads on in-line launch vehicles without booster attachments using sparse unsteady pressure measurements. The buffet loads computed using sparse sensor data were compared with estimates derived using measurements with much higher spatial resolution. The current method for estimating launch vehicle buffet loads is through wind tunnel testing of models with approximately 400 unsteady pressure transducers. Even with this relatively large number of sensors, the coverage can be insufficient to provide reliable integrated unsteady loads on vehicles. In general, sparse sensor spacing requires the use of coherence-length-based corrections in the azimuthal and axial directions to integrate the unsteady pressures and obtain reasonable estimates of the buffet loads. Coherence corrections have been used to estimate buffet loads for a variety of launch vehicles with the assumption methodology results in reasonably conservative loads. For the Space Launch System (SLS), the first estimates of buffet loads exceeded the limits of the vehicle structure, so additional tests with higher sensor density were conducted to better define the buffet loads and possibly avoid expensive modifications to the vehicle design. Without the additional tests and improvements to the coherence-length analysis methods, there would have been significant impacts to the vehicle weight, cost, and schedule. If the load estimates turn out to be too low, there is significant risk of structural failure of the vehicle. This assessment used a combination of unsteady pressure-sensitive paint (uPSP), unsteady pressure transducers, and a dynamic force and moment balance to investigate the integration schemes used with limited unsteady pressure data by comparing them with direct integration of extremely dense fluctuating pressure measurements. An outfall of the assessment was to evaluate the potential of using the emerging uPSP technique in a production test environment for future launch vehicles. The results show that modifications to the current technique can improve the accuracy of buffet estimates. More importantly, the uPSP worked remarkably well and, with improvements to the frequency response, sensitivity, and productivity, will provide an enhanced method for measuring wind tunnel buffet forcing functions (BFFs).
Determination of the boundary conditions of the grinding load in ball mills
NASA Astrophysics Data System (ADS)
Sharapov, Rashid R.
2018-02-01
The prospects of application in ball mills for grinding cement clinker with inclined partitions are shown. It is noted that ball mills with inclined partitions are more effective. An algorithm is proposed for calculating the power consumed by a ball mill with inclined inter-chamber partitions in which an axial movement of the ball load takes place. The boundary conditions in which the ball load is located are determined. The equations of bounding the grinding load are determined. The behavior of a grinding load is considered in view of the characteristic cross sections. The coordinates of the centers of gravity of the grinding load with a definite step and the shape of the cross sections are determined. It is theoretically shown that grinding load in some parts of the ball mill not only consumes, but also helps to rotate the ball mill. Methods for calculating complex analytical expressions for determining the coordinates of the centers of gravity of the grinding load under the conditions of its longitudinal motion have developed. The carried out researches allow to approach from the general positions to research of behavior of a grinding load in the ball mills equipped with various in-mill devices.
Empirical Bayes conditional independence graphs for regulatory network recovery.
Mahdi, Rami; Madduri, Abishek S; Wang, Guoqing; Strulovici-Barel, Yael; Salit, Jacqueline; Hackett, Neil R; Crystal, Ronald G; Mezey, Jason G
2012-08-01
Computational inference methods that make use of graphical models to extract regulatory networks from gene expression data can have difficulty reconstructing dense regions of a network, a consequence of both computational complexity and unreliable parameter estimation when sample size is small. As a result, identification of hub genes is of special difficulty for these methods. We present a new algorithm, Empirical Light Mutual Min (ELMM), for large network reconstruction that has properties well suited for recovery of graphs with high-degree nodes. ELMM reconstructs the undirected graph of a regulatory network using empirical Bayes conditional independence testing with a heuristic relaxation of independence constraints in dense areas of the graph. This relaxation allows only one gene of a pair with a putative relation to be aware of the network connection, an approach that is aimed at easing multiple testing problems associated with recovering densely connected structures. Using in silico data, we show that ELMM has better performance than commonly used network inference algorithms including GeneNet, ARACNE, FOCI, GENIE3 and GLASSO. We also apply ELMM to reconstruct a network among 5492 genes expressed in human lung airway epithelium of healthy non-smokers, healthy smokers and individuals with chronic obstructive pulmonary disease assayed using microarrays. The analysis identifies dense sub-networks that are consistent with known regulatory relationships in the lung airway and also suggests novel hub regulatory relationships among a number of genes that play roles in oxidative stress and secretion. Software for running ELMM is made available at http://mezeylab.cb.bscb.cornell.edu/Software.aspx. ramimahdi@yahoo.com or jgm45@cornell.edu Supplementary data are available at Bioinformatics online.
Influence of an alloy addition on the physical and clinical behaviour of glass ionomer cement
NASA Astrophysics Data System (ADS)
Abour, Mohamed Abour Bashir
These in vitro studies compared the various properties of an experimental high powder liquid content glass ionomer cement (EXPT) with those of a metal addition GIC (Hi-Dense) and disperse phase amalgam (Dispersalloy). Bi-axial, four point flexural and compressive tests were used to evaluate strength. Six groups of ten specimens were constructed for each test for each material and allowed to set in an oven at 37°C for 60 minutes. Specimens were stored in distilled water at 37°C until testing at one day, one week, one, three, six months and year. It was found that the strength of Hi-Dense increased and then maintained over extended time, whereas the strength of EXPT showed a declined at 3 months. The bond strengths of the materials to both enamel and dentine were also evaluated. Ten groups of ten teeth, five for each surface for each glass ionomer materials, were prepared. Teeth were aligned leaving the enamel and dentine surfaces exposed. The mixed material was condensed into a cylinder placed on the appropriate surface. These specimens were also stored in distilled water at 37°C. It was found that Hi-Dense had a higher bond strength to enamel that increased with time. The bond strength to dentine was maintained over the test period. The erosion rate of the materials was evaluated using the lactic acid erosion test. Three groups of six specimens for each material were constructed and tested after one hour, one day and at six months. Each specimen was subjected to an impinging jet of lactic acid solution. The erosion rate was determined by weight loss and dimensional change. It was found that Hi-Dense had a high erosion resistance which was slightly better than the experimental material. The microleakage, around restorations prepared, using the glass ionomer materials, was evaluated after cyclical loading the restoration-tooth complex. It was found that there was less leakage around Hi-Dense than EXPT at both the cervical and occlusal margins. In a clinical comparative evaluation of Hi-Dense with a disperse phase alloy placed as Class I restoration, the indirect assessment showed that Hi-Dense showed greater wear at six months than the amalgam using Ivoclar method of model assessment of wear. These studies indicate that the incorporation of a metal addition in the glass ionomer may have brought about a slight improvement in some of the properties tested. However, the performance of the experimental material with similar high powder content but no metal addition indicates that the use of a high powder content may be the predominant cause for the possible improvement.
The development of a repetition-load scheme for the eccentric-only bench press exercise.
Moir, Gavin L; Erny, Kyle F; Davis, Shala E; Guers, John J; Witmer, Chad A
2013-01-01
The purpose of the present study was to develop a repetition-load scheme for the eccentric-only bench press exercise. Nine resistance trained men (age: 21.6 ± 1.0 years; 1-repetition maximum [RM] bench press: 137.7 ± 30.4 kg) attended four testing sessions during a four week period. During the first session each subject's 1-RM bench press load utilizing the stretch-shortening cycle was determined. During the remaining sessions they performed eccentric-only repetitions to failure using supra-maximal loads equivalent to 110%, 120% and 130% of their 1-RM value with a constant cadence (30 reps·min(-1)). Force plates and a three dimensional motion analysis system were used during these final three sessions in order to evaluate kinematic and kinetic variables. More repetitions were completed during the 110% 1-RM condition compared to the 130% 1-RM condition (p=0.01). Mean total work (p=0.046) as well as vertical force (p=0.049), vertical work (p=0.017), and vertical power output (p=0.05) were significantly greater during the 130% 1-RM condition compared to the 110% 1-RM condition. A linear function was fitted to the number of repetitions completed under each load condition that allowed the determination of the maximum number of repetitions that could be completed under other supra-maximal loads. This linear function predicted an eccentric-only 1-RM in the bench press with a load equivalent to 164.8% 1-RM, producing a load of 227.0 ± 50.0 kg. The repetition-load scheme presented here should provide a starting point for researchers to investigate the kinematic, kinetic and metabolic responses to eccentric-only bench press workouts.
The Development of a Repetition-Load Scheme for the Eccentric-Only Bench Press Exercise
Moir, Gavin L.; Erny, Kyle F.; Davis, Shala E.; Guers, John J.; Witmer, Chad A.
2013-01-01
The purpose of the present study was to develop a repetition-load scheme for the eccentric-only bench press exercise. Nine resistance trained men (age: 21.6 ± 1.0 years; 1-repetition maximum [RM] bench press: 137.7 ± 30.4 kg) attended four testing sessions during a four week period. During the first session each subject’s 1-RM bench press load utilizing the stretch-shortening cycle was determined. During the remaining sessions they performed eccentric-only repetitions to failure using supra-maximal loads equivalent to 110%, 120% and 130% of their 1-RM value with a constant cadence (30 reps·min−1). Force plates and a three dimensional motion analysis system were used during these final three sessions in order to evaluate kinematic and kinetic variables. More repetitions were completed during the 110% 1-RM condition compared to the 130% 1-RM condition (p=0.01). Mean total work (p=0.046) as well as vertical force (p=0.049), vertical work (p=0.017), and vertical power output (p=0.05) were significantly greater during the 130% 1-RM condition compared to the 110% 1-RM condition. A linear function was fitted to the number of repetitions completed under each load condition that allowed the determination of the maximum number of repetitions that could be completed under other supra-maximal loads. This linear function predicted an eccentric-only 1-RM in the bench press with a load equivalent to 164.8% 1-RM, producing a load of 227.0 ± 50.0 kg. The repetition-load scheme presented here should provide a starting point for researchers to investigate the kinematic, kinetic and metabolic responses to eccentric-only bench press workouts. PMID:24235981
Abu-Akel, A; Reniers, R L E P; Wood, S J
2016-09-01
Patients with schizophrenia show impairments in working-memory and visual-spatial processing, but little is known about the dynamic interplay between the two. To provide insight into this important question, we examined the effect of positive and negative symptom expressions in healthy adults on perceptual processing while concurrently performing a working-memory task that requires the allocations of various degrees of cognitive resources. The effect of positive and negative symptom expressions in healthy adults (N = 91) on perceptual processing was examined in a dual-task paradigm of visual-spatial working memory (VSWM) under three conditions of cognitive load: a baseline condition (with no concurrent working-memory demand), a low VSWM load condition, and a high VSWM load condition. Participants overall performed more efficiently (i.e., faster) with increasing cognitive load. This facilitation in performance was unrelated to symptom expressions. However, participants with high-negative, low-positive symptom expressions were less accurate in the low VSWM condition compared to the baseline and the high VSWM load conditions. Attenuated, subclinical expressions of psychosis affect cognitive performance that is impaired in schizophrenia. The "resource limitations hypothesis" may explain the performance of the participants with high-negative symptom expressions. The dual-task of visual-spatial processing and working memory may be beneficial to assessing the cognitive phenotype of individuals with high risk for schizophrenia spectrum disorders.
Sevagan, Gopinath; Zhu, Feng; Jiang, Binhui; Yang, King H
2013-07-01
This article presents the results of a finite element simulation on the occupant head response in an infantry vehicle under two separated loading conditions: (1) blunt impact and (2) blast loading conditions. A Hybrid-III dummy body integrated with a previously validated human head model was used as the surrogate. The biomechanical response of the head was studied in terms of head acceleration due to the impact by a projectile on the vehicle and intracranial pressure caused by blast wave. A series of parametric studies were conducted on the numerical model to analyze the effect of some key parameters, such as seat configuration, impact velocity, and boundary conditions. The simulation results indicate that a properly designed seat and internal surface of the infantry vehicle can play a vital role in reducing the risk of head injury in the current scenarios. Comparison of the kinematic responses under the blunt impact and blast loading conditions reveals that under the current loading conditions, the acceleration pulse in the blast scenario has much higher peak values and frequency than blunt impact case, which may reflect different head response characteristics.
The dense gas mass fraction of molecular clouds in the Milky Way
DOE Office of Scientific and Technical Information (OSTI.GOV)
Battisti, Andrew J.; Heyer, Mark H., E-mail: abattist@astro.umass.edu, E-mail: heyer@astro.umass.edu
2014-01-10
The mass fraction of dense gas within giant molecular clouds (GMCs) of the Milky Way is investigated using {sup 13}CO data from the Five College Radio Astronomy Observatory Galactic Plane Surveys and the Bolocam Galactic Plane Survey (BGPS) of 1.1 mm dust continuum emission. A sample of 860 compact dust sources are selected from the BGPS catalog and kinematically linked to 344 clouds of extended (>3') {sup 13}CO J = 1-0 emission. Gas masses are tabulated for the full dust source and subregions within the dust sources with mass surface densities greater than 200 M {sub ☉} pc{sup –2}, whichmore » are assumed to be regions of enhanced volume density. Masses of the parent GMCs are calculated assuming optically thin {sup 13}CO J = 1-0 emission and local thermodynamic equilibrium conditions. The mean fractional mass of dust sources to host GMC mass is 0.11{sub −0.06}{sup +0.12}. The high column density subregions comprise 0.07{sub −0.05}{sup +0.13} of the mass of the cloud. Owing to our assumptions, these values are upper limits to the true mass fractions. The fractional mass of dense gas is independent of GMC mass and gas surface density. The low dense gas mass fraction suggests that the formation of dense structures within GMCs is the primary bottleneck for star formation. The distribution of velocity differences between the dense gas and the low density material along the line of sight is also examined. We find a strong, centrally peaked distribution centered on zero velocity displacement. This distribution of velocity differences is modeled with radially converging flows toward the dense gas position that are randomly oriented with respect to the observed line of sight. These models constrain the infall velocities to be 2-4 km s{sup –1} for various flow configurations.« less
NASA Astrophysics Data System (ADS)
Loiseau, Jason; Georges, William; Frost, David; Higgins, Andrew
2015-06-01
The incidence angle of a detonation wave is often assumed to weakly influence the terminal velocity of an explosively driven flyer. For explosives heavily loaded with dense additives, this may not be true due to differences in momentum and energy transfer between detonation products, additive particles, and the flyer. For tangential incidence the particles are first accelerated against the flyer via an expansion fan, whereas they are first accelerated by the detonation wave in the normal case. In the current study we evaluate the effect of normal versus tangential incidence on the acceleration of flyers by nitromethane heavily loaded with a variety of additives. Normal detonation was initiated via an explosively driven slapper. Flyer acceleration was measured with heterodyne laser interferometry (PDV). The influence of wave angle is evaluated by comparing the terminal velocity in the two cases (i.e., normal and grazing) for the heavily loaded mixtures. The decrement in flyer velocity correlated primarily with additive volume fraction and had a weak dependence on additive density or particle size. The Gurney energy of the heterogeneous explosive was observed to increase with flyer mass, presumably due to the timescale over which impinging particles could transfer momentum.
Advances in the study of mechanical properties and constitutive law in the field of wood research
NASA Astrophysics Data System (ADS)
Zhao, S.; Zhao, J. X.; Han, G. Z.
2016-07-01
This paper presents an overview of mechanical properties and constitutive law for wood. Current research on the mechanical properties of wood have mostly focused on density, grain, moisture, and other natural factors. It has been established that high density, dense grain, and high moisture lead to higher strength. In most literature, wood has been regarded as an anisotropic material because of its fiber. A microscopic view is used in research of wood today, in this way, which has allowed for clear observation of anisotropy. In general, wood has higher strength under a dynamic load, and no densification. The constitutive model is the basis of numerical analysis. An anisotropic model of porous and composite materials has been used for wood, but results were poor, and new constitutions have been introduced. According to the literature, there is no single theory that is widely accepted for the dynamic load. Research has shown that grain and moisture are key factors in wood strength, but there has not been enough study on dynamic loads so far. Hill law has been the most common method of simulation. Models that consider high strain rate are attracting more and more attention.
Coal/rock interface detection by sensitized pick, part A
NASA Technical Reports Server (NTRS)
Wu, P. T. K.; Erkes, J. W.
1981-01-01
In order to increase the operating margins of the detector for safe, reliable operation under difficult in-mine conditions the transmitted signal strength was increased to provide additional signal margin for in-mine conditions and the transmitter section was redesigned to reduce frequency pulling of the transmitter frequency with variations in antenna load. The linearity of the pick load SCO signal with true pick load was increased, and hysteresis effects were minimized. The sensitized pick hardware was ruggedized for rough inmine use. The sensitized pick and telemetry system provided excellent, high quality signals proportional to cutting load under all conditions experienced during testing.
Lamarche, B; Lemieux, I; Després, J P
1999-09-01
More than decade ago, several cross-sectional studies have reported differences in LDL particle size, density and composition between coronary heart disease (CHD) patients and healthy controls. Three recent prospective, nested case-control studies have since confirmed that the presence of small, dense LDL particles was associated with more than a three-fold increase in the risk of CHD. The small, dense LDL phenotype rarely occurs as an isolated disorder. It is most frequently accompanied by hypertriglyceridemia, reduced HDL cholesterol levels, abdominal obesity, insulin resistance and by a series of other metabolic alterations predictive of an impaired endothelial function and increased susceptibility to thrombosis. Whether or not the small, dense LDL phenotype should be considered an independent CHD risk factor remains to be clearly established. The cluster of metabolic abnormalities associated with small, dense LDL particles has been referred to as the insulin resistance-dyslipidemic phenotype of abdominal obesity. Results from the Québec Cardiovascular Study have indicated that individuals displaying three of the numerous features of insulin resistance (elevated plasma insulin and apolipoprotein B concentrations and small, dense LDL particles) showed a remarkable increase in CHD risk. Our data suggest that the increased risk of CHD associated with having small, dense LDL particles may be modulated to a significant extent by the presence/absence of insulin resistance, abdominal obesity and increased LDL particle concentration. We suggest that the complex interactions among the metabolic alterations of the insulin resistance syndrome should be considered when evaluating the risk of CHD associated with the small, dense LDL phenotype. From a therapeutic standpoint, the treatment of this condition should not only aim at reducing plasma triglyceride levels, but also at improving all features of the insulin resistance syndrome, for which body weight loss and mobilization of abdominal fat appear as key elements. Finally, interventions leading to reduction in fasting triglyceride levels will increase LDL particle size and contribute to reduce CHD risk, particularly if plasma apolipoprotein B concentration (as a surrogate of the number of atherogenic particles) is also reduced.
Petzold, A; Weingartner, E; Hasselbach, J; Lauer, P; Kurok, C; Fleischer, F
2010-05-15
Particulate matter (PM) emissions from one serial 4-stroke medium-speed marine diesel engine were measured for load conditions from 10% to 110% in test rig studies using heavy fuel oil (HFO). Testing the engine across its entire load range permitted the scaling of exhaust PM properties with load. Emission factors for particle number, particle mass, and chemical compounds were determined. The potential of particles to form cloud droplets (cloud condensation nuclei, CCN) was calculated from chemical composition and particle size. Number emission factors are (3.43 +/- 1.26) x 10(16) (kg fuel)(-1) at 85-110% load and (1.06 +/- 0.10) x 10(16) (kg fuel)(-1) at 10% load. CCN emission factors of 1-6 x 10(14) (kg fuel)(-1) are at the lower bound of data reported in the literature. From combined thermal and optical methods, black carbon (BC) emission factors of 40-60 mg/(kg fuel) were determined for 85-100% load and 370 mg/(kg fuel) for 10% load. The engine load dependence of the conversion efficiency for fuel sulfur into sulfate of (1.08 +/- 0.15)% at engine idle to (3.85 +/- 0.41)% at cruise may serve as input to global emission calculations for various load conditions.
Ansems, G E; Allen, T J; Proske, U
2006-01-01
When blindfolded subjects match the position of their forearms in the vertical plane they rely on signals coming from the periphery as well as from the central motor command. The command signal provides a positional cue from the accompanying effort sensation required to hold the arm against gravity. Here we have asked, does a centrally generated effort signal contribute to position sense in the horizontal plane, where gravity cannot play a role? Blindfolded subjects were required to match forearm position for the unloaded arm and when flexors or extensors were bearing 10%, 25% or 40% of maximum loads. Before each match the reference arm was conditioned by contracting elbow muscles while the arm was held flexed or extended. For the unloaded arm conditioning led to a consistent pattern of errors which was attributed to signals from flexor and extensor muscle spindles. When elbow muscles were loaded the errors from conditioning converged, presumably because the spindles had become coactivated through the fusimotor system during the load-bearing contraction. However, this convergence was seen only when subjects supported a static load. When they moved the load differences in errors from conditioning persisted. Muscle vibration during load bearing or moving a load did not alter the distribution of errors. It is concluded that for position sense of an unloaded arm in the horizontal plane the brain relies on signals from muscle spindles. When the arm is loaded, an additional signal of central origin contributes, but only if the load is moved. PMID:16873408
NASA Technical Reports Server (NTRS)
Tanner, John A.
1996-01-01
A computational procedure is presented for the solution of frictional contact problems for aircraft tires. A Space Shuttle nose-gear tire is modeled using a two-dimensional laminated anisotropic shell theory which includes the effects of variations in material and geometric parameters, transverse-shear deformation, and geometric nonlinearities. Contact conditions are incorporated into the formulation by using a perturbed Lagrangian approach with the fundamental unknowns consisting of the stress resultants, the generalized displacements, and the Lagrange multipliers associated with both contact and friction conditions. The contact-friction algorithm is based on a modified Coulomb friction law. A modified two-field, mixed-variational principle is used to obtain elemental arrays. This modification consists of augmenting the functional of that principle by two terms: the Lagrange multiplier vector associated with normal and tangential node contact-load intensities and a regularization term that is quadratic in the Lagrange multiplier vector. These capabilities and computational features are incorporated into an in-house computer code. Experimental measurements were taken to define the response of the Space Shuttle nose-gear tire to inflation-pressure loads and to inflation-pressure loads combined with normal static loads against a rigid flat plate. These experimental results describe the meridional growth of the tire cross section caused by inflation loading, the static load-deflection characteristics of the tire, the geometry of the tire footprint under static loading conditions, and the normal and tangential load-intensity distributions in the tire footprint for the various static vertical loading conditions. Numerical results were obtained for the Space Shuttle nose-gear tire subjected to inflation pressure loads and combined inflation pressure and contact loads against a rigid flat plate. The experimental measurements and the numerical results are compared.
NASA Technical Reports Server (NTRS)
Tanner, John A.
1996-01-01
A computational procedure is presented for the solution of frictional contact problems for aircraft tires. A Space Shuttle nose-gear tire is modeled using a two-dimensional laminated anisotropic shell theory which includes the effects of variations in material and geometric parameters, transverse-shear deformation, and geometric nonlinearities. Contact conditions are incorporated into the formulation by using a perturbed Lagrangian approach with the fundamental unknowns consisting of the stress resultants, the generalized displacements, and the Lagrange multipliers associated with both contact and friction conditions. The contact-friction algorithm is based on a modified Coulomb friction law. A modified two-field, mixed-variational principle is used to obtain elemental arrays. This modification consists of augmenting the functional of that principle by two terms: the Lagrange multiplier vector associated with normal and tangential node contact-load intensities and a regularization term that is quadratic in the Lagrange multiplier vector. These capabilities and computational features are incorporated into an in-house computer code. Experimental measurements were taken to define the response of the Space Shuttle nose-gear tire to inflation-pressure loads and to inflation-pressure loads combined with normal static loads against a rigid flat plate. These experimental results describe the meridional growth of the tire cross section caused by inflation loading, the static load-deflection characteristics of the tire, the geometry of the tire footprint under static loading conditions, and the normal and tangential load-intensity distributions in the tire footprint for the various static vertical-loading conditions. Numerical results were obtained for the Space Shuttle nose-gear tire subjected to inflation pressure loads and combined inflation pressure and contact loads against a rigid flat plate. The experimental measurements and the numerical results are compared.
High speed propeller performance and noise predictions at takeoff/landing conditions
NASA Technical Reports Server (NTRS)
Nallasamy, M.; Woodward, R. P.; Groeneweg, J. F.
1988-01-01
The performance and noise of a high speed SR-7A model propeller under takeoff/landing conditions are considered. The blade loading distributions are obtained by solving the three-dimensional Euler equations and the sound pressure levels are computed using a time domain approach. At the nominal takeoff operating point, the blade sections near the hub are lightly or negatively loaded. The chordwise loading distributions are distinctly different from those of cruise conditions. The noise of the SR-7A model propeller at takeoff is dominated by the loading noise, similar to that at cruise conditions. The waveforms of the acoustic pressure signature are nearly sinusoidal in the plane of the propeller. The computed directivity of the blade passing frequency tone agrees fairly well with the data at nominal takeoff blade angle.
High speed propeller performance and noise predictions at takeoff/landing conditions
NASA Technical Reports Server (NTRS)
Nallasamy, M.; Woodward, R. P.; Groeneweg, J. F.
1987-01-01
The performance and noise of a high speed SR-7A model propeller under takeoff/landing conditions are considered. The blade loading distributions are obtained by solving the three-dimensional Euler equations and the sound pressure levels are computed using a time domain approach. At the nominal takeoff operating point, the blade sections near the hub are lightly or negatively loaded. The chordwise loading distributions are distinctly different from those of cruise conditions. The noise of the SR-7A model propeller at takeoff is dominated by the loading noise, similar to that at cruise conditions. The waveforms of the acoustic pressure signature are nearly sinusoidal in the plane of the propeller. The computed directivity of the blade passing frequency tone agrees fairly well with the data at nominal takeoff blade angle.
NASA Technical Reports Server (NTRS)
Bigelow, C. A.
1988-01-01
The effects of fatigue loading combined with moisture and heat on the behavior of graphite epoxy panels with either Kevlar-49 or S-glass buffer strips were studied. Buffer strip panels, that had a slit in the center to represent damage, were moisture conditioned or heated, fatigue loaded, and then tested in tension to measure their residual strength. The buffer strips were parallel to the loading direction and were made by replacing narrow strips of the 0 deg graphite plies with Kevlar-49 epoxy or S-glass epoxy on a 1-for-1 basis. The panels were subjected to a fatigue loading spectrum. One group of panels was preconditioned by soaking in 60 C water to produce a 1 percent weight gain then tested at room temperature. One group was heated to 82 C during the fatigue loading. Another group was moisture conditioned and then tested at 82 C. The residual strengths of the buffer panels were not highly affected by the fatigue loading, the number of repetitions of the loading spectrum, or the maximum strain level. The moisture conditioning reduced the residual strengths of the S-glass buffer strip panel by 10 to 15 percent below the ambient results. The moisture conditioning did not have a large effect on the Kevlar-49 panels.
Kefal, Adnan; Yildiz, Mehmet
2017-11-30
This paper investigated the effect of sensor density and alignment for three-dimensional shape sensing of an airplane-wing-shaped thick panel subjected to three different loading conditions, i.e., bending, torsion, and membrane loads. For shape sensing analysis of the panel, the Inverse Finite Element Method (iFEM) was used together with the Refined Zigzag Theory (RZT), in order to enable accurate predictions for transverse deflection and through-the-thickness variation of interfacial displacements. In this study, the iFEM-RZT algorithm is implemented by utilizing a novel three-node C°-continuous inverse-shell element, known as i3-RZT. The discrete strain data is generated numerically through performing a high-fidelity finite element analysis on the wing-shaped panel. This numerical strain data represents experimental strain readings obtained from surface patched strain gauges or embedded fiber Bragg grating (FBG) sensors. Three different sensor placement configurations with varying density and alignment of strain data were examined and their corresponding displacement contours were compared with those of reference solutions. The results indicate that a sparse distribution of FBG sensors (uniaxial strain measurements), aligned in only the longitudinal direction, is sufficient for predicting accurate full-field membrane and bending responses (deformed shapes) of the panel, including a true zigzag representation of interfacial displacements. On the other hand, a sparse deployment of strain rosettes (triaxial strain measurements) is essentially enough to produce torsion shapes that are as accurate as those of predicted by a dense sensor placement configuration. Hence, the potential applicability and practical aspects of i3-RZT/iFEM methodology is proven for three-dimensional shape-sensing of future aerospace structures.
Corrected confidence bands for functional data using principal components.
Goldsmith, J; Greven, S; Crainiceanu, C
2013-03-01
Functional principal components (FPC) analysis is widely used to decompose and express functional observations. Curve estimates implicitly condition on basis functions and other quantities derived from FPC decompositions; however these objects are unknown in practice. In this article, we propose a method for obtaining correct curve estimates by accounting for uncertainty in FPC decompositions. Additionally, pointwise and simultaneous confidence intervals that account for both model- and decomposition-based variability are constructed. Standard mixed model representations of functional expansions are used to construct curve estimates and variances conditional on a specific decomposition. Iterated expectation and variance formulas combine model-based conditional estimates across the distribution of decompositions. A bootstrap procedure is implemented to understand the uncertainty in principal component decomposition quantities. Our method compares favorably to competing approaches in simulation studies that include both densely and sparsely observed functions. We apply our method to sparse observations of CD4 cell counts and to dense white-matter tract profiles. Code for the analyses and simulations is publicly available, and our method is implemented in the R package refund on CRAN. Copyright © 2013, The International Biometric Society.
Corrected Confidence Bands for Functional Data Using Principal Components
Goldsmith, J.; Greven, S.; Crainiceanu, C.
2014-01-01
Functional principal components (FPC) analysis is widely used to decompose and express functional observations. Curve estimates implicitly condition on basis functions and other quantities derived from FPC decompositions; however these objects are unknown in practice. In this article, we propose a method for obtaining correct curve estimates by accounting for uncertainty in FPC decompositions. Additionally, pointwise and simultaneous confidence intervals that account for both model- and decomposition-based variability are constructed. Standard mixed model representations of functional expansions are used to construct curve estimates and variances conditional on a specific decomposition. Iterated expectation and variance formulas combine model-based conditional estimates across the distribution of decompositions. A bootstrap procedure is implemented to understand the uncertainty in principal component decomposition quantities. Our method compares favorably to competing approaches in simulation studies that include both densely and sparsely observed functions. We apply our method to sparse observations of CD4 cell counts and to dense white-matter tract profiles. Code for the analyses and simulations is publicly available, and our method is implemented in the R package refund on CRAN. PMID:23003003
McCaskill, Ashlee; Turgeon, Robert
2007-01-01
Phloem loading is the initial step in photoassimilate export and the one that creates the driving force for mass flow. It has been proposed that loading occurs symplastically in species that translocate carbohydrate primarily as raffinose family oligosaccharides (RFOs). In these plants, dense fields of plasmodesmata connect bundle sheath cells to specialized companion cells (intermediary cells) in the minor veins. According to the polymer trap model, advanced as a mechanism of symplastic loading, sucrose from the mesophyll diffuses into intermediary cells and is converted there to RFOs. This process keeps the sucrose concentration low and, because of the larger size of the RFOs, prevents back diffusion. To test this model, the RFO pathway was down-regulated in Verbascum phoeniceum L. by suppressing the synthesis of galactinol synthase (GAS), which catalyzes the first committed step in RFO production. Two GAS genes (VpGAS1 and VpGAS2) were cloned and shown to be expressed in intermediary cells. Simultaneous RNAi suppression of both genes resulted in pronounced inhibition of RFO synthesis. Phloem transport was negatively affected, as evidenced by the accumulation of carbohydrate in the lamina and the reduced capacity of leaves to export sugars during a prolonged dark period. In plants with severe down-regulation, additional symptoms of reduced export were obvious, including impaired growth, leaf chlorosis, and necrosis and curling of leaf margins. PMID:18048337
NASA Astrophysics Data System (ADS)
Abdulkareem, Jabir Haruna; Sulaiman, Wan Nor Azmin; Pradhan, Biswajeet; Jamil, Nor Rohaizah
2018-03-01
The contribution of non-point source pollution (NPS) to the contamination of surface water is an issue of growing concern. Non-point source (NPS) pollutants are of various types and altered by several site-specific factors making them difficult to control due to complex uncertainties involve in their behavior. Kelantan River basin, Malaysia is a tropical catchment receiving heavy monsoon rainfall coupled with intense land use/land cover (LULC) changes making the area consistently flood prone thereby deteriorating the surface water quality in the area. This study was conducted to determine the spatio-temporal variation of NPS pollutant loads among different LULC changes and to establish a NPS pollutant loads relationships among LULC conditions and sub-basins in each catchment. Four pollutants parameters such as total suspended solids (TSS), total phosphorus (TP), total nitrogen (TN) and ammonia nitrogen (AN) were chosen with their corresponding event mean concentration values (EMC). Soil map and LULC change maps corresponding to 1984, 2002 and 2013 were used for the calculation of runoff and NPS pollutant loads using numeric integration in a GIS environment. Analysis of Variance (ANOVA) was conducted for the comparison of NPS pollutant loads among the three LULC conditions used and the sub-basins in each catchment. The results showed that the spatio-temporal variation of pollutant loads in almost all the catchments increased with changes in LULC condition as one moves from 1984 to 2013, with 2013 LULC condition found as the dominant in almost all cases. NPS pollutant loads among different LULC changes also increased with changes in LULC condition from 1984 to 2013. While urbanization was found to be the dominant LULC change with the highest pollutant load in all the catchments. Results from ANOVA reveals that statistically most significant (p < 0.05) pollutant loads were obtained from 2013 LULC conditions, while statistically least significant (p < 0.05) pollutant loads were obtained under 1984 LULC condition. This reveals the clear effect of LULC changes on NPS pollution. The findings of this study may be useful to water resource planners in controlling water pollution for future planning.
NASA Astrophysics Data System (ADS)
Abdulkareem, Jabir Haruna; Sulaiman, Wan Nor Azmin; Pradhan, Biswajeet; Jamil, Nor Rohaizah
2018-05-01
The contribution of non-point source pollution (NPS) to the contamination of surface water is an issue of growing concern. Non-point source (NPS) pollutants are of various types and altered by several site-specific factors making them difficult to control due to complex uncertainties involve in their behavior. Kelantan River basin, Malaysia is a tropical catchment receiving heavy monsoon rainfall coupled with intense land use/land cover (LULC) changes making the area consistently flood prone thereby deteriorating the surface water quality in the area. This study was conducted to determine the spatio-temporal variation of NPS pollutant loads among different LULC changes and to establish a NPS pollutant loads relationships among LULC conditions and sub-basins in each catchment. Four pollutants parameters such as total suspended solids (TSS), total phosphorus (TP), total nitrogen (TN) and ammonia nitrogen (AN) were chosen with their corresponding event mean concentration values (EMC). Soil map and LULC change maps corresponding to 1984, 2002 and 2013 were used for the calculation of runoff and NPS pollutant loads using numeric integration in a GIS environment. Analysis of Variance (ANOVA) was conducted for the comparison of NPS pollutant loads among the three LULC conditions used and the sub-basins in each catchment. The results showed that the spatio-temporal variation of pollutant loads in almost all the catchments increased with changes in LULC condition as one moves from 1984 to 2013, with 2013 LULC condition found as the dominant in almost all cases. NPS pollutant loads among different LULC changes also increased with changes in LULC condition from 1984 to 2013. While urbanization was found to be the dominant LULC change with the highest pollutant load in all the catchments. Results from ANOVA reveals that statistically most significant ( p < 0.05) pollutant loads were obtained from 2013 LULC conditions, while statistically least significant ( p < 0.05) pollutant loads were obtained under 1984 LULC condition. This reveals the clear effect of LULC changes on NPS pollution. The findings of this study may be useful to water resource planners in controlling water pollution for future planning.
Curvilinear relationship between phonological working memory load and social-emotional modulation
Mano, Quintino R.; Brown, Gregory G.; Bolden, Khalima; Aupperle, Robin; Sullivan, Sarah; Paulus, Martin P.; Stein, Murray B.
2015-01-01
Accumulating evidence suggests that working memory load is an important factor for the interplay between cognitive and facial-affective processing. However, it is unclear how distraction caused by perception of faces interacts with load-related performance. We developed a modified version of the delayed match-to-sample task wherein task-irrelevant facial distracters were presented early in the rehearsal of pseudoword memoranda that varied incrementally in load size (1-syllable, 2-syllables, or 3-syllables). Facial distracters displayed happy, sad, or neutral expressions in Experiment 1 (N=60) and happy, fearful, or neutral expressions in Experiment 2 (N=29). Facial distracters significantly disrupted task performance in the intermediate load condition (2-syllable) but not in the low or high load conditions (1- and 3-syllables, respectively), an interaction replicated and generalised in Experiment 2. All facial distracters disrupted working memory in the intermediate load condition irrespective of valence, suggesting a primary and general effect of distraction caused by faces. However, sad and fearful faces tended to be less disruptive than happy faces, suggesting a secondary and specific valence effect. Working memory appears to be most vulnerable to social-emotional information at intermediate loads. At low loads, spare capacity is capable of accommodating the combinatorial load (1-syllable plus facial distracter), whereas high loads maximised capacity and deprived facial stimuli from occupying working memory slots to cause disruption. PMID:22928750
Post carbon removal nitrifying MBBR operation at high loading and exposure to starvation conditions.
Young, Bradley; Delatolla, Robert; Kennedy, Kevin; LaFlamme, Edith; Stintzi, Alain
2017-09-01
This study investigates the performance of MBBR nitrifying biofilm post carbon removal at high loading and starvation conditions. The nitrifying MBBR, treating carbon removal lagoon effluent, achieved a maximum SARR of 2.13gN/m 2 d with complete conversion of ammonia to nitrate. The results also show the MBBR technology is capable of maintaining a stable biofilm under starvation conditions in systems that nitrify intermittently. The biomass exhibited a higher live fraction of total cells in the high loaded reactors (73-100%) as compared to the reactors operated in starvation condition (26-82%). For both the high loaded and starvation condition, the microbial communities significantly changed with time of operation. The nitrifying community, however, remained steady with the family Nitrosomonadacea as the primary AOBs and Nitrospira as the primary NOB. During starvation conditions, the relative abundance of AOBs decreased and Nitrospira increased corresponding to an NOB/AOB ratio of 5.2-12.1. Copyright © 2017 Elsevier Ltd. All rights reserved.
The biocompatibility of dense and porous Nickel-Titanium produced by selective laser melting.
Habijan, T; Haberland, C; Meier, H; Frenzel, J; Wittsiepe, J; Wuwer, C; Greulich, C; Schildhauer, T A; Köller, M
2013-01-01
Nickel-Titanium shape memory alloys (NiTi-SMA) are of biomedical interest due to their unusual range of pure elastic deformability and their elastic modulus, which is closer to that of bone than any other metallic or ceramic material. Newly developed porous NiTi, produced by Selective Laser Melting (SLM), is currently under investigation as a potential carrier material for human mesenchymal stem cells (hMSC). SLM enables the production of highly complex and tailor-made implants for patients on the basis of CT data. Such implants could be used for the reconstruction of the skull, face, or pelvis. hMSC are a promising cell type for regenerative medicine and tissue engineering due to their ability to support the regeneration of critical size bone defects. Loading porous SLM-NiTi implants with autologous hMSC may enhance bone growth and healing for critical bone defects. The purpose of this study was to assess whether porous SLM-NiTi is a suitable carrier for hMSC. Specimens of varying porosity and surface structure were fabricated via SLM. hMSC were cultured for 8 days on NiTi specimens, and cell viability was analyzed using two-color fluorescence staining. Viable cells were detected on all specimens after 8 days of cell culture. Cell morphology and surface topography were analyzed by scanning electron microscopy (SEM). Cell morphology and surface topology were dependent on the orientation of the specimens during SLM production. The Nickel ion release can be reduced significantly by aligned laser processing conditions. The presented results clearly attest that both dense SLM-NiTi and porous SLM-NiTi are suitable carriers for hMSC. Nevertheless, before carrying out in vivo studies, some work on optimization of the manufacturing process and post-processing is required. Copyright © 2012 Elsevier B.V. All rights reserved.
The Analysis of Adhesively Bonded Advanced Composite Joints Using Joint Finite Elements
NASA Technical Reports Server (NTRS)
Stapleton, Scott E.; Waas, Anthony M.
2012-01-01
The design and sizing of adhesively bonded joints has always been a major bottleneck in the design of composite vehicles. Dense finite element (FE) meshes are required to capture the full behavior of a joint numerically, but these dense meshes are impractical in vehicle-scale models where a course mesh is more desirable to make quick assessments and comparisons of different joint geometries. Analytical models are often helpful in sizing, but difficulties arise in coupling these models with full-vehicle FE models. Therefore, a joint FE was created which can be used within structural FE models to make quick assessments of bonded composite joints. The shape functions of the joint FE were found by solving the governing equations for a structural model for a joint. By analytically determining the shape functions of the joint FE, the complex joint behavior can be captured with very few elements. This joint FE was modified and used to consider adhesives with functionally graded material properties to reduce the peel stress concentrations located near adherend discontinuities. Several practical concerns impede the actual use of such adhesives. These include increased manufacturing complications, alterations to the grading due to adhesive flow during manufacturing, and whether changing the loading conditions significantly impact the effectiveness of the grading. An analytical study is conducted to address these three concerns. Furthermore, proof-of-concept testing is conducted to show the potential advantages of functionally graded adhesives. In this study, grading is achieved by strategically placing glass beads within the adhesive layer at different densities along the joint. Furthermore, the capability to model non-linear adhesive constitutive behavior with large rotations was developed, and progressive failure of the adhesive was modeled by re-meshing the joint as the adhesive fails. Results predicted using the joint FE was compared with experimental results for various joint configurations, including double cantilever beam and single lap joints.
Water impact analysis of space shuttle solid rocket motor by the finite element method
NASA Technical Reports Server (NTRS)
Buyukozturk, O.; Hibbitt, H. D.; Sorensen, E. P.
1974-01-01
Preliminary analysis showed that the doubly curved triangular shell elements were too stiff for these shell structures. The doubly curved quadrilateral shell elements were found to give much improved results. A total of six load cases were analyzed in this study. The load cases were either those resulting from a static test using reaction straps to simulate the drop conditions or under assumed hydrodynamic conditions resulting from a drop test. The latter hydrodynamic conditions were obtained through an emperical fit of available data. Results obtained from a linear analysis were found to be consistent with results obtained elsewhere with NASTRAN and BOSOR. The nonlinear analysis showed that the originally assumed loads would result in failure of the shell structures. The nonlinear analysis also showed that it was useful to apply internal pressure as a stabilizing influence on collapse. A final analysis with an updated estimate of load conditions resulted in linear behavior up to full load.
The effects of eye movements on emotional memories: using an objective measure of cognitive load.
van Veen, Suzanne C; Engelhard, Iris M; van den Hout, Marcel A
2016-01-01
Eye movement desensitization and reprocessing (EMDR) is an effective treatment for posttraumatic stress disorder. The working memory (WM) theory explains its efficacy: recall of an aversive memory and making eye movements (EM) both produce cognitive load, and competition for the limited WM resources reduces the memory's vividness and emotionality. The present study tested several predictions from WM theory. We hypothesized that 1) recall of an aversive autobiographical memory loads WM compared to no recall, and 2) recall with EM reduces the vividness, emotionality, and cognitive load of recalling the memory more than only recall or only cognitive effort (i.e., recall of an irrelevant memory with EM). Undergraduates (N=108) were randomly assigned to one of three conditions: 1) recall relevant memory with EM, 2) recall relevant memory without EM, and 3) recall irrelevant memory with EM. We used a random interval repetition task to measure the cognitive load of recalling the memory. Participants responded to randomly administered beeps, with or without recalling the memory. The degree to which participants slow down during recall provides an index of cognitive load. We measured the cognitive load and self-reported vividness and emotionality before, halfway through (8×24 s), and after (16×24 s) the intervention. Reaction times slowed down during memory recall compared to no recall. The recall relevant with EM condition showed a larger decrease in self-reported vividness and emotionality than the control conditions. The cognitive load of recalling the memory also decreased in this condition but not consistently more than in the control conditions. Recall of an aversive memory loads WM, but drops in vividness and emotionality do not immediately reduce the cognitive load of recalling the memory. More research is needed to find objective measures that could capture changes in the quality of the memory.
Hassan, Aamna; Khalid, Madeeha; Khawar, Saquib
2016-01-01
Melorheostosis is a benign, noninheritable bone dysplasia characterized by its classic radiographic features of dense, flowing hyperostosis. It frequently affects one limb, usually the lower extremity and rarely the axial skeleton. A 26-year-old lady with obesity, polycystic ovarian syndrome and scalp dandruff presented with a long standing history of upper extremity pain and inability to adduct the arm completely. A Tc-99m MDP whole body and SPECT/CT scan performed for suspected fibrous dysplasia showed increased radiotracer uptake in densely sclerotic humeral and radial melorheostosis. This case highlighted the role of SPECT/CT imaging in this rare condition.
Reddy, Ravinder D.; Keshavan, Matcheri S.; Yao, Jeffrey. K.
2007-01-01
SUMMARY Objectives To determine whether blunted serotonergic responsivity, indicated by decreased platelet dense granule secretion (DGS), occurs in neuroleptic-naive patients with schizophrenia, as observed previously in chronic schizophrenia. Design and Methods Serotonin (5-HT)-amplified DGS was examined in 40 first-episode neuroleptic-naive patients (24 with schizophrenia and 16 with mood disorders) and 24 healthy subjects. Results Healthy controls showed robustly increased DGS. Schizophrenic patients showed very modest DGS increases; mood disorder patients showed intermediate response. Conclusions Blunted DGS appears to a characteristic of schizophrenia that is observed in the treatment-naïve condition. PMID:17601524
Processing of task-irrelevant emotional faces impacted by implicit sequence learning.
Peng, Ming; Cai, Mengfei; Zhou, Renlai
2015-12-02
Attentional load may be increased by task-relevant attention, such as difficulty of task, or task-irrelevant attention, such as an unexpected light-spot in the screen. Several studies have focused on the influence of task-relevant attentional load on task-irrelevant emotion processing. In this study, we used event-related potentials to examine the impact of task-irrelevant attentional load on task-irrelevant expression processing. Eighteen participants identified the color of a word (i.e. the color Stroop task) while a picture of a fearful or a neutral face was shown in the background. The task-irrelevant attentional load was increased by regularly presented congruence trials (congruence between the color and the meaning of the word) in the regular condition because implicit sequence learning was induced. We compared the task-irrelevant expression processing between the regular condition and the random condition (the congruence and incongruence trials were presented randomly). Behaviorally, reaction times for the fearful face condition were faster than the neutral faces condition in the random condition, whereas no significant difference was found in the regular condition. The event-related potential results indicated enhanced positive amplitudes in P2, N2, and P3 components relative to neutral faces in the random condition. In comparison, only P2 differed significantly for the two types of expressions in the regular condition. The study showed that attentional load increased by implicit sequence learning influenced the late processing of task-irrelevant expression.
14 CFR 25.487 - Rebound landing condition.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Rebound landing condition. 25.487 Section... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Ground Loads § 25.487 Rebound landing condition. (a) The landing gear and its supporting structure must be investigated for the loads occurring during...
14 CFR 25.487 - Rebound landing condition.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Rebound landing condition. 25.487 Section... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Ground Loads § 25.487 Rebound landing condition. (a) The landing gear and its supporting structure must be investigated for the loads occurring during...
Current research on shear buckling and thermal loads with PASCO: Panel Analysis and Sizing Code
NASA Technical Reports Server (NTRS)
Stroud, W. J.; Greene, W. H.; Anderson, M. S.
1981-01-01
The PASCO computer program to obtain the detailed dimensions of optimum stiffened composite structural panels is described. Design requirements in terms of inequality constraints can be placed on buckling loads or vibration frequencies, lamina stresses and strains, and overall panel stiffness for each of many load conditions. General panel cross sections can be treated. An analysis procedure involving a smeared orthotropic solution was investigated. The conservatism in the VIPASA solution and the danger in a smeared orthotropic solution is explored. PASCO's capability to design for thermal loadings is also described. It is emphasized that design studies illustrate the importance of the multiple load condition capability when thermal loads are present.
Influence of upper-body external loading on anaerobic exercise performance.
Inacio, Mario; Dipietro, Loretta; Visek, Amanda J; Miller, Todd A
2011-04-01
The purpose of this study was to assess the threshold where simulated adipose tissue weight gain significantly affects performance in common anaerobic tasks and determine whether differences exist between men and women. Forty-six subjects (men = 21; women = 25) were tested for vertical jump, 20- and 40-yd dash, and 20-yd shuttle tests under 6 different loading conditions (0, 2, 4, 6, 8, and 10% of added body weight). Results were compared to each subject's baseline values (0% loading condition). Results demonstrate significant decrements in performance, starting at the 2% loading condition, for both genders, in every performance test (p < 0.05). On average, subjects jumped 4.91 ± 0.29 to 9.83 ± 0.30 cm less, increased agility test times from 5.49 ± 0.56 to 5.86 ± 0.61 seconds, and increased sprint times from 7.80 ± 0.96 to 8.39 ± 1.07 seconds (2-10%, respectively; p < 0.05). When lower-body power was corrected for total body mass, men exerted significantly more power than women did in every loading condition. Conversely, when lower-body power was corrected for lean body mass, men exerted significantly more power than did women only at the 2% loading condition. This study demonstrates that for the specific anaerobic performance tests performed, increases in external loading as low as 2% of body weight results in significant decreases in performance. Moreover, for these specific tests, men and women tend to express the same threshold in performance decrements.